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Abstract 
 
Prostate segmentation is a required step in determining the volume of a prostate, which is 
very important in the diagnosis and the treatment of prostate cancer. In the past, 
radiologists manually segment the two-dimensional cross-sectional ultrasound images. 
Typically, it is necessary for them to outline at least a hundred of cross-sectional images 
in order to get an accurate estimate of the prostate’s volume. This approach is very time-
consuming. To be more efficient in accomplishing this task, an automated procedure has 
to be developed. However, because of the quality of the ultrasound image, it is very 
difficult to develop a computerized method for defining boundary of an object in an 
ultrasound image.  
 
The goal of this thesis is to find an automated segmentation algorithm for detecting the 
boundary of the prostate in ultrasound images. As the first step in this endeavour, a semi-
automatic segmentation method is designed. This method is only semi-automatic because 
it requires the user to enter four initialization points, which are the data required in 
defining the initial contour. The discrete dynamic contour (DDC) algorithm is then used 
to automatically update the contour. The DDC model is made up of a set of connected 
vertices. When provided with an energy field that describes the features of the ultrasound 
image, the model automatically adjusts the vertices of the contour to attain a maximum 
energy. In the proposed algorithm, Mallat’s dyadic wavelet transform is used to 
determine the energy field. Using the dyadic wavelet transform, approximate coefficients 
and detailed coefficients at different scales can be generated. In particular, the two sets of 
detailed coefficients represent the gradient of the smoothed ultrasound image. Since the 
gradient modulus is high at the locations where edge features appear, it is assigned to be 
the energy field used to drive the DDC model. 
 
The ultimate goal of this work is to develop a fully-automatic segmentation algorithm. 
Since only the initialization stage requires human supervision in the proposed  
semi-automatic initialization algorithm, the task of developing a fully-automatic 
segmentation algorithm is reduced to designing a fully-automatic initialization process. 
Such a process is introduced in this thesis.  
 
In this work, the contours defined by the semi-automatic and the fully-automatic 
segmentation algorithm are compared with the boundary outlined by an expert observer. 
Tested using 8 sample images, the mean absolute difference between the  
semi-automatically defined and the manually outlined boundary is less than 2.5 pixels, 
and that between the fully-automatically defined and the manually outlined boundary is 
less than 4 pixels. Automated segmentation tools that achieve this level of accuracy 
would be very useful in assisting radiologists to accomplish the task of segmenting 
prostate boundary much more efficiently. 
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Chapter 1  
 
Introduction 
 
Prostate cancer is the second most common cancer in North American men (skin cancer 
is the most common cancer). It is estimated that in 2002, approximately 189,000 new 
cases and 30,200 prostate cancer-related deaths will occur in the United States [12]. 
Prostate cancer is the second leading cause of cancer death in men, exceeded only by 
lung cancer. It accounts for 29% of all male cancers and 11% of male cancer-related 
deaths [19]. The disease is found in as many as 34% of men in their 50’s and in up to 
70% of men 80 years of age and older [20].  
 
Early prostate cancer often does not cause any symptoms. However, if left untreated, 
metastasis – the spread of the cancerous cells from the prostate to nearby lymph nodes or 
other organs – can occur, at which point treatment may become less effective, whereas 
complete recovery is possible if the disease is detected and treated when it is confined to 
the prostate. Therefore, periodic screening of prostate cancer is important, especially for 
men over 50 years of age. The prostate-specific antigen (PSA) test is one of the most 
popular screening tests. Using the most common type of PSA test currently available in 
the USA, a normal, healthy, 50-year-old male is generally believed to have a PSA of less 
than 4.0 nanograms per milliliter of blood (4.0 ng/ml). However, since prostate cancer is 
not the only reason for a person to have a higher PSA value, the specificity of the PSA 
test is undesirably low. This low specificity results in unnecessary treatment applied on 
subjects who do not carry the disease. To improve the accuracy of the PSA test, doctors 
have developed schemes that incorporate the readings of this test with other information. 
One of such tests is the PSA density (PSAD) test. PSAD is a measure of the 
concentration of PSA in a man's prostate. It measures the PSA value per cubic centimetre 
of the prostate (ng/ml/cc). To obtain the PSAD value, the information about the volume 
of a prostate is essential. 
 
The usefulness of the information on the prostate’s volume is not restricted to the 
establishment of the PSAD value. The volume of a prostate, by itself, is useful in the 
diagnosis of prostate cancer. Also, doctors need the volume of the prostate in assigning 
the appropriate dose in various treatments. Segmenting the prostate boundaries in two-
dimensional cross-sectional ultrasound images is the first step in determining the volume 
of a prostate. This task is usually accomplished manually by the radiologists. Typically, it 
is necessary for them to outline at least a hundred of cross-sectional images in order to 
get an accurate estimate of the volume of a prostate. This approach is very  
time-consuming. To be more efficient in accomplishing this task, an automated 
segmentation procedure has to be developed. This is the goal of this thesis. 
 
Image segmentation is a well-known problem in computer vision, and there are many 
well-established techniques for solving this problem, some of which are discussed in 
Section 3.1. Although these algorithms have achieved some level of success, no
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algorithm, when used alone, is suitable in detecting boundary in an ultrasound image 
because of the noisy and fuzzy nature associated to this type of image. For example,
edge-based techniques are not applicable because of the amount of “false edges” – edges 
that come from different kinds of noise or imaging artifacts – in an ultrasound image. 
Also, the boundaries detected by edge-based techniques are generally not closed, which 
poses a problem when the closed prostate boundary is needed to be found. Although a 
model-based technique can be used to find a closed contour, the boundary determined by 
this method is very sensitive to the initial contour, which is difficult to be accurately 
defined in an ultrasound image. 
 
In the first part of the thesis, three elements are combined in determining the accurate 
boundary: human observation, the discrete dynamic contour (DDC) model and the dyadic 
wavelet transform. In the proposed algorithm, an expert observer is required to enter four 
initialization points, which – in his judgement – lie on the prostate boundary. The number 
of initial point is chosen to be four because the performance of the proposed algorithm is 
planned to be compared fairly with the UWO algorithm, which will be introduced in 
Chapter 3. This segmentation algorithm uses four initialization points, and is considered 
to be the benchmark in the first part of the thesis. An initial contour is then defined by 
interpolating these four points. This contour is served as the initial contour of the DDC 
model. The DDC model is made up of a set of connected vertices. When provided with 
an energy field that describes the features of the ultrasound image, the model 
automatically adjusts the vertices of the contour to attain a maximum energy. The dyadic 
wavelet transform is an edge-based technique. Its role in the algorithm is to compute the 
gradient modulus of an image, which serves as an energy field to drive the DDC model. 
In other words, the DDC model is attracted to strong edges, where the gradient modulus 
is high. It is expected that if the initial contour is not very far from the actual prostate 
boundary, the final contour resulting from the DDC algorithm should approximate the 
boundary accurately. The end product of this phase is the semi-automatic part of 
proposed algorithm described in Section 5.1. 
 
The semi-automatic algorithm reduces the radiologist’s task in segmenting hundreds of 
prostate ultrasound image to picking four initial points on each image. Although the time 
required to finish the task is significantly reduced, it is still cumbersome for him to pick 
at least four hundred points in obtaining the prostate’s volume, and therefore, a fully-
automatic segmentation algorithm would be very attractive to him.  
 
The advantage of a fully-automatic algorithm is not limited to increasing the efficiency of 
the segmentation process. As mentioned, the quality of the ultrasound images is usually 
poor. Therefore, a certain level of expertise is required to outline the prostate boundary in 
an ultrasound image. This level of expertise is not readily available in the health care 
community. If an automatic segmentation tool is available, this level of expertise is not 
crucial in identifying the prostate boundary. Also, if the automatic segmentation tool 
detects the prostate boundary accurately, it can be used to train the non-professional 
health care practitioner, and therefore, alleviate the shortage of the skill required for 
prostate segmentation. 
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The significance of a fully-automatic algorithm motivates us to work on its development, 
which constituents the second phase of this thesis. Since, in the framework of the 
proposed semi-automatic algorithm, only the initialization stage requires human 
supervision, the task of developing a fully-automatic segmentation algorithm is reduced 
to designing a fully-automatic initialization process. The proposed initialization process 
will be described in Section 4.4. 
 
The accuracy of the semi-automatically and the fully-automatically defined boundaries 
are evaluated by the deviations between these boundaries and the professionally outlined 
boundary. The results will be presented in Section 5.3. Tested using 8 randomly chosen 
images, the mean absolute difference between the semi-automatically generated and the 
manually outlined boundary is about 2.5 pixels, and that between the automatically 
generated and the manually outlined boundary is less than 4 pixels. 
 
This thesis is organized as follows: In Chapter 2, the most common techniques used in 
screening of prostate cancer – digital rectal examination (DRE), PSA test and imaging 
tests – are introduced. A brief introduction of two most popular medical imaging 
techniques, ultrasound and MRI, will also be given in this chapter. A survey of existing 
image segmentation methods is given in Chapter 3. Two existing algorithms that serve as 
the building blocks of the proposed algorithm, the dyadic wavelet transform and the DDC 
model, are also described in this chapter. In Chapter 4, we correct an error made by 
Mallat in the dyadic wavelet transform algorithm he proposed [1], introduce the 
possibility of choosing different wavelet functions in performing the dyadic wavelet 
transform, and introduce two building blocks that are essential in the proposed 
segmentation algorithm: an energy field that is essential for the semi-automatic algorithm 
and the fully-automatic initialization algorithm. The complete segmentation algorithm is 
constructed and the boundaries obtained using this algorithm are evaluated in Chapter 5. 
 



 

 4

Chapter 2  
 
Techniques in Diagnosing Prostate Cancer 
 
Digital Rectal Examination (DRE), Prostate-Specific Antigen (PSA) test and Transrectal 
Ultrasound (TRUS) are three most commonly used techniques in screening and 
diagnosing prostate cancer. A brief description of each technique is provided in the 
following: 
 
a) Digital Rectal Examination (DRE) 
 
A digital rectal examination (DRE) is performed by a doctor during a regular office visit. 
In this examination, the doctor inserts a gloved finger into the rectum and feels the 
prostate gland through the rectal wall to check for abnormality.  
 
Rectal examination is inexpensive and relatively non-invasive. Also, it can be taught to 
non-professional health workers. However, its effectiveness depends on the skill and 
experience of the examiner. The effectiveness of DRE in diagnosing prostate cancer is 
questionable. Contradictory results have been obtained by several studies in this area 
(such as [14], [15] and [16]). 
 
b) Prostate-Specific Antigen (PSA) Tests 
 
The PSA test has revolutionized the detection of prostate cancer since its introduction in 
the mid 1980s. As mentioned in Chapter 1, a normal, healthy, 50-year-old male is 
generally believed to have a PSA value of less than 4.0 ng/ml. Over the years, physicians 
have developed schemes that incorporate the readings of this test with other information 
for a more accurate diagnosis of the prostate cancer. Examples of these schemes are 
free/total PSA (PSA II) test, PSA velocity (PSAV) test and PSA density (PSAD) test. 
 
The PSA II or free/total PSA test is a new type of PSA test that can be used to help the 
physician discriminate between patients with relatively low standard PSA levels (say 2.5-
10.0 ng/ml) who are at greater risk of having prostate cancer (and therefore need a 
prostate biopsy), and those patients who are more likely to have benign prostatic 
hyperplasia (BPH) or non-cancerous prostate enlargement. The PSA II test measures the 
amount of PSA that is free in the blood stream, and compares it to the total free and 
bound PSA found in the blood. The lower the ratio of free to total PSA, the higher the 
likelihood that the patient has prostate cancer. 
 
The PSAV test measures the rate of change of an individual’s PSA value. Some 
physicians believe that result of PSAV is related to the prostate cancer development in 
individual patients. PSAV is measured in nanograms per milliliter of blood per year 
(ng/ml/yr).
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PSAD is a measure of the concentration of PSA in a man's prostate. It measures the PSA 
value per cubic centimetre of the prostate (ng/ml/cc). Prostate cancer is likely to be 
present in an individual having high PSAD value. If the PSAD value is greater than  
0.15 ng/ml/cc, biopsy, a procedure in which doctor takes small samples of tissue from the 
prostate in order to make proper diagnosis, is highly recommended [17]. 
 
c)  Transrectal Ultrasound (TRUS) and Other Imaging Tests 
 
Prostatic imaging is possible by ultrasound or magnetic resonance imaging, which will be 
introduced in the next two sections. Out of all the imaging techniques, ultrasound is most 
commonly used. There are two common uses of ultrasound imaging: The first is to guide 
the doctor in the biopsy procedure. The second use is in the establishment of the 
prostate’s volume. 
 

2.1. Ultrasound 
 
Ultrasound imaging has been used in medical diagnostics for more than 50 years. 
Because of its safe and non-invasive nature, ultrasound imaging today takes an 
outstanding position among modern imaging techniques. In this section, a brief 
introduction of the operating principles of ultrasound imaging is provided.1 
 

2.1.1. Ultrasound Physics 
 
Human can hear sound waves or mechanical waves in the frequency range of 20Hz to 
20kHz. Ultrasound waves are high-frequency mechanical waves human cannot hear, that 
is, waves having frequency greater than 20kHz. A wave is generated by a force acting on 
the molecules of a material, called the medium for the wave. Through interaction of 
neighbouring molecules, energy is passed from one location to another. 
 
Waves are classified into two basic types: longitudinal and transverse. For longitudinal 
waves, the particles move along the direction of the wave energy propagation, while for 
transverse waves, the motion of particles is perpendicular to the direction of wave 
propagation. Ultrasound waves are longitudinal. 
 
In diagnostic ultrasound, an ultrasound wave is generated by a transducer and directed 
into the body to interact with tissues. After these interactions, the wave is received by the 
transducer. The characteristic of the received waves depends on the nature of tissues and 
provides important information for diagnosis. Main types of interactions that occur are 
reflection, refraction, scattering and diffraction, interference and absorption. The 
following sections introduce these phenomena. 
 

                                                 
1 This introduction is based on [11].  
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A) Reflection and Acoustic Impedance 

 
The most important phenomenon in ultrasound imaging is reflection. When a sound beam 
is directed to an interface, it will be partially reflected back towards the sound source. 
Based on the amount of energy reflected, the nature of the tissue inside the body can be 
characterized. Acoustic impedance is a measure of the resistance to sound passing 
through the medium. It is defined by 
 

vZ ρ=  
(2.1)  

 
where v denotes the velocity of sound in the medium, measured in m/s, ρ denotes the 
density of the medium, measured in kg/m3, and Z denotes the acoustic impedance, 
measured in sm/kg ⋅2 . 
 
The fraction of energy being reflected at the interface of two media depends on the 
difference between acoustic impedances of the two media. One is able to characterize the 
tissue structure with an ultrasonic beam because of the difference in acoustic impedances 
at a biological interface (see Figure 1). The fraction of sound energy reflected at an 
interface, or the reflection coefficient of an interface is expressed as 
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(2.2)  
 
where 1Z  denotes the acoustic impedance of medium #1, and 2Z  denotes the acoustic 
impedance of medium #2. 
 

B) Refraction 

 
If the ultrasound beam strikes an interface between two media at an angle of 90o, a 
fraction of the beam is reflected back to the first medium and the rest is transmitted into 
the second medium at the same angle. If, however, the beam strikes the interface at an 
angle other than 90o, the transmitted beam is refracted from the straight-line path. 
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Figure 1   Reflection caused by a sound wave striking an interface at normal incidence 
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Figure 2   Refraction causes the interface to be displayed at the wrong position (Adapted from [11]) 

 
The change in the angle of transmission is related to the velocities of sound in the two 
media of an interface. Refraction of sound waves obeys Snell’s law, which is given by 
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(2.3)  
 
where iφ  is the incident angle, tφ  is the transmitted angle, iv  is the velocity of sound in 
the incident medium, and tv  is the velocity of sound in the transmitted medium. 
 
Refraction causes some artifacts in diagnostic images. For example, in Figure 2, an object 
appears as if it were at the centre of the beam, whereas it is located elsewhere. 
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C) Scattering and Diffraction 

 
Scattering occurs when the interfaces are smaller than the diameter of the ultrasound 
beam (see Figure 3). Since this phenomenon has strong frequency dependence, it makes 
ultrasound useful in characterizing tissue. When the frequency of the ultrasound beam 
changes, the same material may scatter the sound beam differently. Therefore, this effect 
gives important information for diagnosis. 
 
As the ultrasound beam moves further from the source, it spreads out. This phenomenon 
is called diffraction (see Figure 4(a)). This divergence increases as the diameter of the 
sound source decreases. Diffraction also occurs after the beam passes through a small 
aperture on the order of 1 wavelength. This effect is shown in Figure 4(b).  
 

D) Interference 

 
Interference is caused by superposition or algebraic summation of waves. For two waves 
of the same frequency, constructive interference occurs if they are in phase, which means 
that the maximum and minimum of two waves occur at the same time. The amplitude of 
the resulting wave is magnified in constructive interference (see Figure 5(a)). Complete 
destructive interference occurs when two waves of same frequency are out of phase (i.e., 
maximum corresponds to minimum and vice versa). The resulting wave has zero 
amplitude (see Figure 5(b)). 
 

 

Sound
Source

Incident Wave

Scattered Wave

Interface

 
Figure 3   The diameter of the sound beam is larger than the interface. The scattered wave emits in 
all directions. (Adapted from [11]) 
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(a)

Sound
Source

Sound
Source
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(b)  
Figure 4   Principles of Diffraction. (a) Divergence of the beam from the sound source; (b) Diffraction 
from small aperture (Adapted from [11]) 
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(a) (b)  
Figure 5   (a) Constructive Interference; (b) Destructive Interference. Wave C is the resultant of 
Wave A and B. 

 



CHAPTER 2   TECHNIQUES IN DIAGNOSING PROSTATE CANCER 
 

 

10

E) Absorption 

 
Absorption is the process in which sound energy is converted to another form of energy, 
primarily heat.  
 
The rate of absorption is related to the viscosity of the medium, the relaxation time of the 
medium and the frequency of the ultrasonic beam. 
 
The viscosity describes the resistance of relative motion between the molecules in a 
medium. If the viscosity of a medium is high, more energy is required to overcome the 
frictional forces between molecules, thus more energy is dissipated as heat. 
 
The relaxation time is the average time required for a molecule to return to its original 
position after a disturbance. If the relaxation time of a media is short, molecules disturbed 
by a wavefront would have returned to the original position when the next wavefront 
arrives; otherwise, the molecules may be moving back towards its original position when 
the next wavefront comes. In this case, extra energy is required to reverse the direction of 
the molecule and more energy is dissipated. 
 
In the same medium, the rate of absorption for a high-frequency wave is higher compared 
to that for a low-frequency wave. If the frequency of the wave increases, the molecule 
needs to move more often, and therefore, heat energy is dissipated in a higher rate. Also, 
the higher the frequency of the wave, the shorter interval of time is available for the 
molecule to return to its original position. More energy is required to redirect the 
molecules, and therefore, the rate of energy absorption is higher. 
 
It is empirically observed that the absorption of the ultrasonic wave follows an 
exponential relationship: 
 

( )xAA o α−= exp  
(2.4)  

 
where A is the amplitude of the wave at a distance x, Ao is the original amplitude of the 
wave, α is the amplitude absorption coefficient, and x is the distance travelled by the 
wave. 
 

2.1.2. Ultrasound Imaging Modes 
 
Before discussing different modes of ultrasound imaging, an important mechanism called 
echo ranging is described. 
 
Echo ranging relates the depth of a biological interface with the time at which the 
corresponding reflected signal is received. An ultrasonic wave is transmitted through the 
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body tissue. Because of the mismatch of the acoustic impedances at a biological 
interface, the ultrasound beam is partially reflected and received by the transducer. The 
reflections at different biological interfaces are received at a certain time, t, after the 
ultrasonic wave is transmitted. Knowing the velocity of sound wave propagation in the 
biological medium, v, the depth of a biological interface, d, can be calculated using the 
following formula: 
 

vtd =  
(2.5)  

 
Echo ranging is the fundamental operating principle of each of the imaging modes that 
will be discussed, except the transmission mode. 
 

A) A-Mode 

 
A-Mode scanning refers to amplitude-mode scanning. The operation of this scanning 
mode is primarily based on echo ranging. The term amplitude refers to the energy of the 
echo received by the transducer. A-mode scanning gives a portrait of the biological 
tissues in one dimension. In a typical A-mode scan, the magnitude of the reflected 
ultrasonic energy is represented in the Y axis and the depth is represented in X axis (see 
Figure 6(c)). 
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Figure 6   Comparison between A-Mode and B-Mode scan.  (a) The transducer emits an ultrasound 
wave in a given direction; (b) B-Mode display of the interface detected; (c) A-Mode display of the 
interface detected (Adapted from [11]) 
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Figure 7   The Transmission Mode scanning system (Adapted from [11]) 

 

B) B-Mode 

 
B-Mode scan can be described as the bird’s-eye view of the A-Mode scan, but the 
amplitude of the reflected signal in an A-Mode plot is represented by the brightness of a 
dot in a B-Mode scan (see Figure 6(b)). 
 
One can perform B-Mode scanning in many different directions to obtain a two-
dimensional portrait of the internal structure of the body, which can then be stored as a 
grey-scale image. To determine the exact location of different biological interfaces 
detected, it is necessary to keep track of the accurate position where the ultrasonic wave 
emits. A computerized arm is used for this purpose. 
 

C) Real-Time Mode 

 
Real-time scanning can be described as continuous time B-Mode scanning. In modern 
real-time scanner, up to 120 stationary B-Mode scans can be produced per second to give 
an impression of motion. Real-time scanning is widely used in obstetrics to assess the 
health and development of the fetus. 
 

D) Transmission Mode 

 
Up to this point, all ultrasonic scanning systems described rely on the reflected echo to 
detect the biological structure of the body. In transmission mode scanning, the receiver is 
180o apart from the transmitter of the ultrasonic wave (see Figure 7). Thus, this scanning 
method captures information based on the transmission, rather than the reflection, of the 
ultrasound wave through the patient’s body. Transmission Mode scanning is used 
extensively in breast scanning. The measurements of the attenuation and the velocity of 
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the sound waves are easily obtained using this imaging mode. These data provides vital 
information in diagnosing tumour. 
 

2.1.3. Instrumentation of A-Mode Scanner 
 
In our project, the prostate images are obtained using a B-Mode scanner. Therefore, we 
are primarily focus on the operating principles of a B-Mode scanner. However, since the 
B-Mode scanner is basically an enhanced version of the A-Mode scanner, the discussion 
should start from introducing the operating principles of a basic A-Mode scanner.  
Figure 8 illustrates the block diagram of an A-Mode scanner. 
 
The A-Mode scanner consists of four units: 
 
1) Transducer – This unit contains a transmitter and a receiver. The transducer is 

responsible for the generation of the ultrasonic signal and the reception of echoes 
reflected from different biological interfaces. The operating principles of the 
transducer and some design consideration on the ultrasonic signal transmitted are 
presented in part A, B and C of this section. 

 
2) Electronic processing unit – This unit enhances the received signal for displaying 

purposes. The mechanism for processing signals will be introduced in part D of this 
section. 

 
3) Display – The enhanced signal are displayed using a cathode ray tube. A brief 

introduction on how the display unit works is provided in part E of this section. 
 
4) Master Synchronizer – The master synchronizer starts the scanning process by 

sending a pulse signal to the transducer, the electronic processing unit and the display 
unit at the same time. Upon reception of the pulse signal, the transmitter emits an 
ultrasonic signal into the body. The same pulse signal is send to the receiver because 
the elapsed time from the emission of the ultrasonic signal by the transmitter to the 
reception of the ultrasonic echo must be known. The electronic processor and the 
display unit also need to know the point at which the ultrasonic signal is emitted in 
order for them to display and process the received echo correctly. 
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Figure 8   Block Diagram of an A-Mode scanner (Adapted from [11]) 

 

A) Transducer Construction 

 
The basic operating principle of the transducer is a phenomenon called the piezoelectric 
effect, discovered by Pierre and Marie Curie in 1880. This effect is found in crystalline 
structures that consist of electric dipoles (i.e., molecules that have net positive charge on 
one end and negative charge on the opposite end).  
 
In a normal crystalline lattice structure, the electric dipoles are arranged randomly (see 
Figure 9(a)). When heated above a temperature called Curie temperature, the bipolar 
molecules are free to move. If one applies an electric field (by placing a pair of 
oppositely charged plates) across the crystal, the bipolar molecule will be aligned towards 
a direction that is close to the direction of the electric field (see Figure 9(b)). This 
molecular structure is maintained after the crystal is cooled below the Curie temperature. 
At this point, the molecular structure unique to the piezoelectric material is constructed. 
 
Then, a sinosoidally alternating electric field perpendicular to that used to form the 
piezoelectric property is applied to the crystal (see Figure 9(c)). As the bipolar molecules 
flip back and forth to align with the sinosoidally alternating electric field, the crystal are 
contracted and expanded periodically (see Figure 10). This periodical motion creates 
mechanical vibrations of air molecules and therefore produces ultrasonic waves. This 
process converts electrical energy to mechanical energy and is called the converse 
piezoelectric effect (or the electric-pressure effect). 
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On the other hand, the piezoelectric effect (or pressure-electric effect) enables the 
receiver to detect the ultrasonic echo. The echo reflecting from biological interfaces 
creates a mechanical vibration of the crystal and electric signals are generated. 
 
The structure of a simple transducer is shown in Figure 11. It basically consists of three 
major components: the backing material, the crystal and the matching layer. The uses of 
the crystal are explained in detail previously. In the following, we focus on understanding 
the functions of the backing material and the matching layer. 
 
In ultrasound imaging, the pulse is sent out in a short time interval. In the remaining time 
of the cycle, the transducer receives the ultrasonic echo without sending out any signal. 
The backing material serves two purposes. Firstly, it is used to dampen the transmitted 
pulse so that it dies away quickly. Secondly, it absorbs all the energy produced by the 
crystal in the “off” time of the transmitter. For ideal absorption, the backing material 
should be chosen such that it has the same acoustic impedance as the crystal. 
 
The purpose of the matching layer is to match the acoustic impedance of the crystal and 
that of the tissue so that the energy reflected at the crystal-tissue interface is minimized, 
or in other words, most of the energy is transferred into the body. 
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(a) (b) (c)  
Figure 9   Construction of the piezoelectric material: (a) Electric dipoles are arranged randomly in 
normal crystalline structure; (b) Electric dipoles are aligned by an electric field; (c) An electric field 
perpendicular to that used for alignment is used to generate waves. (Adapted from [11]) 
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Figure 10   Generation of ultrasonic waves: (a) The normal thickness of the crystal when no electric 
field is applied; (b) The crystal is expanded if an electric field is present. (Adapted from [11]) 
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Figure 11  A simple transducer (Adapted from [11]) 
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(a) (b)  
Figure 12   (a) Two objects cannot be resolved by a long ultrasound pulse; (b) A shorter ultrasound 
pulse resolves two objects. (Adapted from [11]) 
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B) Factors Affecting the Sensitivity of an Ultrasonic System 

 
The overall performance of an ultrasonic system is related to several factors: the 
electromechanical coupling coefficient, k, the transmission coefficient, d, the reception 
coefficient, g, and the mechanical coefficient, Q. These quantities are discussed below. 
 
The transmission coefficient, d, is defined as the fraction of electrical energy that is 
converted to ultrasonic energy. The reception coefficient, g, specifies the fraction of 
ultrasonic energy that is converted to electrical energy. The electromechanical coupling 
coefficient equals the product of the transmission coefficient and the reception 
coefficient. The conversion efficiency, described by the electromechanical coupling 
coefficient, is the most important factor in determining the sensitivity of an ultrasonic 
system. 
 
The axial resolution of an ultrasound system is also very important in determining the 
quality of an ultrasound image. The axial resolution is defined as the minimum distance 
between two objects that can be identified as distinct. The axial resolution is closely 
related to the length of the emitted ultrasound pulse (see Figure 12). The length of the 
pulse, in turn, depends on the mechanical coefficient, Q, of the crystal, which is defined 
as the energy stored per oscillating cycle divided by the energy lost per cycle. A low-Q 
crystal emits a short ultrasonic pulse, and therefore, should be chosen in diagnostic 
ultrasound applications for improving the axial resolution. 
 

C) Reception and Amplification 

 
As explained earlier, the ultrasonic waves reflected by biological interfaces exert a force 
on the crystal. The crystal then converts the mechanical energy to electrical energy. 
However, the electrical signals produced are typically in the microvolts or millivolts 
range. To be properly displayed on the screen, the signals are amplified to about 10 volts. 
 
As described in Section 2.1.1, Part E, the ultrasonic energy is exponentially decreasing 
due to absorption when it penetrates the tissue. Therefore, echoes produced at equally 
reflective interfaces have different amplitude depending on the distances between the 
interfaces and the receiver. It is not convenient for the viewer to take the depth of 
interfaces in consideration when observing the displayed signal. To solve this problem, a 
time-gain compensation (TGC) control is used to amplify the signal according to the time 
it is received, or equivalently, the depth at which the signal is reflected. The TGC control 
has a reverse exponential profile (see Figure 13). 
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D) Electronic Processing 

 
The electrical signal induced by the received acoustic echo is in the radio frequency 
range. For an observer, the interpretation of such a high frequency signal is very 
confusing. Therefore, the signal is processed before it is displayed. 
 
This first step in this procedure is the rectification of the received signal. Rectification 
refers to an operation in which the negative values of the signal are converted to their 
absolute values. Then an envelope-detection is performed on the rectified signal. Usually 
the area under the resulting signal is computed and recorded because it is related to the 
intensity of the received echo. In the display, a spike is used to represent this area. In 
addition, a rejection control can be used to eliminate the spike that has an amplitude 
lower than a certain threshold (see Figure 14). 
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Figure 13   Time-gain compensation (TGC) control profile 
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Figure 14   Procedures for processing the electrical signal 
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E) Display 

 
The cathode ray tube is used for displaying purpose (see Figure 15). It is an evacuated 
glass tube with a large potential difference from the cathode to the screen. This potential 
difference accelerates the electrons emitted from the cathode. The screen is coated with a 
layer of phosphorescent material that emits light when hit by electrons. 
 
There are two sets of plates that control the position at which an electron hits the screen: 
The X-deflection plate applies electric field in the horizontal direction and the Y-
deflection plate applies electric field in the vertical direction. The X-deflection plate 
performs a sweep across the screen at a rate equals to the velocity of the ultrasound beam 
in the medium, while the Y-deflection plate is controlled by the signals resulting from the 
electronic processing procedure described in Part D. As a result, a graph of the intensity 
of the reflected echo versus the depth at which the ultrasonic wave is reflected is 
displayed on the screen. 
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Figure 15   Cathode ray tube (Adapted from [11]) 

 



CHAPTER 2   TECHNIQUES IN DIAGNOSING PROSTATE CANCER 
 

 

20

Start
PulseMaster

Synchronizer

Display

Electronic
Processing

Subject

Transmitted
Signal

Reflected
Signal

Transducer 
Position
Sensor

Position
Generator
for Signal 
Location

Signal received
Transducer
Position

Transducer

 
Figure 16   Block diagram of a B-Mode scanner (Adapted from [11]) 

 

2.1.4. Instrumentation of B-Mode 
 
A B-Mode scan is very similar to an A-Mode scan, except the amplitude in an A-Mode 
plot is represented by the brightness of a dot in a B-Mode scan. Figure 16 shows the 
block diagram of a B-Mode scanner. The operating principles of a B-Mode scanner are 
basically the same as that of an A-Mode scanner. However, since B-Mode scanning is 
performed in different directions in order to obtain a two-dimensional portrait, one needs 
to determine the position of the transducer very accurately so that the reflected ultrasonic 
beam is correctly mapped in a two-dimensional image.  
 
For this reason, the transducer is attached to one end of a special scanning arm. This 
scanning arm is connected to a position sensor, which accurately determines the 
horizontal and the vertical position of the transducer as well as the angle at which the 
ultrasonic beam is directed. This position information is passed to the position generator, 
which computes the location of the ultrasonic path. The electronically processed signal is 
then plotted along this path on the two-dimensional image. 
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2.1.5. Artifacts in Ultrasound Images 
 
After understanding the basic operating principles of a B-Mode scanner, we are finally in 
a position to discuss several artifacts appeared in ultrasound images. By artifacts, we 
refer to physical phenomena that lead to an incorrect representation of the biological 
structures. Note that artifacts do not necessarily have a negative impact on medical 
diagnosis. Actually, experienced radiologists may be able to derive important information 
from the artifacts. In the following, the most common artifacts are discussed: 
 
1) Enhancement – More energy is able to pass through cystic (liquid-like) structure 

compared to surrounding tissues that have higher attenuation. Since the received echo 
is processed by the TGC control, which compensates the energy loss by absorption, 
the structure behind the cystic structure appears to be brighter than the surrounding 
structure (see Figure 17(a)). This phenomenon, though classified as an artifact, makes 
it easier for us to identify the prostate boundary. 

 
2) Shadowing – Since most of the acoustic energy is attenuated or reflected by a solid 

structure, a shadow appears behind the solid structure (see Figure 17(b)). This effect 
is helpful for radiologist to identify gallstone or renal stone. 

 
3) Boundary shadow – Due to the refraction of the ultrasonic beam near the edge, a 

shadow appears behind the edge of a cystic structure (see Figure 17(c)). 
 
4) Reverberation – This effect occurs when the sound is bounced back and forth by 

multiple interfaces. When the ultrasonic beam is reflected by an interface and travels 
towards the transducer, a fraction of the beam is reflected by another interface into 
the body. This beam is consequently reflected by the original interface a second time 
and travels towards the transducer. As a result, a single interface is represented by 
multiple traces on the image (see Figure 18). 

 
5) Propagation speed error – The ultrasonic system assumes the velocity of sound is 

constant in all biological tissues. Since the depth of an interface is computed by the 
simple formula that multiplies the time at which the reflected echo is received and the 
velocity of ultrasound in the medium, the depth of interfaces will be incorrectly 
displayed if the velocity of ultrasound in a certain medium is different from the 
assumed constant (see Figure 19). 
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Figure 17   Artifacts in ultrasound images: (a) Enhancement; (b) Shadowing; (c) Boundary Shadow 
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Figure 18  (a) A simple model demonstrating the reverberation artifact. The sequence of reflections 
starts from the left. The intensities of the reflections are represented by the darkness of the arrows; 
(b) the corresponding ultrasound image 
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Figure 19   Ultrasound travels at a velocity higher than the assumed velocity, normally set as 
1540m/s. (a) The actual depth of the interface; (b) the depth of the interface shown in the ultrasound 
image 
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2.2. Magnetic Resonance Imaging (MRI) 
 
This section gives a brief introduction on the operating principles and the instruments 
used in MRI2. 
 

2.2.1. MRI Physics 
 
The human body is primarily composed of water and fat. Both water and fat have 
hydrogen atoms. Hydrogen atom possesses a property called spin, which can be thought 
of as a small magnetic field that can generate magnetic resonance signal. In this section, 
we will look at the microscopic and macroscopic properties of particles having net spin. 
 

A) Microscopic Properties of Particles Having Spin 

 
Under the influence of an external magnetic field of strength B, a particle with net spin 
can absorb a photon of frequency υ, which is expressed as 
 

Bγ=υ  
(2.6)  

 
where γ is the gyromagnetic ratio. For the hydrogen atom, γ = 42.58 MHz/T. υ is called 
the Larmor frequency of the particle. 
 
To understand why a particle with net spin only absorbs a photon with Larmor frequency, 
we consider the particle to be a small magnet with north pole and south pole. When 
placed in an external magnetic field, the particle aligns itself with the field. However, the 
particle can attain a low-energy level, in which its north pole is attracted to the south pole 
of the external magnetic field and vice versa (see Figure 20(a)), or it can have a high-
energy configuration, when it is aligned in the way shown in Figure 20(b). The particle 
can undergo a transition from the low-energy level to the high-energy level through the 
absorption of a photon. The photon that causes the transition must have an energy 
matching the energy difference between the two energy levels. Since the energy of a 
proton is directly proportional to its frequency, the particle with net spin only absorbs a 
photon with Larmor frequency.  
 

                                                 
2 This section is based on [18]. 
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Figure 20   (a) A particle in the low-energy level; (b) A particle in the high-energy level 

 

B) Macroscopic Properties of Particles Having Spin 

 
Since it is too complicated to describe the behaviour of spins in a microscopic level, 
physicists define a group of spins under the influence of the same external field as a spin 
packet. The magnetic field of the spin packet is represented by a magnetization vector. 
The vector sum of magnetization vectors of all spin packets is called the net 
magnetization. From here on, effects are described in terms of the net magnetization. 
 
In the following discussion, we adopt a coordinate system in which the external magnetic 
field, Bo, is directed along the z-axis.  
 
At equilibrium, the net magnetization vector aligns to the direction of the external 
magnetic field (see Figure 21(a)). However, one can apply energy of a specific frequency 
to change the net magnetization vector. Before progressing further, we will decompose 
the vector into its longitudinal component, which is parallel to the z-axis, and its 
transverse component, which lies on the x-y plane (see Figure 21(b)). The dynamics of 
these two components of the magnetization vector are considered separately. 
 
After the longitudinal magnetization vector is changed from its equilibrium value, it 
returns to the equilibrium value according to an exponential profile: 
 

( )( ) 10)( Tt
ozoz eMMMtM −−+=  

(2.7)  
 
where oM  is the magnitude of the magnetization vector at equilibrium and 1T  is the time 
constant that depends on the temperature and the viscosity of the material. 
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On the other hand, the transverse component of the magnetization vector rotates about z-
axis at the Larmor frequency of the spin packets. Since, within a material, there are a lot 
of spin packets that experience a slightly different magnetic field, they are rotating in a 
different Larmor frequency. Therefore, there exist phase differences between the 
magnetization vectors of spin packets. As a result, destructive interference occurs and the 
magnitude of the net magnetization vector decreases exponentially: 
 

( ) ( ) 20 Tt
XYXY eMtM −=  

(2.8)  
 
where ( )tM XY  is the magnitude of the net magnetization vector in the transverse 
direction and 2T  is the time constant that is different from 1T . 
 
We mentioned that it is possible to change the net magnetization vector from its 
equilibrium value. Now, we shall find out how it could be changed. 
 
Since the transverse magnetization vector is rotating at the Larmor frequency, it is 
convenient for us to adopt a rotating frame of reference x’-y’-z that rotates about z-axis at 
Larmor frequency (see Figure 22). Suppose a coil with an alternating current is placed 
around x-axis. If the frequency of the alternating current is equal to the Larmor 
frequency, the coil provides a constant magnetic field along the x’-axis. Since the 
frequency of the alternating current is normally in the radio frequency or RF range, this 
coil is called a RF coil. In MRI, the magnetic field produced by the RF coil is called the 
B1 magnetic field. Under the influence of the B1 magnetic field, the net magnetization 
vector rotates about the direction of the B1 magnetic field by an angle of θ, which can be 
calculated by the following formula: 
 

12 Bτπγ=θ  
(2.9)  

 
where τ is the length of time the B1 field is on. Figure 23 shows an example where the net 
magnetization vector is rotated by 90o. This principle is used to choose the slice for which 
a magnetic resonance image is taken, as we will see in next section. 
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Figure 21   (a) The net magnetization vector at equilibrium, Mo; (b) the net magnetization vector is 
changed. This vector can be decomposed into its longitudinal and transverse components. 
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Figure 22   The rotating frame of reference compared to the stationary coordinate frame 
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Figure 23   The B1 field rotates the net magnetization vector by 90o. (Adapted from [18]) 
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2.2.2. Imaging Principles 
 
This section describes how a MRI image is obtained. Since MRI is a two-dimensional 
imaging technique, one needs to choose a two-dimensional slice for which the image is 
taken. Section A introduces the procedure for selecting a slice. 
 

A) Slice Selection 
 
Suppose a part of the body is modelled as a cube of small magnetization vectors (see 
Figure 24(a)). To take an image for a particular slice, the first step is to rotate the 
magnetization vector of that slice of 90o (see Figure 24(b)). The first step taken to achieve 
this is to apply a constant magnetic field Bo and a magnetic field gradient Gz to produce a 
magnetic field profile that is linearly increasing along the z-direction, i.e., 
 

( ) zoz zGBzB +=  
(2.10)  

 
Suppose the slice chosen is experiencing a magnetic field of Bs, and therefore, the 
magnetization vectors within the slice have a Larmor frequency equal to ss Bf γ= . To 
rotate the magnetization vectors of the slice by 90o, it is reasonable to think that a pulse 
vector B1 with frequency fs and duration of τ given by (2.9) should be applied (see Figure 
25(a)). Before applying this pulse vector, we should analyse the frequency content of this 
pulse. By using the convolution theorem, it can be shown that the Fourier transform of 
the pulse B1 is a sinc function, shown in Figure 25(b). The amplitude of the sinc function 
is highest at the frequency fs and the magnetization vectors of the chosen slice are rotated 
by 90o. However, since the sinc function has a non-zero amplitude at the neighbourhood 
of fs, the magnetization vectors near the chosen slice will also rotate, but in an angle less 
than 90o. Therefore, a sinc-shaped angle profile results, which is not really a slice.  
 
In order to get the ideal profile shown in Figure 24(b), the spectrum of the pulse B1 
should have a square distribution centring at the frequency fs. However, this is not 
possible because it would require the pulse to be an infinite-duration, modulated sinc 
signal. A solution would be to use the truncated, fs-modulated sinc function shown in 
Figure 26(a). The Fourier transform of this function is shown in Figure 26(b). This 
spectrum demonstrates the windowing effect in signal processing, which is a major 
problem in designing a bandpass filter. It can be observed that the spectrum demonstrates 
a gradual transition, rather than the ideal sharp switch, at the edge. The second problem is 
that the spectrum has a non-zero value out of the passband, the frequency band 
corresponds to the resonance frequency of the magnetization vectors within the slice, and 
it causes the magnetization vectors out of the slice to be slightly rotated. Although an 
ideal slice profile is not possible, the profile generated using this method is much better 
than that shown in Figure 25(c). In MRI, the slice is normally selected using the B1 pulse 
described in this paragraph. 
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Figure 24   (a) A cube of small net magnetization vectors; (b) the net magnetization vectors of a 
certain slice are rotated by θ = 90o. 

 

frequency = fs

sfπ2

Bo

Gx

(a) (b) (c)

B1

θ

 
Figure 25   (a) The pulse vector B1 with frequency fs and duration of τ is applied; (b) the one-sided 
Fourier transform of the pulse shown in (a); the resulting magnetization vectors profile (Adapted 
from [18]) 

frequency = fs

sfπ2

Bo

Gx

(a) (b) (c)

B1

θ

 
Figure 26   (a) The pulse vector B1 is enveloped by a sinc function; (b) the one-sided Fourier 
transform of the pulse shown in (a); the resulting magnetization vectors profile (Adapted from [18]) 
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B) Magnetic Field Gradient  

 
After choosing the appropriate slice on which we wish to take an image, we should 
consider how the imaging is performed. 
 
First, the magnetic field gradient in z direction, which was used for slicing, is removed. It 
is clear that all the small magnetization vectors within the chosen slice are rotating in the 
same frequency, since they are experiencing the same magnetic field, namely Bo. One 
would expect that if a one-dimensional linear magnetic field gradient is applied along the 
x-y plane, the frequency of the small magnetization vectors vary linearly along the 
direction where the gradient is applied. To demonstrate this idea, suppose a linear 
gradient Gx is applied along x-axis, as shown in Figure 27. The external magnetic field 
applied to different regions is different according their positions: 
 

( ) xoz xGBxB +=  
(2.11)  

 
The resonance frequency of spin packets along x-axis can therefore be expressed as 
 

( ) xoxo xGxGB γ+υ=+γ=υ  
(2.12)  

 
One can detect the magnetic resonance spectrum along the direction along which the 
gradient is applied. This spectrum can be used to construct a one-dimensional image of 
the slice in question because the amplitude of the signal at the frequency υ is proportional 

to the number of spins at the position 
x

o

G
x

γ
υ−υ

= . 

 
Using this method, one-dimensional images along several angles are taken. One can use a 
technique called back projection imaging to map this set of one-dimensional images into 
a two-dimensional image. Figure 28 shows an example of this procedure taken from [18]. 
 
 

Gx

B (0)=Bz o

 
Figure 27   A linear gradient of Bo is applied along x-axis. 
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Figure 28   The back projection technique. In the example, it is assumed that there are only 3 spin 
packets, indicated by the dots. (Adapted From [18]) 

 

2.2.3. MRI Instrumentation 
 
After introducing the basic operating principles of the MRI technique, we are in a 
position to understand the actual machine that performs MRI. Figure 29 shows the 
schematic of the MRI system. The function of each component is described below: 
 
1) Magnet – The magnet produces a homogeneous Bo field necessary for the imaging 

procedure. Most of the magnets used in this application are superconducting magnets. 
These magnets are made up of superconducting wires, which have zero resistance 
when immersed in liquid helium having a temperature close to absolute zero. 

 
2) Gradient Coils – The gradient coil produces a linear magnetic field gradient of Bo in 

X, Y and Z directions. The uses of these linear magnetic field gradients are described 
in Section 2.2.2. 

 
3) RF Coil – The RF coil produces the B1 field necessary for the slice selection 

procedure described in Section 2.2.2, part A. It is also responsible for receiving the 
magnetic resonance signals. 

 
4) Shield – The scan room is surrounded by an RF shield and a magnetic shield. These 

shields prevent the RF signal and the magnetic signal from propagating out of the 
room. 
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Figure 29   Schematic of the MRI system (Adapted from [18]) 

 
5) Patient Table – A computer-controlled patient table is used to position the patient 

accurately. A positioning accuracy of 1mm can be achieved. 
 
6) Computer – The computer controls all components of the imager. Under the 

instruction of the computer, the RF source produces a sinusoidal wave of the desired 
frequency and the pulse programmer multiplies the sine wave by a sinc pulse. The 
processed pulse looks like the one illustrated in Figure 26(a). This processed pulse is 
amplified by a RF amplifier, which increases the power of the signal to the 
appropriate level. The computer also controls the gradient pulse programmer, which 
shapes the linear gradient profiles along the X, Y and Z directions appropriately. 
These gradient profiles are also amplified by a gradient amplifier before they are used 
to drive the gradient coils. 
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2.2.4. Artifacts in MRI Images  
 
In this section, we briefly describe some artifacts that could appear in a MRI image. In 
the following description, the artifacts are classified according to their source: 
 
1) Bo Inhomogeneity – MRI technique assumes a homogeneous Bo magnetic field. An 

inhomogeneous Bo magnetic field causes spatial or intensity distortion. 
   
2) Gradient – Distortion could also occur when the linear magnetic field gradient is not 

shaped as desired. This is mostly caused by a damaged gradient coil. 
 
3) RF Inhomogeneity – RF inhomogeneity is usually used to refer to the nonuniformity 

of the B1 magnetic field. It causes variations of intensity in an image. This artifact is 
caused by the failure of the RF coil or the presence of nonferromagnetic material in 
the imaged object. 

  
4) Motion – The movement of the imaged object may results in a blurring of the MRI 

image. 
  
5) Flow – Flow artifact is caused by the flow of body fluid. This causes problem in the 

slicing process described in section 2.2.2, part A): A slice is chosen by applying a B1 
magnetic field on it, but the slice may move away from its original position due to the 
flow of body fluid when the image is taken. 

 

2.3. Comparison between Ultrasound Imaging and MRI 
 
In this section, several techniques for diagnosing or screening prostate cancer are 
introduced, which include digital rectal examination (DRE), prostate-specific antigen 
(PSA) test and medical imaging test. The basic operating principles of two major imaging 
techniques, ultrasound and MRI, are described. 
 
A comparative study of MRI and ultrasonography in staging early prostate cancer [21] 
shows that the sensitivity, the percentage of patients correctly identified as having the 
disease that spreads beyond the prostate, and the specificity, the percentage of patients 
correctly identified as having a localized tumour, of the MRI technique is higher than the 
corresponding values obtained using ultrasonography. However, because of its relatively 
low installation and operating costs, and its portability, ultrasonography is dominant in 
prostate-cancer-related applications. Since components required for ultrasonography are 
basically a monitor, a transducer, a scanning arm and a computer that coordinates the 
functions of the components in an ultrasonic system, it is not hard to understand that the 
cost of installing such a system is much lower than the installation cost of a MRI system 
that consists of a specially maintained superconducting magnet, which is the most 
expensive component of the MRI system, gradient coils and RF coils. Furthermore, the 
MRI system needs to be put in a room that is equipped with RF shield, which prevents 
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the high power RF pulses from radiating out through the hospital and interfering with the 
operations of other medical equipments, whereas the ultrasonic system weights only 
about thirty pounds and can be moved around. In addition, it may be dangerous to scan 
someone who has internal implants using MRI. For example, people with pacemakers 
cannot be safely scanned because the strong magnetic field applied during the scan may 
affect the function of the pacemaker. Although people with orthopaedic implants, such as 
screws and artificial joints, can often be scanned because the implants are firmly 
embedded in the bone, the presence of metallic implants may result in an inhomogeneous 
magnetic field, causing a severe distortion of the MRI image. Also, some imaging tasks 
are not possible using MRI. For example, the transrectal ultrasound (TRUS) can be used 
to guide biopsy because of the small physical size of the transducer. 
 
Despite the popular use of ultrasonography, it is shown in [21] that the sensitivity and the 
specificity in staging early prostate cancer are disappointing using conventional TRUS 
examination. As a first step towards improving the sensitivity and specificity, the medical 
imaging group in the University of Waterloo is interested in enhancing the quality of the 
ultrasound image by some image processing techniques. The enhanced image is believed 
to be more useful in extracting information about the anatomical structure of the prostate, 
with which the accuracy of cancer identification is expected to improve. Segmentation of 
the prostate boundary is a crucial step in extracting information about the shape and the 
volume of the prostate, and is the focus of this thesis. 
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Chapter 3  
 
Image Segmentation Methods 
 
Section 1 of this chapter gives a survey of image processing techniques that have been 
used for segmentation. The rationale behind using the discrete dynamic contour (DDC) 
model and the wavelet analysis in the proposed prostate boundary segmentation 
algorithm is also stated. Section 2 introduces a wavelet-based multiscale edge detection 
technique. This technique is based on dyadic wavelet transform, which is different from 
the conventional pyramidal wavelet transform. We will explain the differences between 
these two wavelet-transform techniques, and describe the reason for choosing the dyadic 
wavelet transform as a building block in the proposed algorithm. After the multiscale 
edge detection algorithm is formalized, the wavelet basis has to be chosen before the 
algorithm can be implemented. Although the quadratic spline wavelet is chosen for the 
segmentation problem, any orthogonal or biorthogonal wavelet can be used and the 
choice would depend on the characteristics desired to be captured. Section 3 describes the 
operation mechanism of the DDC model implemented by the University of Western 
Ontario. This model is used as a building block of our proposed algorithm.  
 

3.1. Methods used for Segmentation 
 
Image segmentation is the grouping of a set of pixels that share similar characteristics, 
such as intensity and texture. In our study in segmenting the prostate, segmentation can 
be described as a procedure that separates the foreground of the image, which refers to 
the set of pixels that is mapped from structures inside the prostate, and the background. 
 
Segmentation techniques widely used can be classified into three categories: threshold 
techniques, edge-based techniques and model-based techniques. In the following, a brief 
introduction of these techniques is given, along with the pros and cons of each 
segmentation technique. 
 

3.1.1. Threshold Techniques 
 
This technique is very simple: Given an image A, which could be the original image itself 
or the image resulted after applying a transform operator on the original, if the greyscale 
value of the pixel A[m,n] is lower than a preset threshold θ, the pixel will be classified as 
belonging to a predefined region. Otherwise, the pixel falls into another region [29]. 
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Figure 30   Distribution models of the foreground and the background 

 
The most important issue in this technique is the choice of the threshold θ. Normally, 
distribution models associated with different regions, which describe the occurrence of a 
range of pixel value in the corresponding region, are established before the classification 
(see Figure 30). An appropriate choice of threshold is derived from these distribution 
models. 
 
The threshold technique is efficient in obtaining a segmentation if different regions of the 
image have a high contrast in their intensities or other measurable features. However, as 
could be observed in Figure 30, if two distributions have a significant overlapping region, 
detection error (i.e., false positive and false negative shown in Figure 30) will be large. A 
partial solution to this problem may be to define the threshold to be a function of the 
position, based on pixel value distributions of different regions in the neighbourhood of 
the position in question. This method is based on the idea that the local variations of the 
pixel values representing a particular type of tissue is smaller comparing to the variations 
in the whole image, and therefore, the standard deviation of the distributions decrease, 
reducing the overlapping area in different distribution. Also, the thresholding technique is 
sensitive to noise or intensity inhomogeneity. As a result, regions will become 
disconnected, and a closed segment is often hard to obtain. 
 

3.1.2. Edge-Based Techniques 
 
Edge-based techniques find the edge of the desired object as opposed to finding the 
whole object in the threshold technique. This class of techniques finds the edge by 
locating regions where pixel values change significantly in a neighbourhood. Two widely 
used edge-detection techniques are the gradient-based procedure and the zero-crossing 
procedure. 
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However, both the gradient-based method and the zero-crossing method are sensitive to 
undesirable fluctuations caused by noise. To reduce the impact of noise on the segmented 
contour, one needs to smooth the image. The smoothing filter should be chosen such that 
it is localized in the frequency domain and the spatial domain – it should be localized in 
frequency domain because it should act as a low-pass filter to suppress high-frequency 
noise, and it should be spatially localized because the location of the edge can not be 
precisely identified if the image is filtered by a wide filter. The Gaussian filter is very 
popular in this application because it has a minimum space-bandwidth product.  
 

A) Gradient-Based Procedure 

 
An abrupt change can be detected by finding the first derivative of a one-dimensional 
function or the gradient of a two-dimensional function. For example, in a one-
dimensional function, the edge can be located by finding the maximum of the first 
derivative (see Figure 31).  
 

B) Zero-Crossing Procedure 

 
An edge can also be found by locating the zero-crossing of the second derivative of a 
one-dimensional function or the Laplacian of an image (see Figure 31).  
 
However, this approach has a significant drawback. Finding the zero-crossing of the 
second derivative of a function is equivalent to finding the inflection point, where the 
first derivative attains either a maximum or minimum. Sharp variation occurs at 
inflection point where the first derivative is at a local maximum (see Figure 31). On the 
other hand, slow variation occurs at inflection point where the first derivative is at a local 
minimum (see Figure 32). Solely using the zero-crossing technique, it is impossible to 
distinguish between these two kinds of inflection point, and therefore edge will be 
incorrectly located. 
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Figure 31   An edge structure and its first and second derivatives 
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Figure 32   A slow variation point. Note that the second derivative at the point is zero, meaning that it 
is an inflection point, and will be falsely identified as an edge by the zero crossing technique. 
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3.1.3. Model-Based (or Deformable Model) Techniques 
 
The deformable model consists of a closed parametric curve that moves under the 
influence of the internal force and the external force. The role of the internal force is to 
maintain the smoothness of the curve, whereas the external force is defined according to 
some image feature, such as the intensity or the gradient. The closed contour is first 
placed near the desired boundary. Then the forces update the contour iteratively until it 
converges to a final contour that is considered – by the algorithm – to be closest to the 
desired edge. 
 
The most significant advantage of the deformable model is its ability to form a closed 
boundary regardless of the structure of the object. Since the smoothness of the contour is 
constrained by the internal force, the deformable is not susceptible to local variation 
caused by noise. A disadvantage of the model is that it requires an initial contour, and the 
final contour is often sensitive to how the initial contour is chosen. 
 

3.1.4. Segmentation Methods Used in the Proposed Algorithm 
 
The proposed segmentation algorithm combines the idea of the segmentation techniques 
introduced above. Before applying the edge-detection technique described in Section 
3.1.2, it is required to choose a smoothing function that is localized in space and 
frequency. It is mentioned that the Gaussian function is an appropriate choice in most 
applications. There is no exception in the prostate boundary identification problem. 
However, the formulation of the edge-detection part of the proposed algorithm is 
different from the conventional gradient-based approach. In the proposed algorithm, 
Mallat and Zhong’s [5] wavelet-based formulation is adapted. In [5], it was shown that if 
the quadratic spline wavelet is used, the wavelet transform produces a result that is 
equivalent to that generated by conventional gradient-based approach using Gaussian 
function. However, it is reasonable to guess that other smoothing functions, such as the 
rectangular (or indicator) function, may be a better choice in terms of extracting the edge 
of a cancerous tumour. In other words, by using different wavelet bases and the same 
wavelet transform framework, it is possible to find a better segmentation of the tumour. 
This idea will be investigated in Section 4.2. Since the wavelet-based framework allows 
the choice of different wavelet bases that suit different purposes, its range of applications 
is wider than that of conventional gradient-based approach. 
 
After applying the wavelet-based edge-detection technique on the image, we use the 
DDC model, in which the external force is assigned according wavelet-transformed 
image. To further enhance the resulting boundary, a modified threshold technique is used, 
which will be described in Section 4.3. 
 
Before progressing further, two major building blocks in the proposed algorithm – Mallat 
and Zhong’s wavelet-based edge-detection technique and the DDC model – are described 
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in Section 3.2 and 3.3 respectively. The introduction of the proposed algorithm is 
postponed to Section 5.1. 
 

3.2. Multiscale Edge Detection and Its Relation with Dyadic Wavelet 
Transform 

 
In this section, the edge detection algorithm proposed by Mallat and Zhong [5] is 
introduced. In Section 3.2.1, the connection between the edge identification problem and 
the wavelet transform is made. Section 3.2.2 discusses a problem of the conventional 
pyramidal wavelet transform3, the translational variance property. Section 3.2.3 defines 
an algorithm, dyadic wavelet transform, which solves the translational variance problem. 
An edge detection algorithm based on it will also be presented. 
 

3.2.1. Multiscale Edge Detection 

 
Multiscale edge detectors smooth the signal at various scales and detect sharp variation 
points from their first-derivative. This section explains how the gradient of a function is 
related to the wavelet transform. 
 
We define a smoothing function ( )xθ  to be any function that integrates to a positive value 
and converges to 0 at infinity. Suppose ( )xθ  is differentiable. We define a wavelet 
function ( )xψ  to be the first-derivative of ( )xθ : 
 

( )
dx

)x(dx θ−=ψ  

(3.1)  
 
The wavelet transform of ( )xf  at the scale j2  and position u computed with respect to 
the wavelet ( )xψ  can be written as 
 

( ) ( ) { } ( )ufux,xfufW jj j
a

j 22 22

1 ψ∗=>





 −ψ<≡  

(3.2)  
 
 

where ( ) 





ψ=ψ jj

xxj
22

1
2

 and ( ) ( )xx jj −ψ=ψ
22

.  

                                                 
3 The pyramidal wavelet transform is introduced in textbooks on general wavelet theory, such as [1] and 
[3]. 
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Using (3.1), one can prove that  
 

( )
( )

dx

xd
x

j

j
j 2

2 2
θ

=ψ  

(3.3)  
Substituting this result into (3.2) yields 
 

( ) { } ( )uf
du
dufW jj

j
22 2 θ∗=  

(3.4)  
 
(3.4) demonstrates that the wavelet transform is the first-derivative of the function f  
smoothed at a scale j2 . If j is large, the convolution with ( )xj2

θ  removes small signal 
fluctuation and we therefore only detect the sharp variations of large structures. 
 
This formulation can be easily extended in two dimensions. Suppose there is a 2-D 
smoothing function ( )yx,θ , which has similar characteristics as its 1-D correspondence, 
and there are two wavelets, which are the partial derivatives of ( )yx,θ  in x and y 
direction respectively: 
 

( ) ( )
x

yxyx
∂

θ∂−=Ψ ,,1  and ( ) ( )
y

yxyx
∂

θ∂−=Ψ ,,2  

(3.5)  
 
Suppose  f ∈  L2(R2), the wavelet transforms of  f  with respect to 1Ψ  and 2Ψ  can be 
written as 
 

( ) ( ) ( ) ( )vufvyuxyxfvufW kkk
jjj ,,,,, 222 Ψ∗=>−−Ψ<=  for 2,1=k  

(3.6)  
 

Similar to the 1-D case, we denote 
 

( ) 





θ=θ jjj

yxyxj
2

,
22

1,2  and ( ) ( )yxyx jj −−θ=θ ,,
22

 

(3.7)  
The two scaled wavelets can be written as 
 

x

j

j
j

∂

θ∂
=Ψ 21

2 2   and  
y

j

j
j

∂

θ∂
=Ψ 22

2 2  

(3.8)  
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With these notations defined, we can conclude that the wavelet transform components are 
proportional to the corresponding components of the gradient vector of { }jf

2
θ∗ , that is, 

 

( )
( )

{ } ( )

{ } ( )
( )( )vuf

vuf
v

vuf
u

vufW

vufW
j

j

j

j

j jj ,2
,

,
2

,

,
2

2

2

2
2

1
2 θ∗∇=



















θ∗
∂
∂

θ∗
∂
∂

=











 

(3.9)  
 
The modulus of this gradient vector is proportional to the wavelet transform modulus 
 

( ) ( ) ( ) 22
2

21
22

,,, vufWvufWvufM jjj +=  

(3.10)  
 

jM
2

 can be used to identify significant variations in different scales: If ( )vufM j ,
2

 is 
large for some uj,  and v , it indicates that the function f has a significant variation at the 
neighbourhood of the point ( )vu, . The size of this neighbourhood is proportional to the 
scale j2 .  
 
For the ultrasound prostate images, this method would identify small-scaled variation 
mostly caused by different kinds of noise if j is small. It is not desirable in our 
segmentation problem. However, if j is too large, the outline of the prostate being 
identified would be too coarse and inaccurate. Therefore, j must be appropriately chosen 
by experimentation. 
 
In this section, the connection is made between the gradient vector of { }jf

2
θ∗ , a 

smoothed version of a continuous function f, and its wavelet transform with respect to a 
certain wavelet function defined by (3.2). In Section 3.2.3, it will be demonstrated how 
the same concept can be applied to a digital image. A fast method to compute the 
modulus of the gradient vector of a digital image, called dyadic wavelet transform, will 
also be described. However, there is an important reason for introducing dyadic wavelet 
transform, rather than adapting the conventional pyramidal wavelet transform. The 
following section provides a detailed explanation on that. 
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3.2.2. Translation Invariance 
 
Translational invariance is important in pattern recognition. When a pattern is translated, 
its representations should be translated but not modified. Patterns are more difficult to be 
identified if its representation depends on its location. The main objective of this section 
is to show that the traditional pyramidal multiresolution representations are not 
translational invariant. 
 
It can be easily proven that the continuous wavelet transform is shift invariant. Let 

( ) ( )τ−=τ tftf  be the translation of ( )tf . The wavelet transform of  f  at scale s and 
position u can be written as a convolution product, that is, 
 

( ) ( ) ( )∫
∞+

∞−
ψ∗=






 −ψ= ufdt

s
ut

s
tfufW ss

1  

(3.11)  
 

where ( ) 





 −ψ=ψ

s
t

s
ts

1 , as previous defined.  

 
The wavelet transform of τf  at scale s and position u is 
 

( ) ( ) ( ) ( )∫
+∞

∞−τ τ−=ψτ−= ufWdtttfufW sss  

(3.12)  
 

which is the shift invariant property we wish to prove. 
 
The conventional pyramidal wavelet transform, defined by 
 

[ ] njj fnd ,,ψ=  
(3.13)  

where ( ) 






 −ψ=ψ j

j

jn,j
ntt

2
2

2
1 , is equivalent to the continuous wavelet transform 

sampled at time intervals j2 . It can be written as  
 

[ ] ( )nfWnd j
j j 2

2
=  

(3.14)  
 
The effect of this sampling is shown in Figure 33. In general, the sampled coefficient of 

( )nfW j
j 2

2 τ  is very different from a translation of ( )nfW j
j 2

2
. The wavelet transform is 
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shift invariant only if τ is a multiple of j2  (i.e., jk2=τ ), in which case 
( ) ( )( )knfWnfW jj

jj −=τ 22
22

. 
 

u

u
j2

ufW j2

ufW j τ2

 
Figure 33   If ( ) ( )τ−=τ tftf  then ( ) ( )τ−=τ ufWufW jj 22 . Uniform sampling of ( )ufW j τ2  and 

( )ufW j2  at nu j2=  may yield very different value if jk2≠τ . 

 
In digital image processing, the discrete dyadic wavelet transform is used to overcome 
this problem. 
 

3.2.3. Discrete Dyadic Wavelet Transform 
 
In practical application, the input signal is measured at a finite resolution. In other words, 
the input signal, denote it as oa , is a discrete signal. The nth sample of oa  can be 
considered as averages of some continuous function f(t) weighted by a scaling kernel 

( )nt −ϕ , where ( )tϕ  is some smoothing function with integral equals to 1. 
 
Since oa  is a discrete signal, one can only translate it by an integer value τ. Since 

[ ] ( ) ( ) >−ϕ=< nttfnao , , it implies that the underlying continuous function f can only be 
translated by some integer τ. Therefore, if the continuous wavelet transform, defined in 
(3.2), is sampled at an interval equals to 1, the shift invariant property can be preserved. 
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This is the underlying idea that motivates the introduction of the discrete dyadic wavelet 
transform, which is defined in the following subsection. 
 

A) One-Dimensional  

 
Let [ ]nao  be the discrete input signal. It can be expressed as 
 

[ ] ( ) ( ) ( ) >−ϕ=<= nt,tfnfAnao 02
 

(3.15)  
where we have defined ( ) ( ) ( ) >−ϕ=< ux,xfufA jj 22

. 
 
For any 0≥j , denote 
 

[ ] ( ) ( ) ( ) >−ϕ=<= nt,tfnfAna jjj 22
 

(3.16)  
 
The dyadic wavelet coefficients are computed for 0>j  over the integer grid 
 

[ ] ( ) ( ) ( ) >−ψ=<= nt,tfnfWnd jjj 22
 

(3.17)  
 
Note that (3.17) is the integer-sampled value of the continuous wavelet transform, 
defined in (3.2). 
 
Mallat derived a fast algorithm to compute the discrete dyadic wavelet transform in [1]. 
 
In wavelet theory, a scaling sequence h and a wavelet sequence g characterizes the 
scaling function ϕ and the wavelet ψ respectively. They are defined by 
 

( ) [ ] ( ) [ ] ( )∑∑
∈∈

− −ϕ=ϕ=ϕ
ZkZk

k kxkhxkhx 22,1 , 

( ) [ ] ( ) [ ] ( )kxkgxkgx
Zk Zk

k −ϕ=ϕ=ψ ∑ ∑
∈ ∈

− 22,1  

(3.18)  
We denote [ ]nh j  to be the filter obtained by inserting 12 −j  zeros between each sample 

of [ ]nh ; its Fourier transform is ( )θjfh 2 . Also we let [ ] [ ]nhnh jj −= . Then for any 

0≥j , 
[ ] { }[ ]nhana jjj ∗=+1  and    [ ] { }[ ]ngand jjj ∗=+1  

(3.19) 4 
                                                 
4 Proof of this proposition is provided in pp. 157-158 of [1]. 
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In Mallat and Zhong’s paper [5], the quadratic spline scaling function was used. The 
Fourier transform of the scaling function ϕ, the wavelet ψ and the smoothing function θ 
are listed below (see Figure 34): 
 

( )
3

2

2 















π
ω=ωϕ

ω
−

csine
jF  

(3.20)  

( )
4

2

44 















π
ωω−=ωψ

ω
−

csinej jF  

(3.21)  

( )
3

2
2

cos2 





 θ=θ

θ− jf eh  

(3.22)  

( )
2

sin2 2 θ−=θ
θ− jf ejg  

(3.23)  

Since ( )
dt
dt θ−=ψ ,  

( )
4

2

44
1

















π
ω=ωθ

ω
−

csine
jF  

(3.24)  
 
It can be observed from (3.24) that the smoothing function θ is closely related to the 
cubic spline function. In fact, by properties of Fourier transform, it can be determined 
that the smoothing function θ is proportional to ( )( )2123 −xB , where 3B  denotes the 
cubic spline function. 
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Figure 34   ϕ,ψ and θ used in Mallat and Zhong’s paper [5] 

 

Figure 35  The quadratic spline function closely 
approximates the Gaussian function having a 
standard deviation of 2π34 . 

Figure 36 The cubic spline function closely 
approximates the Gaussian function having a 
standard deviation of 2π23 . 
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Figure 35 and Figure 36 show that both the quadratic and cubic spline function closely 
approximates the Gaussian functions with standard deviations 2π34  and 2π23  
respectively. It can be implied that the smoothing function θ can be approximated by the 
Gaussian function with standard deviation of 2π43  shifted by 21 . 
 
From (3.4) and (3.17), it can be observed that jd , the sequence of detailed coefficient at 
scale j, is the first derivative of jf 2θ∗ . Since j2θ  can be closely approximated by the 

Gaussian function with standard deviation ( )2π23j2 , finding the local maxima of jd  
is equivalent to Canny’s multiscale edge detection algorithm [8]. 
 
For implementation of the dyadic wavelet transform, we only need the discrete filter 

( )θfh  and ( )θfg . Coefficients of the filters are tabulated below: 
 
 

n [ ] 2/nh  [ ] 2/ng  
-1 0.125 0 
0 0.375 -0.5 
1 0.375 0.5 
2 0.125 0 

Table 1   Coefficients of the discrete filter used in implementing dyadic wavelet transform 

 

B) Two-Dimensional 

In image processing, we are interested in a 2-D image, which can be represented by 
{ }( ) 2,, ZnmnmiI

∈
= . 

 
Suppose there are an underlying continuous function ( )y,xf  and a scaling function 

( )y,xΦ  such that the original image I can be expressed as 
 

[ ] ( ) ( ) ( ) >−−Φ=<== ny,mx,y,xfn,mfAn,mai n,m 020  
(3.25)  

where we have defined ( ) ( ) ( ) >−−Φ=< vy,ux,y,xfv,ufA jj 22 . 
 
For any 0≥j , we define the larger scale approximation ja  by 
 

[ ] ( ) ( ) ( ) >−−Φ=<= ny,mx,y,xfn,mfAn,ma jjj 22  
(3.26)  
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As we have understood in Section 3.2.1, we need the wavelet transform of  f  with respect 
to 1Ψ  and 2Ψ , where 1Ψ  and 2Ψ  are defined according to (3.5). We define the integer 
samples of these two sets of wavelet transform as 1

jd  and 2
jd . Mathematically, we write 

 
[ ] ( ) ( ) ( ) >−−Ψ=<= ny,mx,y,xfn,mfWn,md kkk

j jj 22
  for 21,k =  

(3.27)  
 
Suppose ( ) ( )y,x,y,x 1ΨΦ  and ( )yx,2Ψ  can be written as separable products of one-
dimensional scaling function ϕ  and wavelet ψ  in the following way: 
 

( ) ( ) ( )yxy,x ϕϕ=Φ  
(3.28)  

 

( ) ( ) ( ) ( ) ( ) ( ) ( )yxy,xyx
x

y,xy,x 2222 1
1

1 ϕθ=θ⇒ϕψ=
∂

θ∂−=Ψ   

(3.29)  
 

( ) ( ) ( ) ( ) ( ) ( ) ( )yxy,xyx
y

y,xy,x θϕ=θ⇒ψϕ=
∂

θ∂−=Ψ 2222 2
2

2  

(3.30)  
 
In (3.29) and (3.30), the scaling function ϕ contracts by a factor of 2. ( )yx,1Ψ  and 

( )yx,2Ψ  are defined in this way so that ( )yx,1θ  and ( )yx,2θ  approximates a  
two-dimensional Gaussian function that has approximately equal standard deviations in 
both the x and y directions.  
 
We can extend the 1-D fast dyadic wavelet transform algorithm in two dimensions with 
convolutions along the rows and columns of the image. In the following, we denote the 
separable convolution of the rows and columns of the 2-D image aj with the 1-D filter u 
and v, respectively, by ( )v,ua j ∗ . It can be proven5 that 1

11 ++ jj d,a  and 2
1+jd  can be 

computed from ja  using the following filter bank structure: 
 ( )jjjj hhaa ,1 ∗=+ , 

(3.31)  
( )δ∗=+ ,1

1 jjj gad , 

(3.32)  
( )jjj gad ,2

1 δ∗=+  

(3.33)  
                                                 
5 The proof of the fast dyadic wavelet transform for 2-D signals is provided in the Appendices, Section A.1. 
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where we have denoted the discrete Dirac filter by [ ]nδ . jh  and jg  are defined the same 

way as we did before the introduction of (3.19). This filter bank structure is illustrated in 
Figure 37. 
 
 
 

row by row
operation

column by column
operation

4444 84444 76 4444 84444 76

1
1+jd

1+ja

2
1+jd

ja

jh∗

jg∗

jg∗

jh∗

 
Figure 37   2-D Fast Dyadic Wavelet Transform 
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3.3. Discrete Dynamic Contour (DDC) 
 
In this section, the ideas behind the DDC algorithm implemented by the University of 
Western Ontario (referred to as the UWO program hereafter) are explained. As 
mentioned in Section 3.1.4, it is an important building block of the proposed 
segmentation algorithm. Section 3.3.1 describes the initialization model of the contour. 
Section 3.3.2 describes the structure of the discrete contour model and defines the forces 
that control its behaviour. A description of the dynamics of the deformation process is 
given in Section 3.3.3, and a technique for resampling the contour is presented in Section 
3.3.4. The deformation process stops at a specific time when certain conditions are 
satisfied. In Section 3.3.5, these termination conditions will be discussed.  
 

3.3.1. Initialization 
 
The DDC initialization routine in the UWO program requires user to enter four initial 
vertices or control vertices. These vertices must be set close enough to the boundary 
determined by the naked eye. 
 
Suppose the initial shape of the DDC is represented in parametric form as 
 

( ) ( ) ( )( )uyuxup ,=  
(3.34)  

 
where p is the position of a point on the DDC and the parameter u varies between some 
minimum value 0u  to some maximum value mu . In the UWO program, the minimum 
value is chosen to be 0 and the maximum value is chosen to be 4. 
 
In general, the x-coordinates ( )ux  of points on a curve are determined solely by the  
x-coordinates of the control vertices, and similarly for the y-coordinates. Since ( )ux  and 

( )uy  are treated in the same way, it suffices to explain how ( )ux  is determined only. By 
entering four initial points, the user specifies four data points ( ) ( ) ( )2,1,0 xxx  and ( )3x . 
Since the initial contour is closed, one should add a fifth data point ( )4x , which has the 
same value as the first data point ( )0x . Between the five data points, there are four 
intervals between adjacent data points. Each interval is represented by a cubic polynomial 

( )uPj , for 3,2,1,0=j . It is convenient to change the parameter u to s, such that 0=s  
corresponds to the lower bound of an interval. In terms of the parameter s, we have the 
following constraint in defining the polynomials: 
 

( ) ( )
( )11

0

+=

=

jx)(P

jxP

j

j  for 3210 ,,,j =  

(3.35)  
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At each interior point ( ){ }3,2,1: =jjx , the first and second derivatives of 1−jP  and jP  are 
also set to be equal: 
 

( ) ( ) ( )
( ) ( ) ( )0)1(

0)1(
22

1

11
1

jj

jj

PP

PP

=

=

−

−     for   3,2,1=j  

(3.36)  
 
(3.35) and (3.36) specify 4m - 2 conditions, where m = number of intervals = 4. Since 
there are four constants needed to be determined in each cubic polynomial and there are 
m polynomials, two more conditions are required. These two conditions could be chosen 
in a number of ways [6]. In the UWO program, the first and the second derivatives at the 
first point and the last point are matched: 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )01

01
2

0
2

3

1
0

1
3

PP

PP

=

=
 

(3.37)  
 
At this point, the information required for calculating the four polynomials that define the 
x-coordinates, ( ){ }3,2,1,0: =jsPj , has been defined. de Boor [6] presented an algorithm 
of how these polynomials are actually calculated. This procedure is easily carried out by 
using the Spline Toolbox in MATLAB. The polynomials that define the y-coordinates are 
calculated using exactly the same method. For later discussion, it is more convenient to 
express the function that describes the x-coordinates (or y-coordinates), a piecewise 
polynomial, as a single function ( )ux  (or ( )uy ): 
 

( )

( )
( )
( )
( )










≤≤−
<≤−

<≤−
<≤

=

433
322

211
10

3

2

1

0

uuP
uuP

uuP
uuP

ux  

(3.38)  
 

( )uy  is expressed in the same way, but the four polynomials that define the y-coordinates 
are, of course, different from that define the x-coordinates. 
 
However, since only a finite number of vertices on the polynomials define the discrete 
contour, one should start to consider the spacing between adjacent vertices. In the UWO 
program, the spacing is closely related to the resolution of the contour model. The actual 
position of the vertices on the contour is determined by three steps. 
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In Step 1, the program uses the four initial points that users defined to estimate the length 
of the contour. This estimation is very rough; it is done by summing the distances 
between adjacent points. The number of points on the contour, N, is computed by 
 





=

resolution
estimatelengthN  

(3.39)  
 
where the  x  takes the biggest integer that is smaller than x. 
 
In Step 2, N vertices are chosen. Since ( )ux  and ( )uy  are defined only if ]4,0[∈u , 
vertices are assigned starting from u = 0 to u = 4 in a uniform interval of u, according to 
the following algorithm: 
 

u∆ , the difference in u between adjacent vertices  =  4/ (N - 1); 
u , the vectors containing all u at which x and y will be evaluated  
= [0, u∆ , u∆2 , … , u∆− 24 , u∆−4 , 4]; 
 
for i = 1 to N 

vx(i) = x_coordinate of vertex i = ( )( )iux ; 
 vy(i) = y_coordinate of vertex i = ( )( )iuy ; 
end 

 
In the UWO algorithm, the four initial points user defined are assumed to be a point in 
final contour and will not be moved during the deformation process. Therefore, these four 
points must be included in the initial contour. In general, the method for assigning 
vertices described in last paragraph does not guarantee this because the integer 1, 2 and 3 
may not be an element of the vector u . Step 3 makes sure all user-defined points are 
vertices on the initial contour. The following algorithm basically inserts the vertices 
obtained in Step 2 one by one. However, if a particular vertex is too close to a user-
defined point, the user-defined point is inserted in place of that vertex. Note that the first 
vertex is immediately inserted because it is the first user-defined point. The last vertex is 
not inserted because it is identical to the first one.  
 
contour_x = a vector containing x-coordinates of the contour; 
contour_y = a vector containing y-coordinates of the contour; 
initial_point_index = a vector containing the index of the four user-defined initial points. 
 
Insert ( )0x  into contour_x; 
Insert ( )0y  into contour_y; 
Insert 0 into initial_point_index; 
index1 = 1;  
 
for i = 2:N - 1 
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    if index1 <= 3 

        d = ( ) ( )( ) ( ) ( )( )22 11 indexyivyindexxivx −+− ; 
    end 
 
    if (index1 <= 3) & (d <= resolution / 1.25)  
        Insert ( )1indexx  into contour_x; 
        Insert ( )1indexy  into contour_y; 
        Insert i into initial_point_index; 
        index1 = index1 + 1; 
    else 
        Insert ( )ivx  into contour_x; 
        Insert ( )ivy  into contour_y; 
    end 
end 
 
Since the user-defined initial point is not allowed to be moved during deformation, one 
should always keep track of the index of the initial points on the contour, which is what 
the variable initial_point_index for. 
 
Figure 38 illustrates the initial contour defined using the described algorithm. The 
contour on the background is the prostate boundary defined by an expert observer. The 
four initial points required in the initialization algorithm are chosen from the set of points 
on the manually defined contour. It can be observed that the initial contour does not 
approximate the manually defined contour well enough. As we will demonstrate later, 
using the UWO program, it is impossible for the boundary to converge to a contour that 
closely approximates the manually defined contour. 
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Figure 38   The vertices on the initial contour are represented by the cross symbol (× ). The four 
user-defined initial points are marked with asterisks (∗ ). The contour on the background (drawn in 
black) is the manually outlined boundary of the prostate.  

  

pi-1
pi

pi+1

Vi-1

Vi+1

Vi

di-1

di+1

di

 
Figure 39   The model consists of a set of vertices Vi, which are connected by edges di. 
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3.3.2. Forces and Force Field 

 
The UWO program uses the model presented in [7]. The basic structure of the model is 
illustrated in Figure 39; the closed contour is formed by joining the vertices with straight 
line segments. The vector ip  represents the position of a vertex iV , while the vector id  
represents the vector starting from the vertex iV  and terminating at the vertex 1+iV . In the 
deformation process, different kinds of force act on the vertices. The resulting 
acceleration and velocity in vertex iV  is denoted by the vector ia  and iv  respectively. 
  

A) Internal Forces 
 
The internal forces defined in the model are related to the local contour curvature. The 
internal forces act as a constraint on the local curvature, and therefore, keeping the 
contour relatively smooth under the influence of external forces, which are defined 
according to all the variations of the image feature. 
 
According to the conventional definition, local curvature is zero on the straight edge 
segments, while it is not defined at the exact position of a vertex. Therefore, one needs to 
find a new definition of the curvature, which must be proportional to the rate of change of 
the tangent’s direction. Lobregt [7] defined the local curvature at the position of the 
vertex iV  to be the difference between the unit vectors id̂  and 1

ˆ
−id : 

 

1
ˆˆ

−−= iii ddc  
(3.40)  

 
Lobregt [7] also defined the vectors that represent the radial and tangential directions at 
the position of a vertex. The tangential unit vector it̂  is defined by 
 

1

1

ˆˆ

ˆˆ
ˆ

−

−

+

+
=

ii

ii
i

dd

dd
t  

(3.41)  
 
and the radial unit vector ir̂  is derived from rotating it̂  by 2π−  radians6: 
 

ii tr ˆ
01
10

ˆ 







−

=  

(3.42)  

                                                 
6 A negative rotation represents a clockwise one. 
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id̂
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di

Vi

Vi-1
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ci

 
Figure 40   The local tangential vector it̂  and the radial vector iv̂  at a vertex Vi 

 
The vectors ir̂  and it̂  represents a local coordinate system at the position of vertex iV , 
which is useful in the calculation of internal as well as external forces. 
 
It can be shown [7] that ic  is pointing either in the direction of ir̂ , or in its opposite 
direction. In other words, ic  is a vector along the local r-axis with length equal to the dot 
product ( )ii rc ˆ• . Expressing ic  in terms of the local r-t coordinate system will be found 
useful in the calculation of internal force later on: 
 

( ) iiii rrcc ˆ•=  
(3.43)  

 
 

r-t-coordinates

ci

ci

(a) (b)  
Figure 41   Curvature vectors ci for a regular polygon in Cartesian representation and in local  
r-t-coordinates 
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At this point, the notion of local curvature has been defined. We should proceed in 
defining the internal forces. One would be tempted to think that the internal forces should 
be defined as being proportional to the local curvature vectors. Before we make the 
decision, we should get a clear understanding of how the internal forces affect the 
deformation dynamics. Assuming the external forces are completely absent, any closed 
shape would be deformed into a circle (or its discretized version, i.e., a regular polygon) 
because it has the smallest overall curvature. Since the purpose of the internal forces is to 
minimize the overall curvature, the deformation should stop at this point. However, as 
shown in Figure 41(a), it is not the case. If the internal force is defined as being 
proportional to the local curvature, it will act on the contour, without further decreasing 
the local curvature, until the contour implodes into a single point.  
 
Lobregt [7] proposed an algorithm that reduces the local curvature without affecting parts 
of the contour with constant curvature. Since in the local r-t-coordinate system, the local 
curvature ic  is a one-dimensional variable in the radial direction, one can treat the local 
curvatures as function of a discrete variable, namely, the position i. The magnitude of the 
internal force can be represented by convolving this function with a discrete filter ki, 
which should be a filter that eliminates the constant component of the function. In other 
words, this filter must have a Fourier transform of zero at zero frequency. Lobregt [7] 
chose ki to be 
 










−=−

=

=

otherwise

ori

i

ki

0

11
2
1

01

 

 
(3.44)  

 
The magnitude of the internal force can therefore be expressed as 
 

( )
~
kr̂cf iiiin,i ∗•=  

(3.45)  
 

where 
~

ik  is the periodic extension of ik  having period equals to the number of vertices. 
~

ik , rather than ik , is used because the contour is closed, and therefore, the first point of 
the contour is adjacent to the last point and vice versa. 
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The direction of the internal force should be the same as that of the local curvature. 
Therefore, 
 

iin,iin,i r̂ff =  
(3.46)  

  
As a result of using this definition of internal forces, the vertices of the contour having a 
regular polygonal shape shown in Figure 41(a) experience internal forces that is zero 
everywhere. Therefore, the shrinking problem has been solved. 

 
In the next section, the external forces used in the UWO program will be discussed. The 
notion of an energy field that is closely related to the definition of the external force will 
be introduced. 
  

B) External Forces 

 
At this point of discussion, assume there is an external potential energy distribution imE . 
This energy field represents the strength of some kind of image feature or combination of 
image features. But before we discuss the type of energy field used in the UWO program, 
we shall define how it is related to the external force.  
 
The deformation process is implemented in such a way that the vertices will be pulled to 
the local maximum of the energy field imE . Therefore, the external force should be 
defined in a way such that it is proportional to imE∇ . Ladak [8] defined it by 
 

im

im
ext Emax

E
f'

∇
∇

=
2

 

(3.47)  
 
where the factor imE∇max2  is included because it is more convenient to define the 
external force of a vertex in a way such that the range of its magnitude is from 0 to 2, 
equalling that of the internal force. 
 
However, if one applies this definition of external force on the discrete dynamic contour 
model, he may find that the vertices on the contour are clustered in local maximum of the 
energy distribution. Since ideally the vertices on the contour should be equally spaced 
according to the resolution of the contour model, clustering of vertices is a very 
undesirable effect. To overcome this problem, Lobregt [7] proposed that only the locally 
radial component of f'ext defined in (3.47) should be used to drive the vertices of the 
contour model: 

( ) iiextext r̂r̂f'f •=  
(3.48)  
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Vi-1 Vi ir̂
1ˆ−ir

iVext,f

'
iVext,f

'
1−iVext,f

1−iVext,f

 
Figure 42   Only the locally radial component of fext' is used for deformation. 

 
After discussing how the energy distribution imE  related to the external force, it is time 
now to discuss how this energy distribution is defined in the UWO program. 
 
In the UWO program, the energy distribution imE  is defined by [8] 
 

( )IGEim ∗∇= σ  
(3.49)  

  
where ∗  represents the two-dimensional convolution, I denotes the original image and 

σG  denotes the Gaussian kernel having σ as the standard deviations in both the 
horizontal and the vertical directions. 
 
The 2-D Gaussian kernel is separable. Therefore, it can be expressed as 
 

( ) ( ) ( )ygxgyxyxyxG σσσ =







σ

−
πσ








σ

−
πσ

=







σ
+−

πσ
= 2

2

22

2

22

22

2 2
exp

2
1

2
exp

2
1

2
exp

2
1,  

(3.50)  
  
where σg  is used to denote a 1-D Gaussian function with standard deviation σ. With this 
separable property in mind, the computation of IG ∗σ  can be decomposed to 1-D row-
by-row convolutions, followed by column-by-column convolutions, as depicted in  
Figure 43. 
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σg σg

row by row
operation

column by column
operation

4444 84444 76 4444 84444 76

I(x,y) IG ∗σ

 
Figure 43   The 2-D convolution IσG ∗  can be decomposed to 1-D row-by-row convolutions, 
followed by column-by-column convolutions. 

 
Although ( )xgσ  and ( )ygσ  are theoretically defined for all x and y in R respectively, 
they are represented only by a finite number of elements in a computer program. 
Therefore the result of the 2-D convolution obtained is only an approximation; the 
accuracy of which depends on the size of the Gaussian kernel, or equivalently, the length 
of the 1-D Gaussian functions ( )xgσ  and ( )ygσ . 
 
In the UWO program, the sizes of ( )xgσ  and ( )ygσ  are specified by a parameter 
“radiusfactor”. The function σg  is represented by a vector g , which has a length of 

12 +×× σorradiusfact , defined by 
 

( )( ) ( ) ( ) ( ) ( )[ ]σ×−σ×−= orradiusfactggggorradiusfactgg ,,1,0,1,, LLLL  
(3.51)   

 
The purpose of taking the convolution IG ∗σ  is to smooth the image so that the effect of 
local variations, usually caused by noise, on the DDC model is made less significant. One 
would expect the magnitude of the gradient of this smoothed image is high at locations 
where edges appear. Therefore, by defining the energy distribution imE  according to 
(3.49), the external forces will pull the vertices towards the edge features of the image. 
 
After having defined the internal and the external forces that drive the contour, it is 
suitable to describe the deformation dynamics of the contour model used in the UWO 
program. We will focus on this in the next section. 
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3.3.3. Deformation Dynamics 
 
The total force if  acting on a vertex is a weighted combination of the external force, the 
internal force and the damping force, described by 
 

damp,iin,iintext,iexi ffwfwf ++=  
(3.52)  

 
where wex and wint are user-defined relative weighting, normally chosen between 0 and 1. 
The damping force damp,if  is defined to be proportional to the velocity of the vertex iv , 
that is, 
 

idampdamp,i vwf =  
(3.53)  

 
The weighting factor wdamp is negative. The damping force ensures the stability of the 
deformation process. 
 
The position of each vertex iV  is calculated every t∆  unit of time. Suppose the position, 
velocity and acceleration of the vertex iV  at a specific time t are denoted by ( ) ( )t,vtp ii  
and ( )tai  respectively. Then these quantities at tt ∆+  are calculated using the following 
equations: 
 
 

( ) ( ) ( ) ttvtpttp iii ∆∆ +=+ , 
(3.54)  

( ) ( ) ( ) ttatvttv iii ∆+=∆+ , 
(3.55)  

( ) ( )ttf
m

tta i
i

i ∆+=∆+ 1 . 

(3.56)  
 
The value of ( )ttf i ∆+  has been calculated using (3.52) and (3.53). However, in the 
UWO program, the four initial vertices user defined are designated to be fixed. Therefore, 
the accelerations of those four vertices are always assigned a zero value. The value of im  
is the “mass” of the vertex in physical context. In this discrete dynamic contour model, 
the masses of all vertices are assumed to be the same. All vertices are assigned a mass of 
unity value in the UWO program and the time increment t∆  has a value of one unit. 
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3.3.4. Resampling 
 
In problem like prostate boundary detection in ultrasound image, the boundary we want 
to identify may not be clearly identifiable everywhere. In this situation, the best solution 
may be to define the boundary by joining two closest vertices. Therefore, it is important 
to define the distances between adjacent vertices so that the image feature between two 
neighbouring vertices does not affect the behaviour of the contour model significantly. 
However, since the position of the contour model is constantly updated, it is impossible 
to fix the distances between adjacent vertices. In order to keep this variation small, one 
could periodically resample the contour model along its path. 
  
Since the four initial vertices are always fixed in the UWO program, special care has to 
be taken to ensure that the four vertices are not moved during the resampling process.  
 
The process of resampling can be divided into four steps:  
 
Step 1) Since the first vertex of the contour at any point of time is the first user-defined 

initial point, the resampling algorithm starts with inserting the first vertex of the 
input contour (i.e., the contour before resampling) into the output contour (i.e., 
the contour after resampling). The index of the first vertex, 0, is inserted into an 
index tracking array, initial_point_index. 

 
Step 2) The positions of the remaining vertices on the output contour depend on the 

length of segments between adjacent vertices on the input contour. For each 
segment, points are sampled at an interval equals to the resolution of the contour. 
However, it is unlikely for the length of a segment to be equal to a multiple of the 
contour resolution. The “residual” is stored and added to the length of next 
segment. This is done to ensure the distance between the last point sampled in a 
certain segment and the first point sampled in next segment is approximately 
equal to the contour resolution. This process is illustrated in Figure 44. 

 
Step 3) If the ending vertex of a certain segment on the input contour is one of the three 

remaining user-defined fixed vertices, it must be inserted into the output contour. 
Although it is impossible to set the distance between the last point sampled on a 
segment and the fixed point (called d hereafter) to be equal to the resolution of 
the contour, one should consider whether they are too close together. If d is 
smaller than a specific threshold, say one-third of the resolution, the resampling 
algorithm deletes the last point sampled and insert the fixed point into the output 
contour. On the other hand, if d is larger than one-third of the resolution, the last 
point sampled is kept. However, in this case, there is a possibility that the 
“residual” is larger than two-third of the resolution. As a consequence, if the 
“residual” is not changed, the distance between the first sampled point on the 
next segment and the fixed vertex will be small than one-third of the contour 
resolution. Therefore, the “residual” is reset to 0 in this case. In either case, the 
index of the fixed vertex is inserted into initial_point_index. 
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Step 4) It is known that the last segment starts at the last vertex and ends at the first 

vertex of the input contour. The first vertex has already been added to the output 
contour and does not need to be appended again. One only needs to consider 
whether the last point sampled on this segment is too close to the first vertex of 
the input contour. If this is the case, the last sampled point is simply not appended 
to the output contour. 

 
 

Vi-1

Vi

Vi+1

resolution

residual

resolution

new point on the contour
after resampling

resolution 

resolution 

residual
Vi-1

Vi

Vi+1

new point on the contour
after resampling

(a)

(b)  
Figure 44   Two examples illustrating the effect of the resampling process: (a) The ith segment of the 
input contour is longer than the resolution of the contour model, resulting in a small residual; (b) the 
ith segment of the input contour is shorter than the resolution of the contour model, resulting in a 
residual that is comparable to the resolution. Note that in both cases, the residual after segment i-1 is 
processed is assumed to be zero.  



CHAPTER 3   IMAGE SEGMENTATION METHODS 
 

 

64

3.3.5. Termination Criteria 
 
During the deformation process, the position, velocity and acceleration of each vertex are 
calculated iteratively according to (3.54) to (3.56). After every iteration, the DDC is 
resampled using the procedure described in Section 3.3.4 and the algorithm also decides 
whether the iterations should stop. The program does this by picking the vertex with 
highest acceleration and one with highest velocity out of all vertices on the contour. The 
value of the maximum acceleration and velocity are then recorded and compared with the 
maximum acceleration and velocity recorded in the last iteration. If the difference 
between these two values of maximum acceleration is lower than a user-defined 
parameter, called the “convergence criteria” in the UWO program, and, at the same time, 
the difference between the two values of maximum velocity is lower than the same 
parameter, the program terminates. 
 

3.4. Summary and Remarks 
 
This chapter starts by an introduction of segmentation techniques used in the field of 
image processing. Based on the pros and cons of each technique described in the 
introduction, the gradient-based technique, the deformable model technique and the 
threshold technique are chosen as building blocks of the proposed segmentation 
algorithm. 
 
It is explained in Section 3.2.3 that the wavelet-based edge-detection technique 
developed by Mallat and Zhong [5] is equivalent to the conventional gradient-based 
technique that uses Gaussian filter as the smoothing filter. However, as pointed out at the 
beginning of this chapter, one can use different wavelet basis – either orthogonal or 
biorthogonal – rather than the cubic spline wavelet used by Mallat and Zhong for a better 
characterization of the edge features. In Section 4.2, different classes of wavelet that may 
be helpful in emphasizing the edge features are introduced. However, it must be 
emphasized that the primary goal of this thesis is to demonstrate the flexibility of the 
wavelet-based edge-detection formulation rather than finding a best basis for the 
segmentation problem. Therefore, rather than providing an analytical evaluation of 
different wavelet bases for the segmentation problem, the performance of different 
wavelet bases are judged according to the numerical results – that is to say that we will 
first apply different dyadic wavelet transforms, constructed using different wavelet bases, 
on the original images and evaluate the performances based on how close the final 
contour generated by the proposed algorithm, which will be introduced in Section 5.1, to 
the contour outlined by an expert observer. 
 
In Section 3.3, the operating principles of the DDC model implemented by the University 
of Western Ontario are explained. This DDC model is used as a building block of the 
proposed algorithm. 
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Chapter 4  
 
Adaptation of Mallat and Zhong’s Algorithm and the DDC 
Model to the Prostate Boundary Detection Problem 
 
In Chapter 3, two most important building blocks of our segmentation algorithm – Mallat 
and Zhong’s multiscale edge detection algorithm and the DDC model – are introduced. In 
this chapter, several modifications of the Mallat-Zhong algorithm are proposed. In 
Section 4.1, we determine how one should approximate the modulus of the gradient of 
the smoothed image using the detailed coefficients obtained from (3.32) and (3.33). 
Because of the way the cubic spline wavelet was constructed as introduced in Section 
3.2.3, the detailed coefficient must be shifted appropriately before the modulus could be 
calculated. In Section 4.2, the method used for constructing dyadic wavelet bases is 
introduced. This method is used to construct different wavelets that may produce better 
result in segmenting the prostate’s boundary. In Section 5.3, the performance of the 
wavelets constructed in this section will be compared with that of the quadratic spline 
wavelet used by Mallat and Zhong. In Section 4.3, we will define an energy field, which 
can be used to drive the DDC model, based on the approximate coefficients generated in 
dyadic wavelet transform. This energy field provides information about the greyscale 
value near the boundary, which is not available in the energy field defined previously, 
based on the modulus of the gradient of the smoothed image.  
 
Up to this point, our model depends very heavily on the initial points user enters. As 
mentioned in Chapter 1, an algorithm is designed to determine the initial points 
automatically. This initialization method is introduced in Section 4.4.  
 

4.1. Shifting of Coefficients Obtained from Dyadic Wavelet 
Transform 

 
Since the smoothing function corresponding to this type of wavelet is not centred at the 
origin, the coefficients generated must be shifted before they can be used in defining the 
gradient vector. Although Mallat briefly mentioned that the detailed coefficients obtained 
from (3.32) and (3.33) required to be shifted before the modulus is computed in (6.66) of 
[1]7, he didn’t explain the underlying reason for the shift and he defined the amount of 
shift incorrectly. In Section 4.1.1, we will justify this claim and compute the correct shift 
required for accurate edge detection. In Section 4.1.2, we demonstrate that this incorrect 
shift results in a distorted edge map. To a certain extent, this blurring artifact has an 
adverse impact on the performance of the algorithm based on Mallat’s dyadic wavelet 
transform [22]-[28]. 
 

                                                 
7 The same amount of shift is also specified in (6.74) together with the equation 

[ ] [ ] 2221
2 n,mdn,mdfM jjj +=  in [2]. 
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4.1.1. The Correct Shift 
 

(3.9) stated [ ] { } [ ]n,mf
x

n,md j
j

j 2
1 2 θ∗

∂
∂= . The purpose of computing 1

jd  or 2
jd  is to 

obtain the integer-sampled gradient vector of the function f smoothed by a smoothing 
function j2θ . However, if the smoothing function j2

θ  is not centred at the origin, 

undesired shifting results. If this is the case, this undesired shift should be compensated 
by a translation in the opposite direction when computing the gradient vector. 
 
Before we could decide how much we should shift { }212 ,k:W k

j = , or its discrete version 

{ }21,k:d k
j = , we must consider whether we should align to  f or fA1 . Since the scaling 

function Φ centres at ( )2121 , , fA1  is shifted by 21−  in both x and y directions with 
respect to f and our decision on whether to align to f or fA1  will affect how we shift 
{ }212 ,k:W k

j = . Since we consider the discrete version of fA1  to be the original image, 
we should align to fA1  in theory. However, in discrete domain, we cannot shift by 21 , 
and therefore, it will not make a difference whether to align to  f or fA1 . In the following 
analysis, we will align { }212 ,k:W k

j =  with respect to f. 
 
From Figure 34, it can be observed that both ϕ and θ are centred at 21 . Then, according 
to (3.29), ( )y,x1θ  centres at ( )4121 , , which implies its dilation 1

2 jθ  centres at 

( )21 22 −− jj , . Since fW j
1
2  is defined by (3.6), it is shifted 12 −− j  in the x direction and 

22 −− j  in the y direction with respect to f. Repeating this analysis, we find that fW j
2

2  is 

shifted 22 −− j  in the x direction and 12 −− j  in the y direction with respect to f . 
{ }21,k:d k

j = , the discrete version of { }212 ,k:W k
j = , should be shifted to cancel these 

shifting effect before the modulus of the gradient vector is computed, i.e., 
 

[ ] [ ] [ ] 21222211 2,22,2, −−−− −−+−−= jj
j

jj
jj nmdnmdnmfM  

(4.1)  
 
However, when we shift 1

jd  and 2
jd  according to (4.1), we find that when 1=j , 1

jd  and 
2
jd  are required to shift 21 , in the y direction and x direction respectively, which is not 

possible in the discrete domain. In this case, the solution would be not to shift. (4.1) is 
modified to be 
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(4.2)  
 

4.1.2. Effects of Mallat’s Inappropriate Shift 

 
In this section, we analyse the effect on the gradient modulus, fM j2

, when Mallat’s 
shifting scheme stated in (6.66) of [1] is applied.  
 
We first look at (3.9) and the smoothing functions used in the fast dyadic transform, 

21 and θθ . Two implicit assumptions had been made for 2
2

1
2

and jj θθ  in (3.9): First, there 

was no distinction made between 2
2

1
2

and jj θθ  in (3.9) because they should be equal in 

theory, that is, the image should be smoothed by convolving with the same smoothing 
function before the partial derivatives in different directions are taken. The distinction 
between 2

2
1
2

and jj θθ  was made when constructing the fast dyadic wavelet transform, 

because the structure of which does not allow them to be equal. However, if the shifting 
scheme introduced in Section 4.1.1 is applied, 2

2
1
2

and jj θθ  are numerically close to be 

considered as equal as shown in Figure 45. Second, 2
2

1
2

and jj θθ  is centred at the origin, 

so that the smoothed images { }1
2 jf θ∗  or { }2

2 jf θ∗  would not be inappropriately shifted. 

This assumption will be satisfied if the shifting compensation introduced in Section 4.1.1  
is applied. 
 
If (6.66) of [1] is followed, we pointed out very clearly in Section 4.1.1 that the second 
assumption would not be satisfied. However, if only the second assumption is violated, 
while both 21 and θθ  are centred at the same location, the edge pattern represented by 

fM j2
 will only be shifted – but without any change – in an amount determined by the 

location of the centre. In (6.66) of [1], Mallat made compensating shifts in a way such 
that 1θ  is centred at ( )410 −, , and 2θ  is centred at ( )041 ,− . At the location of a certain 
pixel, say [m,n], the smoothed functions { }1

2 jf θ∗  and { }2
2 jf θ∗  represents averages taken 

in two different neighbourhoods: { }[ ]n,mf j
1
2

θ∗  represents the average of the function f in 

a scale-2j neighbourhood centred at [ ]22 −+ jn,m , whereas { }[ ]n,mf j
2
2

θ∗  represents the 

average of the function f in a scale-2j neighbourhood centred at [ ]n,m j 22 −+ . Therefore, 
the vector defined in (3.9) is not a gradient vector in any neighbourhood, and the modulus 
of this gradient vector would represent a distorted edge map. The significance of this 
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distortion increases as the scale increases. Figure 46 shows the effect of the distortion. 
The scale-25 and scale-26 gradient modulus obtained using the shifting scheme proposed 
in Section 4.1.1 are illustrated in Figure 46(b) and (d) respectively, while those obtained 
using Mallat’s shifting scheme are illustrated in Figure 46(c) and (e). Note that the 
vertical edges of the square are shifted upwards, by 2j-2 pixels in theory, while the 
horizontal edges are shifted to the left by 2j-2 pixels, where 2j denotes the scale at which 
the gradient modulus is obtained (i.e., j = 5 in Figure 46(b) and (c), and j = 6 in  
Figure 46(d) and (e).) 
 
 
 

 
(a) (b) 

 
(c) 

Figure 45   The origin-centred θ1 and θ2 and the difference between them: (a) θ1, (b) θ2, and  
(c) 21 θθ − .  Note that the maximum absolute difference between θ1 and θ2 is about 0.03 – about 

10% of the peak value of θ1 or θ2. In a first approximation, θ1 and θ2 can be considered to be equal. 
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(a) 

  
(b) (c) 

  
(d) (e) 

Figure 46   Comparison between the shifting scheme introduced in Section 4.1.1 and Mallat’s shifting 
scheme [1] using a synthetic square image: (a) Original image; (b), (d) the gradient modulus at scale 
25 and 26 obtained using the shifting scheme introduced in Section 4.1.1; (c), (e) the gradient modulus 
at scale 25 and 26 obtained using Mallat’s scheme [1] 
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4.2. Wavelet Construction for Dyadic Wavelet Transform 
 
Mallat studied the properties of scaling and wavelet functions used in dyadic wavelet 
transform in [1]. He then made use of these properties to construct a family of wavelets 
called the spline wavelets. In this section, we first state his results and introduce the 
method of constructing the spline wavelets. Using a similar method, we found that other 
dyadic wavelets can be constructed. In this section, we adapt existing wavelet bases, such 
as Symlets and Coiflets, to the dyadic wavelet transform framework. 
 

4.2.1. Properties of Wavelets in Dyadic Wavelet Transform 
 
Before describing the properties of the wavelet and scaling functions, we need to step 
back and briefly mention about the continuous version of the dyadic wavelet transform 
from which Mallat derived his discrete dyadic wavelet transform, which we have 
discussed on Section 3.2.3. 
 
The continuous dyadic wavelet transform is defined by 
 

( ) ( ) ( )∫
∞

∞−
ψ∗=






 −ψ= ufdtuttfufW jj jj 22 22

1  

(4.3)   
 
Mallat proved in Theorem 5.11 of [1] that in order for reconstruction to be possible from 
the dyadic wavelet transform, a wavelet function ψ  must have a corresponding 
reconstruction wavelet function ψ~  such that 
 

( ) ( ) 12~2 =ωψωψ∑
∞

−∞=j

jFjF    for   { }0−∈ω R  

(4.4)  
If (4.4) is satisfied, the original function f can be reconstructed from its dyadic wavelet 
transform: 

( ) ( )tfWtf jj

j
j 22

~
2
1 ψ∗= ∑

∞

−∞=
 

(4.5)  
A scaling function ϕ  and a reconstruction scaling function ϕ~  are defined such that a 
multiresolution ladder can be maintained. Mathematically, ϕ  and ϕ~  are defined such that 
they have the following relationship with the wavelets ψ  and ψ~ : 
 

( ) ( ) ( ) ( ) ( ) ( )2~2~~ ωϕωϕ=ωψωψ+ωϕωϕ FFFFFF  
(4.6)  
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It can be proven (4.6) leads to a multiresolution relationship: 
 

fPfQfP kkk 1−=+  
(4.7)  

 
where fPk  and fQk  are defined by 
 

kk fAfP kk 22
~

2
1 ϕ∗=      and     jk fWfQ kk 22

~
2
1 ψ∗=  

(4.8)  
 

In (4.8), ( ) ( ) 





 −ϕ= kk

ut,tfufA k
22

1
2

, whereas fW j2  is defined according to (4.3). 

 
Suppose the filters hgh ~,,  and g~  are defined by 
 

( ) 





ωϕ






ω=ωϕ

222
1 FfF h , ( ) 






ωϕ






ω=ωψ

222
1 FfF g , 

( ) 





ωϕ






ω=ωϕ

2
~

2
~

2
1~ FfF h   and  ( ) 






ωϕ






ω=ωψ

2
~

2
~

2
1~ FfF g . 

(4.9)  
 
It has been verified by Mallat [1] that (4.4) and (4.6) imply 
 

( ) ( ) ( ) ( ) 2~~ =θθ+θθ ffff gghh   for all R∈θ  
(4.10)  

 
In the following, we will demonstrate how the spline dyadic wavelets are derived using 
(4.9) and (4.10). 
 

4.2.2. The Spline Dyadic Wavelets 

 
In constructing the spline dyadic wavelets, Mallat [1] started by defining the scaling 
function to be the box spline function: 
 

( )
1

2
+ωε−

















π
ω=ωϕ

m
jF

2
 since  with  





=ε
oddismif
evenismif

0
1

. 

(4.11)  
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With the scaling function ϕ defined, the scaling filter h can be easily computed according 
to (4.9): 
 

( ) ( )
( )

1
2

2
222

+ωε−






 ω=

ωϕ
ωϕ=ω

mj

F

F
f coseh  

(4.12)  
 
Table 6 in Section A.2 of the Appendices gives the coefficients of h for order 0 to 7. 
 
We then progress on finding the wavelet filter g. Apparently, it can be defined arbitrary 
as long as (4.10) is satisfied. However, it has been pointed out in Section 3.2.1 that we 
want to define the wavelet function ψ according to (3.1): 
 

( )
dx

)x(dx θ−=ψ  

(3.1) 
 
where ( )xθ  is a smoothing function that converges to 0 at infinity and it has an integral 
that equals to a positive value. 
 
Mallat proved [1] that a wavelet has n vanishing moments if and only if there exists a 
smoothing function ( )xθ  such that 
 

( ) ( ) n

n
n

dx
xdx )(1 θ−=ψ  

(4.13)  
 
Moreover, ( )xψ  has no more than n vanishing moments if and only if ( )∫

∞
∞− ≠θ 0dxx . 

Therefore, in order for (3.1) to be satisfied, ( )xψ  must have exactly one vanishing 
moment. It can be proven that [1] the number of vanishing moments of ψ is equal to the 
number of zeroes of ( )ωψF  at 0=ω . Since ( ) 10 =ϕ F , ( )ωfg  must have the same 
number of zeroes at 0=ω  as ( )ωψF  according to the second equation in (4.9). As a 
result, ( )θfg  must have exactly one zero at 0=θ  in our case and it could be chosen to 
be 
 

( ) 





 θ−=θ

θ−

2
2 2 sinejg

jf  

(4.14)  
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The Fourier transform of the resulting wavelet is 
 

( )
2

4
1

4222
1

+





 ε+ω−

















π
ωω−=






ωϕ






ω=ωψ

mj
FfF

4
sincejg  

(4.15)  
 
The reconstruction filters g~  is obtained by first choosing hh~ =  and then applying the 
reconstruction condition (4.10). However, for edge detection, we are only interested in 
finding the dyadic wavelet transform of the original image and we are not planning to 
reconstruct the original image from its dyadic wavelet transform. Therefore, in the 
derivations that will be presented in Section 4.2.3, we will omit the computation of h~  
and g~ . 
 
In Section 4.1, we mentioned that the dyadic wavelet transform coefficients must be 
appropriately shifted before the modulus of the gradient vector is computed. Noticing the 
smoothing function θ is centred at ( ) 41+ε  from (3.1) and (4.15), and repeating the 
analysis in Section 4.1, it can be found that, for the spline dyadic wavelets family, the 
modulus of the gradient vector at scale 2j should be defined by 
 

[ ] ( )[ ] ( )[ ] 22222221 122212 +ε−ε−+ε−+ε−= −−−− jj
j

jj
jj n,mdn,mdn,mfM  

(4.16)  
 
Note that the problem of shifting 1/2 pixel still exists when 1=j  and 1=ε . In this case, 
the solution we introduced in Section 4.1 will be used. 
 

4.2.3. Dyadic Wavelets based on Daubechies’ Symlets and Coiflet 

 
Section 4.2.2 shows how Mallat constructed the spline dyadic wavelets family. He first 
chose a scaling function ϕ, from which he can easily obtain the scaling filter h. For his 
multiscale edge detection algorithm, we pointed out that the wavelet ψ must have exactly 
one vanishing moment. The simplest wavelet filter g that leads to a wavelet function ψ 
having one vanishing moment is the one he chose in (4.14). The wavelet function ψ can 
be found after g is obtained as in (4.15). Finally, to determine how the coefficients of the 
dyadic wavelet transform should be shifted, he also need the smoothing function θ. 
 
His path is followed when we attempt to develop another dyadic wavelets family. The 
first step is to choose a scaling function. Different families of scaling functions ϕ and the 
corresponding scaling filters h are readily available in MATLAB. To choose the scaling 
function that fits into the edge detection algorithm framework, the first thing to consider 
is the symmetry of the scaling functions. Symmetry is important because the two-
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dimensional smoothing functions have a direct relationship with the scaling function (see 
(3.29) and (3.30)) and the smoothing function is expected to be symmetric about the 
centre of its support. Compact support would be another desired property of the scaling 
function because, as discussed in Section 3.1.2, Part (c), the smoothing function should 
be localized enough so that the position of the edge can be identified with reasonable 
accuracy.  
 
With these considerations in mind, we have chosen two families of scaling functions as 
our starting point: The Symlets and Coiflets. Apart from having the symmetry and 
compact support properties, Coiflets have an additional property that the scaling function 
of order N Coiflet has 2N-1 vanishing moments. It can be expected that, the dyadic 
wavelet transform defined by this family of scaling function will produce a set of wavelet 
coefficients that have strong contrast between smooth region and region with edge 
features. However, this statement is not verified until Section 5.3, at which point we will 
present our results. 
 
As a demonstration on how we construct our new dyadic wavelets, we will start with the 
scaling function corresponds to Symlet-4.  
 
The scaling function ϕ of Symlet-4 is plotted in Figure 47. Although there is no analytic 
expression for this function, we know that scaling filter h that leads to this scaling 
function. The scaling filter coefficients of the 4th to 8th order Symlets are tabulated in 
Table 7 of the Appendices, Section A.2.  
 
 

 
Figure 47   ϕ,ψ and θ of the dyadic wavelets constructed based on Symlet-4 
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The next step is to find the wavelet filter g. Recall that we need a wavelet filter that has 
exactly one zero at 0=θ  and the simplest filter that have this property is the one shown 
in (4.14). We will use this filter as our wavelet filter to calculate our wavelet function ψ. 
Using the wavelet filter coefficients shown in Table 1 and the relation between the 
wavelet function ψ and the wavelet filter g in (3.18), we get 
 

( ) [ ] ( ) ( ) ( )12222 −ϕ+ϕ−=−ϕ=ψ ∑
∈

xxkxkgx
Zk

, 

(4.17)  
 
which is plotted in Figure 47. The smoothing function θ can be obtained using (3.1) and 
it is also plotted in Figure 47.  
 
Finally, we need to decide the amount of shift we should make on the coefficients 
resulting from the dyadic wavelet transform. Since ϕ can always be translated to the 
origin, the shifting due to θ is the only concern. From Figure 47, we know that θ is 
centred at 1/4. Repeating the analysis in Section 4.1, ( )y,xj

1
2θ  is centred at ( )( )0,412 j−  

and ( )y,xj
2
2θ  is centred at ( )( )1/42, j−0 . Therefore, the modulus of the gradient vector at 

scale 2j is defined by 
 

[ ] [ ] [ ] 222221 22 −− −+−= j
j

j
jj n,mdn,mdn,mfM  

(4.18)  
 
Similar to the problem we faced in Section 4.1, we are required to shift 1

jd  and 2
jd  by 

21  when 1=j . In this case, we can also choose not to shift and (4.18) is modified to be 
 

[ ]
[ ] [ ]
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−+−
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=
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j
222221

22
1

21
1

22

1
 

(4.19)  
 
Although the amount of shifts for 1

jd  and 2
jd  are computed for Symlet-4, (4.19) is 

applicable for Symlets and Coiflets of all order. It is because all scaling functions can be 
translated so that it centres at the origin, and the definition of ψ in (4.17) and the fact that 
ϕ is approximately symmetric about the origin implies that θ, computed using (3.1), must 
be centred at 1/4. The construction of dyadic wavelets based on other Symlets or Coiflets 
is similar and not to be repeated here. 
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4.3. Definition of an Energy Field based on Approximate Coefficients 
 
This section introduces an energy field that will be used in the proposed algorithm. This 
energy field is defined based on the approximated coefficients of the dyadic wavelet 
transform. 
 
In a typical prostate ultrasound image, the interior of the prostrate is relatively dark (i.e., 
the greyscale value is relatively low), while the exterior is relative bright (i.e., the 
greyscale value is relatively high). It can be expected that, in the smoothed image 
generated using dyadic wavelet transform, where the greyscale value of a pixel near the 
edge is computed by averaging the pixel value of the original image in its neighbourhood, 
the greyscale value near the edge is between the two extremes. Assuming the four initial 
points a user enters are reasonably close to the edge, the greyscale value of these four 
pixels on the smoothed image will be very useful in defining the boundary. Specifically, a 
set of pixels on the smoothed image that has greyscale values close to a weighted mean of 
these four values approximately define the boundary of the prostate. Therefore, for the 
DDC model, one can define an energy field that penalize the difference between this 
weight mean and the greyscale value of pixels on the smoothed image ja , represented by 
the set of approximate coefficients generated using dyadic wavelet transform at the scale 

j2 . For example, one can define this energy field, denoted by 1imE , as 
 

[ ] [ ] { }( )4,3,2,1:],[,,1 =−−= nyxafnmanmE nnjjim  

 
(4.20)  

 
where ( ).f  takes some kind of weighted mean of its argument and [ ]nn yx ,  denotes the 
coordinates of the user-defined initial point n. The negative of the absolute difference is 
taken because the DDC model moves to the peak of the energy field. 
 
To completely define the energy field 1imE , we are required to choose the scale j2 , at 
which the smoothed image is obtained, and how the weighted mean is defined. Recall 
that the scale j2  should be large enough so that the small-scaled variations, mostly 
caused by noise, are suppressed, and it should be small enough so that the outline of the 
prostate is not too coarse. By experiment, it is found that 4=j  is appropriate for our 
prostate boundary detection problem. Figure 48 shows an ultrasound image smoothed at 
scale 24. On the other hand, f could be defined so that it takes the arithmetic mean of its 
arguments. Figure 49 shows the plot of 1imE−  (i.e., the absolute difference defined in 
(4.20)). 
 
Figure 49 shows that the energy field 1imE  defines the prostate boundary quite well, 
except near the bottom of the prostate. This effect can be explained by the fact that we 
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choose the arithmetic mean of the greyscale value at the four initial points to define the 
boundary everywhere on the image. By observing Figure 48, we can observe that the 
grey-level of the smoothed image at the initial point at the bottom is much higher than 
that at other initial points. Therefore, it is unwise to choose a single greyscale value to 
define the boundary and the definition of the weighted mean, denoted by ( ).f  previously, 
should be localized. A reasonable solution would be to define ( ).f  so that at location 
[ ]yx,  of the smoothed image, we only take the weighted mean of the greyscale value at 
the two user-defined initial points nearest to [ ]yx, : 
 

[ ] { }( ) [ ] [ ]2,22111, ,4,3,2,1:],[ ccjccjnnjyx yxawyxawnyxaf +==  
(4.21)  

 
where [ ]11, cc yx  and [ ]22 , cc yx  are the two points closest to [ ]yx,  chosen from the four 
initial points { }4,3,2,1:],[ =nyx nn . The weight 1w  and 2w  are defined according to the 
distance between [ ]yx,  and the corresponding initial points: 
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1
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22
2 +

−=  

(4.22)  
 
where [ ] [ ]( )yxyxdist ′′,,,  defines the distance between the points [ ]yx,  and [ ]yx ′′, . 
 
With this definition of the weight mean, the energy field 1imE  can be computed according 
to (4.21). Figure 50 shows the plot of 1imE− . The abrupt change appears in this energy 
field comes from the fact that a different set of two points is selected to calculate the 
weight mean at different locations. It can be observed that the prostate boundary is much 
better defined by this modified energy field. 
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Figure 48   An ultrasound prostate image smoothed at a scale of 24. The four user-defined initial 
points is marked with the asterisk (∗ ). The contour on the background is the manual outline of the 
prostate. 

 
Figure 49   The energy field -Eim1 is plotted along with the prostate boundary drawn by an expert 
observer. 

 
Figure 50   The modified energy field -Eim1 and the prostate boundary drawn by an expert observer 
are plotted.  
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4.4. An Automatic Initialization Method 
 
Up to this point, we focus on introducing the building blocks of a semi-automatic 
segmentation algorithm that requires an expert observer’s supervision in the initialization 
process. However, as mentioned in Chapter 1, we are only one step away from a fully-
automatic segmentation algorithm. This step is to find a fully-automatic initialization 
algorithm. In this section, such an algorithm is introduced. 
 
Figure 51 shows the block diagram of the proposed initialization method. In our semi-
automatic segmentation algorithm, the user is required to enter four points – two of which 
lie on the vertical line that passes through the centre of the prostate and the other two lie 
on the horizontal line that passes through the centre. In this algorithm, the vertical line (or 
the centre column) is first identified using the procedure that will be introduced in 
Section 4.4.2. After that, two initial points on the centre column will be identified 
according to smoothed image and the gradient modulus obtained previously using the 
dyadic wavelet transform. This process is described in Section 4.4.1. At the same time, 
strong edges on the image will be identified by locating points where the gradient 
modulus is greater than a certain threshold. Since the border of the ultrasound image is 
known a priori and the boundary of the prostate is not likely to be very close to the border 
of the ultrasound image according to our observation, strong edge points close to the 
border of the image is taken out. The location of the strong edges and the two initial 
points identified are the essential information in the global and local initialization 
process, which will be described in detail in Section 4.4.4 and 4.4.5. Finally, the available 
initial points are interpolated according to the spline function. This process is similar to 
that described in Section 3.3.1.  
 
 

Define Centre Column Identify Two Initial Points

Identify Strong Edge Points Points close to the border 
are taken out. Global Initialization

Local Initialization 
Validate the available initial
points 

Interpolate the remaining
initial points using Spline

 
Figure 51   The block diagram of the proposed initialization method 

 



CHAPTER 4   ADAPTATION OF MALLAT AND ZHONG’S ALGORITHM AND THE DDC 
MODEL TO THE PROSTATE BOUNDARY DETECTION PROBLEM 
 

 

80

4.4.1. Identification of Two Initial Points 
 
The reason we choose to discuss the method used to define the two initial points first, 
rather than explaining our algorithm sequentially, is that this method will play a major 
role in the definition of the centre column.  
 
At this point, the centre column is assumed to be given. Figure 52(a) shows a prostate 
ultrasound image and the centre column, whereas Figure 52(b) shows the intensity profile 
of the centre column in the smoothed image. Usually, the centre of the prostate is located 
where the intensity profile of the centre column attains its local minimum. In our 
algorithm, we identify the smallest local minimum and take this point to be the estimate 
of the centre of the prostate, which is represented by the asterisk (*) in Figure 52(b). 
 
After identifying the centre, we locate two “significant” local maximum points closest to 
the centre. The reason behind this procedure is that the prostate boundary is normally 
characterized by a sharp increase in the light intensity (see Figure 52(a)). We define a 
“significant” point as a point that has value greater than a certain threshold. In our 
algorithm, this threshold is chosen to be the 90% percentile of the greyscale values in the 
centre column. We must choose one point higher and the other point lower than the 
centre. If there is no point that is greater than the threshold either on the upper side or the 
lower side of the centre, the greatest local maximum point is chosen. In Figure 52(b), the 
threshold is represented by the vertical line and the two local maximum points are 
represented by the crosses (×). 
 
 

(a) (b) 

Figure 52   (a) A prostate ultrasound image with the centre column represented by the line; (b) The 
intensity profile of the centre column in the smoothed image 
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Figure 53  The intensity profile, the gradient modulus and the function e from the position of the first 

to the second local maximum of the intensity profile (Note: The plot is scaled so that all 
three functions have the same maximum.) 

 
After identifying the two local maximum points, we restrict our attention to the interval 
from the first to the second local maximum points. We try to find two points that are 
reasonably close to the two local maximum points and have a high value of gradient 
modulus. To achieve this, we first define a function e: 
 

( ) ( ) cxxGxe −=  
(4.23)  

 
where G  is the gradient modulus and c is the midpoint between two local maximum 
points. This function is plotted in Figure 53.  
 
The two initial points are determined using the following rule: 
 

 [ ]
( ){ } 



=

∈
xemaxargx

c,ax1 , 

 [ ]
( ){ } 



=

+∈
xemaxargx

b,cx 12  

(4.24)  
 
where the first and the second initial points are denoted by a and b respectively. These 
two initial points are plotted in Figure 54. 
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Figure 54   The two automatically identified initial points 

 

4.4.2. Definition of the Centre Column 
 
As far as defining the centre column is concerned, images can be classified in two 
categories. The centre column is easily identified in one class and more difficult in the 
other. 
 
Case 1: Easy 
 
Figure 54 shows an example of this case. One can observe that the light intensity is very 
high around the centre of the prostate. We can take advantage of this property and define 
the centre column using the following algorithm: 
 
Step 1) Obtain the smoothed image using the dyadic wavelet transform described in 

Section 3.2.3, Part B. (see Figure 55(a)) 
 
Step 2) Take the average greyscale value for each column. (see Figure 55(b)). 
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Smoothed Image

Average

132 366
Midpoint

249

(a) (b) (c)  
Figure 55   (a) A smoothed ultrasound image; (b) The average greyscale value is computed for each 
column; (c) The average intensity vs. column profile. In Case 1, there are only one low-to-high 
crossing and one high-to-low crossing of the threshold, which is represented by the horizontal line. 

 
Step 3) After obtaining the average intensity vs. column profile (see Figure 55(c)), define 

a threshold – represented by the line in Figure 55(c) – and locate the crossings of 
the threshold. In the case shown in Figure 55, the crossings are at column 132 
and 366. 

 
Step 4) In Case 1, there are only one low-to-high crossing and one high-to-low crossing. 

Take the midpoint of the two crossings to be the centre column. In the case 
shown in Figure 55, column 249 is taken to be the centre column. 

 
The example image used in demonstrating how the two initial points are found in Section 
4.4.1 can be classified into Case 1. The centre column identified is shown in Figure 52(a).  
 
 
Case 2: Difficult 
 
Centre column is difficult to be identified in this case because the average greyscale value 
vs. column profile has multiple peaks – defined to be the interval from a low-to-high to a 
high-to-low crossing of the threshold. Figure 56 shows a typical image of this class. Since 
the light intensity on the top of the prostate is normally high, rather than taking the 
average of the whole column as we did in Case 1, we can take the average only for pixel 
near the top of the prostate of each column. This idea is applied in the development of the 
following algorithm: 
 
First, the two edge points for all possible centre columns are identified. For the image 
shown in Figure 56(a), there are two possible centre columns, each associated to a peak 
shown in Figure 56(b). These two columns are represented by the vertical lines in Figure 
57. For each column, two edge points are identified using the method introduced in 
Section 4.4.1. The edge points are represented by the crosses (×) in Figure 57. 
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(a) (b) 

Figure 56   (a) A typical ultrasound image of Case 2; (b) The average intensity vs. column profile. 
There are two peaks in this profile. 

 
Figure 57   There are two possible centre column, represented by the vertical line. The crosses 
represent the edge points associated to each possible centre column. 

Average

(a) (b) (c)  
Figure 58   (a) The smoothed ultrasound image; (b) The average of each column in the extracted 
image is computed; (c) The average intensity vs. column profile. The crossings associated to each 
possible column are indicated by arrows. 
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The upper edge points associated to all possible centre columns are recorded. 
 
The image bounded by the minimum and the maximum of the row indices of all the edge 
points collected in Step 2 is extracted. (see Figure 58(a)) 
 
For each column in the extracted image, the average is taken. (see Figure 58(b)) 
 
Recall that there are two crossings associated to each possible centre column. (see Figure 
56(b)) In Figure 58(c), the low-to-high crossings are represented by arrows pointing 
upwards and the high-to-low crossings are represented by arrows pointing downwards. 
For each possible centre column, the maximum of the interval bounded by the two 
associated crossings is found.  
 
Compare the maxima associated to each possible centre column. If the maximum 
associated to one centre column is significantly higher than that associated to other centre 
column, that centre column will be chosen. For our example image shown in Figure 57, 
the highlighted column on the left is chosen to be the centre column. Otherwise, as in the 
example shown Figure 59, we assume the two possible centre columns identified 
previously correspond to the sides of the prostate. Therefore, in this case, the centre 
column is estimated to be in the middle of the two possible centre columns. The centre 
column identified for the example image shown in Figure 59 is plotted in Figure 60. 
 

4.4.3. Identification of Strong Edge Points 
 
As mentioned at the beginning of this section, strong edges on the image will be 
identified by locating points where the gradient modulus is greater than a certain 
threshold. In our algorithm, the threshold is taken to be the 90% percentile of the gradient 
modulus. Figure 62(a) shows the positions of pixels where the gradient modulus is higher 
than the threshold. Figure 62(b) shows the remaining points after the points close to 
border are taken away. 
 

Average

 
Figure 59   An example where, in the average intensity vs. column profile, the maximum value 
associated to a possible centre column is close to that associated to another possible centre column. 
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Figure 60   The centre column identified for the example shown in Figure 59 

 
Figure 61   The gradient modulus of an ultrasound image 

 
(a) (b) 

Figure 62   (a) The pixels with the gradient modulus higher than the threshold are shaded; (b) The 
remaining points after the points close to the border are filtered out 
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4.4.4. Global Initialization 
 
Recall that two initial points are identified in Section 4.4.1 and the “qualified” edge 
points are identified in Section 4.4.3. Now, other initial points on the contour should be 
defined. This is done by a process we call “global initialization” followed by the “local 
initialization”. The “global initialization” process is defined by the following algorithm: 
 
Step 1) First, the distance between the two initial points is measured and denoted by d. 

Then two circles, one with diameter less than d and the other with diameter 
greater than d, are drawn. In our algorithm, the smaller circle has a diameter of 
0.95d and the diameter of the bigger one is 1.2d. We restrict the algorithm to pick 
initial points that are outside the smaller circle and inside the bigger one. (see 
Figure 63) 

 
Step 2) The region outside the smaller circle and inside the bigger circle is divided into N 

segments, where N is chosen to be 32 in our algorithm. From each segment, a 
point closest to the centre is chosen to be an initial point. In Figure 63, the initial 
points are represented by the crosses (×). 

 
 

 
Figure 63   Initial points identified by the global initialization process 
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4.4.5. Local Initialization 
 
At this point, a number of initial points have been identified using the process of “global 
initialization” described in Section 4.4.4. Obviously, as observed in Figure 63, the initial 
points are concentrated at the top and the bottom of the prostate and no initial points can 
be identified on both the left and the right side of the prostate. More initial points are 
required in order to initialize a contour that is reasonably close to the actual boundary. 
We use a process we call “local initialization” to locate initial points that are close to the 
existing initial points. The following algorithm defines the “local initialization” process: 
 
Step 1  
First, the algorithm requires three user-defined parameters, tabulated below: 
 
initial_contour A vector containing the initial points identified using the “global  

initialization” process. 
resolution A user entered parameter indicating the desired separation between 

adjacent vertices of the contour. 
qualified_points The set of points that satisfies the criteria introduced in

Section 4.4.3. Figure 62(b) shows an example of this set of points. 
 
 
Step 2  
The length of each segment between adjacent initial points is calculated. In the following 
pseudocode, the number of points in initial_contour is denoted by num and the function 

( )⋅⋅,dist  returns the distances between two arguments. 
 
for k = 1:num 

segment_length(k) = dist(initial_contour(k), initial_contour((k+1) mod [1,num])); 
end 
 
Step 3  
Starting from k = 1, the length of the kth segment is compared to a certain threshold, 
which is set to be 1.5 times resolution in our algorithm. If the length of the kth segment is 
greater than the threshold, Step 4 will be carried out. If not, k is incremented and this step 
is repeated until the length of all the segments of the contour have been compared to the 
threshold, at which stage the algorithm is completed.  
 
Step 4  
This is a step in which more initial points are added. In the following, the function 

( )⋅length  returns the total number of elements contained in the argument: 
 
        pk-1 = initial_contour((k-1) mod [1,num]); 
        pk = initial_contour(k); 
        pk+1 = initial_contour((k+1) mod [1,num]); 
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        dist_to_next_point = dist(pk, pk+1); 
        di,global = pk+1 - pk; 
         
 point_in_question = pk; 
        point_added_temp = []; 
        while (point_in_question is not empty) & (dist_to_next_point > 1.5 × resolution) 
            if length(point_added_temp) >= 2;  
                last_index = length(point_added_temp); 
                di-1 = point_added_temp(last_index) - point_added_temp(last_index-1); 
            elseif length(point_added_temp) = 1 

 di-1 = point_added_temp(1) - pk; 
            else; di-1 = pk - pk-1; 

end 
             

Calculate the vector from “point_in_question” to each point in the set “qualified 
points” defined in Step 1. (Denote this vector as di hereafter. Note that each point 
has an associated di.) 
 

            qualified_points = a set of points that satisfies the following four conditions: 
a) points must be in the set “qualified_points” defined in 

Step 1; 
b) 01 >• −ii dd ; 
c) 0>• global,ii dd ; 

d) resolution.di ×< 51 . 
(4.25)  

 
idxchosen_point= { }resolution - uestion)point_in_q s(i),fied_pointdist(qualiminarg

i
; 

(4.26)  
             

point_found = qualified_point(idxchosen_point); 
 
            point_added_temp = [point_added_temp point_found]; 
            point_in_question = point_found; 
             

if point_in_question is not empty  
                dist_to_next_point = dist(point_in_question, pk+1); 
            end 
        end     
         
An example will be used to demonstrate the above procedure. In the example illustrated 
in Figure 64, Segment 1 to 14 is shorter than the threshold, and therefore, no action is 
taken. The 15th segment is longer than the threshold and the algorithm shown above is 
executed. Before locating the first additional point, the values of the variables 
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point_in_question, di-1 and di,global are assigned, which are illustrated in Figure 64(a). 
Then di, the vector from “point_in_question” to each point in the set “qualified points” – 
all elements of which are shaded in blue in Figure 64(a) – is calculated. After di 
associated to each point in the set “qualified_points” is calculated, the set 
“qualified_points” will be redefined, choosing points that satisfy the four conditions 
stated in (4.25). Conditions b and c are to ensure the algorithm selects points in a 
consistent direction – the counter-clockwise direction in this case. Condition d prevents 
the algorithm from selecting an initial point that is very far away from the last initial 
point. The implementation of this restriction is based on the rationale that if the last initial 
point lie on the desired boundary, a point located far away from this point is very likely to 
be part of a false edge. From the redefined set “qualified_points”, one point will be 
chosen be the next initial points according to (4.26). This criterion chooses the next initial 
point such that the distance between this point and the last initial point identified (labelled 
as “point_in_question” above) is as close to the user-defined variable “resolution” as 
possible. The first additional point chosen is plotted in Figure 64(a). The second points 
chosen, shown in Figure 64(b), is defined in the same way, except the variables di-1 and 
point_in_question are changed. The variables associated to the selection of the second 
point are shown in Figure 64(b). After this point has been found, the “while” loop in the 
above algorithm run for a third time. However, on this run, no point satisfies the four 
conditions stated in (4.25) and the algorithm leaves Step 4. At this point, k is incremented 
and the algorithm returns to Step 3. 
 
Step 5  
 
Step 3 and Step 4 are repeated in the clockwise direction. 
 
This concludes the discussion on the local initialization process. In Figure 65 shows all 
the points identified by the global and the local initialization process. 
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First Point Chosen

di,global

di-1

di

segment_length(15) p1

p and
point_in_question

15  

p14

 
(a) 

Second Point Chosen

di,global

di-1

di

segment_length(15)

p15

p1

point_in_question

 
(b) 

Figure 64   An example illustrating the procedure in Step 3 of Section 4.4.5 
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Figure 65   Initial points identified in the global initialization process are represented by the crosses 

(×), and those identified in the local initialization process are represented by asterisks (∗ ). 
The manually outline contour is also plotted (in black) for comparison. 

  

4.4.6. Validation of the Available Initial Points 
 
Now, we have a number of initial points, identified by the global and local initialization 
process. Unfortunately, a small portion of initial points may lie on false edges as shown 
in Figure 66. The presence of such points will distort the initial contour, and therefore, it 
is important to design a mechanism to differentiate accurate and inaccurate initial points.  
 
In the following, we propose a method that differentiates accurate and inaccurate points 
according to the distances between these points and the centre, which is defined to be the 
midpoint of the segment joining the two initial points identified in Section 4.4.1: 
 
Step 1  
 
The process begins by defining two variables based on the variable initial_contour, 
which is a vector containing all the initial points identified in the global and local 
initialization process: 
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init_pt_angle The kth element of this vector is the angle associated with the 
vector from the centre to initial_contour(k). The vector 
initial_contour has been sorted so that init_pt_angle is an 
ascending sequence and the values of its elements are in the 
interval [ )π20, .  

dist_centre_profile The kth element of this vector is the distance between the point 
initial_contour(k) and the centre. The length of this vector is 
equal to that of initial_contour. 

dist_centre_profile_ratio The kth element of this vector is the ratio between 
dist_centre_profile(k+1) and dist_centre_profile(k). The total 
number of elements in this vector is less than that of 
dist_centre_profile by 1.  

 
Step 2  
 
The definition of the vector dist_centre_profile_ratio implies all of its elements should be 
close to 1, because two adjacent elements of dist_centre_profile should have a similar 
value. If this is not the case, there are two possibilities: (1) The point corresponds to one 
of the two elements in question does not lie on the boundary. For example, two adjacent 
points are represented by Point A and Point B in Figure 66(a), and Point B does not lie on 
the boundary; (2) The two points correspond to the adjacent elements in question both lie 
on the boundary. However, because of the geometry of the prostate, the two adjacent 
elements of dist_centre_profile in question are significantly different. An example of this 
case is shown in Figure 66(b). Note that the distance between the centre and Point B is 
almost three times as large as that between the centre and Point A, but both points lie on 
the boundary. 
 
To differentiate between the two cases mentioned above, the following algorithm is used: 
 
while k <= length(dist_centre_profile_ratio)-1 
 
if dist_centre_profile_ratio(k) > 2 | dist_centre_profile_ratio(k) < 0.5 

n = the index n such that  
 

( )[ ]

( )
( ) ( )( ) 







π++≤
=

∈ 21
 

1 kgleinit_pt_anmgleinit_pt_an
:mgleinit_pt_an

maxgle(n)init_pt_an
angle_pt_initlength,m

;  

 
d = dist_centre_profile(k+1); 

 
for u = k+1:n 

if (0.65 × d < dist_centre_profile(u) < 1.25 × d) 
qualified_point = [qualified_point initial_point(u)] 

else 
not_qualified_point = [not_qualified_point initial_point(u)] 
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end 
 

p = length(qualified_point)/(n-k); 
if p >= 0.5 

Delete all elements in not_qualified_point from initial_point 
else 

Delete all elements in qualified_point from initial_point 
end 
k = n + 1; 

else 
k = k + 1;  

end 
end 
 
To demonstrate how the algorithm works, we use the examples shown in Figure 66. In 
both examples, the element of dist_centre_profile_ratio that equals to the ratio of the 
distance between Point B and the centre and that between Point A and the centre is found 
to be greater than 2. This makes us suspicious of whether Point B lies on the boundary. 
The propose algorithm first collects points that are inside the π/2 segment starting from 
Point B. Then, it classifies this set of points into two categories: the one with distance 
from the centre appromately equal to d, the distance between the centre and Point B, and 
those with distance from the centre that is not close to d. In Figure 66, points that are 
classified into the first group are those inside the shaded segment and the remaining 
points inside the π/2 segment are classified into the second group. If more than half of the 
points inside the π/2 segment are classified into one of the two groups, points belong to 
that groups are retained and points belong to the other group are eliminated. In  
Figure 66(a), the points belong to the first group are eliminated. It can be observed that 
this decision is correct; the points classified into the first group do not lie on the 
boundary. In Figure 66(b), the points belong to the second group are eliminated. In this 
case, some points close to the boundary are eliminated. However, it is only a minor 
problem because the segment represented by the deleted points can be closely 
approximated by a straight-line segment joining two retained vertices, and therefore, the 
deletion of these initial points does not have a significant impact on the final contour 
generated by the DDC algorithm. On the other hand, it is important to keep points that are 
in the first group, which is essential for defining the corner segment of the prostate 
accurately. Therefore, it can be said that the algorithm makes a good decision in this case. 
 

4.4.7. Interpolation of the Remaining Initial Points Using Spline 

 
Now, we have a number of initial points, identified by the global and local initialization 
process. The final task remains to be done in our initialization algorithm is to connect the 
available points to form an initial contour. Of course, we could easily connect the points 
with straight lines. However, since the boundary of the prostate is usually smooth, the 
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initial contour would be more accurate if the available points are joined using the spline 
interpolation method introduced in Section 3.3.1. 
 
The procedure of interpolating the available initial points are almost exactly the same as 
that used to interpolate the four user-defined initial points in Section 3.3.1, except the 
knot sequence is defined differently. In Section 3.3.1, the four initial points are 
approximately equally-spaced, and therefore, we can use a uniform knot sequence 
{ }43210 ,,,,  to define the data points. However, it is obvious that we cannot claim the 
distance between adjacent initial points are equal here, and therefore the knot sequence 
cannot be uniform. In the proposed algorithm, the knot sequence is defined according to 
the length of the straight-line segment joining adjacent initial points – the first knot is 0 
and the k+1th knot is the sum of the length of the first k segments. After defining the knot 
sequence, the cubic polynomials defining the x-coordinate and the y-coordinate of the 
interpolated contour, denoted by ( )ux  and ( )uy  respectively in Section 3.3.1, can be 
readily obtained using the Spline toolbox in MATLAB. 
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(b) 

Figure 66   Two examples showing the effects of the validation process (Initial points identified after 
the global and local initialization process are marked either in white crosses (×) or black asterisks (∗ ). 
The validation process eliminates points that are represented by black asterisks and keeps those that 
are marked in white.) 



CHAPTER 4   ADAPTATION OF MALLAT AND ZHONG’S ALGORITHM AND THE DDC 
MODEL TO THE PROSTATE BOUNDARY DETECTION PROBLEM 
 

 

97

Since the initial contour consists of only a finite amount of vertices, we need a 
mechanism to define the vertices lying on the initial contour. In the proposed algorithm, 
initial points are added to the set of available initial points only if the segment joining 
adjacent vertices is too long. In other words, if the difference between two adjacent knots 
is larger than a certain threshold, say the parameter “resolution” defined in Step 1 of 
4.4.5, ( )ux  and ( )uy  will be evaluated at some u between these two adjacent knots. 
Suppose e is the sequence of u at which ( )ux  and ( )uy  will be evaluated. Then, e is 
defined by the following algorithm: 
 
e = original knot sequence = [ ]NNo uuuu 11 −L ; 
for k = 1:N 

if resolutionuu kk >− −1  





 −

= −

resolution
uu

intnumpo kk 1 ; 

[ ]resolutionintnumpouresolutionuresolutionuu kkkadd ×+×++= L2 ; 
Insert uadd between uk-1 and uk in the sequence e; 

end 
end 
 
This completes the description of the proposed automatic initialization method. The 
resulting initial contour for a sample ultrasound image is illustrated in Figure 67. 
 

 
Figure 67   The initial contour produced by the proposed initialization algorithm (drawn in solid 

black line) is compared to the professionally outlined contour (drawn in solid white line) 
and the initial contour defined in Section 3.3.1. (drawn in dashed line) 
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4.5. Summary and Remarks 
 
In this chapter, some modifications to Mallat’s dyadic wavelet transform are introduced. 
First of all, it is pointed out that, in his book [1], Mallat shifted the wavelet coefficients 
inappropriately. It is demonstrated in Section 4.1 that the shifting error in the modulus 

fM j2
 is very significant if  j is large. This error causes the segment identified by his 

algorithm to be shifted with respect to the actual border. Also in this section, a detailed 
explanation is given on why one must shift the wavelet coefficients generated by the 
dyadic wavelet transform, which was not explained clearly in [1]. This interpretation did 
not only allow us to determine the accurate shift in Mallat’s algorithm, it also helps us to 
find out how much shift on the wavelet coefficients is required when we use other dyadic 
wavelets, such as those we constructed in Section 4.2 based on the scaling functions of 
Symlets and Coiflets, rather than the quadratic spline wavelet. 
 
In Chapter 3, it is argued that Mallat’s dyadic wavelet transform method is more flexible 
than taking the numerical gradient of the Gaussian-smoothed image. As an effort to 
realize the potential of this method, we made use of the scaling functions of the Symlets 
and Coiflets families as a starting point, and followed Mallat’s method in constructing the 
spline dyadic wavelet, in an attempt to construct new dyadic wavelets. Until we present 
our results in Section 5.3, we do not know how much or whether the segmentation results 
will be better when these wavelets are used. However, it is believed that the dyadic 
wavelets constructed based on Coiflets will give good results because the scaling 
functions have a number of vanishing moments. 
 
In Section 4.3, a new energy field is defined based on the approximate coefficients of the 
dyadic wavelet transform. It is observed that, in an ultrasound image, the greyscale value 
of pixels near the border of the prostate tends to lie on a certain range, which can be 
estimated using the greyscale value of the pixels at the four points user enter as initial 
points of the DDC model. The new energy field was defined in a way such that, if it is 
used to drive the DDC model, the contour will converge to location where pixels have 
greyscale value in this range. This new energy field gives information about the border of 
the prostate that is not available when gradient-based method is used. This energy field 
serves a very important role in the proposed semi-automatic algorithm, which will be 
introduced in Section 5.1. 
 
After introducing all the building blocks of the semi-automatic algorithm, we try to 
extend existing ideas in developing a fully-automated segmentation algorithm. The 
benefits associated with a fully-automated segmentation tool are very significant as 
mentioned in Chapter 1. Because only the initialization stage of the semi-automatic 
algorithm needs human supervision, the proposed semi-automatic algorithm would 
become a fully-automatic one if the semi-automatic initialization process is replaced by a 
fully-automatic one. In Section 4.4, a fully-automatic initialization process is introduced. 
The whole segmentation algorithm will be presented in Section 5.1 and the performance 
of this algorithm will be evaluated in Section 5.3. 
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Chapter 5  
 
The Proposed Algorithm 
 

5.1. The Proposed Algorithm for Prostate Boundary Detection 
Figure 68 shows the structure of the proposed segmentation algorithm. There are four 
“functional blocks” in the diagram. A functional block is used to represent operation that 
generates one or more output variables, when given the required input variables. In 
Figure 68, the input and the output variables are listed on the left and the right side of the 
functional blocks respectively. The operations of the “fast dyadic wavelet transform” 
block and the “fully-automatic initialization” block have been introduced in Section 3.2.3 
and 4.4 respectively. In this section, the remaining two blocks – the “semi-automatic 
initialization” block and the “final contour definition” block – will be defined. 
 

5.1.1. The “Semi-Automatic Initialization” Block 
 
It can be observed in Figure 38 that the initial contour defined using the spline 
interpolation technique cannot capture the bulge on the top of the prostate. Since there are 
many false edges near the top of the prostate, the DDC model driven by an energy field 
proportional to the gradient modulus is easily attracted to these edges, and therefore, 
cannot capture the shape of the bulge accurately. To improve the accuracy of the 
segmented boundary, a more accurate initial contour is needed. The purpose of the “semi-
automatic initialization” block is to reinitialize the contour so that it better approximates 
the actual boundary. 
 
An energy field that can be used to define the edge is introduced in Section 4.3, and, as 
explained in that section, this energy field should be able to drive the DDC model 
towards the bulgy shape because of the high light contrast near the top of the prostate. 
 
In the “semi-automatic initialization” block, this energy field is used to drive a modified 
DDC model. This DDC model only takes into account of the external forces that drive the 
contour towards the centre of the prostate, or more specifically, the direction of the radial 
vectors defined in (3.42), and ignores the external forces opposite to this direction. This 
constraint is implemented because, in most cases, the bulgy shape is inside the initial 
contour defined by the spline interpolation introduced in Section 3.3.1. Figure 69 shows 
the structure of the “semi-automatic initialization” block. Figure 70 compares the output 
contour with the manually outlined boundary of the prostate in an ultrasound image.  
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Figure 68   Proposed algorithm for prostate boundary detection in 2D ultrasound image 
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Figure 69  The “Semi-Automatic Initialization” block 

 

 
Figure 70   The output contour of the semi-automatic initialization block (in black) is compared to 
the manually outlined contour (in white). 

 

5.1.2. The “Final Contour Definition” Block 

 
The purpose of this block is to define the prostate boundary accurately, given the initial 
contour, which have been evaluated either in the “semi-automatic initialization” block or 
the “fully-automatic initialization” one, and the gradient modulus obtained from the 
dyadic wavelet transform.  
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Figure 71   The “Final Contour Definition” block 
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Figure 72   The “Reinitialization” block – a sub-block of the “Final Contour Definition” block 
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To allow fair comparison on the performance of different wavelets, the image should be 
smoothed by smoothing functions with approximately equal effective support before the 
gradient modulus is taken. For this reason, we have chosen to assign the energy field to 
be 62

M  if the zero order spline dyadic wavelet transform is used, 52
M  for first order 

spline transform, 42
M  for higher order spline transform and 52

M  for all orders of Symlet 
and Coiflet transform.  
 
Edges that are part of the desired prostate boundary are likely to be strong edges. 
Therefore, if a segment of the resulting contour generated by the first DDC run does not 
lie on strong edge, it is likely that the segment in question does not lie on the prostate 
boundary. In the proposed algorithm, a feedback mechanism is included to replace the 
segment on the resulting contour that is likely to be inaccurate with another segment that 
is more likely to accurately represent the prostate boundary. First, this mechanism should 
be able to detect whether the contour generated by the first DDC run is likely to be 
accurate – or in other words, whether it lies on strong edges. This task is done by 
comparing the average of the gradient modulus at the positions of all vertices on the 
contour to a threshold td. If the average is greater than td, then the contour generated by 
the first DDC run is declared to be the boundary detected by the proposed algorithm. 
Otherwise, the contour needs to be “reinitialized”. Figure 72 shows the block diagram of 
the reinitialization process used in the proposed algorithm. The function of this process is 
to replace a vertex that lie on weaker edge – defined to be edge features where the 
gradient modulus is lower than td – by another vertex that lies on a stronger edge in the 
neighbourhood of the original vertex. The reinitialized contour will serve as the initial 
contour for the second DDC run. 
 
Figure 74 shows the importance of the reinitialization mechanism. Figure 74 shows that 
the contour generated by the first DDC run is very inaccurate on the left half of the 
prostate. The reason for this inaccuracy is that the initial contour is very far off from the 
actual boundary, which, in turn, can be explained by the fact that no initial points can be 
identified around there using the proposed fully-automatic initialization method because 
the edge feature defining the prostate boundary is relatively weak there. (see Figure 73) 
By applying the initialization procedure, the inaccurate segment of the contour can be 
attracted to a strong edge point. If the reinitialized contour is used as the initial contour in 
the second DDC run, the contour obtained after the second DDC run is much more 
accurate than that obtained after the first DDC run. (see Figure 74) 
 
This concludes the introduction of the proposed segmentation algorithm. The accuracy of 
the contour generated by the semi-automatic and the fully-automatic part of the algorithm 
will be evaluated in Section 5.3. 
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Figure 73   The automatically identified initial points (represented with the white crosses (×) ) and the 
manually outlined contour. Note that around the weak edge segment on the left hand side, there is no 
initial point identified. 

 

 
Figure 74   This figure shows the importance of the reinitialization process. Note that the boundary 
obtained after the second DDC run is much more accurate than that obtained after the first DDC 
run. 
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5.2. Evaluation Criteria for the Segmented Boundaries 
 
In evaluating the accuracy of the semi-automatically outlined boundary defined by their 
algorithm, Ladak [8] defined a distance-based metric. Before calculating various 
parameters in this metric, they chose the centre of the prostate. (see Figure 75) At a 
certain angle θi, the distance, from the boundary generated by their algorithm and from 
the manually outlined contour, to the centre are measured. The difference between these 
two distances is computed for N uniformly sampled angles in the interval [ )π20, . This set 
of values, denoted by ( ) ( ) ( ){ }Nd,,d,d θθθ L21 , is used computed three quantities: (a) 
the mean difference (MD), (b) the mean absolute difference (MAD), (c) the maximum 
difference (MAXD). MD, MAD and MAXD are defined by 
  

( )∑
=

θ=
N

i
i NdMD

1
 

(5.1)  

( )∑
=

θ=
N

i
i NdMAD

1
 

(5.2)  

[ ]
( ){ }iN,i

dmaxMAXD θ=
∈ 1

 

(5.3)  
 

5.2.1. Problems Associated with Ladak’s Distance-Based Metric 
 
The first problem of Ladak’s [8] distance-based metric is on the use of the mean 
difference as one of the parameters to evaluate the accuracy of the boundary. Since the 
positive errors and the negative errors cancel, this parameter actually gives no 
information about the accuracy of the segmented boundary. For this reason, the mean 
difference parameter is abandoned in the evaluation of the boundary segmented by the 
proposed algorithm. 
 
The second problem is best demonstrated using an example. The automatically outlined 
contour (drawn in white) is compared to the manually outlined contour (drawn in black) 
in Figure 76. The centre is represented by the white cross (×). In a certain angle θi with 
respect to the centre, we find the distance ( )id θ , represented by a in Figure 76. 
However, it is obvious that the deviation is badly exaggerated, basically because the 
implicit assumption associated with this metric – the line along which the deviation is 
measured is approximately perpendicular to both boundaries – is violated. This 
unnecessary assumption occasionally makes their distance-based metric poorly reflects 
the degree of the contour’s accuracy.   
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id θ

iθ

 
Figure 75   Illustration of d(θi ), the difference between the manually outlined boundary and the 
boundary defined by a computerized algorithm at an angle θi 

 

a Viri

b

 
Figure 76   Comparison between the deviation measured by Ladak’s distance-based metric, 
represented by a, and that measured by the proposed distance-based metric, represented by b 

 

5.2.2. The New Distance-Based Metrics 

 
To solve the second problem of Ladak’s [8] distance-based metric mentioned in 
Section 5.2.1, we must find a way so that we can measure the deviation along a direction 
that is approximately perpendicular to the boundaries at the location where the 
measurement is made. Recall that at a vertex Vi of the DDC model, the direction that is 
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perpendicular to the contour is defined by the radial vector ir̂ , which is defined by (3.42). 
Therefore, one could completely abandon the rather arbitrary parameter – “the centre of 
the prostate” – and measure the difference of the boundaries along the direction of ir̂ . In 
Figure 76, the distance between the two boundaries along the direction of ir̂  is 
represented by b. It is obvious that the distance measured in this way better reflects the 
degree of the contour’s accuracy than the method introduced in Section 5.2.1.  
 
In the revised distance-based metrics, the distance between the two boundaries is 
measured at some vertex Vi of a contour along the direction of the corresponding ir̂ . 
Since the vertices of the automatically segmented contour are equally spaced, one would 
expect to obtain uniform samples of the distance between the two boundaries when 
choosing to measure the distance at all the vertices of the automatically segmented 
contour. However, there are two problems associated to this scheme: First, if a vertex on 
the automatically segmented contour is outside the manually segmented contour, there is 
no guarantee that we could find a point on the manually segmented contour along the 
direction of ir̂ . The distance could not be defined in this situation. (see  
Figure 77(a) ) Second, if a bulgy or circular shape is mistakenly detected by the 
segmentation algorithm, the lines along the direction of the radial vectors ir̂  associated to 
the vertices on the circular segment may intersect the manually defined contour in 
approximately the same location. This effect causes the oversampling of the distance 
between the two boundaries around the circular shape, which results in the unfair 
assignment of the mean deviation. (see Figure 77(b) )  
 
The two problems described occur because one or several neighbouring vertices of the 
automatically defined contour are outside the manually defined contour. These problems 
could be solved if the distance between two boundaries is always measured from the 
vertices on the inner contour to the outer contour along the direction of the vertices’ 
radial vectors. (see Figure 77(b) and Figure 78(b) )  
 
The set of distances measured is represented by ( ) ( ) ( ){ }numVd,,Vd,Vd L21 , where 
num denotes the total number of vertices chosen for distance measurement. The MAD 
and MAXD are defined the same way as in (5.2) and (5.3), except θi is replaced by Vi and 
N is replaced by num. An additional parameter we would like to evaluate is the 
percentage of values in the set ( ) ( ) ( ){ }numVd,,Vd,Vd L21  that is smaller than 4 
pixels. This can be viewed as the percentage of points that are very close to the manually 
outlined contour. 
 
In Section 5.3.1, we will show the computation of these quantities for the contour 
associated to the second order spline wavelet of an ultrasound image. 
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(a) (b) 

Figure 77   (a) The distance from a vertex on the automatically defined contour (in white) to the 
manually defined boundary (in black) along the direction of ir̂  associated to the vertex is undefined; 
(b) The solution is to sample the distance of the two boundaries by choosing a vertex from the 
manually defined contour, which is inside the automatically defined boundary around that region, 
rather than a vertex from the automatic boundary, and measuring the distance from the chosen 
vertex to the automatic boundary along the direction of ir̂  associated to the chosen vertex. 

(a) (b) 

Figure 78   (a) Distance between the two boundaries is measured from a vertex (marked by asterisks) 
on the automatically defined contour (in white) to the manually segmented boundary along the 
direction of  ir̂  associated to the vertex. The white crosses represent the point where the line along 

the direction of ir̂  of a vertex intersects the manually segmented contour. If a bulgy shape outside the 
manual outline is mistakenly detected, the distance between the two boundaries is oversampled 
around the bulgy shape; (b) This problem is solved if the distance is measured from vertices on the 
manual outline, which are inside the automatic contour, to the automatic contour. 

 



CHAPTER 5   THE PROPOSED ALGORITHM 
 

 

109

5.3. Results 
 
In the proposed algorithm introduced in Section 5.1, segmented boundary can be obtained 
either automatically or semi-automatically. In this section, the boundaries obtained under 
these two conditions are evaluated. 
 
The presentation of the results is organized in the following way: In Section 5.3.1, we 
will show the accuracy of the contours generated for a single image by the proposed 
semi-automatic and the automatic segmentation algorithm. The energy fields used in 
generating these two sets of results are based on the 2nd order spline wavelet. In Section 
5.3.2, Part A, we will compare the performance of the proposed semi-automatic 
algorithm with the UWO algorithm in 8 randomly chosen test images. In this part, the 2nd 
order wavelet is used in generating the required energy fields for the proposed algorithm. 
In Part B of this section, we would like to know whether there is an improvement in the 
accuracy of the segmented contour if the input energy fields of the segmentation 
algorithm is generated based on different wavelets, and if so, how much the accuracy is 
improved. In this part, we use 14 different wavelets in generating the approximate and 
detailed coefficients for each image: spline wavelets of order 1 to 7, Symlets of order 4, 6 
and 8, and Coiflets of order 1 to 4. The three quantities introduced in Section 5.2.2 will 
be calculated for all 14 contours associated with the 8 test images. The average 
performance parameters correspond to each wavelet will be tabulated. In Section 5.3.3, 
the accuracy of the boundary outlined by the proposed automatic algorithm in the 8 test 
images will be tabulated. The energy fields used in this section are based on the 2nd order 
spline wavelet. 
 

5.3.1. The Accuracy of the Contour for One Image 

 

A) Semi-Automatic Segmentation Algorithm  

 
Figure 79 shows the semi-automatically outlined boundary defined by the proposed 
algorithm. This boundary is compared to the one generated by the UWO algorithm 
introduced in Section 3.3, also a semi-automatic segmentation algorithm. The three 
accuracy indicators introduced in Section 5.2.2 − (a) MAD, (b) MAXD and (c) % of 
points where ( ) pixels4<iVd  − are computed for both contour, and the results are 
tabulated below: 
 

 MAD 
(in pixels) 

MAXD 
(in pixels) 

% of points where ( ) pixels4<iVd  

The proposed semi-
automatic algorithm 1.6357 5.4226 90.9091 
UWO algorithm 4.1913 20.2452 74.3590 
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It can be observed that the improvement of performance in all three aspects is very 
significant. It can be explained by the fact that the initial contour generated by the semi-
automatic initialization process introduced in Section 5.1.1 is much more accurate than 
that generated using the initialization process described in Section 3.3.1. 
 

B) Fully-Automatic Segmentation Algorithm 

 
Figure 80 compares the fully-automatically generated boundary with the manually 
outlined boundary. The three performance indicators associated to the fully-automatically 
outlined contour are tabulated in the following: 
  

MAD (in pixels) MAXD (in pixels) % of points where ( ) pixels4<iVd

1.8247 6.1485 90.9091 
 

The result here is remarkable. For this image, the accuracy of the contour generated 
automatically is comparable to that generated semi-automatically. In fact, for this image, 
the accuracy of the automatically generated contour is better than that of the semi-
automatically defined contour generated by the UWO algorithm. However, we should 
test the algorithm in a wider variety of images before a general conclusion is made. 
 
 

  
Figure 79   The contour determined by the proposed semi-automatic algorithm (in black solid line) is 
much more accurate than that generated using the UWO algorithm (in black dotted line). The 
contour in white is the manual outline. 
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Figure 80   The automatically defined contour (in black) is compared with the manually outlined 
contour (in white). 

 

5.3.2. The Accuracy of the Semi-Automatically Outlined Contour for the Entire Set 
of Images 

 

A) The Accuracy of the Contours Generated Based on the 2nd Order Spline Wavelet 

 
The following tables show the accuracy indicators of the contour generated by the 
proposed semi-automatic algorithm and the UWO algorithm for 8 randomly chosen test 
images: 
 
Image No. MAD (in pixel) MAXD (in pixel) % of points where ( ) pixels4<iVd  

1 4.0170 16.1173 60.5263 
2 2.3327 8.1926 74.4186 
3 1.8704 5.7542 84.2105 
4 3.2844 9.3350 64.2857 
5 2.9317 7.9685 69.4444 
6 1.7035 5.5453 94.4444 
7 1.6357 5.4226 90.9091 
8 1.7610 6.3826 90.3226 

Mean 2.4421 8.0898 78.5702 
Table 2   The accuracy parameters associated to the proposed semi-automatic algorithm 
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Image No. MAD (in pixel) MAXD (in pixel) % of points where ( ) pixels4<iVd  

1 3.3765 16.0556 69.2308 
2 4.2506 19.1801 68.4211 
3 3.2786 18.3091 76.3158 
4 2.7108 7.6951 64.2857 
5 2.6840 9.0332 75.0000 
6 1.9802 5.1042 88.8889 
7 4.1913 20.2452 74.3590 
8 2.7688 13.1185 86.2069 

Mean 3.1551 13.5926 75.3385 
Table 3   The accuracy parameters associated to the UWO semi-automatic algorithm 

 
The boundary generated by the proposed semi-automatic segmentation algorithm is more 
accurate that that generated by the UWO algorithm in most of the test images – Image 2, 
3, 6, 7 and 8 – whereas the accuracy of the contours generated using these two algorithms 
are effectively the same in the remaining images. It is because the prostates in Image 1, 4 
and 5 have an elliptical shape that is closely approximated by the spline interpolation 
process introduced in Section 3.3.1, and therefore, performing the semi-automatic 
initialization process described in Section 5.1.1 does not offer much improvement, 
whereas the prostate boundaries in Image 2, 3, 6, 7 and 8 have some irregular features, 
such as a bulge, and the initial contour obtained using the proposed semi-automatic 
initialization process is significantly more accurate than that generated using the spline 
interpolation process. It is reasonable to expect that the shape of the prostate in most of 
the ultrasound image is irregular because it is likely that something abnormal is felt by 
the patient before the ultrasound images are taken for his prostate, and the abnormality 
tends to have an irregular shape. Therefore, the proposed semi-automatic segmentation 
algorithm should perform better in most ultrasound prostate images. 
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B) The Accuracy of the Contours Generated Based on Different Wavelets 

 
Types of Wavelet MAD (in pixel) MAXD (in pixel) % of points where ( ) pixels4<iVd  

Spline1 2.6331 8.2135 76.9839 
Spline2 2.4421 8.0898 78.5702 
Spline3 2.3282 7.7859 77.9449 
Spline4 2.3536 7.7187 79.6802 
Spline5 2.3117 7.1934 78.8496 
Spline6 2.4609 8.3381 76.9000 
Spline7 2.5197 8.8974 77.6454 
Symlet4 2.6959 8.3915 71.5284 
Symlet6 2.5861 8.4587 76.4143 
Symlet8 2.7259 9.0345 73.3490 
Coiflet1 2.5223 8.9134 78.3918 
Coiflet2 2.4723 8.1749 76.5851 
Coiflet3 2.5659 8.3783 75.0271 
Coiflet4 2.5863 8.4295 73.5920 

Table 4   The average accuracy parameters associated to the Spline-based, Symlet-based and Coiflet-
based semi-automatic algorithm 

 
The way the data are obtained in Table 4 was described in the introduction of this section. 
In this table, one can observe that, in the framework of the proposed semi-automatic 
algorithm, the resulting contour is more accurate than the one segmented by the UWO 
algorithm regardless of what wavelet is used. However, we also observe that the 
difference in the accuracy of the contour generated based on different wavelets is not 
very significant. Therefore, in testing the fully-automatic algorithm, we reduce the size of 
the experiment by using only the 2nd order spline wavelet, the one used by Mallat [5] 
originally.  
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5.3.3. The Accuracy of the Automatically Outlined Contour for the Entire Set of 
Images 

 
The same 8 randomly chosen images used in testing the semi-automatic algorithm are 
used in testing the automatic algorithm. The accuracy indicators are tabulated below: 
 
Image No. MAD (in pixel) MAXD (in pixel) % of points where ( ) pixels4<iVd  

1 3.1779 14.3904 73.1707 
2 2.4829 7.9437 74.4186 
3 5.0793 15.0730 59.5238 
4 4.9061 10.8015 38.4615 
5 4.7708 13.3472 39.4737 
6 2.4828 5.4513 94.1176 
7 2.0700 7.7537 86.4865 
8 4.5772 20.6382 67.7419 

Mean 3.6934 11.9249 66.6743 
Table 5   The accuracy parameters associated to the fully-automatic algorithm 

 
If compared with the semi-automatic algorithms (either the UWO or the proposed one), 
the above data show that the automatic algorithm defines the contour less accurately. 
However, when the benefits associated to a fully-automatic segmentation algorithm and 
the accuracy shown in Table 5 are considered together, the results presented are very 
remarkable. 
 

5.4. Summary and Remarks 
 
The purposes of this chapter are to construct a segmentation algorithm using the building 
blocks introduced in Chapter 3 and Chapter 4, and to evaluate the accuracy of the contour 
defined by this algorithm.  
 
At the beginning of this thesis, the focus is on finding a semi-automatic segmentation 
algorithm that performs better than the UWO algorithm described in Section 3.3. The 
result of this effort is the semi-automatic part of the proposed algorithm presented in 
Section 5.1. Since this semi-automatic algorithm requires human supervision only in the 
initialization stage, it will become a fully-automatic algorithm if the initialization 
mechanism is made automatic. With this idea and the significant benefits of an automatic 
initialization method in mind, an effort is made in developing a fully-automatic 
initialization procedure. The end-product of this effort is the fully-automatic part of the 
proposed algorithm. 
 
To evaluate the performance of the proposed algorithm, a quantitative metric should be 
used. Ladak [8] defined an evaluative metric that measures the distance between the 
automatically defined contour and the manually defined contour. However, as discussed 
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in Section 5.2, this distance-based metric poorly reflects the degree of the contour’s 
accuracy under some conditions. To solve this problem, a new distance-based metric was 
developed. This metric is described in Section 5.2.2 and used as the metric to evaluate the 
accuracy of the contour defined by the proposed algorithm in Section 5.3. 
 
The results presented in Section 5.3 suggest two important achievements of the proposed 
algorithm: First, the proposed semi-automatic algorithm performs better than the UWO 
algorithm, regardless of the type of wavelet used in computing the energy fields. Second, 
the accuracy of the automatically defined contour is comparable to the semi-
automatically defined one. The benefits an automatic algorithm has over a semi-
automatic algorithm and the accuracy of the automatically defined contour make the 
proposed automatic segmentation algorithm very attractive in the medical industry.  
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Chapter 6  
 
Conclusion and Future Work 
 
The major challenge of segmenting the prostate boundary in an ultrasound image is that it 
is difficult to differentiate between edge feature that is part of the boundary and the false 
edges – edges that come from different kinds of noise or imaging artifacts. 
 
In this work, we first looked at the approach proposed by Ladak [8], which is 
implemented in a program we called “UWO program”. In this program, the 
differentiation between the “actual” and the “false” edges is made semi-automatically. 
This program requires an expert observer to enter four initial points that are very close to 
the actual prostate boundary. The spline interpolation method introduced in Section 3.3.1 
is used to form an initial contour from the four initial points. By running the DDC 
algorithm, the initial contour is attracted to the strong edge features in its neighbourhood. 
This segmentation algorithm relies very strongly on the initial contour (as the algorithm 
basically defines the prostate boundary to be the set of edge features that is closest to the 
initial contour), but the initial contour defined is not likely to be accurate. This inaccuracy 
is caused by an extrinsic and an intrinsic factor. The extrinsic factor is the inaccuracy of 
the initial points the user enters. As mentioned in Chapter 1, a certain level of expertise is 
required to outline the prostate boundary in an ultrasound image. Therefore, it is not 
likely for a general user to pinpoint the four initial points accurately. However, even if 
the initial points are identified by a professional radiologist, the spline interpolated 
contour does not necessarily define the boundary of the prostate with reasonable 
accuracy. Basically, the spline interpolation method just defines an ellipse (or a circle) by 
connecting the initial points. Large deviation occurs if there are irregular patterns, such as 
a tumour, in a prostate. 
 
The proposed semi-automatic algorithm approaches the problem more intelligently. First 
of all, it can be observed that the deviation of the initial contour usually occurs near the 
top of the prostate. Also, it is observed that the intensity contrast between the interior and 
the exterior is often very high around the top of the prostate. As explained in Section 4.3, 
an energy field based on the intensity of the smoothed image can be used to drive the 
DDC model. It is discovered that by using the spline interpolated contour as the initial 
contour of a DDC run that is driven by the new energy field, it is possible to generate a 
contour that is closer to the manually defined contour. It is expected that if this new 
contour is used as the initial contour of the gradient-modulus-based DDC run, a more 
accurate boundary can be defined. This is the rationale behind the design of the proposed 
semi-automatic algorithm. By comparing the results obtained in Table 2 and Table 3, it 
can be observed that the proposed semi-automatic algorithm performs better than the 
UWO algorithm in terms of the three accuracy indicators introduced in Section 5.2. 
 
Rather than requiring an expert observer to pick four initial points, if we could design a 
mechanism that initializes the contour automatically, the proposed semi-automatic 
algorithm will become a completely automatic one. Designing an automatic initialization 
algorithm is the most difficult part in the segmentation problem. There are two reasons
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for this: First, the initial points selected by the algorithm should be likely to lie on the 
prostate boundary, rather than on the false edges. Second, enough initial points should be 
chosen so that the initial contour is accurate everywhere on the prostate boundary. The 
design of an automatic initialization algorithm was described in Section 4.4. One 
deficiency in the proposed algorithm is that it cannot identify many initial points on a 
relatively weak edge segment of the prostate boundary. This problem is partially solved 
by the reinitialization algorithm, which defines the initial contour of the second DDC run 
by first taking the final contour of the first DDC run, and then replacing its vertices that 
lie on weak edge by that lie on strong edge in the neighbourhood. However, this 
technique does not solve the whole problem because it is possible for the contour to be 
attracted to false – but strong – edges. A more effective approach would be to find out 
classifier for differentiating the “actual” and the “false” edges based on the geometry of 
the edges. 
 
The boundary defined by the proposed automatic segmentation algorithm is reasonably 
accurate, as demonstrated by the fact that the mean absolute deviation (MAD) is less than 
4 pixels and more than 65% of the points on the automatically defined contour are 
deviated from the professionally outlined contour by less than 4 pixels when tested with a 
set of 8 ultrasound images. An automatic segmentation tool that achieves this level of 
accuracy is very attractive in the medical industry because of the following three reasons: 
First, the efficiency of prostate segmentation will be improved; Second, the segmentation 
process will be less dependent on the expert observer; Third, the tool can be used to train 
non-professional health care practitioner, and therefore, the shortage of the skill required 
for prostate segmentation can be alleviated. 
 
The future extension of this thesis can go in two directions: (1) To simplify the automatic 
initialization algorithm and to improve the accuracy of the initial contour; (2) to develop 
a program that can compute the volume of the prostate based on the 2D segmented 
boundaries. 
 
The automatic initialization algorithm shown in Section 4.4 is rather complicated. It is the 
case because the algorithm is designed in a way so that it avoids detecting points that lie 
on false edges. Recall that a set of point is qualified to be possible initial points in  
Section 4.4.3. If one can design an algorithm that differentiates the “actual” and the 
“false” edges according to their shape and disqualify point that lie on the false edge – in 
the same way as the points near the border are disqualified, it is not necessary for him to 
be restricted to choose points with a certain distance from the centre as we are now in the 
global initialization process, and it is likely for him to find enough points to define the 
contour without going through the local initialization process. Also, he can make his 
choice of possible initial points more aggressively. In Section 4.4.3, a point is qualified to 
be a possible initial point if the gradient modulus at the location of the point is higher 
than a certain threshold. If this threshold is set lower, more points are qualified and, in 
our case, the probability of qualifying points that lie on false edge is higher. This is not a 
problem in his case because his algorithm disqualifies points lying on the false edge 
anyways. Therefore, by setting the threshold lower, initial points can be identified on the 
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relatively weak edge segment on the prostate boundary, and therefore, the accuracy of the 
initial contour can be improved.  
 
In this work, we have designed a rather accurate tool in segmenting the prostate boundary 
in a 2D ultrasound image. This algorithm can be easily applied to segment the boundary 
in 100 2D ultrasound images taken for a patient. By interpolating these 100 boundaries, 
the information about the shape and the volume of the patient’s prostate can be obtained. 
A program that can perform this task is valuable to the medical industry, as the doctor 
can get important information about the prostate automatically and quickly. 
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A. Appendices 
 

A.1. Derivation of the Fast Dyadic Wavelet Transform for 2-D Signals 
 
The 2-D fast dyadic wavelet transform algorithm is stated without proof in Section 3.2.3, 
Part B). In this section, we will prove the algorithm stated in (3.31) to (3.33): 
 ( )jjjj hhaa ,1 ∗=+ , 

(3.31) 
( )δ∗=+ ,1

1 jjj gad , 

(3.32) 
( )jjj gad ,2

1 δ∗=+ . 

(3.33) 
 
According to (3.16), 1+ja  is defined to be 
 

[ ] ( ) ( ) >−−φ=< ++ nymxyxfnma jj ,,,, 121  
 

Equivalently, 1+ja  can be expressed as the result of a 2-D convolution: 
 

[ ] { }[ ]nmfnma jj ,, 121 +φ∗=+  

(A.1)  
 
where ( ) ( )yxyx jj −−φ=φ ,, 22 . 

 
Since we have the following Fourier transform pair 
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using the 2-D version of the sampling theorem yields 
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This is equivalent to claim that the Fourier transform of the 2-D discrete signal 1+ja  is 
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(A.3)  
 
Recall that the scaling sequence h and the wavelet sequence g have been defined in 
(3.18). Taking the Fourier transform of this equation yields 
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By noting the fact that ( )yx,φ  can be written as separable products of one-dimensional 
scaling function ϕ  according to (3.28) and using the relation that have just been stated in 
(A.4), one should be able to express ( )yx

F
j ωωφ + ,12

 in terms of ( )yx
F

j ωωφ ,
2

 in the 
following way: 
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where we have make use of the fact ( ) ( ) ( )y

jF
x

jFj
yx

F
j ωϕωϕ=ωωφ 222,

2
 in the last 

equality. 
 
By observing (A.3), one easily sees that ( )yx

f
ja θθ+ ,1  equals to the function 

( ) ( )yx
F

yx
F

jf θθφθθ + ,, 12
 and its 2π-periodic extension, both in the xθ  and yθ  directions. 

One of the periodic extensions of this function would be 
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Using the result stated in (A.6), (A.7) can be expressed as 
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(A.8)  

 
Since fh  is 2π-periodic and 0≥j  (i.e., 12 ≥j ), (A.8) can be written as 
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Using this result, (A.3) is written as 
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This is to say that in order to get 1+ja  from ja , we need a 2-D filter [ ]nmH ,  that has a 

transfer function ( ) ( )y
jf

x
jf hh θθ 22 . It is clear that [ ]nmH ,  is equal to [ ] [ ]nhmh jj . 

This completes the proof of (3.31). (3.32) and (3.33) are proven almost exactly in the 
same way and their proofs are not shown here. 
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A.2. Scaling Filter Coefficients of Dyadic Wavelets Derived in  
Section 4.2 

 
n [ ] 20 /nh  [ ] 21 /nh  [ ] 22 /nh [ ] 23 /nh [ ] 24 /nh [ ] 25 /nh  [ ] 26 /nh  [ ] 27 /nh  
-4               0.00390625 
-3           0.015625 0.0078125 0.03125 
-2       0.0625 0.03125 0.09375 0.0546875 0.109375 
-1   0.25 0.125 0.25 0.15625 0.234375 0.1640625 0.21875 
0 0.5 0.5 0.375 0.375 0.3125 0.3125 0.2734375 0.2734375 
1 0.5 0.25 0.375 0.25 0.3125 0.234375 0.2734375 0.21875 
2     0.125 0.0625 0.15625 0.09375 0.1640625 0.109375 
3         0.03125 0.015625 0.0546875 0.03125 
4             0.0078125 0.00390625 

Table 6   Scaling Filter Coefficients of the Spline Dyadic Wavelets of order 0 to 7 

 
n [ ]nh4  [ ]nh5  [ ]nh6  [ ]nh7  [ ]nh8  

-8     0.0019 
-7     -0.0003 
-6   -0.0078  -0.015 
-5  0.0195 0.0018 0.0103 0.0038 
-4 0.0322 -0.0211 0.0447 0.004 0.0491 
-3 -0.0126 -0.1753 -0.0211 -0.1078 -0.0272 
-2 -0.0992 0.0166 -0.0726 -0.14 -0.0519 
-1 0.2979 0.634 0.3379 0.2886 0.3644 
0 0.8037 0.7234 0.7876 0.7678 0.7772 
1 0.4976 0.1994 0.4911 0.5361 0.4814 
2 -0.0296 -0.0391 -0.0483 0.0174 -0.0613 
3 -0.0758 0.0295 -0.118 -0.0496 -0.1433 
4  0.0273 0.0035 0.0679 0.0076 
5   0.0154 0.0305 0.0317 
6    -0.0126 -0.0005 
7    -0.001 -0.0034 
8    0.0027  

Table 7   Scaling Filter Coefficients of the Symlets of order 4 to 7 
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n [ ]nh1  [ ]nh2  [ ]nh3  [ ]nh4  
-8       0.000892314 
-7       -0.001629492 
-6     -0.003793513 -0.007346166 
-5     0.007782596 0.016068944 
-4   0.016387336 0.023452696 0.0266823 
-3   -0.041464937 -0.065771911 -0.0812667 
-2 -0.07273262 -0.067372555 -0.06112339 -0.056077313 
-1 0.337897662 0.386110067 0.405176902 0.415308407 
0 0.85257202 0.812723635 0.793777223 0.782238931 
1 0.384864847 0.417005184 0.428483476 0.434386056 
2 -0.07273262 -0.076488599 -0.071799822 -0.066627474 
3 -0.015655728 -0.059434419 -0.082301927 -0.096220442 
4   0.023680172 0.034555028 0.039334427 
5   0.005611435 0.015880545 0.025082262 
6   -0.001823209 -0.009007976 -0.015211732 
7   -0.000720549 -0.002574518 -0.005658287 
8     0.001117519 0.003751436 
9     0.000466217 0.001266562 

10     -7.09833E-05 -0.000589021 
11     -3.45998E-05 -0.000259975 
12       6.2339E-05 
13       3.12299E-05 
14       -3.25968E-06 
15       -1.78499E-06 

Table 8   Scaling Filter Coefficients of the Coiflets of order 1 to 4 
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A.3. Test Images Used in Section 5.3 
 

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 
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(g) (h) 

Figure 81   Ultrasound prostate images (a) to (g) shown here are the test images No. 1- 8 used in 
Section 5.3 respectively. 
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