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Abstract

The significant amount of data contained in digital images present barriers to methods of

learning from the information they hold. Noise and the subjectivity of image evaluation further

complicate such automated processes. In this thesis, we examine a particular area in which these

difficulties are experienced. We attempt to control the parameters of a multi-step algorithm that

processes visual information. A framework for approaching the parameter selection problem

using reinforcement learning agents is presented as the main contribution of this research. We

focus on the generation of state and action space, as well as task-dependent reward. We first dis-

cuss the automatic determination of fuzzy membership functions as a specific case of the above

problem. Entropy of a fuzzy event is used as a reinforcement signal. Membership functions

representing brightness have been automatically generated for several images. The results show

that the reinforcement learning approach is superior to an existing simulated annealing-based

approach. The framework has also been evaluated by optimizing ten parameters of the text de-

tection for semantic indexing algorithm proposed by Wolf et al. Image features are defined and

extracted to construct the state space. Generalization to reduce the state space is performed with

the fuzzy ARTMAP neural network, offering much faster learning than in the previous tabular

implementation, despite a much larger state and action space. Difficulties in using a continuous

action space are overcome by employing the DIRECT method for global optimization without

derivatives. The chosen parameters are evaluated using metrics of recall and precision, and are

shown to be superior to the parameters previously recommended. We further discuss the inter-

play between intermediate and terminal reinforcement.
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Chapter 1

Introduction

Reinforcement learning (RL), can be described as a computational approach to learning through

interacting with the environment. This family of algorithms has been applied successfully in

several fields, but within the domain of image-based tasks, the literature has not offered many

such examples. The complexity of visual information has been one limiting factor in applying

RL to image-based applications. Researchers have also not considered the treatment of single

images to be the dynamic environment in which RL is typically applied. A temporal element

is present in all environments modelled as reinforcement learning problems, and often, this is

difficult to define. Recently, theoretical developments in RL as well as its growing popularity

have resulted in research that has shown that RL can indeed be applied to such problems. The

majority of results have been in vision tasks, processing low-resolution images, including raw

sensory data [5, 20, 69, 68], but results are also beginning to emerge in the processing of higher-

resolution images [70, 94].

This work aims to explore the use of reinforcement learning algorithms in image-based ap-

plications. It first offers a glimpse of some of the fundamental difficulties faced when combining

the two areas, and then proposes some solutions to these problems. We then focus on the specific

task of parameter control of multi-step vision or image processing algorithms, and develop a

framework of applying reinforcement learning to this particular case. We examine specific ques-

tions, such as how to define state, actions and reward, and how generalization may be employed

when facing problems of a highly-dimensional and continuous parameter space.
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2 Reinforcement Learning for Parameter Control of Image-Based Applications

To evaluate the framework, we offer two specific applications. The first, and simpler of the

two, is the automatic generation of “brightness” fuzzy membership functions for various images.

Images are processed individually, and generalization is not used (algorithms are implemented

in a tabular fashion). Next, we approach a significantly more complex problem, that is, the

detection of text in images extracted from video sequences for semantic indexing. Here, we

use the Fuzzy ARTMAP (FAM) artificial neural network [14] for generalization over states and

actions. This work offers the first results of approaching a problem space of both continuous

states and continuous actions using the FAM architecture. Selecting an optimal action for a

given state becomes a bounded global optimization problem. This is resolved with the use of the

DIRECT optimization algorithm, which does not require the gradient of the objective function to

be known. The FAM can be then treated as an external entity, whose values are sampled, while

keeping the number of samples as low as possible.

This thesis makes a number of contributions. First, it examines some of the wider aspects of

RL in image-based tasks - the difficulties and ways to overcome them. Next, it provides a second

look at the Fuzzy ARTMAP as a generalization method. It applies this neural network structure

to a more complex problem (in both the state space and through continuous actions). Third, it

proposes the DIRECT sampling method as a means to overcome the nonlinear optimization when

the generalizer is computationally expensive to query and gradient information for the objective

function is unavailable. Finally, it looks at two very different image-based applications, one

simple enough to use tabular-based methods, and one requiring generalization. A number of

novel image features for learning are proposed for the latter.

The outline of the thesis is as follows. Chapter 2 provides an overview of the field of re-

inforcement learning. Image-based tasks are then introduced, as well as a focus on their rela-

tionship with RL and challenges in agent design. We also review related work. Then Chapter 3

focuses on a specific problem involving visual information, parameter control of multi-step algo-

rithms. Ideas from the previous chapter are used to develop a general framework for parameter

control by RL. The FAM is introduced and defined as the method of generalization, as well as the

DIRECT optimization architecture which is employed when we consider continuous rather than

traditional discrete actions. Chapter 4 introduces and provides technical details of two specific

applications which demonstrate the effectiveness of our framework. Results of the experiments



Introduction 3

from both applications are presented and discussed in Chapter 5. Finally, Chapter 6 offers our

reflections on the developments presented in this thesis and ideas for future progress.



Chapter 2

Background

2.1 Reinforcement learning

Here we will provide an overview of the field of reinforcement learning. A more thourough

covering of the field can be found in [79, 31, 61]. The basis of RL is an intelligent agent that

seeks some reward or special signal, and strives to receive this reward through exploring its

environment. It also must exploit the knowledge it has previously obtained through past actions

and past rewards (or punishments). This careful balance between exploration and exploitation is

crucial to the success of RL. Reinforcement learning is very different to supervised learning, and

thus can offer an advantage over the latter in many tasks. The agent does not need a set of training

examples. Instead, it learns on-line, and can continually learn and adapt while performing the

required task. This behaviour is useful for the many cases where precise learning data is difficult

or impossible to obtain. In the following discussion, we will adopt the standard terminology used

by Sutton and Barto [79].

The history of RL dates back to the early days of cybernetics. It draws from the fields

of statistics, psychology, neuroscience and computer science. It is believed that RL is more

animal-like than other learning methods. Like other biologically-inspired intelligent approaches,

reinforcement learning underwent a period of hiatus, but as the number of publications in the

field can attest, RL has emerged and has been steadily growing for the past 10-15 years. Al-

ready many learning algorithms have been proposed, and several so far have been proven to

4
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converge to an optimal solution. Applications have been limited but wide-ranging, from a pow-

erful backgammon-playing agent [82] to an elevator dispatcher for skyscrapers [18] to stability

control in power systems [22]. It is worth noting that reinforcement learning models have begun

to make significant contributions to fields such as biology, psychology and neuroscience [50], in

a way “giving back” to the fields from where such ideas were borrowed many years ago. Section

2.3 treats the current focus of theoretical and applied RL research.

Figure 2.1 illustrates the core components of RL. The agent, which is the decision maker

of the process, attempts an action that is recognized by the environment. It receives from its

environment a reward or punishment depending on the action taken. The agent also receives

information concerning the state of the environment. It acquires knowledge of the actions that

generate rewards and punishments and eventually learns to perform the actions that are the most

rewarding in order to meet a certain goal relating to the state of the environment. RL relies on

prediction learning, that is, when an RL agent receives reinforcement, it must somehow propa-

gate that reinforcement back in time so that all related states may be associated with that future

consequence. The many RL algorithms dictate exactly how prediction learning is handled, rely-

ing on parameters to assign reinforcement temporally.

Agent

Environment

state

punishment
reward/ action

Figure 2.1: The components of a reinforcement learning agent
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2.1.1 Markov decision processes

Understanding Markov decision processes (MDPs) greatly facilitates the understanding of rein-

forcement learning. In this thesis, we model problems as MDPs before applying RL algorithms.

This is the most popular representation, but not the only one (see [89, 47, 32, 41] for examples

of alternatives). MDPs are a convenient way to model a known stochastic domain, such that

optimal behaviour can be calculated. An MDP is a 4-tuple, (S, A, r, P ), where:

• S is a set of states;

• A is a set of actions;

• r is a reward function; and

• P is a state transition function, which specifies probabilistically the next state of the envi-

ronment, given its present state and agent’s chosen action.

In our models, we assume the presence of the Markov property on the environment. This

requires that all state dynamics be independent of any previous environment states, rewards or

agent actions. Simply stated, all the information or domain knowledge we need to predict the

next state and expected reward is provided in a compact representation by the current state and

action. This can be formulated as:

P (st+1 = s′, rt+1 = r|st, at, rt, st−1, at−1, . . . , r1, s0, a0) = P (st+1 = s′, rt+1 = r|st, at), (2.1)

for all s′,r and all possible values of past events,st, at, rt, st−1, at−1, . . . , r1, s0, a0.

A stationary policy π for an MDP is a mapping π : S 7→ A, where π(s) is the action the

agent takes in state s. This concept of policy, which will be explored further, is central to RL.

The agent is interested in maximizing the average reward received per time step:

ρπ = lim
T→∞

1

T
E

[

T
∑

t=1

r (st, π(st))

]

. (2.2)
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The optimal policy π∗ is characterized by a set of fixed-point equations:

ρ∗ + V ∗(s) = max
a

[

r(s, a) + γ
∑

s′

P (s′|s, a)V ∗(s′)

]

, (2.3)

for all s, where ρ∗ is the maximum average reward and V (s) is a value function. For any value

function, V , there exists a special policy called the greedy policy, which is defined as:

Greedy(V )(s) = arg max
a

[

r(s, a) + γ
∑

s′

P (s′|s, a)V (s′)

]

. (2.4)

For MDPs, we formally define V π(s) as:

V π(s) = Eπ{Rt|st = s} = Eπ

{

∞
∑

k=0

γkrt+k+1|st = s

}

, (2.5)

where γ is some discount factor, employed to assign a greater value to more recent rewards. This

is the state-value function for policy π. Sometimes it is more convenient to consider the value of

a particular state-action pair rather than a state. For this case, we define:

Qπ(s, a) = Eπ{Rt|st = s, at = a} = Eπ

{

∞
∑

k=0

γkrt+k+1|st = s, at = a

}

, (2.6)

which is the action-value function for policy π. We will discuss the difference between the

two approaches in more detail in Section 2.1.2. The greedy policy relative to the optimal value

function, V ∗, is the optimal policy, π∗ = Greedy(V ∗). This can be applied to both the case of the

state-value function and action-value function. The ability to calculate, or estimate the optimal

value function is the central problem to reinforcement learning.

2.1.2 Policy estimation

As we have stated in the previous section, our aim is to estimate the optimal value function for a

given Markov decision process. Many methods have been proposed for solving this problem. In

this section, we briefly review two existing methods, Dynamic Programming and Monte Carlo
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methods, and then introduce a third family of algorithms, Temporal-difference methods, which

neatly form a bridge between the first two.

Dynamic programming

Dynamic programming (DP) methods require a complete model of the environment, formulated

as an MDP. The worst case time DP methods take to find an optimal policy is polynomial in the

number of states and actions [12]. Therefore, for certain problems, limited in state and action

space, DP methods are efficient. Often, these methods are thought to have limited applicability,

because of the curse of dimensionality, which will be revisited later on in Section 2.2. As the

number of states grows exponentially with the number of state variables, computation time blows

up in problems with large state spaces.

Because DP methods require operations over the entire set of MDP states, we must sweep

the state space multiple times. This is impractical for large state spaces. Fortunately, learning

takes place at every step. We do not have to wait until reward is received to update the value

estimates of states or state-action pairs. DP methods use a technique called bootstrapping, which

means that value estimates are updated on the basis of other value estimates. This is an extremely

attractive property of DP approaches.

Monte Carlo methods

Monte Carlo (MC) methods differ from DP methods in that they do not require a complete model,

or knowledge of the environment. They require only raw experience. MC methods are sampling

algorithms, in which returns are averaged. The simplest example of an MC approach would

be to record and then average all returns following all visits to a particular state, s. The value

estimate of state s would then be updated with this average. Because estimates for each state

are independent, the computational expense of estimating the value of a state is independent of

the number of states. This is in contrast to the complexity of DP. Therefore, these techniques

are able to perform in very highly demensional spaces. This makes them attractive even beyond

policy estimation [42]. However, maintaining sufficient exploration, that is, enough coverage of

the state space, is an issue with such sampling techniques.
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Temporal-difference methods

The ability of MC methods to work without a model of the environment and learn directly from

experience is attractive. Unfortunately, they do not bootstrap like DP methods, and therefore

must always wait for a final outcome before experience can be recorded and learning can occur.

Ideally, we desire methods that can learn directly from experience, in a Monte Carlo fashion, but

also bootstrap like Dynamic Programming [79]. In this work, we focus on a specific family of

algorithms called temporal-difference (TD) learning which do just that.

TD learning algorithms strike a balance between the raw experience and non-model nature of

Monte Carlo methods and model-based dynamic programming. Their name refers to the appro-

priate distribution of rewards by the agent over successive steps, or discrete time increments. The

idea is that it may take several steps and several more actions before an action taken by an agent

results in a reward (or punishment). TD algorithms simply define an approach to distributing this

delayed reward.

As we have discussed in Section 2.1.1, reinforcement learning algorithms can be approached

through the the policy estimation or prediction problem, in which we estimate a value function,

V π(s), for a given policy π or the control problem, in which we describe the value of state-

action pairs through a function which estimates the optimal policy, Qπ(s, a). Both approaches

are useful. For example, if we were designing an RL agent to play a particular board game,

we may wish it to learn the value of certain features extracted from the current board layout,

which would define its state. It could then evaluate some number of potential board actions,

and resulting states, using a method such as minimax. In this case, we would only need to

estimate a state-value function, and thus use the policy estimation approach. On the other hand,

the common gridworld problem of an agent navigating some maze with a limited number of

actions, such as up, down, left, and right, is usually approached using the control framework.

In this thesis, we will focus on the latter, though our framework could be revisited with policy

estimation algorithms such as TD(λ).

The most widely used and well-known TD control algorithm is Q-learning [87, 88], intro-

duced by Christopher Watkins in his Ph.D thesis. Q-learning is characterized by the following
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update equation:

Q(st, at)← Q(st, at) + α[rt+1 + γ max
a

Q(st+1, a)−Q(st, at)], (2.7)

where rt is the reward received from the environment at time t, α is the step-size parameter,

and γ is the discount-rate parameter. It is a form of off-policy TD control. This means that the

learned action-value function, Q, directly approximates the optimal action-value function, Q∗

independently of the policy being followed. This is seen in the “max” term where the maximum

Q value over all actions at the next state is always taken, regardless of the policy.

A similar TD control algorithm, but instead on-policy, is the Sarsa algorithm [63], introduced

by Rummery and Niranjin. The update equation for Sarsa (Eq. 2.8) is nearly identical to that of

Q-learning, but the next state action pair must be selected (using the policy) before the update

can be made:

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]. (2.8)

Both equations describe an update to the estimated optimal action-value function for the

previous state, following an action which causes the agent to transition to a new state. The

update algorithm is the core of a reinforcement learning agent.

One criticism of these two algorithms, is that the value function backup is based on only

immediate reward. The value of the state one step later is used as an estimate for expected future

rewards. However, when we update the value of a state, we may wish to update using not only

the next reward, but the reward after that, and other rewards into the future. This is because

the outcomes of a particular decision may not be immediate. Of course, future rewards would

be discounted, but they should still be considered. A concept called eligibility traces provides

the mechanism for distributing rewards temporarily. Essentially they are a history of past states

and actions which decay as they become more and more distant in the past. The Sarsa-(λ)

algorithm works the same way as Sarsa, except that at each update, past visited state and action

pairs are also updated with the current reward by using eligibility traces. The strength of the

update is proportional to how recently they have been visited. Generally, after a certain number

of iterations, we discard the traces associated with old states and actions, as they decayed to
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nearly zero. The parameter λ, where 0 ≤ λ ≥ 1, controls a balance between one-step returns

(at λ = 0), and infinite-step returns (at λ = 1). The added memory requirements for eligibility

traces are often well worth the efficiency gain in learning. While this is enough background to

understand the experiments in Chapter 5, we have provided only a brief introduction to eligibility

traces. They certainly play an important part in reinforcement learning, and many more details

and algorithms may be found in [79].

2.1.3 Action selection policies: the tradeoff between exploration and ex-

ploitation

Already we have discussed a great deal about policies. First we established that the agent is

trying to estimate an optimal policy. Then we introduced on-policy and off-policy versions of

TD learning. But we have said nothing yet about what policy the agent actually follows while

it learns. This is one of the most fundamental questions concerning RL, and has been a popular

subject of discussion in the literature [56].

An agent changes its current state by executing an action. Given that it knows of Q-values

relating each possible action to expected reward, we may think it should always take the action

associated with the highest Q-value, the greedy action. This is the naı̈ve answer, as the agent

must make a trade-off between immediate return and long-term value. The agent that did not

explore unseen states and only attempted to maximize its return by choosing what it already

knew would be a poor learner [79]. There needs to be a balance between exploration of unseen

states and exploitation of familiar states.

There are many proposed solutions for this exploration vs. exploitation dilemma [56, 94],

but so far no solution has emerged as the clear winner. The action selection policy generally

depends on the task at hand. In the experiments that follow, we have used simple but often-used

ε-greedy policy. This dictates that given a state, we will select the greedy action (that which has

highest Q-value) with probability ε, and select a random action with probability 1− ε. We have

experimented with both fixed values of ε as well as values that decrease according to a specified

formula.

One major drawback of ε-Greedy action selection is that when the agent explores, it chooses



12 Reinforcement Learning for Parameter Control of Image-Based Applications

equally among non-ideal actions. This is undesirable when certain actions are much lower valued

than others. A policy called Softmax action selection solves this problem by varying the action

probabilities as a graded function of estimated value. The greedy action is given the highest

selection probability, but the other actions are ranked and weighted according to their value

estimates. The most common Softmax method uses a Gibbs or Boltzmann distribution [79]. The

number of state changes accumulated must be known to the agent. The agent will then choose

action a on iteration t with probability

P (a|t) =
e

Qt−1(a)

τ

∑

b e
Qt−1(b)

τ

, (2.9)

where τ is a positive parameter called the computational temperature. Higher temperatures will

result in all actions being equally probable. As τ approaches 0, Softmax error selection becomes

the same as greedy action selection.

A more involved policy, such as Softmax action selection could be employed, but so far

there is no proof of it performing better, and often it is difficult to select a value of τ [84].

Another problem with the Softmax action policy is that it requires all Q-values to be ordered and

considered. This is computationally impossible in the case of continuous actions (see Section

3.5). To date, the ε-greedy policy is still the most popular policy in use.

2.2 Generalization

Ideally, one could assume that the estimates of value functions could always be represented as a

look-up table with one entry for each state or state-action pair, depending on whether the policy

estimation or control methodology is being used. Unfortunately, this is often not the case, and can

be treated as so in only very limited problems. Not only does this approach present unrealistic

memory requirements, but for large state spaces, an agent is not able to visit all states or state-

action pairs, and thus the time needed to fill these tables becomes increasingly problematic. In

the case of a large, continuous state-space, the problem becomes intractable. This is known as

the curse of dimensionality and requires some form of generalization. Generalization has been

extensively studied before the popularity of RL [79], so many of the existing generalization
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methods are commonly combined with RL.

The most popular method of function approximation in the reinforcement learning literature

has been the local linear function approximator. An example of this is CMAC introduced by

Albus [2], also known as tile-coding. Sutton later fortified this method by providing strong em-

pirical results [77], even after it had already been widely used in RL. Tile-coding is convenient,

being easily understandable and implementable, but can only handle a relatively low-dimensional

state space. More recent research has shown that connectionist systems [86, 49] can handle a

much higher-dimensional state space [17]. The well-known multi-layer perceptron (MLP) has

been combined with RL in many examples [63, 17]. Unfortunately feedforward MLP networks

tend to forget previously learned patterns as more and more significantly different patterns are

presented to them. In RL, non-stationary environments are a perfect catalyst of this problem,

called catastrophic interference [25]. If an example (in the case of RL, a state or state-action

pair) is introduced which is very different than what the network has previously experienced, it

will adjust its weights in such a way that the old knowledge is permanently damaged, or forgot-

ten. Let us consider the example in which an agent is trained to find the shortest route from point

A to point B through a series of streets. After a certain amount of iterations, the agent has learned

a near-optimal path. Now, assume that one of the streets along this path is suddenly blocked. The

agent must suddenly adapt to this new obstacle, but using the MLP for function approximation,

its knowledge of the previous state space may be permanently damaged.

Patrascu and Stacey [56] provide emperical results for a dynamic grid-world RL agent prob-

lem that demonstrates that the fuzzy ARTMAP [14] (FAM) vastly outperforms the MLP when

the two are compared using a gradient-descent Sarsa algorithm. The FAM is also much less

sensitive to algorithm parameters. Like these researchers, we are concerned with non-stationary

environments. Our framework must be able to handle many different images, containing various

content and acquired from multiple sources. For its past performance, and also for its ease of im-

plementation, we have chosen to adopt this method of generalization for one of the applications

introduced in this thesis. The FAM is outlined in Section 3.4.

A common criticism of connectionist systems used as generalization methods in RL is their

black-box nature. They function well, and implementation can be done in a modular fashion,

but if any problems occur, it becomes very difficult . Besides troubleshooting, we also may want
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details regarding the nature of the approximated Q-function, and often this is not convenient

when using such systems. Recently, researchers have turned to more statistical-based methods,

which not only generalize well, but explain how the state and action space has been generalized.

Sallans and Hinton [65] approximate Q-values by the free energy of a product of experts network.

This network implicitly represents a joint probability distribution over state-action pairs, and thus

is readily queryable and understandable.

A final class of generalization methods will be mentioned here, and that is a class of algo-

rithms that store past training data and process the data at the time of a query. They are known

as memory-based methods, instance-based methods, and also lazy learning. When using such

methods in RL, value-function estimates are generated at query-time. Simply stated, real world

experiences are saved and used to create a value function approximation. Smart and Kaelbling

[74] propose an algorithm called HEDGER based on one form of lazy learning, locally weighted

regression (LWR) techniques, which allow training points closer to the query point to have more

influence over the approximation than those further away. This technique can avoid the common

extrapolation error of other function approximation techniques by constructing a convex hull

around training points, and providing output only for queries within this surface. More details

on locally-weighted learning can be found in [6, 7].

2.3 Current areas of research in RL

Reinforcement learning is a wide field, and in-depth coverage of the range of current research

interests within it would exceed the scope of this thesis. In this section, however, we aim to

highlight some of the major areas in the field. The author wishes to acknowledge that many of

these ideas have been proposed by Sutton [78].

2.3.1 Theoretical research

While it has been proven that many of the fundamental RL algorithms converge to an optimal

policy (under specific conditions), we are still unaware of the convergence properties of many

families. This is especially true for algorithms involving function approximation. It is expected
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that newer and more effective generalization methods, such as the one described in [65] will be

developed in coming years, and modifications will be made of existing methods. One promising

field is that of Neuroevolution [75], where neural network weights as well as topologies are grad-

ually optimized by evolutionary computation methods. Theoretical analysis of new algorithms,

notably actor-critic methods [76, 79] and policy-gradient methods [81], as well as function ap-

proximation techniques, will follow.

As Equations 2.7 and 2.8 show, the agent aims to maximize expected discounted return.

The majority of RL algorithms employ discounting and employ a parameter that determines

the current value of future returns, such that rewards received closer to the immediate future

are assigned higher value compared to those received far in the future. Alternatively, certain

algorithms do not discount, but consider the average reward [44]. Empirical results have shown

that these algorithms perform better than discounting algorithms in cyclical tasks. However, this

area still remains unexplored relative to the numerous discounted reward algorithms.

Knowledge representation also poses a major challenge to RL. Specifically, we must search

for methods to represent temporally abstract knowledge. This domain covers the hierarchical

nature of real-world tasks. Any RL problem will inevitably involve sub-problems. Consider the

task of making breakfast. This not only includes the high-level decision making of what to make,

but also smaller steps like finding the right dishes, or at even a lower-level, moving one’s arms.

A framework for treating such tasks in a hierarchical nature must be established before we can

expect RL to treat a variety of sufficiently complex real-world tasks. Several methods for repre-

senting temporally abstract knowledge have been proposed, such as hierarchical reinforcement

learning [19, 3, 64], Q-concept learning [62] (which is also a generalization approach), and the

method of options [80], but they need to be further evaluated and refined. This area is also closely

related to the active research field of multi-agent learning [11]. Researchers in RL will continue

to examine how multiple agents may work together to solve a task, in particular, by subdividing

the task and tackling these sub-problems individually.

Finally, we have mentioned in Section 2.1.1 that underlying reinforcement learning is the

theory of Markov decision processes. We have assumed that the state of the environment is fully

available to the agent, though in reality it is often not. Allowing the state representation to be non-

Markov [89] opens the field up to a plethora of untreated applications, but also many questions.
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This phenomenon is commonly observed in computer vision problems, where objects are often

occluded or unrecognizable. If the agent had previously seen an object, and could remember its

location, then obviously this would aid in learning. This is common practice for humans: we

remember the location of buildings, times of appointments and temperature outside, even if this

information is not readily available from sensory input. Current methods of adressing perceptual

limitation do include history-based approaches [47] such as n-th order Markov models, but also

the framework of partially observable Markov decision processes [73, 32] and the more recently

developed predictive state representations [41, 72]. These, and other methods will continue to

evolve.

2.3.2 Applied research

RL has frequently been applied in some areas such as robotics and game-playing, fields which

concern high-level decision making. Its adoption in other environments, has been hampered by

some of the theoretical issues discussed in the previous section. As these concerns are better

explored and alleviated, RL will continue to be applied to wider-reaching areas. Many applica-

tions, including those in image processing and vision, require the treatment of large and contin-

uous state spaces (in which RL has had promising results) but also large and continuous action

spaces (which have received less attention in the literature). Of course, there is much room to

apply the novel techniques developed in theoretical RL to areas that have previously received

less attention.

This thesis presents application-driven research. Specifically, it focuses on image-based

tasks, a wide-ranging field. Because so many of the ideas in RL are new, there is no “toolbox”

that allows us to immediately start generating results. The problem must, of course, be formu-

lated in a way that it can be treated by RL algorithms. Then ideas from other domains, such as

connectionist theory and optimization can be employed so that the problem is manageable. A

similar approach would be necessary in applying RL to any new field.
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2.4 RL and visual information

As in the previous section, the examples are numerous, and we may only highlight some of the

more interesting related research. We focus on addressing the nature of image-related problems

and the difficulties they present to RL.

2.4.1 What are image-based tasks?

First, we begin with some definitions. Digital images are visual representations of real-world

scenes. Image-based tasks are algorithms and procedures that process this visual information.

Visual information may be the information contained in digital images (or videos), the image

itself (a digital representation of a real-life scene), information presented as an image, or infor-

mation perceived by a biological vision system. This data can be analyzed and manipulated in

many ways.

This set of algorithms encompasses both image processing and computer vision. Just as high-

level vision tasks include low-level image processing operations, higher level decision-making

algorithms (as in robotics) may well include vision operations. Common processes involving

visual information include:

• Image enhancement;

• Image restoration;

• Object recognition; and

• Image storage and retrieval (in multimedia databases).

Intelligent agents can play an important role in all of these operations. Learning about the

environment can be aided by images representing the real world.

2.4.2 Why are image-based tasks difficult?

As discussed in Section 2.1, the state of the environment is a major component of reinforcement

learning. We introduced the concept of policy as a mapping from states to actions. In fact,



18 Reinforcement Learning for Parameter Control of Image-Based Applications

the goal of RL is to estimate an optimal value function, from which the optimal policy can be

built. State construction, therefore, is of utmost interest. It seems natural that agents working

with images will incorporate image information into states. But this is a difficult task. Directly

generating states from image information results in huge states (often between 0.2-3MB of data

per image), that cannot be handled even with value function approximation. Images also often

contain noise and irrelevant data, which further complicates state construction. One method

of achieving more compact states is through feature extraction, already widely used in pattern

recognition and learning. These methods are concerned with extracting the maximum amount of

information from images, while keeping the amount of data manageable.

Another challenge lies in the definition of reward. The RL agent learns only through this

special signal from its environment, and therefore a reward that accurately represents the goal

of the agent is crucial to its success. The reward also must be a single value that represents the

completion of a goal or sub-goal. In image-based tasks, reward usually is extracted directly from

an image or set of images. In the enhancement task, it is the goodness of the image. In the image

retrieval task, it is the similarity of the returned images to the query images. In the segmentation

task, it is the accuracy of boundaries. In all of these cases, a human observer can perform a better

evaluation than a quantitative metric. Simply stated, humans are much better than machines at

both evaluating images and in recognizing patterns. This is related to the fact that images are

polysemous: they may possess many meanings, and only one of these may be relevant to the

task at hand, defining what is desirable. Even if humans are involved in the evaluation process,

their evaluation is subjective. What one person considers to be a “good” image, the next may

think to be just “satisfactory”. How to quantify this subjectivity and how to create a system

that is observer-dependent are both important questions in image-based learning. Regardless

of the evaluation method itself, be it objective or subjective, the translation of such a complex

evaluation into a signal that can be processed by the agent may also result in simplifications that

can adversely affect learning.

2.4.3 Previous work

The majority of published results concerning image-based tasks and reinforcement learning have

been within the field of robotics. Asada et al. [5] published one of the first applications of vision-
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based RL. They successfully employed RL to teach a robot to shoot a ball into a goal. However,

the visual information had to be significantly processed before incorporated into states. For ex-

ample, information was extracted from the image, such as size, position and orientation of the

ball. Since the state space was kept so small, Q-learning without function approximation was em-

ployed. Shibata et. al have been actively pursuing in direct-vision-based RL [69], where robots

are fitted with CCD cameras. Raw visual signals are inputted directly to neural networks, without

preprocessing, and actor-critic RL is used to train the network. The authors have demonstrated

success in applying the framework to real robots seeking targets [30] as well as reaching and then

pushing a box [68]. In these examples, a 320 × 240 pixel display has been cut and averaged to

provide an input of 64×24 = 1536 visual signals. While the approach is effective for the specific

task, operations involving higher-resolution images, where information contained in the image

is rich and complex could not undergo such a “lossy” processing. Aitkenhead and Mcdonald [1]

have looked at the obstacle-navigation task by an autonomous vision-based RL agent. Again,

a very low-resolution vision system was used, employing biologically-plausable neural network

structures. The researchers attempted to mimic a biological vision system with this network,

creating a layered perception system first employing low-level operations such as local feature

extraction and segmentation, followed by high-level vision such as object recognition and scene

analysis. The raw visual data was translated into overlapping grids which contained gradient in-

formation. The experiments also examined supervised training, unsupervised training, and a mix

between the two which was called partially supervised training. Supervised training provided

superior results, followed by partially supervised and then unsupervised training, as expected.

However, the latter is more biologically plausable. Intermediate methods such as partially su-

pervised training, where a reward signal can be provided both directly from the environment and

by an external teacher informing whether choices are “good” or “bad” are attractive for these

complex problems. We explore these ideas further in Section 5.2.5.

Outside the field of robotics, and especially among what are traditionally classified as image-

processing applications, the examples are less numerous. Similar to some of the above examples

in the types of images used, Ouslim and Curtis [52] have trained a neural network by RL to

classify machine parts in low-resolution images. They propose an extension to higher resolution

images by increasing the network size. However, images used in these experiments, do not
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exceed a resolution of 128× 64 pixels. Yin [94] introduces an RL-based approach to multilevel

image thresholding, where entropy is used as reinforcement. The results are compared with an

existing genetic algorithm-based method, and shown to be superior in quality and computational

expense. Hossain et al. [28] use RL to modify the parameters of the segmentation, feature

extraction and model matching steps of a pattern-recognition system designed to detect tropical

cyclones in satellite images. The authors, however, are unclear on their state space formulation,

as well as whether generalization methods are employed.

Our first experiments with image-based reinforcement learning was with the contrast adap-

tation task [84]. The aim was to examine whether or not RL agents could learn to choose one of

a discrete set of simple grey level linear point transformation functions given a degraded input

image. State information was constructed from histogram statistics, and reward was normalized

Mean Opinion Score (MOS) provided by subjective observers. There were two shortcomings of

this work. The first, and more major one dealt with the handling of the temporal aspect in RL.

For each image out of a set of training images, the image was selected, its state was computed

and then an action was taken, based on the RL policy which resulted in an output image. The

state of this output image was computed, reward received and the Q-learning equation was ap-

plied. Then we moved onwards to the next image in the training set, whose state was entirely

different than the output image of the previous step. As a result, the state of the improved image

was neglected and this presented an episodic task with only one step per episode. It leaves us

questioning the problem formulation. The second shortcoming was in applying rewards. Using

only human observers to evaluate the output images and then provide reward and punishment was

very time consuming. This approach is suitable for specialized tasks, in which learning could

be performed quickly enough to permit human intervention. On the other hand, using humans

to provide a simple feedback signal could be a breakthrough in environments where imaging

expertise was not available. Despite these challenges, the experiments provided us with a first

glimpse at RL involving images, and provided positive results which encouraged further and

more sophisticated investigations.

Shokri and Tizhoosh [70] then looked at the application of Q-learning to global, bi-level

thresholding. Again, the implementation was one-step episodic, but the researchers this time

considered both subjective and objective reward. The approach was very different from Yin’s
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RL thresholding approach [94], but empirical results were comparable. Current work focuses on

a locally adaptive implementation of the objective reward approach, as well as the application of

more complicated learning algorithms.

The majority of successful examples in applying RL deal with decision making at a high-

level, where actions are discrete and of low cardinality. The work in this thesis, however, focuses

on low-level decisions, particularly in the selection of continuous and highly dimensional pa-

rameters. Ideally, agents should be able to make both low-level and high-level decisions, similar

to the learning processes of humans. Flexibility over decision resolution will be facilitated by

future developments in temporal abstraction.



Chapter 3

A Framework for Reinforced Parameter

Control

So far, we have discussed image-based tasks at large. We have already highlighted some of the

challenges unique to this field of applications. In this chapter, we focus on a particular problem:

selecting an optimal set of parameters for a multi-step computer vision or image processing

algorithm by using an RL agent. Here we define the problem itself, and summarize the major

difficulties it presents. Then, we develop a general framework with which to approach it. Finally

we discuss some of the technical details of the methods employed in our proposed solution.

3.1 Parameter control for an image-based algorithm

The class of algorithms for which we wish to control parameters is wide. While some processes

may be classified as image-processing and others as vision (the definition is fuzzy), we do not

differentiate between the two. All that we require is that these algorithms manipulate digital

images in some way to arrive at some desirable, measurable result. Algorithms may range from

something simple (in its number of steps) such as contrast enhancement, or something requiring

more operations of varying complexity, such as segmentation. Each of these algorithms contain

a series of N steps, and each step, n, is important to the outcome. As well, each of these steps

require some parameters, which we can represent in vector form.

22
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Common to all of these algorithms is that digital images will form part, or all of the input.

The input image, or set of images also may transformed during the various steps of the process,

providing intermediate images.

Output may be in the form of an image, or set of images. It may be some more “desirable”

form of the input (as in the case of noise reduction), or it may be some information represented

in image form (as in the case of segmented regions backprojected onto an image). Output may

even be entirely in a non-image form. For example, it may be a set of co-ordinates marking

some points of interest in the image, or another representation of the image, such as a graph. We

assume nothing about the output format, just that it can be evaluated, subjectively or objectively.

The aim is to to choose a final set of parameters, such that the defined evaluation metric is

maximal when the algorithm is employed. We may wish to select parameters in one of two

ways, these are:

• Generate a global set of good parameters. that is, for all images; or

• Select parameters with respect to particular images, or sets of images.

Both options are possible with RL, though the latter requires considerably more effort.

Crucial to RL is the temporal aspect. We do not think of the parameter selection problem as

choosing all of the parameters at once, progressing through all steps of the algorithm and then

evaluating the result. If this were the case, we may be more inclined to employ some other opti-

mization method. Instead, we treat the parameter control as a decision process, where parameters

are chosen gradually, whether this be one at a time, or grouped relative to some step. Decisions

will always be based on what has been experienced from previous decisions. This considers not

only past full executions of the algorithm, but also the previous steps of the current execution.

The advantage of a sequential approach is not only the use of past parameter information, but

also images that may be generated at intermediate steps. This is further explained in Section 3.3.

3.2 Implementation issues

The nature of the above problem provides several obstacles to the intelligent agent architecture.

These include, but are not limited to the following:
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• The parameter vector at any step may be highly dimensional, and continuous;

• The parameters may exhibit local maxima;

• Images generally contain a large amount of data, thus complicating the determination of

state; and

• Image evaluation is often subjective.

Reinforcement learning, however, is well-suited to the problem. It has the ability to overcome

the above obstacles, namely,

• Generalization in RL can be employed to handle problems of high dimensionality and a

continuous nature;

• The stochastic nature of RL (through an exploratory policy) can avoid the pitfalls of local

maxima;

• We can formulate the problem so as to not include raw image data. This mainly affects

state definition; and

• An RL agent interacts directly with its environment, and thus can incorporate subjective

evaluation in terms of reward and punishment. An example of this is through the use of

Mean Opinion Score [84, 85].

Reinforcement learning also has advantages in terms of its well-founded theory. The conver-

gence to an optimal solution has been proven for many of the fundamental RL algorithms, and

thus we are assured of asymptotic optimality [88, 79].

3.3 Fitting the reinforcement learning framework

If we intend to use a reinforcement learning agent to solve the parameter selection problem, we

must integrate the general problem into the RL framework. This means modelling the parameter

selection problem as a Markov decision process. Limiting ourselves to the control architecture,

as described in Section 2.1.2, we must define the states, s, actions, a and reward (or punishment),

r.
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3.3.1 States and actions

We discuss states and actions together, as one generally follows the other in terms of definition.

They are so closely related, that the construction of one may interfere with the other. In order

to construct the state space, we must know how to take actions. On the other hand, the state

space must already be formed, recognizing the current state, in order to construct the action

space [37]. However, this problem concerns aggregation, and adaptive methods such as artificial

neural networks can allow state and action space to evolve together. Here we are concerned with

the basic formulation of states, before aggregation and generalization are even considered.

A limited number of methods of defining state are seen in the literature with respect to image-

related problems. One can use raw image data [52, 20, 69, 68], gradient information [1] or

histogram statistics [84] but with high-resolution images, this approach can generally lead to

extremely large state spaces, which are undesirable. Images can be pre-processed so that infor-

mation such as size, location and orientation of objects is extracted and used as state [5]. This

may work for specific applications, but it requires the use of sophisticated vision algorithms

and significant computational expense. Other unexplored methods may include local statistics,

or even subjective evaluation of the image. Though again computationally intense, in the case

of having a corrupted image and its original, various filters could be applied to the image, and

then their error output could be used to determine state. In fact, any combination of the above

methods can be used to determine state. In general, if image-specific results are required, feature

extraction should be used to build the state space, where the nature of the features is related to

the goal at hand.

As stated in Section 3.1, the temporal dimension cannot be separated from RL. In developing

his thresholding agent, Yin [94] recognized that the selection of thresholds represented a decision

process, in which higher thresholds, selected later, were dependent on lower thresholds, selected

earlier. By treating each image individually, past decisions regarding the thresholds formed state

information for the next step. This idea can be extended beyond thresholding, to a multi-step

parameter-selection problem in general, even where the parameters are continuous and can be

considered at each step as vectors rather than scalar values. We have proposed such an extension

for our state/action layout, in which the state is based on the value of previous parameters and

the number of the current step of the algorithm. This is represented visually in Figure 3.1.
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While Figure 3.1 represents states as discrete nodes, they can be continuous in parameter

space. As a consequence, both states and actions will be referenced in vector form. We will use

the notation sn,p to imply that any given state corresponds to the current step of the algorithm,

n, and the parameter vector, p chosen at the previous step. We will also subscript parameter

vectors as pn,i since the dimensionality of the parameter vector is determined by the step of

the algorithm to which it is associated. The subscript i is one of an infinite number of parameter

vectors chosen at step n of the algorithm. The initial state, s0,0 is common, reflecting that we have

yet to choose any parameters, and we are at the start of the algorithm. The RL agent then dictates

the parameter vector, p1,i for the first step of the algorithm. This corresponds to action a1,i. This

step of the algorithm is applied using this parameter vector, any intermediate reward is received,

and learning takes place. This brings us to s1,p1,i
, stating that the 1st step of the algorithm

has concluded, using parameter vector i. From here, the RL agent then selects the parameter

vector for the second step of the algorithm, p2,i. Once again, this corresponds to taking action

a2,i. Any intermediate reward is received, learning takes place and we proceed accordingly

until we are finally at state sN,pN,i
. All parameters have now been chosen, and the algorithm

has completed. Final output has been obtained, and terminal reinforcement calculated. Thus,

the agent transitions to a common terminal state, sN+1,0, and one interation of the algorithm is

complete.

a1,1 : p1,1

s1,p1,1

s1,p1,2

a1,2 : p1,2

s0,0

a1,∞ : p1,∞

s1,p1,∞
s1,p2,∞

s2,p2,1

a2,1 : p2,1

a2,∞ : p2,∞ aN,∞ : pN,∞

a2,2 : p2,2 aN,2 : pN,2

aN,1 : pN,1

sN,pN,1

s2,p2,2
sN,pN,2

sN+1,0

s2,p2,∞

Figure 3.1: Constructing states

In addition, we incorporate the optional consideration of image information (through contin-
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uous features). This is practical only when using some method of generalization, as it greatly

complicates the state space. This is demonstrated in Figure 3.2. Here, the state space remains the

same as in Figure 3.1 (as indicated by the greyed nodes), with the addition of another dimension.

States now depend on the algorithm step and past parameters as before, as well as a set of features

extracted from the image, or set of images available at that step of the algorithm. As a result,

there is no longer a common starting node, if features are extracted from the input image. This

information is used to formulate the initial state. The terminal state, however, remains common.

Im
ag

e fea
tur

es

Algorithm step

Param
eters

Figure 3.2: Constructing states, considering image features

We note that if there are intermediate steps at which no parameters are required, the algorithm

simply proceeds and for the next parameter decision, uses the last chosen parameter set to form

state input. If image features are included, then they are extracted from the most recent image or

set of images available.

For our definition of states and actions, we also considered another way to state the temporal

aspect of the problem. This was the idea of the state being simply the vector of parameters, and

actions being modifications of one of these parameters. The agent then does not interact with

the computer vision algorithm at each step. It simply modifies the parameter set and waits for

the algorithm to complete, and subsequently provide a reward. Unfortunately, this approach fails

in two respects. First, it does not scale well to continuous parameters, as it is difficult to define
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the actions which modify the parameter set. How many, and which parameters should change at

each step? By how much should any given parameter change, and should this amount change

throughout learning? Second, we lose the ability of the agent to interact with the image-based

task at each step. This interaction allows the agent to receive intermediate rewards which may

further guide learning. It also may consider information from intermediate images, generated at

different steps of the task. We should not neglect the intuitive notion that parameter decisions in

sequential algorithms may be dependent on the choice of prior parameters.

3.3.2 Rewards

On one hand, since the reward is provided by the environment and thus external to the agent,

its definition does not affect the learning framework to the same degree as state and action. On

the other hand, reward definition is as important as that of state and action, as it must correctly

indicate the goal (and sub-goals, if any) of the agent. Due to its external definition, we have the

ability to experiment with different reward functions without redefining the framework.

The reward function conveniently allows for the introduction of image information that has

been kept out of the definition of state space. When the agent has chosen a set of parameters

for some step of the computer vision algorithm, that step can then be applied to receive some

intermediate, or output image. Then we can use our evaluation metric to produce a reward. The

evaluation can either be subjective or objective. The former, however, as performed in [84, 70]

requires the participation of human operators which can make experimentation lengthy and ex-

pensive. Regardless, human input is desirable in certain algorithms, for example, in interpreting

medical or industrial images. While the operator may have little knowledge about the image

adaptation or enhancement process, their experience in the field allows them to judge the output

far better than any machine. Observer-dependent adaptation would allow several operators to

generate enhanced images fit to their individual liking.

While the broad definition of state and actions in the framework will be applicable to many

tasks, the reward itself is highly specific to the goals of the particular application. Thus, we will

describe the details of reward calculation in Chapter 4, following the introduction of the specific

applications presented in this thesis. We therefore do not place any restrictions upon the reward,

other than it must be applied as a single numerical signal, and must accurately reflect the aim of
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the task.

3.4 The fuzzy ARTMAP

Given that the state space is derived from parameters that are often continuous and highly dimen-

sional, generalization should play an important role in state space formulation. The sole case in

which tabular methods may be applied, is when the parameters are relatively few and can be

discretized (see Section 4.1).

After having considered many of the methods presented in Section 2.2, we prepose the fuzzy

ARTMAP (FAM) architecture for generalization of the continuous state and action space in one

of the applications discussed later in this thesis (Section 4.2). The FAM is adopted to map state-

action pairs to their Q-values, Q(s, a). In other words, it represents the current estimate of the

action-value function (Section 2.1.1). It has been selected to address the problem of catastrophic

interference faced by neural networks in dynamic environments. It is specifically designed to

balance plasticity and stability and we therefore expect it to be able to adapt to continuously

changing image sources. Patrascu’s previous empirical results using the FAM with RL have

been positive [56], but to the best of our knowledge, this is the only published work combining

FAM and RL. The relationship is worth investigating further, especially with more complex

applications such as the one presented later in this thesis. The rest of this section provides an

overview of the FAM at a level necessary to understand how and why it has been integrated into

the proposed RL framework. Full details of its structure and algorithm are given in [14].

The FAM is a supervised learning system which emerged from the field of adaptive resonance

theory (ART) [21]. It is capable of growing its recognition categories in response to both binary

and analogue input patterns [14]. This is in contrast to its predecessor, ARTMAP, which classifies

inputs by a set of binary input features. FAM is therefore a more general system, accepting a

fuzzy set of features as a pattern of fuzzy membership values between 0 and 1.

At the core of the FAM are two fuzzy ART modules. Figure 3.3 pictures a single fuzzy

ART module. This structure performs unsupervised clustering on its input vectors. It consists

of three layers: the input layer, F0, the comparison layer, F1 and the recognition layer, F2. The

first two layers contain M nodes, where M is equal to the length of the input patterns, and the
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recognition layer contains N nodes. N will grow to meet accuracy criteria, which is controlled by

a parameter, ρ, called vigilance. Each node in the F2 layer represents a particular input category.

Associated with each F2 node, j, is a weight vector, wj = (wj1, . . . , wjM). This weight vector

is essentially a prototype vector for the category it represents.

F1

x

F2

F0

y

Input, I

wj

Figure 3.3: The fuzzy ART unsupervised learning architecture

When an input vector, I = (I1, . . . , IM), is presented to the system, the network attempts to

classify it into one of the existing categories, based on its similarity to that category’s prototype,

wj. To do this, we must define the choice function:

Tj(I) =
|I ∧wj|

α + |wj|
, (3.1)

where α > 0 is a choice parameter, and the fuzzy AND operator is defined by:

(p ∧ q)i ≡ min (pi, qi), (3.2)

and where the norm, | · |, is defined by:

|p| ≡
M

∑

i=1

|pi|, (3.3)

for any M -dimensional vectors, p and q. The network will calculate the choice function for
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every node, j, and then make choice of category by selecting the F2 node J such that:

TJ = max {Tj : j = 1, 2, . . . , N} . (3.4)

The F1 layer activity vector, x = (x1, . . . , xM), is then set to:

x = I ∧wj, (3.5)

and we compare it to the current input vector, I , by the match strength:

|I ∧wJ |

|I|
. (3.6)

The F2 layer activity vector, y = (y1, . . . , yN), will always reflect the current chosen cate-

gory. That is, yJ = 1 and yj = 0 for j 6= J . The vigilance parameter, ρ is now used to evaluate

the match strength. If

|I ∧wJ |

|I|
≥ ρ, (3.7)

then we say that the input sufficiently matches the category prototype for the chosen category, J .

The network then learns the current input pattern by adjusting the weight vector for that category

so that it is closer to the input pattern. The following learning rule is employed:

wnew
J = β(I ∧wold

J ) + (1− β)wold
J , (3.8)

where 0 ≥ β ≤ 1 is the learning rate parameter (different, of course, to the RL learning rate).

If the category weight, wJ does not sufficiently match the input (i.e. the match strength is less

than the vigilance), a match reset occurs, which means that the F2 node is not considered for the

rest of the presentation of the current input. Therefore, another category (with next highest Tj

value) will be chosen and then its prototype will be tested for match strength against the input.

This process of elimination will continue until either a prototype with sufficient match strength

is found (Eq. 3.7) or, alternatively, a new F2 node is created. In the latter case, the new category
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weight will match the current input vector:

wN+1 = I. (3.9)

The fuzzy ARTMAP architecture (Figure 3.4) is a supervised learning structure built from

two fuzzy ART modules, ARTa and ARTb, linked by an associative memory called a map field,

F ab. The ARTa module learns to categorise input patterns, a, presented at its input layer, F a
0 ,

while the ARTb module learns to categorize target patterns, b, presented at layer F b
0 . Another

weight vector, wab
j = (wab

j1, . . . , w
ab
jNb

) connects F a
2 and F ab. A series of 1-to-1 pathways link F b

2

and F ab.

F a
2

F a
1

F a
0

wa
j

A = (a, ac)

F b
2

F b
1

F b
0

Target, b

B = (b, bc)

xb

yb

Pattern, a

Map field Fab

ARTa ARTb
wab

j

ya

xa

wb
k

xab

Figure 3.4: The fuzzy ARTMAP supervised learning architecture

To learn a new association between ARTa category J and an ARTb category K, the corre-

sponding map field connection weight (F a
2 → F ab link) is set to one, and all other links from the

same ARTa module are set to zero. The connection weights, wab
j , therefore hold the mapping
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between input and output categories. We can write the update as:

wab
jk =

{

1 if j = J and k = K,

0 otherwise.
(3.10)

Before the input and target patterns, a and b are presented to the network, they are first

compliment-coded, such that for ARTa, Ia = A = (a, ac) and for ARTb, Ib = B = (b, bc),

where ac
i = 1 − ai. Compliment-coding is a normalization rule which preserves amplitude

information and prevents category proliferation [14]. The output fields, F a
2 and F b

2 , respond to

the patterns at the inputs, F a
0 and F b

0 , and the F ab layer will receive input from both the ARTa

module and the ARTb module. The input from ARTa will be from the connection weights wab
J

(through a previously learned J → K associative link), and the input from ARTb module will be

by the 1-to-1 link to the output vector yb, where the winning F b
2 node, K, will be set to one.

If the two inputs at F ab match, we say that the network has correctly predicted the target. The

FAM then learns by modifying the weight vectors of both the chosen ARTa and ARTb categories

(Eq. 3.8) with respect to the patterns present at F a
0 and F b

0 . If the two inputs at the F ab layer do

not match, a map field reset signal is generated, and we begin a process called match tracking

which searches for a better category match in ARTa. The vigilance of ARTa is always set to a

baseline vigilance, ρa ∈ [0, 1], at the presentation of a new input. At each step of match tracking,

the vigilance of ARTa is raised by the minimal amount needed to cause a mismatch:

ρa =
|A ∧wa

J |

|A|
+ ι, (3.11)

where ι is defined to be a very small real number. This triggers a search for a new ARTa cate-

gory, which is then tested again with the current ARTb category at the F ab field for a predictive

match. This process continues until we either find an ARTa category that predicts the category

of the target through the wab
J link, or a new F a

2 node is created. In this case, we also create a

corresponding link in the map field (Eq. 3.10) to associate the new input category, J , with the

target category, K.

Patrascu [57] proposes two changes to the fuzzy ARTMAP to ensure its compatibility with a

reinforcement learning framework, and thus we use the same implementation. The first change

occurs when learning a pattern. If no mapping has been found and ARTa’s vigilance has been
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raised above one, the pattern is considered unmappable. This is not compatible with the RL

framework, as we must be able to map all input/output pairs. In this special case, the category

found just before the vigilance exceeded one is mapped with the currently selected ARTb selected

category, instead of considering the pair unmappable. The second change occurs when querying

the network. The FAM is not a function approximator; it is a nearest neighbour associator.

Thus, when it is queried with a particular input that it has never seen before, it will return an

output for the most similar, previously learned input. The incompatibility with RL is that during

the retrieval stage of the FAM, if the input is considerably different than any previously seen

input, the FAM algorithm will not return an output. In the case of RL, this means that given a

state and action input sufficiently different than what has been seen in the training data so far, a

corresponding Q-value may not be returned. One option may be to return a default value when

this situation occurs. Instead, Patrascu proposes that the vigilance starts high, but if there is no

output, then it should be slowly relaxed until an output is given. The FAM will always provide

an output, provided the vigilance is sufficiently low. Such a technique is more accurate than

returning a default Q-value.

It still remains to be said how the FAM is integrated with the RL algorithm for value-function

approximation. This is actually quite simple. Unlike a backpropagation neural network, its

training algorithm is not based on a gradient-descent method, and therefore we do not need to

change our RL algorithms as in [63]. Storing state-action pairs and their corresponding value

estimates becomes nearly as simple as using a look-up table. When we perform the update rule

(Consider 2.7 or 2.8) the state-action pair to be updated are provided as input to the FAM, and

the new value-function estimate (right hand side of the equation) is provided as output. In the

case of the Sarsa(λ) algorithm, where eligibility traces are used, we simply add another output

unit to the network, and this is used to generalize over eligibility traces. So a given state-action

pair is then associated with both an approximate value and approximate eligibility. The number

of input units will depend on the dimensionality of states and actions.
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3.5 Continuous actions

One major difference from the previous fuzzy ARTMAP implementation [56] is our use of con-

tinuous actions. The neural network replaces the traditional Q-matrix lookup table, but functions

in a similar way. Traditional connectionist approaches using discrete actions employ one net-

work for each action [63, 56]. The state is fed as an input to each network and a Q-value is

returned corresponding to each action. It is then simple to calculate the action corresponding

to the maximum Q-value for any given state. This approach cannot be used for a continuous

action space. We have chosen to implement one network per algorithm step (this meaning the

image-based algorithm and not the reinforcement learning algorithm!), and thus apply the state

and currently considered action to the network, which then returns the corresponding Q-value.

Unfortunately, to find the maximum Q-value, we must query the network once for every action,

which means an infinite amount of queries. Searching through this infinite set is computationally

impossible.

Several possible approaches to this problem have been presented in the literature. It is es-

sentially global, bounded optimization without derivatives, where function calls should be min-

imized, as they are expensive. Smart and Kaelbling [74] employ an approach similar to Brent’s

root-finding method [13], which is a simple iterative algorithm. Baird and Klopf [8] have in-

troduced a complex method called “Wire fitting”, in which control points (control wires in a

high-dimensional space) determining the shape of a complex function are shifted to respond to

training data. For their product of experts network, Sallans and Hinton [65] employ Gibbs sam-

pling [42] to choose actions according to their associated expected reward, to be used directly in

a Softmax policy. We have chosen to use the DIRECT optimization method [60], which has not

yet been used in combination with RL.

A whole different class of RL algorithms, known as actor-critic methods [76, 79] can avoid

the need for optimization altogether. They employ a separate memory structure to represent

the policy independent of the value function. Beyond the computational speed improvements

gained by not having to optimize over the value function, stochastic policies can also be explic-

itly learned. This is useful in scenarios such as competitive game-playing [11] and in situations

where the problem to be solved is non-Markov [89, 32]. Recent experimental results have shown

through analysis of functional magnetic resonance images of humans engaged in choosing ac-
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tions that the actor-critic model may reasonably represent neural activity [50].

3.5.1 The DIRECT method of optimization

Any RL method which generates a policy based on on a value-function estimate through gener-

alization must be able to provide an action with highest value with respect to a given state. In the

case of an infinite number of actions, as for continuous action spaces, we have seen that this is a

difficult optimization problem. In the case of the fuzzy ARTMAP, the objective function gradient

is not readily available. Estimating it would be extremely difficult and error-prone. Thus we need

to turn to a global sampling algorithm. The DIRECT method of optimization, first introduced

by Perttunen et al. [60] is one such algorithm, based on Lipschitzian optimization. The author

would like to acknowledge that MATLAB code used for the implementation of the algorithm has

been provided by Finkel [23].

The Lipschitz condition is defined as follows:

Definition 3.5.1 (Lipschitz Condition) A function f(x) satisfies the Lipschitz condition of or-

der α at x = 0 if

|f(h)− f(0)| ≤ B|h|β,

for all |h| < ε, where B and β are independent of h, β > 0, and α is an upper bound for all β

for which a finite B exists. The value α is called the Lipschitz constant.

Knowing a particular function is Lipschitz continuous, that is, it satisfies the Lipschitz con-

dition, can aid us greatly in determining the minimum of that function. If we are currently

searching at some point, the Lipschitz condition places some bound on the function value of

surrounding points, depending on how far we deviate from that point. This aids in guiding the

search. Consider the opposite case, for example, a plane in three-dimensional space which has

value zero, except for at one finite point, where there exists the minimum. This point would be

impossible to find without sampling all of the (infinite) points, as no information exists to guide

us toward the minimum. Lipschitz optimization methods are iterative algorithms which rely on

the condition above, as well as the constant α to find a minimum. Unfortunately, there are two

major shortcomings of this family of algorithms:
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• The algorithms are not designed for high dimensions; and

• The Lipschitz constant can be difficult, if not impossible to determine. Estimates can lead

to poor performance.

The second problem is particularly relevant for the many surfaces that aren’t Lipshitz con-

tinuous throughout their domains. Conversely, the DIRECT algorithm addresses both of these

issues. It performs well in high dimensions, and requires no knowledge of the Lipschitz constant,

nor requires the objective function to be Lipschitz continuous [23].

The DIRECT algorithm begins by transforming the domain of the optimization problem to

be solved into the unit hypercube. That is:

Ω =
{

x ∈ R
N : 0 ≤ xi ≤ 1

}

. (3.12)

The centre of this normalized space is c1, and the first step is to find f(c1). Next, the hyper-

cube is divided into “hyper-rectangles”. This is how the DIRECT algorithm has been named,

from DIviding RECTangles. This step is performed by evaluating the points c1 ± δei, i =

1, . . . , N , where δ is one-third the length of the sides of the hypercube, and ei is the ith unit

vector. The division is determined by:

wi = min (f(c1 + δei), f(c1 − δei)) , 1 ≤ i ≤ N, (3.13)

where we consider each dimension, i, such that 1 ≤ i ≤ N , individually. We then split the

dimension with smallest wi into thirds, so that c1 ± δei become the centres of the new hyper-

rectangles. The dimension with second-smallest wi is then split the same way, and we continue

accordingly, until all dimensions have been considered.

Figure 3.5 demonstrates this process in two dimensions. First we find f(c1) = 7. Then

we find for the horizontal dimension, f(c1 + δe1) = 9 and f(c1 − δe1) = 3. Then for the

vertical dimension, f(c1 + δe1) = 8 and f(c1 − δe1) = 2. Therefore, w1 = min(9, 3) = 3 and

w2 = min(8, 2) = 2. So we divide the vertical dimension first. This creates three regions, with

8,7 and 2 the function values at the respective centres. We again consider just the rectangle which

contains f(c1) = 7. We have only one more dimension (horizontal) to consider, so it is split. We

are left with 5 regions.
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Figure 3.5: Initial division of rectangles in DIRECT

Now we begin the main loop of the DIRECT algorithm, that is, the identification of “poten-

tially optimal” hyper-rectangles which are then divided. DIRECT uses the following lemma to

identify potentially optimal rectangles:

Lemma 3.5.1 (Potentially Optimal Rectangles) Let ε > 0 be a positive constant, and let fmin

be the current best known function value. Let cj be the centre of hyper-rectangle j and let dj be

some measure for this hyperrectangle (for example, the distance from cj to its vertices). Let I be

the set of indices of all existing rectangles. For a given rectangle, j, let

I1 = {i ∈ I : di < dj} ,

I2 = {i ∈ I : di > dj} ,

I3 = {i ∈ I : di = dj} .

Rectangle j ∈ I is potentially optimal if

f(cj) ≤ f(ci), ∀i ∈ I3, (3.14)

there exists some K̂ > 0 such that

max
i∈I1

f(cj)− f(ci)

dj − di

≤ K̂ ≤ min
i∈I2

f(ci)− f(cj)

di − dj

, (3.15)

and

ε ≤
fmin − f(cj)

|fmin|
+

dj

|fmin|
min
i∈I2

f(ci)− f(cj)

di − dj
, fmin 6= 0, (3.16)
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or

f(cj) ≤ dj min
i∈I2

f(ci)− f(cj)

di − dj

, fmin = 0. (3.17)

We note that more than one potentially optimal hyper-rectangle may be found. Once one or

more potentially optimal hyper-rectangles have been identified, they are then divided, similar to

the initialization process previously discussed. However, this time, we consider only dimensions

of maximum length. In the case of hyper-cubes, we divide along all dimensions. We define:

wj = min (f(ci + δiej), f(ci − δiej)) , j ∈ K, (3.18)

where K is the set of all dimensions of maximal length for hyper-rectangle i. Again, divisions

are done in order of increasing wj, where the dimension with smallest wj is divided first. Let ĵ =

arg minj∈I wj. The hyper-rectangles are split into three hyper-rectangles along this dimension,

so that ci± δieĵ and ci are the centres of these new rectangles. We then proceed to the dimension

with second smallest wj and so on until we have divided along all dimensions in K. Algorithm

1 summarizes the DIRECT algorithm.

Figure 3.6 shows two iterations of DIRECT, starting from an initialized hyper-cube (or a

square in two dimensions, as in Figure 3.5). In the first iteration, the bottommost rectangle is

found to be potentially optimal (note that it is greyed). It has only one dimension of greatest

length (horizontal), so it is split along this dimension. In the second iteration, two rectangles

are found to be potentially optimal. They are both divided, but the square is divided along both

dimensions, as its sides are of equal length.
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Algorithm 1 Summary of the DIRECT algorithm
Inputs: f is the function to be optimized; a represents the lower-bound vector; b represents the
upper-bound vector
Parameters: κ represents the maximum number of iterations; ϕ represents the maximum num-
ber of calls to f , ε is some small constant, 1× 10−7 ≤ ε ≤ 1× 10−2

Normalize the domain to be the unit hypercube with centre c1

Find f(c1), fmin ← f(c1),i← 0,m← 1
Divide hyper-cube (as in initilization step), considering all dimensions
while i ≤ κ and m ≤ ϕ do

Identify the set, S of all potentially optimal hyper-rectangles
for all j ∈ S do

Identify the set, K of all dimensions of longest length of rectangle j
Order K by increasing wk

for all k ∈ K do
Divide j into smaller rectangles along dimension k
Find new centres, cnew

1 = cj + δjek,cnew
2 = cj − δjek

Find value of f at the new centres, f(cnew
1 ), f(cnew

2 ) and update m← m + 2
Update fmin ← min(fmin, f(cnew

1 ), f(cnew
2 )

end for
i← i + 1

end for
end while
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Figure 3.6: Two iterations of DIRECT. The identified potentially optimal rectangles are marked
in grey.
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3.6 Summary: A connectionist-based reinforcement learning

agent for parameter control

Figure 3.7 visually represents the main contribution of this thesis: a framework of parameter

control by a reinforcement learning agent for an image-based task. The dotted lines represent

the output, or action taken by the agent. The solid lines represent input to the agent. Optional

components, including feature extraction and subjective evaluation have also been included. The

following paragraphs provide a description of complete process of parameter control through

learning. Algorithm 2 summarizes this text.

The algorithm begins with a single input image, or group of images. Optionally, features

are extracted and used for state information. Otherwise, a common initial state is assumed. The

first iteration begins and the parameter vector for the first step is selected. The parameter vector

is stored at each step, as it contributes to the state at the following step. To select the parame-

ter vector for any given step, the agent employs its policy, which communicates with the fuzzy

ARTMAP via the DIRECT algorithm to find the actions with highest Q-value. Occasionally ran-

dom actions (parameters) are chosen by the agent, according to its stochastic policy, to encourage

exploration of the parameter space.

After the first step of the algorithm has executed (with the chosen parameters), an inter-

mediate image (or set of images) will be generated. A reward may be extracted from these

intermediate images, thus providing the agent with additional guidance. The current state is then

calculated using the first parameter vector, and optionally, features extracted from the interme-

diate image(s). After the next state has been calculated, learning occurs, regardless of whether

or not intermediate reward is used. The RL agent employs bootstrapping to estimate expected

reward based on the Q-values at the new state. As previously stated, rewards may only be pro-

vided at the end of the algorithm (in the terminal state). In this case, bootstrapping ensures that

the terminal reward is “backed-up” to previous state-action pairs. Learning is slightly different,

depending on whether or not we are using an on-policy algorithm (such as Sarsa) or an off-policy

algorithm (such as Q-learning):

On-policy: the next action is selected (via the policy) in order to determine the Q-value used

in the update before the updating takes place. When the policy selects a non-random action, it
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always calls upon the DIRECT algorithm, which, in turn, calls upon the FAM to provide the

current action with the greatest expected reward. The new Q-value for the initial state is stored

in the FAM.

Off-policy: the update is performed immediately after the next state has been calculated,

and then the next action is selected via the policy. This is because we do not need to know the

next policy-selected action to perform the update. In fact, in the the off-line tabular case, this

order (update vs. action selection) should not matter, as only the Q-value for the previous state

is updated. But when generalization is employed, if the two successive states are sufficiently

similar, then the update to the old state may affect the Q-value of the new state.

Now that the second parameter vector has been chosen, the next step of the algorithm may

execute and we can calculate the new state. Again, learning takes place. This process continues

until all parameters have been chosen, and the last step of the algorithm has executed. The result

of the algorithm is evaluated, and this determines terminal reward. The final state is common,

and signifies that the current iteration of the algorithm has ended. The Q-value for the state

reached before the terminal state with respect to the final parameter choice is updated using the

terminal reward, and stored in the FAM.

The framework has now been presented, but in a way removed from any particular applica-

tion. Application-specific design issues, such as reward definition and feature selection still need

to be explored. In addition, the framework so far remains untested. The remainder of this thesis

will focus on its application within two different image-based domains and address all of these

issues in turn.
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Algorithm 2 Image-based task parameter optimization using reinforcement learning
Initialize one FAM network for each step in algorithm requiring parameter optimization
for all input images, or sets of images do

Read input image(s)
Calculate s using input image features, or alternatively, set state to “initial”
Find parameter vector with maximum Q-value using DIRECT
Choose parameter(s) for step 1 using policy
repeat

Execute step using chosen parameter(s) and obtain output
Calculate next state, s′ from previous parameters and optionally, features of output
Employ evaluation metric, observe reward, r; if no intermediate reward, r = 0
if RL algorithm is on-line then

Find parameter vector with maximum Q-value using DIRECT
Choose parameter(s) for next step using policy
Update value function (stored in FAM) through RL update equation

else
Update value function (stored in FAM) through RL update equation
Find parameter vector with maximum Q-value using DIRECT
Choose parameter(s) for next step using policy

end if
until s

′ is terminal (final step of task)
end for



Chapter 4

Applying the Framework

In the previous chapter, we defined a framework in which a large amount of problems using

visual information can be parameter-controlled by reinforcement learning agents. Now we focus

on two separate areas where the framework discussed in the previous chapter may be applied.

We first examine the problem of choosing a small number of discrete parameters to form a fuzzy

membership function to describe the “brightness” of grey levels of an image. Next, we move

onto a problem where generalization is necessary: selecting several continuous parameters for

an algorithm that detects text in images extracted from video.

4.1 Automatic determination of membership functions for fuzzy

image processing filters

Fuzzy filters are increasingly being developed and used for the field of image processing. A

number of state-of-the-art filters have been recently published in the literature [59, 43, 16, 9,

33, 85] which can aid in the reduction of noise in images, evaluation of objects in images, edge

detection and segmentation, image enhancement, and colour image processing, to name only a

few applications. The majority of filters rely on the definition of fuzzy membership functions

(MF) which describe certain characteristics of the image. For example, a membership function

related to the histogram of the image may identify certain grey levels of the image as bright or

46
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dark. What is bright, however, in one image (e.g. an image with a histogram encompassing

only high grey levels), may not be so bright in another image (e.g. an image with a histogram

encompassing only dark grey levels). Furthermore, the evaluation of these membership functions

is subjective and will differ between observers. The problem of automatically determining a

membership function based on data (i.e. a digital image) has kindled research interest since the

advent of fuzzy techniques [67, 58]. Several methods from various points of view have been

proposed, from data-driven approaches, such as clustering [38] and genetic algorithms [35, 4]

through to ways of building MF directly from subjective interpretation [34]. Newer methods are

striking more of a balance between user-interaction and data validation [58].

4.1.1 Evaluation of membership function optimality

To automatically determine any membership function, we must have a method of measuring the

optimality of the MF, given the parameters which determine its shape and position. Shannon’s

entropy measure [21], often considered the fundamental definition in information theory, can

assess the information content described by a particular membership function. This is based on

the histogram of the image’s grey levels to which this membership function is attributed. We

note that this is different than measuring the entropy of a particular image, as the relevance of

the entropy measure to human visual perception is not undisputed. Pal and Pal [54, 55, 53] have

presented other objective measurements such as fuzzy entropy, indices of fuzziness, compactness

of a fuzzy subset, and the index of coverage of a fuzzy subset which are all valid alternatives in

evaluating a membership function. The process could also be semi-automated in that it could

involve the participation of humans who would provide subjective evaluation of generated MF.

Again, we would experience the same problems involving humans as in image evaluation. One

may also employ combinations of the above measures, even going as far as to fuse metrics using

an intelligent agent approach.

4.1.2 A previous experiment using simulated annealing

Cheng and Chen [15] have shown that a membership function for “brightness” can automatically

be determined through maximum entropy. They have restricted themselves to a standard “S-type”



48 Reinforcement Learning for Parameter Control of Image-Based Applications

membership function, determined by three parameters, and evaluate its optimality based on the

maximum entropy principle. However, for even an 8-bit greyscale image, this leaves hundreds of

thousands of possibilities to evaluate, in terms of membership function parameter configurations.

Instead of performing an exhaustive search, they have employed simulated annealing to tackle

what is essentially a combinatorial optimization problem. They demonstrate that this approach

can arrive at a near-optimal solution in approximately 3,000 iterations of the simulated annealing

algorithm.

4.1.3 Theory

To maintain consistency, we will adopt the notation used by Cheng and Chen [15] as we discuss

the problem of automatically determining a brightness membership function.

First, we must examine the concept of a fuzzy event, defined by Zadeh [95] as follows.

Definition 1 Let (Rn, F, P ) be a probability space in which F is the σ-field of Borel sets in Rn

and P is a probability measure over Rn. Then, a fuzzy event in Rn is a fuzzy set A in Rn, whose

membership function, µA(µA : Rn → [0, 1]), is Borel-measurable. The probability of a fuzzy

event A is defined by the Lebesgue-Stieltjes integral:

P (A) =

∫

Rn

µA(x)dP. (4.1)

We will consider a greyscale image of L grey levels, ranging from the darkest, g0 to the

lightest, gL−1 which has the histogram of h(gk), where k = 0, ..., L− 1. It can be modeled by a

triplet (Ω, F, P ). Ω is the set of greylevels, Ω = {g0, g1, ...gL−1}, P is the probability measure of

the occurrence of greylevels, P (gk) = h(gk)
N

(where N is the total number of pixels in the image),

and F is a σ-field of fuzzy subsets of Ω.

In the context of our problem, the brightness of the grey levels in an image is a “fuzzy”

concept. Instead of grouping some grey levels into the category “bright” and others into the

category “not-bright” (the classical approach), we allow each grey level to possess membership

in the fuzzy set “bright”.

Fuzzy set theory allows us to express the degree of belongingness of an element to the sample

space of a particular fuzzy set through a membership function. In this case, we describe the
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“brightness” of a particular greylevel, rk with the membership function µbright(gk). Thus the

“brightness of greylevels” is a fuzzy set of Ω. By Zadeh’s definition of a fuzzy event, a fuzzy

event is a fuzzy set in Ω. The fuzzy set, “brightness of greylevels” is then a fuzzy event in Ω. We

can write this event in fuzzy set notation as

bright = µbright(g0)/g0 + µbright(g1)/g1 + . . . + µbright(gL−1)/gL−1, (4.2)

or simply

bright =
∑

gk∈Ω

µbright(gk)/gk. (4.3)

The probability of this fuzzy event can be calculated using Eq. 4.1. In the discrete case, it is

P (bright) =

L−1
∑

k=0

µbright(gk)P (gk). (4.4)

4.1.4 Entropy

Entropy is the fundamental concept of information theory. It describes, mathematically, the

amount of uncertainty and/or the amount of information in a data set. We would like our fuzzy

event to possess a high entropy, and thus high amount of information. We measure this through

the entropy for occurrence of a fuzzy event A, which is defined as [55]:

H(A) = −P (A) log(P (A))− (1− P (A)) log(1− P (A)), (4.5)

and therefore the entropy of the fuzzy event “bright” follows as:

H(bright) = −P (bright) log(P (bright))− (1− P (bright)) log(1− P (bright)). (4.6)

To summarize, we can calculate the entropy of a fuzzy event, “brightness of greylevels”

through a series of steps:
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• Construct the membership function. This provides each grey level with an associated fuzzy

membership in the fuzzy event “brightness of greylevels”.

• Calculate the probability of the occurrence of greylevels, P (gk).

• Calculate the probability of the fuzzy event, P (bright) (Eq. 4.4).

• Calculate the corresponding entropy of the fuzzy event, H(bright) (Eq. 4.5).

This measure is one way of evaluating the goodness of a particular membership function.

4.1.5 Choosing a membership function

The types of membership functions that can be used to describe image brightness are numerous.

However, choosing a membership function with relatively few parameters will be easier to tune,

since it reduces the state space (as described in Section 2.2). While the approach described here

can be adapted to the tuning of any regular-shaped membership function described by a sequence

of discrete parameters, we have chosen to use the simple S-shaped membership function, so

that we may compare our results to the previous work [15]. The parameters control both the

positioning and shape of the MF. Research has shown, however, that the shape does not have as

much as an effect on the fuzzy system as does the positioning [83].

The S-function is defined as follows:

S(x; a, b, c) =























0, x ≤ a,
(x−a)2

(b−a)(c−a)
, a ≤ x ≤ b,

1− (x−c)2

(c−b)(c−a)
, b ≤ x ≤ c,

1, x ≥ c,

(4.7)

where x is the independent parameter (in our case, a grey level in Ω), and parameters a,b, and

c determine the shape of the membership function. Parameter b can take any value in the range

a ≤ b ≤ c.
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4.1.6 An optimization problem

For a given membership function, S(x; a, b, c) and image, I , we can define a corresponding

entropy measure, H(bright; a, b, c) for a fuzzy event “bright”. This value is dependent on both the

image and the parameters which determine the membership function. The entropy of the fuzzy

set is then used to automatically determine the best set of parameters defining the brightness

membership function for a given image. Essentially, we want to find an optimal set of parameters,

(aopt, bopt, copt) such that

Hmax(bright; aopt, bopt, copt) = max{H(bright; a, b, c|r0 ≤ a < b < c ≤ rL−1)}. (4.8)

This is not an easy task, considering all of the possible combinations of parameters a,b, and

c. An exhaustive search of the parameter space is not practical, so we must use a more intelligent

approach. The problem was originally solved using the simulated annealing algorithm [36].

Despite the success obtained in determining near-optimal membership functions, this approach

may be hampered by the local minimum problem [15]. Of course, this is dependent on the initial

temperature and cooling function applied. This issue becomes increasingly more important in

the more general parameter selection case, when we move away from the smooth, regular nature

of membership functions. Many alternative methods of solving the combinatorial optimization

problem do exist, for example dynamic programming, genetic algorithms and reinforcement

learning. If we adopt RL, then the problem fits neatly into our framework described in Chapter 3.

We have a three-step task where the general image-based task parameters become the parameters

a, b and c, chosen one at a time, and our reward function becomes the entropy of a fuzzy event.

State and action formation are already defined by the framework.

4.2 Parameter control for a text-detection algorithm

Wolf et al. have developed an algorithm to detect text in images extracted from video sequences

[92]. Video is processed on a frame by frame basis, tracking detected rectangles of text across

multiple frames. Our learning focuses only on the detection of text in still images. This text de-
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tection algorithm is multi-step, involving gray level, morphological and geometrical constraints.

This results in a continuous and high-dimensional set of parameters to optimize.

4.2.1 Motivation

Text detection in documents has been an active research area for many years [91]. Already,

there exist many commercial software packages which can accomplish the task effectively and

efficiently. More recently, researchers have been concerned with the detection of text in multi-

media, such as video sequences. The nature of the media does not allow us to just simply apply

the methods developed by the document analysis community. It is necessary to recognize the

differences between printed data and video, and from this standpoint, develop techniques for

multimedia text detection by exploiting the properties of text.

Large databases of video have been and are currently being developed for archival purposes.

In order to access the individual documents, navigation must be straightforward for the end user.

It is expected that the user will browse by low-level and/or semantic features. Detecting text

is only one way of making this browsing possible. Other means include speech recognition

and face detection. Text, however, possesses “immediate” meaning, thus providing information

without a sophisticated interpretation process. Although its interpretation is still subjective, it

is less ambiguous than, say, low-level image features. Therefore, we rely on text to not only

annotate particular videos, but scenes and segments within the videos themselves.

Historically, the field has relied on individuals to prepare “documentary notes”, those being

the subjective interpretation of multimedia content; and most importantly among these, a sum-

mary of the document. As video possesses a time-element, the construction of documentary

notes is time and resource intensive. If the two are compared, one can see similarities between

text contained on the screen and text within the notes [91]. This indicates that we may exploit

screen text for the description process. An example of this would be the case of television news

broadcasts, where often on-screen text indicates the beginning of a story or interview. From this

example, we can see that the detection of text in video can be useful not only for description,

but also for segmentation purposes. For videos containing a well-defined structure, such as news

broadcasts, individual segments may be both opened and closed by on-screen text (the latter

often being the names of the journalists or production team involved in that particular sequence).
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Types of text in video

In the computer-vision literature, generally we define two classes of text in videos [91]:

Artificial text is superimposed on the signal after the video has been captured by camera. As it

is designed to be read, often it is highly contrasted against the background. An example of

this may be the score in a sports game.

Scene text is part of the scene captured by camera. As it is not designed to be read, often it may

be of low contrast, very small, partly occluded, or distorted. An example of this may be

the writing on a building in the background of a scene.

In addition to the above two classes, we may also separate a third:

Targeted scene text is a sub-class of scene text, as it is part of the scene. However, this text is

specifically targeted in the video to attract the viewer’s attention (i.e. by zooming into it).

Usually it is visible, but as in classical scene text, distortions may be present.

While Wolf et al.’s system is not limited to any particular type, nor orientation of text, we

have restricted our experiments to images containing only horizontal, artificial text.

Difficulties in detecting text in multimedia documents

As previously mentioned, classical document analysis techniques for detecting text in printed

documents cannot be applied directly to multimedia documents. Table 4.1 lists some of the

differences between document images and video sequences. It also indicates that text detection in

video is much more difficult than text detection in printed documents. There are two conclusions

to be drawn from the comparison of document images and video sequences:

1. Text detection in video sequences is problematic; and

2. Document recognition software cannot be applied to video without significant adaptation.
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Table 4.1: Comparison of document images and video sequences
Document images Video sequences

Sole purpose of document images is their
usage as input to document recognition
software

Main goal is to be displayed with suffi-
cient quality

Stored as uncompressed or compressed
without loss

Often massively compressed using lossy
techniques (e.g. MPEG,DIVX)

High resolution Low resolution
Contents simple and well-separated Complex contents, text superimposed or

even part of the image
Simple background Complex background
Mostly binary Contain rich grey-scale or colour infor-

mation
Text is main information of image Text is not main information of image

4.2.2 The algorithm

Wolf et al.’s algorithm has been developed to overcome the previously discussed difficulties in

recognizing text within video sequences. In order to discriminate between many types of text

and non-text, an algorithm must be based on the recognition of characters. Unfortunately, text

must be detected before it is recognized. This is a limitation of current OCR systems. If we

are interested then in detecting regions which contain text, we must ask ourselves, exactly what

constitutes text? Table 4.2 summarizes some of the important components of text, which are

discussed more thoroughly in [91]. These lead us to the features that are exploited for text

detection.

Text detection in video sequences and text detection in still images go hand in hand. In fact,

the detection of text in still images (extracted from video sequences) is an important step in the

video text extraction process. The output of still-image text detection is a set of rectangular

regions of the image, representing areas believed to contain text. We note that the decision

made is binary- the rectangular regions do not differ in confidence. After the detection process

is applied to each frame of a sequence, the temporal aspect of video is then considered. The

detected text is tracked through frames, identifying corresponding rectangles representing the
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Table 4.2: What is text?
Spatial grouping Text consists of letters or symbols which can be segmented.

Often the poor quality of videos complicates this process.
Texture This is easier to exploit in noisy and low resolution docu-

ments. Characters and symbols are composed of strokes.
In western text, they are for the most part vertical. We
can identify the pseudo-regular patterns of text using tex-
ture classification methods such as second order statistics
or Gabor filtering.

Contrast and geometry Artificial text is often high contrast. Artificial text strings,
i.e. words or sentences, form rectangles.

Colour For the detection of artificial text, we do not need colour
information. For scene text, often its colour is very differ-
ent from the background, so we may use colour gradients.
Usually this is reserved for rare cases.

same text appearance in successive frames. These frames are then integrated to form a single

enhanced image, which is then binarized. This output is then passed to standard commercial

OCR software.

In his PhD thesis [91], Wolf proposes two methods for text detection in still images. He

describes this as the “heart” of the extraction system. The first method assumes the presence of

text in the image, and attempts to find a threshold between text and non-text pixels by statistical

modelling of the two distributions. Post-processing (morphological and geometrical constraints)

then correct the errors made by the original erroneous hypothesis: not all video frames actually

do contain text. The second method employs Support Vector Machines [48] (SVM) to learn

text features from training data. Here, geometrical features are included directly in the detec-

tion phase, rather than in post-processing. We focus on parameter control for the first and less

adaptable method, that of detection of text in still images by local contrast, with the intent of

improving performance.

While it has been necessary to choose a complex algorithm to demonstrate the robustness of

our framework, it is easy to become engaged in the details of the algorithm and lose track of our

focus: reinforcement learning for parameter control. This is why we have provided a summary
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in Algorithm 3 but discuss its details in Appendix A. The algorithm is also represented visually

in Figure 4.1. Knowledge of the algorithm is necessary to understand components such as the

reward (Section 4.2.4) and image features (Section 4.2.5) specific to our task. Therefore we hope

the reader will consult the details provided in the appendix.

Algorithm 3 Summary of Wolf et al.’s text detection algorithm. Parameters are given in braces.
Greylevel constraints:
Apply horizontal version of the Sobel operator as a gradient measure of the input
Detect the text by accumulating gradients {S, size of the gradient accumulation filter}
Apply a two-threshold version of Otsu’s global thresholding algorithm {α, second threshold
for the binarization of the accumulated gradients}
Morphological constraints:
Apply morphological closing to close small holes in the components and connect components
separated by small gaps
Remove small horizontal bridges between connected components by a thresholding operation
{t1, threshold on column height}
Perform a conditional dilation to re-connect noisy text regions separated by the previous step
{t2, threshold on height difference; t3, threshold on position difference}
Perform a conditional erosion to restore the size of components
Perform horizontal erosion to eliminate components that do not satisfy the hypothesis that text
has a minimum length
Perform horizontal dilation to restore components to nearly their original size
Extract remaining components by connected components analysis
Grow bounding boxes to further account for reduced size
Geometrical constraints:
Impose geometrical constraints to eliminate false rectangles {t4, threshold on ratio
width/height; t5, threshold on ratio pixels/area}
Consider special cases where heads and tails of characters have been eliminated in the mor-
phological operations
Combine partly overlapping rectangles according to their geometry {t6, t7, t8, thresholds for
combining rectangles}
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Table 4.3: Parameters for the text detection algorithm in [92]
Par. Range Description

S 5− 35 Size of the gradient accumu-
lation filter

α 50− 150 Determination of the second
threshold for the binarization
of the accumulated gradients

t1 1− 5 Threshold on column height
t2 20− 200 Threshold on height differ-

ence
t3 20− 200 Threshold on position differ-

ence
t4 1− 6 Threshold on ratio

width/height
t5 0.2− 0.9 Threshold on ratio pixels/area
t6 0.1− 0.9 Threshold for combining

rectangles
t7 0.1− 0.9 Threshold for combining

rectangles
t8 0.1− 0.9 Threshold for combining

rectangles

4.2.3 Another optimization problem

From the summary of the text detection algorithm, it is clear that there are a number of parameters

than can significantly affect the algorithm’s performance. Although Wolf et al. have proposed

a set of good parameter values determined empirically, we would like to investigate whether a

better set of parameters can be generated using our RL framework. The ten parameters that we

aim to optimize and their suggested ranges are shown in Table 4.3.

At each iteration, the agent randomly selects three images containing text, and three images

containing no text from an image base. The agent then proceeds, employing parameters chosen

by an RL algorithm at each step of the text-detection process. Each of the six test images are

processed in parallel, using identical parameters. The rewards are averaged over the images.

Our reasoning for the use of multiple images and averaging of results is to assist the agent in
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generalizing across many different images. This lowers the sensitivity of the reward to any

particular image. The calculation of this reward is discussed in the next section.

4.2.4 Evaluation and reward

As indicated in Section 4.2.2 Wolf et al.’s algorithm incorrectly assumes the presence of text in

an image, and then identifies pixels as text or non-text by thresholding. The correcting steps

of morphological and geometrical constraints accommodate for the original, faulty hypothesis.

It would be simple to evaluate the system in a way that matches the hypothesis (i.e. using

only images which contain text), but such an analysis is not sound. We must also evaluate the

performance of the algorithm, and in our case, the agent controlling its parameters on images

containing both text and no text. The aim of our RL agent is to choose the best parameters for

text-detection in still images. In the case where text is present, we wish to reward the agent when

text regions are properly detected. In the case of non-text images, we wish to reward the agent

when it detects no text regions. We first consider the case of images that we know a priori to

contain text. Here, we employ the classical method of measuring performance in information

systems. That is, the measures of recall and precision [29]:

RecallIR =
number of correctly retrieved items

number of relevant items in the database
,

PrecisionIR =
number of correctly retrieved items

total number of retrieved items
.

(4.9)

In order to have a single performance value for the ranking of results, we have used the

harmonic mean of precision and recall:

HMIR =
2 · Precision · Recall
Precision + Recall

. (4.10)

In our specific case, we do not consider the recognition of characters, and thus concern our-

selves only with the position of text on the screen. Our ground truth images contain marked

rectangles, representing the areas which contain text. So we state that the “number of correctly

retrieved items” corresponds to the “number of correctly detected rectangles”, the “number of

relevant items in the database” corresponds to the “number of ground truth rectangles”, and the
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“total number of retrieved items” corresponds to the “total number of detected rectangles”. This

still leads us to the question: what does it mean for an object to be “detected”? Of course, some

objects may partially be detected, and it is unlikely that the rectangles detected by the algorithm

have exactly the same dimensions and position as the ground truth rectangles, even if we do con-

sider the detection to be “good”. Fortunately Wolf et al. have already devised several methods

which take into account the geometrical information, that is, the overlapping between ground

truth and detected rectangles. We have chosen to use one of the methods, CRISP [91], to deal

with the ambiguity of “detection” when calculating the reward signal provided to the agent.

The CRISP method

The CRISP method takes into account one-to-one as well as many-to-one and one-to-many

matches between detected and ground-truth rectangles. We first create two lists, G and D, repre-

senting the ground truth and detected rectangles, respectively, in a particular image. From these

lists, two overlap matrices are created, σ and τ . The rows i = 1..|G| of the matrices correspond

to the ground truth rectangles, and the columns, j = 1..|D| correspond to the detected rectangles.

The matrix elements are calculated as:

σij =
Area(Gi ∩Dj)

Area(Gi)
, and (4.11)

τij =
Area(Gi ∩Dj)

Area(Dj)
. (4.12)

The values σij and τij can be thought of as representing measures of recall and precision,

respectively, if we consider a detection of ground truth rectangle i by rectangle j. We then

analyze the matrix with respect to three types of matches:

• One-to-one matches: Gi matches against Dj if row i of both matrices contains only one

non-zero element at column j and column j of both matrices contains only one non-zero

element at row i. Two additional conditions are imposed on the match. Those are, σij ≥

e1 = 0.8 and τij ≥ e2 = 0.4. This states that the overlap area must have a certain size

compared to both the ground truth and detected rectangles to be considered as detected.
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• One-to-many matches (one ground truth rectangle): Gi matches against several detected

rectangles if row i of both matrices contains only one non-zero element at column j. Again,

additional conditions are imposed. We require that
∑

j σij ≥ e3 = 0.8 and ∀j : τij ≥ e4 =

0.4. The first threshold, e3 ensures that the ground truth rectangle is sufficiently detected

by the multiple rectangles (i.e. with high recall), and the second threshold, e4 ensures that

each of the detections is sufficiently precise.

• One-to-many matches (one detected rectangle): Dj matches against several ground truth

rectangles if column j of both matrices contains only one non-zero element at row i. Sim-

ilar constraints are enforced,
∑

i τij ≥ e5 = 0.4 and ∀i : σij ≥ e6 = 0.8, where threshold

e5 ensures the precision of the detection and threshold e6 ensures that each of the ground

truth rectangles is detected sufficiently (i.e. with high recall).

Finally, one more geometrical constraint is imposed on the one-to-one matches. We require

that the differences of the left coordinates of the rectangles must be smaller than an adaptive

threshold, that depends on the width of the ground truth rectangle. This accounts for certain

situations where overlap information indicates a good match, but the detected rectangle is signif-

icantly larger than the ground truth rectangle (i.e. we wouldn’t want the detection of the whole

screen considered to be a match).

Thresholds were chosen empirically in [91], where one may also find details on performance

with respect to the various thresholds. It was found that the thresholds related to the recall, e1,e3

and e6 had little effect on performance, though the thresholds related to precision, e2,e4 and

e5 significantly affected the performance negatively as they approached 1. An alternative is to

calculate the average recall and precision over the whole range of thresholds [93].

After considering the three types of matches, the CRISP recall and precision values are then

calculated as follows:

RecallCRISP =

∑

i

MatchCrispG(Gi)

|G|
,

PrecisionCRISP =

∑

j

MatchCrispD(Dj)

|D|
,

(4.13)
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where MatchCrispG and MatchCrispD are functions which consider the various types of matches

previously defined, and evaluate to finite values based on the quality of match:

MatchCrispG(Gi) =











1 if Gi matches against a single detected rectangle,

0 if Gi does not match against any detected rectangle,

0.8 if Gi matches against several detected rectangles,

MatchCrispD(Dj) =











1 if Dj matches against a single ground truth rectangle,

0 if Dj does not match against any ground truth rectangle,

0.8 if Dj matches against several ground truth rectangles.

As we can see, one-to-many matches are taken into account, but not given as much credit as

one-to-one matches. As a result, the value of “number of correctly detected rectangles” does not

need to be an integer. In our experiments, we use a set of three text-containing input images for

each iteration. The calculated values of recall and precision, using the CRISP method, allow us

to then determine, over the set of three images, the total number of ground truth rectangles, the

total number of detected rectangles, and the total number of correctly detected rectangles (using

Equation 4.9). This allows us to generate precision and recall values between 0 and 1 for the set.

Simply using the arithmetic mean to average the individual recall and precision values would not

lead to the same result. These overall precision and recall values are combined into a single value

using the harmonic mean (Equation 4.10). This represents the first half of the reward, which is

with respect to text-containing images.

Evaluation for images not containing text

Evaluation is handled differently for the images containing text and images containing no text.

For the former, we have a set of ground truth images to which we compare the agent’s selection

of rectangular text regions. Unfortunately, the measures of recall and precision are not applicable

to the latter. For these experiments, we consider an equal number of images containing text and

images containing no text. For non-text, we wish to generate a measure on the same scale, [0,1],

which has maximum value when we detect no text regions, and gradually decreases as we detect
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more rectangles. To achieve this result, we use the following simple formula for reward:

rnontext = e−δN , (4.14)

where N is the number of detected rectangles (over all test images, in our case 3), and δ is an

empirically determined factor. We found that δ = 0.5 offered good performance. As the number

of detected rectangles grows, the evaluation is reduced to zero. As in the case of the previous

evaluation, the maximum value (at N = 0) is 1. Now that we have one performance measure

for each of images containing text and images containing no text, we simply combine them by

taking their arithmetic mean. If we wanted to train the agent to consider less the non-text images,

or vice-versa, this mean could be weighted differently.

Generality

Clearly the text detection performance depends on the database used for testing. This is not only

with respect to the image content itself (artificial text vs. scene text, size and font of text, noise,

etc . . . ) but also depends much on the structure of the test database itself. Generally, with any

information retrieval task where measures of precision and recall are used, we are concerned

with the ratio of relevant data to irrelevant data in the database. Huijsmans and Sebe formalize

this notion as the measure of generality [29]:

GeneralityIR =
number of relevant items in the database

number of items in the database
. (4.15)

Low generality will tend to produce results with lower precision. In traditional information

retrieval tasks, where the result set is of fixed cardinality, low generality will also affect recall.

In text detection, however, generality does not affect recall, as all detected items are returned.

This means that increasing the number of non-text containing images will cause the precision to

fall, but recall will remain constant, as this will not affect the amount of ground truth rectangles

detected, if the number of text containing images is unchanged. For our task, generality is defined

as:

Generality =
number of text rectangles in the database

number of images in the database
. (4.16)
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This leads us to the dilemma on how to weight text and non-text images in the database. We

have decided to include 50% images with text and 50% images without text in the database, and

on each iteration consider an equal amount of each. This enables us maintain a reasonable level

of generality as well as compare our results to the previous work in which this ratio was used. We

note that this ratio is not a realistic one if we consider video streams in general, but the addition

of too many non-text images into the database negatively affects the detection system [91].

Intermediate reward

So far, we have only discussed a single reward at the end of each episode (terminal reward). In

reinforcement learning tasks, often such a reward is sufficient, as the agent aims to maximize

cumulative reward and not immediate reward. Intermediate reward, that is, reward following

some step other than the final step in an episode may also aid in learning - but we must be careful.

The reward serves to formalize the goal of the agent, or in other words, what it should achieve.

Reward is not the mechanism to communicate to the agent how we want it to be achieved [79].

If we confuse the purpose of the reward, the agent may, in fact, learn to achieve high returns yet

not meet its final goal. Sutton and Barto [79] note the example of a chess-playing agent that,

if rewarded when it captures pieces, may learn to capture a high number of pieces without ever

attaining checkmate. Such a case emphasises the need for careful design of the reward signal.

In the text-detection application, we initially evaluate at the agent’s performance while using

only terminal reinforcement, derived from the information retrieval metrics previously discussed.

We also propose two methods of intermediate reward which are simple to calculate and effective

measures in theory, but also may fall on the fine line between “what” and “how”. It should be

noted that these intermediate rewards are made possible by the existence of ground truth images.

In a setting where such images were not available (i.e. truly on-line) they could not be applied.

These intermediate rewards are extracted at two specific points within the text-detection algo-

rithm (Figure 4.2).

Bhattacharyya distance

This reward is extracted from the images following the accumulated gradients step. Each

pixel contains a probability measure that the same pixel in the original image is text.



Applying the Framework 65

C
on

ve
rs

io
n

to
gr

ey
sc

al
e

M
et

ho
d

of
ac

cu
m

ul
at

in
g

gr
ad

ie
nt

s

B
in

ar
iz

at
io

n
C

al
cu

la
te

gr
ad

ie
nt

ho
ri

zo
nt

al
S

ob
el

G
re

y
le

ve
lc

on
st

ra
in

ts

sm
al

lh
or

iz
on

ta
l

R
em

ov
al

of

br
id

ge
s

di
la

tio
n

C
on

di
tio

na
l

er
os

io
n

C
on

di
tio

na
l

er
os

io
n

H
or

iz
on

ta
l

H
or

iz
on

ta
l

di
la

tio
n

M
ai

n
ge

om
et

ri
ca

l
co

ns
tr

ai
nt

s

C
on

si
de

ra
tio

n
of

sp
ec

ia
l

ca
se

s

C
om

bi
na

tio
n

of
re

ct
an

gl
es

G
eo

m
et

ri
ca

lc
on

st
ra

in
ts

Im
ag

e

R
ec

ta
ng

le
s

cl
os

in
g

M
or

ph
ol

og
ic

al

G
ab

or
fe

at
ur

es

C
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

re
w

ar
d

R
un

s
of

eq
ua

lly
la

be
lle

d
pi

xe
ls

fe
at

ur
es

D
is

tr
ib

ut
io

n
fe

at
ur

es

A
sp

ec
tr

at
io

fe
at

ur
es

B
ha

tta
ch

ar
yy

a

M
or

ph
ol

og
ic

al
co

ns
tr

ai
nt

s

di
st

an
ce

re
w

ar
d

Fi
gu

re
4.

2:
T

he
al

go
ri

th
m

fo
r

de
te

ct
io

n
of

te
xt

in
im

ag
es

fr
om

vi
de

o
se

qu
en

ce
s

fo
r

se
m

an
ti

c
in

de
xi

ng
.

E
xt

ra
ct

io
n

of
in

te
rm

ed
ia

te
re

w
ar

d
(a

bo
ve

th
e

st
ep

s)
an

d
im

ag
e

fe
at

ur
es

(b
el

ow
th

e
st

ep
s)

ar
e

sh
ow

n
in

da
sh

ed
li

ne
s.



66 Reinforcement Learning for Parameter Control of Image-Based Applications

A popular measure of similarity between two distributions is the Bhattacharyya distance [26]:

B =
1

8
(M2 −M1)

T

(

Σ1 + Σ2

2

)−1

(M2 −M1) +
1

2
ln

|Σ1+Σ2

2
|

√

|Σ1|
√

|Σ2|
, (4.17)

where Mi is the mean vector of class i, and Σi is the covariance matrix of class i. The first term

measures class separability due to the distance between class means, while the second term mea-

sures class separability due to the difference between class covariance matrices. Consider Figure

4.3, which is similar to an example given in [66]. We can see that although the distribution pairs

marked A and C have the same mean distance, the second term of the Bhattacharyya distance

expresses the overlapping of the distributions in C. Therefore, the Bhattacharyya distance for

pairs A is greater than for pairs C. Alternatively, while the mean distance is very different for

distribution pairs A and B, their Bhattacharyya distance is similar. Again, variance is considered.

If the two distributions are Gaussian, the Bhattacharyya distance gives an upper bound on the

Bayes error:

ε∗ ≤
√

P1P2e
−B, (4.18)

where Pi is the a priori probability of class i. The Bhattacharyya distance is computationally

simple to calculate and because it is derived from an error bound rather than an exact solution, it

provides a “smoothed” distance between the two classes [45]. This is useful in our case, where

we do not believe that our data follows a true normal distribution.

The Bhattacharyya distance is implemented as an intermediate reward following the accu-

mulating gradients step in the text detection algorithm, but only for images containing text. The

pixels of the input image are assigned to one of two classes: “text” and “non-text”, based on the

matching ground truth image. We have one single variate for each class, and that is the probabil-

ity of a pixel being text (assigned by the accumulating gradients step, Equation A.1). As the fol-

lowing step is binarization by thresholding, we want these two distributions to be well-separated,

and thus have a large Bhattacharyya distance. The arithmetic mean of the Bhattacharyya dis-

tance with respect to the three input images is applied directly as intermediate reward following

the binarization step.
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Figure 4.3: Example of Bhattacharyya distance

Classification error rate

This reward is extracted from the images following the binarization step. Each pixel is now

marked either “text” or “non-text”.

The calculation of classification error rate is even simpler than the Bhattacharyya distance.

The aim is to evaluate the performance of the agent before the “clean-up” steps of mathematical

morphology and geometrical constraints. Following the binarization step, we can compare the

marked pixels to their respective ground truth images with the same labels, “text” and “non-text”.

The classification error rate can be defined as:

Classification error rate =
total number of correctly classified pixels

total number of pixels
. (4.19)

This value is already scaled between 0 and 1 is can be applied directly as reward.
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4.2.5 Image features

As already stated, incorporating image features will allow us to specify parameters on a per-

image basis, rather than responding to the general set of images on which it has been trained.

Several image features have been chosen with respect to the various steps of the text-detection

algorithm. These features are extracted from the images produced at these steps (Figure 4.2)).

Our aim is toward a system that can choose parameters for the following step, based on properties

of the current intermediate image. While associating complete image data with state at each step

is far too complex for the current state of learning algorithms, we may extract features that we

deem a priori to be relevant to the parameter choice at the following step. It is then left to the

RL agent to discover the relationship between these features and expected reward.

In each case, we aim to keep the number of features of as small as possible, to maintain the

compactness of the neural networks. The features are always scaled to match the magnitude

of the normalized parameters which form part of the state information. As these features are

application-dependent, their addition requires considerable design and implementation effort, as

well as moderate computational expense. Therefore, they have been incorporated only after the

system for global parametre selection has been developed and tested.

Gabor filters for texture features

These features are extracted from an input image immediately after it has been converted to grey

scale.

During our description of what constitutes text (Table 4.2), we noted that it has a specific

texture. Therefore, using features that are descriptive of the texture should aid the agent in

selecting the size of the gradient accumulation filter. Gabor filters are a popular method of

extracting texture features from images [90]. They are frequently used in the domain of content-

based image retrieval. When we describe of texture, we think of image regions rather than

pixels or scenes. Therefore, we adopt an approach which calculates texture-features for several

windows of fixed-size centered around points of interest in the image. For the Gabor filters

themselves, we follow the approach and parameters given by Manjunath and Ma [46].
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A two-dimensional Gabor function suitable for images can be written as:

g(x, y) =

(

1

2πσxσy

)

exp

[

−
1

2

(

x2

σ2
x

+
y2

σ2
y

)

+ 2πjWx

]

, (4.20)

and its Fourier transform can be written as:

G(u, v) = exp

{

−
1

2

[

(u−W )2

σ2
u

+
v2

σ2
v

]}

, (4.21)

where σu = 1/2πσx, σv = 1/2πσy and W is the frequency of interest. A family of related

functions, called Gabor wavelets can also be defined. We create a filter bank based on appropriate

dilations and rotations of the mother function, g(x, y):

gmn(x, y) = a−mG(x′, y′), a > 1; m, n ∈ Z,

x′ = a−m (x cos θ + y sin θ) , y′ = a−m (−x sin θ + y cos θ) ,
(4.22)

where θ = nπ/K and K is the total number of orientations. We also define S to be the total

number of scales in the multiresolution decomposition. Details on selecting the filter parameters

a, σu, and σv to reduce redundancy within the filter bank are given in [46].

Given an image, I , we can define its Gabor wavelet transform to be

Wmn(x, y) =

∫

I(x1, y1)gmn ∗ (x− x1, y − y1)dx1dy1, (4.23)

where * indicates the complex conjugate. Manjunath and Ma take the mean, umn, and the stan-

dard deviation, σmn, of the magnitude of the transform coefficients as feature components, as-

suming that the local texture regions are spatially homogeneous. We, however, use only the

maximum of the magnitude of the transform coefficients, as proposed by Wolf [90]. We choose

the maximum due to its discriminant properties as the mean tends to smooth the filter response.

Though it is less robust than the mean, its performance is illustrated in [90].

This maximum value is calculated for 50 windows of size 32 × 32, centered around points

of interest within the image (accommodating for borders). Using points of interest rather than

equally spaced windows (as done in [46]) allows us to obtain Gabor features around points in

the image more likely to contain text (if it is present). To calculate points of interest, we use
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the popular corner detector proposed by Harris and Stephens [27]. This is repeated for S = 3

scales and K = 2 orientations, as we are only interested in the horizontal and vertical texture

features for text. Aiming to keep the number of features small, and make a decision based upon

textures at a global level, we take the mean of the maximum values over all of the windows. This

provides us with 6 image features, which compose the initial state of the agent.

Distribution features for accumulated gradients

These features are extracted from the intermediate image immediately after the step of accumu-

lating gradients. For each image pixel, we have a measure representing the probability of that

pixel being text.

Let us envision the accumulated gradient values being a sample taken from an underlying

distribution. The shape of this distribution is then of interest when choosing the thresholding pa-

rameter. If the distribution is bimodal, then we expect these modes to represent non-text and text

pixels and the threshold should be chosen appropriately between modes. If it is unimodal, then

the image is likely a non-text image, and therefore the threshold should be chosen to minimize

the number of pixels binarized to be text.

When describing this distribution, the mean and standard deviation of the accumulated gra-

dients come to mind as natural features. But what can we say about the shape of the distribution?

The technique proposed by Silverman [71] is perhaps the most commonly applied method to as-

sess whether a given data set is driven from a k−modal distribution. It is based on kernel density

estimates, and it is a relatively simple, automated approach. We implemented this method, but

found that it was computationally slow, and also required some manual calibration for each new

dataset. It is appropriate for the analysis of a finite number of datasets, but not for a stream of im-

ages, each containing a high magnitude of data points, as in our application. Therefore we turned

to a simple measure of unimodality, where a Gaussian distribution is fitted on the accumulated

gradients data, using the mean and standard deviation previously extracted. A histogram with a

set number of bins is calculated for the data as well as the Gaussian, and this is used to compare

the overlap between the distribution of accumulated gradients and the Gaussian. Specifically, for

each bin, we are interested in the difference between the area underneath the accumulated gradi-

ents distribution and the area under the Gaussian distribution. We also account for the area under
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the Gaussian from −∞ to the lower value of the first bin as well as from the upper value of the

final bin to +∞. This technique has the disadvantage that a unimodal distribution is not neces-

sarily shaped like a Gaussian, but it is a simple and computationally fast measure of unimodality

suitable for our application, and is complimented by the other distribution-based features.

The distribution can be further described by several features from discriminant analysis. Let

us return to Otsu’s global thresholding method [51] briefly described in Section 4.2.2. Using the

histogram of the accumulated gradients (one bin for each possible value), this provides us with

an optimally chosen threshold for the accumulated gradients. Then we calculate the means of the

“non-text” and “text” classes, µ0, µ1 as well as their variances, σ2
0 , σ

2
1 . The intra-class variance is

defined as:

σ2
W = ω0σ

2
0 + ω1σ

2
1 , (4.24)

where ω0 = Pr(C0) =
∑k∗

i=1 pi and ω1 = Pr(C1) =
∑L

i=k∗ pi = 1 − ω0 are the probabilities

of class occurrence. Here, pi = ni/N is the probability of having accumulated gradient value i,

where i = 1, 2, . . . , L; ni is the number of pixels having accumulated gradient value of i; and N

the total number of pixels, N = n1 + n2 + . . . + nL. The threshold k∗ is the optimally chosen

threshold. The interclass variance is also defined as:

σ2
B = ω0ω1 (µ1 − µ0)

2 . (4.25)

These variance measures are calculated to give more information about the shape of the

underlying distribution. To summarize, we calculate eight distribution-based features following

the accumulating gradients step, and prior to thresholding. They are: µ and σ, the mean and

standard deviation of the accumulated gradient values, u, the unimodality measure calculated by

comparing the histogram to the histogram of a Gaussian distribution, and the linear discriminant

features: k∗, µ0, µ1, σW , and σB . Note that we use standard deviation values rather than variance

for the latter two measures. Adding the parameter value chosen in the first step gives us a state

vector with nine elements.
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Runs of equally labelled pixels

These features are extracted from the intermediate binary image, just after the morphological

closing has been performed. This image indicates pixels believed to be “text” or “non-text”.

These particular features are used to construct a state for the decision of the parameter for

the erosion operation to remove tiny bridges connecting components. The same features are

then extracted again from the eroded image, and another state is constructed for the decision

of the “dilation for connecting characters” operation. Statistical measures related to pairs of

neighbouring runs should assist in choosing the parameters for the two morphological operations.

This set of features is based on the vertical run lengths of equally labelled pixels. We progress

through each column of the binary image, calculating the run lengths of each series of equally

labelled pixels (Figure 4.4). We may progress from a “text” run, to a “non-text” run then to

another “text” run and so on. Because the image is binary, the runs will always be alternating. We

create a 2-D histogram to store the counts with respect to the lengths of all pairs of neighbouring

runs. The histogram then has two indices: one with respect to the “text” run length, and one with

respect to the “non-text” run length. Immediately after the lengths of each pair are calculated,

the element corresponding to that particular length of “text” run and length of “non-text” run is

incremented. After we have progressed through all of the columns of the image, we are left with

the complete histogram, which gives the frequency of all neighbouring runs of various lengths.

We also store the lengths of each encountered “text” run and “non-text” run in another variable,

so that the means of the lengths of all “text” and “non-text” runs can be computed.

The final step is to compute the means, as well as the 2 × 2 covariance matrix using the

frequency matrix and the means. Noting that the covariance matrix is symmetrical, we may

discard one of the covariance elements to eliminate redundant data, and arrive at a feature vector

of five elements. Variances are converted to standard deviation, and the covariance element is

scaled by its magnitude. Adding the value of the parameter chosen at the previous step, we form

a state vector with six elements.
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(a) Calculating the vertical run lengths. Consider the binary images
where pixels marked as “text” are white, and the rest are marked
“non-text”. For each column, we calculate the vertical run lengths
of equally labelled pixels. We do not record anything in the first
column, because there are no changes. In the second column, there
are four changes. We count the pairs (2,2), (2,9), (1,9) and (1,1)
where the first index refers to the “text” pixel of the pair and the
second index refers to the “non-text” pixel. In the third column, we
count (2,2), (2,8), (2,8) and (2,1). We proceed like this through every
column.

1 2 3 4 5 6 7 8 9 10 11 12
1 1 6 10 0 0 2 0 7 1 0 0 1
2 6 3 0 0 0 1 1 3 1 0 1 3
3 0 0 0 0 0 0 0 0 0 0 0 0
4 1 1 1 0 0 1 0 0 0 0 0 0

(b) 2-D histogram of run lengths after all image
columns have been processed. Note that the maximum
vertical run length for “text” pixels (y-axis) is 4, while
the maximum vertical run length for “non-text” pixels
(x-axis) is 12.

Figure 4.4: Vertical runs of equally labelled pixels
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Aspect ratio features

These features are extracted from the intermediate binary image, following all morphological

operations. This image is similar to the one used in the previous set of features, but it is expected

to be much cleaner.

Finally, after the morphological processing has finished, we wish to derive features from the

aspect ratio of the marked text regions to set the thresholds of the geometrical constraints. At

this step, we have a binary image which may contain one or more text regions. For each pixel

marked as “text”, we consider its neighbouring “text” pixels. Features are derived from the aspect

ratios of the horizontal and vertical run lengths of each “text” pixel. This is performed knowing

that these aspect ratios may aid in discriminating text from non-text regions. The geometrical

constraints exploit this property, but rely on several thresholds to be set. Information regarding

the aspect ratios at a global image level should assist in setting these thresholds.

We first record the length of each pixel’s vertical and horizontal run. We then disregard the

pixels with horizontal or vertical run lengths less than a threshold of five pixels (a value that we

have determined empirically). A matrix is initialized with the same size of the image, so that

with each “text” pixel meeting the threshold criterion, we associate with it the ratio of width to

height (horizontal to vertical lengths, respectively) of its associated runs (Figure 4.5). We note

that the value of each element in the matrix corresponding to a “non-text” pixel, or pixel with

small associated run lengths will be zero. Non-zero elements are extracted and transformed to the

log domain. A histogram of constant bin-size (in our experiments, we used 50 bins) is built from

these ratio values. Then, we use this histogram to calculate the exact same linear discriminant-

based features (from Otsu) that we calculated from the accumulated gradients information. The

features k∗, µ0, and µ1 are calculated in the log domain and then transformed back to the original

domain, while σW , and σB are calculated in the original domain. These linear discriminant-based

features, as well as the overall mean and standard deviation of the log aspect ratios form the final

feature set. The previous two-element parameter for the “dilation for connecting characters” step

is added to create a nine-element state vector.
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Figure 4.5: Calculating the aspect ratio. Consider a region of pixels marked as “text” in a binary
image. With each such pixel, we associate an aspect ratio of the horizontal to vertical run length.
In this example, the horizontal run length is 14 and the vertical run length is 4 for the currently
selected pixel.



Chapter 5

Results

Two separate tasks, to which the proposed framework can be applied, have been introduced

in the previous chapter. This chapter describes the experimental results generated through the

implementation of each. We begin with the simpler of the two, and then move to the more

involved application.

5.1 Automatic determination of membership functions for fuzzy

image processing filters

Now we must return to the problem described in Section 4.1, that is, to solve the combinatorial

optimization of choosing a brightness membership function evaluated by fuzzy event entropy.

This example fits our framework, as it is a parameter selection problem for image processing,

but it does not push the limits of the framework: the agent selects parameters one at a time, and

there are no intermediate or final images returned. This is not necessary, as the evaluation metric

determining the reward assigned to the agent is solely based on the parameters (determining

the S-function) and the histogram data of the input image. Fortunately, the entropy calculation

consistently returns a value between 0 and 1, allowing us to directly use this result as reward,

without having to manipulate it in any way.

Though function approximation or generalization is necessary for a highly-dimensional and/or

76
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continuous parameter space, this particular example is discrete and small enough to be imple-

mented in a more straightforward tabular form. In the case of the S-function, we are lim-

ited to three discrete parameters, which can take values between [0, 255] but are limited to

0 ≤ a < b < c ≤ 255. This produces a large state space, but one that can still be handled

without function approximation. It also serves as a comparison, in terms of the learning rate, to

the next application (Section 5.2), in which generalization is employed.

5.1.1 Experiment setup

We have implemented the algorithm with three table-based RL algorithms. Q-learning and Sarsa,

which are very similar, and Sarsa(λ) which uses eligibility traces. Parameters were determined

empirically, and in each case, were optimal (out of a discrete number of options). These are

shown in Table 5.1. A trace threshold of 0.01 was also used in the case of Sarsa(λ). This

means that traces with values less than this threshold were not stored for efficiency. The methods

were then compared by each determining a brightness membership function for the Lena image.

The methods were compared in terms of average reward received. This means that at each

iteration, we have record the mean of the previous entropy values received up to and including

that iteration. These values are plotted in Figure 5.1. Each test was run five times with each

algorithm. Results shown are the averages of these trials. We have also compared the running

times for 5000 iterations of each algorithm (Table 5.2). In all cases, we see that the algorithm

converges far before the maximum number of iterations is reached.

It is of interest that Q-learning considerably outperforms Sarsa for this task. There are doc-

umented cases [57, 79] (although for different tasks) where the opposite is seen. As expected,

Sarsa’s performance improves with the additional consideration of eligibility traces. The running

time, however, is significantly increased due to the consideration of eligibility traces. Instead of

just considering one-step returns, the algorithm considers an entire history of returns. For the

remainder of the MF experiments, we will use Q-learning to obtain results.
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Table 5.1: Parameters used in the reinforcement learning algorithms, Application 1
Algorithm ε α γ λ

Q-learning 0.1 0.9 0.9 N/A
Sarsa 0.1 0.9 0.9 N/A
Sarsa-(λ) 0.1 0.9 0.9 0.75
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Figure 5.1: Comparing the reinforcement learning algorithms, Application 1. Average reward
vs. number of iterations.

Table 5.2: Running times of reinforcement learning algorithms
Algorithm Average running time (s)

Q-learning 6.5180
Sarsa 6.9380
Sarsa-(λ) 96.5046
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5.1.2 Determining an optimal membership function

Next, we would like to compare our method with the simulated annealing (SA) method for de-

termining the optimal membership function for several different images. We have implemented

the simulated annealing method in [15] for comparison purposes (Algorithm 4). Five different

images with varying histograms have been selected for testing. Due to the randomness involved

in both approaches, we have run three trials for each image. The results for SA are presented in

Table 5.3. The results for Q-learning are presented in Table 5.4. Simulated annealing requires

a stopping criterion, and this was defined to be the point at which the state did not change for

100 iterations. The process of determining such a criterion for RL was somewhat more involved.

The entire process was initially run for 5000 iterations to determine a maximum average reward.

The tests were then run to a point at which the average reward was within 1% of the maximum

reward.

The SA method tends to find very steep S-functions, all with the maximum entropy, 1.0.

The results between trials are all very similar for the SA method. On the other hand, the Q-

learning approach tends to find more varied curves, at high entropy values, but usually less

than 1.0. The curves generated by the RL agent seem more natural, that is, curves that would

be more likely to be generated by an expert. This indicates that there may be a fundamental

problem in using only the fuzzy event entropy to evaluate S-functions. There are many oddly-

shaped, narrow S-functions which evaluate to entropy 1.0. Interestingly enough, in their results,

Cheng and Chen [15] report much more natural membership functions using the same method.

There is no apparent reason why the membership functions we have generated here should be

any different. Perhaps the authors have restricted the parameters to remain separated by some

unreported constraints.

When considering the number of iterations, with the exception of the Dark and Bright Lena

images, Q-learning converges at much fewer iterations than simulated annealing. SA does not

exhibit as much of a sensitivity to the image as does Q-learning in terms of computational time.

We present the images, their histograms and respective membership functions (determined

by both SA and Q-learning) in Figures 5.2-5.6. For the case of Q-learning, where several varied

membership functions can be generated, we have chosen to display the one with highest fuzzy
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Algorithm 4 Simulated annealing for determination of membership function
Initialize the cooling rate, α = 0.996
Input the image and compute the histogram
Randomly generate an initial state, Xinit using the following technique:

1. randomly select a from the interval [0, 127]
2. randomly select c from the interval [128, 255]
3. randomly select b from the interval [a + 1, c− 1]

Let Xcurr = Xinit and set the initial temperature, T
repeat

Randomly select a move from the move set M1, M2, M3, M4, M5, M6. Apply this move to
the current state Xcurr, which produces a new state Xnew. If the produced state is an illegal
state, try another move.
Compute the cost change: ∆E = Cost(Xnew)− Cost(Xcurr)
if ∆E ≤ 0 then

Xnew is a better state. Set Xcurr = Xnew

else if ∆E > 0 then
Set p = e−∆E/T

Select random number r between [0, 1]
if r ≤ p then

Set Xcurr = Xnew

else
Do not change the current state

end if
end if

until Termination conditions are met
Termination conditions are the following: if an effective move cannot be found in 100 consec-
utive move attempts, it is assumed that the point reached is a stationary point.
There are six possible moves, defined as:

M1 : (a, b, c)← (a− 1, b, c), M2 : (a, b, c)← (a + 1, b, c),
M3 : (a, b, c)← (a, b− 1, c), M4 : (a, b, c)← (a, b + 1, c),
M5 : (a, b, c)← (a, b, c− 1), M6 : (a, b, c)← (a, b, c + 1).

The function Cost(X) is defined as

Cost(X) = 1−H(bright; X) = 1−H(bright; a, b, c) (5.1)

where H is the entropy of a fuzzy event, in our case “bright”.
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Table 5.3: Generation of membership functions using simulated annealing

Image (aopt, bopt, copt) Entropy Iter.

Trial 1
Lena (127,128,130) 1.0000 3469

Dark Lena (26,29,30) 1.0000 3491
Bright Lena (226,229,230) 1.0000 3826
Cameraman (142,143,146) 1.0000 3243

Blood (144,151,166) 1.0000 2758
Trial 2

Lena (126,129,130) 1.0000 3520
Dark Lena (27,28,30) 1.0000 3470

Bright Lena (226,228,231) 1.0000 3493
Cameraman (140,144,147) 1.0000 3373

Blood (153,154,158) 1.0000 2462
Trial 3

Lena (127,128,130) 1.0000 3391
Dark Lena (27,28,30) 1.0000 3387

Bright Lena (227,228,230) 1.0000 3367
Cameraman (142,144,145) 1.0000 3252

Blood (151,155,158) 1.0000 2594
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Table 5.4: Generation of membership functions using Q-learning

Image (aopt, bopt, copt) Entropy Iter.

Trial 1
Lena (119,125,143) 0.9999 2727

Dark Lena (3,9,70) 0.9351 4031
Bright Lena (98,247,255) 1.0000 4189
Cameraman (48,108,244) 0.9998 3153

Blood (54,110,247) 1.0000 1096
Trial 2

Lena (53,127,195) 1.0000 1150
Dark Lena (14,37,38) 0.9995 4353

Bright Lena (107,253,255) 0.9575 4246
Cameraman (103,153,168) 1.0000 1029

Blood (88,136,210) 0.9996 1659
Trial 3

Lena (22,98,250) 0.9996 2563
Dark Lena (3,53,42) 0.9955 4423

Bright Lena (95,254,255) 0.9445 4639
Cameraman (13,121,254) 0.9999 2773

Blood (15,165,218) 0.9999 2601
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event entropy. In the case of the Cameraman image, RL has found a narrow membership func-

tion, but upon inspection of the parameters themselves, we see that it is still better than any MF

found by SA. Let us now focus on the comparison of generated membership functions to the

image histograms. In both the SA and RL cases, the membership functions shift based on the

histogram. This naturally reflects what one may consider “bright” depending on the image.

5.1.3 Segmentation by thresholding

Image segmentation is an important area in the field of image processing. It is a process in which

an image is broken up into various classes or sets such that each one is homogeneous with respect

to one or more attributes of the image. This is useful for image understanding, texture analysis

and classification of structures within the image.

Numerous methods for segmentation have been proposed in the literature, and more recent

techniques have employed fuzzy set theory. Pal [53] proposed some of the earliest fuzzy segmen-

tation techniques. Forero-Vargas [24] gives an overview of several techniques that use measures

of fuzziness. Basir et al. [9] have developed an intricate fuzzy integral-based region merging

algorithm for image segmentation.

Thresholding is the simplest method of performing image segmentation. We do not claim

that it can perform at par with some of the more involved methods above, but it is a useful way to

demonstrate how we can apply the brightness membership functions generated by the RL agent.

The idea is straightforward. Given the membership function, µbright(rk), we can separate pixels

based on the crossover point, µbright(rc) = 0.5. Pixels with greylevel less than rc will be assigned

to one class, while those with greylevel greater than or equal to rc will be assigned to the other

class. This is the same as saying that pixels that are bright with membership 0.5 or greater are

classified as bright, and the other pixels are classified as dark. In essence, it is a very simple

defuzzification operation. The thresholding approach can be extended to greater than two classes

by employing local measures of fuzziness [9].

We have chosen to use the Blood image to demonstrate segmentation by thresholding. This

image is often used to test segmentation algorithms because of its unique histogram (Figure

5.6(b)). A binary thresholding technique should be able to correctly separate the cells from the

plasma. We have segmentated the image using the membership functions determined by both
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(d) Membership function determined by RL

Figure 5.2: Results for Lena
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(c) Membership function determined by SA
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Figure 5.3: Results for Dark Lena
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Figure 5.4: Results for Bright Lena
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Figure 5.5: Results for Cameraman
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Figure 5.6: Results for Blood
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SA and Q-learning (Figure 5.6(c) and Figure 5.6(d)). We have also used Otsu’s method [51], a

well-known non-fuzzy technique for comparison. The thresholds selected by each method are

given in Table 5.5. The segmented images are shown in Figure 5.7.

Table 5.5: Thresholds determined for segmentation of Blood image
Method Threshold

Otsu’s method 109
Simulated annealing 155
Q-learning 131

While Otsu’s method still slightly outperforms both fuzzy methods, our reinforcement learning-

based technique clearly is superior to the simulated annealing approach. Even though the mem-

bership function determined by the SA technique has maximum entropy of 1.0, the threshold is

too high and as a result, the segmented image is very noisy.

The combination of these RL-generated membership functions with local thresholding meth-

ods would yield much more accurate thresholding and thus improved results, but that is beyond

the scope of this thesis. Here, we focus on the agent’s ability to generate appropriate MF.

5.1.4 Discussion

While the simulated annealing algorithm is always able to find a membership function with max-

imal entropy of a fuzzy event, these membership functions seem inferior to those produced by

the reinforcement learning algorithm both on a subjective visual level and in the segmentation

task. However, the Q-learning agent is also trained using entropy as reinforcement. This sug-

gests that high entropy levels are a good indicator of an appropriate membership function, but

maximal entropy values (1.0) may reflect strange membership functions that are certainly not

desirable. In Section 4.1.1, we pointed out several other methods of measuring the goodness of a

membership functions. It would be useful to employ such methods in combination with entropy

as a reinforcement for the RL agent, and as a cost function for SA. The two parameter-finding

schemes could then be compared once again.

Since the RL agent is rewarded only on entropy, we may question why it does not find the
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(a) Input image (b) Thresholding by Otsu’s method

(c) Thresholding using MF determined by SA (d) Thresholding using MF determined by RL

Figure 5.7: Segmentation of Blood image
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membership functions with maximum entropy of 1, yet consistently finds MF with entropy near

1. Is this a flaw, or a merit, considering the majority of membership functions of entropy 1 are

so steep? We believe that these results suggest that making decisions sequentially (as with RL)

is a better approach than manipulating a vector of all of the parameters. The RL agent first finds

a reasonable value of parameter a, before it chooses parameter b. It then chooses b based on

its previous experience with this parameter, and so on. This avoids the situation observed in

SA, where three particular parameters may provide a high reward when chosen together, but in

combination with other parameters do not make sense. It is this sequential decision making that

limits the discovery of steep MF with maximum entropy values.

In addition, we concude that both methods were able to stay away from local maxima, which

is a clear advantage of non gradient-based optimization techniques.

5.2 Parameter control for a text-detection algorithm

We now discuss the results of controlling the parameters of Wolf et al.’s algorithm for detecting

text in still images with a reinforcement learning agent. In this case, we manipulate 10 continuous

parameters, and therefore generalization over the state space is necessary. The fuzzy ARTMAP

is the tool used for generalization and DIRECT algorithm supports our choice of continuous

actions.

The following results are divided into two subsections. The first, concerns the ability of the

agent to learn, measured by its received reward over a number of iterations. The second, concerns

the evaluation of the parameters chosen by the agent, not only on the training set of images, but

on a separate set of images used for testing.

5.2.1 Learning

Learning was evaluated using a test set of 72 ground-truthed images containing artificial text,

and 72 images which contained no text. All images were in format CIF (384× 288 pixels). We

experimented using three popular RL algorithms: Q-learning, Sarsa and Sarsa(λ) (described in

Section 2.1.2).
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Figure 5.8 shows the performance of each algorithm. Learning convergence was observed

within 500 iterations by following the reward history. This is a remarkable improvement over

the previous results (Section 5.1.2), where the number of iterations was nearly double for an

optimization of far fewer parameters. This is clearly due to the generalization capabilities of

the fuzzy ARTMAP. Due to the stochastic behaviour of the agent, these results are averaged

over 5 trials, and then smoothed by plotting the mean of the past 100 iterations. We note that

Q-learning provides significantly better performance, and therefore it is used in the following

experiments. The results are surprising, as the incorporation of eligibility traces by Sarsa(λ)

should improve temporal credit assignment. Even if the off-policy method, Q-learning, is more

suited to the problem at hand, Sarsa(λ) should outperform Sarsa. A possible reason for this poor

performance could be due to the nature of the problem. We are dealing with an episodic task,

where the episodes are short and constant-length. The incorporation of eligibility traces could

simply be unnecessary complication. The values of the eligibility traces are stored in the fuzzy

ARTMAP network, so that we may generalize over them as well as Q-values. As generalization

is performed over both inputs and outputs in the fuzzy ARTMAP, the performance degradation

could therefore be implementation-related, where Q-values and eligibility traces have interfered

with eachother.

Reinforcement learning parameters were determined empirically, and in each case, were op-

timal (chosen from a discrete set of values). These are shown in Table 5.6. A trace threshold of

0.01 was also used in the case of Sarsa(λ). Figure 5.9 demonstrates the affect of the step size,

α, on learning performance. We can see that all values in the range of 0.2-0.9 offer comparable

performance, while mid-range values are preferred. Other works [10, 11] have suggested that

variable learning rates may be advantageous in terms of both learning speed and superior final

Q-values.

For the action selection policy, we used the commonly-used ε− greedy policy (Section 2.1.3)

and experimented with both constant values of ε, as well as values that decreased according to a

simulated annealing-like cooling schedule:

εt = ε0

(

εT

ε0

)
t
T

, (5.2)
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Figure 5.8: Comparing the reinforcement learning algorithms, Application 2

where εt is the probability of taking a random action at step t, where t increases from 0 to T .

Here, we refer to total steps, and not iterations of the image-based algorithm (i.e. T represents

the end of learning). The initial and final epsilon values were set to 0.9 and 0.01, respectively.

Figure 5.10 compares the results of using a constant-valued ε policy versus the decreasing policy.

Learning is seen to converge at a slower rate using a decreasing ε but converges on a higher

average reward. Using a constant value of ε = 0.01 is too low, and offers poor performance. The

policy with decreasing ε has been used in the following experiments.

The fuzzy ARTMAP neural network contains several parameters of its own. We have used

the parameter values recommended by Patrascu [56] with the exception of the ARTb vigilance

which was lowered to 0.9. We found that this improved learning performance by increasing the

generalization over the outputs. This resulted in fewer categories created in the fuzzy ARTMAP

to represent the Q-values. The parameters are provided in Table 5.7 and a description of each

can be found in [14]. We note that the ARTa vigilance is not set but controlled dynamically in

order to ensure an output from the network [56].
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Table 5.6: Parameters used in the reinforcement learning algorithms, Application 2
Algorithm α γ λ

Q-learning 0.3 0.99 N/A
Sarsa 0.3 0.99 N/A
Sarsa(λ) 0.3 0.99 0.7

Table 5.7: Parameters used in each fuzzy ARTMAP
Base vigilance ARTb vigilance Learning rate Mismatch

0.95 0.90 0.09 0.00001
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Figure 5.10: Comparison of action selection policies

Table 5.8 provides the optimal parameters recommended by the RL agent after 500 iterations,

using the best learning conditions, as determined empirically. We note that these are a sample set

of parameters, and as in the case of the membership functions, the stochastic nature of RL results

in the possibility of different parameter sets recommended at each trial. These are compared

to Wolf et al.’s recommended parameters in [92]. The reader will notice that the two sets of

parameters differ greatly. Parameters 1-3 and 8-10 have been chosen close to the midpoint of

their ranges. We are certain that these values reflect the starting point of the DIRECT algorithm,

though the stochastic policy of the RL agent has assured that values throughout the domain have

been tried. The parameters will change to reflect the set of images used in training.

Table 5.8: Chosen parameters
Set 1 2 3 4 5 6 7 8 9 10

Wolf 13 87 2 105 50 1.2 0.3 0.1 0.2 0.7
RL 19.78 100.49 3.05 102.90 101.60 4.72 0.68 0.48 0.51 0.48
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5.2.2 Cross validation

We used three-fold cross validation in order to evaluate the system with the learned parameters.

Two thirds of the images have been used for training and one third for testing, the mean value

over the three runs being the final result. The tests have also been repeated three times for each

set, and results averaged. Table 5.9 provides the results of evaluating the parameters chosen by

the agent. We also apply Wolf’s recommended parameters to each test set for comparison.

We present four measures: recall, precision (using only text-containing images), precision

(considering both text and non-text images) and the harmonic mean of the recall and second

precision measure. Note that the recall remains the same as we add non-text images, but the

precision decreases as we have more and more falsely detected text regions. As in an information

retrieval system, this is an effect of the generality of the dataset (see Sect. 4.2.4).

Table 5.9: Parameter performance
Set Rec Pr (Text) Pr (T+NT) HM

Previously recommended parameters
Trial 1 0.7703 0.4043 0.1926 0.3081
Trial 2 0.7970 0.4242 0.1899 0.3067
Trial 3 0.8162 0.4081 0.1980 0.3187
Mean 0.7945 0.4122 0.1935 0.3112

RL determined parameters
Trial 1 0.5081 0.7520 0.6164 0.5570
Trial 2 0.5091 0.9081 0.9081 0.6524
Trial 3 0.3405 0.9692 0.9333 0.4990
Mean 0.4526 0.8764 0.8193 0.5695

While Wolf et al.’s suggested parameters lead to better recall, they reflect the assumption that

all images contain text, and thus lead to many more falsely detected text regions. The parameters

determined by the RL agent balance the consideration of text-containing and non text-containing

images, thus leading to significantly better recall values. The harmonic mean of precision and

recall averaged over all three trials for the RL-determined parameters is 83% greater than the

same measure using the previously recommended parameters (0.5695 as compared to 0.3112).

Each individual trial is also improved using the RL-determined parameters.
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5.2.3 Intermediate reward

Section 4.2.4 describes two types of intermediate reward that could be applied to the system with

the intent of improving performance. We have repeated the experiments above, maintaining the

terminal reward derived from ground truth rectangle matching, while adding the Bhattacharyya

distance and classification error rate first separately and then simutaneously.

Figure 5.11 shows the learning performance in all of the test cases. Performance has been

measured only in terms of achieving the final goal, that is detection of text regions, and not

the intermediate rewards of well-separated text and non-text distributions and good binarization.

This not only reflects the true goal of the agent, but also allows the results to be compared

at the same level. We have not observed much difference in the learning performance, with

the exception of the final average reward values settling slightly higher for the Bhattacharyya

distance case on data sets 1 and 2, and the less-regular shape of the curve for set 1 when using

both the Bhattacharyya distance and classification error rate. Thus we can conclude that the

addition of neither of these particular intermediate rewards has a significant effect on the rate of

learning.

The cross validation experiments have also been repeated and the results are summarized in

Table 5.10. On average, performance (measured by the harmonic mean of recall and precision)

increases when the Bhattacharyya distance is added to the reward signal, while the effect of the

Classification error rate is negligible. These results are consistent with the performance when

both intermediate reward signals are added. In this case, the performance does not differ greatly

from the Bhattacharyya distance-only case. Therefore we conclude that in repeated experiments,

incorporating the Bhattacharyya distance as intermediate reward results in better parameter se-

lection.

5.2.4 Inclusion of image features

Since the RL agent is constantly learning, even without image features, its value function will

reflect the latest images on which it has learned. Thus it would adapt to a general change in input

images or video. Its state space is constructed from the past parameters selected, as well as the

current step of the image-based task; in this case, specifically the current step of the text-detection
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Figure 5.11: Adding intermediate reward signals. Average reward vs. number of iterations.
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Table 5.10: Parameter performance with intermediate reward
Set Rec Pr (Text) Pr (T+NT) HM

No intermediate reward
Trial 1 0.39459 0.71371 0.62309 0.47649
Trial 2 0.46162 0.85524 0.75732 0.54122
Trial 3 0.37928 0.74076 0.64125 0.44734
Mean 0.41183 0.76990 0.67389 0.48835

Bhattacharyya distance
Trial 1 0.54324 0.70130 0.52152 0.53029
Trial 2 0.38081 0.88363 0.75292 0.47803
Trial 3 0.44595 0.75297 0.65121 0.52446
Mean 0.45667 0.77930 0.64188 0.51093

Classification error rate
Trial 1 0.40541 0.84132 0.74584 0.49959
Trial 2 0.41919 0.83409 0.72074 0.50484
Trial 3 0.30721 0.69291 0.66068 0.41199
Mean 0.37727 0.78944 0.70909 0.47214

Both intermediate rewards
Trial 1 0.37658 0.76571 0.69691 0.48149
Trial 2 0.54141 0.88528 0.70947 0.60034
Trial 3 0.37387 0.81545 0.73970 0.47358
Mean 0.43062 0.82215 0.71536 0.51847
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algorithm. Though effective, this behaviour is not ideal, as in many cases, visual information may

change faster than the agent can respond. We have demonstrated that the agent can choose a good

global set of parameters. A logical next step is a system that adapts its behaviour to visual input.

The cross validation experiments have been repeated to determine the effect on the inclusion

of image features in the state space on the quality of parameters selected by the agent. These

experiments differ from the previous experiments in that only a single image, selected randomly

from the set, is used per iteration, as opposed to the averaging of 3 “text” and 3 “non-text”

images per iteration. This is due to the features being image-specific, and therefore the state

space must be constructed with respect to the current image. This permits the use of only one

image per iteration. We have executed the tests using both the features described in Section 4.2.5

and without features. All other variables have remained constant between the two groups.

Table 5.11 provides the 3-fold cross validation results. In all three datasets, the inclusion of

image-based features has a positive effect on the parameter performance, measured by the har-

monic mean of precision and recall. We note that these results are comparable to the previous

tests where we used six images per iteration. This demonstrates that the averaging has a signif-

icant positive effect on the results, as do the features. Unfortunately, the two are incompatible

and cannot be used simultaneously.

Table 5.11: Parameter performance with image features
Set Rec Pr (Text) Pr (T+NT) HM

Not using image features
Trial 1 0.39910 0.79877 0.72147 0.49668
Trial 2 0.52121 0.87594 0.67331 0.52086
Trial 3 0.35315 0.67991 0.53044 0.36025
Mean 0.42449 0.78487 0.64174 0.45926

Using image features
Trial 1 0.51802 0.66632 0.57277 0.54359
Trial 2 0.53636 0.89970 0.72013 0.61252
Trial 3 0.36126 0.62808 0.45952 0.40410
Mean 0.47188 0.73137 0.58414 0.52007
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5.2.5 Discussion

In the learning phase, the agent has been seen to achieve higher reward by choosing better pa-

rameters in consecutive iterations. We observed convergence within 500 iterations, a speed im-

provement over the case without the fuzzy ARTMAP. The results have been smoothed, as we are

continuously using different images as input (at each iteration), and therefore the return at each

successive step can differ greatly depending on the input. So we are not as concerned as with the

change in reward between steps as we are with an average improvement over time.

Upon inspection, the parameters obtained from the approximated value function after training

is complete are very different than the recommended parameters in [92]. However, the proximity

of some of these parameters to the midpoints of the ranges suggest that the DIRECT optimization

method may bias the selection of parameters. This may be a disadvantage of such a method,

which always begins its sampling at the midpoint of parameter space.

In the cross-validation phase, the agent adapts its performance to the inclusion of non-text

images, and succeeds in maintaining a good level of recall on text-images. This demonstrates

that a method which adapts to the type of input images is advantageous, compared to statically

chosen parameters.

Upon consideration of intermediate reward, the two metrics introduced: Bhattacharyya dis-

tance and classification error rate did not have an effect on the learning rate. This is contrary to

what we had expected. The addition of Bhattacharyya distance, however, resulted in the agent

choosing a better parameter set, and thus performance was increased on average by 5%.

The inclusion of image features lead to a performance increase of 13% over identical ex-

periments without features. The nature of the feature extraction process, however, prevented us

from using the technique of using 3 “text” and 3 “non-text” images per iteration, and averaging

to smooth the response. The best results using features were at par with the best results using

averaging without features. A method to combine the benefits the mutually exclusive techniques

would be ideal.

We believe that the system could be significantly improved in one major respect. This would

not be without a considerable amount of programming as well as theoretical considerations. So

far, we have developed a simulated system, that could not have worked without ground truth

images. Though it has learned a good general set of parameters, we would prefer a system that
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can dynamically update its parameters based on input. An online system does not necessarily

mean abandoning the knowledge imparted on the system through explicit training. Reinforce-

ment learning research has recognized that providing examples, or “training runs” can drasti-

cally improve performance [40, 74]. In the early stages of learning, RL agents explore their

world randomly. In the case of situations where only a few states are relevant, the agent may

never experience these, unless an external teacher provides some guidance during training. This

is especially true for reward functions that are mostly uniform, most state-action pairs receiv-

ing approximately the same reward, except for a rare few. We must wait for a long time, until

the agent “stumbles” upon some interesting state, receives the reward, and then that reward is

bootstrapped.

In our specific case, the agent could be trained with ground truth images (an off-line mode),

to a point where it has acquired some knowledge about the parameter space. Then, it could be

placed on-line, adapting the parameters to the current stream of images or video. If the visual

information changes in some way, then the rewards received using the current policy of selecting

parameters would change. The agent would then adapt its behaviour to receive maximum reward.

In this system, there still exists a major question of how to transfer knowledge when the reward

function changes. Clearly, the current reward system involving ground truth images could not

be applied when these images were not available. Thus, the information contained in the value-

function estimation with respect to the ground truth reward function would need to be available

with respect to the new reward function. This is an open research question.

Upon considering the on-line reward function, we have two proposals. We first suggest

that reward or punishment could be derived from the optical character recognition (OCR) phase

following detection. This measure would accurately reflect the text content of the OCR stream.

High reward would be given for text strings (regardless of their content), and low reward (or

punishment) would be given for characters detected that did not form text strings. One challenge

here would be in deriving this reward. Another challenge, possibly greater, would be in rewarding

the agent for detecting no text, when the image itself contained no text. In this case, the OCR

stream would be empty. We could not generate a high reward for such empty OCR streams,

as then the agent would simply learn to choose parameters that caused it to never detect text.

Possibly a balance could be reached between high reward (for strings containing text), less reward
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(for empty strings) and punishment (for strings containing illegible text).

Another idea for on-line reward is derived from the geometrical properties of the detected

rectangles and the pixels within these rectangles. By calculating the reward on the text detection

output rather than the OCR output, we would reward the agent for the true goal of text-detection,

and not OCR, whose performance is dependent on later steps (binarization, and in the case of

video: temporal tracking and multiple frame integration). Such reward could potentially address

the chicken-and-egg problem of detection: that is, we would like to use geometrical features

for detection, but they can only be calculated after the text has been detected [91]. RL would

introduce a feedback loop such that the geometrical features would influence the parameters

controlling detection. But whether these features truly represent the goal of text detection is un-

known. We would hope the agent would not find some way to exploit the geometrical properties

yet not arrive at properly detected text. This would only be seen after experimentation. The chal-

lenge here would be in combining the various metrics derived from the geometrical properties.

Again, we must arrive at a single value of reward.

Constructing a viable reward signal that doesn’t require ground truth is the last step toward

an on-line system. Such a system would clearly distinguish the advantages of a reinforcement

learning framework over other optimization methods.



Chapter 6

Conclusions and Future Work

Efficiently determining the optimal parameters for an algorithm that processes visual information

is a challenging task. Both the dimensionality of the parameters and information to be processed

can limit attempts at solving such a problem. This thesis has proposed a reinforcement learning

framework which uses connectionist systems to generalize over the state and action space to

handle this problem even in the case of a highly-dimensional, continuous parameter space. We

view parameter selection as a decision process over time, where past decisions may affect future

decisions.

Defining state and reward has been the major design obstacle in developing the framework.

Two tools have been introduced to cope with the more general challenges of RL with visual

information. The fuzzy ARTMAP artificial neural network has been demonstrated to be an

effective way to manage large state and action spaces. The DIRECT algorithm was successfully

employed to allow for continuous action spaces while minimizing the computational cost of

finding an action with the maximum value-estimate for a given state. Both of these applied may

be extended beyond the parameter control task to facilitate image-based and non image-based

RL.

The first application considered was the determination of an optimal fuzzy membership func-

tion to represent the “brightness” of a particular image. The entropy of a fuzzy event can be used

to judge the optimality of such a membership function. The problem then becomes one of combi-

natorial optimization. We have shown through several experiments generating MF, and through

104
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the application of image segmentation, that our RL framework is superior to the past efforts with

simulated annealing. Our work found many irregular MF that could possess maximum entropy

of a fuzzy event, but failed to describe the brightness of the respective images. This result was

not demonstrated in the previous work, which initially presented the entropy measure as an eval-

uation metric. This suggests that entropy of a fuzzy event may not be the ideal measurement to

provide reinforcement nor judge the quality of MF.

Next, the utility of the framework has been demonstrated by optimizing a set of ten parame-

ters for an algorithm to detect text in images taken from video sequences. The algorithm has been

proposed to aid in video and image indexation, such that the semantic knowledge contained in

the text can be considered while indexing. The RL agent is able to find a set of global parameters

superior to the previously recommended parameters, based on traditional measures taken from

the field of information retrieval. Its performance has verified through three-fold cross validation.

We have also defined a series of compact image features specific to the text-detection applica-

tion, and demonstrated that introducing image features into the state space allows for parameter

selection on a per-image, rather than per-set basis. These experiments have led us to propose

three techniques for improving parameter control by learning:

• By using several images at each step, and then averaging the results of using a single

chosen set of parameters, we can reduce the sensitivity to any particular image, and thus

learn more with respect to the agent’s action rather than the image itself.

• The Bhattacharyya distance used as an intermediate reward has also lead to a better learn-

ing of parameters. This measure is specific to the text-detection application, but it supports

the idea of carefully chosen intermediate reward as opposed to terminal reward only.

• Image features permit a better choice of parameters, as the agent can choose based on

characteristics of the current image rather than only its past experience. The use of features,

however, is incompatible with the image averaging technique.

From an application standpoint, we will focus our immediate efforts along one major track.

While the use of ground-truthed images has been useful in evaluating our framework, their use

may be questioned when using methods capable of on-line learning. Now that the approach has
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proven successful, our aim is to replace the ground truth-based reward by some reward received

directly from either an optical character recognition (OCR) engine or geometrical properties of

the text rectangles and the text pixels within these rectangles. This will permit on-line parameter

optimization, which further justifies the application of RL.

Other future areas of interest lie in selecting more image features to form state information.

So far, we have limited ourselves to hand-chosen features of a limited number. For example, we

have computed the mean value of all of the maximum response Gabor features over all windows

to reduce dimensionality. We would like to add more information, but as with many classes of

features, it is expected that they will form a space of high dimensionality, that must be reduced

even before we apply the FAM for generalization. One can employ such methods as Principal

Component Analysis [21] to cope with the problem of excessive dimensions. Efforts could be

made on the integration of intelligent techniques for feature selection.

The search for a challenging application on which to test the proposed framework has re-

sulted in the implementation of the text-detection algorithm. This problem has not only required

the bulk of development, it already poses many questions for future research and thus dominates

the immediate horizon. Despite the encouraging results and proposed improvements from and

to this particular application, the main contribution of this thesis is still a reinforcement learning

framework that employs both the fuzzy ARTMAP and DIRECT optimization so that it is extend-

able to a wide class of image-based problems. We have proposed this system in the hopes that it

will be the basis for many more parameter-control applications. In any such future endeavours,

the reward signal and state-defining features will need to be defined as they are task-specific.

Beyond parameter control, we will continue to see applications of agents learning from visual

information by reinforcement. Further developments in theoretical RL as well as related fields,

such as neural network-based generalization methods, will permit stronger results and more di-

verse applications.



Appendix A

Wolf et al.’s Text Detection Algorithm

This appendix provides details on the text detection algorithm for which we have chosen to

control the parameters using reinforcement learning. Details on the function of the parameters

themselves are also provided. The material presented here forms the basis for the task-specific

reward (Section 4.2.4) and image features (Section 4.2.5).

Grey level constraints

As we have decided to focus on horizontal, artificial text, we can assume high contrast of the

characters against the background image. We also can assume that text can be extracted using

only luminance information. Therefore, we convert all frames into grey scale images before

processing. To further justify this decision, compare watching a series of commercials on a

colour television to watching the same series on a black and white television. Text is still visible

on the black and white display, with the exception of very rare circumstances.

The detection method is based on the regular texture of text characters which form horizon-

tally aligned vertical strokes. We apply the horizontal version of the Sobel operator as a gradient

measure of the input, I and then use a slightly modified version of the LeBourgeois algorithm
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[39], which detects the text with a measure of accumulated gradients:

A(x, y) =





bS/2c
∑

i=−bS/2c

(

∂I
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(x + i, y)

)2




1
2

, (A.1)

where S is the size of the accumulation window. The response of this filter is a measure of the

probability of each pixel to be part of text.

Next, we apply a two-threshold version of Otsu’s global thresholding algorithm [51]. We

assume two distributions in the image (“non-text” and “text”), and an optimal threshold is calcu-

lated from the grey value histogram by maximizing a criterion used in discriminant analysis, the

inter-class variance:

topt = arg max
t

(

ω0ω1 (µ1 − µ0)
2) , (A.2)

where ω0 =
∑t

i=1
hi

N
is the normalized mass of the first class, ω1 =

∑L
i=t+1

hi

N
is the normalized

mass of the second class, µ0 and µ1 are the mean grey levels of the respective classes, h is the

grey level histogram, N the number of pixels and L the number of histogram bins, equalling the

number of grey levels.

In order to make the binarization decision more robust, Wolf et al. suggest a second threshold

and change the decision for each pixel as follows:

Ix,y < kl ⇒ Bx,y = 0,

Ix,y > kh ⇒ Bx,y = 255,

Ix,y ≤ kh ⇒ Bx,y =

{

255 if there is a path to a pixel, Iu,v > kh

0 otherwise,

(A.3)

where kh is the optimal threshold calculated by Otsu’s method and kl is calculated as:

kl = µ0 + α (kh − µ1) , (A.4)

where α is a parameter. Note the path is only composed of pixels (x, y) such that Ix,y > kl. The



Wolf et al.’s Text Detection Algorithm 109

output of this step is a binary image distinguishing text pixels from background pixels.

Morphological constraints

Next, we perform the following series of steps composing of morphological operations:

Step 1: Morphological closing (1 iteration).

This first step serves to close small holes in the components as well as connect components

separated by small gaps. The structuring element used is:

B =







1 1 1

1 ©1 1

1 1 1






. (A.5)

Step 2: Removal of small horizontal bridges between connected components.

This step aims to disconnect text and non-text components connected by small horizontal

bridges. To accomplish this, we remove pixels of columns whose local connected component’s

height is under some threshold. First, a matrix, A is built which is the same size as the input

image. Each element of this matrix corresponds to a pixel of the input image and it stores the

local height of the connected component to which it belongs. Then a thresholding operation

removes pixels (x, y) such that Ax,y < t1, where t1 is a fixed threshold parameter.

Step 3: Conditional dilation (16 iterations).

The next two steps serve to correct a shortcoming of the previous step. That is, the possible

separation of noisy text regions into two or more connected components. We wish to connect

any loose characters that are part of words, and thus we want to merge all connected components

which are horizontally aligned and who have similar heights. The structuring element is as

follows:

BC =
[

©1 1
]

, (A.6)

but the implementation is non-standard. First we must perform a connected components analysis

for 4-connected neighbourhoods on the binary input image. We assume that each connected
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component corresponds to a character or a word. Similar to the previous step, we build a matrix,

H with size identical to the input image, and with every element of the matrix corresponding

to one pixel of the input image. This time, however, each element contains the height of the

respective connected component. We then construct a second matrix, P , which holds for each

pixel the y co-ordinate of the respective connected component. Next, we replace each zero value

with its smallest non-zero neighbour to the right of the same row, as follows:

Hx,y =

{

Hx,y if Hx,y 6= 0,

Hv,y : v = min
u>x

(Hu,y > 0) otherwise.
(A.7)

The same “smearing” of zero values is also applied to the P matrix. The two resulting

matrices are then used to perform the conditional dilation. The algorithm traverses the image

line-by-line from left to right. Each non-text pixel (x, y) preceded by a text pixel is set to a

pseudo colour (which is neither 0 nor 255) under certain conditions, based on the relative heights

stored in the H matrix. The general difference function for any two values, a and b, used for the

conditions is defined as follows:

4 (a, b) =
|a− b|

min (a, b)
. (A.8)

If both of the following conditions are met:

• The relative difference of the heights of the connected component which includes a given

pixel and its neighbouring component to the right does not exceed a defined threshold,t2:

4 (Hx−1,y, Hx,y) < t2. (A.9)

• The relative difference of the y positions of these two connected components does not

exceed a defined threshold, t3:

4 (P x−1,y, P x,y) < t3, (A.10)

and the maximum number of iterations has not been exceeded, then the current pixel is set to the
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pseudo colour. Otherwise, it does not change.

Step 4: Conditional erosion (16 iterations).

Again, the structuring element is BC (Eq. A.6). In this step, we place conditions on the grey

levels of the pixels rather than the shape. The image is eroded using the structuring element BC

with the additional condition that only pixels marked with the pseudo colour are eroded. As a

final step, the remaining pixels marked with the pseudo colour are set to text.

Step 5: Horizontal erosion (12 iterations).

This erosion step serves to eliminate components that do not respect the hypothesis that text

has a certain minimum length. The hypothesis, already imposed in the greylevel constraints

(by the accumulating gradients step), distinguishes between small components containing high

contrast vertical strokes and text with a minimum length. The following structuring element is

used:

BH =
[

1 ©1 1
]

. (A.11)

Step 6: Horizontal dilation (6 iterations).

After we have eroded the components, the size of the remaining components is reduced. This

step aims to restore these components to nearly their original size, by dilating with the same

structuring element, BH . To avoid reconnecting text components with non-text components,

only half of the previous number of iterations is used.

Following the dilation operation, a connected components analysis is performed to extract

the remaining components. Their bounding boxes are calculated and grown by 3 pixels to the

left and 3 pixels to the right in order to account for the difference in number of iterations between

horizontal erosion and dilation. These bounding boxes (which we also will call rectangles) are

evaluated in the following series of geometrical constraints.

Geometrical constraints

After the morphological phase, we still expect to be left with a certain number of false rectangles

which represent non-text regions. We impose a series of geometrical constraints in order to
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eliminate as many of these as possible. The first two general constraints are imposed:

width
height

> t4, and (A.12)

number of text pixels of the component
area of the bounding box

> t5, (A.13)

where t4 and t5 are fixed thresholds. Then, some special cases are considered, where the sizes of

the bounding boxes are increased to accommodate the heads and tails of characters, which have

been eliminated during the morphological operations.

The final task is to combine two partly overlapping rectangles if they meet one of the follow-

ing conditions:

Area(Rs)− Area(Rb

⋂

Rs)

Area(Rs)
< t6 , or

Area(Rs)− Area(Rb

⋂

Rs)

Area(Rs)
< t8 ∧

Area(Rs)

Area(Rb)
< t7,

(A.14)

where Rb and Rs are the bigger and smaller rectangle, respectively, and t6,t7, and t8 are fixed

thresholds, t6 < t8. This guarantees that rectangles will be joined either if the non-overlapping

part of the smaller rectangle is below threshold t6, or if it is below some larger threshold t8 but

the difference in size of the two rectangles remains below another threshold, t7.
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