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Abstract

As optical fiber systems evolve to higher data rates, the importance of polarization

control and manipulation steadily increases. Polarization manipulating devices, such as

polarization splitters and converters, can be realized by introducing material anisotropy

or geometric asymmetry. Compared to active devices, passive polarization converters are

more simply fabricated and controlled, therefore they have attracted increasing attention

during the past two decades. However, materials employed in previous polarization rotating

waveguides are mainly limited to low index-contrast III-V semiconductors such as InP

and GaAs. Such III-V devices possess large radiation loss, large curvature loss, and low

coupling efficiency to single-mode fibers; in addition, due to the weak optical confinement,

the device spacing has to be large, which prevents high-density and large-scale integration

in optoelectronic integrated circuits (OEIC) and planar lightwave circuits (PLC).

In this dissertation, the silicon-on-insulator (SOI) technology is introduced to the design

and fabrication of passive polarization rotators (PR). Efficient and accurate full-vectorial

finite-element eigenmode solvers as well as propagation schemes for characterizing novel

SOI PRs are developed because commercial software packages based on finite-difference

techniques are inefficient in dealing with arbitrary waveguide geometries.

A set of general design procedures are accordingly developed to design a series of

slanted-angle polarization converters, regardless of the material system (SOI or III-V),

outer-slab layer configuration (symmetric or asymmetric), and longitudinal loading (single-

or multi-section). In particular, our normalized design charts and simple empirical formula

for SOI polarization converters are applicable to a wide range of silicon-guiding-film thick-

ness, e.g., from 1 to 30 µm, enabling fast and accurate polarization rotator design on most

commercial SOI wafers. With these procedures, in principle 100% polarization conversion

efficiency can be achieved by optimizing waveguide geometric parameters.

A novel configuration with asymmetric external waveguiding layers is proposed, which

is advantageous for fabrication procedure, manufacturing tolerance, single-mode region,

and conversion efficiency. By etching along the crystallographic plane, the angled-facet

can be perfectly fabricated. Completely removing external waveguiding layer beside the

sloped sidewall not only simplifies production procedures but also enhances fabrication

tolerances.
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To accurately and efficiently characterize asymmetric slanted-angle SOI polarization

converters, adaptive mesh generation procedures are incorporated into our finite-element

method (FEM) analysis. In addition, anisotropic perfectly-matched-layer (PML) boundary

condition (BC) is employed in the beam propagation method (BPM) in order to effectively

suppress reflections from the edges of the computation window. For the BPM algorithm,

the power conservation is strictly monitored, the non-unitarity is thoroughly analyzed,

and the inherent numerical dissipation is reduced by adopting the quasi-Crank-Nicholson

scheme and adaptive complex reference index.

Advantages of SOI polarization rotators over III-V counterparts are studied through

comprehensive research on power exchange, single-mode condition, fabrication tolerance,

wavelength stability, bending characteristics, loss and coupling properties. The perfor-

mance of SOI PRs is stable for wavelengths in the ITU-T C-band and L-band, making

such devices quite suitable for DWDM applications. Due to the flexible cross-section of

SOI polarization converters, the coupling loss to laser diodes and single mode fibers (SMF)

can be designed to be very small and can be further reduced by a tapered waveguide with

cross-sections always satisfying the single-mode criteria. Slanted-angle SOI polarization ro-

tators display asymmetric bending characteristics and permit extremely small curvatures

with negligible radiation loss when the angled-facet is located at the outer bend radius.

Moreover, SOI polarization rotators can be manufactured with low-price processing tech-

niques that are fully compatible with CMOS integrated circuits (IC) technology, and thus

can be integrated on both photonic and electronic chips.

Experimental verifications have shown good agreement with theoretical analysis and

have confirmed the promising characteristics of our novel asymmetric SOI polarization

converters. Similar asymmetric-outer-slab geometry has recently been employed by peer

researchers to fabricate high performance III-V polarization rotators. We therefore believe

that results in this dissertation will contribute much to related research fields.

Index Terms: Polarization Rotator (PR), Silicon-on-Insulator (SOI), III-V semiconductor,
Finite Element Method (FEM), Beam Propagation Method (BPM), Adaptive Meshing,
Perfectly Matched Layer (PML), Numerical Dissipation, Conformal Mapping Method,
Integrated Optics, Silicon Photonics, Nanophotonics, Optoelectronic Integrated Circuit
(OEIC), Planar Lightwave Circuit (PLC), Dense Wavelength Division Multiplexing (DWDM)
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Chapter 1

Introduction

As information exchange demands are exploding in today’s communications, optical com-

munication systems are developing with increasing transmission capacities, e.g., 10G/s,

40G/s to 160G/s, which impose a strong necessity in dense integration of both electronic

and photonic circuits. In high density electronics, very large scale integration (VLSI) cir-

cuits have taken the place of many traditional discrete tubes and transistors. Similarly, in

present and next-generation photonic systems, large-scale planar lightwave circuits (PLC)

and optoelectronic integrated circuits (OEIC) will inevitably substitute most discrete op-

tical components in early fiber optics. The advent of dense wavelength division multiplex-

ing (DWDM) technology greatly enhances the transmission capacity of a single optical

fiber; however, it requires each channel to present such characteristics as low insertion-,

coupling-, and polarization-dependent-losses, small signal- and polarization-crosstalk, and

good wavelength- and thermal-stability, etc.

Due to the existence of birefringence, light with different polarizations travel at differ-

ent group velocities in optical fibers and waveguides, causing the spreading of light pulses

and consequently signal distortion and system performance degradation. Common factors

contribute to the birefringence are asymmetric geometry, material anisotropy, mechanical

stress, thermoelastic effect, photoelastic effect and electro-optical effect, etc. The impor-

tance of polarization control and manipulation has become obvious; therefore, the main

research topic of this thesis is to explore novel high-performance polarization manipulating

devices for integrated optics.
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CHAPTER 1. INTRODUCTION

1.1 Impetus and Objective

In integrated optics, two main categories of polarization manipulating devices are polariza-

tion splitters and polarization converters: the former separates hybrid polarizations into

two independent orthogonally-positioned polarizations, and the latter converts one polar-

ization state of light into the other. Polarization splitters are important in applications

where specific states of polarization direction are needed, e.g., optical systems for sens-

ing, imaging, data storage, and signal processing. Structures such as directional couplers,

multi-mode interference (MMI) couplers, Mach-Zehnder interference (MZI) couplers, and

Y-junctions have been adopted for polarizing beam splitters. On the other hand, polar-

ization converters find wide applications in polarization-maintaining systems and can be

achieved with geometries as simple as rib waveguides. In this thesis, we therefore focus on

polarization converters which offer arbitrary and continuous polarization control.

To realize a polarization manipulating device, we have methods employing voltage-

controlled electrodes. The electric field applied by these electrodes leads to electro-optic

or thermal-strain effects, which cause some difference in the ordinary and extraordinary

refractive indices. However, cumbersome extraordinary procedures are required to fabricate

metal electrodes over dielectric waveguides, and very accurate control of electric voltage is

needed in such devices. In contrast, passive polarization controlling devices fabricated with

solely dielectric materials do not encounter these difficulties, and have attracted increasing

attention during the past two decades.

Early passive polarization rotations (PR) utilize periodic asymmetrical-loading in the

longitudinal direction. As a result, small conversions between polarization states are accu-

mulated by the periodic perturbation in the optical-axes, leading to a strong polarization

rotation after a sufficiently long distance. However, fabrication of multi-section periodic

structures is complicated, and unavoidable losses occur at junctions between adjacent sec-

tions. In addition, the length of such devices tends to be quite long, which limits their

application in compact photonic integrated circuits (PIC).

By enhancing the asymmetry of waveguide cross-section through careful optimizations,

the polarization rotating effects can be significantly improved, resulting in single-section

polarization converters. Currently, most of these devices employ slanted-angle (also named

as angled-facet) rib waveguides made of low index-contrast III-V (InP and GaAs, etc.)
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semiconductors. These polarization rotating waveguides (PRW) generally have a small

guiding region for single-mode propagations and a thick substrate, leading to large overall

cross-section, small coupling loss to single-mode fibers (SMF), and large radiation loss into

the substrate. In addition, since optical fields are not well-confined in the guiding region,

these devices present large bending radius and bending losses. As a result, the device size

tends to be large, which is disadvantageous for high-density integration. In contrast, high

index-contrast materials overcome these difficulties due to the strong optical confinement.

The silicon-on-insulator (SOI) technology, offering extremely high index-contrast for

optical waveguides, has consequently been fast developing in the field of integrated optics

since middle 1980s. SOI, a main platform for both silicon photonics and VLSI CMOS

electronics, enables large-scale and high-density integration of optoelectronic integrated

circuits (OEIC). To the best of our knowledge, though SOI has found various applications

in directional-, MMI- and MZI-couplers, waveguide gratings, wavelength multiplexers, pho-

todetectors and modulators, it has not been considered for polarization converters prior

to this research. To fully utilize the advantages of both the silicon-on-insulator technol-

ogy and single-section polarization converter structures, this thesis is therefore focused on

designing and analyzing novel SOI polarization rotators.

1.2 Thesis Contribution

The main contribution of this thesis is that a series of SOI passive polarization rotators have

been accomplished with a systematic procedure. Asymmetric external-waveguiding-layer

geometry is employed in the design of polarization converters as it shows better perfor-

mances compared with conventional slanted-angle structures with symmetric outer-slab

layers. Advantages of SOI PRs, such as compact size, small bending loss, good coupling to

single mode fibers, are elaborated by comparing with III-V counterparts. General normal-

ized charts and a simple empirical formula are proposed to design slanted-angle polarization

converters, regardless of the material system (SOI or III-V), outer-slab layer configuration

(symmetric or asymmetric), and longitudinal loading (single- or multi-section), etc. For

SOI polarization rotators, the general design charts illustrated in this thesis can be ap-

proximately applied to a wide range of silicon-guiding-film thickness from 1 to 30µm.
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CHAPTER 1. INTRODUCTION

In order to analyze high-index-contrast asymmetric angled-facet waveguides efficiently

and accurately, after pointing out the incapability of other numerical schemes such as

the finite difference method (FDM), we develop full-vectorial (FV) finite element method

(FEM) programs for both eigenmode solver and beam-propagation analysis. The per-

fectly matched layer (PML) boundary condition (BC) as well as adaptive techniques for

generating non-uniform meshes and renewing reference index are incorporated into the so-

phisticated and versatile computer codes. The non-unitarity of the propagation operators

in the mixed-element beam propagation method (BPM) is carefully analyzed. To pre-

dict the power exchange behavior of SOI polarization rotators as reliably as possible, the

quasi-Crank-Nicholson scheme and complex reference index technique are employed. With

these efficient numerical algorithms, the fabrication tolerance, power exchange, polariza-

tion conversion, bending characteristics, coupling and loss issues associated with novel SOI

polarization rotators are thoroughly studied.

The theoretical research in this dissertation has resulted in a series of publications [1–7].

The experimental verification of our SOI polarization rotators conducted by McMaster

University (partially in collaboration with Carleton University) has lead to a M.A.Sc degree

thesis [8], a conference paper [7], and a journal paper [5]. Our concept of asymmetric

external-waveguiding-layer (outer-slab) configuration has recently been employed by Dr.

Meint K. Smit’s research group at the Eindhoven University of Technology, the Netherlands

[9,10]. We therefore believe that our general design procedures and novel SOI polarization

converter structures will find wide application in optical communication systems.

1.3 Thesis Organization

The thesis is organized as follows:

Chapter 2 gives an overview of polarization rotators and silicon-on-insulator technology.

The operation principle of asymmetric passive polarization converters as well as the merits

and challenges of silicon photonics are discussed in detail in this chapter.

Chapter 3 presents numerical procedures associated with finite-element eigenmode

solvers. Three formulations (scalar, semi-vectorial, and full-vectorial) of the FEM method

are derived with the same form of a generalized eigenvalue equation. Techniques to realize
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the Dirichlet or Neumann boundary condition and adaptive mesh generation are briefly

discussed. General-purposed efficient codes are then developed to calculate a rib waveguide

and two slanted-angle polarization converters made of III-V (InGaAsP) materials.

In Chapter 4, we propose general design procedures for slanted-angle polarization con-

verters by normalizing geometric waveguide parameters. Various possible geometries and

materials for designing polarization rotating waveguides are analyzed and compared. Mer-

its of SOI polarization rotator with asymmetric external waveguiding layer are elaborated.

In addition to normalized design charts, we present a simple empirical design formula

and give the range of validity. Finally, the half-beat length variation and the single-mode

condition are studied.

In Chapter 5, we analyze the fabrication tolerance and the wavelength insensitivity of

novel SOI polarization rotators. Fabricated sample devices and experimental results are

described in this chapter.

In Chapter 6, we revisit SOI PR designs with full-vectorial mixed-element beam-

propagation method. Anisotropic perfectly-matched-layer boundary condition is incorpo-

rated into BPM programs and its efficiency is confirmed with both on- and off-axis Gaus-

sian beam propagation in free space and waveguides. To reliably predict power exchange

characteristics, we study the unitarity of full-vectorial FE-BPM. After the feasibility and

accuracy of our BPM codes are confirmed, the polarization conversion and power exchange

in a SOI polarization converter are analyzed. Validation of analytical formula of polariza-

tion conversion efficiency is examined with numerical calculations. Finally, measurement

results for the fabricated devices are compared with theoretical predictions.

Chapter 7 studies bending characteristics of asymmetric SOI polarization converters

using the conformal mapping technique. Two bending directions are analyzed for features

such as optical-axis rotation angle, maximum polarization conversion, radiation loss and

transition loss to straight waveguides.

Chapter 8 mainly focuses on loss and coupling issues associated with SOI polarization

converters. Butt-coupling to single-mode fibers and input/output rib waveguides, parallel

coupling of identical PRs, and a tapered single-mode SOI rib waveguide are analyzed.

Finally, we draw conclusions and present topics of future importance in Chapter 9.
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Chapter 2

Background

The objective of this chapter is to provide a brief yet complete introduction to the historic

evolution of passive polarization rotator (PR) designs and the silicon-on-insulator (SOI)

technology. The general operation principle of asymmetrical passive polarization converters

and advantages of silicon photonics will also be thoroughly studied.

2.1 Passive Polarization Rotators

As optical fiber systems evolve to higher data rates, the importance of polarization con-

trol and manipulation steadily increases. Recently, there have been increasing interests in

the analysis of polarization converters for its significant importance in optical guided-wave

devices that require polarization diversity and polarization control. Existing polarization

rotators (PR) are cataloged into active and passive devices: the former can be achieved

by either electro-optic [11, 12] or photoelastic [13, 14] effects, which introduce some ma-

terial anisotropy and therefore coupling between differently polarized modes; while the

latter generally employ asymmetric geometry such as longitudinally-periodic perturbation

structures [15–20] or bending waveguides [21–27] that can be fabricated more easily.
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2.1. PASSIVE POLARIZATION ROTATORS

2.1.1 Longitudinally-Periodic Passive Polarization Rotator

Passive polarization converters employ the idea that hybrid modes can experience an ex-

change of power between polarization states due to the presence of junctions, tapers, bends,

or other discontinuities and asymmetries. Shani [15] reported the first experimental demon-

stration of such a device using periodic asymmetric-loaded rib waveguides illustrated in

Fig. 2.1(a). Here, the asymmetric transverse-cross-section introduces perturbation in the

primary waveguide axes, and the longitudinal-periodical loading allows coherent accumula-

tion of converted polarization. Shani himself was uncertain about the operating mechanism

but suggested that it could probably be a coherent (codirectional) scattering effect due to

the asymmetric periodic index loading. Mertens [28] tried to explain this phenomenon

with the theory of hybrid supermodes. However, we will give a better explanation in detail

in Section 2.1.3.

(a) (b)

Figure 2.1: Longitudinally-periodic passive polarization rotator: (a) periodically-loaded

asymmetric rib waveguides; and (b) periodic angled-facet rib waveguides.

Based on the same mechanism, Heidrich [16, 17] demonstrated a similar passive polar-

ization mode converter with constant 45◦ rotation, 7025µm length and 3dB excess loss,

by using a periodic laterally-tilted InP/GaInAsP rib waveguide on a stepped substrate,
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and simulated the conversion effect using both scalar and vectorial 2-D finite difference

methods (FDM). Later, with the aid of coupled mode theory (CMT) and beam prop-

agation method (BPM) simulations, van der Tol [18, 19] fabricated a 0.9mm-long and

0.3dB-excess-loss InGaAsP polarization converter configured as Fig. 2.1(b), which con-

tains ten periodic sections of asymmetric angled-facet rib waveguides. Since then, a variety

of authors have numerically studied periodically-loaded asymmetric polarization convert-

ers by the coupled-mode theory (CMT) analysis [29,30], vectorial finite-difference method

(FDM) [17], finite-difference beam-propagation method (FD-BPM) [18, 19, 31, 32], finite-

difference time-domain (FDTD) method [33, 34], multimode analysis method [35], and

vectorial finite-element beam-propagation method (FE-BPM) [36].

2.1.2 Single-Section Passive Polarization Rotator

All passive polarization rotators with longitudinally-periodic perturbation structure suffer

from high coupling loss at waveguide junctions between adjacent sections; moreover, pro-

duction process of such long multi-section devices is rather difficult. With coupled mode

theory and full-vectorial finite-element perturbation analysis, Mertens [28, 37, 38] found

in a buried strip waveguide the degeneracy and strong coupling between hybrid TM11

and TE21 supermodes, leading to a strong polarization conversion in a configuration free

of longitudinally-periodic perturbation. Full vectorial simulation tools were used for the

waveguide design in order to avoid unwanted mode coupling [28]. However, polarization

conversion was achieved between high-order hybrid supermodes, which limits the appli-

cation of Mertens’ device since most guided-wave systems require single-mode operation

so as to reduce power losses from coupling into high-order modes. In addition, the strip

waveguide structure [38] displayed in Fig. 2.2(a) has quite thin guiding-layer thickness

(h = 0.15µm, d = 0.34µm) compared to its width (W = 1.5 ∼ 3.5µm), which demands

very precise control in the vertical direction and also leads to very poor coupling to square

waveguides or circular fibers.

With the aid of a three-dimensional finite-element propagation method (FE-BPM) [39],

Tzolov and Fontaine [40] proposed a longitudinally-invariant passive polarization converter

using the slanted-angle rib waveguide as illustrated in Fig. 2.2(b), which is easy to fabricate

and has low excess loss. Huang [41,42] experimentally demonstrated such a single-segment
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Figure 2.2: Single-section passive polarization rotator: (a) strip-loaded slab waveguide;

and (b) slanted-angle rib waveguide.

polarization rotator with 720µm device length, 1.25dB/mm propagation loss and 96% max-

imum polarization conversion on GaAs/AlGaAs material. For InP/InGaAsP waveguides,

Zhu [9, 43–45] fabricated a 200µm single-section passive PR with 1.7dB insertion loss and

80% polarization conversion ratio. By completely eliminating both outer-slab layers, El-

Refaei and Yevick [46–48] improved the fabrication tolerance of the device, and obtained

−16dB conversion efficiency and 0.02 dB loss for a 330µm device.

Single-section passive polarization rotator employing slanted-angle rib waveguide has

attracted much attention during the past few years because of its simple geometry, compact

dimension (compared with longitudinal-periodic structures), and small insertion loss. Nu-

merous simulations of slanted-facet polarization rotators with III-V materials (InGaAsP,

AlGaAs, etc.) have been performed using the finite-difference method (FDM) [41–44, 46–

48], finite-element-method (FEM) mode solver [18, 19, 31, 40, 49–51], finite element beam

propagation method (FE-BPM) [52], finite-element based genetic algorithm [53], and vec-

torial boundary-element method (V-BEM) [54]. However, weakly-guiding polarization ro-

tators based on low-refractive-index-contrast III-V materials possess large bending radius,

large curvature losses, large device size and large radiation loss to substrate or outer-slab

region. Therefore, this thesis focuses on introducing the silicon-on-insulator (SOI) material

system with extremely high index-contrast into the design and fabrication of single-section

passive polarization rotators.
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2.1.3 Operation Principle

The principle of passive polarization converters is based on the well-known property of

birefringent optical devices [55,56]: the field propagates at different speeds along the fast-

and slow-axis (also called ordinary- and extraordinary-axis) of the optical-axes (u, v). In a

waveguide with constant birefringence, the time delay between the two polarized eigenstates

is given by [57]

∆t =
L

ν1

− L

ν2

(2.1)

where L is the propagation distance, ν1 and ν2 are the phase velocities along the slow- and

fast-axis, respectively. Since the phase velocity is related to the propagation constant by

ν = ω
β

[58], the phase delay is expressed as

ϑ = ω∆t = L(β1 − β2) (2.2)

where ω = 2πf is the angular frequency, f is the frequency, β = neffk0 is the propagation

constant, neff is the effective index, k0 = ω
√

ε0µ0 = 2π/λ is the free-space wavenumber, λ

is the free space wavelength, and the subscripts 1 and 2 are for the two fundamental polar-

ization states along the slow- and fast-axis, respectively. When the phase delay becomes

180◦, the propagating distance is called the half-beat length Lπ which is defined as

Lπ =
π

β1 − β2

=
π

(neff1 − neff2) k0

=
λ

2 (neff1 − neff2)
(2.3)

u u 

v v

Input Polarization 

Output Polarization 

ϕ 
−ϕ 

After propagating Lπ 

(Phase of one 

component lags 180° )

Figure 2.3: Polarization rotation in birefringent device.
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Figure 2.4: Operation principle of the periodic-loaded asymmetric waveguide: (a) optical-

axes (ur, vr) of subsection right-asymmetric-structure (RAS); (b) optical-axes (ul, vl) of

subsection left-asymmetric-structure (LAS); and (c) one section of a periodically-loaded

waveguide with both RAS and LAS subsections.

As illustrated in Fig. 2.3, a linearly-polarized light can be decomposed into two com-

ponents along the optical-axes. After the distance of a half-beat length, the phase of one

component is 180◦ later than that of the other. Therefore, if a linearly-polarized light is

launched into a longitudinally-invariant birefringent waveguide with an angle ϕ (counter-

clockwise) to one optical axis, after propagating a half-beat length, the output polarization

makes an angle of −ϕ (clock-wise) with respect to the same axis.

As shown in Figs. 2.1 and 2.4, a longitudinally-periodic structure consists of N sections,

and each section contains two subsections — a right-asymmetric-structure (RAS) and a

left-asymmetric-structure (LAS). Taking the periodic angled-facet structure of Fig. 2.1(b)

as an example, the subsection is RAS if the angled-facet locates on the right-hand side,

and LAS if the slanted angle locates to the left. The optical axes are denoted as (ur, vr)

for RAS and (ul, vl) for LAS. The asymmetry of the waveguide cross-section causes the

optical-axes to rotate by an angle ϕ [59] around a fixed Cartesian coordinate system, where
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x- and y-axes are along the horizontal and vertical directions, respectively. The optical

axes in RAS and LAS are rotated by an angle −ϕ (clockwise) and ϕ (counter-clockwise),

respectively.

Polarization Angle RAS input (A) RAS ouput (B)

to (ur, vr) ϕ −ϕ

LAS input (C ) LAS output (D)

to (ul, vl) −3ϕ 3ϕ

to (x, y) 0 −2ϕ 4ϕ

Table 2.1: Evolution of the polarization angle in a section of the periodically-loaded asym-

metric waveguides.

For simplicity, we consider an x-polarized input light and match the length of each

subsection to its half-beat length. At the RAS input port (point A in Fig. 2.4(c)), the

light is positioned at an angle ϕ with respect to the optical-axes (ur, vr) of RAS subsection,

thus at the RAS output the polarization state is rotated to −ϕ regarding to (ur, vr) and

−2ϕ to the x-axis. Similar effect happens in the LAS subsection, however, at the LAS

input port, the light is positioned at an angle −3ϕ to (ul, vl) since the optical-axes of LAS

and RAS form an angle of −2ϕ. Consequently, at the LAS output port, the polarization

is located 3ϕ regarding to the optical-axes of LAS (ul, vl), and 4ϕ regarding to the x-axis.

This procedure is well illustrated in Table 2.1.

As a result, one subsection (RAS or LAS) rotates the polarization state by 2ϕ and one

section (a pair of RAS and LAS) rotates the polarization by 4ϕ. Even though the optical-

axis of each subsection is only slightly perturbed, i.e., ϕ is very small, for sufficient N

periodically-loaded sections, the final polarization is rotated by 4Nϕ which could be about

90◦, indicating a complete TE ↔ TM conversion. In this case, the eigenmodes are weakly

hybridized and the polarization rotation is accumulated along the propagation direction.

If the optical-axis of an asymmetric-loaded waveguide is rotated by ϕ = 45◦, we see

from the above analysis that the polarization will be rotated by 2ϕ = 90◦ after a half-beat

length. Such a waveguide thus can be employed as a single-section passive TE ↔ TM

polarization converter. Its eigenmodes are strongly hybridized with comparable TE and

TM components and similar field distributions.
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2.2. SILICON-ON-INSULATOR TECHNOLOGY

2.2 Silicon-on-Insulator Technology

As mentioned in Section 2.1.2, the silicon-on-insulator (SOI) material will be employed

in this thesis to design single-section polarization rotators for its many unique optical

characteristics compared to III-V semiconductor counterparts. Hence, in this section,

a brief introduction to silicon photonics, SOI waveguides and their advantages will be

presented.

2.2.1 Silicon Photonics

Silicon photonic components employ the optical properties of crystalline silicon, a Group IV

dielectric material. The impetus for Silicon Photonics [57,60–68] came from optoelectronics

— integration of optics and electronics on the same chip, since optoelectronic integrated

circuits (OEIC) exhibit better performances compared with separated optical and electrical

chips. Silicon-based optoelectronic systems have the potential to incorporate with silicon

electronics and to achieve high integration densities. The significant importance of silicon

in future optoelectronics comes from the following factors:

1. Silicon-on-Insulator (SOI) material [69, 70] has become a main platform for both

photonics and VLSI CMOS electronics, with fully compatible processing procedures;

2. Si-based optoelectronic integrated circuits have economic advantages;

3. compared with III-V semiconductors, silicon has better crystal perfection, better

native oxide, and superior thermal and mechanical properties;

4. SOI CMOS circuits have reduced parasitics and latch-up that enable high-speed at

low power [66];

5. strong optical-confinement of SOI waveguides enables low-loss and compact device-

size.

At present, most optoelectronic devices employ III-V semiconductor materials such as

AlGaAs/GaAs and InGaAsP/InP, because the indirect bandgap and low carrier mobility in

silicon were once obvious obstacles to optoelectronic applications. However, there are now
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methods to surmount these problems. Modulation doping enhances higher mobilities [64];

optical and electrical properties can be transformed by adopting heterostructures or by

tetragonal distortion of the lattice due to coherent strain [64, 66, 71]. Emitting, guiding,

detecting, modulating, and switching infrared light (λ > 1.2µm) have been realized in sili-

con [64]. Waveguiding structures have been demonstrated in Si/Si1−xGex, silicon-on-silicon

(SOS), silicon-on-insulator (SOI) and silicon-germanium-on-silicon (SGOS) materials [64].

Therefore it is reasonable to foresee more silicon-based photonic components since the

performance of Si-based OEIC could eventually surpass that of III-V OEIC in some areas.

2.2.2 SOI Waveguides

air
n0=1

n 1=3.45Si

SiO 2 n2=1.46

H

W

h

Si Substrate

air n0=1

n 1=3.27InG aAsP

InP n2=3.17

H

W

h

(a) (b )

Figure 2.5: Rib waveguides: (a) III-V rib waveguide; and (b) SOI rib waveguide

The unique optical performance of SOI mainly comes from its very large refractive index

difference. As shown in Fig. 2.5, the index contrast between guiding- and insulator- regions

in SOI is ∆ = (n2
1−n2

2)/n
2
1 = 82%, where n1 = 3.45 and n2 = 1.46 are the refractive indices

of silicon and silicon-oxide, respectively; while that of waveguides made of conventional

III-V semiconductors such as AlGaAs/GaAs and InGaAsP/InP is generally as small as
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2.2. SILICON-ON-INSULATOR TECHNOLOGY

∆ = 0.01% to 2%. The large index-contrast in SOI leads to very strong optical confinement

and hence some unique challenges as well as opportunities. The strong optical confinement

enables close waveguide spacing, thin substrate layer, and small bending radius; therefore

very compact and large-scale OEIC can be made through SOI technology. The overall

dimension of SOI waveguides is comparable to that of CMOS devices and the fabrication

procedure is fully compatible with VLSI technology.

SOI was originally difficult to work with because of the poor silicon-epitaxial-layer qual-

ity from manufacturing processes [72]; however, with developing technologies, nowadays

there are many sophisticated techniques to fabricate low-defect SOI wafers. These tech-

nologies [68, 70] include Silicon-on-sapphire (SOS), separation by implantation of oxygen

(SIMOX) [73, 74] or nitride (SIMNI), bond-and-etchback SOI (BE-SOI), and smart cut,

etc., which enable SOI wafers to be widely used for commercial high speed CMOS and

DRAM chips. Over the past few years, SOI has been applied to many guided-wave optical

devices and circuits, such as high-speed modulators [75, 76], photodetectors [77], direc-

tional couplers [78], Mach-Zehnder Interferometer (MZI) switches [79, 80], Corner-Mirrors

and T-Branches [81], Y-Branches [82], Bragg gratings [83,84], star couplers [85], multimode

interference (MMI) coupler [86], and arrayed-waveguide gratings (AWG) [72,87–89].

2.2.3 Single-Mode Condition of SOI Rib Waveguides

In many optical communication systems, single mode propagation is a prerequisite. There

once existed a conventional opinion suggesting that, due to the large refractive index step,

SOI waveguides must have submicron transverse cross-section for mono-mode propagation;

as a result, the coupling efficiency to optical fibers is extremely poor [66]. This misconcep-

tion came from the analysis of single mode condition for slab waveguides with analytical

means or effective index method (EIM) using simplified approximations. It prevented SOI

from being applied to photonics until Soref [90] demonstrated that the slab criteria is not

essential for single mode propagation in rib waveguides. With mode-matching and beam-

propagation methods, Soref derived the approximate single-mode (SM) criteria for the SOI

rib waveguide of Fig. 2.5(b) as

W

H
≤ const +

h/H√
1− (h/H)2

, with const = 0.3 (2.4)
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subject to the conditions of slightly-etching ( h
H ≥ 0.5) and large cross-section (H >

1√
n2

1 − n2
2

). The symbols W , H and h denote the rib width, rib height and thickness of the

outer slab layer, respectively. Schmidtchen [91], Zinke [92], Fisher [93,94], Rickman [95,96]

and Tang [74, 97] experimentally fabricated single-mode photonic devices with transverse

dimensions comparable to optical wavelength or the spot-size of single-mode fibers (SMF)

and therefore realized efficient coupling into SMF. These experimental results are in favor

of the hypothesis that single mode behavior exists with certain multi-micron rib dimen-

sions even when planar SOI waveguides of similar dimensions are multi-mode. Although

Pogossian [98] claimed a stronger criterion for designing large cross-section single-mode

SOI rib waveguides, his expression is based on data [95] predicted from Soref’s original

formula [90] rather than obtained experimentally as he took for granted. The correct-

ness and accuracy of Soref’s formula have been numerically verified with effective index

method (EIM) [99] and finite-difference beam-propagation method (FD-BPM) [99, 100].

Moreover, single-mode condition analysis has recently been carried out for trapezoidal

cross-section [99,101], small cross-section and deeply-etched [102] SOI rib waveguides.
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Chapter 3

Finite Element Mode Solvers

This thesis focuses on applying the extremely-high-index-contrast Silicon-on-Insulator (SOI)

material system to the design and fabrication of single-section passive polarization rota-

tors. For this purpose, we have developed a general-purposed software package including

Full-Vectorial Finite Element Method (FV-FEM) and Finite-Element Beam-Propagation

Method (FE-BPM) based on mixed triangular elements.

This chapter explains why a full-vectorial FEM scheme is mandatory in Section 3.1,

and describes complete algorithms of various FEM formulations for solving eigenmodes in

Section 3.2. Sections 3.3 and 3.4 provide an overview of boundary conditions and adaptive

meshes. Section 3.5 presents simulation results of III-V rib waveguides and polarization

converters in order to confirm program accuracy and efficiency. Numerical algorithms

associated with FE-BPM procedures will be discussed in detail in Chapter 6.

3.1 Why FEM and Full-Vectorial Scheme

The Finite Element Method (FEM), also called the Finite Element Analysis (FEA), is an

efficient numerical technique to obtain approximate solutions to boundary-value problems

in mathematical physics [103, 104]. FEM originated in structural analysis during 1940s’,

and has been widely employed in analyzing stress, torsion, heat transfer, fluid flow, and

so on. Silvester [105–109] introduced FEM into the field of electromagnetics in 1968, since

when it has been applied to diverse areas such as semiconductor devices, optical waveguides,
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and radiation and absorption of electromagnetic waves. Based on the variational princi-

ple, basic procedures of the FEM include: obtaining functionals (variational expressions)

from corresponding differential equations, dividing interested regions into small elements,

constructing interpolation model for each element, assembling all elements’ contributions

to the global system, and finally solving the global-matrix problems.

There are two topics of interest in optical waveguide analyses: one is to find the eigen-

modes that a waveguide supports (Guided-mode analysis); and the other is to study the

field propagation along the waveguide (Beam-propagation analysis). The algorithms asso-

ciated with the former are the major topic of Section 3.2, while the details for the latter will

be presented in Section 6.1. Although FEM has been widely employed in the guided-mode

analysis, it has not been applied to the beam propagation analysis until recently. Numer-

ical techniques [110–115] other than FEM [105–109,116–125] involved in the guided-mode

analysis include: the Finite Difference Method (FDM) [126–129], the Finite-Difference

Time-Domain method (FDTD) [33,34,130], the Method of Lines (MoL) [131], the Method

of Moments (MoM) [132], and the Boundary Element Method (BEM) [54,133,134], which

are conceptually simpler. Prior to the Finite-Element Beam-Propagation Method (FE-

BPM) [135–140], there existed various Beam Propagation Method (BPM) [141–146] algo-

rithms such as the Fast-Fourier-Transform Beam-Propagation Method (FFT-BPM) [147],

the Finite-Difference Time-Domain Beam-Propagation Method (FDTD-BPM) [148] and

the Finite-Difference Beam-Propagation Method (FD-BPM) [129].

Presently, commercially available software packages for photonics design, such as the

APSS 1, OptiWave 2, BeamProp 3, FIMMWAVE/FIMMPROP 4 and Empire FDTD 5, are

mostly based on Finite-Difference (FD) algorithms (i.e., FDM, FDTD, FD-BPM, FDTD-

BPM, and FD-based Coupled Mode Theory (CMT) etc.), which use rectangular grids such

that nodes are positioned at intersections of orthogonal straight lines. However, these grids

are not suitable for problems with curved boundaries/interfaces, arbitrary cross-sections,

1Apollo Photonics, Inc., Hamilton, Ontario, Canada. http://www.apollophoton.com
2Optiwave Corporation, Ottawa, Ontario, Canada. http://www.optiwave.com
3RSoft Design Group, Inc., Ossining, New York, United States. http://www.rsoftdesign.com
4Photon Design, Oxford, United Kingdom. http://www.photond.com/products/fimmwave.htm. Note

that a FEM eigenmode solver has recently been incorporated in FIMMWAVE-4.00 of late 2004.
5IMST GmbH, Kamp-Lintfort, Germany. http://www.empire.de and http://www.imst.com
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large index-contrasts and steep field-variations. In contrast, the systematic generality of

FEM makes it possible to construct a general-purposed computer program for a wide range

of problems. In FEM, the field region is divided into subregions (elements), which could

be of different shapes — triangular, rectangular, curvilinear, ring, or infinite. In addition,

mixed element shapes and/or different base-function orders can be used simultaneously in

one problem, depending on required computational accuracy. Moreover, for both mode

solver and propagation analysis, nonuniform unstructured meshes [149–151] and adaptive

meshing procedures can be employed to significantly improve the accuracy and efficiency

of FEM programs. FEM makes it possible to take into consideration the discontinuity

of refractive indices, no matter how complicated the geometrical profile is [39]. Further-

more, FEM scheme can be established not only by the variational method but also by the

Galerkin method (a weighted residual method) or the least-squares-method (LSM) [122],

so FEM can still be used even though a variational principle does not exist or cannot

be identified. These unique features are not available in FFT- and FD- algorithms. In

conclusion, FEM is a more general, powerful, versatile, accurate and efficient strategy for

problems involving complicated geometries, inhomogeneous media, anisotropic dielectrics,

lossy materials, strongly-guiding structures and polarization-dependent waveguides. Due

to faster and faster CPU processors and enormously-increasing available computer mem-

ory, undoubtedly more and more electromagnetic field problems will be solved routinely

with FEM techniques in the future.

Specifically, for asymmetric slanted-angle polarization rotators, when finite-difference

(FD) techniques are applied, numerical instabilities, inaccuracy and inefficiency could ap-

pear as a consequence. Huang [41] reported unstable simulations for GaAs/AlGaAs po-

larization rotators, and had to improve the stability by adopting a cumbersome procedure

in which the large refractive discontinuities were smoothed over a specific scale length. In

another calculation on InP/InGaAsP polarization rotators by Zhu et. al., large field errors

were presented at the high-contrast waveguide corners and interfaces, as clearly observed

from Fig. 1 of [43]. El-Rafaei and Yevick [47] pointed out the relative inefficiency of FDM

which has to be trivially programmed for slanted-angle rib waveguides. Moreover, FDM

can give rise to spurious modes [152, 153] and has trouble in getting accurate results at

dielectric corners and interfaces [154, 155]. The main challenges in simulating an angled-
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facet polarization converter come from the strongly-hybrid nature of its eigenmodes and the

tilted facet which is difficult to be precisely discretized by regular orthogonal FDM grids.

Although a structure-related finite-difference beam-propagation method for the analysis of

photonics structures with sloped sides has been proposed by Djurdjevic et al. [156], it is

restricted to the scalar analysis thus polarization effects cannot be characterized. Similarly,

a semi-vectorial finite-difference scheme has been recently proposed by Xia and Yu [157]

for the purpose of titled interfaces; however, the staircase approximation still exists and

the programming implementation is more complicated. With a modified finite-difference

formula employing the imaginary axis method and proper enforcement of boundary condi-

tions [158], the quantization error generated in the staircase approximation can be reduced

(but cannot be completely eliminated) at the cost of increasing CPU time and memory

usages. On the contrary, with FEM an arbitrary angled-facet can be represented exactly

and precisely with much less degree of freedoms.

When silicon-on-insulator (SOI) material substitutes III-V semiconductors in passive

polarization rotators, another challenge arises — the extremely high refractive-index-

contrast makes it difficult to precisely simulate SOI devices with traditional techniques

[159]. In addition, the silicon oxide (SiO2) layer is usually quite thin (0.2 to 0.4µm by

SIMOX process [96] and > 0.4µm [73] such as 1µm for large cross-section waveguides),

while the silicon guiding layer could be as thick as several micron-meters. This further im-

poses difficulty for finite-difference simulations, and in fact very poor and unreliable results

have been observed with FDM-based commercial software. In this case, highly versatile

finite-element (FE) techniques seem to be a best choice, since a non-uniform unstructured

mesh together with adaptive refinement could easily overcome the above difficulties without

an appreciable increase in either CPU time or memory usage.

Due to the strong modal hybridness in highly-birefringent photonic waveguides or op-

tical fibers [39], a full-vectorial (FV) scheme is prerequisite. Scalar calculations ignore

polarization effects and semi-vectorial algorithms neglect the coupling between transverse

polarizations, hence neither could correctly predict the different TM→TE and TE→TM

conversion-efficiency and excess-loss behavior. A proper polarization converter design thus

should rely on a FV-calculation so as to correctly describe polarization conversion behaviors

and avoid unwanted mode couplings [28] as well.
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3.2 FEM Eigenmode Solvers

In this section, starting with scalar analysis, general procedures for finite-element guided-

mode analysis are first introduced, while semi-vectorial and full-vectorial algorithms are

subsequently described. We have developed general-purposed computer codes for all these

schemes; however, our main focus is the FV-FEM which is a necessity for studying polar-

ization behaviors in asymmetric angled-facet rib waveguides. With FV-FEM eigenmode

solver, general design procedures for slanted-angle polarization rotators are obtained in

Chapter 4. The analysis of polarization conversion along the propagation direction using

the beam-propagation scheme will then be shown in Chapter 6.

3.2.1 Scalar FEM

The Scalar Finite Element Method (SC-FEM) is the simplest formulation with good nu-

merical efficiency and without spurious modes [124]. It neglects the polarization effects by

setting transverse derivatives of the relative permittivity to zero [125]. The scalar wave

equation for a homogenous waveguide is obtained from the Maxwell’s equation as

∇2ψ − 1

µε

∂2

∂t2
ψ = 0 (3.1)

where t is the time, ε = ε0εr and µ = µ0µr are the permittivity and permeability of

the dielectric material, respectively. The free-space permittivity and permeability are ε0 =

8.854187817×10−12 F/m and µ0 = 4π×10−7 H/m, respectively. The relative permeability

µr is 1 for non-magnetic materials. In the Cartesian coordinates, the Laplacian operator

∇2 is

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(3.2)

Substituting a solution of the form

ψ = φ(x, y) exp(−jβz) exp(jωt) (3.3)

and noting that
∂

∂z
= −jβ, and

∂

∂t
= jω (3.4)
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the Helmholtz equation is derived as

∂2φ

∂x2
+

∂2φ

∂y2
+ (n2k2

0 − β2)φ = 0 (3.5)

where ω = 2πf is the angular frequency, f is the frequency, β = neffk0 is the propagation

constant, neff is the effective index, k0 = ω
√

ε0µ0 = 2π/λ is the free-space wavenumber,

λ is the free-space wavelength, and n =
√

µrεr is the refractive index of the material.

The Euler’s Equation Lφ = g [110, 111] has a source excitation g = 0 and a self-adjoint

positive-definite operator L = ∂2

∂x2 + ∂2

∂y2 + (n2k2
0 − β2) therefore its functional is

I(φ) = 〈Lφ, φ〉− 〈φ, g〉− 〈g, φ〉 =
1

2

∫∫ [(
∂φ

∂x

)2

+

(
∂φ

∂y

)2

− (n2k2
0 − β2)φ2

]
dx dy (3.6)
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2 2
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Figure 3.1: Nodal triangular elements: (a) linear triangle; and (b) quadratic triangle.

After discretizing the waveguide into small elements (rectangular or triangular, etc.),

the functional can be written as I(φ) =
∑
e

Ie(φe) and the field anywhere in an element is

φ(x, y) =
∑

i

N e
i φe

i = [N ]T{φ}e (3.7)

where e is the element, i (or j) denotes a node, φe
i and N e

i are the field and polynomial

(base vector) associated with node i, respectively, and {φ}e and [N ] are the field vector and

the shape function for element e, respectively. For a linear triangular element as shown in
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Fig. 3.1(a), the shape function [N ] is given by [105–108,125]

[N ] =




L1

L2

L3


 =




1 1 1

x1 x2 x3

y1 y2 y3




−1 


1

x

y


 (3.8)

where (x, y) is a point inside the triangle formed by vertices (x1, y1), (x2, y2) and (x3, y3),

and L is the so-called local coordinates or area coordinates. Higher order basis function

for triangles can be derived in terms of local coordinates from the Silvester Polynomial

[108,109,119–121]. In particular, for a quadratic triangle as Fig. 3.1(b) it is given by

Ni = Li(2Li − 1), i = 1, 2, 3; and N4 = 4L1L2, N5 = 4L2L3, N6 = 4L3L1 (3.9)

Applying the Rayleigh-Ritz, Galerkin or Least-Squares-Method (LSM) procedure [110,

111,122], from
∂I(φ)
∂φ

= 0, we obtain the eigenvalue equation for scalar FEM analysis

[K]{φ} − β2[M ]{φ} = {0} (3.10)

where

[K] =
∑

e

[Ke], with Ke
ij =

∫∫

Ωe

(
n2k2

0N
e
i N e

j −
∂N e

i

∂x

∂N e
j

∂x
− ∂N e

i

∂y

∂N e
j

∂y

)
dx dy(3.11)

[M ] =
∑

e

[M e], with M e
ij =

∫∫

Ωe

(
N e

i N e
j

)
dx dy (3.12)

Here Ωe is the region of each element,
∑
e

means assembling the contribution of all elements,

[Ke] and [M e] are the elementary matrices, [K] and [M ] are the global matrices, and {0}
is a null vector. The assembling of the global matrix [K] [110,111,119–121,123,125] from

the elementary matrix [K]e is obtained according to the pattern

Kpq =
∑

e

Ke
ij, for all p = n(i, e), q = n(j, e) (3.13)

where n(i, e) denotes the global numbering for the i-th node in the triangle e, and
∑

means considering contribution from all elements. In the SC-FEM eigenvalue problem,

both global matrices [K] and [M ] are sparse and symmetric.
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3.2.2 Semi-Vectorial FEM

The semi-vectorial (SV-) analysis can be employed to calculate different polarization modes

[126, 160], although the coupling between transverse polarizations is neglected [125, 129].

Based on the transverse-electric (TE) or transverse-magnetic (TM) field the semi-vectorial

Helmholtz wave equation is [140,161–163]

∂

∂x

(
px

∂φ

∂x

)
+

∂

∂y

(
py

∂φ

∂y

)
+

∂

∂z

(
pz

∂φ

∂z

)
+ k2

0qφ = 0 (3.14)

where

φ = Ex, px = n2
x/n

2
z, py = pz = 1, q = n2

x, for Quasi-TE (Ex) modes (3.15)

φ = Hx, px = 1/n2
y, py = 1/n2

z, pz = 1/n2
y, q = 1, for Quasi-TM (Ey) modes (3.16)

Here Ex and Hx are the electric- and magnetic-field along the x-direction, respectively,

and nx, ny, and nz are the refractive indices of the material in the x, y, and z directions,

respectively. Other components of the electromagnetic fields are

for Quasi TE mode: Ey ≡ 0, Ez = − j

β

∂Ex

∂x
, Hx =

1

ωµβ

∂2Ex

∂x∂y
,

Hy =
1

ωµβ

(
β2Ex − ∂2Ex

∂x∂y

)
, Hz =

j

ωµ

∂Ex

∂y

(3.17)

for Quasi TM mode: Ex = − 1

ωεβ

∂2Hx

∂x∂y
, Ey =

1

ωεβ

(
∂2Hx

∂x2
− β2Hx

)
,

Ez =
j

ωε

∂Hx

∂y
, Hy ≡ 0, Hz = − j

β

∂Hx

∂x

(3.18)

By applying similar procedures as in the scalar analysis, the eigenvalue equation for

Semi-Vectorial Finite Element Method (SV-FEM) is derived as

[K]{φ} − β2[M ]{φ} = {0} (3.19)

where

[K] =
∑

e

∫∫

Ωe

[
qk2

0{N}{N}T − px{Nx}{Nx}T − py{Ny}{Ny}T
]
dx dy (3.20)

[M ] =
∑

e

∫∫

Ωe

pz{N}{N}T dx dy (3.21)
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Here the derivatives of the shape function are defined by {Nx} ≡ ∂{N}/∂x and {Ny} ≡
∂{N}/∂y. In the SV-FEM eigenvalue problem, both global matrices [K] and [M ] are

sparse and symmetric.

3.2.3 Full-Vectorial FEM

To study strongly-hybrid modes, polarization exchange or polarization-dependent propaga-

tion, a full-vectorial (FV-) analysis is mandatory. For an optical waveguide with arbitrary

cross-section Ω in the transverse xy-plane, the full-vectorial Helmholtz wave equation is

derived from Maxwell equations with an implied time dependence exp(jωt):

∇× ([p]∇× φ)− k2
0 [q] φ = 0 (3.22)

where φ is either the electric field E or the magnetic field H. The del (nabla) operator is

∇ = ix
∂

∂x
+ iy

∂

∂y
+ iz

∂

∂z
= ∇t + iz

∂

∂z
(3.23)

Here ix, iy, iz are the unit vectors along x, y and z directions, respectively, and ∇t is

the transversal del operator. The dielectric constant of the material is associated with the

permittivity- and permeability- tensors [p] and [q] by

[p] =




px 0 0

0 py 0

0 0 pz


 and [q] =




qx 0 0

0 qy 0

0 0 qz


 (3.24)

px = py = pz = 1, qx = n2
x, qy = n2

y, qz = n2
z, for φ = E (3.25)

qx = qy = qz = 1, px = 1/n2
x, py = 1/n2

y, pz = 1/n2
z, for φ = H (3.26)

where nx, ny, and nz are the refractive indices in the x, y, and z directions, respectively.

The functional for Eq.(3.22) is given by

F =

∫∫

Ω

[
(∇× φ)∗ · ([p]∇× φ)− k2

0 [q] φ∗ · φ]
dx dy (3.27)

with the asterisk denoting complex conjugate.
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Figure 3.2: Mixed-interpolation-type triangular elements: (a) constant tangential and

linear nodal (CT-LN) element (1st order mixed element); and (b) linear tangential and

quadratic nodal (LT-QN) element (2nd order mixed element).

In our FV-FEM programs, we employ the hybrid elements of Fig. 3.2 instead of tra-

ditional nodal elements. Full-vectorial analysis with nodal triangles has encountered the

appearance of spurious modes [118–121, 124, 164–166] that do not satisfy the divergence-

free condition (∇ · B = 0 for magnetic fields and ∇ · D = 0 for electric fields). Several

methods, such as the penalty method [167–170], implicitly implying the divergence-free

constraint into the FEM functional [116,171], or solving eigenvalue equation in a subspace

defined by the divergence constraint [172], have been proposed to eliminate non-physical

solutions at the expenses of increased algorithm complexity and decreased computation

accuracy or efficiency. In contrast, edge basis functions [119–121,173,174] not only enforce

tangential continuity of fields across element edges but also allow discontinuity of normal

field components; therefore, they work well for inhomogeneous problems and also suppress

spurious modes. Moreover, since each edge belongs to no more than two elements, global

matrices for edge elements have greater sparsity than those for nodal elements [121].

Dividing waveguide cross-section into a number of mixed-interpolation-type triangular

elements, we expand the transverse components φx, φy and longitudinal component φz in

each element as

φ =




φx

φy

φz


 =



{U}T{φt}e

{V }T{φt}e

j{N}T{φz}e


 ejβz (3.28)
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where {φt}e is the transverse tangential field, and {φz}e is the longitudinal nodal field of

each element. The scalar-based shape function {N} in terms of local coordinates has been

shown in Eqs. (3.8) and (3.9) for linear and quadratic nodal triangles, respectively. The

vector-based shape functions {U} and {V} for Nédélec edge elements [175–178] are given

by [117,119,120,179–181]

ix{U}+ iy{V } =



|∇tL3|1(L1∇tL2 − L2∇tL1)

|∇tL1|2(L2∇tL3 − L3∇tL2)

|∇tL2|3(L3∇tL1 − L1∇tL3)


 (3.29)

for constant tangential and linear nodal (CT-LN) elements, and

ix{U}+ iy{V } =




|∇tL3|1(L1∇tL2)

|∇tL1|2(L2∇tL3)

|∇tL2|3(L3∇tL1)

|∇tL3|2(L2∇tL1)

|∇tL1|3(L3∇tL2)

|∇tL2|1(L1∇tL3)




(3.30)

for linear tangential and quadratic nodal (LT-QN) elements.

Dividing the field φ into transverse and longitudinal components [52, 121] φt and φz,

i.e., φ = φt + izφz, we separate the full-vectorial wave equation Eq.(3.22) into two parts:

∇t × (pz∇t × φt) +
∂

∂z
{[p]t (∇tφz − ∂

∂z
φt)} − k2

0 [q]t φt = 0 (3.31)

∇t ×
[
{[p]t (∇tφz − ∂

∂z
φt)} × iz

]
− k2

0qzφziz = 0 (3.32)

where the transverse permittivity and permeability are

[p]t =

[
px 0

0 py

]
and [q]t =

[
qx 0

0 qy

]
(3.33)

By applying the Galerkin procedure and noting the relationship of Eq.(3.4), propagation

constants and eigenmodes can be obtained from the following set of equations:

β2[Mtt]{φt}+ β[Mtz]{φz} − [Ktt]{φt} = {0} (3.34)

β[Mzt]{φt}+ [Mzz]{φz} = {0} (3.35)
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where

[Ktt] =
∑

e

∫∫

Ωe

[qxk
2
0{U}{U}T + qyk

2
0{V }{V }T − pz{Uy}{Uy}T

− pz{Vx}{Vx}T + pz{Uy}{Vx}T + pz{Vx}{Uy}T ] dx dy

(3.36)

[Mtt] =
∑

e

∫∫

Ωe

[py{U}{U}T + px{V }{V }T ] dx dy (3.37)

[Mtz] = [Mzt]
T =

∑
e

∫∫

Ωe

[py{U}{Nx}T + px{V }{Ny}T ] dx dy (3.38)

[Mzz] =
∑

e

∫∫

Ωe

[py{Nx}{Nx}T + px{Ny}{Ny}T − qzk
2
0{N}{N}T ] dx dy (3.39)

Here the derivatives of shape functions are defined by {Nx} = ∂{N}/∂x, {Ny} = ∂{N}/∂y,

{Ux} = ∂{U}/∂x, {Uy} = ∂{U}/∂y, {Vx} = ∂{V }/∂x, {Vy} = ∂{V }/∂y, respectively.

Eliminating the longitudinal component φz from the Eqs.(3.34) and (3.35), we obtain

[Ktt]{φt} = β2
(
[Mtt] + [Mtz][Mzz]

−1[Mzt]
) {φt} (3.40)

The solution of generalized eigenvalue problem Eq.(3.40) directly yields the propagation

constants and corresponding field distributions along the transverse plane. However, there

is a major disadvantage with Eq.(3.40), that is, the inverse procedure for large-scale matrix

[Mzz] not only takes tremendous memory usage and CPU time but also destroys the matrix

sparsity such that efficient sparse eigenvalue solvers cannot be employed.

However, if we perform a substitution φz = βφ
′
z into Eqs.(3.34) and (3.35), the gener-

alized eigenvalue problem for the FV-FEM analysis is transformed to

[K]{φ} − β2[M ]{φ} = {0} (3.41)

with

[K] =

[
[Ktt] [0]

[0] [0]

]
, [M ] =

[
[Mtt] [Mtz]

[Mzt] [Mzz]

]
and {φ} =

{
φt

φ
′
z

}
(3.42)
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Noting the z-dependence exp{−jβz} of the field, the above transformation is actually

φz = j ∂
∂z

φ
′
z [182]. It is worth pointing out that this idea maintains the dominant transverse

fields unchanged and is similar to the variable transformation (φ
′
x = βφx, φ

′
y = βφy, φ

′
z =

−jφz) that Lee, Sun and Cendes [119, 121, 174, 183] proposed to obtain the first FV-FEM

eigenvalue equation directly solving propagation constant for a given wavelength.

The generalized eigenvalue problem Eq. (3.41) can be solved via numerous methods

[58, 122] such as the variational techniques, method of moments, projection methods, or

iterative techniques [184–186]. However, since both matrices in Eq. (3.41) are sparse and

symmetric, one can easily solve it with widely available sparse-matrix solvers [121, 122]

such as the implicitly restarted Arnoldi algorithm [127,187] in the ARPACK library 6.

Although the eigenvalue equation of Eq.(3.41) has both electric- and magnetic-field

formulations, i.e., E - and H -formulations, the latter is generally preferred since all three

magnetic components are naturally continuous across dielectric interfaces [167,188].

3.3 Boundary Condition

We have generalized scalar (SC-), semi-vectorial (SV-) and full-vectorial (FV-) analyses into

the same form of eigenvalue problem ([K]− β2[M ]) {φ} = {0}, as evident from Eqs.(3.10),

(3.19) and (3.41), therefore the same eigenvalue solver could be applied for all these three

analyses. However, the boundary condition (BC), which constraints field or potential value

at material interfaces and calculation boundaries, has to be considered in advance.

A proper boundary condition directly affects the numerical efficiency and accuracy.

In the guided-mode analysis, Dirichlet- or Neumann- BC is generally considered, which

forces unknown field or its derivative to be zero at computation boundaries. For the

E -formulation, the Dirichlet- and Neumann- BC indicate a perfect electrical conductor

(PEC) and a perfect magnetic conductor (PMC), respectively; and vice versa for the H -

formulation. The Neumann BC is the simplest in FEM analysis since the line integrations

around boundaries vanish during the derivation procedure of functionals [119, 121, 189],

therefore no specific action needs to be taken and the generalized matrix equation remains

unchanged. However, for the Dirichlet BC, special care has to be given.

6ARPACK stands for ARnoldi PACKage. [Online] http://www.caam.rice.edu/software/ARPACK/
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Dirichlet boundary condition requires boundary fields to be zero, i.e, φi = 0 where i

denotes an unknown node or edge at the boundaries. A common way to impose Dirichlet

BC to the standard eigenvalue problem [K]{φ} = β2{φ} is to set the whole i-th row and i-

th column of matrix [K] to zero but remain matrix element Kii unchanged [119,121], or set

Kii to an extremely large value such as 1070 while keeping all other elements [119]. Kawano

[125] applied Dirichlet BC for the generalized eigenvalue problem ([K]− β2[M ]) {φ} = {0}
by performing the same action on matrix [M ], i.e.,







K11 ... 0 ... K1n

...

0... 0... Kii ...0 ...0
...

Kn1 ... 0 ... Knn



− β2




M11 ... 0 ... M1n

...

0... 0... Mii ...0 ...0
...

Mn1 ... 0 ... Mnn










φ1

...

φi

...

φn




= {0} (3.43)

This simple way does not destroy the matrix sparsity and symmetry; however, it is not

sufficient to force φi = 0, since the i-th equation now becomes (Kii − β2Mii) {φi} = 0 in

which φi could be any value if Kii happens to equal to β2Mii. Thus we employ a more robust

method by removing the known φi and corresponding i-th row and i-th column from both

matrices, that is, only equations related to unknown interiors are kept. Meanwhile, the

matrix dimension is reduced by the number of fixed boundary values, leading to reduced

calculation time for eigenvalues. The advantage of solving the system formed by only

interior unknowns is especially pronounced for dense mesh discretization.

3.4 Adaptive Mesh Generation

The accuracy of FEM eigenmode solvers and propagation techniques strongly depends on

a proper discretization of the problem domain. Generally, better numerical accuracy can

be obtained with refined denser meshes at the cost of increased CPU time and memory

usage. On the other hand, improper excessive refinement for insignificant regions wastes

computer resources and degrades computing speed. Therefore, adaptive automatic mesh

generations [149–151] are highly desired.

One major advantage of finite element techniques is that both orthogonal structured
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3.4. ADAPTIVE MESH GENERATION

FDM-type grids and general unstructured meshes can be employed, resulting in high versa-

tility. Unstructured meshes can be either uniform or non-uniform. The non-uniform meshes

can provide required degree of discretization in regions where necessary, and meanwhile

avoid extraordinary fine discretization in places where not required.

Generally, two techniques — adaptive mesh refinement and adaptive remeshing — are

involved in the adaptive mesh generation [190]. In the former technique, new nodes are

continually added but no existing nodes are removed; while in the latter method, completely

new mesh is adaptively generated according to previous calculations [190]. These allow one

to obtain more accurate solutions without systematic increases in the number of unknowns

and the size of matrices. In the adaptive mesh generation, individual element weights (local

weights, also called local errors) are used to judge which elements should be refined. The

refinement continues until a stopping criterion is met, resulting in a final mesh with local

weights of the same order of magnitude. The adaptive mesh generation generally employs

the Delaunay algorithm [150, 191, 192] and includes the following procedures [193, 194]:

generating a coarse mesh, determining local weights for each element, refining selected

elements, moving nodes and swapping edges to improve element shapes, and renumbering

nodes and edges to reduce matrix bandwidth.

The efficiency of adaptive mesh generation largely depends on the error function related

to each element. A most common error function is the density function, which weights the

field amplitude or the field variation of each element in the problem domain. Fernan-

dez [190] used user-defined Gaussian and sinusoidal density functions to evaluate element

weights. Other alternatives for local estimates include: the “local error problem” algo-

rithm, complete residual method, field residual algorithm [195], field gradient method [192],

and nodal perturbation scheme [196]. The difference between results obtained by meshes

of different orders has also been adopted as the density function [193, 194, 197]. For a

two-dimensional discretization, the individual element weight we is related to the density

function f(x, y) as

we =

∫∫

e

f(x, y)dx dy (3.44)

If each weight is equal to a threshold wth, the total weight should be w =
∑

e we = Newth,

where Ne is the number of elements. The threshold weight therefore can be set as wth = w
Ne

,

and all the elements with weight larger than the threshold should be refined.
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3.5 Numerical Accuracy and Efficiency

The convergence of our FEM programs has been verified earlier [198]. Here we confirm the

numerical accuracy and efficiency with examples on rib waveguides [126,193,194,199] and

asymmetric slanted-angle polarization rotators made of III-V semiconductors [40,41,49].

3.5.1 FEM Simulation for III-V Rib Waveguide

We consider the III-V rib waveguide as shown in Fig. 2.5(a) with refractive indices

n1 = 3.44 (GaAs), n2 = 3.34 (GaAlAs), and rib height, rib width and thickness of outer-

slab (H, W, h) = (1.3, 2, 0.2) µm, respectively. The effective index of its fundamental mode

(neff1) was found to converge to about 3.3885 by adaptive meshing procedures (maximum

800 second-order hybrid elements) with various density functions [193,194]. We first simu-

late the waveguide with the full-matrix problem Eq. (3.40) using a structured mesh as Fig.

3.3(a), whose connectivity is of the finite-difference type [149,151]. For 29×22 grid points,

i.e., 1176 first-order mixed triangles with 638 nodes and 1813 edges, the effective index is

calculated as 3.388305. The structured mesh for 2nd-order mixed elements with 17×16 grid

points, i.e., 480 triangles with 1023 nodal unknowns and 1502 tangential unknowns, results

in an effective index of 3.388288. The calculation for these small systems with full-matrix

solver takes more than three hours on a Linux machine with Pentium-III 733MHz CPU and

512M memory. We hereafter improve the calculation using the equivalent sparse-matrix

problem of Eq. (3.41) and a non-uniform unstructured mesh [149,151] as Fig. 3.3(b). The

effective index 3.3885572 is obtained in only three minutes for 2620 second-order hybrid

elements with 1358 nodes and 3977 edges. Various results for the effective-index of the rib

waveguide are compared in Table 3.1, where the normalized propagation constant

b =
n2

eff − n2
2

n2
1 − n2

2

(3.45)

is also calculated for a more comprehensive comparison.

Fig. 3.4 displays the field plot of calculated fundamental modes, which penetrates deep

into the substrate region due to the low-index contrast of the material system. The two

lowest-order modes are TE- and TM-modes, with polarizations along the x- and y-axes of

the Cartesian coordinate, respectively.
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Figure 3.3: Meshes for the rib waveguide: (a) structured mesh; and (b) unstructured mesh.

neff error b error

Converged value in [193, 194];

≤ 800 second-order mixed-element

3.3885 0% 0.48132 0%

Structured mesh: 29 × 22 grids,

1st order hybrid elements

3.388305 0.00575% 0.479368 0.40495%

Structured mesh: 17 × 16 grids,

2nd order hybrid elements

3.388288 0.00626% 0.479196 0.44025%

Unstructured mesh: 2620 second-

order hybrid elements

3.3885572 0.00169% 0.481888 0.11885%

Unstructured mesh: 7072 second-

order hybrid elements

3.388671 0.00502% 0.483022 0.35441%

Table 3.1: Comparison of calculated effective-index values for the III-V rib waveguide

in [193,194].
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Figure 3.4: Lowest two eigenmodes of a III-V rib waveguide: (a) two-dimensional (2D)

contour graph; and (b) three-dimensional (3D) surface plot. The first is a TE-like mode

with dominant field Hy and non-dominant field Hx; while the second is a TM-like mode

with dominant field Hx and non-dominant field Hy.
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3.5.2 FEM for III-V Polarization Rotators

Using FEM eigenmode solvers, we show here results for asymmetric slanted-angle III-V

polarization rotators with the geometry of Fig. 2.2(b). First, a GaAs/AlGaAs device

[41, 49, 50] is considered, which has a base rib width W = 2.5µm, rib height H = 1.3µm,

symmetric outer-slab layer thickness h = hr = 0.1µm, angle of titled-facet θ = 52◦, and

refractive indices n1 = 3.370 (GaAs) and n2 = 3.324 (Al0.1Ga0.9As). Various available

discretizations are shown in Fig. 3.5. One can easily find that the FDM grids Fig. 3.5(a)

and structured FEM mesh Fig. 3.5(b) have trouble in precisely representing the refractive

indices around the slanted facet, therefore the staircase approximation inevitably limits

the calculation accuracy. The nonuniform unstructured mesh of Fig. 3.5(c) obtained by

Delaunay triangulation [150, 191, 192] avoids this difficulty but wastes many triangles in

regions with small field amplitude or variation. The adaptive mesh Fig. 3.5(d), which takes

into account the field amplitude or variation, focuses elements to places of significance,

therefore both accuracy and efficiency are guaranteed.

From a structured FEM mesh with 31 × 28 grids (Fig. 3.5(b), 1620 first-order mixed

elements, 868 nodes and 2487 edges), the lowest fundamental mode of the slanted-angle

GaAs/AlGaAs polarization converter is obtained as Fig. 3.6. We observe that the two

transverse field components obviously have quite similar distributions and amplitudes, re-

sulting in a 45◦ optical-axis rotation. However, although the structured mesh of Fig. 3.5(b)

may approximately describe the waveguide geometry, calculated field patterns present large

error at waveguide interfaces especially the dielectric/air boundary, which is obvious in Fig.

3.6. The same difficulty is inherent in the orthogonal FDM grids of Fig. 3.5(a). Therefore,

in calculations hereafter, only the unstructured mesh of Fig. 3.5(c) and the adaptive mesh

of Fig. 3.5(d) will be employed for much more accurate results.

Table 3.2 summarizes the results obtained with different meshes. In Table 3.2, CT-LN

and LT-QN denote the 1st- and 2nd-order mixed triangular elements as Fig. 3.2 (a) and

(b), respectively; Ne, Np and Nt refer to the total number of triangular elements, nodal

points and tangential edges, respectively; neff1 and neff2 are the effective indices of the

two lowest-order fundamental polarizations, respectively; and Lπ is the half-beat length

which converges to 695µm in the FEM analysis. For the same accuracy, the adaptive

mesh requires much less elements and less CPU time compared to regular nonuniform
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unstructured mesh, as is obvious in Table 3.2. The calculated half-beat length value is

consistent with the 3D FV-FD-BPM simulation of 667µm (Table 1 of [41]) and nodal FEM

analysis of about 730µm (Fig. 6 of [49]). The experimental result is Lπ ≈ 720µm when the

geometric variation is 2◦ for the slant angle, ±0.1µm for the etch depth, and ±0.2µm for

the base width [41]. However, neither [41] nor [49] gave exact values for effective indices,

we therefore turn to a similar InP/InGaAsP device in [40] for a better comparison.

Mesh Order Ne Np Nt neff1 neff2 Lπ(µm) time(s)

Fig. 3.5(c) CT-LN 4168 2147 6314 3.325992 3.324862 685.531 127

Fig. 3.5(c) LT-QN 4168 8461 12628 3.325922 3.324807 694.555 547

Fig. 3.5(d) LT-QN 2756 1410 8330 3.325961 3.324845 694.489 373

Table 3.2: Comparison of results for the GaAs/AlGaAs slanted-angle polarization rotator

in [41,49,50].

Tzolov’s InP/InGaAsP slanted-angle polarization converter shown in Fig. 2.2(b) has a

base rib width W = 2µm, rib height H = 1µm, symmetric outer-slab thickness h = hr =

0.2µm, cap layer thickness dp = 0.2µm, slant angle θ = 45◦, and refractive indices n1 = 3.4

(InGaAsP) and n2 = 3.27 (InP) [40, 52]. From an iterative FEM solver [39] with nodal

elements, the effective indices are obtained 7 as neff1 = 3.331684 and neff2 = 3.328660,

respectively 8, corresponding to a half-beat length of Lπ = 248.0159µm. The results

calculated with hybrid-type mixed elements are compared in Table 3.3, based on a Linux

(RedHat7) machine with Pentium-III 733MHz CPU and 512M memory (the last calculation

in Table 3.3 was executed on an IBM R6000 AIX51 supercomputer with 1.3GHz POWER4

CPUs 9). All effective indices in Table 3.3 are accurate up to the fourth digit (10−4).

Especially, when small number of elements are used 10, our calculation of neff1, neff2, and

Lπ agrees well with Tzolov’s value to within 0.00162%, 0.00378%, and 2.37%, respectively.

7For consistency, the largest effective index is always identified as neff1 throughout this thesis.
8Tzolov mistakenly wrote the effective index of one fundamental mode as 3.228660 in [40], which is a

obvious mistyping since it is below the lowest refractive index 3.27 of the material system.
9http://www.monolith.uwaterloo.ca/hardware.html

10Tzolov performed his calculations in [40] at the year 1995. At that time, popular personal computers
were only 486 and 586, and memory chips were only 8M, 16M and 32M.
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Figure 3.5: Meshes for the slanted-angle polarization rotator: (a) non-equidistant grids for

FDM analysis; (b) structured mesh for FEM analysis; (c) nonuniform unstructured mesh;

and (d) nonuniform mesh obtained from adaptive procedure.
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Figure 3.6: Field distribution of the lowest-order fundamental mode of the GaAs/AlGaAs

polarization converter in [41, 49, 50] with geometry parameters W = 2.5µm, H = 1.3µm,

h = hr = 0.1µm, θ = 52◦, and refractive indices n1 = 3.370 (GaAs) and n2 = 3.324

(Al0.1Ga0.9As). These modal plots are obtained with the structured FEM mesh of Fig.

3.5(b) with 31× 28 grids and 1620 first-order mixed elements.
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The half-beat length is more difficult to be accurately calculated than the effective

indices (this point can be well understood from Eq. (2.3) where any small variation in

effective indices is greatly amplified since these indices are in the denominator). However,

with denser and denser meshes, Lπ converges to about 316µm.

Mesh Order Ne Np Nt neff1 neff2 Lπ(µm) time(s)

in [40] / / / / 3.331684 3.328660 248.016 /

Fig. 3.5(b) LT-QN 646 1365 2010 3.331810 3.328714 242.129 /

Fig. 3.5(c) LT-QN 830 1717 2546 3.331123 3.328051 252.320 51

Fig. 3.5(c) LT-QN 3320 6753 10072 3.331534 3.328991 304.736 370

Fig. 3.5(d) LT-QN 1108 2273 3380 3.331505 3.328931 301.181 122

Fig. 3.5(d) LT-QN 1846 3749 5594 3.331609 3.329114 310.599 242

Fig. 3.5(d) LT-QN 3514 7085 10598 3.331630 3.329157 313.362 669

Fig. 3.5(d) LT-QN 6386 12817 19202 3.331663 3.329209 315.758 745

Table 3.3: Comparison of results for the InP/InGaAsP slanted-angle polarization rotator

in [40,52].

The eigenmode graphs for the InP/InGaAsP polarization converter are plotted in Fig.

3.7. By comparing Figs. 3.6 and 3.7 with Fig. 3.4, we confirm the operation principle

of single-section asymmetric polarization rotator: the TE- and TM- components of either

fundamental polarization have comparable field amplitude and very similar intensity dis-

tributions so that the orthogonal optical axes (c.f. Fig. 2.4) are rotated by 45◦ regarding

to the horizontal and vertical directions.
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Figure 3.7: Field distribution of fundamental modes of the InP/InGaAsP polarization

converter in [40, 52] with geometry parameters W = 2µm, H = 1µm, h = hr = 0.2µm,

dp = 0.2µm, θ = 45◦, and refractive indices n1 = 3.4 (InGaAsP) and n2 = 3.27 (InP):

(a) two dimensional contour graph; and (b) three dimensional surface graph.
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Chapter 4

Design Rules for Slanted-Angle

Polarization Rotators

Having developed a sophisticated and versatile full-vectorial Finite Element Method (FEM)

program package, in this chapter we introduce a set of simple and general design rules for

slanted-angle polarization-rotating waveguides. Following these general procedures, we

construct a class of single-mode Silicon-on-Insulator (SOI) polarization rotators that offer

significant advantages in conversion efficiency, optical loss, fabrication tolerance, spectral

response and spatial dimensions relative to III-V (semiconductors such as AlGaAs/GaAs

and InGaAsP/InP) components.

As reviewed in Chapter 2, passive polarization rotators are central to optical commu-

nication systems, and generally are composed of concatenated segments, each of which

rotates the light polarization a small amount, or a single-segment slanted-angle waveguide.

III-V longitudinally periodic [15–20] and bent structures [21–27] were the first structures

realized, followed by single-section slanted-angle polarization rotators fabricated in both

GaAs and InP [40–48]. Compared with III-V waveguides of equivalent dimensions, silicon-

on-insulator (SOI) waveguides [57,60–62,64–67] provide stronger optical confinement. Fur-

ther, single-mode yet large cross-section SOI waveguides (with e.g., silicon film thickness

of 3 ∼ 10µm) can be fabricated at relatively low cost. As a result, both the coupling loss

to single-mode fibers (SMF) and the fabrication tolerance are enhanced.

In this chapter, we accordingly consider the design of single-section SOI slanted-angle

41



CHAPTER 4. DESIGN RULES

polarization rotators. We develop a systematic design procedure that can be applied to

general waveguide profiles and material systems. We first graph the maximum polariza-

tion rotation, single mode condition and modal coupling lengths as a function of various

waveguide parameters, and then derive a simple empirical formula that can be employed

to design SOI polarization converters over a wide range of silicon film thicknesses and to

predict fabrication tolerances. We compare the performances and characteristics of SOI

and III-V converters. Studies related to the fabrication tolerance, bending behavior, loss

and coupling issues are to be presented in subsequent chapters.

4.1 Waveguide Geometry

The general geometry of a passive slanted-angle polarization rotator is displayed in Fig.

4.1(a). Standard III-V devices are based on either the symmetric external layer structure

of Fig. 4.1(b) [18, 19, 40,41, 49–53] or that of Fig. 4.1(e) [43–48]. In this work we however

focus on the novel asymmetric external layer structure of Fig. 4.1(c).

In Fig. 4.1, H denotes the total rib height, which in the case of SOI waveguides is

identical to the thickness of the silicon guiding film, so that a 3µm SOI design in this work

refers to H = 3µm. Further, W is the width at the base of the rib, θ is the angle formed by

the slanted-angle facet that to simplify fabrication generally coincides with a crystal plane,

e.g., θ = 54.736◦ for the 〈111〉 crystallographic plane in Si and θ ' 52◦ for InGaAsP. The

symbols h, hr, dc, dp, di, and ds denote the thicknesses of the external layer adjacent to

the vertical rib facet, the external layer adjacent to the slanted facet, the region between

the top of the rib and the end of the computational window, the cap, the insulator, and

the substrate layers, respectively. The horizontal computational window dimensions are

controlled by Xsl and Xsr. We define the ratio of the slab thickness to rib height as r = h
H

and the ratio of the rib width to rib height s = W
H while the optical-axis rotation angle ϕ

is taken to be positive for a clockwise rotation. In a SOI waveguide the refractive indices

of rib, substrate and insulator regions are n1 = n3 = 3.48 for silicon and n2 = 1.45 for

SiO2. The wavelength λ = 1.55µm and insulator thickness di = 1.1µm [1, 6, 7] are fixed

throughout this thesis.

In the asymmetric SOI design of Fig. 4.1(c), one of the waveguiding layers outside the
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Figure 4.1: Slanted-angle polarization rotator: (a) general geometry; (b) conventional

symmetric external waveguiding layer design (hr = h); (c) asymmetric external layer design

(hr = 0); (d) design without external layers; and (e) single substrate waveguide without

external layers.

rib region is etched completely to the SiO2 layer unlike conventional slanted-angle polariza-

tion rotators [18,19,40,41,49–53] for which the external waveguiding layers are of the same

height (although departures from symmetry caused by fabrication error occur, yielding

undesired performance variations). Eliminating both external waveguiding layers [43–48]

of course fully avoids such fabrication difficulties, but at the cost of a small device cross-

section for single-mode operation since higher order modes then cannot radiate laterally.

We will demonstrate in Section 4.3 that the single-mode region of slanted-facet waveguides,

and especially waveguides with asymmetric external layers can encompass a larger region

of waveguide parameters than conventional structures, increasing fabrication tolerance.

In slanted-angle waveguides, the modes are hybridized by the geometric asymmetry,

becoming TE and TM with respect to the slanted facet rather than the substrate inter-

face. In multiple section polarization rotators, the modes are typically weakly hybridized,

while modes in single section devices are fully hybridized with nearly equal TE and TM

components in each of the two orthogonal fundamental modes. In the latter case, the

optical-axis is positioned at a 45◦ with respect to the lateral direction while the intensities
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of the two fundamental modes will be comparable. The polarization of an incoming TE or

TM mode is therefore rotated by 90◦ after a half-beat length defined by Eq. (2.3).

As noted in Section 2.1.2 and 3.1, many simulation procedures have been applied

to slanted-angle waveguides, however, certain difficulties have been noted. The finite-

difference method (FDM) for example can give rise to spurious modes [152,153] and numer-

ical instabilities [41]. Further, it is relatively computationally inefficient for slanted-angle

waveguides [46, 47] and possesses large errors at high-contrast waveguide corners such as

those present in Fig. 1 of [43]. In contrast, the finite-element-method (FEM), enhanced

through an unstructured mesh with adaptive refinement, can be easily applied to waveg-

uide corners and slanted facets without an appreciable increase in either memory usage or

CPU time. Having developed an accurate and efficient full-vectorial FEM eigenmode solver

with mixed triangular elements in Chapter 3, we here employ the H-formulation since the

magnetic field components are naturally continuous across dielectric interfaces [167,188].

4.2 Design Procedure

In this and the following sections, we examine the dependence of both the conversion effi-

ciency between the incoming TE and TM modes and the parameter limits for single mode

operation on the details of the device geometry for slanted-angle polarization converters.

We present both descriptive two-dimensional contour plots and simple empirical formulas

from which the optimal waveguide parameters can be immediately obtained.

4.2.1 Optical-axis Rotation Contours

In our first set of simulations, we examine the rotation of the optical-axes as a function of

the height and width of the slanted-angle rib waveguide as well as the thicknesses of the

slab layers on both sides of the rib. The direction of the slanted waveguide facet naturally

follows the 〈111〉 crystallographic plane. Subsequently in our magnetic field formulation the

rotation of the optical-axis is identified with a suitable ratio of the TE and TM components

of the lowest-order waveguide eigenmode. In the magnetic case, three possible criteria are

the vectorial ratio of the x and y field components [Hx]/[Hy] [49–51], the ratio of the

maximum values of the x and y magnetic field components max(Hx)/max(Hy) [49], or the

44



4.2. DESIGN PROCEDURE

rotation parameter R [40]:

R =

∫∫
Ω

n2(x, y) ·H2
x(x, y) dx dy

∫∫
Ω

n2(x, y) ·H2
y (x, y) dx dy

(4.1)

where n(x, y) is the refractive index distribution, and the magnetic field components

Hx(x, y) and Hy(x, y) are the components of the specified eigenmode in the lateral and

transverse directions, respectively. For a 45◦ optical-axis rotation, these components are

almost identical so that R = 1.

We employ the rotation parameter to characterize the optical-axes rotation as Eq.

(4.1) contains contributions from the entire field region. The rotation parameters for the

two lowest-order eigenmodes are denoted as R1 and R2, respectively; while R without a

subscript in default indicates R1. Moreover, R À 1 designates an x-polarized lowest-order

mode, while R ¿ 1 corresponds to a y-polarized mode. Since the modes are orthogonal

the optical-axis rotation angle is:

ϕ = tan−1(R) = tan−1(R1) = cot−1(R2) (4.2)

In Figs. 4.2 and 4.3, we present normalized contours for the optical-axis rotation-

angle as a joint function of both the normalized rib height and external waveguiding layer

thickness. The different cases in the figures are as follows: Fig. 4.2(a) corresponds to a

conventional symmetric external waveguiding layer SOI polarization rotator, Fig. 4.2(b) to

our proposed slanted-angle asymmetric external waveguiding layer SOI design, Fig. 4.3(a)

to a conventional 1.3µm weakly-guided InGaAsP polarization converter [41, 49] and Fig.

4.3(b) to an InGaAsP polarization rotator with an asymmetric waveguiding layer geometry

where n1 = 3.370 in the rib, n2 = n3 = 3.324 in the substrate and the facet angle is θ = 52◦.

The optical-axes contours for SOI waveguides show very low sensitivity to the silicon

film thickness, H, for 1µm < H < 30µm. As an illustration, we show in Fig. 4.4 the

contour charts for asymmetric waveguiding layer geometry with various silicon guiding

film thickness of 1.3µm, 2µm, 3µm, and 5µm, respectively. These graphs display exactly

the same pattern, and have negligible difference if normalized by the silicon film thickness.

Same situation is with the symmetric waveguiding layer slanted-angle SOI waveguides, as

is evident from Fig. 4.5 where silicon film thickness of 2µm, 3µm, and 5µm are considered.
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Figure 4.2: Optical-axis rotation angle (ϕ) contours for slanted-angle SOI waveguides:

(a) symmetric external waveguiding layer SOI waveguide; and (b) asymmetric external

waveguiding layer SOI waveguide.
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Figure 4.3: Optical-axis rotation angle (ϕ) contours for slanted-angle III-V waveguides:

(a) symmetric external waveguiding layer III-V waveguide (H = 1.3µm, n1 = 3.370, n2 =

n3 = 3.324, θ = 52◦); and (b) asymmetric external waveguiding layer III-V waveguide

(H = 1.3µm, n1 = 3.370, n2 = n3 = 3.324, θ = 52◦). These III-V waveguides are single-

mode for ϕ = 45◦.
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Figure 4.4: Optical-axis rotation angle (ϕ) contours for asymmetric external waveguiding

layer slanted-angle SOI waveguides as in Fig. 4.1(c) with various silicon guiding film

thickness: (a) H = 1.3µm; (b) H = 2µm; (c) H = 3µm; and (d) H = 5µm.

48



4.2. DESIGN PROCEDURE

1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

Rib Width W ( µ m )

S
la

b 
T

hi
ck

ne
ss

 h
 (

 µ
 m

 )

1

1

1

5

5

5

10

10

10

20

20

20

30

30

30

40

40

45

45

50

50

60

60

70

73

(a)

2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

Rib Width W ( µ m )

S
la

b 
T

hi
ck

ne
ss

 h
 (

 µ
 m

 )

1

1

1

1

5

5

5

10

10

10

20

20

20

30

30

30

40

40

45

45

50

50

60

60

70

73

(b)

4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

Rib Width W ( µ m )

S
la

b 
T

hi
ck

ne
ss

 h
 (

 µ
 m

 )

1

1

1
1

5

5

5

10

10

10

20

20

20

30

30

40

40

45

45

50

50

60

60

70

70

73

(c)

Figure 4.5: Optical-axis rotation angle (ϕ) contours for symmetric external waveguiding

layer slanted-angle SOI waveguides as in Fig. 4.1(b) with various silicon guiding film

thickness: (a) H = 2µm; (b) H = 3µm; and (c) H = 5µm.
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Besides being nearly independent of the silicon layer thickness, the information in the

optical-axis rotation-angle contours can be utilized for both single and multiple section

rotators. That is, any waveguide exhibiting 45◦ optical-axis rotation can be employed as

a single section polarization rotator; while e.g., a 22.5◦ optical-axis-rotating waveguide is

suitable for a two-section rotator (c.f. Section 2.1.3 and Eq.(2) of [40]). Since in this thesis

we focus on single-section components for reasons of size, loss and fabrication simplicity,

the 45◦ contour is distinguished in the graphs by its thickness. The two dashed lines in

Figs. 4.2(a) and 4.2(b) indicate the waveguide parameters corresponding to the single

mode cutoff condition and will be discussed in detail in Section 4.3.

To establish the accuracy of our results, we observe from Fig. 4.3(a) that a H = 1.3µm

single section III-V rotator rib width requires a waveguide width W = 2.4µm for a outer-

slab height of h = 0.1µm. This result agrees well with the published value of ∼ 2.5µm

(Case I of Table I in [41], Fig. 4 of [49], Fig. 7 of [54]), however, Fig. 5 of [49] indicates that

the maximum field ratio (Hx/Hy or Hy/Hx) occurs at W = 2.4µm. Our graph additionally

yields a continuum of design parameters and explains previous observations such as the

increase and the subsequent decrease of hybridization with increasing rib width (Fig. 2

of [50]) as verified from the rotation angles along lines of constant h in Fig. 4.3(a).

4.2.2 Merits of SOI Polarization Rotator

To illustrate our design procedure through a practical example, we consider the single-

section SOI polarization rotating waveguide given by h = 1.1µm, W = 3.3µm, hr = 0 and

H = 3µm that is located on the 45◦ contour line and in the single-mode region of Fig.

4.2(b). The two lowest-order eigenmodes of this waveguide are shown in Fig. 4.6. Observe

that the two eigenmodes are almost identical as required for a 45◦ optical axis rotation.

The length of the corresponding polarization rotator is Lπ = 850µm.

The additional range of parameter choices provided by SOI waveguides compared to

low index-contrast III-V waveguides is evident from the lengths of the 45◦ contours in Figs.

4.2 and 4.3. Thus, while the 3µm SOI rotator mentioned in the previous paragraph has a

length of 850µm (which is close to the reported value of ∼ 700µm for equivalent 1.3µm III-

V rotators [41,49]), we have found that single-mode 1.3µm SOI structures can be designed

with Lπ between 35 and 100µm yielding much shorter device lengths. To illustrate, a single-
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Figure 4.6: Orthogonally polarized two lowest-order modes of a ϕ = 45◦ SOI waveguide

with H = 3µm, W = 3.3µm, h = 1.1µm, hr = 0, Lπ = 850µm and R = 1.07: (a) two-

dimensional (2D) contour graph; and (b) three-dimensional (3D) surface plot.
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mode waveguide with H = 1.3µm, W = 1.55µm, h = 0.4µm and hr = 0, yields R = 1.02

and a half-beat length Lπ = 98µm; while a waveguide with H = 1.3µm, W = 0.95µm,

h = 0.35µm and hr = 0, has R = 0.98 and Lπ = 34µm.

Another feature of our SOI waveguide design is the flexible cross-section which can

be easily made comparable to that of either laser diodes or single-mode fibers (SMF),

reducing coupling-loss. Further, the field is effectively confined to the rib region unlike III-V

waveguides, which generally require a thick (> 5µm) substrate [66]. For larger waveguides,

fabrication tolerance is enhanced, while the strong optical confinement decreases the optical

loss, minimum bending radius and device spacing. Together with the decreased substrate

thickness, these SOI designs indicate that compact and low-price products can be fabricated

that are fully compatible with CMOS integrated circuit (IC) technology.

4.2.3 Range of Validity

While the contour charts of Fig. 4.2 were calculated for a H = 3µm silicon guiding layer

thickness, almost identical results are obtained for a wide range of Si thicknesses, as have

been clearly illustrated in Figs. 4.4 and 4.5 for H = 1.3 to 5µm. Therefore, in Figs.

4.2(a) and 4.2(b), the geometric parameters W and h are normalized with respect to the

silicon film thickness H, and these normalized charts (with normalized outer-slab thickness

r = h/H and normalized rib width s = W/H) can therefore be employed for general design

purpose. In this section, we subsequently study the range of H values for which such a

normalization yields nearly equivalent curves.

We first select a ϕ = 45◦ asymmetric waveguiding layer structure of Fig.4.1(c) with

H = 3µm, W = 3.2µm, h = 1.1µm, and hr = 0 as a reference waveguide and display in

Figs. 4.7(a) and 4.7(b) our FEM results for the optical-axis rotation and the half-beat

length as H is varied from 1 to 30µm while r = h/H, s = W/H, and hr/H are kept

invariant. Note that the optical-axis rotation is nearly independent of the silicon layer

thickness, H, in this region and in fact for 2µm < H < 10µm the rotation angle ϕ varies

by only 1◦. The 8◦ decrease in rotation angle at H = 30µm can be compensated by reducing

W by < 10% of H, as is evident from Fig. 4.2(b). To obtain approximate parameters for

a 45◦ optical axis rotating waveguide, our normalized charts can accordingly be applied

to any commercially available wafer with 1µm < H < 30µm. However, since the half-

52



4.2. DESIGN PROCEDURE

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

SOI Silicon Guiding Film Thickness H (µm)

O
pt

ic
al

−
ax

is
 R

ot
at

io
n 

A
ng

le
 (

de
gr

ee
)

(Reference Device: 3 µm SOI 45° design
−−W=3.2µm,h=1.1µm,h

r
=0, H=3µm)

FEM Simulation
Fitted Curve

(a)

1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

SOI Silicon Guiding Film Thickness H (µm)

H
al

f−
be

at
 le

ng
th

 L
π 

(µ
m

) (Reference Device: 3 µm SOI 45° design
−−W=3.3µm,h=1.1µm,h

r
=0, H=3µm)

(L
π
 = 417630 µm for H = 30µm)

(b)

Figure 4.7: (a) The optical-axis rotation angle ϕ and (b) the half-beat length Lπ for similar

asymmetric waveguiding layer waveguides as a function of SOI silicon layer thickness H

where r = h/H, s = W/H and hr/H are kept invariant.
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beat length, illustrated in Fig. 4.7(b), increases exponentially with the silicon guiding film

thickness, for short devices H should be minimized.

That the optical-axis rotation remains nearly constant as the SOI waveguide dimensions

are varied can be understood from the field distributions of Fig. 4.6. Since these are almost

fully contained in the rib waveguide they are influenced to almost the same degree by the

SOI waveguide geometry. Hence, the modes are equally TE or TM with respect to the

slanted waveguide facet. In contrast, in a standard III-V semiconductor waveguide, the

depth of penetration of the modal field into the substrate region varies rapidly with changes

in the waveguide dimension (as evident from Figs. 3.6 and 3.7, or Fig.6 of [40], Fig.4 of [49],

and Fig.9 of [54]), so that the overall shape of the field and hence the hybridization induced

by the slanted facet changes rapidly with guiding layer thickness in III-V devices.

4.2.4 Empirical Design Formula

While Fig. 4.2 can be employed to design arbitrary single or multiple section polarization

rotators, for a single-section device only the 45◦ contour is of practical interest. As demon-

strated in Figs. 4.8(a) and 4.8(b), the 45◦ contour line can be approximated by a simple

rational polynomial:

r =
p1 · s2 + p2 · s + p3

s3 + q1 · s2 + q2 · s + q3

(4.3)

with r = h/H and s = W/H. Equation (4.3) fits other rotation-angle contours as well.

For single-section rotators, the coefficients appearing in (4.3) are p1 = −495.7, p2 = 922.3,

p3 = −359.5, q1 = −841.7, q2 = 1431, q3 = −406.7 for the asymmetric external waveguiding

layer SOI structure of Fig. 4.1(c), and p1 = −0.8966, p2 = 1.638, p3 = −0.6138, q1 =

−3.449, q2 = 4.096 and q3 = −1.223 for the conventional symmetric external waveguiding

layer SOI structure of Fig. 4.1(b). Following the considerations of the previous section,

these parameters were determined for a 3µm SOI silicon film thickness but can to a good

approximation be applied within the range 1µm < H < 30µm.

4.2.5 Half-Beat Length Variation

Finally we determine the device length as a function of the rib waveguide dimension for a

single-section polarization rotator. We display in Figs. 4.9(a) and 4.9(b) the variation of the
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Figure 4.8: The 45◦ optical-axis rotation contours of Figs. 4.2(a) and 4.2(b) together with

a rational polynomial approximation for: (a) a SOI polarization converter with conven-

tional symmetric external waveguiding layer; and (b) novel asymmetric outer-slab layer

SOI structure.
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Figure 4.9: The dependence of the half-beat length Lπ for asymmetric external waveguiding

layer waveguides that rotate the optical-axis by 45◦ with: (a) rib width W ; and (b) external

waveguiding layer height h.
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half-beat length Lπ with the rib base width W and the external waveguiding layer thickness

h, respectively, for asymmetric external waveguiding layer SOI waveguides on a 3µm silicon

guiding layer that exhibit a 45◦ optical-axis rotation. Clearly the half-beat length Lπ varies

linearly with rib width W but reflects the path of the 45◦ contour in Fig. 4.8(b) with the

slab thickness h. From this behavior together with the exponential relationship in Fig.

4.7(b) the device length can be estimated for any waveguide. In particular, for Si film

thicknesses of 1.3µm, 2µm, 3µm and 5µm, we found that, respectively, 35µm ≤ Lπ ≤
100µm, 125µm ≤ Lπ ≤ 375µm, 250µm ≤ Lπ ≤ 1225µm and 1150µm ≤ Lπ ≤ 5125µm.

In each of these cases, the half-beat length varies linearly with the base rib width as

in Fig. 4.9(a), and with the outer-slab thickness in the same manner as in Fig. 4.9(b).

Evidently a 3µm Si guiding layer encompasses Lπ values that are relevant to most practical

applications, while extremely short (35∼100µm) SOI polarization rotators can in principle

be designed (c.f. Section 4.2.2) with the same 1.3µm cross-section as many current III-V

rotators, which typically are several hundred microns in length.

4.3 Single-Mode Condition

Low-loss, high conversion efficiency polarization rotators must support a single guided

mode for each polarization in order to insure that no power is coupled into higher-order

modes during propagation. The condition for single mode operation in SOI rib waveguides

can be simply approximated by Soref’s formulas [90,98,99], which in the case of trapezoidal

cross-sections are modified in [99,101]. However, these expressions are invalid for slanted-

angle waveguides where the guided modes become strongly hybridized. Additionally, pre-

vious studies were limited to slightly-etched SOI rib waveguides with 0.5 < r = h/H < 1,

although strong polarization conversion instead requires deeply-etched waveguides with

0 < r < 0.5, as evident from Fig. 4.2. While Pogossian [98] modified Soref’s formula to

improve its relevance to waveguide design, his expression is based on predicted (rather than

experimental) data [95] generated from Soref’s original formulae [90]. Similarly, [99] employ

numerical procedures for weakly guiding structures, while [94] mistakes the deep-etching

(r ≤ 0.5) for Soref’s shallow-etching (r ≥ 0.5) condition.

Here we determine the single mode cutoff condition through a FEM mode solver by
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Figure 4.10: The single mode region boundary for: (a) the SOI rib waveguide and slanted-

angle polarization rotators with same silicon film thickness H = 3µm; and (b) the asymmet-

rical external waveguiding layer waveguides with different silicon guiding film thicknesses.

58



4.3. SINGLE-MODE CONDITION

increasing the rib width for a fixed slab thickness until a third mode appears. First we

contrast in Fig. 4.10(a) the single-mode cut-off boundary of different waveguides with the

same silicon film thickness H = 3µm. The curves marked 1 to 3 correspond to standard rib

waveguides, symmetric external waveguiding layer and asymmetric external layer slanted-

angle waveguides, respectively. The FEM simulation clearly verifies that Soref’s equation

(Eqs.(8) and (9) of [90]) is the most accurate formulation for SOI rib waveguides. From

Fig. 4.10(a), we conclude that for a fixed silicon film thickness H, our asymmetric external

layer design displays the greatest region of normalized waveguide parameter space, (r, s),

for single-mode operation. At a fixed value of r = h/H the asymmetric waveguiding layer

slanted-angle structure of Fig. 4.1(c) provides the largest range of normalized widths,

s = W/H, that yield a single-mode waveguide with a 45◦ optical-axis rotation.

Next, we examine in Fig. 4.10(b) the single-mode behavior of our asymmetric waveguid-

ing layer structure as the silicon layer thickness H is varied. As expected, as the thickness

is decreased, a larger region of parameter space is associated with single-mode behavior.

On the other hand, to achieve a large optical-axis rotation, the waveguide must be deeply

etched as evident from Fig. 4.2. The single-mode boundary curve is then nearly invariant

even with respect to changes in the silicon layer thickness H.

Consequently, although the single-mode boundary curves in Figs. 4.2(a) and 4.2(b)

are computed with H = 3µm, these curves are nearly unchanged for 1µm < H < 30µm,

varying by less than 1% for r < 0.5. In contrast, for the H = 1.3µm III-V devices discussed

in Figs. 4.3(a) and 4.3(b) all waveguides that rotate the optical-axis by 45◦ are single-mode,

however, the single-mode behavior of III-V waveguides is dependent on H as discussed in

Section 4.2.3. Referring to Figs. 4.2(a) and 4.2(b), a 45◦ optical-axis rotating single-mode

SOI waveguide requires 0.2 < r < 0.4. Any point on the 45◦ optical-axis rotation contour

therefore yields a realizable single-section polarization rotator as typified by Fig. 4.6.

As well, Figs. 4.2(a) and 4.2(b) indicate that the asymmetric waveguiding layer struc-

ture has an enhanced region of single-mode operation given by 1.2 > s = W/H > 0.71 while

the corresponding interval for the symmetric external layer structure is 0.9 > s > 0.71.

Coupled with the ease of fabrication of structures for which a silicon oxide insulator layer

prevents further etching of the slanted facet, our results clearly indicate the potential ad-

vantages of the asymmetric structure.

59



CHAPTER 4. DESIGN RULES

4.4 Summary

In this chapter, we have mapped the optical-axis rotation and single-mode cutoff condition

of slanted-angle polarization rotators onto a contour map in normalized variables. For the

subset of SOI slanted-angle waveguides that rotate the optical-axis by 45◦ the information

in the two-dimensional diagram can be summarized by a one-dimensional empirical formula

for the waveguide parameters. This procedure enables the rapid design of periodic and

single-section slanted-angle polarization converters with either symmetric or asymmetric

external waveguiding layers for rib heights from 1 to 30µm.

We also examined the single-mode cutoff condition of SOI structures with different

silicon guiding layer thicknesses and demonstrated that the asymmetric-slab structure has

a considerably larger region of single mode behavior and therefore fabrication tolerance

than other waveguide designs. For the same guiding layer thickness, SOI polarization

rotators exhibit enhanced optical confinement and are therefore more compact than III-V

components.
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Chapter 5

Fabrication Tolerance of SOI

Polarization Rotators

We have theoretically predicted the feasibility and advantages of employing silicon-on-

insulator (SOI) material for passive polarization rotators (PR), and have also found im-

proved performance of the asymmetric external waveguiding layer design as compared with

other structures in Fig. 4.1. Such asymmetric SOI polarization rotators therefore have

great potential in future optical communication systems due to the superior performance

and simple geometry. However, the performance of practical devices will inevitably be

affected by factors such as fabrication error and wavelength fluctuation. In low cost silicon

photonics processing, there is typically 0.1µm fluctuations in geometric parameters [1,6,7].

Obviously, a thick silicon layer (e.g., H = 10µm) has a greater tolerance than a thin layer

(e.g., H = 3µm) to a 0.1µm parameter change. However, even for the same silicon film

thickness, the fabrication tolerance of the waveguide design varies moderately with the

location on the 45◦ line of our optical-axis contour plots.

In this chapter, we only analyze the fabrication tolerance of several novel asymmetric

external waveguiding layer SOI polarization rotators as illustrated in Fig. 4.1(c) that are of

practical importance. Section 5.1 presents an analytical formula for polarization conversion

efficiency. The fabrication tolerances of polarization converters made of SOI and III-V

materials are compared in Section 5.2. Two typical SOI PRs of practical significance are

analyzed in detail in Section 5.3. Following this, Section 5.4 studies the wavelength stability
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of SOI polarization converters. Finally, Scanning Electron Microscope (SEM) images of

some fabricated device samples and experimental results are presented in Section 5.5.

5.1 Polarization Conversion Efficiency Formula

Some former fabrication studies on III-V slanted-angle polarization rotators [49–51] simply

observe the variation of a single quantity such as the half-beat length or the polarization

direction with respect to the waveguide geometric parameters. However, more closely

related to the performance of polarization rotators are the polarization conversion (PC)

efficiency and the polarization extinction ratio (ER), which are related to a combination

of device quantities. The polarization conversion (PC) efficiency measures the percentage

of power, P , transferred between the orthogonal polarization components for a given input

polarization state and is therefore

PCTE→TM = PTM/(PTE + PTM)× 100% (5.1)

for an incoming TE mode. After some algebraic manipulations (details in Appendix A

and [8]), the PC is found to be in terms of the device length L, half-beat length Lπ and

optical-axis rotation angle ϕ (or rotation parameter R):

PC = 4 sin2 ϕ cos2 ϕ sin2(
πL

2Lπ

)× 100% (5.2)

while the polarization extinction ratio ER, which is related in the absence of loss to the

polarization conversion efficiency by ER = 10 log[(1− PC)/PC], is defined as [47]:

ER = 10 log

(
P out

TE

P out
TM

)∣∣∣∣
TE polarized input

(5.3)

The polarization conversion efficiency (PC) formula Eq. (5.2) is readily verified from the

BPM data for InGaAsP devices in Figs. 12 and 13 (at λ = 1.61µm) of [50], Fig. 3 of [43],

and Fig. 6 in [38], and is to be further verified in Section 6.4.3 with full-vectorial FE-BPM

simulation results for asymmetric SOI polarization converters.
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5.2 Tolerance Comparison of SOI and III-V PRs

To illustrate the magnitude of fabrication tolerances, we first consider a waveguide with

H = 3µm, hr = 0, h = 1µm, and W = 3.6µm, which yields a half-beat length Lπ =

1053.5µm for a 45◦ optical-axis rotation according to Fig. 4.3(a), and describe the variation

of the optical-axis rotation parameter R and half-beat length Lπ with rib width W and

external waveguiding layer thickness h. Varying W from 2.2 to 5.2µm, yields Fig. 5.1(a)

and Fig. 5.2(a) for Lπ and R. The dependence of these quantities on h for 0.4 < h < 1.4µm

is instead displayed in Fig. 5.1(b) and Fig. 5.2(b). From Figs. 5.1(a) and 5.1(b), we find

that a 0.1µm fabrication error in W or h changes Lπ by 80µm and 40µm, respectively.

These values compare with 50µm and 20µm for the corresponding III-V waveguide with

Lπ = 403µm given by Figs. 2 and 10 of [50]. However, the relative deviation in the

SOI case is 7.6% and 3.8%, which is markedly smaller than 12.4% and 5% for the III-V

waveguide in [50].

From Figs. 5.2(a) and 5.2(b), we observe additionally that the rotation parameters R1

and R2 are inversely proportional to each other. The reciprocal relationship is a direct

consequence of the orthogonality of the two lowest-order modes. From Eq. (4.2) and Fig.

5.2, the maximum variation of the optical-axis rotation angle ϕ is bounded by +4◦ when

either the rib width or the rib height is reduced by 0.1µm, and by −7◦ when W or h is

increased by 0.1µm.

For the above H = 3µm SOI polarization rotator, the polarization conversion efficiency

and extinction ratio are PC = 99.98% and ER = −38dB, respectively. Even for a variation

of W of 0.1µm, which yields the maximum −7◦ rotation angle variation, we calculate

∆Lπ = 7.6% and PC = 92.81% corresponding to ER = −11dB, while a 0.1µm h variation

yields ∆Lπ = 3.8%, PC = 97.71% and ER = −16dB. In both of these worst cases, the

performance is acceptable for many applications (c.f. Fig. 5 of [47], and PC = 92 ∼ 93%

after ±0.1µm rib width variation in [40]).

Repeating the above analysis for a 1.3µm SOI rotator with hr = 0, h = 0.4µm, W =

1.55µm and Lπ = 98µm, we find that the dependence of Lπ and R on W and h is largely

identical to Figs. 5.1 and 5.2. While the fabrication tolerances are decreased relative to the

3µm rotator since PC = 87.59% and ER = −8.5dB for ∆W = 0.1µm, while PC = 93.07%,

ER = −11.3dB for ∆h = 0.1µm, the conversion efficiencies improve to PC = 96.15%,
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Figure 5.1: The variation of the half-beat length Lπ variation with respect to: (a) the

width W of the rib base for an external waveguiding layer thickness for h = 1µm; and (b)

h for W = 3.6µm.
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Figure 5.2: Optical-axis rotation parameters R1 and R2 as a function of: (a) the width W

of the rib base for an external waveguiding layer thickness h = 1µm; and (b) the external

layer thickness h for a rib base width W = 3.6µm.
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ER = −14dB for ∆W = 0.05µm while PC = 97.62%, ER = −16dB for ∆h = 0.05µm.

These compare favorably to the conversion values of 80% in 0.3mm device of [15], 85% and

45% in [21]. Since the modes of the SOI waveguides are highly confined and are therefore

more influenced by geometric variations, the fabrication tolerance of the SOI rotator is

slightly less than that of InGaAsP converters with equivalent guiding layer thicknesses (c.f.

Fig.5 of [47]). However, ultra-compact SOI devices are more easily fabricated than similar

III-V structures, which can possess certain dimensions below 50nm (c.f., Fig.2 of [15],

and Fig.1 of [28] where Lπ = 230µm). Improved silicon fabrication methods with 0.05µm

resolution, possibly involving nano-photonics processing techniques [200–206], should result

in ultra-short polarization rotators with conversion efficiency > 96%.

5.3 Tolerance Study of Two Practical SOI PRs

In this and the next section, we consider the fabrication tolerance and wavelength stability

of two asymmetrical external waveguiding layer slanted angle SOI polarization rotators

which are of practical importance. These are a 3µm design with H = 2.8µm, h = 1µm,

W = 2.7µm, hr = 0, R = 1.04, and Lπ = 502.4µm, and a 5µm design with H = 4.8µm,

h = 1.8µm, W = 4.8µm, hr = 0, R = 1.01, and Lπ = 2572µm. The geometric parameters

are rounded to the nearest tenth of a micron-meter, which models the fabrication precision

in our low cost silicon processing [7]. Further, the values of H are reduced by 0.2µm

from the optimal film thicknesses specified above to model the 0.2µm silicon layer loss

observed experimentally after removing the top protecting layer during fabrication [7, 8].

It should be noted that improved technologies provide much better precision [200–206]

such as ±50nm [200], ±20nm [204,206] or several nanometers [201].

We first study in Fig. 5.3 the variation of the polarization conversion efficiency (PC)

with respect to the base rib width W for these two devices. For the 5µm design, the PC

degrades only 1% for ±0.1µm deviation from the optimum rib width 4.8µm; while this

degradation is about 2.5% for the 3µm design. The fabrication tolerance regarding to

the thickness of outer-slab layer h is displayed in Fig. 5.4, from which one conclude that

the variation of the external waveguiding layer thickness has a larger effect on the device

performance. A ±0.1µm variation of h from its optimal value reduces the polarization
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Figure 5.3: Variation of the polarization conversion efficiency with the based rib width for:

(a) 5µm design; and (b) 3µm design.
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Figure 5.4: Variation of the polarization conversion efficiency with the outer-slab thickness

for: (a) 5µm design; and (b) 3µm design.
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conversion efficiency by 5% for the 5µm device and 18% for the 3µm device. Therefore,

in the fabrication, the control of outer-slab thickness should be more precise than that

of rib width. However, considering a better fabrication precision of ±20nm [204, 206], the

performance degradation of the 3µm device dramatically improves to less than 3%. In Figs.

5.3 and 5.4, each plot has two curves, which are obtained from the rotation parameters

R1 and R2 of the two fundamental modes, respectively. The difference between these two

sets of results are really small, indicating an excellent similarity of the field distributions.

Figs. 5.3 and 5.4 consider the absolute variation of width or heights, therefore the relative

error from the optimal values cannot be established. In Fig. 5.5 the geometric variations

in terms of percentage error from the optimal values of rib width, outer-slab thickness and

silicon guiding layer height are studied. From Fig. 5.5, we find that 5% variation in these

geometric parameters leads to no more than 5% reduction in the polarization conversion

efficiency.

Next, we analyze in Fig. 5.6 the degradation of the polarization conversion efficiency

with respect to the variation of the angles of the rib sidewalls. Fig. 5.6(a) studies the

angle of the slated-facet, which equals to 54.736◦ for etching along the 〈111〉 crystal plane

of silicon. A 1◦ error in this slant angle lowers PC by 3%; however, since the slope side-

wall of the rib can be made very precisely by tetramethyl ammonium hydroxide (TMAH)

procedure [7, 8] we need not worry about this variation at all. The only one to be con-

sidered seriously is the angle of the vertical wall, whose effect on the device performance

is illustrated in Fig. 5.6(b). We see that a 5◦ off from the exact 90◦ causes 6% reduction

in PC, while a 10◦ deviation leads to 25% degradation or more. Therefore, for practi-

cal yet economic considerations, a fabrication technology which controls this angle within

±5◦ precision should be chosen for the fabrication of slanted-angle polarization rotators;

otherwise, one may have to adjust the geometric parameters H, W , or h in advance to

compensate this degradation by using the general design procedures discussed earlier in

Chapter 4.

Finally, we consider the variation of the refractive index of the silicon guiding film

as a result of different doping density. Since the refractive index difference between the

silicon (n1 = 3.48) and silicon oxide (n2 = 1.45) is rather large, the small change in the

refractive index of silicon layer has little effect on the device performance, as obvious from
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Figure 5.5: Variation of the polarization conversion efficiency with the percentage error

from optimal value for: (a) rib width W ; (b) outer-slab thickness h; and (c) silicon guiding

layer thickness H.

68



5.3. TOLERANCE STUDY OF TWO PRACTICAL SOI PRS

52 53 54 55 56 57
65

70

75

80

85

90

95

100

Slant Angle θ ( degree )

P
ol

ar
iz

at
io

n 
C

on
ve

rs
io

n 
P

C
 (

 %
 )

H = 4.8 µm
H = 2.8 µm

(a)

80 82 84 86 88 90 92
70

75

80

85

90

95

100

Angle of Vertical Wall ( degree )
P

ol
ar

iz
at

io
n 

C
on

ve
rs

io
n 

P
C

 (
 %

 )

H = 4.8 µm
H = 2.8 µm

(b)

Figure 5.6: Variation of the polarization conversion efficiency with the rib angle: (a) angle

of the sloped wall; and (b) angle of the vertical wall.
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Figure 5.7: Variation of the polarization conversion efficiency with the refractive index of

the silicon guiding layer.
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Fig. 5.7. If the index is modified to 3.43 instead of 3.48, there is only 0.3% reduction in the

polarization conversion efficiency. As a comparison, the variation in index contrast could

lead to dramatic performance changes for polarization converters made from low-index-

contrast III-V semiconductors [49,50].

5.4 Spectral Properties

To determine the applicability of the polarization rotator design to Wavelength Division

Multiplexing (WDM) systems, we now study the behavior of the two representative devices

in the C-band (1528.77nm∼1563.86nm) and L-band (1573.71nm∼1604.03nm), as defined

by the International Telecommunications Union Telecommunication Standardization Sec-

tor (ITU-T) G.692 standard.

In Figs. 5.8(a) and 5.8(b) we respectively display R and Lπ as a function of wavelength

for the 3µm design. In a wavelength range of 1.50µm to 1.60µm the rotation parameter R

varies by ±0.5% from its center value at 1.55µm, corresponding to a maximum change of

0.15◦ in the optical-axis rotation angle while Lπ varies by ±6%. While between 1.55 and

1.60µm the variation of R is far smaller than the 6% predicted for the III-V converter in

Fig.12 of [50], Lπ varies slightly more than the 5% reported in this reference.

The polarization conversion efficiencies and crosstalk for 1.50 < λ < 1.60µm for the 3µm

and 5µm components are plotted together in Fig. 5.9. Although in principle a 3µm rotator

can display the same performance as the 5µm device with PC = 99.98% and ER = −37dB,

for 0.1µm fabrication tolerance, the larger layer thickness is clearly preferable. That the

SOI polarization converters are highly wavelength-independent is evident from PC > 99%

in the wavelength range of 1.50 < λ < 1.60µm, while PC > 99.7% in the C-band where

the 3µm and 5µm components display < −25dB and < −30dB polarization crosstalk,

respectively.

As a result, the insensitivity to wavelength fluctuation makes the SOI polarization con-

verters quite suitable for Dense Wavelength Division Multiplexing (DWDM) applications

and Planar Lightwave Circuit (PLC).
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Figure 5.8: The wavelength dependence of (a) the rotation parameter (optical-axis rotation

angle) and (b) the half-beat length (required device length).
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5.5 Fabricated Devices

The fabrication of asymmetric slanted-angle SOI polarization converters was finished by

Chris Brooks and Prof. Paul E. Jessop at McMaster University [8]. The manufacturing

was jointly collaborated with Prof. Garry Tarr at Carleton University, who provided

high quality plasma etching systems for silicon. The SOI wafer was manufactured by the

bond and etch-back technique (BESOI), and the oxide mask was patterned by ultraviolet

photolithography and reactive ion etching (RIE). The vertical rib wall was etched with

electron cyclotron resonance reactive ion (ECR-RIE); while the angled-facet of the device

was obtained with tetramethyl ammonium hydroxide (TMAH) wet etching along the 〈100〉
direction of the silicon, exposing the 〈111〉 crystallographic plane.

The Scanning Electron Microscope (SEM) graphs of two fabricated device samples [8]

of 3µm and 5µm devices are shown in Figs. 5.10(a) and 5.10(b), respectively. Measured

waveguide parameters are illustrated in Fig. 5.10; and for comparison, desired optimum

values are shown in brackets. Due to blurred edges in the SEM graphs, measurement

error is ±0.1µm for lengths and heights, and ±1◦ for sidewall angles [8]. As shown in Fig.

5.10(c), the angled-facet along the crystal angle is very smooth by wet chemical etching;

however, unavoidable vertical wall roughness could lead to unpredictable degradation of

the device performance.

The measured excess loss of the 5µm polarization rotator is only 0.6± 0.1dB/mm and

0.5 ± 0.1dB/mm for TE- and TM-input, respectively [8]. Without considering the er-

ror in sidewall angles, the optical-axes rotation of the 3µm device with (H,W, h, hr) =

(3.1, 2.7, 1.2, 0) is estimated from Fig. 4.2(b) or Fig. 4.4(c) to be about 30◦, leading to a

maximum polarization conversion efficiency (PC) of 75% according to Eq. (5.2). For the

5µm device with (H, W, h, hr) = (5.0, 4.9, 1.9, 0), the estimations are 35◦ optical-axes rota-

tion and 88% maximum PC from Fig. 4.4(d) and Eq. (5.2). However, in the experimental

results in [8], the measured maximum PC is 78% for TE → TM conversion. The 10%

difference between the prediction and experimental results may arise from the ±0.1µm

measurement precision, the deviation of sidewall angles, the roughness of sidewalls, the

nonuniform of outer-slab thickness, and the imperfect cleaving of the sample, etc. A more

detailed study of the device performance will be presented in Section 6.5 by illustrating

the polarization conversion effects along the propagation direction.
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5.6 Summary

In summary, slanted-angle polarization converters fabricated on SOI have stronger tol-

erance to geometric variations as compared with III-V counterparts. Among all these

parameters, the thickness of the outer-slab layer and the perfectness of the vertical side-

wall contribute more to the variation of the device performance; while the refractive index

of the silicon guiding film has the least effect on the performance fluctuation.

Additionally, such components display small coupling losses (0.2dB), flat spectral re-

sponse (|∆R| < 0.5% for 1.50 < λ < 1.60µm), high conversion efficiency (99.98%) and

low polarization extinction ratio (−38dB). SOI polarization rotators, which can easily

be produced with electronic device fabrication technology, should therefore find numer-

ous applications in Photonic Integrated Circuit (PIC) and Dense Wavelength Division

Multiplexing (DWDM) systems.

While our design methodology enables, at least in principle, the design of short polariza-

tion rotators with nearly 100% polarization conversion and < −30dB extinction ratio, the

realization of short (< 100µm) components can require technological precision of 0.05µm

(50nm) or less.

Fabricated SOI polarization rotators from low-cost silicon processing have already

shown strong conversion efficiency as predicted, and can be further improved with more

advanced processing techniques.
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Chapter 6

FE-BPM Analysis

Eigenmode solvers (guided-mode analysis) [113–115] play an important role in finding sta-

tionary solutions for z-invariant waveguides or in obtaining local normal modes for z-variant

devices. However, to study the propagation characteristics of a z-variant optical waveg-

uide, such as taper [145,161,162,207–217], Y-branch [82] or Mach-Zehnder Interferometer

(MZI) [79,80], the Beam Propagation Method (BPM) [141–146] analysis is mandatory.

In this chapter, procedures related to the Finite-Element Beam-Propagation Method

(FE-BPM) are first discussed in Section 6.1. The anisotropic Perfectly Matched Layer

(PML) boundary condition (BC) essential for absorbing outgoing waves is subsequently

introduced in Section 6.2, and its efficiency is verified with both straight and tilted Gaussian

beam propagations. In Section 6.3, the intrinsic non-unitarity associated with the propaga-

tion operator is carefully studied. BPM calculations of polarization conversion and power

exchange in an asymmetric SOI PR are presented in Section 6.4. Finally, experimentally

measured results are compared with theoretical propagation in Section 6.5.

6.1 FEM Beam Propagation Method

Due to their versatility and efficiency, BPM algorithms employing finite-element proce-

dures (FE-BPM) are superior to finite-difference BPM (FD-BPM) [129] and fast-Fourier-

transform BPM (FFT-BPM) schemes [147] in analyzing anisotropic, inhomogeneous, or

arbitrary-cross-section waveguides.
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6.1.1 FE-BPM Numerical Scheme

Using an approximate reference refractive index n0 (the closer to effective index neff , the

better) and slowly varying envelop approximation (SVEA) [125], the field has the form

ψ = φ(x, y, z) exp(−jk0n0z) (6.1)

with an implied time dependence exp(jωt).

After applying finite-element procedures to the transverse xy-plane, the following ma-

trix equation is obtained

[M ]
d2{φ}
dz2

− 2jk0n0[M ]
d{φ}
dz

+
(
[K]− k2

0n
2
0[M ]

) {φ} = {0} (6.2)

where [K] and [M ] are given in Eqs.(3.11-3.12), Eqs.(3.20-3.21), and Eq.(3.42) for scalar,

semi-vectorial and full-vectorial analysis, respectively. Utilizing the Fresnel approximation

for paraxial analysis,
d2{φ}
dz2

= 0 (6.3)

or utilizing the Padé recurrence relation [125,153,218,219] by rewriting Eq.(6.2) to

2jk0n0[M ]
d{φ}
dz

=
([K]− k2

0n
2
0[M ]) {φ}

1− 1
2jk0n0

d
dz

(6.4)

for wide-angle analysis, we obtain

−2jk0n0[M̃ ]
d{φ}
dz

+
(
[K]− k2

0n
2
0[M ]

) {φ} = {0} (6.5)

where

[M̃ ] =





[M ] + 1
4k2

0n
2
0

([K]− k2
0n

2
0[M ]) , for wide-angle analysis

[M ], for paraxial analysis
(6.6)

We find from Eq.(6.5) that the z derivative can be expressed as

d

dz
=

1

2jk0n0

[M̃ ]−1
(
[K]− k2

0n
2
0[M ]

)
(6.7)

Since the z-derivative of an eigenmode (stationary solution) is zero, for guided-mode anal-

ysis Eq.(6.5) exactly reduces to the eigenmode matrix equation of Eqs.(3.10), (3.19) and
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(3.41). However, for propagation-field analysis, applying Galerkin’s procedure along the

longitudinal direction leads to

[A]k{φ}k+1 = [B]k{φ}k (6.8)

with

[A]k = −2jk0n0[M̃ ]k + α∆z
(
[K]k − k2

0n
2
0[M ]k

)
(6.9)

[B]k = −2jk0n0[M̃ ]k − (1− α)∆z
(
[K]k − k2

0n
2
0[M ]k

)
(6.10)

where ∆z is the propagation step-size, and the subscripts k and k + 1 denote the k-th

and (k + 1)th propagation steps, respectively. The weighting factor (difference parameter)

α is related to program stability, and α ≥ 0.5 is the stability range of the propagation

scheme [220]. In the Crank-Nicholson algorithm α = 0.5, the power dissipation is the

least but unstable results may appear for full-vectorial BPM due to the intrinsic non-

self-adjointness of the full-vectorial propagation operator [2]. The quasi-Crank-Nicholson

scheme [129] with α = 0.5 + ε, where ε is a very small positive value, is usually stable

because of the small artificial power dissipation.

To increase the numerical accuracy and efficiency, the reference refractive index n0 is

renewed after each step [197,221]

n0 =
{φ∗}T [K]{φ}

k2
0{φ∗}T [M ]{φ} (6.11)

so as to make it as close to the effective index of the local normal mode as possible. For

simplicity, one can take the real part of Eq. (6.11) as the reference index [194], however,

the complex reference index minimizes the numerical error [221].

As seen from Eqs. (3.10), (3.19) and (3.41), we have generalized the FEM eigenmode

problem into the same generalized eigenvalue matrix equation ([K]− β2[M ]) {φ} = {0}
for scalar (SC-), semi-vectorial (SV-) and full-vectorial (FV-) analysis. In the general-

ized propagating-beam matrix problem Eq. (6.8), SC-BPM, SV-BPM and FV-BPM are

therefore distinguished by the corresponding FEM global matrices.
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6.1.2 Imaginary-Distance BPM as Eigenmode Solver

In addition to the propagation-field analysis, BPM has also been widely employed for the

guided-mode analysis [115, 128,222–224]. The impetus for this mostly came from the fact

that directly solving large-scale generalized eigenvalue matrices could require tremendous

computer memory and CPU time when one does not have an efficient eigenvalue solver.

Using iterative eigenvalue solvers [122,184–186] could be one solution, and employing iter-

ative propagation schemes could be another effectively way to find eigenmodes.

The imaginary-distance beam-propagation method (ID-BPM) [222–224] has been widely

accepted as an efficient eigenmode solver. After propagating the field along the imaginary

axis for a few steps, the resultant converged field is the fundamental mode of an optical

waveguide, since the amplification factor for this mode is the largest. This technique can

be generalized for higher order modes [222,225–228]. Denoting the effective index and the

corresponding field of the i-th eigenmode as neff, i and hi, from Eq. (3.41) we have

[K]{hi} − β2[M ]{hi} = {0} (6.12)

After the k-th step according to Eq. (6.8), field distribution of the i-th mode becomes

{hi}k+1 =
−2jk0n0 − (1− α)∆zk2

0

(
n2

eff, i − n2
0

)

−2jk0n0 + α∆zk2
0

(
n2

eff, i − n2
0

) {hi}k (6.13)

If there are N eigenmodes in the waveguide, the field {φ}k at the k-th propagation step is

{φ}k =
N∑

i=1

Ci,k{hi}, where Ci,k is the complex weight factor. After sufficient steps, {φ}k

will converge to the eigenmode {hi} if the propagation step-size is chosen imaginary as

∆z = j
4n0

k0 (neff, i − n2
0)

(6.14)

The effective index neff, i can be obtained according to a similar pattern as Eq. (6.11). To

calculate the m-th higher-order mode, all lower-order components should be filtered out

from the initial input field such that

{φ}new
k = {φ}k −

m−1∑
i=1

{h∗i }T [M ]{φ}k

{h∗i }T [M ]{hi}
{hi} (6.15)

Using {φ}new
k as a new starting field, it will converge to the desired m-th higher-order mode;

while without this filtering procedure the field will converge to the fundamental mode.
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6.2 Perfectly Matched Layer Boundary Condition

In the propagation-field analysis, absorbing boundary conditions (ABC) [121] and trans-

parent boundary conditions (TBC) [229] are generally employed to reduce field reflections;

however, most recently a new anisotropic absorbing layer called perfectly matched layer

(PML) [230–239] has been introduced to efficiently eliminate the field reflection at compu-

tational windows.

Bérenger [230] first introduced the PML to absorb outgoing radiation field by divid-

ing the magnetic field component Hz into two subcomponents Hzx and Hzy, so that the

interface of PML and free space is refectionless for all wavelengths, polarizations and in-

cident angles. However, Bérenger’s technique violates the Maxwell’s equation therefore

Sacks [231] instead used the anisotropic material properties (ε, µ, σE, σH) to describe the

absorbing PML layer, where ε and µ are the permittivity and permeability, respectively,

and σE and σH are the electric and magnetic conductibility, respectively.

6.2.1 Impedance Matching Condition

Considering the complex diagonal relative permittivity and permeability tensors

[εr] =




εx
r +

σx
E

jω 0 0

0 εy
r +

σy
E

jω 0

0 0 εz
r +

σz
E

jω




, [µr] =




µx
r +

σx
H

jω 0 0

0 µy
r +

σy
H

jω 0

0 0 µz
r +

σz
H

jω




(6.16)

to match the intrinsic impedance of the free space, the condition

ε0 [εr]

ε0

=
µ0 [µr]

µ0

(6.17)

should be satisfied. Therefore,

[εr] = [µr] =




a 0 0

0 b 0

0 0 c


 = [Λ] (6.18)

Here, a = εx
r +

σx
E

jω = µx
r +

σx
H

jω , b = εy
r +

σy
E

jω = µy
r +

σy
H

jω , and c = εz
r +

σz
E

jω = µz
r +

σz
H

jω .
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Figure 6.1: SOI polarization converter surrounded by perfectly matched layer (PML).

By studying the reflection coefficients for interfaces of PML region and the free space,

we find that in certain circumstances the reflection could be zero. For the PML region

with an interface where x = const and y = const, [Λ] is required to be [123,232,234]

[Λ]x =




a 0 0

0 1
a 0

0 0 1
a


 for x = const , and [Λ]y =




1
b

0 0

0 b 0

0 0 1
b


 for y = const (6.19)

For the PML regions at the four corners of the computational window, the PML tensor is

obtained by the products of the above two tensors as

[Λ]xy = [Λ]x · [Λ]y =




a
b

0 0

0 b
a 0

0 0 1
ab


 for PML corners (6.20)
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6.2.2 Determination of PML Parameters

For the full-vectorial formulation in Section 3.2.3, we accordingly modify the permittivity-

and permeability- tensors [p] and [q] to [226,237–241]

[p] = [p] · [s]−1 and [q] = [q] · [s] (6.21)

where

[s] =




sysz
sx

0 0

0 szsx
sy

0

0 0
sxsy
sz


 and [s]−1 =




sx
sysz

0 0

0
sy

szsx
0

0 0 sz
sxsy


 (6.22)

When the PML parameters (sx, sy, sz) are assigned for each PML region according to Fig.

6.1, the resulting permittivity- and permeability- tensors satisfy the conditions of Eqs.

(6.19) and (6.20). For the non-PML regions, the PML tensor [s] is an identity matrix;

while in the PML regions the parameters are given by

si = 1− j
σmax

E

ωε0ε
PML
r

(
ρ

di

)m

, i = 1, 2, 3, 4 (6.23)

where ρ is the distance from the PML boundary, d is the thickness of the PML layer, and

m controls the profile of the conductivity. Generally, linear (m = 1), parabolic (m = 2)

and cubic (m = 3) conductivity profiles are assumed. The maximum electric conductivity

σmax
E and the permittivity of the PML layers are determined from the required reflection

coefficient [230,242] according to [243]

Ri = exp

(
− 2σmax

E di

3ε0c
√

εPML
r

)
(6.24)

Where Ri is the reflection coefficient of the i-th PML region and c is the light velocity

in vacuum. Typically Ri is chosen in the order of 10−4 [243] and σmax
E is in the order of

0.01Ω−1(µm)−1 [232,242,244] when the permittivity is chosen as one.

Repeating the above analysis for the semi-vectorial analysis in Section 3.2.2, we simply

need to modify the permittivity and permeability in Eqs. (3.20) and (3.21) as

px = px
sy

s3
x

, py = py
1

sxsy

, pz = pz
sy

sx

, and q = q
sy

sx

(6.25)
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The parameters (sx, sy, sz) are still all ones for non-PML regions and assigned according

to Fig. 6.1 for PML regions.

The technique of applying transformations of Eqs. (6.21) and (6.25) is intrinsically

equivalent to modify the nabla operator of Eq. (3.23) to

∇s = ixsx
∂

∂x
+ iysy

∂

∂y
+ izsz

∂

∂z
= ∇s

t + izsz
∂

∂z
(6.26)

However, this does not introduce extra programming complexity, since all the following

procedures related to eigenmode solver and propagation technique remain unchanged.

6.2.3 Efficiency of PML Boundary Condition

To test the efficiency of the PML absorber, we compare the Gaussian beam propagation

in the free space with both Neumann and PML boundary conditions (BC). The free space

region is a 12µm×12.3µm rectangular region, and the input TM-polarized Gaussian beam

has a mode field diameter (MFD) [232,245] of 4µm.

First, we display in Fig. 6.2(a) an off-axis Gaussian beam propagation in the free-space

when the boundary condition is chosen as Neumann BC. The input beam is launched at

an angle of 30◦ with respect to the longitudinal axis on the (x, z)-plane. Obviously, the

beam is reflected when approaching the computational boundary and after some distance

the reflection strongly interferes with the incident beam, although the total power within

the computational window is conserved. As a result, this introduces tremendous error to

the BPM calculations. In contrast, when the free space is surrounded by the anisotropic

PML absorber, at the interface of the PML and the free space, the reflection is completely

eliminated, as obvious in Fig. 6.2(b). In this calculation, the propagation step ∆z = 0.1µm,

and the conductivity distribution inside the PML region has a parabolic profile (i.e., m = 2

in Eq. (6.23)) with a maximum value σmax
E = 0.07(Ω−1·µm−1) at the computational window

border.

Next, we launch the same Gaussian beam with zero phase tilt and show its propagation

in Fig. 6.3(a). As the beam propagates, the mode field diameter of the Gaussian beam

expands, and after some distance, the beam approaches the four free space boundaries

simultaneously. However, we numerically realize reflectionless interfaces with the incorpo-

ration of anisotropic PML absorbers.
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(a)

(b)

Figure 6.2: Off-axis Gaussian beam propagation in the free space: (a) Neumann boundary

condition; and (b) PML boundary condition.
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(a)

(b)

Figure 6.3: On-axis Gaussian beam propagation with PML boundary condition: (a) in the

free space; and (b) in a rib waveguide.
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Figure 6.4: Variation of the normalized power in the window surrounded by the PML layer

with respect to the propagation distance.

Finally, we study the Gaussian beam propagation in a rib waveguide with the PML

boundary condition. The refractive indices of the rib waveguide are n1 = 3.44 in the

guiding region and n2 = 3.34 in the substrate. The rib height, rib width and outer-slab

thickness are (H,W, h) = (1.3, 2, 0.2) µm, respectively. The Gaussian beam has a mode

field diameter (MFD) of 1µm. As shown in Fig. 6.3(b), the input Gaussian beam is

eventually coupled into the fundamental mode of the rib waveguide after sufficiently large

distance.

As the anisotropic PML layer completely absorbs the field approaching the PML in-

terface, there exists some power loss as shown in Fig. 6.4. However, since these field

components usually come from high-order modes, the total power loss after 40µm propa-

gation is only 0.0897dB in Fig. 6.4.
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6.3 Non-Unitarity of BPM Algorithms

While numerous numerical simulations of optical devices have been performed with ex-

plicitly stable one-way scalar finite-difference electrical field propagation methods, electric

field polarization evolution in complex waveguiding geometries is often better described by

vectorial finite-element procedures. However, as discussed below, these intrinsically violate

power-conservation. While this effect can be reduced by e.g., absorbing propagators or

boundary conditions, power losses still cannot be reliably estimated.

6.3.1 Power Definition

The power per unit length transmitted by the waveguide is defined in terms of the Poynting

vector [145]

P =
1

2
<

(∫∫ ∞

−∞
E×H∗ · iz dS

)
=

1

2

∫∫ ∞

−∞

(
ExH

∗
y − EyH

∗
x

)
dS (6.27)

where <(·) means taking the real part, and the asterisk means complex conjugate. For the

Quasi-TE (Ex) and Quasi-TM (Ey) modes (Section 3.2.2), the power is

PTE =
1

2

∫∫ ∞

−∞

(
ExH

∗
y

)
dx dy =

1

2

neff

Z0

∫∫ ∞

−∞
|Ex|2 dx dy (6.28)

PTM =
1

2

∫∫ ∞

−∞
(−EyH

∗
x) dx dy =

1

2
neffZ0

∫∫ ∞

−∞

|Hx|2
n2

dx dy (6.29)

where Z0 =
√

µ0
ε0

= 376.73Ω is the intrinsic impedance of vacuum.

Returning to the scalar and semi-vectorial FEM algorithms using nodal triangular ele-

ments described in Sections 3.2.1 and 3.2.2, the power is derived in terms of the eigenvalue

matrices as

P = {φ∗}T [M ]{φ} (6.30)

For the full-vectorial FEM scheme with mixed-type triangles as in Section 3.2.3, the power

is

P = {φ∗t}T [Mtt]{φt}+ {φ∗t}T [Mtz]{φz} (6.31)

Note that in Eqs. (6.30) and (6.31), the constant related to the intrinsic impedance Z0 is

dropped for convenience, as it does not affect calculations of normalized power.
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6.3.2 Intrinsic Non-Unitarity of FV-BPM

Researchers have tried to propose various unitary (power-conserving) BPM algorithms,

however, they are limited to scalar cases and weakly guiding waveguides. Derived exactly

from Maxwell’s equation, the scalar Helmholtz equation for TE waves [141,246,247]

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂y2
+ n2k2

0

)
E = 0 (6.32)

can be transformed into power-conserving one-way propagation procedures [141, 246–248]

although the field power is normally identified with e.g., the L2 norm in the paraxial

approximation, rather than the Poynting vector [145, 146, 197, 249]. On the other hand,

the corresponding approach for TM waves generally violates power conservation when the

derivative of the refractive index in the propagation direction is neglected [250] although

methods have recently been found to include this term [251,252].

By separating the transverse components from Eq. (3.22), a full vectorial (FV-) one-

way description of the modes of a guided electromagnetic field is given by the magnetic

field eigenvalue equation [129,253]

∇2
tHt + k2

0n
2Ht +

1

n2
[∇tn

2 × (∇t ×Ht)] = β2Ht (6.33)

or the equivalent electric field formalism [146,253]. However, the third operator in the LHS

(left-hand-side) of (6.33) is not self-adjoint in Hilbert space and hence neither symmetric

nor Hermitian (c.f. [146,254] and Theorem 1 of [253]), and may contribute to the occurrence

of complex modes [58, 253] in vectorial algorithms. This problem is especially severe at

discrete index steps where field patterns may in certain circumstances become singular

[250, 252]. As a result, in finite difference algorithms directly solving the differential form

(6.33), matrices are non-Hermitian [129] once the third operator is included. However, in

finite-element schemes with appropriate variational techniques [254], from the functional

of (6.33) we can obtain the generalized eigenvalue equation (i.e., Eq. (3.41))

[K]{φ} − β2[M ]{φ} = {0} (6.34)

with symmetric sparse matrices [K] and [M ], which are real (therefore Hermitian) for loss-

less isotropic dielectrics subject to Dirichlet or Neumann boundary condition (BC), and
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complex (not Hermitian) for lossy anisotropic PML BC. Here {0}, β and {φ} represent the

null vector, propagation constant, and E or H in the electric or magnetic field formalisms,

respectively. For the mixed element procedure, [K] and [M ] are constructed according to

Eq. (3.42). With Crank-Nicholson scheme, i.e.,
d{φ}
dz

=
{φ} |z+4z −{φ} |z

4z
, the propaga-

tion pattern is constructed according to Eq. (6.8) by setting the weighting factor α to 0.5

in Eqs. (6.9) and (6.10).

When [K] or [M ] is non-Hermitian, complex modes may present [58], resulting in diver-

gences of associated propagation algorithms [141,250]. By introducing artificial dissipation

into the Crank-Nicholson procedure [129] or applying highly absorbing boundary condi-

tions [153], the divergence can generally be suppressed but physical losses then cannot be

reliably estimated. Complex Padé approximations [153], or non-physical dissipative oper-

ators [249] are better techniques for ensuring stability but still possess the same intrinsic

difficulty.

However, even though [K] and [M ] are both real and symmetric, complex modes could

still appear [58, 254]. This happens if neither [K] nor [M ] is positive- or negative-definite

[58]. In the mixed element procedure [181, 194, 255], the determinants of both [K] and

[M ] are zero, enabling complex conjugate pairs. The propagation matrices [A] and [B]

are symmetric but not Hermitian due to the multiplication of an imaginary unit j in Eqs.

(6.9) and (6.10).

The BPM scheme of Eq. (6.8) can be rewritten as

{φ} |z+4z= e−j[Q]4z{φ} |z (6.35)

with Cayley’s form [256]

e−j[Q]4z =
1− 1

2j[Q]4z

1 + 1
2j[Q]4z

+ O(4z)3 (6.36)

where

[Q] =
−1

2k0n0

[M̃ ]−1
(
[K]− k2

0n
2
0[M ]

)
(6.37)

According to [257] (pp.185), ej[Q] is unitary only when [Q] is Hermitian. An unitary

propagation therefore requires [Q] to be Hermitian, which is generally not the case even

though [K], [M ] and [M̃ ] are all Hermitian.
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Figure 6.5: Geometry and discretization of the waveguide crosssection. Finite element

discretizations for the slanted-angle rib waveguide discussed in the text for: (a) a regular

mesh with 1156 elements, 622 nodes and minimum triangle area 1.47×10−2µm2; and (b) an

adaptive mesh with 6413 triangles, 3253 points and minimum triangle area 2.40×10−4µm2.
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Figure 6.6: The eigenmode spectrum for the mesh of Fig. 6.5(a).
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Figure 6.7: The power fluctuation for the lowest-order fundamental mode as a function of

propagation distance for the mesh of Fig. 6.5(a).
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Figure 6.8: (a) The normalized power and (b) polarization exchange of the slanted angle

waveguide excited by a TE polarized mode as a function of propagation distance based on

Crank-Nicholson scheme and the mesh of Fig. 6.5(a).
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While at least one vectorial mixed element FE-BPM has been reported to be fully

energy-conserving [182] it should be noted that in the presence of complex-conjugate eigen-

mode pairs, the Poynting vector of the field can be preserved [58,253] although the magnetic

and electric fields individually may approach infinity and zero with an accompanying large

field profile error [152, 153, 250, 251]. In fact, for [A]−1[B] in the propagation formalisms

of [182] to be Hermitian, [A]−1[B] = [B][A]−1 should be satisfied in addition to Hermitian

[A] and [B]. Furthermore, after the transformation φz = j ∂
∂z

φz
′ is employed in [182], even

though the Poynting vector of the modified field {φt, φz
′} is preserved, this may not be the

case for the physical field {φt, φz}.

6.3.3 Eigenmode Spectrum and Power Fluctuation

We now illustrate the above considerations by examining the numerical instabilities asso-

ciated with the high-index-contrast asymmetric SOI PR with facet angle θ = 54.736◦, rib

height H = 3µm, rib base width W = 3.3µm, and outer-slab thickness h = 1.1µm.

We apply Dirichlet BC in the full-vectorial mixed-element H-formulation FEM eigen-

mode solver together with the BPM procedure. Our calculations are performed both on

the uniform mesh of Fig. 6.5(a) with 1156 elements, 622 nodes and minimum triangle area

1.47× 10−2µm2; and on the adaptive mesh of Fig. 6.5(b) with 6413 triangles, 3253 points

and minimum area 2.40× 10−4µm2. This adaptive grid, generated from the uniform mesh

through our dedicated MATLAB package, concentrates elements in regions with large fields

and at the material interfaces.

In Fig. 6.6, we display the eigenmode spectrum of the slanted angle waveguide for the

regular mesh. The propagation constant of the lowest-order fundamental eigenmode was

also verified by the Crank-Nicholson imaginary distance beam propagation method (ID-

BPM) [222–224] in Section 6.1.2 with a propagation step-size 4z = 0.1µm, establishing

the consistency of the propagation and eigenvalue methods. Real eigenvalues can be solved

from
([K]{φ}, {φ})
([M ]{φ}, {φ}) [58,110], where (a , b) means the norm of vectors a and b. The subspace

iteration algorithm [254] (also known as simultaneous iteration [121]) is capable of finding

a set of real or complex eigenvalues around a given value. However, it is difficult to find

complex modes using iteration methods since proper initial guesses for complex values

are hard to produce. Fortunately, in many cases, people are only interested in finding
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several lowest-order guided-modes with real positive propagation constants for a waveguide

[122,127] (note that in Fig. 6.6 all positive eigenvalues are real). Using advanced numerical

packages such as ARPACK, or the numerous eigenvalue solves (sparse or full) in MATLAB,

one is able to obtain complex eigenvalues or the whole eigenvalue spectrum as Fig. 6.6.

The numerous complex-conjugate eigenmode pairs lead as expected to divergences in

real Crank-Nicholson field propagation as evident from Fig. 6.7, which shows the power in

the propagating field normalized to the input power. Diverging oscillations in the power are

first apparent at a 250µm propagation distance for the uniform mesh while a corresponding

instability (not shown) appears at 33µm for the adaptive mesh due to the smaller grid point

spacing for elements near index discontinuities.

Despite the divergences that appear at longer propagation lengths, our propagation

method can still be employed to solve practical modeling problems. For example, the

adaptive z-dependent complex reference index technique of [221] yields the normalized

power for a TE-input field shown in Fig.6.8(a). While this result is affected by the field

divergence, similar calculations for low index contrast InGaAsP slanted-angle polarization

rotators remain stable. Further, the power transfer between the TE and TM modes is

correctly predicted, as evidenced from Fig. 6.8(b) which displays the polarization angle θp

obtained from the ratio of the power in the two polarization components

θp = tan−1

(
Py

Px

)
(6.38)

While mixed finite element propagation procedures generally do not conserve power,

practical calculations can still be performed for many waveguide profiles. Large discontin-

uous refractive index steps or small numerical grid spacings however result in rapid field

divergences. Unfortunately, our results indicate that such divergences can easily occur for

adaptive grids, for which the grid sizes near discontinuities typically become uncharacteris-

tically small. While a solution similar to that of [152,248] may exist, the required analysis

would be complicated and therefore beyond the scope of this thesis.
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6.4 BPM Simulation on Asymmetric SOI PR

In this section, we study the beam propagation characteristics of the slanted-angle SOI

polarization rotator (PR). We consider the asymmetric external waveguiding layer SOI

angled-facet waveguide with rib height H = 2.8µm, rib width W = 2.7µm and outer-slab

thickness h = 1µm. We subdivide the calculation region into non-uniform unstructured

mesh like in Fig. 6.5(a) with 2252 second-order mixed triangular elements (LT-QN), 4597

nodes (1173 vertexes) and 6848 tangential edges. With Neumann boundary condition, we

construct 11445 × 11445 eigenvalue matrices [K] and [M ], where nonzeros are 67,744 in

[K] and 201,339 in [M ], respectively.

The fundamental eigenmodes calculated from this mesh have refractive indices of neff1 =

3.4433225 and neff2 = 3.4416837, respectively, corresponding to a half-beat length of

Lπ = 472.93µm. The Hx, Hy, and Hz components of the fundamental modes in this

asymmetric SOI slanted-angle waveguide are plotted in Fig. 6.9, from which we are able

to generate two input fields with TE- and TM-polarizations, respectively. As displayed in

Fig. 6.10, the top two field components Hx and Hy are for a Quasi-TE field, while the

bottom two components are for a Quasi-TM field.

In the following BPM simulations, to avoid power fluctuation arising from the intrinsic

non-unitarity discussed in Section 6.3, we adopt the quasi-Crank-Nicholson propagation

scheme [129] by choosing α = 0.5+ε = 0.55 in Eqs. (6.9) and (6.10). The propagation step

is chosen sufficiently small ∆z = 0.1µm in order to minimize discretization error [197], and

the complex reference index n0 is recalculated after each step so as to increase the numerical

efficiency and accuracy [197,221]. The discretization is chosen as the regular mesh of Fig.

6.5(a) instead of the adaptive mesh of Fig. 6.5(b) since with the latter the instability

related to the Crank-Nicholson scheme could appear earlier as having been discussed in

Section 6.3.

Despite the large matrix dimensions (e.g., 11445 × 11445) in our full-vectorial BPM

calculation, each single step of propagation takes only 6.48 seconds on a 1.3GHz IBM

R6000 AIX51 computer with our sophisticated and versatile MATLAB 6.5 code.
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Figure 6.9: Fundamental modes of the SOI polarization rotator.
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Figure 6.10: Field to launch into the SOI polarization rotator: (a) top: Hx and Hy com-

ponents of a TE-polarized field; and (b) bottom: Hx and Hy of a TM-polarized field.
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Figure 6.11: BPM simulation of the polarization conversion for a Quasi-TE input: (a) vari-

ation of the polarization angle θp during propagation; and (b) power exchange between the

transverse field components.
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Figure 6.12: BPM simulation of the polarization conversion for a Quasi-TM input: (a) vari-

ation of the polarization angle θp during propagation; and (b) power exchange between the

transverse field components.
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Figure 6.13: Variation of the reference index n0 with respect to the propagation distance:

(a) real part of n0; and (b) imaginary part of n0.
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Figure 6.14: Variation of (a) the normalized power and (b) the power dissipation with

respect to the propagation distance.
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6.4.1 Polarization Conversion and Power Exchange

We first launch the Quasi-TE field into the input port of the SOI polarization converter and

propagate it for 1000µm with a step-size of 0.1µm. The polarization angle θp with respect

to the horizontal direction (Eq. (6.38)) and the exchange of the power carried by transverse

field components Hx and Hy are displayed in Fig. 6.11. We clearly observe from Fig. 6.11

that the TE-polarized input light with the dominant field Hy is first completely (PC =

99.60%) converted to a TM-polarized field with a dominant field Hx after a propagation

distance of 473µm, which is exactly equal to the device half-beat length obtained from

the FEM eigenmode solver. The polarization rotating phenomenon continues, and after

another 473µm the TM-polarized field is reconverted into a TE-polarized out. Results

obtained for a Quasi-TM field launched into the input of the SOI PR are illustrated in Fig.

6.12, from which we draw the same conclusion. The polarization conversion efficiency for

the TM-polarized input is PC = 99.61%, with a negligible difference compared with PC =

99.60% for a TE-polarized input. In contrast, this difference is obvious in previous III-V

slanted-angle polarization rotators with symmetric external waveguiding layers [40, 53] or

periodically-loaded devices [15, 40]. We therefore find one more advantage of our single-

section SOI PR design utilizing asymmetric outer-slab layer.

6.4.2 Numerical Dissipation and Adaptive Reference Index

In Fig. 6.13, we display the adaptation of the complex reference refractive index n0 accord-

ing to Eq. (6.11). Although most applications take only the real part [194, 219, 240, 241]

of this reference index, the complex value [197,221,258,259] could minimize the numerical

error. The complex reference index method is an alternative to the complex Padé approxi-

mation [153] for reducing the inaccuracy and instability of BPM algorithms [258]. The real

part of n0 varies slightly from 3.44250396343899 to 3.44250396362747, which is very close

to the average of the effective indices of the fundamental eigenmodes, since any TE- or

TM-polarized field can be expressed in terms of certain combinations of these 45◦-rotated

eigenmodes. However, as shown in Fig. 6.13(b), the imaginary part of the reference in-

dex fluctuates periodically with a period equal to the beat length of the device. Though

this fluctuation is fairly small, ignoring the imaginary part causes deviation from the best
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CHAPTER 6. FE-BPM ANALYSIS

optimum reference value, which is chosen to minimize power fluctuation [197].

In Fig. 6.14, we show the power dissipation [162, 260–262] associated with the quasi-

Crank-Nicholson scheme. Theoretically, the Crank-Nicholson algorithm with α = 0.5 is

unconditionally stable and zero power dissipating subject to unitary BPM operators [256].

Researchers have observed unstable field evolution with mixed finite elements [262] and

nonphysical power loss with nodal elements [261] in full-vectorial BPM simulations; how-

ever, they did not question these phenomena for underlying intrinsic reasons, which have

been studied thoroughly in Section 6.3 of this thesis. To predict the guided power in the

waveguide as correctly as possible, the quasi-Crank-Nicholson scheme with α slightly larger

than 0.5 is preferred. In our BPM calculations for the asymmetric SOI slanted-angle polar-

ization converter, we accordingly set α = 0.55. When ∆z = 0.1µm the nonphysical power

loss is only 0.00048dB/mm, as shown in Fig. 6.14(b). With this extremely small numerical

dissipation, our FV-FE-BPM program is quite reliable for predicting the above-discussed

power exchange and polarization conversion behaviors in SOI polarization rotators.

6.4.3 Validation of PC Formula

We now examine the variation of polarization conversion efficiency (PC) with respect

to the device length of the SOI polarization converter. For a TE-polarized input light,

the definition of this efficiency is given by Eq. (5.1); while for a TM-polarized input, it

is defined by PCTM→TE = PTE/(PTM + PTE) × 100%. From the power of the transverse

components, we are able to plot the PC variation regarding to propagation distance in Fig.

6.15. To check the accuracy of our calculations, Figs. 6.15(a) and 6.15(b) compare these

BPM numerical calculations for both TE- and TM-polarized inputs with values obtained

from the analytical formula of Eq. (5.2). The numerical and theoretical results agree fairly

well; therefore, the simple polarization conversion efficiency formula Eq. (5.2) could play a

very important role in predicting polarization exchange behavior of longitudinally-invariant

polarization converters.
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Figure 6.15: Comparison of polarization conversion efficiency (PC) obtained from BPM

and analytical formula Eq. (5.2) for the SOI polarization rotator: (a) TE-polarized input;

and (b) TM-polarized input.
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6.5 Performance of Fabricated Devices

Having numerically studied the performance of the above 3µm SOI polarization rotator,

here we turn to the actual fabricated 5µm device shown in Fig. 5.10(b) of Section 5.5.

As studied in Section 5.3, an ideal design with (H, W, h, hr) = (4.8, 4.8, 1.8, 0)µm has a

rotation parameter R = 1.01, optical-axes rotation angle ϕ = 45.29◦, half-beat length

Lπ = 2572µm and maximum polarization conversion efficiency PC = 99.98%. However,

due to unavoidable manufacturing errors, geometrical parameters of the actual fabricated

device discussed in Section 5.5 are (H, W, h, hr) = (5.0, 4.9, 1.9, 0)µm, and the sidewall

angles are 89◦ and 56◦ for the vertical and slanted walls, respectively [5, 8]. As a result,

the rotation parameter and optical-axes rotation angle are degraded to 1.122 and 41.72◦,

respectively, while the half-beat length increases to 2940µm.

In the fabrication, the photomask is divided into multiple sets, each having ten rotator

sections with equally-increasing longitudinal lengths [8]. Therefore, we study the polariza-

tion conversion efficiency (PC) with respect to the device length in Fig. 6.16, where both

TE → TM and TM → TE conversions are measured. The maximum conversion efficiencies

are PCTE→TM = 75%± 3% and PCTM→TE = 62% ± 3%, respectively; and the excess loss

is only 0.6 ± 0.1dB/mm and 0.5 ± 0.1dB/mm for TE- and TM-input, respectively. The

difference between both conversions could possibly be a result of the imperfect optical-axes

rotation or the vertical sidewall roughness which affects each polarization differently.

In addition, the rotator section lengths with maximum PC in the simulation and the

measurement are 2940µm and 3256µm, respectively. When the optical-axes rotation angle

deviates from 45◦, the TE ↔ TM polarization conversion effects become weaker; there-

fore, the distance required to achieve maximum polarization increases while the maximum

TE ↔ TM conversion efficiency reduces. The junctions formed by the butt-coupling to

input/output SOI rib waveguides might also contributes to this shift.

We observe considerable difference between experimental measurements and theoretical

predictions. However, this mismatch is a result of the weakened polarization conversion

due to possible factors such as measurement misalignment, butt-coupling offset, end-facet

cross-section roughness, longitudinal perturbation, or other reasons explained previously

in Section 5.5. To illustrate, we extend the fabrication tolerance study in Chapter 5 by

considering the variation of polarization conversion efficiency versus rotator lengths.
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Figure 6.16: Comparison of theoretical propagation with measured polarization conversion.

We have learned from Section 5.3 that the uncertainty of outer-slab layer thickness

(±0.1µm) contributes most to the deviation of performance, therefore we simply consider

this factor here for brevity. In Fig. 6.16, the solid, dashed, and dotted lines are for outer-

slab thickness of h = 1.8µm, 2.1µm, 2.15µm, respectively, which leads to the device perfor-

mances of (R,ϕ, Lπ, PCmax) = (1.416, 35.23◦, 2740µm, 88%), (0.602, 31.05◦, 3227µm, 78%),

and (0.493, 26.24◦, 3243µm, 62.9%), respectively. Although measured results deviate from

designed ideal performance, they can be better fitted by considering the geometric uncer-

tainty (fabrication precision ±0.1µm, and measurement error ±0.1µm for lengths and 1◦

for angles). Measured outer-slab thickness is h = 1.9 ± 0.1µm in the actual fabricated

device; however, simulations with very close values h = 2.1µm and 2.15µm fit these exper-

iments fairly well. This could be well explained with the rounding of the vertical sidewall

corner, which effectively increases the slab thickness. We therefore believe that the fab-

rication quality and measurement accuracy could be further improved significantly with

nano-photonics processing technologies [200–203] or techniques suggested in [8].
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6.6 Summary

In this chapter, we have developed general BPM codes for scalar, semi-vectorial, and

full-vectorial analysis. To efficiently absorb outgoing fields, we employed the anisotropic

PML boundary condition and examined its efficiency with on- and off-axis Gaussian beam

propagations in both free space and a rib waveguide.

We also thoroughly analyzed the intrinsic non-unitarity in full-vectorial BPM algo-

rithms with mixed-type finite elements. Though the non-unitarity could cause power

fluctuation in numerical simulations, its impact can be reduced by methods such as quasi-

Crank-Nicholson scheme and adaptive complex reference index. Our calculations were

performed for the asymmetric SOI polarization converter without outer-slab layer at the

angle-facet side. We showed excellent polarization exchange behavior of this device with

both TE- and TM- polarized input fields, and also found negligible difference between these

two inputs, indicating excellent optical-axis rotation of such polarization converters.

The validation of the analytical formula for polarization conversion efficiency (PC)

has been checked by BPM results. Numerical and analytical results agree precisely for

longitudinally-invariant polarization converters, therefore the simple PC formula could

play an important role in characterizing such devices.

Finally, experimental results are compared with our theoretical prediction. Measure-

ments display slightly weaker polarization conversion effects due to limited fabrication and

measurement precisions; however, this discrepancy could be further improved with more

precise processing techniques.
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Chapter 7

Bending Characteristics of

Slanted-Angle SOI Polarization

Rotators

In this chapter, with full vectorial finite element analysis, we discuss the polarization con-

version behavior of the novel asymmetric slanted-angle passive silicon-on-insulator (SOI)

polarization rotator. Its loss characteristics such as the bending radiation loss and the

transition loss to a straight waveguide are also studied. We compare the asymmetric bend-

ing characteristics of such a device and demonstrate that the bending- and transition-losses

and polarization conversion are relatively insensitive to the radius of curvature when the

sloped sidewall is at the outer bend radius.

7.1 Conformal Mapping Method

Integrated passive polarization rotators (PR) employ material anisotropy or geometric

asymmetry to couple light from TE to TM polarization states. Asymmetrically-loaded

periodic [15,19] or single-section slanted-angle [1,6,7] passive PRs have recently attracted

much attention for the simple geometry and strong conversion efficiency. An alternative

way to achieve full polarization rotation while maintaining low insertion loss in a passive

device is through periodically bent waveguides as has been demonstrated on InGaAsP
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[21,22]. In such polarization converters constructed from bending waveguides, the insertion

loss is 0.4dB for 45% polarization conversion (PC) efficiency and 2.7dB for 85% efficiency

[21]. A microring resonator realization was similarly performed in [26].

Bending devices can be theoretically analyzed in either cylindrical [263,264] or Cartesian

coordinates with a conformal transformation [265–267], which maps the bent waveguide

onto an equivalent straight waveguide (ESW). Such ESW analyses have been carried out

with finite-difference and coupled mode procedures [23–25], scalar FD-BPM [268], semi-

vectorial FD-BPM [269], finite-element BPM [27,240], eigenmode expansion method [270]

and WKB (Wentzel-Kramers-Brillouin) analysis [271]. The ESW method has been found

to be accurate for bending radii larger than 1µm for an InGaAsP waveguide with base

width 1.4µm and total thickness 0.9µm [23]. Mathematically, this method transforms the

refractive index of the waveguide cross-section according to the following pattern

nt(x, y) = n(x, y)(1 +
x

Rc

) (7.1)

where Rc is the radius of bending curvature, n(x, y) is the refractive index of the original

straight waveguide and nt(x, y) is the modified index of the equivalent straight waveguide

for the bend. Therefore, even for a symmetric waveguide, bending is mathematically

equivalent to causing the asymmetry of the refractive index and therefore the birefringence.

7.2 Polarization Conversion of Bent Devices

The SOI polarization rotating waveguide that we will examine is depicted in Fig. 7.1.

One side of the silicon rib guiding layer is etched completely to the insulating oxide layer

along the 〈111〉 crystallographic plane so that the angle of the slanted-facet is 54.736◦

regarding to the horizontal direction. The refractive indices of Si and SiO2 are n1 = 3.48

and n2 = 1.45, respectively. When the cross-section of the straight waveguide is given by

rib height H = 2.8µm, rib width W = 2.7µm and outer-slab thickness h = 1µm [1], the TE

and TM components of its two fundamental modes are comparable and the optical-axis,

denoted by (ur, vr) in Fig. 7.1, is rotated by ϕ = 46.24◦, corresponding to maximum 99.81%

polarization conversion efficiency [1] so that a TE polarized input is nearly completely

converted to a TM field after a half-beat length Lπ = π
β1 − β2

= 490.08µm.

104



7.2. POLARIZATION CONVERSION OF BENT DEVICES

    Bent
Waveguide

   Straight
Waveguide

x

yz

R

vr

ur

(a)

H
h

W ( hr = 0 )

Si

SiO2

Si

(b)

Insulator

Substrate

Figure 7.1: Bend orientations for the slanted-angle SOI polarization rotator: (a) slanted

facet at outer bend radius; and (b) vertical facet at outer bend radius.
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Figure 7.2: Nonuniform grid employed in the finite-element calculations: (a) for the waveg-

uide surrounded by anisotropic PML layers; and (b) adaptive mesh according to the field

distributions. (units in microns)
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Figure 7.3: (a) The optical-axis rotation angle ϕ and (b) the maximum polarization con-

version efficiency (PC) as a function of bending radius.

There exist two possible bend orientations as show in Fig. 7.1. In Fig. 7.1(a), the

slanted-facet of the rib is located at the outer bend radius, while in Fig. 7.1(b) it is the

vertical sidewall that is positioned at the outer bend radius. Obviously, because of the

asymmetric waveguide geometry, the two possible bending orientations illustrated in Figs.

7.1(a) and (b) yield physically different results. Our calculations are performed on the

nonuniform mesh of Fig. 7.2(a) with 4724 hybrid triangles, 2404 vertex nodes and 7127

edges, and the adaptive mesh of Fig. 7.2(b) according to the field distribution.

We first consider the effect of waveguide bending on the additional optical-axis rotation.

In particular, Fig. 7.3(a) displays the optical-axis rotation angle ϕ as a function of bending

radii. As expected, the variation of the rotation angle differs markedly depending on

whether the sloped or the vertical waveguide facet forms the outer radius of the bend. In

the first case, we have adjusted the rotation-angle to be exactly ϕ = 45◦ and the half-beat

length to be Lπ = 400µm at a bending radius R = 450µm. At R = 200µm, the half-beat

length is Lπ = 317.79µm, corresponding to a 90◦ bend which performs almost complete

TE↔TM conversion as the optical-axis rotation is ϕ = 41.22◦ and the conversion efficiency

is 98.27%. Decreasing the bending radius to 100µm still results in a maximum conversion

efficiency of 91.04%, as illustrated in Fig. 7.3(b). The half-beat length variation with
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Figure 7.4: The half-beat length Lπ as a function of bending radius.

respect to the radius of curvature is plotted in Fig. 7.4.

In contrast, if the vertical facet is situated at the outer radius, the optical axis rotation

decreases rapidly with bending radius for R < 400µm. Exact 45◦ optical-axis rotation is

obtained at R = 470µm for this bend orientation, however, Lπ increases to 628µm. At

R = 264.76µm, where the half-beat length Lπ = 415.88µm equals to a 90◦ arc length, the

optical-axis rotation and polarization conversion are only about 18◦ and 34%, respectively.

To understand the origin of this behavior, consider the magnetic field amplitudes of

Fig. 7.5, which are obtained for a R = 50µm radius of curvature (the corresponding

field distribution in the straight waveguide is illustrated in Figs. 4.6 and 6.9). When the

slanted facet describes the outer bending radius, the field shifts toward the facet, changing

the field patterns and propagation constants of both waveguide modes by nearly the same

amount. Hence, the bent waveguide still functions as a single-section polarization converter.

However, if the vertical facet is located at the outer bending radius, the electromagnetic

field instead radiates into the outer-slab layer. As shown at the right side of Fig. 7.5, for

R = 50µm bending radius the first lowest order mode is a radiating Quasi-TE-like mode for

which Hx is the non-dominant component. Accordingly, at small bending radii, acceptable

polarization conversion is achieved only when the sloped sidewall is the outer facet.
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Figure 7.5: The magnetic field distribution of the first lowest-order mode in a bent slanted-

angle SOI waveguide with a R = 50µm radius of curvature. In the three diagrams on the

left the slanted facet constitutes the outer radius of the bend as Fig. 7.1(a), while in the

right diagrams the vertical facet is instead the outer radius as illustrated in Fig. 7.1(b).
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7.3 Bending Waveguide Losses

As shown in Figs. 7.5 and 7.6, bending will cause radiation loss when the vertical sidewall

is positioned at the outer bend radius, since the field tends to be coupled into the outer

waveguiding slab layer. However, Fig. 7.6 indicates that the pure bending loss is negligible

when the slanted facet is at the outer bend radius, since the field is displaced toward

the slanted wall without generating radiation modes as obvious from the left side of Fig.

7.5. The bending loss is calculated from the imaginary part of the propagation constant

[22,263,264,271],

Lb = 20 log10

[
exp(k0Im(neff )× 104)

]
(dB/cm) (7.2)

where k0 = 2π
λ

is the wave number, λ is the wavelength in microns, neff is the effective

index, and Im(·) means taking the imaginary part.

If the bent waveguide is butt-coupled with input and output straight waveguides as

Fig. 7.1, there exists transition loss due to the mismatch of the fields. The transition loss

is evaluated from the overlap of the these fields according to [22,208,269,271]:

LT = 10 log10




∣∣∣∣
∫∫
Ω

φs(x, y)φ∗b(x, y)dxdy

∣∣∣∣
2

∣∣∣∣
∫∫
Ω

φs(x, y)φ∗s(x, y)dxdy

∣∣∣∣ ·
∣∣∣∣
∫∫
Ω

φb(x, y)φ∗b(x, y)dxdy

∣∣∣∣


 (dB) (7.3)

where φs and φb denote the field distributions of the straight and bent waveguides, re-

spectively. In Fig. 7.7, we show the transition loss for the asymmetric slanted-angle SOI

polarization rotator as a function of bending radius. Evidently, the transition loss increases

rapidly if the vertical facet is located at the outer bending radius for R < 260µm, although

in this case we are evaluating the overlap of the input field with the radiation field which

generates a somewhat spurious result. However, the transition loss remains less than 1dB

for bending radii R > 100µm if the waveguide is bent to the opposite direction. The tran-

sition loss for a 90◦ bend with R = 200µm and Lπ = 317.79µm is only 0.24dB. Therefore,

the asymmetric SOI PR design exhibits both low radiation loss and transition loss when

the slanted-facet is situated at the outer bend radius.
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Figure 7.6: The bending loss as a function of bending radius. The inset shows the variation

of the real part of the effective index of the lowest-order fundamental mode.
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7.4 Summary

We have found that asymmetric SOI slanted-angle waveguides could possess a high degree

of insensitivity to bending loss while maintaining a large coupling coefficient to external

waveguides and fibers. Consequently, such waveguides are important if both the direction of

light propagation and the polarization are to be altered. A bending polarization rotator can

function as a combination of a half-wave plate and a mirror, and its asymmetrical bending

characteristics could also be utilized for some special applications such as sensors. In

addition, the slanted-angle SOI polarization rotators possess very small bending radius and

low bending loss, which enable ultra-compact devices for photonic integrated circuits PIC.

Unlike the half-wave plate [272] which introduces large insertion loss due to significant mode

mismatch, such waveguides can be well designed with negligible extra loss and are therefore

quite suitable to substitute the half-wave plate used in polarization-insensitive arrayed-

waveguide gratings (AWG) [272]. Fabrication problems associated with maintaining a

constant slanted facet angle along a curved waveguide [22,273–275] are clearly significant;

however, our general design rules [1, 6] work for arbitrary slanted-angle which relaxes the

restrictions on fabrication requirements.
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Chapter 8

Loss and Coupling Analysis

This chapter briefly analyzes the coupling and loss issues associated with the asymmet-

ric slanted-angle SOI polarization rotator. Section 8.1 discusses the insertion losses when

the device is butt-coupled to single-mode fibers or rib waveguides of equivalent dimen-

sions. Section 8.2 studies the coupling between adjacent channels when multiple devices

are aligned as a parallel array. Section 8.3 presents a simple short SOI taped mode-size

converter for enhancing the coupling efficiency to butt-coupled single-mode fibers (SMF).

8.1 Loss of Butt-Coupled Output

Large cross-section SOI polarization converters display reduced loss as a result of both the

small measured fiber-coupling losses, e.g., 0.17dB per facet [94], and the small material

losses, which were found to be below 0.5dB/cm [95] and 0.1dB/cm [94] for large cross-

section waveguides. The low coupling losses reflect both the high degree of field confinement

to the guiding layer as in Fig. 4.6 and the large single-mode waveguides cross-sections that

properly match the mode-diameters of standard single-mode fibers [66,90,94,95,98,99].

Our SOI polarization rotator designs display low insertion loss. For example, taking into

account only the calculated modal field overlaps [22, 208, 269, 271], the coupling between

our asymmetric external layer SOI polarization converter with hr = 0 and a CorningR©

SMF-28R© fiber with core diameter of 8.3µm, and core and cladding indices of 1.5362 and

1.5306 is 0.5dB for (H, h,W ) = (15, 5, 13)µm, 2dB for (H, h, W ) = (10, 3, 8.5)µm, 5.7dB
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Figure 8.1: Polarization rotator butt-coupled with input and output waveguides: (a). three-

dimensional view; and (b). two-dimensional view.
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Figure 8.2: Coupling loss of the butt-coupled SOI polarization converter: (a). TE-polarized

input; and (b). TM-polarized input.

113



CHAPTER 8. LOSS AND COUPLING ANALYSIS

for (H, h, W ) = (5, 1.8, 4.8)µm, and 8.7dB for (H, h, W ) = (3, 1.1, 3.3)µm. This compares

with our calculated value of 7dB for the III-V component discussed in [49] and [41]. If the

converter is instead coupled to a tapered and lensed fiber which yields, for example, a spot

diameter of 2.5µm, the polarization rotator with the most closely matched field size (here

the 3µm design) will instead yield lowest loss, in this case < 2dB.

In many applications, the converter is butt-coupled [41,43,49,50,53] to rib waveguides

(Fig. 8.1(a)) rather than directly coupled to the single-mode fiber. The input/output

(I/O) rib waveguide, with a rib height Hrib, rib width Wrib and outer-slab layer thickness

hrib, is positioned with a horizontal offset δ with respect to the slanted-angle polarization

converter, as illustrated in Fig. 8.1(b). The reason we consider a lateral shift between

the I/O waveguides and the polarization rotating waveguide (PRW) is that the eigenmode

profiles in these waveguides are different. To study the effect of this lateral offset on the

coupling efficiency between the I/O waveguides and the PRW, we take the 3µm design as an

example. That is, the parameters for the polarization rotator are given by (H, W, h, hr) =

(3, 3.3, 1.1, 0)µm. We consider the case when both the I/O waveguides and the angled-

facet polarization converter have the same vertical dimensions, i.e., Hrib = H and hrib = h,

which is of practical significance and is easiest to fabricate.

We vary the I/O rib width Wrib from 1.6µm to 3µm and the lateral shift δ from −1µm

to 0. The coupling losses obtained for both TE- and TM-polarized inputs are displayed in

Fig. 8.2. The minimum loss, −0.2114dB for TE-input and −0.1939dB for TM-input, is

obtained for a rib width Wrib = 2µm and a lateral offset of δ = −0.6µm. As obvious from

Fig. 8.2, δ = −0.6µm always corresponds to the minimum insertion loss for a specific I/O

rib width.

If the vertical walls of the SOI rib waveguide and the slanted-angle SOI polarization

converter coincide, we obtain a minimum coupling loss of 0.2dB for both polarizations in

the 3µm design. This is achieved for a SOI rib waveguide with rib height Hrib = 3µm, slab

thickness hrib = 1.1µm, and rib width Wrib = 2µm. As a comparison, the total insertion

loss for a III-V converter is 0.5dB [49] or 0.6dB [50] in the same configuration. If we

increase Wrib to 3µm, the losses are 0.45dB for an incoming TE mode and 0.68dB for a

TM mode.
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8.2 Coupling of Parallel Configuration

In Dense Wavelength Division Multiplexing (DWDM) communication systems multiple

channels exist, which may require the fabrication of an array of identical channel waveg-

uides. In the asymmetrical-outer-slab configuration for slanted-angle polarization convert-

ers, the external waveguiding layers at the vertical and slanted sidewalls are of different

thickness. If the vertical wall of one polarization converter faces the angled facet of its

neighbor as shown in Fig. 8.3(a), there has to be a trench (either air or other dielectric

material) between adjacent waveguides. Ideally, this configuration has negligible power cou-

pling between neighboring channels since each waveguide is isolated separately; however,

this trench imposes some extra fabrication difficulty. An alternative for parallel alignment

is illustrated in Fig. 8.3(b), where the vertical walls are placed face to face. However, the

outer-slab layers at the side of vertical walls are now connected, which introduces coupling

between adjacent polarization rotators, e.g., B and C. This coupling occurs because the tail

of the optical beam in one waveguide continually carries a small amount of power into the

opposite waveguide through the jointed outer-slab layer, and after sufficiently long distance

(named coupling length Lc) the power in one channel will be completely transferred into

its neighboring channel.

To study this behavior, we plot the coupling length versus the waveguide separation of

this configuration in Fig. 8.4. In this example, the vertical walls of adjacent waveguides

are facing each other, and the waveguide separation is defined as the distance between

the centers of rib bases. The geometric parameters of the asymmetric slanted-angle SOI

polarization converter are rib height H = 2.8µm, rib width W = 2.7µm and outer-slab

thickness h = 1µm, same as the one previously studied in Chapter 7. Fig. 8.4 shows that

coupling between adjacent channels is very weak since the coupling length Lc dramatically

increases to centimeters once the separation is over merely 4µm. This is a direct result of

the extremely strong optical confinement in SOI waveguides, as clearly illustrated in Figs.

4.6 and 6.9. Therefore, our SOI polarization converters could be placed very closely to

each other, enabling extremely compact and large-scale photonic integrated circuits (PIC).
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Figure 8.3: Parallel alignment of polarization converter arrays.
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vertical walls are facing each other.
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8.3 Loss of Tapered Output

Commercial single-mode fibers (SMF) generally have a core around 8 ∼ 10µm, while the

beam spot size from the channel waveguides of a dense integrated photonic circuit is usually

submicron or a few micron meters. In addition, modal fields in integrated semiconductor

waveguides can be of arbitrarily asymmetric shape rather than the circularly profile in

a fiber. The distinctive difference between the modal fields, i.e., the mode mismatch,

leads to poor coupling efficiency and therefore large power loss when light is launched

from the SMF to integrated waveguides or vice versa. The micro-lenses or tapered/lensed

fibers can be employed to improve the coupling efficiency by converting the size of the

optical mode. However, they do not transform modal shapes, and packaging costs for

these parts can be as high as 90% of the total device cost. Therefore, to improve both

the coupling efficiency and the alignment tolerance, tapers [207,211,212,217], or spot-size

converters (SSC) [161, 162, 208, 209, 213, 214], or optical-mode transformers (OMT) [215],

or integrated optical modeshape adapters (IOMA) [216], have been widely employed in

integrated photonics.

Existing tapers can have slowly varying dimensions in either the horizontal, vertical,

or both directions; consequently, they can be classified into lateral tapers, vertical tapers,

combined tapers, and some special tapers [208, 209, 211]. Among these, the lateral tapers

are the simplest to fabricate with standard photolithography subsequently etched by wet

and dry etching processes such as the reactive ion etching (RIE) or the reactive ion beam

etching (RIBE) [211]. The vertical tapers, however, can be fabricated with technologies

[209, 211, 215, 216] such as dip-etch process, shallow mask techniques, or epitaxial growth

techniques.

In this section, we propose a simple vertical taper design for efficiently coupling light

between the asymmetrical slanted-angle SOI polarization rotators and rib waveguides or

single-mode fibers (SMF). The geometry of the proposed SOI taper is plotted in Fig.

8.5, where the most notable characteristics is that each cross-section has same normalized

geometric parameters, i.e., r = h/H and s = W/H are kept invariant. By choosing

r = 0.7 and s = 1, the single-mode condition given by Eq. (2.4) is always satisfied for each

cross-section, therefore power coupling between the fundamental and higher-order modes

is avoided.
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Figure 8.5: Geometry of the vertical SOI taper.

Fig. 8.6 shows the field propagation when the fundamental eigenmode of a SOI rib

waveguide with H = 5µm, W = 5µm and h = 3.5µm is launched into this vertical SOI

taper. The slope of the z-direction, i.e., H2 −H1
L , is chosen as 1

50 in Fig. 8.6(a) and 1
12.5

in Fig. 8.6(b). The field pattern at each cross-section of the taper looks like the local

normal mode. As a fact of the extremely high index-contrast SOI material, the field is

well confined in the silicon guiding region (refractive index nSi = 3.48). Consequently, the

effective index of the field is far above the refractive index of the air (nair = 1), the buried

silicon oxide (nSiO2 = 1.45), and the PML layer (<(nPML) = 1). In addition, the rib height

of the smaller port is as large as 3µm in this taper example. Therefore, in both Fig. 8.6(a)

and Fig. 8.6(b), we did not observe the expansion of the mode field diameter during the

propagation, although such a field expansion phenomenon is commonly encountered in low

index-contrast III-V tapers.

Fig. 8.7 displays calculated power loss of the monomode vertical SOI taper for various

slopes along the longitudinal z-direction. When the gradient is as small as 1
100, the loss

of the taper is only 1.8 × 10−3dB/mm for the field propagating from the smaller port

(H1 = 3µm) to the larger port (H2 = 5µm), and 2.43× 10−3dB/mm vice versa. The losses
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for longitudinal slopes of 1
50, 1

25 and 1
12.5 are 9.6× 10−3dB/mm, 5.32× 10−2dB/mm and

0.28dB/mm, respectively.

To tell the modal mismatch, Fig. 8.8 illustrates the overlap integral between the initial

input eigenmode and the field at each cross-section of the taper. If two SOI rib waveguides

with heights H1 = 3µm and H2 = 5µm are butt-coupled together, due to the obvious

modal mismatch, the coupling loss is near 3dB, which means 50% power loss. However,

these two waveguides can be connected smoothly by the taper structure of Fig. 8.5 with

only 0.01dB insertion loss for a slope as large as 1
12.5. Therefore the power transfer is

dramatically enhanced.

The above analysis is limited to a linearly varying profile, improved profiles such as

exponential or Gaussian shape [210] can further decrease taper length without introducing

much extra loss. However, since the linear taper connecting 3µm and 5µm SOI polarization

converters displays extremely low loss and can be as short as 25µm (which compares

favorably with 80µm or 110µm in an InP taper [209] that changes cross-section dimensions

by 2µm), we did not work further on other complicated profiles as they go beyond the

focus of this thesis and can be studied elsewhere.

Moreover, in Figs. 8.7 and 8.8 there are small bumps in the curves for long tapers.

These could come from the different meshes used for each cross-section, or from errors

accumulated from the stair-case assumption along the longitudinal direction. The former

could be solved with improved adaptive remeshing techniques since the adaptive refine-

ment methods employed here simply add points to the mesh; and to guarantee calculation

speed the maximum limit of total element number may lead to very different meshes for

neighboring cross-sections. The latter could be improved with modified BPM algorithms

incorporating the continuous condition in the longitudinal direction and higher-order Padé

approximations. Although tapered-BPM [217] and structure-related BPM [156, 163, 276]

have been proposed for FDM techniques, these have not been considered in FE-BPM so

far, which can be a good future research topic.
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(a)

(b)

Figure 8.6: Field propagation in the SOI taper: (a) slope = 1
50; and (b) slope = 1

12.5.
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8.4 Summary

Our general design procedures enable the realization of SOI polarization converters with

cross-section varying from submicron to tens of micrometers. Therefore, by employing

large cross-section SOI polarization converters and corresponding input/output rib waveg-

uides rather than small III-V counterparts, coupling loss to commercial single-mode fibers

or laser diodes could be greatly reduced meanwhile strong polarization conversion is main-

tained. Due to the strong optical confinement, adjacent SOI polarization rotators can be

situated very closely to each other, enabling large-scale waveguide arrays and high-density

integrations. By maintaining single-mode cross-section in a tapered waveguide, the excess

loss could be very small even for fast variation in the longitudinal direction; therefore the

power transfer efficiency is greatly improved. Consequently, our compact low-loss polariza-

tion converters will have wide applications in high-performance large-scale optoelectronic

integrated circuits (OEIC).
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Chapter 9

Conclusion and Future Topics

This chapter draws conclusions from previous chapters and proposes promising topics for

future research.

9.1 Conclusion

With the aid of efficient and accurate finite-element analysis, we have realized a category of

novel passive polarization converters by employing the fast-developing silicon-on-insulator

technology. Our general design procedures enable rapid and precise design of polarization

manipulating devices, regardless of the outer slab layer configuration and the thickness

of silicon guiding film of SOI wafers. These procedures apply to devices made of low

index-contrast III-V materials (GaAs/AlGaAs and InP/InGaAsP, etc.) as well, although

associated design charts could not be normalized as for SOI designs. The technique to

etch the angled-facet along the crystallographic plane and remove the external waveguid-

ing layer beside the sloped sidewall greatly enhances both the fabrication feasibility and

the performance of slanted-angle polarization rotators. Characteristics related to the de-

vice size, fabrication tolerance, bending, loss and coupling have been thoroughly studied

for asymmetric SOI polarization rotators, and merits over III-V counterparts have been

addressed. Experimental verifications [5, 7, 8] have shown good agreement with theoret-

ical analysis and have confirmed the promising characteristics of novel asymmetric SOI

polarization converters.
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Our sophisticated and versatile numerical finite-element packages can be widely em-

ployed for various problems of guided-wave and beam-propagation analysis in integrated

photonics, and have the potential to be commercialized since currently available software

is mainly based on the finite-difference method whose deficiency has already been pointed

out earlier.

9.2 Suggestions for Future Research

This research focuses on designing and analyzing integrated optical devices with finite-

element techniques, and we have found interesting research topics for both numerical al-

gorithms and silicon photonics.

1. Suggested future topics for numerical algorithms:

• Adaptive remeshing by eliminating and combining triangles in relatively less

important regions. The adaptive mesh refinement employed in this dissertation

simply subdivides elements.

• Node renumbering to reduce matrix bandwidth and increase calculation effi-

ciency. This function is especially desired for adaptive mesh generation.

• FE-BPM with nodal triangular elements combined with methods to eliminate

spurious modes. The mesh interpolation between tangential and nodal variables

seems to be a cumbersome task and wastes much computer resource for each

step of propagation based on mixed elements and adaptive meshing.

• Tapered-BPM employing FEM procedures. In conventional BPM algorithms,

the stair-case approximation in the propagation direction could cause the accu-

mulation of numerical errors.

2. Suggested future topics for silicon photonics:

• Improved experimental verification of asymmetrical SOI polarization rotators.

Advanced fabrication procedures involving nano-photonics could be employed

to enhance the device performance. More studies on single-mode and bending

characteristics could be experimentally carried out.
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• Other SOI taper structures for better coupling efficiency in silicon photonics;

• Application of SOI polarization converters in large scale arrayed-waveguide grat-

ings (AWG);

• Investigating polarization beam splitters by utilizing SOI technology.
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Appendix A

Derivation of the Polarization

Conversion Efficiency Formula

For a birefringent optical waveguide, the phase delay ϑ between the two fundamental

polarizations after propagating a distance L is expressed as Eq. (2.2), and is related to the

half-beat length Lπ (Eq. (2.3)) as

ϑ = π
L

Lπ

(A.1)

In the orthogonal coordinate system formed by the optical-axes (u, v) as shown in Fig.

2.4, the related Jones matrix [277] is expressed as

[Jϕ] =

[
1 0

0 e−j ϑ

]
(A.2)

In the fixed (x, y) coordinate, which is angled ϕ regarding to the optical-axes (u, v),

this Jones matrix must be multiplied by a rotation matrix [58] [R(ϕ)] =

[
cos ϕ sin ϕ

− sin ϕ cos ϕ

]

according to this pattern [277]:

[J0] = [R(−ϕ)][Jϕ][R(ϕ)] =

[
cos2 ϕ + e−j ϑ sin2 ϕ sin ϕ cos ϕ (1− e−j ϑ)

sin ϕ cos ϕ (1− e−j ϑ) sin2 ϕ + e−j ϑ cos2 ϕ

]
(A.3)
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The Jones vector for a TE-polarized (x-polarized) electric input field is

[
Ein

x

Ein
y

]
=

[
1

0

]
(A.4)

The corresponding output electric field is therefore calculated as

[
Eout

x

Eout
y

]
= [J0]

[
Ein

x

Ein
y

]
=

[
cos2 ϕ + e−j ϑ sin2 ϕ

sin ϕ cos ϕ (1− e−j ϑ)

]
(A.5)

Noting that the Jones matrices [Jϕ], [R(ϕ)] and [J0] are unitary for linear lossless

materials [278], so that |Eout
x |2 + |Eout

y |2 = |Ein
x |2 + |Ein

y |2 = 1. From Eq. (5.1), the

polarization conversion efficiency is expressed in terms of output field components

PCTE→TM =
|Eout

y |2
|Eout

x |2 + |Eout
y |2 × 100% = sin2 ϕ cos2 ϕ (2− ej ϑ − e−j ϑ)× 100% (A.6)

Utilizing Eq. (A.1) and the Euler’s formula ej ϑ = cos ϑ + j sin ϑ, Eq. (A.6) becomes

PC = 2 sin2 ϕ cos2 ϕ (1− cos ϑ)× 100% = 2 sin2 ϕ cos2 ϕ (1− cos(π
L

Lπ

))× 100% (A.7)

Further employing the half-angle formula cos 2ϑ = 1 − 2 sin2 ϑ, the formulation for polar-

ization conversion efficiency is simplified as

PC = 4 sin2 ϕ cos2 ϕ sin2(
πL

2Lπ

)× 100% (A.8)

Eq. (5.2) is therefore proved for a TE-polarized input light. Similar procedure works for

derivation with a TM-polarized input.
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