
Some Problems in One-Operator

Scheduling

by

Mohammed Fazle Baki

A thesis
presented to the University of Waterloo

in ful�llment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Management Sciences

Waterloo, Ontario, Canada, 1999

cMohammed Fazle Baki, 1999

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required �nal revisions, as accepted by examiners.

I understand that my thesis may be made electronically available to the public.

ii

Acknowledgements

I would like to express my profound gratitude to my supervisor Professor Raymond

G. Vickson for his constant guidance, encouragement and patience throughout the

development of this thesis, for many hours of fruitful discussion, for �nancial support,

and for giving me the opportunity to participate to several conferences.

I would like to thank Professors James Bookbinder, Elizabeth Jewkes, Anthony

Vannelli and my external examiner Professor Yash Aneja for reviewing this thesis and

for their helpful comments.

A special note of thanks is due to Professor Gordon Andrews who helped me so

willingly with his expertise on gear manufacturing. Special thanks to Dr. Tim Nye

for some fruitful discussion and valuable information. Special thanks to Dr. Haldun

S�ural who has shown so much interest in some of the problems I have worked on and

o�ered some excellent suggestions.

I wish to thank Lynne Wight for various helps she o�ered to me during writing

of this thesis. Thanks to Stephen Carr who has helped me with so much enthusiasm

on various aspects of document preparation.

Thanks to the Natural Sciences and Engineering Research Council of Canada,

Ontario Ministry of Training, Waterloo Management of Integrated Manufacturing

Systems (WATMIMS) research group, and the University of Waterloo for their �nan-

cial support throughout my graduate studies.

Thanks to Professor S.N. Kabadi who supervised my MBA thesis and taught me

the fundamentals of combinatorial optimization. Thanks for his encouragement and

inspiration.

Thanks to my mother, my sister and my wife for being so supportive throughout

and for all their encouragement, inspiration and moral support. Special thanks to my

baby, Shaumik for lots of fun together.

iii

Dedication

In memory of

my father late Mohammed Solaiman Ali and

my brother late Mohammed Fazle Bari

iv

Abstract

A exible workforce or a versatile machine is employed to perform various types of

operations. Often these resources are associated with setups. Whenever a worker or

machine switches from processing one type of operation to another a setup time may

be required although several operations of a same type can be processed in succession

after a single setup.

The presence of setups gives rise to the problem of choosing batch sizes that are

neither too large nor too small. In the last one and a half decade, many researchers

have addressed the problem of scheduling with batching. A majority of articles as-

sumes that there is only one type of scarce resource, which is typically machine. Often

there can be two scarce resources such as a worker and a machine or a machine and

a tool.

We propose a resource constrained scheduling model with a single operator and

two or more machines. Whenever the operator changes machine, a setup time is

required that may be sequence dependent or sequence independent. We consider the

two cases of an open shop and a ow shop. In the open shop case, the order in which

a job visits the machines is unrestricted. In the ow shop case, every job must visit

the machines in the same order. We consider various scheduling objectives.

For variable number of machines, many cases are intractable. We discuss some

dominance properties that narrow down the search for an optimal schedule. We

v

present a dynamic programming approach which solves a large number of cases. The

running time of the dynamic program is polynomial for a �xed number of machines.

For the case of two machines, we show that the dominance properties have a

nice interpretation. We develop some algorithms and justify their use by establishing

running times, comparing the running times with those of the existing algorithms,

and testing the performance of the algorithms.

vi

Table of Contents

1 Introduction 1

1.1 Scheduling with Flexible Resources and Setups 1
1.2 One-Operator Scheduling . 4

1.2.1 Scheduling Objectives . 6

1.3 Problem Classi�cation . 8
1.4 Equivalent Problems and Models . 9

1.4.1 Gears On A Hobbing Machine 10
1.4.2 Partpieces with Two Operation Types 12

1.4.3 Products with Two Types of Components or Subassemblies . . 13
1.4.4 Customer Orders . 16
1.4.5 Aluminum Extrusion Facility 18

1.4.6 Single-Machine, Multi-Operation Problem with Setup Times . 20
1.4.7 Summary of Equivalences . 20

1.5 Theory of Computational Complexity 22
1.6 Hierarchy of Scheduling Objectives 26

1.7 Preview . 28

2 Literature Survey 30

2.1 Single Machine Scheduling . 31
2.1.1 The Classical Single Machine Problem 31

2.1.2 Single Machine Scheduling with Setup 32

2.2 One-Operator Scheduling Problems 40

2.3 Shop Problems . 43
2.3.1 Flow Shop . 43

2.3.2 Open Shop . 44
2.4 Resource Constrained Scheduling . 44

2.5 Reentrant Flow Shop . 45

vii

3 Regular Objectives 48

3.1 Preliminary . 49

3.2 The Case of m Machines . 53

3.3 Batching Schedules . 73

3.4 Optimality of Batching Schedules . 76

3.5 A Relationship between 1F2jsij� and 1js1; F = 1j� 80

3.6 Summary . 81

4 The Fixed-Sequence Case 83

4.1 Dominant Job-Orders . 84

4.2 A Classi�cation of Problems . 90

4.2.1 Sequence-Dependent Cases . 90
4.2.2 Sequence-Independent Cases 92

4.3 A Property of Some Objective Functions 94

4.4 A Dynamic Program for some Fixed-Sequence Cases 99

4.4.1 Open Shop Sequence-Dependent Cases 102
4.4.2 Flow Shop Sequence-Independent Cases 105

4.5 Summary . 108

5 Maximum Lateness 110

5.1 The Open Shop Problem . 111

5.1.1 A Network Representation . 113
5.1.2 Useful Facts . 117
5.1.3 Useful Lemmas . 120
5.1.4 The Algorithm . 126
5.1.5 Complexity of the Algorithm 129

5.1.6 An Example . 130
5.2 The Flow Shop Problem . 131
5.3 Summary . 136

6 Weighted Number of Tardy Jobs 137

6.1 Proof of NP-Hardness . 140

6.2 Open Shop Problem . 143
6.2.1 Algorithm O1 . 149

6.2.2 Algorithm O2 . 151

6.3 Flow Shop Problem . 153
6.3.1 Algorithm F1 . 153

6.3.2 Algorithm F2 . 155
6.4 Computational Experience . 156

6.5 Summary . 157

viii

7 Weighted Completion Time 160

7.1 Contribution of Operation and Setup to
P
wjCj 164

7.2 The Fixed-Sequence Case Revisited 165

7.2.1 The m-machine Flow Shop Case 166

7.2.2 Two-Machine Flow Shop Case 172

7.2.3 Two-Machine Open Shop Case 175

7.2.4 Network Representation for the Two-Machine Cases 179
7.3 The Fixed Batching Policy Case . 184

7.3.1 Weighted Completion Time 184

7.3.2 Flow Shop with Total Completion Time 185
7.3.3 Open Shop with Total Completion Time 187

7.4 Summary . 190

8 Total Completion Time 193

8.1 De�nitions . 193

8.2 A Heuristic . 195
8.2.1 Running Time of the Heuristic 196

8.3 A Lower Bounding Procedure . 196
8.3.1 Lowest and Highest Positions 199

8.3.2 Running Time of the Lower Bounding Procedure 201
8.4 The Branch and Bound Scheme . 203
8.5 Alternate Algorithms . 204
8.6 An Example . 204

8.7 An IP Formulation . 209

8.8 Computational Experience . 210
8.9 Summary . 212

9 Conclusion 215

9.1 Future Research . 222

ix

List of Tables

1.1 Summary of Equivalences . 21

2.1 Some results on resource constrained scheduling 46

3.1 Performance of some schedules . 65

4.1 Classi�cation of one-operator problems 95

4.2 Running times of some �xed-sequence cases 109

6.1 Performance of algorithms for weighted tardiness 157

6.2 Summary of results in Chpater 6 . 159

7.1 Summary of results in Chapter 7 . 192

8.1 Performance of algorithms for total completion time 212

9.1 Summary of running times . 221

x

List of Figures

1.1 An illustration of sequences of operations 5

1.2 Relationship among various regular objectives 27

3.1 A Gantt Chart . 50
3.2 Some rearrangement without any additional setup 52
3.3 Two operations of a same job on a same machine 54
3.4 Machines with zero setup times . 57

3.5 Job-orders on di�erent machines . 59

3.6 Switching to a machine, case 1 . 61
3.7 Switching to a machine, case 2 . 63

3.8 Switching from a machine . 69
3.9 A batching schedule . 75

4.1 Job-order for the maximum lateness objective 85
4.2 Job-order for a problem with weighted completion time objective . . . 88

5.1 A network representation of an open shop case 116
5.2 Node elimination . 122

5.3 Arc elimination . 124
5.4 A network representation of a ow shop case 132

6.1 A partial schedule . 144

6.2 A modi�ed schedule with a new early job 146

6.3 A modi�ed schedule with a new early batch 148

7.1 A network representation of an open shop case 180

7.2 A network representation of a ow shop case 181

8.1 A network representation of the heuristic 206
8.2 A network representation of the lower bounding procedure 207

8.3 A branch and bound tree . 208

xi

Chapter 1

Introduction

1.1 Scheduling with Flexible Resources and Se-

tups

As Baker [11] de�nes it, scheduling is the allocation of resources over time to per-

form a collection of tasks. In the manufacturing context, workers, machines and tools

are some examples of resources. Tasks include operations that bring some physical

changes to materials in order to eventually manufacture products. Tasks also in-

clude setups that do not bring such physical changes but are essential to carry out

operations. Examples of setups include walking to reach the workplace, obtaining

tools, positioning the work-in-process material, returning tools, cleaning, setting the

required jigs and �xtures, adjusting tools, and inspecting material.

The length of time over which a scheduling decision has an e�ect is usually short,

such as hours, days or months. Like any other short-term decisions, scheduling deci-

sions are made by �rst-level management at a high level of detail. Intermediate-term

1

CHAPTER 1. INTRODUCTION 2

decisions made by mid-level management, and long-term decisions made by senior-

level management, may constrain scheduling choices. For instance, mid-level man-

agement may be responsible for the acquisition of capital equipment and planning

the workforce level, while senior-level management may be responsible for the choice

of production lines and technology.

Recent trends in manufacturing include: (i) increasing demand toward customized

products; (ii) increasing competition for market share from both domestic and inter-

national manufacturers; (iii) changing manufacturing technology; and (iv) changing

customer needs and shorter product life cycles.

To respond to this trend, manufacturers set various goals including continual de-

velopment of new products, reduction in the cost of production, and improvement in

quality and service. Flexible resources such as a cross-trained or multiskilled work-

force and versatile machines help the manufacturers to achieve these goals.

A exible workforce reduces the impact of uncertainties such as product mix

changes and demand changes. Many companies (Kher et al. [67]) such as Frito Lay

and General Motors of USA use a exible workforce. Frendall et al. [39] discuss a

scheduling problem in a large toolroom of an automobile plant in central Michigan,

where there is more machine capacity than labor capacity, in which most operators

can operate at least two workstations, and in which the operators are cross-trained to

operate every workstation in the toolroom. Liao and Lin [82] discuss a case study of a

CHAPTER 1. INTRODUCTION 3

manufacturing company producing sewing machine parts with a total of 80 machines

and 17 cross-trained workers. Some of the machines require the full-time presence of

an operator for as long as the machine runs.

Like a exible workforce, a versatile machine such as a Computer Numerical Con-

trolled (CNC) machine also reduces the impact of uncertainties. The aim of a CNC

machine is to achieve the e�ciency of automated mass production and, yet, be able

to handle some variations among the products. For these reasons, CNC machines

are widely used (Stecke [110]) in the metal-working industry, where products are

manufactured in batches, as the variety is neither too low nor too high.

When a worker or machine switches from processing one type of operation to

another, a setup time or cost may be incurred. All the operations processed in a

single setup comprise a batch of operations. Larger batches are attractive because

of fewer setups, less loss of production time, higher utilization of resources, more

throughput and less time required to process all the operations. On the other hand, a

smaller batch may prevent an important operation from waiting for a prolonged time

for a di�erent setup. Smaller batches may also reduce storage space requirements, the

amount of capital tied up in inventory, the average length of time required between

the receipt of an order and its release, etc.

The presence of setup times, therefore, gives rise to the problem of choosing batch

sizes that are neither too large nor too small. In the last one and a half decades, there

CHAPTER 1. INTRODUCTION 4

has been a lot of interest in the scheduling problem with setups. Allahverdi et al. [5]

and Potts and Kovalyov [95] present recent reviews on the scheduling problem with

setups.

A collection of operations on a single product is called a job. The scheduling

literature thoroughly considers the scheduling problem with setups with the assump-

tion that there is only one type of scarce resource, which is typically a machine.

However, often there can be two scarce resources, such as a worker and a machine

or a machine and a tool. The presence of two scarce resources is recognized in the

area of resource-constrained scheduling. We shall now propose a resource-constrained

scheduling model with setups. Equivalent problems and models will be discussed after

the statement of the problem and the presentation of some notation and de�nitions.

1.2 One-Operator Scheduling

Suppose that a single operator has to perform some n jobs on some m machines.

Each job j requires nij � 1 operation on machine i. The processing time of job j

at the k-th visit on machine i is tijk: If nij = 1 8i; j we shall omit the su�x k and

denote the processing time of job j on machine i by tij. A setup time sii0 is required

each time the operator switches from machine i to i
0
: The initial setup time is s0i

on machine i: If, for each machine i0 we have sii0 = si0 8i; then the setup times are

sequence independent. We assume that several jobs can be processed in succession

CHAPTER 1. INTRODUCTION 5

1,1 1,31,2M1

2,32,22,1M2

J3J2J1

Jobs

Machines

Figure 1.1: An illustration of sequences of operations

after a single setup. The operator can perform only one operation at a time and

cannot perform any operations while a setup is in progress. Associated with every

job j; there is a due date dj and a weight wj; which measures the importance of job

j relative to the other jobs in the system.

As an example of the operator's scheduling problem, suppose that there are two

machines and three jobs, each of which has exactly one operation on each machine.

The operator may �rst do all jobs in some order on machine 1, and then do all jobs

in some order on machine 2. An alternative sequence is shown in Figure 1.1. Every

node v = (i; j) in Figure 1.1 represents the operation of job j on machine i and every

arc (v; v0) represents the fact that the operation corresponding to node v is followed

immediately by the operation corresponding to node v0. Hence, Figure 1.1 illustrates

a schedule in which the operator processes jobs 1 and 2 on machine 1, then job 1 on

machine 2, then job 3 on machine 1 and, �nally, jobs 2 and 3 on machine 2.

CHAPTER 1. INTRODUCTION 6

Throughout we assume that (i) tijk; sii0; dj ; wj are non-negative integers; (ii)

setup times follow the triangle inequality condition, si1i2 +si2i3 � si1i3 for every set

of three distinct machines i1; i2 and i3; (iii) jobs, machines and the operator are

available at time zero and remain available during the entire scheduling period; and

(iv) operations and setups are non-preemptive, meaning that once an operation or

setup is started it must be completed without interruption.

We consider the two cases of an open shop and a ow shop. In the open shop case,

the order in which a job visits the machines is unrestricted. In the ow shop case,

every job must visit the machines in the same order, which we assume to be �rst on

machine 1; second on machine 2; and so on.

1.2.1 Scheduling Objectives

The ultimate aim of any scheduler is to develop a feasible schedule that is optimal

with respect to some objective. The �rst step in solving a scheduling problem is thus

to de�ne the scheduling objective. However, choosing a scheduling objective is, itself,

a challenging problem. Often, schedulers must deal with many conicting objectives.

Mellor [83] lists a total of 27 objectives that may be important in a manufacturing

environment. These objectives can be classi�ed primarily as those that are regular

and those that are not.

The completion time Cj of job j is the epoch at which its last operation is �nished.

A regular objective is one which is non-decreasing in completion times. Precisely,

CHAPTER 1. INTRODUCTION 7

a regular objective � is a function such that Cj � C
0
j 8j) �(C1; C2; :::; Cn) �

�(C 0
1;C

0
2; :::C

0
n):

The objectives can be further grouped into three broad categories: (i) e�cient

utilization of resources; (ii) average length of time spent on the shop oor; and (iii)

conformance to prescribed deadlines.

We discuss in Section 1.4 that a one-operator scheduling problem may arise in

various di�erent contexts. Scheduling objectives may di�er considerably from one

context to another. Hence, we choose to explore various cases of the one-operator

scheduling problem. In each case we consider a single regular objective.

Before we may list the objectives, we need some de�nitions. The completion time

of the last job processed is called the makespan and is denoted by Cmax: The lateness

Lj of job j is de�ned as Cj � dj: The tardiness Tj of job j is de�ned as maxf0; Ljg:

The unit penalty Uj of job j is de�ned as Uj = 1, if Cj > dj , and Uj = 0, otherwise:

Thus,
P
Uj represents the number of tardy jobs.

We consider the following objectives: (i) makespan, Cmax; (ii) maximum lateness,

Lmax; (iii) total completion time,
P
Cj; (iv) weighted completion time,

P
wjCj; (v)

number of tardy jobs,
P
Uj; and (vi) weighted number of tardy jobs,

P
wjUj .

Rinnooy Kan [99] develops some equivalence relationships that exist among schedul-

ing objectives. He shows that minimizing makespan is equivalent to maximizing uti-

lization of resources, minimizing loss of production time due to setups and maximizing

CHAPTER 1. INTRODUCTION 8

throughput. Minimizing total (weighted) completion time is related to minimizing

mean manufacturing lead time (which is the length of time between receipt of an order

and its delivery), and minimizing work-in-process inventory. Minimizing maximum

lateness and (weighted) number of tardy jobs is related to the level of conformance

to prescribed deadlines and hence to customer service.

1.3 Problem Classi�cation

Following Graham et al. [51] and a number of subsequent books and papers, we

describe a scheduling problem by a triplet �j�j:

The � �eld describes the operator and machine environment. We let � = �1�2�3:

Sub�eld �1 indicates the number of operators. In the case of one-operator problems,

�1 = 1: Sub�eld �2 2 fO;Fg; where \O" indicates the open shop environment and

\F" indicates the ow shop environment. Sub�eld �3 = m; where m is the number

of machines. In a classical machine scheduling problem, such as a single machine,

open shop or ow shop problem, the operator is not considered as a scarce resource

and, therefore, there will be no entry in the sub�eld �1: In such cases � = Om for an

m-machine open shop problem and � = Fm for an m-machine ow shop problem. In

the case of a single machine problem, the � �eld contains a single entry, 1:

The � �eld provides the details of processing characteristics and constraints. It is

a standard practice in the scheduling literature to mark the presence of setup times

CHAPTER 1. INTRODUCTION 9

with an entry in the � �eld. Following this practice, we enter si in the � �eld if

the setup times are sequence independent and sii0 if the setup times are sequence

dependent. Two special terms used in the � �eld are as follows: (i) apt: processing

times are agreeable in the sense that j < j
0) tij � tij08i; and (ii) aptw: processing

times and weights are agreeable in the sense that j < j
0) tij � tij0 8i and wj � wj0:

Any other entries in the � �eld will be self explanatory.

The �eld contains the objective to be minimized.

1.4 Equivalent Problems and Models

In this section we shall discuss some problems that can be modelled as one-operator

scheduling problems. Also, we shall discuss some equivalent models which appear in

the scheduling literature in seemingly unrelated contexts.

Products may often require more than one component and the production of all

the components may be carried out using a single manufacturing facility, worker,

machine, or workstation. If the products are delivered after all the components are

produced, each product can be viewed as a job and the production of each component

can be viewed as an operation. In another context, customer orders may contain a

number of products and all the products may be produced in a single production

facility. If the customer orders are delivered after all the products are produced, each

customer order can be viewed as a job and the production of each product can be

CHAPTER 1. INTRODUCTION 10

viewed as an operation. We shall now discuss such cases in further detail.

1.4.1 Gears On A Hobbing Machine

A hobbing machine is used for manufacturing a wide range of parts, including gears.

The American Gear Manufacturers Association (AGMA) includes more than 200

manufacturers of gears, and most of them use hobbing machines.

A typical automotive power transmission gear unit usually contains a reverse gear

and two to �ve forward gears, depending on the number of speed levels desired. Each

gear set comprises three components: a sun gear, a planetary gear and a ring gear.

Furthermore, all of these components may be produced on a single hobbing machine.

However, before a batch of a particular component can be produced on the machine,

the machine has to be set up. For a Computer Numerical Control (CNC) hobbing

machine, the setup operation may take about two hours [9]. This includes changing

the tooling, �xtures or pallets in the carousel, and end e�ectors on the load and unload

devices. For a manual hobbing machine, the setup operation is typically about two

and a half hours [9].

Apart from the shorter setup time required, CNC hobbing machines have the fol-

lowing additional advantages [9] over manual hobbing machines: (i) closer tolerances;

(ii) more uniform production from part-to-part and lot-to-lot; and (iii) a faster ma-

chining cycle. For example, a manual hobbing machine may produce 15 parts per

hour, but a CNC hobbing machine may produce 28 parts per hour. For this reason,

CHAPTER 1. INTRODUCTION 11

using CNC hobbing machines instead of manual hobbing machines seems to be a

standard practice today [9].

The price of a CNC hobbing machine is often cited in the range of $250,000{

$500,000 (US); see [8, 60, 116]. Such a high price is a barrier to using a large number of

CNC hobbing machines in order to minimize loss of production time due to setups. For

this reason, a manufacturer may sometimes have a single CNC hobbing machine. This

is especially true for a manufacturer who is a new entrant in the gear manufacturing

industry or for a manufacturer who is currently purchasing gears from an outside

vendor and wants to bring the gear manufacturing in-house. For example, the Ann

Arbor Machine Co. [10, 92] spent 1 million ($ US) in the course of a year for gears

supplied by external vendors. The company bought a single CNC hobbing machine

when it decided to manufacture gears in-house, in order to reduce the turnaround

time from as high as two months to only a few hours.

In general, if a manufacturer produces a product that requires m types of gears

(so that the hobbing machine has to be set up m times for each product), we have

a one-operator, m-machine open shop problem. If an automotive power transmission

gear unit contains k gears (typically, 2 � k � 6), each containing a sun gear, a

planetary gear and a ring gear, then m = 3k: However, there exist other instances

which allow us to consider problems with m = 2: For example, a product with just

two types of gears would be a gear motor that requires a worm gear and a follower

CHAPTER 1. INTRODUCTION 12

gear.

One limitation of the model is that if a gear is required to sustain a high power

and high torque, the steel of the gear may be required to have a hardness which the

hobbing machine cannot cut. In this case, the cutting operation is carried out on

a soft steel, and the gears cut on a hobbing machine are subjected to a hardening

process. The component gears are usually moved to the hardening process in batches.

Another limitation of the model is that some of the gears may be so big that they do

not �t on a hobbing machine. A shaping machine is usually used for producing such

a big gear.

These considerations, however, present no further di�culties [6] for modeling the

problem of scheduling automotive power transmission gear units and gear motors,

which usually require gears with small size, high speed and low torque. The required

gears usually �t on a hobbing machine and the machine is usually capable of cutting

the steel with the required hardness.

1.4.2 Partpieces with Two Operation Types

Cheng and Wang [26], Lee and Mirchandani [78] and Pan and Chen [90] discuss

another problem of scheduling partpieces on versatile machines. If the production of

a partpiece requires a tool that is not resident in the �nite capacity tool magazine of

the machine, then some or all of the tools in the tool magazine must be replaced. For

example, suppose that there are three types of partpieces, A, B and C which require

CHAPTER 1. INTRODUCTION 13

tool sets f1,2,5g, f2,3,6g and f4,5,6g, respectively. Suppose that the tool magazine

may contain at most 4 tools. If operation type X corresponds to tool set f1,2,3,4g

and operation type Y corresponds to tool set f1,2,5,6g, then parts A, B and C all

require both operation types. Lee and Mirchandani [78] assume that: (i) the versatile

machine can perform all operations of the two types X and Y ; (ii) a constant setup

time is required to switch between operation types; and (iii) each partpiece requires

an operation of type X, followed by an operation of type Y . Cheng and Wang [26],

Lee and Mirchandani [78] and Pan and Chen [90] consider the problem with two

identical versatile machines. However, if for any reason we have to schedule jobs on a

single versatile machine, we obtain a one-operator, two-machine ow shop problem.

In this formulation the versatile machine becomes the \operator," and the operation

types become the two \machines."

1.4.3 Products with Two Types of Components or Subassem-

blies

Baker [12], Aneja and Singh [7], Ding [34], Vickson et al., [117], Sung and Park [111]

and Rana and Singh [98] discuss a two-stage manufacturing problem. The �rst stage

is production and the second stage is assembly. The production stage is capacity

constrained because production is carried out on a single manufacturing facility. The

assembly stage is not capacity constrained. Therefore, it is important to consider the

scheduling problem in the production stage. Primarily, two types of components are

CHAPTER 1. INTRODUCTION 14

produced in the production stage. One type of component is common to all products

and the other types of components are unique to each product.

The components are produced in batches , and a setup is required to produce

each batch of a given component. The setup times are independent of sequence, and

there is no limit on the size of any batch. Setup times for the unique components are

imbedded in the processing times. Hence, it su�ces to assume setup times only for

the common components.

There can be two distinct assumptions regarding the availability of completed

components; see (Santos and Magazine [107] and Dobson et al. [35]). Baker [12],

Aneja and Singh [7] and Ding [34] assume that neither the unique nor the common

components may be shipped to assembly until all unique and all common components

in a production batch are completed. This way of moving products is called batch

availability (Santos and Magazine [107]). On the other hand, Vickson et al. [117]

and Sung and Park [111] assume that both the unique and common components

are shipped to the assembly operation as soon as both have been completed on the

production facility. This way of moving products is called item availability (Santos

and Magazine [107]).

For the case of batch availability and total completion time objective, Baker [12]

shows that the batch of common components is always processed prior to its corre-

sponding unique components. An interchange argument shows that this statement

CHAPTER 1. INTRODUCTION 15

can be extended to any regular objective. But then, for any regular objective the prob-

lem with batch availability can be modelled as a one-operator two-machine ow shop

problem: the �rst machine produces common components and the second machine

produces unique components. On the other hand, the problem with item availability

can be modelled as a one-operator two-machine open shop problem: one machine

produces common components and the other machine produces unique components.

A simpler case of producing components was considered by Co�man et al. [30].

Consider a manufacturing system where products are composed of di�erent subassem-

blies and a single machine makes the subassemblies of each type. All the subassemblies

of a particular product can be produced in any order. However, a �xed setup time

is needed whenever the machine changes over from one type of subassembly to an-

other. Co�man et al., point out an application where a machine inserts components

into circuit boards of di�erent types, which are then assembled into kits. Co�man et

al. consider the production of a single product that is composed of two subassem-

bly types. This problem can be modelled as a one-operator two-machine open shop

problem with identical jobs.

Each of the above articles except Ding [34] assumes agreeable processing times.

Recall that the processing times are agreeable if there exists a labelling such that j

< j
0) tij � tij08i: Vickson et al. assume identical processing times for all common

components. Co�man et al. [31] assume identical processing times for all products

CHAPTER 1. INTRODUCTION 16

and identical setup times for both subassemblies. Ding [34] does not consider any

restriction on processing times.

With the exception of Aneja and Singh [7], each of the above articles considers the

case of two components. Aneja and Singh [7] point out that m0-common components

cannot be treated as a single component, and provide an algorithm for the case of

m
0-common components and one unique component.

All the above articles consider minimizing total completion time. Rana and Singh

[98] consider multiple objectives including total completion time and makespan.

Gim and Han [49], and Cheng and Wang [27] consider the integrated problem

of scheduling the production and assembly stages. Gim and Han [49] consider m-

components with the objective of minimizing total production cost including work-

in-process inventory cost, total setup cost and inventory holding cost of the �nal

product. Cheng and Wang [27] consider one common component and one unique

component with the objective of minimizing makespan.

1.4.4 Customer Orders

Julien [63] and Julien and Magazine [64] present a model for scheduling customer

orders. They consider a manufacturing system comprising two stages. The �rst stage

is production, which represents either a product fabrication stage in a make-to-order

environment or a product assembly stage in an assemble-to-order environment. The

second stage is distribution.

CHAPTER 1. INTRODUCTION 17

In the �rst stage m types of products can be produced. Raw materials, compo-

nents, and subassemblies needed to fabricate or assemble the products are always

available in su�cient quantities. A product-dependent setup time si is incurred im-

mediately before a batch of product i can be produced. Every customer needs a

certain number of items of each product type.

The second stage, distribution, is not capacity constrained. Julien and Magazine

[64] point out two motivations for such an assumption. First, there may always

exist a su�cient delivery capacity. Second, the manufacturer may use an f.o.b. (free

on board) factory pricing policy which stipulates that customers take ownership of

their completed order at the factory and be responsible for transportation beyond

the factory. As the distribution stage is not capacity constrained, it is su�cient

to consider the scheduling problem that arises in the production stage. Julien and

Magazine [64] consider many scheduling objectives, each of which is regular.

If we impose an additional restriction that every customer order requires at least

one item of each product, then the scheduling problem in the production stage is a

one-operator, m-machine open shop problem in which the production facility becomes

the \operator," product types become the \machines" and customer orders become

the \jobs". Julien and Magazine [64] considers several cases, including one with

m = 2 and the restriction that every customer order requires at least one item of

each product.

CHAPTER 1. INTRODUCTION 18

1.4.5 Aluminum Extrusion Facility

Bedworth and Bailey [13] discuss a problem that occurred in an aluminum extrusion

facility. The plant has 10 extrusion presses of di�ering sizes and capabilities. The

presses run in parallel. Di�erent-size aluminum billets are extruded into 287 di�erent

shapes. Extrusion dies �t into speci�c die carriers. Machines are set up with one

carrier at a time. The carriers can be changed as needed.

Orders for extrusions are booked in di�erent quantities and have widely varying de-

livery lead-times. Marketing practices tend to o�er faster deliveries to key customers.

In general, Marketing would like to reduce manufacturing lead times to everyone in

order to gain a competitive edge. However, Manufacturing tries to minimize layo�s,

hiring, and overtime and, therefore, would like to increase the manufacturing lead

times.

When customers book orders, they typically request several di�erent extrusion

shapes and sizes. It is desirable to have all of these products ready at the same time

so that they can all be shipped at once.

The dies are designed to �t into speci�c die carriers and each machine is limited

in the carriers it can accommodate. When a press is changed over from one operation

to another, the e�ort depends on whether the carrier needs to be changed along with

the die. Setups that require only die be changed have a standard time of one hour,

but setups that require the carrier be changed have a standard time of four hours.

CHAPTER 1. INTRODUCTION 19

A survey identi�ed that there were 27 di�erent die carriers. Thus, all the products

were placed in one of 27 groups. A study of past orders for products in each group

indicated that for three groups, orders arrived faster than they could be produced on

one press. Thus, it was decided to devote three presses exclusively and continuously

to these three die carriers. The sequencing of the operations on each of the high-

volume carrier groups was accomplished according to a modi�cation of the algorithm

of Moore and Hodgson (Moore [86]) for minimizing total number of tardy jobs on a

single machine. The remaining 24 carriers and seven presses would be scheduled by

a di�erent rule.

Consider the problem of sequencing the operations on a high-volume carrier group.

Since the machine is devoted to a die carrier, no setup for die carriers is needed.

However, every time the die is changed a setup is required. Since customers book

orders with several di�erent extrusion shapes and sizes, it is reasonable to assume

that every customer order requires that every die be used at least once. In fact, this

assumption is used by Gupta et al. [55]. But then, the problem can be modelled as

a one-operator (i.e., the high-volume die carrier and the associated extrusion press)

m-machine (i.e., m dies) open shop problem.

CHAPTER 1. INTRODUCTION 20

1.4.6 Single-Machine, Multi-Operation Problem with Setup

Times

Santos [106] considers a problem which he calls a single machine, multi-operation

problem. Consider a single versatile machine and a product with m-operations. All

the operations of some n items of the product are to be processed on the machine.

The operations of each item are performed in a given order. Every time the machine

switches to the i-th operation, a setup time si is required. Santos [106] considers

the objective of minimizing total completion time. The only di�erence between his

problem and our 1Fmjsi; tij = tij
P
Cj problem is that he assumes batch availability

of all the operations.

Recently, Gerodimos et al. [45, 46] consider the single machine, multi-operation

problem with item availability assumption and various regular objectives. They as-

sume that each product j comprises one operation of each type i = 1; 2; ::;m: The

processing time of product j for operation type i is tij: Product j requires nij opera-

tions of type i; where nij 2 f0; 1g: For each product the items can be processed in any

order. The restricted case of their problem with nij = 1 is equivalent to 1Omjsij�:

1.4.7 Summary of Equivalences

As we have seen above, one-operator scheduling problem may arise in many di�erent

contexts. In Table 1.1 we summarize how we may view the problems, or some re-

stricted version of the problems, as a one-operator problem. In Section 3.5 we shall

CHAPTER 1. INTRODUCTION 21

show that a well-studied single machine problem is a special case of the one-operator

scheduling problem.

Problem Equivalent One-Operator Model

Automotive transmission gears on

a hobbing machine

1Omjsij�

Gear motors with worm gear and

follower gear on a hobbing machine

1O2jsij�

Partpieces with two operation

types on a single versatile machine

1F2jsijCmax

Common and unique components,

Baker [12]

1F2jsi; s2 = 0;apt jPCj

Common and unique components,

Ding [34]

1F2jsi; s2 = 0jPCj

Common and unique components,

Vickson et al. [117]

1O2jsi; s2 = 0; t1j = t1j
P
Cj

Common and unique components,

Sung and Park [111]

1O2jsi; s2 = 0;apt jPCj

Two subassemblies, Co�man et al.
[30]

1O2jsi; s1 = s2; tij = tij
P
Cj

Customer order scheduling, nij �
1; Julien [63]

1Omjsij�

Customer order scheduling, Julien
and Magazine [64]

1O2jsi;�xed sequencejPCj

Aluminum extrusion press, a ma-
chine devoted to a high-volume die

carrier, nij � 1;

1Omjsij�

Single-machine multi-operation
problem, nij = 1; Gerodimos et al.

[45, 46]

1Omjsij�

Table 1.1: Summary of Equivalences

CHAPTER 1. INTRODUCTION 22

1.5 Theory of Computational Complexity

The scheduling problem belongs to the area of combinatorial optimization. In a com-

binatorial optimization problem we have to choose the best from a �nite number of

feasible solutions. For example, in a one-operator scheduling problem with m ma-

chines and n jobs, there aremn operations, and these can be carried out in (mn)! ways.

The �niteness of the solution set immediately gives an explicit enumeration scheme:

generate all the feasible solutions, compute the objective functions and choose the

best one. However, such a scheme leads to what is known as combinatorial explosion:

the computational burden grows exponentially with the number of machines and/or

jobs.

Edmonds [36] introduced the concept of a good algorithm. He called an algo-

rithm good if the number of steps required to solve a problem can be expressed as

a polynomial function of the length of the input data. Inputs are usually encoded

in binary notation; e.g., the integer 5 is represented as 111. In binary encoding a

positive integer a has a length of blog2 ac+ 1:

The running time of an algorithm is expressed as a function of the length of the

input and provides the rate of growth of the number of elementary steps required.

If the length of the input is measured by x and the running time of an algorithm

is O(f(x)); this means that there exist constants c and x0 such that the number

of elementary steps required by the algorithm is at most cf(x) for any x � x0:

CHAPTER 1. INTRODUCTION 23

The algorithm is a polynomial-time algorithm if f(x) is a polynomial function. Any

algorithm whose running time cannot be so bounded is called an exponential-time

algorithm. The space requirement of an algorithm is similarly de�ned.

If an algorithm for a problem with n jobs requires (6n2 + 4n+ 3) steps, we ignore

the term (4n + 3) and say that the running time is O(n2) because, for c = 13 and

n0 = 1 the number of steps (6n2 +4n+ 3) � cn2 for n � n0: Similarly, if an algorithm

for a problem with n jobs requires (35:2n + n
3) steps, we say that the running time

is O(2n) because, for c = 39 and n0 = 1 the number of steps (35:2n + n
3) � c2n

for n � n0: The former algorithm is polynomial-time and the latter algorithm is

exponential-time.

A problem is polynomially solvable if an optimal solution is obtained by a polynomial-

time algorithm. Many combinatorial problems, called intractable problems, are not

known to be polynomially solvable. The computational complexity paradigm provides

a methodology to demonstrate intractability of a problem. Speci�cally, when investi-

gating a new problem, it is often possible to show that if the problem is polynomially

solvable, then many other intractable problems are polynomially solvable. For an

introduction to the paradigm, we refer to the seminal works by Cook [33], Karp [66]

and the textbook by Garey and Johnson [41]. Below, we discuss some basic concepts.

The theory is discussed in the context of decision problems rather than opti-

mization problems. A decision problem is a question answered by `yes' or `no'. An

CHAPTER 1. INTRODUCTION 24

optimization problem can be solved by solving a �nite number of decision problems.

For a scheduling problem, a decision problem is de�ned with some threshold value

D as follows: does there exist a schedule � with objective function �(�) � D ? The

scheduling problem can thus be solved by repeatedly adjusting the threshold value D

in a binary search over an appropriate interval for D:

For the above decision problem if we have a schedule � with �(�) � D; we say that

schedule � certi�es that the answer is `yes'. For many decision problems, certifying a

`yes' answer may require a small piece of information and a few steps of computation.

For example, in the context of one-operator scheduling, a `yes' answer to the above

decision problem can be certi�ed very easily. It requires at most O(mn) time to de�ne

schedule �; compute job completion times and thus verify whether � certi�es that the

answer is `yes'.

In general, a decision problem is called non-deterministic polynomial if there exists

a polynomial-time algorithm that accepts an input with a polynomial length and

veri�es whether the input certi�es that the answer is `yes'.

The class of non-deterministic polynomial problems is denoted by NP: For the

polynomially solvable decision problems, denoted by P, both the `yes' and `no' an-

swers can be veri�ed in polynomial time. Hence, P is a subset of NP:

An interesting class of decision problems, called NP-complete is de�ned using

the concept of reducibility. A problem P1 reduces to problem P2 if there exists a

CHAPTER 1. INTRODUCTION 25

polynomial-time computable function g that transforms inputs for P1 into inputs for

P2 such that x certi�es that the answer is `yes' for P1 if and only if g(x) certi�es that

the answer is `yes' for P2: The notion of reducibility is transitive: if P1 reduces to P2

and P2 reduces to P3; then P1 reduces to P3:

A problem is NP-complete if the problem is in NP and every problem in NP

reduces to it. Cook [33] proves that the satis�ability problem is NP-complete. Garey

and Johnson [41] present an extensive list of NP-complete problems. From the

transitivity of reducibility it follows that a problem in NP can be shown to be NP-

complete if a NP-complete problem reduces to it.

As we have discussed above, inputs are usually encoded in binary notation. How-

ever, one may also consider a unary notation, wherein, e.g., the integer 5 is represented

as (11111): In the partition problem, a set A of k integers a1; :::; ak; is given and the

question is whether there exists a B � A such that
P

al 2 B
al =

P
al2A

al=2: This

problem is NP-complete under a binary encoding. On the other hand, it can be

solved by a dynamic programming recursion in O(k
P

l al) time, which is polynomial

under a unary encoding. An algorithm which is polynomial under a unary coding

is called a pseudo-polynomial algorithm. In the 3-partition problem a set A of 3k

integers a1; :::; a3k; is given and the question is whether there exists a partition of A

into k 3-element sets B1; :::;Bk such that
P

al 2 Bk̂

al =
P

al 2 A
al=k for k̂ = 1; 2; :::; k:

The 3-partition problem is NP-complete even under a unary coding and is therefore

CHAPTER 1. INTRODUCTION 26

called strongly NP-complete.

The terms NP-complete and strongly NP-complete are used for decision prob-

lems. An optimization problem is (strongly) NP-hard if its decision problem is

(strongly) NP-complete.

One of our goals is to classify the problems into NP-hard and polynomially solv-

able cases. NP-hardness of a problem has been accepted as a justi�cation for using (i)

polynomial-time algorithms that produce near-optimal solutions, and (ii) exponential-

time algorithms that produce exact solutions.

1.6 Hierarchy of Scheduling Objectives

There exist some important elementary reductions (Graham et al. [51]) between

scheduling problems. These reductions are shown in Figure 1.2 where �! �
0 implies

that the decision problem with objective � reduces to the decision problem with

objective �0.

Let I1 be an instance of the scheduling problem with weight wj and due date dj

of each job j:

Let P1 be the following decision problem: does there exist a schedule for I1 with

� � D?

Let I2 be the instance I1 with due date d0j = 0 8j:

Let I3 be the instance I1 with due date d0j = dj +D 8j:

CHAPTER 1. INTRODUCTION 27

µwjCj

L
max

µCj

µUjµTj

µwjUjµwjTj

C
max

w'j=1

D'=D

d'j=0

D'=D

d'j=0

D'=D

d'j=0

D'=D

d'j=dj+D

D'=0

w'j=1

D'=D

w'j=1

D'=D

d'j=dj+D

D'=0

Figure 1.2: Relationship among various regular objectives

Let I4 be the instance I1 with weight w0
j = 1 8j:

Problem P1 reduces to the following decision problem: does there exist a schedule

for I with �
0 � D0?; where

1. if � = Cmax; then �0 = Lmax; I = I2; D0 = D;

2. if � =
P
Cj; then �0 =

P
wjCj ; I = I4; D0 = D or �0 =

P
Tj; I = I2; D0 = D;

3. if � = Lmax; then �
0 =
P
Tj; I = I3; D0 = 0; or �0 =

P
Uj ; I = I3; D0 = 0;

CHAPTER 1. INTRODUCTION 28

4. if � =
P
wjCj; then �0 =

P
wjTj; I = I2; D0 = D;

5. if � =
P
Tj; then �0 =

P
wjTj; I = I4; D0 = D; and

6. if � =
P
Uj; then �0 =

P
wjUj; I = I4; D0 = D;

This shows the validity of all the reductions presented in Figure 1.2. Such re-

ductions are important because if � ! �
0 then: (i) if a problem with objective �0

can be solved in polynomial time, the problem with objective � can also be solved in

polynomial time; and (ii) if a problem with objective � is (strongly) NP-hard, then

the problem with objective �0 is also (strongly) NP-hard.

1.7 Preview

In Chapter 2 we present a literature survey on the theoretical development. In Chap-

ter 3 we discuss some dominance properties for regular objectives. Dominance proper-

ties narrow down the search for an optimal schedule. In the case of two machines the

dominance properties can be given a simpler interpretation. In Chapter 4 the dom-

inance properties are used to develop a common dynamic programming approach

that applies to all the �xed sequence cases except the ones with objectives
P
Uj and

P
wjUj:

In Chapter 5 we revisit problems 1F2jsijLmax and 1O2jsijLmax and improve the

algorithm's running time. We discuss a network representation which shows that

CHAPTER 1. INTRODUCTION 29

problems 1F2jsijLmax and 1O2jsijLmax can be interpreted as shortest path problems,

if the lengths of arcs and paths are de�ned in a particular way.

In Chapter 6 we show that each of the problems 1F2jsij
P
wjUj; 1O2jsij

P
wjUj;

1F2jsij
P
Uj; and 1O2jsij

P
Uj is NP-hard but solvable in pseudo-polynomial time.

We discuss two di�erent pseudo-polynomial time algorithms for each of the problems

1F2jsij
P
wjUj and 1O2jsij

P
wjUj; and report computational experience.

In Chapter 7 we consider some restricted cases of problems 1F2jsij
P
wjCj and

1O2jsij
P
wjCj : We revisit some �xed sequence cases with the objective

P
wjCj and

improve the algorithm's running time. We show that �xed sequence cases with ob-

jective Lmax and
P
wjCj can be given a similar network representation. The results

on �xed sequence cases can be used to develop an enumeration scheme. However,

there are n! sequences, which makes the enumeration unattractive for large n. We

then show that if all wj = 1; an alternative, more attractive, enumeration scheme

can be used. In Chapter 8 we consider the problem 1F2jsij
P
Cj: The complexity

status of this problem is open. For this reason, we discuss a heuristic and a lower

bounding procedure which are used in a branch and bound scheme based on the alter-

nate enumeration scheme suggested in Chapter 7. We report performance of various

implementation of the branch and bound scheme and of an integer programming

formulation.

Finally, in Chapter 9 we present conclusion and possible future extensions.

Chapter 2

Literature Survey

Deterministic scheduling is one of the classical problems of operations research. In

the last �ve decades many researchers have shown great interest in this area. The

literature is quite extensive. Some of the relevant books are: Baker [11], B la_zewicz,

Ecker, Pesch, Schmidt and W�eglarz [18], B la_zewicz, Ecker, Schmidt and W�eglarz

[19], Brucker [23], Chr�etienne, Co�man, Lenstra and Liu [28], Co�man [29], Con-

way, Maxwell and Miller [32], French [38], Muth and Thompson [88], Pinedo [93]

and Tanaev, Gordon and Shafransky [113]. Some of the recent survey articles are:

B la_zewicz [14], B la_zewicz, Domschke and Pesch [16], B la_zewicz, Dror and W�eglarz

[17], Brah, Hunsucker and Shah [22], Graham, Lawler, Lenstra and Rinnooy Kan [51],

Graves [52], Lawler [72], Lawler, Lenstra and Rinnooy Kan [75], Lawler, Lenstra, Rin-

nooy Kan and Shmoys [76] Lenstra, Rinnooy Kan and Brucker [80] and Pinson [93].

Some of the related Ph.D. dissertations are: Rinnooy Kan [99], Lenstra [79] and Van

de Velde [115].

30

CHAPTER 2. LITERATURE SURVEY 31

2.1 Single Machine Scheduling

2.1.1 The Classical Single Machine Problem

Two simple single machine optimization rules (French [38]) obtained in the early

days of deterministic scheduling are: (i) Jackson's Earliest Due Date (EDD) rule for

minimizing maximum lateness: arrange the jobs in order of non-decreasing dj; and

(ii) Smith's Weighted Shortest Processing Time rule (WSPT) for minimizing total

weighted completion time: arrange the jobs in order of non-increasing wj=tj: These

rules aroused the interest of many researchers and led them to study some other

closely related problems.

Another problem solvable by a simple algorithm is 1j jPUj . Moore and Hodgson

(Moore [86]) show that there exists a schedule in which all non-tardy jobs are arranged

according to the EDD rule and precede all the tardy jobs. The property extends to

the weighted case, 1j jPwjUj. The algorithm for the problem 1j jPUj is as follows:

add the jobs to the set of on-time jobs in order of nondecreasing due dates, and if

the addition of job j results in job j being tardy, remove the scheduled job with the

largest processing time.

If the weights are unequal, the problem 1j jPwjUj is NP-hard (Karp [66]).

However, problem 1j jPwjUj is pseudo-polynomially solvable. Lawler and Moore [77]

give an O(n
P
tj) time dynamic programming recursion, where tj is the processing

time of job j; and Sahni [104] gives an O(n
P
wj) time recursion.

CHAPTER 2. LITERATURE SURVEY 32

2.1.2 Single Machine Scheduling with Setup

There has been a lot of research work in the last 15 years in the area of single machine

scheduling problem with setups. Allahverdi et al. [5], Potts and Kovalyov [95], Potts

and Van Wassenhove [96] and Webster and Baker [121] present comprehensive surveys

on the area. Some Ph.D. dissertations on scheduling problems with setups are: Julien

[63], Landy [70], Sahney [101] and Santos [106].

The class of single machine family scheduling problems is a natural consequence of

setups. If operations require setups, it is natural to assume that there are F families

of operations, so that each operation belonging to a particular family requires a

particular setup. If an operation belongs to a previously-processed operation, no

new setup is needed. However, a setup time sii0 is required each time the machine

switches from processing operations in family i to processing operations in family

i
0 6= i: If the setup times are sequence-independent, sii0 = si0: Otherwise, setup times

are sequence-dependent. For job j; processing of the operation in family i requires

time tij:

Three cases of the family scheduling problem are closely related to the one-

operator problem: (i) single-operation batch availability: each product has only a

single operation and the products are delivered after the batch of operations is com-

plete; (ii) single-operation item availability: each product has only a single operation

and the products are delivered as soon as the operation is performed; and (iii) multi-

CHAPTER 2. LITERATURE SURVEY 33

operation: each product comprises operations from one or more families.

In this section, we shall discuss single-operation cases. The multi-operation cases

are discussed in the next section on one-operator scheduling problems.

Single-operation Batch Availability

A distinguishing feature of this problem is that jobs are processed in batches, and the

completion time of a job is equal to the completion time of its batch. All the jobs

in a batch belong to the same family. This problem is interesting even with a single

family. If there is a single family, a setup time s1 is needed between two successive

batches. The problem is to �nd a sequence of operations, the number of batches

and the batch sizes. This single-family batch availability problem will be denoted by

1js1; F = 1j�.

Several authors consider the problem 1js1; F = 1jPCj with identical processing

times. Santos [105] suggest a dynamic programming approach to �nd the batch

sizes for a given number of batches. Dobson, Karmakar and Rummel [35] and

Santos and Magazine [107] give a closed form solution for the optimal number of

batches and optimal batch sizes. Speci�cally, the optimal number of batches is k� =jp
1=4 + 2nt=s1 � 1=2

k
and the optimal batch sizes are n=k� + s1(k

� + 1)=2t� ks1=t

for k = 1; :::; k�: Here, t is the processing time of each job and bxc denotes the largest

integer less than or equal to a quantity x: Naddef and Santos [89] present an algorithm

for the problem that runs in O(nt=s1) time.

CHAPTER 2. LITERATURE SURVEY 34

The problem 1js1; F = 1jPCj with identical processing times has been general-

ized in two directions. First, Co�man et al. [30] address the problem 1O2js1 = s2; tij

= tij
P
Cj: They show in [30] that the problem can be solved with an O(

p
nt1t2=s1)

time algorithm.

Second, Co�man et al. [31] address the problem 1js1; F = 1jPCj with mul-

tiple products. They show in [31] that the problem has an optimal schedule in

which the jobs are sequenced in the shortest processing time order. Co�man et

al. [31] use this result to give a dynamic programming recursion for the problem,

and develop an implementation which takes O(n) time after the jobs are sorted.

Furthermore, Co�man et al. [31] show that the problem of scheduling products

with common and unique components, as introduced by Baker [12], can be mod-

elled as the problem 1js1; F = 1jPCj: (Recall that Baker's problem is equivalent

to 1F2jsi; s2 = 0;apt jPCj:) Therefore, it follows from the result of Co�man et

al. [31] that the problem 1F2jsi; s2 = 0;apt jPCj can be modelled as a problem

1js1; F = 1jPCj and solved in O(n) time after job sorting. Further relationships

between 1F2jsij� and 1js1; F = 1j� are discussed in Section 3.5.

If the jobs are not identical and the processing time of every job is a part of the

input, then the length of the input is n log t+ log s1: In such a case a running time of

O(nk) is polynomial. For example, the algorithm of Co�man et al. [31] is polynomial.

However, Shallcross [108] points out that none of the above algorithms is polynomial

CHAPTER 2. LITERATURE SURVEY 35

for the problem 1js1; F = 1jPCj with identical processing time, because the input

for this problem is only n; t and s1; hence, has the length log n + log t+ log s1: The

running time of the above algorithm is not a polynomial function of log n+log t+log s1:

Shallcross [108] presents an alternative O(log t log(nt)) time algorithm for the problem

1js1; F = 1jPCj with identical processing times.

Albers and Brucker [4] further generalize the problem of Co�man et al. [31] to

the case with arbitrary processing times and arbitrary weights. Albers and Brucker

show in [4] that the problem 1js1; F = 1jPwjCj can be solved in O(n) time if

the sequence is known and that if the sequence is unknown, the problem is strongly

NP-hard. Hochbaum and Landy [59] consider the problem 1js1; F = 1jPwjCj

with identical processing times and two weights, and present an O(
p
n log n) time

algorithm to solve it.

Webster and Baker [121] show that for the problem 1js1; F = 1jLmax there exists

an optimal schedule in which the jobs are sequenced in the Earliest Due Date (EDD)

order. Webster and Baker use this fact to give an O(n2) time dynamic programming

recursion for the problem. Hochbaum and Landy [58] show that for the decision

version of the problem 1js1; F = 1jLmax; deciding whether there exists a feasible

schedule with Lmax � l can be done in O(n) time.

For the problem 1js1; F = 1jPwjUj; Hochbaum and Landy [58] show that there

exists an optimal schedule in which all non-tardy jobs are sequenced in the Earliest

CHAPTER 2. LITERATURE SURVEY 36

Due Date (EDD) order and precede all the tardy jobs. They use this result to give

an O(n2 minfdmax;
P
tj +ns1) time dynamic programming recursion for the weighted

case and another O(n4) time dynamic programming recursion for the unweighted

case.

For the problem 1js1; F = 1jPwjUj ;Brucker and Kovalyov [24] give anO(n2
P
wj)

time dynamic programming recursion. Note that for unweighted case,
P
wj = n: This

means that for the unweighted case the algorithm of Brucker and Kovalyov [24] runs

in time O(n3); which is an improvement over the running time of the algorithm given

by Hochbaum and Landy [58].

Single-Operation Item Availability

The single machine item availability problems are denoted by 1jsii0j�: The sequence-

dependent problem is strongly NP-hard for � 2 fCmax; Lmaxg (Bruno and Downey

[25]) and � =
P
Cj (Rinnooy Kan [99, see p.85]).

The one-operator two-machine problem addressed by Sahney ([101]-[103]) can be

viewed (Ghosh [47], Gupta [53, 54]) as a single machine family scheduling problem

with two families. Sahney [102] considers the problem 1jsii0 ; F = 2jPCj, develops

some dominance properties and proposes a branch and bound procedure. Sahney

[102] shows that there exists an optimal schedule in which jobs within a family are

processed in the shortest processing time order.

Psaraftis [97] considers the problem 1jsii0; tij = tij
P
Cj in which jobs within each

CHAPTER 2. LITERATURE SURVEY 37

family are identical, and presents a dynamic programming recursion to solve it. The

approach, as he states, applies to the other objectives makespan and total weighted

completion time. Let ~n = maxfnig + 1; where ni is the number of jobs in family i:

The dynamic programming recursion of Psaraftis [97] runs in time O(F 2~nF): Since

the algorithm is exponential in F; the practical performance may be satisfactory, only

if F is small. However, as Psaraftis [97] points out, the algorithm's performance is an

improvement over that of the classical dynamic programming algorithm of Held and

Karp [57], which requires O(n̂22n̂) time, where n̂ =
P
ni:

Dobson et al. [35] consider the sequence independent problem 1jsi; tij = tij
P
Cj

in which jobs within each family are identical. They show that there exists an optimal

schedule in which all the jobs belonging to the same family are processed in a single

batch and the batches are processed in non-decreasing order of (si + tini)=ni; where

ti is the processing time of any job that belongs to family i: Hence, the problem is

solvable in time O(F log F):

Monma and Potts [85] show that for the problem 1jsii0j
P
wjCj , there exists an

optimal schedule in which jobs are arranged in order of non-increasing wj=tij within

each family i: Monma and Potts [85] present a dynamic program which solves the

problem 1jsii0j
P
wjCj in O(F 2~nF

2+2F) time and solves the sequence-independent case

1jsij
P
wjCj in O(F 2

N
2F) time.

Ahn and Hyun [3] and Gupta [54] consider the problem 1jsii0j
P
Cj : Ahn and

CHAPTER 2. LITERATURE SURVEY 38

Hyun [3] show that the algorithm of Psaraftis [97], originally proposed for the cases

with identical jobs within a family extends to the problem 1jsii0j
P
Cj without any

restriction on processing times. Their algorithm maintains the O(F 2~nF) running time

of the algorithm of Psaraftis [97]. As the running time of the algorithm is exponential

in number of families, Ahn and Hyun [3] and Gupta [54] propose heuristic methods

that may be useful if there are several families.

Gupta [53] and Potts [94] consider the problem 1jsi; F = 2jPCj: Potts [94] uses

the algorithm of Ahn and Huyn [3] and shows that the problem 1jsi; F = 2jPCj

is solvable in O(n2) time. Potts [94] also considers a weighted case, the problem

1jsi; F = 2jPwjCj; and shows that a variant of the algorithm of Monma and Potts

[85] solves this problem in O(n3) time.

Ghosh [47] generalizes the algorithm of Ahn and Hyun [3] to the weighted case

without increasing the running time. Ghosh [47] shows that the problem 1jsii0j
P
wjCj

is solvable in O(F 2~nF) time. Ghosh also considers the problem 1jsii0; tij = ti; wij =

wij
P
wjCj with identical processing times and weights within a family. (Recall that

Dobson et al. [35] show that for the problem 1jsi; tij = tij
P
Cj; there exists an

optimal schedule in which all the jobs belonging to the same family are processed

in a single batch.) Ghosh [47] states that if the setup times satisfy the triangle

inequality condition, si1i2 +si2i3 � si1i3; then the above property of the problem

1jsi; tij = tij
P
Cj extends to the problem 1jsii0; tij = ti; wij = wij

P
wjCj: Thus,

CHAPTER 2. LITERATURE SURVEY 39

each family can be viewed as a single composite job. An immediate consequence of

this is that the running time of the algorithm of Psaraftis [97] and Ahn and Hyun [3]

reduces to O(F 22F) time for the problem 1jsii0; tij = ti; wij = wij
P
wjCj; if the setup

times satisfy triangle inequality conditions. Ghosh [47] mentions that the problem

1jsii0; tij = ti; wij = wij
P
wjCj is strongly NP-hard.

Monma and Potts [85] show that for the problem 1jsii0jLmax, there exists an

optimal schedule in which jobs are arranged in the Earliest Due Date (EDD) or-

der within each family. They present a dynamic program which solves the prob-

lem 1jsii0j
P
Lmax in O(F 2~nF

2+2F) time and solves the sequence-independent case

1jsij
P
Lmax in O(F 2

N
2F) time. Ghosh and Gupta [48] show that the dynamic pro-

gramming approach of Psaraftis [97], Ahn and Hyun [3] and Ghosh [47] for various

cases of the problem 1jsii0 j
P

(wj)Cj applies to the problem 1jsii0 jLmax without any

change in the running time. Thus, Ghosh and Gupta [48] improve the running time

of the algorithm for the problem 1jsii0jLmax to O(F 2~nF) time. Bruno and Downey

[25] show that the problem 1jsijLmax is NP-hard.

Monma and Potts [85] show that for the problem 1jsii0 j
P
wjUj, there exists an

optimal schedule in which the early jobs are arranged in the Earliest Due Date

(EDD) order within each family. They present a dynamic programming approach

which solves the problem 1jsii0j
P
Uj in O(~nF+1) time and problem 1jsii0 j

P
wjUj in

O(~nF
P
wj) time. Since problem 1jsijLmax is NP-hard (Bruno and Downey [25]),

CHAPTER 2. LITERATURE SURVEY 40

problem 1jsii0j
P
Uj is also NP-hard.

2.2 One-Operator Scheduling Problems

Baker [12], Co�man et al. [30], Julien [63] and Santos [106, Chapter 4] have pioneered

developments on the problem of scheduling products that require multiple setups on

a single facility. Santos [106] considers the problem 1Fmjsi; tij = tij
P
Cj with a

batch availability assumption. An important dominance property he observes is that

a machine i is never set up as long as there is a job processed on machine i but

not on all the machines. Co�man et al. [30] consider the problem 1O2js1 = s2;

tij = tij
P
Cj: They show that the search for an optimal schedule can be narrowed

down to the schedules in which the operator switches from machine i to i
0 only if

the number of jobs processed on machine i is strictly more than the number of jobs

processed on machine i0: Julien [63] considers the problem 1Omjsi; nij � 0jPCj: He

observes that for this problem there exists an optimal schedule in which (i) job-orders

are same on all machines; (ii) a machine i is never set up as long as there is a job

processed on machine i but not on all the machines; and (iii) if nij > 0; then a switch

from machine i to i0 takes place only after processing at least one job on machine i

which is not processed on all the machines. He states that the properties extend to

any regular objective.

A huge literature exists on the one-operator, two-machine problem with
P
Cj

CHAPTER 2. LITERATURE SURVEY 41

objective. Baker [12] points out that Santos and Magazine [107] and Dobson et al.

[35] consider the problem 1js1; F = 1j� with identical jobs without considering the

fact that the demand, n of a component is derived from the demand of the �nished

products which are assembled from more than one component. To overcome this

limitation, Baker [12] formulates a problem of scheduling products with common and

unique components with the assumption of batch availability for both common and

unique components. This problem is equivalent to the problem 1F2jsi;aptjPCj:

Baker [12] shows that there exists an optimal schedule in which jobs are processed

in the shortest processing time order. Baker points to a resemblance between the

problem and the dynamic lot-sizing problem of Wagner and Whitin [118, 119]. An

immediate consequence of this observation is the existence of an O(n2) time algorithm

for the problem 1F2jsi;aptjPCj :

Baker's problem focussed the attention of many researchers:

� Co�man et al. [31] show that Baker's problem reduces to the single machine

problem 1js1; F = 1jPCj with batch availability. By so doing they improve

the running time to O(n) after job sorting.

� Aneja and Singh [7] point out that a problem with more than one common

component cannot be treated as a problem with a single common component, as

was suggested by Baker. However, they show that the problem with m0 common

components can be solved by solving m0 problems of the type 1F2jsi;aptjPCj:

CHAPTER 2. LITERATURE SURVEY 42

� Vickson et al. [117] and Sung and Park [111] consider the problem with item

availability assumption. Thus, Vickson et al. [117] and Sung and Park [111]

consider the problem 1O2jsi;aptjPCj: Vickson et al. [117] present a dynamic

programming recursion and Sung and Park [111] present a dynamic program and

a branch and bound algorithm. Interestingly, Sung and Park [111] observe that

the branch and bound algorithm performs better than the dynamic program,

although each has O(n2) running time. Gerodimos et al. [45] give another

O(n2) time algorithm for the problem 1O2jsi;aptjPCj: The algorithm of Julien

and Magazine [64], although presented in a di�erent context, also solves the

problem 1O2jsi;aptjPCj in O(n2) time.

� Ding [34] relaxes the assumption of agreeable processing times and develops

some schedule improvement rules and a heuristic method.

� Rana and Singh [98] consider the problem with the multiple objectives of total

completion time, makespan and another objective de�ned in their paper.

Gerodimos et al. [44, 45, 46] consider various cases of problems 1Omjsi; nij �

0jLmax; 1Omjsi; nij � 0jPCj and 1Omjsi; nij � 0jPwjUj . The problem 1Omjsi; nij �

0jLmax is NP-hard but is solvable in O(m2
n
m) time using the algorithm of Ghosh

and Gupta [48] for the problem 1jsii0jLmax: A similar dynamic program solves the

problem 1Omjsi; nij � 0;apt jPCj in O(nm) time. The special case of two machines

CHAPTER 2. LITERATURE SURVEY 43

can be solved in O(n2) time if the objective is Lmax or if the processing times are

agreeable and the objective is
P
Cj:

The problem 1Omjsi; nij � 0jPwjUj is NP-hard even when all wj = 1 but is

solvable in O(ndmmax) time. The special case of two machines, identical processing

time for the common components and wj = 1 is polynomially solvable.

2.3 Shop Problems

2.3.1 Flow Shop

One of the �rst developments in deterministic scheduling is Johnson's algorithm

(French [38]), which solves the problem F2j jCmax with a simple rule: �rst arrange

the jobs with t1j � t2 in order of non-decreasing t1j; and then arrange the remaining

jobs in order of non-increasing t2j: Conway et al. [32] observe that for Fmj jCmax

there exists an optimal schedule with the same processing order on machines 1 and

2 and the same processing order on machines m and (m � 1): This implies that for

F3j jCmax there exists an optimal schedule in which all the jobs are processed in the

same order on all machines. Still, the problem F3j jCmax is strongly NP-hard (Garey

et al. [42]). A number of two-machine ow shop problems are also strongly NP-hard.

These include F2j jLmax (Lenstra et al. [80]) and F2j jPCj (Garey et al. [42]).

CHAPTER 2. LITERATURE SURVEY 44

2.3.2 Open Shop

Problem O2j jCmax admits a polynomial-time algorithm (Gonzalez and Sahni [50]).

The problem is solvable by the longest alternate processing time (LAPT) rule: when-

ever a machine is freed select the job waiting for processing with the longest processing

time on the other machine (Pinedo [93]). However, the problem O3j jCmax isNP-hard

(Gonzalez and Sahni [50]) and a number of open shop problems are strongly NP-

hard. These include O2j jLmax (Lawler et al. [73, 74]) and O2j jPCj (Achugbue and

Chin [1]).

2.4 Resource Constrained Scheduling

In a resource constrained scheduling problem, an operation may require some ad-

ditional resources besides a machine. All resources required by the operation are

allocated to it all the time during its execution. At no time may total resource

requirements exceed resource availabilities.

B la_zewicz et al. [21] classify the resource constrained problems using the �j�j

notation. The resource constrained environment is speci�ed by an entry res�1�2�3

in the � �eld. If �1 is a positive integer, then the number of additional resources is

�1: For example, �1 = 2 if workers and tools are additional resources. If �1 = \:";

the number of additional resources is unspeci�ed and is a part of the input. If �2 is

a positive integer, then the total amount of each resource available at any given time

CHAPTER 2. LITERATURE SURVEY 45

is a constant and equal to �2: For example, �2 = 3 if 3 workers and 3 pieces of tools

are available in addition to machines at any given time. If �2 = \:"; the resource

availability is unspeci�ed and is a part of the input. If �3 is a positive integer, then

each operation requires at most �3 unit of any resource at any given time. If �3 = \:";

the maximum resource requirement is unspeci�ed and is a part of the input.

The closest notation for 1Omjsij and 1Fmjsij is then Omjres111; sij and

Fmjres111; sij respectively. In each

case, the one-operator scheduling problem has an additional piece of information

that each operation requires at least one unit of additional resource, i.e., the operator.

Results for some ow shop and open shop problems with one additional resource are

shown in Table 2.1. For a comprehensive survey on resource constrained scheduling,

we refer the reader to B la_zewicz, Cellary, S lowi�nski and W�eglarz [15] and B la_zewicz,

Lenstra and Rinnooy Kan [21] and the recent books B la_zewicz, Ecker, Pesch, Schmidt

and W�eglarz [18] and B la_zewicz, Ecker, Schmidt and W�eglarz [19].

2.5 Reentrant Flow Shop

In the production of Very Large Scale Integrated (VLSI) circuits or wafer fabrication

there may be 250 or more di�erent stages and 100 workstations (Lane and Sidney

[71]). Certain workstations, called hubs (Lane and Sidney [71], Kubiak et al. [69]) may

be revisited at a number of stages. Kubiak et al. [69] present two other examples

CHAPTER 2. LITERATURE SURVEY 46

Problem Complexity Reference

F2jres111jCmax Strongly NP-hard B la_zewicz et al. [21]

F2jres111; tij = 1jCmax O(n) B la_zewicz et al. [21]

F2jres1::; tij = 1jCmax O(n log n) R�ock [100]

F3jres111; tij = 1jCmax O(n) S�ural et al. [112]

F3jres1::; tij = 1jCmax Strongly NP-hard R�ock [100]

Fmjres1:1; tij = 1jCmax O(n2
m+1

) B la_zewicz et al. [20]

O2jres111jCmax O(n) Kubiak [68]y
O2jres1::jCmax O(n3) Jurisch and Kubiak [65]

O3jres1::; tij = 1jCmax Strongly NP-hard B la_zewicz et al. [15]

yPh.D. thesis of Kubiak is in Polish. Jurisch and Kubiak [65] cite the result on O2jres111jCmax.

Table 2.1: Some results on resource constrained scheduling

of such revisits. First, during a Printed Circuit Board (PCB) assembly the same

machine installs surface-mounted devices to the PCB upperside and lowerside at two

di�erent stages. Second, in a painting shop parts have to visit the painting and

baking divisions alternately for di�erent coats of paint. Lev and Adiri [81] imply

that during replacement of a damaged internal part of a complex piece of equipment,

the same resource may be required once for removing a part and again for restoring

the part. Morton and Pentico [87] present a case study on a nuclear fuel tube shop

which produces zircalloy tubes of several diameters, sizes, and types. Each tube goes

through a single annealing furnace at three di�erent stages.

In each of the above examples jobs visit a machine more than once. Although none

of these examples include setup times, theoretical developments on these problems

shed some light on the extension of one-operator problem to multi-operator cases

CHAPTER 2. LITERATURE SURVEY 47

which is observed if machines are arranged in a U-turn layout and operators are

assigned to machines both in the beginning of the line and in the end of the line

(Miltenburg [84], Sparling [109], Urban [114]).

Consider a production system with two operators and three machines. Suppose

that every job requires exactly one operation on each machine, and the jobs are pro-

cessed �rst on machine 1, then on machine 2, and �nally on machine 3. If one operator

is assigned to machines 1 and 3 and the other operator is assigned to machine 2, the

problem is NP-hard for the makespan objective (Lane and Sidney [71], Wang et al.

[120], Lev and Adiri [81]). A special case of the problem with t1j = 0 is equivalent

to the two-machine ow shop problem, which is strongly NP-hard for total comple-

tion time objective (Garey et al. [42]) and maximum lateness objective (Lenstra et al.

[80]). This means that the two-operator, three-machine problem is strongly NP-hard

for total completion time objective and maximum lateness objective.

If one operator is assigned to machines 1 and 2 and the other operator is assigned

to machine 3, then for any regular objective, the problem without any setup times

reduces to a two-machine ow shop problem. The reason for this is that in the

two-operator, three-machine problem there exists an optimal schedule in which the

operator assigned to the �rst two machines processes every job contiguously on both

machines. However, a positive setup time on machine 1 makes the problem NP-hard

even for the makespan objective (Cheng and Wang [27]).

Chapter 3

Regular Objectives

In this chapter we shall discuss some dominance properties. Santos [106], Co�man et

al. [30] and Julien [63] observe some dominance properties for problems 1Fmjsi; tij =

tij
P
Cj; 1O2js1 = s2; tij = tij

P
Cj and 1Omjsi; nij � 0jPCj; respectively. In this

chapter, we shall show that these properties extend to the cases of 1Omjsii0 ; nij � 0j�

and 1Fmjsii0; nij � 0j�: We shall discuss the case of two machines separately. In the

case of two machines, the properties can be given a simpler interpretation.

In the next chapter, the dominance properties will be used to develop a common

dynamic programming scheme that can be used for both the open shop and ow

shop cases and makespan, maximum lateness and total (weighted) completion time

objectives.

48

CHAPTER 3. REGULAR OBJECTIVES 49

3.1 Preliminary

A schedule is a time table for performing tasks such as operations and setups, and

for utilizing resources such as operators and machines. A schedule can be represented

by a Gantt-chart (see, e.g., French [38]). In a Gantt-chart, each operation and setup

is represented by a block on the time-axis that represents a machine or operator, the

length of a block being proportional to the processing time of the operation or setup

that it represents.

The k-th operation of job j on machine i is denoted by (i; j; k): If every job

has exactly one operation on each machine, (i; j) denotes the operation of job j on

machine i: Setup on machine i is denoted by Si: Machine i is represented by Mi.

Example 3.1 Consider an instance of 1O2jsij� with s1 = 1; s2 = 1 and the following

processing times:

j 1 2 3
t1j 1 1 2
t2j 1 2 1

Consider a schedule � in which the operator �rst processes job 2 on machine 1,

then job 1 on both machines, then job 3 on machine 1, and then jobs 2 and 3 on

machine 2. The schedule is shown in the Gantt-chart in Figure 3.1.

An idle period of the operator is unnecessary if some operation or setup can be

started earlier without altering the sequence. Such an adjustment of the start time is

equivalent to moving the block that represents the operation or setup to the left in the

CHAPTER 3. REGULAR OBJECTIVES 50

M1

M2

Operator S1 S2 S1 S2

1 2 3 4 5 6 8 9 11 12

S1 (1,2) S1 (1,3)

S2 S2 (2,2)

(1,1)

(2,1) (2,3)

(2,3)(1,2) (1,1) (2,1) (1,3) (2,2)

Figure 3.1: A Gantt Chart

Gantt-chart. This type of adjustment is called a left-shift. A schedule is called semi-

active if no left-shift can be made. For any regular objective, the set of semi-active

schedules dominates the set of all schedules; see e.g., Baker [11] or French [38]. We

shall thus limit our search for an optimal schedule to the set of semi-active schedules.

Given a sequence of operations, we can generate the setup requirements and the

semi-active schedule that corresponds to the sequence. Thus, we can get start and

completion times of every operation and setup. Since we limit our discussion to the set

of semi-active schedules, a sequence of operations is su�cient to describe a schedule.

For example, the schedule shown in Figure 3.1 is (1; 2); (1; 1); (2; 1); (1; 3); (2; 2);

(2; 3):

We call a machine i the current machine at time t if the operator completes the

CHAPTER 3. REGULAR OBJECTIVES 51

setup operation of machine i at some time t0 � t and does not start a setup operation

of any other machine between times t0 and t: For example, between times 1 and 3,

machine 1 is the current machine in the schedule shown in Figure 3.1.

The following rescheduling operations can be carried out without any additional

setups: (i) interchanging two operations on the same machine. (For example, inter-

change jobs 1 and 2 on machine 1.) The resulting schedule is shown in Figure 3.2(a);

and (ii) moving an operation to immediately before or after another operation on a

same machine. (For example, move operation (1,2) to immediately before operation

(1,3).) The resulting schedule is shown in Figure 3.2(b)

Moving an operation, however, may produce a schedule with some contiguous

setups. For example, consider the schedule �0 obtained from � by moving operation

(1,3) to immediately after operation (1,1). Schedule �
0 is shown in Figure 3.2(c).

The second setup of machine 1 and the second setup of machine 2 are contiguous in

schedule �0: If two setups are contiguous, we can remove the �rst one or both. If the

setup times are sequence independent as in Example 3.1, or if the setup times are

sequence dependent and satisfy the triangle inequality condition, si1i2 +si2i3 � si1i3;

then such removals do not increase any completion time.

A job j is in the inventory of machine i at time t, if job j is processed on machine

i on or before time t and has not yet left the shop oor. Thus, the de�nition of

inventory is similar to the de�nition of echelon inventory in the multi-stage inventory

CHAPTER 3. REGULAR OBJECTIVES 52

perator S1 (2,3)(1,2) (1,1) (2,1)S2 S1 S2 (2,2)

1 2 3 5 6 8 9 11 12

Operator S1 (2,3)(1,1) (1,2) (2,1)S2 S1 (1,3) S2 (2,2)

1 2 3 4 5 6 8 9 11 12

Operator S1 (2,3)(1,1) S2 S1(2,1) (1,2) (1,3) S2 (2,2)

1 2 3 4 5 6 8 9 11 12

(a)

(b)

(c)

(1,3)

7

Figure 3.2: (a) Interchange (1,1) and (1,2); (b) move (1,2) before (1,3); and (c) move
(1,3) before (1,1).

control analysis. For example, consider the schedule shown in Figure 3.2(a). Jobs 1

and 2 are processed on machine 1 before time 3. Until that time none of these two

jobs are processed on machine 2. Hence, both jobs 1 and 2 are in the in the inventory

of machine 1 at time 3. At time 5 job 1 is completed on machine 2 and leaves the

shop oor. Hence, the inventory of machine 1 contains only job 2 at time 5. In this

way, whenever a job is completed on a machine, it is added to the inventory of the

machine, and whenever a job leaves the shop oor, it is removed from the inventory

of all machines.

Consider two schedules � and �
0
: For any i and k let O and O0 be the set of

operations completed before the k-th setup of machine i in schedules � and �0 respec-

CHAPTER 3. REGULAR OBJECTIVES 53

tively. Let Ii;k(�) and Ii;k(�
0) be the number of jobs in the inventory of machine i at

the time of the k-th setup of machine i in schedules � and �
0 respectively. Although

inventory, I depends on time, t we do not use an argument t because t is de�ned by

the quantities i; k and � or �0: Observe the following:

1. If O0= O; then Ii;k(�
0) = Ii;k(�):

2. If a job j is processed on some machine i0 6= i; then the inventory of machine i

may decrease by 1 (if job j leaves the shop oor) or remain unchanged (if job

j does not leave the shop oor). Hence, if O0= O [f(i0; j)g for some i0 6= i and

a job j; then Ii;k(�) � 1 � Ii;k(�
0) � Ii;k(�): More precisely, if O0 contains all

operations of job j; then Ii;k(�
0) = Ii;k(�)� 1; otherwise Ii;k(�

0) = Ii;k(�):

3. If a job j is processed on machine i; then the inventory of machine i may

increase by 1 (if job j does not leave the shop oor) or remain unchanged (if

job j leaves the shop oor). Hence, if O0= O [f(i; j)g for some job j; then

Ii;k(�) � Ii;k(�
0) � Ii;k(�) + 1: More precisely, if O0 contains all operations of

job j; then Ii;k(�
0) = Ii;k(�); otherwise Ii;k(�

0) = Ii;k(�) + 1:

3.2 The Case of m Machines

First, let us show that if a job has more than one operation on the same machine, it

is better to not split the operations.

CHAPTER 3. REGULAR OBJECTIVES 54

T(i,j,k1)

T

t(σ)

t(σ')

(a)

(b)

perator

perator

(i,j,k2)

(i,j,k2)(i,j,k1)

Figure 3.3: (a) Two operations of a same job on a same machine are not contiguous;
and (b) a modi�ed schedule.

Theorem 3.1 For both problems 1Omjsii0 ; nij � 0j� and 1Fmjsii0; nij � 0j�, there

exists an optimal schedule in which all the operations of a job on the same machine

are processed contiguously in one setup on that machine.

Proof: Given any schedule that violates the condition of the Theorem, we will show

that we can repeatedly apply a rescheduling procedure (see Figure 3.3) to obtain a

schedule which is not worse than the original one but satis�es the condition stated in

the Theorem.

To see this, consider any schedule � which violates the result stated in the The-

orem. Let t(�) be the maximum time when a non-empty set T of operations and

setups is completed, such that: T starts immediately after operation (i; j; k1); T does

CHAPTER 3. REGULAR OBJECTIVES 55

not contain any operation of the type (i; j; k); and T is completed immediately before

operation (i; j; k2): Remove operation (i; j; k1): Schedule every operation and setup

in T to start ti;j;k1time units earlier. Schedule the operation (i; j; k1) to start at time

t(�) �ti;j;k1: Call the modi�ed schedule �0: Note that t(�0) � t(�) �ti;j;k1: In schedule

�
0
; (i; j; k1) is the only operation whose completion time is greater than in �: How-

ever, the completion time of job j (and all other job) is no greater in �
0 than in �

because completion of job j occurs after the completion of operation (i; j; k2): Thus,

the objective function value does not increase when � is changed to �
0
: Now, if �0

violates the Theorem, set � �
0 and repeat the procedure.

Observe that the set of operations processed after t(�0) in �
0 comprises all the

operations processed after t(�) in � together with some other operations that include

at least operation (i; j; k1): Hence, the number of operations processed after t(�0) in

�
0 is at least one more than the number of operations processed after t(�) in �. This

means that we need to apply the above rescheduling at most
PP

nij times to obtain

a schedule that satis�es the result stated in the Theorem.

An important implication of Theorem 3.1 is that the conditions nij � 0 and

nij � 1 are equivalent to 0 � nij � 1 and nij = 1; respectively. Henceforth, we shall

consider only the cases with 0 � nij � 1 and nij = 1:

In this thesis, our default assumption is that every job has exactly one operation

on each machine. Hence, nij = 1: However, some of the results in Chapter 3 will be

CHAPTER 3. REGULAR OBJECTIVES 56

developed using a relaxed assumption 0 � nij � 1, which means that some job may

not have any operation on some machine at all.

Results similar to the above have been observed by Julien and Magazine [64] and

Gupta et al. [55]. Julien and Magazine consider the case of an open shop environment,

sequence-independent setup times and total completion time objective. Gupta et al.

consider the case of an open shop environment, sequence-independent setup times,

and two objectives one of which is makespan.

Theorem 3.2 (a) For problem 1Omjsii0 ; nij � 0j�, there exists an optimal schedule

in which all the operations of a job on machines fi0 : sii0 = 0 8ig are processed

contiguously. (b) For problem 1Fmjsii0; nij � 0j�, there exists an optimal schedule

in which all the operations of a job on contiguous machines i; i +1; :::; i0 such that

si(i+1) = s(i+1)(i+2) = ::: = s(i0�1)i0 = 0; are processed contiguously.

Proof: Consider part (a). Let M =fi0 : sii0 = 0 8ig: Consider any schedule � which

violates the stated result. Let t(�) be the maximum time when a non-empty set T of

operations and setups is completed, such that: T starts immediately after operation

(i1; j); T is completed immediately before operation (i2; j) and T does not contain

any operation (i3; j); where i1 2 M; i2 2 M; and i3 2 M: Remove operation (i1; j):

Schedule every operation and setup in T to start ti1;j time units earlier. Schedule the

operation (i1; j) to start at time t(�) �ti1;j: Call the modi�ed schedule �0: Observe

that t(�0) � t(�) �ti1;j: Using arguments similar to the ones used in the proof of

CHAPTER 3. REGULAR OBJECTIVES 57

T

T

t(σ)

t(σ')

(a)

(b)

perator

perator

(i1,j) (i2,j)

(i1,j) (i2,j)

Figure 3.4: (a) Two operations of a same job on two machines with zero setup times
are not contiguous; and (b) a modi�ed schedule.

Theorem 3.1, we have �(�0) � �(�): If �0 does not satisfy the result stated in the

Theorem, set � �
0 and repeat the procedure.

Figure 3.4 illustrates an iteration. Using arguments similar to the ones used in

the proof of Theorem 3.1 we can show that we need to apply the above rescheduling

at most
PP

nij times to obtain a schedule that satis�es the condition stated in part

(a). This completes the proof of part (a). Proof of part (b) is similar.

For the open shop case we shall henceforth assume that there is at most one

machine which does not require any setup time, or for which setup time is imbedded

in the processing time. If more than one machine possesses such a property, we can

get an equivalent problem by replacing all such machines with a single machine. More

CHAPTER 3. REGULAR OBJECTIVES 58

precisely, if jMj > 1; where M =fi0 : sii0 = 0 8ig; we can get an equivalent problem

in which a new machine, i (with si00i = 0 8i00 and tij =
P

i02M ti0j) replaces all the

machines i0 2 M: Similarly, for the ow shop case we shall assume that for three

machines i; (i +1); (i +2); si(i+1) = 0) s(i+1)(i+2) > 0 and s(i+1)(i+2) = 0) si(i+1)

> 0:

Intuitively, it is better to maintain the same job-order on all machines. In the

following, we shall prove that the statement is true for any regular objective. A

similar result has been obtained by Santos [106]. Note that for some non-regular

objectives, it may be better to have di�erent job-orders on di�erent machines; see

Gupta et al. [55] and Rana and Singh [98].

Theorem 3.3 For both problems 1Omjsii0 ; nij � 0j� and 1Fmjsii0; nij � 0j�, there

exists an optimal schedule in which job-orders are the same on all machines.

Proof: Consider any schedule � which violates the stated result. By relabelling, if

necessary, we may assume that if j < j
0
; then the last operation of job j is scheduled

before the last operation of job j 0:We shall repeatedly apply the following rescheduling

procedure (see Figure 3.5) to obtain a schedule which is not worse than the original

schedule but satis�es the result stated in the Theorem. Throughout, we maintain the

property that if j < j
0
; then job j is completed before job j

0
:

Let t(�) be the maximum time when a set T of operations and setups is com-

pleted, such that: T starts immediately after operation (i; j1) and T is completed

CHAPTER 3. REGULAR OBJECTIVES 59

T

T

t(σ)

t(σ')

(a)

(b)

perator

perator

(i,j2)(i,j1)

(i,j1)(i,j2)

Figure 3.5: (a) Two jobs on the same machine are not in the order of their completion;
and (b) a modi�ed schedule.

immediately before operation (i; j2); for some j1 > j2: For any job j; let Cj and Ci;j

be the completion times of job j and operation (i; j); respectively, in schedule �: Re-

move operation (i; j1): Schedule every operation and setup in T [f(i; j2)g to start

ti;j1 time units earlier. Schedule the operation (i; j1) to start at time t(�) +ti;j2 �ti;j1:

Call the modi�ed schedule �0: Let C 0
j be the completion time of job j in schedule

�
0
: Observe that t(�0) � t(�) �ti;j1: Using arguments similar to the ones used in the

proof of Theorem 3.1, we have �(�0) � �(�): If �0 does not satisfy the result stated in

the Theorem, set � �
0 and repeat the procedure.

De�ne J1 = f|̂ : last operation of job |̂ precedes (i; j1) in schedule �g; J2 = f|̂ :

last operation job |̂ is in T [f(i; j2)gg and J3 = f|̂ : last operation of job |̂ follows

CHAPTER 3. REGULAR OBJECTIVES 60

(i; j2) in schedule �g: Since j1 > j2; there must be at least one operation of j1 that

follows (i; j2) in schedule �: Hence, j1 2 J3: The relative order in which jobs in Jl are

completed is the same in both � and �
0 for each l = 1; 2; 3: Job j 2 Jl is completed

before job j 0 2 Jl+1 in both � and �0 for each l = 1; 2: Hence, the order in which jobs

are completed is the same in both � and �
0
: Hence, if j < j

0) Cj � Cj0; then j <

j
0) C

0
j � C

0
j0:

Using arguments similar to the ones used in the proof of Theorem 3.1 we can

show that we need to apply the above rescheduling at most
PP

nij times to obtain

a schedule that satis�es the result stated in the Theorem.

In this thesis we assume that jobs are available at time zero and remain available

during the entire scheduling period. We shall now develop a result which shows that

it is better to avoid setting up a machine with positive inventory. Similar results are

obtained by Santos [106] and Julien [63].

Theorem 3.4 For both problems 1Omjsii0 ; nij � 0j� and 1Fmjsij� there exist optimal

schedules in which: (i) job-orders are same on all machines; and (ii) a machine with

positive inventory is not set up.

Proof: It follows from Theorem 3.3 that there exists an optimal schedule which

satis�es result (i) stated in the Theorem. Consider any schedule � which satis�es

result (i) but not result (ii). Let t(�) be the maximum time when a machine with

positive inventory is set up. Then, there exist i; j and k; such that: the k-th setup

CHAPTER 3. REGULAR OBJECTIVES 61

T1

T1

t(σ)

t(σ')

(a)

(b)

Operator

Operator (i,j)Si

(i,j) Si (i',j)

(i',j)

Figure 3.6: (a) A machine with positive inventory is set up; and (b) modi�cation in

case 1.

of machine i starts at time t(�); job j is the last processed job on machine i before

the k-th setup of machine i; and job j is completed on all machines some time after

the k-th setup of machine i: Let s be the time required by the k-th setup of machine

i: The completion time Cj of job j satis�es Cj � t(�) +s:

Case 1: Suppose that (i) the machine environment is a ow shop and operation

(i + 1; j) is processed after t(�); or (ii) the machine environment is an open shop.

Let T1 be the set of operations and setups that is processed after operation (i; j) and

before the k-th setup of machine i: Remove operation (i; j): Schedule every operation

and setup in T1 and the k-th setup of machine i to start ti;j time units earlier.

Schedule the operation (i; j) to start at time t(�) +s �ti;j: Figure 3.6 illustrates the

case.

CHAPTER 3. REGULAR OBJECTIVES 62

Case 2: Suppose that the machine environment is a ow shop and operation

(i+ 1; j) is processed before t(�): Operation (i; j + 1) is processed immediately after

the k-th setup of machine i: Operation (i; j + 1) 2 O; where batch O of operations

immediately follows the k-th setup of machine i: Let T2 be the set of operations and

setups that is processed after O and before operation (i+1; j+1): Set T2 is non-empty

because it follows from the choice of t(�) that job j is completed before (i+ 1; j + 1).

Furthermore, set T2 starts with a setup. Let t be the time required to process all

operations and setups in T2: Remove all operations and setups in T2: Schedule every

operation and setup in O and the k-th setup of machine i to start t time units later.

Schedule the �rst setup in T2 at time t(�) and process all the operations and setups

in T2 in the sequence in which they appear in �: Figure 3.7 illustrates the case.

Call the modi�ed schedule �0: Using arguments similar to the ones used in the

proof of Theorem 3.1, we have �(�0) � �(�): If �0 does not satisfy the result stated in

the Theorem, set � �
0 and repeat the procedure.

The order in which jobs are completed is the same in both � and �
0
: Sets T1

and T2 do not contain any operation on machine i: Hence, the job-order on machine

i is the same in both � and �
0
: On any other machine, i0 6= i; the relative order of

operations and setups is the same in both � and �0: This means that as the job-orders

on all machines are same in �; job-orders on all machines are same in �
0
:

CHAPTER 3. REGULAR OBJECTIVES 63

t(σ)

t(σ')

(a)

(b)

Operator

Operator

T2 Si+1 (i+1,j+1)(i,j) Si Oo'

T2 Si+1 (i+1,j+1)(i,j) Si Oo'

Figure 3.7: (a) A machine with positive inventory is set up; and (b) modi�cation in

case 2.

De�ne operation o
0 as follows: if case 1 applies, o0 = operation (i; j); if case 2

applies, o0 = the operation which is processed in � immediately before the k-th setup

of machine i. Observe that the set of operations processed after t(�0) in �0 comprises

all the operations processed after t(�) in � together with some other operations that

include at least operation o0: Hence, we need to apply the above rescheduling at most

PP
nij times to obtain a schedule that satis�es the result stated in the Theorem.

Remark 3.1 For any � 2 fLmax,
P
Cj;
P
wjCj;

P
Uj;
P
wjUjg the result (ii) in

Theorem 3.4 is false if the machine environment is a ow shop, m � 3 and the setup

times are sequence-dependent. This is shown in Example 3.2 below.

Example 3.2 For any �0 2 fLmax,
P
Cj ;
P
wjCj;

P
Uj ;
P
wjUjg consider an in-

stance of 1F3jsii0 j�0 with s12 = s21 = s23 = s32 = 25; s13 = 1; s31 = 50 and the

CHAPTER 3. REGULAR OBJECTIVES 64

following processing times, due dates and weights:

j 1 2 3

t1j 1 1 25

t2j 1 80 80

t3j 1 1 25

dj 54 211 366

wj 1 1 1

Observe that the setup times satisfy the triangle inequality condition. It follows

from Theorem 3.3 that we can restrict the search for an optimal schedule to the

schedules in which job-orders are same on all machines. The processing times, due

dates and weights are all agreeable in the sense that j < j
0) tij � tij0 8i; dj � dj0

and wj � wj0 : We consider the schedules in which jobs are processed in the ascending

order of their indices.

De�ne schedule �
� = (1; 1); (1; 2); (2; 1); (3; 1); (2; 2); (1; 3); (3; 2); (2; 3); (3; 3): In

schedule ��; machine 1 is set up to process (1; 3) when the machine has a positive

inventory containing job 2. Hence, �� violates condition (ii) of Theorem 3.4. Schedules

in which a machine with positive inventory is not set up are as follows:

�1 = (1; 1); (2; 1); (3; 1); (1; 2); (2; 2); (3; 2); (1; 3); (2; 3); (3; 3)

�2 = (1; 1); (2; 1); (3; 1); (1; 2); (1; 3); (2; 2); (3; 2); (2; 3); (3; 3)

�3 = (1; 1); (2; 1); (3; 1); (1; 2); (1; 3); (2; 2); (2; 3); (3; 2); (3; 3)

�4 = (1; 1); (1; 2); (2; 1); (3; 1); (2; 2); (3; 2); (1; 3); (2; 3); (3; 3)

�5 = (1; 1); (1; 2); (2; 1); (2; 2); (3; 1); (3; 2); (1; 3); (2; 3); (3; 3)

�6 = (1; 1); (1; 2); (1; 3); (2; 1); (3; 1); (2; 2); (3; 2); (2; 3); (3; 3)

CHAPTER 3. REGULAR OBJECTIVES 65

�7 = (1; 1); (1; 2); (1; 3); (2; 1); (3; 1); (2; 2); (2; 3); (3; 2); (3; 3)

�8 = (1; 1); (1; 2); (1; 3); (2; 1); (2; 2); (3; 1); (3; 2); (3; 2); (3; 3)

�9 = (1; 1); (1; 2); (1; 3); (2; 1); (2; 2); (2; 3); (3; 1); (3; 2); (3; 3)

In Table 3.1, we show the completion times of various jobs under various schedules.

It can be observed from the completion times that �� is better than each schedule

�1; :::; �9 with respect to any of Lmax;
P

(wj)Cj; and
P

(wj)Uj: Hence, condition (ii)

of Theorem 3.4 is false if the machine environment is a ow shop, m � 3 and the

setup times are sequence-dependent.

Schedule C1 C2 C3

P
(wj)Cj Lmax

P
(wj)Uj

�
� 54 211 366 631 0 0

�1 53 235 465 753 99 2

�2 53 260 415 728 49 2

�3 53 340 365 758 129 1

�4 54 185 415 654 49 1

�5 134 135 365 634 80 1

�6 79 210 365 654 25 1

�7 79 290 315 684 79 2

�8 159 160 315 634 105 1

�9 239 240 265 744 185 2

Table 3.1: Performance of some schedules

Remark 3.2 The result (ii) in Theorem 3.4 is false if not all jobs are available at

time zero. For example, if a very important job arrives at the shop oor so that the

operator must complete the job immediately, it may make sense to incur as many

setups as necessary to complete the job regardless of the inventory situation.

CHAPTER 3. REGULAR OBJECTIVES 66

Remark 3.3 For 1Fmjsij�, the condition that a machine with positive inventory is

not set up implies that every switch from machine m is to the least indexed machine

with no inventory and the switch takes place only after processing all jobs on machine

m that are processed on all the other machines.

Proof: If machine m is left before processing at least one job j which is processed

on all the other machines, then the operator must set up a machine which has a

positive inventory including at least job j: After leaving machine m; a machine i with

no inventory is to be set up. The shop ow condition implies that machine i must

have the least index among the ones with no inventory.

As we have discussed in Section 2.2, Co�man et al. [30] show that for a problem

equivalent to 1O2js1 = s2; tij = tij
P
Cj the search for an optimal schedule can

be narrowed down to the schedules in which the operator switches from machine i

to i
0 only if the number of jobs processed on machine i is strictly more than the

number of jobs processed on machine i0: Julien [63] extends the result to the case of

m machines with m � 2. In [63] he observes that for the open shop case, if every job

has at least one operation on each machine, then it is su�cient to consider only those

schedules in which every batch of operations, except the last one, creates inventory.

In the following, we shall show that the result can be further extended to the open

sequence-dependent cases and ow shop sequence-independent cases. Our proof is

di�erent from the proof given by Julien [63].

CHAPTER 3. REGULAR OBJECTIVES 67

A similar result holds even if we assume that some job may not have any operation

on some machine at all. In such a case, if the operator switches from machine i1 to

i2 at time t; and if the �rst job completed after time t is job j
�
; then it is better to

complete operation (i1; j
�) before switching, if operation (i1; j

�) exists and if the shop

ow condition is not violated by processing operation (i1; j
�) before switching. We

omit the proof of this statement here.

Theorem 3.5 For both problems 1Omjsii0 j� and 1Fmjsij� there exists an optimal

schedule in which (i) job-orders are the same on all machines; (ii) a machine with

positive inventory is not set up; and (iii) every switch is made after building a positive

inventory unless both the following conditions hold: (a) the machine environment is

a ow shop; and (b) the switch is from machine m:

Proof: It follows from Theorem 3.4 that there exists an optimal schedule which

satis�es results (i) and (ii) stated in the Theorem. Consider any schedule � which

satis�es results (i) and (ii) but not result (iii). By relabelling, if necessary, we may

assume that the jobs are processed in the order 1, 2, ..., n on all machines. Since

result (iii) does not hold, there exist i1; i2 and j� such that a switch from machine i1

to i2 is immediately followed by operation (i2; j
�) and such a switch takes place when

operation (i1; j
�) is unprocessed; we have 1 � i1 � m in the case of an open shop and

1 � i1 < m in the case of a ow shop.

CHAPTER 3. REGULAR OBJECTIVES 68

Let t(�) be the minimum time when the operator leaves machine i1; starts a

setup of machine i2 and then immediately processes job j
� on machine i2 such that

operation (i1; j
�) is not processed before t(�): Result (i) implies that each operation

(i2; j); j < j
� is processed sometime before t(�) and result (ii) implies that for each

job j < j
�
; completion time of job j; Cj � t(�). As operation (i1; j

�) is not processed

before t(�), no job can be completed after t(�) and before the next setup of machine

i1 and processing of operation (i1; j
�). Let t0(�) be the time when operation (i1; j

�)

starts. A setup, say k
�-th setup of machine i1; is completed at time t0(�) and for

each job j � j
�
; completion time of job j; Cj � t

0(�) + ti1;j� . Let T be the set of

operations and setups between t(�) and t0(�) and O be the batch of operations which

contains (i1; j
�): Let T0 be the set of operations and setups that are processed after

the completion of operation (i2; j
�) and before the start of the k�-th setup on machine

i1: Let O0 be the set of operations in O except operation (i1; j
�):

Case 1a: Suppose that (i1; j
�) is the last operation of job j� and jOj > 1: Remove

operation (i1; j
�); delay all operations and setups in T by ti1;j� time units and schedule

operation (i1; j
�) at time t(�):

Case 1b: Suppose that (i1; j
�) is the last operation of job j

� and jOj = 1:

Remove operation (i1; j
�); delay all operations and setups in T by ti1;j� time units

and schedule operation (i1; j
�) at time t(�): Remove the k�-th setup of machine i1.

Perform left-shift operations to obtain a semi-active schedule.

CHAPTER 3. REGULAR OBJECTIVES 69

Operator

Operator
t(σ)

(a)

S
1

i i
2

O'T'

t'(σ)

(d)

O'T' S
1

i

(c)

(b)t(σ')

T'
Operator

t(σ')

O' T'perator

t(σ')

S
1

i i
2

S
1

i i
2

S
1

i i
2

(i2,j*)

(i2,j*)

(i2,j*)

(i2,j*)

(i1,j*)

(i1,j*)

(i1,j*)

(i1,j*)S
1

i

Figure 3.8: (a) A switch is made without building a positive inventory; (b) modi�ca-

tion in case 1a; (c) modi�cation in case 1b; and (d) modi�cation in case 2.

CHAPTER 3. REGULAR OBJECTIVES 70

Case 2: Suppose that (i1; j
�) is not the last operation of job j�: Result (i) implies

that no operation (i1; j) 2 O can be the last operation of job j: Remove all operation

(i1; j) 2 O and delay all operations and setups in T by
P

(i1;j)2O
ti1;j time units.

Insert all operations in O between time t(�) and t(�) +
P

(i1;j)2O
ti1;j and process the

operations in the order in which they are processed in �: Remove the k�-th setup of

machine i1. Perform left-shift operations to obtain a semi-active schedule.

Call the modi�ed schedule �0: In cases 1a and 1b t(�0) � t(�) +ti1;j� and in case

2 t(�0) � t(�) +
P

(i1;j)2O
ti1;j: If �0 does not satisfy the result stated in the Theorem,

set � �
0 and repeat the procedure.

Figure 3.8 illustrates an iteration. Consider any iteration. In cases 1a and 1b we

rearrange the operations and setups processed between t(�) and t0(�)+ ti1;j�: But, no

job is completed between t(�) and t
0(�) + ti1;j� in schedule �: In case 2 we rearrange

operations and setups processed between t(�) and t
0(�) +

P
(i1;j)2O

ti1;j: Again, no

job is completed between t(�) and t
0(�) +

P
(i1;j)2O

ti1;j in schedule �: Hence, such

rearrangement does not increase any completion time. In cases 1b and 2 we remove

the k�-th setup of machine i1. From the triangle inequality condition satis�ed by

the setup times, completion times do not increase by removing a setup. Hence, no

completion time increases.

In cases 1a and 1b we move operation (i1; j
�) ahead of T and in case 2 we move

the entire batch O of operations on machine i1 ahead of T: In no case may T contain

CHAPTER 3. REGULAR OBJECTIVES 71

any operation on machine i1: Hence, the job-order on every machine is the same in

both � and �
0
: This shows that �0 satis�es result (i).

We shall now show that �0 satis�es result (ii). Let Ii;k(�) and Ii;k(�
0) be the

number of jobs in the inventory of machine i at the time of the k-th setup of machine

i in schedule � and �
0 respectively. Since � satis�es result (ii), Ii;k(�) = 0 for all i

and k: We shall now show that Ii;k(�
0) = 0 for all i and k.

Case A: Consider any k and i 6= i1: If the k-th setup of machine i is not in T,

the set of operations completed before the k-th setup of machine i in schedule �0 and

the set of operations completed before the k-th setup of machine i in schedule � are

same. Hence, Ii;k(�
0) = Ii;k(�) = 0: If the k-th setup of machine i is in T, the set of

operations completed before the k-th setup of machine i in schedule �0 comprises all

the operations completed before the k-th setup of machine i in schedule � and some

other operations which are moved ahead of T. But, each operation moved ahead of

T is processed on machine i1: Hence Ii;k(�
0) � Ii;k(�) = 0:

Case B: Consider machine i1 and k < k
�
: The k-th setup of machine i1 takes

place before time t(�) and the partial schedule up to time t(�) is the same in both �

and �
0
: Hence, Ii1;k(�

0) = Ii1;k(�) = 0:

Case C: Consider machine i1 and k = k
�
: If case 1a applies, the set of operations

completed before the k�-th setup of machine i1 in schedule �0 comprises all the op-

erations completed before the k�-th setup of machine i in schedule � and operation

CHAPTER 3. REGULAR OBJECTIVES 72

(i1; j
�): Hence, Ii1;k�(�) � Ii1;k�(�

0) � Ii1;k�(�) +1: From the assumption of case 1a,

operation (i1; j
�) is the last operation of job j� in schedule �: Since schedule �0 is ob-

tained from schedule � by moving the operation (i1; j
�) ahead of T; the last operation

of job j
� in schedule �0 is in T: (Note that at least (i2; j

�) is in T: Hence, the last

operation of job j� is precisely in T). This means that operation (i1; j
�) is completed

before the k�-th setup of machine i1: Then, Ii1;k�(�0) 6= Ii1;k�(�) +1: Hence, Ii1;k�(�
0)

= Ii1;k�(�) = 0: If case 1b or 2 applies, the k�-th setup of machine i1 exists in �
0

i� the (k� +1)-st setup of machine i1 exists in �: Furthermore, the set of operations

completed before the k�-th setup of machine i1 in schedule �0 and the set of operations

completed before the (k� +1)-st setup of machine i1 in schedule � are same. Hence,

Ii1;k�(�
0) = Ii1;k�+1(�) = 0:

Case D: Consider machine i1 and k > k
�
: If case 1a applies, the k-th setup of

machine i1 exists in � i� the k-th setup of machine i1 exists in �
0
: Furthermore, the

set of operations completed before the k-th setup of machine i1 in schedule �0 and

the set of operations completed before the k-th setup of machine i1 in schedule �

are same. Hence, Ii1;k(�
0) = Ii1;k(�) = 0: If case 1b or 2 applies, the k-th setup of

machine i1 exists in �
0 i� the (k +1)-st setup of machine i1 exists in �: Furthermore,

the set of operations completed before the k-th setup of machine i1 in schedule �0 and

the set of operations completed before the (k +1)-st setup of machine i1 in schedule

� are same. Hence, Ii1;k(�
0) = Ii1;k+1(�) = 0:

CHAPTER 3. REGULAR OBJECTIVES 73

Hence schedule �0 satis�es condition (ii).

Observe that the set of operations processed before t(�0) in �
0 comprises all the

operations processed before t(�) in � and some other operations that include at least

operation (i1; j
�): Hence, the number of operations processed before t(�0) in �

0 is at

least one more than the number of operations processed before t(�) in �. This means

that we need to apply the above rescheduling at most mn times to obtain a schedule

that satis�es the condition stated in the Theorem.

3.3 Batching Schedules

In this subsection, we shall de�ne the concept of a batching schedule. Then, in the

next subsection we shall show that in the case of two machines, an optimal batching

schedule is an optimal schedule for any regular objective.

De�nition 3.1 A batch of jobs is a maximal set B of jobs satisfying the following

conditions (i) on each machine i; all operations (i; j); j 2 B are processed in at most

one setup; (ii) For any job j =2 B; and any machine i; the operation (i; j) is scheduled

either before the �rst scheduled operation of B or after the last scheduled operation of

B:

Essentially, a batch is a group of jobs that behaves like a single \combined" job

and is processed from start to �nish in the shop without being pre-empted by other

jobs not in the batch.

CHAPTER 3. REGULAR OBJECTIVES 74

In the three-job schedule �1 = (2; 3); (2; 2); (2; 1); (1; 1); (1; 2); (1; 3) , jobs 1, 2 and

3 constitute a single batch. Each set f1g and f1; 2g satis�es conditions (i) and (ii)

but none of f1g and f1; 2g is a maximal set of jobs satisfying condition (i) and (ii).

Hence, none of f1g and f1; 2g is a batch.

A batch B may pre-empt a job j =2 B: For example, in the two-job schedule

�2 = (1; 1); (2; 2); (1; 2); (2; 1) set f2g is a batch which pre-empts job 1. Job 1 is

processed on machine 1 before batch f2g and on machine 2 after batch f2g:

In general, a schedule may have no batch at all. For example, consider the two-

job schedule �3 = (1; 1); (2; 2); (2; 1); (1; 2): Job 1 does not constitute a batch because

operation (2,2) is processed between two operations of job 1. Job 2 does not constitute

a batch because operation (2,1) is processed between two operations of job 2. Jobs

1 and 2 do not constitute a batch because jobs 1 and 2 are not processed in a single

setup on machine 1.

Henceforth, we shall use the term batch to mean batch of jobs.

De�nition 3.2 We say that i(p) is the job-order on machine i; if i(p) is the p-th

processed job on machine i; for p = 1; 2; :::; n:

De�nition 3.3 A schedule is a batching schedule if the job-order is the same on all

machines and every job belongs to a batch.

Consider a batching schedule with job-order : Every batch is of the type f (p); (p+

1); :::; (p0)g for some 1 � p � p
0 � n: We shall denote such a batch by [p; p0]: If

CHAPTER 3. REGULAR OBJECTIVES 75

2,52,42,32,22,1M2

1,1 1,51,41,31,2M1

Figure 3.9: A batching schedule

the job-order is known and �xed we may assume, by relabelling if necessary, that the

job-order is 1, 2, ..., n: In this ordering, batch [i; j] is fi; i +1; : : : ; jg: For example,

the batch in schedule �1 above is [1; 3]. Figure 3.9 shows a batching schedule with

batches [1; 2], [3; 4] and [5; 5]:

Consider a batching schedule with job-order and batches B1; B2; :::; Bk. Let

jBj denote the cardinality of a set B; and de�ne p0 = 0 and pu =
Pu

v=1 jBvj for each

u; 1 � u � k: Then, the u-th batch is Bu = f (pu�1 +1); (pu�1 +2); :::; (pu)g:

Hence, the batches can be constructed from the job-order and integers p1; p2; :::;

pk:

De�nition 3.4 A batching schedule with k batches and job-order has a batching

policy � = (p1; p2; :::; pk) if, for u = 1; 2; :::; k the u-th batch is Bu = f (pu�1

+1); (pu�1 +2); :::; (pu)g; where p0 = 0:

In Figure 3.9 the batches are separated by vertical lines. If every job belongs to

a batch, all operations of a batch are contiguous with the exception of some setups.

For a batch B; an operation (i; j), j =2 B is not processed between the �rst and last

CHAPTER 3. REGULAR OBJECTIVES 76

operation of batch B: Hence, such vertical lines can be used to separate batches.

An interpretation of the batching policy is that it indicates where the vertical

lines are drawn. The leftmost and rightmost vertical lines are always drawn. The

other vertical lines depend on the batching policy. Consider a batching policy �

= (p1; p2; :::; pk): For each u = 1; 2; :::; (k�1) nodes corresponding to jobs (pu) and

 (pu+1) are separated by a vertical line. The schedule shown in Figure 3.9 has a job-

order 1, 2, ..., 5 and a batching policy � = (2; 4; 5): One vertical line separates nodes

corresponding to jobs 2 and 3 and another vertical line separates nodes corresponding

to jobs 4 and 5.

3.4 Optimality of Batching Schedules

For the case of two machines and any regular objective, it is su�cient to limit the

search for an optimal schedule to the batching schedules.

Theorem 3.6 For both problems 1O2jsij� and 1F2jsij�, there exists an optimal sched-

ule which is a batching schedule. For the ow shop case, every batch starts on machine

1. For the open shop case, two consecutive batches start on di�erent machines.

Proof: Consider a schedule � that satis�es conditions stated in Theorem 3.5. Job-

orders are same on all machines. Suppose that � involves a total of K setups. Each

odd setup is followed by an operation on machine i1 and each even setup is followed

CHAPTER 3. REGULAR OBJECTIVES 77

by an operation on machine i2 6= i1 where i1 2 f1; 2g in the open shop case and i1 = 1

in the ow shop case.

Every job has exactly one operation on each machine, so requires two setups. In

fact, every job is processed in two consecutive setups. For, if this is not true, there

exists a job j which is processed on machine i in the u-th setup and on machine i0 6= i

in the v-th setup, with v > u+ 2: But then, each of the u0-th setups with u0 2 fu +2;

u +4; :::; v �1g is on machine i; and the u0-th setup takes place when machine i has

a positive inventory containing at least job j: But, by the choice of �; a machine with

positive inventory is not set up. This contradiction proves the statement that every

job is processed in two consecutive setups.

Let Bk be the set of jobs processed in setups k and (k + 1):

In the ow shop case, Bk = ; for even k; so � is a batching schedule with batches

B1; B3; ..., BK�1: This completes the proof for the ow shop case.

To complete the proof for the open shop case we show that Bk 6= ; for any k:

Suppose that for some k; the k-th setup is on machine i and Bk = ;: Notice that at

least one job is processed in the k-th setup, because otherwise, setups k and (k +1)

are contiguous and the k-th setup can be eliminated. Since all the jobs are processed

in two consecutive setups and Bk = ;; all the jobs processed in the k-th setup are

processed in setup (k �1): This means that the operator does not build any inventory

on machine i before setup (k +1) which is on machine i0 6= i: But, by the choice of �;

CHAPTER 3. REGULAR OBJECTIVES 78

every switch is made after building a positive inventory. Hence, Bk 6= ; for all k; so

� is a batching schedule with batches Bk; 1 � k < K: This completes the proof for

the open shop case.

As we have discussed in Section 2.2, Co�man et al. [30] show that for a problem

equivalent to 1O2js1 = s2; tij = tij
P
Cj the search for an optimal schedule can be

narrowed down to the schedules in which the operator switches from machine i to i0

only if the number of jobs processed on machine i is strictly more than the number

of jobs processed on machine i
0
: Observe that Theorem 3.6 has exactly the same

implication for the problem 1O2js1 = s2; tij = tij
P
Cj: Theorem 3.6 explains the

observations of Baker [12], Julien and Magazine [64], Vickson et al. [117], Sung and

Park [111], and Rana and Singh [98] on various two-machine cases with the objective

of
P
Cj :

We shall now show that for �0 2 fLmax,
P
Cj;
P
wjCj;

P
Uj;
P
wjUjg and m > 2

it is not su�cient to limit the search for an optimal schedule to the batching schedules.

Example 3.3 Consider an instance of 1O3jsij�0 or 1F3jsij�0 with s1 = 10; s2 =

5; s3 = 0 and the following processing times, due dates and weights:

j 1 2 3
t1j 1 1 1

t2j 1 1 15

t3j 5 10 15
dj 25 35 70

wj 1 1 1

CHAPTER 3. REGULAR OBJECTIVES 79

Consider any batching schedule � with job-order : Before time C (1); each ma-

chine has to be set up at least once and all operations of a job have to be completed.

Hence, C (1) � 22: Before time C (2); each machine has to be set up at least once

and all operations of any two jobs have to be completed. Hence, C (2) � 34: Before

time C (3); each machine has to be set up at least once and all operations have to be

completed. Hence, C (3) � 65:

Let �� = (1; 1); (1; 2); (1; 3); (2; 1); (2; 2); (3; 1); (3; 2); (2; 3); (3; 3): The schedule

maintains the shop ow condition and attains C1 = 25; C2 = 35 and C3 = 70:

Therefore, Lmax = 0;
P
wjCj = 130 and

P
wjUj = 0: We shall now show that for

any �0, every batching schedule is worse than �
�
:

Case 1: Suppose that � has a single batch: Each machine is set up once and

C (3) = 65: At most one operation is completed after C (2); and the largest operation

has a processing time of 15 time units: Hence, C (2) � 65 �15 = 50: Therefore,

schedule � is worse than �
� for any �0:

Case 2: Suppose that � has two batches. Consider �rst the ow shop case. Each

machine is set up twice. Hence, C (3) � 80 and, therefore, schedule � is worse than

�
� for any �0: Consider next the open shop case. One machine is set up once and each

of the others twice. If machine 1 is set up twice, C (3) � 75 and, therefore schedule �

is worse than �� for any �0: Suppose, instead, that machine 1 is set up once and each

of the others twice. Then, C (3) � 70: If the �rst batch contains two jobs j1 and j2,

CHAPTER 3. REGULAR OBJECTIVES 80

all four operations of jobs j1 and j2 on machines 2 and 3 precede C (1): Hence, C (1)

� 33: If the �rst batch does not contain two jobs, each of the machines 2 and 3 is

set up twice before C (2): Hence, C (2) � 39: Since C (1) � 33; C (2) � 39 and C (3)

� 70; schedule � is worse than �
� for any �0:

Case 3: Suppose that � has three batches. Before C (2) one machine is set up

at least once and each of the other two twice. Hence, C (2) � 39: Before C (3) one

machine is set up at least twice and each of the other two three times. Hence, C (3)

� 85: Therefore, schedule � is worse than �
� for any �0:

3.5 A Relationship between 1F 2jsij� and 1js1; F =

1j�

The single-family problem 1js1; F = 1j� is a special case of the problem 1F2jsij�: To

see this, consider an n-job instance I1 of the problem 1js1; F = 1j� with setup time

s1: For each job j let tj be the processing time, wj be the weight and dj be the due

date. De�ne an instance I2 of the problem 1F2jsij� with setup times s01 = s1; s
0
2 = 0;

processing times t01j = tj; t
0
2j = 0, weights w0

j = wj and due dates d0j = dj , where

j = 1; :::; n:

Consider a schedule �1 of I1 with batches B1; ..., Bk; where u1 < u2) Bu1 is

processed before Bu2: The completion time of any job j 2 Bu is Cj = s1u +
P

(tj0 :

j
0 2 B1 [::: [Bu): Now consider a schedule �2 of I2 with batches B1; ..., Bk; where

u1 < u2) Bu1 is processed before Bu2 : The completion time of any job j 2 Bu is C 0
j

CHAPTER 3. REGULAR OBJECTIVES 81

= s
0
1u +

P
(t01j0 : j0 2 B1 [::: [Bu) = Cj: It follows that for any regular objective �,

the objective function value �(�1) = �(�2): This shows that the problem 1js1; F = 1j�

is a special case of the problem 1F2jsij�:

This result means that any algorithm for the problem 1F2jsij� can be applied to

solve the problem 1js1; F = 1j�; and if the problem 1js1; F = 1j� is (strongly) NP-

hard for some � then the problem 1F2jsij� is also (strongly) NP-hard. Hochbaum

and Landy [58] show that the problem 1js1; F = 1jPwjUj is NP-hard, hence so is

the problem 1F2jsij
P
wjUj: Albers and Brucker [4] show that the problem 1js1; F

= 1jPwjCj is strongly NP-hard, hence so is the problem 1F2jsij
P
wjCj:

3.6 Summary

Recall from our statement of the one-operator scheduling problem in Section 1.2 that

every job has at least one operation on each machine. It follows from Theorem 3.1

that we can replace the phrase \at least one" by \exactly one" in the preceding

statement and yet get an equivalent problem.

Developments on m-machine cases culminate in Theorem 3.5. For both problems

1Omjsii0 j� and 1Fmjsij� there exists an optimal schedule in which (i) job-orders are

the same on all machines; (ii) a machine with positive inventory is not set up; and

(iii) every switch is made after building a positive inventory unless both the following

conditions hold: (a) the machine environment is a ow shop; and (b) the switch is

CHAPTER 3. REGULAR OBJECTIVES 82

from machine m:

Results (i) and (ii) are similar to what Santos [106] observes for a problem equiv-

alent to 1Fmjsi; tij = tij
P
Cj: Co�man et al. [30] and Julien [63] observe results

similar to the ones stated in Theorem 3.5 for problems equivalent to 1O2js1 = s2;

tij = tij
P
Cj and 1Omjsi; nij � 0jPCj ; respectively. Julien [63] states that the

properties extend to any regular objective. Julien's proofs in [63] are di�erent from

ours.

The dominance properties developed for the m-machine cases are used in Chapter

4 to develop a dynamic programming scheme that solves a large number of cases we

consider.

The dominance properties developed for the m-machine cases have a nice interpre-

tation for the case of two machines. We can narrow down the search for an optimal

schedule to batching schedules. A batching schedule is de�ned by specifying the �rst

machine on which the operator starts working, a job-order and a batching policy.

Developments on Chapters 5-8 are based on this result on two machines. For the case

of three or more machines, it is not su�cient to consider the batching schedules only.

In this chapter we show that the problem 1js1; F = 1j� is a special case of the

problem 1F2jsij�: The observation is important because an immediate consequence

of this is that the problem 1F2jsij
P
wjUj is NP-hard (follows from a result in [58])

and the problem 1F2jsij
P
wjCj is strongly NP-hard (follows from a result in [4]).

Chapter 4

The Fixed-Sequence Case

It follows from Theorem 3.3 that we can restrict the search for an optimal schedule

to the cases in which job-orders are same on all machines. In this chapter we shall

concentrate on what we call the �xed-sequence cases. In a �xed-sequence case, job-

orders on all the machines are known and �xed. The importance of such cases is that

for some objectives and job characteristics it is possible that one job-order dominates

all the other job-orders.

As we have discussed in Section 2.1.2, Psaraftis [97], Ahn and Hyun [3] and Ghosh

[47] use similar dynamic programming recursions for various cases of the problem

1jsii0j
P

(wj)Cj: Ghosh and Gupta [48] extend the approach to the problem 1jsii0 jLmax:

In this chapter we shall use a similar approach and apply the dominance properties

discussed in chapter 3 in order to develop a common dynamic programming scheme

that applies to many �xed-sequence cases.

First, we shall discuss some of the cases in which we get dominant job-orders.

83

CHAPTER 4. THE FIXED-SEQUENCE CASE 84

4.1 Dominant Job-Orders

For both problems 1Omjsii0 jCmax and 1Fmjsii0jCmax there exists an optimal schedule

in which each machine is set up exactly once and jobs are processed in any order. To

see this, consider any schedule in which a machine i is set up more than once. Move

all the jobs processed in the second setup of machine i to immediately after the �rst

setup of machine i and remove the second setup of machine i: The makespan does

not increase. Repeated application of this process yields a schedule in which each

machine is set up exactly once.

Rearranging jobs on a machine does not change the makespan. Thus, every job-

order is equally good for the makespan objective. The issue, however, is to minimize

the total setup times required. Since all the jobs are processed on each machine in

a single setup, we can limit our discussion to the case with n = 1; if the objective is

makespan. If n > 1; we can replace the jobs with a single job having processing time

ti =
Pn

j=1 tij on machine i:

Theorem 4.1 For both problems 1Omjsii0 jLmax and 1Fmjsii0jLmax there exists an

optimal schedule in which the jobs are processed in the Earliest Due Date (EDD)

order on each machine.

Proof: Consider any schedule � with the same job-order on all machines. By

relabelling, if necessary, we may assume that j < j
0) dj � dj0 : If the jobs are not

CHAPTER 4. THE FIXED-SEQUENCE CASE 85

Ti

Ti

ti(σ)

ti(σ')

(a)

(b)

perator

perator

(i,j1)

(i,j1)

(i,j2)

(i,j2)

Figure 4.1: (a) Two operations on a same machine are not in the order 1,2,...,n; and
(b) a modi�ed schedule.

processed in the EDD order, then there exist two jobs j1 and j2 such that j1 > j2

but j1 is completed before j2: We shall repeatedly apply the following rescheduling

procedure (see Figure 4.1) to obtain a schedule which is not worse than the original

schedule, but satis�es the condition stated in the Theorem. Throughout, we maintain

the same job-order on all machines.

For any job j; let Cj be its completion time in schedule �: Let t(�) be the maxi-

mum time when a set T of operations and setups is completed, such that: T starts

immediately after (i0; j1) and is completed immediately before (i0; j2); where j1 > j2

and j1 is processed before j2 on each machine. Since the job-order is the same on

each machine, we have for each machine i a set Ti of operations and setups such that

CHAPTER 4. THE FIXED-SEQUENCE CASE 86

Ti is processed after operation (i; j1) and before operation (i; j2): Let the completion

time of Ti be ti(�): We thus have ti(�) � t(�) 8i: For each machine i; remove opera-

tion (i; j1); schedule every operation and setup in Ti[f(i; j2)g to start ti;j1 time units

earlier, and then schedule the operation (i; j1) to start at time ti(�) +ti;j2 �ti;j1:

Call the modi�ed schedule �0: For every job j; let C 0
j be its completion time in

schedule �
0
: Notice that the last operation of job j2 is on machine i

0 in schedule

�: Operation (i0; j1) is processed immediately after operation (i0; j2) in schedule �0:

The start times of operation (i0; j2) are t(�) and t(�) �ti0;j1 in schedules � and �
0
;

respectively. Hence, t(�0) � t(�) �ti0;j1: If �0 does not satisfy the condition stated in

the Theorem, set � = �
0 and repeat the procedure.

In every iteration, the completion time of operation (i; j1) for each i may increase.

However, C 0
j1

= Cj2 : Letting Lj and L0
j be the lateness of job j in schedules � and �0;

respectively, we get L0j1 = C
0
j1
�dj1 = Cj2 �dj1 � Cj2 �dj2 = Lj2 : Since C 0

j � Cj 8j

6= j1; we have L0
j � Lj 8j 6= j1: Hence, maxfL0jg � maxfLjg:

Observe that the set of jobs completed after t(�0) in �
0 comprises all the jobs

completed after t(�) in �; together with some other jobs that include at least j1:Hence,

the number of jobs processed after t(�0) in �
0 is at least one more than the number

of jobs processed after t(�) in �. Hence, we need to apply the above rescheduling

procedure at most n times to obtain a schedule that satis�es the condition stated in

the Theorem.

CHAPTER 4. THE FIXED-SEQUENCE CASE 87

Theorem 4.2 For both problems 1Omjsii0 ; aptwjPwjCj and 1Fmjsii0; aptwjPwjCj

there exists an optimal schedule in which the jobs are processed in the order 1, 2, ...,

n.

Proof: Consider any schedule � with the same job-order on all machines. If the

jobs are not processed in the order 1, 2, ..., n, then there exist two jobs j1 and j2 such

that j1 > j2 but j1 is processed before j2: We shall repeatedly apply the following

rescheduling procedure (see Figure 4.2) to obtain a schedule which is not worse than

the original schedule, but satis�es the condition stated in the Theorem. Throughout,

we maintain the same job-order on all machines.

For any job j; let Cj be the completion time of job j in schedule �: Let j1(�) =

maxfj1 : there exists at least one job j2 such that j2 < j1 and j2 is processed after

j1g: Let j2(�) = arg maxfCj2 : j2 < j1(�)g: By the choice of j1(�); j2(�) is processed

after j1(�): Furthermore, Cj1(�)+1 � ::: � Cn and each job j � j1(�) is completed

before (j1(�) + 1):

Let �0 be the schedule obtained by interchanging operations (i; j1(�)) and (i; j2(�))

for each i: Let C 0
j be the completion time of job j in schedule �0: By the choice of

j2(�) there exists no job j2 < j1(�) such that j2 is processed after j1(�) in schedule

�
0
: Hence, j1(�

0) < j1(�): If �0 does not satisfy the condition stated in the Theorem,

set � = �
0 and repeat the procedure.

Consider any iteration. Suppose that some operation (i1; j1) is the k-th processed

CHAPTER 4. THE FIXED-SEQUENCE CASE 88

Job j1(σ)

Job j2(σ)

M1

M2

j2(σ)Cj1(σ)C (a)

M1

M2

j1(σ)C'j1(σ)C' (b)

Figure 4.2: (a) Two operations on a same machine are not in the order 1,2,...,n; and

(b) a modi�ed schedule.

CHAPTER 4. THE FIXED-SEQUENCE CASE 89

operation in schedule � and (i2; j2) is the k-th processed operation in schedule �0: We

must have i2 = i1: If j1 = j1(�); then j2 = j2(�): If j1 = j2(�); then j2 = j1(�): If

j1 6= j1(�); and j1 6= j2(�); then j2 = j1: In any case, if (i1; j1) is the last operation of

job j1 in schedule �, then (i2; j2) is the last operation of j2 in schedule �0:

Let M1 = fi : either (i; j1(�)) is scheduled before (i1; j1) in schedule � or (i; j1(�))

� (i1; j1)g: Let M2 = fi : either (i; j2(�)) is scheduled before (i1; j1) in schedule �

or (i; j2(�)) � (i1; j1)g: Since j1(�) is processed before j2(�) in schedule �; we must

have M1 � M2: Let C 0
i2j2

be the completion time of (i2; j2) in �
0 and Ci1j1 be the

completion time of (i1; j1) in �: Observe that

C
0

i2j2
= Ci1j1 +

X
i2M1

tij2(�) �
X
i2M1

tij1(�) +
X
i2M2

tij1(�) �
X
i2M2

tij2(�)

= Ci1j1 +
X

i2M1nM2

(tij2(�) � tij1(�))

� Ci1j1

In fact, the above inequality can be replaced by equality if (i2; j2) is the last operation

of j1(�) in �0: In such a case (i1; j1) is the last operation of j2(�) in � and M1 = M2 =

f1; 2; ::;mg: Now, using the relationship between machines i1 and i2 and jobs j1 and

j2; we have

CHAPTER 4. THE FIXED-SEQUENCE CASE 90

C
0

j1(�)
= Cj2(�) (4.1)

C
0

j2(�)
� Cj1(�) (4.2)

C
0

j � Cj for j 6= j1(�); j 6= j2(�): (4.3)

Since j1(�) > j2(�); we have wj1(�) � wj2(�): But Cj1(�) � Cj2(�): Hence,

wj1(�)Cj2(�) + wj2(�)Cj1(�) � wj2(�)Cj2(�) + wj1(�)Cj1(�): (4.4)

Therefore,P
wjC

0
j =

P
j 6=j1(�) and j 6=j2(�)

wjC
0
j + wj1(�)C

0

j1(�)
+ wj2(�)C

0

j2(�)

=
P

j 6=j1(�) and j 6=j2(�)
wjC

0
j + wj1(�)Cj2(�) + wj2(�)C

0

j2(�)
from 4:1

� P
j 6=j1(�) and j 6=j2(�)

wjC
0
j + wj1(�)Cj2(�) + wj2(�)Cj1(�) from 4:2

� P
j 6=j1(�) and j 6=j2(�)

wjCj + wj1(�)Cj2(�) + wj2(�)Cj1(�) from 4:3

� P
j 6=j1(�) and j 6=j2(�)

wjCj + wj2(�)Cj2(�) + wj1(�)Cj1(�) from 4:4

=
P
wjCj

Therefore, total weighted completion time does not increase as a result of the reschedul-

ing. Since j1(�
0) < j1(�); we need to apply the above rescheduling at most n times

to obtain a schedule that satis�es the result stated in the Theorem.

4.2 A Classi�cation of Problems

4.2.1 Sequence-Dependent Cases

The Open Shop Cases

Many of the �xed-sequence cases with sequence-dependent setup times are strongly

NP-hard. For example, the sequence-dependent open shop problem 1Omjsii0 jCmax

CHAPTER 4. THE FIXED-SEQUENCE CASE 91

is equivalent to the traveling salesman problem. (In a traveling salesman problem,

a salesman has to visit each city exactly once and return to the original city in a

tour that minimizes the total cost of visiting the cities. The cost of travelling from

city i to i0 is aii0:) The problem 1Omjsii0 jCmax is actually more closely related to the

Hamiltonian path problem, which is an equivalent version of the traveling salesman

problem. (A Hamiltonian path problem with a speci�ed origin is a traveling salesman

problem in which the salesman starts from the speci�ed origin but does not return

to it.) Given an instance of the problem 1Omjsii0 jCmax we can de�ne an instance of

the (m +1)-city Hamiltonian path problem in which the origin is 0 and the cost of

travelling from city i to i0 is aii0 = sii0 80 � i � m; 1 � i0 � m: The total setup time

of any schedule that sets up the machines in the order (i1; :::; im) is the same as the

cost of visiting cities in the order (0; i1; :::; im): Hence, the problem 1Omjsii0 jCmax is

equivalent to the Hamiltonian path problem with a speci�ed origin. Gar�nkel [43],

in turn, shows the equivalence between the Hamiltonian path problem with a spec-

i�ed origin and the traveling salesman problem. Papadimitriou [91] shows that the

traveling salesman problem is strongly NP-hard even if the inter-city distances sat-

isfy the triangle inequality conditions. Hence, the problem 1Omjsii0jCmax is strongly

NP-hard even if the setup times satisfy the triangle inequality conditions.

Consider any regular objective � 2 fLmax;
P
Uj;
P
wjUj ;

P
Cj;

P
wjCjg: A

single-job problem of the type 1Omjsii0 j� is equivalent to the problem 1Omjsii0 jCmax:

CHAPTER 4. THE FIXED-SEQUENCE CASE 92

Hence, the problem 1Omjsii0j� is strongly NP-hard even with a single job. Since the

single-job cases are strongly NP-hard, the �xed-sequence cases are strongly NP-hard

too.

The Flow Shop Cases

While the open shop problem 1Omjsii0 jCmax is strongly NP-hard, the ow shop

problem 1Fmjsii0jCmax is solvable using a simple rule: process all the jobs on each

machine in any order in a single setup. This rule will henceforth be called Rule 1.

The complexity status of problems 1Fmjsii0; �xed sequencejPwjCj and 1Fmjsii0;

�xed sequencejLmax is open. If the objective is the weighted number of tardy jobs,

it is possible to address the integrated problem of sequencing and batching. Hence,

we do not study the problem 1Fmjsii0; �xed sequencejPwjUj: However, the problem

1Fmjsii0j
P
wjUj is NP-hard even for wj = 1 and m = 2: (This will follow from

Theorem 6.1.)

4.2.2 Sequence-Independent Cases

Each of the problems 1OmjsijCmax and 1FmjsijCmax is solvable using Rule 1. For the

maximum lateness objective, the problem 1OmjsijLmax turns out to be equivalent

to a special case (Gerodimos et al. [46], Potts and Kovalyov [95]) of the problem

1jsijLmax. Recall that the problem 1jsijLmax is an item-availability family scheduling

problem in which there are F families of operations and a sequence-independent setup

CHAPTER 4. THE FIXED-SEQUENCE CASE 93

time, si is required whenever a batch of operations belonging family i starts: Each

job has a single operation and belongs to one of the F families.

The special case of the problem 1jsijLmax which is equivalent to the problem

1OmjsijLmax is of the following type: for each i = 1; :::;m and j = 1; :::; n family i

has a job (j � 1)m + i with due date dj: For example, if m = 4 and n = 10; family

1 comprises jobs 1; 5; 9; :::; 37; family 2 comprises jobs 2; 6; 10; :::; 38 and so on. Jobs

1, 2, 3 and 4 have due date d1; jobs 5, 6, 7 and 8 have due date d2 and so on. If we

regard jobs 1, 2, 3 and 4 as separate operations of a �ctitious single job with due date

d1; then the completion time of this �ctitious job is the time when the last processed

job among jobs 1, 2, 3 and 4 is completed. Hence, the lateness of such a �ctitious job

is the same as the maximum lateness of jobs 1, 2, 3 and 4.

Given an instance I1 of the problem 1OmjsijLmax an instance I2 of the problem

1jsijLmax with m families and setup times si is constructed as follows: for every

operation (i; j) de�ne a job (j � 1)m+ i in family i with processing time tij and due

date dj: Consider a schedule �1 for instance I1 and a schedule �2 for instance I2 such

that for two operations (i; j) and (i0; j 0) the operation (i; j) precedes operation (i0; j0)

in schedule �1 if and only if job (j � 1)m + i in family i precedes job (j0 � 1)m + i
0

in family i
0
: Then, the lateness of jobs j in schedule �1 is the same as the maximum

lateness of jobs (j � 1)m + 1; :::; jm in schedule �2: Thus, maximum lateness is the

same in schedules �1 and �2: This shows that the problem 1OmjsijLmax is equivalent

CHAPTER 4. THE FIXED-SEQUENCE CASE 94

to the above special case of the problem 1jsijLmax: Bruno and Downey [25] show that

the above special case of the problem 1jsijLmax is NP-hard. Hence, the problem

1OmjsijLmax is NP-hard.

The complexity status of the ow shop problem 1FmjsijLmax is open. Problems

1Omjsij
P
wjUj and 1Fmjsij

P
wjUj are NP-hard even for wj = 1 and m = 2:

(This will follow from Theorem 6.1). In Chapter 6 we shall show that both problems

1O2jsij
P
wjUj and 1F2jsij

P
wjUj are pseudo-polynomially solvable. The problem

1Fmjsi; �xed sequencejPwjCj is polynomially solvable (see Section 7.2.1). The

problem 1Omjsi; �xed sequencejPwjCj is open.

The results are summarized in Table 4.1.

4.3 A Property of Some Objective Functions

Ghosh and Gupta [48] present a dynamic programming algorithm for the problem

1jsii0jLmax. As we have discussed in Section 4.2.2 the problem 1Omjsii0 jLmax can

be reduced to a problem 1jsii0jLmax with m families: Since the algorithm of Ghosh

and Gupta has time complexity O(m2
n
m) for m families, such a reduction gives an

O(m2
n
m) time algorithm for the problem 1Omjsii0 jLmax:

However, in this chapter we shall develop a common dynamic programming scheme

that applies to many �xed-sequence cases we study. To do this, we shall use the

dynamic programming approach of Psaraftis [97], Ahn and Hyun [3], Ghosh [47] and

CHAPTER 4. THE FIXED-SEQUENCE CASE 95

Problem Result

1Omjsii0 jCmax Strongly NP-hard

1OmjsijCmax O(1)

1Fmjsii0jCmax O(1)

1FmjsijCmax O(1)

1Omjsii0 jLmax Strongly NP-hard

1OmjsijLmax NP-hard, not known if Strongly NP-hard

1Fmjsii0jLmax Open

1FmjsijLmax Open

1Omjsii0 j
P
wjUj Strongly NP-hard even if wj = 1

1Omjsij
P
wjUj NP-hard even if wj = 1; pseudo-

polynomially solvable if m = 2 (see Section
6.2)

1Fmjsii0j
P
wjUj NP-hard even if wj = 1, pseudo-

polynomially solvable if m = 2 (see Section

6.3)

1Fmjsij
P
wjUj NP-hard even if wj = 1; pseudo-

polynomially solvable if m = 2 (see Section

6.3)

1Omjsii0 ; �xed sequencejPwjCj Strongly NP-hard even if wj = 1

1Omjsi; �xed sequencejPwjCj Open

1Fmjsii0; �xed sequencejPwjCj Open

1Fmjsi; �xed sequencejPwjCj O(mn3) (see Section 7.2.1)

Table 4.1: Classi�cation of one-operator problems

CHAPTER 4. THE FIXED-SEQUENCE CASE 96

Ghosh and Gupta [48] and apply the dominance properties discussed in Chapter 3.

First, we shall discuss a property of some objective functions which is important

for getting a common scheme for various objectives. Each of makespan, maximum

lateness and total (weighted) completion time is obtained from some linear functions

of completion times. For � 2 fCmax; Lmax;
P
Cj ;
P
wjCjg the objective � is of the

type maxf�j(Cj)g or
P

�j(Cj); where �j(Cj) = "j + �jCj:

� For makespan, "j = 0; �j = 1 and � = maxf�j(Cj)g:

� For maximum lateness, "j = �dj ; �j = 1; and � = maxf�j(Cj)g:

� For total (weighted) completion time, "j = 0; �j = wj and � =
P

�j(Cj):

Note that the total (weighted) number of tardy jobs is of the type
P

�j(Cj);

where each �j is a nonlinear function of completion time Cj: The nonlinearity of the

�j in this case implies that a di�erent scheme must be used to solve the problem.

Each objective � 2 fCmax; Lmax;
P
wjCjg possesses an interesting property. Let

�(�) be the objective function value given by the schedule � and let schedule �(t0)

be the schedule obtained from � by delaying the start and completion time of every

operation by t0 time units. The following result holds:

Remark 4.1 For any objective � 2 fCmax; Lmax;
P
Cj;
P
wjCjg; if �� is an optimal

schedule when the processing starts at time t; then �
�(t0) is an optimal schedule when

CHAPTER 4. THE FIXED-SEQUENCE CASE 97

the processing starts at time t +t0. Furthermore, �(��(t0)) = �(��)+t0 if � 2 fCmax;

Lmaxg and �(��(t0)) = �(��) + t
0
P
wj if � =

P
wjCj:

Proof: Consider any schedule � that starts at time t: Let Cj be the completion

time of job j in schedule � : If � 2 fCmax; Lmaxg; then �(�(t0)) = maxf�j(Cj

+t0)g = maxf"j +Cj +t0g = maxf"j +Cjg + t
0 = �(�) + t

0
: If � =

P
wjCj; then

�(�(t0)) =
P

�j(Cj +t0) =
P
wj(Cj +t0) =

P
wjCj +t0

P
wj = �(�) +

P
wjt

0
:

Hence, minf�(�)g = �(��)) minf�(�(t0))g = �(��(t0)):

Thus, the optimal sequence for the objectives makespan, maximum lateness and

weighted completion time is independent of the start time of the schedule. If a se-

quence is optimal for one start time, then the sequence is optimal for all other start

times.

It is natural to ask at this point whether for every objective of the type maxf�j(Cj)g

or
P

�j(Cj) the optimal sequence is independent of the start time of the schedule if

�j(Cj) = "j + �jCj: A slight modi�cation of the above proof shows that the answer

is `yes' for the objectives of the type
P

�j(Cj): However, the answer is `no' for at

least one objective of the type maxf�j(Cj)g. We can think of an objective that may

be called maximum weighted lateness: � = maxfwjLjg: In this case, "j = �dj and

�j = wj : For this objective an optimal sequence depends on the start time of the

schedule. To see this, consider the following example.

Example 4.1 Consider an instance of the classical single machine problem with the

CHAPTER 4. THE FIXED-SEQUENCE CASE 98

following processing times, due dates and weights:

j 1 2

tj 1 1

dj 1 2

wj 1 3

Suppose that the schedule starts at time zero. If job 1 is processed before job

2, then C1 = 1; C2 = 2 and maxfwjLjg = 0: If job 2 is processed before job 1,

then C1 = 2; C2 = 1 and maxfwjLjg = 1: Hence, maxfwjLjg is minimized by

processing job 1 before job 2. Now, suppose that the schedule starts at time 1. If

job 1 is processed before job 2, then C1 = 2; C2 = 3 and maxfwjLjg = 3: If job 2 is

processed before job 1, then C1 = 3; C2 = 2 and maxfwjLjg = 2: Hence, maxfwjLjg

is minimized by processing job 2 before job 1. Thus, an optimal sequence for the

objective maxfwjLjg is not independent of the start time of the schedule.

Since an optimal sequence for � 2 fCmax; Lmax;
P
wjCjg is independent of the

start time of the schedule, we can apply the approach of Psaraftis [97], Ahn and Hyun

[3], Ghosh [47] and Ghosh and Gupta [48] and obtain an algorithm for 1Omjsii0 ;�xed

sequencej� and 1Fmjsi;�xed sequencej�: However, as the ow shop case with the

makespan objective is solved using Rule 1, we do not discuss the problem 1Fmjsi;�xed

sequencejCmax:

CHAPTER 4. THE FIXED-SEQUENCE CASE 99

4.4 A Dynamic Program for some Fixed-Sequence

Cases

Throughout this section we assume that the job-orders on all m machines are the

same and known. We may thus assume, by relabelling if necessary, that the jobs are

processed in the order 1; 2; :::; n: Suppose that on each machine i the operator has

processed the �rst ni jobs. For the ow shop case, n � n1 � n2 � ::: � nm � 0: For

the open shop case 0 � ni � n for each i: The remaining operations are f(i; ni +1);

(i; ni +2); :::; (i; n) : 1 � i � mg: Suppose that machine i� is the current machine.

The operator can restrict the choice of the next activity to one of the following:

1. process operation (i�; ni� +1); or

2. set up a machine i0 6= i
�.

We shall now point out some cases when the operator can further restrict the

choice of the next activity. One such case is ni� = n; when there is no operation

(i�; ni� + 1) left to process. In such a case, if minfni0g < n; one of the machines

i
0 6= i

� is set up and if minfni0g = n; all the operations are complete and the process

terminates. Further restrictions are as follows:

1. Restriction on setup: The operator does not switch from the current machine

i
� to a machine i0 if machine i� has no inventory unless, however, the current

machine i� = m and the machine environment is a ow shop. In the ow shop

CHAPTER 4. THE FIXED-SEQUENCE CASE 100

environment the operator continues working on machine m as long as there is

a job waiting for machine m: Hence, we get the following restrictions on the

choices of the operator:

(a) In the open shop case, if minfni0g = ni� < n; then machine i� does not

have a positive inventory and, therefore, the operator processes operation

(i�; ni� +1) : This case is analyzed separately depending on whether job

(ni� + 1) is completed with the completion of operation (i�; ni� +1): If ni�

< ni for all i 6= i
�
; then job (ni� + 1) is completed with the completion of

operation (i�; ni� +1): If there exists at least one i 6= i
� with ni = ni�; then

job (ni� +1) is not completed with the completion of operation (i�; ni� +1):

(b) In the ow shop case, if i� = m and nm < ni � n for all i 6= m; then

every machine i 6= m has a positive inventory and, therefore, the operator

processes operation (m;nm +1) and job (nm +1) is completed with the

completion of operation (i�; ni� +1):

(c) In the ow shop case, if i� < m and ni� = nm < n; then machine i
�

does not have a positive inventory and, therefore, the operator processes

operation (i�; ni� +1): Job (nm +1) is not completed with the completion

of operation (i�; ni� +1):

CHAPTER 4. THE FIXED-SEQUENCE CASE 101

2. Restriction on the choice of machines for setup: A machine is not set up

as long as it has a positive inventory. Therefore, machine i0 is a candidate for

setup only if ni0 � ni for all i: Further restrictions on the choice of machine i0

are as follows:

(a) In the open shop case, if the operator switches from the current machine

i
� to a machine i

0
; then: (i) machine i

� has a positive inventory; and

(ii) machine i0 has no inventory. From condition (i), minfni0g < ni�; so

ni0 < ni� : From condition (ii), ni0 � ni for all i:

(b) In the ow shop case, if the current machine i� = m; as soon as all the

jobs waiting for machine m are processed, the operator stops working on

machine m and switches to the least indexed machine i0 with no inventory.

Hence, i0 = minfi : ni = nmg 6= m:

(c) In the ow shop case, if the current machine i� < m; then each machine

i1; 1 � i1 < i
� has a positive inventory and each machine i2; 1 � i2 < i

�

has zero inventory. The operator switches from machine i� to the next

machine i� +1 after building a positive inventory on machine i�: Hence,

ni�+1 < ni�:

We are now ready to describe a backward dynamic programming scheme for

1Omjsii0 ;�xed sequencej�; where � 2 fCmax; Lmax;
P
wjCjg and 1Fmjsi;�xed se-

CHAPTER 4. THE FIXED-SEQUENCE CASE 102

quencej�, where � 2 fLmax;
P
wjCjg. At each stage of the dynamic program we

optimally schedule operations f(i; ni +1); (i; ni +2); :::; (i; n) : 1 � i � mg at time

zero.

Let h(n1; n2; :::; nm; i
�) = minimum value of objective � 2 fCmax; Lmax;

P
wjCjg

over all partial schedules that processes only operations f(i; ni +1); (i; ni +2); :::; (i;

n) : 1 � i � mg starting from time zero, given that machine i� is the current machine

at time zero. In the following we de�ne Wj =
Pn

j0=j wj0 for j = 1; 2; :::; n:

4.4.1 Open Shop Sequence-Dependent Cases

We shall now discuss the computation of h(n1; n2; :::; nm; i
�); 0 � ni � n; 1 � i � m;

1 � i
� � m for 1Omjsii0 ;�xed sequencej�, where � 2 fCmax; Lmax;

P
wjCjg. Suppose

that the following values are computed before computing h(n1; n2; :::; nm; i
�) :

h(n01; n
0
2; :::; n

0
m; i

�); n
0
i = ni; if i 6= i

� and n
0
i� = ni� + 1 and

h(n01; n
0
2; :::; n

0
m; i

0); n
0
i = ni;8i and ni0 = minfni0g < ni�:

De�ne:

h = h(n1; n2; :::; nm; i
�)

hi� = h(n01; n
0
2; :::; n

0
m; i

�); n
0
i = ni; if i 6= i

� and n
0
i� = ni� + 1 and

hi0 = h(n01; n
0
2; :::; n

0
m; i

0); n
0
i = ni;8i and ni0 = minfni0g < ni�:

In the following we shall compute h: We shall assume that only operations f(i;

ni +1); (i; ni +2); :::; (i; n) : 1 � i � mg are to be processed and the processing of

operations f(i; ni +1); (i; ni +2); :::; (i; n) : 1 � i � mg starts at time zero when

machine i
� is the current machine. The operator has two choices: either process

operation (i�; ni� +1); or set up a machine.

CHAPTER 4. THE FIXED-SEQUENCE CASE 103

Case 1: minfni0g = ni� < n: The current machine i
� does not have a positive

inventory. There is only one choice for the operator, namely to process operation

(i�; ni� +1): If � = Cmax; we get

h = hi� + ti�;ni�+1:

To get an expression for h when � 2 fLmax;
P
wjCjg we consider two subcases. In

one subcase the operation (i�; ni� +1) is the last operation of job (ni� +1); while in

the other, it is not. In both cases operation (i�; ni� +1) precedes completion of each

job j; minfni0g +1 � j � n:

Case 1a: minfni0g = ni� < ni � n for all i 6= i
�
: Operation (i�; ni� +1) is the

last operation of job (ni� +1) and, therefore, the job (ni� +1) is complete as soon as

operation (i�; ni� +1) is complete. We get

h =

�
maxfti�;ni�+1 � dni�+1; hi� + ti�;ni�+1g if � = Lmax

hi� + ti�;ni�+1Wni�+1 if � =
P
wjCj :

Case 1b: minfni0g = ni� = ni < n for at least one i 6= i
�
: Operation (i�; ni� +1) is

not the last operation of job (ni� +1): Job (ni� +1) has an unprocessed operation at

least on machine i: Thus

h =

�
hi� + ti�;ni�+1 if � = Lmax

hi� + ti�;ni�+1Wni�+1 if � =
P
wjCj:

Case 2: minfni0g < ni� < n: For the makespan objective this case does not occur

because we assume n = 1: Hence, consider � 2 fLmax;
P
wjCjg: In this case,

CHAPTER 4. THE FIXED-SEQUENCE CASE 104

one choice of the operator is to process operation (i�; ni� +1): Operation (i�; ni�

+1) cannot be the last operation of job (ni� +1) because on each machine i0 with

ni0 = minfni0g; job (ni� +1) has an unprocessed operation. Another choice of the

operator is to set up any machine i0 with ni0 = minfni0g: Thus

h =

8<
:

minfhi� + ti�;ni�+1; hi0 + si�i0 : ni0 = minfni0gg if � = Lmax

minfhi� + ti�;ni�+1Wminfni0g+1
;

hi0 + si�i0Wminfni0g+1
: ni0 = minfni0gg if � =

P
wjCj:

Case 3: minfni0g < ni� = n: All the operations on the current machine i
� are

processed. The operator sets up one of the machines i0 with ni0 = minfni0g:

h =

�
minfhi0 + si�i0 : ni0 = minfni0gg if � 2 fCmax; Lmaxg
minfhi0 + si�i0Wminfni0g+1

: ni0 = minfni0gg if � =
P
wjCj:

Initialization and optimal value: For all i� and n1 = n2 = ::: = nm = n the

objective function value h(n1; n2; :::; nm; i
�) is initialized as follows:

h(n1; n2; :::; nm; i
�) =

8<
:

0 if � = Cmax

�1 if � = Lmax

0 if � =
P
wjCj

The optimal objective value is given as

h
� =

8>><
>>:

minfh(n1; n2; :::; nm; i
0)

+s0i0 : 1 � i
0 � mg; ni = 08i if � 2 fCmax; Lmaxg

minfh(n1; n2; :::; nm; i
0)

+s0i0W1 : 1 � i
0 � mg; ni = 08i if � =

P
wjCj

Running time: The number of h(n1; n2; :::; nm; i
�) values computed is, O(m(n+1)m)

and each value h(n1; n2; :::; nm; i
�) is computed in O(m) time. Hence, the running

time of the above dynamic programming scheme is O(m2(n +1)m): However, in case

of � = Cmax; we may assume that n = 1: Hence, the running time is O(m22m):

CHAPTER 4. THE FIXED-SEQUENCE CASE 105

Theorem 4.3 Problem 1Omjsii0 ;�xed sequencej�, is solved in O(m2(n + 1)m) time

if � 2 fLmax,
P
wjCjg and in O(m22m) time if � = Cmax.

Corollary 4.3.1 The problem 1Omjsii0jCmax is solved in O(m22m) time.

Corollary 4.3.2 The problem 1Omjsii0jLmax is solved in O(m2(n+ 1)m) time.

Corollary 4.3.3 The problem 1Omjsii0 ;aptwjPwjCj is solved in O(m2(n + 1)m)

time.

4.4.2 Flow Shop Sequence-Independent Cases

We shall now discuss the computation of h(n1; n2; :::; nm; i
�); n � n1 � n2 � ::: �

nm � 0; 1 � i
� � m for 1Fmjsi;�xed sequencej�, where � 2 fLmax;

P
wjCjg.

Suppose that the following values are computed before computing h(n1; n2; :::; nm; i
�) :

h(n01; n
0
2; :::; n

0
m; i

�); n
0
i = ni; if i 6= i

� and n
0
i� = ni� + 1

h(n01; n
0
2; :::; n

0
m; i

� + 1); n
0
i = ni;8i

h(n01; n
0
2; :::; n

0
m; i

0); n
0
i = ni;8i and i

0 = minfi : ni = nmg:
De�ne:

h = h(n1; n2; :::; nm; i
�)

hi� = h(n01; n
0
2; :::; n

0
m; i

�); n
0
i = ni; if i 6= i

� and n
0
i� = ni� + 1

hi�+1 = h(n01; n
0
2; :::; n

0
m; i

� + 1); n
0
i = ni;8i

hi0 = h(n01; n
0
2; :::; n

0
m; i

0); n
0
i = ni;8i and i

0 = minfi : ni = nmg:

In the following, we shall compute h:We shall assume that only operations f(i; ni +1);

(i; ni +2); :::; (i; n) : 1 � i � mg are to be processed and the processing of operations

f(i; ni +1); (i; ni +2); :::; (i; n) : 1 � i � mg starts at time zero when machine i� is

the current machine. The operator has two choices: either process operation (i�; ni�

CHAPTER 4. THE FIXED-SEQUENCE CASE 106

+1) or set up a machine. If i� < m; only machine (i� +1) is a candidate for setup. If

i
� = m; only machine i0 is a candidate for setup; where i0 = minfi : ni = nmg:

Case 1: ni� = nm < n: The current machine i� does not have a positive inventory.

We analyze this case in three separate subcases. In each subcase the operator has

only one choice of the next activity which precedes completion of each job j; (nm +1)

� j � n:

Case 1a: i� = m and nm < ni � n for all i 6= m: The operator processes operation

(i�; ni� +1) which is the last operation of job (ni� +1): Thus

h =

�
maxftm;nm+1 � dnm+1; hm + tm;nm+1g if � = Lmax

hm + tm;nm+1Wnm+1 if � =
P
wjCj :

Case 1b: i� = m and nm = ni < n for at least one i 6= i
�
: The operator sets up

machine i0 such that i0 = minfi : ni = nmg: Thus

h =

�
hi0 + si0 if � = Lmax

hi0 + si0Wnm+1 if � =
P
wjCj:

Case 1c: i� < m and ni� = nm < n: The operator processes operation (i�; ni� +1)

which is not the last operation of job (ni� +1): Thus

h =

�
hi� + ti�;ni�+1 if � = Lmax

hi� + ti�;ni�+1Wnm+1 if � =
P
wjCj:

Case 2: i� < m and nm < ni� < n: One choice of the operator is to process operation

(i�; ni� +1): In this case, operation (i�; ni� +1) cannot be the last operation of job

(ni� +1) because i� 6= m: Another choice of the operator is to set up the next machine

(i� + 1): Thus

CHAPTER 4. THE FIXED-SEQUENCE CASE 107

h =

�
minfhi� + ti�;ni�+1; hi�+1 + si�+1g if � = Lmax

minfhi� + ti�;ni�+1Wnm+1; hi�+1 + si�+1Wnm+1g if � =
P
wjCj:

Case 3: i� < m and nm < ni� = n: The operator sets up the next machine (i� + 1):

Thus

h =

�
hi�+1 + si�+1 if � = Lmax

hi�+1 + si�+1Wnm+1 if � =
P
wjCj:

Initialization and optimal value: For n1 = n2 = ::: = nm = n the objective

function value h(n1; n2; :::; nm; m) is initialized as follows:

h(n1; n2; :::; nm; m) =

� �1 if � = Lmax

0 if � =
P
wjCj

The optimal objective value is given as

h
� =

�
h(n1; n2; :::; nm; 1) + s1; ni = 08i if � = Lmax

h(n1; n2; :::; nm; 1) + s1W1; ni = 08i if � =
P
wjCj

Running time: The running time is slightly better in the ow shop sequence-

independent case than open shop sequence-dependent case. The number of h(n1;

n2; :::; nm; i
�) values computed is O(m(n + 1)m); and each value h(n1; n2; :::; nm;

i
�) is computed in constant time. Hence, the running time of the above dynamic

programming scheme is O(m(n+ 1)m):

Theorem 4.4 The problem 1Fmjsi;�xed sequencej�, � 2 fLmax,
P
wjCjg is solved

in time O(m(n+ 1)m).

Corollary 4.4.1 The problem 1FmjsijLmax is solved in O(m(n + 1)m) time.

CHAPTER 4. THE FIXED-SEQUENCE CASE 108

Corollary 4.4.2 The problem 1Fmjsi;aptwjPwjCj is solved in O(m(n+1)m) time.

We must note here that the problem 1Fmjsi;�xed sequencejPwjCj and, there-

fore, the problem 1Fmjsi; aptwjPwjCj can be solved more e�ciently. This will be

shown in Chapter 7.

4.5 Summary

In this Chapter we consider the �xed-sequence case, in which the job-orders on all

the machines are known and �xed. Theorems 4.1 and 4.2 show the importance of

the �xed-sequence cases. For minimizing maximum lateness, there exists an optimal

schedule in which the jobs are processed in the EDD order on all machines. For

minimizing total weighted completion time, there exists an optimal schedule in which

jobs are processed in the order 1, 2,..., n on all machines, if the processing times and

weights are agreeable. Hence, a solution to the �xed-sequence case, in turn solves a

large number of cases.

We use the dominance properties developed in Chapter 3 and apply the dynamic

programming approach of Psaraftis [97], Ahn and Hyun [3], Ghosh [47] and Ghosh and

Gupta [48] in order to solve the problems 1Omjsii0 ;�xed sequencej� for � 2 fCmax;

Lmax;
P
wjCjg and 1Fmjsi;�xed sequencej� for � 2 fLmax;

P
wjCjg:

In Table 4.2, we summarize the running times of the dynamic program for various

�xed-sequence cases and compare them with those of some existing algorithms. Note

CHAPTER 4. THE FIXED-SEQUENCE CASE 109

that we improve the running time of the problem 1Fmjsi;aptw jPwjCj to O(mn3)

in Chapter 7.

Problem Result (Chapter 4) Previously Known Re-

sult

1OmjsijLmax O(m2(n+ 1)m) O(m2(n + 1)m) (Ghosh and

Gupta [48], Gerodimos et al.

[46])

1Omjsi;aptw jPwjCj O(m2(n+ 1)m) O(m2(n + 1)m) (Gerodimos
et al. [46])

1FmjsijLmax O(m2(n+ 1)m) |

1Fmjsi;aptw jPwjCj O(m2(n+ 1)m) |

1Omjsii0 jCmax O(m22m) |

1Omjsii0 jLmax O(m2(n+ 1)m) O(m2(n + 1)m) (Ghosh and
Gupta [48])

1Omjsii0 ;aptw jPwjCj O(m2(n+ 1)m) |

Table 4.2: Running times of some �xed-sequence cases

Chapter 5

Two-Machine Problem with

Maximum Lateness Objective

In this chapter we shall consider problems 1O2jsijLmax and 1F2jsijLmax. The dynamic

programming scheme discussed in Chapter 4 can be used to solve both problems in

O(n2) time. The problem 1O2jsijLmax can be solved in O(n2) time by a dynamic pro-

gramming recursion given by Gerodimos et al. [45]. Yet another strategy (Gerodimos

et al. [46], Potts and Kovalyov [95]) to solve the problem 1O2jsijLmax is to apply the

algorithm of Ghosh and Gupta [48] directly by reducing the problem 1O2jsijLmax

to the special case of the problem 1jsii0 jLmax as discussed in Section 4.2.2. The

two-machine problem 1O2jsijLmax reduces to a two-family problem. The algorithm

of Ghosh and Gupta [48] has a running time O(m2
n
m) for m families. Hence, the

problem 1O2jsijLmax is solved in O(n2) time.

It is not known whether the ow shop problem 1F2jsijLmax can be reduced to the

problem 1jsii0jLmax. However, another previously studied problem is related to the

110

CHAPTER 5. MAXIMUM LATENESS 111

problem 1F2jsijLmax: As we have discussed in Section 3.5, the problem 1js1; F = 1j�

is a special case of the problem 1F2jsij�: Webster and Baker [121] discuss an O(n2)

time algorithm for the problem 1js1; F = 1jLmax.

In this chapter we shall show that by using a common dynamic programming

scheme, both the problems 1O2jsijLmax and 1F2jsijLmax can be solved in O(n) time

after due date sorting. We thus obtain a common approach which solves both the

open shop and ow shop cases. Moreover, we obtain an improvement on the algorithm

of Webster and Baker [121] for the problem 1js1; F = 1jLmax:

It follows from Theorems 3.6 and 4.1 that there exists an optimal schedule which

is a batching schedule and in which the jobs are arranged in the Earliest Due Date

(EDD) order. Hence, we may assume, by relabelling if necessary that the jobs are

arranged in the order 1, 2, ..., n: Our problem thus reduces to identifying the batches

and, in the open shop case, deciding which machine to start �rst.

5.1 The Open Shop Problem

Let �ij denote the total processing time of batch [i; j]: �ij =
Pj

l=i
(t1l + t2l). De�ne

the following quantities:

fij (resp., gij) is the maximum lateness of jobs in batch [i; j] if post-setup processing

of this batch starts at time zero on machine 1 (resp., machine 2);

CHAPTER 5. MAXIMUM LATENESS 112

f
�
ij (resp., g�ij) is the optimal maximum lateness of jobs i; : : : ; n, given that batch

[i; j] starts post-setup processing at time zero on machine 1 (resp., machine 2);

and

L1i (resp., L2i) is the optimal maximum lateness of jobs i; : : : ; n, given that job i

starts post-setup processing at time zero on machine 1 (resp., machine 2).

The optimal value of maximum lateness is L�
max = min fL11 + s1; L21 + s2g.

The following equations|which appear, super�cially to involve circularity|can

be implemented in a recursive, non-circular manner. For 1 � i � j � n:

fij = max
i�k�j

f
kX
l=i

t2l � dkg+ s2 +

jX
l=i

t1l (5.1)

gij = max
i�k�j

f
kX
l=i

t1l � dkg+ s1 +

jX
l=i

t2l (5.2)

f
�

ij =

�
fin

maxffij; L2(j+1) + �ij + s2g
for j = n

for j < n
(5.3)

g
�

ij =

�
gin

maxfgij; L1(j+1) + �ij + s1g
for j = n

for j < n
(5.4)

L1i = min
i�j�n

ff�ijg (5.5)

L2i = min
i�j�n

fg�ijg: (5.6)

Equations (5.1){(5.4) determine fnn, gnn, f�nn and g�nn. Then equations (5.5){(5.6)

determine L1n and L2n, from which equations (5.1){(5.4) determine fij, gij , f
�
ij and

g
�
ij for i = n � 1 and j = n � 1; n. Continuing in this way determines the quantities

in (5.3){(5.6) for all i and j. A straightforward implementation of this type will

CHAPTER 5. MAXIMUM LATENESS 113

determine an optimal batching schedule in O(n2) computations. However, we can

reduce the computational complexity to O(n) through a more detailed analysis.

5.1.1 A Network Representation

Before we move on, let us discuss a network representation of the problem. Introduce

a dummy job (n + 1): De�ne a directed network G = (V;E) with node-set V =

f0g[V1[V2 and arc-set E = E0 [E1 [E2: For each operation (1; j); there is a node

aj in V1: For each operation (2; j); there is a node bj in V2: Arc-set E0 contains only

two arcs h0; a1i and h0; b1i : For all 1 � j < j
0 � (n+ 1) there is an arc haj; bj0i in E1

and an arc hbj; aj0i in E2:

Node 0 represents the initial state. Arc h0; a1i represents the setup of machine 1

at time zero. Arc h0; b1i represents the setup of machine 2 at time zero. Each arc

haj; bj0i represents processing of batch [j; j 0 � 1] starting on machine 1 and each arc

hbj; aj0i represents processing of batch [j; j0 � 1] starting on machine 2.

Each arc e is associated with two weights r(e) and r0(e): The weight r(e) represents

a maximum lateness and weight r0(e) represents total processing time. Consider an

arc e = haj; bj0i : The weight r(e) = fj(j0�1) is the maximum lateness of jobs in batch

[j; j0 � 1] if the batch starts post-setup processing on machine 1 at time zero. The

weight r0(e) = �j(j0�1)+s2 is the length of time by which the batch [j; j 0�1] delays all

the operations and setups that follow batch [j; j 0 � 1]. Similarly, for arc e = hbj; aj0i ;

we have r(e) = gj(j0�1) and r
0(e) = �j(j0�1) + s1: Arc e = h0; a1i does not represent

CHAPTER 5. MAXIMUM LATENESS 114

any batch, so we set r(e) = �1: However, the arc represents a setup operation on

machine 1, so we set r0(e) = s1: Similarly, for arc e = h0; b1i we have r(e) = �1 and

r
0(e) = s2:

The length of a path � = he1; e2; :::; eki is

L(�) = max
1�u�k

fr(eu) +

u�1X
v=1

r
0(ev)g (5.7)

If path � starts from node 0; then � represents an initial setup and some batches.

In this case, the length of � represents the maximum lateness when the initial setup

and all the batches represented by � are carried out at time zero. If path � does not

start from node 0; then � represents only some batches. In this case, the length of �

represents the maximum lateness when all the batches represented by � are carried

out at time zero.

The problem is to �nd a shortest path from node 0 to an+1 or bn+1:

Consider a path � = he1; e2; :::; eki with k > 1 and its subpath �
0 = he2; :::; eki :

From Equation 5.7, we get

L(�) = max
2�u�k

fr(e1); r(eu) +

u�1X
v=1

r
0(ev)g

= max
2�u�k

fr(e1); r0(e1) + r(eu) +

u�1X
v=2

r
0(ev)g

= maxfr(e1); r0(e1) + max
2�u�k

fr(eu) +

u�1X
v=2

r
0(ev)gg

= maxfr(e1); r0(e1) + L(�0)g: (5.8)

CHAPTER 5. MAXIMUM LATENESS 115

Let e1 = haj; bj0i for 1 � j < j
0 � n. It follows from Equation 5.8 that the length

of a shortest path from node aj to an+1 or bn+1 with the �rst arc e1 is maxfr(e1);

r
0(e1) +L�bj0g; where L�

bj0
is the shortest path from node bj0 to node an+1 or bn+1: Thus,

a shortest path from node aj to an+1 or bn+1 is

min
1�j<j0�n

fmaxfr(aj; bj0); r0(aj; bj0) + L
�

bj0
g; r(aj; bn+1)g:

Similarly, a shortest path from node bj to an+1 or bn+1 is

min
1�j<j0�n

fmaxfr(bj ; aj0); r0(bj; aj0) + L
�

aj0
g; r(bj; an+1)g;

where L�aj0 is the shortest path from node aj0 to an+1 or bn+1:

Thus, we get a dynamic programming recursion which is implemented using Equa-

tions 5.1 to 5.6. We shall now interpret the variables f�jj0 ; g
�
jj0 ; L1j ; and L2j: For

1 � j � j0 � n;

f
�
jj0 is the length of a shortest path from node aj when arc haj; bj0+1i is chosen;

g
�
jj0 is the length of a shortest path from node bj when arc hbj; aj0+1i is chosen;

L1j is the length of a shortest path from node aj; and

L2j is the length of a shortest path from node bj:

The length of a shortest path from node 0 is maxf�1; s1 +L11g = (s1 + L11)

when arc h0; a1i is chosen, and is maxf�1; s2 +L21g = (s2 +L21) when arc h0; b1i is

chosen. Hence, the length of a shortest path from node 0 is min fs1 + L11; s2 + L21g:

CHAPTER 5. MAXIMUM LATENESS 116

a1 a2 a3

0

a4

b1 b2 b3 b4

�

�
,2 -3

0,
12

-23,27

-33 ,1
7

-25,32
-15,42

-4
7,

17

-29,13

-20,28

-32, 18

-13,43

-25,33

-46,18�

�,3

-46-29-19

-19 -47-29

-17

Figure 5.1: A network representation of the two-machine open shop problem

Example 5.1 Consider the following problem involving n = 3 jobs with s1 = 2 and

s2 = 3:

j 1 2 3
t1j 8 9 7

t2j 2 6 8

dj 42 50 64

Introduce a dummy job 4. The nodes are 0, a1; :::; a4 and b1; :::; b4. The corre-

sponding graph and arc weights are shown in Figure 5.1. As we have discussed above

the arc weights are computable functions of processing times, due dates and setup

times. For example,

r(a1; b3) = f1(3�1) = f12

= maxft21 � d1; t21 + t22 � d2g+ s2 + (t11 + t12) from Equation 5.1

= maxf2� 42; 2 + 6 � 50g + 3 + (8 + 9) = �20 and

r
0(a1; b3) = �1(3�1) + s2 = �12 + s2

= (8 + 9 + 2 + 6) + 3 = 28

The shortest paths are computed �rst from nodes a3 and b3; then from nodes a2

and b2 and so on. For example, the length of a shortest path from node a1;

CHAPTER 5. MAXIMUM LATENESS 117

L
�
a1

= minfmaxfr(a1; b2); r0(a1; b2) + L
�
b2
g;maxfr(a1; b3); r0(a1; b3) + L

�
b3
g; r(a1; b4)g

= minfmaxf�29; 13 + (�29)g;maxf�20; 28 + (�47)g;�13g = �19

A shortest path from node 0 is hh0; a1i ; ha1; b3i ; hb3; a4ii : Arc h0; a1i represents

setting up of machine 1, arc ha1; b3i represents batch [1; 2] and arc hb3; a4i represents

batch [3; 3]: Hence, an optimal solution is to start from machine 1 and use batching

policy (2; 3): The corresponding sequence of operations is (1; 1); (1; 2); (2; 1); (2; 2);

(2; 3); (1; 3):

We shall now discuss an O(n) time implementation of the above dynamic pro-

gramming recursion. Our implementation utilizes the results developed below.

5.1.2 Useful Facts

Proofs of the following results are given below.

Fact 5.1 For i � j � k: (i) fik � fij +
Pk

l=(j+1) t1l; (ii) fik � fjk + �i(j�1); (iii)

gik � gij +
Pk

l=(j+1)
t2l; and (iv) gik � gjk + �i(j�1).

Fact 5.2 For i � n: (i) L1i � max
i�j�n

f�ij�djg+s2; and (ii) L2i � max
i�j�n

f�ij�djg+s1.

Fact 5.3 For i � n: (i) L2i + s2 � L1i; and (ii) L1i + s1 � L2i.

Fact 5.4 For 1 � i < j � n: (i) L1i � L1j + �i(j�1); and (ii) L2i � L2j + �i(j�1).

CHAPTER 5. MAXIMUM LATENESS 118

Proofs of Facts

Proof of Fact 1: Statement (i) follows from the relation maxi�u�kf
Pu

l=i t2l �dug

+
Pk

l=i
t1l � maxi�u�jf

Pu

l=i
t2l �dug +

Pj

l=i
t1l +

Pk

l=j+1
t1l. Statement (ii) follows

from the relation maxi�u�kf
Pu

l=i t2l �dug � maxj�u�kf
Pu

l=j t2l �dug +
Pj�1

l=i t2l.

Statements (iii) and (iv) follow similarly.

Proof of Fact 2: Statements (i) and (ii) are clearly true for i = n. Suppose they

are true for all i � p, for some p with 2 � p < n. Now let i = p � 1, and note that

L1i = f
�
ik for some k, i � k � n. Statement (i) is proved for i = p� 1 by showing (a)

f
�
ik � maxi�j�kf�ij � djg+ s2, and (b) f�ik � maxk+1�j�nf�ij � djg+ s2 if k < n.

To show (a), note that maxi�j�kf�ij � djg = �ij0 � dj0 for some i � j
0 � k. Thus,

maxi�j�kf�ij �djg +s2 =
Pj0

l=i t2l �dj0 +s2 +
Pj0

l=i t1l �
Pj0

l=i t2l �dj0 +s2 +
Pk

l=i t1l

� maxi�j�kf
Pj

l=i t2l �djg +s2 +
Pk

l�i t1l = fik � f
�
ik, as required.

To show (b), observe from (5.1) that for k < n, f�ik � L2(k+1) +s2 +�ik. The induc-

tion hypothesis gives L2(k+1) � maxk+1�j�nf�(k+1)j �djg+s1, so f�ik � maxk+1�j�nf�(k+1)j

�djg +s1 +s2 +�ik = maxk+1�j�n f�ij �djg +s2 +s1 � maxk+1�j�nf�ij �djg +s2,

as required. Statement (ii) is proved similarly.

Proof of Fact 3: Statements (i) and (ii) are true for i = n. Suppose they are true

for all i � p, for some p with 2 � p � n. Let i = p � 1 and note that L2i = g
�
ik

for some k, i � k � n. There are two cases: (a) k = i, and (b) k > i. Note that

gii + s2 � fii and, by the induction hypothesis, L1(i+1) + s1 � L2(i+1).

CHAPTER 5. MAXIMUM LATENESS 119

In case (a), L2i + s2 = g
�
ii + s2 = maxfgii + s2; L1(i+1) + �ii + s1 + s2g �

maxffii; L2(i+1) + �ii + s2g = f
�
ii � L1i, as required.

In case (b), use Facts 5.1(iii) and 5.1(iv) to get gik + s2 � gii + s2 � fii and

gik + s2 � g(i+1)k + �ii + s2. Thus, L2i + s2 = maxfgik + s2; L1(k+1) + �ik + s1 + s2g �

maxffii; g(i+1)k+�ii+s2; L1(k+1)+�ik+s1+s2g = maxffii;maxfg(i+1)k; L1(k+1)+�(i+1)k+

s1g+ �ii + s2g = maxffii; g�(i+1)k + �ii + s2g � maxffii; L2(i+1) + �ii + s2g = f
�
ii � L1i,

as required.

Statement (ii) is proved similarly.

Proof of Fact 4: Statements (i) and (ii) are true for i = n � 1. Suppose they are

true for all i � p, for some p with 2 � p � n�1. Let i = p�1 and note that L1i = f
�
ik

for some k, i � k � n. There are three cases: (a) k = n, (b) j � k < n, and (c)

k < j.

In case (a), L1i = f
�
in = fin � fjn + �i(j�1), from Fact 5.1(ii). Thus L1i �

f
�
jn + �i(j�1) � L1j + �i(j�1).

In case (b), Fact 5.1(ii) gives fik � fjk + �i(j�1), so L1i = f
�
ik = maxffik; L2(k+1) +

�ik + s2g � maxffjk + �i(j�1); L2(k+1) + �jk + �i(j�1) + s2g = maxffjk; L2(k+1) + �jk +

s2g+ �i(j�1) = f
�
jk + �i(j�1) � L1j + �i(j�1).

In case (c), L1i = f
�
ik � L2(k+1) + �ik + s2. If k + 1 = j, L1i � L2j + �i(j�1) + s2

� L1j+�i(j�1), from Fact 5.3(i). If k+1 < j, the induction hypothesis gives L2(k+1) �

L2j + �(k+1)(j�1), so L1i � L2j + �(k+1)(j�1) + �ik + s2 = L2j + �i(j�1) + s2 � L1j + �i(j�1),

CHAPTER 5. MAXIMUM LATENESS 120

from Fact 5.3(i).

In all cases, statement (i) holds for i = p� 1.

The proof of statement(ii) is similar.

5.1.3 Useful Lemmas

We use the following concept.

De�nition 5.1 (i) Job k� is M1-critical in batch [i; j] if k� = arg maxi�k�jf
kX
l=i

t1l�

dkg; (ii) job k� is M2-critical in batch [i; j] if k� = arg maxi�k�jf
kX
l=i

t2l � dkg.

The following results permit restriction of the search space in determining an

optimal policy. Lemma 5.1 implies that for jobs i; : : : ; n there is an optimal policy

whose initial batch extends at least as far as a critical job. Lemma 5.2 implies that an

optimal initial batch for jobs i; : : : ; n ends on or before the end of an optimal initial

batch for jobs i+ 1; : : : ; n. Finally, Lemma 5.3 implies that if the initial batch [i; j] is

better than the initial batch [i; j � 1], then an optimal initial batch for jobs i; : : : ; n

extends at least to job j. Proofs of the Lemmas are deferred to the next subsection.

Lemma 5.1 For i � j � n: (i) if job k� is M1-critical in batch [i; j], then L2i =

mink��l�nfg�ilg; and (ii) if job k� is M2-critical in batch [i; j], then L1i = mink��l�nff�ilg.

Lemma 5.2 For 1 � i < j < l � n: (i) if f�
(i+1)j

� f
�

(i+1)l
, then f

�
ij � f�il ; and (ii) if

g
�
(i+1)j � g

�
(i+1)l, then g

�
ij � g�il.

CHAPTER 5. MAXIMUM LATENESS 121

In terms of the network representation, Lemma 5.2 provides a rule for node elimi-

nation. Consider 1 � i < j < l � n: Suppose that the shortest paths from nodes ai+1;

:::; an+1 and bi+1; :::; bn+1 are computed and it is found that arc hai+1; bl+1i is not a

better choice than arc hai+1; bj+1i ; i.e., the length of a shortest path containing arc

hai+1; bl+1i is not less than that of a shortest path containing arc hai+1; bj+1i : State-

ment (i) implies that arc hai; bl+1i is not a better choice than arc hai; bj+1i : Applying

the same statement again, since arc hai; bl+1i is not a better choice than arc hai; bj+1i ;

arc hai�1; bl+1i is not a better choice than arc hai�1; bj+1i : Proceeding similarly we

can conclude that node bl+1 can be eliminated from further consideration.

Statement (ii) similarly suggests that if for 1 � i < j < l � n; arc hbi+1; al+1i

is not a better choice than arc hbi+1; aj+1i ; then node al+1 can be eliminated from

further consideration.

The node elimination rule can thus be stated as follow: if the longer arc is not

better, then eliminate node. More precisely, if for 1 � i < j < l � n a shortest

path from node ai+1 with the �rst arc hai+1; bl+1i is not shorter than a shortest path

from node ai+1 with the �rst arc hai+1; bj+1i ; then eliminate node bl+1: Similarly, if

for 1 � i < j < l � n a shortest path from node bi+1 with the �rst arc hbi+1; al+1i is

not shorter than a shortest path from node bi+1 with the �rst arc hbi+1; aj+1i ; then

eliminate node al+1:

CHAPTER 5. MAXIMUM LATENESS 122

a2 a3 a4

b2 b3 b4

a5

b5

a1

b1

-25,33

-32, 18

-20,28

-13,43

-47

-1,45
-8,30

Figure 5.2: Elimination of node b5

Example 5.2 Consider the following problem involving n = 4 jobs with s1 = 2 and

s2 = 3:

j 1 2 3 4
t1j 1 8 9 7

t2j 1 2 6 8
dj 30 42 50 64

The node elimination rule is illustrated in Figure 5.2 with i = 2; j = 3 and

l = 4: When we compute a shortest path from node a3; we �nd that the length of

a shortest path is �25, if arc ha3; b5i is chosen. However, if arc ha3; b4i is chosen a

shorter path is obtained with the length = maxf�32; 18 + (�47)g = �29: Hence, the

longer arc ha3; b5i is not better than the shorter arc ha3; b4i : Statement (i) of Lemma

5.2 implies that node b5 can be eliminated from the computation of a shortest path

from nodes a2; a1; etc. Observe that from node a2 the length of a shortest path

is �13; if arc ha2; b5i is chosen and maxf�20; 28 + (�47)g = �19; if arc ha2; b4i is

chosen. From node a1 the length of a shortest path is �1; if arc ha1; b5i is chosen and

maxf�8; 30 + (�47)g = �8; if arc ha1; b4i is chosen. Hence, arcs ha2; b4i and ha1; b4i

CHAPTER 5. MAXIMUM LATENESS 123

are better than arcs ha2; b5i and ha1; b5i ; respectively: Thus, elimination of node b5 is

justi�ed.

Lemma 5.3 For 1 � i � l < j � 1 � n � 1: (i) if f�
i(j�1) > f

�
ij, then f

�
il > f

�
ij ; and

(ii) if g�i(j�1) > g
�
ij , then g

�
il > g

�
ij.

In terms of the network representation, Lemma 5.3 provides a rule for arc elimi-

nation. Consider 1 � i � l < j� 1 � n� 1; and consider the problem of computing a

shortest path from node ai: Suppose that arc hai; bji is a strictly worse choice than arc

hai; bj+1i : Statement (i) implies that arc hai; bl+1i is a strictly worse choice than arc

hai; bj+1i : This means that every arc hai; bj0i with (i+ 1) � j
0
< j can be eliminated.

Statement (ii) similarly suggests that if for 1 � i � l < j � 1 � n � 1; the

arc hbi; aji is a strictly worse choice than arc hbi; aj+1i ; then every arc hbi; aj0i with

(i+ 1) � j 0 < j can be eliminated.

The arc elimination rule can thus be stated as follow: if the longer arc is better,

then eliminate all shorter arcs. More precisely, if for 1 � i � (n � 2); 3 � j � n; a

shortest path from node ai with the �rst arc hai; bj+1i is shorter than a shortest path

from node ai with the �rst arc hai; bji ; then eliminate arc hai; bj0i with (i+1) � j
0
< j:

Similarly, if for 1 � i � (n�2); 3 � j � n; a shortest path from node bi with the �rst

arc hbi; aj+1i is shorter than a shortest path from node bi with the �rst arc hbi; aji ;

then eliminate all arcs hbi; aj0i with (i+ 1) � j
0
< j:

CHAPTER 5. MAXIMUM LATENESS 124

a2 a3 a4

b2 b3 b4

a5

b5

a1

b1

-18,29-24,14
-2

6,4

-46-29-19

Figure 5.3: Elimination of arc hb1; a2i

Considering the data shown in Example 5.2, we illustrate the arc elimination rule

in Figure 5.3 with i = 1; j = 3 and l = 1: When we compute a shortest path from

node b1; we �nd that the length of a shortest path is maxf�18; 29 + (�46)g = �17;

if arc hb1; a4i is chosen and maxf�24; 14 + (�29)g = �15; if arc hb1; a3i is chosen.

Hence, the longer arc hb1; a4i is better that the shorter arc hb1; a3i : Statement (ii) of

Lemma 5.3 implies that arc hb1; a2i can be eliminated. Since, the length of a shortest

path is maxf�26; 4 + (�19)g = �15; if arc hb1; a2i is chosen, the elimination of arc

hb1; a2i is justi�ed.

Proofs of the Lemmas

Proof of Lemma 1: (i) Suppose the result does not hold. Then, there is a batch

[i; j] and an M1-critical job k
� in [i; j] such that L2i < mink��l�nfg�ilg. This implies

the existence of k, i � k � k�� 1, such that L2i = g
�
ik < mink��l�nfg�ilg, so g�ik < g

�
ik�.

If k� = n (requiring j = n), g�ik = maxfgik; L1(k+1) + �ik + s1g < gin. This implies

CHAPTER 5. MAXIMUM LATENESS 125

L1(k+1)+�ik+s1 < gin = maxi�j�nf
Pj

l=i
t1l�djg+s1+

Pn

l=i
t2l =

Pn

l=i
t1l�dn+s1+

Pn

l=i t2l (since job n is M1-critical). Thus, L1(k+1) < �(k+1)n � dn, which contradicts

Fact 5.2(i).

If k� < n, g�ik < g
�
ik� gives maxfgik; L1(k+1) + �ik + s1g < maxfgik� ; L1(k�+1) + �ik� +

s1g, so L1(k+1)+�ik+s1 < maxfgik�; L1(k�+1)+�ik�+s1g. Now gik� = maxi�j�k�f
Pj

l=i t1l

�djg +s1 +
Pk�

l=i
t2l =

Pk�

l=i
t1l � dk� + s1 +

Pk�

l=i
t2l, because k� is M1-critical. If

L1(k+1)+�ik+s1 < gik� we have L1(k+1) < �(k+1)k��dk� , which contradicts Fact 5.2(i).

If L1(k+1) +�ik +s1 < L1(k�+1) +�ik� +s1 we have L1(k+1) < L1(k�+1) +�(k+1)k�, which

contradicts Fact 5.4(i).

These contradictions prove (i). Statement (ii) is proved similarly.

Proof of Lemma 2: (i) Since f�(i+1)l = maxff(i+1)l; L2(l+1) + �(i+1)l + s2g � f
�

(i+1)j,

either (a) f(i+1)l � f
�
(i+1)j, or (b) L2(l+1) + �(i+1)l + s2 � f

�
(i+1)j.

In case (a) f(i+1)l � f
�

(i+1)j
� L2(j+1) + �(i+1)j + s2: From Fact 5.1(i) and (ii)

fil � maxffij; f(i+1)lg � f�ij : Hence, f�il � fil � f
�
ij; as required.

In case (b), L2(l+1)+�(i+1)l+s2 � f�(i+1)j � L2(j+1)+�(i+1)j+s2 so L2(l+1)+�il+s2 �

L2(j+1) + �ij + s2. Fact 5.1(i) gives fil � fij, so f
�
il = maxffil; L2(l+1) + �il + s2g �

maxffij; L2(j+1) + �ij + s2g = f
�
ij , as required.

Statement (ii) is proved similarly.

Proof of Lemma 3: (i) Since f�
i(j�1)

= maxffi(j�1); L2j + �i(j�1) + s2g > f
�
ij, either

(a) fi(j�1) > f
�
ij, or (b) L2j + �i(j�1) + s2 > f

�
ij. However, Fact 5.1(i) gives fi(j�1) �

CHAPTER 5. MAXIMUM LATENESS 126

fij � f
�
ij, so case (a) cannot occur. We thus have case (b). Now, Fact 5.4(ii), gives

L2(l+1) � L2j + �(l+1)(j�1), so L2(l+1) + �il + s2 � L2j + �i(j�1) + s2 > f
�
ij. Therefore,

f
�
il = maxffil; L2(l+1) + �il + s2g > f

�
ij. This proves (i).

Statement (ii) follows similarly.

5.1.4 The Algorithm

Algorithm 1 below is a streamlined dynamic programming recursion scheme. Each

iteration considers the problem for jobs i; : : : ; n, where i is initialized by n� 1 and is

reduced by 1 in each iteration. The iteration determines implicitly two schedules, �1i

and �2i: schedule �1i is optimal, starting from machine 1, while schedule �2i is optimal

starting from machine 2. One of these two schedules is optimal for the problem with

jobs i; : : : ; n. The �rst batch of �1i is [i; j1]. This information is stored in array Succ

by setting Succ(1; i) = j1. For j1 < n, the other batches of �1i are same as those

given by �2(j1+1). Similarly, [i; j2] is the �rst batch of �2i, this information is stored

by setting Succ(2; i) = j2. For j2 < n, other batches of �2i are same as those given

by �1(j2+1).

At the beginning of the iteration, k�2 is M2-critical in [i+ 1; j1], k
�
1 is M1-critical

in batch [i+ 1; j2], e1 =
Pk�

1

l=(i+1)
t1l �dk�

1
, and e2 =

Pk�
2

l=(i+1)
t2l �dk�

2
.

Since k�2 is M2-critical for batch [i+ 1; j1], at least one of i and k
�
2 is M2-critical

for batch [i; j1]. If i is critical, t2i� di � e2 + t2i and fij1 = f(i+1)j1 + t1i + t2i� di� e2,

while if k�2 is critical, t2i�di � e2+ t2i and fij1 = f(i+1)j1 + t1i+ t2i. Hence, fij1 can be

CHAPTER 5. MAXIMUM LATENESS 127

computed from f(i+1)j1 in constant time. Similarly, gij2 can be computed from gi(j2+1)

in constant time. These computations are implemented in Procedure 1.

At the beginning of the iteration, [i+ 1; j1] is the optimal �rst batch of schedule

�1(i+1) and [i+1; j2] is the optimal �rst batch of schedule �2(i+1). Procedure 2 searches

for j�1 and j
�
2 so that for m = 1; 2, batch [i; j�m] quali�es for being an optimal �rst

batch of schedule �mi. From Lemma 5.1(ii), L1i = mink�
2
�l�nff�ilg, so j�1 � k

�
2. Since

f
�
(i+1)j1

� f
�
(i+1)l for all l � j1, it follows from Lemma 5.2(i) that f�ij1 � f

�
il for all

l � j1, hence j�1 � j1. From Lemma 5.3(i) it follows that if f�
i(j�1) > f

�
ij for some j,

then f�il > f
�
ij for all l < j, so j�1 � j.

In summary: j�1 = minfj : k�2 � j � j1 and f
�
ij � f

�

i(j+1) � : : : � f
�
ij1
g. Similarly,

j
�
2 = minfj : k�1 � j � j2 and g

�
ij � g

�

i(j+1) � : : : � g
�
ij2
g. Hence, each of j�1 and j

�
2

can be obtained by a sequential search process. Such processes are implemented in

Procedure 2.

Finally, Procedure 3 identi�es an optimal schedule. If L11 + s1 � L21 + s2, the

process starts on machine 1; otherwise the process starts on machine 2. The batches

are constructed using the information stored in array Succ.

CHAPTER 5. MAXIMUM LATENESS 128

Input: t1i; t2i; di 8 1 � i � n, s1 and s2.

Output: An optimal schedule.
j1 = j2 = k

�
1 = k

�
2 = n

e1 = t1n � dn : e2 = t2n � dn
Succ(1; n) = Succ(2; n) = n

Compute fnn, gnn, �nn, f�nn, g�nn, L1n, L2n

For i = (n� 1) down to 1 do

Update critical jobs and fij1 , gij2 , e1, and e2 using Procedure 1

�ij1 = �(i+1)j1 + t1i + t2i : �ij2 = �(i+1)j2 + t1i +t2i
Update j1, j2, f

�
ij1

and g
�
ij2

from Procedure 2

Succ(1; i) = j1 : Succ(2; i) = j2

L1i = f
�
ij1

: L2i = f
�
ij2

EndFor
Construct an optimal schedule using Procedure 3

Algorithm 1: Open Shop Lmax Problem

If t2i � di � e2 + t2i then

k
�
2 = i : fij1 = f(i+1)j1 + t1i + t2i � di � e2 : e2 = t2i � di

Else
fij1 = f(i+1)j1 + t1i + t2i : e2 = e2 + t2i

EndIf

If t1i � di � e1 + t1i then
k
�
1 = i : gij2 = g(i+1)j2 + t1i + t2i � di � e1 : e1 = t1i � di

Else
gij2 = g(i+1)j2 + t1i + t2i : e1 = e1 + t1i

EndIf

Procedure 1: Update critical jobs and fij1 , gij2 , e1 and e2.

CHAPTER 5. MAXIMUM LATENESS 129

Compute f�ij1 , g
�
ij2

j
�
1 = j1 : j�2 = j2

Do while j�1 > k
�
2

fi(j�
1
�1) = fij�

1
� t1j�

1
: �i(j�

1
�1) = �ij�

1
� t1j�

1
� t2j�

1

Compute f�
i(j�

1
�1)

If f�i(j�
1
�1) � f

�
ij�
1

then j
�
1 = j

�
1 � 1 else Exit Do

Loop

Do while j�2 > k
�
1

gi(j�
2
�1) = gij�

2
� t2j�

2
: �i(j�

2
�1) = �ij�

2
� t1j�

2
� t2j�

2

Compute g�
i(j�2�1)

If g�i(j�
2
�1) � g�ij�2 then j�2 = j

�
2 � 1 else Exit Do

Loop
j1 = j

�
1 : j2 = j

�
2

Procedure 2: Update j1, j2, f
�
ij1

and g
�
ij2

If L11 + s1 � L21 + s2 then cm = 1 else cm = 2.

The process starts from machine cm.
i = 1
Do

j = Succ(cm; i)

[i; j] is a batch
i = j + 1
If cm = 1 then cm = 2 else cm = 1

Loop until i > n

Procedure 3: Construct an optimal schedule.

5.1.5 Complexity of the Algorithm

Procedure 1 has constant complexity and is called (n � 1) times. Throughout Al-

gorithm 1 the values of j�1, j
�
2 , k�1 and k

�
2 decrease monotonically, so each of the

conditions j�1 > k
�
2 and j�2 > k

�
1 is satis�ed at most (n�1) times. Therefore, while the

number of computations performed in successive calls to Procedure 2 may vary with

CHAPTER 5. MAXIMUM LATENESS 130

the main iteration count, the total number of computations performed in all calls to

Procedure 2 is O(n). Finally, Procedure 3 has time complexity O(n). This proves:

Theorem 5.1 Algorithm 1 solves the one-operator two-machine open shop problem

with maximum lateness objective in O(n) computations after due date sorting.

In terms of the network representation, the running time of the algorithm reduces

from O(n2) to O(n) due to the following reasons: (i) the arc weights are generated on

an \as needed" basis; (ii) every arc weight is generated from a previously generated

arc weight in constant time; and (iii) each comparison between two arcs results in a

node elimination or an arc elimination. If the longer arc is not better, we eliminate a

node and if the longer arc is better we eliminate some arcs.

We shall now illustrate Algorithm 1 with an example.

5.1.6 An Example

Example 5.3 Consider the following problem involving n = 5 jobs with s1 = 2 and

s2 = 3:

j 1 2 3 4 5
t1j 1 1 8 9 7

t2j 6 1 2 6 8

dj 25 30 42 50 64

In the following we show all the f�ij1 and g
�
ij2

computed. Observe that g�3;3 is not

computed because since job 4 is M1-critical in batch [3,4], we get from Lemma 5.1

that L2;3 = minfg�3;4; g�3;5g: Quantity f
�
3;5 is not computed because from Lemma 5.2,

CHAPTER 5. MAXIMUM LATENESS 131

f
�
4;4 � f

�
4;5 implies f�3;4 � f

�
3;5 (node elimination). For similar reasons none of f�1;3; f

�
1;4;

f
�
1;5; f

�
2;5; g

�
1;5; g

�
2;5 and g

�
3;5 are computed. Finally, g�2;2 is not computed because from

Lemma 5.3, g�2;3 > g
�
2;4 implies g�2;2 > g

�
2;4 (arc elimination).

i k
�
2 j1 f

�
ij1

L1i k
�
1 j2 g

�
ij2

L2i

5 5 5 �46 �46 5 5 �47 �47

4 4 5 �25 4 5 �25

4 4 �29 �29 4 �29 �29
3 3 4 �19 4 4 �19 �19

3 3 �16 �19
2 2 4 �8 2 4 �17

3 �14 3 �15 �17

2 �14 �14

1 1 2 �7 1 4 �7
1 �7 �7 3 �8

2 �8
1 �5 �8

Since L11 +s1 = �5 � �5 = L21 +s2; an optimal schedule with Lmax = �5 starts

on machine 1. The schedule has batches [1,1], [2,4] and [5,5].

5.2 The Flow Shop Problem

De�ne the following for 1 � i � j � n:

fij = max
i�k�j

f
kX
l=i

t2l � dkg+ s1 + s2 +

jX
l=i

t1l (5.9)

f
�

ij =

�
fin

maxffij; Lj+1 + �ij + s1 + s2g
for j = n

for j < n
(5.10)

Li = min
i�j�n

ff�ijg: (5.11)

These quantities have a simple interpretation: given that the �rst setup for job

i is started at time zero on machine 1, fij is the maximum lateness of jobs in batch

CHAPTER 5. MAXIMUM LATENESS 132

1 2 3 4

-18,30 -23,35

-27,15 -30,20 -44,20

-11,45

-44-24-14

Figure 5.4: A network representation of the two machine ow shop problem

[i; j], f�ij is the maximum lateness of jobs i; : : : ; n, given that [i; j] is a batch, and Li

is the optimal maximum lateness of jobs i; : : : ; n. The minimum value of maximum

lateness is L�
max = L1.

A network representation for the ow shop case is much simpler than in the open

shop case. Introduce a dummy job (n + 1): De�ne a directed network G = (V;E);

where V is the node-set and E is the arc-set: For each operation j; there is a node j:

For each pair of nodes j and j 0 with 1 � j < j
0 � (n +1); there is an arc hj; j0i which

represents processing of batch [j; j0�1] and is associated with weights r(j; j 0) = fj(j0�1)

and r
0(j; j0) = �j(j0�1) + s1 + s2: For example, suppose that there are three jobs 1, 2

and 3. Introduce a dummy job 4. The nodes are 1, 2, 3 and 4. The corresponding

graph is shown in Figure 5.4.

The length of a path � = he1; e2; :::; eki is L(�) = max1�u�kfr(eu) +
Pu�1

v=1
r
0(ev)g

as de�ned in Equation 5.7: The length of � represents the maximum lateness when

all the batches represented by � are carried out starting at time zero. The problem

CHAPTER 5. MAXIMUM LATENESS 133

is to �nd a shortest path from node 1 to (n+ 1):

Since the length of the path is de�ned in exactly the same way as it is in the

open shop case, we get L(�) = maxfr(e1); r0(e1) + L(�0)g as given in Equation 5.8.

Thus, proceeding in the same way as we did in the open shop case, we get that for

1 � j � n; the length of a shortest path from node j to (n+ 1) is

min
1�j<j0�n

fmaxfr(j; j 0); r0(j; j 0) + L
�

j0g; r(j; n+ 1)g:

where L�j0 is the shortest path from node j0 to (n+ 1):

Thus, we get a dynamic programming recursion which is implemented using Equa-

tions 5.9-5.11. In Equations 5.9-5.11, for 1 � j � j 0 � n; f�jj0 is the length of a shortest

path from node j when arc hj; j0 + 1i is chosen; and Lj is the length of a shortest

path from node j: Hence, an optimal solution is L1:

Considering the data shown in Example 5.1, we illustrate the network represen-

tation in Figure 5.4. There are three jobs 1, 2 and 3. Introduce a dummy job 4. The

nodes are 1, 2, 3, and 4. As in the open shop case, the arc weights are computable

functions of processing times, due dates and setup times. For example,

r(1; 3) = f1(3�1) = f12

= maxft21 � d1; t21 + t22 � d2g+ s1 + s2 + (t11 + t12) from Equation 5.9
= maxf2� 42; 2 + 6 � 50g + 2 + 3 + (8 + 9) = �18 and

r
0(1; 3) = �1(3�1) + s1 + s2 = �12 + s1 + s2

= (8 + 9 + 2 + 6) + 2 + 3 = 30

The shortest paths are computed �rst from nodes 3; then from node 2; and so on.

For example, the length of a shortest path from node 1;

CHAPTER 5. MAXIMUM LATENESS 134

L
�
1 = minfmaxfr(1; 2); r0(1; 2) + L

�
2g;maxfr(1; 3); r0(1; 3) + L

�
3g; r(1; 4)g

= minfmaxf�27; 15 + (�24)g;maxf�18; 30 + (�44)g;�11g = �14

A shortest path from node 1 is hh1; 3i ; h3; 4ii : Arc h1; 3i represents batch [1; 2]

and arc h3; 4i represents batch [3; 3]: Hence, an optimal solution is to use batching

policy (2; 3): The corresponding sequence of operations is (1; 1); (1; 2); (2; 1); (2; 2);

(1; 3); (2; 3):

However, like the open shop case, the ow shop case is also solvable in O(n) time.

This is discussed below.

De�nition 5.2 A job k� is a critical job in batch [i; j] if k� = arg maxi�k�jf
kX
l=i

t2l�

dkg.

Lemmas 5.4, 5.5 and 5.6 below are similar to Lemmas 5.1, 5.2 and 5.3 respectively.

Their proofs are also similar.

Lemma 5.4 If job k� is a critical job in batch [i; j], then Li = min
k��l�n

ff�ilg.

Lemma 5.5 For 1 � i < j < l � n: if f�(i+1)j � f�(i+1)l, then f
�
ij � f�il.

In terms of the network representation, Lemma 5.5 provides a rule for node elim-

ination. Consider 1 � i < j < l � n: If arc hi+ 1; l+ 1i is a not better choice than

arc hi+ 1; j + 1i, then node (l + 1) can be eliminated.

Lemma 5.6 For 1 � i � l < j � 1 � n� 1: if f�
i(j�1) > f

�
ij, then f

�
il > f

�
ij.

CHAPTER 5. MAXIMUM LATENESS 135

In terms of the network representation, Lemma 5.6 provides a rule for arc elimi-

nation. Consider 1 � i � l < j� 1 � n� 1: If arc hi; ji is a strictly worse choice than

arc hi; j + 1i ; then every arc hi; j0i with (i+ 1) � j
0 � j can be eliminated.

These lemmas lead to the following Algorithm 2 for the case of a ow shop.

Justi�cation is similar to that for Algorithm 1.

Theorem 5.2 Algorithm 2 solves the one-operator two-machine ow shop problem

with maximum lateness objective in O(n) time after due date sorting.

Input: t1i; t2i; di 8 1 � i � n, s1 and s2.
Output: An optimal schedule.

j = k
� = n : e = t2n � dn : Succ(n) = n

Compute fnn, �nn, f�nn, Ln
For i = (n� 1) down to 1 do

If t2i � di � e+ t2i then

k
� = i : fij = f(i+1)j + t1i + t2i � di � e : e = t2i � di

Else

fij = f(i+1)j + t1i + t2i : e = e+ t2i

EndIf
�ij = �(i+1)j + t1i + t2i : Compute f�ij : j� = j

Do while j� > k
�

fi(j��1) = fij� � t1j� : �i(j��1) = �ij� � t1j� � t2j�
Compute f�

i(j��1)

If f�
i(j��1) � f

�
ij� then j� = j

� � 1 else Exit Do

Loop

j = j
� : Succ(i) = j : Li = f

�
ij

EndFor
i = 1

Do
j = Succ(i) : [i; j] is a batch: i = j + 1

Loop until i > n.

Algorithm 2: Flow Shop Lmax Problem

CHAPTER 5. MAXIMUM LATENESS 136

5.3 Summary

In this chapter we consider problems 1O2jsijLmax and 1F2jsijLmax. Many existing

dynamic programming recursions (Gerodimos et al. [45, 46], Ghosh and Gupta [48]

and Webster and Baker [121]) solve the open shop case in O(n2) time. It is not known

whether the ow shop case can be solved similarly. The dynamic programming scheme

developed in Chapter 4 solves both the open shop and ow shop cases. However, the

running time is again O(n2): In this chapter we develop a dynamic programming

recursion which applies to both the open shop and ow shop cases and requires

O(n) time after due date sorting. Since the single machine problem 1js1; F = 1j�

is a special case of the problem 1F2jsij�; (see Section 3.5) we immediately get an

improvement of the running time of the dynamic programming recursion for the

problem 1js1; F = 1jLmax given by Webster and Baker [121].

We give a network representation of the algorithm. We show that the algorithm

resembles the shortest path algorithm if the lengths of arcs and paths are de�ned

in a particular way. In terms of the network representation, the running time of

the algorithm reduces from O(n2) to O(n) due to the following reasons: (i) the arc

weights are generated on an \as needed" basis; (ii) every arc weight is generated from

a previously generated arc weight in constant time; and (iii) each comparison between

two arcs results in a node elimination or an arc elimination. If the longer arc is not

better, we eliminate a node and if the longer arc is better we eliminate some arcs.

Chapter 6

Two-Machine Problem with The

Weighted Number of Tardy Jobs

Objective

In this chapter we shall consider problems 1Om2jsij
P
wjUj and 1F2jsij

P
wjUj.

As we have discussed in Section 3.5, the problem 1js1; F = 1jPwjUj is a special

case of the problem 1F2jsij
P
wjUj ; and Hochbaum and Landy [58] show that the

problem 1js1; F = 1jPwjUj is NP-hard. Hence, the problem 1F2jsij
P
wjCj is

NP-hard. However, when all wj = 1, the problem 1js1; F = 1jPUj is polynomially

solvable [24, 58]. In contrast, our problems are NP-hard even when all wj = 1. We

shall show that even for two machines both the ow shop and open shop problems

with the objective
P
Uj are NP-hard. Furthermore, we develop pseudo-polynomial

dynamic programming algorithms for both the ow shop and open shop problems

with objective
P
wjUj . As we have discussed in Section 1.5, a pseudo-polynomial

algorithm is the one whose running time is polynomial under unary encoding of data

137

CHAPTER 6. WEIGHTED NUMBER OF TARDY JOBS 138

and exponential under binary encoding of data.

There are two styles of algorithms for the single machine scheduling problems

with weighted number of tardy jobs objective. First, Lawler and Moore [77] present

a pseudo-polynomial dynamic programming recursion which runs in time O(n
P
tj)

where tj is the processing time of job j: Sahni [104] presents another pseudo-polynomial

dynamic programming recursion which runs in time O(n
P
wj):

Both of the above cited algorithms address the following question at the j-th

stage: given jobs 1; :::; j; does there exist a feasible schedule that has completion time

of the last early job equal to t and the weighted number of tardy jobs equal to w? It is

not necessary to enumerate over all t and all w: Instead, it is su�cient to enumerate

over all t or all w: Lawler and Moore [77] enumerate over all t: If for some j and

t; we have w� equal to the least value of w such that the answer is \yes"; then the

information is stored by setting hj(t) = w
�
: Sahni [104] enumerates over all w: If

for some j and w; we have t� equal to the least value of t such that the answer is

\yes"; then the information is stored by setting hj(w) = t
�
: In dynamic programming

terminology, Lawler and Moore [77] use the state variable t while Sahni [104] uses

the state variable w. One advantage of using w as a state variable instead of t is

that if all wj = 1; the algorithm's running time is O(n2) because
P
wj = n: Thus,

the algorithm is polynomial if all wj = 1: Sahni [104] shows that another advantage

of using w as a state variable instead of t is that the algorithm can be used to get a

CHAPTER 6. WEIGHTED NUMBER OF TARDY JOBS 139

polynomial-time approximation scheme for the weighted case.

Hochbaum and Landy [58] extend the approach of Lawler and Moore [77] to the

problem 1js1; F = 1jPwjUj . Recall that the problem 1js1; F = 1jPwjUj involves

processing jobs in batches. The completion time of a job is given by the completion

time of the batch in which the job is processed. Hochbaum and Landy [58] incorporate

a new state variable, d; that represents the earliest due date of the last early batch.

Hochbaum and Landy [58] give an O(n2 minfdmax;
P
tj+ns1g) time algorithm for the

weighted case and another O(n4) time algorithm for the case with all wj = 1: Brucker

and Kovalyov [24] present another algorithm for the problem 1js1; F = 1jPwjUj

which runs in time O(n2
P
wj):

Both the algorithms of Hochbaum and Landy [58] and Brucker and Kovalyov [24]

address the following question at the j-th stage: given jobs 1; :::; j; does there exist

a feasible schedule that has the completion time of the last early job equal to t; the

weighted number of tardy jobs equal to w and the earliest due date of the last early

batch equal to d? Hochbaum and Landy [58] use state variables t and d; while Brucker

and Kovalyov [24] use state variables w and d: One advantage of using w as a state

variable instead of t is again that if all wj = 1; the running time is O(n3). Hence, for

the case of all wj = 1; the algorithm runs in polynomial time. In this way, Brucker

and Kovalyov [24] reduce the running time for the problem 1js1; F = 1jPUj from

O(n4) proposed by Hochbaum and Landy [58]. Brucker and Kovalyov [24] show that

CHAPTER 6. WEIGHTED NUMBER OF TARDY JOBS 140

another advantage of using w as a state variable instead of t is that the algorithm

can be used to get a polynomial-time approximation scheme for the weighted case.

In this chapter we shall further extend each style of algorithms to both the open

shop and ow shop cases. We replace the state variable d by a new state variable

de�ned below. We report computational experience for problems having up to 100

jobs.

Gerodimos et al. [45, 46] have developed an O(ndmmax) time algorithm for the

single machine, m-operation problem a restricted case of which is equivalent to the

one-operator open shop problem.

6.1 Proof of NP-Hardness

Theorem 6.1 Both 1O2jsij
P
Uj and 1F2jsij

P
Uj are NP-hard.

Proof: Given an instance of the partition problem with set of integers A = fa1; :::;

akg;
P

al2A
al = 2b; we de�ne an instance each of 1O2jsij

P
Uj and 1F2jsij

P
Uj as

follows:

n = 4k

s1 = s2 = 2kb

t1j =

8<
:

2b� aj
2b

0

for j = 1; 2; :::k

for j = (k + 1); :::; 2k
for j = (2k + 1); :::; 4k

t2j =

8<
:

2b+ 2aj
2b
0

for j = 1; 2; :::k

for j = (k + 1); :::; 2k

for j = (2k + 1); :::; 4k

dj =

8<
:

b(8k + 1)

b(8k + 1)
b(6k � 1)

for j = 1; 2; :::k

for j = (k + 1); :::; 2k

for j = (2k + 1); :::; 4k

CHAPTER 6. WEIGHTED NUMBER OF TARDY JOBS 141

We shall show that the problem of checking whether there exists a schedule with

P
Uj � k is equivalent to the partition problem. First, observe that any job processed

in the second batch or later will have a completion time of at least minf2s1 + s2; s1 +

2s2g = 6kb: Therefore, all on-time jobs must be processed in the �rst batch.

Let J = fj : 1 � j � 2k and job j is in the �rst batchg: The completion time

of every job is at least s1 +s2 + mini
P

(tij : j 2 J) = 4kb +
P

(t1j : j 2 J) = 4kb

+2jJjb �P(aj : 1 � j � k and j 2 J) � 4kb +2jJjb �2b: Hence, if jJj � (k+1); then

the completion time of every job is at least 6kb and, therefore, none of the last 2k

jobs can be processed before their due dates. If none of the last 2k jobs are processed

before their due dates,
P
Uj
 k: Hence, we must have jJj � k: Again,

P
Uj � k

and n = 4k imply jJj � k: Hence, in order to get
P
Uj � k; exactly k jobs from

the �rst 2k jobs, and all jobs from the last 2k jobs must be processed in the �rst

batch and completed before their due dates. Notice also that since the last 2k jobs

are completed before their due dates, the �rst batch must start on machine 1.

In order to complete any of the last 2k jobs on time, the start time of the second

machine, which is 6kb �P(aj : 1 � j � k and j 2 J); must be less than or equal to

b(6k �1): Again, in order to complete all jobs in J on time, the completion time of

the �rst batch, which is 8kb +
P

(aj : 1 � j � k and j 2 J); must be less than or

equal to b(8k +1): Hence,
P

(aj : 1 � j � k and j 2 J) = b:

Thus, there exists a schedule with
P
Uj � k if and only if there exists B � A

CHAPTER 6. WEIGHTED NUMBER OF TARDY JOBS 142

such that
P

al 2 B
al = b:

Theorem 6.2 For both problems 1O2jsij
P
wjUj and 1F2jsij

P
wjUj there exists an

optimal schedule which is a batching schedule and in which (i) all jobs in a batch

are either early or tardy, (ii) all tardy jobs are processed in a single batch after the

completion of all early batches, and (iii) the early jobs are processed according to the

Earliest Due Date (EDD) rule.

Proof: Consider a schedule �; remove the tardy jobs and perform the left-shift

operation to obtain the semi-active schedule �0 containing the remaining jobs. The

schedule �0 does not contain any tardy job. It follows from Theorems 3.6 and 4.1

that if �0 is not a batching schedule in which jobs are processed in EDD order, a

batching schedule can be obtained from �
0 in which jobs are arranged in the EDD

order and the maximum lateness does not increase. Consider any such schedule �00:

Since the maximum lateness does not increase in �
00
; no job in schedule �00 is tardy.

Now, append a new batch containing all the jobs which are tardy in �. The resulting

schedule satis�es the condition stated in the Theorem and has weighted number of

tardy jobs no more than in �.

Henceforth, we shall assume that jobs are labelled so that d1 < d2 < ::: < dn::

Although in the above we discuss the problem of minimizing the weighted number of

tardy jobs, it will be convenient for us to consider the equivalent problem of maximiz-

ing the weighted number of early jobs. Henceforth, we shall consider the equivalent

CHAPTER 6. WEIGHTED NUMBER OF TARDY JOBS 143

problem of maximizing the weighted number of early jobs,
P
wj(1� Uj):

6.2 Open Shop Problem

In this section we shall present two pseudo-polynomial dynamic programming recur-

sions, O1 and O2 for the open shop problem. Algorithm O1 is an extension of the

algorithm presented by Hochbaum and Landy [58] and algorithm O2 is an extension of

the algorithm presented by Brucker and Kovalyov [24]. Note that both Hochbaum and

Landy [58] and Brucker and Kovalyov [24] consider the problem 1js1; F = 1jPwjUj

for which there exists a polynomial-time algorithm if all wj = 1: On the other hand,

our problem is NP-hard even if all wj = 1:

Both algorithms O1 and O2 schedule jobs in order of increasing due dates. Con-

sider a partial schedule of jobs 1, ..., j � 1. We can add job j to the given partial

schedule, in one of three ways:

1. Job j can be a tardy job.

2. Job j can be added to the last early batch.

3. Job j can be the only job in a new early batch.

Suppose that the operator spends an idle time, t̂ after completing all the operations

corresponding to the early jobs on one machine i1 and before starting the immediate

setup operation on the other machine i2 6= i1. If ti1j � t̂; then the j-th job can be

CHAPTER 6. WEIGHTED NUMBER OF TARDY JOBS 144

M1

M2

B

BS2

Idle
Time

All early jobs from 1, ..., (j-1)

All early jobs from 1, ..., (j-1)

except the ones in B

t1 t2 t

Figure 6.1: A partial schedule in which the last early batch is �rst processed on
machine 1

inserted in the last early batch without causing any delay to the previously scheduled

operations.

Each algorithm O1 and O2 addresses the following question at the j-th stage:

given jobs 1; :::; j; does there exist a feasible schedule that has completion time equal

to t for the last early job; weighted number of early jobs equal to w and idle time

t̂ after the completion of all the operations corresponding to the early jobs on one

machine i1 and before the start of the immediate setup operation on the other machine

i2 6= i1.

Let us clarify the question using an example. In Figure 6.1 we show a schedule

CHAPTER 6. WEIGHTED NUMBER OF TARDY JOBS 145

with jobs 1; :::; (j� 1): The last early batch, B is completed on machine 1 at time t1:

The operator is idle from time t1 to time t2: At time t2 a setup on machine 2 starts

and the setup is immediately followed by operations corresponding to batch B on

machine 2. A job j
0 is processed on machines 1 and 2 before time t if and only if job

j
0 is an early job. All the tardy jobs are processed on machines 1 and 2 in a single

batch some time after time t:

Thus, if there exists a feasible schedule of the type shown in Figure 6.1 with

weighted number of early jobs w; then we have an answer \yes" to the above question

with (j�1) jobs, idle time t̂ = t2 �t1; completion time t of the last early job; weighted

number of early jobs w; and i1 = 1:

Now, let us see how a \yes" answer from stage (j � 1) implies a \yes" answer at

stage j: Suppose that there exists a feasible schedule of the type shown in Figure 6.1

with weighted number of early jobs w.

1. Since job j can be scheduled as a tardy job, we get a \yes" answer to the above

question with j jobs, idle time t̂ = t2 �t1; completion time t of the last early

job; weighted number of early jobs w; and i1 = 1:

2. Job j can be added to the last early batch B only if the idle time t̂ = t2 �t1

� t1j and due date dj � t +t2j: If job j can be added to the last early batch

B; we get that in the resulting schedule (see Figure 6.2) idle time is (t̂ � t1j);

completion time of the last early job is (t+ t2j) and weighted number of early

CHAPTER 6. WEIGHTED NUMBER OF TARDY JOBS 146

M1

M2

B Idle
Time
Decreased

All early jobs from 1, ..., (j-1)

All early jobs from 1, ..., (j-1)

except the ones in B

BS2 (2,j)

(1,j)

t1 t2 t

Figure 6.2: Job j is added to the last early batch

CHAPTER 6. WEIGHTED NUMBER OF TARDY JOBS 147

jobs is (w+wj): Hence, we get a \yes" answer to the above question with j jobs,

idle time (t̂ � t1j); the completion time (t+ t2j) of the last early job; weighted

number of early jobs (w + wj); and i1 = 1:

3. If job j is added as the only job in a new early batch, an idle time in the given

schedule is not necessary. Hence, assume that there is no idle time in the given

schedule. Operation (2; j) starts immediately at time t; the operator spends

an idle time t0 as desired, the setup on machine 1 starts at time (t + t
0) and

the setup is immediately followed by operation (1; j): The resulting schedule is

shown in Figure 6.3. Since we require that job j be early, this way of adding

job j is valid only if the completion time (t+ t
0 + s1 + t1j + t2j) of job j is less

than or equal to dj: If the condition is satis�ed, we get a \yes" answer to the

above question with j jobs, idle time t0; completion time (t+ t
0 + s1 + t1j + t2j)

of the last early job; weighted number of early jobs (w + wj); and i1 = 2:

In the above, we outline how a feasible schedule at stage (j � 1) can be used to

obtain a feasible schedule at the j-th stage. Algorithms O1 and O2 are based on this

concept.

In algorithm O1 the state variables are t̂; t and i1: If for some j; t̂; t and i1 we

have w� the largest value of w such that the answer to the above question is \yes",

then we set

CHAPTER 6. WEIGHTED NUMBER OF TARDY JOBS 148

M1

2

B

All early jobs from 1, ..., (j-1)

All early jobs from 1, ..., (j-1)

except the ones in B

BS2

t1=t2 t

(2,j)

S1 (1,j)

Idle
Time

Figure 6.3: Job j is the �rst job of a new early batch

fj(t̂; t) = w
� if i1 = 1

gj(t̂; t) = w
� if i1 = 2

In algorithm O2 the state variables are t̂; w and i1: If for some j; t̂; w and i1 we

have t� the least value of t such that the answer to the above question is \yes", then

we set

fj(t̂; w) = t
� if i1 = 1

gj(t̂; w) = t
� if i1 = 2

It is clear by now that we need the state variable t̂; the idle time of the operator,

to facilitate checking whether a job j can be added to the last early batch of a

partial schedule of jobs 1,...,j � 1: We do not need to consider t̂ > dmax because jobs

requiring t̂ > dmax can only be added to the partial schedule as a tardy job. Before

adding a job to the last early batch that starts on machine 1, we check whether

CHAPTER 6. WEIGHTED NUMBER OF TARDY JOBS 149

t̂ � t1j: Hence we do not need to consider t̂ >
P
t1j: Thus, it su�ces to consider

t̂ = 0; :::;minfP t1j; dmaxg while computing fj(t̂; t) or fj(t̂; w): Similarly, it su�ces to

consider t̂ = 0; :::;minfP t2j; dmaxg while computing gj(t̂; t) or gj(t̂; w):

The idea of scheduling a job in one of the above three ways is due to Hochbaum

and Landy [58]. Later on, Brucker and Kovalyov [24] also use the above three ways

of scheduling a job. A key di�erence between our algorithms and the algorithms of

Hochbaum and Landy [58] and Brucker and Kovalyov [24] is that our algorithms have

a new state variable t̂; the idle time between completion of all operations correspond-

ing to the early jobs on one machine and the start of the immediate setup operation

on the other machine. Furthermore, our algorithms do not use a state variable cor-

responding to the earliest due date of the last early batch, which is common to both

the algorithms developed by Hochbaum and Landy [58] and Brucker and Kovalyov

[24].

6.2.1 Algorithm O1

For j = 1; :::; n and t = 0; 1; :::; minfP(t1j +t2j) +n(s1 +s2); dmaxg; let

fj(t̂; t) = maximum weighted number of early jobs when jobs 1,...,j are scheduled,

the operator processes the last early batch �rst on machine 1, is idle for a time t̂ after

completion of all operations on machine 1 and before starting the setup operation on

machine 2, and completes all operations of early jobs on machine 2 at time t; where

t̂ = 0; 1; :::; minfP t1j; dmaxg; and

CHAPTER 6. WEIGHTED NUMBER OF TARDY JOBS 150

gj(t̂; t) = maximum weighted number of early jobs when jobs 1,...,j are scheduled,

the operator processes the last early batch �rst on machine 2, is idle for a time t̂ after

completion of all operations on machine 2 and before starting the setup operation on

machine 1, and completes all operations of early jobs on machine 1 at time t; where

t̂ = 0; 1; :::; minfP t2j; dmaxg:

Introduce a dummy job 0 and initialize: f0(t̂; t) = 0 and g0(t̂; t) = 0 for all t̂; t:

Compute the quantities fj(t̂; t) = maxffj�1(t̂; t); �1; �2; �3g and gj(t̂; t) = maxfgj�1(t̂; t);

�
0
1; �

0
2; �

0
3g; for all j; t̂; t; where

�1 =

8<
:

wj + fj�1(t̂+ t1j; t� t2j)

�1

if fj�1(t̂+ t1j; t� t2j) > 0

and t2j � t � dj
otherwise

�2 =

8<
:

wj + gj�1(0; t� s2 � t1j � t2j � t̂)

�1

if gj�1(0; t� s2 � t1j � t2j � t̂) > 0

and s2 + t1j + t2j + t̂ � t � dj
otherwise

�3 =

8<
:

wj

�1

if t = s1 + s2 + t1j + t2j + t̂

and t � dj
otherwise

and

�
0
1 =

8<
:

wj + gj�1(t̂+ t2j; t� t1j)

�1

if gj�1(t̂+ t2j; t� t1j) > 0
and t1j � t � dj

otherwise

�
0
2 =

8<
:

wj + fj�1(0; t� s1 � t1j � t2j � t̂)

�1

if fj�1(0; t� s1 � t1j � t2j � t̂) > 0

and s1 + t1j + t2j + t̂ � t � dj

otherwise

�
0
3 =

8<
:

wj

�1

if t = s1 + s2 + t1j + t2j + t̂

and t � dj

otherwise

CHAPTER 6. WEIGHTED NUMBER OF TARDY JOBS 151

The maximum weighted number of early jobs is equal to maxtffn(0; t); gn(0; t)g:

The quantities �1 and �
0
1 correspond to adding job j to the last early batch, �2

and �02 correspond to adding job j as the �rst job of an early batch which is preceded

by at least one other early batch, and �3 and �
0
3 correspond to adding job j as the

�rst job of the �rst early batch. Setting fj(t̂; t) = fj�1(t̂; t) and gj(t̂; t) = gj�1(t̂; t)

corresponds to adding job j as a tardy job.

For T1 = minfmaxfP t1j;
P
t2jg; dmaxg and T2 = minfP(t1j + t2j) + n(s1 + s2);

dmaxg; the worst case time complexity is O(nT1T2): To compute fj(t̂; t) and gj(t̂; t)

we need the values fj�1(t̂; t) and gj�1(t̂; t); but not the values fj�2(t̂; t);, f0(t̂; t)

and gj�2(t̂; t);, g0(t̂; t): Hence, the space requirement is O(T1T2): This gives:

Theorem 6.3 Algorithm O1 solves the open shop problem with running time O(nT1T2)

and space requirement O(T1T2).

6.2.2 Algorithm O2

For j = 1; :::; n and w = 0; 1; :::;
P
wj; let

fj(t̂; w) = minimum completion time of the last early job processed when jobs

1,...,j are scheduled, the operator processes the last early batch �rst on machine 1, is

idle for a time t̂ after completion of all operations on machine 1 and before starting

the setup operation on machine 2, and attains a weighted number of early jobs w;

where t̂ = 0; 1; :::; minfP t1j; dmaxg; and

CHAPTER 6. WEIGHTED NUMBER OF TARDY JOBS 152

gj(t̂; w) = minimum completion time of the last early job processed when jobs

1,...,j are scheduled, the operator processes the last early batch �rst on machine 2, is

idle for a time t̂ after completion of all operations on machine 2 and before starting

the setup operation of machine 1, and attains a weighted number of early jobs w;

where t̂ = 0; 1; :::; minfP t2j; dmaxg:

Introduce a dummy job 0 and initialize: f0(t̂; w) = 1 and g0(t̂; w) = 1 for

all t̂; w: Compute the quantities fj(t̂; w) = minffj�1(t̂; w); �1; �2; �3g and gj(t̂; w) =

minfgj�1(t̂; w); �01; �
0
2; �

0
3g; for all j; t̂; w; where

�1 =

8<
:

fj�1(t̂+ t1j; w � wj) + t2j

1

if fj�1(t̂+ t1j; w � wj) + t2j � dj
and w > wj

otherwise

�2 =

8>><
>>:

s2 + t1j + t2j + t̂+ gj�1(0; w � wj)

1

if s2 + t1j + t2j + t̂

+gj�1(0; w � wj) � dj

and w > wj

otherwise

�3 =

8<
:

s1 + s2 + t1j + t2j + t̂

1

if s1 + s2 + t1j + t2j + t̂ � dj

and w = wj

otherwise
and

�
0
1 =

8<
:

gj�1(t̂+ t2j; w � wj) + t1j

1

if gj�1(t̂+ t2j; w � wj) + t1j � dj
and w > wj

otherwise

�
0
2 =

8>><
>>:

s1 + t1j + t2j + t̂+ fj�1(0; w � wj)

1

if s1 + t1j + t2j + t̂

+fj�1(0; w � wj) � dj

and w > wj

otherwise

�
0
3 =

8<
:

s1 + s2 + t1j + t2j + t̂

1

if s1 + s2 + t1j + t2j + t̂ � dj

and w = wj

otherwise

The maximum weighted number of early jobs is equal to maxfw : fn(0; w) < 1 or

CHAPTER 6. WEIGHTED NUMBER OF TARDY JOBS 153

gn(0; w) < 1g: If fn(0; w) = gn(0; w) = 1 for all w; then the maximum weighted

number of early jobs is 0:

The quantities �1 and �
0
1 correspond to adding job j to the last early batch, �2

and �02 correspond to adding job j as the �rst job of an early batch which is preceded

by at least one other early batch, and �3 and �
0
3 correspond to adding job j as the

�rst job of the �rst early batch. Setting fj(t̂; w) = fj�1(t̂; w) and gj(t̂; w) = gj�1(t̂; w)

corresponds to adding job j as a tardy job.

For T1 = minfmaxfP t1j;
P
t2jg; dmaxg and W =

P
wj the worst case time com-

plexity is O(nT1W): To compute fj(t̂; w) and gj(t̂; w) we need the values fj�1(t̂; w)

and gj�1(t̂; w); but not the values fj�2(t̂; w);, f0(t̂; w) and gj�2(t̂; w);, g0(t̂; w):

Hence, the space requirement is O(T1W): This gives:

Theorem 6.4 Algorithm O2 solves the open shop problem with running time O(nT1W)

and space requirement O(T1W).

6.3 Flow Shop Problem

The ow shop problem can be solved similarly. For completeness, we present the

algorithms below.

6.3.1 Algorithm F1

For j = 1; :::; n; t̂ = 0; 1; :::; minfP t1j; dmaxg and t = 0; 1; :::; minfP(t1j +t2j) +n(s1

+s2); dmaxg; let

CHAPTER 6. WEIGHTED NUMBER OF TARDY JOBS 154

fj(t̂; t) = maximum weighted number of early jobs when jobs 1,...,j are scheduled,

the operator processes the last early batch �rst on machine 1, is idle for a time t̂ after

completion of all operations on machine 1 and before starting the setup operation on

machine 2, and completes all operations of early jobs on machine 2 at time t:

Introduce a dummy job 0 and initialize: f0(t̂; t) = 0 for all t̂; t: Compute for

j = 1; 2; :::; n; t̂ = 0; 1; :::; minfP t1j; dmaxg and t = 0; 1; :::; minfP(t1j +t2j) +n(s1

+s2); dmaxg the quantity fj(t̂; t) = maxffj�1(t̂; t); �1; �2g; where

�1 =

8<
:

wj + fj�1(t̂+ t1j; t� t2j)

�1

if fj�1(t̂+ t1j; t� t2j) > 0
and t2j � t � dj

otherwise

�2 =

8<
:

wj + fj�1(0; t� s1 � s2 � t1j � t2j � t̂)

�1

if s1 + s2 + t1j + t2j

+t̂ � t � dj
otherwise

The maximum weighted number of early jobs is equal to maxtffn(0; t)g:

The quantity �1 corresponds to adding job j to the last early batch and �2 corre-

sponds to adding job j as the �rst job of an early batch. Setting fj(t̂; t) = fj�1(t̂; t)

corresponds to adding job j as a tardy job.

For T1 = minfP t1j; dmaxg and T2 = minfP(t1j +t2j) +n(s1 +s2); dmaxg; the

worst case time complexity is O(nT1T2): To compute fj(t̂; t) we need the values

fj�1(t̂; t); but not the values fj�2(t̂; t);, f0(t̂; t). Hence, and the space require-

ment is O(T1T2): This gives:

Theorem 6.5 Algorithm F1 solves the ow shop problem with running time O(nT1T2)

and space requirement O(T1T2).

CHAPTER 6. WEIGHTED NUMBER OF TARDY JOBS 155

6.3.2 Algorithm F2

For j = 1; :::; n; t̂ = 0; 1; :::; minfP t1j; dmaxg and w = 0; 1; :::;
P
wj; let

fj(t̂; w) = minimum completion time of the last early job processed when jobs

1,...,j are scheduled, the operator processes the last early batch �rst on machine 1, is

idle for a time t̂ after completion of all operations on machine 1 and before starting

the setup operation on machine 2, and attains a weighted number of early jobs w:

Introduce a dummy job 0 and initialize: f0(t̂; w) = 1 for all t̂; w: Compute for

j = 1; 2; :::; n; t̂ = 0; 1; :::; minfP t1j; dmaxg and w = 0; 1; :::;
P
wj the quantity

fj(t̂; w) = minffj�1(t̂; w); �1; �2; �3g; where

�1 =

8>><
>>:

fj�1(t̂+ t1j; w � wj) + t2j

1

if fj�1(t̂+ t1j; w � wj)
+t2j � dj
and w > wj

otherwise

�2 =

8>><
>>:

s1 + s2 + t1j + t2j + t̂+ fj�1(0; w �wj)

1

if s1 + s2 + t1j + t2j + t̂

+fj�1(0; w � wj) � dj

and w > wj

otherwise

�3 =

8>><
>>:

s1 + s2 + t1j + t2j + t̂

1

if s1 + s2 + t1j + t2j

+t̂ � dj

and w = wj

otherwise
The maximum weighted number of early jobs is equal to maxfw : fn(0; w) <1g: If

fn(0; w) = 1 for all w; then the maximum weighted number of early jobs is 0:

The quantity �1 corresponds to adding job j to the last early batch, �2 corresponds

to adding job j as the �rst job of an early batch which is preceded by at least one

other early batch, and �3 corresponds to adding job j as the �rst job of the �rst early

CHAPTER 6. WEIGHTED NUMBER OF TARDY JOBS 156

batch. Setting fj(t̂; w) = fj�1(t̂; w) corresponds to adding job j as a tardy job.

For T1 = minfP t1j; dmaxg and W =
P
wj the worst case time complexity is

O(nT1W): To compute fj(t̂; w) we need the values fj�1(t̂; w); but not the values

fj�2(t̂; w);, f0(t̂; w): Hence, the space requirement is O(T1W): This gives:

Theorem 6.6 Algorithm F2 solves the ow shop problem with running time O(nT1W)

and space requirement O(T1W).

6.4 Computational Experience

The algorithms are tested on a randomly generated set of problems. Hall and Pos-

ner [56] discuss on generating experimental data for machine scheduling problems.

They observe that most data generation methods generate the processing times in-

dependently from a uniform integer distribution U [a; b]; where 0 < a < b: Usually,

a = 1: Due dates are generated from a uniform integer distribution U [a0h; b0h]; where

a
0 and b0 come from a set of small values and h is a function of processing times, e.g.,

expected value of total processing time.

We consider problems with n = 25; 50; 75 and 100. For each n; 10 problems are

generated. We generate si � U [1; 4]; tij � U [1; 15]; and wj � U [1; 25]: We assume

dj � s1 + s2 + t1j + t2j; since otherwise job j will be tardy in any schedule, and can

be eliminated from further consideration. The expected value of
P

(t1j + t2j) is 16n:

We generate dj as dj � s1 + s2 + t1j + t2j + U [0; 16n]:

CHAPTER 6. WEIGHTED NUMBER OF TARDY JOBS 157

Algorithms

n O1 O2 F1 F2

25 10.9 9.3 4.8 3.9

50 82.6 69.0 41.7 31.7

75 297.1 255.8 143.6 119.6

100 685.2 602.7 309.0 264.4

Table 6.1: Average running times (in seconds) of algorithms for weighted tardiness

The programs are written in C and run on an IBM RISC 6000 43P M140 using the

AIX operating system. The results are summarized in Table 6.1. The time required

to solve the open shop problem is between 2 to 3 times that required to solve the ow

shop problem. Algorithm O2 is faster than algorithm O1 and algorithm F2 is faster

than algorithm F1:

6.5 Summary

There are two styles of algorithms for the single machine scheduling problems with

weighted number of tardy jobs objective. One style is used by Hochbaum and Landy

[58] and Lawler and Moore [77] and the other by Brucker and Kovalyov [24] and Sahni

[104]. In this chapter we address the problems 1O2jsij
P
wjUj and 1F2jsij

P
wjUj

using both the styles.

Both Brucker and Kovalyov [24] and Hochbaum and Landy [58] consider the prob-

lem 1js1; F = 1jPwjUj in which jobs are processed in batches. Hochbaum and Landy

[58] develop a procedure to construct a schedule with jobs 1; :::; j from a given par-

CHAPTER 6. WEIGHTED NUMBER OF TARDY JOBS 158

tial schedule with jobs 1; :::; (j � 1): Later, Brucker and Kovalyov [24] use the same

schedule construction procedure.

We show in Theorem 6.2 that for both problems 1O2jsij
P
wjUj and 1F2jsij

P
wjUj

there exists an optimal schedule which is a batching schedule and in which all early

jobs are processed in the EDD order before all tardy jobs. Theorem 6.2 allows us to

use the schedule construction procedure of Hochbaum and Landy [58].

However, the problems addressed by Brucker and Kovalyov [24], Hochbaum and

Landy [58], Lawler and Moore [77] and Sahni [104] are polynomially solvable if all

wj = 1: In contrast, as we show in Theorem 6.1, our problems are NP-hard even if

all wj = 1:

Still, we extend the dynamic programming algorithms developed by Hochbaum

and Landy [58] and Brucker and Kovalyov [24]. A key di�erence between our algo-

rithms and the algorithms of Hochbaum and Landy [58] and Brucker and Kovalyov

[24] is that our algorithms have a new state variable t̂; which is an idle time of the

operator. Furthermore, our algorithms do not use a state variable corresponding to

the earliest due date of the last early batch, which is common to both the algorithms

developed by Hochbaum and Landy [58] and Brucker and Kovalyov [24].

We test all the algorithms on a randomly generated set of problems.

In Table 6.2, we summarize the results on various cases of the (weighted) number

of tardy jobs objective.

CHAPTER 6. WEIGHTED NUMBER OF TARDY JOBS 159

Problem Result (Chapter 6) Previously

Known Re-

sult

1O2jsij
P
Uj NP-hard NP-hard

(Gerodimos et
al. [45, 46])

1F2jsij
P
Uj NP-hard |

1O2jsij
P
wjUj O(nminfmaxfP t1j;

P
t2jg; dmaxgminfP(t1j+

t2j) + n(s1 + s2); dmaxg)
O(nd2max)
(Gerodimos et
al. [45, 46])

O(nminfmaxfP t1j;
P
t2jg; dmaxg

P
wj) |

1F2jsij
P
wjUj O(nminfP t1j; dmaxgminfP(t1j + t2j)+n(s1+

s2); dmaxg)
|

O(nminfP t1j; dmaxg
P
wj) |

Table 6.2: Summary of results on two-machine cases with the weighted number of

tardy jobs objective

Chapter 7

The Total Weighted Completion

Time Objective

In this chapter we shall consider the problems with total weighted completion time

objective. This objective is the most obscure among all the objectives we study. As

we have discussed in Section 3.5 the problem 1js1; F = 1jPwjCj is a special case of

the problem 1F2jsij
P
wjCj and Albers and Brucker [4] show that the problem 1js1;

F = 1jPwjCj is strongly NP-hard. Hence, the problem 1F2jsij
P
wjCj is strongly

NP-hard.

However, the problem 1F2jsij
P
Cj is open. As we have discussed in Section

1.4.3, Ding [34] considers the problem of scheduling products with common and unique

components as introduced by Baker [12]. Ding [34] maintains the assumption of batch

availability . However, unlike Baker, Ding does not restrict the problem to the case of

agreeable processing time. Ding's problem is equivalent to the problem 1F2jsij
P
Cj

in which the �rst machine represents the production of the common components

160

CHAPTER 7. WEIGHTED COMPLETION TIME 161

and the second machine represents the production of the unique components. Ding

proposes a heuristic procedure.

The problem 1O2jsij
P
Cj is also open. As we have discussed in Section 1.4.4,

Julien and Magazine [64] and Julien [63] discuss the customer order scheduling prob-

lem. The customer order scheduling problem with two product types and each cus-

tomer requiring at least one unit of each product can be modelled as a problem

1O2jsij
P
Cj: Julien and Magazine [64] and Julien [63] discuss some dominance prop-

erties, special cases, relative performances of various types of schedules and some

heuristic and lower bounding procedures.

In this chapter, we revisit some of the ow shop and open shop �xed-sequence

cases. One motivation for analyzing the �xed-sequence cases is that it is sometimes

possible to obtain a job-order which dominates all the other job-orders. For example,

it follows from Theorem 4.2 that one such case is that of agreeable processing time and

weight. Another motivation is to eventually obtain an enumeration scheme. However,

as there are n! job-orders, we seek an alternate scheme.

Such an alternate scheme is to enumerate over all batching policies . There are

2n�1 batching policies . It turns out that both the ow shop and open shop problems

with the objective
P
wjCj areNP-hard even if the batching policy is �xed. However,

the cases with wj = 1 are e�ciently solvable.

In the next chapter, we develop a branch and bound algorithm for the problem

CHAPTER 7. WEIGHTED COMPLETION TIME 162

1F2jsij
P
Cj using the results on the ow shop �xed-sequence and �xed batching

policy cases with the objective
P
Cj :

As we have discussed in Section 2.1.2, Co�man et al. [31] show that Baker's

problem of scheduling products with common and unique components and batch

availability reduces to the problem 1js1; F = 1jPCj : As Baker assumes agreeable

processing time, the shortest processing time order dominates all the other job-orders.

Co�man et al.'s assertion that Baker's problem reduces to the problem 1js1; F =

1jPCj is based on the fact that for Baker's problem we can �x the sequence without

any loss of optimality. Using this fact, Co�man et al. [31] present an algorithm

for the problem 1js1; F = 1jPCj that runs in O(n) time after sorting the jobs.

Albers and Brucker [4] generalize the algorithm of Co�man et al. [31] to the problem

1js1; F = 1jPwjCj and present an algorithm which runs in O(n) time after sorting

the jobs. Using arguments similar to the ones used by Co�man et al., we can show

that the problem 1F2jsi;�xed sequencejPwjCj reduces to 1js1; F = 1;�xed sequencej
P
wjCj: This means that the problem 1F2jsi;�xed sequencejPwjCj can be solved

in O(n) time using the algorithm of Albers and Brucker [4].

However, a similar reduction of the problem 1O2jsi;�xed sequencejPwjCj to the

problem 1js1; F = 1;�xed sequencej PwjCj is not known. Each of the following

problems are special cases of the problem 1O2jsi;�xed sequencejPCj : (i) the cus-

tomer order scheduling problem with a �xed sequence, two product types and each

CHAPTER 7. WEIGHTED COMPLETION TIME 163

customer requiring at least one unit of each product; (ii) the problem of scheduling

products with common and unique components with item availability and agreeable

processing times; and (iii) the problem 1jsi; two operation, aptw jPCj. For problem

(i) Julien and Magazine [64] and Julien [63] present an O(n2) time algorithm. For

problem (ii) Sung and Park [111] present two O(n2) time algorithms. For problem

(iii) Gerodimos et al. [44] present an O(n2) time algorithm. However, in this chapter

we shall show that the problem further generalized to the weighted case, 1O2jsi;�xed

sequencejPwjCj is solvable in O(n) time.

Based on the development on what are called Monge-array algorithms, we show

that each problem 1F2jsi;�xed sequencejPwjCj and 1O2jsi;�xed sequencejPwjCj

can be solved using a similar approach.

An u � v array A = fa[j; j0]g is said to satisfy the Monge property if for any

1 � j < u and 1 � j
0
< v; we have a[j; j0 +1] +a[j +1; j0] �a[j; j 0] �a[j +1; j0

+1] � 0: Aggarwal et al. [2] show that we can �nd all row or column minima of

such a matrix A in O(u+ v) time, provided that each entry of A can be obtained in

constant time. Wilber [122] extends the algorithm of Aggarwal et al. to the context

of dynamic programming. Wilber considers the following problem: given an array

A = fa[j; j0] : 1 � j � j
0 � ug that satis�es the Monge property , and given f(u+1);

CHAPTER 7. WEIGHTED COMPLETION TIME 164

compute

f(j) = min
j�j0�u

fa[j; j 0] + h(j0 + 1)g 81 � j � u; (7.1)

where h(j 0 + 1) is computed from f(j0 + 1) in constant time. We are interested in

the special case in which h(j0 + 1) = f(j0 + 1): Hence, the condition that h(j 0 + 1)

be computed from f(j0 + 1) in constant time is satis�ed. Wilber shows that f(j),

81 � j � u can be computed in O(u) time. Eppstein [37] extended Wilber's algorithm

for interleaved computation. Eppstein's algorithm allows the computation of h(2);

..., h(u + 1) to be interleaved with the computation of some other sequence h0(2);

..., h0(u+ 1) such that h(j) depends on h
0(j + 1); ..., h0(u+ 1) and h

0(j) depends on

h(j + 1); ..., h(u + 1): Eppstein's algorithm also requires O(u) time. Galil and Park

[40] further generalize and simpli�es Eppstein's algorithm.

We shall show that the problem 1F2jsi;�xed sequencejPwjCj can be solved by

recursively solving an equation of the type Equation 7.1. The problem 1F2jsi;�xed

sequencejPwjCj calls for an interleaved computation, because we get two equations

of the type Equation 7.1.

7.1 Contribution of Operation and Setup to
P

wjCj

We can de�ne the \contribution" of each operation and setup so that the total

weighted completion time is obtained by summing up the contributions of all op-

erations and setups.

CHAPTER 7. WEIGHTED COMPLETION TIME 165

For any schedule � and for each operation or setup T; let JT (�) = fj : either

T is the last operation of job j or the last operation of job j is processed after Tg:

Similarly, for any schedule � and for each job j; let Tj(�) = fT : either T is the last

operation of job j or the last operation of job j is processed after Tg: Observe that

j 2 JT (�) if and only if T 2 Tj(�):

De�nition 7.1 For each operation or setup T let t(T) be the processing time of T:

For any schedule � the contribution of T is �(T) = t(T)
P

j2JT (�)
wj.

Remark 7.1 For any schedule � the total weighted completion time is
P
�(T):

Proof: For each job j; the completion time Cj of job j is given as Cj =
P

T2Tj(�)
t(T):

The total weighted completion time is
P
wjCj =

P
wj

P
T2Tj(�)

t(T): Consider any

job j and an operation or setup T: The term wjt(T) appears at most once in each of

the expressions in
P
wjCj and

P
�(T): Since j 2 JT (�) if and only if T 2 Tj(�); the

term wjt(T) appears in the expression
P
�(T) if and only if the term wjt(T) appears

in the expression
P
wjCj: Hence,

P
�(T) =

P
wjCj .

7.2 The Fixed-Sequence Case Revisited

In this section we shall improve the time complexity of some of the algorithms we

discussed in Chapter 4. We shall show that problem 1Fmjsi;�xed sequencejPwjCj

with m� 3 can be solved in timeO(mn3); and problems 1F2jsi;�xed sequencejPwjCj

and 1O2jsi;�xed sequencejPwjCj can be solved in time O(n):

CHAPTER 7. WEIGHTED COMPLETION TIME 166

Since the sequence is �xed and known, we may assume, by relabelling if necessary,

that the sequence is 1, 2, ..., n: Let Wj be the total weight of jobs j; j+1; ..., n and �jj0i

be the total processing time of jobs j;j+1;..., j0 on machine i: Hence, Wj=
Pn

u=j wu

and �jj0i=
Pj0

u=j tiu:

Notice that if operation (i; j) is the last operation of job j; then the contribution of

(i; j) to the total weighted completion time is Wjtmj: If job j is the �rst job completed

after operation (i; j0); then the contribution of (i; j 0) to the total weighted completion

time is Wjtij0: If job j is the �rst job completed after a setup from machine i to i0;

then the contribution of the setup to the total weighted completion time is sii0Wj:

7.2.1 The m-machine Flow Shop Case

In this section we shall consider the problem 1Fmjsi; �xed sequencejPwjCj: Through-

out this section, �j;j0;i denotes a partial schedule of jobs j; :::; j 0 on machines i; :::; m;

given that job j starts post-setup processing at time zero on machine i:

Let hj0(j; i) be the optimal total weighted completion time of jobs j; ..., n over all

schedules of type �j;n;i given that job j
0 is the largest indexed job such that jobs j;

:::; j
0 are processed in a single setup on machine i:

Let h(j; i) be the optimal total weighted completion time of jobs j; ..., n over

all schedules of type �j;n;i: Notice that h(j; i) = minj�j0�nfhj0(j; i)g: It follows from

Remark 4.1 that the optimal total weighted completion time is h� = s1W1 +h(1; 1):

For any partial schedule �j;j0;i; de�ne the following quantities:

CHAPTER 7. WEIGHTED COMPLETION TIME 167

Cu(�j;j0;i) is the completion time of job u processed in �j;j0;i; and

f(�j;j0;i) =

(Pj0

u=j wuCu(�j;j0;i) +Wj0+1Cj0(�j;j0;i) if j0 < nPn

u=j wuCu(�j;n;i) if j0 = n:

Let fj00(j; j
0
; i) = minff(�j;j0;i) : �j;j0;i is a schedule of jobs j; ..., j 0 on machines i; :::;

m given that job j starts post-setup processing at time zero on machine i and job j00

is the largest job such that jobs j; :::; j 00 are processed in a single setup on machine

ig: Finally, let f�(j; j0; i) = minj�j00�j0ffj00(j; j 0; i)g:

Now, we shall interpret f(�j;j0;i); fj00(j; j
0
; i) and f�(j; j0; i): The quantity f(�j;j0;i)

represents the contribution of all the operations and setups performed in the partial

schedule �j;j0;i to the total weighted completion time of jobs j; :::; n:

The quantity fj00(j; j
0
; i) represents the minimum contribution of operations in O

=f(̂{; |̂) : i � {̂ � m and j � |̂ � j
0g and all setups required to process operations in

O to the total weighted completion time of jobs j; :::; n if (i) processing of operations

in O is started when machine i is current and no operation (̂{; |̂) =2 O is processed

between the start and completion of operations in O; (ii) job j00 is the largest job such

that jobs j; :::; j00 are processed in a single setup on machine i; and (iii) either j 0 = n

or jobs j0 and (j0 +1) are processed in two di�erent setups on machine i:

The quantity f�(j; j0; i) represents the minimum contribution of operations in O

=f(̂{; |̂) : i � {̂ � m and j � |̂ � j
0g; and all setups required to process operations in

O; to the total weighted completion time of jobs j; :::; n if (i) processing of operations

in O is started when machine i is current and no operation (̂{; |̂) =2 O is processed

CHAPTER 7. WEIGHTED COMPLETION TIME 168

between the start and completion of operations in O; and (ii) either j0 = n or jobs j0

and (j0 +1) are processed in two di�erent setups on machine i:

In the following we shall discuss the computation of f�(j; j0; i) and h(j; i) sepa-

rately.

Computation of f�(j; j0; i)

Let us discuss the computation of f�(j; j 0; i):

Case 1: i = m: The quantity f(�j;j0;m) is minimized by processing jobs j; :::; j 0

on machine m without any setup. If j0 < n; then f
�(j; j0;m) =

Pj0

u=j wu

Pu

v=j tmv

+Wj0+1

Pj0

v=j tmv =
Pj0

u=j Wutmu: If j0 = n; then f
�(j; j 0;m) =

Pn

u=j wu

Pu

v=j tmv

=
Pn

u=j Wutmu: Hence, for all j 0 � n; we have

f
�(j; j 0;m) =

j0X
u=j

Wutmu:

Case 2: i < m: We compute fj00(j; j
0
; i) for all j � j

0 � j
00 in two separate

subcases in order to get

f
�(j; j0; i) = min

j�j00�j0
ffj00(j; j 0; i)g:

Case 2a: i < m and j00 = j
0
: Jobs j; :::; j 0 are processed in a single setup on machine

i; a setup is performed on machine (i +1) and the jobs j; :::; j 0 are scheduled on

machines i +1; :::; m: Hence,

fj00(j; j
0
; i) = (�jj0i + si+1)Wj + f

�(j; j0; i+ 1):

CHAPTER 7. WEIGHTED COMPLETION TIME 169

Case 2b: i < m and j
00
< j

0
: The processing of jobs j; ..., j 0 on machines i; :::; m

can be viewed as a �ve-step process: (i) jobs j; :::; j00 are processed in a single setup

on machine i; (ii) processing is terminated on machine i and machine i +1 is set up;

(iii) jobs j; :::; j00 are processed on machines i +1; :::; m; (iv) processing is terminated

on machine m and machine i is set up again; and (v) jobs j00 +1; ..., j 0 on machines

i; :::; m are scheduled. For each of the above 5 steps, we can compute a contribution

to fj00(j; j
0
; i) such that fj00(j; j

0
; i) is obtained by summing up contribution of all

the steps. The contribution of step (i) is �jj00iWj: The contribution of step (ii) is

si+1Wj: If step (iii) is performed using a partial schedule �j;j00;i+1; the contribution of

step (iii) is f(�j;j00;i+1): Hence, step (iii) can be optimally performed using the partial

schedule that yields f�(j; j00; i+ 1): Contribution of step (iv) is siWj00+1: Step (v) can

be optimally performed using the partial schedule that yields f�(j 00 +1; j0; i): Hence,

fj00(j; j
0
; i) = (�jj00i + si+1)Wj + f

�(j; j00; i+ 1) + siWj00+1 + f
�(j00 + 1; j0; i):

Computation of h(j; i)

Now, we shall discuss the computation of h(j; i):

Case 1: i = m: An optimal partial schedule is obtained by processing jobs j; :::;

n on machine m without any setup. Hence,

h(j;m) =

nX
u=j

wu

uX
v=j

tmv =

nX
u=j

Wutmu:

Case 2: i < m: We compute hj0(j; i) for all j � j
0 � n in two separate subcases

CHAPTER 7. WEIGHTED COMPLETION TIME 170

in order to get

h(j; i) = min
j�j0�n

fhj0(j; i)g:

Case 2a: i < m and j 0 = n: Jobs j; :::; n are processed in a single setup on machine

i; a setup is performed on machine (i +1) and the jobs j; :::; n are scheduled on

machines i +1; :::; m: Hence,

hn(j; i) = (�jni + si+1)Wj + h(j; i+ 1):

Case 2b: i < m and j
0
< n: The processing jobs j; ..., n on machines i; :::; m can

be viewed as a �ve-step process: (i) jobs j; :::; j 0 are processed in a single setup on

machine i; (ii) processing is terminated on machine i and machine i +1 is set up; (iii)

jobs j; :::; j0 are processed on machines i +1; :::; m; (iv) processing is terminated on

machine m and machine i is set up again; and (v) jobs j0 +1; ..., n on machines i;

:::; m are scheduled. For each of the above 5 steps, we can compute a contribution

to hj0(j; i) such that hj0(j; i) is obtained by summing up contribution of all the steps.

The contribution of step (i) is �jj0iWj : The contribution of step (ii) is si+1Wj : If

step (iii) is performed using a partial schedule �j;j0;i+1; contribution of step (iii) is

f(�j;j0;i+1):Hence, step (iii) can be optimally performed using the partial schedule that

yields f�(j; j 0; i +1): Contribution of step (iv) is siWj0+1: Step (v) can be optimally

performed using the partial schedule that yields h(j0 +1; i): Hence,

hj0(j; i) = (�jj0i + si+1)Wj + f
�(j; j0; i+ 1) + siWj0+1 + h(j0 + 1; i):

CHAPTER 7. WEIGHTED COMPLETION TIME 171

Input: tij; wj; si; 8 1 � i � m and 1 � j � n

Output: An optimal schedule
Compute Wj 8j and �jj0i 81 � j � j

0 � n and 1 � i � m

Compute h(j;m) =
Pn

u=jWutmu 81 � j � n
Compute f�(j; j 0;m) =

Pj0

u=j Wutmu 81 � j � j
0 � n

For i = m� 1 down to 1 do

For j = n down to 1 do
Compute h(j; i) = minj�j0�n fhj0(j; i)g
If i > 1 then compute f�(j; j0; i) = minj�j00�j0ffj00(j; j0; i)g 8j � j

0 � n

Output s1W1 + h(1; 1)

Algorithm: Problem 1Fmjsi;�xed sequencejPwjCj

Running Time

We precompute Wj and �jj0i 81 � j � j
0 � n and 81 � i � m in times O(n) and

O(mn2) respectively.

Consider the case with two machines. We compute h(j; 2) 81 � j � n in time

O(n); f�(j; j0; 2) 81 � j � j 0 � n in time O(n2) and h(j; 1) 81 � j � n in time O(n2):

No f�(j; j0; 1) is computed. Hence, the algorithm requires time O(n2) if m = 2:

Consider the case with three or more machines. Each f
�(j; j 0; i) with 1 � j �

j
0 � n and 2 � i � m can be computed in time O(n); and the number of f�(j; j 0; i)

values is O(mn2): Hence, all f�(j; j 0; i) can be computed in time O(mn3): Each h(j; i)

with 1 � j � n and 1 � i � m can be computed in time O(n) and the number of

h(j; i) values is O(mn): Hence, all h(j; i) can be computed in time O(mn2): Overall,

the algorithm can be implemented in time O(mn3):

Theorem 7.1 The problem 1Fmjsi;�xed sequencejPwjCj is solved in time O(n2)

CHAPTER 7. WEIGHTED COMPLETION TIME 172

if m = 2 and O(mn3) if m � 3:

Corollary 7.1.1 The problem 1Fmjsi; aptwjPwjCj is solved in time O(n2) if m =

2 and O(mn3) if m � 3:

However, the time complexity for the case with m = 2 can further be improved.

Both 1F2jsi;�xed sequencejPwjCj and 1O2jsi;�xed sequencejPwjCj can be solved

in O(n) time.

7.2.2 Two-Machine Flow Shop Case

In this section we shall consider the problem 1F2jsi; �xed sequencejPwjCj: Recall

that for the case of two machines there exists an optimal schedule which is a batching

schedule. Also recall that we assume that the �xed sequence is 1, 2, ..., n and de�ne

Wj =
Pn

u=j wu:

In every schedule each operation (1; j) precedes the completion of jobs j; :::; n and

possibly some other jobs. Hence, the contribution �(1; j) of operation (1; j) satis�es

�(1; j) � t1jWj : Operation (2; j) is the last operation of job j and precedes the

completion of jobs (j +1); :::; n: Hence, the contribution �(2; j) of operation (2; j) is

�(2; j) = t2jWj : Let �0(1; j) = t1jWj and �
0(2; j) = t2jWj: We say that contribution

�
0 of the job-order is �0 =

P
�
0(1; j) +

P
�
0(2; j) =

P
(t1j + t2j)Wj:

Suppose that a schedule has k batches. Each machine i has to be set up once

before each of the k batches starts processing on machine i: Hence, we say that each

CHAPTER 7. WEIGHTED COMPLETION TIME 173

batch requires one setup on machine 1 and another on machine 2.

Consider any batch [j; j0]: Each of the two setups of the batch, and all operations

(1; j00); j � j
00 � j

0
; precede completion of jobs j; :::; n: Furthermore, each operation

(2; j00); j � j00 � j
0
; is the last operation of job j 00 and precedes completion of jobs j00

+1; :::; n: We say that contribution of batch [j; j0] is the total contribution of setups

and operations of the batch not included in the contribution of the job-order �0:

Hence, contribution of batch [j; j 0] is

�[j; j0] = (s1 + s2 +

j0X
j00=j

t1j00)Wj +

j0X
j00=j

t2j00Wj00

�
j0X

j00=j

�
0(1; j 00)�

j0X
j00=j

�
0(2; j00)

= (s1 + s2)Wj +Wj

j0X
j00=j

t1j00 +

j0X
j00=j

t2j00Wj00

�
j0X

j00=j

t1j00Wj00 �
j0X

j00=j

t2j00Wj00

= (s1 + s2)Wj +

j0X
j00=j

t1j00(Wj �Wj00): (7.2)

Consider any batching schedule with batching policy � = (p1; :::; pk): Let p0 = 0:

It follows from Remark 7.1 that the total weighted completion time is

�
0 +

X
1�u�k

�[pu�1 + 1; pu]:

For 1 � j � n; let g(j) = minimum total contribution of the batches when jobs j;

CHAPTER 7. WEIGHTED COMPLETION TIME 174

:::; n are scheduled. For a dummy job (n+ 1) set g(n+ 1) = 0: We get 8 1 � j � n;

g(j) = min
j�j0�n

f�[j; j0] + g(j0 + 1)g: (7.3)

The minimum total weighted completion time is g� = �
0 + g(1): Observe that the

above equation can be used recursively to compute g(j) 8 1 � j � (n�1) from g(j+1);

:::; g(n): A straightforward implementation of such a recursion requires O(n2) time.

However, as we show in the following, the array f�[j; j 0]g satis�es Monge properties.

Moreover, for any 1 � j � j0 < n; �[j; j 0+1] can be computed from �[j; j0] in constant

time if all the Wj values are precomputed.

First, we shall show that the array f�[j; j 0]g satis�es Monge property. For any

1 � j < j
0
< n; we get

�[j; j 0 + 1] + �[j + 1; j0]� �[j; j 0]� �[j + 1; j0 + 1]

= (s1 + s2)Wj +
Pj0+1

j00=j t1j00(Wj �Wj00)

+(s1 + s2)Wj+1 +
Pj0

j00=j+1 t1j
00(Wj+1 �Wj00)

�(s1 + s2)Wj �
Pj0

j00=j t1j
00(Wj �Wj00)

�(s1 + s2)Wj+1 �
Pj0+1

j00=j+1 t1j00(Wj+1 �Wj00)

=
Pj0+1

j00=j t1j00(Wj �Wj00) +
Pj0

j00=j+1 t1j00(Wj+1 �Wj00)

�Pj0

j00=j
t1j00(Wj �Wj00)�

Pj0+1

j00=j+1
t1j00(Wj+1 �Wj00)

= t1(j0+1)(Wj �Wj0+1)� t1(j0+1)(Wj+1 �Wj0+1)

= t1(j0+1)Wj � t1(j0+1)Wj+1

= t1(j0+1)wj

� 0:

Next, we shall show that for any 1 � j � j0 < n; �[j; j 0+1] can be computed from

�[j; j0] in constant time if all the Wj values are precomputed. For any 1 � j � j
0
<

n;we get

CHAPTER 7. WEIGHTED COMPLETION TIME 175

�[j; j 0 + 1]� �[j; j0] = (s1 + s2)Wj +
Pj0+1

j00=j
t1j00(Wj �Wj00)

�(s1 + s2)Wj �
Pj0

j00=j t1j
00(Wj �Wj00)

=
Pj0+1

j00=j t1j00(Wj �Wj00)�
Pj0

j00=j t1j00(Wj �Wj00)

= t1(j0+1)(Wj �Wj0+1):

Hence, the algorithms given by Galil and Park [40], Eppstein [37], or Wilber [122]

can be used to compute g� in O(n) time using Equation 7.3.

Theorem 7.2 The problem 1F2jsi; �xed sequencejPwjCj is solved in O(n) time.

7.2.3 Two-Machine Open Shop Case

In this section we shall consider the problem 1O2jsi; �xed sequencejPwjCj: Recall

that for the case of two machines there exists an optimal schedule which is a batching

schedule . Also recall that we assume that the �xed sequence is 1, 2, ..., n and de�ne

Wj =
Pn

u=j wu: As in the case of ow shop, we de�ne �0(1; j) = t1jWj; �
0(2; j) =

t2jWj and the contribution �
0 of the job-order to be �

0 =
P
�
0(1; j) +

P
�
0(2; j)

=
P

(t1j + t2j)Wj :

Consider a schedule in which the �rst operation is processed on machine i1. Let

i2 be the other machine. Initially, machine i1 is set up. Each odd batch is started on

machine i1; and before the batch starts operation on machine i2; machine i2 has to

be set up. Similarly, each even batch is started on machine i2; and before the batch

starts operation on machine i1; machine i1 has to be set up. Hence, we say that each

batch starting on machine i1 requires a setup on machine i2 and each batch starting

on machine i2 requires a setup on machine i1: Observe that a schedule with k batches

CHAPTER 7. WEIGHTED COMPLETION TIME 176

requires k +1 setups, one in the beginning and one each for the other batches.

Consider any batch [j; j0] that starts on machine i1 and terminates on i2: The

setup on machine i2 and all operations (i1; j
00); j � j

00 � j 0; precede the completion of

jobs j; :::; n: Furthermore, each operation (i2; j
00); j � j 00 � j

0
; is the last operation of

job j
00 and precedes the completion of jobs j00 +1; :::; n: We say that the contribution

of batch [j; j0] is the total contribution of setups and operations of the batch not

included in the contribution of the job-order �0: Hence, the contribution of batch

[j; j0] starting on machine i1 and terminating on machine i2 is

�i1[j; j
0] = (si2 +

j0X
j00=j

ti1j00)Wj +

j0X
j00=j

ti2j00Wj00

�
j0X

j00=j

�
0(1; j00)�

j0X
j00=j

�
0(2; j00)

= (si2 +

j0X
j00=j

ti1j00)Wj +

j0X
j00=j

ti2j00Wj00

�
j0X

j00=j

ti1j00Wj00 �
j0X

j00=j

ti2j00Wj00

= si2Wj +

j0X
j00=j

ti1j00(Wj �Wj00): (7.4)

Consider any batching schedule with batching policy � = (p1; :::; pk) and starting

on machine i1: Let i2 be the other machine. Let p0 = 0: It follows from Remark 7.1

that the total weighted completion time is

�
0 + si1W1 +

X
u=1;3;:::

�i1 [pu�1 + 1; pu] +
X

u=2;4;:::

�i2[pu�1 + 1; pu]:

CHAPTER 7. WEIGHTED COMPLETION TIME 177

For 1 � j � n; let g(j; i�) = minimum total contribution of the batches when

jobs j; :::; n are scheduled and post-setup processing of operation (i�; j) starts at time

zero. For a dummy job (n+ 1) set g(n+ 1; 1) = g(n+ 1; 2) = 0: We get 8 1 � j � n;

g(j; 1) = min
j�j0�n

f�1[j; j 0] + g(j0 + 1; 2)g (7.5)

and

g(j; 2) = min
j�j0�n

f�2[j; j 0] + g(j0 + 1; 1)g: (7.6)

The minimum total weighted completion time is g
� = �

0 + minfs1 +g(1; 1); s2

+g(1; 2)g: Observe that the above equations can be recursively used to compute g(j; 1)

8 1 � j � n from g(j + 1; 2); :::; g(n + 1; 2) and g(j; 2) 8 1 � j � n from g(j + 1; 1);

:::; g(n + 1; 1): A straightforward implementation of such a recursion requires O(n2)

time. However, as in the ow shop case, we can show that each array f�1[j; j 0]g and

f�2[j; j0]g satis�es the Monge property. Moreover, for any 1 � j � j 0 < n; �1[j; j
0 + 1]

and �2[j; j
0 + 1] can be obtained from �1[j; j

0] and �2[j; j
0] in constant time if all the

values Wj are precomputed.

First, we shall show that each array f�1[j; j0]g and f�2[j; j 0]g satis�es the Monge

property. For any 1 � j < j
0
< n; we get

�1[j; j
0 + 1] + �1[j + 1; j0]� �1[j; j0]� �1[j + 1; j0 + 1]

CHAPTER 7. WEIGHTED COMPLETION TIME 178

= s2Wj +
Pj0+1

j00=j
t1j00(Wj �Wj00) + s2Wj+1 +

Pj0

j00=j+1
t1j00(Wj+1 �Wj00)

�s2Wj �
Pj0

j00=j t1j
00(Wj �Wj00)� s2Wj+1 �

Pj0+1

j00=j+1 t1j
00(Wj+1 �Wj00)

=
Pj0+1

j00=j t1j00(Wj �Wj00) +
Pj0

j00=j+1 t1j00(Wj+1 �Wj00)

�Pj0

j00=j t1j00(Wj �Wj00)�
Pj0+1

j00=j+1 t1j00(Wj+1 �Wj00)

= t1(j0+1)(Wj �Wj0+1)� t1(j0+1)(Wj+1 �Wj0+1)

= t1(j0+1)(Wj �Wj+1)
= t1(j0+1)wj

� 0

Similarly, for any 1 � j < j
0
< n; we get �2[j; j

0 + 1] +�2[j + 1; j 0] ��2[j; j 0] ��2[j +

1; j0 + 1] � 0:

Next we shall show that for any 1 � j � j
0
< n; �1[j; j

0 + 1] and �2[j; j
0 + 1]

can be obtained from �1[j; j
0] and �2[j; j

0] in constant time if all the values Wj are

precomputed. For any 1 � j � j 0 < n; we get

�1[j; j
0 + 1]� �1[j; j 0] = s2Wj +

Pj0+1

j00=j t1j00(Wj �Wj00)

�s2Wj �
Pj0

j00=j t1j00(Wj �Wj00)

=
Pj0+1

j00=j t1j
00(Wj �Wj00)�

Pj0

j00=j t1j
00(Wj �Wj00)

= t1(j0+1)(Wj �Wj0+1)

Hence, �1[j; j
0 + 1] can be obtained from �1[j; j

0] in constant time if all the values

Wj are precomputed. Similarly, we can show that �2[j; j
0 + 1] can be obtained from

�2[j; j
0] in constant time if all the values Wj are precomputed.

Thus, the algorithm given by Eppstein [37] can be used to compute g� in O(n)

time using Equations 7.5 and 7.6.

Theorem 7.3 The problem 1O2jsi; �xed sequencejPwjCj is solved in O(n) time.

CHAPTER 7. WEIGHTED COMPLETION TIME 179

7.2.4 Network Representation for the Two-Machine Cases

Fixed-sequence cases with objectives Lmax and
P
wjCj can be given a similar network

representation. In fact, the network representation is more intuitive in the case of

objective
P
wjCj: For example, in the case of objective

P
wjCj; each arc is associated

with a single weight and the length of the path is obtained by summing up the weights

of all the arcs in the path. Consequently, we get a classical shortest path problem.

The graphs de�ned in Chapter 5 for problems 1O2jsijLmax and 1F2jsijLmax ap-

ply to problems 1O2jsi; �xed sequencejPwjCj and 1F2jsi; �xed sequencejPwjCj

respectively. For ease of reading, we restate the de�nitions of the graphs here.

Consider the open shop case �rst. Introduce a dummy job (n + 1): De�ne a

directed network G = (V;E) with node-set V = f0g [V1 [V2 and arc-set E = E0

[E1 [E2: For each operation (1; j); there is a node aj in V1: For each operation (2; j);

there is a node bj in V2: Arc-set E0 contains only two arcs h0; a1i and h0; b1i : For all

1 � j < j
0 � (n + 1) there is an arc haj; bj0i in E1 and an arc hbj; aj0i in E2:

Each arc e is associated with a single weight r(e) which represents a contribution

to
P
wjCj: If e = haj; bj0i ; e represents processing of batch [j; j 0 � 1] starting on

machine 1. Hence, r(e) = �1[j; j
0 � 1]: If e = hbj; aj0i ; e represents processing of

batch [j; j0 � 1] starting on machine 2. Hence, r(e) = �2[j; j
0 � 1]: If e = h0; a1i ;

e represents the initial setup on machine 1. Hence, r(e) = s1W1: If e = h0; b1i ; e

represents the initial setup on machine 2. Hence, r(e) = s2W1: The problem is to

CHAPTER 7. WEIGHTED COMPLETION TIME 180

a1 a2 a3

0

a4

b1 b2 b3 b4

14 14 38

6

20

80

2

21 57

9
117

29 3

12

0

37

031130

25 9 2

Figure 7.1: A network representation of the two-machine open shop problem

compute a shortest path from node 0 to node an+1 or bn+1: The quantities g(j; 1) and

g(j; 2) give the lengths of the shortest paths from nodes aj and bj; respectively.

For example, consider the data shown in Example 7.1 below.

Example 7.1 Consider the following problem involving n = 3 jobs with s1 = 2 and

s2 = 3:

j 1 2 3
t1j 8 9 10

t2j 2 6 7

wj 4 2 1

There are three jobs 1, 2 and 3. Introduce a dummy job 4. The nodes are 0, a1;

:::; a4 and b1; :::; b4. The corresponding graph and arc weights are shown in Figure

7.1. First, compute W3 = w3 = 1; W2 = w2 +w3 = 1 +2 = 3 and W1 = w1 +w2

+w3 = 1 +2 +4 = 7: Arc weights are computable functions of tij; si; and Wj: For

example,

CHAPTER 7. WEIGHTED COMPLETION TIME 181

1 2 3 4

71 40

35 20 5

131

60 25 5 0

Figure 7.2: A network representation of the two machine ow shop problem

r(a1; b3) = �1[1; 3 � 1] = �1[1; 2]

= s2W1 + t11(W1 �W1) + t12(W1 �W2) from Equation 7.4

= 3(7) + 8(7 � 7) + 9(7 � 3) = 57

The shortest paths are computed �rst from nodes a3 and b3; then from nodes a2

and b2 and so on. For example, the length of a shortest path from node a1;

g(1; 1) = minfr(a1; b2) + g(2; 2); r(a1; b3) + g(3; 2); r(a1; b4) + g(4; 2)g
= minf21 + 9; 57 + 2; 117 + 0g = 30

A shortest path from node 0 is hh0; b1i ; hb1; a2i ; ha2; b3i ; hb3; a4ii : Arc h0; b1i repre-

sents setting up of machine 2, arc hb1; a2i represents batch [1; 1]; arc ha2; b3i represents

batch [2; 2] and arc hb3; a4i represents batch [3; 3]. Hence, an optimal solution is to

start from machine 2 and use batching policy (1; 2; 3): The corresponding sequence

of operations is (2; 1); (1; 1); (1; 2); (2; 2); (2; 3); (1; 3):

Now, consider the ow shop case. Again, introduce a dummy job (n+1): De�ne a

directed network G = (V;E); where V is the node-set and E is the arc-set: For each

job j; there is a node j: For each pair of nodes j and j
0 with 1 � j < j

0 � (n +1);

CHAPTER 7. WEIGHTED COMPLETION TIME 182

there is an arc hj; j0i which represents processing of batch [j; j0� 1] and is associated

with weight r(j; j0) = �[j; j0 � 1]: The problem is to compute a shortest path from

node 1 to (n+ 1): The quantity g(j) gives the length of the shortest path from node

j:

Considering the data shown in Example 7.1, we illustrate the network represen-

tation in Figure 7.2. There are three jobs 1, 2 and 3. Introduce a dummy job 4. The

nodes are 1, 2, 3, and 4. As in the open shop case, W3 = 1; W2 = 3; W1 = 7 and arc

weights are computable functions of tij; si; and Wj: For example,
r(1; 3) = �[1; 3� 1] = �[1; 2]

= (s1 + s2)W1 + t11(W1 �W1) + t12(W1 �W2) from Equation 7.2
= (2 + 3)(7) + 8(7 � 7) + 9(7 � 3) = 71

The shortest paths are computed �rst from node 3, then from node 2 and so on.

For example, the length of a shortest path from node 1,

g(1) = minfr(1; 2) + g(2); r(1; 3) + g(3); r(1; 4) + g(4)g
= minf35 + 25; 71 + 5; 131 + 0g = 60

A shortest path from node 1 is hh1; 2i ; h2; 3i ; h3; 4ii : Arc h1; 2i represents batch

[1; 1]; arc h2; 3i represents batch [2; 2] and arc h3; 4i represents batch [3; 3]. Hence,

an optimal solution is to use batching policy (1; 2; 3): The corresponding sequence of

operations is (1; 1); (2; 1); (1; 2); (2; 2); (1; 3); (2; 3):

The algorithms for problems 1O2jsijLmax and 1F2jsijLmax presented in Chapter

5 are based on two crucial rules: the node elimination rule and the arc elimination

rule. The fact that the node elimination rule still applies to the cases with objective

P
wjCj follows from the Monge property. However, the arc elimination rule does not

CHAPTER 7. WEIGHTED COMPLETION TIME 183

apply to the cases with objective
P
wjCj: We shall show this in the context of a ow

shop. The open shop case is similar.

First, consider the node elimination rule. Recall that g(j) is the minimum total

contribution of the batches when jobs j; ..., n are scheduled. As we have shown that

the Monge property applies, for any 1 � j < j
0
< n; we get �[j; j0 +1] +�[j +1; j0]

��[j; j 0] ��[j + 1; j0 + 1] � 0: By rearranging terms,

�[j; j 0 + 1] � �[j; j0] + �[j + 1; j 0 + 1]� �[j + 1; j0]; or
r(j; j 0 + 2) � r(j; j 0 + 1) + r(j + 1; j0 + 2)� r(j + 1; j0 + 1); or
r(j; j 0 + 2) + g(j 0 + 2) � r(j; j 0 + 1) + g(j 0 + 1)

+r(j + 1; j0 + 2) + g(j 0 + 2)
�r(j + 1; j0 + 1) � g(j0 + 2)

Hence, r(j +1; j 0 + 2) +g(j0 +2) � r(j +1; j 0 +1) +g(j0 +1)) r(j; j 0 +2) +g(j 0 +2)

� r(j; j0 +1) +g(j0 +1): Thus, if we have r(j +1; j0 +2) +g(j0 +2) � r(j +1; j 0 +1)

+g(j0 +1); then node (j0 +2) can be eliminated from computation of a shortest path

from nodes 1, ..., j:

Now, consider the arc elimination rule. Consider the following example:

Example 7.2 Consider an instance of the problem 1F2jsi; �xed sequencejPwjCj

with s1 = s2 = 2; wj = 1 and the following processing times:

j 1 2 3
t1j 1 10 1

t2j 1 1 20

For various batching policies , the corresponding path and completion times are

summarized below:

CHAPTER 7. WEIGHTED COMPLETION TIME 184

Batching policy, � Corresponding path C1 C2 C3

P
wjCj

(1; 3) h1; 2; 4i 6 22 42 70

(2; 3) h1; 3; 4i 16 17 42 75
(3) h1; 4i 17 18 38 73

Consider the computation of a shortest path from node 1. A choice of arc h1; 4i

gives a solution with
P
wjCj = 73: Arc h1; 4i is a better choice than arc h1; 3i

which gives a solution with
P
wjCj = 75: However, arc h1; 2i gives a solution with

P
wjCj = 70 which turns out to be the unique optimum. This shows that the arc

elimination rule does not apply to cases with objective
P
wjCj:

7.3 The Fixed Batching Policy Case

In this section we shall consider the cases with known and �xed batching policy.

We shall show that problems 1F2jsi;�xed batching policyjPwjCj and 1F2jsi;�xed

batching policyjPwjCj are NP-hard. However, both the ow shop and open shop

cases are solvable if wj = 1:

7.3.1 Weighted Completion Time

Theorem 7.4 Both 1F2jsi;�xed batching policyjPwjCj and 1F2jsi;�xed batching

policyjPwjCj are NP-hard.

Proof: Given an instance of the partition problem with set of integers A = fa1; :::;

akg;
P

al2A
al = 2b we de�ne an instance each of 1F2jsi;�xed batching policyjPwjCj

and 1F2jsi;�xed batching policyjPwjCj as follows:

CHAPTER 7. WEIGHTED COMPLETION TIME 185

n = 2k � 2

� = (k � 1; 2k � 2)

S1 = S2 = 0

t1j = t2j = wj =

�
aj

0

for j = 1; 2; :::k

for j = (k + 1); (k + 2); :::; (2k � 2)

Consider any schedule � with job-order . Let bj = t1j = t2j = wj: Let J1 and J2

be the set of jobs in batches 1 and 2 respectively. Let x =
Pk�1

p=1
b (p): For any position

p � (k �1); completion time C (p) = x+
Pp

p0=1 b (p0). Again, for any position p > (k

�1); completion time C (p) = 2b+
Pp

p0=1 b (p
0). Hence, the total weighted completion

time isP
wjCj =

Pk�1

p=1
b (p)(x+

Pp

p0=1
b (p0))

+
P2k�2

p=k b (p)(2b+
Pp

p0=1 b (p0))

=
Pk�1

p=1 b (p)x+
Pk�1

p=1 b (p)

Pp

p0=1 b (p0)

+2b
P2k�2

p=k b (p) +
P2k�2

p=k b (p)

Pp

p0=1 b (p
0)

= x
2 +
Pk�1

p=1 b (p)

Pp

p0=1 b (p0)

+2b
P2k�2

p=k b (p) +
P2k�2

p=k b (p)

Pp

p0=1 b (p0)

= x
2 +
Pk�1

p=1 b (p)

Pp

p0=1 b (p0) + 2b(2b� x) +
P2k�2

p=k b (p)

Pp

p0=1 b (p0)

= x
2 + 2b(2b� x) +

P2k�2

p=1
b (p)

Pp

p0=1
b (p0)

= x
2 � 2bx+ 4b2 +

P2k�2

j=1 bj

Pj

j0=1 bj
0

x
2 � 2bx+ 4b2 +

Pk

j=1 aj

Pj

j0=1 aj0

Setting d
P
wjCj=dx = 0; we get that

P
wjCj attains a minimum value of 3b2

+
Pk

j=1
aj

Pj

j0=1 aj
0 if and only if x = b: Thus, the problem of checking whether

there exists a job-order with
P
wjCj � 3b2 +

Pk

j=1 aj

Pj

j0=1 aj0 is equivalent to the

partition problem.

7.3.2 Flow Shop with Total Completion Time

Consider the problem 1F2jsi;�xed batching policyjPCj: Suppose that the given

batching policy is � = (p1; :::; pk): Let p0 = 0: For any p with pu�1 < p � pu; if

CHAPTER 7. WEIGHTED COMPLETION TIME 186

any job j is assigned to position p; then job j belongs to the u-th batch. Consider

any job-order : Each machine i is set up before each operation (i; (pu�1+1)); where

1 � u � k: Since such a setup precedes completion of (n �pu�1) jobs (pu�1 +1);

:::; (n); the contribution of the setup is si(n �pu�1): Hence the contribution of all

setups is
Pk

u=1(s1 +s2)(n �pu�1):

Since the contribution of setups is a constant, the total weighted completion time

is minimized by minimizing the total contribution of operations. Suppose that job

j is assigned to position p belonging to the u-th batch. We get pu�1 < p � pu:

Operation (1; j) is processed before the completion of (n �pu�1) jobs (pu�1 +1); :::;

 (n): Operation (2; j) is the last operation of job j and precedes completion of the

other (n � p) jobs (p +1); :::; (n). Hence, the contribution of assigning job j to

position p is �jp = t1j(n �pu�1) + t2j(n� p+ 1): Hence, we get the following:

Theorem 7.5 The problem 1F2jsi;�xed batching policyjPCj reduces to an assign-

ment problem.

For example, consider the data shown in Example 7.3 below.

Example 7.3 Consider the following problem involving n = 3 jobs with s1 = 2 and

s2 = 3:

j 1 2 3
t1j 8 9 7

t2j 2 6 9

wj 1 1 1

CHAPTER 7. WEIGHTED COMPLETION TIME 187

Suppose that the given batching policy is (2; 3): Since the batching policy is (2,3),

we have p1 = 2 and p2 = 3: According to our above discussion, the problem of �nding

an optimal job-order reduces to an assignment problem with the following cost matrix:

Position, p

1 2 3
1 8(3)+2(3)=30 8(3)+2(2)=28 8(1)+2(1)=10

Job, j 2 9(3)+6(3)=45 9(3)+6(2)=39 9(1)+6(1)=15
3 7(3)+9(3)=48 7(3)+9(2)=39 7(1)+9(1)=16

For example, consider the contribution of assigning job 1 to position 2. Since position

2 belongs to the �rst batch, u = 1; and, therefore, pu�1 = p0 = 0: The contribution

of assigning job 1 to position 2 is �12 = t11(n �pu�1) + t21(n � p + 1) = 8(3 � 0)

+2(3 � 2 + 1) = 8(3) +2(2) = 28:

An optimal assignment is as follows: job 1 to position 1, job 2 to position 3

and job 3 to position 2. This corresponds to job-order (1,3,2) with the contribution

of operations = 30+15+39 = 84. The contribution of setups = (s1 + s2)(n � p0)

+(s1+s2)(n�p1) = (2+3)(3�0) +(2+3)(3�2) = 20: Job-order (1,3,2) and batching

policy (2,3) gives the sequence of operations (1; 1); (1; 3); (2; 1); (2; 3); (1; 2); (2; 2)

with a total completion time 84+20=104.

7.3.3 Open Shop with Total Completion Time

Consider the problem 1O2jsi;�xed batching policyjPCj : Suppose that the given

batching policy is � = (p1; :::; pk): Let p0 = 0: For any p with pu�1 < p � pu; if

any job j is assigned to position p; then job j belongs to the u-th batch. Consider

CHAPTER 7. WEIGHTED COMPLETION TIME 188

any job-order :

Suppose that machine i1 is set up in the beginning. Let i2 be the other machine.

The contribution of the �rst setup is nsi1 : Each machine i is set up before each

operation (i; (pu�1 + 1)); where 1 � u � k; u is odd if i = i2 and u is even if i = i1:

Since such a setup precedes completion of (n �pu�1) jobs (pu�1 +1); :::; (n); the

contribution of the setup is si(n �pu�1): Hence, the contribution of all setups is nsi1

+
P

u=2;4;::: si1(n �pu�1) +
P

u=1;3;::: si2(n �pu�1):

Since the contribution of setups is a constant, the total weighted completion time

is minimized by minimizing the total contribution of operations. Suppose that job j

is assigned to position p belonging to the u-th batch. We get pu�1 < p � pu:

If u is odd, then operation (i1; j) precedes completion of (n �pu�1) jobs (pu�1

+1); :::; (n): Operation (i2; j) is the last operation of job j and precedes completion

of the other (n� p) jobs (p +1); :::; (n). Hence, the contribution of assigning job

j to position p is �jp(i1) = ti1j(n �pu�1) + ti2j(n� p + 1):

If u is even, then operation (i2; j) precedes completion of (n �pu�1) jobs (pu�1

+1); :::; (n): Operation (i1; j) is the last operation of job j and precedes completion

of the other (n� p) jobs (p +1); :::; (n). Hence, the contribution of assigning job

j to position p is �jp(i1) = ti2j(n �pu�1) + ti1j(n� p + 1):

Thus, the problem 1O2jsi;�xed batching policyjPCj with the �rst setup on ma-

chine i1 is solved by solving an assignment problem. Hence, we get the following:

CHAPTER 7. WEIGHTED COMPLETION TIME 189

Theorem 7.6 The problem 1O2jsi;�xed batching policyjPCj is solved by solving

two assignment problems.

Considering the data shown in Example 7.3, we shall now illustrate the method.

Suppose that the given batching policy is (2; 3): As it is in the ow shop case, p1 = 2;

p2 = 3: The problem of �nding an optimal job-order reduces to two assignment

problems. One corresponds to starting on machine 1 and the other corresponds to

starting on machine 2.

If the operator starts on machine 1, the problem of �nding an optimal job-order

reduces to an assignment problem with the cost matrix exactly same as what we ob-

tained in the ow shop case (such equivalence will not hold for all n and all batching

policies). Consequently, an optimal job-order is (1,3,2) with the contribution of oper-

ations = 30+39+15 = 84. The contribution of setups = ns1+s2(n�p0)+s1(n�p1) =

3(2) + 3(3 � 0) + 2(3 � 2) = 17: Hence, the total completion time =84+17=101.

If the operator starts on machine 2, the problem of �nding an optimal job-order

reduces to an assignment problem with the following cost matrix:

Position, p

1 2 3

1 8(3)+2(3)=30 8(2)+2(3)=23 8(1)+2(1)=10
Job, j 2 9(3)+6(3)=45 9(2)+6(3)=36 9(1)+6(1)=15

3 7(3)+9(3)=48 7(2)+9(3)=41 7(1)+9(1)=16

An optimal assignment is as follows: job 1 to position 1, job 2 to position 2 and job 3 to

position 3. This corresponds to job-order (1,2,3) with the contribution of operations

CHAPTER 7. WEIGHTED COMPLETION TIME 190

= 30+36+16 = 82. The contribution of setups = ns2 +s1(n� p0) +s2(n� p1) = 3(3)

+2(3 � 0) +3(3 � 2) = 18: Hence, the total completion time =82+18=100.

Thus, starting on machine 2 is better than starting on machine 1. The operator

starts on machine 2 and uses a job-order (1,2,3). Since the batching policy is (2; 3);

the sequence of operations is (2; 1); (2; 2); (1; 1); (1; 2); (1; 3); (2; 3): The resulting

total completion time is 100.

7.4 Summary

In this chapter we consider the problems with the total (weighted) completion time

objective. First, we revisit some �xed-sequence cases and improve the running time.

Fixed-sequence cases with objectives Lmax and
P
wjCj can be given a similar network

representation. In the case of objective
P
wjCj ; each arc is associated with a single

weight and the length of the path is obtained by summing up the weights of all the

arcs in the path. Consequently, we get a classical shortest path problem.

An obvious implementation of the shortest path algorithm requires O(n2) time.

We ask whether the O(n) time dynamic programming approach developed in Chapter

5 can be extended. The answer is negative because the arc elimination rule does not

apply although the node elimination rule applies and it is possible to compute arc

weights from the previously computed arc weights in constant time. Still, it is possible

to solve the resulting shortest path problem in O(n) time. Because the cost matrices

CHAPTER 7. WEIGHTED COMPLETION TIME 191

satisfy what is called the Monge properties.

One motivation for analyzing the �xed-sequence cases is that it is sometimes

possible to obtain a job-order which dominates all the other job-orders. For example,

it follows from Theorem 4.2 that one such case is that of agreeable processing time and

weight. Another motivation is to eventually obtain an enumeration scheme. However,

as there are n! job-orders, we seek an alternate scheme.

Such an alternate scheme is to enumerate over all batching policies . There are

2n�1 batching policies . Unfortunately, as we show in Theorem 7.4, both the ow

shop and open shop problems with the objective
P
wjCj are NP-hard even if the

batching policy is �xed. However, the cases with all wj = 1 are e�ciently solvable.

The problem 1F2jsi;�xed batching policyjPCj is solved by solving an assignment

problem and the problem 1O2jsi;�xed batching policyjPCj is solved by solving two

assignment problems. Thus the cases with �xed bathing policy are solvable in O(n3)

time.

In the next chapter, we develop a branch and bound algorithm for the problem

1F2jsij
P
Cj using the results on the ow shop �xed-sequence and �xed batching

policy cases with the objective
P
Cj :

In Table 7.1, we summarize the results on various cases of the total (weighted)

completion time objective.

CHAPTER 7. WEIGHTED COMPLETION TIME 192

Problem Result

(Chapter 7)

Previously Known Re-

sult

1Fmjsi;�xed sequencejPwjCj O(mn3) |

1F2jsi;�xed sequencejPwjCj O(n) O(n) (Albers and Brucker
[4], Co�man et al. [31])

1O2jsi;�xed sequencejPwjCj O(n) O(n2) (Gerodimos et al. [45,

46], Julien and Magazine
[64], Sung and Park [111])

1F2jsi;�xed batching policyjPwjCj NP-hard |

1O2jsi;�xed batching policyjPwjCj NP-hard |

1F2jsi;�xed batching policyjPCj O(n3) |

1O2jsi;�xed batching policyjPCj O(n3) |

Table 7.1: Summary of results on two-machine cases with the total (weighted) com-
pletion time objective

Chapter 8

Enumeration Schemes for

1F2jsij
P

Cj

In this chapter, we shall discuss a heuristic, a branch and bound scheme and an inte-

ger programming formulation. We shall discuss computational experience for various

implementations of the branch and bound scheme and the integer programming for-

mulation.

8.1 De�nitions

De�nition 8.1 If ~� = (0) or ~� = (p1; :::; pk) for some 1 � p1 < ::: < pk � n; then

~� is a partial batching policy. If ~� = (p1; :::; pk) with pk = n; then ~� is a complete

batching policy.

The partial batching policy ~� = (0) does not de�ne the size of any batches.

However, a partial batching policy ~� = (p1; :::; pk) with k � 1 de�nes the size of each

of the �rst k batches. Consider a partial batching policy ~� = (p1; :::; pk) with k � 1:

193

CHAPTER 8. TOTAL COMPLETION TIME 194

Let p0 = 0: For each 1 � u � k; the size of the u-th batch is (pu � pu�1):

De�nition 8.2 A complete batching policy � is compatible with a partial batching

policy ~� = (p1; :::; pk) if the size of each of the �rst k batches is same in both ~� and

�: Every complete batching policy is compatible with partial batching policy ~� = (0):

Consider any schedule � with job-order and a complete batching policy � =

(p1; :::; pk): Let p0 = 0:

The contribution of a batch [p; p0] is �[p; p0] = (s1 +s2)Wp +
Pp0

p00=p t1 (p00)(Wp

�Wp00): Since wj = 1 8j; we have Wp = (n �p +1) and Wp �Wp00 = (n� p +1) �(n

�p00 +1) = p
00 �p:

Hence, �[p; p0] = (s1 +s2)(n �p +1) +
Pp0

p00=p t1 (p00)(p
00 �p):

De�ne

�[p; p0;] =

p0X
p00=p

t1 (p00)(p
00 � p):

The contribution of batch [p; p0] is �[p; p0] = (s1 + s2)(n� p + 1) + �[p; p0;]:

The contribution of batching policy � is �(�) =
Pk

u=1(s1 +s2)(n�pu�1)+
Pk

u=1 �[pu�1

+1; pu;]:

The contribution of job-order is �() =
Pn

p=1(n �p +1)(t1 (p) +t2 (p)):

The total completion time is �(�) = �() +�(�):

CHAPTER 8. TOTAL COMPLETION TIME 195

8.2 A Heuristic

A good heuristic is important for a successful implementation of the branch and

bound scheme. We use our analysis of the �xed-sequence and �xed batching policy

cases to develop a heuristic. The basic idea is to arrange the jobs in the shortest

total processing time order, � and obtain a batching policy �
� which is optimal for

job-order �
: We then obtain a job-order which is optimal for batching policy �

� by

solving the problem 1F2jsi; �xed batching policyjPCj with batching policy �
�
:

We recognize the fact that jobs within a batch are processed in the ascending

order of t2j: Thus, if jobs j and j
0 are processed in the same batch and t2j < t2j0;

then job j is processed before j0: Let � be a job-order such that p < p
0) (t1 �(p)

+t2 �(p)) � (t1 �(p0) +t2 �(p0)): In steps 1, 2 and 3 below, we compute �� by using a

slight modi�cation of the algorithm for 1F2jsi; �xed sequencejPCj:

Step 1: For all 1 � p � p
0 � n; compute �̂[p; p0] = (s1 +s2 +

Pp0

p00=p t1 �(p00))(n

�p + 1) +
Pp0

p00=p t2 (p00)(n �p00 +1); where is an arrangement of jobs �(p); :::;

�(p0) so that t2 (p) � ::: � t2 (p0):

Step 2: Let g(n + 1) = 0; g(n) = �̂[n; n]: For p = (n � 1) downto 1 compute

succ(p) = arg minp�p0�nf�̂[p; p0] +g(p0 +1)g and g(p) = �̂[p; succ(p)] +g(succ(p) +1):

Step 3: Let k = 0 and p0 = 0: While pk 6= n; set pk+1 = succ(pk +1) and increase

k by 1.

Step 4: Solve the problem 1F2jsi; �xed batching policyjPCj with batching policy

CHAPTER 8. TOTAL COMPLETION TIME 196

�
� = (p1; :::; pk):

In step 1, quantities �̂[p; p0] are computed such that for any complete batching

policy � = (p1; :::; pk) the total completion time is
Pk

u=1 �̂[pu�1 + 1; pu] if the jobs

within a batch are processed in the ascending order of t2j: In step 2 a dynamic

programming recursion is applied to compute the total completion time given by a

batching policy �
� which is optimal for job-order �

: In step 3 the batching policy

�
� = (p1; :::; pk) is constructed. In step 4, the algorithm for the �xed batching policy

case is applied to obtain a job-order which is optimal for the complete batching policy

�
�.

8.2.1 Running Time of the Heuristic

The jobs are sorted in time O(n log n). In step 1, each �̂[p; p0] is computed in time

O(n log n) and, therefore, step 1 requires O(n3 log n) time: The dynamic programming

recursion in step 2 requires O(n2) time. An optimal batching policy is constructed in

step 3 in O(n) time. Step 4 requires solution of an assignment problem which runs

in O(n3) time. Overall, the heuristic runs in O(n3 log n) time.

8.3 A Lower Bounding Procedure

Each node of the branch and bound tree represents a unique partial batching policy,

~�. In the following we shall discuss a lower bounding procedure which is used to

compute a lower bound, �(~�); on the total completion time of any schedule with a

CHAPTER 8. TOTAL COMPLETION TIME 197

complete batching policy compatible with ~�:

The contribution of job-order is minimized if the jobs are processed in the shortest

total processing time order. Let � be the job-order such that p < p
0) (t1 �(p)

+t2 �(p)) � (t1 �(p0) +t2 �(p0)): Then

�0 = �(�) =

nX
p=1

(n� p+ 1)(t1 �(p) + t2 �(p))

is a lower bound on the contribution �() of any job-order :

Now, we shall discuss computation of a lower bound �1[p; p
0] on �[p; p0;] 81 �

p � p
0 � n: The quantity �1[p; p

0] is used to compute a lower bound �2[p; p
0] on �[p; p0]:

After computing �2[p; p
0] 81 � p � p

0 � n; we compute a lower bound �(~�) on the

total completion time of any schedule with a complete batching policy compatible

with ~�:

Computing �1[p; p
0] reduces to a special type of assignment problem. For 1 � j

� n; p � p
00 � p0; the contribution of assigning job j to position p

00 is

�jp00 = t1j(p
00 � p): (8.1)

Since jobs within a batch are processed in ascending order of t2j; the quantity �1[p;

p
0] is obtained by assigning (p0 � p + 1) jobs to positions p ,..., p0 so that:

1. job j is assigned to position p̂ and job j0 is assigned to position with ~p > p̂; only

if t2j � t2j0; and

CHAPTER 8. TOTAL COMPLETION TIME 198

2. the total contribution
P

(�jp00 : j is assigned to p
00
; p � p

00 � p
0) of assigning

jobs to positions p ,..., p0 is minimized.

Hence, computing �1[p; p
0] reduces to a special type of assignment problem.

We shall now show that such a problem can be solved by a dynamic programming

recursion. We may assume, by relabelling if necessary, that j < j
0) t2j � t2j0: Let

fjp00 = minimum total contribution when jobs j,, n are considered and assignments

are made to positions p00, ..., p0: Observe that

fnp0 = �np0

fjp0 = minf�jp0; fj(p0+1)g 81 � j � (n � 1)

fnp00 = 1 8p � p00 � (p0 � 1)
fjp00 = minf�jp00 + f(j+1)(p00+1); �(j+1)p00g 81 � j � (n � 1) and p � p

00 � (p0 � 1):

The lower bound is

�1[p; p
0] = f1p:

After �1[p; p
0] is obtained, a lower bound �2[p; p

0] on �[p; p0] is obtained from the

relation

�2[p; p
0] = (s1 + s2)(n� p + 1) + �1[p; p]:

The dynamic programming recursion discussed for the problem 1F2jsi;�xed se-

quencejPCj can now be used to obtain a lower bound on the contribution of a

sequence of batches.

CHAPTER 8. TOTAL COMPLETION TIME 199

For 1 � p � n; let g(p) be a lower bound on the total contribution of the batches

when some (n� p+ 1) jobs are assigned to positions p; :::; n: Initialize g(n) = 0; and

for each 1 � p � n; compute

g(p) = min
p�p0�n

f�2[p; p0] + g(p0 + 1)g:

Consider any partial batching policy ~� = (p1; :::; pk): If pk < (n � 1); a lower

bound on �(�) is
Pk

u=1 �2[pu�1 + 1; pu] + g(pk +1); where � is any complete batching

policy compatible with ~�: Hence, a lower bound �(~�) on the total completion time of

any schedule with a complete batching policy compatible with ~� is

�(~�) = �0 +

kX
u=1

�2[pu�1 + 1; pu] + g(pk + 1):

If pk = (n�1) or pk = n; the problem of minimizing total completion time reduces

to a problem 1F2jsi;�xed batching policyjPCj with a complete batching policy �;

where � = (p1; :::; pk; n) if pk = (n � 1) and � = ~� if pk = n: Each leaf node in the

branch and bound tree corresponds to a complete batching policy.

8.3.1 Lowest and Highest Positions

For every job j we de�ne the lowest position L(j) and the highest position H(j) such

that if job j is assigned to position p; then L(j) � p � H(j): If two jobs j and j
0 do

not have identical processing times on both machines, j is called a predecessor of j0

if t1j � t1j0 and t2j � t2j0: If t1j = t1j0 and t2j = t2j0 arbitrarily de�ne one of j or j0

CHAPTER 8. TOTAL COMPLETION TIME 200

to be a predecessor of the other. Job j
0 is a successor of job j if j is a predecessor

of j0: For each job j let �pred(j) be the number of predecessors and �succ(j) be the

number of successors of j. There exists an optimal schedule in which for each job j; all

predecessors of job j are completed before j and all successors of job j are completed

after j: Hence, L(j) � �pred(j) +1 and H(j) � n ��succ(j):

Let ��j;p() be the minimum contribution of job-order given that (p) = j:

The quantity �
�
j;p() is obtained by assigning job j to position p and processing the

remaining jobs in the shortest total processing time order. If �(p0) = j; then

�
�
j;p() =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

Pp0�1

p00=1
(n� p00 + 1)(t1 �(p00) + t2 �(p00))

+
Pp�1

p00=p0(n� p00 + 1)(t1 �(p00+1) + t2 �(p00+1))

+(t1j + t2j)(n� p + 1)
+
Pn

p00=p+1
(n� p00 + 1)(t1 �(p00) + t2 �(p00)); if p � p0

Pp�1

p00=1(n� p00 + 1)(t1 �(p00) + t2 �(p00))

+(t1j + t2j)(n� p + 1)

+
Pp0

p00=p+1(n� p00 + 1)(t1 �(p00�1) + t2 �(p00�1))

+
Pn

p00=p0+1(n� p00 + 1)(t1 �(p00) + t2 �(p00)) if p � p0

We use the quantities ��j;p() to obtain the lowest and highest position of a job

once we have an upper bound on the total completion time and a lower bound on the

contribution of the batching policy.

Suppose that we have a schedule � and a lower bound �
0 on the contribution

of the batching policy. In our search for a schedule better than � we may assume

that job j is not assigned to position p if ��j;p() + �
0 � �(�): For the least p such

that ��j;p()+ �
0
< �(��); we have L(j) � p: Hence, L(j) = maxf�pred(j) + 1; pg:

CHAPTER 8. TOTAL COMPLETION TIME 201

Similarly, for the largest p such that ��j;p()+ �
0
< �(��); we have H(j) � p: Hence,

H(j) = minfn� �succ(j); pg:

We can now modify Equation 8.1. Since we want that job j be assigned to position

p
00 only if L(j) � p

00 � H(j); we set �jp00 = 1 whenever p00 < L(j) or p00 > H(j):

Hence, Equation 8.1 is modi�ed as follows:

�jp00 =

�
t1j(p

00 � p) if L(j) � p
00 � H(j)

1 otherwise
(8.2)

First, we compute L(j) and H(j) using the initial upper bound obtained from the

heuristic procedure and a lower bound �
0 = 0 on the contribution of the batching

policy. Then, the lower bounding procedure is used to obtain a lower bound �(~�);

where ~� = (0): A lower bound on the contribution of the batching policy is �0 =

�(~�) � �0: Hence, we update L(j) and H(j) using the initial upper bound and the

updated lower bound �
0on the contribution of the batching policy.

8.3.2 Running Time of the Lower Bounding Procedure

We compute all L(j); H(j); �1[p; p
0]; �2[p; p

0] and g(p) before processing any node in

the branch and bound tree.

It takes O(n log n) time to sort the jobs in the shortest total processing time order

and compute �0: Each �
�
j;p() is computed in O(n) time. Hence, it requires O(n3)

time to compute all ��j;p(): All �pred(j) and �succ(j) are computed in O(n2) time.

CHAPTER 8. TOTAL COMPLETION TIME 202

Each L(j) and H(j) is computed in O(n) time. Hence, it requires O(n2) time to

compute all L(j) and H(j): Overall, it takes O(n3) time to get the initial lowest and

highest positions. During the updating of the lowest and highest positions, quantities

�
�
j;p() are not computed again. Hence, the lowest and highest positions are updated

in time O(n2):

Each �jp00 is computed in constant time. For a given batch [p; p0] all �jp00 is com-

puted in time O(n(p0 � p)) � O(n2): Each fjp00 is computed in constant time. Hence,

for batch [p; p0] all fjp00 is computed in time O(n(p0 � p)) � O(n2): Thus, �1[p; p
0] is

computed in time O(n2): The lower bound �2[p; p
0] is obtained from �1[p; p

0] in con-

stant time. Since there are O(n2) batches, it takes O(n4) time to compute all �2[p; p
0]:

Given all �2[p; p
0]; we compute all g(p) in time O(n2): Hence, the above preprocessing

requires O(n4) time.

An advantage of our lower bounding procedure is that most of the necessary

computation is actually done before processing any node in the branch and bound

tree. Each node in the branch and bound tree corresponds to a unique partial batching

policy ~� = (p1; :::; pk): If pk < (n � 1); we compute a lower bound �(~�): After the

above preprocessing, we compute such a lower bound �(~�) in O(n) time.

CHAPTER 8. TOTAL COMPLETION TIME 203

8.4 The Branch and Bound Scheme

Each node in the branch and bound tree represents a partial batching policy ~�: The

root node represents the partial batching policy ~� = (0) and each of the other nodes

represents a partial batching policy of the type ~� = (p1; :::; pk): The root node has n

branches. The k-th branch is connected to a node that represents the partial batching

policy (k). Each node representing a partial batching policy ~� = (p1; :::; pk) with

pk < (n� 1) has (n� pk) branches k̂ = 1; :::; (n� pk): The k̂-th branch is connected

to a node that represents the partial batching policy (p1; :::; pk; pk + k̂):

If a node represents a partial batching policy ~� = (p1; :::; pk) with pk = (n� 1) or

pk = n; then the node is a leaf node and we solve the problem 1F2jsi;�xed batching

policyjPCj with complete batching policy �; where � = (p1; :::; pk) if pk = n and

� = (p1; :::; pk; n) if pk = (n� 1):

If a node is not a leaf node, we compute a lower bound. If the lower bound is less

than the best solution, we generate all the branches. If the lower bound is equal to

or greater than the best solution, we eliminate the node from further computation.

As we have discussed before, the heuristic requires O(n3 log n) time and prepro-

cessing requires O(n4) time. If a node is not a leaf node, we compute a lower bound

in O(n) time and if a node is a leaf node we solve a problem 1F2jsi;�xed batching

policyjPCj in O(n3) time. The number of leaf nodes is 2n�1 and the number of

non-leaf nodes is O(2n�2): Hence, the worst case time complexity of the above branch

CHAPTER 8. TOTAL COMPLETION TIME 204

and bound scheme is O(n32n�1):

8.5 Alternate Algorithms

In the above, we outline a branch and bound algorithm which we call Algorithm A.

An alternate algorithm, call it Algorithm B, is to generate a heuristic solution at

each node processed. In our implementation of Algorithm B, we adopt the following

heuristic at each node that represents a partial batching policy ~� = (p1; :::; pk) with

pk < (n �1) : Let k0 = k: While pk0 6= n; set pk0+1 = succ(pk0 + 1) and increase k0

by 1. Solve the problem 1F2jsi;�xed batching policyjPCj with complete batching

policy � = (p1; :::; pk; :::; pk0):

Another alternate algorithm, call it Algorithm C, is to update all the lowest and

highest positions each time a di�erent lower bound is computed. As Algorithm A

performs better than Algorithm B, a heuristic solution is not generated at each node

processed by Algorithm C.

8.6 An Example

Our heuristic and lower bounding procedure can be given network representations

similar to what we have discussed in Chapters 5 and 7. In this section we shall show

the network representation by an example. We shall illustrate Algorithm A with the

data shown in Example 7.3. For ease of reading we reproduce the example below.

CHAPTER 8. TOTAL COMPLETION TIME 205

Example 8.1 Consider the following problem involving n = 3 jobs with s1 = 2 and

s2 = 3:

j 1 2 3

t1j 8 9 7

t2j 2 6 9
wj 1 1 1

An interpretation of Steps 1, 2 and 3 of the heuristic can be given by a network as

shown in Figure 8.1. There are three jobs 1, 2 and 3 to be assigned to three positions

1, 2 and 3. Introduce a dummy job 4 and assign it to a dummy position 4. De�ne

a directed network G = (V;E); where V is the node-set and E is the arc-set: For

each position p; there is a node p: For each pair of nodes p and p
0 with 1 � p < p

0

� (n +1); there is an arc hp; p0i which represents processing of batch [p; p0 � 1] and

is associated with weight r(p; p0) = �̂[p; p0 � 1]: In Steps 1, 2 and 3 a shortest path is

computed from node 1 to (n + 1): The quantity g(p) gives the length of the shortest

path from node p: The arc weights and lengths of shortest paths from various nodes

are shown in Figure 8.1.

As we can see from Figure 8.1, an optimal shortest path is hh1; 3i ; h3; 4ii : The

path corresponds to batching policy (2; 3) and the length 105 of the path is equal to

the total completion time that we get by arranging the jobs in the ascending order

of (t1j + t2j), using batching policy (2; 3); and rearranging the jobs within batches in

the ascending order of t2j:

CHAPTER 8. TOTAL COMPLETION TIME 206

1 2 3 4

3(5+19)+2(6)=84 2(5+22)+1(9)=63

3(5+10)
 =45

2(5+15)
 =40

1(5+16)
 =21

3(26)+2(6)+1(9)=114

02161105

Figure 8.1: A network representation of heuristic steps 1,2,3

In Step 4 of the heuristic the problem 1F2jsi; �xed batching policyjPCj is solved

with a batching policy (2; 3): In Section 7.3.2, the solution to Example 7.3 shows

that the problem 1F2jsi; �xed batching policyjPCj with the data shown in Example

8.1 and batching policy (2; 3) has a solution with job-order (1,3,2) and the total

completion time equal to 104. Thus, Step 4 yields an improved schedule.

The lower bound is computed in two stages. First, a lower bound �0 on the

contribution of job-order is obtained as �0 = 3(t11 + t21) +2(t12 + t22) +1(t13 + t23)

= 76: The second stage can be given a network representation similar to what we have

seen in the case of Steps 1, 2 and 3 of the heuristic. The nodes and arcs are de�ned

in exactly the same way as we have done in the case of Steps 1, 2 and 3 of heuristic.

However, the arc weights are computed di�erently. For all 1 � p < p
0 � (n +1); arc

hp; p0i is associated with weight r(p; p0) = �2[p; p
0]: The arc weights and lengths of

shortest paths from various nodes are shown in Figure 8.2.

CHAPTER 8. TOTAL COMPLETION TIME 207

1 2 3 4

3(5)+7=22 2(5)+7=17

3(5)=15 2(5)=10 1(5)=5

3(5)+9+2(7)=38

51527 0

Figure 8.2: A network representation of the second stage of the lower bounding

procedure

All the arc weights and shortest paths on the lower bounding graph (shown in

Figure 8.2) are computed only once, before the start of the branch and bounding

procedure. Given a partial or complete batching policy, ~�; we can compute a lower

bound corresponding to ~�; using the lower bounding graph. An advantage of having

the lower bounding graph is that in each node of the branch and bound procedure,

we have a partial or complete batching policy and we can compute a lower bound

corresponding to the batching policy with a few steps of computation. This is shown

below.

Partial or Complete Batching Policy ~� First Arc Lower Bound

(0) � 27 + 76 = 103
(1) h1; 2i 15 + 15 + 76 = 106

(2) h1; 3i 22 + 5 + 76 = 103
(3) h1; 4i 38 + 76 = 114

For example, consider ~� = (1): Only those schedules are compatible to ~� = (1) in

which the jobs in the �rst position constitute a batch. From the weight on the arc

h1; 2i ; we know that a lower bound on the contribution of a batch [1; 1] is 15. From

CHAPTER 8. TOTAL COMPLETION TIME 208

µ = (3)~

Lower bound = 103
Upper bound = 104

ower bound
 106, removed.

Assignment
solution = 104

Assignment
solution = 114

µ = (2)~µ = (1)~

µ = (0)~

Figure 8.3: A branch and bound tree

the length of the shortest path from node 2, we know that the contribution of the

remaining jobs and setups is 15. Now, adding the lower bound on the job-order, we

get a lower bound 15+15+76=106 corresponding to ~� = (1):

The above lower bounds are used in the branch and procedure. The branch

and bound tree is shown in Figure 8.3. Observe that the node corresponding to

~� = (2) yields the unique optimal solution (which is actually the heuristic solution).

Hence, the optimal schedule is to use batching policy (2,3) and job-order (1,3,2) which

gives the sequence of operations (1; 1); (1; 3); (2; 1); (2; 3); (1; 2); (2; 2) with a total

completion time 104.

Note that in the above we do not use the concept of the high-low positions. If

we use the concept of the high-low positions, a revised lower bound shows that the

CHAPTER 8. TOTAL COMPLETION TIME 209

heuristic solution is optimal and, therefore, the branch and bound procedure is not

required to solve the problem with the above data. We omit the discussion here.

8.7 An IP Formulation

If a job j is assigned to position p as an l-th job within the batch, we say that the

rank of job j or position p is l: We can de�ne the contribution of assigning job j to

position p as an l-th job within the batch so that the total completion time is obtained

by summing up contribution of all assignments. If job j is assigned to position p as

an l-th job within batch, operation (1; j) precedes completion of (n� p+ l) jobs and

operation (2; j) is the last operation of job j and precedes completion of other (n�p)

jobs. Furthermore, if l = 1; a setup on machine 1 and another setup on machine 2

precedes the completion of (n� p+ 1) jobs. Hence, the contribution of assigning job

j to position p as an l-th job within a batch is

�jpl =

�
(n� p+ 1)(t1j + t2j + s1 + s2) if l = 1
(n� p+ l)t1j + (n� p+ 1)t2j if l > 1

For all 1 � j � n and 1 � l � p � n let xjpl = 1 if job j is assigned to position

p as an l-th job within batch and xjpl = 0 otherwise. The following integer program

solves the problem 1F2jsij
P
Cj :

min
P

j

P
p

P
l�p xjpl�jpl

s.t.
P

p

P
l�p xjpl = 1 8jP

j

P
l�p

xjpl = 1 8pP
j
xjpl �

P
j
xj(p+1)1 �

P
j
xj(p+1)(l+1) � 0 8l � p < nP

j
xjpl �

P
j
xj(p+1)(l+1) � 0 8l � p < n

xjpl 2 f0; 1g 8j; p; l

CHAPTER 8. TOTAL COMPLETION TIME 210

The �rst constraint ensures that each job is assigned to exactly one position and

that each job has a unique rank. The second constraint ensures that each position

is assigned to exactly one job and that each position has a unique rank. The third

constraint ensures that if the rank of position p is l; then the rank of position (p+ 1)

is either 1 or (l + 1): The fourth constraint ensures that if the rank of position p is

not l; then the rank of position (p + 1) is not (l + 1):

8.8 Computational Experience

Algorithms A, B and C and the Integer Program (IP) are tested on a randomly

generated set of problems. For a discussion on generation of experimental data for

machine scheduling problems, see Hall and Posner [56]. We generate problems with

n = 5; 10; 15; 20; 25; 30 and 40. For each n; 10 problems are generated. We consider

si � U [2; 4] and tij � U [1; 10]; where U denotes the uniform integer distribution.

Algorithms A, B and C are written in C and run on an AMD-K6-2/333 PC using

Polaris. The C code for solving the assignment problem is obtained from an World

Wide Web site maintained by MagicLogic Optimization Inc. [61]. The code is based

on the methods described in Jonker and Volgenant [62]. The IP is coded in GAMS

and solved using LAMPS run on an IBM RISC 6000 43P M140 using AIX.

For each of the Algorithms A, B and C we record number of nodes processed,

number of leaf nodes processed, initial heuristic solution, initial lower bound, optimal

CHAPTER 8. TOTAL COMPLETION TIME 211

solution, and time in seconds. For the IP, time in seconds is recorded. The results

are summarized in table 8.1. Heuristic to optimal is the ratio of heuristic solution

to the optimal solution and LB to optimal is the ratio of initial lower bound to the

optimal solution. More precisely, heuristic to optimal is �(�)=�(��) and lower bound

to optimal is �(~�)=�(��); where � is the schedule generated by the heuristic in the

�rst run, �� is an optimal schedule and ~� = (0):

As Algorithm B updates the upper bound at each node, Algorithm B processes

fewer nodes than Algorithm A. Similarly, as Algorithm C updates the lower bound

on the contribution of batches at each node, Algorithm C processes fewer nodes than

Algorithm A. However, in each case the advantage gained by eliminating nodes is

outweighed by the increased amount of time required to update the upper or lower

bounds. Algorithm A updates the lower bound at each node without updating the

lower bound on the contribution of batches. In all cases, Algorithm A requires the

least time. Between Algorithms B and C, Algorithm B requires less time.

The performance of the heuristic is encouraging. The average gap between the

heuristic solution and the optimal solution is between 0% and 0.3%. The average gap

between the initial lower bound and the optimal solution is 0% to 3.2%.

Algorithm A has been used to solve an instance of the problem with n = 40: The

number of nodes, leaf nodes and time in seconds are 20 337 175, 11 369 524 and 20

803 respectively.

CHAPTER 8. TOTAL COMPLETION TIME 212

Number of Jobs, n

Algorithm 5 10 15 20 25 30

Nodes A 1.2 67.6 561.9 6 252 88 176 714 117

processed B 1.2 66.8 560.4 6 217 87 710 711 351

C 1.2 53.7 467.2 5 537 82 161 -

Leaf nodes A 0.3 24.6 219.0 2 865 45 304 347 638

processed B 0.3 23.8 217.3 2 846 45 034 346 088

C 0.3 18.0 181.0 2 364 41 871 -

Time in A 0.0 0.000 0.143 0.977 25.870 334.616

seconds B 0.0 0.000 0.275 1.719 42.727 538.083

C 0.0 0.000 0.824 35.673 1217.8 -

IP 0.0 0.476 4.063 21.296 82.016 -

Heuristic to
optimal

1 1.003 1.001 1.001 1.002 1.001

Lower bound
to optimal

1 0.978 0.975 0.973 0.972 0.972

Table 8.1: Performance of algorithms for total completion time

8.9 Summary

In this chapter we consider the two-machine ow shop problem with the objective

P
Cj: The problem is open. However, we use our analysis on the �xed-sequence and

�xed batching policy cases. We develop a heuristic, a branch and bound scheme and

an integer programming formulation. We report computational experience for vari-

ous implementations of the branch and bound scheme and the integer programming

formulation.

The heuristic has four steps. In terms of the network representation of the problem

1F2jsi; �xed sequencejPCj; Steps 1, 2 and 3 of the heuristic solve a shortest path

problem. However, the computation of the arc weights is di�erent from what is done

CHAPTER 8. TOTAL COMPLETION TIME 213

in the case of the problem 1F2jsi; �xed sequencejPCj: Speci�cally, while we solve

the problem 1F2jsi; �xed sequencejPCj ; we do not use the fact that in an optimal

schedule jobs within a batch are processed in the ascending order of t2j (because,

we do not make any change to the given sequence). However, the fact is used in

Steps 1, 2 and 3 of the heuristic. Step 4 of the heuristic solves a problem of the type

1F2jsi;�xed batching policyjPCj with the batching policy as obtained from Step 3

of the heuristic.

The lower bound is computed in two stages. First, a lower bound on the contribu-

tion of job-order is obtained by arranging the jobs in the ascending order of (t1j + t2j)

and summing up the contribution of all jobs. The second stage can be given a net-

work representation similar to the one for Steps 1, 2 and 3 of the heuristic. However,

the arc weights are computed di�erently. Each arc represents a unique batch and

the arc weight represents a lower bound on the contribution of the batch represented

by the arc. The problem of computing each arc weight reduces to a special type

of assignment problem. We develop an O(n) time algorithm for this special type of

assignment problem.

The branch and bound scheme essentially enumerates over all batching policies.

Since there are at most 2n�1 batching policies and the �xed batching policy case is

solved in O(n3) time, the branch and bound scheme requires O(n32n�1) time in the

worst case.

CHAPTER 8. TOTAL COMPLETION TIME 214

We discuss three di�erent implementations, A, B and C of the branch and bound

scheme. In algorithm A we compute all the arc weights of the lower bounding graph

only once, before the start of the branch and bound procedure. At each node of the

branch and bound tree, we compute a di�erent lower bound using the lower bounding

graph. However, we do not revise the arc weights of the lower bounding procedure at

each node. Also, we do not generate a new heuristic solution at each node.

In algorithm B, we generate a new heuristic solution at each node of the branch and

bound tree. The performance of the algorithm is not better than that of Algorithm

A. Therefore, we reject the idea of �nding a new heuristic solution at each node.

Algorithm C revises the arc weights of the lower bounding graph at each node. Neither

the performance of algorithm C is better than that of algorithm A.

The advantage of algorithm A is, clearly, minimal computational requirement at

each node. Algorithm A performs better than the integer program. Algorithm A has

been used to solve problems with a maximum of 40 jobs.

The performance of the heuristic is encouraging. The average gap between the

heuristic solution and the optimal solution is between 0% and 0.3%. The average gap

between the initial lower bound and the optimal solution is 0% to 3.2%.

Chapter 9

Conclusion

Jobs go through various stages of operations. In a classical machine scheduling prob-

lem such as a ow shop, open shop and job shop problem, it is assumed that no single

resource is used at two di�erent stages. On the other hand, a exible workforce or

a versatile machine may be employed to perform various types of operations. Such

resources may reduce the impact of uncertainties such as product mix changes and

demand changes. Often these resources are associated with some setups that are

required whenever a worker or machine switches from processing one type of oper-

ation to another, although several operations of the same type can be processed in

succession after a single setup.

The presence of setups gives rise to the problem of choosing batch sizes that are

neither too large nor too small. In the last one and a half decades, many researchers

have addressed the problem of scheduling with setups. A majority of articles assume

that there is only one type of scarce resource, which is typically a machine. Often

215

CHAPTER 9. CONCLUSION 216

there can be two scarce resources such as a worker and a machine or a machine and a

tool. The one-operator scheduling model considers a scheduling problem with setups

and two scarce resources.

Santos [106, Chapter 4], Baker [12], Co�man et al. [30] and Julien [63] have pio-

neered the development on the problem of scheduling products that require multiple

setups on a single facility. They have observed a number of dominance properties

that restrict the search for an optimal schedule.

In Chapter 3, we show that the dominance properties apply to our problem. In

the case of two machines, the properties imply that we can restrict the search for an

optimal schedule to batching schedules. We also show by example that if the number

of machines is greater than two, then we cannot restrict the search for an optimal

schedule to batching schedules.

Psaraftis [97], Ahn and Hyun [3] and Ghosh [47] use similar dynamic programming

recursions for various cases of the problem 1jsii0 j
P

(wj)Cj : Ghosh and Gupta [48]

extend the approach to the problem 1jsii0 jLmax: In Chapter 4 we further extend the

approach. We use the dominance properties discussed in Chapter 3 and show that

many �xed-sequence cases can be solved using a dynamic programming approach

similar to the ones used by Psaraftis [97], Ahn and Hyun [3] and Ghosh [47] and

Ghosh and Gupta [48].

Psaraftis [97] points out that his approach applies to the classical traveling sales-

CHAPTER 9. CONCLUSION 217

man problem. In the context of one-operator scheduling, the problem 1Omjsii0 j� with

a single job is equivalent to the m-city traveling salesman problem. The algorithm

developed in Chapter 4 has polynomial time complexity for �xed m: The running

time of the �xed-sequence cases with the objectives Lmax and
P
wjCj is O(nm) for

�xed m: Hence, the algorithm may perform satisfactorily for small values of m:

There exist some strong relationships among the objectivesCmax; Lmax and
P
wjCj:

One such relationship is that the optimal sequence for each objective Cmax; Lmax and

P
wjCj is independent of the start time of the schedule. This has been pointed

out in Chapter 4, and the relationship has been used to develop a common dynamic

programming scheme for the �xed-sequence cases with these objectives. Another re-

lationship is shown in Chapters 5 and 7. A similar network interpretation is provided

for two-machine �xed-sequence cases with objectives Lmax and
P
wjCj:

Recent development on the Monge-array algorithms by Aggarwal et al. [2], Wilber

[122], Eppstein [37] and Galil and Park [40] speeds up dynamic programming recur-

sions if Monge property is satis�ed. In Chapter 7, we show that Monge-array algo-

rithms can be used to improve running times of 1O2jsi; �xed sequencejPwjCj and

1F2jsi; �xed sequencejPwjCj :

However, the Monge-array algorithms are not used in Chapter 5 to improve the

running time of problems 1O2jsijLmax and 1F2jsijLmax: Problems 1F2jsijLmax and

1O2jsijLmax are interpreted as shortest path problems, where the lengths of arcs and

CHAPTER 9. CONCLUSION 218

paths are de�ned in a particular way. Two rules, the node elimination rule and the arc

elimination rule are developed to speed up the computation of the \shortest path".

By applying the node elimination rule and the arc elimination rule, we obtain simple

O(n) time algorithms for problems 1O2jsijLmax and 1F2jsijLmax:

The node elimination rule applies to problems 1O2jsi; �xed sequencejPwjCj and

1F2jsi; �xed sequencejPwjCj: However, the arc elimination rule does not apply to

these problems. We remark here that if for some special structure of processing times

and weights, arc elimination rule applies to problems 1O2jsi; �xed sequencejPwjCj

and 1F2jsi; �xed sequencejPwjCj; then algorithms similar to the ones discussed in

Chapter 5 can be used to solve these problems.

As shown in Chapter 3, the problem 1js1; F = 1jLmax is a special case of the

problem 1F2jsijLmax: As in Chapter 5 we improve the running time of the problem

1F2jsijLmax to O(n); hence we get an improvement of the running time of the problem

1js1; F = 1jLmax to O(n):

In Chapter 6 we show that each of the problems 1F2jsij
P
wjUj; 1O2jsij

P
wjUj;

1F2jsij
P
Uj; and 1O2jsij

P
Uj is NP-hard. Lawler and Moore [77] and Sahni [104]

give two pseudo-polynomial algorithms for the single machine scheduling problems

with the objective
P
wjUj. A di�erence between these two algorithms is that Lawler

and Moore [77] use processing time as a state variable and Sahni [104] uses weighted

number of tardy jobs as a state variable. Hochbaum and Landy [58] and Brucker and

CHAPTER 9. CONCLUSION 219

Kovalyov [24] extend the algorithms to the problem 1js1; F = 1jPwjUj: Hochbaum

and Landy [58] use processing time as a state variable and Brucker and Kovalyov [24]

use weighted number of tardy jobs as a state variable.

We further extend the algorithms to problems 1F2jsij
P
wjUj and 1O2jsij

P
wjUj:

Algorithms of Sahni [104] and Brucker and Kovalyov [24] give polynomial-time ap-

proximation schemes. It is not known whether polynomial-time approximation schemes

can be obtained for problems 1F2jsij
P
wjUj and 1O2jsij

P
wjUj : Computational ex-

perience shows that it is better to consider weighted number of tardy jobs as a state

variable as opposed to considering processing time as a state variable.

In Chapter 7 we show that the problem 1Fmjsi; �xed sequencejPwjCj is solved

in O(mn3) time. However, it is not known whether the problem 1Omjsi; �xed se-

quencejPwjCj is solvable by an algorithm which is polynomial for variable m:

One motivation for analyzing the �xed-sequence cases is that in some cases, it is

possible to obtain a job-order which dominates all the other job-orders. It follows

from Theorem 4.1 that one such case is the problem with the objective Lmax; for

which EDD order dominates the other job-orders. Theorem 4.2 points out another

case with the objective
P
wjCj and agreeable processing time and weight. The order

1, 2, ..., n dominates the other job-orders. Another motivation is to eventually obtain

an enumeration scheme. However, there are n! job-orders. We show in Chapter 7

that for m = 2 and wj = 1 an alternate strategy is to enumerate over all batching

CHAPTER 9. CONCLUSION 220

policies. The number of batching policies is 2n�1: The problem with a �xed batching

policy is solved in O(n3) time. However, such an enumeration scheme may not be

useful for objective
P
wjCj: Both the problems 1O2jsi;�xed batching policyjPwjCj

and 1F2jsi;�xed batching policyjPwjCj are NP-hard.

In Chapter 8 we consider the problem 1F2jsij
P
Cj: This problem is open. We

discuss a heuristic and a lower bounding procedure which are used in a branch and

bound scheme based on an enumeration over all batching policies as suggested in

Chapter 7. We report performance of various implementations of the branch and

bound scheme and an integer programming formulation.

Performance of the heuristic is encouraging. The average gap between the heuristic

solution and the optimal solution is between 0% and 0.3%.. The average gap between

the initial lower bound and the optimal solution is 0% to 3.2%. The branch and

bound scheme generates an optimal solution within seconds for cases with up to 20

jobs. However, the required time grows very fast if n � 30: Problems with n as large

as 40 have been solved by the branch and bound algorithm. The integer programming

formulation has been used to solve problems with n as large as 28:

In Table 9.1 we summarize the running time of various solvable cases.

CHAPTER 9. CONCLUSION 221

Problem Running Time

1Omjsii0jCmax O(m22m)

1OmjsijCmax O(1)

1Fmjsii0jCmax O(1)

1Omjsii0jLmax O(m2(n+ 1)m)

1FmjsijLmax O(m(n + 1)m)

1Omjsii0;�xed sequencejPwjCj O(m2(n+ 1)m)

1Fmjsi;�xed sequencejPwjCj O(mn3)

1O2jsijLmax O(n)

1F2jsijLmax O(n)

1O2jsij
P
wjUj O(nminfmaxfP t1j;

P
t2jg; dmaxg

minfPP(tij + nsi); dmaxg)
O(nminfmaxfP t1j;

P
t2jg; dmaxg

P
wj)

1F2jsij
P
wjUj O(nminfP t1j; dmaxgminfPP(tij + nsi);

dmaxg)
O(nminfP t1j; dmaxg

P
wj)

1O2jsi;�xed sequencejPwjCj O(n)

1F2jsi;�xed sequencejPwjCj O(n)

1O2jsi;�xed batching policyjPCj O(n3)

1F2jsi;�xed batching policyjPCj O(n3)

Table 9.1: Summary of running times

CHAPTER 9. CONCLUSION 222

9.1 Future Research

There exist numerous possibilities for future research. As shown in Table 4.1, the

classi�cation of problems is not complete. For example, it follows from a result of

Bruno and Downey [25] that the problem 1OmjsijLmax is NP-hard. However, it is

not known whether this problem is strongly NP-hard. Following are some other

problems which needs to be classi�ed:

� 1Omjsi;�xed sequencejPwjCj

� 1Fmjsii0;�xed sequencejPwjCj

� 1Fmjsii0jLmax

� 1FmjsijLmax

� 1O2jsij
P
wjCj

� 1O2jsij
P
Cj

� 1F2jsij
P
Cj

As discussed above, further research is required to resolve the issue whether there

exists a polynomial-time approximation scheme for problems 1F2jsij
P
wjUj and

1O2jsij
P
wjUj :

CHAPTER 9. CONCLUSION 223

We have shown that the arc elimination rule does not apply to problems 1O2jsi;

�xed sequencejPwjCj and 1F2jsi; �xed sequencejPwjCj. However, the arc elimi-

nation rule may be applicable for some special structure of the processing times and

weights. If the arc elimination rule applies for some special structure of the processing

times and weights, the running time may not be improved, but the algorithm may be

simpli�ed.

The heuristic given in Chapter 8 performs very well. One way to show a good

performance of the heuristic is to �nd a worst case bound on the ratio of heuristic

solution to optimal solution. We do not have an example in which the ratio is high.

Hence, we conjecture that a good worst case bound on the ratio may be available

through further research.

Finally, the model can be applied to a wider context if some of the assumptions are

relaxed or modi�ed. Here, we discuss only a few among a large number of possibilities.

The assumption that nij � 1 can be relaxed. Sometimes a job may not require an

operation on some machine. A versatile machine may be used for a large number of

operations, and every job may require only a few types of operations.

Throughout we maintain an item availability assumption, which implies that com-

pletion time of a job is given by the completion time of the last operation of the job.

However, if the jobs are moved in batches, a batch availability assumption is more

appropriate. In such a case, the completion time of a job is the completion time of

CHAPTER 9. CONCLUSION 224

the batch of operations that contains the last operation of the job.

As discussed by B la_zewicz et al. [18, Chapter 10], some Flexible Manufacturing

Systems (FMSs) are implemented using mainly one type of versatile machine. This

type of FMS design can be represented by considering operators in parallel.

The dominance properties discussed in Chapter 3 are quite versatile. The prop-

erties can be extended to many extensions of our model. One exception is that of

non-zero ready times. In presence of non-zero ready times, almost no property dis-

cussed in Chapter 3 holds. For example, suppose that a job j has two operations on

a machine i; and as soon as one of the two operations is completed, a very important

job arrives at the shop oor. It make sense to process the newly arrived job �rst (as

it is very important) and then process the remaining operation of job j on machine

i at some later time. Thus, the conclusion in Theorem 3.1 is violated, as the two

operations of job j on machine i are not processed contiguously. Similarly, in the

presence of non-zero ready times, job-orders may be di�erent on various machines,

a machine with positive inventory may be set up, and a machine may be switched

before creating any inventory on the current machine.

Still, the properties discussed in Chapter 3 are versatile in the sense that the

properties may be applicable with little modi�cation to various cases including nij �

0; batch availability and parallel operators. One such modi�cation required is in the

case of nij � 0:We must change the condition stated in Theorem 3.5 that an inventory

CHAPTER 9. CONCLUSION 225

be created before switching. Intuition suggests that if the current machine has an

operation of a job that will leave the shop oor next, then it is wiser to complete the

operation (and thus create an inventory) before switching to some other machine.

However, if the current machine does not have any operation of a job that will leave

the shop oor next, then an inventory may or may not be created before switching.

References

[1] J.O. Achugbue and F.Y. Chin. Scheduling the open shop to minimize mean

ow time. SIAM Journal of Computing, 11:709{720, 1982.

[2] A. Aggarwal, M.M. Klawe, S. Moran, P. Shor, and R. Wilber. Geometric
applications of a matrix-searching algorithm. Algorithmica, 2:195{208, 1987.

[3] B.-H. Ahn and J.-H. Hyun. Single facility multi-class job scheduling. Computers

& Operations Research, 17(3):265{272, 1990.

[4] S. Albers and P. Brucker. The complexity of one-machine batching problems.

Discrete Applied Mathematics, 47:87{107, 1993.

[5] A. Allahverdi, J.N.D. Gupta, and T. Aldowaisan. A review of scheduling re-
search involving setup considerations. Omega, 27:219{239, 1999.

[6] G. Andrews. Personal conversation, 1999.

[7] Y.P. Aneja and N. Singh. Scheduling production of common components at a

single facility. IIE Transactions, 22(3):234{237, 1990.

[8] Anonymous. Machine upgrades boost productivity. Machine Design, 67(4):40,

1995.

[9] Anonymous. CNC hobbing now standard at contract gearmaker. Manufacturing

Engineering, 119(2):118{119, 1997.

[10] Anonymous. In-house production whips turnaround problem. Manufacturing

Engineering, 120(2):86, 1998.

[11] K.R. Baker. Introduction to Sequencing and Scheduling. Wiley, New York, 1974.

[12] K.R. Baker. Scheduling the production of components at a common facility.

IIE Transactions, 20:32{35, 1988.

226

REFERENCES 227

[13] D.D. Bedworth and J.E. Bailey. Integrated Production Control Systems: Man-

agement, Analysis, Design. Wiley, New York, 2nd edition, 1987.

[14] J. B la_zewicz. Selected topics in scheduling theory. Annals of Discrete Mathe-

matics, 31:1{60, 1987.

[15] J. B la_zewicz, W. Cellary, R. S lowi�nski, and J. W�eglarz. Scheduling Under

Resource Constraints: Deterministic Models. J.C. Baltzer, Basel, Switzerland,

1986.

[16] J. B la_zewicz, W. Domschke, and E. Pesch. The job shop scheduling problem:

conventional and new solution techniques. European Journal of Operational

Research, 93:1{33, 1996.

[17] J. B la_zewicz, M. Dror, and J. W�eglarz. Mathematical programming formu-

lations for machine scheduling: a survey. European Journal of Operational

Research, 51:283{300, 1991.

[18] J. B la_zewicz, K. Ecker, E. Pesch, G. Schmidt, and J. W�eglarz. Scheduling in

Computer and Manufacturing Processes. Springer Verlag, Berlin and New York,

1996.

[19] J. B la_zewicz, K. Ecker, G. Schmidt, and J. W�eglarz. Scheduling in Computer

and Manufacturing Systems. Springer Verlag, Berlin and New York, 1993.

[20] J. B la_zewicz, W. Kubiak, and J. Szwarc�ter. Scheduling unit-time tasks on ow

shops under resource constraints. Annals of Operations Research, 16:255{266,
1988.

[21] J. B la_zewicz, J.K. Lenstra, and A.H.G. Rinnooy Kan. Scheduling subject to
resource constraints: classi�cation and complexity. Discrete Applied Mathemat-

ics, 5:11{22, 1983.

[22] S. Brah, J. Hunsucker, and J. Shah. Mathematical modeling of scheduling prob-

lems. Journal of Information & Optimization Sciences, 12(1):113{137, 1991.

[23] P. Brucker. Scheduling Algorithms. Springer, Berlin, 1995.

[24] P. Brucker and M.Y. Kovalyov. Single machine batch scheduling to minimize the

weighted number of late jobs. Mathematical Methods of Operations Research,

43:1{8, 1996.

[25] J. Bruno and P. Downey. Complexity of task sequencing with deadlines, setup

times and changeover costs. SIAM Journal on Computing, 7:393{404, 1978.

REFERENCES 228

[26] T.C.E. Cheng and G. Wang. A note on scheduling alternative operations in two-

machine ow shops. Journal of the Operational Reasearch Society, 49:670{673,

1998.

[27] T.C.E. Cheng and G. Wang. Scheduling the fabrication and assembly of com-

ponents in a two-machine owshop. IIE Transactions, 31:135{143, 1999.

[28] P. Chr�etienne, E.G. Co�man, Jr., J.K. Lenstra, and Z. Liu, editors. Scheduling

Theory and its Applications. John Wiley & Sons Ltd, Chichester, 1995.

[29] E.G. Co�man, Jr., editor. Computer & Job Shop Scheduling Theory. Wiley,

New York, 1976.

[30] E.G. Co�man, Jr., A. Nozari, and M. Yannakakis. Optimal scheduling of prod-

ucts with two subassemblies on a single machine. Operations Research, 37:426{

436, 1989.

[31] E.G. Co�man, Jr., M. Yannakakis, M.J. Magazine, and C. Santos. Batch sizing
and job sequencing on a single machine. Annals of Operations Research, 26:135{

147, 1990.

[32] R.W. Conway, W.L. Maxwell, and L.W. Miller. Theory of Scheduling. Addison-

Wesley Publishing Company, Inc., Reading, MA, 1967.

[33] S.A. Cook. The complexity of the theorem-proving procedures. In Proceedings

of the 3rd Annual ACM Symposium on Theory of Computing, pages 151{158.

ACM Press, New York, 1971.

[34] F.Y. Ding. A pairwise interchange solution procedure for a scheduling problem

with production of components at a single facility. Computers & Industrial

Engineering, 18:325{331, 1990.

[35] G. Dobson, U.S. Karmakar, and J.L. Rummel. Batching to minimize ow times

on one machine. Management Science, 33(6):784{799, 1987.

[36] J. Edmonds. Paths, trees and owers. Canadian Journal of Mathematics,

17:449{467, 1965.

[37] D. Eppstein. Sequence comparison with mixed convex and concave costs. Jour-

nal of Algorithms, 11:85{101, 1990.

[38] S. French. Sequencing and Scheduling: An Introduction to the Mathematics of

the Job-Shop. Horwood, Chichester, 1982.

REFERENCES 229

[39] L.D. Frendall, S.A. Melnyk, and G. Ragatz. Information and scheduling in a

dual resource constrained job shop. International Journal of Production Re-

search, 34(10):2783{2802, 1996.

[40] Z. Galil and K. Park. A linear-time algorithm for concave one-dimensional

dynamic programming. Information Processing Letters, 33:309{311, 1990.

[41] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. Freeman, San Francisco, 1979.

[42] M.R. Garey, D.S. Johnson, and R. Sethi. The complexity of ow-shop and

job-shop scheduling. Mathematics of Operations Research, 1:117{129, 1976.

[43] R.S. Gar�nkel. Motivation and modeling. In E.L. Lawler, J.K. Lenstra,

A.H.G. Rinnooy Kan, and D.B. Shmoys, editors, The Traveling Salesman Prob-

lem, chapter 2, pages 17{36. Wiley, 1985.

[44] A.E. Gerodimos, C.A. Glass, and C.N. Potts. Scheduling customized jobs on a
single machine under item availability. Technical Report Report OR88, Faculty

of Mathematics, University of Southampton, U.K., 1997.

[45] A.E. Gerodimos, C.A. Glass, and C.N. Potts. Scheduling the production of two-

component jobs on a single machine. European Journal of Operational Research,

to appear, 1999.

[46] A.E. Gerodimos, C.A. Glass, C.N. Potts, and T. Tautenhahn. Scheduling multi-

operation jobs on a single machine. Annals of Operations Research, 92:87{105,
1999.

[47] J.B. Ghosh. Batch scheduling to minimize total completion time. Operations

Research Letters, 16:271{275, 1994.

[48] J.B. Ghosh and J.N.D. Gupta. Batch scheduling to minimize maximum lateness.

Operations Research Letters, 21:77{80, 1997.

[49] B. Gim and M.-H. Han. Economic scheduling of products with n components

on a single machine. European Journal of Operational Research, 96:570{577,

1997.

[50] T. Gonzalez and S. Sahni. Open shop scheduling to minimize �nish time.

Journal of the Association for Computer Machinery, 23:665{679, 1976.

REFERENCES 230

[51] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimiza-

tion and approximation in deterministic sequencing and scheduling: a survey.

Annals of Discrete Mathematics, 5:287{326, 1979.

[52] S.C. Graves. A review of production scheduling. Operations Research, 29:646{

675, 1981.

[53] J.N.D. Gupta. Optimal schedules for single facility with two job classes. Com-

puters & Operations Research, 11(4):409{413, 1984.

[54] J.N.D. Gupta. Single facility scheduling with multiple job classes. European

Journal of Operational Research, 8:42{45, 1988.

[55] J.N.D. Gupta, J.C. Ho, and J.A.A. Van der Veen. Single machine hierarchical

scheduling with customer orders and multiple job classes. Annals of Operations

Research, 70:127{143, 1997.

[56] N.G. Hall and M.E. Posner. Generating experimental data for machine schedul-
ing problems. Operations Research, to appear, 1999.

[57] M. Held and R.M. Karp. A dynamic programming approach to sequencing
problems. SIAM Journal of Applied Mathematics, 10:196{210, 1962.

[58] D.S. Hochbaum and D. Landy. Scheduling with batching: minimizing the

weighted number of tardy jobs. Operations Research Letters, 16:79{86, 1994.

[59] D.S. Hochbaum and D.E. Landy. Scheduling with batching: two job types.
Discrete Applied Mathematics, 72:99{114, 1997.

[60] C. Hoskins. New gear cutting concept smashes speed/cost barriers. Production,
83(5):74, 1979.

[61] Magic Logic Optimization Inc. Linear assignment problem: Software download.

http://www.magiclogic.com/assignment.html, 1999.

[62] R. Jonker and A. Volgenant. A shortest augmenting path algorithm for dense
and sparse linear assignment problems. Computing, 38:325{340, 1987.

[63] F.M. Julien. Scheduling Customer Orders. PhD thesis, Department of Manage-

ment Sciences, University of Waterloo, Canada, 1991.

[64] F.M. Julien and M.J. Magazine. Scheduling cusomer orders: an alternative pro-

duction scheduling approach. Journal of Manufacturing and Operations Man-

agement, 3:177{199, 1990.

REFERENCES 231

[65] B. Jurisch and W. Kubiak. Two-machine open shops with renewable resources.

Operations Research, 45(4):544{552, 1997.

[66] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and

J.W. Thatcher, editors, Complexity of Computer Computations, pages 85{103.

Plenum Press, New York, 1972.

[67] H.V. Kher, M.J. Malhotra, P.R. Philipoom, and T.D. Fry. Modeling simul-

taneous worker learning and forgetting in dual resource consrtained systems.

European Journal of Operational Research, 115:158{172, 1999.

[68] W. Kubiak. Z lo_zono�s�c Obliczeniowa Algorytm�ow i Problem�ow Szeregowania

Zada�n przy Organiczeniach Zasobowych. PhD thesis, ICS-Polish Academy of
Sciences, Warsaw, 1988. in Polish.

[69] W. Kubiak, S.X.C. Lou, and Y. Wang. Mean ow time minimization in reen-
trant job shops with a hub. Operations Research, 44(5):764{776, 1996.

[70] D.E. Landy. Batch scheduling for manufacturing. PhD thesis, University of

California, Berkeley, 1995.

[71] D.E. Lane and J.B. Sidney. Batching and scheduling in FMS hubs: ow time

considerations. Operations Research, 41(6):1091{1103, 1993.

[72] E.L. Lawler. Recent results in the theory of machine scheduling. In A. Bachem,

M. Gr�otschel, and B. Korte, editors, Mathematical Programming: The State of

the Art - Bonn 1982, pages 202{234. Springer, Berlin, 1983.

[73] E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Minimizing maximum

lateness in a two-machine open shop. Mathematics of Operations Research,
6:153{158, 1981. Erratum: [74].

[74] E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Erratum. Mathematics

of Operations Research, 7:635, 1982.

[75] E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Recent developments
in deterministic sequencing and scheduling: A survey. In M.A.H. Dempster,

J.K. Lenstra, and A.H.G. Rinnooy Kan, editors, Deterministic and Stochastic

Scheduling, pages 35{73. Reidel, Dordrecht, 1982.

[76] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. Sequencing
and scheduling: algorithms and complexity. In S.C. Graves, A.H.G. Rinnooy

Kan, and P. Zipkin, editors, Handbooks in Operations Research and Manage-

ment Science, volume 4. Elsevier Science Publishers, 1993.

REFERENCES 232

[77] E.L. Lawler and J.M. Moore. A functional equation and its application to

resource allocation and sequencing problems. Management Science, 16:77{84,

1969.

[78] E.J. Lee and P.B. Mirchandini. Concurrent routing, sequencing, and setups

for a two-machine exible manufacturing cell. IEEE Journal of Robotics and

Automation, 4(3):256{264, 1988.

[79] J.K. Lenstra. Sequencing by Enumerative Methods. Mathematical Centre Tract

69, Mathematical Centrum, Amsterdam, 1977.

[80] J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity of machine

scheduling problems. Annals of Discrete Mathematics, 1:343{362, 1977.

[81] V. Lev and I. Adiri. V-shop scheduling. European Journal of Operational

Research, 18:51{56, 1984.

[82] C.J. Liao and H.T. Lin. A case study in a dual resource constrained job shop.
International Journal of Production Research, 36(11):3095{3111, 1998.

[83] P. Mellor. A review of job shop scheduling. Operational Research Quarterly,
17:161{171, 1966.

[84] J. Miltenburg. Balancing U-lines in a multiple U-line facility. European Journal

of Operational Research, 109:1{23, 1998.

[85] C.L. Monma and C.N. Potts. On the complexity of scheduling with batch setup
times. Operations Research, 37:798{804, 1989.

[86] J.M. Moore. An n job, one machine sequencing algorithm for minimizing the
number of late jobs. Management Science, 15:102{109, 1968.

[87] T.E. Morton and D.W. Pentico. Heuristic Scheduling Systems. Wiley, New

York, 1993.

[88] J.F. Muth and J.L. Thompson, editors. Industrial Scheduling. Englewood Cli�s,

New Jersey, Prentice-Hall, 1963.

[89] D. Naddef and C. Santos. One-pass batching algorithms for the one-machine

problem. Discrete Applied Mathematics, 21:133{145, 1988.

[90] C.H. Pan and J.S. Chen. Scheduling alternative operations in two-machine ow

shops. Journal of the Operationl Research Society, 48:533{540, 1997.

REFERENCES 233

[91] C.H. Papadimitriou. The Euclidean traveling salesman problem is NP-

complete. Theoretical Computer Science, 4:237{44, 1977.

[92] G. Paula. In-house gearing shortens turnaround. Mechanical Engineering,
120(3):30, 1998.

[93] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice Hall, En-
glewood Cli�s, New Jersey, 1995.

[94] C.N. Potts. Scheduling two job classes on a single machine. Computers &

Operations Research, 18(5):411{415, 1991.

[95] C.N. Potts and M.Y. Kovalyov. Scheduling with batching: a review. European

Journal of Operational Research, to appear, 1999.

[96] C.N. Potts and L.N. Van Wassenhove. Integrating scheduling with batching and
lot-sizing: a review of algorithms and complexity. Journal of the Operational

Research Socity, 43:395{406, 1992.

[97] H.N. Psaraftis. A dynamic programming approach for sequencing groups of

identical jobs. Operations Research, 28(6):1347{1359, 1980.

[98] S.P. Rana and N. Singh. Group scheduling jobs on a single machine: a multi
objective approach with preemptive priority structure. European Journal of

Operational Research, 79:38{50, 1994.

[99] A.H.G. Rinnooy Kan. Machine Scheduling Problems. Martinus Nijho�, The
Hague, 1976.

[100] H. R�ock. Some new results in no-wait ow shop scheduling. Zeitschrift for

Operations Research, 28:1{16, 1984.

[101] V.K. Sahney. Scheduling of Labor and Machine Limited Production Systems.

PhD thesis, University of Wisconsin, Madison, 1970.

[102] V.K. Sahney. Scheduling data transmission under an fSi; 0g policy. Naval

Research Logistics Quarterly, 19:725{735, 1972.

[103] V.K. Sahney. Errata: single-server, two-machine sequencing with switching

time. Operations Research, 22(5):1120, 1974.

[104] S.K. Sahni. Algorithms for scheduling independent tasks. Journal of the Asso-

ciation for Computing Machinery, 23(1):116{127, 1976.

REFERENCES 234

[105] C. Santos. Batching and sequencing decisions under lead time considerations for

single machine problems. Master's thesis, Department of Management Sciences,

University of Waterloo, Canada, 1984.

[106] C. Santos. Batching in Manufacturing Systems. PhD thesis, Department of

Management Sciences, University of Waterloo, Canada, 1988.

[107] C. Santos and M.J. Magazine. Batching in single operation manufacturing

systems. Operations Research Letters, 4:99{103, 1985.

[108] D. Shallcross. A polynomial algorithm for a one machine batching problem.

Operations Research Letters, 11:213{218, 1992.

[109] D. Sparling. Balancing just-in-time production units: the N U-line balancing

problem. INFOR, 36(4):215{237, 1998.

[110] K.E. Stecke. Formulation and solution of nonlinear integer production planning

problems for exible manufacturing systems. Management Science, 29(3):273{
288, 1983.

[111] C.S. Sung and C.K. Park. Scheduling of products with common and product-
dependents components manufactured at a single facility. Journal of the Oper-

ational Research Society, 44(8):773{784, 1993.

[112] H. S�ural, S. Kondakci, and N. Erkip. Scheduling unit-time tasks in renew-
able resource constrained owshops. ZOR-Methods and Models of Operations

Research, 36:497{516, 1992.

[113] V.S. Tanaev, V.S. Gorodn, and Y.M. Shafransky. Scheduling Theory: Single-

Stage Systems. Kluwer Academic Publishers, Boston, 1994.

[114] T.L. Urban. Note: optimal balancing of U-shaped assembly lines. Management

Science, 44(5):738{741, 1998.

[115] S. Van de Velde. Machine Scheduling and Lagrangian Relaxation. CWI, Ams-

terdam, 1991.

[116] G.S. Vasilash. A hobber for today. Production, 105(10):80, 1993.

[117] R.G. Vickson, M.J. Magazine, and C.A. Santos. Batching and sequencing of

components at a single facility. IIE Transactions, 25:65{70, 1993.

[118] H.M. Wagner. Principles of Operations Research. Prentice-Hall, Inc., Engle-
wood Cli�s, NJ, 1975.

REFERENCES 235

[119] H.M. Wagner and T.M. Whitin. Dynamic version of the economic lot size

model. Management Science, 5(1):89{96, 1958.

[120] M.Y. Wang, S.P. Sethi, and S.L. Van de Velde. Minimizing makespan in a class
of reentrant shops. Operations Research, 45(5):702{712, 1997.

[121] S.T. Webster and K.R. Baker. Scheduling groups of jobs on a single machine.
Operations Research, 43:692{703, 1995.

[122] R. Wilber. The concave least-weight subsequence problem revisited. Journal of

Algorithms, 9(3):418{425, 1988.

