

A Framework for Next Generation

Enterprise Application Integration

by

Andrew Roszko

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2004

 Andrew Roszko 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144141084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

 iii

Acknowledgements

My sincerest thanks are extended to my supervisor, Dr. Kostas Kontogiannis, not only for his

encouragement, and financial support, but most of all for his genuine concern and interest on

both professional and personal levels. His guidance has truly helped get the most out of this

incredibly rewarding experience.

I’d also like to thank the Bell ExCite group for allowing me to be part of the EBCCS project;

experiencing first hand the integration problems of a mission-critical, large scale system did

indeed prove to be invaluable.

Thank you to the National Science and Engineering Research Council for their funding.

Finally, special thanks to the Electrical and Computer Engineering Department at the

University of Waterloo, especially the admin staff, whose undying patience was indeed very

much appreciated every step of the way.

 iv

Abstract

In addition to storing 70-75% of their data and business logic in legacy mainframe

systems, global corporations have countless custom applications and off-the-shelf ERP

products residing within their networks. Increasing competition and shrinking budgets have

left managers scouring for innovative, cost-effective methods to maximize the potential of

these enormous sunk costs. There is, as a result, an overwhelming need to not only web

enable these existing legacy assets in order to quickly and cost-effectively deliver data to

both customers and business partners alike, but also to amalgamate these disparate systems

into a unified, homogeneous, real-time enterprise. Integration efforts to date, focused

predominantly on the development of proprietary point-to-point adapters, have unfortunately

proven to be a daunting task with countless failed projects and losses in the millions. The

advent of XML web services does, however, have the potential to revolutionize existing

integration strategies; the cost savings and ease of implementation associated with wrapping

virtually all systems, past, present and future, with standardized, code-independent, data-

centric interfaces is truly astounding. As the future success of this platform is, however,

strictly dependent upon the interoperability of its endpoints, we have proposed several

fundamental amendments to the existing flawed WSDL specification. A generic reference

architecture, leveraging both this improved web services model as well as established

component middleware technologies, is then proposed for the web enablement of legacy

assets on an enterprise scale. In order to ensure the adoption of this methodology, a toolkit

designed to automate the transformation has also been devised. This new paradigm will not

only allow information to flow freely from deep within the enterprise, but will ultimately

serve as the cornerstone of a new generation of enterprise integration solutions.

 v

Table of Contents

Chapter 1 Introduction ...1

1.1 Motivation ...1

1.2 Thesis contributions...2

1.3 Thesis outline ..3

Chapter 2 Background and Related Work...4

2.1 Modernization Strategies ...4

2.1.1 Redevelopment ..4

2.1.2 Reverse Engineering ..5

2.1.3 Wrapping ...5

2.1.3.1 Techniques ...6

Proprietary Adapters ..6

CORBA...7

Messaging Middleware ..7

2.1.3.2 System Interface Identification ...7

2.2 Web Services ...8

2.2.1 Overview ...8

2.2.2 WSDL..10

2.2.3 SOAP...11

2.2.3.1 SOAP Encoding ...11

2.2.3.2 Binary Data..12

2.3 Server Side Computing ..12

2.3.1 Web Tier ..13

2.3.2 Middle Tier ..13

Chapter 3 Introducing Interoperability into the Web Services Model................................15

3.1 Introduction ...15

3.2 WSDL 1.1 Abstract Definition...16

3.2.1 Background..16

3.2.2 Interoperability Problems ...17

3.2.2.1 Type System Ambiguity...17

 vi

3.2.2.2 The Message Construct: Duplicate Representation18

3.2.3 Interoperability Solutions ...21

3.2.3.1 Mandating XML Schema ...21

3.2.3.2 Message Construct Removal ..21

3.3 WSDL 1.1 Bindings...29

3.3.1 Background..29

3.3.1.1 Definition...29

3.3.1.2 SOAP Message Creation ..31

3.3.2 Interoperability Problems ...33

3.3.2.1 Binding Dependence upon Abstract Definition...33

3.3.2.2 Binding Complexity: A Plethora of Options ...34

3.3.2.3 SOAP Encoding: The Band-Aid Solution...36

3.3.2.4 Inferring Programming Model..41

3.3.3 Interoperability Solutions ...42

3.3.3.1 Removal of Encoded Binding Option ...42

3.3.3.2 Towards a Standard Message Format ...47

3.4 Conclusion...50

Chapter 4 Enterprise Web Enablement ...52

4.1 Introduction ...52

4.2 Reference Architecture ..53

4.2.1 Overview ...53

4.2.2 The Power of XML ..55

4.2.3 Deployment ...56

4.3 Leveraging Middleware Functionality..58

4.3.1 Component Wrapper Generation ..58

4.3.1.1 Overview ...58

4.3.1.2 The Messaging Alternative...61

4.3.1.3 Coarse-Grained Interfaces ..62

4.3.2 Security..63

4.3.2.1 Introduction..63

4.3.2.2 Background..64

 vii

Departure from SSL...64

WS-Security ..64

Role-Based Access Control..65

Single Sign-on ...65

4.3.2.3 Securing the Reference Architecture...66

4.3.2.4 Security and the EWE Toolkit ..68

4.3.3 Transactions...71

4.3.3.1 Introduction..71

4.3.3.2 Background..72

Declarative Transactions..72

Transactions and Web Services..73

The Future ...74

4.3.3.3 Reference Architecture...74

4.3.3.4 Toolkit Extensions ...76

4.3.4 Clustering ..77

4.3.4.1 Introduction..77

4.3.4.2 Background..78

Application Server Clustering ..78

4.3.4.3 Reference Architecture...78

4.3.4.4 Toolkit Extensions ...80

4.4 Conclusion...82

Chapter 5 Fashioning the Roadmap toward the Integrated Enterprise83

5.1 Introduction ...83

5.2 Reference Architecture for Integration ...83

5.2.1 Hub and Spoke Architecture...85

5.2.2 Applying Web Services and the EWE Toolkit ..88

5.3 Conclusion...90

Chapter 6 Conclusion...92

6.1 Overview and Findings ..92

6.2 Future Work ..94

 viii

Table of Figures

Figure 2.1 Service-Oriented Architecture ..9

Figure 2.2 Standard Web Services Deployment ... 10

Figure 2.3 Traditional 3-tier System Architecture.. 13

Figure 3.1 Abstract definition of ‘PurchaseOrder’ endpoint ... 17

Figure 3.2 Abstract definition portraying ‘single part’ authoring style 20

Figure 3.3 Abstract definition of ‘PurchaseOrder’ endpoint with XSD-only syntax 22

Figure 3.4 Description of binary data using WSDL 1.1 constructs 25

Figure 3.5 Description of binary data using amended <wsdl:message> construct........... 26

Figure 3.6 Description of binary data using proposed constructs.................................... 27

Figure 3.7 WSDL SOAP binding for ‘PurchaseOrder’ endpoint 29

Figure 3.8 SOAP message generated from RPC/encoded binding.................................. 32

Figure 3.9 SOAP message generated from document/literal binding.............................. 32

Figure 3.10 WSDL definition of ‘NodeComparison’ endpoint 38

Figure 3.11 Single reference SOAP message for ‘NodeComparison’ endpoint 39

Figure 3.12 Multi-reference SOAP message for ‘NodeComparison’ endpoint 39

Figure 3.13 WSDL 1.1 abstract definition exemplifying array representation 41

Figure 3.13 WSDL 1.1 abstract definition exemplifying array representation 41

Figure 3.14 WSDL <types> definition describing SOAP encoding serialization 52

Figure 3.15 Proposal for XSD array representation... 46

Figure 3.16 WSDL definition reflecting complete set of proposed changes.................... 49

Figure 3.17 SOAP message invoking purchase order service... 49

Figure 4. 1 Reference Architecture for Enterprise Web Enablement 54

Figure 4. 2 EWE Toolkit Deployment Strategy ... 57

Figure 4. 3 Banking interface .. 58

Figure 4. 4 Account interface .. 59

Figure 4. 5 Detailed EWE Reference Architecture... 60

Figure 4. 6 CreditCard interface .. 63

Figure 4. 7 Security in the Reference Architecture... 67

Figure 4. 8 EWE Security Deployment Descriptor... 69

 ix

Figure 4. 9 Transaction Management in the Reference Architecture 75

Figure 4. 10 EWE Transaction Management Deployment Descriptor 76

Figure 4. 11 4-tier Clustering in the Reference Architecture ... 79

Figure 4. 12 3-tier Clustering in the Reference Architecture ... 80

Figure 4. 13 EWE Clustering Deployment Descriptor ... 81

Figure 5.1 Generic Hub and Spoke Architecture.. 95

Figure 5.2 SOAP-enabled Hub and Spoke Architecture... 98

 1

Chapter 1 Introduction

1.1 Motivation
It is estimated that while ‘modern’ legacy relics written in C, C++, and even Fortran make

up a significant portion of the 500+ billion lines of reusable code currently owned by global

corporations, 70% to 75% of this code base is actually stored in monolithic, centralized, host-

based software systems [1, 2, 3]. An expenditure of 18 trillion dollars in the last decade

alone on mergers and acquisitions, investment in superior technologies, as well as the

purchase of third party CRM and ERP products has effectively left enterprises with truly

heterogeneous applications and islands of information [4]. Even large, renowned

organizations with exorbitant technology budgets are often unable to consolidate their data,

thus degrading efficiency, driving up costs, and ultimately impacting customer satisfaction

[5]. As the cost, risk and above all, development time associated with reengineering and/or

redevelopment is far too significant, corporation survival lies in the ability to maximize the

value of their existing assets. As a result, in addition to integrating these disparate systems,

IT departments worldwide have been frantically devising architectures to deliver this legacy

functionality over the internet.

In a market of shrinking budgets and margins, the integration of business applications

into a single homogeneous environment is a compelling solution, for it essentially provides a

unified face both internally as well as to customers and business partners. The creation of

synergies between new and existing IT resources serve to procure a competitive edge,

effectively increasing the speed with which a company can respond to changes in its business

environment. Moreover, the ability of an enterprise to have access to real-time information

spanning across multiple departments, applications, and platforms provides a plethora of far

reaching benefits. The development of closer business relationships, improvement in

supplier interactions, customer support and service, the creation of new business

opportunities, increased revenues, decreased operating costs, and ultimately, greater market

share in today’s economy will all result from the implementation of a successful integration

strategy [5, 6].

The advent of the web revolution has, however, dictated that the amalgamation of the

enterprise is only part of a successful solution. The ease of use, low deployment costs, and

 2

ubiquity of the World Wide Web have created an overwhelming demand to expose the

unified enterprise via HTTP. The mere concept of a thin client serves to save corporations

millions in deployment and training costs alone. As a result, while a decade ago, developers

were content pushing content to fat clients, they are now faced with the task of migrating

both mainframe and client-server systems to the web. This methodology introduces the

possibility of melting corporate barriers, thus allowing mission critical data to flow from

deep within the enterprise directly to clients and/or business partners worldwide.

Though the need for a web-enabled, integrated enterprise is indeed apparent, the

realization of such a platform is a daunting task. Milind Govekar, research director at the

Gartner Group claims that the cost of the “glue” between applications is between 5 and 8

times greater than that of the applications themselves [7]. Many companies have attempted

to leverage web application (CGI, ASP, JSP) and/or middleware (EJB, COM+) solutions to

move data across the enterprise. However, in addition to relegating the entire information

system to a tightly-coupled, vendor dependent environment, the need for costly, brittle

proprietary adapters to wrap legacy applications with these technologies serves to drastically

increase project risk. To this end, in a report studying the success of third party EAI

solutions, Forrester Research found that on average, 45% of projects are completed late and

over-budget [8]. This statistic is truly remarkable considering these platforms generally

come packaged with a team of high priced, experts whose sole purpose is to coerce the

system into working properly. Given the difficulty encountered in these resource rich

endeavours, one can only imagine the struggle for success in the vast number of custom, in-

house solutions. The daunting technological hurdles, expensive consultants, and countless

failed projects with losses in the millions have indeed left companies weary of entering the

integration arena. There is, however, the promise of a whole new interoperable world as

XML web services slowly proliferate into the enterprise.

1.2 Thesis contributions
Though web services have garnered a tremendous amount of attention for their potential

impact on inter enterprise integration, we explore the notion of pushing them from the

periphery directly to the heart of the enterprise. Their standardized, platform neutral nature,

coupled with a reliance on widely accepted protocols, offer a potential solution to the intra-

enterprise integration woes outlined above. The promise of wrapping virtually any system

 3

with code-independent, data-centric interfaces has managers marvelling at the prospect of

rapid, cost-effective implementations. The main objective of this paper is therefore to

formalize an architecture to ensure that this dream does indeed come to fruition on the

enterprise scale.

Stemming from a fundamental flaw in the excessively verbose WSDL 1.1 specification,

the major drawback of web services to date has been the lack of interoperability between

endpoints created with different toolsets. As this shortcoming clearly poses a threat to the

success of the platform, we felt it was important to propose several key amendments to the

spec. Having addressed the major deficiencies in the underlying plumbing, the web services

platform, coupled with existing middleware technologies, are then leveraged to develop a

reference architecture for the enterprise web enablement of legacy assets. Moreover, we

attempt to ensure the rapid adoption of this approach with the proposal of an Enterprise Web

Enablement (EWE) toolkit, which essentially automates the migration to the web. These

contributions are then finally amalgamated into the creation of a methodology designed to

transform intra-enterprise integration from a corporate nightmare to a mere implementation

detail.

1.3 Thesis outline
Having presented the background information and related work in the second chapter, the

third one addresses the interoperability issues prevalent in the web services paradigm; several

key flaws in the WSDL spec as well as the measures required to address them are outlined.

Chapter four then presents a reference architecture and toolkit for automating the process of

legacy system web enablement, while the fifth chapter leverages this work to develop a

methodology for drastically simplifying enterprise integration. Finally, chapter six provides

conclusions as well as a discussion pertaining to future work.

 4

Chapter 2

Background and Related Work

2.1 Modernization Strategies
Organizations worldwide have been dependent on information systems for the last two

decades to efficiently run their operations and create new business opportunities; in essence,

these systems are to an enterprise what a brain is to a higher species. As corporations evolve,

requirements change and technologies providing a superior competitive advantage begin to

emerge. This evolution, coupled with years of mergers and acquisitions, often leave

organizations with hundreds of systems in desperate need of modernization and/or

integration with new platforms. The heterogeneity of these applications can be rather

astounding with transactional/batch processing systems on the mainframe, client-server

applications written in a host of different languages and residing on differing platforms, as

well as off-the-shelf ERP, CRM, ERM software all sitting within the same network.

Managers are generally left with three main courses of action to modernize/unite these

applications into a cohesive, efficient unit.

2.1.1 Redevelopment

The implementation of this alternative allows developers to start from scratch and

redevelop all of the business applications without any consideration of the existing software.

This rather daunting task can be carried out all at once, a technique dubbed the “big bang

approach”, or one application at a time, known as the “incremental approach” [9]. It can be

noted that the only contact with the old systems in both cases is the migration of the data.

This strategy does indeed appear attractive for it affords developers the opportunity to

cleanly re-architect the applications based upon the most recent business and technology

requirements. However, as every function must be redeveloped and tested in a new language

running on a different platform, the completion of the entire development cycle will indeed

be very costly and time consuming. Furthermore, the logic of many legacy systems is

sufficiently complex that an attempt at duplication often results in products failing to meet

the pre-defined requirements [10].

 5

2.1.2 Reverse Engineering

Traditional reverse engineering emphasizes a deep understanding of individual modules

followed by internal restructuring activities. The first step in most reengineering projects is

program understanding, which has been defined as “the process of analyzing a subject system

to identify the system’s components and their interrelationships, and create representations of

the system in another form or at a higher level of abstraction” [11, 12]. This process involves

the modeling of the domain, the extraction of information from legacy systems using

appropriate mechanisms, and creating abstractions that help in the understanding of the

resulting structures [12]. The outcomes include redocumentation of both the architecture and

the program structures as well as recovery of the design. Once the code has been analyzed

and understood, restructuring can then take place. This methodology involves the

transformation from one representation form to another at the same relative abstraction level,

while preserving the subject system’s external behaviour (functionality and semantics) [12].

This transformation is typically used to augment some quality attribute of the system, such as

maintainability or performance.

 Tools for program understanding, redocumentation, and program translation have indeed

been applied successfully in the past; however, they depend inherently on the tractability of

the starting legacy system. Old code is often so intertwined with its environment that its

migration is virtually impossible without destroying it. Furthermore, it has been proven to be

infeasible to convert procedural legacy programs to object oriented components; regardless

of the success of this transformation, the responsible programmer will reject the results as the

mental map of his/her algorithms has been destroyed [13]. Thus, as it does not take into

account that programs arc a mirror of the programmers mind and cannot be reengineered

without reengineering the mind of the programmer, classical reengineering in the sense of

source code transformation, even via an intermediate language, is dead [14].

2.1.3 Wrapping

Wrapping or encapsulation, on the other hand, minimizes the need for deep, internal

program understanding. Legacy systems are effectively wrapped in such a way that there is

minimum change to the source; only the interfaces may be altered, so that the owner of the

program is not estranged from it. A cocoon is essentially built around units of software that

 6

serve a well-defined need; this layer hides the unwanted complexity of the old system and

exports a modern interface. Wrapping essentially serves to remove mismatches between the

interface exported by a software artefact and the interfaces required by current integration

practices [16]. It can be noted that over time, this methodology provides a means to replace

modules individually without affecting the rest of the system.

It is evident that the selection of a modernization technique depends upon weighing the

costs of strategy implementation as well as the benefits of the evolved system. In the

technical dimension, one looks at the technical benefits of the improved software relative to

the technical costs of employing the tools. In the business dimension, the benefits, including

time to market and generated new opportunity are weighed against both the short and long

term development and maintenance costs. Given the size and complexity of existing legacy

systems, it is clear that there will always be significant risk, cost, and time associated with

reengineering and redevelopment efforts. As a result, this paper aims to improve upon

existing wrapping techniques in order to transform the process into a virtually routine

procedure.

2.1.3.1 Techniques

A wide variety of software wrapping techniques have indeed been devised and

implemented with the application of proprietary adapters and middleware technologies being

predominant among the solutions [17, 18, 19, 20, 21, 22, 23]. Wrapping techniques can be

generally classified into the following categories.

Proprietary Adapters

Writing custom software, or glue-code, to unite two disparate applications is by far the

oldest form of integration; it does often appear to be a far more attractive solution than

redevelopment or reengineering of one or more applications. Over the years, off the shelf

software packages serving to bridge technologies have become available; an EJB-COM

bridge could, for example, be applied to plug an aging Microsoft-based application into a

J2EE implementation. EAI vendors have been selling adapters and adapter toolkits, enabling

their platforms to plug into a host of legacy systems, for over a decade. More recently, Sun

released the Java Connector Architecture (JCA), a specification aiming to standardize the

marketplace of these resource adapters for the java platform; the goal is to mask the

 7

complexity behind a layer of indirection akin to JDBC in the world of data management [24].

Though the JCA certainly represents strides in the simplification of this type of solution, the

implementation and/or configuration of adapters is a complex, high risk endeavour.

Furthermore, this solution will create tightly-coupled, brittle systems with undoubtedly

limited life spans; it will only be a matter of time before shifting requirements and

technology choices will force the creation of further bridges.

CORBA

The common object request broker architecture is an older middleware technology, which

aims to manage much of the underlying plumbing associated distributed object development

[25]. As CORBA is language neutral, certain legacy systems can be wrapped with a generic

IDL interface and invoked from applications running on entirely different platforms.

However, the complexity of projects undertaking this solution is drastically increased, for

they involve the introduction of an additional heavyweight, intricate technology.

Furthermore, CORBA can only be applied to a relatively small subset of languages and

though it does successfully encapsulate complexity behind a published interface, the new

platform is mired in a proprietary CORBA framework, thus complicating future

modernization efforts.

Messaging Middleware

Messaging middleware technologies, such as the JMS standard or IBM’s MQSeries,

provide the infrastructure for asynchronous method invocation, rather than direct invocation

through an API [26, 27]. The underlying middleware essentially guarantees delivery of a

message once it has been sent to the desired destination and allows the client to continue

processing without having to wait for a response. This solution is especially attractive for

message-oriented legacy systems, for it fosters the creation of a loosely coupled paradigm

and enables the construction of complex messaging workflows.

2.1.3.2 System Interface Identification

It can be noted that regardless of the wrapping strategy implemented, the first step must

be to analyze the legacy system in order to clearly extract interfaces of the major functional

components. In the case of object-oriented languages, such as C++ or object COBOL, this

 8

task is trivial; however, it requires additional effort when dealing with older procedural

technologies that may be closely intertwined with their environment, such as batch or

transaction processing programs running on a mainframe. In certain scenarios, acquiring the

understanding of a system interface may require the application of the well known

reengineering techniques cited above; however, this case certainly does not reach the

complexity of complete white-box transformation. In both [17] and [18], the authors propose

tooling to maximize the automation of this process. Once specific legacy components have

been identified, their behaviour can be easily specified in terms of well-defined object-

oriented interfaces. It can be noted that for the purposes of this paper, it is assumed that the

desired interface(s) of a legacy system have been identified and extracted.

2.2 Web Services

2.2.1 Overview

Web services have effectively marked the beginning of the next phase of the internet,

where OOP principles are extended in such a way that applications will begin to be

composed of reusable components distributed all over the world. The web is being pushed to

the next evolutionary step; from providing services to users to providing services to software

applications. As depicted below in Figure 2.1, this model is achieved with a classic service-

oriented architecture, the three main elements of which are a provider, a client, and a

repository. Upon implementing a service, a developer will package it as a web service and

publish a WSDL document, which describes the details of the application, in a global

repository somewhere on the internet. The binders used in this scenario are typically based

on the Universal Description, Discovery, and Integration (UDDI) standard, which essentially

provides a ‘yellow pages’ of services that clients can browse based on categories and/or

industry groupings [28]. When a client identifies a potential service, the information found

in the WSDL document is used to directly connect to then and invoke it using the SOAP

protocol.

 9

UDDI
Repository

(WSDL
docs)

Client Service
ProviderSOAP

Figure 2. 1 Service-Oriented Architecture

This paradigm can be viewed as a standardization of the distributed computing model,

popularized by CORBA, where components are described with IDL interfaces and made

available across a network. In this case, however, the use of XML essentially separates the

data from the code, thus removing the need for software to fit into proprietary program

infrastructures. This data-centricity then naturally leads to the notion of data exchange over

the web, for existing, proven, web protocols can be leveraged. As a result, distributed

computing is poised to rapidly break free from the shackles of corporate boundaries and

explode on a global scale.

It is evident that the invocation of services via SOAP does indeed require a certain

amount of underlying plumbing. To this end, a competitive market of web services runtimes,

serving to ‘magically’ expose applications as web services, has been created. As depicted in

Figure 2.2, given the native interface of a service implementation, a toolkit will automatically

generate the components required for communication: a SOAP processing module,

dispatcher, (de)serializers, stubs and skeletons, as well as a WSDL document. It can be

noted that on the client side, a toolkit compiles this WSDL document to generate the stubs

and (de)serializers in the desired language, which may well be different from that of the

server implementation. Client code leveraging the service can then be composed and

compiled with these generated components.

 10

Service
Impl.Skeleton

Serializer/Deserializers

SOAP
Processor/
Dispatcher

WS Container

SOAP

Stub
Client
Code

Client Machine

Figure 2. 2 Standard Web Services Deployment

2.2.2 WSDL

An amalgamation of Microsoft’s SDL and IBM’s NASSL specifications, the web

services description language provides a generic means of describing a web service’s

interface and provides users with a point of contact [29]. As outlined above, the web services

model has adopted the paradigm of generating the underlying communication infrastructure

based upon application interface description; WSDL can essentially be viewed as an

evolution of IDL to an open, interoperable standard. In this case, however, the use of XML

over established web protocols extends the communication model far beyond the use

proprietary, binary protocols within the intranet. Moreover, unlike the distributed computing

technologies of old, the simplicity of the paradigm favours the creation of an open

marketplace of free, lightweight toolkits.

In order to maintain the neutrality of the spec, the authors decided to divide it into two

logical sections: the abstract and concrete definitions. The basic design principle was to

distinctly separate out the description of the data format, transport, and location information

from the application level definition, such that it could easily be reused in differing scenarios.

The abstract definition essentially describes a service’s interface in terms of messages

exchanged in a service interaction. Firstly, external type systems (e.g. XML Schema) are

referenced to provide data type definitions for the information exchange. These types are

 11

then referenced by constructs describing the logical structure of the actual messages to be

transmitted over the wire. Finally, these message definitions are then tied together according

to a particular interaction model (e.g. request, request/response etc.). In order to successfully

invoke a service, a client must also be aware of the expected data format and transport

protocol, as well as the physical location of the application; it is bestowed upon on the

concrete definition to provide this information. As the specification is designed to be truly

extensible, it allows developers to define a set of tags for their desired bindings; it can be

noted however, that structures have been provided for popular protocols such as SOAP and

HTTP.

2.2.3 SOAP

Initially developed by Microsoft, SOAP is a simple protocol for messaging and remote

procedure calls; as it works on existing transports (HTTP, SMTP etc.), it has rapidly become

the de-facto standard for XML message format definition in the world of web services [31].

At it core, SOAP has a truly trivial structure with each message merely containing a header

and body element. The former contains meta-information describing how the message

should be processed, while the latter contains the contents of the message itself. Though the

make-up of each of these tags is generally arbitrary, it can be noted that some additional

basic structure is defined for the body in the case of RPC communication. In the end, given a

WSDL description specifying SOAP as the message format, a toolkit will generate a wrapper

for the desired application to produce and consume SOAP messages.

2.2.3.1 SOAP Encoding

In the early stages, the framers of the SOAP spec recognized the need for a means to

describe data types in RPC communication. As XML Schema had not yet been completed,

an encoding scheme, dubbed SOAP encoding, was devised to serialize object graphs into

XML messages. These encoding rules were based on a data model defined to represent

application defined structures as a directed, edge-labelled graph of nodes. These rules

addressed both object references and arrays, two facets which were eventually omitted from

the ratified XSD specification. As a result, the WSDL spec leverages both XSD and SOAP

encoding for programmatic type serialization, which, as we will discuss in the ensuing

chapter, creates an array of interoperability concerns.

 12

2.2.3.2 Binary Data

It is evident that packing binary data into a SOAP envelope is indeed infeasible, for bytes

with special meanings (e.g. ‘<’) will eventually appear. Moreover, encoding the data as

Base64 is not an ideal, for message size is expanded by a third, thus degrading performance.

Since the successful transmission of binary data is indeed of great importance to the future

success of web services, it has been addressed in two specifications: SOAP with Attachments

(SwA) and WS-Attachments [33, 34]. The former outlines how a SOAP message can be

carried within a multipart MIME message in such a way that the SOAP processing rules are

preserved. In this case, the binary data is appended at the end of message and referenced

from the SOAP body with URIs. There are, however, two main drawbacks to this model.

Firstly, MIME can be heavyweight and is therefore inappropriate for small and embedded

devices. More importantly, SwA cannot handle data streaming; for any sort of multi-media

application, it is clear that the receiver should not have to buffer the entire attachment before

processing it. As such, though the WS-Attachments spec follows the model of URI

referencing, it mandates the use of DIME, a binary message format [35]. As attachments can

be broken up across multiple DIME ‘chunks’ of variable length, this proposal is well suited

to dynamically generated and/or streaming content.

2.3 Server Side Computing
Over the last two decades, enterprise-class installations have evolved from large,

unmanageable monoliths to multi-tiered, distributed, component architectures; a classic

three-tier deployment is pictured below in Figure 2.3. It can be noted that in order to offer

both high availability and scalability, each of the three layers is typically distributed across a

number of machines, thus introducing a great deal of complexity into the system. As we will

outline below, the application server was therefore born from the need to handle much of this

essential underlying plumbing.

 13

Database Server

Application Server

Web Tier (ASP, JSP)

Middle Tier (COM+, EJB)

Clients

Figure 2. 3 Traditional 3-tier System Architecture

2.3.1 Web Tier

A web container is typically used both to serve up static content and process incoming

client requests. Technologies such java servlets, JSP, and ASP are used to extend the web

server in such a way that requests are first inspected and delegated to the appropriate

middleware component; a presentation page is then selected and rendered before being

returned to the user.

2.3.2 Middle Tier

As outlined above, middleware is the technology that facilitates the integration of

components in a distributed system. It is traditionally defined as the software that allows

elements of applications to interoperate across network links, despite differences in

underlying protocols, system architectures, operating systems, databases, and other

application services. The framework required for the implementation and maintenance of a

secure, transactional, scalable, highly available enterprise level deployment is indeed

 14

incredibly complex. As this high-end middleware requires a tremendous amount of expert

knowledge, companies have moved away from building their own, choosing to focus instead

on their core competency. Technologies such as EJB or COM+ are therefore leveraged to

provide a seemingly endless list of services: from support for resource pooling, networking,

and caching to load-balancing and fail-over to application level issues such as security and

transactions [36]. Developers are essentially left to focus on the business logic, which is then

automatically enterprise-enabled with a seamless deployment into the application server.

 15

Chapter 3

Introducing Interoperability into the Web Services Model

3.1 Introduction
As alluded to previously, the additional veneer provided by XML web services is

expected to unite a completely heterogeneous computing world. In order to accomplish this

elusive task, it is evident that a huge amount of XML infrastructure, originating from a host

of different toolkits supporting different technologies, must be generated. This new

paradigm is indeed an outstanding one with vast potential, however, it will only be widely

adopted if interoperability is simple to achieve; code generated at the client must easily

produce SOAP messages that will be fully understood at the server. However, coercing any

of the sixty plus web services toolkits currently available into working together to perform

even the simplest of operations has proven to be a truly daunting task.

As the WSDL specification is responsible for the formalization of the necessary

underlying plumbing, there is little doubt that it is the root cause of the current

interoperability problems. The spec is so excessively verbose and complex that not only do

web service programmers have trouble grasping the meaning of the options available to

them, but toolkit implementers themselves have differing interpretations and are thus

struggling to provide a standard set of features. As with any new technology, there will be an

extended period of testing and improvement before stability is finally reached. However, the

major concern in this case is that WSDL is fundamentally flawed at the conceptual level; its

evolution is undoubtedly on the wrong path. We strongly believe that true interoperability

will only be achieved via message level schema validation. The adoption of this philosophy

would provide endpoints with a precise blueprint for network communication, thus

automatically removing any ambiguity. It is with this concise objective in mind that this

chapter details the major interoperability pitfalls of the current WSDL spec and outlines

several crucial amendments. Moreover, it can be noted that the W3C is notorious for

contorting perfectly legible specs into bloated, complex documents, the entirety of which is

only understood by a select few. If current trends continue, it is evident that only the

software giants, those driving the W3C, will have the knowledge and resources to compete in

 16

the world of web services’ plumbing. The proposed simplifications will therefore also serve

to rescue the dream of an open marketplace of compatible toolkits from the cruel boot of

capitalism.

3.2 WSDL 1.1 Abstract Definition

3.2.1 Background

 As mentioned in the previous chapter, WSDL 1.1 is separated into two main portions: the

abstract definition and concrete bindings. The ensuing portions of this section will outline

and provide solutions to two major interoperability flaws of the current abstract definition.

As a frame of reference, a complete abstract service description, containing <wsdl:types>,

<wsdl:message>, and <wsdl:portType> constructs, is provided below.

<definitions targetNamespace=”http://www.example.com/PO/wsdl”
 xmlns:poxsd=”http://www.example.com/PO/xsd”
 xmlns:tns=”http://www.example.com/PO/wsdl”
 xmlns=”http://schemas.xmlsoap.org/wsdl”>

<types>
<schema targetNamespace=”http://www.example.com/PO/xsd”

 xmlns=”http://www.w3c.org/2001/XMLSchema”>

<element name=”PurchaseOrder”>
<complexType>

 <sequence>
 <element name=”buyer” type=”string” />
 <element name=”item” type=”string” />
 <element name=”date” type=”date” />
 </sequence>

</complexType>
</element>

 <complexType name=”Person”>
 <sequence>
 <element name=”name” type=”string” />
 <element name=”department” type=”string” />
 <element name=”phoneExtension” type=”int” />
 </sequence>
 </complexType>

 </schema>
</types>

<message name=”ProcessPORequest”>
 <part name=”Param1” element=”poxsd:PurchaseOrder” />
 <part name=”Param2” type=”poxsd:Person” />
</message>

 17

<portType name=”ProcessPOPortType”>
 <operation name=”ProcessPO”>
 <input message=”tns:ProcessPORequest” />
 </operation>
</portType>

 .
 .
 .
</definitions>

Figure 3.1 Abstract definition of ‘PurchaseOrder’ endpoint

This example describes a service named ‘ProcessPO’, which accepts two arguments,

‘PurchaseOrder’ and ‘Person’, and does not return a response. It is assumed in this case that

the business rules governing the endpoint require that information regarding the individual

who created the purchase order be submitted as a separate parameter. One can envision this

type of service having literally thousands of applications across a multitude of industries.

For example, a project manager on a construction site could use a wireless device to submit

purchase orders to her suppliers while simultaneously sending a copy to her company’s home

office to update their records in real time. It can be noted that the <wsdl:types> contains the

schema definitions for the content of the service. As we will soon discuss in more detail, the

specification claims these definitions are either abstract or concrete; in the former case, a set

of encoding rules must be applied to them in order to obtain a specific XML format while in

the latter case, the XML instance must conform to the schema.

3.2.2 Interoperability Problems

3.2.2.1 Type System Ambiguity

 Since one of the initial objectives of the web services’ paradigm was to leverage existing

web protocols in order to provide a generic XML-based RPC mechanism, the decision was

made that the intermediate messages should be strongly typed. As a result, the <wsdl:types>

construct depicted above in Figure 3.1 serves as a container for the abstract parameter data

type definitions referred to in the <wsdl:message>. The current specification claims that “for

maximum interoperability and platform neutrality, WSDL prefers the use of XSD as the

canonical type system, and treats it as the intrinsic type system” [29]. Despite its

“preference” for XML Schema, the spec’s set of guidelines, outlined in section 2.2, for

encoding abstract types using XSD is alarmingly vague and incomplete. For toolkits to

 18

interoperate successfully, they must have a complete set of standardized rules in order to

create consistent XML Schema descriptions from each programmatic type system. We will

delve into the XSD mapping issue in greater detail below when WSDL binding encoding

mechanisms are scrutinized.

It has been noted that WSDL prefers XML Schema; however, in the spirit of

extensibility, it was decided that other type systems could also be used “since it is

unreasonable to expect a single type system grammar to describe all abstract types both

present and future” [29]. It is true that a number of standards organizations have published

credible type system specifications; in addition to the W3C’s XML Schema spec, ISO

released Relax NG schema, and OASIS issued TREX schema [37,38]. However, it is

absolutely ludicrous to believe that WSDL, the core spec in web services’ plumbing, is

completely uncommitted to a type system. To ensure an open, interoperable world of web

services, this decision is essentially forcing all toolkit vendors to successfully support

multiple type systems; a feat that if not impossible, is completely unreasonable. Apart from

compounding the mapping problem outlined above, complicating toolkit implementation to

allow for numerous type systems that all essentially provide the same functionality is utterly

redundant.

3.2.2.2 The Message Construct: Duplicate Representation

It can be observed in Figure 3.1 that once a type system has been selected, the

<wsdl:message> construct serves as a placeholder for the required content in a service

invocation. Each information item is represented within the <wsdl:message> using a

peculiar element known as a <wsdl:part>, which represents a logical abstraction of the

content of the message. It is not until the bindings are inspected that it is known precisely

what the <wsdl:part> represents. For example, a <wsdl:part> could, using any type system,

portray an RPC parameter, an XML document, or even some form of binary information

(image, audio, video etc.). As a result, depending on the bindings, the ‘ProcessPORequest’

<wsdl:message> outlined above represents a service that accepts either two xml documents

or two RPC parameters for processing. In providing this unified mechanism for a first-class

description of both RPC and document style operations, the <wsdl:message> essentially

serves as a simple yet inexpressive type system for content representation. However, several

 19

capabilities are completely absent; in addition to the inability to be shared between

<wsdl:message>s, <wsdl:part>s cannot be defined as optional or have an associated

multiplicity. These limitations have led to discussion to extend the functionality of the

<wsdl:message>; however, the mandate of WSDL is to provide a succinct set of operational

types, thus calling into question why any time at all has been spent developing a

representational one. As discussed in section 4.2.3.2 below, the logical choice in this case is

to reap the rewards of the excellent work done by the XML Schema working group.

Expressiveness aside, it can be shown that the <wsdl:part>s interact with the chosen type

system in an unnecessarily flexible manner. Each <wsdl:part> refers to a type with a specific

type referencing attribute; as the authors have a slight predilection to XML Schema, they

have provided two attributes with which to refer to XSD. It can be observed from the

example outlined above that the ‘element’ attribute refers to a schema element while the

‘type’ attribute refers to a globally defined schema complexType. It can be noted that in

order to accommodate other type systems, the set of typing referencing attributes is

extensible under the condition that they are in a namespace other than that of WSDL. The

specification outlines that the ‘type’ attribute serves as an alternative syntax when the

message contents are sufficiently complex; however, in reality both forms are equally

expressive. As the current development paradigm dictates that developers should rarely, if

ever, interact with a WSDL document, one can question the validity of providing two

semantically equivalent type referencing mechanisms. The option simply serves to

unnecessarily add to the implementation complexity of web services’ toolkits. Furthermore,

it will be later shown that <wsdl:part>s interact with bindings in a non- trivial manner and

allowing two type referencing mechanisms only serves to drastically complicate the bindings.

 Finally, it is often the case that <wsdl:message>s are superfluous and appear only for

syntactic reasons. The following excerpt from section 1.2 of the WSDL 1.1 specification

exemplifies the commonly used ‘single part’ authoring style.

<definitions targetNamespace=”http://example.com/stock/wsdl”
 xmlns:tns=”http://example.com/stock/wsdl”
 xmlns:stxsd=”http://example.com/stockquote.xsd”
 xmlns=”http://schemas.xmlsoap.org/wsdl”>

<types>
 <schema targetNamespace="http://example.com/stockquote.xsd"

 20

 xmlns="http://www.w3.org/2000/10/XMLSchema">

 <element name="TradePriceRequest">
 <complexType>
 <all>
 <element name="tickerSymbol" type="string"/>
 </all>
 </complexType>
 </element>

 <element name="TradePrice">
 <complexType>
 <all>
 <element name="price" type="float"/>
 </all>
 </complexType>
 </element>

 </schema>
</types>

<message name="GetLastTradePriceInput">
 <part name="body" element="stxsd:TradePriceRequest"/>
</message>

<message name="GetLastTradePriceOutput">
 <part name="body" element="stxsd:TradePrice"/>
</message>

<portType name="StockQuotePortType">
 <operation name="GetLastTradePrice">
 <input message="tns:GetLastTradePriceInput">
 <output message="tns:GetLastTradePriceOutput"/>
 </operation>
</portType>
.
.
.

</definitions>

Figure 3.2 Abstract definition portraying ‘single part’ authoring style

The fact that the names of the <wsdl:message>s closely mirror the names of the schema

elements provides a strong indication that they could be dropped. It is evident that no loss of

information would occur if the operation simply referred directly to the XSD constructs.

Furthermore, the <wsdl:part>s are commonly named ‘body’, the generality of which provides

a hint of the artificial nature of the construct.

As it stands now, the <wsdl:message> is an unintuitive, redundant construct, the presence

of which not only serves to further complicate an already bloated specification, but precludes

the possibility of validating SOAP messages in their entirety. As a result, the following two

 21

sections will outline in detail a proposal for the removal of the <wsdl:message> construct in

favour of solely using XML Schema.

3.2.3 Interoperability Solutions

3.2.3.1 Mandating XML Schema

As mentioned previously, by providing each vendor with their choice of typing

mechanisms, the WSDL authors have strayed from the path toward a world of successfully

interoperating toolkits. To attain this goal, we believe it is imperative that WSDL mandate

XSD as the sole present form of data representation. Despite the controversy surrounding its

complexity, XML Schema was ratified as an exceptionally expressive type system that has

rapidly become the de-facto industry standard. In fact, in the last two years, it has been the

only typing mechanism integrated into virtually all relevant XML technologies. As it is,

however, reasonable to envision that another typing mechanism will one day usurp XML

Schema as the industry standard, the WSDL specification must be accordingly extensible; an

issue that is dealt with in detail below.

3.2.3.2 Message Construct Removal

Underpowered and sandwiched between more interesting and semantically rich constructs

(<wsdl:operation> and <wsdl:type>), the inexpressive <wsdl:message> element has been

shown to exist for mainly syntactic reasons. Having proposed that WSDL adopt XSD as its

type system of choice, the next logical step is to remove the <wsdl:message> construct

entirely in favour of XML Schema, thus providing a host of compelling advantages. The

ensuing document incorporates these proposed changes to describe the endpoint depicted in

Figure 3.1.

<definitions targetNamespace=”http://www.example.com/PO/wsdl”
 xmlns:poxsd=”http://www.example.com/PO/xsd”
 xmlns=”http://schemas.xmlsoap.org/wsdl”>

<types>
<schema targetNamespace=”http://www.example.com/PO/xsd”
 xmlns:tns=”http://www.example.com/PO/xsd”

 xmlns=”http://www.w3c.org/2001/XMLSchema”>

<element name=”ProcessPORequest”>
 <complexType>

 22

 <sequence>
 <element name=”PO” type=”tns:PurchaseOrder”>
 <element name=”Person” type=”tns:Person”>
 </sequence>
 </complexType>
</element>

<complexType name=”PurchaseOrder”>

 <sequence>
 <element name=”buyer” type=”string” />
 <element name=”item” type=”string” />
 <element name=”date” type=”date” />
 </sequence>

</complexType>

 <complexType name=”Person”>
 <sequence>
 <element name=”name” type=”string” />
 <element name=”department” type=”string” />
 <element name=”phoneExtension” type=”int”>
 </sequence>
 </complexType>

 </schema>
</types>

<portType name=”ProcessPOPortType”>
 <operation name=”ProcessPO”>
 <input element=”poxsd:ProcessPORequest” />
 </operation>
</portType>

 .
 .
 .
</definitions>

Figure 3.3 Abstract definition of ‘PurchaseOrder’ endpoint with XSD-only syntax

It can be observed that the <wsdl:message> construct has been replaced with an

<xsd:element> carrying the operation name with ‘Request’ appended to it. The <wsdl:part>s

have, in turn, been supplanted with a sequence of child <xsd:element>s, each of which must

either refer to a schema simple type or a schema compound type defined in any namespace.

In order to refer to the newly defined ‘ProcessPORequest’ element from within the

<wsdl:portType>, we simply propose that the ‘message’ attribute found on the <wsdl:input>,

<wsdl:output>, and <wsdl:fault> constructs be aptly renamed to ‘element’. As we will

outline below, this proposal represents a clean, simplistic solution to all the issues outlined in

section 3.2.2.2.

 23

The existing <wsdl:message> tag has two primary design objectives: to simultaneously

describe both RPC and document style operations and to act as a neutral container for types

from any available typing mechanism. In order to provide programming model flexibility,

we understood the importance of seamlessly propagating the former issue into our proposal.

As a result, it can be noted in Figure 3.3 that the ‘Person’ and ‘PurchaseOrder’ parameters

could indeed either represent programmatic objects destined for serialization or XML

documents to be processed directly. In fact, the inclusion of the schema element wrapper for

the operation yields a far more descriptive, accurate view of the service and introduces the

possibility of attaining the goal of message level schema validation.

With respect to the second design criteria, since the future success of web services

depends on the acceptance of XML Schema as the sole representational type system, we

firmly believe that it is no longer required. However, in the case that XSD is one day

replaced as the industry standard, our proposal must allow WSDL to be extensible. This

issue is accounted for in a similar manner to the current specification by moving the

extensible set of type referencing attributes from the defunct <wsdl:part> tag to the

<wsdl:input>, <wsdl:output>, and <wsdl:fault> elements within an <wsdl:operation>. Any

compelling future type system will provide structuring constructs at least as powerful as the

<wsdl:message>, thus its removal won’t be regarded as a limitation; on the contrary, the

ability to use the full power of the native type system will be energizing, as is the case for

XML Schema.

Furthermore, the use of the <wsdl:message> to describe a service’s structure is merely

recreating a far less expressive version of XML Schema. The simplification of the

specification to use schema elements in place of <wsdl:part>s implicitly gains a rich set of

features; the ‘minOccurs’ and ‘maxOccurs’ attributes can be used to specify cardinality

constraints and the ‘ref’ attribute allows for the sharing of <xsd:element>s at any level of the

description. Moreover, schema has a host of more advanced features such as type

inheritance, substitution groups, and support for extensible content models, all of which

could well be exploited in the future. It can also be noted that the elimination of the ‘type’

and ‘element’ attributes as type-referencing mechanisms in favour of simply referring to

XSD ‘complexType’ drastically simplifies the lives of toolkit developers.

 24

 In addition to radically improving the abstract definition, it can be noted that this proposal

also serves to simplify the bindings on two levels. Firstly, since binding authors need to take

into account all aspects of an operation before they can fully specify how to bind it to a

specific protocol, their work instantly becomes a great deal more difficult when different

constructs (<wsdl:message>, <xsd:element> / <xsd:complexType>) or type systems are used

as part of the same operation definition. The simplicity and syntactic clarity of the XML

Schema representation clearly makes this task far less painful. Secondly, there are certain

scenarios in the WSDL 1.1 bindings (e.g. <soap:header>) where special syntax is introduced

to select specific <wsdl:part>s. Adopting this schema-centric proposal would mean

foregoing this syntax in favour of proven, well-known XML technologies such as XPath.

 Finally, a core issue that is poorly taken up in the current spec is the representation of

binary data. As one could envision literally countless applications involving the transfer of

MIME types, we have devised an efficient, elegant solution to address the problem. As seen

in the example below, the xsd:hexbinary simple type is currently used to represent binary

data in the abstract definition, thus making it impossible to determine what type of data is

being sent (image, video, audio etc.) until the bindings are inspected. With respect to the

bindings themselves, chapter two outlined the major reasons why it is unfeasible to

efficiently embed binary data into a SOAP message. As a result, the accepted standard is to

use the notion of “attachments”, where information is appended after the SOAP envelope and

referenced with URIs. There are a number of possible data formats to which this

methodology could be mapped and WSDL 1.1 mandates the use of multipart MIME

messages. In describing a service that accepts both a patient record and an x-ray image, the

ensuing document exemplifies how binary information is treated in the current specification.

<definitions targetNamespace=”http://www.example.com/patient/wsdl”
 xmlns:tns=”http://www.example.com/patient/wsdl”

 xmlns:paxsd=”http://www.example.com/patient/xsd”
 xmlns:xsd=”http://www.w3c.org/2001/XMLSchema”
 xmlns=”http://schemas.xmlsoap.org/wsdl”>

<types>
<schema targetNamespace=”http://www.example.com/patient/xsd”

 xmlns=”http://www.w3c.org/2001/XMLSchema”>

<complexType name=”Patient”>
 <sequence>
 <element name=”name” type=”string” />

 25

 <element name=”age” type=”int” />
 <element name=”date” type=”date” />
 </sequence>
</complexType>

 </schema>

</types>

<message name=”ProcessPatientRequest”>
 <part name=”param” type=”paxsd:Patient”/>
 <part name=”param1” type=”xsd:hexBinary”>
</message>

<portType name=”ProcessPatientPortType”>
 <operation name=”ProcessPatient”>
 <input message=”tns:ProcessPatientRequest” />
 </operation>
</portType>

<binding name=”PatientBinding” type=”tns:ProcessPatientPortType”>

<soap:binding style=”rpc” transport=”http://schemas.xmlsoap.org/soap/http” />
<operation name=”ProcessPatient”>
 <soap:operation soapAction=”http://www.example.com/patient” />
 <input>
 <mime:multipartRelated>
 <mime:part>
 <soap:body parts=”param”>
 </mime:part>
 <mime:part>
 <mime:content part=”param1” type=”image/jpeg/”>
 </mime:part>
 </mime:multipartRelated>
 </input>
</operation>

</binding>
</definitions>

Figure 3.4 Description of binary data using WSDL 1.1 constructs

At service discovery time, potential clients search and/or examine the abstract definitions

of WSDL files in order to find an endpoint that satisfies their requirements. The

specification that a parameter is of type xsd:hexbinary does not yield any pertinent

information; it could be an image of the patient’s chart, an audio recording of the doctor’s

diagnosis, or even a video recording of an actual procedure. As observed in the preceding

example, by including this valuable portion of the service description in the <mime:content>

tag, the binding has gone far beyond its assigned task of providing transport and data format

information, thus breaching a fundamental design requirement of the specification. Some of

the original WSDL 1.1 authors claim that this issue can be resolved by recognizing MIME as

 26

a distinct type system deserving of its own message typing attribute within the <wsdl:part>.

For example:

<message name=”ProcessPatientRequest”>
 <part name=”param” type=”paxsd:Patient”/>
 <part name=”param1” mime:type=”image/jpeg”>
</message>

Figure 3.5 Description of binary data using amended <wsdl:message> construct

This scenario is the only compelling argument in favour of retaining the message

construct; MIME types are indeed prevalent and could be considered a specialized, distinct

type system. However, we strongly believe that the overall expressive power and simplicity

obtained from removing the <wsdl:message> and encapsulating binary information within

XML Schema far outweighs any gains in syntactic clarity. It is assumed that any future

replacements for XSD will be equally capable of incorporating raw data.

 The previous chapter provided a brief overview of the WS-Attachments spec, which

essentially specifies how to package both the SOAP envelope and binary data into a DIME

message. Microsoft’s Mike Deem went on to author a draft detailing exactly how to

incorporate these concepts into WSDL [39]. He crafted new schema complexType

definitions, defined in their own namespace, to incorporate both separate XML documents

and MIME types. Based upon this work, we have devised a proposal, exemplified below by

a modified version of Figure 3.4, for the incorporation of binary data into WSDL.

<definitions targetNamespace=”http://www.example.com/patient/wsdl”
 xmlns:tns=”http://www.example.com/patient/wsdl”

 xmlns:paxsd=”http://www.example.com/patient/xsd”
 xmlns:xsd=”http://www.w3c.org/2001/XMLSchema”
 xmlns=”http://schemas.xmlsoap.org/wsdl”>

<types>

<schema targetNamespace=”http://www.example.com/patient/xsd”
xmlns:content=”http://schemas.xmlsoap.org/ws/2002/04/content-type/”
xmlns:dime=”http://schemas.xmlsoap.org/ws/2002/04/dime/wsdl/”
xmlns=”http://www.w3c.org/2001/XMLSchema”>

 <import namespace=”http://schemas.xmlsoap.org/ws/2002/04/content-type/”/>

<element name=”ProcessPatientRequest”>
 <complexType>
 <sequence>
 <element name=”Patient” type=”paxsd:Patient”>
 <element name=”XRay” type=”paxsd:XRay”>

</sequence>
 </complexType>
</element>

 27

<complexType name=”Patient”>
 <sequence>
 <element name=”name” type=”string” />
 <element name=”age” type=”int” />
 <element name=”date” type=”date” />
 </sequence>
</complexType>

<complexType name=”ReferencedBinary”>
 <simpleContent>
 <extension base=”hexBinary”>
 <attribute name=”location” type=”anyURI” use=”optional”>

</extension>
 <simpleContent>
</complexType>

<complexType name=”XRay”>
 <simpleContent>
 <restriction base=”paxsd:ReferencedBinary”>
 <annotation>
 <appinfo>
 <content:mediaType type=”image/jpeg” />
 </appinfo>
 </annotation>
 </restriction>
 </simpleContent>
</complexType>

 </schema>

</types>

<portType name=”ProcessPatientPortType”>
 <operation name=”ProcessPatient”>
 <input element=”poxsd:ProcessPatient” />
 </operation>
</portType>

<binding name=”PatientBinding” type=”tns:ProcessPatientPortType”>

<soap:binding style=”rpc” transport=”http://schemas.xmlsoap.org/soap/http” />
<operation name=”ProcessPatient”>
 <soap:operation soapAction=”http://www.example.com/patient” />
 <input>

<dime:message layout=”http://schemas.xmlsoaop.org/ws/2002/04/dime/closed-layout”
wsdl:required= ”true”>
<soap:body elements=”Patient” use=”Literal”>

 </input>
</operation>

</binding>
.
.
.

</definitions>

Figure 3.6 Description of binary data using proposed constructs

 28

 In this example, it is immediately evident that the service is expecting a jpeg image of an

x-ray for it is concisely defined in the abstract definition. This added description is obtained

by extending the xsd:hexBinary base type in two ways to create a new XRay complexType.

First, as the standard method of incorporating external XML documents and binary data into

a SOAP message is via attachments, a mechanism must be defined by which the envelope

can reference the appended information. This objective is accomplished by extending

xsd:hexBinary to include a ‘location’ attribute of type xsd:anyURI. Furthermore, a ‘pseudo-

facet’ has been defined which, similar to all facets defined in XML Schema (length, pattern,

totalDigits etc.), restricts the content of the data. As is required by XSD, these facet elements

will always appear within an xsd:appinfo tag who’s parent element, xsd:annotation, may

appear in an xsd:restriction construct; in this particular case, the restriction is then applied to

the xsd:hexBinary simple type. The presence of this <content:mediaType> pseudo-facet

signifies that the value space of the parent element is constrained to known MIME types as

defined in RFC 2616. In Figure 3.6 above, it is the facet’s ‘value’ attribute indicates that an

‘image/jpeg’ is to be passed to the service.

 As more detailed typing information is now included in the abstract definition, it is

possible to collapse the current verbose MIME bindings into a single element. This

simplification is based upon the assumption that any data types containing pseudo-facets will

be included as attachments while the “standard” information is encapsulated within the

SOAP envelope. Depicted above in Figure 3.6, the proposed modifications manifest

themselves into the single <dime:message> tag. An extensible ‘layout’ attribute has been

specified, which as the name implies, allows for specific message format configuration; for

example, an open content layout allows for the inclusion of attachments which aren’t

referenced from the SOAP envelope while a closed content layout does not. In the case that

a MIME format is preferred, the <dime:message> tag would be replaced with a similar

<mime:message> construct complete with ‘layout’ and ‘wsdl:required’ attributes. It can be

noted that it would be trivial to incorporate future binary data formats into WSDL simply by

the creation of new descriptive elements.

 29

3.3 WSDL 1.1 Bindings

3.3.1 Background

3.3.1.1 Definition

Having proposed improvements to the WSDL 1.1 abstract definition constructs, the

bindings will now be scrutinized. As mentioned in the second chapter, the <wsdl:binding>

tags are responsible for specifying the concrete data format and transport protocol for each

<wsdl:portType>. In this section, we will focus on the SOAP binding, for it represents the

de-facto xml protocol of the future and is far more expressive than either of the HTTP or

MIME equivalents. We will begin by describing the salient features of the binding, outlined

below, for the abstract definition provided in Figure 3.1.

<definitions targetNamespace=”http://www.example.com/PO/wsdl”
 xmlns:poxsd=”http://www.example.com/PO/xsd”
 xmlns:tns=”http://www.example.com/PO/wsdl”
 xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
 xmlns=”http://schemas.xmlsoap.org/wsdl”>

.

.

.
 <binding name=”ProcessPOBinding” type=”ProcessPOPortType”>
 <soap:binding style=”RPC” transport=”http://schemas.xmlsoap.org/soap/http” />
 <operation name=”ProcessPO”>
 <soap:operation soapAction=”http://www.example.com/ProcessPO” />
 <input>

<soap:body use=”encoded” encodingStyle=
“http://www.w3.org/2002/12/soap-encoding”>

 </input>
</operation>

 </binding>
.
.
.

</definitions>

Figure 3.7 WSDL SOAP binding for ‘PurchaseOrder’ endpoint

It can be observed that the <wsdl:binding> element references a specific <wsdl:portType>; in

the case that there is more than one <wsdl:binding> per <wsdl:portType>, they are

considered alternatives. We will now provide an overview of the more interesting extension

elements comprised in the SOAP binding.

 30

Firstly, the <soap:binding> specifies the style of the message interaction, either ‘RPC’ or

‘document’. As the name implies, the RPC style signifies that the service is a function-

oriented endpoint; the SOAP messages essentially describe remote procedure calls to be

invoked on the remote machine. As a result, the preceding example signifies that the

‘PurchaseOrder’ and ‘Person’ constructs specified in the abstract definition in Figure 3.1 are

to be serialized into native objects before being passed to the ‘ProcessPO’ method. As there

is no <wsdl:output> specified, the method could have the following java signature:

void ProcessPO(PurchaseOrder i_objPurchaseOrder, Person i_objPerson);

In the case that the binding specified a document style, the service would then represent a

message-oriented endpoint; the SOAP messages simply contain XML document(s) for

processing. If the preceding example had been a document endpoint, the ‘PurchaseOrder’

and ‘Person’ definitions would have represented distinct XML documents to be manipulated

directly with the DOM (or SAX) API:

void ProcessPO(Document i_objPurchaseOrderDoc, Document i_objPersonDoc);

It can be noted that in addition to providing the style, the <soap:binding> also defines the

underlying message transport protocol; a task accomplished by specifying a well known URI

with the ‘transport’ attribute. As it is currently the core application protocol of the world

wide web, the vast majority of toolkits predominantly support only HTTP; however, it is

inevitable that implementations supporting other technologies, such as SMTP, FTP, TCP etc.,

will slowly begin to emerge.

 According to the WSDL 1.1 specification, the <soap:body> element specifies precisely

how the <wsdl:part>s are to appear inside the body of a SOAP message. The most

compelling feature of this element is the ‘use’ attribute, which can carry either of two values:

‘encoded’ or ‘literal’. As mentioned previously, the <wsdl:types> tag contains either abstract

type definitions or concrete schema definitions. In the former case, encoded bindings must

be used in order to serialize the types to XML with a set of known encoding rules specified

by the ‘encodingStyle’ attribute. The most widespread encoding scheme implemented in

 31

existing toolkits is SOAP encoding, which addresses XML Schema’s two main weaknesses:

implicit support for both arrays and object references. It can be noted that given a set of

abstract types, a number of encoding mechanisms, including SOAP encoding, allow

variations in the resulting message format. In this paradigm, known as ‘reader makes right’,

it is up to the reader of the message to understand all the possible variations. In order to

avoid supporting the differing message possibilities, the <wsdl:types> must contain concrete

type definitions. In this case, known as ‘writer makes right’, literal bindings are specified

and the parameters in the SOAP message must conform exactly to their specified schema

definitions.

3.3.1.2 SOAP Message Creation

Having completed an overview of the WSDL 1.1 SOAP binding, the guidelines used to

create meaningful SOAP messages will now be discussed. Given the differing binding

options, the specification outlines a set of rules in order to provide toolkit implementers with

knowledge of the wide variety of message formats they must support.

Firstly, if the operation style is specified to be RPC, <wsdl:part>s are grouped in the same

order as the parameters of the call within a wrapper element carrying the name of the

operation. Furthermore, each <wsdl:part> is also wrapped with an accessor element named

identically to the corresponding parameter of the call. In the case that a document operation

style is specified, there are no additional wrappers and the <wsdl:part>s simply appear

directly under the SOAP body element.

 When an encoded binding is specified, it is interesting to note that the spec claims that

each <wsdl:part> must reference an abstract type using the ‘type’ attribute. Upon completion

of the encoding algorithm, the concrete type definition is appropriately inserted into the

message. In the case of literal bindings, each part references a concrete schema definition

using either one of the ‘element’ or ‘type’ attribute. In the former case, the referenced

element will appear directly under the SOAP Body element in document bindings or under

an accessor element named after the <wsdl:part> in RPC style. In the case that an XML

Schema type is referenced, it becomes the schema type of the enclosing element; the SOAP

Body in document style or part accessor in RPC style. It can be noted that the value of the

encodingStyle attribute may be used in literal bindings to indicate that the concrete schema

 32

format was derived using a particular encoding. If this attribute is specified, however, only

the specified variation is supported.

In order to better illustrate these guidelines, we have outlined SOAP sample messages

invoking the service outlined in Figure 3.1 for the two most prevalent binding scenarios:

RPC/ENC and DOC/LIT. The RPC encoded bindings are meant for use in the case of

remote procedure calls while the document literal bindings are meant for endpoints expecting

to process the XML documents themselves.

<env:Envelope xmlns:env=”http://www.w3.org/2002/12/soap-envelope”>
 <env:Body>
 <ProcessPO>
 <param2>
 <po:Person xmlns:po=”http://www.example.com/PO/xsd”>
 <name>Craig</name>
 <department>Purchasing</department>
 <extension>512</extension>
 <po:/Person>
 </param2>
 <ProcessPO>
 </env:Body>
</env:Envelope>

Figure 3.8 SOAP message generated from RPC/encoded binding

<env:Envelope xmlns:env=”http://www.w3.org/2002/12/soap-envelope”>
 <env:Body xmlns:po=”http://www.example.com/PO/xsd”>
 <po:name>Craig</po:name>
 <po:department>Purchasing</po:department>
 <po:extension>01/01/2003</po:extension>
 </env:Body>
</env:Envelope>

Figure 3.9 SOAP message generated from document/literal binding

In the first case, it can be noted that the ‘PurchaseOrder’ type has not been included in the

message; the astute reader will realize that this omission is due to its <wsdl:part> utilizing the

‘element’ type-referencing attribute. Another main point of interest in the RPC case is the

two added layers of element wrapping. Finally, it can be noted that since the operation does

not include any object references or arrays, the SOAP encoding algorithm has no affect on

the type definition (ie the <po:Person> element matches the schema definition). When using

literal bindings, as depicted in Figure 3.9, any <wsdl:part> using the ‘type’ attribute must be

the sole parameter in the invocation; in this case, the <env:Body> element takes on the

 33

<po:Person> type. As a result, the example above is included for illustration purposes only

as the vast majority of toolkits would have thrown an error upon compilation of the WSDL

document in this case. However, had the Person type been referenced using the ‘element’

attribute, both constructs could have been successfully included.

It can be noted that we felt this rather in depth overview was required in order to

accurately portray the excessive complexity of the specification. It is no wonder that

interoperability is a problem when toolkits are faced with the task of applying this convoluted

set of rules in order to generate SOAP messages. Our main objective is to abolish these rules

in favor of simply generating a schema definition to which the SOAP messages required for

successful invocation must conform; the SOAP binding should, in essence, no longer be

responsible for detailing data format. We will now build upon the removal of the

<wsdl:message> construct and explore ways to improve the binding definition in order to

achieve this task.

3.3.2 Interoperability Problems

3.3.2.1 Binding Dependence upon Abstract Definition

One of the fundamental design decisions made in the composition of the WSDL 1.1

specification was the clear definition of completely detached abstract definitions and concrete

bindings. The idea was that, given the application of the underlying protocol made sense,

virtually any binding could be applied to any abstract definition. It is evident that the

specification violates this concept for not only do encoded bindings forbid the use of the

<wsdl:part> ‘element’ type-referencing attribute, but the actual concrete message format

itself is also dependent on the selection of this attribute. Furthermore, Figure 3.9

demonstrated that even the validity of certain concrete formats is dependent upon the

contents of the <wsdl:part>. The spec clearly contradicts itself without any valid justification

for its unmistakable breach of contract. Assuming toolkit vendors decipher the spec

correctly, they must then support these unintuitive dependencies, thus increasing the

probability of encountering interoperability problems. It can be noted that our proposal to

remove the <wsdl:message> construct partially rectifies this problem by ensuring that

<wsdl:type> definitions are only referred to with the ‘type’ attribute. The binding

 34

simplifications outlined below in section 3.3.3 provide a more drastic solution to ensure the

maintenance of the desired spec separation.

3.3.2.2 Binding Complexity: A Plethora of Options

It is evident that given the options detailed above, there are four main binding

possibilities that toolkit vendors must support, each of which resulting in a different message

format: RPC/encoded, document/literal, RPC/literal, document/encoded. As mentioned

previously, RPC/encoded and document/literal are the bindings most commonly supported

by existing toolkits. The need for RPC/literal and document/encoded endpoints is far less

apparent. The main problem in the former case is that object references and arrays,

constructs commonly used in remote procedure calls, are not inherently supported in XML

schema; RPC calls are thus difficult to make without an appropriate encoding mechanism. In

the second case, document/encoded bindings do not seem to serve any compelling purpose;

in fact, we could not find an existing implementation supporting this type of endpoint. To

complicate matters even further, additional message permutations are possible based on both

the <wsdl:part> type-referencing mechanism and the <soap:body> ‘encodingStyle’. In

addition to having to support various encoding schemes, vendors must also deal with

differing serializations for each style. The complexity of these binding options coupled with

the fact that the spec remains silent with respect to their meaning and importance has led to a

number of serious interoperability problems.

Firstly, toolkits are often incompatible for they support different types of bindings; for

example, the current version of IBM Websphere Studio creates services that use RPC/literal

endpoints while Microsoft ASP.NET does not. Moreover, as the current focus appears to be

on providing remote procedure invocation, there are a large number of toolkits that do not

support document bindings at all. The fact that the two software companies who drive

industry standards cannot agree on a common set of functionality can only lead to the

conclusion that the WSDL specification is far too ambiguous.

In addition, vendors have begun to use bindings improperly by exploiting the

specification that they are only meant to detail data format. Microsoft’s original SOAP

toolkit implementation, designed to expose COM objects, generates RPC/encoded bindings

by default. Contrarily, ASP.NET currently uses document/literal endpoints by default to

 35

describe remote procedure calls, which from a logical standpoint, is clearly incorrect. In

taking this approach, they are not only creating their own arbitrary literal schema definitions,

but they are also relegating XML document processing. A client using a toolkit which

interprets the WSDL binding definitions properly would have a great deal of difficulty

consuming a remote method created with ASP.NET. Recognizing document bindings, her

toolkit would not generate any serialization code, thus forcing her to create an xml document

by hand to represent the method call. Though it is evident that this scenario poses a rather

large interoperability problem, it does raise an interesting point regarding the actual necessity

of the different binding options.

These two issues introduce a subtler problem for the web services developer. In the vast

majority of cases, WSDL is automatically generated from their source code, thus shielding

them from the underlying binding details. As a result, interoperability is difficult or

impossible to achieve for developers aren’t familiar with WSDL, don’t know what WSDL

definitions their toolkits will generate by default, and don’t know how to customize their

toolkit’s behavior. The situation outlined above involving the consumption of an ASP.NET

service would indeed be very confusing to a developer who isn’t aware of the RPC/document

binding distinction. Moreover, one can imagine a whole host of other scenarios where

developers are simply left to ponder why their endpoints aren’t working properly.

Finally, in the distributed object technologies of old, such as CORBA, once a client was

written, it could use the same proxy code to invoke objects in different servers; all it needed

was the appropriate object reference. In the web services’ world, with the way existing

toolkits manipulate the bindings, there could be two identical operations residing on two

different servers with different endpoint settings; one could be document/literal while the

other is RPC/encoded. The client proxy code generated in one case will not be compatible

with the other, thus drastically reducing service interoperability. Furthermore, although a

WSDL description is currently generated from server-side code, it is not ensured that the

server will remain compatible with that original definition after it is deployed. The

versioning problem prevalent in existing component technologies is therefore compounded;

the client must not only be recompiled when the server implementation changes, but also

when the binding options change. As a result, it is evident that the existing specification

 36

precludes the use standard reusable interfaces for specific problem domains; e.g. health care,

telecom, manufacturing etc.

3.3.2.3 SOAP Encoding: The Band-Aid Solution

Though they did leave the door open to other alternatives, the WSDL authors understood

that XML Schema was a logical choice for describing SOAP messages. They realized,

however, that in order to accurately represent remote procedure calls, there were already a

number of existing toolkits that had implemented the SOAP encoding scheme. XSD did and

still does not have implicit support for both arrays and object references, thus essentially

leaving the WSDL caught between two seemingly imperfect standards for XML type

representation. Despite the heavy criticism and the warnings against SOAP encoding issued

by the original SOAP framers themselves, the WSDL authors still decided to leverage both

specifications. As a result, there are essentially two serialization layers currently in use;

WSDL provides a set of “base mapping” rules to generate an abstract schema definition

based upon programmatic types and upon the specification of encoded bindings, the SOAP

encoding rules provide the necessary capabilities for arrays and typed references to transform

this definition into a series of concrete messages. This solution likely stems from the desire

to support non-xml serializations; it was thought that specific encoding rules could still be

applied to an abstract schema definition in these scenarios. However, the application of this

methodology to the SOAP binding, as we will examine below, is completely illogical.

First and foremost, WSDL’s set of base mapping rules, which represent the sole

information source for the generation of XML Schema from native types, are glaringly

incomplete. As mentioned previously in section 3.2.2.1, not only is it only “recommended”

that they are applied, but the four generic rules provided in the specification do not even

begin to address any core serialization issues. The lack of mapping standards is even more

shocking in this case, for even though it is extraordinarily expressive, actually understanding

XML Schema requires a significant amount of effort. The soapbuilders group can

undoubtedly attest to the fact that even the manipulation of XSD’s primitive types can be a

daunting task. It is therefore clear that since toolkit developers are essentially forced to

derive their own language-XSD mappings, inter-vendor interoperability is a virtual

impossibility. The problem is in fact twofold; vendors are not only implementing mappings

 37

differently, but they are also supporting varying subsets of functionality. As there is

currently no accepted standard, some toolkits only provide mappings for primitive types,

while others provide more robust implementations incorporating arrays, enumerations,

structs, classes etc.

Furthermore, the idealistic notion of incorporating two independent serialization layers is

not fully realized in WSDL. Not only does the spec recommend that the SOAP encoding

Array construct should be appropriately utilized in the abstract definition, but in order to

accurately reflect native object references, the generation of the serialization code is a

complex, undocumented venture involving the application of the encoding scheme to the

base mapping rules. In fact, this task is sufficiently daunting to cause the vast majority of

toolkits to use separate code paths for literal and encoded bindings; in essence, implementing

entirely separate marshalling layers for each case. As one delves deeper into the underlying

web services’ plumbing, it becomes increasingly evident that SOAP encoding was a mere

afterthought, designed as a temporary stop-gap measure until XML Schema was completed.

As mentioned above, the current serialization paradigm dictates that the SOAP encoding

rules are applied to the abstract definition to produce concrete messages for passage over the

wire. These encoding rules, however, are designed for application to a directed edge-labeled

graph of nodes akin to the SOAP data model. It is unclear precisely how they are to be

applied to a tree-based schema document, thus exposing a fundamental problem to the

current encoding methodology. Both the SOAP and WSDL specifications remain silent on

this issue; thereby creating further interoperability difficulties for this undefined task is also

left to toolkit developers. As depicted below, the heart of the problem lies in the fact XML

Schema is based on the Infoset and is thus incapable of implicitly representing object

references; schema documents are therefore incapable of validating any serialized data

structure containing references. The ensuing WSDL document applies the newly defined

abstract syntax to describe a service, exposed with RPC/encoded bindings, for comparing

two node objects. It can be noted that this example is kept rather simple for illustrative

purposes; however, one could easily envision the serialization of more complex object

graphs.

<definitions targetNamespace=”http://www.example.com/node/wsdl”
 xmlns:noxsd=”http://www.example.com/node/xsd”
 xmlns:tns=”http://www.example.com/node/wsdl”
 xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”

 38

 xmlns=”http://schemas.xmlsoap.org/wsdl”>

<types>
<schema targetNamespace=”http://www.example.com/node/xsd”

 xmlns=”http://www.w3c.org/2001/XMLSchema”>

<element name=”IsEqualRequest”>
<complexType>

 <sequence>
 <element name=”FirstNode” type=”noxsd:Node” />
 <element name=”SecondNode” type=”noxsd:Node” />
 </sequence>

</complexType>
</element>

<element name=”IsEqualResponse”>

<complexType>
 <sequence>
 <element name=”equality” type=”boolean” />
 </sequence>

</complexType>
</element>

 <complexType name=”Node”>
 <sequence>
 <element name=”name” type=”string” />
 <element name=”data” type=”int” />
 </sequence>
 </complexType>

 </schema>
</types>

<portType name=”IsEqualPortType”>
 <operation name=”IsEqual”>
 <input element=”tns:IsEqualRequest” />
 <output element=”tns:isEqualResponse” />
 </operation>
</portType>

 <binding name=”IsEqualBinding” type=”IsEqualPortType”>
 <soap:binding style=”RPC” transport=”http://schemas.xmlsoap.org/soap/http” />
 <operation name=”IsEqual”>
 <soap:operation soapAction=”http://www.example.com/IsEqual” />
 <input>

<soap:body use=”encoded” encodingStyle=
“http://www.w3.org/2002/12/soap-encoding”>

 </input>
 <output>

<soap:body use=”encoded” encodingStyle=
“http://www.w3.org/2002/12/soap-encoding”>

 </output>
</operation>

 </binding>
</definitions>

Figure 3.10 WSDL definition of ‘NodeComparison’ endpoint

 39

Given this description, the following request message could be sent over the wire to invoke

the service with two different node objects.

<env:Envelope xmlns:env=”http://www.w3.org/2002/12/soap-envelope”>
 <env:Body env:encodingStyle=”http://www.w3c.org/2002/12/soap-encoding”>
 <no:IsEqual xmlns:no=”http://www.example.com/node/xsd”>
 <no:FirstNode>
 <name>TestNode</name>
 <data>5</data>
 <no:/FirstNode>
 <no:SecondNode>
 <name>TestNode</name>
 <data>5</data>
 <no:/SecondNode>
 <no:/IsEqual>
 </env:Body>
</env:Envelope>

Figure 3.11 Single reference SOAP message for ‘NodeComparison’ endpoint

It would appear that SOAP encoding has produced node instances that do indeed match the

schema definition for the <noxsd:Node> construct in the WSDL document. However, if

SOAP encoding is based upon this SOAP data model and the SOAP data model does not use

<xsd:complexTypes> to describe structured data, it is surely not wise to conclude that the

two nodes are SOAP encoded instances of type <noxsd:Node>. Consider the SOAP message

sent when the same node object is sent to the service.

<env:Envelope xmlns:env=”http://www.w3.org/2002/12/soap-envelope”>
 <env:Body env:encodingStyle=” http://www.w3c.org/2002/12/soap-encoding”>
 <no:IsEqual xmlns:no=”http://www.example.com/node/xsd”>
 <no:FirstNode href=”1” />
 <no:SecondNode href=”1” />
 </no:IsEqual>
 <no:Node id=”1” xmlns:no=”http://www.example.com/node/xsd”>
 <name>TestNode</name>
 <data>5</data>
 <no:/Node>
 </env:Body>
</env:Envelope>

Figure 3.12 Multi-reference SOAP message for ‘NodeComparison’ endpoint

 40

In this case, the SOAP encoding multi-referencing mechanism has been used and it is evident

that the node instances do not even come close to matching the schema definition. Not only

do they not contain the specified child elements, but they also each have an undefined ‘href’

attribute.

 It is clear that the cases where <noxsd:FirstNode> and <noxsd:SecondNode> do not

resemble serialized instances of <noxsd:Node> can be directly attributed to XSD’s inability

to identify references between nodes. This shortcoming results in <wsdl:types> schema

definitions that are incapable of validating the variety of possible data structure serializations

resulting from the application of the SOAP encoding rules. WSDL documents specifying

encoded bindings are essentially providing a schema to which all the resulting SOAP

messages do not have to conform; a completely backward concept which virtually defeats the

purpose of using XSD altogether. As a result, having first generated an abstract schema

definition from a set of incomplete rules, toolkits must then somehow apply encoding rules to

it to create messages, which cannot be properly validated. The implementation of a server

that ensures that all incoming messages are correct is therefore extremely difficult, possibly

even yielding unpredictable results. It is no wonder that even simplistic cross vendor toolkit

interoperation is still but an abstract notion as yet unbound to a concrete reality.

 In addition to the problems encountered with object reference representation, the

serialization of arrays has also proven to be a daunting task. Firstly, the WSDL 1.1 spec

merely ‘recommends’ the use of SOAP encoding Arrays, essentially allowing vendors to

create proprietary mappings. Furthermore, as exemplified in the ensuing document sample,

the use of this encoding Array construct is exceedingly convoluted. Figure 3.13 portrays the

XML Schema representation of the following java statement, where the ‘Result’ type is a

class with public ‘Name’ and ‘Date’ members.

Result ArrayOfResults[4];

<definitions targetNamespace=”http://www.example.com/array/wsdl”

 xmlns:tns=”http://www.example.com/array/wsdl”
 xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
 xmlns=”http://schemas.xmlsoap.org/wsdl”>

<types>

<schema targetNamespace=”http://www.example.com/array/xsd”
 xmlns=”http://www.w3c.org/2001/XMLSchema”>

 41

<complexType name=”ArrayOfResults”>
 <complexContent>
 <restriction>

<any namespace=”##any” minOccurs=”0” maxOccurs=”unbounded”
 processContents=”lax” />

<attribute name=”arrayType” ref=”soapenc:Array”
 wsdl:arrayType=”tns:Result[4]” />

 </restriction>
</complexContent>

</complexType>

<complexType name=”Result”>
 <sequence>
 <element name=”Name” type=”string” />
 <element name=”Date” type=”date” />
 </sequence>
</compexType>
.
.
.

 </types>
.
.

 .
</definitions>

Figure 3.13 WSDL 1.1 abstract definition exemplifying array representation

The content model of the SOAP encoding Array construct, though defined to be entirely

extensible, is strictly controlled by the ‘arrayType’; an attribute which dictates both the type

and size (all dimensions) of the array. It can be observed above that the value space of the

arrayType is set by restricting the original <soapenc:Array> type in a particular manner.

Since XML Schema does not have a mechanism for specifying the default value of an

attribute containing a <xsd:QName> value, WSDL has introduced the ‘arrayType’ attribute

to serve this purpose. Considering arrays are a fundamental programming concept, one

cannot help feel overwhelmed by this excessively verbose syntax. It is true, in theory, that a

toolkit would be responsible for automatically generating and consuming this definition;

however, the oft misplaced key to interoperability is simplicity.

3.3.2.4 Inferring Programming Model

The debate between messaging and RPC programming models has been raging for years;

Don Box wrote a MSDN article likening it to “distinguishing atoms from molecules” [40].

The document-centric view of the world defines messages as the atom thus elevating them to

 42

first-class status. Message purists tout that RPC is but one possible message exchange

pattern and that by viewing the world in terms of remote procedure calls, no other patterns

are obvious or even possible. On the other hand, RPC supporters tend to view the entire

operation as the atom. They claim that with support for asynchronous invocation and one-

way operations, any system designed around a messaging paradigm could be just as easily

devised with an RPC mechanism.

Attempting to appease all parties, the authors of the SOAP specification tarnished their

clean messaging paradigm by devoting an entire section to the description of remote

procedure calls. Consequently, this decision was propagated into the WSDL spec,

manifesting itself as an RPC/document binding distinction. In turn, toolkits currently infer

the programming model from the message format defined in the WSDL document. For

example, upon finding a <soap:binding> defining an RPC style, a toolkit will automatically

generate all the appropriate serialization code. In this new world of openness and

interoperability where service consumers have the freedom to choose both development

platform and language, surely they should be given the opportunity to select a desired

programming model as well.

This objective is indeed attainable for the truth of the matter is that the programming

model and message format are completely orthogonal. In fact, as outlined earlier,

ASP.NET’s default functionality uses the RPC programming model to send and receive

document style messages. Contrarily, it is also possible to send an RPC-style message using

an XML API (e.g. DOM) and then dispatch the received response message to a routine for

processing. Given that the examination of a SOAP message on the wire does not yield any

information regarding the nature of the endpoint, it is apparent that the RPC/document

distinction is indeed arbitrary. It simply serves to drastically complicate the bindings and

thoroughly confuse both application and toolkit developers alike.

3.3.3 Interoperability Solutions

3.3.3.1 Removal of Encoded Binding Option

Given an object model, a schema compiler will generate both an XML Schema and the

required instance documents; however, as alluded to earlier, the tree-based nature of the

produced schema prohibits it from acting as an accurate template for all the possible

 43

serializations generated by the SOAP encoding rules. This shortcoming, coupled with a near

non-existent programmatic type/XSD mapping specification, yields a virtually useless

schema that merely provides clients with a proprietary hint to the service’s pertinent

structures. The underlying concept is that the application of a set of rules to n programmatic

type systems to generate XML representations for data, which every toolkit can understand,

is fundamentally flawed from an interoperability perspective. The creation of a single

schema document to which all serializations must strictly adhere is a far superior approach.

This goal can be achieved by the reconciliation of SOAP encoding and XML Schema, a task

which will be undertaken in this section. This methodology would essentially remove the

need for any encoding in the WSDL SOAP binding, thus drastically simplifying both the

specification and toolkit implementations alike. The <wsdl:types> schema definitions would

essentially always act as literal representations of the resulting wire format. Not only is

schema portable and integrated with all other core XML technologies, but in defining a

specific template for messages on the wire, it provides instant interoperability. Borrowing

from the world of IDL, one could even envision forcing programmers to manually compose

their schema definitions prior to writing a line of code. However, in reality, for fear of

infuriating developers worldwide, this tedious task should be left to schema compilers. For

this proposal to come to fruition, it is evident that a number of changes have to be instituted

to the current serialization paradigm.

In order to generate an accurate schema from a programmatic type, the first issue to be

dealt with is object reference representation. Being Infoset-based, element referencing is an

impossibility in XML Schema, thus making the modeling of many common programmatic

data structures rather difficult. The most drastic solution involves the creation of a new

XML-based SOAP data model type system, which could describe, in unequivocal terms,

families of graphs built according to the SOAP data model rules. Though very elegant and

arguably the most ‘correct’, this solution requires the composition of an entirely new schema

language from scratch, which in our estimation, is rather excessive. There is no doubt that

XML schema will continue to represent a fundamental component of the XML technology

stack for years to come. Being highly expressive, we believe that it can indeed be

successfully leveraged to meet all the necessary requirements for the creation of robust web

services’ plumbing.

 44

 To accomplish this task, we propose a rather straightforward modification; instead of

applying the SOAP encoding rules to the schema directly, toolkits could instead produce a

schema describing the XML messages produced by these encoding rules. The following

modifications to the <noxsd:Node> construct described in Figure 3.10 exemplify this idea.

<definitions targetNamespace=”http://www.example.com/node/wsdl”
 xmlns:noxsd=”http://www.example.com/node/xsd”
 xmlns:tns=”http://www.example.com/node/wsdl”
 xmlns=”http://schemas.xmlsoap.org/wsdl”>

<types>

<schema targetNamespace=”http://www.example.com/node/xsd”
 xmlns=”http://www.w3c.org/2001/XMLSchema”>

<element name=”IsEqual”>

<complexType>
 <sequence>
 <element name=”FirstNode” type=”noxsd:Node” />
 <element name=”SecondNode” type=”noxsd:Node” />
 </sequence>

</complexType>
</element>

 <complexType name=”Node”>
 <sequence minOccurs=”0”>
 <element name=”name” type=”string” />
 <element name=”data” type=”int” />
 </sequence>
 <attribute name=”id” type=”ID” use=”optional” />
 <attribute name=”href” type=”IDREF” use=”optional”>
 </complexType>

 </schema>
</types>
.
.
.

</definitions>

Figure 3. 14 WSDL <types> definition describing SOAP encoding serialization

It can be observed that in addition to making the element content optional, two attributes, ‘id’

and ‘href’, have also been included in the updated version of <noxsd:Node>. This new

definition dictates that an <noxsd:Node> can either contain appropriate element content and

an ‘id’ attribute or empty element content and a ‘href’ attribute; the former signifies an object

instance while the latter represents a reference to that instance. These changes essentially

allow the schema to validate all the possible message instances produced by the application

 45

of the SOAP encoding rules. By encapsulating the encoding referencing rules firmly into the

schema document, the need for encoded bindings is essentially removed, thus immediately

gaining the aforementioned benefits.

 This solution, as outlined above, is not without its flaws. Firstly, every single type that

could be used in a serialized graph would not only have to describe their element content as

optional, but would also have to define equivalent ‘id’and ‘href’ attributes with exactly the

same semantics. This task would result in the creation of a huge amount of superfluous

information, thus slowing processing time and making schema composition significantly

more tedious. A more serious drawback, however, is that toolkits would have to assume that

any type with an ‘href’ attribute intended it to be used for describing a graph. They would

then be forced to filter out this encoding noise order to arrive at the pure data model. Finally,

this resolution lacks any form of type checking support; though an XSD validator will match

the values of the id and href attributes based on their types, the compatibility of the

underlying constructs is not guaranteed.

The first two problems can be resolved by defining a pair of global attributes in a separate

namespace and referencing them as needed. Though trivial to implement, in addition to

leaving the type checking problems unaddressed, this solution fails to tackle the core type

checking issue. Typed references are a fundamental building block of existing software

development technologies and as such, XML Schema must be modified to support them

synthetically. As many applications require that each element be uniquely identified, the

<xsd:element> construct has a built-in ‘id’ attribute of type ‘ID’. As a result, all that is

required for reference support is the addition of an ‘href’ attribute of type ‘IDREF’ to the

<xsd:element>. Validators could then easily be amended to perform type checking upon

encountering this newly defined metadata. Proposing changes to the ratified XML Schema

specification may not be fully realistic from a political perspective; however, if XSD is to

fulfill the role of interoperable programming language intermediary, this modification is

absolutely critical.

Having simplified the serialization of typed references, the elimination of the ambiguity

surrounding XML array representation can now be undertaken. As outlined previously, not

only does WSDL 1.1 not specify a definitive array mapping mechanism, but the SOAP

encoding Array construct it does recommend, as exemplified in Figure 3.13, is both verbose

 46

and unintuitive. We believe, however, that native schema constructs are indeed expressive

enough to provide a straightforward solution worthy of the creation of a de-facto industry

standard. To illustrate, example 3.13 can be rewritten as follows:

<definitions targetNamespace=”http://www.example.com/array/wsdl”
 xmlns:tns=”http://www.example.com/array/wsdl”
 xmlns:arrxsd=”http://www.example.com/array/xsd”
 xmlns=”http://schemas.xmlsoap.org/wsdl”>

<types>

<schema targetNamespace=”http://www.example.com/array/xsd”
 xmlns=”http://www.w3c.org/2001/XMLSchema”>

<complexType name=”ArrayOfResults”>
 <sequence>

<element name=”Result” type=”arrxsd:Result” minOccurs=”0” maxOccurs=”4”
 nillable = “true” />

</sequence>
</complexType>

<complexType name=”Result”>
 <sequence>
 <element name=”Name” type=”string” />
 <element name=”Date” type=”date” />
 </sequence>
</compexType>
.
.
.

 </types>
.
.

 .
</definitions>

Figure 3.15 Proposal for XSD array representation

It can be observed that in addition to providing comparable expressive power to the SOAP

encoding Array, the direct manipulation of the <xsd:element> construct is syntactically far

cleaner. There is no complex XSD derivation by restriction syntax and the size and type

information previously acquired from the <wsdl:arrayType> attribute has been seamlessly

encapsulated into the native schema ‘element’. This document would not only be easier to

decipher for potential clients perusing WSDL repositories, but the associated toolkit

processing code would clearly be a great deal simpler. A perceived drawback of this

approach is the necessity to create an additional wrapper construct of type

 47

<arrxsd:ArrayOfResults> for multi-dimensional array representation. However, in the rare

case that this scenario even occurs, we firmly believe that the new syntax is still far simpler

and more expressive than that of the SOAP encoding schema. As a result, in the spirit of

simplicity and interoperability, we propose that the use of the SOAP encoding Array be

discontinued altogether in favour of the industry-wide adoption of the preceding method.

 Having proposed that programmatic types can be very accurately mapped to a slightly

revised version of XML Schema, one final question remains: how exactly will this mapping

occur? As we’ve highlighted repeatedly, the WSDL spec only provides an optional,

incomplete set of serialization guidelines, thus creating an interop disaster for vendors are

prompted to formulate their own proprietary mappings. This situation is a far cry from the

detailed per language mapping specs provided by the OMG for its CORBA technology [41].

We strongly believe that a similar body of work must be erected for XML Schema; the

mapping of virtually all programmatic constructs, ranging from primitives to static members

to abstract types, must be addressed in detail. It can be noted that this glaring omission from

the web services’ initiative has political roots; to date, the specification of language

mappings, quite simply, has not been assigned to a W3C working group. In fact, the WSDL

WG’s mandate even explicitly states that they are not responsible for this task. As it

represents the final core component required for the successful development of an ‘internet’

of interoperating applications, the publication of this complete, standard set of serialization

rules must be immediately undertaken.

3.3.3.2 Towards a Standard Message Format

Having emphasized the importance of the removal of encoded bindings to ensure schema

validation of a service’s parameters, we will now broaden this concept to the message itself.

In order to maximize interoperability, endpoints must have the ability to validate incoming

messages at the level of the SOAP body. The elimination of the <wsdl:message> construct

represented the necessary first step to this end while the consolidation of the RPC and

document binding styles is the next.

As outlined previously, RPC and document bindings simply serve to artificially dictate

SOAP message format. Since they do not actually have any bearing on the programming

model adopted at the endpoints, this futile binding distinction can therefore be abolished.

 48

This change represents the final step towards achieving the vision of a standardized, schema-

verifiable SOAP message format. The original purchase order example has been modified to

include all of our proposed changes.

<definitions targetNamespace=”http://www.example.com/PO/wsdl”
 xmlns:poxsd=”http://www.example.com/PO/xsd”
 xmlns=”http://schemas.xmlsoap.org/wsdl”>

<types>
<schema targetNamespace=”http://www.example.com/PO/xsd”
 xmlns:tns=”http://www.example.com/PO/xsd”

 xmlns=”http://www.w3c.org/2001/XMLSchema”>

<element name=”ProcessPORequest”>
 <complexType>
 <sequence>
 <element name=”PO” type=”tns:PurchaseOrder”>
 <element name=”Person” type=”tns:Person”>
 </sequence>
 </complexType>
</element>

<complexType name=”PurchaseOrder”>

 <sequence>
 <element name=”buyer” type=”string” />
 <element name=”item” type=”string” />
 <element name=”date” type=”date” />
 </sequence>

</complexType>

 <complexType name=”Person”>
 <sequence>
 <element name=”name” type=”string” />
 <element name=”department” type=”string” />
 <element name=”phoneExtension” type=”int”>
 </sequence>
 </complexType>

 </schema>
</types>

<portType name=”ProcessPOPortType”>
 <operation name=”ProcessPO”>
 <input element=”poxsd:ProcessPORequest” />
 </operation>
</portType>

<binding name=”ProcessPOBinding” type=”ProcessPOPortType”>

 <soap:binding transport=”http://schemas.xmlsoap.org/soap/http” />
 <operation name=”ProcessPO”>

 <soap:operation soapAction=”http://www.example.com/ProcessPO” />
 <input>

<soap:body encodingStyle= “http://www.w3.org/2002/12/soap-encoding”>
 </input>

 49

</operation>
</binding>

</definitions>

Figure 3.16 WSDL definition reflecting complete set of proposed changes

The SOAP message format dictated by this definition is exemplified below.

<env:Envelope xmlns:env=”http://www.w3.org/2002/12/soap-envelope”>
 <env:Body env:encodingStyle=” http://www.w3c.org/2002/12/soap-encoding”>
 <po:ProcessPORequest xmlns:po=”http://www.example.com/PO/xsd”>
 <PurchaseOrder>
 <buyer>Fictional Construction Ltd.</buyer>
 <item>Concrete</item>
 <date>01/11/2002</date>
 </PurchaseOrder>
 <Person>
 <name>Craig Mckinley</name>
 <department>Purchasing</department>
 <phoneExtension>4356</phoneExtension>
 </Person>

<po:/ProcessPORequest>
 </env:Body>
</env:Envelope>

Figure 3.17 SOAP message invoking purchase order service

It can be observed that in addition to the elimination of the <wsdl:message> construct,

both the ‘style’ and ‘use’ attributes have been removed from the <soap:binding> and

<soap:body> tags respectively. With this methodology, the <wsdl:types> schema generated

from the set of language specific mapping rules provides service consumers with a strict

template for what must be present on the wire. Consequently, as depicted in Figure 3.18, the

contents of all incoming SOAP messages can be validated by the ‘ProcessPORequest’

schema element; any ambiguity regarding the format of a ‘correct’ message is therefore

removed. Moreover, the removal of the binding options precludes the need for the existing

conditional, contradictory set of rules for generating SOAP messages, thus drastically

simplifying the lives of both web services’ developers and toolkit vendors alike. We are

effectively left with a clear, concise definition, ultimately providing developers with the

necessary tools to create perfectly interoperable endpoints.

Finally, it is interesting to note that this paradigm allows a service to be defined simply in

terms of the messages exchanged; it is left up to the individual developers to map those

 50

messages to method call stacks if desired. Toolkits should, in essence, provide web service

developers with the decision to create function or message oriented endpoints at WSDL

compilation time; the ‘Person’ and ‘PurchaseOrder’ constructs could still either represent

documents for processing or RPC parameters. Provided that the message format adheres to

the schema, the selected approach is utterly irrelevant. One could even envision the scenario

of endpoints communicating with different programming models, thus taking interoperability

to a whole new level.

3.4 Conclusion
There is little doubt that the unnecessarily complex WSDL specification is responsible for

the interoperability problems plaguing web services today; the situation is currently so dire

that cross vendor toolkit communication for even the simplest of operations has proven to be

a truly daunting task. In addition to being syntactically unclear, the description methodology

employed by existing WSDL documents is fundamentally flawed. The spec currently

outlines a host of elaborate, erroneous rules for manipulating WSDL constructs in order to

generate the SOAP messages necessary for service invocation. The complexity of both these

guidelines and the SOAP encoding rules have led to a situation wherein a message that is

deemed correct by one toolkit will be rejected by another. It is evident that the most elegant

solution to this dilemma is the definition of a template for precisely what must appear on the

wire; an XML Schema definition for the SOAP message required for successful method

invocation essentially guarantees instant interoperability. In order for this vision to become a

reality, however, several key amendments to both WSDL and XSD must be implemented.

Firstly, once XSD is accepted as the de-facto standard for type representation, it can be

leveraged to replace the superfluous <wsdl:message> construct. In addition to drastically

cleaning up the WSDL abstract definition, this revision essentially paves the way for the

simplification of the SOAP bindings. To this end, the removal of the RPC/document and

encoded/literal distinctions serve to ease toolkit implementation by effectively precluding

message format from being dictated by a complex set of SOAP generation guidelines.

Alternatively, both the definition of a standard set of schema mapping rules for each

programmatic type system as well as the addition of object reference support to XSD allow

for the creation of an accurate schema describing an entire service call. Including this

information directly into WSDL documents themselves effectively removes any message

 51

level ambiguity, thus drastically simplifying the underlying infrastructure and ensuring the

future success of the web services paradigm.

 52

Chapter 4

Enterprise Web Enablement

4.1 Introduction
Interoperability is by far the most compelling quality of the web services’ revolution to

date; distributed computing is poised to be forever transformed by the promise of a

framework which allows networked code to seamlessly communicate regardless of hardware

platform, operating system, implementation language and programming model. Having

proposed the necessary fundamental amendments to WSDL to ensure that this lofty objective

becomes a reality, we have undoubtedly cleared the path to successful interoperability

amongst the sixty plus toolkits available on the market today. This newly recommended

infrastructure can now be leveraged to address the fundamental problem introduced in the

first chapter: the creation of a framework for the enterprise web enablement of legacy assets.

The migration of systems to the internet is a costly, complex venture for which an

efficient generic solution has yet to be developed. This task essentially encompasses two

distinct facets; the distribution of information to both interactive users via a thin client as

well as to business partners via SOAP. As discussed in chapter two, the latter can be

performed in some cases by existing web services toolkits, which automatically wrap

existing business logic with a simplistic ‘web’ wrapper based upon provided interface

definitions. This functionality is sufficient for the primitive services available today; e.g.

weather updates, stock quotes, and numeric conversions. However, the creation of enterprise

web applications that are reliable, highly available, fault-tolerant, and scalable has yet to be

fully realized. In order for organizations worldwide to begin exposing their critical digital

assets over HTTP, whether it be via SOAP or HTML, it is imperative that the task of

transforming legacy applications into robust, enterprise level web installations be drastically

simplified. We strongly believe that it will only be upon the heels of this realization that

traditional data barriers will come crashing down, thus allowing the vital information driving

industry today to easily flow from deep within the enterprise directly to clients and business

partners.

In recent years, the term ‘enterprise application’ has been reserved for systems built with

middleware technologies residing within the confines of an application server: J2EE’s

 53

Enterprise Java Beans, Microsoft’s Component Object Model+, and the OMG’s CORBA

Component Model. Countless person-years have been invested into these technologies to

supply application developers with robust, feature-rich, high performance runtime

environments. As outlined in the second chapter, these platforms provide the vast majority

of the underlying plumbing required in large scale web apps: from security, transactions, and

clustering to lower level necessities such as threading, connection management, and instance

pooling. As the duplication of this functionality would involve an enormous development

effort, legacy web enablement strategies should clearly leverage these existing platforms. To

this end, we now propose a reference architecture and supporting toolkit, which essentially

serve to modernize legacy applications by wrapping them with robust middleware

components. In this paradigm, legacy systems would automatically leverage the capabilities

of their distributed object technology wrappers, thus allowing them to be seamlessly

integrated into a secure, transactional, scalable, fault-tolerant web environment. As outlined

in the second chapter, there have been a variety of differing strategies applied to bridge the

gap between legacy and middleware code; we will now propose, however, that existing XML

web services infrastructure should be leveraged to accomplish this task.

4.2 Reference Architecture

4.2.1 Overview

The data-centric, platform neutral nature of XML web services has the vast majority of

the foremost technology players frantically re-positioning their product strategies. Despite

all the excitement, however, there is still a great deal of uncertainty regarding the actual

application of this bleeding-edge technology. The notion has been put forth that web

services will make service-oriented architectures feasible on a large scale, thus effectively

extending the object oriented paradigm to create an internet of reusable components. The

more popular belief, however, is that web services will serve as the glue for inter-enterprise

integration. They will essentially act as ‘middleware for middleware’, successfully bridging

the gap between the proprietary technologies employed by different companies. In this

chapter, however, we explore the idea of pushing web services from the periphery directly to

the heart of enterprise installations. As depicted below in Figure 4.1, our proposed reference

 54

architecture utilizes XML as the underlying communication mechanism between legacy

systems and a layer of middleware component wrappers.

XML Gateway

C++
Application

Fortran
Application

Cobol
Application

Back End

Client Tier

COM+ Wrapper EJB Wrapper

Business
Partner or

Other System
PDA

SOAP

Web Browser

HTTPHTTPSOAP/HTTP

ASP.NET Servlets/JSP

Web Tier

IIOPDCOMMiddle Tier

Figure 4. 1 Reference Architecture for Enterprise Web Enablement

It can be observed that legacy systems are assumed to reside on back end machines

behind an XML gateway, which simply represents an abstraction for the plumbing associated

with the web service paradigm: stubs, skeletons, multi-threaded SOAP processor, and

(de)serializers. These systems can be effectively XML-enabled in a non-invasive manner,

 55

thus allowing them to successfully consume standardized messages produced by the middle

tier. Not only can these applications be easily extended with the addition of code to the

middle tier, but the distributed object technologies also serve to add robust security,

transaction, and clustering functionality. Furthermore, as we will explore in the ensuing

chapter, by allowing a multitude of disparate systems to seamlessly communicate, the

middleware automatically provides enterprises with an integration platform. Finally,

exposing the middle layer via a web tier allows the underlying business logic to be readily

available to applications worldwide via SOAP or to interactive clients using a web browser.

As outlined below in the clustering section, though each of the layers could well reside on

separate machines, the most effective solution groups the middle and web tiers together and

pushes the legacy implementation(s) to separate host(s).

4.2.2 The Power of XML

Though the proposed architecture clearly presents a plethora of interesting benefits, the

true extent of which will be detailed throughout the remainder of this paper, its most

compelling feature is the use of an XML gateway to integrate the legacy systems. Unlike the

solutions discussed in the second chapter (e.g. adapters, CO RBA etc.), which mandate the

use of proprietary interfaces, the application of XML shifts the focus to standardized data

transfer; it effectively places data, not code, at the center of the computing universe. The

legacy systems and middleware tier are merely required to produce and consume

standardized XML messages, thus giving the architecture a huge amount of flexibility and

extensibility by effectively decoupling the two layers. Not only can legacy code written in

any language be wrapped with virtually every middleware technology, but either tier can also

be replaced given that the alternative understands the appropriate set of data messages.

Furthermore, integration projects of the past normally required vastly differing solutions;

for example, C++ applications could be exposed as a set of CORBA components while a

CICS system could be coerced into communicating with an EJB wrapper via a proprietary

adapter. The web service paradigm effectively represents a silver bullet for it offers a clean

solution to virtually every integration problem. Unlike existing distributed object technology

protocols (DCOM, IIOP), web services standards are fully open and can be mapped to

virtually every existing technology; it is no wonder that they are rapidly amassing industry-

 56

wide support. SOAP and WSDL do truly represent the glue which will serve to transform

the existing heterogeneous computing environment filled with countless disparate

technologies into a homogeneous world of standardized data transfer. The XML enablement

of legacy assets therefore guarantees their survival for years to come, thus saving

corporations millions in integration and redevelopment costs. Finally, the future ubiquity of

web services is further guaranteed by the fact that development of the necessary

infrastructure is significantly simpler than that of the aforementioned integration alternatives.

The overwhelming advantages of leveraging XML data transfer as a means of integration

do, however, come at the price of performance. Firstly, as XML uses plaintext tags to

describe each piece of information, SOAP creates a significant amount of network traffic

compared to its binary counterparts. As a result, the deployment of the middleware wrapper

to a separate machine does indeed serve to create a noteworthy performance burden. This

inefficiency could be improved in certain scenarios by placing the middle tier on the same

host as the legacy system. In a trivial solution, they could communicate via an HTTP

loopback mechanism; however, a more sophisticated implementation would involve the

passage of SOAP messages over the native RPC mechanism of the underlying operating

system (e.g. windows messaging). The reality, however, is that in the vast majority of

situations, the integration potential coupled with the simplicity, flexibility, and extensibility

of the proposed distributed architecture far outweigh any performance concerns associated

with XML communication over an additional LAN network hop. It can be noted that in

addition to the increased bandwidth, the processing of the XML messages at each network

endpoint incurs additional time delays. The truth of the matter, however, is that in most

cases, this additional time will be dwarfed by network communication, I/O access, as well as

the execution of the actual heavyweight business logic. Furthermore, the overhead will be

minimized as XML technology continues to evolve; streaming SAX and pull parsers have

indeed proven to be increasingly efficient compared to their DOM predecessors.

4.2.3 Deployment

As we are attempting to provide an efficient, cost-effective, maintainable method to web-

enable legacy systems, it is imperative that the realization of this proposed architecture be

exceedingly straightforward. Despite the best efforts of application server vendors,

 57

development using current middleware technologies remains overwhelmingly complex.

There is little doubt that mastering the intricate subtleties of either COM+ or EJB for

successful enterprise development is a daunting task well beyond the capabilities of the

majority of programmers. Fortunately, however, it is indeed possible to automate this

development process; as a result, we propose the creation of an ‘Enterprise Web Enablement’

(EWE) toolkit, which essentially extends the functionality of existing web services toolkits to

generate both a middleware wrapper and web tier. As exemplified below in Figure 4.2, in

order to accomplish this task, our proposed toolkit requires both a legacy system interface as

well as a variety of configuration information.

WS Container

EWE Toolkit

Legacy
Application

Config
Application
Interface

WS
Plumbing

Application Server

Middleware
& Web

Wrapper

Deploy

SOAP

Figure 4. 2 EWE Toolkit Deployment Strategy

Having decided on the type of application to be deployed at the application server, the

developer is then given the option to dictate precisely how it is to be generated. In the

scenario that logic is to be added to the middleware layer, the toolkit could be configured to

produce all the relevant source code; the more common scenario, however, would involve the

generation of a single deployment file. This file could then either be deployed to the

application server manually or, alternatively, as application servers offer programmatic

interfaces, the toolkit could automatically deploy it remotely. As a result, having installed an

app server, legacy application, and EWE toolkit, a developer need only allow the toolkit to

process the set of desired interfaces in order to produce an entire enterprise web environment.

 58

Later in the chapter, we will outline how with only a minimal amount of additional

configuration, the legacy system can leverage the robust services offered by the EJB

container.

4.3 Leveraging Middleware Functionality

4.3.1 Component Wrapper Generation

4.3.1.1 Overview

Having provided a brief overview of the proposed reference architecture and deployment

strategy, the specific wrapping methodology can now be specified. In order to present

precise, tangible explanations of the proposed concepts, we will be using Enterprise Java

Beans technology in all the examples for the remainder of the paper. It can be noted,

however, that although the underlying implementation may differ slightly, unless otherwise

specified, all of the ideas touched upon map directly to COM+.

 The specifics of the proposed functionality are best illustrated with a trivial example. Let

us assume that a bank has a legacy C++ application that is used internally by tellers during

their interaction with customers. It would clearly be highly beneficial to allow business

partners to leverage this system for billing purposes by exposing it as a web service. The

application, represented by the header files below, implements simplistic banking logic

capable only of withdrawing and depositing funds to a specified account.

#include Account.h

public class Banking
{
public:

Banking();
int withdraw(Account i_objAccount, double m_dAmount);
int deposit(Account i_objAccount, double m_dAmount);

}

Figure 4. 3 Banking interface

public class Account
{
private:
 int m_iType;
 int m_iAccountNumber;
 int m_iOverdraftLimit;
 char* i_strName;

 59

public:
 Account(int i_iType, i_iOverdraftLimit);
 public int getType();
 public int getAccountNumber();
 public int getOverdraftLimit();
 public char* getName();
}

Figure 4. 4 Account interface

Identifying ‘Banking.h’ as the application’s external interface, the header files along with a

variety of configuration information (e.g. desired endpoint location) are passed to the EWE

toolkit for processing. The result is the generation of all the elements required to web enable

the application in an enterprise fashion. The processing carried out by the toolkit can

essentially be divided into three separate tasks: making the banking application callable over

SOAP, generating the middleware wrapper to invoke it, and finally exposing the wrapper via

the web tier.

 The installation on the machine hosting the banking application, depicted on the right

below in Figure 4.5, is essentially identical to those on existing web service servers described

previously in chapter two. The generated dispatcher object spawns a new thread to process

and route each incoming SOAP request to the appropriate skeleton. This proxy object is then

responsible for performing the appropriate (de)serialization of any complex types (e.g.

Account) and invoking the legacy application. Tooling is currently sophisticated enough that

in the case of dynamic languages such as java and C#, code can be web service-enabled by

simply deploying applications into the web services container. However, the majority of

older programming languages, C++ included, do not have runtimes and consequently do not

permit the deployment of object files to a distinct server process. As a result, the developer

is forced to compose a simple server driver program responsible for registering the

application with the web services container. This program, along with the generated

dispatcher, skeleton, (de)serializers, and the legacy implementation must then be explicitly

compiled and linked before starting the server. It can be noted that in cases where it is

infeasible to recompile the legacy code, the XML infrastructure code can first be compiled

separately and then appropriately linked in.

 60

Legacy
Application

Skeleton

Serializer/Deserializers

SOAP
Processor/
Dispatcher

WS Container

Stub
SOAP

Processor/
Dispatcher

Skeleton
Enterprise

Bean

Database

Application Server

WSDL

Figure 4. 5 Detailed EWE Reference Architecture

 In order to complete the creation of the enterprise web system, the EWE toolkit must also

produce the necessary wrapper components for deployment into an application server. As

exemplified above, this task involves the generation of a stateless session enterprise java

bean wrapper, the stub and (de)serializers required for communication with the C++

implementation, as well as the specified web tier modules. It can be noted that in addition to

the actual bean implementation, the creation of the EJB requires the generation of home,

remote, and service endpoint interfaces as well as a deployment descriptor. Depending upon

the configuration information passed to the tool at deployment time, it will either expose the

middle tier to business partners via SOAP, as depicted above, or to interactive web clients via

HTML pages. In the former case, in addition to a dispatcher, skeleton, and (de)serializers, a

WSDL file describing the EJB wrapper is generated for publication to a registry. In the latter

case, however, an HTML page and servlet are generated according to the model view

controller (MVC) design pattern [42].

The nature of the web tier created will depend on both the type and desired use of the

web-enabled legacy application. The banking application could, for example, be exposed

using either method; a browser interface would offer clients direct access to their accounts

from the bank’s website, while a SOAP interface could provide merchants partnering with

the bank with a programmatic interface with which to charge their clients.

 61

In the former case, it can be noted that the HTML pages produced by the EWE tool would be

very rudimentary. XSLT transforms would simply be used to produce HTML input

mechanisms based upon the input parameters described in the legacy WSDL document [43].

For example, a string parameter would produce a large textbox, a numerical input would

produce a smaller textbox, an enumeration would produce a combo box etc. The Account

object depicted above would simply output a group of textboxes for all of the constituent

members of the Account class. In more complex scenarios, involving a large number of

components, one could envision the generation of a complete front end using a template-

based configuration mechanism; this task is, however, beyond the scope of this paper.

Furthermore, it can be noted that in some cases, as legacy systems may already have some

form of user interface, it would indeed be possible to perform user interface migration. The

research in this area has been extensive to date, producing a number of methodologies and

tools to carry out this task automatically [22].

4.3.1.2 The Messaging Alternative

In addition to raging on over SOAP message format as discussed at length in chapter

three, the RPC/messaging debate continues into the depths of the implementing middleware

technology. The vast majority of existing web services toolkits embrace the RPC model,

thus primarily promoting synchronous communication between the client and server.

However, in providing an asynchronous programming model and guaranteed message

delivery, messaging systems are undoubtedly fitting to a world of unpredictable network

latencies, long-running services, and server unavailability. They would seem to offer a

graceful solution to the concerns that HTTP is not sufficiently reliable for mission-critical

services; though IBM has put forth a proposal to meet this challenge (HTTPR), its

widespread adoption is unlikely at best [44]. There is indeed little doubt that the loosely-

coupled, message-oriented nature of web services maps well to messaging systems, thus

inferring that the EWE toolkit should offer the option to generate message beans or COM+

queued components. It should be noted that at the time of writing, message beans do not

seamlessly support asynchronous communication; however, it is a feature expected in the

next draft of the EJB spec. These components are identical to their RPC counterparts with

 62

the exception that they can only be invoked from a messaging middleware implementation

(JMS or MSMQ respectively).

In this type of environment, web services clients would use an API very similar to that of

the RPC model. In this scenario, however, processing can continue immediately after service

invocation and as messages are persisted to the middleware, their delivery is guaranteed.

Though toolkits supporting this type of functionality are a rarity, their popularity is gaining

momentum; Apache Axis announced their intention to support JMS by summer 2004.

However, until tooling matures to the point that messages can seamlessly flow between

differing MOM implementations, this type of architecture will remain confined to the white

board. Moreover, the largest deterrent to the adoption messaging-driven web services is the

support for asynchronous invocation and guaranteed delivery that RPC toolkit vendors are

building into their products. The compelling advantages of the messaging paradigm are

therefore mitigated, leading us to the belief that the generation of stateless RPC components

is indeed sufficient.

4.3.1.3 Coarse-Grained Interfaces

While the simple banking application outlined above is represented by a single external

interface, in reality, legacy applications may well expose numerous components. In this

scenario, the toolkit is passed the appropriate set of interfaces and will, by default, preserve

the granularity of the implementation by producing an EJB wrapper for each component.

Though desirable in certain situations, this technique may result in a huge amount of

deployed middleware code, thus complicating the system and posing a maintenance problem.

As a result, the EWE toolkit should adhere to one of the salient features of the service-

oriented paradigm: the creation of coarse-grained interfaces. By offering the option to create

a single wrapper for a multitude of legacy components, the middleware effectively acts like a

distributed façade, thus providing the client with a higher level view of the back end

implementation. For example, let us assume that the legacy application also contains a

CreditCard component, which when combined with the Banking module, can create a more

complete ‘Financial’ service.

 63

public class CreditCard
{
public:

CreditCard();
 void payBill(int i_iCardNo, float i_fAmount);
 char* getBillDueDate(int i_iCardNo);
 float getBillBalance(int i_iCardNo);
 void charge(int i_iCardNo) throws InsufficientCreditException;
}

Figure 4. 6 CreditCard interface

The toolkit could be configured to simply generate a single Financial EJB component

comprised of all the operations from its two constituent interfaces. When exposed as a web

service, the generated WSDL file would only have a single portType, making it appear as

though a single service offers the capability to pay credit card bills with the funds withdrawn

from a specified account. It is clear that permitting the middleware to call a fine-grained set

of components not only reduces the amount of code deployed to the application server, but

also drastically simplifies the ease of use and maintainability of the web installation.

4.3.2 Security

4.3.2.1 Introduction

Permitting access to mission critical systems from beyond the firewall is clearly an

unsettling prospect for IT managers worldwide. As security has, however, been a huge

concern since the advent of the internet, mechanisms have been successfully implemented at

length for browser clients. The combination of HTTP authentication and secure sockets layer

(SSL) has indeed proven to be very effective. However, the notion of SOAP messages

tunneling through port 80 to access legacy assets has introduced new security requirements,

the true extent of which have yet to be fully realized. As a result, this section will focus

predominantly on addressing the security concerns when exposing legacy systems as web

services. By leveraging both emerging standards and existing middleware functionality, we

strongly believe that it is indeed possible to create robust, secure installations. Furthermore,

given that the majority of legacy systems are not identity-aware, the necessary security

mechanisms can be automatically generated based simply upon configuration information

provided at deployment time. This paradigm effectively creates a clear separation with the

 64

business logic, thus leaving the authentication, authorization, integrity, confidentiality, and

non-repudiation characteristics of the system to the platform.

4.3.2.2 Background

Departure from SSL

Web services are currently secured with the use of SSL and HTTP basic authentication;

however, despite being accepted as a robust industry standard for browser clients, this

solution severely limits the flexibility of the web services paradigm. Firstly, whereas SSL is

a point-to-point mechanism inherently tied to the transport layer, SOAP messaging can, by

definition, include intermediaries belonging to organizations other than the service requestor

or provider. Consequently, assuming any of these third parties are even capable of reading

the messages, decryption and re-encryption of the data at each entity is far too much of a

performance burden. Furthermore, in many cases, users may only wish to encrypt certain

portions of a message, a capability not available in SSL. Finally, the use of transient session

keys makes non-repudiation a true impossibility; in case of a dispute, neither party can

undeniably claim to own the unaltered message. Fortunately, there is a viable solution to

these problems as standards for embedding security information directly into the SOAP

header are slowly beginning to emerge. Placing security at the message level provides a n

umber of compelling benefits as requests are permitted to securely traverse through multiple

network layers, topologies and intermediaries independent of the underlying protocol.

WS-Security

Completed in April of 2002 by Microsoft, IBM, and VeriSign, the WS-Security

specification provides a means of encapsulating functionality from the XML Encryption and

XML signature specifications directly into a SOAP message [45, 46]. As the names imply,

XML signature provides a means of incorporating digital signatures into XML documents

while the XML encryption outlines a schema for encrypted data. By operating at varying

levels of granularity, these specs offer a huge amount of flexibility. For example, in many

workflow scenarios where an XML document flows stepwise between participants and a

digital signature implies some sort of commitment or assertion, each participant may wish to

sign only that portion for which they are responsible and assume a concomitant level of

 65

liability. The additional flexibility is also critical in scenarios where it is important to ensure

the integrity of only certain portions of an XML document, while leaving open the possibility

for other portions of the document to change. A signed XML form delivered to a user for

completion is a perfect illustration of this scenario. Older standards for digital signatures did

not provide either the syntax for capturing this sort of high-granularity signature or the

mechanisms for expressing which portion a principal wishes to sign.

In addition, the WS-Security spec also provides a means of including identity credentials,

such as a username/password pair, certificate (X.509), Kerberos ticket or SAML assertion, in

the SOAP header [48]. These credentials, coupled with a digital signature, provide integrity,

authentication, and non-repudiation while the encryption standard provides confidentiality.

As we will discuss the below, the integration of these technologies into our reference

architecture will permit services to leverage the role-based authorization mechanism of the

middleware platform, thus fulfilling the standard set of security requirements.

Role-Based Access Control

Both EJB and COM+ environments implement a role-based access control security

model, which essentially maps entities to roles and then roles to resources. The middleware

platform allows these security policies to be defined declaratively down to the granularity of

the method, thus effectively delegating authorization to the container. In the java

environment, J2EE’s portable security API, the Java Authentication and Authorization

Service (JAAS) is leveraged [49]. The true power of JAAS lies in its ability to use virtually

any underlying security system. The developer must simply provide a custom login module,

serving to authenticate users and associate them with a security context, to plug into the

JAAS framework. This generated context is then automatically appended to calls to the EJB

container, at which time authorization based upon the provided security policy is performed.

Single Sign-on

In an open e-business world, many unfamiliar clients will need to gain access to web

services; at a certain point, however, it will become rather inefficient to setup security

information (e.g. usernames and passwords) in the application server for every possible

identity. As a result, the future of web service authentication lies with the notion of single

sign-on. Current projects such as Microsoft Passport and Liberty Alliance represent the first

 66

generation of these single sign-on services, where users need only authenticate once at a

centralized authority in order to gain access to a set of web services. The Security Assertion

Markup Language (SAML) attempts to standardize this concept by defining an XML-based

framework for exchanging security information. In addition to defining precisely how the

security credentials, or assertions, are represented in XML, SAML also outlines the message

exchange protocol for querying the authority service. The basic premise is that in exchange

for appropriate authentication information, a user obtains a security assertion from a SAML

authority. This assertion could then be rapidly accepted without formal authentication by a

host of services within the domain of trust. The standardization of security assertions

effectively alleviates corporations from managing the authentication information of all their

business partners, thus ultimately leading to an open-ended, more flexible, more scaleable e-

business infrastructure.

4.3.2.3 Securing the Reference Architecture

It is evident that many web services, such as those in the banking domain depicted above,

will require robust security mechanisms fulfilling each of the five standard security

requirements: authentication, authorization, confidentiality, integrity, and non-repudiation.

Based on the above discussion, it is clear that incorporating the functionality of the

standardized WS-Security SOAP header into our reference architecture, depicted below in

Figure 4.7, will fulfill these needs.

 67

Stub
Stateless

EJB
Wrapper

Servlet

SOAP
Message

Application Server

Serializer/Deserializers

SOAP Call
to C++

Component

Skeleton
Integrity
Handler

Decryption
/Encryption

Handler

Security
Policy

JAAS Login
Module

Authent.
Handler

Figure 4. 7 Security in the Reference Architecture

It can be observed that security is implemented with the chain of responsibility design

pattern, which effectively decouples the caller from its target by interposing a chain of

objects between then [42]. This concept manifests itself in the proposed reference

architecture as three handler objects residing between the servlet and skeleton. The first

handler performs authentication by essentially pulling the client credentials out of the SOAP

header and passing them to the JAAS login module for verification. Upon passing this

phase, a security context is created and propagated along the chain to the integrity handler,

which then verifies any provided XML digital signatures. The message is then finally

decrypted prior to invocation of the EJB proxy object. Based upon the generated context, the

EJB container then takes responsibility for ensuring that the client does indeed have access to

the desired resource by inspecting the security policy. It is evident that in general, these

handlers perform the reverse operations on the service response as it flows through the chain;

the authentication handler will, however, only append the server’s credentials when mutual

authentication is required. It can be noted that in the case that the legacy system is exposed

to an interactive thin client, similar principles would apply with the exception that handlers

would appear before the servlet in order to decrypt the incoming SSL-encoded data stream.

 68

The preceding figure depicts the enterprise bean invoking the back end service in the

clear, that is, free of security mechanisms. This scenario is indeed appropriate when the

service is contained within the safe confines of the enterprise firewall. However, in the case

that the intranet is not deemed secure or the wrapper is invoking a service outside the trusted

domain, the invocation would be required to flow through a similar gauntlet of security

functionality.

4.3.2.4 Security and the EWE Toolkit

As mentioned previously, since it is indeed possible to separate the business logic from

the security mechanisms, the appropriate handlers and JAAS components can be

automatically generated at deployment time. It is evident that different service installations

may undoubtedly have disparate security requirements, thus necessitating a highly flexible

configuration paradigm. To illustrate this point, the following figure represents a sample

config file that developers would be required to produce for the banking application. It can

be noted that this file, along with the remainder of the configuration information, would be

wrapped with a simple GUI interface in order to mask the underlying XML details from the

developer.

<security-spec>
<security-role>
 <description>free access to all banking-related methods </description>

<role-name>Teller</role-name>
</security-role>
<security-role>
 <description>clients using ATM machines not belonging to the bank </description>

<role-name>ForeignATMClient</role-name>
</security-role>

<identity type=”password”>
 <username>Kostas</username>
 <password>Crete</password>
 <role>Teller</role>
</identity>
<identity type=”X.509”>
 <name>Boris Becker</name>
 <role>ForeignATMClient</role>
</identity>

<method-permission>
 <role-name>Teller</role-name>
 <method>
 <component-name>Banking</component-name>

 69

 <method-name>*</method-name>
</method>

</method-permission>
<method-permission>
 <role-name>ForeignATMClient</role-name>
 <method>
 <component-name>Banking</component-name>
 <method-name>withdraw</method-name>

</method>
</method-permission>

<!-- <transport-security type=”ssl”> -->

<message-security>
 <signature>
 <method>
 <component-name>Banking</component-name>
 <method-name>*</method-name>

 <canonicalization-method>
http://www.w3.org/2001/10/xml-exc-c14n#

</canonicalization-method >
<signature-algorithm>

<symmetric-credential>
http://www.w3.org/2000/09/xmldsig#hmac-sha1

</symmetric-credential>
<asymmetric-credential>

http://www.w3.org/2000/09/xmldsig#rsa-sha1
</asymmetric-credential>

 </signature-algorithm>
<digest-algorithm>

http://www.w3.org/2000/09/xmldsig#sha1
</digest-algorithm>

 </method>
</signature>
<encryption>

 <method>
 <component-name>Banking</component-name>
 <method-name>deposit</method-name>

 <method-param-name>m_objAccount</method-param-name>
 <algorithm>

<symmetric-credential >
http://www.w3.org/2001/04/xmlenc#3des-cbc

 <symmetric-credential >
<asymmetric-credential generateKey=”true”>

<X509Certificate encoding=”Base64”>nSDFSiur…</X509Certificate>
 <algorithm>http://www.w3.org/2001/04/xmlenc#rsa-1_5</algorithm>

 <asymmetric-credential >
</algorithm>

 </method>
</encryption>

</message-security>
</security-spec>

Figure 4. 8 EWE Security Deployment Descriptor

 70

The <security-role> tags effectively define two roles for the banking application; as the

names imply, the ‘Teller’ is meant to represent a bank teller capable of fulfilling all standard

banking applications while the ‘ForeignATMClient’ represents a client accessing his account

from an ATM machine under the jurisdiction of a different bank. The <identity> tags not

only map specific users to these roles, but also indicate the type of authentication mechanism

required. Based on current industry standards, the toolkit will support four possible

authentication techniques: username/password pair, Kerberos tickets, X.509 certificates and

SAML assertions. It can be noted that it is only in the password case that the identity

(username) is inserted directly into the SOAP message; the other techniques require the

JAAS login module to perform decryption in order to uncover the identity. As observed

above, the banking application permits a teller named ‘Kostas’ to authenticate with a

password as well as a foreign client named Boris Becker to authenticate with an X.509

certificate. In the latter case, the authentication handler will delegate to the login module,

which will in turn crack open the certificate, ensure that the identity exists, and create a

security context. The <method-permission> tags complete the definition of the security

policy and are used to generate authorization checks in the beans. It is evident that the Teller

role has access to all the functions in the banking app while identities in the

ForeignATMClient role can only withdraw funds.

In addition to supporting a variety of authentication credentials, the toolkit must also

provide flexibility in the selection of integrity and confidentiality mechanisms. As SSL may

indeed be sufficient in certain scenarios, the <transport-security> tag is available to enable

this option. In this case, however, since the banking application does not actually require

SSL, the element is commented out. It is the <message-security> construct that determines

the more robust security mechanisms provided by the WS-Security standard. The

<signature> element signifies the requirement of an XML signature, while the <method> tag

defines the portion of the SOAP message to be signed; though the granularity could be

defined to the level of individual parameters, it is specified that the withdraw and deposit

functions in their entirety should be hashed and encrypted. The <canonicalization-method>

specifies the technique used to ensure that XML documents are represented in a common

format so that hashing can be successfully applied. Furthermore, as the name implies, the

<signature-algorithm> tag defines the method used to create the digital signature. As such

 71

algorithms require a key, it is assumed that the identity credential provided, whether it be a

password, certificate, or Kerberos ticket, is indeed sufficient. Depending upon the type of

credential, however, it is clear that algorithms for either symmetric or asymmetric key

cryptography will have to be applied.

The <encryption> element, structured very similarly to its <signature> counterpart,

defines the portion of the SOAP message to be encrypted on the wire. The only real

difference in this case lies in the choice of algorithm upon use of an asymmetric credential.

In scenarios where performance is crucial and/or there is a large amount of data transfer, it

would be unacceptable to encrypt the entire data stream using asymmetric cryptography. As

a result, a mechanism is provided by which a client can generate a session key to ensure

confidentiality and encrypt it with the server’s public key. This scenario is represented in the

configuration file by the ‘generateKey’ attribute being set to ‘true’ as well as the inclusion of

the <X509Certificate> element. In this case, the client is expected to encrypt the ‘Account’

parameter of the ‘deposit’ function with a generated session key using triple-DES before

finally encrypting this session key with the server’s public key using RSA.

Having completed the security configuration for the banking application, the developer

can pass this information, along with the component interface, to the EWE toolkit in order to

automatically generate the enterprise bean wrappers, servlet, JAAS infrastructure, and three

security handlers. It is evident, however, that in order to ensure successful consumption of

the legacy system’s web service wrapper, the server’s security requirements must be exposed

to the client. In this case for example, the ability to invoke both banking methods would

require a client authenticated with a Kostas/Crete username/password pair, an hmac-sha1

digital signature of the entire operation, and triple DES encryption of the account object.

Exposing these requirements is achieved via the use of WSDL security extensions, such that

toolkits employed at the client can automatically generate a matching set of security handlers.

4.3.3 Transactions

4.3.3.1 Introduction

Having provided a robust security framework, our attention can now be directed towards

creating support for transactions. Simply put, a transaction ensures that only agreed-upon,

consistent, and acceptable state changes are made to a system – regardless of system failure

 72

or concurrent access to the system’s resources. This task is achieved by defining

transactional units of work satisfying the following four fundamental properties: atomicity,

consistency, isolation, and durability (ACID). Transactions are absolutely invaluable to

business architectures and when used properly, can make mission-critical operations run

predictably in an enterprise environment. The implementation of a robust transaction

management framework is, however, a truly daunting task best left to application server

vendors; developers should, as a result, leverage the functionality provided by existing

middleware technologies. In the context of this paper, transaction management is relevant in

two key ways: the simplistic addition of transaction functionality to existing legacy systems

and, as we will discuss in the ensuing chapter, the creation of transactions spanning multiple

integrated systems. Accordingly, we will first examine the underlying technologies involved

and then apply them to integrate seamless transaction support into our reference architecture.

4.3.3.2 Background

Declarative Transactions

Both EJB and COM+ platforms provide a huge amount of value to application developers

by effectively shielding them from the complexities of the underlying transaction manager.

Similar to the generation of security constructs, the middleware container automatically

guarantees that components are appropriately enlisted in the desired transactions based upon

a configuration file. Ensuring that the services are completely unaware of the transactions

encompassing them not only drastically simplifies application development, but also

mitigates the possibility of error, whether it is within the application or on the client side. It

can be noted that based on industry demand, both platforms currently only support a flat

transaction model, where a fixed series of operations are performed atomically as a single

unit of work.

 This robust transaction service is also very flexible, for attributes controlling specific

component behaviour within a transaction can be defined at the method level. Specification

of the ideal settings for each individual component allows developers to declaratively

construct complex yet precise interactions. There are four possible attribute values:

‘NotSupported’, ‘Required’, ‘RequiresNew’, and ‘Supports’. As the name implies, a value

of NotSupported infers absolutely no transaction involvement; if the invoking method is

 73

under the hood of a transaction, it is suspended until the NotSupported method completes.

The Required attribute is the most flexible mechanism, ensuring that a component always

runs in a transaction; existing transactions are joined while the container begins new ones

when necessary. Methods marked with Supports only run in a transaction if the client had

one running already while the RequiresNew attribute indicates that a new transaction must

always be started. The latter is similar to the behaviour of NotSupported for if a transaction

is underway when the component is called, it is suspended during method invocation. It

should be noted that at the time of this writing, these attributes could only be specified at the

component level in COM+; however, future releases will indeed support a lower level of

granularity.

Transactions and Web Services

In traditional computing environments, most transactions are executed within the scope of

the enterprise, within one trust domain, and with all the resources under the control of one

transaction manager. However, the vision of a world of co-operating, distributed web

services has introduced the need for more flexible functionality than that provided by

existing transaction manager implementations. Firstly, as transactions will be required to

span applications implemented with different technologies on different platforms that store

state in heterogeneous databases, transaction context propagation must be standardized. Both

MS and java platforms currently specify that transaction context should be propagated over

the wire in distributed scenarios with the use of proprietary, incompatible protocols (DCOM

and IIOP respectively). As a result, interoperability is currently so poor that even standards

compliant application servers written by different vendors are not even guaranteed to

successfully participate in a distributed two-phase commit transaction.

Furthermore, classic ACIDic transactions may not be suitable for loosely coupled

environments such as web services. In this type of scenario, transactions can be very

complex, involve many parties, and can potentially last for hours or even days. For example,

transactions between a manufacturer and its suppliers might only be considered completed

once all parts are delivered to their final destination, which could be days or even weeks after

an order is placed. In order to prevent both the reduction of transaction concurrency to

unacceptable levels as well as the possibility of denial of service attacks, participants will not

 74

want to lock their resources for such extended periods; it is therefore evident that the

isolation property must be relaxed in such transactions. Moreover, there are an abundance of

scenarios where optional subtransactions are necessary, thus also requiring that atomicity be

relaxed. This need is exemplified by a travel agency attempting to reserve seats on a number

of airlines at a consumer’s request; the global transaction should be able to commit despite

one or more of the reservations rolling back due to space limitations or budget constraints.

As it is clear that a new model is required to meet these needs, a ‘business transaction’ has

been defined as a consistent state change in the business relationship among two or more

parties with each party maintaining an independent application system that maintains the

state of each application .

The Future

Two predominant standards have emerged to address these two new requirements: WS-

Transactions, which is dependent on existing web service specifications and the Business

Transaction Protocol, which defines an abstract XML message set and a SOAP/HTTP

binding [50]. Though it is still unclear at this point which spec will emerge victorious, the

current web services revolution virtually guarantees that both Microsoft and J2EE platforms

will soon be extended to embrace this new XML-based, distributed model. Existing

transaction managers will, in all likelihood, be extended incrementally; support for fully

interoperable, XML-based 2PC ACID transactions will first be rolled out followed soon

afterwards by an implementation of the more flexible business transaction model.

4.3.3.3 Reference Architecture

It is evident that as the vast majority of multi-client, enterprise level applications require

transactional support, it is imperative that developers have the capability to easily

transaction-enable their applications. However, as mentioned previously, the implementation

of the required transaction management functionality is not only out of scope, but also far too

complex for most developers, thus requiring that existing middleware technologies be

leveraged. Figure 4.9 below depicts how this task can be accomplished by extending the

proposed reference architecture to include several transactional components.

 75

Service
Impl.Skeleton

Serializer/Deserializers

SOAP
Processor/
Dispatcher

WS Container

Stub
SOAP

Processor/
Dispatcher

Application Server

Skeleton
Trans.
Handler

Enterprise
Bean

TM
Coordinator

TM
Participant Database

Commit

Figure 4. 9 Transaction Management in the Reference Architecture

As we are attempting to merely provide intra-application transactional support, it is

evident that only the model for XML-based ACIDic transactions needs to be leveraged at this

point; the need for more complex business transactions will become apparent when

integration is discussed in chapter five. As observed above, the EJB container interacts with

the application server’s XML-based transaction manager to demarcate transaction boundaries

as required. It can be noted, however, that in order to interact with back end resource

manager(s), an additional component, depicted above as the transaction manager (TM)

participant, is required. This module is actually provided by application server vendors and

can be easily installed and configured with the desired persistent resources. The chain of

responsibility design pattern has once again been applied in this case to ensure that a

distinction is made between application and transaction logic.

Using the banking application as a simplistic example, let us assume that the withdraw()

and deposit() methods are to be placed under the hood of a transaction. Upon invocation of

the withdraw() method within the banking EJB, the container interacts with the coordinator

to first begin the transaction and then ensure that the transaction context is included in the

header of the SOAP message destined for the back end service. At the service installation,

the handler processes the appropriate header and invokes the TM participant, which in turn

communicates the necessity to begin a transaction to the underlying database resource

 76

manager. Once similar steps have been carried out to call the deposit() method, the EJB

container signals the coordinator that the transaction must be committed. In general, a two

phase commit protocol would be carried out to accomplish this task; however, as there is

only one participant in this case, a single commit message can simply be issued in order to

improve performance. It should be noted that as this type of distributed transaction

mechanism does indeed incur some overhead, simple applications such as the one cited

above may be better served making SQL commit and rollback calls directly to the database

management system (DBMS). However, more sophisticated applications that are destined

for integration, that interact with multiple transactional resources, or that have complex

transactional workflows would undoubtedly be well served by this type of architecture.

4.3.3.4 Toolkit Extensions

Since transaction logic need not be embedded within the application code, the existing

middleware model for declarative transactions should be adopted by the EWE toolkit. A

configuration file, exemplified below in Figure 4.10, can be composed specifying one of the

four possible transaction attributes (UnSupported, Supported, Required, RequiresNew) for

each component and/or method. Based upon this information, a middleware deployment

descriptor can be generated such that the container will automatically control the transactions

at the application server. Furthermore, the transaction handler can be generated and included

in the legacy deployment to interact appropriately with the TM participant. It should be

noted, however, that although the vast majority of transaction management can be handled by

the platform, the application developer must specify the error conditions upon which

transactions must abort.

</transaction-spec>
 <method>
 <component-name>Banking</component-name>
 <method-name>withdraw</method-name>
 <transaction-attribute>Required</transaction-attribute>

</method>
 <method>
 <component-name>Banking</component-name>
 <method-name>deposit</method-name>
 <transaction-attribute>Required</transaction-attribute>

</method>
</transaction-spec>

Figure 4. 10 EWE Transaction Management Deployment Descriptor

 77

 Figure 4.10 provides a rather self-explanatory configuration file for the simplistic banking

application. In this scenario, both methods are marked with a ‘Required’ attribute, indicating

that they will always either join or begin a new transaction if one does not already exist.

However, if, for example, the deposit method is only required to be part of a transaction

when preceded by a withdrawal during a bank transfer operation, it should be marked with

the Supports attribute. This setting would ensure that it could be involved in other workflows

where transactions are not required.

Unlike the security requirements outlined in the previous section, as the client is, in

general, unaffected by the transactional nature of the system, the method by which the legacy

application is exposed is completely independent of the transaction management

functionality. However, when exposed as a web service, knowledge of a system’s

transactional behaviour provides developers with a more complete view of the installation,

thus providing them with all the knowledge necessary to compose successful clients.

Accordingly, the transactional attributes for each method should also be included in the

WSDL description.

4.3.4 Clustering

4.3.4.1 Introduction

The generation of a secure, transactional environment is not sufficient for truly robust,

mission critical applications; clustering capability is also required in order to ensure that

systems are both highly available and scalable. Organizations seeking to web enable their

critical legacy assets will undoubtedly require that these qualities be inherent to their newly

developed web platforms. A cluster can be defined, quite simply, as a loosely coupled group

of servers that provide a unified, simple view of the services that they offer individually.

This concept provides availability by effectively minimizing the single points of failure in a

system and ensuring seamless fail-over in the case of hardware or software failures.

Furthermore, scalability is not only guaranteed by the implementation of a load balancing

algorithm, but also by the ability to increase capacity with the addition of supplementary

servers. Similarly to security and transaction frameworks, as the realization of an effective,

maintainable cluster is a complex task, it should be left to the application server. To this end,

 78

we will examine the clustering capabilities of existing middleware technologies and propose

a reference architecture by which web enabled legacy applications can easily leverage this

functionality.

4.3.4.2 Background

Application Server Clustering

Existing component middleware technologies have extensive clustering support built

directly into the platform. Firstly, deployment and maintenance across the cluster is

drastically simplified for the cluster can automatically synchronize itself once files have been

pushed out to a single machine. It can be noted that the seamless propagation of file updates

or configuration changes throughout the installation with minimal, if any, downtime is an

absolutely critical feature, especially as the cluster size increases. Many vendors also

package dynamic application launchers, which have the ability to automatically restart

applications in case of failure. Furthermore, load balancing and failover logic is

automatically generated and generally placed in the remote stubs of the middleware

components. In essence, a stub is aware of several identical remote objects available for use

in the cluster and will select one as appropriate upon each invocation. It can be noted that

fail-over occurs at two levels. In the case of an idle machine crash, the appropriate stubs will

detect this state change and cease to invoke the culprit. Moreover, if a machine fails during

invocation, fail-over to a backup is still indeed possible given that the method is idempotent.

Even in the case that client state is maintained at the server, it is periodically replicated

(generally on transaction boundaries) to a redundant machine, thus allowing for seamless

session fail-over.

4.3.4.3 Reference Architecture

Unlike the realization of the security and transactional frameworks, there are a host of

possible clustering architectures depending upon the nature of the application as well as the

specific system requirements. Based upon the type of content delivered (static vs dynamic,

presence of session data), the tolerance for single points of failure, the security requirements,

as well as the budget restrictions, the clustering technologies and methodologies employed

can vary drastically. The fundamental point in this case is that since the creation of a

 79

serviceable, robust clustered environment is truly infeasible for developers undertaking web

enablement projects, the clustering logic must be pushed into the middleware wrapper. This

objective can be achieved with two main strategies: the three-tier architecture pushes the web

and middleware content onto the same machine while four-tier architecture distributes them

to separate hosts.

Database

Legacy
Application

Firewall

Legacy
Application

Proxy
Server

Application Server

Application Server

Cluster

Figure 4. 11 4-tier Clustering in the Reference Architecture

The preceding figure represents a possible implementation of the latter scenario; in this

case, a server, containing merely the web content (static and dynamic), acts as a proxy for the

application servers hosting the middleware components. The middleware component stubs,

which reside on the proxy server, are relied upon for both load balancing and fail-over logic.

Furthermore, the legacy application is installed independently on separate machines at the

back end with each instance mapping one to one with an application server. It is evident that

what this architecture gains in simplicity, it loses in flexibility; pairing the legacy tier and the

middle tier in this fashion could well squander capacity unnecessarily. For example, let us

assume that the application servers can handle more load than the back end machines. If one

of them were to fail, requests would no longer be directed to its properly functioning legacy

mate, thus wasting precious server resources. Finally, in the scenario depicted above, the

proxy server acts as a single point of failure; however, a redundant machine could be added

without much difficulty.

 80

 A three-tier architecture with ‘smart middleware’ is portrayed below in Figure 4.12.

Since the web and middleware tiers reside on the same machine in this case, a hardware unit

is used to manage load balancing and fail-over. It should be noted, however, that the

application servers will still handle fail-over in the event of a machine crash following

method invocation. The middleware servers are considered to be ‘smart’ in this scenario, for

they are responsible for providing both load balancing and fail-over at the back end tier.

Unlike the clustering functionality provided in the middleware stubs, however, this logic is

not inherent to the platform and must therefore be generated as application logic within the

components by the EWE toolkit.

Database

Legacy
Application

Firewall

Legacy
Application

Proxy
Server

Application Server

Application Server

Cluster

Hardware
Load

Balancer

Figure 4. 12 3-tier Clustering in the Reference Architecture

4.3.4.4 Toolkit Extensions

In contrast to the generation of transaction and security mechanisms, it is evident that the

creation of clustered environments similar to those outlined above cannot be fully automated.

Depending upon the desired architecture, there are a number of steps that the service provider

must execute. Firstly, the back end application must be manually installed on several

different machines; though this process may appear to pose a maintenance nightmare, it is

generally assumed that legacy applications will not be altered. Having completed this task,

the EWE toolkit can then generate the appropriate web components and middleware wrapper

based upon a configuration file, exemplified below in Figure 4.13. Though this file is

sufficient for the automatic deployment of the middleware throughout the cluster, additional

 81

steps must be taken in the event that a three-tier architecture is employed. In this case, an

additional load balancing mechanism, whether it is a DNS round robin or a hardware device,

must be configured in front of the cluster.

<cluster-spec>
<architecture tier=”3”>
 <smart-middleware>
 <algorithms>
 <load-balancing>

 <round-robin />
</load-balancing>

 <fail-over>
 <ping interval=”30” />
</fail-over>

 </algorithms>
 </smart-middleware>
</architecture>

<component>

 <name>Banking</name>
<locations>

 <location>
 <machine-name>1.2.3.4</machine-name>
 <port>1000</port>
 </location>
 <location>
 <machine-name>1.2.3.5</machine-name>
 <port>2000</port>
 </location>
 </locations>

 <method>
 <name>withdraw<name>
 <idempotent>false</idempotent>

</method>
 <method>
 <name>deposit<name>
 <idempotent>false</idempotent>

</method>
 </component>
</cluster-spec>

Figure 4. 13 EWE Clustering Deployment Descriptor

The preceding document represents a clustering configuration file for the banking

application. As the name implies, the <architecture> tag describes the characteristics of the

entire installation; in this case, the web and middleware components will be deployed on the

same machine and clustering logic for managing the legacy tier will be generated within the

middleware layer as denoted by the <smart-middleware> tag. It can be noted that in the case

 82

that a four-tier architecture is specified, the enterprise toolkit would generate separate

deployment descriptors for the web and middleware layers. The file indicates that logic will

be generated in the middleware to not only implement a simplistic round robin load

balancing algorithm, but to also ping the legacy hosts every thirty seconds to ensure that they

are still alive. The <component> element then encapsulates the relevant information for each

of the exposed legacy modules. It is evident that the banking component is available on two

separate hosts and both of its constituent methods are not idempotent, thus indicating that

fail-over is not possible once they have been invoked.

4.4 Conclusion
Countless corporations worldwide are struggling with the dilemma of salvaging the

enormous sunk cost poured into their now archaic information systems; many have invested

millions in new installations while others have spent countless amounts on fruitless

integration efforts. In this chapter, we offer a simply solution to this problem, whereby

existing legacy assets are web enabled, thus promoting their reuse both within and outside

the enterprise. We have proposed a reference architecture, which effectively involves the

wrapping of legacy systems with both middleware and web components using XML web

services infrastructure as the underlying communication mechanism. In addition to exposing

the back end application to both thin clients browsers and business partners via SOAP, as

we’ve outlined in great detail, the wrappers also serve to add robust security, transaction, and

clustering functionality to the installation. Moreover, despite the performance concerns, the

use of XML as the technology bridge to the legacy system creates a very flexible, data-

centric solution; the integration philosophy is essentially shifted from a world of proprietary

interfaces to one of open, standardized data transfer. Furthermore and perhaps most

importantly, we have proposed the idea of the enterprise web enablement (EWE) toolkit,

which automatically generates all the components necessary to realize the proposed

architecture. In essence, based only on interface descriptions and a variety of configuration

information, a legacy system can be automatically transformed into a fully-featured,

enterprise level web app. In the ensuing chapter, we will take this solution to the next level

by leverage the EWE toolkit to not only web enable, but also integrate a multitude of

disparate systems within the enterprise.

 83

Chapter 5

Fashioning the Roadmap toward the Integrated Enterprise

5.1 Introduction
As outlined in the first chapter, years of development, technological innovations, mergers

and acquisitions have left many corporations in possession of a multitude of disparate,

incompatible information systems. There is no doubt that the ever increasing customer and

business partner expectation for real-time information has forced companies to attempt to

link these systems in order to improve productivity, efficiency and, ultimately, customer

satisfaction. However, increasing competition and shrinking budgets have left managers

scouring for innovative, cost-effective methods to achieve this elusive task. Integration

efforts to date, focused predominantly on the development of proprietary point-to-point

adapters, have proven to be a daunting task with countless failed projects and losses in the

millions. As a result, in addition to the web enablement of various legacy assets, there is an

overwhelming need for a simplistic integration methodology, which will yield a common

homogeneous framework. It was noted in the previous chapter that the proliferation of XML

web services into the enterprise has the potential to revolutionize existing integration

strategies. The cost savings and ease of implementation associated with wrapping virtually

all legacy systems, past, present and future, with standardized, code-independent, data-

centric interfaces is truly astounding. Though application SOAP-enablement does indeed

make for simple invocation from virtually all remote clients, it is, however, only part of a

successful integration solution. In order to amalgamate a variety of heterogeneous

applications, a network-aware integration platform must also be present. As we will explore

in the ensuing sections, this type of environment maps directly to the reference architecture

outlined above and can be seamlessly created with the Enterprise Web Enablement toolkit.

5.2 Reference Architecture for Integration
In order to portray precisely how the proposed reference architecture and EWE toolkit

can be applied to the integration of a multitude of differing systems, a simplistic business

case involving a phone company will be traced throughout the remainder of this section. Let

us assume that over the years, the corporation has garnered a legacy CICS/COBOL call

 84

center application running on a mainframe, a Siebel Customer Relationship Management

(CRM) package, a custom built financial application written in C++, as well as a web-based

J2EE application to manage their internet subscribers. Written in the mid-eighties, the

incredibly complex call center system was designed to manage all of the information

surrounding a customer’s phone service. As the company continued to grow, however, the

user interface became a limitation, thus leading to an expensive, proprietary migration to the

client-server paradigm. The eventual completion of this task yielded a fat client installed on

each call center machine across the country communicating with the same centralized,

mainframe server. Expanding revenue streams then led to further demand for increased IT

functionality; the need for tools to manage product purchases, inventory, invoicing,

preventive maintenance, marketing, as well as to manage business partner relations began to

emerge. The third party CRM product was therefore purchased to address these new

requirements; it was decided, however, that the cost and risk associated with the replacement

of the existing call center application was far too great, thus leaving the enterprise with two

separate views of their customer base. Furthermore, the financial application, designed to

address specific billing and accounting needs, processes batch files, which effectively log the

relevant transactions over the course of a business day. Finally, the J2EE application was

built as a completely separate entity to manage the exponentially increasing number of

consumer and business internet accounts.

 It is evident that decades of development yielded a variety of incompatible legacy assets,

thus leaving the corporation with a Pandora’s Box of pressing problems. First and foremost,

the existing infrastructure has produced a fragmented view of the customer; the call center

system holds information pertaining to the actual telephone service, in addition to the retail

sale data, the CRM package manages the majority of the business intelligence, the financial

application hosts the necessary accounting functionality, and the self-contained J2EE

application contains the customer data pertaining to internet service. This separation is both

costly and error prone, for data must be manually updated and maintained across the

enterprise; the creation of a new account in the call center system, for example, requires that

the information be tediously keyed into the other three applications. In addition to

automating this task, there is no doubt that a homogeneous, real-time IT platform would also

allow the corporation to provide a far superior, dynamic customer service experience.

 85

Furthermore, as the completion of every new release of the call center application requires re-

installation to thousands of client machines, an annual price tag reaching well into the

millions is incurred. It can be noted that this overhead can be virtually eliminated by

migrating to a thin client browser interface; in addition to mitigating call center client

upgrades, functionality could also be pushed directly to the customer (e.g. phone line

disconnection). Logically speaking, perhaps the most apparent solution to these problems

would involve a complete re-write of all the systems to a common web-driven platform;

however, as outlined in the second chapter, leveraging existing assets is a much more viable

avenue. It is therefore clear that the systems must be amalgamated within a common, web-

enabled framework.

5.2.1 Hub and Spoke Architecture

A number of standardized network topologies have been implemented to address a wide

variety of integration issues; the most widely accepted solution, however, is the simplistic

hub and spoke architecture. As seen below in Figure 5.1, a centralized server acts as a façade

for a host of legacy systems, thus essentially serving as an integration platform for the entire

enterprise. It is clear that once the back end applications have been successfully integrated

with the hub, they can then seamlessly communicate with one another and/or have their data

pushed to a variety of different client channels. Furthermore, in addition to addressing the

underlying plumbing requirements of any robust server installation (threading, connection

pooling, instance pooling, load balancing, fail-over etc.), it can be noted that middleware

technologies are generally employed at the hub to provide a common security and

transactional framework for the entire information system.

 86

CICS/COBOL

Hub (EJB)

PDA

Business Partner

Siebel

Workstation

C++ Application

App
Server
Adapter

Siebel
Adapter

CORBA
Interface

5. 1 Generic Hub and Spoke Architecture

The preceding diagram depicts the implementation of this hub and spoke architecture at

our hypothetical telephone corporation. It can be observed that having already elected the

java platform in one of their previous undertakings, the logical decision is the selection of

EJB technology at the hub. The back end applications are then integrated in the most

appropriate manner; the gaps to the CICS/COBOL and CRM systems are bridged with

proprietary adapters provided by the application server vendor and Siebel respectively, the

C++ application is exposed as a set of CORBA components, and as it is already composed of

JSP pages and EJBs, the internet management application is deployed directly into the hub

itself. In addition to this integration exercise, developers also have to create a thin client

front end for the relevant applications either from scratch or via the use of a migration tool.

Upon the completion of this integration process, it is evident that the resulting system

successfully solves virtually all of the aforementioned problems. Firstly, it can be noted that

by simply adding functionality to the hub, the legacy applications can be extended without

the risk and complication of modifying the original code. This feature is certainly most

beneficial in the case of the call center application, where the code is both complex and

 87

tightly coupled and the initial developers more than likely left the company years earlier.

Furthermore, as mentioned previously, the web enablement of the call center application not

only clearly solves the deployment problem, but even allows certain portions of the front end

to be accessed by customers directly. The most compelling benefit of this methodology,

however, is the creation of an enterprise wide API. As the hub essentially contains EJB

wrappers for the functionality of all four systems, custom applications or third party

workflow solutions can be composed to access everything from customer phone service data

to marketing information in real-time. A workflow for account creation through the call

center could, for example, be easily created; after the information is keyed into the system by

a representative, the system would automatically check for an account in the CRM system. If

no account exists, one is immediately created; otherwise the CRM package updates its

records with the pertinent information. The order is then finally passed along to the financial

application for accounting purposes. In addition to reducing both errors and maintenance

costs, this solution also drastically improves efficiency. From providing a unified front for

both phone and internet services to providing the capability to email relevant information to

customers immediately upon sign up to the instant update of online information after

speaking to a representative, this architecture clearly provides a huge amount of added value

to the customer.

Despite these compelling benefits, this architecture does, however, have one major

drawback. Firstly, it can be noted that although the hub could be perceived as a bottleneck

for the system, the processing power currently available in addition to the clustering

capability of the middleware are indeed sufficient to handle virtually any load. As outlined

in the previous chapter, there are a number of feasible distributed solutions; in this case,

however, to enforce a form of modularity, the system could be deployed and load balanced in

such a manner that the internet management application would reside on its own separate

machine. The more relevant shortcoming of the installation, however, is its error prone,

brittle nature resulting directly from the selected integration strategies. Proprietary adapters

essentially perform the appropriate mappings amongst specific technologies; J2EE

application server vendors will, for example, compose adapters to connect a host of different

platforms, legacy and otherwise, to their EJB environment. In many cases, however, these

off the shelf adapters need sophisticated configuration and tuning or are not available at all,

 88

thus leaving the task to highly trained consultants. It is evident that in addition to being

extraordinarily costly, this methodology produces very tightly coupled solutions, which will

undoubtedly require further integration effort. Any minor change to the legacy system will

entail a modification, compile, test cycle of the adapter while complete replacements of either

the hub technology or legacy app will clearly necessitate a full re-design of the integration

strategy. It can be noted that exposing the financial application via a set of CORBA

interfaces is indeed a finer approach, for it is standards-based solution that mandates the use

of encapsulation. As mentioned previously, CORBA is, however, an older, complex

middleware technology that is lacking in industry momentum and requires a significant

amount of training for successful implementation. We firmly believe that the time, cost,

effort, and risk associated with the development of two distinct proprietary adapters as well

as a CORBA implementation far outweigh the tremendous benefits of the hub and spoke

architecture; it is, as a result, apparent that another integration solution must be crafted.

5.2.2 Applying Web Services and the EWE Toolkit

As outlined in the previous chapter, leveraging XML web services for integration

essentially shifts the focus from proprietary mappings and interfaces to standardized data

transfer. In the context of the hub and spoke architecture, as depicted below in Figure 5.2, a

huge amount of flexibility is gained for the constituent components are simply required to

produce and consume standardized XML messages. As a result, upon the modification or

replacement of the hub or legacy applications, it must simply be ensured that the resulting

systems have the ability to process the same set of data messages. Furthermore, as alluded to

earlier, XML messaging can be applied to virtually any system, thus precluding the need to

adopt multiple integration enablers. These undeniable benefits coupled with the open,

simplistic nature of web services as well as their dependence on ubiquitous, established

technologies have given them tremendous industry traction, essentially cementing the

technology firmly into the future of enterprise computing. As a result, we strongly believe

that the time is rapidly approaching that systems will be designed from the ground up or

retrofitted for integration using SOAP. To this end, it can be noted that although intra-

enterprise integration has been the sole topic of discussion to date, web services’ dependence

on HTTP beckons the notion of inter enterprise communication. The hub could therefore

 89

consolidate a host of systems extending from within the corporate intranet across the internet;

one could envision, for example, our phone company integrating with a hosted third party

ERP solution or an independent credit validation service.

CICS/COBOL

Hub (EJB)

PDA

Business Partner

Siebel

Workstation

C++ Application

SOAP

SOAP

SOAP

5. 2
5.2 SOAP-enabled Hub and Spoke Architecture

These tremendous benefits notwithstanding, the most compelling advantage of this XML

messaging concept is the ease of implementation. It can be noted that the model outlined

above is merely a different representation of the reference architecture proposed in the

previous chapter. As a result, having selected the desired hub technology, in order to

automatically generate the underlying XML communication infrastructure as well as the

middleware and necessary web components, a developer must simply apply an EWE toolkit

specific to each legacy application. Continuing our example, upon identification of the

desired function points, COBOL/EJB and C++/EJB toolkits are be applied to the call center

and financial applications respectively; the generated wrappers are each deployed to a central

 90

location. It can be noted that as the source code for the CRM package is unavailable, the

onus is therefore on the vendor to provide the tooling with which to carry out the necessary

integration tasks. Furthermore, based on the appropriate configuration information, the

middleware is generated in such a way that the security and transactional requirements of

each of the back end systems are accurately captured. In fact, the standards based nature of

transaction context propagation would even permit transactions to easily span across multiple

legacy applications. Moreover, it is interesting to note that the shift towards XML-based

standards compliance in the world of modelling business processes (e.g. BPEL) suggests that

the system is not strictly confined by the middleware technology selection [51]. Let us

assume, for example, that following the completion of a BPEL workflow management

system, the phone company wished to port their entire integration environment to the

Microsoft platform. In this case, it would simply be a matter of applying a different set of

tools; the middleware would first be regenerated with a MS-based EWE toolkits and the

relevant BPEL document could then be recompiled in this new environment.

5.3 Conclusion
The example portrayed throughout this chapter is indeed indicative of the overwhelming

need for integration in industry today. Though there are a host of possible solutions, the hub

and spoke architecture represents a simple, generic methodology to solve this global

problem. The creation of a centralized, network-aware, enterprise-wide installation is indeed

a powerful concept that serves to not only drastically cut down deployment and maintenance

costs, but will also ultimately lead to far superior customer service. Widespread adoption of

this architecture has, however, been stagnant due to the fact that traditional implementations

have relied on the use of complex, costly, often unviable integration strategies. The arrival of

XML web services has indeed provided light at the end of the tunnel; the use of established

protocols and standardized message formats coupled with the ease of implementation provide

a simple, cost-effective means to connect heterogeneous nodes, both within and outside the

enterprise, to the hub. In fact, a SOAP-aware hub and spoke implementation can be created

merely by applying the Enterprise Web Enablement toolkit proposed in the previous chapter

to the desired legacy systems. The flexibility and extensibility of this installation leaves little

doubt that it will represent the strategy of choice for the vast majority of future integration

 91

projects. Moreover, web services are indeed here to stay, thus ensuring that the adoption of

this approach will be the final significant integration investment for many years to come.

 92

Chapter 6 Conclusion

6.1 Overview and Findings

An industry-wide inability to manage the evolution of the 18 trillion dollar information

technology investment of the last decade has left enterprises with a vast array of truly

heterogeneous systems and islands of information. Failure to effectively consolidate this

data, coupled with a difficulty to meet the changing business and technical requirements of

pushing this content outside corporate boundaries, has ultimately driven up costs, degraded

efficiency, and ultimately impacted customer satisfaction. Integration attempts to date have,

in general, proven to be fruitless with countless failed projects and losses in the millions.

The advent of XML web services does, however, provide a potential solution for companies

desperate to leverage their IT assets. In addition to possibly creating a wealth of reusable,

distributed components across the internet, we feel that the power and the simplicity of the

web services platform can and must also be leveraged for intra-enterprise integration.

Before this methodology can come to fruition, however, it is evident that the current

interoperability issues of the web services model must be rectified. To this end, we feel that

the concepts employed in the WSDL specification are sufficiently flawed to merit the

proposal of several key amendments. The excessively complex, verbose WSDL spec

mandates the application of an extensive, convoluted, contradictory set of rules for SOAP

message creation. As a result, messages generated by one toolkit are often not recognized or

even worse, are processed incorrectly by another. In order to achieve interoperability, XML

messages must, quite simply, mean the same thing to every endpoint; servers must essentially

be afforded the ability to validate incoming requests at the message level. To this end,

WSDL documents must therefore provide a schema definition for precisely what must appear

on the wire; this simplistic approach removes any ambiguity and introduces instant

interoperability into the platform. This paradigm shift can be achieved with several essential

changes to the WSDL spec, including mandating the use of XML Schema, the removal of the

<wsdl:message> construct, as well as the elimination of both the ‘encoded’ and ‘rpc’ binding

options.

 93

Having addressed the major interoperability concerns of the web services model, it was

then leveraged to define a reference architecture for the web enablement of legacy assets.

Similar to existing wrapping methodologies, the use of middleware and web component

wrappers is proposed; however, in this case, SOAP, and not a proprietary adapter, is relied

upon as the bridging technology. Posing a radical change in distributed computing, XML’s

complete independence from programming languages precludes the need for legacy

applications to fit into a proprietary, program infrastructure before integration can take place.

The legacy systems and middleware tier are merely required to produce and consume

standardized XML messages, thus giving the architecture a huge amount of flexibility and

extensibility by effectively decoupling the two layers. Furthermore, in addition to being far

simpler to implement than other techniques, this solution offers the proverbial ‘silver bullet’,

for it can be applied to virtually every existing technology.

In an attempt to ensure the adoption of this architecture, the ‘Enterprise Web Enablement’

(EWE) toolkit is proposed; based on a legacy interface, it will automatically generate both

the middleware and underlying XML communication infrastructure as well as a web tier

serving to expose the back end applications to both thin client browsers and business partners

via SOAP. As a result, upon the installation of the toolkit and an application server, a

developer is able to automatically transform a legacy system into an enterprise-scale web

installation. Furthermore, the toolkit can be configured to enhance the existing system by

producing secure, transactional, and/or clustered middleware components.

 Finally, the scope of this architecture is extended from web enablement to complete

enterprise integration. We outline how a hub and spoke architecture is automatically created

from the application of EWE toolkits to several legacy systems. This model produces a

loosely-coupled homogeneous enterprise, allowing legacy systems to be easily modified,

updated, and/or replaced. Moreover, an enterprise-wide API is generated at the hub, thus

allowing additional applications or workflow solutions to simultaneously leverage the

disparate legacy assets. We strongly believe that the open, simplistic nature of web services,

coupled with their dependence on ubiquitous, established technologies will give them

tremendous industry traction, thus essentially cementing the technology firmly into the future

of enterprise computing. In fact, the time is rapidly approaching that systems will be

designed from the ground up or retrofitted for integration using SOAP. As a result, given

 94

that the health of legacy systems is preserved, the implementation of the integration strategy

proposed in this paper will undoubtedly serve to save corporations millions in integration and

redevelopment costs.

6.2 Future Work

There are indeed a number of practical projects that must be carried out to verify the

proposals detailed in this body of work. Firstly, the proposed changes to WSDL can be

incorporated into web services toolkit implemented for different platforms. In order quantify

the increased interoperability, their communication can then be compared with that of

existing toolkits. Furthermore, the EJB-C++ EWE toolkit prototype must be extended to

completion; an analysis of scalability and deployment issues for larger industrial software

components can then be carried out. More interestingly, true validation of the concepts

presented here will only occur upon the implementation of a toolkit for a mainframe

technology, such as CICS/COBOL.

 95

Bibliography

[1] Sneed, H.M., “The Rationale for Software Wrapping”, in the proceedings of the

International Conference on Software Maintenance, Bari, Italy, October 1-3, 1997.

[2] Gould, P., “Integrating Legacy Systems”, http://eai.ebizq.net/bpi/Gould_1.html

[3] Aberdeen Group, “A case study of the EAI marketplace”,

http://eai.ebizq.net/leg/collins1.html

[4] Gordon, H., “Unlocking Your Investment in Mainframe Business Processes”,

http://www.webmethods.com/PDF/Unlocking_Investments_in_Mainframe_Processe

s.pdf

[5] Gosin, Sanjay, “EAI: The Business Drivers and Technical Challenges”, University of

Maryland, Oct 15, 2001.

[6] Briggs B., “The Real Time Enterprise”, http://www.aptsoft.com/overview.htm

[7] Govekar, Milind, “EAI – The Magic Glue”, http://www.vnunet.com/News/1139489j,

Gartner Group, 2001

[8] Fagan, Brendan, “Identifying major integration hurdles”, Forrester Research, 2001.

[9] Brodie, M./Stonebraker M.: Migrating Legacy Systems, Morgan Kaufmann Pub., San

Francisco, 1995, p. 41.

[10] Ewusi-Mensah, K., “Critical Issues In Abandoned Information Systems Development

Projects”, Comm of ACM, Vol 40, No. 9, Sept. 1997, p. 75.

[11] Sneed, H.M., “A case study in software wrapping”, in the proceedings of the

International Conference on Software Maintenance, 16-20 Nov., 1998.

[12] Chikofsky, Elliot and Cross, James. “Reverse Engineering and Design Recovery: A

Taxonomy”, IEEE Software, January, 1990.

[13] Terekhov, A./Verhoef, C. “The Realities of Language Conversions”, IEEE Software,

Nov. 2000, p.111 to 124.

[14] Sneed, H.M. “Human Cognition of Complex Thought Patterns – How much is our

Perception of the Present determined by our Experience of the Past”, Keynote Address, 6th

IWPC, IEEE Press, Ischia, Italy, June 1998.

[15] Tilley, Scott R. and Smith, Dennis B., “Perspectives on Legacy Systems

Reengineering”, http://www.sei.cmu.edu/~reengineering/pubs/lsysree/, Reengineering

Center, Software Engineering Institute, Carnegie Mellon University

 96

[16] Shaw, Mary. “Architecture Issues in Software Reuse: It’s Not Just the Functionality, It’s

the Packaging”, in the proceedings of the IEEE Symposium on Software Reusability, April,

1995.

[17] Lee, Moon-Soo and Shin, Seok-Gyoo and Yang, Young-Jong, “The design and

implementation of Enterprise JavaBean (EJB) wrapper for legacy system”, IEEE

International Conference on Systems, Man, and Cybernetics, October, 2001.

[18] Sneed, H.M., “Using XML to integrate existing software systems into the web”, in the

proceedings of the 26th International Computer Software and Applications Conference,

August, 2002.

[19] Sneed, H.M., “Wrapping Legacy COBOL Programs Behind and XML-Interface”, in the

proceedings of the 8th Working Conference on Reverse Engineering, Stuttgart, Germany,

October, 2001.

[20] Sneed, H.M., “Generation of stateless components from procedural programs for reuse

in a distributed system”, in the proceedings of the Fourth European Conference on Software

Maintenance and Reengineering, March, 2000.

[21] Zdun, U., “Reengineering to the Web: a reference architecture”, in the proceedings of

the Sixth European Conference on Software Maintenance and Reengineering, March, 2002.

[22] Aversano, L., “Migrating Legacy Systems to the Web: an experience report”, in the

proceedings from the Fifth European Conference on Software Maintenance and

Reengineering, March, 2001.

[23] Comella-Dorda, S. and Wallnau. K. and Seacord, R.C., and Robert, J., “A survey of

black-box modernization approaches for information systems”, in the proceedings from the

International Conference on Software Maintenance, October, 2000.

[24] Sun Microsystems, “J2EE Connector Architecture Specification”,

http://java.sun.com/j2ee/connector

[25] OMG, “Corba Object Request Broker Architecture Specification”,

http://www.omg.org/corba

[26] Sun Microsystems, “Java Messaging Service Specification”,

http://java.sun.com/products/jms/

[27] IBM, “WebSphere MQ”, http://www-306.ibm.com/software/integration/wmq/

 97

[28] OASIS, “UDDI Spec Technical Committee Specification”, http://uddi.org/pubs/uddi-

v3.00-published-20020719.htm

[29] W3C, “Web Services Description Language (WSDL) 1.1”,

http://www.w3c.org/TR/wsdl, March 15th, 2001

[30] Livingston, D., “Advanced SOAP for Web Development”. Prentice Hall, Upper Saddle

River, 2002.

[31] W3C, “SOAP Version 1.2”, http://www.w3c.org/2000/xp/Group/, June 26, 2002.

[32] Curbera, F. et al., “Unravelling the Web services web: an introduction to SOAP,

WSDL, UDDI”, Internet Computing, IEEE, March-April, 2002.

[33] W3C, “SOAP Messages with Attachments”, http://www.w3c.org/TR/2000/NOTE-

SOAP-attachments-20001211, December 11th, 2000.

[34] Nielson, Henrik et al., “WS-Attachments Specification”, http://www-

106.ibm.com/developerworks/webservices/library/ws-attach.html

[35] Microsoft, “Direct Internet Message Encapsulation (DIME)”,

http://www.gotdotnet.com/team/xml_wsspecs/dime/draft-nielson-dime-01.txt

[36] Roman E. et al., “Mastering Enterprise JavaBeans”, John Wiley & Sons, New York,

2002.

[37] OASIS, “Relax NG Specification”, http://www.oasis-open.org/committees/relax-

ng/spec-22011203.html, December 3rd, 2001.

[38] Clark, James, “TREX – Tree Regular Expressions for XML”, February 13th, 2001.

[39] Deem, Mike, “WSDL Extension for SOAP in DIME”,

http://www.gotdotnet.com/team/xml_wsspecs/dime/WSDL-Extension-for-DIME.htm, May

8th, 2002.

[40] Box, Don, “House of Web Services, The Continuing Challenge”,

http://msdn.microsoft.com/library/default.asp, June, 2002.

[41] OMG, “CORBA Language Mapping Specifications”, http://www.omg.org/

technology/documents/formal/corba_language_mapping_specs.htm, September 24, 2002.

[42] E. Gamma et. al. “Design Patterns: Elements of Reusable Object-Oriented Software”,

Addison Wesley, 1994.

[43] W3C, “XSL Transformations (XSLT)”, November 16th, 1999.

 98

[44] IBM, “HTTPR Specification”, http://xml.coverpages.org/IBM-ws-httprspec.pdf, April

1st, 2002.

[45] Microsoft, IBM, VeriSign, “WS-Security”, April 05, 2002, http://www-

106.ibm.com/developerworks/library/ws-secure/

[46] W3C, “SOAP Security Extensions: Digital Signature”, http://www.w3.org/TR/ SOAP-

dsig/, February 6th, 2001.

[47] Franks J. et al., “HTTP Authentication: Basic and Digest Access Authentication”, RFC

2617, June 1999.

[48] OASIS, “Security Assertion Markup Language”, http://www.oasis-

open.org/committees/security, 20th June, 2001.

[49] Helton, Rich, “Java Security Solutions”, Wiley Publishing, Indianapolis, IN, 2002.

[50] OASIS, “The Business Transaction Protocol (BTP) 1.0”, http://www.oasis-

open/committees/business-transactions/, June, 2002

[51] IBM, “Business Process Execution Language”, http://www-106.ibm.com/

developworks/library/ws-bpel, May 5th, 2003.

[52] Knutson, J et al., “Web Services for J2EE, Version 1.0”, ftp://www-

126.ibm.com/pub/jsr109/spec/1.0/websvcs-1_0-fr.pdf

