

Robust Control Design of Gain-scheduled Controllers

for Nonlinear Processes

by

Jianying Gao

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Chemical Engineering

Waterloo, Ontario, Canada, 2004

©Jianying Gao 2004

 ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

 iii

Abstract

In the chemical or biochemical industry most processes are modeled by nonlinear

equations. It is of a great significance to design high-performance nonlinear controllers

for efficient control of these nonlinear processes to achieve closed-loop system’s stability

and high performance. However, there are many difficulties which hinder the design of

such controllers due mainly to the process nonlinearity. In this work, comprehensive

design procedures based on robust control have been proposed to efficiently deal with the

design of gain-scheduled controllers for nonlinear systems.

Since all the design procedures proposed in this work rely strongly on the process model,

the first difficulty addressed in this thesis is the identification of a relatively simple model

of the nonlinear processes under study. The nonlinearity of the processes makes it often

difficult to obtain a first-principles model which can be used for analysis and design of

the controller. As a result, relatively simple empirical models, Volterra series model and

state-affine model, are chosen in this work to represent the nonlinear process for the

design of controllers.

The second major difficulty is that although the nonlinear models used in this thesis are

easy to identify, the analysis of stability and performance for such models using nonlinear

control theory is not straightforward. Instead, it is proposed in this study to investigate the

stability and performance using a robust control approach. In this approach, the nonlinear

model is approximated by a nominal linear model combined with a mathematical

description of model error to be referred to, in this work, as model uncertainty. In the

current work it was assumed that the main source of uncertainty with respect to the

nominal linear model is due to the system nonlinearity. Then, in this study, robust

control theoretical tools have been especially developed and applied for the design of

gain-scheduled Proportional-Integral (PI) control and gain-scheduled Model Predictive

Control (MPC).

 iv

Gain-scheduled controllers are chosen because for nonlinear processes operated over a

wide range of operation, gain-scheduling has proven to be a successful control design

technique (Bequette, 1997) for nonlinear processes. To guarantee the closed-loop

system’s robust stability and performance with the designed controllers, a systematic

approach has been proposed for the design of robust gain-scheduled controllers for

nonlinear processes. The design procedure is based on robust stability and performance

conditions proposed in this work. For time-varying uncertain parameters, robust stability

and performance conditions using fixed Lyapunov functions and parameter-dependent

Lyapunov functions, were used. Then, comprehensive procedures for the design and

optimization of robust gain-scheduled PI and MPC controllers tuning parameters based

on the robust stability and performance tests are then proposed.

Since the closed-loop system represented by the combination of a state-affine process

model and the gain-scheduled controller is found to have an affine dependence on the

uncertain parameters, robust stability and performance conditions can be tested by a finite

number of Linear Matrix Inequalities (LMIs). Thus, the final problems are numerically

solvable.

One of the inherent problems with robust control is that the design is conservative. Two

approaches have been proposed in this work to reduce the conservatism. The first one is

based on parameter-dependent Lyapunov functions, and it is applied when the rate of

change of the time-varying uncertainty parameters is a priori available. The second one is

based on the relaxation of an input-saturation factor defined in the thesis to deal with the

issue of actuator saturation.

Finally, to illustrate the techniques discussed in the thesis, robust gain-scheduled PI and

MPC controllers are designed for a continuous stirred tank reactor (CSTR) process. A

simple MIMO example with two inputs and two outputs controlled by a multivariable

gain-scheduled MPC controller is also discussed to illustrate the applicability of the

methods to multivariable situations. All the designed controllers are simulated and the

 v

simulations show that the proposed design procedures are efficient in designing and

comparing robust gain-scheduled controllers for nonlinear processes.

 vi

Acknowledgements

First and foremost, I would like to thank my supervisor, Professor Hector M. Budman.

During the past four years, Hector has been instrumental in ensuring my academic,

professional and financial wellbeing. In every sense, none of this work would have been

possible without him. It has been a great privilege to work with him.

Many thanks also go to my committee members, Professors Thomas Duever, Daniel

Davison, Peter Douglas, Professor Ali Elkamel, and James McLellan. Thank you for your

constructive and valuable comments, suggestions and contributions to this thesis.

Far too many people to mention individually have assisted and mentored me in so many

ways during my study and work at the University of Waterloo. They all have my sincere

gratitude. In particular, I would like to thank Professors Alexander Penlidis, Jeno M.

Scharer, and Park Reily.

I would like to express my sincere appreciation to my friends, Xi Zhang, Weimin Guo,

Mingsen Zhang, Yong Gu, and many other friends in Waterloo. With their friendship and

support, the four years of work have been years of fun and pleasure. I am also indebted to

all of my colleagues and officemates, and friends in the process control group, especially

to Shijin Lou, Jesse Huebsch, Deborah, Jessada Jitjareonchai, Greer Painter, Clement Lee,

Luigi D’Agnillo, for all the help and the interesting discussions in the lab.

My deepest thank-you goes to my wonderful parents, Aizhen Shen and Wanchun Gao,

for always being there when I needed them most, and never once complaining about how

infrequently I visit. They deserve far more credit than I can ever give them. No matter

where I am, their love always accompanies me and encourages me. My final, and most

heartfelt, acknowledgment goes to my husband Jian Ma. His deep love and patience have

turned my journey through graduate school into a possibility, and a joy. For all that, and

for everything I am given by them, they have my everlasting love.

 vii

Table of Contents
Abstract .. iii
Acknowledgements.. vi
Table of Contents .. vii
List of Tables... x
List of Figures... xi
1 Introduction ... 1

1.1 Empirical Modeling.. 1
1.2 Robust Control... 2
1.3 Objectives and Novelties ... 4
1.4 Outline of the Work ... 5

2 Literature Review .. 8
2.1 Empirical Modeling of Nonlinear Processes............................. 8

2.1.1 Volterra series model .. 10
2.1.2 State-affine model .. 11

2.2 Robustness Analysis ... 12
2.2.1 Quadratic Lyapunov functions .. 13
2.2.2 Parameter-dependent Lyapunov functions 15
2.2.3 Linear matrix inequalities (LMIs) in control 15
2.2.4 Structured singular value (SSV) analysis...................................... 18

2.3 Gain-scheduled Controller Design ... 21
2.4 Robustness of MPC .. 24

3 Uncertain Dynamical Systems .. 29
3.1 Model Uncertainty .. 30
3.2 Uncertain State-space Models .. 32

3.2.1 Affine Parameter-dependent models.. 32
3.2.2 Quantification of model uncertainty .. 35

3.3 Linear-Fractional Models of Uncertainty................................... 36
3.4 Model Identification Methodology .. 37

3.4.1 Volterra series models .. 37
3.4.2 State-affine models .. 39

3.5 Case Study ... 42
3.5.1 Nonlinear process: CSTR .. 42
3.5.2 Volterra series models of the CSTR ... 43
3.5.3 State-affine models of the CSTR... 46

4 Robust Stability and Robust Performance Analysis .. 55
4.1 Linear Matrix Inequalities (LMIs) ... 56

4.1.1 LMIs and LMIs problems.. 56
4.1.2 Well-posedness issues ... 59

 viii

4.1.3 Semi-definite)(xB in GEVP problems ... 60
4.2 Quadratic Lyapunov Functions .. 61

4.2.1 Quadratic Lyapunov stability (QLS) .. 65
4.2.2 Quadratic Lyapunov ∞H performance (QLP)............................... 67

4.3 Parameter-dependent Lyapunov Functions............................ 71
4.3.1 Time-varying uncertain parameters .. 74
4.3.2 Constant uncertain parameters.. 78
4.4.1 Review of the SSV concept... 81
4.4.2 Generation of an ∆−M LFT ... 88
4.4.3 RS and RP conditions for time-varying uncertainty 90

5 Robust Gain-Scheduled PI Controller..................................... 97
5.1 Gain-scheduled PI Controller .. 98

5.1.1 Closed-loop system ... 99
5.1.2 Input-saturation ... 103
5.1.3 Modeling error ... 106

5.2 Design and Optimization using Quadratic Lyapunov
Functions .. 108

5.2.1 Design of robust gain-scheduled PI controller........................... 108
5.2.2 Optimization of robust gain-scheduled PI controllers 109
5.2.3 Relaxation of the input-saturation factor ψ 111

5.3 Design based on SSV Analysis .. 113
5.3.1 Generation of an ∆−M LFT: simple case 113
5.3.2 Generation of an ∆−M LFT: with modeling error 115
5.3.3 Design of robust gain-scheduled PI controllers: SSV analysis
 118

5.4 CSTR Case Study ... 120
5.4.1 Design and optimization using quadratic Lyapunov functions
 122
5.4.2 Reducing conservatism of the quadratic design and
optimization ... 130
5.4.3 Design based on the SSV analysis... 144

5.5 Conclusions... 146
6 Robust Gain-scheduled MPC ... 149

6.1 Unconstrained MPC Control Law .. 151
6.1.1 Model prediction based on step response models................... 151
6.1.2 Unconstrained SISO MPC control law ... 155
6.1.3 Unconstrained MIMO MPC control law 159
6.1.4 Unconstrained MIMO MPC control law in state-space form . 162

6.2 Design and Optimization using Quadratic Lyapunov
Functions .. 168

6.2.1 Selection of MPC tuning parameters.. 168

 ix

6.2.2 Design and optimization of gain-scheduled MPC..................... 169
6.3 Case Study Results and Conclusions 173

6.3.1 Design results for SISO processes ... 173
6.3.2 Design results for MIMO processes.. 180
6.3.3 Conclusions.. 189

7 Conclusions and Future Work... 192
7.1 Conclusions... 192
7.2 Future work.. 198

7.2.1 Reducing conservatism of the gain-scheduled MPC design. 199
7.2.2 Reducing conservatism of the robustness analysis 204

References.. 213
8 Appendix A: Nomenclature for CSTR.................................... 219
9 Appendix B: MATLAB Code... 220

9.1 Model Identification... 220
9.2 Gain-scheduled PI Controllers Design..................................... 225

9.2.1 Quadratic Lyapunov functions .. 225
9.2.2 Parameter-dependent Lyapunov functions 231
9.2.3 Structured Singular Value.. 235

9.3 Gain-scheduled MPC Controllers Design............................... 239
9.3.1 SISO processes .. 239
9.3.2 MIMO processes .. 250

10 Appendix C: Nomenclature .. 265
11 Appendix D: Defense Presentation Slides 268

 x

List of Tables

Table 3.1 Example of Behavior matrix)(fB .. 40
Table 3.2 Volterra kernels (9=M).. 45
Table 3.3 1st-order Volterra kernels and corresponding Behavior matrix entries............. 47
Table 3.4 Volterra kernels and corresponding Behavior matrix entries 52
Table 4.1 Commuting ∆D − pairs ... 86
Table 5.1 Optimization design results .. 128
Table 5.2 Input-saturation factor lower bound for controllers on stability limit 141
Table 5.3 Relaxation of input-saturation factor bound and conservatism reduction 142
Table 6.1 Gain-scheduled MPC controller optimization (SISO)................................... 175
Table 6.2 Gain-scheduled MPC controller simulation (SISO) 176
Table 6.3 Compare: Gain-scheduled PI and Gain-scheduled MPC............................... 179
Table 6.4 MPC controller analysis (comparing LMPC-M and GSMPC-M).................. 182
Table 6.5 MPC controller simulation (comparing LMPC-M and GSMPC-M).............. 183
Table 6.6 MPC controller optimization .. 187
Table 7.1 Simulation results of two MPC controllers... 203
Table 8.1 Nomenclature for exothermic CSTR .. 219
Table 9.1 MATLAB files for model identification... 220
Table 9.2 MATLAB files for Gain-scheduled PI design: fixed Lyapunov functions 225
Table 9.3 MATLAB files for Gain-scheduled PI design:parameter-dependent Lyapunov

functions.. 231
Table 9.4 MATLAB files for Gain-scheduled PI design: SSV 235
Table 9.5 MATLAB files for Gain-scheduled MPC design: SISO 239
Table 9.6 MATLAB files for Gain-scheduled MPC design: MIMO.............................. 250

 xi

List of Figures

Figure 2.1 Complex disc covering real interval.. 20
Figure 3.1 General ∆−M LFT framework ... 37
Figure 3.2 Open loop simulation .. 43
Figure 3.3 Input/output data.. 44
Figure 3.4 CSTR process output (solid line) and Volterra series model output (dotted line)

... 46
Figure 3.5 CSTR process output (solid line) and state-affine model output (dotted line) 53
Figure 4.1 General ∆−M LFT framework ... 83
Figure 4.2 Equivalent ∆−M framework (Equation (4.74)) ... 89
Figure 4.3 Equivalent ∆−M framework (Equation (4.77)) .. 90
Figure 4.4 Equivalent ∆−M framework (equation (4.82))... 90
Figure 4.5 Equivalent scaled and transformed loops for robust stability 93
Figure 4.6 Equivalent scaled and transformed loops for robust performance 94
Figure 5.1 Open-loop properties of CSTR ([]4010−=cx)... 121
Figure 5.2 Stability and performance regions (to the left of the lines) of linear PI

controller parameters. ... 123
Figure 5.3 Performance region (inside the lines) of gain-scheduled PI controller

parameters. .. 125
Figure 5.4 Stability region (inside the lines) of gain-scheduled PI controller parameters.

... 126
Figure 5.5 Closed-loop simulations of state-affine model (lower two curves)............... 129
Figure 5.6 Stability region (to the left of the lines) of linear PI controller parameters

(comparing: fixed Lyapunov function (solid) and parameter-dependent Lyapunov
function (dotted)). ... 132

Figure 5.7 Performance region (to the left of the lines) of linear PI controller parameters
(comparing: fixed Lyapunov function (solid) and parameter-dependent Lyapunov
function (dotted)). ... 134

Figure 5.8 Stability region (inside the lines) of gain-scheduled PI controller parameters
(comparing: fixed Lyapunov function (solid) and parameter-dependent Lyapunov
function (dotted)). ... 136

Figure 5.9 Performance region (inside the lines) of gain-scheduled PI controller
parameters (comparing: fixed Lyapunov function (solid) and parameter-dependent
Lyapunov function (dotted)). .. 137

Figure 5.10 Stability regions (to the left of the lines) of linear PI controller parameters
(comparing: without input-saturation (solid) and with []14.0∈ψ (dotted)). 138

Figure 5.11 Performance regions (to the left of the lines) of linear PI controller
parameters (comparing: without input-saturation (solid) and with

[]14.0∈ψ (dotted))... 139
Figure 5.12 Stability regions (to the left of the lines) of linear PI controller parameters

(comparing: without input-saturation (solid), with []14.0∈ψ (dotted) and with
[]16203.0∈ψ (dashed)). ... 140

 xii

Figure 5.13 Performance regions (to the left of the lines) of linear PI controller
parameters (comparing: without input-saturation (solid), with []14.0∈ψ (dotted)
and with []16203.0∈ψ (dashed)).. 141

Figure 5.14 Stability region (inside the lines) of gain-scheduled PI controller parameters
(comparing: quadratic Lyapunov approach (solid) and SSV approach (dotted)). .. 144

Figure 5.15 Performance region (inside the lines) of gain-scheduled PI controller
parameters (comparing: quadratic Lyapunov approach (solid) and SSV approach
(dotted))... 145

Figure 6.1 Step response of a process... 151
Figure 6.2 Model predictive control problem... 156
Figure 6.3 Vertices of the parameter box to be tested for robust stability...................... 175
Figure 6.4 GSMPC5-1 (solid line) and GSMPC5-2 (dotted line) simulation 177
Figure 6.5 Disturbance signal used for the results in Table 6.2...................................... 178
Figure 6.6 GSPI (dotted line) and GSMPC3 (solid line) simulation 179
Figure 6.7 LMPC-M (solid line) and GSMPC-M (dotted line) simulation (]100,1[=t) 184
Figure 6.8 LMPC-M (solid line) and GSMPC-M (dotted line) simulation (]500,1[=t)185
Figure 6.9 Disturbance signal used for the simulation ... 185
Figure 6.10 LMPC-M-OPT (solid line) and GSMPC-M-OPT (dotted line) simulation 187
Figure 6.11 LMPC-M-OPT (solid line) and GSMPC-M-OPT (dotted line) simulation 188
Figure 7.1 Step response (]1,8.0[],1,0[21 −∈∈ uu) ... 201
Figure 7.2 Step response (]8.0,1[],0,1[21 −−∈−∈ uu).. 202
Figure 7.3 GS-MPC-1 (solid line) and GS-MPC-2 (dotted line) simulation.................. 202
Figure 7.4 Disturbance signal used for the simulation results in Figure 7.3 and Table 7.1

... 203
Figure 7.5 Parameter box.. 211

 1

1 Introduction

Chemical or biochemical processes are in general highly nonlinear especially when

operated over a wide range of operating conditions. The nonlinearity is generally related

to reaction kinetics or nonlinearity of physical properties. Therefore, there is a strong

motivation to control these processes with nonlinear controllers. However, there are not

many general design procedures to deal with this task, and there are many difficulties to

design such controllers because of the systems nonlinearity.

For model-based control design problems for highly nonlinear processes, the first

difficulty is to obtain a good simple model of the processes under study. Relatively

simple empirical models can be identified from process input/output data. Different

techniques such as Volterra series or nonlinear auto-regressive moving average models

(NARMA) have been used to identify reduced-order empirical models of the process.

The second major difficulty is that although the nonlinear models used in this thesis are

easy to identify, the analysis of stability and performance for such models using nonlinear

control theory is not straightforward. Since the state-affine models used in this work can

be easily approximated by a nominal linear part and model uncertainty, robust control

theory is a natural choice to analyze this type of models. This research deals with the

application of robust control theory for the design of control techniques such as gain-

scheduling control, Proportional-Integral (PI) control, and Model Predictive Control

(MPC). Methods for quantifying the model uncertainty from experimental data are shown.

Then, the corresponding controllers are designed to provide robust stability and

performance in the presence of model/plant mismatch.

1.1 Empirical Modeling

In general, the design of high performance controllers requires accurate mathematical

modeling of the nonlinear processes to be regulated. Two types of nonlinear models may

 2

be considered: 1-first principle models, i.e., models based on mass and energy balances;

and 2-empirical models.

In many cases it is difficult to find proper first principle models due to, for example, the

fact that kinetic properties are very difficult to identify or may change as a function of the

operating conditions and thus, it is difficult to come up with the correct model. Even in

cases where the kinetic properties are known accurately, the development of first

principle models may be impractical for model based control if the model requires a large

number of differential equations with a significant number of dynamic states. These

models may also include a significant number of parameters that may be very costly to

identify.

For the above reasons, an attractive alternative is to use relatively simple and compact

empirical models obtained directly from measured input/output data. Examples of

nonlinear empirical models are NARMA models, Volterra series models and state-affine

models. This work uses an algorithm that produces nonlinear state-affine models from

process input/output data, through an intermediate-step identification of the Volterra

series models.

1.2 Robust Control

This study proposes the design of a robust controller based on a nonlinear state-affine

model of a nonlinear process. The main subject of this work deals with the analysis and

design of the nonlinear closed-loop control system. In the design, given a nonlinear plant

to be controlled and some closed-loop specifications, the task is to construct a controller

such that the closed-loop system meets the desired characteristics.

Linear control is a mature subject with a wide variety of powerful design methodologies

and a long history of successful industrial applications. However, there is an active

interest in the development and applications of nonlinear control methodologies. Many

reasons can be cited for this:

 3

1. Improvement of existing control systems: Linear control methods rely on the key

assumption of small range operation for the linear model to be valid. When the required

operation range is large, a linear controller is likely to perform very poorly or be unstable,

because the nonlinearities in the system can not be properly compensated for. Nonlinear

controllers, on the other hand, may handle the nonlinearities in a larger range of operation.

2. Analysis of hard nonlinearities: Another assumption of linear control is that the

system model is indeed linearizable. However, in control systems, there are many

nonlinearities whose discontinuous nature does not allow linear approximation. These so-

called “hard nonlinearities” (Slotine and Li, 1991) such as saturation and dead-zones, are

often found in control engineering. Their effects cannot be derived from linear methods,

and nonlinear analysis techniques must be developed to predict a system’s performance

in the presence of these inherent nonlinearities.

3. Dealing with model uncertainties: In designing linear controllers it is usually

necessary to assume that the parameters of the system model are reasonably well known.

However, many control problems involve uncertainties in the model parameters. This

may be due to slow time-variation of the parameters or parameter dependence on

conditions. A linear controller based on inaccurate values of the model parameters may

exhibit significant performance degradation or even instability. Nonlinearities can be

intentionally introduced into the controller so that model uncertainties can be tolerated.

Two classes of nonlinear controllers for this purpose are robust controllers and adaptive

controllers.

Robust controllers are the focus of the current study. As a result, a comprehensive

methodology to design robust gain-scheduled PI controllers and robust gain-scheduled

MPC controllers, is presented here in this work. Our methodology comprises an

identification step from plant data and the finding of the optimal model parameters. The

objective is to propose a methodology that will be easy and fast to apply in industrial

applications. Conditions which guarantee robust stability and performance are formulated

 4

as a finite set of Linear Matrix Inequalities (LMIs) and hence, the resulting problem is

numerically tractable.

1.3 Objectives and Novelties

In summary, the objective of this work is to propose a comprehensive design procedure

for gain-scheduled controllers, which can guarantee the robust stability and performance

of the closed-loop systems. The fundamental basis of this work is the state-affine model

previously developed and used in the work of Budman and Knapp (2000, 2001). By

representing a nonlinear process with this model, it is possible to quantify the system

uncertainty from the process nonlinearity, which is a function of the current input

variable only.

The traditional gain-scheduling design technique is based on local linearization of the

nonlinear processes, and it has proven to be a successful design methodology in many

engineering applications (Bequette, 1997). However, in the absence of a sound theoretical

analysis, these designs come with no guarantees of robust stability, performance or even

nominal stability of the overall gain-scheduled design (Shamma and Athans, 1990). This

work presents such an analysis for one type of nonlinear gain-scheduled control system.

This gain-scheduled control system is novel in that it is based on the process input,

different from the gain-scheduled designs in the literature based on the process output or

system reference trajectory (Shamma and Athans, 1990). The gain-scheduling PI

controller parameters are changing as a continuous function of the scheduling variable,

i.e., the process input, instead of being switched at discrete values.

A methodology is proposed for the design and optimization of the robust gain-scheduled

controllers. Conditions which guarantee robust performance are proposed in this work as

extensions of the previous work on robust stability by Budman and Knapp (2001)

formulated as a finite set of Linear Matrix Inequalities (LMIs). The work by Budman and

Knapp (2001) was only applied to the design of traditional gain-scheduled PI controllers,

which satisfy closed-loop robust stability. In this work, both the robust stability and the

 5

robust performance conditions are applied for the design of the novel continuous gain-

scheduled PI controllers. The resulting problem formulated as a finite set of LMIs is

numerically tractable. Issues of modeling error and input-saturation are explicitly

incorporated into the analysis.

Additionally and in contrast with the nonlinear MPC controllers used in the literature

(Chen and Allgower (1998)), gain-scheduled MPC controllers, based on the discretization

of the operation range, are proposed in this work. The design of the gain-scheduled MPC

controllers consists of optimizing the controller parameters, specifically the input weights,

and of scheduling the step response matrix of the MPC controller, based on the input

variables.

The inherent conservatism of robustness analysis results in smaller ranges of controller

parameters that satisfy the design criteria and consequently in degraded performance.

Two approaches, the use of parameter-dependent Lyapunov function and relaxation of

the input saturation factor bounds, are proposed to reduce the conservatism of the

controller design. The parameter-dependent Lyapunov function has been proposed in the

literature (Gahinet, Apkarian and Chilali in 1994), and applied for continuous systems. In

this work, it is extended to the robustness analysis of discrete-time systems. The

relaxation of the input-saturation factor is proposed in this work, and to our knowledge it

has not been reported in the literature.

Finally, several alternatives to reduce the conservatism of the analysis, are proposed at

the end of the work as subjects for future study.

1.4 Outline of the Work

The thesis is organized in chapters as follows:

Chapter 1. provides an overview of the work.

 6

Chapter 2. includes a complete literature review, which covers the available techniques to

approach the problem of empirical modeling and robust stability and performance

analysis. Robustness issues with respect to gain-scheduled PI and MPC controllers are

also specifically reviewed.

Chapter 3. reviews identification methods of nonlinear processes using state-affine

models from its input/output data. The representation method of the state-affine model as

affine parameter-dependent systems is illustrated, and the approach for quantifying the

model uncertainty is also given.

Chapter 4. presents the most fundamental analysis tools used in this work, including the

approach based on Lyapunov function and the approach using structured singular value

(SSV) analysis. For the first approach, the concept of quadratic Lyapunov stability and its

extension to stability and performance analysis of nonlinear systems are reviewed.

Several techniques, based on parameter-dependent Lyapunov functions, are proposed in

this work for reducing the conservatism of the quadratic Lyapunov stability and

performance tests. For the second approach, the original SSV theory in frequency-domain

is first given, and then the development of the SSV extensions to deal with nonlinear and

time-varying uncertainty is summarized. Finally, the two approaches are compared.

Chapter 5. proposes the gain-scheduled PI controller design methodology. First, a gain-

scheduled PI controller structure is proposed which schedules the tuning parameters as a

continuous function of the manipulated variable. The systematic robust design approach

is then proposed to generate regions of the gain-scheduled PI controller parameters in the

parameter space, which guarantee the closed-loop systems’ robust stability and

performance. The design is based on the satisfaction of the robust stability and

performance conditions. The robustness conditions include the quadratic Lyapunov

stability and performance conditions, the less conservative parameter-dependent

Lyapunov function proposed in this thesis, and the SSV extensions. An analytical

approach calculating the input-saturation factor bounds is also first developed in this

work and applied to reduce the conservatism of the design.

 7

Chapter 6. proposes the gain-scheduled MPC controller design methodology. A

systematic robust design approach is proposed to compute proper input weights in the

objective function of the MPC controllers, which guarantee the closed-loop systems’

robust stability and performance. The design is based on the global satisfaction of the

robust stability and performance conditions, and in this chapter, only the conditions based

on the quadratic Lyapunov functions are used. This approach is different from the gain-

scheduled designs proposed before in the literature. Modifications have been developed

in this work to improve the traditional linear MPC formulation, which are very important

to the design approach proposed here. First, explicit incorporation of plant uncertainty

into the optimization objective function is realized by using the state-affine model for

process output approximation. Second, to calculate the model based control actions, the

step-response matrix is modified such that it changes according to the manipulated

variable, to compensate for the system nonlinearity. Finally, extensions have been made

for the design of MPC controllers for multi-input-multi-output (MIMO) processes.

Chapters 1.-5. concentrate on single-input-single-output (SISO) nonlinear systems

represented in discrete-time form. Both SISO and MIMO nonlinear systems are

considered in Chapter 6. The SISO case study example selected for this work is a typical

chemical engineering process, a continuously stirred tank reactor (CSTR). Results on the

CSTR process are presented in the different chapters. The theorems and approaches

developed in this work can also be applied to other types of nonlinear chemical systems

as explained in the thesis. The CSTR was selected as a case study example due, on the

one hand, to the simplicity of its mathematical representation with only two dynamical

states, i.e. reactor temperature and reactor concentration, and on the other hand, to its

inherent nonlinearity. For the MIMO case study in Chapter 6, a simple 2x2 system is

selected for simplicity, which is in the form of a state-affine model. If a real process is

selected, it will be represented by this 2x2 state-affine model in the end, for the

application of the approached proposed in this work.

 8

2 Literature Review

The emphasis of this PhD work has been in developing accurate models of nonlinear

processes and the development of stable and robust controllers for these processes. One

of the main areas of interest in this field is robust control using nonlinear empirical

models. This chapter will discuss some of the important work that has been performed in

this field in recent years. Section 2.1 will discuss work that has been conducted in the

area of nonlinear modeling based on input/output data. In section 2.2, major contributions

to the analysis of robust stability and performance will be reviewed. Section 2.3 will

focus on the gain-scheduling design approach. In section 2.4, the work on robustness of

MPC controllers for nonlinear and uncertain processes is reviewed.

2.1 Empirical Modeling of Nonlinear Processes

Two key problems arise during the design stage of a robust controller for a nonlinear

process:

1. Accurate mechanistic models are often difficult to obtain especially since many of the

parameters are poorly known;

2. Even when mechanistic models are available, it is not trivial to quantify from them

uncertainty bounds for robustness analysis purposes.

For example, Doyle et al. (1989, 1990) using a structured singular value approach,

designed a robust linear controller for an exothermic CSTR. The method requires that:

• A mechanistic first-principles model of the process is available;

• An optimization procedure is carried out to find bounds on the perturbations

representing nonlinearities of the model.

 9

Unfortunately, in many situations, a mechanistic model of a nonlinear chemical process is

not readily available from first principles. For instance, for biological reactors, the

reaction kinetics are often unknown or very difficult to measure. Additionally, the

optimization procedure proposed by Doyle to calculate uncertainty bounds was not trivial

and may become very difficult when the model contains a large number of states.

A viable alternative to mechanistic modeling is to develop nonlinear empirical models

directly from experimental input/output data. Using persistent-excitation signals based on

the rules developed by Nowak and Van Veen (1994), limited experimental effort is

required to identify nonlinear empirical models. One disadvantage with the use of

empirical models is that they may have a structure, which is not totally correct to describe

the actual nonlinear process, making it difficult to extrapolate the model predictions for

operating conditions beyond the experimental data used for model training. Despite this,

nonlinear empirical models still find a wide application in the field of nonlinear model-

based control.

Based on the above considerations, in the current work, nonlinear empirical models were

used. Examples of nonlinear empirical models are nonlinear auto-regressive moving

average models (NARMA) (Haber, 1990; Hernandez, 1993), Volterra series models (e.g.,

Nowak, 1994) and state-affine models (Dang Van Mien, 1984; Diaz, 1988). However,

NARMA and Volterra series models are not directly suitable for robust stability and

performance analysis due to the dependence of the output on past inputs and outputs

raised to different powers and in different product combinations. If all these products and

high-order terms will be accounted for as model uncertainty in a robustness analysis, a

very conservative design may result. On the other hand, it was found in a previous work

by Knapp and Budman (2000) that nonlinear state-affine models initially proposed by

Sontag (1978) and represented by equation (2.1) are ideally suited for the robustness

analysis. The form of the model is as follows:

)())(()(
))(()())(()1(

ttuty
tuttut

xH
GxFx

=
+=+

(2.1)

 10

where x is the state vector and (.)(.),(.), HGF are polynomial matrices, for example,

K+++= 2
210))((uutu FFFF . These models have the distinct advantage that the

nonlinear terms, which are assumed to be the source of model mismatch with respect to a

nominal linear model, have a clear structure and are a polynomial function of the current

inputs)(tu only. This fact greatly facilitates the calculation of the uncertainty bounds

since the inputs have a priori known limits due to, e.g., actuator limits or economic

constraint considerations. Then, for the purpose of robustness analysis, a minimal state-

affine realization in the form of equation (2.1) may produce less conservative results,

regarding stability and performance compared to other nonlinear modeling techniques. It

has been shown that nonlinear state-affine models can be synthesized from a Volterra

series (Sontag, 1978). This will be further reviewed in the current work.

Empirical modeling of nonlinear processes has been a topic of much research for many

years and several types of models have been reported. Only the nonlinear models relevant

to this thesis will be discussed in the sequel, i.e., Volterra series models and state-affine

models.

2.1.1 Volterra series model

A Volterra series model relates the output of a process to a polynomial of past inputs.

Volterra theory is a generalization of the linear convolution integral approach often

applied to linear, time-invariant systems. The theory states that any time-invariant,

nonlinear system can be modeled as an infinite sum of multidimensional convolution

integrals of increasing order. This method is the generalization of an impulse response for

linear processes.

Sandberg (1992) showed that for a large class of systems, a truncated Volterra series

provides a uniform approximation to the infinite Volterra series on a hyper-volume of

bounded inputs. The Volterra series model is attractive because it is a straightforward

generalization of the linear system description. Specifically, the parameters of the model

 11

are linearly related to the output, hence the identification of the parameters is a linear

regression problem that can be solved by standard least squares regression.

A complete review of Volterra series models can be found in the textbook of Schetzen

(1989). In the present work, the identification of Volterra series model was conducted as

an intermediate step towards the identification of a state-affine model. This identification

procedure is explained in Chapter 3.

Nowak and Van Veen (1994) identified an input signal that provides persistent excitation

(PE) for nonlinear Volterra series approximation using a least squares method. They

showed that deterministic pseudo-random multilevel sequences (PRMS) are persistently

exciting for a truncated Volterra series of polynomial order N only if the sequences take

on (N+1) or more distinct levels. In the current work, this input signal is used to generate

input/output data for Volterra series model identification. Marmarelis (1978) gave

definitions and properties of PRMS for reference.

2.1.2 State-affine model

Sontag (1978) studied a general type of input/output nonlinear relation known as a

response map, which specified how past values of the input affect the present output of

the system. Using the response map description, Sontag developed a very general

realization theory for a class of nonlinear systems called state-affine system, i.e. systems

that are affine in the state variables but are nonlinear with respect to the inputs. This

system is represented by equation (2.1). The theoretical proofs and realization algorithms,

in Sontag’s work, offered a basis for the subsequent research work on discrete-time state-

affine model realization. The idea behind Sontag’s work is to find a minimal state-affine

realization departing from a Volterra series model, which can be identified from

input/output data. Sontag’s algorithm is provided in Chapter 3 of this work for reference.

Based on Sontag’s algorithm, for nonlinear processes, Knapp and Budman (1999, 2000,

2001) used an empirical state-affine model extracted from a Volterra series model for

 12

robustness analysis of a nonlinear system under linear PI control. The state-affine model

is of the form:

)()(

)(})({)(})({)1(

0

1

1
11

1

1
0

tty

tututtut
n

i

i
i

n

i

i
i

xH

GGxFFx

=

+++=+ ∑∑
−

=
+

−

=

(2.2)

where iii HGF ,, are matrices of model coefficients,)(tx are the process states,)(ty is

the output,)(tu is the manipulated variable. The model given in equation (2.2) can be

easily identified from input/output data as explained by Budman and Knapp (2000, 2001).

The nonlinear terms with respect to the nominal linear model, assumed to be the main

source of the uncertainty, are directly related to powers of the input. Since in practice the

inputs are bounded by known limits, it is easy to quantify the uncertainty bounds. Thus,

the optimization procedures such as the one proposed by Doyle (1989, 1990) to calculate

the uncertainty bounds can be avoided, facilitating the application of the technique to

systems with a large number of states. Sontag’s algorithm (1978) calculated the model in

equation (2.2) from a Volterra series model directly identified from input/output data.

Thus, a first-principles model is not necessary.

2.2 Robustness Analysis

There are many options to consider when choosing a control strategy for a process, but,

regardless of which control strategy is implemented, the controller will generally be

designed based on a simplified model of the process. These models generally have

varying degrees of accuracy, which do not take into account all model behavior.

Controllers designed based on these models are desired to be robust in the presence of

model uncertainty or model inaccuracy. A-posteriori robustness analysis is then

necessary to validate the design and obtain guarantees of stability and performance in the

face of plant uncertainty. In the literature, a variety of tools are available to assess robust

stability and performance.

 13

This section reviews most of the available Lyapunov-based analysis techniques: quadratic

stability and performance analysis, and tests involving parameter-dependent Lyapunov

functions, and structured singular value (SSV) analysis. Since all of these tests are based

on sufficient conditions, they are only useful when they succeed in establishing finite and

feasible robust stability and performance bounds.

2.2.1 Quadratic Lyapunov functions

The most useful and general approach for studying the stability of nonlinear control

systems is the theory introduced in the late 19th century by the Russian mathematician

Alexandr Mikkailovich Lyapunov. Lyapunov’s work, The General Problem of Motion

Stability, first published in 1982, includes two methods for stability analysis, the

linearization method and the direct method. The linearization method draws conclusions

about a nonlinear system’s local stability around an equilibrium point from the stability

properties of its linear approximation. The second method, referred to as the direct

method, is not restricted to infinitesimal localized motion, and determines the stability

properties of a nonlinear system by constructing a scalar “energy-like” function for the

system and examining the function’s time variations. The details of these two methods

are summarized in many books, e.g., Slotine and Li (1991). Today, Lyapunov’s

linearization method is the basic theoretical analysis method for linear control. The

Lyapunov’s direct method has become the most important tool for nonlinear system

analysis and design. Together, the linearization and the direct method constitute the so-

called Lyapunov stability theory. The objective of this section is to review the application

of Lyapunov stability theory in the analysis and design of nonlinear control systems.

Lyapunov’s direct method and its extensions to performance analysis are applied in this

work to uncertain time-varying systems. In the literature, linear matrix inequalities (LMIs)

based tests have been derived to assess closed-loop robust stability and robust

performance. LMIs problems are convex and efficient polynomial-time optimization

algorithms are available to solve them, e.g., MathWorks MATLAB. The stability and

 14

performance tests can be formulated as a finite set of LMIs and hence, the resulting

problem is numerically tractable.

Gahinet and Apkarian (1994) have solved continuous and discrete-time ∞H control

problems via elementary manipulations on LMIs. A LMIs-based parameterization of all

suboptimal ∞H controllers has been given, including reduced-order controllers.

Gahinet’s work has also been based on quadratic Lyapunov functions for stability and

performance analysis.

Budman and Knapp (2001) proposed the use of empirical state-affine model to design

robust controllers. A novel methodology was proposed for the analysis of robust stability

of a nonlinear process under Proportional-Integral (PI) control. This methodology has the

advantage that it is based solely on empirical models. The state-affine model is nonlinear

with respect to the manipulated variables. This model in combination with a linear PI

controller results in a closed-loop model that can be shown to lie in a polytope of

matrices. This allows for the formulation of a Lyapunov stability test in terms of a finite

set of LMIs. The stability analysis has been used in their work to produce regions of

stability in the PI controller parameters space. This technique has also been applied to test

the stability of the closed-loop system with a simple traditional gain-scheduled PI

controller. The analysis has been based only on robust stability while no robust

performance has been considered in that work.

Gao and Budman (2003) have extended the robust stability analysis (Budman and Knapp,

2001) by considering robust performance for the design of a novel class of gain-

scheduled PI controllers. The tuning coefficients of the controller used by Gao and

Budman are continuous linear functions of the manipulated variable and these linear

functions are defined in terms of four parameters only, whereas in the work of Budman

and Knapp (2001) the switching of the controller parameters was effected at finite

discrete values. A PI controller structure was selected because it is widely accepted in

chemical process control practice. Subsequently, Gao’s work addresses the optimization

of these parameters. The parameterization of the proposed controller in terms of a

 15

relatively small number of parameters greatly facilitates the optimization step. These new

results are the core of the present thesis and will be shown in later chapters of this thesis.

2.2.2 Parameter-dependent Lyapunov functions

Quadratic Lyapunov stability and ∞H performance tests guarantee stability and

performance in the presence of uncertain parameters without considering the parameter

rate of change. As a result, compared to the case when this information is taken into

account intot he design, these tests can be very conservative for time-varying parameters,

thus affecting the efficiency of the design (Gahinet, Apkarian and Chilali, 1994; Gao and

Budman, 2003).

To reduce conservatism in such cases, the notion of parameter-dependent Lyapunov

functions was proposed by Gahinet, Apkarian and Chilali (1994). That is, for Lyapunov

functions)()()()(tttV t
T ηδPη= , the Lyapunov matrix)(tδP is no longer constant, but it

is now a function of tδ . In their work, it was shown that by imposing additional

constraints on the parameter-dependent Lyapunov functions, the calculation of a

Lyapunov matrix of the form:

tnnttt ,,22,110)(δδδ PPPPδP ++++= L (2.3)

can be formulated into a LMIs problem for the unknown matrices nPPPP L,,, 210 . The

resulting test is therefore numerically tractable while always less conservative than

quadratic tests based on fixed Lyapunov matrices, i.e. 0PP = in equation (2.3) because

there are more parameters available for optimization.

2.2.3 Linear matrix inequalities (LMIs) in control

LMIs based techniques have emerged as powerful design tools in control engineering.

Boyd and et al. (1994) have given a good introduction to LMIs concepts. It has been

 16

shown that a wide variety of problems rising in system and control theory can be reduced

to a convex optimization problem involving LMIs. Since these resulting optimization

problems can be solved numerically very efficiently using recently developed interior-

point methods (Boyd and et al., 1994), the resulting LMIs formulation is an attractive

form of solution to complex problems. In comparison, the more conventional approach is

to seek an analytic or frequency-domain solution to the matrix inequalities. In summary,

three factors make LMIs techniques appealing:

1. A variety of design specifications and constraints can be expressed as LMIs.

2. Once formulated in LMIs, a problem can be solved using efficient numerical convex

optimization algorithms available in MATLAB.

3. The main strength of LMIs formulations is the ability to combine various design

constraints or objectives, with no analytical solutions in terms of matrix equations, in a

numerically tractable manner (Wang and Balakrishnan, 1999; Budman and Knapp, 2001).

Many control problems and design specifications can be formulated as LMIs conditions,

especially for Lyapunov-based analysis and design (Apkarian, 1995; Watanabe, 1996;

Sivrioglu and Nonami, 1996). Packard et al. (1991) have given a collection of robust

control problems that may be formulated in terms of LMIs. This is also true for optimal

LQG control, ∞H control, etc. Further applications of LMIs arise in estimations,

identification, optimal design, matrix scaling problems, and so on.

To show the principles underling the LMIs based design, the following two LMIs

formulations of typical design objectives are shown here, while they are further detailed

in later chapters in this work.

Stability: the stability of the dynamical system

 17

0)0(),()1(ηηAηη ==+ tt (2.4)

is given based on Lyapunov by the following problem:

Find TPP0P => , such that 0PPAA <−T (2.5)

This can be generalized to the case where A is assumed to vary within a polytope of

matrices. Specifically,

10,11 =>++= ∑
i

iiKK qqqq AAA K (2.6)

where KAA ,,1 K are fixed. Here the sqi ' are the coefficients of a convex decomposition

of A over the set },,{ 1 KAA K of vertices of the polytope. A sufficient condition for the

asymptotic stability of this system is the feasibility of a set of LMIs as follows:

Find TPP0P => , such that Kii
T

i ,,1, K=<− 0PPAA (2.7)

RMS gain: for a stable system as follows:

0)0(
)(
)(

)(
)1(

ηη
ν
η

DC
BA

e
η

=

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ +
t
t

t
t

(2.8)

The random-mean-squares (RMS) gain is the largest input/output gain γ ,
22 LL

ve γ< ,

over all bounded inputs. This gain is the global minimum of the following linear

objective minimization problem:

 18

0
IDC

DIPBBPAB
CPBAPPAA

PP0P

<
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−

=>

TTT

TTT

tosubject

T

2

2

,
min

γ

γ

(2.9)

Efficient interior-point methods (Boyd and et al., 1994) are available to solve the LMIs

problems. In this work, the MATLAB LMIs Toolbox is used for the formulation and for

the solution of the LMIs.

2.2.4 Structured singular value (SSV) analysis

A second technique to analyze the robustness of a closed-loop system is based on the

structured singular value, referred to as µ , of a matrix. The basic concepts and results are

summarized and reviewed by Doyle and Packard (1988, 1989).

For the case of linear model/plant mismatch, i.e. linear model with linear time-invariant

perturbation, the model uncertainty has been handled most efficiently by the SSV

approach (Packard and Doyle, 1987). The authors based the robust stability test on the

closed-loop system’s state-space representation, which can be decomposed into a linear-

fractional transformation (LFT) structure made of a nominal constant part and an

uncertain part representing changes in operating conditions. Necessary and sufficient

conditions are obtained which guarantee stability and performance levels for the

perturbed system, based on the bounds calculated from the above uncertain part.

However, the stability and performance conditions with structured uncertainty reduce to

computing µ for constant matrices)(jwG and then taking sup over jw .

Suppose an uncertainty structure has only full blocks, and the perturbations are modeled

as linear and time-invariant. It is shown by Doyle and Packard (1987) that the frequency

domain µ test can conceptually be reduced to a single constant matrix µ test, but the

actual uncertainty structure must be augmented with a repeated scalars block of size

 19

equal to the state dimension. The key idea there is that the Laplace transform variable s ,

when appropriately transformed to the unit disk 1≤z , can itself be interpreted as an

additional block of repeated scalars in an augmented structure, replacing the search over

the jw term in the frequency domain. In view of the counter example given by Packard

and Doyle (1988), it is likely that in this case of the augmented uncertainty structure, the

upper bound of µ will not equal µ , and the conclusions will be conservative. Instead,

for the original full block structure uncertainty, a frequency domain upper bound test is

appropriate, since it has been found that for the frequency domain test, µ and the upper

bound are very close. However, it is important to realize that the frequency domain test

only gives conclusions about linear time-invariant perturbations. It is also applicable to

time-invariant parameter-dependent systems by first deriving an equivalent LFT

representation.

If the uncertainties are nonlinear and/or time-varying, then in general, the frequency

domain tests are not valid. The upper bound approaches based on constant matrix

operations proposed by Packard and Doyle (1988) handle this type of uncertainty, and the

motivation which led to their development was the relationship between µ and the upper

bound. These new advances in SSV theory allowed the application of the results to a

class of time-varying and nonlinear models. Doyle, Packard and Morari (1989) have

applied this technique to the calculation of margins of robust stability and robust

performance for a nonlinear CSTR model, which is represented as a dynamical system

with cone-bounded nonlinearities.

Doyle, Packard and Morari (1989) identified these bounds and designed a robust linear

controller for the CSTR using extensions of SSV results to handle a class of time-varying

and nonlinear systems. In Doyle’s work, a first-principles model of the process is

developed, from which conic bounds on the nonlinearities are found. Assuming that the

model uncertainty is entirely due to the nonlinearities of the process, it was possible to

use these conic bounds to describe the process with a linear nominal model augmented by

a suitable uncertainty structure. Sufficient robust stability and robust performance

 20

conditions for time-varying complex uncertainty are given, while the authors also

mentioned that less conservative results are possible by considering real variations in the

uncertainty, as the uncertainty for the CSTR model is more accurately described by real

perturbations. Suppose that a real parameter k is assumed to be constant but uncertain,

and the value of k is modeled to lie in an interval with a real uncertainty δ , shown by

the dark line inside the disc in Figure 2.1 , as follows:

}1,:4.02.1{]6.1,8.0[≤∈+∈⇒∈ δδδ Rkk (2.10)

Figure 2.1 Complex disc covering real interval

However, the value of k is modeled to be the disc in Figure 2.1 with a complex

uncertainty δ as follows:

}1,:4.02.1{]6.1,8.0[≤∈+∈⇒∈ δδδ Ckk (2.11)

In general, using discs instead of intervals to model real uncertain parameters leads to

more conservative robustness properties.

The identification of the bounds shown by Doyle (1989) is not trivial and requires careful

observation of the nonlinearities to be bounded and the solution of an optimization

problem to calculate the conic sectors. Additionally, Doyle’s analysis (1989, 1990) was

based on a mechanistic model, which for many processes is often not available.

Im

0.4 0.8 1.2 1.6 2.0

 21

To deal with these issues, Knapp and Budman (2000) used state-affine models identified

from input/output data to design robust linear controllers for the nonlinear CSTR based

on SSV robust stability analysis. A key advantage in using this state-affine model is that

the model uncertainty, related to the system nonlinearity, is a function of the inputs only.

This greatly facilitates the quantification of model uncertainty since bounds on the inputs

are generally known, e.g., due to saturation limits of process actuators. One difficulty in

using SSV analysis is that it is currently not clear how to integrate hard constraints on

actuators into the test. This can be accomplished by using a LMIs formulation based on

Lyapunov stability theory as shown by Knapp and Budman (2001).

Another problem is that the function)(M∆µ is not necessarily a continuous function

when all of the perturbation blocks are real. This mathematical fact is pointed out by

Barmish and et al. (1990), and an example is given where the robustness margin to real

parameter uncertainty changes abruptly for infinitesimal changes in the problem data.

Also, in the Barmish and et al. (1990) example, the structured singular value of the

frequency response exhibits discontinuities across frequency. What is the significance of

these issues on)(M∆µ ? The discontinuities can cause problems in the convergence of

the lower bound algorithm. For problems with purely real uncertainty, the lower bound

algorithm may converge to a value which is significantly lower than)(M∆µ itself, or

may not even converge at all. This could be a serious problem, but usually it is not,

because almost all problems have a full complex block associated with a robust

performance specification. It turns out that if a)(M∆µ problem has at least one complex

block that counts, then the function)(M∆µ will be continuous at the problem data.

Sometimes, though, a robust stability calculation for an uncertain system with only real

uncertainties is needed.

2.3 Gain-scheduled Controller Design

 22

Gain-scheduling is a common engineering practice used to control nonlinear plants in a

variety of engineering applications. Bequette (1997) reviewed the traditional gain-

scheduled process control. A typical gain-scheduled design procedure for nonlinear

plants is as follows:

1. The designer selects several operating points which span the range of operation of the

process.

2. At each of these operating points, the designer constructs a linear time-invariant

approximation of the plant and designs a linear compensator for the linearized plant

model.

3. In between operating points, the parameters or gains of the compensators are then

interpolated, or scheduled, thus resulting in a global compensator applicable to the whole

window of operation.

Since the local designs are based on linear time-invariant approximations to the plant, the

designer may be able to guarantee that at each operating point, the feedback system has

the needed feedback properties, such as stability and performance of the local linear

model. However, since the actual system is nonlinear, the overall gain-scheduled system

may not satisfy the stability and performance margins for the actual nonlinear process. In

other words, one typically cannot assess a priori the guaranteed stability and performance

properties of this traditional gain-scheduled design. Rather, any such properties have to

be inferred from extensive computer simulations (Shamma and Athans, 1990).

In addition to simulations, gain-scheduled designs are guided by heuristic rules-of-thumb

(Shamma and Athans, 1990). The two most fundamental guidelines are:

1. The scheduling variable should vary slowly.

2. The scheduling variable should be related to the plant’s model nonlinearities.

 23

These guidelines are simply reminders that the local operating point designs were based

on linear time-invariant approximations to the actual plant. Thus, these approximations

must be sufficiently accurate if one expects the local feedback properties to carry over to

the overall gain-scheduled system.

Shamma and Athans (1990) analyzed two types of nonlinear gain-scheduled systems: 1)

controller scheduling along a reference trajectory; and 2) controller scheduling based on

the plant output. In each case, sufficient conditions were given which guarantee that the

overall gain-scheduled system will retain the feedback properties of the local designs.

These conditions formalize the rules-of-thumb, and again, the most fundamental idea

behind the analysis is that the original designs are based on local linear time-invariant

approximations of a nonlinear plant.

However, Shamma and Athans (1990, 1991) revealed certain limitations of this

traditional gain-scheduling approach. More explicitly, the guidelines of “varying slowly”

and “capturing the plant’s nonlinearity” in fact place fundamental limitations on the

achievable performance of current gain-scheduling practices.

The case of the restriction to slow variations most likely is due to the nature of the

scheduling algorithms. More precisely, the scheduling of controller gains is such that

good performance may be expected for any fixed interpolated operating condition.

However, performance may deteriorate rapidly as one experiences rapid changes

throughout the range of operating conditions. Shamma and Athans (1992) analyzed the

potential hazards of the traditional gain-scheduled designs, and pointed out that without a

modification of the gain-scheduling design procedure, the aforementioned fundamental

limitations will remain. If the possibility of fast parameter variations is not addressed in

the design process, then guaranteed properties of the overall design cannot be established.

The limitation of capturing the nonlinearities can be addressed through the appropriate

selection of the scheduling variables.

 24

In contrast with Shamma and Athans’ work (1990, 1991 and 1992), in the current study,

the scheduling variable is chosen to be the manipulated variable, which is able to capture

the nonlinearity because it will be shown to be the sole source of the process nonlinearity

in the state-affine models used along this work. A novel robust gain-scheduling design

approach, which is different from the traditional gain-scheduling approach will be

presented in this paper. This robust gain-scheduling design will be applied for the design

of the widely-used PI controllers.

2.4 Robustness of MPC

MPC techniques widely used in the chemical industry are those based on the optimization

of a quadratic objective function involving the error between the set-point and the

predicted outputs. The success of linear MPC (LMPC) algorithms in industry has led to

various extensions to handle nonlinear systems. Chen and Allgower (1998b) reviewed a

number of nonlinear MPC (NLMPC) schemes, that address issues related to nominal or

robust closed-loop stability.

For example, Mutha, Cluett and Penlidis (1997) designed a NLMPC algorithm to handle

control nonaffine systems, i.e., nonlinear in the manipulated variable. The algorithm is

based on a reinterpretation of the prediction equation as a Taylor series expansion. The

key feature of this algorithm lies in the use of a process output prediction that accounts

for changes in process dynamics as a function of the operating point as well as of the

magnitude of the process input change.

Due to the presence of nonlinearities, a system behaves differently for different operating

conditions. Closed-loop stability can be achieved by a suitable tuning of MPC design

parameters such as prediction horizon, control horizon, and weighting matrices. However,

the tuning for stability often can not deliver satisfactory performance for various different

operating points. Thus, guaranteed stability and performance, independent of the choice

of the operating point, is of great interest not only in theory, but also for practitioners.

 25

Chen, Scherer and Allgower (1997) proposed a robust NLMPC scheme that can be

conceptually viewed as a combination of NLMPC and nonlinear ∞H control. This

approach potentially combines the strengths of both methods, thus, the designed

controllers have guaranteed robust stability and achieved good disturbance rejection in

the face of input constraints. The major obstacle of this approach is the high on-line

computational demand which prevents the industrial application of this method. The

designed controllers are not able to optimize the performance index in terms of

disturbance rejection.

A computationally attractive nonlinear MPC scheme for open-loop stable systems was

proposed by Chen and Allgower (1998a), for the problem of stability. The open-loop

optimal control problem was formulated as minimizing a finite horizon cost plus a

terminal penalty term subject to nonlinear system dynamics and constraints. The terminal

penalty term forces the system states at the end of the horizon to lie in a prescribed region

around the system equilibrium point. The authors reported that there was no performance

improvement introduced by this proposed algorithm.

However, a fundamental question that was not addressed by existing MPC-based control

techniques, linear or nonlinear, is their robustness to model uncertainty and noise. Most

known formulations of MPC minimize, on-line at each sampling step, a nominal

objective function, using a single linear model (LMPC) or a nonlinear model (NLMPC)

to predict the future plant behavior. Feedback, in the form of plant measurement at the

next time step, is expected to account for the plant/model mismatch. Needless to say,

such control systems that provide optimal performance for particular model may perform

poorly when implemented on a physical system that is not exactly described by the model

(Zheng and Morari, 1993). This section gives an overview of the attempts in the literature

to provide MPC with some robustness guarantees in the presence of model uncertainty.

Broadly, the existing literature on robustness in MPC can be summarized as follows:

1. Analysis of robustness properties of MPC.

 26

By using a contraction mapping theorem, Zafiriou (1990) derived a set of sufficient

conditions for nominal and robust stability of MPC. Because the conditions are difficult

to check, he also stated some necessary conditions associated to these sufficient

conditions.

Gencilli and Nikolaou (1993) gave sufficient conditions for robust closed-loop stability

and investigated robust performance of dynamic matrix control (DMC) systems with hard

input/soft output constraints. The authors considered an 1l -norm performance index, a

terminal state condition as a state constraint, and used an impulse-response model with

bounds on the variations of the coefficients. They derived a robustness test in terms of

simple inequalities to be satisfied. This simplicity is largely lost in the extension to the

MIMO case.

Zanovello and Budman (1999) proposed a model predictive control algorithm which

deals with soft constraints. The issues of nominal and robust stability of the control

system were assessed offline. Robust stability was assessed using a structured singular

value (µ) test. The model uncertainty was obtained from several step tests performed on

the system around different operating conditions. The dimension of the problem studied

by the authors is very large, so a frequency-domain µ test was used, which has the

advantage of reducing the dimensions. However, the calculation has to be repeated at

each frequency in the relevant range, and the uncertainty was assumed to be time-

invariant.

2. Robust synthesis of MPC.

The basic philosophy in the literature for optimizing the performance of MPC-based

design algorithms that explicitly account for plant uncertainty is to modify the on-line

minimization problem to a min-max problem, where the worst-case value of the objective

function is minimized over the set of plants that account for the nominal model and

uncertainty (Campo and Morari, 1987; Zheng and Morari, 1993).

 27

Min-max robust MPC was first proposed by Campo and Morari (1987), and further

developed by Zheng and Morari (1993), for SISO plants with finite impulse response

(FIR), given uncertainty bounds on the impulse response coefficients. Kothare et al.

(1996) applies this min-max formulation for polytopic/multi-model and structured

feedback uncertainty. However, this approach has a few drawbacks. The first one is

computational: solving the min-max problem for a family of plants is computationally

much more demanding than solving it for a nominal plant. The second one is that the

control action may be excessively conservative. To simplify the computational

complexity, one must choose simplistic, albeit unrealistic, model uncertainty descriptions,

e.g., fewer impulse response coefficients.

Another problem is the fact that, the above methods inherently assume that by solving the

min-max problem to obtain a sequence of future inputs and then implementing the first

one and repeating the computation at the next sampling point, one is guaranteed robust

stability and performance, provided that a sufficiently long horizon is used in the

objective function. However, feedback from an uncertain plant exists in reality and it is

not taken into account in the formulation of the optimization problem, which is an open-

loop minimization of the objective function over all possible plants. This fact can result

in performance deterioration and instability of the actual closed-loop system. The

problems cannot possibly be satisfactorily addressed without considering the problem in

its proper nonlinear framework. Zafiriou (1990) argued that instead of augmenting the

objective functions to account for robustness, an action that dramatically increases the

computational load and at the same time produces no rigorous robustness guarantees, one

should study the problem accounting for its nonlinear nature, i.e., obtain conditions that

guarantee nominal and robust stability and performance and tune the parameters of the

original MPC optimization problem accordingly.

The robust gain-scheduled MPC design approach proposed in this work addresses some

of the above problems efficiently. The state-affine model, which depends nonlinearly on

the manipulated variable u , is used to generate the process predictions. As a result, these

 28

output predictions take into account explicitly the model uncertainty and approximate the

feedback from the uncertain plant. In this work, to avoid the nonlinear optimization

formulation, it is proposed to do predictions with step response models as done for the

linear case. However, to account for the process nonlinearity, instead of using one step

response model, a family of step response models will be defined for different sub-ranges

based on the values of the manipulated variable u . This approach results in a simple

gain-scheduled MPC strategy, which has not been reported in the literature to the author’s

knowledge. The key advantage is that in this work, global closed-loop stability and

performance will be tested instead of testing only the local closed-loop stability and

performance as proposed by practitioners for the traditional gain-scheduling approach. In

addition, the input weight will be assumed as the tuning parameter scheduling against u .

 29

3 Uncertain Dynamical Systems

Two classes of uncertain dynamical systems are of particular relevance to this work,

which are affine parameter-dependent models and linear-fractional models. In this work,

a nonlinear process will be represented by a state-affine model, which depends

nonlinearly on the manipulated variable. If the process nonlinearity is treated as

uncertainty, the uncertainty can then be quantified from the nonlinear terms of the state-

affine model. The process nonlinearity, i.e., the process uncertainty, is shown to be a

polynomial function of the current input only and this facilitates the calculation of the

uncertainty bounds.

The state-affine model has the form of parameter-dependent systems with affine

parameter-dependence on the uncertain parameters. This allows for the formulation of a

Lyapunov stability and performance test in terms of a finite set of Linear Matrix

Inequalities (LMIs). The state-affine model can also be transformed into linear-fractional

models, such that the robustness analysis based on SSV approach can also be applied.

This chapter is organized as follows. In section 3.1, model uncertainty is briefly reviewed.

One class of uncertain dynamical systems, i.e., parameter-dependent models, is

introduced in section 3.2. Methods of quantifying uncertainty are developed from the

state-affine model in section 3.2. The other class of uncertain dynamical systems, i.e.,

linear-fractional models, is discussed in section 3.4. The identification algorithm of the

state-affine model from process input/output data, through an intermediate step of

Volterra series model identification, is summarized in section 3.5. The case study process,

a CSTR, is introduced in section 3.5. A state-affine model is identified for the nonlinear

CSTR. This state-affine model will be used throughout the work to illustrate the different

theoretical developments proposed in this thesis. The uncertainty expression and its

bounds are also given in this section.

 30

3.1 Model Uncertainty

The notion of uncertain dynamical systems is central to robust control theory. For control

design purposes, the possibly complex behavior of dynamical systems is often

approximated by models of relatively low complexity. The difference between a process

model and the true physical system behavior is called model uncertainty. A key cause of

uncertainty is the imperfect knowledge of some parameters of the system, or their

variability due to changes in operating conditions, fouling, etc. Note that model

uncertainty should be distinguished from variable exogenous actions such as disturbances

or measurement noise.

The current work focuses on the class of dynamical systems that can be approximated by

linear models, which in combination with a model uncertainty description, may represent

the behavior of the real system. When deriving the nominal linear model and estimating

the uncertainty, two fundamental principles must be remembered:

• Uncertainty should be small where high performance is desired, i.e., there is a tradeoff

between performance and robustness.

• The more information one has about the uncertainty, e.g., phase, structure, time

invariance, etc., the higher the achievable performance will be.

There are two major classes of uncertainty:

• Dynamical uncertainty, which consists of dynamical components not accounted for by

the linear model due to e.g., nonlinear behavior as well as variations in the dynamical

behavior during operation.

• Parameter uncertainty, which stems from imperfect knowledge of the physical

parameter values, or from variations of these parameters during operation. Examples of

physical parameters include stiffness and damping coefficients in mechanical systems,

 31

aerodynamical coefficients in flying devices, capacitors and inductors in electric circuits,

etc.

Some important characteristics of uncertainty include whether it is linear or nonlinear,

and whether it is time-invariant or time-varying. Model uncertainty is generally a

combination of dynamical and parametric uncertainty, and may arise at different points in

the control loop. For instance, there may be dynamical uncertainty on the system

actuators, and parametric uncertainty on some sensor calibration coefficients.

Two representations of model uncertainty can be used in robust control designs:

• Uncertain state-space models. This representation is relevant for systems described by

dynamical equations with uncertain and/or time-varying coefficients.

• Linear-fractional representation of uncertainty. Here the uncertain system is described

as an interconnection of known LTI (linear time-invariant) systems with uncertain

components called “uncertainty blocks”. Each uncertainty block)(⋅∆ i represents a family

of systems of which only a few characteristics are known. For instance, the only available

information about)(⋅∆ i may be that it is a time-invariant nonlinearity with gain less than

0.01.

Determining factors in the choice of representation include the available model, e.g.,

state-space equations, frequency-domain models, etc., and the analysis or synthesis tool

to be used. In the current work, state-affine models are obtained to represent the physical

nonlinear process. This model has the form of uncertain state-space models, and is

suitable for the robust stability and performance conditions based on quadratic Lyapunov

functions. The state-affine model can also be transformed into linear-fractional models,

such that the robustness analysis based on SSV approach can also be applied.

 32

3.2 Uncertain State-space Models

The nonlinear process is assumed to be modeled by a state-space nonlinear model. The

resulting state-space equations typically involve physical parameters whose values are

only approximately known, as well as approximations of nonlinear or more complex

phenomena. In other words, the system is described by an uncertain state-space model:

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ +
)(
)(

)(
)1(

t
t

t
t

ν
η

DC
BA

e
η

(3.1)

where the state-space matrices DCBA ,,, depend affinely on uncertain and/or time-

varying parameters, or vary in some bounded sets of the space of matrices. The class of

parameter-dependent models is of particular relevance to this work and it is discussed

next.

3.2.1 Affine Parameter-dependent models

Affine parameter-dependent models (PDS) are of the following form:

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ +
)(
)(

)()(
)()(

)(
)1(

t
t

t
t

tt

tt

ν
η

δDδC
δBδA

e
η

(3.2)

where)(),(),(),(⋅⋅⋅⋅ DCBA are known functions of some uncertain parameter vector
n

nt R∈=),,,(21 δδδ Lδ . This work focuses on analyzing the stability and performance

of parameter-dependent models with an affine dependence on the parameter vector

),,,(21 nt δδδ L=δ , that is, a PDS where:

nnδδδ AAAAδA +++= K22110)((3.3)

 33

Affine parameter-dependent models are well-suited for Lyapunov-based analysis and

synthesis and can be also easily converted to linear-fractional uncertainty models for

Structured Singular Value (SSV) based analysis.

In this work, a state-affine model is identified to represent the nonlinear process, and the

nonlinearity of the process is considered as the main source of model uncertainty. The

development of the uncertainty description to account for nonlinearity of the state-affine

model is illustrated in the sequel. For nonlinear processes, Budman and Knapp (2000,

2001) proposed the use of state-affine models as follows:

)()(

)(})({)(})({)1(

0

1

1
11

1

1
0

tty

tututtut
n

i

i
i

n

i

i
i

xH

GGxFFx

=

+++=+ ∑∑
−

=
+

−

=

(3.4)

where iii HGF ,, are model coefficients,)(tx are the process states,)(ty is the output,

)(tu is the manipulated variable. This model given in equation (3.4) can be easily

identified from input/output data using the methodology proposed by Sontag (1978), and

Budman and Knapp (2000, 2001).

For a process given by the state-affine model (3.4), it is valid to assume that in a small

neighborhood of a pre-selected nominal operating point, i.e., for 1)(<<tu , the process

can be accurately modeled by the linear part of the state-affine model given as follows:

)()(
)()()1(

0

10

tty
tutt

xH
GxFx

=
+=+

(3.5)

The uncertainty of the system will be assumed to be the difference between the nonlinear

model given by equation (3.4) and the nominal linear model defined by equation (3.5). It

is also assumed that all of the uncertainty in the state-affine model is due to the time-

 34

varying nonlinearity of the state-affine model around this operating point. It is therefore

possible to describe the model uncertainty perturbation ti,δ in the following form:

i

ti tu)(, =δ (3.6)

Equation (3.6) represents the key advantage of using the state-affine model given by

equation (3.4) to model the system. Generally it is not trivial to quantify the uncertainty

ti,δ from mechanistic first-principles models (Doyle, 1990). In our case, since ti,δ is

equal to the powers of the current input, it can be easily quantified. Each input in a

process is generally bounded between a lower limit and an upper limit known during the

design stage due to, for example, actuator constraints or economic considerations.

Specifically, according to equation (3.4), each parameter ti,δ ranges between a priori

known extreme values iδ and iδ as follows:

[]],[)(, iitiuutu δδδ ∈→∈ (3.7)

In summary, the major motivation for representing a nonlinear process with the state-

affine model given by equation (3.4) derives from the fact that, the uncertainty is shown

to be a function of the current input only, and it can be easily quantified with known

bounds. The nonlinearity of the process is treated as model uncertainty and thus a robust

control design approach can be applied.

Rewriting equation (3.4) using the uncertainty expression (3.6) gives:

)()(

)(}{)(}{)1(

0

1

1
,11

1

1
,0

tty

tutt
n

i
tii

n

i
tii

xH

GGxFFx

=

+++=+ ∑∑
−

=
+

−

=

δδ

(3.8)

Or equivalently by the following parameter-dependent model:

 35

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ +
)(
)(

0
)()(

)(
)1(

0 tu
t

ty
t tt x

H
δGδFx

(3.9)

where 1
121),,,(−
− ∈= n

nt Rδδδ Lδ is the uncertain parameter vector, (.)(.),GF are

polynomial matrices which depend affinely on the uncertain parameters, for example,

1122110)(−−++++= nnt δδδ FFFFδF K .

3.2.2 Quantification of model uncertainty

Parameter uncertainty can be quantified based on the range of parameter values and

possibly based on the rates of parameter variation. The parameter uncertainty range can

be described as a hyper-rectangle in the parameter space. This corresponds to the case

where each uncertain and/or time-varying parameter ranges between two empirically

determined limits. Specifically, according to equation (3.6), each parameter ti,δ ranges

between a priori known extreme values iδ and iδ , i.e., []],[)(, iitiuutu δδδ ∈→∈ .

If n
nt R∈=),,,(21 δδδ Lδ is the vector of all uncertain parameters of tδ , equation (3.7)

delimits a hyper-rectangle of the parameter space nR called the parameter box. In the

sequel, W denotes the n2 vertices or corners of this parameter box as follows:

]},[:),,,{(: 21 iiin δδωωωω ∈= LW (3.10)

Similarly, it is assumed that the rate of variation tδ∆ is well defined at all time-intervals

and satisfies:

tititi ,1,, δδδ −=∆ + , []iiti ννδ ∈∆ , (3.11)

 36

where ii νν , are a priori known lower and upper bounds on this rate of variation. To

handle the time-varying case with less conservatism when the knowledge of parameter-

variation is available, the rates n
tKttt R∈∆∆∆=∆),,,(,,2,1 δδδ Lδ are considered as

additional time-varying uncertain parameters. As a whole, the vector tδ∆ evolves in a n -

dimensional hyper-rectangle whose vertices are in the set:

]},[:),,,{(: 21 iiin ννττττ ∈= LS (3.12)

3.3 Linear-Fractional Models of Uncertainty

Fro systems with both dynamical and parametric uncertainty, a general representation of

uncertainty is the linear-fractional model of Figure 3.1. In this linear fractional

transformation (LFT) representation, the linear time-invariant (LTI) system nn×∈CM

represents all the known LTI components including the controller, the nominal models of

the systems, sensors, and actuators. The input vector d includes all external actions on

the system, i.e., disturbance, noise and reference signal, and the vector e consists of all

output signals generated by the system. The uncertainty block),,(1 ndiag ∆∆= K∆ ,

which satisfies 1)(
_

≤∆ iσ , is a norm-bounded LTI uncertainty with some prescribed

structure. σ denotes the maximum singular value of a matrix. Each uncertainty block i∆

accounts for one particular source of uncertainty, e.g., neglected dynamics, nonlinearity,

uncertainty parameters, etc. The diagonal structure of ∆ reflects how each uncertainty

component i∆ enters the loop and affects the overall behavior of the true system.

In linear-fractional uncertainty models, each block i∆ of),,(1 ndiag ∆∆= K∆ is a

dynamical system characterized by the following aspects:

• The dynamical nature: linear time-invariant or time-varying, nonlinear;

 37

• The dimensions and structure: full block or repeated scalars block Iii δ=∆ . Scalars

blocks are used to represent uncertainty parameters.

• Whether i∆ is a complex or real-values matrix

• Quantitative information such as norm bounds.

Figure 3.1 General ∆−M LFT framework

For systems with linear time-invariant linear-fractional uncertainty, SSV analysis

investigates the robust stability and performance of. SSV approach is also applicable to

parameter-dependent systems based on an equivalent LFT representation. The general

procedure to derive a linear-fractional model of an uncertain state-space model is

illustrated in section 4.4.2. A state-affine model can also be transformed into a linear-

fractional model, and the procedure is given in section 5.3.1.

3.4 Model Identification Methodology

3.4.1 Volterra series models

The algorithm (Sontag, 1978) used in this work to find state-affine models is based on an

intermediate step where a Volterra series model is identified. Thus, an algorithm to find a

Volterra series must be explained first. A Volterra series model relates the output of a

process to a polynomial of past inputs. A Volterra series model has the form:

2y

d

2u

e
 M

∆

 38

K+−−−

+−−+−+=

∑∑∑

∑ ∑∑
∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

)()()(

)()()()(

1

1 1
0

ktujtuituh

jtuituhituhhty

i ij jk
ijk

i i ij
iji

(3.13)

where iji hhh ,,0 are the 0th-order, 1st-order, 2nd-order Volterra kernels. The maximum

power of the inputs on the right hand side of equation (3.13) is referred to as the

nonlinearity order n , Assuming that there is no immediate response of the manipulated

input, the coefficient 0h is zero. If the series is truncated to finite M time steps into the

past, it is possible to estimate the Volterra kernels from input/output data. A Volterra

series model which has only 2nd-order terms is given as follows:

t

M

i

M

i

M

ij
iji jtuituhituhty η∑ ∑∑

= = =

+−−+−=
1 1

)()()()(
(3.14)

where)}({ ty is the observed output sequence associated with the input sequence)}({ tu .

}{ tη is an observation noise sequence that is independent of the input.

Suppose that the system output is being observed beginning at time t and data are

collected over an observation period of τ>0. Then, the vector of outputs,
T

t tyty)](,),([τ+= LY is related to the input by:

[]
[]TMMM

t

TT
t

T
tt

ttt

hhhh

MtuMtututuMtutu

LL

LL

L

111

)()()1()1()()1(
],,[

=

−−−−−−=
=

+=

+

θ

x
xxX

ηθXY

τ

(3.15)

 39

where tη is a vector containing samples of the observation noise sequence, tX is the

data matrix, and θ is the parameter vector. If tX is full rank, then the least squares

estimate of the parameters is given by:

t
T
tt

T
t YXXXθ 1)(ˆ −= (3.16)

In case of 0)(=tE η , i.e., the noise has zero-mean, the estimate given by equation (3.16)

is an un-biased estimate.

3.4.2 State-affine models

Once the Volterra kernels are obtained from least squares regression, a generalized

Behavior matrix)(fB must be developed in order to find a state-affine model, where

f denotes a finite input/output response. A Behavior matrix is a block matrix constructed

as follows. The rows of)(fB are indexed by []+J and the columns of)(fB are indexed

by []+J , where:

},000,,,10,0,,01,00,,,1,0{][KKKK nnnn=+J (3.17)

},100,,,20,1,,11,10,,,2,1{][KKKK nnnn=+J (3.18)

where n is the maximum order of the Volterra series. The thβα entry (denoted by βαb ,

row β , columnα) of)(fB contains the coefficient αβa which corresponds to a Volterra

kernel in equation (3.13). For example, 110a corresponds to 011b , i.e., 11,0 == αβ . To

illustrate this index notation, Table 3.1 shows the first few blocks of)(fB for 2=n .

The Volterra kernels are placed in the matrix based upon the Volterra terms to which they

correspond. The locations of the nonzero terms in the index αβ indicate the number of

 40

time steps in the past that each input in the polynomial term represents while the

magnitudes of the nonzero values in the index represent the power of the corresponding

term. For example, the Volterra kernel 1123h , which corresponds to the input term

)()1()2()3(0211 tutututu −−− , would have a Behavior matrix entry of 1120a . Once the

Behavior matrix is properly constructed, a state-affine model may be obtained based on

the algorithm explained in the sequel.

Table 3.1 Example of Behavior matrix)(fB

 1 2 10 11 12 22 …

0 10a 20a 100a 110a …

1 11a 21a 101a 111a …

2 12a 22a 102a 112a …

00 100a 200a 1000a 1100a …

01 101a 201a 1001a 1101a …

02 M M M M

M

Sontag (1978) proposed an algorithm to find a state-affine model given a properly

constructed Behavior matrix. Let φ be an mm× nonsingular sub-matrix of)(fB and let

mii ,,1, K=α denote the rows of φ and let mii ,,1, K=β denote the columns of φ . A

state-affine model may then be determined from the realization:

niaa

niaa

mi

iii

T
iii

ii

m

m

,,0],,,[

,,1,],,[

1,,0,

1

1

1

1

KK

KK

K

==

==

−==
−

−

αα

ββ

H

φG

φφF

(3.19)

where iφ is a sub-matrix of)(fB with the same rows as φ but with the columns

indexed by ii mαα ,,1 K .

 41

The state-affine models are found recursively by the following algorithm:

1. Find a nonzero row of)(fB and define φ and iφ , ni ,,0 K= . Set 1=m (model of

dimension =1);

2. Find a state-affine model using equation (3.19);

3. Add a row to φ by choosing the next available row of)(fB . Find the rank of φ . If φ

is full rank, keep the row and proceed with step 2. If φ is not full rank, remove the most

recently added row and add the next available row from)(fB . Repeat this procedure

until the rank of φ increases. This step is necessary to ensure that φ is nonsingular and

therefore 1−φ can be calculated.

The result of this algorithm is a model of the form:

∑

∑∑

=

==

=

+=+

n

i

i
i

n

i

i
i

n

i

i
i

ttuty

tuttut

0

10

)()()(

)()()()1(

xH

GxFx

(3.20)

Assuming that for a physical system there is no instantaneous response, i.e., the output at

time t ,)(ty , is not affected by the input at time t ,)(tu , the state-affine model in

equation (3.20) can be simplified to:

)()(

)()()()1(

0

10

tty

tuttut
n

i

i
i

n

i

i
i

xH

GxFx

=

+=+ ∑∑
==

(3.21)

 42

3.5 Case Study

3.5.1 Nonlinear process: CSTR

The issue of model identification and uncertainty quantification is illustrated for a

specific process. The case study under investigation is a CSTR with a first-order

exothermic reaction. Doyle, Packard and Morari (1989) provided an example of a CSTR

with single-input-single-output (SISO) for which the dynamic behavior can be described

using the following non-dimensional normalized equations representing the component

and energy balances respectively:

1

2
2

2
122

2

2
111

)()
1

exp()1(

)
1

exp()1(

xy

xx
x
xxBDxx

x
xxDxx

ca

a

=

−−
+

−+−=

+
−+−=

β
γ

γ

&

&

(3.22)

where the states 1x and 2x are the dimensionless reactant concentration and reaction

temperature respectively, and the input or manipulated variable u= cx is the

dimensionless temperature of the cooling jacket surrounding the reactor. In this work, the

reactant concentration 1x was selected as the controlled variable.

A summary of the variables used in the above equations is summarized in the

nomenclature in Appendix A. The process has one stable steady state when aD =0.072,

B =1.0, β =0.3 and γ =20.0.

Seborg et al. (1989) illustrated that the CSTR is an important nonlinear process because it

embodies many of the features of more commonly encountered reaction systems. At the

same time, CSTR models, although highly nonlinear, tend to be simpler than models for

other types of continuous reactors, such as packed-bed reactors that are modeled by

 43

partial differential equations. Therefore, CSTR’s have been used to illustrate new control

algorithms for nonlinear systems.

Open-loop simulation of the output 1x is shown in Figure 3.2 under an initial condition of

[0.4759, 2.9045]. The CSTR has one stable steady state at]0543.0,0706.0[],[2010 =xx

and a settling time of 9 sampling intervals.

0 10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Open-loop simulation

Sampling interval

S
ys

te
m

 o
ut

pu
t:

x1

Figure 3.2 Open loop simulation

3.5.2 Volterra series models of the CSTR

A Volterra series model can be identified from the simulated input/output data of the

nonlinear CSTR, using the first-principles model given by equation (3.22). Following the

guidelines of Novak and Van Veen (1994), an 1+n -level PRMS input is created and the

process output y is simulated using equation (3.22). n is the maximum power of the

inputs of the Volterra series model given by equation (3.14). As a start, it is chosen to be

2=n for equation (3.14), and it can be increased as necessary based on comparisons of

 44

the model predictions with the actual measured data. For M, it is reasonable to choose it

such that it is equal to or larger than the system settling time. Based on this fact, M is set

to 9 (time steps) for the CSTR system under study. The model obtained has the following

form:

t

M

i

M

i

M

ij
iji jtuituhituhty η∑ ∑∑

= = =

+−−+−=
1 1

)()()()(
(3.14)

Since 2=n , the PRMS for identification has to have at least 3 levels to guarantee

persistent excitation. The 3-level PRMS of inputs]23,14,5[=cx is generated and shown

in Figure 3.3. The output of the system for the PRMS input is predicted using the CSTR

equations (3.22). The input and output data are shown in Figure 3.3. The above

simulation data are normalized to the range of]1,1[− before being used for identification.

0 50 100 150 200 250 300 350 400

-1

-0.5

0

0.5

1

Input: 3-level PRMS

0 50 100 150 200 250 300 350 400

-0.4

-0.2

0

0.2

0.4
Output: CSTR

Figure 3.3 Input/output data

 45

Based on least squares algorithm given in equation (3.16), a Volterra series model was

obtained with kernels listed in Table 3.2. The number of parameters to be identified is the

number of the different elements in Table 3.2, and it is calculated as follows. The 1st-row

of Table 3.2 consists of M 1st-order Volterra kernels. The lower MM × symmetric

matrix consists of M elements on the diagonal, and)
2

(MMM −× elements in the upper

triangle block, i.e.,)
2

(MMMM −×
+ 2nd-order Volterra kernels. In summary, the

number of parameters to be identified is a nonlinear function of the memory length, and

can be calculated from)
2

(MMMMM −×
++ . Thus, when 9=M , the total number of

parameters is 54.

Table 3.2 Volterra kernels (9=M)

I 1 2 3 4 5 6 7 8 9

ih 0.4566 0.2837 0.0919 0.0361 0.0105 0.0021 0.0012 0.0006 -0.0008

1,ih 0.0782 -0.0064 -0.0367 -0.0058 -0.0017 -0.0010 0.0023 0.0021 -0.0033

2,ih -0.1036 0.0042 -0.0026 -0.0038 -0.0006 -0.0016 -0.0002 0.0013

3,ih -0.0062 -0.0023 0.0039 -0.0084 -0.0017 0.0004 0.0001

4,ih 0.0004 -0.0034 0.0176 -0.0030 -0.0038 0.0039

5,ih 0.0115 -0.0085 -0.0038 0.0015 -0.0020

6,ih 0.0066 0.0015 0.0052 -0.0025

7,ih 0.0073 0.0019 -0.0137

8,ih -0.0063 0.0054

9,ih 0.0378

 46

0 50 100 150 200 250 300 350 400

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
Volterra series model(:) and CSTR

Figure 3.4 CSTR process output (solid line) and Volterra series model output (dotted line)

Simulation result of this Volterra series model is given in Figure 3.4 , and compared to

the real CSTR process output. The sum of squared errors is 1.2019, calculated using

∑ −
i

iyiy 2))(ˆ)((, which is 0.5% of the sum of squares output.)(iy is the real process

output data used for identification, and)(ˆ iy is the prediction of the identified model for

the same input.

3.5.3 State-affine models of the CSTR

Using the algorithm described in section 3.4.2, a state-affine model given by equation

(3.4) will be generated for the process CSTR, using the Volterra kernels obtained in the

previous section.

 47

3.5.3.1 Behavior matrix of 1st-order Volterra kernels

Initially, to simplify the explanation of the procedure, only the 1st-order Volterra kernels

are considered. The 1st-order Volterra kernels with corresponding values given in Table

3.2 and the corresponding Behavior matrix terms are shown in Table 3.3.

Table 3.3 1st-order Volterra kernels and corresponding Behavior matrix entries

Volterra kernel Values Behavior matrix entry

1h 0.4566 10a
2h 0.2837 100a

3h 0.0919 1000a

4h 0.0361 10000a

5h 0.0105 100000a

6h 0.0021 1000000a

7h 0.0012 10000000a

8h 0.0006 100000000a

9h -0.0008 1000000000a

It should be noticed that, since there are no 2nd–order or higher order entries in the

Behavior matrix when only 1st-order Volterra kernels are considered, there will be many

rows and columns of zeros. It is possible to remove these rows and columns without

affecting the state-affine modeling algorithm. A Behavior matrix with the rows and

columns of zeros removed is therefore:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1000000000100000000100000001000000100000

10000000010000000100000010000010000

100000001000000100000100001000

1000000100000100001000100

10000010000100010010

)(

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

fB

(3.23)

The indices of the rows of this reduced Behavior matrix, corresponding to the column

indices of αβa , i.e., β , are as follows:

 48

}00000,0000,000,00,0{][=+J (3.24)

and the indices of the columns of this reduced Behavior matrix, corresponding to the row

indices of αβa , i.e., α , are as follows:

}10000,1000,100,10,1{][=+J (3.25)

State-affine models can now be found recursively using the algorithm described in

section 3.4.2 and illustrated in the sequel for the 1st-order Volterra case, using the data

given in Table 3.3.

1. Take a 11× nonzero sub-matrix of)(fB :

0,14566.0 11
1)(

10 ==⎯⎯⎯ →⎯== = βαφφ ranka (3.26)

Obviously since 4566.010 =a is nonzero, the matrix φ is full rank. By substitution of the

values from Table 3.3, the state-affine model coefficients are as follows:

100

10
1

1

11

101000
1

01000

][

00
/

a
a

aaa

=
=

=⇒=
==⇒=

−

−

H
φG

Fφ
φφFφ

(3.27)

4566.0
1

00
6213.02837.0

0

1

11

00

=
=

=⇒=
=⇒=

H
G

Fφ
Fφ

(3.28)

 49

2. To find the model with dimension 2, one row is added to φ and the rank of the matrix

is computed. In this example,

00,0
10,1

2)(

0919.02837.0
2837.04566.0

21

21

1000100

10010

==
==

=

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

ββ
αα

φ

φ

rank

aa
aa

(3.29)

Again the following state-affine model is found:

[]100100

1
2

100

101
1

11

0
1

0
100001000

1000100
0

0
0

0
0

,

00
00

00
00

aa
a
a

aa
aa

=

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
=⇒⎥

⎦

⎤
⎢
⎣

⎡
=

=⇒⎥
⎦

⎤
⎢
⎣

⎡
=

−−

−

H

φGφG

Fφ

φφFφ

(3.30)

[]2837.04566.0
0
0

0
0

,
0
1

2837.0
4566.0

00
00

00
00

2489.01
0466.00

0361.00919.0
0919.02837.0

0

1
2

1
1

11

0
1

00

=

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
=⇒⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
==⇒⎥

⎦

⎤
⎢
⎣

⎡
=

−−

−

H

φGφG

Fφ

φφFφ

(3.31)

3. As a final illustration, two more rows are added to the above φ :

 50

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

10000000100000010000010000

1000000100000100001000

100000100001000100

10000100010010

aaaa
aaaa
aaaa
aaaa

φ

(3.32)

which is a full rank matrix as follows, after the substitution of the values of the Volterra

kernels:

0000,000,00,0
1000,100,10,1

0012.00021.00105.00361.0
0021.00105.00361.00919.0
0105.00361.00919.02837.0
0361.00919.02837.04566.0

4321

4321

4)(

====
====

⎯⎯⎯ →⎯

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

= =

ββββ
αααα

φφ rank

(3.33)

The matrix 0φ is as follows:

⇒

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

100000000100000001000000100000

10000000100000010000010000

1000000100000100001000

100000100001000100

0

aaaa
aaaa
aaaa
aaaa

φ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0006.00012.00021.00105.0
0012.00021.00105.00361.0
0021.00105.00361.00919.0
0105.00361.00919.02837.0

0φ

(3.34)

and the obtained state-affine model is as follows:

 51

[]
[]0361.00919.02837.04566.0

0
0
0
1

0361.0
0919.0
2837.0
4566.0

1389.0100
1779.0010

0771.0001
0001.0000

100001000100100

432

1

10000

1000

100

10

1
1

43214321

0
1

0

=
=

===

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

====⇒====

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

==

−−

−

aaaa

a
a
a
a

H
0GGG

φφG

0FFFF0φφφφ

φφF

(3.35)

3.5.3.2 Behavior matrix of all Volterra kernels

For brevity, part of the Volterra kernels and their corresponding Behavior matrix entries

are shown in Table 3.4. The other entries are generated based on the same principles. The

resulting Behavior matrix with the rows and columns of zeros removed is as follows:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

000000
000000

000000

)(

100100101001100

100010100101010

20000011000010100010000020000110001000020001000

100101010110

20000110001010010000200011001000200100

20001100101010002001101002010

aaa
aaa

aaaaaaaaa
aaa

aaaaaaaaa
aaaaaaaaa

fB

(3.36)

The Behavior matrix can also be written with the original Volterra kernels as follows:

 52

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

000000
000000

000000
)(

252423

151413

554535544344333

141312

443424433233222

332313322122111

hhh
hhh

hhhhhhhhh
hhh

hhhhhhhhh
hhhhhhhhh

fB

(3.37)

Table 3.4 Volterra kernels and corresponding Behavior matrix entries

Volterra kernels Values Behavior matrix entries

11h 0.0782 20a

13h -0.0367 1010a

23h -0.0026 1100a

29h 0.0013 1000000100a

44h 0.0004 20000a

Based on the same procedures shown in section 3.5.3.1 using the 1st-order Volterra

kernels, the state-affine model dimension, i.e., the dimension of the iF matrices, was

obtained, such that the state-affine model with this dimension will exhibit the minimum

sum of squared errors. Simulation results show that dimension 3 is the optimal dimension

of the model, and this means that only those Volterra kernels that make up the upper-left

33× sub-matrix of the Behavior matrix are used to produce the state-affine model. Since

all of the Volterra kernels are contributing to approximate the CSTR system behavior,

partial use of the kernels will result in increasing modeling error for the resulting state-

affine model.

 53

3.5.3.3 Simulation of the state-affine model

The resulting state-affine model is of dimension 3, with the matrices given by equation

(3.39).

)()(
)()}({)())({)1(

0

2110

tty
tututtut

xH
GGxFFx

=
+++=+

(3.38)

[] []
[]2837.00782.04566.0

010001

0219.000018.0
2776.001074.0
1267.000105.0

1406.00307.01
0597.0399.00
1037.01776.00

0

21

10

=
==

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−
−−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

=

H
GG

FF

TT

(3.39)

Simulation of this state-affine model is shown in Figure 3.5, and compared to the real

CSTR process output. The sum of squared errors of the simulation is 2.8066, which is 1%

of the sum of squares output. Results were generated using MATALB.

0 50 100 150 200 250 300 350 400 450
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
State-affine(:) and CTSR

Figure 3.5 CSTR process output (solid line) and state-affine model output (dotted line)

 54

Based on the discussion in section 3.2, the uncertainty of this state-affine model is 1st-

order, and shown as follows:

)(,1 tut =δ (3.40)

Using the above uncertainty expression, equation (3.38) is rewritten as follows:

)()(
)(}{)(){)1(

0

,121,110

tty
tutt tt

xH
GGxFFx

=

+++=+ δδ

(3.41)

This model will be used in later chapters of this work for robustness analysis and design.

The uncertain parameter is quantified based on the bounds of the manipulated variable. In

section 3.5.2, it has been discussed that the input variable is in the range of [-1,1], and

this can also be seen from Figure 3.3. As a result, the uncertain parameter is quantified as

follows:

[]]1,1[11)(,1 −∈→−∈ ttu δ (3.42)

If this model uncertain parameter is the only uncertainty in the system, the two vertices of

the parameter box W are as follows:

]}1,1[:){(: 11 −∈= ωωW (3.43)

 55

4 Robust Stability and Robust Performance Analysis

Control systems are often designed based on a simplified model of the physical plant that

often does not take into account complex behaviors such as nonlinear and high order

dynamics. The difference between the simplified model and the real process is model

uncertainty. A robustness analysis is necessary to validate the design and obtain

guarantees of the stability and performance in the face of model uncertainty. In this

chapter, two approaches are introduced and compared, with respect to the analysis of

robust stability (RS) and robust performance (RP) of the system.

First, RS and RP tests based on quadratic Lyapunov functions and their LMIs

formulations will be presented. The theory of LMIs is introduced in detail and three

generic LMIs problems are reviewed. RS and RP conditions specific for our problem are

formulated based on fixed-parameter Lyapunov functions, and then on parameter-

dependent Lyapunov functions. Under the affine parameter-dependence assumption of

the parameter-dependent systems introduced in the previous chapter, these conditions are

all reduced to a finite set of LMIs, which can be solved using one of the three generic

LMIs algorithms. Different approaches have been investigated to reduce the conservatism

of the analysis towards more reliable designs. The key novelty of this part of the work is

that a set of gain-scheduled PI controller and MPC controller design problems have been

formulated based on the robustness conditions proposed in this chapter. These

formulations are further explained in details in Chapter 5 and 6.

Second, RS and RP tests based on the extensions of structured singular values (SSV) will

be reviewed for nonlinear and/or time-varying uncertainty. SSV analysis investigates the

robust stability and performance of systems with linear time-invariant linear-fractional

uncertainty. It is also applicable to parameter-dependent systems based on an equivalent

linear fractional transformation (LFT) representation. The procedure to partition a system

model into an equivalent LFT is required before the application of SSV approach. Gain-

scheduled PI controller design problems will be formulated using the RS and RP

conditions in Chapter 5.

 56

Finally, the two approaches, i.e., the quadratic Lyapunov approach and the approach

based on the extensions of SSV, are compared.

This chapter is organized as follows. In section 4.1, the background knowledge related

with the LMIs theory and the LMIs techniques used in this work is summarized for

reference. Section 4.2 presents conditions of quadratic stability and performance based on

Lyapunov’s direct method, and their corresponding LMIs formulation. In section 4.3, to

reduce the conservatism of the analysis developed in section 4.2, parameter-dependent

Lyapunov functions are introduced, and LMIs-based robust stability and performance

tests are formulated. Section 4.4 reviews the SSV analysis and proposes the RS and RP

conditions for time-varying uncertainty. In section 4.5, the comparison of the SSV

approach with the quadratic Lyapunov approach is presented.

4.1 Linear Matrix Inequalities (LMIs)

4.1.1 LMIs and LMIs problems

A linear matrix inequality (LMI) is any expression of the form

0AAAxA <+++= NNxx K110:)((4.1)

where

• []Nxx K1=x is a vector of unknown scalars, also referred to as the decision

or the optimization variables.

• NAA ,,0 K are given symmetric matrices.

• The inequality is negative definite, i.e., the largest eigenvalue of)(xA is negative,

or 0ηxAη <)(T for all nonzero Nℜ∈η .

 57

Although the form of LMIs given by equation (4.1) may seem to be restrictive, it can

represent a wide variety of constraints on x . It should be noted that the constraints

0xA >)(and)()(xBxA < are special cases of equation (4.1), since they can be

rewritten as 0xA <−)(and 0xBxA <−)()(, respectively.

The LMIs in equation (4.1) is a convex constraint on x since

0
2

zyA0zA0yA <
+

⇒<<)()(,)(. As a result,

• its solution set, called the feasible set, is a convex subset of Nℜ ;

• finding a solution x to equation (4.1), if any such solution exists, it is a convex

optimization problem.

Convexity has an important consequence: even though equation (4.1) has no analytical

solution in general, it can be solved numerically with guarantees of finding a solution

when one exists. A system of LMIs constraints can be regarded as a single LMI since

0xAxAxA
0xA

0xA
<=⇔

⎪
⎩

⎪
⎨

⎧

<

<
))(,),((:)(

)(

)(

1

1

K

K

diag KM

where))(,),((1 xAxA Kdiag K denotes a block-diagonal matrix with)(,),(1 xAxA KK on

its diagonal. Hence multiple LMIs constraints can be imposed on the vector of decision

variables x while preserving convexity.

In most control applications, LMIs do not naturally arise in the canonical form given by

equation (4.1), but rather in the following form:

),,(),,(11 nn XXRXXL KK <

 58

where)(),(⋅⋅ RL are affine functions of some structured matrix variables nXX ,,1 K . A

simple example is the Lyapunov inequality:

0XXAA <−T

where the unknown X is a symmetric matrix. Defining Nxx K1 as the independent

scalar entries of X , these LMIs could be rewritten in the form of equation (4.1).

Expressing LMIs in a condensed form as follows: 0xA <)(, in addition to saving

notation, may lead to more convenient and efficient computation. This natural form

0xA <)(is the approach taken in this work.

The three generic problems that can be formulated in terms of LMIs are as follows:

1. Feasibility problem (FEASP in MATLAB). Finding a solution to the LMIs system

0xA <)((4.2)

is called the feasibility problem.

2. The eigenvalue problem. The eigenvalue problem is to minimize the maximum

eigenvalue of a matrix that depends affinely on a variable, subject to an LMIs constraint,

i.e.,

0xB0xAI ><−)(,)(λλ tosubjectMinimize (4.3)

where BA, are symmetric matrices that depend affinely on the optimization variable x .

This is also a convex optimization problem. Eigenvalue problems can appear in the

equivalent form of minimizing a linear function (MINCX in MATLAB) subject to an

LMIs, as follows:

 59

0xAxc <)(tosubjectMinimize T (4.4)

3. Generalized eigenvalue minimization problem (GEVP in MATLAB). The GEVP is to

minimize the maximum generalized eigenvalue of a pair of matrices that depend affinely

on a variable, subject to a LMIs constraint. The general form of a GEVP is:

0xC0xB0xAxB >>>−)(,)(,)()(λλ tosubjectMinimize (4.5)

where CBA ,, are symmetric matrices that are affine functions of the optimization

variable x . This problem can also be expressed as follows:

0xC0xBxBxA >>)(,)())(),((max tosubjectMinimize λ (4.6)

where))(),((max xBxAλ denotes the largest generalized eigenvalue of

0xB0xAxB >>−)(,)()(withλ .

4.1.2 Well-posedness issues

The LMIs solvers included in the MATLAB LMIs Toolbox to solve the three generic

LMIs problems listed above are based on the interior-point optimization techniques. To

compute a feasible solution for these problems, such techniques require that the system of

LMIs constraints be strictly feasible, i.e., that the feasible set have a nonempty interior

(Boyd and et al., 1994). As a result, the solvers may encounter difficulty when the LMIs

constraints are feasible but not strictly feasible. That is, feasible solutions exist for the

LMIs of the following form:

0xL ≤)(thatsuchxFind (4.7)

while no feasible solutions exist for the following strict LMIs:

 60

0xL <)(thatsuchxFind (4.8)

According to MATLAB LMIs Toolbox manual (Gahinet, Nemirovski and et al., 1995),

for feasibility problems, this difficulty is automatically circumvented by the Toolbox

function FEASP by reformulating the problem given by equation (4.7) as follows:

IxL ×< ttosubjecttMinimize)((4.9)

In this modified problem, the LMIs constraint is always strictly feasible in tx, and the

original LMIs given by equation (4.7) is feasible if and only if the global minimum mint

of equation (4.9) satisfies

0min ≤t (4.10)

For feasible but not strictly feasible problems, however, the computational effort is

typically higher as the FEASP function strives to approach the global optimum

corresponding to 0min =t to a high accuracy.

For the LMIs problems addressed by the LMIs Toolbox functions MINCX and GEVP,

non-strict feasibility generally causes the solvers to fail and to return an “infeasibility”

diagnosis. Although there is no universal remedy for this difficulty, it is sometimes

possible to eliminate underlying algebraic constraints to obtain a strictly feasible problem

with fewer variables. Boyd and et al. (1994) have given an algorithm of reducing a set of

feasible non-strict LMIs to a set of strictly feasible LMIs.

4.1.3 Semi-definite)(xB in GEVP problems

Consider the generalized eigenvalue minimization problem

0xC0xB0xAxB >>>−)(,)(,)()(λλ tosubjectMinimize (4.5)

 61

Technically, the positivity of)(xB for some Nℜ∈x is required for the well-posedness of

the LMIs problem and the applicability of the interior-point methods. Hence, problems

with the following)(xB :

feasiblestrictlywith)(,
)(

)(1
1 xB

00
0xB

xB ⎥
⎦

⎤
⎢
⎣

⎡
=

(4.11)

can not be directly solved with the GEVP function in MATALB because of the additional

zero eigenvalues in)(xB . A simple remedy consists of replacing the following

constraints given by equation (4.12) by the ones given by equation (4.13):

0xC0xB0xAxB >>>−)(,)(,)()(λ (4.12)

0xBxBY
00
0Y

xA ><⎥
⎦

⎤
⎢
⎣

⎡
<)(),(,)(11λ

(4.13)

where Y is an additional symmetric variable of proper dimension. The resulting problem

is now equivalent to equation (4.5) and can be solved directly with the GEVP function in

MATLAB.

4.2 Quadratic Lyapunov Functions

Lyapunov stability theory is based on two methods: the linearization method and the

direct method, which are briefly introduced in the following.

The Lyapunov’s linearization method is concerned with the local stability of a nonlinear

system. It is a formalization of the intuitive argument that a nonlinear system should

behave similarly to its linearized approximation within a small neighbourhood of an

equilibrium point. Because all physical systems are inherently nonlinear, the Lyapunov’s

 62

linearization method serves as the fundamental justification for using linear control

techniques for the local analysis of nonlinear processes. The Lyapunov’s linearization

theorem states the following (Slotine and Li, 1991)

• If linearized the system is strictly stable, i.e., if all the eigenvalues of the closed-loop

matrix are strictly inside the unit circle, then the equilibrium point is asymptotically

stable for the actual nonlinear system.

• If linearized the system is unstable, i.e., if at least one eigenvalue of the closed-loop

matrix is outside of the unit circle, then the equilibrium point is unstable for the actual

nonlinear system.

• If linearized the system is marginally stable, i.e., if all the eigenvalues of the closed-

loop matrix are inside the unit circle, but at least one of them is on the unit circle, then a

conclusion regarding stability for the actual nonlinear system can not be established from

the linear approximation. Thus, the equilibrium point may be stable, asymptotically stable

or unstable for the actual nonlinear system.

The Lyapunov’s linearization theorem shows that the linear control design is a matter of

consistency, i.e., the control system must be designed such as the system output and input

remain within a small neighborhood of the nominal operating point, justifying the linear

approximation. It also raises major questions regarding the limitations of linear design,

i.e., how large are the linear ranges? what is the extent of the stability range? These

questions motivate a more fundamental approach to the nonlinear control problem, the

Lyapunov’s direct method.

The Lyapunov’s direct method is the mathematical extension of the energy conservation

concepts associated with a mechanical system: the motion of a mechanical system is

stable if its total mechanical energy decreases all the time. The basic procedure of this

direct method is to construct a scalar energy-like function, referred to as the Lyapunov

 63

function, for the dynamic system, and to examine the time-variation of this scalar

function as time progresses.

However, there is no systematic way of finding Lyapunov functions for nonlinear

systems that will result in the least conservative designs. This is a fundamental drawback

of the direct method. Slotine and Li (1991) have discussed a number of techniques which

can facilitate the search for appropriate Lyapunov functions. They showed that Lyapunov

functions can be systematically found to describe stable linear systems. Given a linear

time-invariant system of the form)()1(tt Aηη =+ , a quadratic Lyapunov function is

defined to have the following form:

)()()(tttV T Pηη= (4.14)

This has been proposed for the stability analysis, where P is a symmetric positive-

definite matrix, usually called Lyapunov matrix. The Lyapunov’s direct method to assess

the global stability of a system states the following (Slotine and Li, 1991):

• Assume that there exists a scalar function V of the state η , with continuous first-

order derivatives such that

•)()()(tttV T Pηη= is positive-definite;

• 0)()1(<−+ tVtV

• ∞→∞→)()(tastV η

Then the equilibrium at the origin is globally asymptotically stable.

Stability analysis based on the quadratic Lyapunov function given above is usually

referred to as quadratic Lyapunov stability. This quadratic Lyapunov function and

quadratic stability analysis are fundamental to the present work, and they are applied to

nonlinear time-varying systems with proper modifications.

 64

In this work, the following system is considered

0)0(
)(
)()(

)(
)1(

ηη

η
DC
BδAη

=

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ +
t
t

te
t t

ν

(4.15)

where n
nt R∈=),,,(21 δδδ Lδ is a vector of uncertain and time-varying real parameters.

Throughout this work, the following assumptions are made:

1. Each parameter ti,δ is real and ranges between known extreme values iδ and iδ as

follows:

],[, iiti δδδ ∈ (4.16)

2. The state matrix)(tδA depends affinely on the parameters as follows:

tnnttt δδδ ,,22,110)(AAAAδA +++= K (4.17)

where nAAA L,, 10 are known fixed matrices. This dependence is referred to as affine

parametric dependence.

The first assumption means that the parameter vector tδ is valued in a hyper-rectangle

called the parameter box. In the sequel, W denotes the n2 vertices or corners of this

parameter box as follows:

}},{:),,,{(: 21 iiin δδωωωω ∈= LW (4.18)

 65

The second assumption above is introduced for technical and simplicity reasons. Several

extensions of this approach to more complex parameter dependences are also possible.

Though somewhat restrictive, the state matrix form given by equation (4.17) still coves a

wide variety of relevant problems.

4.2.1 Quadratic Lyapunov stability (QLS)

Given a control system, the most important question is whether it is stable. Every control

system, whether linear or nonlinear, involves a stability problem which should be

addressed. The approach in this work is built upon quadratic Lyapunov stability, and the

details are reviewed now.

Definition 4.1 (Quadratic Lyapunov Stability, QLS, Gahinet and et al., 1994) For

systems defined by (4.15), a sufficient condition for asymptotic stability is the existence of

a positive-definite quadratic Lyapunov function)()()(tttV T Pηη= ,

0)(>tV , TPP0P => , such that

0)()1(<−+ tVtV (4.19)

for all admissible uncertainties tδ and for all initial conditions 0η .

It should be noted that 0xPδPAδAx <−⇔<−+))()((0)()1(t
T

t
TtVtV , so the

condition given by equation (4.19) is equivalent to equation (4.20) for all admissible

values and trajectories of the parameter vector tδ .

0PδPAδA <−)()(t
T

t (4.20)

 66

Assessing quadratic stability is not tractable in general since equation (4.20) places an

infinite number of constraints on P . However, equation (4.20) can be reduced to a finite

set of LMIs constraints for the following two cases,

1.)(tδA ranges in a fixed polytope of matrices as follows:

10
)(11

=>

++=

∑
i

ii

KKt

qq
qq AAδA K

(4.21)

This is referred to as a polytopic model.

2.)(tδA is a fixed affine function of some uncertainty time-varying parameters

n
nt R∈=),,,(21 δδδ Lδ as follows:

tnnttt δδδ ,,22,110)(AAAAδA +++= K (4.17)

This is referred to as an affine parameter-dependent model.

The first case corresponds to time-varying systems modeled by an envelope of linear

time-invariant systems, and the second case corresponds to systems whose state-space

equations depend affinely on time-varying parameters, i.e., parameter-dependent systems.

The details of these systems have been summarized in section 3.2.1. Budman and Knapp

(2001) obtained a finite set of LMIs for the first case. In this work, the specific problem

under study can be formulated in the form of the second case, and as a result, the

conditions of QLS can be reduced to a finite set of LMIs. This result is summarized in the

following theorem.

Theorem 4.1 Let n
tnttt R∈=),,,(,,2,1 δδδ Lδ be a vector of time-varying uncertain real

parameters varying in the hyper-rectangle defined by (4.18) and let W denote the set of

 67

vertices of this hyper-rectangle. Consider the time-varying system (4.15) where)(tδA

depends affinely on tδ according to equation (4.17).

The system (4.15) satisfies QLS if there exists TPP0P => , such that

W0PPAA ∈<− ωωω allforT ,)()((4.22)

In other words, it suffices that P be positive-definite and satisfy the LMIs at each corner

iω of the parameter box. This reformulation has the merit of reducing the problem with

infinitely many constraints to a finite set of matrix inequalities. The resulting LMIs given

by equation (4.22) are then solved numerically with existing LMIs software, e.g.,

MATLAB LMIs Toolbox. This test can be extended to quadratic Lyapunov ∞H

performance assessment as explained in the following section (Gao and Budman, 2003).

4.2.2 Quadratic Lyapunov ∞H performance (QLP)

A way to measure performance is required before a controller which achieves nominal or

robust performance can be designed. In robust control theory, the 2l -norm, which is

related to the energy of the signal, is usually used. For vector signals)(te , this norm is

defined to be:

∑
∞

=

=
0

)()(
2

t

T
l

tt eee
(4.23)

For simplicity, it is usually written as e . The operator norm induced by the 2l -norm is

the ∞H -norm , and it is defined as follows:

 68

∞
≠

== GG
e

Ge

e
)]([supsup

2

2

2
0

ωσ
ω

j
l

l

l

(4.24)

where G is a proper stable transfer-function.

Definition 4.2 (Quadratic Lyapunov ∞H Performance, QLP, Gahinet and et al., 1994)

The system (4.15) with zero initial state satisfies QLS and

22 ll
ve γ< (4.25)

for all 2l -bounded input ν if there exists TPP0P => , and a positive-definite quadratic

Lyapunov function)()()(tttV T Pηη= , 0)(>tV , such that

0)()()()()()1(2 <−+−+ tvtvtetetVtV TT γ (4.26)

for all admissible uncertainties tδ and for zero initial conditions 0η .

For zero initial states, equation (4.25) follows from the summation of equation (4.26)

over an infinite period of time. Inequality (4.26) is true iff equation (4.27) holds for all

admissible values and trajectories of the parameter vector tδ according to the following

Theorem 4.2.

0
IDC

DIPBBδPAB
CPBδAPδPAδA

<
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
TT

t
T

TT
tt

T
t

2)(
)()()(
γ

(4.27)

Assessing quadratic Lyapunov ∞H performance is not tractable in general since (4.27)

places an infinite number of constraints on P . Under the affine dependence assumption

 69

give by equation (4.17), Gao and Budman (2003) have proposed the following theorem to

show that equation (4.27) holds iff P satisfies a specific system of LMIs.

Theorem 4.2 Consider the stable time-varying system (4.15) where tδ ,)(tδA and W

are defined the same as in Theorem 4.1. A sufficient condition for QLP of this system is

the existence of TPP0P => , such that

W0
IDC

DIPBBPAB
CPBAPPAA

∈<
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
ωγω

ωωω
allforTTT

TTT

,)(
)()()(

2

(4.28)

Proof of Theorem 4.2: For a stable system with zero initial states, the summation of

equation (4.26) over an infinite period of time gives the following:

22
0})()()()({

0})()()()({)0()(

0})()()()()()1({

0

2

0)0(,0)(

0

2

0

2

ll
t

TT

VV

t

TT

t

TT

tvtvtete

tvtvteteVV

tvtvtetetVtV

ve γγ

γ

γ

<⎯→⎯<−

⎯⎯⎯⎯ →⎯<−+−∞

⎯→⎯<−+−+

∑

∑

∑

∞

=

==∞
∞

=

∞

=

(4.29)

This explains Definition 4.2. To prove Theorem 4.2, consider the time-varying system

given by equation (4.15), where tδ ,)(tδA , W are defined the same as in Theorem 4.2.

Inequality (4.26) can be expanded using equation (4.15) and the definition of the

quadratic Lyapunov function given by equation (4.14), as follows:

0)()())()(())()((

)()())()()(())()()((
)()())()(())()(()()()1()1(

)()()()()()1(

2

2

2

<−++

+−++=

−+++−++=

−+−+

tvtvtttt

tttttt
tvtvtttttttt

tvtvtetetVtV

TT

T
t

T
t

TTTT

TT

γνν

νν

γνν

γ

DCηDCη

PηηBηδAPBηδA
DCηDCηPηηPηη

(4.30)

 70

Which can be rewritten in a matrix form as follows:

[]TTTT

TT
t

T

TT
tt

T
t

T

ttttwhere))()(()()(

0)(
)()()(

2

νν

γ

DCηηλ

λ
IDC

DIPBBδPAB
CPBδAPδPAδA

λ

+=

<
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−

(4.31)

The function in inequality (4.31) is quadratic with respect to all the uncertain parameters

st 'δ , which under the assumption given by equation (4.16), are all valued in a convex

parameter box. Also, the coefficient of the quadratic terms can be easily shown to be

positive. Thus, if the inequality (4.31) is proven at the vertices of the parameter box, it

will also be satisfied for any uncertain parameter combination within the box. As a result,

and also under the parameter-affine dependence assumption by equation (4.17), equations

(4.30) and (4.31) hold iff:

[] 0λDCηηλ

Wλ
IDC

DIPBBPAB
CPBAPPAA

λ

≠+=

∈<
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−

,))()(()()(

,0)(
)()()(

2

TTTT

TTT

TTT

T

tttt

allfor

νν

ωγω
ωωω

(4.32)

This is true iff the symmetric positive-definite matrix P satisfies the system of LMIs:

W0
IDC

DIPBBPAB
CPBAPPAA

∈<
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
ωγω

ωωω
allforTTT

TTT

,)(
)()()(

2

(4.28)

Thus, Theorem 4.2 is proved.

Inequality (4.28) can be solved as a feasibility problem (FEASP) for a pre-specified γ , or

as a generalized eigenvalue problem (GEVP), to minimize the performance index γ . The

 71

minimization of γ guarantees that
2l

v will have the least possible effect on
2l

e . It is

clear that equation (4.28) falls into the standard form of a GEVP (Boyd and et al., 1994)

problem if it is rewritten in the following alternative form:

W

I
IDC

DPBBPAB
CPBAPPAA

P

∈

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
<

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

ω

γω
ωωω

γ

allfor

tosubject TTT

TTT

000
00
000

)(
)()()(

min

2

2

(4.33)

4.3 Parameter-dependent Lyapunov Functions

Quadratic stability guarantees stability against arbitrarily fast parameter variations. As a

result, the QLS and QLP conditions based on quadratic Lyapunov functions given in the

previous section can be unnecessarily conservative for constant or slowly-varying

parameters. To reduce conservatism in such cases, the notion of parameter-dependent

Lyapunov functions, proposed by Gahinet, Apkarian and Chilali (1994) for continuous

systems, is further developed in this work for discrete systems. The quadratic parameter-

dependent Lyapunov function is given as follows:

)()()()(tttV t
T ηδPη= (4.34)

where the Lyapunov weighting matrix)(tδP is no longer constant, but it is now a

function of tδ in the following form:

tnnttt ,,22,110)(δδδ PPPPδP ++++= L (4.35)

where sti ',δ are parameters relevant to the system under study. Such affine parameter-

dependent Lyapunov functions are central to our approach. In the present work, it will be

 72

shown that by imposing additional constraints on the parameter-dependent Lyapunov

functions, the calculation of the parameter-dependent Lyapunov matrix of the form can

be formulated into a LMIs problem for the unknown matrices nPPPP L,,, 210 . The

resulting test is therefore numerically tractable while always less conservative than

quadratic tests based on fixed Lyapunov functions because of the additional variables

available for optimization. Note that the usual quadratic Lyapunov stability corresponds

to the special case where 0PPP ==== nL21 . The use of the function (4.34) suggests a

natural extension of quadratic stability and performance, described by the definitions

shown below.

Definition 4.3 (Affine Quadratic Lyapunov Stability, AQLS, Gahinet and et al., 1994)

For systems defined by (4.15), a sufficient condition for asymptotic stability is the

existence of 1+n symmetric matrices nPPPP L,,, 210 such that

0PPPPδP >++++= tnnttt ,,22,110)(δδδ L (4.36)

0δPδAδPδA <−+)()()()(1 ttt
T

t (4.37)

for all admissible values and trajectories of the uncertainties tδ and for all initial

conditions 0η .

Definition 4.4 (Affine Quadratic Lyapunov ∞H Performance, AQLP, Gahinet and et al.,

1994) The system (4.15) with zero initial state satisfies AQLP if there exist

1+n symmetric matrices nPPPP L,,, 210 such that

0PPPPδP >++++= tnnttt ,,22,110)(δδδ L (4.36)

 73

0
IDC

DIBδPBδAδPB
CBδPδAδPδAδPδA

<
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−

++

+++
T

t
T

tt
T

T
t

T
tttt

T
t

2
11

111

)()()(
)()()()()()(
γ

(4.38)

for all admissible values and trajectories of the uncertainties tδ and for zero initial

conditions 0η .

From these definitions, affine quadratic stability and quadratic Lyapunov ∞H

performance amount to finding the 1+n symmetric matrices nPPPP L,,, 210 that satisfy

equations (4.37) and (4.38). In the next section, this task will be discussed first in the

general case of time-varying uncertain parameter, and then for the simpler special case of

constant uncertain parameters.

It should be noted that even when)(),(tt δPδA are affine in tδ , it is no longer sufficient

to check equations (4.36) and (4.37) for AQLS or equations (4.36) and (4.38) for AQLP,

at the corners of the parameter box. The conditions (4.37) and (4.38) are no longer

quadratic with respect to the uncertain parameters sti ',δ , because the term

)()()(1 tt
T

t δAδPδA + leads to 3rd-order terms of sti ',δ . Consequently, checking the

conditions at the vertices of the parameter box will not guarantee that the conditions are

satisfied as well inside the box. However, convexity can be guaranteed by imposing a

convexity requirement (Budman and Knapp 2000; Gahinet, Apkarian and Chilali, 1994),

which relies on the concept of convexity along each direction ti,δ of the parameter space.

To recover convexity, an additional constraint must be introduced on)(tδP . Obviously,

this constraint restricts the choice of affine Lyapunov matrix)(tδP , and therefore may

lead to conservatism. However, the use of the rate of variation in parameters will be

helpful to compensate for the increased conservatism. This convexity condition is

detailed in the following section.

 74

4.3.1 Time-varying uncertain parameters

In this section, the case of time-varying parameters tδ with a bounded rate of variation is

considered. To handle the time-varying case with less conservatism when the knowledge

of parameter variation is available, the following set of rate of changes
n

tnttt R∈∆∆∆=∆),,,(,,2,1 δδδ Lδ are considered as additional time-varying uncertain

parameters in the design. As shown below, this more general case can be handled by

extensions of Theorem 4.1 and Theorem 4.2 and the resulting LMIs conditions become

less conservative than the previous quadratic Lyapunov tests. Throughout the section, the

following two assumptions are made:

1.The rate of variation tδ∆ is well defined at all time-intervals;

2. tδ∆ satisfies

tititi ,1,, δδδ −=∆ + , []iiti ννδ ∈∆ , (4.39)

where ii νν , are a priori known lower and upper bounds on this rate of variation.

Practically, these bounds are set during the process design stage due to the process

limitations and operation specifications.

As a whole, the vector tδ∆ evolves in a n -dimensional hyper-rectangle whose vertices

are given in the set:

}},{:),,,{(: 21 iiin ννττττ ∈= LS (4.40)

For)(tδP of the form given by equation (4.36):

)()()(1 ttt δPδPδP ∆+=+ (4.41)

 75

The results of Theorem 4.1 and Theorem 4.2 can then be generalized to the parameter-

dependent cases as follows.

3.5.3.4 Affine quadratic Lyapunov stability (AQLS)

Theorem 4.3 Consider the time-varying system (4.15) where tδ ,)(tδA and W are

defined the same as in Theorem 4.1, tδ∆ and S are defined according to equations

(4.39) and (4.40). A sufficient condition for AQLS of this system is the existence of 1+n

symmetric matrices nPPPP L,,, 210 such that

W0P ∈> ωω allfor,)((4.42)

SW
0PAPPA

×∈
<−+

),(
,)()())()(()(

τω
ωωτωω

allfor

T

(4.43)

SW0APA

APAAPAAPAAPA

×∈=≥

+++++

∑

∑

≠
=

≠
=

),(,,,2,1,

)())(3(

)(
0

)(
0

τω

ωτω

allforniforτ
n

ij
j

ij
T

i

n

ij
j

ij
T

iji
T

iii
T

jii
T

i

L

(4.44)

Proof of Theorem 4.3: First note that the positivity constraint given by equation (4.36)

is affine in tδ . Consequently, equation (4.36) holds for all tδ in the parameter box if it

holds at all corners, which is exactly the condition given by equation (4.42). Hence, the

only difficulty is to enforce equation (4.37) over the entire parameter box.

Substitute the expressions given by equations (4.17) and (4.35) into the following

condition:

0δPδAδPδAδL <−= +)()()()()(1 ttt
T

tt (4.45)

 76

For any nonzero vector λ , clearly λδLλδ)()(t
T

tf = is a scalar function of the following

form:

λδLλδ)()(t
T

tf =

),,,,()(3
,,

2
,

2
,,,, titjtititjtitit ff δδδδδδδ=δ

(4.46)

In general, the negative sign of)(tf δ values at all corners of SW × does not guarantee

its negativity over the entire parameter box. However, negativity is obtained when)(tf δ

is convex in the sti ',δ . For a function with 3rd-order dependence with respect to sti ',δ ,

this is true when ni
f

ti

t ,,1,0
)(

2
,

2

L=≥
∂

∂

δ
δ

 for all tδ (Gahinet, Apkarian and Chilali, 1994).

Expanding ni
f

ti

t ,,1,0
)(

2
,

2

L=≥
∂

∂

δ
δ

 based on equations (4.45) and (4.46), the following

condition is obtained:

∑

∑

≠
=

≠
=

∆

+++

+∆+=

=≥

n

ij
j

ij
T

itj

n

ij
j

ji
T

iij
T

iii
T

jtj

ii
T

ititi

T nifor

)(
0

,

)(
0

,

,,

)(

))(3(

,,,2,1,0

APA

APAAPAAPA

APAM

Μλλ

δ

δ

δδ

L

(4.47)

This condition of the convexity requirement leads to the additional condition (4.44) in

Theorem 4.3.

To conclude the proof, observe that equation (4.43) ensures the negativity of)(tf δ at all

corners of the parameter box. Consequently, for nonzero λ , 0)()(<= λδLλδ t
T

tf holds

 77

over the entire parameter box, from which, it can be concluded that 0δL <)(t for all

admissible tδ .

To summarize, the additional constraint (4.44) reduces the problem of finding affine

parameter-dependent Lyapunov matrices to a finite LMIs problem. Though somewhat

restrictive, this still provides a significant additional number of degrees of freedom when

compared to quadratic stability.

3.5.3.5 Affine quadratic Lyapunov ∞H performance (AQLP)

Theorem 4.4 Consider the time-varying system (4.15) where tδ ,)(tδA , W , tδ∆ and S

are defined the same as in Theorem 4.3. A sufficient condition for AQLP of this system is

the existence of 1+n symmetric matrices nPPPP L,,, 210 such that

W0P ∈> ωω allfor,)((4.42)

SW

0
IDC

DIBPPBAPPB
CBPPAPAPPA

×∈

<
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−++

+−+

),(

))()(()())()((
))()(()()()())()(()(

2

τω

γτωωτω
τωωωωτωω

allfor

TTT

TTT

(4.48)

SW
0BPA

0APAAPAAPA

APAAPA

×∈=
≥

≥++

+++

∑

∑

≠
=

≠
=

),(,,,2,1

)(

))(3(

)(
0

)(
0

τω

ω

τω

allfornifor

τ

i
T

i

n

ij
j

ij
T

iji
T

iii
T

j

n

ij
j

ij
T

iii
T

i

L

(4.49)

 78

Proof of Theorem 4.4: Similarly, the convexity requirement to enforce equation (4.38)

over the entire range of the parameters is equivalent to the convexity condition given by

equation (4.45) and is given as follows:

0BδPδAδG <= +)()()(1t
T

tt (4.50)

Follow similar algebraic steps as applied in the previous theorem, the following

convexity condition is obtained:

,,,2,1

)())(3(

)(
0

,

)(
0

,,,

nifor
i

T
i

n

ij
j

ij
T

itj

n

ij
j

ji
T

iij
T

iii
T

jtjii
T

ititi

L=
≥

≥∆+

+++∆+

∑

∑

≠
=

≠
=

0BPA

0APA

APAAPAAPAAPA

δ

δδδ

(4.51)

Thus, the additional condition (4.49) in the Theorem 4.4 is the convexity requirement.

4.3.2 Constant uncertain parameters

In this section, the special case for which the uncertain parameters are assumed to be

time-invariant and valued in the interval],[, iiti δδδ ∈ is considered. The set S of the

parameter variation bounds given by equation (4.40) then reduces to the zero element,

and hence, 0)(,0 == ττ P for all S∈τ in Theorems 4.3 and 4.3. Consequently, in case

of constant parameters, the conditions (4.37) and (4.38) reduce to the following

inequalities:

0δPδAδPδA <−)()()()(ttt
T

t (4.52)

 79

0
IDC

DIBδPBδAδPB
CBδPδAδPδAδPδA

<
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
T

t
T

tt
T

T
t

T
tttt

T
t

2)()()(
)()()()()()(
γ

(4.53)

The following theorems are the corresponding simplifications of Theorems 4.3 and 4.4

respectively and apply to the case of constant uncertain parameters.

Theorem 4.5 Consider the time-varying system (4.15) where tδ ,)(tδA , W and tδ∆

are defined the same as in Theorem 4.3, except that tδ is a vector of time-invariant but

uncertain parameters. A sufficient condition for AQLS of this system is the existence of

1+n symmetric matrices nPPPP L,,, 210 such that

W0P ∈> ωω allfor,)((4.54)

W0PAPA ∈<− ωωωωω allforT ,)()()()((4.55)

W

0APAAPAAPAAPA

∈=

≥+++ ∑
≠
=

ω

ωω

allfornifor

n

ij
j

ij
T

iji
T

iii
T

jii
T

i

,,,2,1

)())(3(
)(

0

L

(4.56)

Theorem 4.6 Consider the time-varying system (4.15) where tδ ,)(tδA , W and tδ∆

are defined the same as in Theorem 4.5. A sufficient condition for AQLP of this system is

the existence of 1+n symmetric matrices nPPPP L,,, 210 such that

W0P ∈> ωω allfor,)((4.54)

 80

W

0
IDC

DIBPBAPB
CBPAPAPA

∈

<
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−

ω

γωωω
ωωωωωω

allfor

TTT

TTT

,)()()(
)()()()()()(

2

(4.57)

W
0BPA

0APAAPAAPAAPA

∈=
≥

≥+++ ∑
≠
=

ω

ωω

allfornifor
i

T
i

n

ij
j

ij
T

iji
T

iii
T

jii
T

i

,,,2,1

)())(3(
)(

0

L

(4.58)

Theorem 4.3, Theorem 4.4, Theorem 4.5, and Theorem 4.6 provide valuable

representations for both the case of time-varying uncertain parameters and constant

uncertain parameters. Specifically, the conditions given by Theorem 4.3 and Theorem 4.4,

are equivalent to Theorem 4.5 and Theorem 4.6 for the case of constant uncertain

parameters.

Finally, it should be noted that in the face of real time-varying parameters with bounded

rate of variations, the sufficient conditions of Theorem 4.3 and Theorem 4.4 are always

less conservative than the QLS and QLP tests of Theorem 4.1 and Theorem 4.2, because

more variables are available for optimization. The reduction of conservatism will be

clearly illustrated in Chapter 5 for the case studies.

4.4 SSV Analysis

The structured singular value for linear systems is also referred to in the literature as µ .

This section will review the µ -based methods for analyzing the robust stability and

performance properties of uncertain linear feedback systems, and then introduce some

powerful extensions of this theory for nonlinear time-varying systems.

 81

For simple unstructured uncertainty, robust stability leads naturally to a
∞
⋅ test. The

∞
⋅

norm, related to the largest singular value of an operator, thus provides a single norm

which handles both the nominal performance and robust stability problems.

Unfortunately, norm bounds are inadequate for dealing with more realistic models of

process uncertainty with structure. Then, more complicated mathematical objects

involving µ , are required. This leads to a robust stability test of the form 1)(≤⋅
∞

µ

(Doyle and Packard, 1987). Obviously, it would be desirable to treat performance with

both disturbance and uncertainties occurring simultaneously. This also leads to tests using

µ . Thus µ emerges as an essential analysis tool in dealing with robust performance as

well as with structured uncertainties.

4.4.1 Review of the SSV concept

The mathematical properties and computation of µ are first reviewed in the sequel for

the case of complex perturbations. Here µ is viewed as a natural generalization of both

spectral radius and spectral norm, and this viewpoint leads to useful characterizations of

µ in terms of these more familiar quantities. One consequence is that estimates for µ

can be obtained by scaling of ordinary singular values.

The structured singular value is useful to assess the robust stability and robust

performance of systems represented by linear fractional interconnections, presented

schematically in Figure 3.1 and Figure 4.1. This class of models has been introduced in

section 3.3 and shown in Figure 3.1 for robust stability. It is shown in this section for

robust performance and an additional uncertainty block RP∆ is added for this purpose. In

this generic model, the linear time-invariant (LTI) system nn×∈CM represents all the

known LTI components including the controller, the nominal models of the systems,

sensors, and actuators. The input vector d includes all external actions on the system, i.e.,

disturbance, noise and reference signal, and the vector e consists of all output signals

generated by the system. The uncertainty block),,(1 ndiag ∆∆= K∆ , which satisfies

 82

1)(
_

≤∆ iσ , is a norm-bounded LTI uncertainty with some prescribed structure. σ

denotes the maximum singular value of a matrix.),,(1 ndiag ∆∆= K∆ is characterized

by the following aspects:

• the dimensions of each block i∆

• whether i∆ is a complex or real-values matrix

• whether i∆ is a full matrix or a scalar matrix of the form Iii δ=∆

Generally, the block nn×∈C∆ is defined as follows:

},:],,,,,[{ 111
mjmj

jifrssr Cdiag ×∈∈= C∆∆∆II∆ δδδ KK (4.59)

Two nonnegative integers s and f , represent the number of repeated scalar blocks and

the number of full blocks of uncertainties respectively. This structure is generally

problem-specific and it depends on the nature of the uncertainty and the performance

objectives of the problem. Real uncertainties typically arise from uncertain coefficients in

the models of the physical systems. The focus here is on complex uncertainties because

the theory is far more developed for complex uncertainties than for real ones, and also the

algorithms for real uncertainties suffer often from discontinuity problems (Barmish and et

al, 1990). Therefore, most applications use only complex uncertainties that include the

real ones and therefore produce bounds for the original real uncertainty problem.

Let M in Figure 3.1 and Figure 4.1 be partitioned as follows:

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

22221

1211

2 u
d

MM
MM

y
e

(4.60)

such that the block structure ∆ is compatible in size with 22M . Then, the linear fractional

transformation (LFT) based operator,),(∆MFl is defined as follows:

 83

21
1

221211)(),(MMIMMMF −∆−∆+=∆l (4.61)

Figure 4.1 General ∆−M LFT framework

From a system point of view, 11M is the nominal map between d and e , and ∆ affects

the map in a known way, namely, through the additional matrices 222112 ,, MMM and

the formula lF . The subscript “ l ” in lF pertains to the “lower” loop of M which is

closed by the uncertainty block ∆ . An analogous formula can be used to describe

),(∆MFu , which is the resulting matrix obtained by closing the “upper” loop of M .

Formally, the SSV of nn×∈CM with respect to the perturbation structure ∆ , is defined as

}0)det(:)({min
1:)(

=∆−∆
=

∈∆

∆ MI
M

∆
σ

µ
(4.62)

unless no ∆∈∆ makes)(∆−MI singular, then)(M∆µ =0. From this definition,

)(∆−MI remains invertible as long as ∆∈∆ satisfies

)(/1)(M∆<∆ µσ (4.63)

2y

d

2u

e
 M

∆

RP∆

 84

i.e., as long as the size of ∆∈∆ does not exceed)(/1: M∆∆ = µK . The critical size ∆K is

called the well-posedness margin. For unstructured perturbation nn×∈C∆ ,

)()(M∆=∆ µσ . Thus)(M∆µ extends the notion of maximum singular value to the case

of structured perturbations. µ is generally used as a frequency domain design tool,

specifically, as a generalization of the σ design tools. Maximum singular values σ are

useful for one full block of uncertainty, but are generally conservative when the

uncertainty has structure, and the gap between µ and σ may be very large.

With the above definitions of µ , robust stability and performance of the system in Figure

3.1 and Figure 4.1 are given by the following theorems (Doyle and Packard, 1987).

Theorem RS: Assume an uncertainty set ∆ is defined. The feedback system in Figure 3.1

satisfies robust stability for stable ∆ and 1≤∆
∞

 , iff

1)(22 ≤
∞∆ Mµ (4.64)

where

))((sup)(2222 ωµµ
ω

jdef MM
∞∆ (4.65)

Theorem RP: Assume an uncertainty set ∆ is defined. The feedback system in Figure

4.1 satisfies robust performance for stable),(∆MFl and 1),(≤∆
∞

MFl , and for

1≤∆
∞

 , iff

1)(≤
∞∆ Mµ (4.66)

In summary, the robust stability and performance conditions with structured uncertainty

reduce to computing µ for constant matrices)(ωjM , and then taking sup over all the

ranges of frequencies ω . Unfortunately, definition (4.62) is not typically useful for

 85

computing µ .)(M∆µ can be easily calculated when ∆ belongs to either one of the

following two extreme sets.

• If }:{ C∈= δδI∆ (nrfs === 1,0,1), then)()(MM ρµ =∆ .)(⋅ρ denotes the

spectral radius of a matrix, i.e., the largest absolute value of the matrix’s eigenvalues.

• If nn×= C∆ (nmfs === 1,1,0), then)()(MM σµ =∆ .

For a general ∆ as in equation (4.59), nnC ×⊂⊂∈ C∆I }:{ δδ . From the definition of µ

and the above two extreme cases, it can be concluded that)()()(MMM σµρ ≤≤ ∆ .

These bounds can be refined by considering transformations on M that do not affect

)(M∆µ , but do affect ρ and σ . To do this, define the following two subsets of nn×C :

}:{ *
nIQQ∆QQ =∈=∆ (4.67)

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

>∈>=∈
= ×

− −

0,,0,
:]0,,,,,,[

*
111 11

jjii
rr

i

mmfms

dd
dddiag

ii

ff

RDDCD
IIDD

D
KL

(4.68)

Therefore the bounds can be tightened as follows:

)(inf)()(max 1−

∈∆∈ ∆∆

≤≤ DMDMQM
DDQQ
σµρ (4.69)

It is desirable to use both lower and upper bounds for µ using equation (4.69), since the

existing bounds nicely complement each other. The lower bound is always an equality

(Doyle, 1982). Unfortunately, the quantity)(QMρ can have multiple local maxima.

Thus, a local search of this quantity cannot guarantee the finding of the true)(M∆µ , but

can only yield a lower bound. The upper bound can be reformulated as a convex

optimization problem because the function)(1−DMDσ is convex with respect to D , so

 86

the global minimum can, in principle, be found. Unfortunately, the upper bound is not

always equal to)(M∆µ . For block structures ∆ satisfying 32 ≤+ fs , the upper bound

is always equal to)(M∆µ , and for block structures with 32 >+ fs , there exist matrices

for which)(M∆µ is less than the upper bound.

It is important to realize that the frequency domain test, where D is frequency-varying,

only applies to linear and time-invariant perturbations. If the perturbations are time-

varying, such as the ones considered in this work, Doyle and Packard (1988) proposed

the upper bound approaches based on constant matrix D optimization. These conditions

will be reviewed in the next section.

Consider the class of matrices D , which commute with the perturbation block ∆

according to equation (4.68). If D and ∆ commute, then by definition:

∆D∆D =⋅⋅ −1 (4.70)

A list of appropriate ∆D − commuting pairs is given in Table 4.1. If equation (4.70)

holds, then it is possible to formulate less conservative robust stability and performance

conditions than those proposed earlier in this section.

Table 4.1 Commuting ∆D − pairs

∆ :complex D

Time-invariant, full-block Frequency-varying, scalar-times-identity

Time-invariant, scalar-times-identity Frequency-varying, full-block

Time-varying, full-block Constant, scalar-times-identity

Time-varying, scalar-times-identity Constant, full-block

Theorem RSD: Assume an uncertainty set ∆ is defined. The feedback system in Figure

3.1 satisfies robust stability for stable and time-varying ∆ and 1≤
∞

∆ , iff

 87

1)(supinf 1
22 <−DDM

D
σ

ω
 (4.71)

where D is appropriately constructed as in Table 4.1.

The D scale which achieves or gets arbitrarily close to the infimum in equation (4.71) is

referred to as the optimal D scale. Absorbing the D scale into the M block yields the

transformed M matrix for the following robust performance condition.

Theorem RPD: Assume an uncertainty set ∆ is defined. The feedback system in Figure

4.1 satisfies robust performance for stable),(∆MFu and 1),(≤∆
∞

MFu , and for time-

varying 1≤
∞

∆ , iff

1supinf 1 <=⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− γσ

ω D0
0I

M
D0
0I

D

(4.72)

where D is appropriately constructed as in Table 4.1.

This condition implies that

)(22222
22 udye +≤+ γ (4.73)

Furthermore, from equation (4.70) and 1≤
∞

∆ , it can be concluded that 22
22 uy ≥ .

Thus 222 de γ≤ and 1),(≤∆
∞

MFl . In a typical closed-loop system, d represents

the disturbance inputs and e represents the output feedback errors. In order to use

theorems RSD and RPD, a procedure has to be found for finding the optimal scaling

matrices D ’s which are required on the left hand side of the inequalities (4.71) and (4.72).

The following two sections establish an equivalent minimization problem which is easier

to solve.

 88

4.4.2 Generation of an ∆−M LFT

As an illustration of the general procedure to obtain the ∆−M LFT description, consider

a discrete-time model completely described by a nominal linear process and some model

uncertainty as follows:

)(}{)(}{)(

)(}{)(}{)1(

11

11

ttt

ttt

n

i
ii

n

i
ii

n

i
ii

n

i
ii

dDDxCCe

dBBxAAx

∑∑

∑∑

==

==

+++=

+++=+

δδ

δδ

(4.74)

Here the scalar parameters si 'δ represent the model uncertainty for the system. An LFT

can be constructed for this perturbed system with an appropriate state-space matrix ∆W :

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++

++
=

∑∑

∑∑

==

==
∆ n

i
ii

n

i
ii

n

i
ii

n

i
ii

11

11

δδ

δδ

DDCC

BBAA
W

(4.75)

This model is represented in Figure 4.2, and the perturbed LFT is given by:

),(1IWFG

dGe

∆

∆
−

∆=

=

zu

(4.76)

where 1−z is the typical one interval shift used in z -transform theory for discrete

systems. It is desirable to transform it into the general ∆−M framework Figure 3.1 and

Figure 4.1 so that SSV analysis can be applied. To do this, it is first desired to isolate the

uncertainty elements from the overall transfer function),(1IWFG ∆
−

∆= zu . The matrix

∆W is rewritten as a feedback connection of a matrix N and an uncertainty block ∆ , and

its LFT representation is),(∆=∆ NFW l , shown in Figure 4.3. The matrix N is an

algebraic function of the elements of ∆W , but is independent of the uncertainty elements

 89

si 'δ . The block ∆ is composed of n diagonal scalar-times-identity blocks. For example,

the model given by equation (4.74) will be rewritten as follows:

)(],,,[)(
)()()()(

)()()()(
)()()()1(

2112112

22221222

212

222

tdiagt
tttt

tttt
tttt

sss nnnn yIIIu
uDdDxCy

uDDdCxe
uBBdAxx

+++=
++=

++=
++=+

δδδ K

(4.77)

where 2221122222 ,,,, DDDCB are defined as follows:

[]
[]
[]
[]

)1()1(22

221121

)1(11112

221122

)1(1122

][

11

1)1(

)1(

+×+

+×××

+×××××

=

=

=

=

=

×+

×+

ss

snn

sss

snsnn

ssssssss

nnnn

TTTTT

nnnn

TTTTT

nnnnnnnnn

0D

DBDBD

00D

CACAC

0I0IB

K

K

L

L

(4.78)

where sn is the number of states and n is the number of individual uncertainties. The

matrix N and the uncertainty block ∆ are given by:

},,,{ 11211 +++=∆

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

sss nnnndiag III
DDC
DDC
BBA

N

222122

12

22

δδδ K

(4.79)

Figure 4.2 Equivalent ∆−M framework (Equation (4.74))

)(te

)1(+tx

)(td

)(tx
∆W

I1−z

 90

Figure 4.3 Equivalent ∆−M framework (Equation (4.77))

Finally, a general LFT for the transfer-function from d to e can be given by:

}),,({ 1 ∆= −
∆ ΙNFFG zul (4.80)

Define),(1ΙNFM −= zu , then

),(∆=∆ MFG l (4.81)

Thus, the standard ∆−M framework given in Figure 3.1 and Figure 4.1 can be

constructed based on these definitions.

4.4.3 RS and RP conditions for time-varying uncertainty

Figure 4.4 Equivalent ∆−M framework (equation (4.82))

)(2 ty

)1(+tη)(tη

)(2 tu

M

∆

)(2 ty

)(td

)(2 tu

)(tx
)(te

)1(+tx

N

I1−z

∆

 91

For time-varying uncertainty, Packard and Doyle (1988) have proposed sufficient

conditions for robust stability and robust performance in the time domain. The motivation

for this analysis is twofold: first, the usual Lyapunov results for stability and performance

can be clearly represented in time domain; and second, the actual calculations involved

for the scaled singular values are computationally more attractive in the time domain.

For robust stability, consider the closed-loop system represented in the standard ∆−M

structure Figure 4.4 and described by:

)())(,()1(ttt l ηMFη ∆=+

},,,{ 21 III ndiag δδδ K=∆

(4.82)

)()(,)(mnmnnt +×+∈∈ CMCη and, for each time interval t ,)(t∆ is an element of the

uncertainty set ∆ .)(t∆ satisfies the following conditions:

1. 1))((≤∆ tσ

2.)(t∆ varies with discrete time t

The time-varying nature of)(t∆ invalidates the spectral radius arguments which do not

guarantee that)(tη decreases for all t , as for the time-invariant case. However, the

following sufficient condition does yield exponential stability:

1))](,([max
)(

<∆
∆

tlt
MFσ (4.83)

If this condition is satisfied, the operator))(,(tl ∆MF is referred to as a contraction. This

conservative result can be strengthened by searching for a single quadratic Lyapunov

function, Pηη* , for the entire set of operators. A necessary and sufficient condition for

the existence of such a function is given by

 92

)(

,1]))(,([max 1

)(

invertiblesomefor

t

nn

lt

×

−

∆

∈

<∆

CT

TMTFσ

(4.84)

This result is equivalent to the usual discrete-time Lyapunov result

))(,(
,*

tand
where

l ∆=
>−<−

MFF
0QQPPFF

(4.85)

In other words, TTP *= is a suitable Lyapunov function and equivalently, given P

satisfying equation (4.85) then 2/1PT = satisfies equation (4.84). Equation (4.84) can be

rewritten as follows:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∈

<∆

−

×

∆

I0
0T

MM
MM

I0
0T

M

CT

MF

1

2221

1211
T

T

)(

,1))](,([max
)(

invertiblesomefor

t

nn

lt
σ

(4.86)

Comparing equations (4.71) and (4.86), it is clear that the Lyapunov approach involves a

type of scaling similar to the optimal D scale mentioned in the previous section. In this

case, the scaling consists of a coordinate transformation T on the state variable. It is

possible to reformulate equation (4.86) by incorporating the appropriate D scale. Then a

sufficient robust stability condition for the closed-loop system given in Figure 4.5 is

given as follows:

1inf
2

<
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−

1
2

1

2221

1211

2
DT, D0

0T
MM
MM

D0
0T

σ
(4.87)

where nn×∈CT is invertible and 2D commutes with)(t∆ . A list of ∆D − commuting

pairs is given in Table 4.1. This condition implies 22)()1(tt ηη <+ , which is

 93

equivalent to the stability of the system. For a limited special class of uncertainties,

equation (4.87) is also necessary for the existence of a single quadratic Lyapunov

function. According to the SSV theory, this class is precisely those problems for which

the SSV is equal to its upper bound.

Similarly, a sufficient robust performance condition for the closed-loop system given in

Figure 4.6 is:

1inf <=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−

γσ
1

1

333231

232221

131211

DT,
D00
0I0
00T

NNN
NNN
NNN

D00
0I0
00T

(4.88)

where N is obtained by augmenting the matrix M to include the effect of external inputs

on the process. It is shown in Figure 4.6 for robust performance that an additional

uncertainty block RP∆ is added for this purpose. The diagram describing the robust

performance condition, given by equation (4.88), is shown in Figure 4.6.

Figure 4.5 Equivalent scaled and transformed loops for robust stability

M

)(tη 1−T
)1(+tη T

∆

)(2 tu)(2 ty

1
2
−D 2D

 94

Figure 4.6 Equivalent scaled and transformed loops for robust performance

The proof of the robust stability and performance conditions given above can be found in

Doyle, Packard and Morari (1989). The authors showed that the inequality (4.88) implies

the desired ∞H robust performance result: 222 de γ≤ , if the system has zero initial

states.

4.5 Comparison of Quadratic Lyapunov Analysis and SSV

Analysis

Based on the discussions in the previous sections, it can be seen that there is a close

relationship between quadratic Lyapunov analysis and SSV analysis. As a summary, for

nonlinear processes perturbed by time-varying uncertainties, for robust stability, they

both guarantee the state variables decrease with time, and for robust performance, they

both guarantee the ∞H robust performance result: 222 de γ≤ , if the system has zero

initial states. The conditions based on quadratic Lyapunov approach and the conditions

using the upper bound of the SSV approach, are all sufficient conditions, and they can

give useful conclusions when they succeed in establishing finite and feasible robust

)1(+tη

)(td)(te

)(tη

N
)(2 tu

)(2 ty

1−D

1−T T

D

I1−z

∆

RP∆

 95

stability and performance bounds. Both approaches are inherently conservative to some

degree, because they are based on robust control design approach and they depend on the

accuracy of the uncertainty bounds. However, there are many differences between the

two approaches, which make one approach more functional and less conservative than

the other.

First, it will be shown in a later section that quadratic Lyapunov analysis can easily deal

with additional issues of input-saturation and modeling error. Also the rate of change of

the uncertain time-varying parameters can be incorporated into the quadratic Lyapunov

approach based design to reduce the conservatism. Specifically, parameter-dependent

Lyapunov functions have been proposed to be used as an alternative to the fixed

Lyapunov functions in the analysis, such that the information on the parameter time-

variation can be integrated into the design. The SSV analysis can in principle also deal

with additional issues of input-saturation and modeling error, but the resulting closed-

loop system formulation when these issues are considered, is more complicated than for

the quadratic Lyapunov approach.

Second, for time-varying uncertainties, SSV approach has assumed complex

perturbations. Effect of real uncertainties can be covered by using complex ones, but

more conservative results will be obtained. This makes quadratic Lyapunov approach less

conservative in the case of real uncertain parameters, and this is the case of this work.

Third, the SSV analysis results reviewed in section 4.4 are based on the upper bound of

the SSV, and it will give more conservative conclusions if SSV is far from its upper

bound. One problem with µ is that the real value can not be accurately calculated, and it

depends on the calculation of its lower and upper bounds. The calculation of its lower

bound has local minimum, so it is the upper bound that is usually calculated in the case of

time-varying uncertainty. For an uncertainty structure which has s repeated scalar blocks

and f full blocks, the upper bound has been proven to be equal to the SSV when

1,1;3,2,1,0 ==== fsfs . Otherwise, the upper bound will be far from SSV, and

conservative conclusions will be obtained from the upper bound. Since the cases

 96

considered in this thesis include a number of repeated scalars blocks, the SSV analysis is

clearly conservative. Thus, the SSV approach based on its upper bound will give

conservative conclusions, because it is based on sufficient conditions only.

Fourth, the application of the SSV analysis requires that the bounds of the uncertain

parameters be absorbed into the system matrices M and N given by equation (4.87) and

(4.88), so that the uncertainty is bounded between known bounds. It is often inconvenient

to implement the uncertain parameters’ bounds into the system and to obtain the closed-

loop formulation shown in Figures 4.4 and 4.5. On the other hand, the quadratic

Lyapunov approach uses the bounds of the uncertainty as the vertices of the parameter-

box in a straightforward way. This point also favors the application of the quadratic

Lyapunov approach over the SSV approach.

Based on the above discussions, for the generality of the approach proposed in this work,

quadratic Lyapunov analysis is chosen instead of the SSV analysis. In Chapter 5, results

based on both analysis methods will be given for the design of linear and gain-scheduled

PI controllers. The results will be shown to favor, as expected, the use of the quadratic

Lyapunov function approaches over the SSV approach, consistent with the above

qualitative comparisons between these two approaches. However, the SSV approach still

remains a useful tool for robust control design of linear time-invariant systems.

 97

5 Robust Gain-Scheduled PI Controller

Gain-scheduling has proven to be a successful design methodology in many engineering

applications. However, in the absence of a sound theoretical analysis, these designs come

with no guarantees of robust stability, performance or even nominal stability of the

overall gain-scheduled design (Shamma and Athans, 1990). The main purpose of this

chapter is to present a new systematic approach to design robust gain-scheduled

controllers for nonlinear processes, which guarantees closed-loop robust stability and

performance. This approach is based on the analysis tools presented in Chapter 4. A large

part of the work shown in this chapter has been previously reported by Gao and Budman

(2004).

A gain-scheduled PI controller structure scheduling on the process input for nonlinear

chemical processes is proposed in this chapter. The state-affine model under this gain-

scheduled PI control results in a closed-loop system that can be shown to be an affine

parameter-dependent model, with affine parameter-dependence on the process inputs. In

Chapter 4, conditions on the robust stability and robust performance have been developed

for this class of closed-loop system, i.e., affine parameter-dependent models. Based on

these conditions, a robustness analysis is carried out to validate the design and obtain

bounds, in terms of the controller tuning parameters of the closed-loop stability and

performance, in the face of plant uncertainty. Thus, the robustness analysis is conducted

to produce ranges of parameter values that result in closed-loop robust stability and

performance.

Two additional issues, input-saturation and modeling error, are incorporated into the

design, using a quadratic Lyapunov based analysis. First, the input-saturation situation

occurring when the process inputs reach the controller limits, is explicitly addressed in

this chapter. Second, since the state-affine model used in this work is an empirical model

obtained from transformations of a Volterra series model (Sontag, 1978) identified from

input/output data, modeling errors will result. The study of input-saturation and the

modeling errors by the LMIs performance test, not studied in the previous work by

 98

Budman and Knapp (2001), is discussed here. A simple way to incorporate these two

problems into the LMIs test for robust stability and performance will be shown in this

chapter.

This chapter is organized as follows. Section 5.1 proposes the novel gain-scheduled PI

controller structure used in this work, and presents the closed-loop mathematical

formulation of the process state-affine model in conjunction with this gain-scheduled PI

controller. In section 5.2, design and optimization procedures are introduced for gain-

scheduled PI controllers based on the robust stability and performance conditions. This

section also shows the integration of the issues of input-saturation and modeling error

into the design and optimization procedures. Two approaches are developed to reduce the

conservatism of the design. One approach uses parameter-dependent Lyapunov functions,

which has been first proposed in Chapter 4. The other approach is based on analytical

calculation of the input-saturation factor bounds, which is proposed here in section 5.2.

For comparison with the quadratic Lyapunov approach, in section 5.3, the design of the

gain-scheduled PI controllers based on SSV (structured singular value) analysis is given.

Section 5.4 illustrates the CSTR case study results and section 5.5 summarizes the

conclusions of this chapter.

5.1 Gain-scheduled PI Controller

Gain-scheduling is a widely accepted technique for controlling nonlinear systems. In this

section, a novel gain-scheduled PI controller, which is different from the traditional gain-

scheduling approach will be presented. In contrast with Shamma and Athans’ work (1990,

1991, 1992) where scheduling was conducted with respect to the output variable, in the

current work, the scheduling variable is chosen to be the manipulated variable. This is a

logical choice for the current work since the manipulated variable has been shown to be

the source of the nonlinearity in the mathematical model representing the process in

Chapter 3.

 99

5.1.1 Closed-loop system

A gain-scheduled PI controller of the following form is proposed, where the tuning

parameters are scheduled as continuous functions of the scheduling variable, i.e., the

manipulated variable u as follows:

I

c
cc

I

c
ccc

dd

m

i

i
dic

m

i

i
cic

cc

K
KD

K
CBA

tytytyte

tetuWDttuWCtu

teBtAt

ττ

ξ

ξξ

+====

=−=

+++=

+=+

∑∑
==

,,1,1

0)(),()()(

)())(()())(()(ˆ

)()()1(

11

(5.1)

where cccc DCBA ,,, are control parameters and dici WW , are scheduling weights.)(tξ is

the controller state,)(te is the feedback error, and)(tyd is the desired set-point of the

process.)(ˆ tu is the PI controller output and)(tu is the actuator output. The control

action)(ˆ tu is calculated without saturation whereas)(tu is computed with saturation

limits. It should be noticed that this controller does not involve the problem of state

estimation, which is usually not easy. The controller is used to stabilize the process and

the tuning parameters to be tuned are diciIc WWK ,,,τ . In this work, for simplicity, only

the 1st-order scheduling weights, i.e., 11 , dc WW , will be considered, and they will be

referred to heretofore as dc WW , . This gain-scheduled PI controller is rewritten as

follows:

I

c
cc

I

c
ccc

dd

dccc

cc

K
KD

K
CBA

tytytyte
tetuWDttuWCtu

teBtAt

ττ

ξ
ξξ

+====

=−=
+++=

+=+

,,1,1

0)(),()()(
)())(()())(()(ˆ

)()()1(

(5.2)

 100

When 0== dc WW , the control law û reduces to a conventional discrete PI controller

with proportional gain and reset time cK and Iτ respectively. Otherwise when 0≠cW or

0≠dW or both, the coefficients cC and cD of the PI controller are augmented in

equation (5.2) by a linear dependency with respect to the manipulated variable)(tu to

allow for scheduling as a function of)(tu .

This controller is an output-feedback controller, and it does not require measurement of

all the process states as state-feedback controllers do. In practice, measurement of the

process states is usually very difficult and has to be estimated mathematically, while

measurement of the process output is usually available.

The process state-affine model discussed in Chapter 3 is given as follows:

)()(

)(}{)(}{)1(

0

1

1
,11

1

1
,0

tty

tutt
n

i
tii

n

i
tii

xH

GGxFFx

=

+++=+ ∑∑
−

=
+

−

=

δδ

(5.3)

For performance analysis, the rejection of output unmeasured disturbances is considered

in this work, and the control objective is that the error)(0)(tyte −= remains in a desired

bounded set for all bounded uncertainties and inputs. High-frequency disturbances can

not be effectively rejected unless an infinite closed-loop bandwidth is used. This is

clearly unattainable because of robust stability limitations. Therefore, the actual

disturbance)(tν entering the process is assumed to be modeled by the following set of

equations:

)()1()()1(
)()()(0

tvBWtBWdtd
tdWtty f

−+=+

+= xH

(5.4)

 101

where)(td represents the filtered unmeasured disturbances in the system, and

10 ≤≤ fW is a disturbance weight, and 10 ≤≤ BW is a bandwidth weight in

performance computations.

Thus, to analyze the closed-loop performance, the system is described by the following

parameter-dependent model:

)()1()()1(
)()()(

)(}{)(}{)1(

0

1

1
,11

1

1
,0

tvBWtBWdtd
tdWtty

tutt

f

n

i
tii

n

i
tii

−+=+

+=

+++=+ ∑∑
−

=
+

−

=

xH

GGxFFx δδ

(5.5)

The uncertainty description developed in Chapter 3, is given as follows:

i

ti tu)(, =δ (5.6)

After substitution of equation (5.6) into equation (5.2), the following uncertain expression

for the gain-scheduled PI controller is obtained:

I

c
cc

I

c
ccc

tdctcc

cc

KKDKCBA

teWDtWCtu
teBtAt

ττ

δξδ
ξξ

+====

+++=
+=+

,,1,1

)()()()()(ˆ
)()()1(

,1,1
(5.7)

The process given by equation (5.5) and the controller given by equation (5.7) are

combined together into one state-space representation as follows:

 102

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+
+

)(
)(
)(
)(

)(

)(
)1(
)1(
)1(

tv
td
t
t

te
td
t
t

t ξξ
x

DC
BδA

x

[]TTTT BW)1(−= 00B , []fW−−= 00HC ,]0[=D

(5.8)

where

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−=

BW
WBAB fccct

00
H

AAA
δA 0

131211

)(

0,1

1

1
,11

1

1
,011))((hGGFFA tdc

n

i
tii

n

i
tii WD δδδ ++−+= ∑∑

−

=
+

−

=

))((,1

1

1
,1112 tcc

n

i
tii WC δδ ++= ∑

−

=
+GGA

ftdc

n

i
tii WWD))((,1

1

1
,1113 δδ ++−= ∑

−

=
+GGA

(5.9)

where n
nt R∈=),,,(21 δδδ Lδ is a vector of uncertain and time-varying real parameters,

and according to equation (5.6), tjitjti ,,, +=× δδδ . Then, the state matrix)(tδA can be

easily shown to depend affinely on the parameters as follows:

tnnttt δδδ ,,22,110)(AAAAδA +++= K (5.10)

where nAAA L,, 10 are a priori known fixed matrices.

Then, equation (5.8) can be rewritten in the more compact form:

 103

0)0(
)(
)()(

)(
)1(

ηη

η
DC
BδAη

=

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ +
t
t

te
t t

ν

(5.11)

where the closed-loop state vector is defined as TT ttt)](,)([)(ξxη = . Because the closed-

loop systems of the state-affine model and the gain-scheduled PI controllers, given by

equations (5.10) and (5.11), have affine-dependence with respect to the uncertain

parameters sti ',δ , the robust stability and performance conditions developed in Chapter 4

can be used to design gain-scheduled PI controllers.

5.1.2 Input-saturation

In defining ti,δ according to (5.6), it was assumed that the inputs)(tu remain between

upper and lower limits determined, for example, by actuator constraints. Input-saturation

would occur when the controller outputs)(ˆ tu exceeded the limits, e.g., [-1 1] in terms of

normalized input values. However, in the closed-loop equations (5.8) and (5.11), the fact

of controller saturation was not explicitly accounted for. To address this issue, the gain-

scheduled PI controller can be reformulated using a variable gain cK~ as follows. Define:

When the actuator is saturated, i.e., when 1ˆ ≥u :

e
Ku

II

c)11(1
11

ˆ
1

τ
ξ

τ

ψ
++

==

When the actuator is not saturated, i.e., when 1ˆ <u :

1=ψ

(5.12)

Then the gain of the controller is given by:

When the actuator is saturated: (5.13)

 104

 ψψ cc KKif =≤≤ ~10

When the actuator is not saturated:

constantKKelse cc === ~1ψ

This variable gain formulation ensures that)(tu never exceeds the saturation limits, and

the ψ is referred heretofore as a saturation factor with []ψψψ ∈ , where ψ is the lower

bound, and ψ is the upper bound of this factor. When there is no input-saturation, i.e.,

1ˆ <u , then from equation (5.12) 1>ψ , and the limits of]1,1[,1ˆ ∈→ ψu will be

considered. When input-saturation occurs, i.e., 1ˆ ≥u , then from equation (5.12), the

limits of 1=ψ corresponding to 1ˆ =u , and 0=ψ corresponding to ∞→û will be

considered, i.e.,]1,0[∈ψ .

This formulation raises the problem that for 0=ψ , the interaction between)(tξ and

)1(+tx is cancelled according to equation (5.7), and consequently, it is not possible to

attain convergence of)(tξ to the origin. For instance, assuming)(tx converges to the

origin, following equation (5.7),)()1(tt ξξ =+ . Consequently, the controller state may

converge to a constant value different than zero, which is not the asymptotic stability

required by Lyapunov theory. To ensure convergence of)(tξ to the origin, a rudimentary

form of anti-windup is implemented whenever the input saturation occurs. The resulting

controller is then rewritten as follows:

10
)())(()())(()(

))()(()1(

≤≤
+++=

+=+

ψ
ψξψ

ξψξ

for
tetuWDttuWCtu

teBtAt

dccc

cc

(5.14)

In addition, when the lower limit of saturation factor is assumed to be zero for the case

that ∞→û , i.e., when 0=ψ , the closed-loop performance condition as defined by

Theorem 4.2 was found in the examples to be very conservative, and in some cases could

 105

not be met. Fortunately, the output in a real process is always bounded due to sensor

saturation or the physical limitation of the process, e.g., concentration is always between

[0 1]. Thus, in reality, the controller output)(ˆ tu in a process will not achieve infinity, but

bounded by practical constraints. As a result, the lower limit of ψ would be 0>ψ . This

fact can be used to relax the lower limit of the saturation factor in order to meet the robust

performance criterion and will be further discussed later in section 5.2.3.

The closed-loop system models for the purpose of the LMIs based approach, taking into

account the input-saturation factor ψ , are obtained as follows.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+
+

)(
)(
)(
)(

)(

)(
)1(
)1(
)1(

tv
td
t
t

te
td
t
t

t ξξ
x

DC
BδA

x

[]TTTT BW)1(−= 00B []fW−−= 00HC]0[=D

(5.15)

where

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−=

BW
WBAB fccct

00
H

AAA
δA ψψψ 0

131211

)(

0,1

1

1
,11

1

1
,011))((HGGFFA ψδδδ tdc

n

i
tii

n

i
tii WD ++−+= ∑∑

−

=
+

−

=

ψδδ))((,1

1

1
,1112 tcc

n

i
tii WC ++= ∑

−

=
+GGA

ftdc

n

i
tii WWD ψδδ))((,1

1

1
,1113 ++−= ∑

−

=
+GGA

(5.16)

 106

The inclusion of the input-saturation factor as an additional uncertain parameter will add

more vertices to the LMIs test corresponding to limits of []ψψψ ∈ . The closed-loop

system given by equations (5.15) and (5.16) does not have the standard parameter affine-

dependence structure shown in Chapter 4, with respect to both sti ',δ and ψ . However,

the robustness conditions developed in Chapter 4 can still be applied to the system. The

rationale is that equation (5.15) is quadratic with respect to the uncertain parameters

sti ',δ when 1=ψ , i.e., for the case when there is no input saturation, and equation (5.15)

is linear with respect to ψ and quadratic with respect to the uncertain parameters sti ',δ ,

when 1, =tiδ corresponding to the saturation situation. Thus, the robust stability and

performance conditions are still quadratic or linear with respect to the uncertain

parameters sti ',δ and ψ , and it is possible to check the vertices of the uncertain

parameter box instead of checking each internal point of it.

For SSV analysis method, the ∆−M LFT framework of the closed-loop system must be

obtained, and the uncertainty will include not only the uncertain parameters sti ',δ , but

also the input-saturation factor ψ . Since SSV is not the main design approach in this

work, the corresponding SSV formulation has not been investigated for the saturation

case.

5.1.3 Modeling error

In addition to the nonlinear time-varying powers of)(tu accounted for as model

uncertainty between the state-affine model and the linear nominal model, the

approximation of the real process by an empirical state-affine model also results in some

modeling error.

Modeling error will arise due to both truncations of the infinite Volterra series model to a

finite one and its subsequent transformation step into the state-affine model. There are

 107

different ways to account for the modeling error in the final state-affine model. In

principle, modeling error exists in each one of the polynomial matrices iii HGF ,, in the

state-affine model due to the truncation and approximation issues. However, it is difficult

to identify how the modeling error is distributed among these matrices. In the current

study, for simplicity, a lumped error tδ in the output is considered so that the H matrix

can be rewritten as follows:

ttWt δδ +=⎯→⎯= 00 HHHH (5.17)

The modeling error uncertainty is normalized so that 1=tδ and the weight tW gives the

magnitude of the largest expected modeling error. tW is calculated from comparisons of

the actual system output with the prediction output of the state-affine model, by solving

the following minimum problem:

))()()((max(min 0 kttactualktWtt txWtyW
kt

δδ +−= H (5.18)

where actualkty)(is the output of the actual process and)()(0 ktt txW δ+H is the

prediction output of the state-affine model including the modeling error. The input

sequence used to identify the model may be also used to identify the modeling error ttW δ

by solving the above problem. Starting with an initial estimate of ttW δ , equation (5.18) is

solved using iterative optimization. The matrix 0H in the closed-loop equations (5.15)

and (5.16), needs to be modified to include this modeling error based on equation (5.17).

When modeling error is not considered, 0=tW . When there is modeling error, tW is set

to be the magnitude of the modeling error calculated from equation (5.18), with 1±=tδ .

In summary, for the quadratic Lyapunov approach, the inclusion of modeling error as an

 108

additional uncertain parameter will add more vertices to the LMIs test corresponding to

limits of]1[],1[],0[−=tδ .

The resulting closed-loop system does not have the standard parameter affine-dependence

structure shown in Chapter 4, with respect to both sti ',δ , ψ and tδ . However, the

robustness conditions developed in Chapter 4 can still be applied to the system. The

reason is that the robust stability and performance conditions are still quadratic or linear

with respect to the uncertain parameters sti ',δ , ψ and tδ , and it is possible to check the

vertices of the uncertain parameter box instead of checking each internal point of it.

For the SSV design method, the ∆−M LFT framework of the closed-loop system must

be obtained, and the uncertainty will include not only the uncertain parameters sti ',δ , but

also the modeling error tδ . This will be shown later in section 5.3.1.

5.2 Design and Optimization using Quadratic Lyapunov

Functions

Note that in Chapter 4, for systems that can be put in the form of equation (5.11), LMIs-

based conditions have been developed for the analysis of robust stability and performance.

Based on these conditions, robust gain-scheduled PI controllers are designed and

optimized.

5.2.1 Design of robust gain-scheduled PI controller

By trial and error, regions of controller parameters values in the parameter space given by

=θ { ,cK ,Iτ ,cW dW } are generated by checking if the conditions in Theorems 4.1 and

4.2 are satisfied. A set of gain-scheduled PI controllers are designed based on the

feasibility of equation (4.26), which guarantees that a desired performance criterion

objectiveγ is satisfied.

 109

For a pre-specified performance index objectiveγ for a process, the procedure to design a

robust gain-scheduled PI controller is as follows:

1. Set a range and a discrete grid of values in that range for the controller design

parameters set θ , i.e., ,cK ,Iτ ,cW dW .

2. Choose values for θ according to the grid values within the parameter range. Set

,cW dW in the set θ to zero if linear PI controllers are designed.

3. Substitute values of the set θ and objectiveγ into equations of Theorem 4.2.

4. Solve the above equation as a FEASP problem in MATLAB.

5. If a feasible solution exists for the above equation, accept values chosen in step 2,

otherwise, discard the current values.

6. Go to step 2.

The same procedure as above will be used to design a PI controller satisfying robust

stability, but equations of Theorem 4.1 are used in step 3, instead of Theorem 4.2

equations. For reducing conservatism, parameter-dependent Lyapunov functions could be

used instead of the fixed-parameter Lyapunov functions. In this case, the equations

corresponding to Theorems 4.3 and 4.4 are used instead of Theorems 4.1 and 4.2

respectively. Theorems 4.5 and 4.6 will be applied in the case of constant uncertain

parameters.

5.2.2 Optimization of robust gain-scheduled PI controllers

 110

The performance index γ can be optimized by solving equations of Theorem 4.2 as a

GEVP (generalized eigenvalue problem) problem in MATLAB. Since the performance of

the controller is directly related to the parameter γ, the objective of this optimization

problem is to minimize this parameter γ. The equation of Theorem 4.2 is as follows:

W0
IDC

DIPBBPAB
CPBAPPAA

∈<
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
ωγω

ωωω
allforTTT

TTT

,)(
)()()(

2

(5.19)

It is easy to show that this problem falls into the standard form of a GEVP problem if it is

rewritten in the following alternative form:

W

I
IDC

DPBBPAB
CPBAPPAA

P

∈

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
<

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

ω

γω
ωωω

γ

allfor

tosubject TTT

TTT

000
00
000

)(
)()()(

min

2

2

(5.20)

If a controller which optimizes the closed-loop performance is sought, the procedure to

design a robust gain-scheduled PI controller with near optimal performance is as follows:

1. Set a range and a discrete grid of values in that range for the controller design

parameters set θ , i.e., ,cK ,Iτ ,cW dW .

2. Choose values for θ according to the grid values within the parameter range. Set

,cW dW in the set θ to zero if linear PI controllers are designed.

3. Substitute values of the set θ into equation (4.33).

4. Minimize γ subject to equation (4.33) (GEVP problem in MATLAB).

 111

5. If a feasible solution exists for equation (4.33), accept values chosen in step 2 and the

optimized performance index γ , otherwise, discard the current values.

6. Go to step 2 until)min(γγ =optimal is obtained over the whole parameter range.

For reducing conservatism, parameter-dependent Lyapunov functions could be used

instead of the fixed-parameter Lyapunov functions. In this case, Theorem 4.4 is used

instead of Theorem 4.2. Theorem 4.6 can also be applied in the case of constant uncertain

parameters.

The problem of searching for the optimal performance index, optimalγ , is not quadratic in

terms of the controller parameters ,cK ,Iτ ,cW dW and the optimization matrix variable

P simultaneously. Thus, the resulting problem is a nonlinear matrix inequality for all of

these parameters. For example, equation (4.33) includes higher-order terms like

dcIc WWK PP ,/2 τ . Thus, the optimization in terms of all of these parameters may be near

optimal instead of a global optimal solution. Branch and bound methods have been

proposed to solve LMIs that are not convex with respect to certain variables (Fukuda and

Kojima, 2001; Braatz, VanAntwerp & Sahinidis, 1997). This is beyond the scope of the

current study.

5.2.3 Relaxation of the input-saturation factor ψ

In section 5.2.1, a robust control approach has been proposed to design gain-scheduled PI

controllers, which guarantee closed-loop stability and performance. The inherent

conservatism of the robust control analysis results in smaller ranges of parameters that

satisfy the design criteria and consequently in degraded performance based on these

parameter ranges. When the rate of change of the uncertain parameters is available, a

design based on parameter-dependent Lyapunov functions may be used to reduce

conservatism. This approach has been proposed in detail in Chapter 4. The main focus of

 112

this section is to propose a second approach to reduce conservatism based on the

calculation of less conservative saturation factor bounds.

When the lower limit of the saturation factor is assumed to be zero for the case that the

calculated control action tends to infinity, i.e., when 0=ψ , the closed-loop performance

condition as defined by the equation in Theorem 4.2 was found to be very conservative,

and in some cases could not be met. Fortunately, the output in a real process is always

bounded due to sensor saturation or the physical limitation of the process, e.g.,

concentration is always between [0 1] and this fact can be used to reduce conservatism

and to meet the robust performance criterion. For example, using the physical limits of

the output, a finite upper limit for the control action û exists and consequently a lower

bound of ψ different than zero according to equation (5.12) can be calculated

analytically as follows.

Method 5.1 (saturation factor lower bound ψ) Consider the controller (5.7) with the

error signal bounded []eete ∈)(. The analytical saturation factor lower bound is

calculated as follows:

Step 1: For any []eete ∈)(, if { 1)1(ˆ <−ku and 1)(ˆ ≥ku }, then)(ˆ/1)(kut =ψ ;

Step 2: For all []eete ∈)(,))(min(tψψ = .

Step 1 involves iterative calculation of the controller output)(ˆ ku using equation (5.1) for

each error)(te in the range of []ee until a)(tψ is obtained for each)(te based on

equation (5.12). Then a set of)(tψ values is obtained for the range of the error signal

[]eete ∈)(. Step 2 consists in deriving the minimum value of all the)(tψ values

obtained in Step 1, i.e.,))(min(tψψ = , which is then adopted as the lower bound of the

saturation factor to be used for the LMIs analysis.

 113

5.3 Design based on SSV Analysis

Nonlinear and/or time-varying uncertainty can be also addressed using extensions of SSV

analysis, and for simplicity, these extensions based on the upper bound of µ will be

referred to as SSV analysis in this section. The application of SSV analysis to the design

of gain-scheduled PI controllers is presented in the sequel, for comparison with the LMIs

based methodology.

5.3.1 Generation of an ∆−M LFT: simple case

It has been shown in a previous section that a nonlinear process can be completely

described by a state-affine model given by equation (5.5), which is composed of a

nominal linear process and some model uncertainty. The proposed gain-scheduled PI

controller is given by equation (5.7). To apply the SSV approach to the robust stability

and robust performance analysis of the closed-loop system, it is desired to first transform

equations (5.5) and (5.7) into the standard ∆−M structure.

For this purpose the state-affine model is partitioned as follows:

)()1()()1(

)(],,,[)(
)()()()(

)()()()(
)()()()1(

2212

22221222

2120

22210

tvBWtBWdtd

tdiagt
ttutt

tdWtutty
ttutt

sss nknn

f

−+=+

=
++=

++=
++=+

yIIIu
uDDxCy

DxH
uBGxFx

δδδ K

(5.21)

where tii ,δδ = for simple notation, and k is the number of uncertainties in the state-

affine model. The schematic description of this formulation is shown in Figure 4.3. The

matrices 2221122222 ,,,, DDDCB are

 114

[]
[]
[]
[]

ss

skn

sss

snskn

ssssss

knkn

TTT

knnn

TTT

knnnnnn

×

×××

×××

=

=

=

=

=

×

×

][22

3221

11112

2122

22

1

0D

GGD

00D

FFC

IIB

K

K

L

K

(5.22)

The gain-scheduled PI controller, equation (5.7) is partitioned as follows:

)(][)(
)()()()(

)()()()(
)()()()1(

212

22221222

212

222

tytu
tuDteDtCty

tuDteDtCtu
tuBteBtAt

cc

ccccc

cccc

cccc

δ
ξ

ξ
ξξ

=
++=

++=
++=+

[]
11211122

111211221122

][][
]1[0]0[

××

×××

==
===

dccc

ccc

WDWC
DDB

(5.23)

The closed-loop system is obtained by combining equations (5.21), (5.22) and (5.23) and

the closed-loop state vector is defined as TT ttt)](,)([)(ξxη = . The input and output of the

uncertainty block are []Tc
T ytt 22)()(yy =∆ and []Tc

T utt 22)()(uu =∆ . For the robust

stability framework shown in Figure 4.5, the effect of external inputs on the process is

not considered, so the M matrix and the uncertainty block structure are given as follows:

)(],,,,[)(

)()1(

121

2221

1211

tdiagt

tt

sss nknn ∆∆

∆∆

=

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ +

yIIIu
u
η

MM
MM

y
η

δδδδ K

(5.24)

where the matrices are as follows:

 115

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=

2221

12

2221

22

12

cc

cc

cc

cc

cc

cc

cc

cc

DD
DD

CD
CD

BB
DD

AB
CD

12

21122122
22

0

2102122
21

12

112122
12

0

1010
11

D
DDDD

M

H
DHDC

M

D
GDGB

M

H
GHGF

M

(5.25)

For robust performance framework shown in Figure 4.6, the filtered output unmeasured

disturbance d is considered, and the closed-loop state is augmented as

[]TT tdttt)()()()(ξxη = . The matrix N and the uncertainty block structure are given

as follows:

)(],,,,[)(
)(

)(

)(

)1(

121 tdiagt
tv

t

te

t

sss nknn ∆∆

∆∆

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ +

yIIIu

u
η

NNN
NNN
NNN

y
η

333231

232221

131211

δδδδ K

(5.26)

where the matrices are:

[] [] []00
0

1
0

00

33)1(1

1

21

1

1
1

==−−=

⎥
⎦

⎤
⎢
⎣

⎡
==⎥

⎦

⎤
⎢
⎣

⎡
−
−

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
=

+×

×

×

×
×

NW
WD
WD

BWBW
WB

WD

s

s

s

s
s

knf

kn

fc

fc

n

kn
n

fc

fc

0NHN

0
NMN

D
MN

0
N

0
M

N
0

G
M

N

32031

232222
21

2121

13
12

12

1
11

11

(5.27)

5.3.2 Generation of an ∆−M LFT: with modeling error

 116

If the effect of modeling error is considered, the following state-affine model is obtained

by combining equations (5.5) and (5.17).

)()1()()1(

)()()()(

)(}{)(}{)1(

0

1

1
,11

1

1
,0

tvBWtBWdtd

tdWtWty

tutt

ftt

n

i
tii

n

i
tii

−+=+

++==

+++=+ ∑∑
−

=
+

−

=

xH

GGxFFx

δ

δδ

(5.28)

The state-affine model is partitioned into the structure shown in Figure 4.3 as follows:

)()1()()1(

)(],,,,[)(
)()()()(

)()()()(
)()()()1(

2212

22221222

2120

22210

tvBWtBWdtd

tdiagt
ttutt

tdWtutty
ttutt

tnknn

f

sss

−+=+

=
++=

++=
++=+

yIIIu
uDDxCy

DxH
uBGxFx

δδδδ K

(5.29)

where tii ,δδ = for simple notation, and k is the number of uncertainties in the state-

affine model. The matrices 2221122222 ,,,, DDDCB are

[]
[]
[]
[]

)1()1(22

3221

)1(111112

12122

)1(122

][

)(

1

))((

1)1(

)1(

+×+

+××××

×

+×××××

=

=

=

=

=

×+

×+

ss

skn

ssss

snskns

sssssssss

knkn

T
t

T
k

TT

knnnn

TT
nt

T
k

TT

knnnnnnnnn

W

W

0D

GGGD

000D

IFFFC

0IIIB

K

K

L

K

(5.30)

The gain-scheduled PI controller given by equation (5.7) is partitioned into equation

(5.23) obtained in the previous section.

 117

The closed-loop system is obtained by combining equations (5.29), (5.30) and (5.23) and

the closed-loop state is defined as TT ttt)](,)([)(ξxη = . The input and output of the

uncertainty block are []Tc
T ytt 22)()(yy =∆ and []Tc

T utt 22)()(uu =∆ . For robust

stability, the M matrix and the uncertainty structure in Figure 4.5 are given as follows:

)(],,,,,[)(

)()1(

121

2221

1211

tdiagt

tt

tnknn sss ∆∆

∆∆

=

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ +

yIIIu
u
η

MM
MM

y
η

δδδδδ K

(5.31)

where the matrices are:

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=

2221

12

2221

22

12

cc

cc

cc

cc

cc

cc

cc

cc

DD
DD

CD
CD

BB
DD

AB
CD

12

21122122
22

0

2102122
21

12

112122
12

0

1010
11

D
DDDD

M

H
DHDC

M

D
GDGB

M

H
GHGF

M

(5.32)

For robust performance test, the output unmeasured disturbance d is considered, and the

closed-loop state is augmented as []TT tdttt)()()()(ξxη = . The matrix N and the

uncertainty structure in Figure 4.6 are given as follows:

)(],,,,,[)(
)(

)(

)(

)1(

121 tdiagt
tv

t

te

t

tnknn sss ∆∆

∆∆

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ +

yIIIu

u
η

NNN
NNN
NNN

y
η

333231

232221

131211

δδδδδ K

(5.33)

where the matrices are:

 118

[] [] []000
0

1
0

00

33)1(1

1)1(

21

1

)1(1
1

==−−=

⎥
⎦

⎤
⎢
⎣

⎡
==⎥

⎦

⎤
⎢
⎣

⎡
−
−

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
=

+×

×+

×

+×
×

NW
WD
WD

BWBW
WB

WD

s

s

s

s
s

knf

kn

fc

fc

n

kn
n

fc

fc

0NHN

0
NMN

D
MN

0
N

0
M

N
0

G
M

N

32031

232222
21

2121

13
12

12

1
11

11

(5.34)

5.3.3 Design of robust gain-scheduled PI controllers: SSV analysis

According to equation (5.6), the perturbations are equal to the powers of the manipulated

variable u and consequently, the uncertainty is time-varying. For this type of uncertainty,

Packard and Doyle (1988) have proposed sufficient conditions for robust stability and

robust performance.

A sufficient robust stability condition for the system given by equation (5.24) is:

1inf
1

2

<
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−

D0
0T

MM
MM

D0
0T 1

2221

1211

DT,
σ

(5.35)

where)1()1(+×+∈ ss nnCT is invertible and D commutes with)(t∆ . According to equation

(5.24), the uncertainty block is time-varying scalar-times-identity, and the commuting D

is a constant full-block matrix, i.e.,)1()1(+×+∈ ss knknCD . If the modeling error tδ is going to

be considered during the design, then the closed-loop system will be given by equation

(5.31), and the uncertainty structure is also given in equation (5.31). According to this

equation, the commuting D is a constant full-block matrix but with a dimension of
)2()2(+×+∈ ss knknCD .

Similarly, a sufficient robust performance condition for the system given by equation

(5.26) is:

 119

1inf <=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−

γσ
I00
0D0
00T

NNN
NNN
NNN

I00
0D0
00T

1

1

333231

232221

131211

DT,

(5.36)

where)11()11(++×++∈ ss nnCT is invertible and)1()1(+×+∈ ss knknCD commutes with)(t∆ . If the

modeling error tδ is being considered during the design, then the closed-loop system will

be given by equation (5.33), and the uncertainty structure is given by equation (5.33).

According to this equation, the commuting D is a constant full-block matrix but with a

dimension of)2()2(+×+∈ ss knknCD .

The conditions given by equations (4.87) and (4.88) are investigated for the closed-loop

system given by equations (5.24) and (5.26), or equations (5.31) and (5.33), to guide the

selection of the gain-scheduled PI controller parameters ,cK ,Iτ cW and dW . According

to these conditions for robust stability, only the dynamic states and the uncertainty

feedback related variables are considered, whereas for robust performance, the external

disturbances and the error are also considered.

By trial and error, regions of controller parameters, =θ { ,cK ,Iτ ,cW dW }, will be

generated by checking if the conditions (4.87) and (4.88) are satisfied. A set of gain-

scheduled PI controllers can be designed, which satisfy a desired performance criterion

objectiveγ .

For a pre-specified performance index objectiveγ , the procedure to design a robust gain-

scheduled PI controller is as follows:

1. Set a range of values and a discrete numerical grid of values within that range for the

controller design parameters set θ , i.e., ,cK ,Iτ ,cW dW .

 120

2. Choose values for the set θ according to the parameter grid inside the parameter range.

Set ,cW dW in θ to zero if linear PI controllers are designed.

3. Substitute values of θ and objectiveγ into equation (4.88).

4. Solve the above equation.

5. If a feasible solution exists for the above equation, accept values chosen in step 2,

otherwise, discard the current values.

6. Go to step 2.

The same procedure as above is used to design a gain-scheduled PI controller satisfying

robust stability, by using equation (4.87) in step 3, instead of equation (4.88).

5.4 CSTR Case Study

For the CSTR problem, the open-loop system was initially studied by performing step

changes in the input, i.e., cooling water temperature, and measuring their effect on the

output, i.e., the reactor concentration. Then, 1st-order transfer functions were identified

from these step tests. A summary of the open-loop properties of the CSTR process

selected for the current study is given in Figure 5.1 and it shows that, assuming that the

process can be approximated as a 1st-order one, the CSTR system has varying process

gain and time-constant over the input range of []4010−=cx . This is assumed to be the

operating range for the current work, and the CSTR process is nonlinear over this range.

The state-affine model obtained in Chapter 3 is used in the design of the gain-scheduled

PI controllers. A modeling error weight of 025.0=tW was identified from simulations

 121

according to equation (5.18) and it will be included in all the following design results.

First, no input-saturation is included, and the cases of fixed-parameter Lyapunov

functions in section 5.4.1.1 and parameter-dependent Lyapunov functions in section

5.4.2.1 are compared, based on the quadratic Lyapunov designs. Second, the effect of

input-saturation will be investigated through different designs in section 5.4.2.2. Last, the

results obtained using the SSV approach are given in section 5.4.3. In all the design

results shown in this chapter, for the linear PI controllers, the stability region is the area

above the stability boundary including the boundary, and for the gain-scheduled PI

controllers, the stability region is the area inside the boundary including the boundary.

These rules apply to the performance regions as well.

-10 -5 0 5 10 15 20 25 30 35 40
0.5

1

1.5

2
CSTR properties

ta
ui

-10 -5 0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

input xc

kp
(:)

Figure 5.1 Open-loop properties of CSTR ([]4010−=cx)

 122

5.4.1 Design and optimization using quadratic Lyapunov functions

This section will summarize the design and optimization results based on fixed-parameter

Lyapunov functions. As explained in the beginning of this section, the state-affine model

obtained in Chapter 3 is used in the design of the gain-scheduled PI controllers. A

modeling error weight of 025.0=tW is included in the design and input saturation is

initially not considered. Part of the results shown here has been reported by Gao and

Budman (2003).

5.4.1.1 Design of gain-scheduled PI controllers

First, linear PI controllers, i.e., with the scheduling parameters cW and dW set to zero, are

designed using the procedure proposed in section 5.2.1. The design results are plotted in

Figure 5.2 as regions in a system of coordinates corresponding to the proportional gain

and reset time IcK τ, , respectively. Linear PI controllers with the parameter values inside

these regions will guarantee robust stability and robust performance, i.e., 1≤γ , for the

closed-loop system, whereas parameter values outside these regions do not satisfy the

robust stability and robust performance tests, i.e., 1>γ .

 123

0.5 1 1.5 2 2.5 3 3.5

2

4

6

8

10

12

14

16

18

20

Kc,proportional gain

ta
ui

,re
se

t t
im

e

Stability and performance (:) of linear PI

3-OPT-LPI

1-IMC-LPI

Figure 5.2 Stability and performance regions (to the left of the lines) of linear PI

controller parameters.

Second, gain-scheduled PI controllers with cW and dW different than zero are designed

using the procedure proposed in section 5.2.1. For the purpose of comparison with the

linear PI controllers and also as an initial guess for further optimization of controller

parameters, a set of linear PI controller parameters was first selected in Figure 5.2 as

follows: 1545.1,2 == IcK τ on the robust performance boundary, shown as a circle on

the boundary in Figure 5.2. This set of parameters was selected as follows. Assuming that

the process can be modeled by a 1st-order transfer-function around the nominal operating

point, i.e., 0=cx , where cx is the normalized deviated variable of cx , the time-constant

τ is found to be 1.1545 seconds based on a step test around this point. According to the

Internal Model Control (IMC) rules for PID controller settings, available in the literature

(Morari and Zafiriou, 1989, Rivera, Morari and Skogestad), Iτ is set equal to 1545.1=τ .

Thus, the controller with 1545.1,2 == IcK τ corresponds to the IMC tuning parameters

 124

around the nominal operating point on the robust performance boundary, and it is referred

heretofore as 1-IMC-LPI. Based on the linear IMC PI controller parameters, gain-

scheduled PI controller weights cW and dW will be calculated according to the

performance test. Figure 5.3 shows the regions in terms of cW and dW required to satisfy

robust performance conditions. The gain-scheduled PI controllers defined by parameter

values within the regions in Figure 5.3 will guarantee robust performance with 1≤γ . The

circle in Figure 5.3 corresponds to the 1-IMC-LPI controller selected on the limit of the

robust performance, i.e., with 0,0 == dc WW .

Similarly, the controller with 1545.1,42.2 == IcK τ corresponds to the IMC tuning

parameters around the nominal operating point on the robust stability boundary, shown as

a circle on the boundary in Figure 5.2. Based on the linear IMC PI controller parameters,

gain-scheduled PI controller weights cW and dW will be calculated according to the

stability tests. Figure 5.4 shows the regions in terms of cW and dW required to satisfy

robust stability conditions. The gain-scheduled PI controllers defined by parameter values

within the regions in Figure 5.4 will guarantee robust stability. The circle in Figure 5.4

corresponds to the linear IMC PI controllers selected on the limit of the robust stability,

i.e., with 0,0 == dc WW .

 125

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
-1

-0.5

0

0.5

Wc,proportional gain (Kc) weight

W
d,

re
se

t t
im

e
(ta

ui
) w

ei
gh

t

Performance of gain-scheduled PI,Kc=2,taui=1.1545

1-IMC-LPI
2-IMC-GSPI

Figure 5.3 Performance region (inside the lines) of gain-scheduled PI controller

parameters.

5.4.1.2 Optimization of gain-scheduled PI controllers

In order to improve upon the performance, the designed gain-scheduled PI controllers are

to be optimized based on the optimization procedure proposed in section 5.2.2. In section

5.2.2, it has been discussed that the problem of searching for the optimal performance

index, optimalγ , is not quadratic in terms of the controller parameters, resulting in a

nonlinear matrix inequality for these parameters. For simplicity, it was decided to limit

the search to a near optimal design in the neighborhood of the selected linear PI

controller using the FMIN optimization function in MATLAB, by selecting the linear PI

parameters as initial guess for optimization. The FMIN algorithm is based on golden

section search and parabolic interpolation, and it tries to find a minimum of a function.

 126

-1 -0.5 0 0.5 1 1.5 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Wc,proportional gain (Kc) weight

W
d,

re
se

t t
im

e
(ta

ui
) w

ei
gh

t

Stability of gain-scheduled PI,Kc=2.42,taui=1.1545

Figure 5.4 Stability region (inside the lines) of gain-scheduled PI controller parameters.

The optimization can be carried out in different ways depending on the design objectives

as follows:

• To obtain a set of optimized linear PI controller parameters. In this case, only the

controller parameters IcK τ, are optimized.

• To obtain a gain-scheduled PI controller, which improves over a designed linear

PI controller. In this case, only the controller scheduling weights dc WW , are

optimized.

• To obtain a set of optimized gain-scheduled PI controller parameters. In this case,

all the four controller parameters IcK τ, and dc WW , are optimized.

Specifically, the optimization carried out in this work for the case study example CSTR

started with initial guesses corresponding to the values of the linear PI controller tuned

 127

using the IMC rules, i.e., the 1-IMC-LPI controller. The five design cases carried out in

this work are explained as follows:

1. The linear PI controller, 1545.1,2 == IcK τ , referred to as 1-IMC-LPI in the sequel

has a performance index 0
optimalγ of 0.9634.

2. A gain-scheduled PI controller is designed based on the optimization procedure to

improve closed-loop performance over the 1st controller, 1-IMC-LPI. A pair of gain

scheduling weights dc WW , is to be sought inside the robust performance parameter

region defined in Figure 5.3. The resulting controller will be referred in the following

discussion as 2-IMC-GSPI. The controller 2-IMC-GSPI, shown as a star in Figure 5.3,

produces *
optimalγ =0.5890 and this is an improvement of 38.9% over 0

optimalγ =0.9634 of the

1-IMC-LPI design.

3. A set of linear PI controller parameters IcK τ, , was obtained through optimization,

and the resulting controller is referred to as 3-OPT-LPI. The optimized linear PI

controller 3-OPT-LPI, shown as a star in Figure 5.2, improved the robust performance by

63.1% with optimalγ =0.3552 over the 1-IMC-LPI design.

4. Using the IcK τ, obtained for 3-OPT-LPI, the values of the weights dc WW , were

further optimized. This controller is referred to as 4-OPT-GSPI-1. This design further

improved the performance to optimalγ =0.3291, which is an additional improvement of

7.35% over 3-OPT-LPI.

5. Subsequently, an additional optimization was conducted where all the parameters, i.e.,

IcK τ, and the weights dc WW , , were allowed to change simultaneously in order to

minimize γ . The resulting controller based on the optimization of all the four parameters

is referred to as 5-OPT-GSPI-2. When all the four parameters are optimized, the best

result, i.e., the smallest γ , is obtained. This case is better than all the other four cases as

 128

expected. For this case an additional 45.6% improvement in performance over 2-IMC-

GSPI is obtained with optimalγ =0.3204.

The above results are summarized in Table 5.1.

Table 5.1 Optimization design results

Controller parameters θ No. Controller

name cK Iτ cW dW

optimalγ

simulationγ

1 IMC-LPI 2 1.1545 0 0 0.9634 0.3787

2 IMC-GSPI 2 1.1545 0.6547 -0.015 0.5890 0.3495

3 OPT-LPI 1.4023 3.2087 0 0 0.3552 0.2022

4 OPT-GSPI-1 1.4023 3.2087 0.1033 0.0721 0.3291 0.2009

5 OPT-GSPI-2 1.2168 1.9309 0.1802 0.009 0.3204 0.2025

5.4.1.3 Simulation of gain-scheduled PI controllers

Clearly, all the values of the performance index γ reported in Table 5.1 represent the

worst possible performance according to the robust performance test. Therefore, some

conservatism is expected. To assess the conservatism of the analysis, a detailed

simulation study is conducted for the CSTR process using the different controllers

synthesized in this work. simulationγ is the performance index obtained from the simulation,

calculated using
22 lsimulationl

ve γ= . Different disturbance signals were used in the

simulations, including for example step signals, sinusoidal signals, white noise and

combinations of them. A multi-spike disturbance signal was selected to be used in the

following simulations, because it resulted in the worst performance among different cases

for the different signals and the results are clear to quantify for comparison purpose. Then

for the worst case found from simulation, simulationγ was calculated for the different

controllers and the results are reported in Table 5.1. It is clear from this table that

 129

simulationγ is always bounded by optimalγ , confirming that the analysis tests produce the

worst-performance bound as expected. However, the differences between optimalγ and

simulationγ for all controllers show that the designs are conservative to some degree.

Simulation results for the 1-IMC-LPI controller and the near optimal gain-scheduled PI

controller 5-OPT-GSPI-2 are shown in Figure 5.5. These simulations correspond to a

two-consecutive-spike-like disturbance signal shown in Figure 5.5.

2 4 6 8 10 12 14
-1

-0.5

0

0.5

1
Disturbance

2 4 6 8 10 12 14
-0.5

0

0.5
simulation output of State-affine model

Figure 5.5 Closed-loop simulations of state-affine model (lower two curves).

1-IMC-LPI (dotted line), simulationγ =0.3787.

5-OPT-GSPI-2 (solid line), simulationγ =0.2025.

The results in Table 5.1 show that optimization of the tuning parameters has reduced the

conservatism of the designs. For the 1-IMC-LPI controller, the difference between the

analysis 9634.0=optimalγ and the simulation 3787.0=simulationγ is bigger than the

difference between 3204.0=optimalγ and 2025.0=simulationγ for the optimized

 130

controller 5-OPT-GSPI-2. A simulated performance worse than the one shown in Figure

5.5, that will bring the simulated result closer to the analysis result, may be possible but

there is no systematic way to find the specific disturbance function that will lead to the

largest γ value.

Conservatism associated with the design approach comes from a number of facts. First, a

possible source of this conservatism is that the simulation can only be done for a limited

period of time, while the calculation of the performance index simulationγ requires an

infinite simulation interval. Second, conservatism is obviously inherent to the robust

control approach where several scenarios included in the analysis will not actually occur

during actual closed-loop operation. Last but not the least, for time-varying uncertainty

parameters, conservatism might be introduced if the time-variation of the parameters is

not explicitly considered in the design and optimization. The conservatism of the analysis

associated with this time-variation can be somewhat reduced with parameter-dependent

Lyapunov functions instead of the fixed Lyapunov functions as shown in the following

section.

5.4.2 Reducing conservatism of the quadratic design and
optimization

In this section, the two approaches proposed in this work will be applied to the previous

designs shown in section 5.4.1.1, and the results will show that the two methods are both

efficient in terms of reducing conservatism of the quadratic designs. In section 5.4.2.1,

the parameter-dependent Lyapunov function is used and the design results are compared

with those results obtained with fixed Lyapunov function (section 5.4.1.1). In section

5.4.2.2, the method of obtaining a less conservative lower bound of the input-saturation

factor ψ is applied, and its effectiveness in reducing the conservatism of the designs will

also be given in that section. As in the previous sections, the same state-affine model

obtained in Chapter 3 is used in this section, and the modeling error weight of

 131

025.0=tW is included in the designs. Part of the results shown here has been reported by

Gao and Budman (2004).

5.4.2.1 Design based on parameter-dependent Lyapunov functions

In this section, stability and performance conditions were calculated with parameter-

dependent Lyapunov functions and compared to the results using a fixed-parameter

Lyapunov function. The purpose is to reduce the conservatism of the designs obtained in

the previous sections. No input-saturation was considered in this section.

In Chapter 3, it has been discussed that the simplicity in the quantification of the

uncertainty is the key advantage of using the state-affine model, i.e., the function given

by equation (5.37). For a normalized process input, it is valid to assume that

[]11)(−∈tu . According to equations (5.37) and (5.38), the bound of []iiti δδδ ∈, can

thus be obtained, for example, [] []10,11 ,2,1 ∈−∈ tt δδ , where 2
,2,1)(),(tutu tt == δδ .

According to equation (5.39), the bound of []iiti ννδ ∈∆ , can also be obtained, for

example, assuming the largest possible change []22,1 −∈∆ tδ , because []11)(−∈tu .

i

ti tu)(, =δ (5.37)

[]],[)(, iitiuutu δδδ ∈→∈ (5.38)

tititi ,1,, δδδ −=∆ + , []iiti ννδ ∈∆ , (5.39)

Based on the above information, the parameter box W for the uncertain parameters and

S for the rate of change of the uncertainty parameters can both be determined based on

the following definitions:

 132

}},{:),,,{(: 21 iiin δδωωωω ∈= LW (5.40)

}},{:),,,{(: 21 iiin ννττττ ∈= LS (5.41)

In Chapter 4, Theorems 4.3 and 4.4 have been developed to assess robust stability and

robust performance. The theorems depend on the application of parameter-dependent

Lyapunov functions when the rate of change of the uncertain parameters is available. In

the sequel, these two theorems will be applied to design gain-scheduled PI controllers.

The design results will be compared with the results obtained in the section 5.4.1.1.

0.5 1 1.5 2 2.5 3 3.5

2

4

6

8

10

12

14

16

18

20

Kc,proportional gain

ta
ui

,re
se

t t
im

e

Stability of linear PI

Figure 5.6 Stability region (to the left of the lines) of linear PI controller parameters

(comparing: fixed Lyapunov function (solid) and parameter-dependent Lyapunov

function (dotted)).

First, linear PI controllers with cW and dW set to zero are designed. The stability

boundaries in terms of the values of the tuning parameters cK and Iτ are shown in

 133

Figure 5.6. The solid line, calculated by Theorem 4.1, is based on the fixed-parameter

Lyapunov function and the dotted line, calculated by Theorem 4.3, is based on the

parameter-dependent Lyapunov function. Linear PI controllers with the parameter values

inside these regions will guarantee robust stability. The stability boundaries are very

close to each other, but the one based on the parameter-dependent Lyapunov function

defines, as expected, a slightly larger stability region. For a clearer illustration of this

slight difference, a portion of these two lines is shown again in Figure 5.6a.

2.8 2.9 3 3.1 3.2 3.3 3.4

2

4

6

8

10

12

14

16

18

20

Kc,proportional gain

ta
ui

,re
se

t t
im

e

Stability of linear PI

Figure 5.6a Stability region (to the left of the lines) of linear PI controller parameters

(comparing: fixed Lyapunov function (solid) and parameter-dependent Lyapunov

function (dotted)).

Similar results are obtained for the performance boundaries and shown in Figure 5.7. For

the fixed parameter Lyapunov function, the results are shown by the solid line and for the

parameter-dependent Lyapunov function, shown by the dotted line. These lines were

calculated using Theorems 4.2 and 4.4. Once again, the region of robust performance

obtained using the parameter-dependent Lyapunov function is slightly larger than the one

 134

obtained with the fixed parameter Lyapunov function. For a clearer illustration of this

slight difference, a portion of these two lines is shown again in Figure 5.7a.

0.5 1 1.5 2 2.5 3 3.5

2

4

6

8

10

12

14

16

18

20

Kc,proportional gain

ta
ui

,re
se

t t
im

e

Performance of linear PI

Figure 5.7 Performance region (to the left of the lines) of linear PI controller parameters

(comparing: fixed Lyapunov function (solid) and parameter-dependent Lyapunov

function (dotted)).

 135

2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95 3

2

4

6

8

10

12

14

16

18

20

Kc,proportional gain

ta
ui

,re
se

t t
im

e

Performance of linear PI

Figure 5.7a Performance region (to the left of the lines) of linear PI controller parameters

(comparing: fixed Lyapunov function (solid) and parameter-dependent Lyapunov

function (dotted)).

A more significant reduction in the conservatism of the design is observed when gain-

scheduled PI controllers are designed. In this case, cW and dW are different from zero.

The stability results are shown in Figure 5.8 in terms of the gain-scheduling weights cW

and dW .

The results in Figure 5.8 were computed for a specific set of 4.3=cK and 20=Iτ ,

which was selected on the stability boundary, shown as a star in Figure 5.6. The solid line

corresponds to the fixed parameter Lyapunov function analysis, Theorem 4.1, whereas

the dotted line is obtained using the variable parameter Lyapunov function design,

Theorem 4.3. It is clear that the range of stability given by the region enclosed by the

lines is much larger when the parameter-dependent Lyapunov function is used. Similar

calculations were performed for robust performance and the results are shown in Figure

5.9. The results in Figure 5.9 were computed for a specific set of 98.2=cK and 20=Iτ ,

 136

which was selected from Figure 5.7 on the performance boundary, shown as a star in

Figure 5.7. The results indicate a clear improvement in the design, i.e., a larger

performance region of parameter values defined by the dotted line, when the parameter-

dependent Lyapunov function is used for analysis.

-0.05 0 0.05 0.1 0.15 0.2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Wc,proportional gain (Kc) weight

W
d,

re
se

t t
im

e
(ta

ui
) w

ei
gh

t

Stability of gain-scheduled PI,Kc=3.4,taui=20

Figure 5.8 Stability region (inside the lines) of gain-scheduled PI controller parameters

(comparing: fixed Lyapunov function (solid) and parameter-dependent Lyapunov

function (dotted)).

 137

-0.05 0 0.05 0.1

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Wc,proportional gain (Kc) weight

W
d,

re
se

t t
im

e
(ta

ui
) w

ei
gh

t

Performance of gain-scheduled PI,Kc=2.98,taui=20

Figure 5.9 Performance region (inside the lines) of gain-scheduled PI controller

parameters (comparing: fixed Lyapunov function (solid) and parameter-dependent

Lyapunov function (dotted)).

5.4.2.2 Design based on the relaxation of the input-saturation factor ψ

In the previous sections, input-saturation was not accounted for. In this section, the effect

of input-saturation and its bounds will be investigated. First, the two cases in terms of

linear PI controller designs are compared. One case does not consider input-saturation,

while the other case does. Second, Method 5.1 will be applied to calculate a less

conservative value for ψ when saturation occurs.

First, the two cases of design results of linear PI controllers are compared. The first case

without input-saturation has been considered in section 5.4.1.1, and the design results are

given by the two lines in Figure 5.2. The second case considers the effect of input-

saturation. Initially, the saturation factor ψ was assumed to be in the range of [0,1].

However, for this range of ψ , it was not possible to meet the robustness criteria for any

 138

possible values of the gain-scheduled PI controller parameter set θ . To illustrate the

effect of the lower bound of ψ , it was decided to test for an arbitrary lower limit ψ .

Later in this section, a more accurate lower limit of ψ was found analytically based on

the Method 5.1 described earlier in this chapter. Following the same procedures described

in section 5.4.1.1 to obtain the two lines in Figure 5.2, regions of linear PI controller

tuning parameters in the parameter space are obtained when input-saturation is

considered. The closed-loop system matrix is given by equation (5.15) which includes the

input-saturation factor. The results are shown in Figure 5.10 and Figure 5.11.

0.5 1 1.5 2 2.5 3 3.5

2

4

6

8

10

12

14

16

18

20

Kc,proportional gain

ta
ui

,re
se

t t
im

e

Stability of linear PI

Figure 5.10 Stability regions (to the left of the lines) of linear PI controller parameters

(comparing: without input-saturation (solid) and with []14.0∈ψ (dotted)).

 139

0.5 1 1.5 2 2.5 3 3.5

2

4

6

8

10

12

14

16

18

20

Kc,proportional gain

ta
ui

,re
se

t t
im

e

Performance of linear PI

Figure 5.11 Performance regions (to the left of the lines) of linear PI controller

parameters (comparing: without input-saturation (solid) and with []14.0∈ψ (dotted)).

The results in Figure 5.10 and Figure 5.11 both clearly show the following: 1- the

inclusion of input-saturation makes the stability and performance regions smaller, thus

the designs are more conservative; and 2- by selecting the lower bound of ψ to be larger

than zero, the robustness criteria can be met. Since the input-saturation problem cannot

be ignored in practice, one possible solution to this problem is to obtain less conservative

lower bounds of the input-saturation factor using the analytical method proposed in this

work, i.e., Method 5.1, and hopefully less conservative designs will be obtained.

As a result, Method 5.1 is applied to calculate a less conservative value for ψ . It is

desired to obtain a saturation factor lower bound ψ which applies to all the tuning

parameter combinations in the stability region given by the solid line in Figure 5.10. It is

easy to obtain from equation (5.12) that for cK values on the stability limit, ψ increases

as Iτ increases. This means that the []ψψψ ∈ calculated along the stability limit will

 140

include as well all the possible values of ψ inside the stability region shown in Figure

5.10, since in that region, Iτ is higher than the values on the boundary. Since the stability

region is larger than the performance region, the bound on ψ obtained from the stability

limit will surely apply also to the parameter sets in the robust performance region. The

results obtained using Method 5.1 along the stability limit, the solid line in Figure 5.10,

are summarized in Table 5.2.

0.5 1 1.5 2 2.5 3 3.5

2

4

6

8

10

12

14

16

18

20

Kc,proportional gain

ta
ui

,re
se

t t
im

e

Stability of linear PI

Figure 5.12 Stability regions (to the left of the lines) of linear PI controller parameters

(comparing: without input-saturation (solid), with []14.0∈ψ (dotted) and with

[]16203.0∈ψ (dashed)).

 141

0.5 1 1.5 2 2.5 3 3.5

2

4

6

8

10

12

14

16

18

20

Kc,proportional gain

ta
ui

,re
se

t t
im

e

Performance of linear PI

Figure 5.13 Performance regions (to the left of the lines) of linear PI controller

parameters (comparing: without input-saturation (solid), with []14.0∈ψ (dotted) and

with []16203.0∈ψ (dashed)).

Table 5.2 Input-saturation factor lower bound for controllers on stability limit

(the solid line in Figure 5.10)

cK 0.86 1.86 2.31 2.42 2.55 2.97 3.3 3.38

Iτ 0.3 0.6 1 1.1545 1.4 3 10 20

ψ 0.7583 0.6203 0.7215 0.7562 0.8074 0.8418 0.8418 0.8418

Results obtained using Method 5.1 gives the less conservative bounds of the input-

saturation factor, i.e., []16203.0∈ψ .

To show the effectiveness of reducing conservatism with this approach, the regions of

linear PI controllers are obtained again with this new bounds of ψ , and compared with

those shown by Figure 5.10 and Figure 5.11. The new boundaries are shown by dashed

 142

lines in Figure 5.12 and Figure 5.13. The dashed lines in Figure 5.12 and Figure 5.13 are

closer to the solid lines than those dotted lines are. This shows that bigger regions of

robust stability and robust performance in terms of linear PI controller parameters can be

obtained with the input-saturation factor bounds obtained using Method 5.1.

To illustrate the impact of the input-saturation limits on the design, the performance

index optimalγ for different situations are computed and tabulated for comparison in Table

5.3.

Table 5.3 Relaxation of input-saturation factor bound and conservatism reduction

Case [,cK ,Iτ ,cW dW] ψ
t,1δ t,2δ optimalγ

1 [1.3,2.5,0,0] []10∈ψ [-1,1] [0,1] ∞

2 [1.3,2.5,0,0] []16203.0∈ψ [-1,1] [0,1] 0.4702

3 [1.3,2.5,-0.05,0.01] []18376.0∈ψ [-1,1] [0,1] 0.4280

4 [1.3,2.5,-0.05,0.01] []11∈ψ [-1,1] [0,1] 0.3979

5 [1.3,2.5,-0.05,0.01] []11∈ψ [-0.4,0.4] [0,0.16] 0.2846

6 [1.3,2.5,-0.05,0.01]
simulationγ =0.2010

The case 1 in Table 5.3 corresponds to a fixed PI controller where the lower bound of ψ

was assumed to be zero corresponding to a maximum control action of infinity according

to equation (5.12). For this case the design results in unfeasible robust performance, i.e.,

an infinite value of the index optimalγ . Case 2 corresponds to the same PI controller in case

1, but the lower bound of the saturation factor obtained from Method 5.1, i.e.,

[]16203.0∈ψ , was used, and the robust performance was obtained with a finite value

of 4702.0=optimalγ .

 143

Subsequently, a gain-scheduled PI controller was selected to show the conservatism

reduction based on relaxation of the saturation factor bounds. This controller has the

same 3.1=cK , 5.2=Iτ as used in cases 1 and 2, and scheduling weights 05.0−=cW ,

01.0=dW . For this case, the lower bound of ψ was recalculated using Method 5.1 to be

0.8376, covered by the bound of []16203.0∈ψ . The design results are given as case 3

in Table 5.3. This gain-scheduled controller of case 3 results in a better performance

index than the fixed PI controller given in case 2.

Case 4 corresponds to the same gain-scheduled controller used in case 3 but without the

input-saturation condition defined by equation (5.12). This was done to show the

significant decrease in the value of optimalγ indicating that the saturation condition is a

major contributor to the conservatism of the design. For the purpose of comparison, case

5 consists in the recalculation of case 4 with a smaller range of variation in)(tu , i.e., a

smaller uncertainty range of []iiti δδδ ∈, . This results in an even smaller value of

optimalγ of 0.2846.

Finally, to realistically assess the conservatism of the analysis, the system was

numerically simulated for a large range of possible disturbances and the worst case was

used to compute the simulationγ obtained in these simulations. This largest value was

obtained from a two-consecutive-opposite-sign-pulse disturbance as shown in Figure 5.5.

The simulation result simulationγ =0.201 of case 6 in Table 5.3, is smaller than the analysis

results in cases 1-5. This indicates that some conservatism is inherent to any robust

control analysis where many scenarios assumed in the robust analysis will not actually

happen during closed-loop operation. If a smaller range of uncertainty was assumed in

the analysis, as done in case 5, the analysis performance index γ will be closer to the

simulated γ .

 144

5.4.3 Design based on the SSV analysis

The state-affine model obtained in Chapter 3 is used in the design of the gain-scheduled

PI controller in this section. A modeling error weight of 025.0=tW is included in the

design and input-saturation is not considered. The SSV design is based on the two upper

bound conditions (4.87) and (4.88), which are summarized in section 5.3.3. Since the

modeling error is included, the closed-loop LFT frameworks are those obtained in section

5.3.2 and given by equations (5.31) and (5.33). The design results of SSV approach will

be compared with those of quadratic Lyapunov approach obtained in section 5.4.1.1.

First, for linear PI controllers, following the same procedures described in section 5.4.1.1,

regions of robust stability and performance in terms of the controller parameters are

obtained and compared with the results from section 5.4.1.1 based on quadratic

Lyapunov approach. The two design approaches gave almost the same design results,

shown by the two lines in Figure 5.2.

-0.5 0 0.5 1 1.5 2
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Wc,proportional gain (Kc) weight

W
d,

re
se

t t
im

e
(ta

ui
) w

ei
gh

t

Stability of gain-scheduled PI,Kc=2.42,taui=1.1545

Figure 5.14 Stability region (inside the lines) of gain-scheduled PI controller parameters

(comparing: quadratic Lyapunov approach (solid) and SSV approach (dotted)).

 145

Second, gain-scheduled PI controllers are designed, for the same two linear PI controllers

chosen as in section 5.4.1.1, i.e., 1545.1,42.2 == IcK τ for robust stability and

1545.1,2 == IcK τ for robust performance. The stability and performance limits in

terms of the scheduling weights are shown in Figure 5.14 and Figure 5.15 as dotted lines

and compared to the results obtained with the quadratic Lyapunov tests.

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Wc,proportional gain (Kc) weight

W
d,

re
se

t t
im

e
(ta

ui
) w

ei
gh

t

Performance of gain-scheduled PI,Kc=2,taui=1.1545

Figure 5.15 Performance region (inside the lines) of gain-scheduled PI controller

parameters (comparing: quadratic Lyapunov approach (solid) and SSV approach

(dotted)).

Figure 5.14 and Figure 5.15 show that the stability and performance regions obtained

with the SSV approach are smaller than those obtained with the quadratic Lyapunov

approach. This shows that the SSV approach is more conservative than the LMIs based

quadratic tests. The reason for this conservatism is as follows.

 146

SSV analysis is based on the upper bound of µ , and when the uncertainty structure has

repeated scalar blocks, the upper bound of µ will not equal µ . In this case, the

conclusions drawn from the upper bound of µ will be conservative, especially more

conservative as the number of repeated scalars blocks increases. According to the closed-

loop system formulation given by equations (5.31) and (5.33), the uncertainty structures

have repeated scalars blocks for both the tests of robust stability and performance. The

number of repeated scalars blocks is 1+k for linear PI controllers design and 2+k for

gain-scheduled PI controllers design. Because the number of repeated scalars blocks for

the design of gain-scheduled PI controllers is more than the number for linear PI

controllers, the design results for gain-scheduled controllers are more conservative than

the results for the design of linear PI controllers from SSV approach. As a result, the

designs using SSV approach are more conservative than the results obtained from the

quadratic Lyapunov approach. As the SSV approach is more conservative as explained

above, it is not chosen as the main method in this work. However, it still remains a useful

tool for robust control design of linear time-invariant systems.

5.5 Conclusions

A systematic approach has been proposed to design gain-scheduled PI controllers for

nonlinear processes. It is based on the empirical state-affine models of the process that

can be directly identified from process data. The proposed gain-scheduled PI controller

contains small number of parameters, which facilitates the controller design. The

designed robust gain-scheduled PI controllers guarantee robust stability and robust

performance of the closed-loop system.

The linear PI controllers and gain-scheduled PI controllers can also be optimized to

achieve near optimal performance based on a GEVP based optimization algorithm. The

optimized controllers all showed improvement in terms of robust performance.

Simulations showed that the gain-scheduled controller provided better performance than

a linear PI controller tuned according to IMC rules. A performance index γ , although

 147

conservative, has been found to be a reliable indicator of the relative performance of the

different controllers considered in this work.

It was also shown that the designed robust controllers tend to be conservative, and thus,

conservatism reduction has turned out to be an important emphasis of the current research.

Two approaches have been proposed in this work to improve over the design of gain-

scheduled PI controllers. The first approach is based on parameter-dependent Lyapunov

functions and the second one is for the relaxation of the input-saturation factor.

For characterization of time-varying uncertain parameters, the rate of parameter variation

is as important as the parameter range. When the bounds of the parameter and the rate of

change are both available, it is desired to integrate them into the stability and

performance analysis for less conservative designs. Parameter-dependent Laypunov

function takes into account parameter variation, and thus, it represents the general case of

time-varying uncertain parameters, including the special case of constant uncertain

parameters. Stability and performance tests have been developed based on it and the

improvements were shown over the original design procedure. Design results based on

these parameter-dependent Lyapunov functions showed that conservatism can be reduced,

especially by a large amount, for the design of gain-scheduled PI controllers.

Relaxation of saturation factor lower bound is another approach proposed in this work to

reduce the conservatism. The relaxation of this bound is made possible by the fact that

controlled variables will have physical bounds due to process limits or sensor saturation.

Simulation results on a CSTR process and comparison to the analysis results showed that

this approach is very efficient in reducing the conservatism of the design.

Linear and gain-scheduled PI controllers have also been designed based on the SSV

approach. The design results showed that the SSV approach is more conservative than the

quadratic Lyapunov approach, especially for the design of gain-scheduled PI controllers.

As it has been explained in Chapter 4, the SSV approach is generally more conservative

than the quadratic Lyapunov approach for time-varying uncertainties. As a result, the

 148

quadratic Lyapunov approach has been chosen as the main design approach in this work.

Therefore, in the following chapter, the SSV design approach will not be used and only

results obtained with the less conservative quadratic Lyapunov designs will be shown.

 149

6 Robust Gain-scheduled MPC

In this chapter, a more general approach, Model Predictive Control (MPC), will be

considered, where the process model is used to predict future outputs over a long time

period. MPC is a widely accepted control algorithm in the chemical industry used for

multivariate systems with constraints. The main purpose of this chapter is to present a

new systematic approach to design robust gain-scheduled MPC controllers for nonlinear

processes, which guarantee closed-loop robust stability and performance. This approach

is based on the analysis tools presented in Chapter 4.

A gain-scheduled MPC controller scheduling on the process input for nonlinear chemical

processes is proposed in this chapter. The state-affine model under this gain-scheduled

MPC control results in a closed-loop system that can be shown to be an affine parameter-

dependent model, with affine parameter-dependence on the process inputs. In Chapter 4,

conditions on the robust stability and robust performance have been developed for this

class of closed-loop system, i.e., affine parameter-dependent models. Based on these

conditions, a robustness analysis is carried out to validate the design and obtain a series

of input weights over the operation range according to the discretization, in the face of

plant uncertainty.

The primary disadvantage of the design techniques in the literature for MPC is their

inability to deal explicitly with plant uncertainty. In this chapter, a new approach for

robust MPC synthesis is presented that allows explicit incorporation of the description of

plant uncertainty in the problem formulation. The state-affine model is used to model the

process output in the MPC optimization objective function, using the uncertainty

description associated with the nonlinearity of the state-affine model. In this way, it is

possible to account for the effect of model/plant mismatch and unmeasured disturbances.

By using this approach, it is also possible to formulate the closed-loop system of the

state-affine model together with a state-space form of the gain-scheduled MPC controller

into a form suitable for robustness analysis.

 150

The output predictions are done with step response models as for the linear case.

However, to account for the process nonlinearity, instead of using one step response

model, a family of step or equivalently impulse response models will be defined for

different sub-ranges of values of the manipulated variable u . Then, for each of these

models a linear MPC calculation can be conducted based on the current value of u . This

approach results in a simple gain-scheduled MPC strategy that it somewhat resembles the

traditional gain-scheduled approach based on local linearization. The key difference is

that in this work, global closed-loop stability and performance will be tested instead of

testing only the local closed loop stability and performance as proposed by practitioners

for the traditional gain-scheduling approach.

In this approach, calculations are conducted offline to produce a sequence of optimal

design tuning parameters for the MPC algorithm based on the values of the manipulated

variable. Then, the resulting gain-scheduled MPC controller can be implemented on-line

with the calculated tuning parameters scheduled based on the manipulated variable. The

designed robust gain-scheduled MPC controller guarantees closed-loop system robust

stability and performance.

In this chapter, section 6.1 reviews the traditional linear MPC (LMPC) based on step

response models. Initially, the single-input-single-output (SISO) case, and the multi-

input-multi-output (MIMO) version of MPC are presented. Then, the unconstrained MPC

control law is formulated into a state-space form based on a straightforward matrix

manipulation. Based on this state-space formulation, the closed-loop equations,

composed of the state-affine model and the MPC controller, are formulated as an affine

parameter-dependent system. The controller parameters can be tuned to achieve a

desirable performance, and comments on their effects are given in section 6.2. The robust

gain-scheduled design approach, similar to the one used in Chapter 5, is proposed to

design MPC controllers based on the robust stability and performance conditions

proposed in Chapter 4. The procedures for the design and optimization of robust gain-

scheduled MPC are detailed in section 6.2. In section 6.3, the above proposed approach is

 151

applied to the SISO CSTR case study and a simple 2x2 system, leading to a series of

results and conclusions.

6.1 Unconstrained MPC Control Law

6.1.1 Model prediction based on step response models

Step response models are based on the following idea: for a linear time-invariant SISO

system, assuming the system is at a rest, i.e., 0,0)(>=+∆ iitu , the output change for the

unit input change at 1−t is given by },,,,,,,{)(210 KK u
n

u
n

u
n

uuu SSSSSSty = or, by equation

(6.1). Here it is assumed that the system settles after exactly n sampling steps. uS0 is zero

and this is because it is assumed that there is no immediate effect of the manipulated

variable on the output. The step response of a process can also be shown by the following

figure:

Figure 6.1 Step response of a process

)1()()(

)()(
1

−−=∆

−∆= ∑
=

tututu

ituSty
n

i

u
i

(6.1)

For continuous systems, the impulse response can be expressed as the first derivative of

the step response. Equivalently, for a digital system with a zero-order hold the impulse

response can be found by taking the first backward difference of the step response. The

1

u∆
y

u
oS

uS1

u
nSmodel

 152

unit impulse response coefficients of the process, nhhhh ,,,, 210 K , are then given as

follows:

niSShh u
i

u
ii ,,2,1,,0 10 K=−== − (6.2)

and the discrete impulse response model using the impulse response coefficients is:

∑
=

−=
n

i
i ituhty

1

)()(
(6.3)

Equation (6.3) can be rearranged into the form of equation (6.1) by substituting the

expression for ih in (6.2) and then grouping terms for each u
iS .

The step response model (6.1) can be made general to include an arbitrary number of

output predictions into the future. Also, for a linear time-invariant system, using the

superposition principle, the effect of the initial condition is added to the effect of the

manipulated variable move on the response to obtain the overall response.

The prediction vectors are defined as follows

[]
[]

[]
[]

)0,0)((
)1()2()1()(

)1()2()1()()(

)1,0)((
)2()3()()1(

)2()3()()1()1(

≥=+∆
−+−++

=−+−++=

−≥=+∆
−+−+−

=−+−+−=−

iituforcomputed
ntyntytyty

ntyntytytyt

iituforcomputed
ntyntytyty

ntyntytytyt

T

T

T

T

L

L

L

L

Y

Y

(6.4)

Then it is possible to find the effect of the initial conditions and the manipulated variables

as follows:

 153

1. Effect of the initial conditions:

For a linear time-invariant system, if 1,0)(−≥=+∆ iitu , then

[]
[])1,0)(()2()2()1()(

)1()2()1()()(

−≥=+∆−+−++

=−+−++=

iituforcomputedntyntytyty

ntyntytytyt
T

T

L

LY

or

)1()(−= tt I YMY (6.5)

where

nn

I

×
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

10.00
1....
.....
0.100
0.010

M

(6.6)

2. Effect of the manipulated variable move:

For the system at rest, 0)1(≠−∆ tu , the effect of the manipulated variable on the output

is as follows:

)1()(−∆= tut usY ,where
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
u
n

u

u

S

S
M
1

s

(6.7)

3. The combined effect of initial condition and manipulated variable move:

 154

After adding the effect of the initial conditions and of the manipulated variable move,

assuming there is no measured disturbance, the prediction vector is as follows:

)1()1()(−∆+−= tutt u
I sYMY (6.8)

For the general case of an arbitrary sequence of m input changes, i.e., for

[]Tmtututut)1()1()()(−+∆+∆∆=∆ KU , the prediction vector can be calculated

using the following matrix equation

)()()1(tttt u
I USYMY ∆+=+ (6.9)

where the step response matrix uS is given as follows:

mn
u

mn
u
n

u
n

uu

u

u

SSS

SS
S

×+−−
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

11

12

1

..
.....
.....
0.0
0.00

S

(6.10)

Equation (6.9) gives the n -step-ahead prediction. In order to simplify computations, the

prediction is generally performed over a prediction horizon)(, npp ≤ , which is then

obtained simply by taking the first p rows of equation (6.9).

The above prediction given by equation (6.9) is an open-loop prediction, in the sense that

it does not provide any corrections due to model errors or unmeasured disturbances that

may have occurred at any previous time step. To address this shortcoming, a vector

)1(tt +W is defined to represent the unmeasured disturbance and model/plant mismatch.

It is assumed that the disturbances are step-like, i.e., the current difference between the

measurement and the prediction is applicable for any prediction into the future.)1(tt +W

is then given as follows:

 155

[]T p

tyty

ttw

ttw
ttw

tptw

ttw
ttw

tt

×=

−=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+
+

=+

12

2

11

)]()([

)(

)(
)(

)(

)2(
)1(

)1(

L

LL

N

NW

(6.11)

)(ty is the new value of the measured output. The purpose of using this measurement at

each time step is to compensate for unmeasured disturbances and model inaccuracy, both

of which cause the system output to be different from the one predicted by the model.

The −p step-ahead prediction vector)1(tt +Y , including the effect of modeling error

and unmeasured disturbances, is then given as follows:

)()1()()1(tttttt u
pp USWYMY ∆+++=+ (6.12)

where u
pS is the sub-matrix made of the first p rows of uS , i.e., [] u

nppp
u
p SIS

××= 0 ,

and similarly [] Inpppp MIM
××= 0 . In equation (6.12), the first two terms are

completely defined by past control actions and present measurements, and the last term

describes the effect of future manipulated variable moves.)(tY is obtained from (6.8)

and now it is referred to as the model update vector.

6.1.2 Unconstrained SISO MPC control law

The MPC control law can be easily explained by referring to Figure 6.2.

 156

Figure 6.2 Model predictive control problem

The current time interval k in the above figure is denoted with t in the sequel. For any

assumed set of present and future control moves)1(,),1(),(−+∆+∆∆ mtututu K , the

future behavior of the process outputs)(,),2(),1(tptyttytty +++ L can be predicted

over a horizon p (pm ≤) using equation (6.12). Though m control moves are

calculated, only the first one ()(tu∆) is actually implemented at time t . At the next

sampling interval, new values of the measured output are obtained, the control horizon is

shifted forward by one step, and the same computations are repeated. Hence, the resulting

control law is referred to as “moving horizon” or “receding horizon.”

The control objective is to force the predictions)1(tt +Y approach the set-point

trajectory as closely as possible. The set-point trajectory, that is, the desired values of the

set point p time steps into the future, is defined as

[]Tptrtrtrt)()2()1()(+++= KR . Then, the unconstrained model predictive

control problem consists of computing future control moves

[]Tmtututut)1()1()()(−+∆+∆∆=∆ KU so that the future sum of squares errors

between the output and target is minimized, i.e., MPC solves the following optimization

problem:

 157

)()1()()1(..

})]1()1([{
2
1min 22

)(

ttttttts

ttt

u
pp

t

USWYMY

UΛRYΓ
u

∆+++=+

∆++−+
∆

(6.13)

where

},,,{
},,,{

21

21

p

m

diag
diag

ΓΓΓ=
ΛΛΛ=

K

K

Γ
Λ

(6.14)

ΓΛ, are positive-definite weighting matrices for u and y respectively at future time

intervals. The Λ ’s weight’s purpose is to penalize large moves in the manipulated

variables, while the Γ ’s weight is used to penalize the errors according to the relative

importance of the outputs in the problem under consideration. The parameters of ΓΛ,

are tuned to improve the performance of the model predictive controller.

Equation (6.13) can be solved via linear least squares algorithm. A solution that

minimizes the sum of squares of the residuals of these equations, is given by

bAA)(Ax T1T −= , i.e.,

)1()()(1 ttt TTu
p

Tu
p

TTu
p ++=∆ − ΓεΓSΛΛΓSΓSU (6.15)

where []Ttpttttttt)()2()1()1(+++=+ εεε Lε is the feedback corrected vector

of future output deviations from the reference trajectory, assuming all present and future

input moves)1(,),1(),(−+∆+∆∆ mtututu K are zero. The solution of equation (6.15)

gives a sequence of control moves, i.e., []Tmtututut)1()1()()(−+∆+∆∆=∆ KU ,

but only the first control move)(tu∆ is implemented using equation:

)()1()(tututu ∆+−= (6.16)

 158

Then the calculations are redone at the next time step when new information about

outputs and disturbances is available. Rewriting the above equations, the present control

move)(tu∆ is obtained as follows

[] ΓΓSΛΛΓSΓSK

εK
TTu

p
Tu

p
TTu

pmMPC

MPC tttu
1

1)(001

)1()(
−

× +=

+=∆

L

(6.17)

The matrix MPCK can be computed offline according to equation (6.17).

The algorithm is summarized as follows: given)(),1(tytu −∆

1. Assume the system is at steady-state)0(y , initialize the model prediction vector at

time 0=t as

[]Tyyyy)0()0()0()0()0(L=Y (6.18)

2. Update the model according to equation (6.8)

)1()1()(−∆+−= tutt u
I sYMY (6.8)

The first element of)(tY , i.e.,)(ty , is the model prediction of the output at time t .

3. Compute the reference trajectory error vector

)1()()1()1(tttttt p +−−+=+ WYMRε (6.19)

where

 159

[]T p

tytytt

×=

−=+

12

2

1.1

)]()([)1(

N

NW

(6.11)

4. Compute the current manipulated variable move

[] ΓΓSΛΛΓSΓSK

εK
TTu

p
Tu

p
TTu

pmMPC

MPC tttu
1

1)(001

)1()(
−

× +=

+=∆

L

(6.17)

)(tu∆ is implemented on the plant.

5. Go to step 2.

6.1.3 Unconstrained MIMO MPC control law

The results developed in the previous sections can be generalized to MIMO systems. For

a system with un inputs and yn outputs, the step response coefficient u
iS in equation (6.1)

would be

uy
uyyy

u

nn

u
inn

u
in

u
in

u
i

u
in

u
i

u
i

u
i

SSS

S
SSS

×

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

,,,2,,1,

,1,2

,,1,2,1,1,1

..
.....
.....
0...

..

S

(6.20)

where u
iklS ,, is the thi step response coefficient describing the effect of thk input on thl

output. The step response vector us defined in equation (6.7) is then given by the

following:

 160

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
u
n

u

u

S

S
s M

1

(6.21)

and the step response matrices uS and u
pS defined in equations (6.10), are then given by

the following:

uy

uy

mnpn
u

mp
u
p

u
p

uu

u

u
p

mnnn
u

mn
u
n

u
n

uu

u

u

×+−−

×+−−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

11

12

1

11

12

1

..
.....
.....
0.0
0.00

..
.....
.....
0.0
0.00

SSS

SS
S

S

SSS

SS
S

S

(6.22)

For the multivariable case, the relevant variables are redefined as follows:

[]
[]Tnn

TTTTT

tytytytyt

ntnttttt

yy
)()()()()(

)1()2()1()()1(

121 −=

−+−++=+

L

L

y

yyyyY

(6.23)

[]
[]Tn

TTTT

trtrtrt

ptttt

y
)1()1()1()1(

)()2()1()(

21 +++=+

+++=

K

K

r

rrrR

(6.24)

[]
[]Tn

TTTT

tututut

mtttt

u
)()()()(

)1()1()()(

21 ∆∆∆=∆

−+∆+∆∆=∆

K

K

u

uuuU

(6.25)

 161

)1()1()(−∆+−= ttt u
I usYMY (6.26)

)1()()1()1(tttttt p +−−+=+ WYMRε (6.27)

yy
yyyyyyy

y

yyyyyyy

yyyyyyy

nnnnnnnnnnn

n

nnnnnnn

nnnnnnn

I

×
×××

×××

×××

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

I000
I

0I00
00I0

M

.
....

.....
.
.

(6.28)

[] Innpnpnpnp
yy

yy
MIM

××= 0 (6.29)

[]T
pnnnn

yy
yy

tt

tt

tt
tt

tpt

tt
tt

tt

×
=

−=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+
+

=+

IIN

yyN

w

w
w

w

w
w

W

.

)]()([

(

)(
)(

)(

)2(
)1(

)1(

2

2LL

(6.30)

},,,{},,,,{

},,,{},,,,{

2121

2121

yyy

uuu

nippnpn

nimmnmn

diagdiag

diagdiag

ΓΓΓ==

ΛΛΛ==

×

×

KK

KK

ΓΓΓΓΓ

ΛΛΛΛΛ

(6.31)

In analogy with the derivations for the SISO system, the MPC controller for a MIMO

system can be solved with the algorithm in section 6.1.3, substituting all the vectors

defined above in this section, and then the MPC controller’s manipulated variable moves

can be calculated as follows:

[] ΓΓSΛΛΓSΓS00IK

εKu
TTu

p
Tu

p
TTu

pmnnnnnMPC

MPC

uuuuu

ttt
1)(

)/1()(
−

×
+=

+=∆

L

(6.32)

 162

The model predictive control method can be advantageous for MIMO control problems

when the process outputs exhibit dynamic interaction or when it is crucial to meet

constraints on the manipulated and/or controlled variables. When constraints exist, a

constrained optimization problem has to be solved to calculate the optimal control moves.

However, in this work, as a preliminary study, only unconstrained case is considered.

6.1.4 Unconstrained MIMO MPC control law in state-space form

Since all LMIs based tests developed in Chapter 4 for robust stability and robust

performance are only applicable to state-space formulation, a state-space version of the

MPC controller is developed in this section.

Following Zanovello and Budman (1999) on SISO MPC controller, a MIMO state-space

MPC controller representation can be obtained as follows. Assuming there is no

measured disturbance, a controller state vector)1(−tU is defined as follows:

[]
unn

TTTT ntttt ×−−−=− 1)()2()1()1(uuuU K (6.33)

and the controller output)(tu is defined as follows:

)()1(
)()1()(

1 tt
ttt

uUe
uuu

∆+−=
∆+−=

(6.34)

where the matrix 1e is given by:

[]
uuuuuuu nnnnnnnn ×××= 00Ie .1 (6.35)

Using the relation between the step response and the impulse response coefficients:

 163

nj
j

i
ikljkl ,,2,1,

1
,,,, K== ∑

=

hS
(6.36)

where ikl ,,h is the thi impulse response coefficient describing the effect of thk input on

thl output, and assuming the system reaches steady-state in n sampling periods, the

model update vector)(tY defined by equation (6.26) can also be calculated from the

following vector equality:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+

+
=

××

×

)(
.
.

)2(
)1(

..
.....
.....

.
..

)1(
.
.

)1(
)(

)(
32

21

nt

t
t

nt

t
t

t

uyuy

uy

nnnn
u
n

nnn
u

n
u

u

u
u

00S

0hhS
hhS

y

y
y

Y

(6.37)

or, in compact form:

)1()(−= × tt
uy nnnn UHY (6.38)

where u
iS is defined in equation (6.20), and ih is defined as follows:

uy
uyyy

u

nninninin

i

inii

i

hhh

h
hhh

×
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

,,,2,,1,

,1,2

,,1,2,1,1,1

..
.....
.....
0...

..

h

(6.39)

Equations (6.26) and (6.37) can be shown to be equivalent. For example, consider the 2nd

row of)(tY from equation (6.26):

 164

)1()()1()(0)(
)0,0)((),1()1(

−=∆+−=⇒=∆
≥=+∆+=+

tttttand
iitforcomputedtt

uuuuu
uyy (6.40)

and, from equation (6.37):

)0,0)((),1(
)1()2()1()(

)1()2()1()1(

)1()2()1()1(

1

212

)1()1(

321

)1()(
321

32

≥=+∆+=
⎯⎯⎯⎯⎯⎯ →⎯

∑
+−++−+−+=

⎯⎯⎯ →⎯+−++−+−+−=

⎯⎯⎯ →⎯+−++−+−=+

=

−+=+

−=

+=

iitforcomputedt
ntttt

ntttt

ntttt

n

i
i

u

itt

n

tt
n

n
u

uy
uhuhuhuh

uhuhuhuh

uhuhuSy

uhy

uu

hhS

L

L

L

(6.41)

Equations (6.40) and (6.41) are equivalent and this shows that the equations (6.26) and

(6.37) are equivalent. Therefore, equation (6.37) will be used instead of equation (6.26)

because it favors the following development of the MIMO state-space MPC controller.

The general case with unmeasured disturbances and/or error due to model/plant mismatch

is considered, i.e.,)/1(tt +W is different than zero. Then, assuming 0R = without loss

of generality, the following is obtained from equations (6.33), (6.32) and (6.27):

)]1()([)1()(12 ttttt pMPC +−−+−= WYMKTUTU (6.42)

where the matrices 21 ,TT are given as follows:

uu
uuuuu

uuuuu

uuuuuuu

uuuuuuu

uu
uu

uu

u

nnnnnnnnn

nnnnn

nnnnnnn

nnnnnnn

nnnnn

nn

n

×××

××

×××

×××

××

×

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0I0

0I0
000I
000I

T

0

0
I

T

..
.....
..

.

.

.

. 21

(6.43)

As explained in the previous sections, the MPC controller depends on the current output

measurement for the calculations of output predictions and control moves. This

 165

requirement limits the application of the stability and performance analysis of the closed-

loop system. Fortunately, the explicit dependence on the output measurement can be

removed if a process model can be used to estimate the measured value of the output. The

state-affine model used in the previous chapters in this work is also used in this chapter to

represent the nonlinear process. This model has been shown before to account for the

nonlinear behavior and time-varying dynamics of the process. The process output

measurement will be approximated by the state-affine model output. Following a robust

control approach, the state-affine model is made up of a nominal linear model plus some

model error due to the nonlinear terms of the model.

The state-affine model of the process with unmeasured disturbance is as follows:

0,,,1,0,,,2,1

,,1,0,,,2,1,)()(

)()1()()1(
)()()(

)(}{)(}{)1(

212122

1121,

0

1

1
,11

1

1
,0

21

>+≠==

===

−+=+
+=

+++=+ ∑∑
−

=
+

−

=

kkjjknj

knjtutuwhere

tBWtBWdtd
tdtt

ttt

u

u
k

j
k

jti

K

i
tii

K

i
tii

LL

LLδ

ν

δδ

fWxHy

uGGxFFx

(6.44)

For a MIMO system with xn states, un inputs and yn outputs, the dimensions of the

matrices in the above process model are xx nn
i

×ℜ∈F , ux nn
i

×ℜ∈G , xy nn
i

×ℜ∈H and

1×ℜ∈ yn
fW respectively. The uncertain parameter ti,δ is redefined as shown above to

include cross-products between two different inputs.)(ty is the measured process output;

thus the predicted output and the measured output are given respectively as follows:

[]

)()()(

)1()(.)(

0

2

tdtt
and

ttt
yy

yyyyy nnnnnnnn

fWxHy

HUeY00Iy

+=

−==
×××

(6.45)

From equations (6.38), (6.30) and (6.45), equation (6.42) can be rewritten as:

 166

)()()1(
)]}1()()([)1({)1(

)]}()([)1({)1(

)}/1()({)1()(

210212

20212

212

12

tdtt
ttdttt

tttt

ttttt

MPCMPC

pMPC

pMPC

pMPC

f

f

WNKTxHNKTUE
HUeWxHNHUMKTUT

yyNHUMKTUT

WYMKTUTU

−−−=

−−+−−−+−=

−−−−+−=

+−−+−=

(6.46)

where the matrix 2E is given as follows:

HeNKTHMKTTE 221122 MPCpMPC +−= (6.47)

and the current control action can be calculated from the following expression:

)()()1(

)]/1()([)1()(

2021 tdtt

ttttt

MPCMPCu

pMPC

fWNKxHNKUC

WYMKuu

−−−=

+−−+−=

(6.48)

where

][2211 HeNKHMKeC MPCpMPCu +−= (6.49)

Then, the state-space representation of the MPC controller can be found by combining

equations (6.46) and (6.48) as follows:

⎥
⎦

⎤
⎢
⎣

⎡ −
⎥
⎦

⎤
⎢
⎣

⎡
−
−

=⎥
⎦

⎤
⎢
⎣

⎡
)(

)1(
)(
)(

21

212

t
t

t
t

mpcu

mpc

y
U

NKC
NKTE

u
U

(6.50)

From equations (6.44) and (6.50), the closed-loop system is obtained by combining the

state-affine model and the MPC controller equations into the following equation:

 167

][,,
1

,

)(
)(

)1(
)(

)(

)(
)1(

)(
)1(

0

0D
W
0
H

C0
0

B
U

x

DC
BδA

y

U
x

T
f

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+ T

T

T

t

BW
t
td

t
t

t
td

t
t

ν

(6.51)

where

f

f

WNKGGA

CGGA

HNKGGFFA

00
WNKTEHNKT

AAA
δA

2

1

1
,1113

1

1

1
,1112

02

1

1
,11

1

1
,011

212021

131211

)(

)(

)()(

)(

MPC

K

i
tii

u

K

i
tii

MPC

K

i
tii

K

i
tii

MPCMPCt

BW

∑

∑

∑∑

−

=
+

−

=
+

−

=
+

−

=

+−=

+=

+−+=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−=

δ

δ

δδ

(6.52)

The above state-space system representation can be used for robust performance analysis.

For robust stability, the disturbance)(td does not have to be considered, so the system

matrix A to be considered for the robust stability analysis is as follows:

⎥
⎦

⎤
⎢
⎣

⎡
−

=
2021

1211)(
EHNKT
AA

δA
MPC

t
(6.53)

The closed-loop systems for robust stability analysis, given by equation (6.53) and for

robust performance analysis, given by equations (6.51) and (6.52), both have affine-

parameter dependence with respect to the uncertain parameters sti ',δ . This allows the

application of the robust stability and performance conditions developed in Chapter 4 to

the design of MPC controllers given by equation (6.50).

 168

6.2 Design and Optimization using Quadratic Lyapunov

Functions

6.2.1 Selection of MPC tuning parameters

The MPC technique presented in the previous section includes a number of design

parameters which can be adjusted to give the desired response as well as an appropriate

amount of manipulated variable movement. For open-loop stable plants, stability and

performance of the closed-loop system depends only on MPCK , which in turn is a

function of the MPC design parameters, m , p , Λ and Γ , and step response coefficients.

Systematic guidelines to select these parameters to obtain closed-loop stability are not

available in the literature, but the following guidelines have been generally followed by

practitioners:

1. The control horizon m is the number of future control actions that are calculated in

the optimization step to reduce the predicted sum of squares errors. Too large a value of

m results in excessive control action. A smaller value of m leads to a robust controller

that is relatively insensitive to model errors. The parameter m is also the dimension of

the matrix in equation (6.17) that must be inverted. Therefore, the computational effort

increases as m is increased.

2. The parameter p is the number of future output predictions that are used in the

optimization calculations. Increasing p results in more conservative control action which

has a stabilizing effect but also increases the computational effort. In general, decreasing

m relative to p makes the control action less aggressive and tends to stabilize a system.

3. The weighting matrices Λ and Γ contain a potentially large number of design

parameters, possibly time-varying. However, for SISO systems, for simplicity it is

possible to select IΓ = and a diagonal IΛ λ= , with λ as a design parameter. Larger

 169

values of Λ penalize the magnitude of the control moves)(tU∆ , thus resulting in less

aggressive control.

In general practice, Λ is used as the main tuning parameter because its effect on the

performance is straightforward. For SISO systems, it has been mentioned above that it is

sufficient to select IΛ λ= . For MIMO systems, this is equivalent to the following choice:

},,,{},,,,{ 21 uuu nmnmn diagdiag λλλ KK ==× ΛΛΛΛΛ (6.54)

For a system with un inputs, there are un design parameters
unλλλ ,,, 21 K . In this work,

an approach for the design of Λ has been developed, based on the proposed robust

stability and performance tests presented in Chapter 4. This will be discussed in detail in

the following section.

6.2.2 Design and optimization of gain-scheduled MPC

The linear MPC (LMPC) algorithms are being widely used in industry because of their

straightforward model representation, i.e., by using step or impulse response model

directly identified from data. These advantages can be realized for nonlinear systems by

modifying the linear algorithm. To understand the changes required, consider the effect

of the system being nonlinear in the equations and variables used by LMPC.

As shown in the previous section, the MPC control calculation is based on output

predictions obtained using a model. If the model is nonlinear, the prediction has to be

calculated from a nonlinear function. Clearly, this will result in a nonlinear optimization

problem that in many cases is difficult to solve.

In this work, to avoid the nonlinear optimization formulation, an alternative simpler

approach for prediction and control calculation is proposed. It is proposed to do

predictions with step response models as done for the linear case. However, to account

 170

for the process nonlinearity, instead of using one step response model, a family of step or

equivalently impulse response models will be defined for different sub-ranges based on

the values of the manipulated variable u . Then, for each of these models a linear MPC

calculation can be conducted based on the current value of u . This approach results in a

simple gain-scheduled MPC strategy that somewhat resembles the traditional gain-

scheduled approach based on local linearization. The key difference is that in this work,

global closed-loop stability and performance will be tested instead of testing only the

local closed-loop stability and performance as proposed by practitioners for the

traditional gain-scheduling approach.

The impulse response models and consequently the control actions are scheduled with

respect to the input u . The input weight, for simplicity, will be assumed as the only

tuning parameter scheduling against u . For a SISO system, the overall range of change

of the input variable)(tu is discretized into k sub-ranges. For example, for the input

variable over the range of [-1 1], two evenly split sub-ranges can be selected to be

]0,1[1 −=u and]1,0[2 =u . For a discretization into multiple sub-ranges kju j ,,2,1],[K= ,

an MPC controller will be designed satisfying the robust stability and performance

conditions for all the sub-ranges. Step responses and impulse responses are calculated for

each sub-range, and)(jMPC uK will be obtained based on the optimization of the

parameters of)(juλ that composes the weight Λ .

This gain-scheduled MPC controller design approach can be also applied to the MIMO

case. For a MIMO system with un inputs, the overall range of change of each input

variable ui nitu ,,2,1),(K= is discretized into ui nik ,,2,1, L= sub-ranges. For example,

for a 22× system, assuming the operation range of each input will be discretized into

two sub-ranges, i.e., 2=ik , the sub-ranges of u are as follows:

2],1,0[
1],0,1[

]1,1[,
2],1,0[
1],0,1[

]1,1[
2

2
2

1

1
1 ==

=−=
→−∈

==
=−=

→−∈ gu
gu

u
ru
ru

u
g

g

r

r
(6.55)

 171

As a result, the whole operation range will be discretized into four sub-ranges,

corresponding to the combinations of the input sub-ranges, i.e.,

]2,2[],1,2[],2,1[],1,1[],[=gr , referred to as sub-ranges set rg in the sequel. Accordingly,

the weighting matrix Λ penalizing the control moves is as follows

2,1
2,1

,

2

1

2

1

44 =
=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=× g
r

g

r

g

r

λ
λ

λ
λ

Λ

(6.56)

Which contains 4 design parameters 22122111 ,,, λλλλ , where r denotes the sub-range of

operation related to the first input and g denotes the sub-range related to the second

input. In general, for a MIMO system with un inputs, when each input is discretized into

ui nik ,,2,1, L= sub-ranges, the corresponding total number of design parameters s'λ

will be ∑
=

un

i
ik

1

. These parameters can be defined as a parameter vector

{ } iuji kjni ,,2,1;,,2,1,, LL === λθ . The impulse response model)(uH will be

identified in each of the sub-ranges defined above.

In Chapter 4, it has been shown that for systems that can be represented in the form of

equation (6.51), LMIs-based tests have been developed for the analysis of robust stability

and performance. Based on these conditions, the robust gain-scheduled MPC controllers

proposed in this section can be designed and optimized. The objective of this

optimization problem is to minimize the parameter γ according to the following GEVP

problem in MATLAB:

 172

W

I
IDC

DPBBPAB
CPBAPPAA

P

∈

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
<

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

ω

γω
ωωω

γ

allfor

tosubject TTT

TTT

000
00
000

)(
)()()(

min

2

2

(6.57)

which is an alternative form of the equation in Theorem 4.2.

To summarize, the procedure to design an optimal robust gain-scheduled MPC controller

is as follows:

1. Set ui nik ,,2,1, L= for each input. Select values of pm, . Set a range and a discrete

grid of values in that range for the controller design parameters set θ .

2. Choose values for θ according to the grid values within the parameter range.

3. Substitute values of θ into the equation of Theorem 4.2.

4. Minimize γ subject to the equation of Theorem 4.2 (GEVP problem in MATLAB).

5. If a feasible solution exists for the above equation, accept values chosen in step 2 and

the optimized performance index γ , otherwise, discard the current values.

6. Go to step 2 until)min(γγ =optimal is obtained over the whole parameter range.

The problem of searching for the optimal performance index, optimalγ , is not quadratic in

terms of the controller parameters sji ',λ and the optimization matrix variable P

simultaneously. Thus, the resulting problem is a nonlinear matrix inequality for all of

these parameters. For example, equation (4.33) includes higher-order terms like

 173

bajijiji ,,,, , λλλλ PP . Thus, the optimization in terms of all of these parameters may be near

optimal instead of a global optimal solution. Branch and bound methods have been

proposed to solve LMIs that are not convex with respect to certain variables (Fukuda and

Kojima, 2001; Braatz, VanAntwerp & Sahinidis, 1997). This is beyond the scope of the

current study.

6.3 Case Study Results and Conclusions

For the SISO CSTR process, the state-affine model obtained in Chapter 3 is used in this

section for the design of gain-scheduled MPC controllers in section 6.3.1. In section 6.3.2,

a simple 22× process will be used as an illustration of the MIMO design.

6.3.1 Design results for SISO processes

6.3.1.1 Design results for the SISO CSTR process

For the state-affine model of the CSTR example, as a preliminary study, a simple gain-

scheduled MPC controller will be designed according to the following even discretization

of the scheduling variable, i.e., the manipulated variable u :

),(10
),(01

222

111

λ
λ

MPC

MPC

MPCufor
MPCufor

K
K

≤<
≤≤−

(6.58)

In summary, the operation range of]1,1[−∈u is discretized evenly into two sub-ranges,

01 ≤≤− u , and 10 ≤< u . Then two MPC controllers are designed, one controller for

each sub-range. If u is within the first sub-range, the controller),(111 λMPCMPC K is

applied, which is based on the step response coefficients corresponding to a step input

changing from -1 to 0. If u is within the second sub-range, the controller

),(222 λMPCMPC K is applied, which is based on the step response coefficients

corresponding to the step input changing from 0 to 1.

 174

For one specific sub-range of u , the matrix A of the closed-loop system, given by

equation (6.53), has to be calculated with the λ value corresponding to the sub-range. As

a result, over the whole operation range, a family of matrices A will be obtained, each

corresponding to one sub-range. The two bounds of the manipulated variable u for each

sub-range, represent two vertices of the uncertain parameter box. The LMIs robust

stability test of the closed-loop system will be checked against all the matrices A at each

vertex of the uncertain parameter box.

Additional vertices have to be added to account for the boundaries between the sub-

ranges of u . For example, for the controller given by equation (6.58), the vertices of
−+= 0,0u , using 0== i

i uδ in the state-affine model will be added. These vertices are

necessary to account for the discontinuity of the controller at the discretization point 0.

The discontinuity is due to the different values of λ and the step response from the two

sides of 0. For example, when there is only one uncertain parameter u=1δ , the

parameter box without a controller discontinuity at 0 will be represented by the dotted

line shown in Figure 6.3, while the parameter box that accounts for all the cases in the

gain-scheduled MPC controller consists of the two triangles in Figure 6.3, which are

outside the range of the dotted line. This parameter box is accounted for only when the

two additional vertices corresponding to −+= 0,0u are considered. This is also true for

the case when there is more than one uncertain parameter. Consequently, for the

controller given by equation (6.58), all the vertices required for robust stability test are as

follows:

−

+

−=⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡ +

=⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡ +

0,1,
)1(

)(
),(

)(
)1(

0,0,1,
)1(

)(
),(

)(
)1(

22

11

ufor
t

t
t

t

ufor
t

t
t

t

MPC

MPC

U
x

KA
U

x

U
x

KA
U

x

λ

λ

(6.59)

where

 175

⎥
⎦

⎤
⎢
⎣

⎡
−

=
2021

1211

EHNKT
AA

A
MPC

(6.53)

Figure 6.3 Vertices of the parameter box to be tested for robust stability

For the robust performance test of the closed-loop system, the system matrix A given by

equation (6.51) is used instead. This analysis can be easily extended to the case where a

more complex scheduling with a larger number of sub-ranges will be used. In that case,

additional vertices, corresponding to the connection point of every two adjacent sub-

ranges, have to be added into the LMIs tests.

Table 6.1 Gain-scheduled MPC controller optimization (SISO)

GSMPC

k
],,,[21 kλλλ K optimalγ

1 [0.7287] 0.5928

2 [0.2732,0.9499] 0.4926

3 [0.3297,0.8219,1.1513] 0.4907

4 [0.8303,0.8743,0.8446,1.0287] 0.6068

5 [0.9369,1.0456,1.0464,1.0038,1.0821] 0.6152

The gain-scheduled MPC controllers are referred to as GSMPCk in the sequel, where k

indicates the number of sub-ranges specified for scheduling. A linear MPC is obtained

1
),(22

−=u
MPC λKA

−= 0

),(22

u
MPC λKA

+= 0

),(11

u
MPC λKA

1
),(11

=u
MPC λKA

0
),(11

=u
MPC λKA

 176

when 1=k . The optimal input weights],,,[21 kλλλ K are obtained based on the

optimization procedure described in the previous section and shown in Table 6.1. For

different number of evenly discretized sub-ranges from 1 to 5, the optimal performance

index optimalγ is also shown in the table.

The results for optimalγ in Table 6.1 are very close to each other among all the cases.

Therefore, it is hard to make significant conclusions on what the best choice of k is.

optimalγ decreases from 1=k to 3=k , and then increases from 3=k to 5=k . This

shows that the system performance depends on the number of sub-range separations, and

in this case, the GSMPC3 controller gives the best robust performance with a optimalγ of

0.4907. The reason that optimalγ increases from 3=k to 5=k is that more LMI tersm and

vertices are added to the problem thus increasing the problem conservatism. In addition,

optimalγ also depends on what are the limits between the sub-ranges in terms of the values

of the variable u . Some a priori knowledge about the process nonlinearity may be

helpful to guide the separation, i.e., more sub-ranges are needed if the system in a

particular operation range is highly nonlinear. This point is further explained in Chapter 7

as one of the future research directions.

Table 6.2 Gain-scheduled MPC controller simulation (SISO)

Controller

name

],,,[21 kλλλ K optimalγ simulationγ ∑
=

100

1

)()(
t

T tt uu

GSMPC5-1 [0.9369,1.0456,1.0464,1.0038,1.0821] 0.6152 0.3108 2.1345

GSMPC5-2 [5,5,5,5,5] 0.7230 0.3295 1.0426

To show the effect of the input weights optimization, one case is taken from the

optimization results in Table 6.1, and compared to another case which has the same

number of sub-ranges but non-optimized input weights. This comparison in Table 6.2

shows that the optimization of the input weights results in a reduction of the performance

 177

index and thus results in a better robust performance. Simulation results of the two

controllers are obtained and summarized in Table 6.2.

simulationγ is the performance index obtained from the simulation, calculated using

22 LsimulationL
ve γ= . Different disturbance signals were used in the simulations,

including for example step signals, sinusoidal signals, white noise and combinations of

them. A multi-spike disturbance signal was selected to be used in the following

simulations, because it is resulting in the worst performance among different cases and

the results are clear for comparison reasons. Then for the worst case found from

simulation, simulationγ was calculated. The comparison in Table 6.2 shows that γ is a

reliable performance index, in that simulationoptimal γγ ≥ for both controllers GSMPC5-1 and

GSMPC5-2. Figure 6.4 shows the simulation results of the gain-scheduled MPC

controllers for a specific disturbance signal shown in Figure 6.5.

0 10 20 30 40 50 60 70 80 90 100
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
G-S MPC output. MPC1(-),MPC2(:)

Figure 6.4 GSMPC5-1 (solid line) and GSMPC5-2 (dotted line) simulation

 178

0 10 20 30 40 50 60 70 80 90 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
disturbance

Figure 6.5 Disturbance signal used for the results in Table 6.2

6.3.1.2 Comparison of an optimal gain-scheduled MPC controller and an optimal gain-

scheduled PI controller for the SISO CSTR process

For SISO processes, the robust performance analysis has been applied to design the

optimal gain-scheduled MPC controllers, shown in Table 6.1. The optimal gain-

scheduled MPC controller has turned out to be the GSMPC3 controller with a optimalγ of

0.4907. This controller is then compared to the optimized gain-scheduled PI controller 5-

OPT-GS-PI-2, which has a optimalγ of 0.3204 from Chapter 5 and will be referred to as

GSPI for simplicity in the sequel.

In the following, these two controllers are compared, in terms of analysis and simulation,

and the comparison results are summarized in Table 6.3. The simulation results of both

controllers, GSMPC3 and GSPI, are shown in Figure 6.6, and these results were obtained

for the same disturbance as the one shown in Figure 6.5.

 179

Table 6.3 Compare: Gain-scheduled PI and Gain-scheduled MPC

Controller Parameters:θ optimalγ simulationγ ∑
=

100

1

)()(
t

T tt uu

GSMPC3 =],[1 kλλ L [0.3297,0.8219,1.1513] 0.4907 0.2998 2.5524

GSPI],,,[dcIc WWK τ

=[1.2168,1.9309,0.1802,0.0009]

0.3204 0.2007 2.6360

0 10 20 30 40 50 60 70 80 90 100
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
Process output y. G-S MPC(-),G-S PI(:)

Figure 6.6 GSPI (dotted line) and GSMPC3 (solid line) simulation

The results in Figure 6.6 and Table 6.3 show that the GSPI controller gives better robust

performance than the optimal GSMPC3 controller, with a slightly less aggressive control

action. Both designs are based on the same robust performance condition proposed in

Chapter 4, and the process model is also the same SISO state-affine model. The

difference between the design results can only originate from the difference between the

controller structures. The gain-scheduled PI controller given by equation (5.2) has only

one controller state)(tξ , and it is much simpler than the MPC controller given by

equation (6.50), which has 1>n states. As a result, the closed-loop system with the MPC

controller, given by equations (6.51) and (6.52), is more complex than the one with PI

 180

controller given by equations (5.14) and (5.15). The addition of controller states makes it

more difficult for the robust performance condition to be met because the robust

performance condition requires the stability of all the closed-loop system states, including

the controller states. This increases the conservatism of the LMIs analysis for the gain-

scheduled MPC controller. As a result, the difference between the analysis and simulation,

i.e., the difference between optimalγ and simulationγ , is bigger for the MPC controller than

that for the PI controller.

This also shows the importance of reducing the conservatism of the robust performance

analysis for the MPC controller design. However, these results should not be interpreted

necessarily as to favor the PI controller over the MPC controller since the structure of

these controllers and the uncertainty considered in the analysis are significantly different

in the two cases, and the performance index is only an upper bound.

6.3.2 Design results for MIMO processes

In this section, the design of a gain-scheduled MPC controller for MIMO processes will

be shown. To illustrate the technique, a simple 2-input-2-output example is used. The

22× state-affine model example is as follows:

)(,)(
)()()(

)()1()()1(
)(}{)(}{)1(

2,21,1

0

,23,121,110

tutuwhere
tdtt

tBWtBWdtd
ttt

tt

ttt

==
+=

−+=+

++++=+

δδ

ν
δδδ

fWxHy

uGGGxFFx

(6.60)

where the model coefficient matrices are as follows:

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

−
=

02289.1
01076.0

,
0937.03416.2
0346.01188.0

10 FF
(6.61)

 181

⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

=⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

0928.00508.0
0159.001.0

,
01.0
1.00

,
10
01

321 GGG

8.0,
0
1

,
1.00

0382.01755.0
0 =⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ −
= BWfWH

First, a simple linear MPC controller will be designed, which has the following form:

)),(,(
11
11

21
2

1 λλΛK MPCMPC
u
u

for ⎥
⎦

⎤
⎢
⎣

⎡
≤≤−
≤≤−

(6.62)

Then, a simple gain-scheduled MPC controller will also be designed as follows:

),(
10
10

),(
01

10

),(
10
01

),(
01
01

222222
2

1

212121
2

1

121212
2

1

111111
2

1

ΛK

ΛK

ΛK

ΛK

MPC

MPC

MPC

MPC

MPC
u
u

for

MPC
u
u

for

MPC
u
u

for

MPC
u
u

for

⎥
⎦

⎤
⎢
⎣

⎡
≤<
≤<

⎥
⎦

⎤
⎢
⎣

⎡
≤≤−
≤<

⎥
⎦

⎤
⎢
⎣

⎡
≤<
≤≤−

⎥
⎦

⎤
⎢
⎣

⎡
≤≤−
≤≤−

(6.63)

where),(ijMPCijijMPC ΛK refers to the thij MPC controller, when 1u is in its thi sub-

range, and 2u is in its thj sub-range. Then, according to equation (6.56), ijΛ has the

following form:

2,1
2,1

,

2

1

2

1

=
=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
j
i

j

i

j

i

ij

λ
λ

λ
λ

Λ

(6.64)

 182

MPCijK will be calculated based on the step response corresponding to each of the sub-

ranges defined by equation (6.63) using equation (6.32). For example, 12MPCK will be

calculated using step response corresponding to []10,01 21 ≤<≤≤− uu .

The gain-scheduled MPC controller and the linear MPC controller are referred to as

GSMPC-M and LMPC-M in the sequel. The robust performance analysis results of the

controllers GSMPC-M and LMPC-M are summarized in Table 6.4. Assuming that the

input weights are not optimized and set all equal to one, the optimalγ is calculated and

tabulated in Table 6.4. If the input weights are not optimal, the linear MPC controller

seems to provide a better robust performance.

Table 6.4 MPC controller analysis (comparing LMPC-M and GSMPC-M)

LMPC-M

],[:],[: 22221111 δδωδδδωδ ∈∈],[21 λλ optimalγ

]5.0,5.0[:]5.0,5.0[: 2211 −∈−∈ ωδωδ [1,1] 0.7698

GSMPC-M

],[
],[

:
],[
],[

:
222212

212121
2

121212

111111
1 δδω

δδω
δ

δδω
δδω

δ
∈
∈

∈
∈

 ⎥
⎦

⎤
⎢
⎣

⎡

2221

1211

λλ
λλ

 optimalγ

]3.0,0[
]0,3.0[

:
]3.0,0[
]0,3.0[

:
12

21
2

12

11
1 ∈

−∈
∈
−∈

ω
ω

δ
ω
ω

δ ⎥
⎦

⎤
⎢
⎣

⎡
11
11

0.9350

Following the guidelines of Chapter 3, and according to the MIMO state-affine model

given by equation (6.60), two uncertain parameters)(),(2,21,1 tutu tt == δδ are considered

in this section. Table 6.4 shows the values of 21 ,ωω that denote the bounds of)(1 tu and

)(2 tu respectively. In general, the uncertainty bounds will be described as follows:

]},[:),,,{(: 21 iiin δδωωωω ∈= LW (6.65)

 183

The linear and gain-scheduled MPC controllers in Table 6.4 are simulated against a

disturbance signal. The corresponding performance index simulationγ , and the sum of

squares of the control moves are summarized in Table 6.5.

Table 6.5 MPC controller simulation (comparing LMPC-M and GSMPC-M)

Simulation

Controller name

optimalγ simulationγ ∑
=

500

1

)()(
t

T tt uu

LMPC-M 0.7698 0.3523 22.0861

GSMPC-M 0.9350 0.3410 10.7434

The results in Table 6.5 show that there is inconsistency between the analysis results and

the simulation results with respect to the comparison between the two controllers. The

analysis shows that the LMPC-M controller is better than the GSMPC-M controller,

because the worst-case performance index optimalγ of the LMPC-M controller is smaller.

However, the simulation results show that the GSMPC-M controller gives a smaller

performance index simulationγ . The simulations have been carried out against a few

different disturbance signals, and the worst results, i.e., the ones that gave the largest

simulationγ , are shown here. It should be remembered that the simulation results can not be

exactly the same as the analysis results, because it is impossible to find the specific

disturbance that achieves the worst-case performance index, and also, the computation of

the theoretical performance bound assumes an infinite period of operation, which is also

impossible to achieve with computer simulations.

It is believed that the inconsistency between the analysis and simulation is also partly

because of the inherent conservatism of the robust analysis approach. The approaches

proposed in Chapter 4, for example the analysis using the parameter-dependent Lyapunov

functions, may be used in the future for the design of MPC controllers with the purpose

 184

of reducing the conservatism. This is beyond the scope of the current work and is left for

future research.

The controller simulation results are shown in Figure 6.7 and Figure 6.8. The two figures

are showing the same results, only that Figure 6.7 shows part of the results for the period

of]100,1[=t , and Figure 6.8 shows the results over the whole simulation period

]500,1[=t . The disturbance signal used in this simulation is shown in Figure 6.9.

0 50 100
-0.4

-0.2

0

0.2

0.4

0.6
output 1.linear(-),G-S(:)

0 50 100
-0.1

0

0.1

0.2

0.3
output 2.linear(-),G-S(:)

0 50 100
-0.8

-0.6

-0.4

-0.2

0

0.2
 input 1.linear(-),G-S(:)

0 50 100
-0.8

-0.6

-0.4

-0.2

0

0.2
input 2.linear(-),G-S(:)

Figure 6.7 LMPC-M (solid line) and GSMPC-M (dotted line) simulation (]100,1[=t)

 185

0 200 400 600
-0.4

-0.2

0

0.2

0.4

0.6
output 1.linear(-),G-S(:)

0 200 400 600
-0.1

0

0.1

0.2

0.3
output 2.linear(-),G-S(:)

0 200 400 600
-0.8

-0.6

-0.4

-0.2

0

0.2
 input 1.linear(-),G-S(:)

0 200 400 600
-0.8

-0.6

-0.4

-0.2

0

0.2
input 2.linear(-),G-S(:)

Figure 6.8 LMPC-M (solid line) and GSMPC-M (dotted line) simulation (]500,1[=t)

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1
disturbance: part

0 50 100 150 200 250 300 350 400 450 500
-1

-0.5

0

0.5

1
disturbance: whole

Figure 6.9 Disturbance signal used for the simulation

 186

It is interesting to notice from Table 6.5 that the LMPC-M controller effort, represented

by ∑
=

500

1

)()(
t

T tt uu , is much bigger (2.0558 times) than that of the GSMPC-M controller.

This can also be observed from the lower two plots in both Figure 6.7 and Figure 6.8, for

the inputs 1u and 2u respectively. It means that the linear MPC controller may provide a

slightly better output but at the cost of a large control effort. Large control actions are

undesirable since they may imply large wear of actuators.

This also shows that the performance index optimalγ could be augmented by some term to

reflect the effect of the controller effort in the robust performance analysis of the MPC

controllers. This might also be a direction for future research which may lead to less

conservative designs of controllers.

The input weights can be also optimized to improve the performance of the MPC

controllers. For linear MPC controllers, optimized weights],[21 λλ are obtained, and for

gain-scheduled MPC controllers, optimized weights ⎥
⎦

⎤
⎢
⎣

⎡

2221

1211

λλ
λλ

 can also be obtained.

The robust performance analysis shows that a smaller optimalγ is achieved for both the

linear MPC controllers and the gain-scheduled MPC controllers.

The MPC controllers with these optimized weights are referred to as LMPC-M-OPT and

GSMPC-M-OPT respectively. The optimized controllers LMPC-M-OPT and GSMPC-

M-OPT are simulated against the same disturbance shown in Figure 6.9, which was used

in the simulations of the LMPC-M and GSMPC-M controllers. The simulation results of

the LMPC-M-OPT and GSMPC-M-OPT controllers are shown in Figure 6.10 and Figure

6.11. The analysis and simulation results of all the four MPC controllers for the MIMO

process given by equation (6.60), are summarized in Table 6.6.

 187

Table 6.6 MPC controller optimization

Linear MPC (equation (6.62))

Controller name],[21 λλ optimalγ simulationγ ∑
=

500

1
)()(

t

T tt uu

LMPC-M [1,1] 0.7698 0.3523 22.0861

LMPC-M-OPT [0.5009,0.4983] 0.7472 0.3396 42.5782

Gain-scheduled MPC (equation (6.63))

Controller name
⎥
⎦

⎤
⎢
⎣

⎡

2221

1211

λλ
λλ

 optimalγ simulationγ ∑
=

500

1
)()(

t

T tt uu

GSMPC-M
⎥
⎦

⎤
⎢
⎣

⎡
11
11

0.9350 0.3410 10.7434

GSMPC-M-OPT
⎥
⎦

⎤
⎢
⎣

⎡
5034.04980.0
5029.05164.0

0.8694 0.3238 62.1820

0 50 100
-0.4

-0.2

0

0.2

0.4

0.6
output 1.linear(-),G-S(:)

0 50 100
-0.2

-0.1

0

0.1

0.2

0.3
output 2.linear(-),G-S(:)

0 50 100
-1

-0.5

0

0.5
 input 1.linear(-),G-S(:)

0 50 100
-1.5

-1

-0.5

0

0.5
input 2.linear(-),G-S(:)

Figure 6.10 LMPC-M-OPT (solid line) and GSMPC-M-OPT (dotted line) simulation

 188

0 200 400 600
-0.4

-0.2

0

0.2

0.4

0.6
output 1.linear(-),G-S(:)

0 200 400 600
-0.2

-0.1

0

0.1

0.2

0.3
output 2.linear(-),G-S(:)

0 200 400 600
-1

-0.5

0

0.5
 input 1.linear(-),G-S(:)

0 200 400 600
-1.5

-1

-0.5

0

0.5
input 2.linear(-),G-S(:)

Figure 6.11 LMPC-M-OPT (solid line) and GSMPC-M-OPT (dotted line) simulation

It can be seen from Table 6.6 that the performance index optimalγ for gain-scheduled MPC

controllers has been reduced by 7.02% from 0.9350 for GSMPC-M to 0.8494 for

GSMPC-M-OPT, while the reduction for the linear case is only 2.94% from 0.7698 for

LMPC-M to 0.7472 for LMPC-M-OPT. In summary, the optimization of the input

weights has reduced the conservatism of the analysis by a larger amount for the gain-

scheduled MPC controllers than for the linear MPC controllers. This is because there are

four parameters to be optimized for the gain-scheduled case, which is twice the number

of parameters to be optimized for the linear case.

The results in Table 6.6 also show that the performance index optimalγ for the LMPC-M

controller is bigger than the optimalγ for the LMPC-M-OPT controller, and the

performance index from simulation, i.e., simulationγ , of the two controllers shows the same

trend. This is also true for the other pair of controllers, i.e., GSMPC-M and GSMPC-M-

OPT. As a result, it can be concluded that γ is a reliable performance index, in terms of

differentiating robust performance among different controllers. γ showed some

 189

inconsistency in Table 6.5 when it is compared among controllers which have different

structures, i.e., a linear MPC controller and a gain-scheduled MPC controller.

In Table 6.6, the value ∑
=

500

1
)()(

t

T tt uu of the optimized controllers are larger than the

controllers with non-optimized input weights. This is because the optimized input

weights are smaller compared to the non-optimized ones, for example, [0.5009,0.4983]

smaller than [1,1] for the LMI-M-OPT controller. These smaller weights impose a

smaller penalty on the controller moves than the weights of [1,1], and as a result,

∑
=

500

1
)()(

t

T tt uu will increase. Smaller input weights will always result in more aggressive

control.

6.3.3 Conclusions

In this chapter, the LMIs based robustness analysis techniques are applied to the design

and optimization of gain-scheduled MPC controllers. For the application of the LMIs

based approaches, the state-space formulation of the MPC controllers have been obtained

in this work, based on the previous results obtained by Zanovello and Budman (1999).

Design and optimization procedures for gain-scheduled MPC controllers are proposed in

Section 6.2.2, and then all the techniques and approaches developed in this chapter are

extended to MIMO processes. The optimal robust gain-scheduled MPC controllers are

designed for both the SISO CSTR case study process and a simple 2x2 MIMO process.

The analysis and simulations results of all the designed controllers are show in section

6.3.

First for the CSTR process, gain-scheduled MPC controllers are designed using different

number of operation range discretization. The results in Table 6.1 show that the system

performance depends on the number of sub-range separations and optimalγ also depends on

what are the limits between the sub-ranges in terms of the values of the variable u . Some

a priori knowledge about the process nonlinearity may be helpful to guide this

 190

discretization step, i.e., more sub-ranges are needed if the system in a particular operation

range is highly nonlinear. This point is further explained in Chapter 7 as one of the future

research directions. The results in Table 6.2 show that the optimization of the input

weights reduces the performance index and thus results in a better performance. It also

shows that γ is a reliable performance index, since simulationoptimal γγ ≥ for both controllers

GSMPC5-1 and GSMPC5-2.

The optimal gain-scheduled MPC controller and the optimal gain-scheduled PI controller

are compared. The results in Figure 6.6 and Table 6.3 show that the GSPI controller gives

better robust performance than the optimal GSMPC3 controller, with a less aggressive

control action. This also indicates the importance of reducing the conservatism of the

robust performance analysis for the MPC controller design.

For MIMO processes, a gain-scheduled MPC controller is designed for s simple 2x2

system. In this section, the operation range for each input is discretized evenly into two

sub-ranges. If the input weights are not optimized, the linear MPC controller seems to

provide a better robust performance. The simulation results also show that the linear

MPC controller provides a slightly better output, but at the cost of a large undesirable

control effort. This suggests that the performance index optimalγ could be augmented by

some term to reflect the effect of the controller effort in the robust performance analysis

of the MPC controllers.

If the input weights are optimized, the performance index from the analysis has been

reduced by a larger amount for the gain-scheduled MPC controllers than for the linear

MPC controllers. This is because there are four parameters to be optimized for the gain-

scheduled case, which is twice the number of parameters to be optimized for the linear

case.

In summary, the results in this chapter have shown that the procedures proposed here are

efficient in obtaining linear and gain-scheduled MPC controllers, which guarantee

closed-loop system’s robust stability and performance. Optimization of the input weights

 191

has improved the robust performance, showing the importance of optimal tuning of the

MPC controller parameters. The simulation results show that γ is a reliable performance

index, in terms of differentiating robust performance among different controllers of the

same structure. Gain-scheduled MPC controllers are designed with a purpose to

compensate for the process nonlinearity, and it is expected to provide a better

performance than the linear MPC controllers for nonlinear processes. Most of the design

results and all of the simulation results in this chapter show that the gain-scheduled MPC

controllers achieve better performance at a cost of less control action. However, there are

some counter examples for this point in the designed results. This may be due to the

conservatism of the analysis, and as a result, a few directions for future research have

been suggested to reduce the conservatism of the design, and they will be explained in

detail in Chapter 7.

 192

7 Conclusions and Future Work

7.1 Conclusions

Chemical or biochemical processes are highly nonlinear, especially when operated over a

wide range of operating conditions. It is of a great significance to design high-

performance nonlinear controllers for efficient control of these nonlinear processes to

achieve closed-loop system’s stability and good performance. However, there are not

many general design procedures to deal with this task, and there are many difficulties to

design such controllers because of the system nonlinearity.

For model-based control design problems for highly nonlinear processes, the first

difficulty is to obtain a good simple model of the process under study. Two available

options are first-principles models obtained from conservation equations, and empirical

models identified from process input/output data. The nonlinearity of the processes is

generally related to reaction kinetics or nonlinearity of physical properties, thus making it

often difficult to obtain a first-principles model which can be used as the basis of control

design task. As a result, in this work, relatively simple empirical models are chosen to

represent the nonlinear process for the design of controllers.

First, a Volterra series model is identified using least squares algorithm from process

input/output data. Then, a state-affine model that is nonlinear with respect to the

manipulated variable is obtained through mathematical transformations of the Volterra

series model coefficients, based on the algorithm proposed by Sontag (1978). Knapp and

Budman (2000) have used this technique to design linear controllers for nonlinear

processes. This state-affine model is especially suitable for robust control design since it

can be easily partitioned into a nominal linear model and a nonlinear part. If the

controller design is based on a nominal linear model, it is valid to assume that the model

nonlinearity is the main source of model uncertainty, and the uncertainty can be directly

quantified based on the information of process nonlinearity. Since the model nonlinearity

is a function of the current manipulated variable only, the model uncertainty can be easily

 193

quantified as compared to other studies in the literature where the uncertainty

identification requires the solution of difficult optimization problems. The manipulated

variable is naturally bounded due to, for example, actuator saturation limits. The problem

of actuator saturation is also explicitly accounted for in Chapter 5 by defining an input-

saturation factor and reformulating the gain-scheduled PI controller.

A state-affine model was identified for a CSTR case example, which gave the minimal

sum of squares errors comparing to the real process output. The difference between the

model output and the real process output is due to truncation of the Volterra series model

and due to the transformation of the Volterra series model to the state-affine model. This

modeling error has been effectively accounted for as an additional uncertain parameter in

the design. This state-affine model was used throughout this work for the model-based

robust control design of the CSTR example. The work summarized here is explained in

detail in Chapter 3.

Since the state-affine models used in this work can be easily approximated by a nominal

linear part and model uncertainty, robust control theory is a natural choice to analyze this

type of models. Also the robust control approach is easier to apply and more general than

a pure nonlinear analysis that relies on the finding of an appropriate Lyapunov function.

Therefore, robust control theory has been applied for the design of gain-scheduled

Proportional-Integral (PI) control in Chapter 5, and gain-scheduled Model Predictive

Control (MPC) in Chapter 6.

The gain-scheduling formulations proposed in this work are different from the traditional

ones reported in the literature. For example, the gain-scheduled PI controller parameters

are changed as a continuous function of the scheduling variable, i.e., the manipulated

variable, instead of switching these parameters at discrete values of the scheduling

variable as generally proposed in the literature. Also, the traditional gain-scheduling

(Bequette, 1997) approach is based on the analysis of local linear models, such that the

overall designs cannot guarantee closed-loop system’s global stability and performance

(Shamma and Athans, 1990). The gain-scheduled controllers proposed in this work are all

 194

designed based on the nonlinear state-affine model, which represents the nonlinear

process over the whole operation range. The application of this model has also made it

possible to incorporate model uncertainty into the gain-scheduled designs. To guarantee

the global closed-loop system’s stability and performance with the designed controllers,

robustness analysis has been applied into the design approach.

The design procedure is based on the robust stability and performance conditions

proposed in Chapter 4, a large part of the work shown in this chapter has been previously

reported by Gao and Budman (2004). For time-varying uncertain parameters, robust

stability and performance conditions are proposed in Theorems 4.1 and 4.2 using fixed

Lyapunov functions, and in Theorems 4.3 and 4.4 using parameter-dependent Lyapunov

functions. The results in Theorems 4.3 and 4.4 represent the main contributions of this

work for discrete-time systems. The case of constant uncertain parameters is also

summarized in Theorems 4.5 and 4.6. The comprehensive procedures for the design and

optimization of robust gain-scheduled PI controllers are proposed in Chapter 5 and for

MPC controllers in Chapter 6.

The closed-loop system modeled by combining the state-affine model and the controller

is found to have an affine dependence on the uncertain parameters, and as a result, two

important conclusions can be drawn for the closed-loop systems. The first conclusion is

that all the uncertain parameters are valued in a convex parameter box, with the

uncertainty bounds as the vertices of the box. The basis for this conclusion is found in the

method for quantifying the model uncertainty from experimental data, shown in Chapter

3. The second conclusion is that each of the possible closed-loop system matrices within

the uncertainty description is a fixed affine function of the uncertain parameters. These

two conclusions reduce all the above robust stability and performance conditions

proposed in Theorems 4.1 and 4.2, Theorems 4.3 and 4.4, which are originally an infinite

set of Lyapunov inequalities, to a finite number of Linear Matrix Inequalities (LMIs).

Thus, the final problems are numerically solvable. This is explained in Chapter 4.

 195

One of the inherent problems with robust control is that the design is conservative. Two

approaches have been proposed in this work to reduce the conservatism. The first one is

based on parameter-dependent Lyapunov functions, and it is applied when the rate of

change of the time-varying uncertainty parameters is available a priori. The robustness

conditions based on this approach are summarized in Theorems 4.3 and 4.4. The second

one is based on the relaxation of the lower bound of the input-saturation factor ψ defined

in Chapter 5, to reduce the conservatism, which is proposed in Method 5.1.

For the case study CSTR example, gain-scheduled PI controllers were designed and

optimized in Chapter 5. The design results are summarized in Chapter 5, which showed

that the performance index γ is an efficient indicator for designing, comparing and

optimizing the tuning parameters of gain-scheduled PI controllers. It was also found that

the performance index simulationγ from the simulation is always significantly smaller than

the optimalγ from the analysis for the designed controllers. For example, for the GS-PI-1

controller, simulationγ is 0.3495 while optimalγ is 0.5890. Based on these comparisons with

simulations, the analysis has been found to be conservative to some degree.

To reduce the conservatism of the above design results, the first approach used in this

work is based on parameter-dependent Lyapunov functions. Regions of robust stability

and performance in the gain-scheduled PI controller parameter space have been obtained

based on this approach in Chapter 5, and compared to the regions based on fixed-

parameter Lyapunov functions. The results showed that the application of parameter-

dependent Lyapunov functions has enlarged the design regions defined in terms of the

tuning parameters. This reduction in conservatism was especially significant for the

design of robust gain-scheduled PI controllers as compared to the design of linear PI

controllers.

The second novel method that has been proposed in this work is the relaxation of the

input-saturation factor ψ to reduce the conservatism. This approach has been very

efficient in reducing the conservatism of the CSTR designs. For example, for the linear PI

 196

controller with parameters of 5.2,4.1 == IcK τ , it is impossible to meet the robust

performance condition without the relaxation of the input-saturation factor. That is, when

0=ψ , ∞=optimalγ . When the lower bound of the input-saturation factor was relaxed to

be 0.8376 using Method 5.1, the performance index was reduced to a finite value of

0.4280. These results are given in Chapter 5.

For comparison, extensions of Structured Singular Value (SSV) approach have been

reviewed and summarized in this work. In Chapter 4, the general procedures to obtain the

Linear Fractional Transformation (LFT) for an uncertain system are given, and the robust

stability and performance conditions are reviewed for time-varying uncertainties. Under

the same set of conditions, the SSV approach is compared to the quadratic Lyapunov

approach in the last section of Chapter 4. Case study results were obtained for the CSTR

process in Chapter 5 and the results showed that the stability and performance regions

obtained with the SSV approach are smaller than those obtained with the quadratic

Lyapunov approach. SSV analysis is based on the upper bound of µ , and when the

uncertainty structure has repeated scalar blocks, as is the case in this work, the upper

bound of µ will not equal µ . Then, the conclusions drawn from the upper bound of µ

will be conservative. In addition, the Lyapunov approach was found to be more versatile

than the SSV approach to deal with the issues of input-saturation and for reducing

conservatism by using parameter-dependent Lyapunov functions. As a result, the SSV

approach is not pursued further beyond the basic comparisons described in Chapters 4

and 5.

The results in Chapters 3, 4 and 5 are obtained for SISO processes. In Chapter 6, the

robustness analysis conditions developed in Chapter 4 are extended to MIMO processes.

MPC controllers are designed instead of PI controllers, since MPC controllers are

especially suitable to handle MIMO systems in the chemical industry. To compensate for

the nonlinearity of the processes, gain-scheduled MPC controllers are designed, instead

of the nonlinear MPC controllers reported in the literature based on nonlinear

optimization. The operation range of the manipulated variable is discretized into a

 197

number of sub-ranges. The controller tuning parameters and the step response matrix, are

scheduled based on the input variable. This approach is different from the local-

linearization design approach reported in the literature since the design in this work

guarantees global stability and performance.

For the SISO CSTR example, gain-scheduled MPC controllers were designed based on

different number of sub-ranges. Simulation results of these controllers show that the

design procedure is effective because the designed controllers guarantee closed-loop

system stability and performance in terms of disturbance rejection. The best gain-

scheduled MPC controller (GSMPC3) from these designs, was compared to an optimal

gain-scheduled PI controller (GSPI), and both the analysis and simulation results showed

that GSMPC3 is more conservative than the GSPI controller. GSMPC3 has a simulationγ of

0.2998 and a optimalγ of 0.4907, while the GSPI controller has a smaller simulationγ of

0.2007 and a smaller optimalγ of 0.3204. First, these results show the importance of

reducing the conservatism of the analytical approach. Second, these results should not be

interpreted necessarily as to favor the PI controller over the MPC controller since the

structure of these controllers and the uncertainty considered in the analysis are

significantly different in the two cases, and the performance index is only an upper bound.

For s simple MIMO process with two inputs and two outputs, gain-scheduled MPC

controllers were also designed. When the input weights were not optimized, the linear

MPC controller showed a smaller optimalγ than the gain-scheduled MPC controller.

However, the simulations of these two controllers showed that the gain-scheduled MPC

controller showed a smaller optimalγ at only 50% of the linear controller’s control effort. If

the input weights are optimized, the performance index optimalγ for gain-scheduled MPC

controllers has been reduced by 7.02%, while the reduction for the linear case is only

2.94%. In summary, the optimization of the input weights leads to improvement of the

robust performance index by more than twice for the gain-scheduled MPC controllers as

compared to linear MPC controllers. This is because there are four parameters to be

 198

optimized for the gain-scheduled case, which is twice the number of parameters to be

optimized for the linear case.

Gain-scheduled MPC controllers are designed with a purpose to compensate for the

process nonlinearity, and it is expected to provide a better performance than the linear

MPC controllers for nonlinear processes. Most of the design results and all of the

simulation results in Chapter 6 show that the gain-scheduled MPC controllers achieve

better performance at a cost of less control action. However, there are some counter

examples for this point in the designed results. This may be due to the conservatism of

the analysis, and as a result, a few directions for future research have been suggested to

reduce the conservatism of the design. One example is that the analysis conservatism

could be reduced by incorporating the control effort into the analysis.

For practical application of the proposed design procedures in industry, the complicated

mathematical analysis could be carried out offline. The design results, i.e., the robust

stability and performance regions in the controller parameter space, are produced by the

procedures and can be applied online easily. In summary, the robustness analysis has

been found to be efficient, but inherently conservative, and it is desired in the future to

further reduce this conservatism, such that the design results will approach the simulation

results. In the following section, a few future directions are suggested that focus mainly

on reducing the conservatism of the analysis and design.

7.2 Future work

The main focus of the future work is suggested to be the reduction of the conservatism of

the robustness analysis and the design based on the analysis. In Chapter 6, it has been

shown by the design and simulation results that the LMIs based analysis for robust

stability and performance is even more conservative for gain-scheduled MPC controllers

than for the gain-scheduled PI controllers.

 199

7.2.1 Reducing conservatism of the gain-scheduled MPC design

In Chapter 6, a gain-scheduled MPC controller design procedure has been proposed. The

procedure consists of discretely scheduling the step response matrix and input weights

based on discretization of the manipulated variable. In Chapter 6, it has been studied for

the case that the whole operation range is discretized into even sub-ranges. However, the

discretization of the operation range is not necessarily to be even, and the number of sub-

ranges is itself a parameter that could be optimized. An MIMO process example with 2

inputs and 2 outputs will be used in this section to illustrate the importance of proper

discretization of the scheduling variable for the design of gain-scheduled MPC

controllers. Simulation results will be shown in this section

The 22× state-affine model is:

)(,)(
)()()(

)()1()()1(
)(}{)(}{)1(

2,21,1

0

,23,121,110

tutuwhere
tdtt

tBWtBWdtd
ttt

tt

ttt

==
+=

−+=+

++++=+

δδ

ν
δδδ

fWxHy

uGGGxFFx

(7.1)

where the model coefficient matrices are as follows:

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

−
=

02289.1
01076.0

,
0937.03416.2
0346.01188.0

10 FF

2321 ,
01
10

,
10
01

GGGG =⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
= ,

8.0,
0
1

,
0382.01755.0
0382.01755.0

0 =⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−
−

= BWfWH

(7.2)

The operation range for this process is defined to be 11,11 21 ≤≤−≤≤− uu , which will

be discretized into two sub-ranges at the middle limits a and b for 1u and 2u

respectively. In Chapter 6, a similar gain-scheduled MPC controller was designed for the

 200

case of 0=a and 0=b because an even discretization was used in that section. In this

section, a and b will be designed to achieve better control performance, and the

resulting gain-scheduled MPC controller is as follows:

),(
1
1

),(
1

1

),(
1

1

),(
1
1

222222
2

1

212121
2

1

121212
2

1

111111
2

1

ΛK

ΛK

ΛK

ΛK

MPC

MPC

MPC

MPC

MPC
ub
ua

for

MPC
bu

ua
for

MPC
ub

au
for

MPC
bu
au

for

⎥
⎦

⎤
⎢
⎣

⎡
≤<
≤<

⎥
⎦

⎤
⎢
⎣

⎡
≤≤−
≤<

⎥
⎦

⎤
⎢
⎣

⎡
≤<
≤≤−

⎥
⎦

⎤
⎢
⎣

⎡
≤≤−
≤≤−

(7.3)

where),(ijMPCijijMPC ΛK refers to the thij MPC controller, when 1u is in its thi sub-

range, and 2u is in its thj sub-range. Then, the input weight matrix ijΛ has the following

form:

2,1
2,1

,

2

1

2

1

=
=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
j
i

j

i

j

i

ij

λ
λ

λ
λ

Λ

(7.4)

MPCijK will be calculated based on the step response corresponding to each of the sub-

ranges defined by equation (6.63). For example, 12MPCK will be calculated using step

responses corresponding to []1,1 21 ≤<≤≤− ubau . In this section, a and b will be

designed based on the step response of the process given by equations (7.1) and (7.2). It

has been found from simulations that the step responses from input 2u to both outputs

change abruptly at the point of 8.0−=b . The step responses corresponding to 0=a and

8.0−=b are shown in Figure 7.1 and Figure 7.2. Based on this observation, it will be

 201

chosen that 0=a and 8.0−=b for the gain-scheduled MPC controller in the sequel, and

this MPC controller, given by equation (6.63), will be referred to as GS-MPC-1.

0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25
input 1 to output 1,S11

0 2 4 6 8
-5

0

5

10

15
x 10-3 S12

0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25
input 1 to output 2,S21

0 2 4 6 8
-5

0

5

10

15
x 10-3 S22

Figure 7.1 Step response (]1,8.0[],1,0[21 −∈∈ uu)

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5
input 1 to output 1,S11

0 2 4 6 8
-0.8

-0.6

-0.4

-0.2

0
input 2 to output 1,S12

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5
input 1 to output 2,S21

0 2 4 6 8
-0.8

-0.6

-0.4

-0.2

0
input 2 to output 2,S22

 202

Figure 7.2 Step response (]8.0,1[],0,1[21 −−∈−∈ uu)

For the purpose of comparison between even discretization and proper designed

discretization, a second gain-scheduled MPC controller based on 0=a and 0=b is also

simulated, and this MPC controller, given by equation (6.63), will be referred to as GS-

MPC-2. The simulation results are shown in Figure 7.3 with the solid line corresponds to

the GS-MPC-1 controller and dotted line to the GS-MPC-2controller. The two controllers

have the same parameter’s values, for example the input weights are equal to one, and are

simulated against the same disturbance, shown in Figure 7.4. In Figure 7.3, the upper two

plots show the process outputs, and the lower two plots show the corresponding inputs.

0 50 100

-0.2

0

0.2

0.4

output 1.GS-1(-),GS-2(:)

0 50 100
-0.25

-0.2

-0.15

-0.1

-0.05

0
output 2.GS-1(-),GS-2(:)

0 50 100
-0.8

-0.6

-0.4

-0.2

0
 input 1.GS-1(-),GS-2(:)

0 50 100
-0.1

0

0.1

0.2

0.3

0.4
input 2.GS-1(-),GS-2(:)

Figure 7.3 GS-MPC-1 (solid line) and GS-MPC-2 (dotted line) simulation

 203

0 10 20 30 40 50 60 70 80 90 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
disturbance

Figure 7.4 Disturbance signal used for the simulation results in Figure 7.3 and Table 7.1

Table 7.1 Simulation results of two MPC controllers

Controller name Discretization simulationγ ∑
=

100

1
)()(

t

T tt uu

GS-MPC-1
⎥
⎦

⎤
⎢
⎣

⎡
−∈∈

−−∈−∈
]1,8.0[],1,0[

]8.0,1[],0,1[

21

21

uu
uu

0.3517 1.8716

GS-MPC-2
⎥
⎦

⎤
⎢
⎣

⎡
∈∈

−∈−∈
]1,0[],1,0[

]0,1[],0,1[

21

21

uu
uu

0.3582 12.4613

Observing the upper two plots in Figure 7.3, the outputs of GS-MPC-1 and GS-MPC-2

are very close to each other, and it is difficult to conclude which controller is better than

the other. However, the inputs are very different showing by the lower two plots in

Figure 7.3, especially by the plots at the lower right corner. In the plot at the lower right

corner of Figure 7.3, the solid line shows that the GS-MPC-1 controller results in a much

less aggressive control action to achieve the similar output, than the GS-MPC-2

controller that is based on a different discretization of the input range.

 204

The simulation results show that the GS-MPC-1 controller based on properly designed

discretization of the input, results in a much less aggressive control action to achieve a

desired performance than the GS-MPC-2 controller based on an even input discretization.

This motivates further study in the design of gain-scheduled MPC controllers, including

not only the design of the input weights studied in Chapter 6, but also the discretization

of the operation range. The number of the discretized sub-ranges and the discretization

points are both important design parameters towards a less conservative gain-scheduled

MPC controller design.

In addition, it can be concluded from the above simulation results that the control action,

represented as the sum of squares inputs, is also an important measure of robust

performance. It is suggested for future work that this control action is incorporated into

the design in addition to the performance index γ that reflects the sum of squares errors

only. This will also reduce the conservatism of the analysis, by differentiating between

controllers which will take different control action to give a similar γ .

Two approaches have been proposed in Chapters 4 and 5 to reduce conservatism of the

design, which are based on parameter-dependent Lyapunov functions, and relaxationof

the imput-saturation factor. In the future, these two approaches should be applie to the

design of robust gain-scheduled MPC controllers as well, for further reduction of the

conservatism.

Last but not the least, MPC controllers are known to handle hard constraints with success,

and the future application of the MPC controller design will be focused on MPC

controllers with constraints.

7.2.2 Reducing conservatism of the robustness analysis

The LMIs based robust stability and performance analysis is inherently conservative

because it considers cases that will not actually happen during operation. The more

 205

conservative the analysis is, the less reliable the design results are. In other words, the

success of the robust designs of gain-scheduled controllers relies heavily on the less

conservative analysis of the closed-loop system’s robust stability and performance. It is

of extreme importance to reduce the conservatism of the robustness analysis conditions

proposed in this work. For future work, the following issues are suggested towards less

conservative analysis and thus more reliable designs.

7.2.2.1 Alternative robust performance condition formulation

In this section, the same system which has been considered in this work is applied to

illustrate an alternative robust performance formulation. The system is given as follows:

0)0(
)(
)()(

)(
)1(

ηη

η
DC
BδAη

=

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ +
t
t

te
t t

ν

(7.5)

where n
nt R∈=),,,(21 δδδ Lδ is a vector of uncertain and time-varying real parameters.

For this class of systems, the definition for quadratic Lyapunov robust performance has

been given by Definition 4.2 in Chapter 4. It will be reformulated in this section to reduce

the conservatism. If the process will be assumed to be always operated for disturbances

within a specific time-dependent envelope, tighter robust performance bounds could be

obtained. This formulation is based on the assumption that the disturbance will always

evolve with time along some a priori known set of process disturbance trajectories. This

is expected to reduce conservatism of the robustness analysis, such that the resulting

LMIs performance index γ is as close to the simulation performance index simulationγ as

possible.

The robust performance condition is formulated in Definition 4.2 as follows:

0)()()()()()1(2 <−+−+ tttetetVtV TT ννγ (7.6)

 206

An alternative robust performance condition is suggested here, by summing up equation

(7.6) over the time interval []1−+ ntt , as follows:

0)()()()()()(
1

0

1

0

2 <++−+++−+ ∑ ∑
−

=

−

=

n

i

n

i

TT itititeitetVntV ννγ
(7.7)

As ∞→n , the above equation (7.7) is equivalent to the condition
22 LL

ve γ< . For a

finite n , equation (7.7) represents the new formulation of the robust performance

condition proposed in this section. To illustrate this condition for a finite n , the

formulations for 2=n are given in the following.

0)()()()(

)()()2()2(
1

0

1

0

2 <++−++

+−++

∑ ∑
= =i i

TT

TT

itititeite

tttt

ννγ

PηηPηη

(7.8)

By substitution of the closed-loop system given by equation (4.15) into equation (7.8), it

can be rewritten as the sum of the following three parts:

1.
[]

⎢
⎢
⎢

⎣

⎡ −
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+=−++

++

+++++

+++

1101111

1100110110

101111

)()()(
)()()(
)()()(

)1(
)(
)(

)1()()()()()2()2(

ννννν

ννννν

νν

ν
ννν

WWWWW
WWWWW
WW

t
t
t

ttttttt

TT
t

TT
tt

TT

T
t

TT
t

T
t

TT
tt

T
t

TT

T
t

T
t

TTT
t

T
tt

T
t

T
t

T

TTTTT

PBBBPABWAPAB
PBABBPAABWAPAAB
PBAAWBPAAAWWPAPAAAW

M

η
MηPηηPηη

η

η

ηηηη

(7.9

)

and

 207

2.
[]

⎢
⎢
⎢

⎣

⎡

++
++

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+=++∑

=

11011

0000

0

1

0

)()()(
)()()(
)()()(

)1(
)(
)(

)1()()()()(

ννννν

ννννν

νν

ν
ννν

WWWWW
WWWBWW
WW

t
t
t

tttiteite

TTTT
t

TT

TTTTTTTT
t

TTT

TT
t

TTTT
t

TT
t

TT
t

T

e

e
TTT

i

T

DDCBDWCAD
DCBDDCBCWCDCACB
DCAWDCCBCAWWCCCACAW

M

η
Mη

η

η

ηηηη

(7.10

)

and

3.

[]

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+=++∑

=

1
2

1

0
2

0

1

0

2

)(00
0)(0
00)0(

)1(
)(
)(

)1()()()()(

νν

ννν

ν

γ
γ

ν
νννννγ

WW
WW

t
t
t

tttitit

T

T

T

TTT

i

T

ηη WW
M

η
Mη

(7.11)

where))1(()),((1 +== + tt tt δAAδAA . ηW is the weight for the state)(tη at 0=t , and

it is zero for zero initial states, 10 , νν WW define the bounds of an envelope of possible

disturbances represented by)1(),(+tt νν .

The advantage of using this formulation is that the information of the disturbance

trajectory can be taken into account in the robustness analysis, by using the values of

10 , νν WW to represent an envelope of possible disturbances. The key difference is that the

disturbance weight considered in previous chapters was constant whereas here it is

proposed to vary this weight with respect to time in order to consider a narrower

envelope of possible disturbances.

In summary, equation (7.8) can be rewritten as the sum of the three equations (7.9), (7.10)

and (7.11), as follows:

 208

[] 0
)1(

)(
)(

)()1()()(

0)()()()(

)()()2()2(
1

0

1

0

2

<
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+++

⇔

<++−++

+−++

∑ ∑
= =

t
t
t

ttt

itititeite

tttt

ve
TTT

i i

TT

TT

ν
ννν

ννγ

η
MMMη

PηηPηη

(7.12)

Based on the two assumptions associated with equation (4.15) and the results developed

in Chapter 4, equation (7.12) can be formulated as a finite set of LMIs and thus be solved

with the FEASP or GEVP problem with MATLAB.

7.2.2.2 Elimination of the convexity condition for the parameter-dependent Lyapunov

function analysis

In Chapter 4, the parameter-dependent Lyapunov functions have been used in the LMIs

based robust stability and performance conditions to reduce the conservatism of the

robustness analysis. The finite LMIs conditions are summarized in Theorem 4.3 and 4.4,

where a convexity condition is included in each of them. The reason for this convexity

condition is given in detail in Chapter 4. As a reminder, the robust stability condition

leads to a term as follows:

0δPδAδPδAδL <−= +)()()()()(1 ttt
T

tt (7.13)

For any nonzero vector λ , clearly λδLλδ)()(t
T

tf = is a scalar function of the following

form:

λδLλδ)()(t
T

tf =

),,,,()(3
,,

2
,

2
,,,, titjtititjtitit ff δδδδδδδ=δ

(7.14)

 209

In general, the negative sign of)(tf δ values at all corners of the parameter box SW× ,

defined in Chapter 3, does not guarantee its negativity over the entire parameter box,

because of its 3rd-order dependence with respect to sti ',δ . However, negativity is

obtained when)(tf δ is convex in the sti ',δ , that is, when ni
f

ti

t ,,1,0
)(

2
,

2

L=≥
∂

∂

δ
δ

 for all

tδ . The parameter-dependent Lyapunov functions have been proposed to reduce the

conservatism of the analysis, but the addition of the convexity conditions will affect the

reduction efficiency. It is desired to eliminate these additional convexity conditions to

achieve much less conservative designs. This can be realized based on the application of

the state-affine model, and it will be explained in the sequel.

The key advantage of using state-affine model in this work is that the process uncertainty

is a function of the current input only, as follows:

i

ti tu)(, =δ (7.15)

As a result, the 3rd-order terms in equation (7.14) can be transformed into 1st-order terms

as follows:

ti
iiii

ti

tji
jiji

tjti

tutututu

tututu

,3
33

,

,,,

)()()()(

)()()(

×
×

+
+

===

===

δδ

δδδ

(7.16)

Based on this, equation (7.14) can be rewritten as follows:

λδLλδ)()(t
T

tf =

),,,,()(,3,2,2,, titjititjitit ff ×+××+= δδδδδδ

(7.17)

And it is no longer a function which has a 3rd-order dependence with respect to sti ',δ .

Thus, the corresponding convexity condition in Theorems 4.3 and 4.4 is no longer

 210

necessary, and the resulting LMIs may potentially be less conservative by having fewer

LMI terms. At the same tume, this order-reduction has removed the correlation between

the uncertain parameters ti,δ and 3
,tiδ .

However, this may raise another problem related to the addition of more uncertain

elements to the uncertainty vector. For example, titjititji ,3,2,2, ,,, ×+××+ δδδδ are added and

additional vertices corresponding to the bounds of these new perturbations have to be

integrated into the parameter box. Thus, there is a tradeoff between the elimination of the

convexity condition and the addition of uncertain elements. Some future research effort is

desired to look into this issue.

7.2.2.3 Selection of the vertices of the uncertain parameter box

The parameter box, defined in chapter 3, represents the range of the uncertain parameters

upon which the robust stability and performance conditions have to be tested. The size

and shape of the parameter box should be representing the true uncertain parameters as

accurate as possible, and this could be manipulated by careful selection of the vertices

based on the uncertain parameter bounds. If it is possible to consider a smaller parameter

box, it is possible to reduce the conservatism of the analysis. However, it is not always

possible to find out the correlation among the uncertain parameters, which may be helpful

in determining the smaller parameter box. In this work, based on the application of the

state-affine model, the uncertainty is a function of the current input variable, shown by

equation (3.6). As a result, all the uncertain parameters can be expressed as a function of

other uncertain parameters. For example, in the case of two uncertain parameters 21 ,δδ ,

according to equation (3.6), 2
12)(δδ = , the true relationship between the two uncertain

parameters is represented by the dotted curve in Figure 7.5.

 211

Figure 7.5 Parameter box

In the LMIs based robustness analysis, the bounds of the two uncertain parameters are

used as vertices of a parameter box, to approximate this dotted curve. If the bounds of the

two uncertain parameters 21 ,δδ are]1,1[1 −∈δ and]1,0[2 ∈δ respectively, then the four

vertices to represent them are]1,1[],0,1[],1,1[],0,1[],[21 −−=δδ . The corresponding

parameter box is the shaded rectangle area a in Figure 7.5. It is easy to notice that this

area a is unnecessarily conservative for bounding the parabolic functional dependency

existent between the uncertainty elements.

For example, a less conservative alternative is to use an additional vertex,]0,0[],[21 =δδ ,

to define a less conservative parameter box. The new two sets of vertices are

]0,0[],1,1[],0,1[],[21 −−=δδ and]0,0[],1,1[],0,1[],[21 =δδ , and they define the two

triangles b1 and b2 in Figure 7.5. The total area of the two triangles b1 and b2 is half of

the area of the rectangle area a, thus conservatism is expected to be reduced. However,

two more vertices are added to the LMIs and thus the resulting problem will have more

LMI conditions. This is another tradeoff scenario that could be studied in the future.

7.2.2.4 Schedule the robustness analysis along the operation range

If the nonlinear process is represented with a state-affine model, the uncertain parameters

are functions of the current input according to equation (3.6), and the LMIs tests have

been formulated around the process steady state corresponding to 0)(=tu . However, the

1δ

2δ

-1 1

1

0

a
2δ

1δ
-1 1

1

0
b1 b2

 212

gain-scheduled controller design has assumed the input variable to change over the

operation. For the design of gain-scheduled PI controllers, the controller parameters are

designed to change as a continuous function of the variable)(tu over the operation range.

For the design of gain-scheduled MPC controllers, the controller tuning parameters are

scheduled discretely along the sub-ranges, discretized of the operation range. As a result,

it may be less conservative to formulate the LMIs around different steady states,

corresponding to a set of values of the input variable over the operation range. This will

require that a corresponding empirical model be identified around each of the steady state,

and the uncertainty bounds will be obtained based on the corresponding model. The

resulting LMIs will be reformulated along the operation range using this approach, and

possibly more vertices will be required to cover the entire window of operation in terms

of the manipulated variable u . It will also be interesting to integrate a highly nonlinear

process example operated around different operating conditions. It requires more future

work to find this out.

 213

References

[1]. Apkarian, P., Gahinet, P. and Becker, G. (1995). Self-scheduled ∞H Control of

Linear parameter-varying systems: a Design Example. Automatica. Vol.31, No.9, pp.

1251-1261.

[2]. Apkarian, P., Gahinet, P. and Becker, G. (1995). Self-scheduled ∞H Control of

Linear parameter-varying systems: a Design Example. Automatica. Vol.31, No.9, pp.

1251-1261.

[3]. Balza, C., Fromageot, A. and Maniere, M. (1967). Four-level pseudo-random

Sequences. Electronics Letters, Vol.3, No.7, pp. 313-315.

[4]. Balza, C., Fromageot, A. and Maniere, M. (1967). Four-level pseudo-random

Sequences. Electronics Letters, Vol.3, No.7, pp. 313-315.

[5]. Barmish, B., Khargonekar, P., Shi, Z., and Tempo, R. (1990). Robustness margin

need not be a continuous function of the problem data. Systems and Control Letters.

15(2). pp. 91-98.

[6]. Becker, G. and Packard, A. (1993). Robust Performance of LPV’s using

Parametrically Dependent Linear Feedback. Systems and Control Letters. Vol. 23, pp.

205-215.

[7]. Bequette, B.W. (1997). Gain Scheduled Process Control: a Review (1997).

(presented at) the NATO ASI on Nonlinear Model Based Control. Antalya, Turkey,

August.

[8]. Boyd, S., Ghaoui, L. EL., Feron, E. and Balakrishnan, V. (1994). Linear Matrix

Inequalities in System and Control Theory. SIAM (studies in applied mathematics).

[9]. Budman, H. M. and Knapp, T. D. (2001). Stability Analysis of Nonlinear

Processes using Empirical State-affine Models and LMIs. Journal of Process Control. 11,

pp. 375-386.

[10]. Budman, H. M. and Knapp, T. D.. Stability of a PI-controlled Nonlinear System.

[11]. Campo, P.J. and Morari, M. (1987). Robust Model Predictive Control.

Proceedings of American Control Conference. Vol.2, pp. 1021-1026.

 214

[12]. Chang, J.A. (1966). Generation of 5-level Maximal-length Sequences. Electronics

Letters. 2, pp. 258.

[13]. Chen, H. and Allgower, F. (1998a). A computationally attractive nonlinear

predictive control scheme with guaranteed stability for stable systems. Journal of Process

Control. Vol. 8, No. 5-6. pp. 475-485.

[14]. Chen, H. and Allgower, F. (1998b). Nonlinear model predictive control schemes

with guaranteed stability. MATO ASI Series E: Applied sciences. Vol. 353 (Nonlinear

Model Based Process Control). pp. 465-494.

[15]. Chen, H., Scherer, C. W., and Allgower, F. (1997). A game theoretic approach to

nonlinear robust receding control of constrained systems. Proceedings of American

Control Conference. Albuquerque. pp. 3073-3077.

[16]. Church, R. (1935). Tables of Irreducible Polynomials for the First Four Prime

Moduli. The Annuals of Mathematics. Vol.36, pp. 98-209.

[17]. Costanza, V., Dickinson, B. and Johnson, E. (1983). Universal Approximations of

Discrete-time Control Systems over Finite Time. IEEE Transactions on Automatic

Control. AC-28, pp. 439-452.

[18]. Dang Van Mien, H. and Normand-Cyrot, D. (1984). Nonlinear State-affine

Identification Methods: Applications to Electrical Power Plants. Automatica. 20(2), pp.

175-188.

[19]. Darnell, M. (1966). Synthesis of Pseudo-random Signals Derived from p-level m

sequences. Electronics Letters. Vol. 2, pp. 428-430.

[20]. Davison, D. (2001). ECE788 Robust Control Course Notes. University of

Waterloo.

[21]. Diaz, H. and Desrochers, A. (1988). Modeling of Nonlinear Discrete-time

Systems from Input/Output Data. Automatica. 24(5), pp. 629-641.

[22]. Doyle III, F. J. and Morari, M. (1990). A Conic Sector-based Methodology for

Nonlinear Control Design. ACC Proceedings, San Diego, CA, USA. pp. 2746-2751.

[23]. Doyle III, F. J., Ogunnaike, B. and Pearson, R. (1995). Nonlinear Model-based

Control using Second Order Volterra Models. Automatica. Vol. 31, pp. 697-714.

[24]. Doyle III, F. J., Packard, A. and Morari, M. (1989). Robust Controller Design for

a Nonlinear CSTR. Chemical Engineering Science. Vol. 44, pp. 1929-1947.

 215

[25]. Doyle III, F. J., Packard, A., and Zhou, K. (1991). Review of LFTs, LMIs, andµ .

Proceedings of the 30th Conference on Decision and Control, Brighton, England. pp.

1227-1232.

[26]. Doyle, J.C. (1982). Analysis of feedback systems with structured uncertainties.

IEEE Proceedings. Vol. 129, Part D, no. 6, pp. 242-250, November.

[27]. Doyle, J.C. and Packard, A. (1987). Uncertain Multivariable Systems from a State

Space Perspective. ACC Proceedings, New Jersey. pp. 2147-2152.

[28]. Doyle, J.C. and Packard, A. (1988). Robust control of Multivariable and Large

Scale Systems. USAF Office of Scientific Research, Washington, DC.

[29]. Fogler, H.S. (1986). Elements of Chemical Reaction Engineering. Prentice-hall,

Englewood Cliffs, NJ.

[30]. Gahinet, P. and Apkarian, P. (1994). A Linear Matrix Inequality Approach to

∞H Control. International Journal of Robust and Nonlinear Control. 4, pp. 421-448.

[31]. Gahinet, P., Apkarian, P., and Chilali, M. (1996). Affine Parameter-dependent

Lyapunov Functions and Real Parametric Uncertainty. IEEE Transactions on Automatic

control, 41(3), pp. 436-442.

[32]. Gahinet, P., Nemirovski, A., Laub, A. J. and Chilali, M. (1995). LMI Control

Toolbox User’s Guide. The MathWorksTM, Inc..

[33]. Gahinet, P.; Apkarian, P. and Chilali, M. (1994). Affine Parameter-dependent

Lyapunov Functions for Real Parametric Uncertainty. Proceedings of the 33rd IEEE

Conference on Decision and Control. Lake Buena Vista, Fl, pp. 2026-2031.

[34]. Gao, J. and Budman, H. M. (2003). Design of Sub-optimal Robust Gain-

scheduled PI Controllers. ADCHEM, HongKong.

[35]. Gao, J. and Budman, H. M. (to be published, 2004). Reducing conservatism in the

design of a robust gain-scheduled PI controller for nonlinear chemical processes.

International Journal of Control.

[36]. Garofalo, F., Celentano, G., and Glielmo, L. (1993). Stability Robustness of

Interval Matrices via Laypunov Quadratic Forms. IEEE Transactions on Automatic

Control. 38(2), pp. 281-284.

[37]. Genceli, H. and Nikolao, M. (1993). Robust Stability Analysis of Constrained 1l -

 216

norm Model Predictive Control. AIChE Journal. 39(12), pp. 1954-1965.

[38]. Godfrey, K.R. (1966). Three-level m Sequences. Electronics Letters. Vol. 2, pp.

241-243.

[39]. Haber, R. and Unbehauen, H. (1990). Structure Identification of Nonlinear

Dynamic Systems- a Survey on Input/output Approaches. Automatica. Vol. 26, No. 4, pp.

651-677.

[40]. Hernandez, E. and Arkun, Y. (1993). Control of Nonlinear Systems using

Polynomial ARMA Models. AIChE Journal, Process Systems Engineering. Vol. 39, No.

3, March.

[41]. Hoo, K.A. and Kantor, J.C. (1985). An Exothermic Continuously Stirred Tank

Reactor is Feedback Equivalent to a Linear System. Chemical Engineering

Communications. Vol. 37, pp. 1-10.

[42]. Knapp, T. D. and Budman, H. M. (2000). Robust Control Design of Non-linear

Process using Empirical State-affine Models. International Journal of Control. 73(17), pp.

1525-1535.

[43]. Kothare, M.V., Balakrishnan, V. and Morari, M. (1996). Robust Constrained

Model Predictive Control using Linear Matrix Inequalities. Automatica. Vol. 32, No. 10,

pp. 1361-1379.

[44]. Kravaris, C. and Palanki, S. (1988). Robust Nonlinear State Feedback under

Structured Uncertainty. AIChE Journal. 7, pp. 1119-1127.

[45]. Li, J. and et al. (1999). Synthesis of Gain-scheduled Controller for a Class of LPV

Systems. Proceedings of the 38th conference on decision & control, Pheonix, Arizona,

USA, December.

[46]. MacWilliams, F.J. and Sloane, N.J.A. (1976). Pseudo-random Sequences and

Arrays. Proceedings of the IEEE, Vol. 64, No. 12, pp. 1715-1728.

[47]. Marmarelis, P.Z. and Mararelis, V.Z. (1978). Analysis of Physiological Systems,

the White Noise Approach. New York: Plenum.

[48]. Morari, M. and Zafiriou, E. (1989). Robust Process Control. Prentice-Hall,

Englewood Cliffs, NJ.

[49]. Mutha, R. K., Cluett, W. R. and Penlidis, A. (1997). Nonlinear Model-based

Predictive Control of Control Nonaffine Systems. Automatica. Vol.33, No.5, pp. 907-

 217

913.

[50]. Nowak, R. D. and Van Veen, B. D. (1994). Random and Pseudo-random Inputs

for Volterra Filter Identification. IEEE Transactions on Signal Processing. Vol.42, No.3,

pp. 2124-2135.

[51]. Packard, A. and Doyle, J. (1988). Structured Singular Value with Repeated Scalar

Blocks. ACC Proceedings, Atlanta. pp. 1213-1218.

[52]. Packard, A. and Doyle, J. (1990). Quadratic Stability with Real and Complex

Perturbations. IEEE Transactions on Automatic Control. 35(2), pp. 198-201.

[53]. Packard, A., Zhou, K., Pandey, P., and Becker, G. (1991). A Collection of Robust

Control Problems Leading to LMI’s. Proceedings of the 30th conference on decision and

control, Brighton, England, IEEE, December. pp. 1245-1250.

[54]. Pearson, R., Ogunnaike, B. and Doyle, III F. J. (1992). Identification of Discrete

Convolution Models for Nonlinear Processes. Proceedings of AIChE Annual Meeting.

[55]. Rivera, D.E., Morari, M., and Skogestad, S. (1986). Internal Model Control: 4.

PID Controller Design. Industrial & engineering chemistry process design and

development. 25, pp. 252-265.

[56]. Sanchez-Pena and Snaier, Robust Systems: Theory and Applications, Wiley,

1998.

[57]. Sandberg, I.W. (1992). Uniform Approximation with Doubly Finite Volterra

Series. IEEE Transactions on Signal Processing. Vol.40, pp. 1438-1442, June.

[58]. Schetzen, M. (1989). The Volterra and Wiener Theories of Nonlinear Systems.

Northeasten University.

[59]. Seborg, D. E., Edgar, T. F. and Mellichamp, D. A. (1989). Process Dynamics and

Control, John Wiley & Sons.

[60]. Shamma, J. S. and Athans, M. (1987). Stability and Robustness of Slowly-varying

Linear Systems. Proceedings of the 26th IEEE Conference on Decision and Control, Los

Angeles, CA, December.

[61]. Shamma, J. S. and Athans, M. (1990). Analysis of Gain Scheduled Control for

Nonlinear Plants. IEEE Transactions on Automatic Control. Vol. 35, No.8, August.

[62]. Shamma, J. S. and Athans, M. (1991). Guaranteed Properties of Gain Scheduled

Control for Linear Parameter-varying Plants. Automatica. Vol.27, No.3, pp. 559-564.

 218

[63]. Shamma, J. S. and Athans, M. (1992) Gain Scheduling: potential hazards and

Possible Remedies. IEEE Control Systems. pp. 102-107, June.

[64]. Sivrioglu, S. and Nonami, K. (1996). LMI Approach to Gain scheduled ∞H

Control beyond PID Control for Gyroscopic Rotor-Magnetic Bearing. Proceedings of the

35th Conference on Decision and Control, Kobe, Japan. pp. 3694-3699, December.

[65]. Slotine, J-J E. and Li, W. (1991). Applied Nonlinear Control. Prentice hall, New

Jersey.

[66]. Sontag, E. (1978). Realization Theory of Discrete-time Nonlinear Systems: Part I.

the Bounded Case. IEEE Transactions on Circuits and Systems. CAS-26(4), pp. 342-356.

[67]. Wang, F. and Balakrishnan V. (1999). Robustness Analysis and Gain-scheduled

Controller Synthesis for Rational Parameter-dependent Systems using Parameter-

dependent Lyapunov Functions. Proceedings of the 38th IEEE Conference on Decision

and Control, Phoenix, Arizona USA. December.

[68]. Watanabe, R., Uchida, K. and Fujita, M. (1996). A New LMI Approach to

Analysis of Linear Systems with Scheduling Parameter-Reduction to Finite Number of

LMI Conditions. Proceedings of the 35th IEEE Conference on Decision and Control,

Kobe, Japan. pp. 1663-1665, December.

[69]. Zafiriou, E. (1990). Robust Model Predictive Control of Processes with Hard

Constraints. Computers and Chemical Engineering. Vol.14, No.4/5, pp. 359-371.

[70]. Zanovello, R. and Budman, H. M. (1999). Model predictive control with soft

constraints with application to lime kiln control. Computers and Chemical Engineering.

23. pp. 791-806.

[71]. Zheng, A. and Morari, M. (1993). Robust Stability of Constrained Model

Predictive Control. Proceedings of American Control Conference. Vol.1, San Francisco,

CA. pp. 379-383.

[72]. Zhou, K., Khargonekar, P.P., Stoustrup, J. and Niemann, H.H. (1992). Robust

Stability and Performance of Uncertain System in State Space. Proceedings of the 31st

IEEE Conference on Decision and Control, Tucson, Arizon. pp. 662-667, December.

[73]. Zierler, N. (1959). Linear Recurring Sequences. Journal of the Society for

Industrial and Applied Mathematics. Vol. 7, pp. 31-48.

 219

8 Appendix A: Nomenclature for CSTR

Table 8.1 Nomenclature for exothermic CSTR

A heat transfer surface area

B dimensionless heat of reaction: B=
0fpf TCHC γ∆−

C reactant concentration

fC feed concentration of reactant

pC heat capacity

Da Damkohler number: fQeVkDa /)(0
γ−=

Ea activation energy

∆H heat of reaction

0k reaction rate constant

fQ mass feed flow-rate

R ideal gas constant

T reaction temperature

cT coolant temperature

fT feed temperature

0f
T nominal feed temperature

U overall heat transfer coefficient

V reactor volume

1x dimensionless concentration: ff CCCx /)(1 −=

2x dimensionless temperature:
00

/)(2 ff TTTx γ−=

cx dimensionless coolant temperature:
00

)(ffcc TTTx γ−=

β dimensionless cooling rate: pf CQUA /=β

γ dimensionless activation energy:
0

/ fRTEa=γ

 220

9 Appendix B: MATLAB Code

The MATALB files used in this work are summarized in this Appendix, in an order
similar to the outline of this thesis.

9.1 Model Identification

The following MATLAB files have been used to generate process input/output data,
identify the Volterra series model, and obtain the state-affine model.

Table 9.1 MATLAB files for model identification

No. File name Description
1. InputDat I/O data using PRMS as input
2. CSTR Deviated CSTR model for I/O data
3. Volterra I/O to Volterra(M=5)
4. Vol2b5.M Arrange Volterra kernels into Behavior matrix
5. StateAff Volterra to State-affine

Code 1: InputDat.M

clear
global U

%Variable list
%
%x10 Initial process conditions
%u Process input
%x Process output
%Tc CSTR cooling water temperature
%length Simulation time period
%U Input to differential equation solver
%

% Initial Conditions of Process

x10=0*[0.62195;3.7092];%[0.4759;2.9045];
Tc(1)=0;
x(1)=x10(1,1);
temp=x(1);

% PRMS sequence, the input
baseVal=3;
powerVal=3;
shift=0;
whichSeq=3;
ms=mseq(baseVal,powerVal,shift,whichSeq);
bitNum=baseVal^powerVal-1;
Tc=ms;b=16;
for i=1:bitNum
 Tc((i-1)*b+1:i*b)=ms(i);

 221

end
length=bitNum*b;

% corresponding process response
ooo(1)=1;
for i=2:length
 ooo(i)=i;
 x(i)=temp;
 U=Tc(i);
 [t,x1]=ode23('cstrd',[0,1],x10);
 A=[t,x1];
 [a,b]=size(A);
 temp=x1(a,1);
 x10=[x1(a,1);x1(a,2)];
end

%plot the input/output data
figure(1)
subplot(2,1,1)
plot(ooo(1:length),Tc(1:length),'k')
title('Input: 3-level PRMS')
axis([0 length -1.2 1.2])
subplot(2,1,2)
plot(ooo(1:length),x(1:length),'k')
title('Output: CSTR')
axis([0 length -0.6 0.4])

%save input/output data to file
save datacstr x Tc length;

Code 2:CSTR.M

function x1p=cstr(t,x1)

global U
u=U*9+14;
Da=0.072;
B=1;
beta=0.3;
gamma=20;
x11=[0.62195;3.7092];
x1=(x1+x11);
x1p(1,1)=-x1(1)+Da*(1-x1(1))*exp(x1(2)/(1+(x1(2)/gamma)));
x1p(2,1)=-x1(2)+B*Da*(1-x1(1))*exp(x1(2)/(1+(x1(2)/gamma)))-
beta*(x1(2)-u);

Code 3:Volterra.M

%identify Volterra series model using Matlab System identification
toolbox

clear
load datacstr

%Variable list
%start memory length of Volterra series model

 222

%length Simulation time period
%u Process input
%y Process output
%coeff Volterra series model kernels

% Least Square Regression of the Volaterra series model
start=6;
y=x(start:length)';
u=Tc(start:length);
ooo=[start:length];
z=[y u Tc(start-1:length-1).*u Tc(start-2:length-2).*u Tc(start-
3:length-3).*u...
 Tc(start-4:length-4).*u Tc(start-5:length-5).*u];
na=[0];nk=[1 1 2 3 4 5];nb=[5 5 4 3 2 1];
th=arx(z,[na nb nk]);
par=th2par(th);
ys=idsim([u Tc(start-1:length-1).*u Tc(start-2:length-2).*u ...
 Tc(start-3:length-3).*u Tc(start-4:length-4).*u Tc(start-
5:length-5).*u],th);
coeff=par;

%Simulation of the Volterra series model to compare to the original ata
for i=start:length,
ooo(i-start+1)=i-start+1;
y1(i-start+1)=coeff(1)*Tc(i-1)+coeff(2)*Tc(i-2)+coeff(3)*Tc(i-
3)+coeff(4)*Tc(i-4)+coeff(5)*Tc(i-5)+...
 coeff(6)*Tc(i-1)*Tc(i-1)+coeff(7)*Tc(i-2)*Tc(i-1)+coeff(8)*Tc(i-
3)*Tc(i-1)...
 +coeff(9)*Tc(i-4)*Tc(i-1)+coeff(10)*Tc(i-5)*Tc(i-1)...
 +coeff(11)*Tc(i-2)*Tc(i-2)+coeff(12)*Tc(i-3)*Tc(i-2)+coeff(13)*Tc(i-
4)*Tc(i-2)...
 +coeff(14)*Tc(i-5)*Tc(i-2)+coeff(15)*Tc(i-3)*Tc(i-3)...
 +coeff(16)*Tc(i-4)*Tc(i-3)+coeff(17)*Tc(i-5)*Tc(i-3)...
 +coeff(18)*Tc(i-4)*Tc(i-4)+coeff(19)*Tc(i-5)*Tc(i-4)...
 +coeff(20)*Tc(i-5)*Tc(i-5);
end

figure(2)
plot(ooo,y,'k',ooo,y1,'k:')
title('Volterra series model(:) and CSTR')
axis([0 length -0.6 0.4])
save volcoefcstrq1 coeff

Code 4:Vol2b5.M

%Arrange Volterra kernels into Behavior matrix

%Variable list
%g 1st-order Volterra kernels
%b 2nd-order Volterra kernels

function [g,b]=vol2b5(coeff)
g(1)=0;
m=5;
g(2:m+1,1)=coeff(1:5);
b=zeros(5,5);

 223

b(:,1)=coeff(6:10);
b(2:m,2)=coeff(11:14);
b(3:m,3)=coeff(15:17);
b(4:m,4)=coeff(18:19);
b(5:m,5)=coeff(20);
save v1cstrg5 g;
save v2cstrg5 b;

Code 5: StataAff.M

clear;

%Variable list
%
%u Process inout
%y Process output
%g 1st-order Volterra kernels
%b2 2nd-order Volterra kernels
%phi Submatrix of B(f)
%phi0 Submatrix of B(f) for 1st-order terms
%phi1 Submatrix of B(f) for 2nd-order terms
%F0 State-affine model matrix
%F1 State-affine model matrix
%F2 State-affine model matrix
%G1 State-affine model matrix
%G2 State-affine model matrix
%H0 State-affine model matrix
%ysa1st Simulation of 1st-order State-affine model
%ysa2nd Simulation of 2nd-order State-affine model

load volcoefcstrq1;
coeff=coeff;
[g,b]=vol2b5(coeff);
load v1cstrg5;
load v2cstrg5;
load datacstr;
u=(Tc)-mean(Tc));
a=max(abs(u))
u=u/a;
y=(x-mean(x));
y=y/max(abs(y));
b2=b;

% 1st Order State-Affine Model

phi=[g(2) g(3);g(3) g(4)];
phi0=[g(3) g(4);g(4) g(5)];
phi1=zeros(2);
phi2=zeros(2);

for i=1:2,
 F0=inv(phi(1:i,1:i))*phi0(1:i,1:i);
 F1=inv(phi(1:i,1:i))*phi1(1:i,1:i);
 F2=inv(phi(1:i,1:i))*phi2(1:i,1:i);
 G1=inv(phi(1:i,1:i))*phi(1:i,1);
 H0=phi(1,1:i);

 224

%Simulation of 1st-order State-affine model

 x=zeros(i,length);
 for j=2:length,
 x(:,j)=(F0+F1.*u(j-1)+F2.*u(j-1)^2)*x(:,j-1)+G1.*u(j-1);
 ysa1st(i,j)=(H0)*x(:,j);
 end
end

% 2nd Order State-Affine Model

phi=[g(2) b2(1,1) g(3) b2(2,1) b2(2,2);
g(3) b2(2,2) g(4) b2(3,2) b2(3,3);
b2(2,1) 0 b2(3,1) 0 0;
g(4) b2(3,3) g(5) b2(4,3) b2(4,4);
b2(3,1) 0 b2(4,1) 0 0];

phi0=[g(3) b2(2,2) g(4) b2(3,2) b2(3,3);
g(4) b2(3,3) g(5) b2(4,3) b2(4,4);
b2(3,1) 0 b2(4,1) 0 0;
g(5) b2(4,4) g(6) b2(5,4) b2(5,5);
b2(4,1) 0 b2(5,1) 0 0];

phi1=[b2(2,1) 0 b2(3,1) 0 0;
b2(3,2) 0 b2(4,2) 0 0;
0 0 0 0 0;
b2(4,3) 0 b2(5,3) 0 0;
0 0 0 0 0];

phi2=zeros(5);ord=2;
for i=1:ord
 F0=inv(phi(1:i,1:i))*phi0(1:i,1:i);
 F1=inv(phi(1:i,1:i))*phi1(1:i,1:i);
 F2=inv(phi(1:i,1:i))*phi2(1:i,1:i);
 G1=inv(phi(1:i,1:i))*phi(1:i,1);
 G2=inv(phi(1:i,1:i))*phi(1:i,2);
 H0=phi(1,1:i);

 %Simulation of 2nd-order State-affine model

 x=zeros(i,length);
 for j=2:length,
 x(:,j)=(F0+F1.*u(j-1)+F2.*u(j-1)^2)*x(:,j-1)+G1.*u(j-
1)+G2.*u(j-1)^2;
 ysa2nd(i,j)=H0*x(:,j-1);
 end
end
for i=1:length,ooo(i)=i;,end
sumerror=0;
for i=1:length
 sumerror=sumerror+(ysa2nd(ord,i)-y(i))^2;
end
sume5=sumerror

figure(1);
plot(ooo,y,'k',ooo,ysa2nd(ord,:),'k:')

 225

title('State-affine(:) and CTSR')
save cstrmat F0 F1 F2 G1 G2 H0

9.2 Gain-scheduled PI Controllers Design

The following MATLAB files have been used to design and simulate gain-scheduled PI
controllers, based on Lyapunov functions and parameter-dependent Lyapunov functions,
and SSV approach.

9.2.1 Quadratic Lyapunov functions

Table 9.2 MATLAB files for Gain-scheduled PI design: fixed Lyapunov functions

No. File name Description
6. LMIopt Optimization of PI parameters dcIc WWK ,,,τ , calls the

following function 8
7. sysRS The set of LMI for RS, calls 9, 10, and 13
8. sysRP The set of LMI for RP, calls 11, 12, and 13
9. closysRS Closed-loop system for RS
10. LMIkRS A single LMI of RS for each vertex
11. closysRP Closed-loop system for RP
12. LMIkRP A single LMI of RP for each vertex
13. InputSat Relaxation of input-saturation factor (Method 5.1)
14. SimuPI Simulate one Gain-Scheduled PI controller

Code 6: LMIopt.M

x0=[0.38 0.3 0 0];
[xopt,gopt]=fminsearch('sysrp',x0)

Code 7: sysRS.M

clear

%Variable list
%x Gain-scheduled PI controller parameters
%u1bnd Bounds for uncertainty 1
%u2bnd Bounds for uncertainty 2
%psai Input-saturation factor
%psailow Input-saturation factor lower bound (u=-1)
%psailow1 Input-saturation factor lower bound (u=1)
%A0,A1,A2 Closed-loop system matrices
%P0 Lyapunov matrix

x=[3.39 20 0 0]; %controller parameters,x=[Kc,taui,Wc,Wd]

%uncertainty bounds
u1bnd=[-1,1];
[n1,i1]=size(u1bnd);
u2bnd=[0,1];

 226

[m1,j1]=size(u2bnd);

%LMI formulation
setlmis([])
P0=lmivar(1,[ns+1 1]);%P0 is symmetric block diagonal
k=1;
lmiterm([k 1 1 0],0);%P0>0
lmiterm([-k 1 1 P0],1,1);

%no input-saturation
psai=1;
[A0,A1,A2,ns]=closysrs(x,psai);

for i=1:i1
 for j=1:j1
k=k+1;
u1=u1bnd(i);u2=u2bnd(j);
polA=A0+A1*u1+A2*u2;
lmikrs(polA,P0,k);
end
end

%with input-saturation
inpusat=1;
if inpusat==1
[psailow,psailow1]=inputsat(x);
i=1;
[A0,A1,A2,ns]=closysrs(x,psailow);
for j=1:j1
k=k+1;
u1=u1bnd(i);u2=u2bnd(j);
polA=A0+A1*u1+A2*u2;
lmikrs(polA,P0,k);
end
i=i1;
[A0,A1,A2,ns]=closysrs(x,psailow1);
for j=1:j1
k=k+1;
u1=u1bnd(i);u2=u2bnd(j);
polA=A0+A1*u1+A2*u2;
lmikrs(polA,P0,k);
end
end

lmilio=getlmis;
[tmin,xfeas]=feasp(lmilio,[]);
P0=dec2mat(lmilio,xfeas,P0);
save Pcons P0

Code 8: sysRP.M

%Variable list
%x Gain-scheduled PI controller parameters
%u1bnd Bounds for uncertainty 1
%u2bnd Bounds for uncertainty 2
%psai Input-saturation factor

 227

%psailow Input-saturation factor lower bound (u=-1)
%psailow1 Input-saturation factor lower bound (u=1)
%A0,A1,A2 Closed-loop system matrices
%P0 Lyapunov matrix
%gamma Performance index

function gamma=sysrp(x)
x=[0.38 0.3 0 0]; %controller parameters,x=[Kc,taui,Wc,Wd]

%uncertainty bounds
u1bnd=[-1,1];
[n1,i1]=size(u1bnd);
u2bnd=[0,1];
[m1,j1]=size(u2bnd);

%LMI formulation
setlmis([])
P0=lmivar(1,[ns+1+1 1]);%P0 is symmetric block diagonal
k=1;
lmiterm([k 1 1 0],0);%P0>0
lmiterm([-k 1 1 P0],1,1);

%no input-saturation
psai=1;
[A0,A1,A2,B,C,D,ns]=closysrp(x,psai);
for i=1:i1
 for j=1:j1
k=k+1;
u1=u1bnd(i);u2=u2bnd(j);
polA=A0+A1*u1+A2*u2;
lmikrp(polA,P0,k,B,C,D);
end
end

inpusat=1;
if inpusat==1
[psailow,psailow1]=inputsat(x);

i=1;
for j=1:j1
k=k+1;
u1=u1bnd(i);u2=u2bnd(j);
psai=psailow;
[A0,A1,A2,B,C,D,ns]=closysrp(x,psai);
polA=A0+A1*u1+A2*u2;
lmikrp(polA,P0,k,B,C,D);
end

i=i1;
for j=1:j1
k=k+1;
u1=u1bnd(i);u2=u2bnd(j);
psai=psailow1;
[A0,A1,A2,B,C,D,ns]=closysrp(x,psai);
polA=A0+A1*u1+A2*u2;
lmikrp(polA,P0,k,B,C,D);
end

 228

end

lmilio=getlmis;
[tmin,xfeas]=gevp(lmilio,k-1,[1.0*exp(-6) 0 0 0 0]);
%[tmin,xfeas]=feasp(lmilio);
gamma=sqrt(tmin)

Code 9: closysRS.M

function [A0,A1,A2,ns]=closysrs(x,psai)

load C:\gjy2003\model\cstrmat
f0=F0;f1=F1;g1=G1;g2=G2;h0=H0;
[ns,nt]=size(f0);% number of states
Wf=1;bw=0.8;%performance weight
Wt=0.025;gam=Wt*eye(ns);%modeling error

[s,c]=size(x);
kc=x(1);
taui=x(2);
Wc=0;Wd=0;
if c==4
Wc=x(3);
Wd=x(4);
end
ac=1;
bc=1;
cc=kc/taui;
dc=kc+kc/taui;

%psai=1;
A0=[f0-g1*dc*psai*h0 g1*cc*psai;-h0*psai psai];
A1=[f1-(g1*Wd+g2*dc)*psai*h0 (g2*cc+g1*Wc)*psai;zeros(1,nt) 0];
A2=[-g2*Wd*psai*h0 g2*Wc*psai;zeros(1,nt) 0];

Code 10: LMIkRS.M

%kth single LMI, for robust stability

function lmikrs(polA1,P0,k)

lmiterm([k 1 1 P0],polA1',polA1); %A'*P0*A
lmiterm([k 1 1 P0],-1,1); %-P0
lmiterm([-k 1 1 0],0); % A'*P0*A-P0<0

Code 11: closysRP.M

function [A0,A1,A2,B,C,D,ns]=closysrp(x,psai)

load C:\gjy2003\model\cstrmat;
f0=F0;f1=F1;g1=G1;g2=G2;h0=H0;
[ns,nt]=size(f0);% number of states
Wf=1;bw=0.8;%performance weight
Wt=0.025;gam=Wt*eye(ns);%modeling error

[s,c]=size(x);

 229

kc=x(1);
taui=x(2);
Wc=0;Wd=0;
if c==4
Wc=x(3);
Wd=x(4);
end
ac=1;
bc=1;
cc=kc/taui;
dc=kc+kc/taui;

%psai=1;
A0=[f0-g1*dc*psai*h0 g1*cc*psai -g1*dc*Wf*psai;-h0*psai psai -
Wf*psai;zeros(1,ns) 0 bw];
A1=[f1-(g1*Wd+g2*dc)*psai*h0 (g2*cc+g1*Wc)*psai -
(g1*Wd+g2*dc)*Wf*psai;zeros(2,nt+2)];
A2=[-g2*Wd*psai*h0 g2*Wc*psai -g2*Wd*Wf*psai;zeros(2,nt+2)];
B=[zeros(ns,1);0;1-bw];
C=[-h0 0 -Wf];
D=[0];

Code 12: LMIkRP.M

%kth single LMI, for robust performance

function lmikrp(polA1,P0,k,B,C,D)

small=exp(-20);[ns1,ns2]=size(polA1);
small1=eye(ns1)*small;
lmiterm([k 1 1 P0],polA1',polA1);%A'*P0*A
lmiterm([k 1 1 P0],-1,1);%-P0
lmiterm([k 1 2 P0],polA1',B);%A'*P0*B
lmiterm([k 1 3 0],C');%C'
lmiterm([k 2 2 P0],B',B);%B'*P0*B
lmiterm([k 2 3 0],D');%D'
lmiterm([k 3 3 0],-1);%1
lmiterm([-k 1 1 0],small1);
lmiterm([-k 2 2 0],1);
lmiterm([-k 3 3 0],small);

Code 13: InputSat.M

function [psailow,psailow1]=inputsat(x)
length=21;
kc=x(1);
taui=x(2);
Wc=x(3);
Wd=x(4);
Ac=1;Bc=1;
Cc=kc/taui;
Dc=kc+kc/taui;
uk=-1;
for i=1:length
 e(i)=(-1+(i-1)*0.1);
 xc(i)=(uk-(Dc+Wd*uk)*e(i))/(Cc+Wc*uk);

 230

 xc1=xc(i)+e(i);
 u(i)=(Cc*xc1+Dc*e(i))/(1-Wc*xc1-Wd*e(i));
 end
usat=max(abs(u));
psailow=1/usat;

uk0=1;
for i=1:length
 xc0(i)=(uk0-(Dc+Wd*uk0)*e(i))/(Cc+Wc*uk0);
 xc01=xc0(i)+e(i);
 u0(i)=(Cc*xc01+Dc*e(i))/(1-Wc*xc01-Wd*e(i));
 end
usat0=max(abs(u0));
psailow1=1/usat0;

Code 14: SimuPI.M

function [u1,y1,ooo]=sisosimuPI(xopt,v,d,sumv,length)

%Variable list
%xopt Gain-scheduled PI controller parameters
%nx number of states
%length Simulation time period
%v Unmeasured disturbance
%d Filtered disturbance of v
%sumv Sum of squared disturbance

load cstrmat;
[nx,nx]=size(F0);
%xopt=[1.3723 2.949 -0.004 0.001];

kc1=xopt(1);taui1=xopt(2);Wc1=xopt(3);Wd1=xopt(4);
Cc1=kc1/taui1;
Dc1=kc1+kc1/taui1;
Ac=1;
Bc=1;

bw=0.8;
w=10;

Wf=1; %disturbance weight
e1=[];e2=[];u1=[];u2=[];ooo=[];
amp=0;%setpoint=0 for analysis, so for comparison, set to 0 as well
ooo(1)=1;
u1(1)=0;u2(1)=0;
xcprev1=0;xcprev2=0;
x1(:,1)=zeros(nx,1);x2(:,1)=x1(:,1);
y1(1)=H0*x1(:,1);y2(1)=H0*x2(:,1);
psai1=ones(length,1);psai1(1)=1;psai2=1;

for i=1:length
 psai1(i)=1;
 ooo(i)=i;
 y1(i)=H0*x1(:,i)+d(i); %gain-scheduling output with disturbance
 e1(i)=amp-y1(i);
 u1(i)=(Cc1*xcprev1+Dc1*e1(i))/(1-Wc1*xcprev1-Wd1*e1(i));

 231

 if u1(i)>1
 psai1(i)=abs(1/u1(i));
 u1(i)=1;
 elseif u1(i)<-1
 psai1(i)=abs(1/u1(i));
 u1(i)=-1;
 end
x1(:,i+1)=(F0+F1.*u1(i))*x1(:,i)+G1.*u1(i)+G2.*u1(i)^2;
xc1=psai1(i)*(Ac*xcprev1+Bc*e1(i));
 xcprev1=xc1;
end

sumerrorgs1=0;
for i=1:length
sumerrorgs1=sumerrorgs1+e1(i)^2;
end
PIgamma=sqrt(sumerrorgs1/sumv)
PIsumu=u1*u1'

9.2.2 Parameter-dependent Lyapunov functions

Table 9.3 MATLAB files for Gain-scheduled PI design:parameter-dependent Lyapunov

functions

No. File name Description
15. LMIoptP Optimization of PI parameters dcIc WWK ,,,τ ,

calls the following function 17
16. sysPRS RS, calls 18, 9, and 13
17. sysPRP RP, calls 19, 11, and 13
18. LMIkPRS LMI of RS for each vertex
19. LMIkPRP LMI of RP for each vertex

Code 15: LMIoptP.M

x0=[0.38 0.3 0 0];
[xopt,gopt]=fminsearch('sysprp',x0)

Code 16: sysPRS.M

clear

%Variable list
%u1bnd Bounds for uncertainty 1
%u2bnd Bounds for uncertainty 2
%du1bnd Bounds for rate of uncertainty 1
%du2bnd Bounds for rate of uncertainty 2

x=[2.44 1.34 0 0]; %controller parameters,x=[Kc,taui,Wc,Wd]
%uncertainty bounds
u1bnd=[-1,1];
[n1,i1]=size(u1bnd);
du1bnd=[2,-2];

 232

[n2,i2]=size(du1bnd);
u2bnd=[0,1];
[m1,j1]=size(u2bnd);
du2bnd=[1,-1];
[m2,j2]=size(du2bnd);

%no input-saturation
psai=1;
[A0,A1,A2,ns]=closysrs(x,psai);

%LMI formulation
setlmis([])
P0=lmivar(1,[ns+1 1]);%P0 is symmetric block diagonal
P1=lmivar(1,[ns+1 1]);%P1is symmetric block diagonal
P2=lmivar(1,[ns+1 1]);%P2 is symmetric block diagonal
k=1;
lmiterm([(4*(k-1)+1) 1 1 0],1);%P0>0
lmiterm([-(4*(k-1)+1) 1 1 P0],1,1);
lmiterm([(4*(k-1)+2) 1 1 0],0);%P1>0
lmiterm([-(4*(k-1)+2) 1 1 P1],1,1);
lmiterm([(4*(k-1)+3) 1 1 0],0);%P2>0
lmiterm([-(4*(k-1)+3) 1 1 P2],1,1);

for i=1:i1
for j=1:j1
for l=1:i2
for m=1:j2
k=k+1;
u1=u1bnd(i);u2=u2bnd(j);
du1=du1bnd(l);du2=du2bnd(m);
polA=A0+A1*u1+A2*u2;
lmikprs(pol1,A0,A1,A2,P0,P1,P2,k,u1,du1,u2,du2)
end
end
end
end

lmilio=getlmis;
[tmin,xfeas]=feasp(lmilio,[]);

Code 17: sysPRP.M

function gamma=sysprp(x);
x=[2.98 20 0.075 0.075]; %controller parameters,x=[Kc,taui,Wc,Wd]
%uncertainty bounds
u1bnd=[-1,1];
[n1,i1]=size(u1bnd);
du1bnd=[2,-2];
[n2,i2]=size(du1bnd);
u2bnd=[0,1];
[m1,j1]=size(u2bnd);
du2bnd=[1,-1];
[m2,j2]=size(du2bnd);

%no input-saturation
psai=1;

 233

[A0,A1,A2,B,C,D,ns]=closysrp(x,psai);

%LMI formulation
setlmis([])
P0=lmivar(1,[ns+2 1]);%P0 is symmetric block diagonal
P1=lmivar(1,[ns+2 1]);%P1 is symmetric block diagonal
P2=lmivar(1,[ns+2 1]);%P2 is symmetric block diagonal
k=1;
lmiterm([(4*(k-1)+1) 1 1 0],0);%P0>0
lmiterm([-(4*(k-1)+1) 1 1 P0],1,1);
lmiterm([(4*(k-1)+2) 1 1 0],0);%P1>0
lmiterm([-(4*(k-1)+2) 1 1 P1],1,1);
lmiterm([(4*(k-1)+3) 1 1 0],0);%P2>0
lmiterm([-(4*(k-1)+3) 1 1 P2],1,1);

for i=1:i1
 for j=1:j1
k=k+1;
u1=u1bnd(i);u2=u2bnd(j);
du1=du1bnd(i);du2=du2bnd(j);
lmikprp1(A0,A1,A2,P0,P1,P2,k,u1,du1,u2,du2) %convexity condition
end
end

%performance condition, have to be the last
l=0;
for i=1:i1
 for j=1:j1
 for di=1:i2
 for dj=1:j2
 l=l+1;
u1=u1bnd(i);u2=u2bnd(j);
du1=du1bnd(di);du2=du2bnd(dj);
polA=A0+A1*u1+A2*u2;
lmikprp(polA,A0,A1,A2,B,C,D,P0,P1,P2,l,u1,du1,u2,du2)
end
end
end
end

lmilio=getlmis;
[tmin,xfeas]=gevp(lmilio,l,[1.0*exp(-6) 0 0 0 0]);
gamma=sqrt(tmin);

Code 18: LMIkPRS.M

function lmikprs(pol1,A0,A1,A2,P0,P1,P2,k,u1,du1,u2,du2)

lmiterm([4*(k-1)+1 1 1 0],-exp(-20));%condition 3,i=1,j=0,2
lmiterm([-(4*(k-1)+1) 1 1 P1],A1',A1*(3*u1+du1));
lmiterm([-(4*(k-1)+1) 1 1 P1],A1',A0,'s');
lmiterm([-(4*(k-1)+1) 1 1 P0],A1',A1);
lmiterm([-(4*(k-1)+1) 1 1 P1],A2',A1*u2,'s');
lmiterm([-(4*(k-1)+1) 1 1 P2],A1',A1*u2);
lmiterm([-(4*(k-1)+1) 1 1 P2],A2',A2*du2);
lmiterm([(4*(k-1)+4) 1 1 0],-exp(-20));%condition 3,i=2,j=0,1

 234

lmiterm([-(4*(k-1)+4) 1 1 P2],A2',A2*(3*u2+du2));
lmiterm([-(4*(k-1)+4) 1 1 P2],A2',A0,'s');
lmiterm([-(4*(k-1)+4) 1 1 P0],A2',A2);
lmiterm([-(4*(k-1)+4) 1 1 P2],A2',A1*u1,'s');
lmiterm([-(4*(k-1)+4) 1 1 P1],A2',A2*u1);
lmiterm([-(4*(k-1)+4) 1 1 P1],A2',A2*du1);
lmiterm([(4*(k-1)+2) 1 1 0],0);%condition 2
lmiterm([-(4*(k-1)+2) 1 1 P0],1,1);
lmiterm([-(4*(k-1)+2) 1 1 P1],u1,1);
lmiterm([-(4*(k-1)+2) 1 1 P2],u2,1);
lmiterm([(4*(k-1)+3) 1 1 P0],pol1',pol1);%condition1
lmiterm([(4*(k-1)+3) 1 1 P0],-1,1);
lmiterm([(4*(k-1)+3) 1 1 P1],pol1',pol1*(u1+du1));
lmiterm([(4*(k-1)+3) 1 1 P1],-1,u1);
lmiterm([(4*(k-1)+3) 1 1 P2],pol1',pol1*(u2+du2));
lmiterm([(4*(k-1)+3) 1 1 P2],-1,u2);
lmiterm([-(4*(k-1)+3) 1 1 0],0);

Code 19: LMIkPRP.M

function lmikprp(pol1,A0,A1,A2,B,C,D,P0,P1,P2,k,u1,du1,u2,du2)

small=exp(-20);[ns1,ns2]=size(pol1);
small1=eye(ns1)*small;
lmiterm([(4*(k-1)+3) 1 1 P0],pol1',pol1);%condition1
lmiterm([(4*(k-1)+3) 1 1 P0],-1,1);
lmiterm([(4*(k-1)+3) 1 1 P1],pol1',pol1*(u1+du1));
lmiterm([(4*(k-1)+3) 1 1 P1],-1,u1);
lmiterm([(4*(k-1)+3) 1 1 P2],pol1',pol1*(u2+du2));
lmiterm([(4*(k-1)+3) 1 1 P2],-1,u2);
lmiterm([(4*(k-1)+3) 1 2 P0],pol1',B);%A'*P0*B
lmiterm([(4*(k-1)+3) 1 2 P1],pol1'*(u1+du1),B);%A'*P0*B
lmiterm([(4*(k-1)+3) 1 2 P2],pol1'*(u2+du2),B);%A'*P0*B
lmiterm([(4*(k-1)+3) 1 3 0],C');%C'
lmiterm([(4*(k-1)+3) 2 2 P0],B',B);%B'*P0*B
lmiterm([(4*(k-1)+3) 2 2 P1],B'*(u1+du1),B);%B'*P0*B
lmiterm([(4*(k-1)+3) 2 2 P2],B'*(u2+du2),B);%B'*P0*B
lmiterm([(4*(k-1)+3) 2 3 0],D');%D'
lmiterm([(4*(k-1)+3) 3 3 0],-1);%1
lmiterm([-(4*(k-1)+3) 1 1 0],small1);
lmiterm([-(4*(k-1)+3) 2 2 0],1);%gamma*gamma
lmiterm([-(4*(k-1)+3) 3 3 0],small);%

function lmikprp1(A0,A1,A2,P0,P1,P2,k,u1,du1,u2,du2)

lmiterm([(4*(k-1)+1) 1 1 0],-exp(-20));%condition 3,i=1,j=0
lmiterm([-(4*(k-1)+1) 1 1 P1],A1',A1*(3*u1+du1));
lmiterm([-(4*(k-1)+1) 1 1 P1],A1',A0,'s');
lmiterm([-(4*(k-1)+1) 1 1 P0],A1',A1);
lmiterm([(4*(k-1)+4) 1 1 0],-exp(-20));%condition 3,i=2,j=0,1
lmiterm([-(4*(k-1)+4) 1 1 P2],A2',A2*(3*u2+du2));
lmiterm([-(4*(k-1)+4) 1 1 P2],A2',A0,'s');
lmiterm([-(4*(k-1)+4) 1 1 P0],A2',A2);
lmiterm([-(4*(k-1)+4) 1 1 P2],A2',A1*u1,'s');
lmiterm([-(4*(k-1)+4) 1 1 P1],A2',A2*u1);
lmiterm([-(4*(k-1)+4) 1 1 P1],A2',A2*du1);

 235

lmiterm([(4*(k-1)+2) 1 1 0],0);%condition 2
lmiterm([-(4*(k-1)+2) 1 1 P0],1,1);
lmiterm([-(4*(k-1)+2) 1 1 P1],u1,1);
lmiterm([-(4*(k-1)+2) 1 1 P2],u2,1);

9.2.3 Structured Singular Value

Table 9.4 MATLAB files for Gain-scheduled PI design: SSV

No. File name Description
20. tvssvMAIN Time-varying µ . Optimization of T and D , calls the

following functions 21 and 22
21. tvssvRS Robust stability
22. tvssvRP Robust performance
23. tvssvMN Generate the matrices: M for RS and N for RP

Code 20: tvssvMAIN.M

clear

%Variable list
% xPI Gain-scheduled PI controller parameters

xPI=[2 1.1545 -0.1 -0.75];
RS=0;RP=0;%1:fix real uncertainty with complex uncertainty
liner=0;%if 1, linear PI; not 1, G-S PI
[M,Mblk,N,Nblk]=tvssvMN(xPI,RS,RP,liner);
RSRP=1; %1 for RS;2 for RP

if RSRP==1
Tsize=abs(Mblk(1,1));
Dsize=abs(Mblk(2,1));
else
Tsize=abs(Nblk(1,1));
Dsize=abs(Nblk(2,1));
end

x0=rand(Tsize*Tsize+Dsize*Dsize,1);

%x=x0;
save x0 x;
load x0
x0=x;
[x,tv]=fminunc('tvssvRP',x0,[],xPI,RS,RP,liner);

Code 21: tvssvRS.M

function [tvmu]=tvssvRS(x,xPI,RS,RP,liner)

t=x;%weighting matrix

[M,Mblk,N,Nblk]=tvssvMN(xPI,RS,RP,liner);
Tsize=abs(Mblk(1,1));

 236

Dsize=abs(Mblk(2,1));
Xsize=Tsize+Dsize;

for i=1:Tsize
for j=1:Tsize
 T(i,j)=t((i-1)*Tsize+j);
end
end

for i=1:Dsize
for j=1:Dsize
 D(i,j)=t(Tsize*Tsize+(i-1)*Dsize+j);
end
end

T1=inv(T);
D1=inv(D);

TD=zeros(Xsize);
TD(1:Tsize,1:Tsize)=T;
TD(Tsize+1:Tsize+Dsize,Tsize+1:Tsize+Dsize)=D;

TD1=zeros(Xsize);
TD1(1:Tsize,1:Tsize)=T1;
TD1(Tsize+1:Tsize+Dsize,Tsize+1:Tsize+Dsize)=D1;

TMT=TD*M*TD1;

tvmu=norm(TMT);%max(abs(svd(ma)))

Code 22: tvssvRP.M

function [tvmu]=tvssvRP(x,xPI,RS,RP,liner)

t=x;%weighting matrix

[M,Mblk,N,Nblk]=tvssvMN(xPI,RS,RP,liner);
Tsize=abs(Nblk(1,1));
Dsize=abs(Nblk(2,1));
Xsize=Tsize+Dsize+1;

for i=1:Tsize
for j=1:Tsize
 T(i,j)=t((i-1)*Tsize+j);
end
end

for i=1:Dsize
for j=1:Dsize
 D(i,j)=t(Tsize*Tsize+(i-1)*Dsize+j);
end
end

T1=inv(T);
D1=inv(D);

 237

TD=zeros(Xsize);
TD(1:Tsize,1:Tsize)=T;
TD(Tsize+1:Tsize+Dsize,Tsize+1:Tsize+Dsize)=D;
TD(Xsize,Xsize)=1;

TD1=zeros(Xsize);
TD1(1:Tsize,1:Tsize)=T1;
TD1(Tsize+1:Tsize+Dsize,Tsize+1:Tsize+Dsize)=D1;
TD1(Xsize,Xsize)=1;

TNT=TD*N*TD1;

tvmu=norm(TNT);%max(abs(svd(ma)))

Code 23: tvssvMN.M

%generate the main matrix
%M for RS, N for RP

function [M,Mblk,N,Nblk]=tvssvMN(xPI,RS,RP,liner)
load C:\gjy2003\model\cstrmat

[ns,nt]=size(F0);% number of states
Wf=1;BW=0.8;%performance weight

%LFT of state-affine
k=1;%number of uncertainties
b22=eye(ns);
c22=F1;
d12=zeros(1,ns);
d21=G2;
d22=zeros(ns);

%LFT of g-s PI
x=xPI; %[3.06 14 0 0];
kc=x(1);
taui=x(2);
Wc=x(3);
Wd=x(4);

ac=1;
bc=1;
cc=kc/taui;
dc=kc+kc/taui;

bc22=0;
cc22=Wc;
dc12=1;
dc21=Wd;
dc22=0;

if liner==1 %linear PI
 %M matrix for robust stability, linear PI
M11=[F0-G1*dc*H0 G1*cc;-bc*H0 ac];
M12=[b22-G1*dc*d12;-bc*d12];
M21=[c22-d21*dc*H0 d21*cc];

 238

M22=[d22-d21*dc*d12];
M=[M11 M12;M21 M22];
% Uncertainty block for RS, M-delta
%states:x,kesai
%diag[z-1*eye(ns+1) u1*eye(ns)]
Mblk=[ns+1 0;-(ns) 0];
else
%M matrix for robust stability, g-s PI
M11=[F0-G1*dc*H0 G1*cc;-bc*H0 ac];
M12=[b22-G1*dc*d12 G1*dc12;-bc*d12 bc22];
M21=[c22-d21*dc*H0 d21*cc;-dc21*H0 cc22];
M22=[d22-d21*dc*d12 d21*dc12;-dc21*d12 dc22];
M=[M11 M12;M21 M22];
% Uncertainty block for RS, M-delta
%states:x,kesai
%diag[z-1*eye(ns+1) u1*eye(ns) u1]
Mblk=[ns+1 0;-(ns+1) 0];
end

if liner==1
%N matrix for robust performance, linear PI
N11=[F0-G1*dc*H0 G1*cc -G1*dc*Wf;-bc*H0 ac -bc*Wf;zeros(1,ns) 0 BW];
N12=[b22-G1*dc*d12;-bc*d12;zeros(1,ns)];
N13=[zeros(ns,1); 0; 1-BW];
N21=[c22-d21*dc*H0 d21*cc -d21*dc*Wf];
N22=[d22-d21*dc*d12];
N23=[zeros(ns,1)];
N31=[-H0 0 -Wf];
N32=[zeros(1,ns)];
N33=0;
N=[N11 N12 N13;N21 N22 N23;N31 N32 N33];
% Uncertainty block for RP, N-delta
%states:x,kesai,d
%diag[z-1*eye(ns+1+1) u1*eye(ns) deltaRP]
Nblk=[ns+1+1 0;-(ns) 0;1 1];
else
%N matrix for robust performance, g-s PI
N11=[F0-G1*dc*H0 G1*cc -G1*dc*Wf;-bc*H0 ac -bc*Wf;zeros(1,ns) 0 BW];
N12=[b22-G1*dc*d12 G1*dc12;-bc*d12 bc22;zeros(1,ns) 0];
N13=[zeros(ns,1); 0; 1-BW];
N21=[c22-d21*dc*H0 d21*cc -d21*dc*Wf;-dc21*H0 cc22 -dc21*Wf];
N22=[d22-d21*dc*d12 d21*dc12;-dc21*d12 dc22];
N23=[zeros(ns,1) ;0];
N31=[-H0 0 -Wf];
N32=[zeros(1,ns+1)];
N33=0;
N=[N11 N12 N13;N21 N22 N23;N31 N32 N33];
% Uncertainty block for RP, N-delta
%states:x,kesai,d
%diag[z-1*eye(ns+1+1) u1*eye(ns) u1 deltaRP]
Nblk=[ns+1+1 0;-(ns+1) 0;1 1];
end

%if it is required to fix the real uncertain block problem
%RS=0;%1 fix
%RP=1;%1 fix
if RS==1

 239

Tsize=abs(Mblk(1,1));
Dsize=abs(Mblk(2,1));
Xsize=Tsize+Dsize;
%fix real block with complex block
pdim=Xsize;
belta=0.01;
fixl=[eye(pdim);belta*eye(pdim)];
fixr=fixl';
blk=Mblk;
Mblk=[blk;abs(blk)];
M=mmult(fixl,M,fixr);
end
if RP==1
Tsize=abs(Nblk(1,1));
Dsize=abs(Nblk(2,1));
Xsize=Tsize+Dsize+1;
%fix real block with complex block
pdim=Xsize;
belta=0.01;
fixl=[eye(pdim);belta*eye(pdim)];
fixr=fixl';
blk=Nblk;
Nblk=[blk;abs(blk)];
N=mmult(fixl,N,fixr);
end

9.3 Gain-scheduled MPC Controllers Design

The following MATALB files have been used to design gain-scheduled MPC controllers.

9.3.1 SISO processes

Table 9.5 MATLAB files for Gain-scheduled MPC design: SISO

No. File name Description
24. LMIoptMPC1 Optimization of input weights λ , calls the

following functions 26
25. LMImainRS RS, calls 27 and 28
26. LMImainRP RP, calls 29 and 30
27. LMIsysRS Closed-loop system for RS, calls 31
28. LMIsubRS LMI of RS for each vertex
29. LMIsysRP Closed-loop system for RP, calls 31
30. LMIsubRP LMI of RP for each vertex
31. SISOresponse Step-response of a SISO process
32. SISOsimu Simulate one linear MPC
33. SISOsimuGS Simulate one gain-scheduled MPC
34. SISOsimuGSplot Compare and plot simulations of more than one

G-S MPC, and G-S MPC with G-S PI. It calls
14, 32, and 33.

 240

Code 24: LMIoptMPC1.M

tot=4;
step=[-1:2/tot:1];
weit0=0.9*ones(1,tot);

weit=weit0;
save weit0 weit;
load weit0
weit0=weit;
[Weit,gopt]=fminsearch('lmimainrp',weit0,[],tot,step)

Code 25: LMImainRS.M

clear

%Variable list
%n Process settling time
%p Prediction horizon
%m Control horizon
%tot Total number of sub-ranges
%step sub-ranges
%Weit,weiu Input weights

n=12;p=8;m=2;
tot=5;
step=[-1:2/tot:1];
Weit=1*ones(1,tot);

i=1;
step1=step(i);
step2=step(i+1);
weiu=Weit(i);
[A0,A1,ns]=lmisysrs(step1,step2,n,p,m,weiu);

%LMI formulation
setlmis([])
P0=lmivar(1,[ns 1]);%P0 is symmetric block diagonal
lmiterm([1 1 1 0],0);%P0>0
lmiterm([-1 1 1 P0],1,1);

for i=1:tot
 %steps used for H and step-responses
 step1=step(i);
 step2=step(i+1);
 weiu=Weit(i);
 [A0,A1,ns]=lmisysrs(step1,step2,n,p,m,weiu);
 k=i+1;
 eig1=eig(A0+A1*step1);
 eig2=eig(A0+A1*step2);

 lmisubrs(k,P0,A0,A1,step1,step2);
end

lmilio=getlmis;
[tmin,xfeas]=feasp(lmilio,[]);

 241

tmin

Code 26: LMImainRP.M

function gamma=lmimainrp(Weit,tot,step)

%tot=3;
%step=[-1:2/tot:1];
%Weit=1*ones(1,tot);

n=6;p=4;m=2;weiy=1;

i=1;
step1=step(i);
step2=step(i+1);
weiu=Weit(i);
[A0,A1,B,C,D,H,Au,Kmpc,M,Mp,ns]=lmisysrp(step1,step2,n,p,m,weiu,weiy);
%LMI formulation
setlmis([])
P0=lmivar(1,[ns 1]);%P0 is symmetric block diagonal
k=1;
lmiterm([k 1 1 0],0);%P0>0
lmiterm([-k 1 1 P0],1,1);
f=1;
for i=1:f:tot
 step1=step(i);
 step2=step(i+f);
 weiu=Weit(i);

[A0,A1,B,C,D,H,Au,Kmpc,M,Mp,ns]=lmisysrp2(step1,step2,n,p,m,weiu,weiy);
 eig1(:,i)=eig(A0+A1*step1);
 eig2(:,i)=eig(A0+A1*step2);
 k=k+1;
 lmisubrp(k,P0,A0,A1,B,C,D,step1,step2);
end

lmilio=getlmis;
load feasov
tmin0=tmin;
xfeas0=xfeas;
[tmin,xfeas]=gevp(lmilio,(k-1)*2,[1.0*exp(-6) 1000 0 0 0],tmin0,xfeas0);
save feasov tmin xfeas
gamma=sqrt(tmin)%tmin should be smaller than 1

Code 27: LMIsysRS.M

%closed-loop system matrics for LMI of MPC and state-affine

function [A0,A1,ns]=lmisysrs(step1,step2,n,p,m,weiu)
load C:\gjy2003\model\cstrmat
[nx,nx]=size(F0);

[h,su]=SISOresponse(step1,step2,n);
su=su';

%close loop formulation of MPC and state-affine

 242

Wf=1;BW=0.8;
M=zeros(n,n);
for i=1:n-1
 M(i,i+1)=1;
end
M(n,n)=1;
Mp=M(1:p,:);
Wu=weiu*eye(m);%to be designed
Wy=10*eye(p);
Y(:,1)=zeros(n,1);%initial steady-state
du(1)=0;ek1k(:,1)=zeros(p,1);ek1k(:,2)=zeros(p,1);
wk1k(:,1)=zeros(p,1);wk1k(:,2)=zeros(p,1);
SU=zeros(p,m);
for i=1:m
SU(i:p,i)=[su(1:p-i+1)'];
end
mm=zeros(1,m);mm(1,1)=1;
Kmpc=mm*inv(SU'*Wy'*Wy*SU+Wu'*Wu)*SU'*Wy'*Wy;
N2=ones(p,1);
T1=zeros(n,1);T1(1,1)=1;
T2=zeros(n,n);
for i=2:n
 T2(i,i-1)=1;
end
T2(1,1)=1;
e1=T1';
H=zeros(n,n);H(:,1)=su(1:n)';
for i=2:n
 H(1:n-i+1,i)=h(i:n)';
end
KMH=Kmpc*Mp*H;
KNH0=Kmpc*N2*H0;
KNH=Kmpc*N2*e1*H;
KNW=Kmpc*N2*Wf;
Cu2=e1-KMH;
E=T2-T1*KMH;
E2=E+T1*KNH;
Cu1=(e1-KMH+KNH);
B=[zeros(nx,1);zeros(n,1);1-BW];
C=[H0 zeros(1,n) Wf];
D=zeros(1,1);
deltu=0;
A110=(F0)-(G1)*KNH0;
A11=(F1)-(G2)*KNH0;
A120=(G1)*Cu1;
A12=(G2)*Cu1;
A130=-(G1)*KNW;
A13=-(G2)*KNW;
A21=-T1*KNH0;
A22=E2;
A23=-T1*KNW;
A0=[A110 A120;A21 A22];
A1=[A11 A12;zeros(n,nx) zeros(n,n)];
[ns,ns]=size(A0);

Code 28: LMIsubRS.M

 243

function lmisubrs(k,P0,A0,A1,step1,step2)
small=exp(-20);
%case a)
u1=step1;
polA1=A0+A1*u1;
lmiterm([(k-1)*2 1 1 P0],polA1',polA1);%A'*P0*A
lmiterm([(k-1)*2 1 1 P0],-1,1);%-P0
lmiterm([(k-1)*2 1 1 0],-small);

%case b),
u1=step2;
polA2=A0+A1*u1;
lmiterm([(k-1)*2+1 1 1 P0],polA2',polA2);%A'*P0*A
lmiterm([(k-1)*2+1 1 1 P0],-1,1);%-P0
lmiterm([(k-1)*2+1 1 1 0],-small);

Code 29: LMIsysRP.M

%closed-loop system matrices for LMI of MPC and state-affine

function
[A0,A1,B,C,D,H,Au,Kmpc,M,Mp,ns]=lmisysrp(step1,step2,n,p,m,weiu,weiy)
%step1=-1;step2=-0.8;
%n=12;p=8;m=2;weiu=1;
load C:\gjy2003\model\cstrmat
 [nx,nx]=size(F0);
Wf=1;BW=0.8;

[h,su]=SISOresponse(step1,step2,n);
su=su';

%close loop formulation of MPC and state-affine
M=zeros(n,n);
for i=1:n-1
 M(i,i+1)=1;
end
M(n,n)=1;
Mp=M(1:p,:);
Wu=weiu*eye(m);%to be designed
Wy=weiy*eye(p);
Y(:,1)=zeros(n,1);%initial steady-state
du(1)=0;ek1k(:,1)=zeros(p,1);ek1k(:,2)=zeros(p,1);
wk1k(:,1)=zeros(p,1);wk1k(:,2)=zeros(p,1);
SU=zeros(p,m);
for i=1:m
SU(i:p,i)=[su(1:p-i+1)'];
end
mm=zeros(1,m);mm(1,1)=1;
Kmpc=mm*inv(SU'*Wy'*Wy*SU+Wu'*Wu)*SU'*Wy'*Wy;
N2=ones(p,1);
T1=zeros(n,1);T1(1,1)=1;
T2=zeros(n,n);
for i=2:n
 T2(i,i-1)=1;
end

 244

T2(1,1)=1;
e1=T1';
H=zeros(n,n);H(:,1)=su(1:n)';
for i=2:n
 H(1:n-i+1,i)=h(i:n)';
end
KMH=Kmpc*Mp*H;
KNH0=Kmpc*N2*H0;
KNH=Kmpc*N2*e1*H;
KNW=Kmpc*N2*Wf;
Cu2=e1-KMH;
E=T2-T1*KMH;
E2=E+T1*KNH;
Cu1=(e1-KMH+KNH);
deltu=0;
A110=(F0)-(G1)*KNH0;
A11=(F1)-(G2)*KNH0;
A120=(G1)*Cu1;
A12=(G2)*Cu1;
A130=-(G1)*KNW;
A13=-(G2)*KNW;
A21=-T1*KNH0;
A22=E2;
A23=-T1*KNW;
A0=[A110 A120 A130;A21 A22 A23;zeros(1,nx) zeros(1,n) BW];
A1=[A11 A12 A13;zeros(n,nx) zeros(n,n) zeros(n,1);zeros(1,nx) zeros(1,n)
0];
[ns,ns]=size(A0);
B=[zeros(nx,1);zeros(n,1);1-BW];
C=[H0 zeros(1,n) Wf];
D=[0];
Au=[-KNH0 Cu1 -KNW];

%controller state-space
Ac=E2;Bc=-T1*Kmpc*N2;Cc=Cu1;Dc=Kmpc*N2;
mpcsys=ss(Ac,Bc,Cc,Dc,1);
[num,den]=ss2tf(Ac,Bc,Cc,Dc);
[z,p,k]=ss2zp(Ac,Bc,Cc,Dc);
pols=pole(mpcsys);

Code 30: LMIsubRP.M

function lmisubrp(k,P0,A0,A1,B,C,D,step1,step2)

%case a)
u1=step1;
polA1=A0+A1*u1;
small=exp(-20);[ns1,ns2]=size(polA1);
small1=eye(ns1)*small;
lmiterm([(k-1)*2 1 1 P0],polA1',polA1);%A'*P0*A
lmiterm([(k-1)*2 1 1 P0],-1,1);%-P0
lmiterm([(k-1)*2 1 2 P0],polA1',B);%A'*P0*B
lmiterm([(k-1)*2 1 3 0],C');%C'
lmiterm([(k-1)*2 2 2 P0],B',B);%B'*P0*B
lmiterm([(k-1)*2 2 3 0],D');%D'
lmiterm([(k-1)*2 3 3 0],-1);%1

 245

lmiterm([-(k-1)*2 1 1 0],small1);
lmiterm([-(k-1)*2 2 2 0],1);
lmiterm([-(k-1)*2 3 3 0],small);%

%case b),
u1=step2;
polA2=A0+A1*u1;
lmiterm([(k-1)*2+1 1 1 P0],polA2',polA2);%A'*P0*A
lmiterm([(k-1)*2+1 1 1 P0],-1,1);%-P0
lmiterm([(k-1)*2+1 1 2 P0],polA2',B);%A'*P0*B
lmiterm([(k-1)*2+1 1 3 0],C');%C'
lmiterm([(k-1)*2+1 2 2 P0],B',B);%B'*P0*B
lmiterm([(k-1)*2+1 2 3 0],D');%D'
lmiterm([(k-1)*2+1 3 3 0],-1);%1
lmiterm([-((k-1)*2+1) 1 1 0],small1);
lmiterm([-((k-1)*2+1) 2 2 0],1);
lmiterm([-((k-1)*2+1) 3 3 0],small);

Code 31: SISOresponse.M

function [h,su]=SISOresponse(step1,step2,n)

load C:\gjy2003\model\cstrmat
 [nx,nx]=size(F0);
length=n+1;
%obtain the steady-state corresponding to step1
x(:,1)=zeros(nx,1);u=step1;
for i=1:length
 y(i)=H0*x(:,i);
x(:,i+1)=(F0+F1.*u)*x(:,i)+G1.*u+G2.*u^2;
end

%step-responses of state-affine
 x(:,1)=x(:,length+1);
 y0=H0*x(:,1);%+Wf*d(i);

 for i=1:length
 u=step2;
 x(:,i+1)=(F0+F1.*u)*x(:,i)+G1.*u+G2.*u^2;
 if (step2-step1)==0
 map=1;
 else map=1/(step2-step1);
 end

 y(i)=map*H0*x(:,i);
 s1(i)=y(i);
 end

 ss1=s1(1);
 s1=s1-ss1;
 su=s1(2:length)';

 for i=2:length-1
 hs(i)=su(i)-su(i-1);
 end
 hs(1)=su(1);

 246

 h=hs;

Code 32: SISOsimu.M

clear

load C:\gjy2003\model\cstrmat
[nx,nx]=size(F0);
tend=50;n=12;p=8;m=2;
length=15+1;
Wf=1;BW=0.8;
weiu=1;
weiy=1;
step1=0;step2=1;
[h,su]=SISOresponse(step1,step2,length);

%setpoints
r=0+zeros(tend+p,1);
%disturbance
[v,d,sumv]=disturbance(tend,BW);

[A0,A1,B,C,D,H,Au,Kmpc,M,Mp,ns]=lmisysrp(step1,step2,n,p,m,weiu,weiy);

N2=ones(p,1);
T1=zeros(n,1);T1(1,1)=1;
T2=zeros(n,n);
for i=2:n
 T2(i,i-1)=1;
end
T2(1,1)=1;
e1=T1';
KMH=Kmpc*Mp*H;
KNH0=Kmpc*N2*H0;
KNH=Kmpc*N2*e1*H;
KNW=Kmpc*N2*Wf;
Cu2=e1-KMH;
E=T2-T1*KMH;
E2=E+T1*KNH;
Cu1=(e1-KMH+KNH);

%initialize
ooo(1)=1;
uc(1)=0;uc(2)=0;
y(1)=0;y(2)=0;
du(1)=0;du(2)=0;
x(:,1)=zeros(nx,1);x(:,2)=zeros(nx,1);

Y(:,1)=zeros(n,1);
ek1k(:,1)=zeros(p,1);ek1k(:,2)=zeros(p,1);
wk1k(:,1)=zeros(p,1);wk1k(:,2)=zeros(p,1);

%MPC design
for k=2:tend
 ooo(k)=k;
 R(:,k+1)=r(k+1:k+p);
 Y(:,k)=M*Y(:,k-1)+su(1:n)*du(k-1);%update the model

 247

 y(k)=H0*x(:,k)+Wf*d(k);
 wk1k(:,k+1)=ones(p,1)*(y(k)-Y(1,k));
 ek1k(:,k+1)=R(:,k+1)-Mp*Y(:,k)-wk1k(:,k+1);%;
 du(k)=Kmpc*ek1k(:,k+1);
 uc(k)=uc(k-1)+du(k);
 u=uc(k);
 x(:,k+1)=(F0+F1.*u)*x(:,k)+G1.*u+G2.*u^2;
end

sumerror=y*y';
LinMPCgamma=sqrt(sumerror/sumv)

Code 33: SISOsimuGS.M

function [uc,y2,opo]=sisosimugs(step,tot,weit,v,d,sumv,tend)

load C:\gjy2003\model\cstrmat
[nx,nx]=size(F0);
length=15+1;
Wf=1;BW=0.8;weiy=1;
n=12;p=8;m=2;

%tot=5;
%step=[-1:2/tot:1];
%weit=1*ones(1,tot);

%step-responses of state-affine
for j=1:tot
 step1=step(j);%unit step response
 step2=step(j+1);%unit step response
 [hj,suj]=SISOresponse(step1,step2,length);
 hu(j,:)=hj;
 su(j,:)=suj';
end

% MPC design
r=0+zeros(tend+p,1);%setpoints

M=zeros(n,n);
for i=1:n-1
 M(i,i+1)=1;
end
M(n,n)=1;
Mp=M(1:p,:);
Wy=weiy*eye(p);
Y(:,1)=zeros(n,1);%initial steady-state
Y1(:,1)=zeros(n,1);%initial steady-state
du(1)=0;ek1k(:,1)=zeros(p,1);ek1k(:,2)=zeros(p,1);
wk1k(:,1)=zeros(p,1);wk1k(:,2)=zeros(p,1);

SU=zeros(p,m);
for j=1:tot
for i=1:m
SU(i:p,i)=[su(j,1:p-i+1)'];
end

 248

mm=zeros(1,m);mm(1,1)=1;
Wu=weit(j)*eye(m);
Kmpc1(j,:)=mm*inv(SU'*Wy'*Wy*SU+Wu'*Wu)*SU'*Wy'*Wy;
end

ooo(1)=1;
uc(1:n)=zeros(1,n);y2(1:n)=zeros(1,n);
du(1:n)=zeros(1,n);d(1:n)=zeros(1,n);
x(:,1:n)=zeros(nx,n);

U(:,1)=zeros(n,1);
gs=zeros(tend,1);
 %MPC design
 for k=2:tend
 ooo(k)=k;
 R(:,k+1)=r(k+1:k+p);
 m2=(uc(k-1));
 for i=1:tot
 if (step(i))<=m2 & m2<=(step(i+1))
 gs(k)=i;j=i;
 end
 end
 Kmpc=Kmpc1(j,:);
 j1=j;jj=1;j2=j1+1;

 for i1=2:length-2
 hs(i1)=su(j,i1)-su(j,i1-1);
 end
 hs(1)=su(j,1);
 h=hs;
 H=zeros(n,n);H(:,1)=su(j,1:n)';
 for i2=2:n
 H(1:n-i2+1,i2)=h(i2:n)';
 end

 while j1~=j2&jj<10
 j=j1;
 jj=jj+1;
 j2=j1;

 Y(:,k)=H*U(:,k-1);

 d(k)=BW*d(k-1)+(1-BW)*v(k-1);%filter disturbance
 y2(k)=H0*x(:,k)+Wf*d(k);
 opo(k)=k;
 wk1k(:,k+1)=ones(p,1)*(y2(k)-Y(1,k));
 ek1k(:,k+1)=R(:,k+1)-Mp*Y(:,k)-wk1k(:,k+1);%-SD*dd(k);
 du(k)=Kmpc*ek1k(:,k+1);
 uc(k)=uc(k-1)+du(k);

 if uc(k)>1 uc(k)=1;end
 if uc(k)<-1 uc(k)=-1;end

 m1=(uc(k));
 for i=1:tot
 if (step(i))<=m1 & m1<=(step(i+1))
 j1=i; Kmpc=Kmpc1(i,:);

 249

 end
 end

 h=hu(j1,:);
 H=zeros(n,n);H(:,1)=su(j1,1:n)';
 for i2=2:n
 H(1:n-i2+1,i2)=h(i2:n)';
 end

 U(2:n,k)=U(1:n-1,k-1);
 U(1,k)=uc(k); du1(k)=uc(k)-uc(k-1);
 end
 u=uc(k);
 x(:,k+1)=(F0+F1*u)*x(:,k)+G1*u+G2*u^2;
 end
 sumerror=y2*y2';
 MPCgamma=sqrt(sumerror/sumv)
 MPCsumu=uc*uc'
 gssumdu=du1*du1';
 gssum=sumerror+MPCsumu;

figure(1)
plot(opo,uc,'k:',opo,y2,'k')
title('G-S MPC input(:) and output')
axis([0 tend -1 1]);
figure(2)
plot(opo,y2,'k:',opo,v(1:tend),'k')
title('G-S MPC output(:) and disturbance')
axis([0 tend -1 1]);

Code 34: SISOsimuGSplot.M

tend=100;BW=0.8;

[v,d,sumv]=disturbance(tend,BW);
%save dist v d sumv
%load dist

%Simulation of first MPC
tot=4;
step=[-1:2/tot:1];
weit1=[0.6426,0.6616,0.7410,0.7509];
[u1,y1,t1]=sisosimugs(step,tot,weit1,v,d,sumv,tend);
%Simulation of second MPC
%weit2=[10 10 10 10 10 10];
%[u2,y2,t2]=sisosimugs(step,tot,weit2,v,d,sumv,tend);

%Simulation of gain-scheduled PI
xopt=[1.2168,1.9309,0.1802,0.0009];%[1.4023,3.2087,0.1033,0.0721];
[u2,y2,t2]=sisosimuPI(xopt,v,d,sumv,tend);

figure(1)
plot(t1,u1,'k:',t1,u2,'k')
title('G-S MPC input. MPC1(:),MPC2(-)')
%title('input. G-S MPC(:),G-S PI(-)')

 250

%axis([0 tend -1 1]);
figure(2)
plot(t1,y1,'k:',t1,y2,'k')
title('G-S MPC output. MPC1(:),MPC2(-)')
%title('output.G-S MPC(:),G-S PI(-)')
%axis([0 tend -1 1]);
figure(3)
plot(v,'k')
title('disturbance')

9.3.2 MIMO processes

Table 9.6 MATLAB files for Gain-scheduled MPC design: MIMO

No. File name Description
35. LMIoptMPC2 Optimization of input weights λ , calls

the following function 37
36. MIMOGSLMImainRS RS, calls 38 and 39
37. MIMOGSLMImainRP RP, calls 40 and 41
38. MIMOLMIsysRS Closed-loop system for RS
39. MIMOLMIsubRS LMI of RS for each vertex
40. MIMOLMIsysRP Closed-loop system for RP
41. MIMOLMIsubRP LMI of RP for each vertex
42. MIMOmodel 2*2 state-affine model
43. MIMOresponse Step-response of a MIMO process
44. MIMOsimu Simulate one linear MPC
45. MIMOGSsimu Simulate one linear MPC and one G-S

MPC (2-switch)

Code 35: LMIoptMPC2.M

nu=2;
weit0=1*ones(1,nu);%for mimolmimainrp
%weit0=0.8*ones(2,nu);%for mimogslmimainrp

weit=weit0;
save weit0 weit;
load weit0
weit0=weit;
 [Weit,gopt]=fminsearch('mimolmimainrp',weit0,[],nu)
%[Weit,gopt]=fminsearch('mimogslmimainrp',weit0,[],nu)

Code 36: MIMOGSLMImainRS.M

clear

nu=2;
Weightu=(0.6)*ones(2,nu);
Weightu
ny=2;u1step1=0;u1step2=1;u2step1=0;u2step2=1;
n=6;p=4;m=2;

 251

weiy=1*ones(1,ny);Wf=[1;0];

MIMOmodel;
weiu=Weightu(1,:);
[A0,A1,A2,Au,Kmpc,ns,H,M,Mp,SU0]=MIMOlmisysrs(nu,ny,n,p,m,weiu,weiy,Wf,
... u1step1,u1step2,u2step1,u2step2);
%LMI formulation
setlmis([])
P0=lmivar(1,[ns 1]);%P0 is symmetric block diagonal
Q=lmivar(1,[1 1]);%Q is symmetric block diagonal
k=1;lmitag=[];
ll=1;
lmiterm([1 1 1 0],0);%P0>0
lmiterm([-1 1 1 P0],1,1);

range1=[-0.3 0;0 0.3];%for uncertain parameter u1
range2=[-0.3 0;0 0.3];%for uncertain parameter u2
mrange1=[-1 0;0 1];% for model of step-response
mrange2=[-1 0;0 1];
[r g]=size(range1);

 %G-S robust stability
 for i=1:r
 for j=1:r
 k=k+1;
 u1step1=range1(i,1);
 u1step2=range1(i,g);
 weiu(1)=Weightu(i,1);
 u2step1=range2(j,1);
 u2step2=range2(j,g);
 weiu(2)=Weightu(j,2);
 mu1step1=mrange1(i,1);
 mu1step2=mrange1(i,g);
 mu2step1=mrange2(j,1);
 mu2step2=mrange2(j,g);

 %robust stability

[A0,A1,A2,Au,Kmpc,ns,H,M,Mp,SU0]=MIMOlmisysrs(nu,ny,n,p,m,weiu,weiy,Wf,
...mu1step1,mu1step2,mu2step1,mu2step2);
 mimolmisubrs((k-1)*4+1,P0,A0,A1,A2,u1step1,u2step2);
 mimolmisubrs((k-1)*4+2,P0,A0,A1,A2,u1step2,u2step1);
 mimolmisubrs((k-1)*4+3,P0,A0,A1,A2,u1step2,u2step2);
 mimolmisubrs((k-1)*4+4,P0,A0,A1,A2,u1step1,u2step1);
 k=k+1;
 end
end

lmilio=getlmis;
[tmin,xfeas]=feasp(lmilio);

Code 37: MIMOGSLMImainRP.M

clear

function gamma=mimogslmimainrp(Weightu,nu)

 252

%nu=2;
%Weightu=(0.6)*ones(2,nu);
ny=2;u1step1=0;u1step2=1;u2step1=0;u2step2=1;
n=6;p=4;m=2;
weiy=1*ones(1,ny);Wf=[1;0];

MIMOmodel;
weiu=Weightu(1,:);
[A0,A1,A2,B,C,D,Au,Kmpc,ns,H,M,Mp,SU0]=MIMOlmisysrp(nu,ny,n,p,m,weiu,we
iy,Wf,...u1step1,u1step2,u2step1,u2step2);
%LMI formulation
setlmis([])
P0=lmivar(1,[ns 1]);%P0 is symmetric block diagonal
Q=lmivar(1,[1 1]);%Q is symmetric block diagonal
k=1;lmitag=[];
ll=1;
lmiterm([1 1 1 0],0);%P0>0
lmiterm([-1 1 1 P0],1,1);

range1=[-0.3 0;0 0.3];%for uncertain parameter u1
range2=[-0.3 0;0 0.3];%for uncertain parameter u2
mrange1=[-1 0;0 1];% for model of step-response
mrange2=[-1 0;0 1];
[r g]=size(range1);

 %G-S robust stability
 for i=1:r
 for j=1:r

 k=k+1;
 u1step1=range1(i,1);
 u1step2=range1(i,g);
 weiu(1)=Weightu(i,1);
 u2step1=range2(j,1);
 u2step2=range2(j,g);
 weiu(2)=Weightu(j,2);
 mu1step1=mrange1(i,1);
 mu1step2=mrange1(i,g);
 mu2step1=mrange2(j,1);
 mu2step2=mrange2(j,g);

 %robust performance

[A0,A1,A2,B,C,D,Au,Kmpc,ns,H,M,Mp,SU0]=MIMOlmisysrp(nu,ny,n,p,m,weiu,we
iy,Wf,...mu1step1,mu1step2,mu2step1,mu2step2);
 mimolmisubrp((k-1)*4,P0,Q,A0,A1,A2,B,C,D,u1step1,u2step1);
 mimolmisubrp((k-1)*4+1,P0,Q,A0,A1,A2,B,C,D,u1step1,u2step2);
 mimolmisubrp((k-1)*4+2,P0,Q,A0,A1,A2,B,C,D,u1step2,u2step1);
 mimolmisubrp((k-1)*4+3,P0,Q,A0,A1,A2,B,C,D,u1step2,u2step2);

end
end

lmiterm([(k-1)*4+6 1 1 0],0);%Q>0
lmiterm([-(k-1)*4-6 1 1 Q],1,1);

lmiterm([(k-1)*4+7 1 1 Q],1,1);%Q<gamma^2

 253

lmiterm([-(k-1)*4-7 1 1 0],1);

lmilio=getlmis;
load feasov %to use initial guess,do not initialize P0
tmin0=tmin;
xfeas0=xfeas;
[tmin,xfeas]=gevp(lmilio,1,[1.0*exp(-2) 50 0 0 0],tmin0,xfeas0);
save feasov tmin xfeas
gamma=sqrt(tmin)

Code 38: MIMOLMIsysRS.M

%MIMO system of 2*2
%closed-loop system matrices for LMI of MPC and state-affine

function
[A0,A1,A2,Au,Kmpc,ns,H,M,Mp,SU0]=MIMOlmisysrs(nu,ny,n,p,m,weiu,weiy,Wf,
...u1step1,u1step2,u2step1,u2step2)
%nu=2;ny=2;n=12;p=8;m=2;weiu=ones(1,nu);Wf=[1;0];u1step1=-
1;u1step2=0;u2step1=-1;u2step2=0;
load C:\gjy2003\mpc\MIMOstateaffine

[nx,nx]=size(F0);
prit=0;
[Su,Hu]=MIMOresponse(prit,nu,ny,n,p,m,u1step1,u1step2,u2step1,u2step2);

%sparse diagonal matrix
%M is nny*nny
e0=ones(n*ny,1);
M=spdiags([e0],[ny],n*ny,n*ny);
M(n*ny-1,n*ny-1)=1;
M(n*ny,n*ny)=1;
%Mp is pny*nny
Mp=M(1:p*ny,:);
%Wu is mnu*mnu,weiu is 1*nu,EU is nu*mnu
clear EU:
EU0=eye(nu);EU=EU0;
for i=1:m-1
 EU=[EU EU0];
end
Wu=spdiags([weiu*EU]',[0],m*nu,m*nu);
%Wy is pny*pny
clear EY;
EY0=eye(ny);EY=EY0;
for i=1:p-1
 EY=[EY EY0];
end
Wy=spdiags([weiy*EY]',[0],p*ny,p*ny);
%Y is nny*1
Y(:,1)=zeros(n*ny,1);%initial steady-state

%Su(1:n,1:4) are for s11,s12,s21,s22, step-responses
SU=zeros(n*ny,m*nu);
for i=1:n
SU((i-1)*ny+1,1)=Su(i,1);
SU((i-1)*ny+1,nu)=Su(i,2);

 254

SU(i*ny,1)=Su(i,3);
SU(i*ny,nu)=Su(i,4);
end
for j=2:m
 SU((j-1)*ny+1:n*ny,(j-1)*nu+1:j*nu)=SU(1:(n-(j-1))*ny,1:nu);
end
SU0=SU;
SU=SU(1:p*ny,:);
mm=zeros(nu,m*nu);mm(1:nu,1:nu)=eye(nu);
Kmpc=mm*inv(SU'*Wy'*Wy*SU+Wu'*Wu)*SU'*Wy'*Wy;
N2=EY';
T1=zeros(n*nu,nu);T1(1:nu,1:nu)=eye(nu);
e3=ones(n*nu,1);
T2=spdiags([e3],[-nu],n*nu,n*nu);
T2(1,1)=1;
T2(nu,nu)=1;
e1=T1';
%Hu(1:n,1:4) are for h11,h12,h21,h22, impulse-responses
H=zeros(n*ny,n*nu);H(:,1:nu)=SU0(:,1:nu);
for i=1:n-1
 H((i-1)*ny+1,nu+1)=Hu(i+1,1);
 H((i-1)*ny+1,2*nu)=Hu(i+1,2);
 H(i*ny,nu+1)=Hu(i+1,3);
 H(i*ny,2*nu)=Hu(i+1,4);
end
for j=3:n
 H(1:(n-(j-1))*ny,(j-1)*ny+1:j*nu)=H((j-2)*ny+1:(n-1)*ny,nu+1:2*nu);
end

e2=zeros(ny,n*ny);e2(1:ny,1:ny)=eye(ny);
KMH=Kmpc*Mp*H;
KNH0=Kmpc*N2*H0;
KNH=Kmpc*N2*e1*H;
KN2H=Kmpc*N2*e2*H;
KNW=Kmpc*N2*Wf;
Cu2=e1-KMH;
E=T2-T1*KMH;
E2=E+T1*KN2H;
Cu1=(e1-KMH+KN2H);
Au=[-KNH0 Cu1 -KNW];
deltu=0;
A110=(F0)-(G1)*KNH0;
A11=(F1)-(G2)*KNH0;
A211=F2-G3*KNH0;
A120=(G1)*Cu1;
A12=(G2)*Cu1;
A212=G3*Cu1;
A21=-T1*KNH0;
A22=E2;
A0=[A110 A120;A21 A22];
A1=[A11 A12;zeros(n*nu,nx) zeros(n*nu,n*nu)];
A2=[A211 A212;zeros(n*nu,nx) zeros(n*nu,n*nu)];
[ns,ns]=size(A0);

Code 39: MIMOLMIsubRS.M

 255

function mimolmisubrs(k,P0,A0,A1,A2,u1,u2)
polA1=A0+A1*u1+A2*u2;
small=exp(-20);
lmiterm([k 1 1 P0],polA1',polA1);%A'*P0*A
lmiterm([k 1 1 P0],-1,1);%-P0
lmiterm([k 1 1 0],-small);

Code 40: MIMOLMIsysRP.M

%MIMO system of 2*2
%closed-loop system matrices for LMI of MPC and state-affine

function
[A0,A1,A2,B,C,D,Au,Kmpc,ns,H,M,Mp,SU0]=MIMOlmisysrp(nu,ny,n,p,m,weiu,we
iy,Wf,...
 u1step1,u1step2,u2step1,u2step2)
%nu=2;ny=2;n=12;p=8;m=2;weiu=ones(1,nu);Wf=[1;0];u1step1=-
1;u1step2=0;u2step1=-1;u2step2=0;
load C:\gjy2003\mpc\MIMOstateaffine

[nx,nx]=size(F0);
prit=0;
[Su,Hu]=MIMOresponse(prit,nu,ny,n,p,m,u1step1,u1step2,u2step1,u2step2);

%sparse diagonal matrix
%M is nny*nny
e0=ones(n*ny,1);
M=spdiags([e0],[ny],n*ny,n*ny);
M(n*ny-1,n*ny-1)=1;
M(n*ny,n*ny)=1;
%Mp is pny*nny
Mp=M(1:p*ny,:);
%Wu is mnu*mnu,weiu is 1*nu,EU is nu*mnu
clear EU:
EU0=eye(nu);EU=EU0;
for i=1:m-1
 EU=[EU EU0];
end
Wu=spdiags([weiu*EU]',[0],m*nu,m*nu);
%Wy is pny*pny
clear EY;
EY0=eye(ny);EY=EY0;
for i=1:p-1
 EY=[EY EY0];
end
Wy=spdiags([weiy*EY]',[0],p*ny,p*ny);
%Y is nny*1
Y(:,1)=zeros(n*ny,1);%initial steady-state

%Su(1:n,1:4) are for s11,s12,s21,s22, step-responses
SU=zeros(n*ny,m*nu);
for i=1:n
SU((i-1)*ny+1,1)=Su(i,1);
SU((i-1)*ny+1,nu)=Su(i,2);
SU(i*ny,1)=Su(i,3);
SU(i*ny,nu)=Su(i,4);

 256

end
for j=2:m
 SU((j-1)*ny+1:n*ny,(j-1)*nu+1:j*nu)=SU(1:(n-(j-1))*ny,1:nu);
end
SU0=SU;
SU=SU(1:p*ny,:);
mm=zeros(nu,m*nu);mm(1:nu,1:nu)=eye(nu);
Kmpc=mm*inv(SU'*Wy'*Wy*SU+Wu'*Wu)*SU'*Wy'*Wy;
N2=EY';
T1=zeros(n*nu,nu);T1(1:nu,1:nu)=eye(nu);
e3=ones(n*nu,1);
T2=spdiags([e3],[-nu],n*nu,n*nu);
T2(1,1)=1;
T2(nu,nu)=1;
e1=T1';
%Hu(1:n,1:4) are for h11,h12,h21,h22, impulse-responses
H=zeros(n*ny,n*nu);H(:,1:nu)=SU0(:,1:nu);
for i=1:n-1
 H((i-1)*ny+1,nu+1)=Hu(i+1,1);
 H((i-1)*ny+1,2*nu)=Hu(i+1,2);
 H(i*ny,nu+1)=Hu(i+1,3);
 H(i*ny,2*nu)=Hu(i+1,4);
end
for j=3:n
 H(1:(n-(j-1))*ny,(j-1)*ny+1:j*nu)=H((j-2)*ny+1:(n-1)*ny,nu+1:2*nu);
end

e2=zeros(ny,n*ny);e2(1:ny,1:ny)=eye(ny);
KMH=Kmpc*Mp*H;
KNH0=Kmpc*N2*H0;
KNH=Kmpc*N2*e1*H;
KN2H=Kmpc*N2*e2*H;
KNW=Kmpc*N2*Wf;
Cu2=e1-KMH;
E=T2-T1*KMH;
E2=E+T1*KN2H;
Cu1=(e1-KMH+KN2H);
Au=[-KNH0 Cu1 -KNW];
deltu=0;
A110=(F0)-(G1)*KNH0;
A11=(F1)-(G2)*KNH0;
A211=F2-G3*KNH0;
A120=(G1)*Cu1;
A12=(G2)*Cu1;
A212=G3*Cu1;
A130=-(G1)*KNW;
A13=-(G2)*KNW;
A213=-(G3)*KNW;
A21=-T1*KNH0;
A22=E2;
A23=-T1*KNW;
A0=[A110 A120 A130;A21 A22 A23;zeros(1,nx) zeros(1,n*nu) BW];
A1=[A11 A12 A13;zeros(n*nu,nx) zeros(n*nu,n*nu)
zeros(n*nu,1);zeros(1,nx) zeros(1,n*nu) 0];
A2=[A211 A212 A213;zeros(n*nu,nx) zeros(n*nu,n*nu)
zeros(n*nu,1);zeros(1,nx) zeros(1,n*nu) 0];
B=[zeros(nx,1);zeros(n*nu,1);1-BW];

 257

C=[H0 zeros(ny,n*nu) Wf];
D=zeros(ny,1);
[ns,ns]=size(A0);

%controller state-space
Ac=E2;Bc=-T1*Kmpc*N2;Cc=Cu1;Dc=Kmpc*N2;
mpcsys=ss(Ac,Bc,Cc,Dc,1);
[num1,den1]=ss2tf(Ac,Bc,Cc,Dc,1);
[num2,den2]=ss2tf(Ac,Bc,Cc,Dc,2);
[z1,p1,k1]=ss2zp(Ac,Bc,Cc,Dc,1);
[z2,p2,k2]=ss2zp(Ac,Bc,Cc,Dc,2);
pols=pole(mpcsys);

Code 41: MIMOLMIsubRP.M

function mimolmisubrp(k,P0,Q,A0,A1,A2,B,C,D,u1,u2)
polA1=A0+A1*u1+A2*u2;
lmiterm([(k) 1 1 P0],polA1',polA1);%A'*P0*A
lmiterm([(k) 1 1 P0],-1,1);%-P0
lmiterm([(k) 1 2 P0],polA1',B);%A'*P0*B
lmiterm([(k) 1 3 0],C');%C'
lmiterm([(k) 2 2 P0],B',B);%B'*P0*B
lmiterm([(k) 2 3 0],D');%D'
lmiterm([(k) 3 3 0],-1);%1
lmiterm([-(k) 2 2 Q],1,1);

Code 42: MIMOmodel.M

load C:\gjy2003\model\cstrmatq1
model01=1;
if model01==1
G1=[G1';0 1]';G2=0.1*[G2';1 0]';G3=[-0.01 -0.0159;-0.0508 -0.0928];
H0=[H0;0 0.1];
else
G1=[G1';0 1]';G2=[G2';1 0]';G3=G2;
H0=[H0;H0];
end

BW=0.8;

save MIMOstateaffine F0 F1 F2 G1 G2 G3 H0 BW

Code 43: MIMOresponse.M

%closed-loop system matrices for LMI of MPC and state-affine

function
[Su,Hu]=MIMOresponse(prit,nu,ny,n,p,m,u1step1,u1step2,u2step1,u2step2)
%prit=3;nu=2;ny=2;n=6;p=4;m=2;
%range1=[-1 1;0 1;-1 0];
%range2=[-1 1;-0.8 1;-1 -0.8];
%u1step1=range1(prit,1);u1step2=range1(prit,2);
%u2step1=range2(prit,1);u2step2=range2(prit,2);

MIMOmodel;
load C:\gjy2003\mpc\MIMOstateaffine

 258

[nx,nx]=size(F0);
length=n+1;

%step-responses of state-affine
% u(1) to y(1),y(2)
%obtain the steady-state corresponding to step1
x(:,1)=zeros(nx,1);u=zeros(nu,1);u(1)=u1step1;
for i=1:length
 y(:,i)=H0*x(:,i);
 x(:,i+1)=(F0+F1*u(1)+F2*u(2))*x(:,i)+(G1+G2*u(1)+G3*u(2))*u;
end

%step-responses of state-affine
 x(:,1)=x(:,length+1);u=zeros(nu,1);u(1)=u1step2;
 for i=1:length
 x(:,i+1)=(F0+F1*u(1)+F2*u(2))*x(:,i)+(G1+G2*u(1)+G3*u(2))*u;
 if (u1step2-u1step1)==0
 map=1;
 else
 map=1/(u1step2-u1step1);
 end
 y(:,i)=map*H0*x(:,i); %scaled to unit-step response
 Su(i,1)=y(1,i)-y(1,1);
 Su(i,3)=y(2,i)-y(2,1);
 end

 % u(2) to y(1),y(2)
 %obtain the steady-state corresponding to step1
 x(:,1)=zeros(nx,1);u=zeros(nu,1);u(2)=u2step1;
 for i=1:length
 y(:,i)=H0*x(:,i);
 x(:,i+1)=(F0+F1*u(1)+F2*u(2))*x(:,i)+(G1+G2*u(1)+G3*u(2))*u;
end

 x(:,1)=x(:,length+1);u=zeros(nu,1);u(2)=u2step2;
 for i=1:length
 x(:,i+1)=(F0+F1*u(1)+F2*u(2))*x(:,i)+(G1+G2*u(1)+G3*u(2))*u;
 if (u2step2-u2step1)==0
 map=1;
 else
 map=1/(u2step2-u2step1);
 end
 y(:,i)=map*H0*x(:,i); %scaled to unit-step response
 Su(i,2)=y(1,i)-y(1,1);
 Su(i,4)=y(2,i)-y(2,1);
 end
if prit~=0;
 figure(prit)
 subplot(2,2,1)
 plot(Su(:,1),'k')
 title('Step-response of input 1 to output 1,S11')
% axis([1 15 -0.2 0.4]);
 subplot(2,2,2)
 plot(Su(:,2),'k')
 title('Step-response of input 2 to output 1,S12')
 % axis([1 15 -0.2 0.4]);
subplot(2,2,3)

 259

 plot(Su(:,3),'k')
 title('Step-response of input 1 to output 2,S21')
 % axis([1 15 -0.1 0.2]);
subplot(2,2,4)
 plot(Su(:,4),'k')
 title('Step-response of input 2 to output 2,S22')
% axis([1 15 -0.1 0.2]);
end

 Su(1:n,:)=Su(2:n+1,:);

 %impulse response
 Hu(1,:)=Su(1,:);
 for i=2:n
 Hu(i,:)=Su(i,:)-Su(i-1,:);
end
Hu0(1,:)=zeros(1,4);
Hu0(2:n+1,:)=Hu;
%figure(2)
% subplot(2,2,1)
% plot(Hu0(:,1))
% title('Impulse-response of input 1 to output 1,H11')
% subplot(2,2,2)
% plot(Hu0(:,2))
% title('Impulse-response of input 2 to output 1,H12')
% subplot(2,2,3)
% plot(Hu0(:,3))
% title('Impulse-response of input 1 to output 2,H21')
% subplot(2,2,4)
% plot(Hu0(:,4))
% title('Impulse-response of input 2 to output 2,H22')

Code 44: MIMOsimu.M

clear

nu=2;ny=2;
n=6;p=4;m=2;
weiu=1*[1 1];weiy=1*ones(1,ny);
Wf=[1;0];prit=2;u1step1=-1;u1step2=1;u2step1=-1;u2step2=1;
MIMOmodel;
load C:\gjy2003\mpc\MIMOstateaffine
[nx,nx]=size(F0);
[A0,A1,A2,B,C,D,Au,Kmpc,ns,H,M,Mp,SU0]=MIMOlmisysrp(nu,ny,n,p,m,weiu,we
iy,Wf,u1step1,u1step2,u2step1,u2step2);

tend=50;

clear EY;
EY0=eye(ny);EY=EY0;
for i=1:p-1
 EY=[EY EY0];
end
N2=EY';

T1=zeros(n*nu,nu);T1(1:nu,1:nu)=eye(nu);

 260

e3=ones(n*nu,1);
T2=spdiags([e3],[-nu],n*nu,n*nu);
T2(1,1)=1;
T2(nu,nu)=1;
e1=T1';
e2=zeros(ny,n*ny);e2(1:ny,1:ny)=eye(ny);
KMH=Kmpc*Mp*H;
KNH0=Kmpc*N2*H0;
KNH=Kmpc*N2*e1*H;
KN2H=Kmpc*N2*e2*H;
KNW=Kmpc*N2*Wf;
Cu2=e1-KMH;
E=T2-T1*KMH;
E2=E+T1*KN2H;

r=0+zeros(tend+p,1);%setpoints
for i=3+1:3+n
 r(i)=-0.1;
end
for i=3+n+1:3+2*n
 r(i)=0.1;
end
r=0*r;
%disturbance
[v,d,sumv]=disturbance(tend,BW);

%initialize
Y(:,1)=zeros(n*ny,1);%initial steady-state
du(:,1)=zeros(nu,1);du(:,2)=zeros(nu,1);
ek1k(:,1)=zeros(p*ny,1);ek1k(:,2)=ek1k(:,1);
wk1k(:,1)=zeros(p*ny,1);wk1k(:,2)=wk1k(:,1);
uc(:,1)=zeros(nu,1);uc(:,2)=zeros(nu,1);
x(:,1)=zeros(nx,1);x(:,2)=zeros(nx,1);
y(:,1)=H0*x(:,1);y(:,2)=H0*x(:,2);
ooo(1)=1;

%Simulation of MPC, using the state-affine model from MIMOmodel
for k=2:tend
 ooo(k)=k;
 for i=1:p
 R((i-1)*ny+1:i*ny,k+1)=r(k+1)*ones(ny,1);
 end
 Y(:,k)=M*Y(:,k-1)+SU0(:,1:nu)*du(:,k-1);%update the model
 y(:,k)=H0*x(:,k)+Wf*d(k);
 wk1k(:,k+1)=N2*(y(:,k)-Y(1:ny,k));
 ek1k(:,k+1)=R(:,k+1)-Mp*Y(:,k)-wk1k(:,k+1);
 du(:,k)=Kmpc*ek1k(:,k+1);
 uc(:,k)=uc(:,k-1)+du(:,k);
 u=uc(:,k);
 x(:,k+1)=(F0+F1*u(1))*x(:,k)+(G1+G2*u(1)+G3*u(2))*u;

end

sume1=y(1,:)*y(1,:)';
sume2=y(2,:)*y(2,:)';
gammasimu=sqrt((sume1+sume2)/sumv)

 261

 clsume1=ycl(1,:)*ycl(1,:)';
clsume2=ycl(2,:)*ycl(2,:)';
clgammasimu=sqrt((clsume1+clsume2)/sumv)

 figure(1)
 subplot(2,2,1)
 plot(ooo,y(1,:),'k',ooo,v,'k:')
 title(' design output 1,disturbance(:)')
 subplot(2,2,2)
 plot(ooo,y(2,:),'k',ooo,v,'k:')
 title('design output 2,disturbance(:)')
 subplot(2,2,3)
 plot(uc(1,:),'k')
 title('design input 1')
 subplot(2,2,4)
 plot(uc(2,:),'k')
 title('design input 2')

Code 45: MIMOGSsimu.M

clear

nu=2;ny=2;
n=6;p=4;m=2;weiy=1*ones(1,ny);
Wf=[1;0];prit=0;
MIMOmodel;
load C:\gjy2003\mpc\MIMOstateaffine
[nx,nx]=size(F0);
tend=500;

clear EY;
EY0=eye(ny);EY=EY0;
for i=1:p-1
 EY=[EY EY0];
end
N2=EY';

r=0+zeros(tend+p,1);%setpoints
for i=3+1:3+n
 r(i)=-0.1;
end
for i=3+n+1:3+2*n
 r(i)=0.1;
end
r=0*r;
%disturbance
%[v,d,sumv]=disturbance(tend,BW);
save compargslin v d sumv
load compargalin
%initialize for linear MPC
Y(:,1)=zeros(n*ny,1);%initial steady-state
du(:,1)=zeros(nu,1);du(:,2)=zeros(nu,1);
ek1k(:,1)=zeros(p*ny,1);ek1k(:,2)=ek1k(:,1);
wk1k(:,1)=zeros(p*ny,1);wk1k(:,2)=wk1k(:,1);
uc(:,1)=zeros(nu,1);uc(:,2)=zeros(nu,1);
x(:,1)=zeros(nx,1);x(:,2)=zeros(nx,1);

 262

y(:,1)=H0*x(:,1);y(:,2)=H0*x(:,2);
ooo(1)=1;
%initialize for G-S MPC
Yg(:,1)=zeros(n*ny,1);%initial steady-state
dug(:,1)=zeros(nu,1);dug(:,2)=zeros(nu,1);
ek1kg(:,1)=zeros(p*ny,1);ek1kg(:,2)=ek1k(:,1);
wk1kg(:,1)=zeros(p*ny,1);wk1kg(:,2)=wk1k(:,1);
ucg(:,1)=zeros(nu,1);ucg(:,2)=zeros(nu,1);
xg(:,1)=zeros(nx,1);xg(:,2)=zeros(nx,1);
yg(:,1)=H0*xg(:,1);yg(:,2)=H0*xg(:,2);

%linear MPC design,using the state-affine model from MIMOmodel
u1step1=-1;u1step2=1;u2step1=-1;u2step2=1;weiu=[1 1];%[0.5009 0.4983];%;
[A0,A1,A2,B,C,D,Au,Kmpc,ns,H,M,Mp,SU0]=MIMOlmisysrp(nu,ny,n,p,m,weiu,we
iy,Wf,u1step1,u1step2,u2step1,u2step2);
for k=2:tend
 ooo(k)=k;
 for i=1:p
 R((i-1)*ny+1:i*ny,k+1)=r(k+1)*ones(ny,1);
 end
 Y(:,k)=M*Y(:,k-1)+SU0(:,1:nu)*du(:,k-1);%update the model
 y(:,k)=H0*x(:,k)+Wf*d(k);
 wk1k(:,k+1)=N2*(y(:,k)-Y(1:ny,k));
 ek1k(:,k+1)=R(:,k+1)-Mp*Y(:,k)-wk1k(:,k+1);
 du(:,k)=Kmpc*ek1k(:,k+1);
 uc(:,k)=uc(:,k-1)+du(:,k);

% input-saturation limits
for j=1:nu
 if uc(j,k)>1
 uc(j,k)=1;
 elseif uc(j,k)<-1
 uc(j,k)=-1;
 end
end
% end of input-saturation limits
 u=uc(:,k);
 x(:,k+1)=(F0+F1*u(1)+F2*u(2))*x(:,k)+(G1+G2*u(1)+G3*u(2))*u;
end

%G-S MPC design,using the state-affine model from MIMOmodel
%u1step1=-1;u1step2=1;u2step1=-1;u2step2=1;weiu=1*[1 1];
%
[A0,A1,A2,B,C,D,Au,Kmpc,ns,H,M,Mp,SU0]=MIMOlmisysrp(nu,ny,n,p,m,weiu,..
.weiy,Wf,u1step1,u1step2,u2step1,u2step2);
for k=2:tend
 for i=1:p
 R((i-1)*ny+1:i*ny,k+1)=r(k+1)*ones(ny,1);
 end
 Yg(:,k)=M*Yg(:,k-1)+SU0(:,1:nu)*dug(:,k-1);%update the model
 yg(:,k)=H0*xg(:,k)+Wf*d(k);
 wk1kg(:,k+1)=N2*(yg(:,k)-Yg(1:ny,k));
 ek1kg(:,k+1)=R(:,k+1)-Mp*Yg(:,k)-wk1kg(:,k+1);
 dug(:,k)=Kmpc*ek1kg(:,k+1);
 ucg(:,k)=ucg(:,k-1)+dug(:,k);

 %input-saturation limits

 263

 %% for j=1:nu
 % if ucg(j,k)>1
 % ucg(j,k)=1;
 % elseif ucg(j,k)<-1
 % ucg(j,k)=-1;
 % end
%end
%end of input-saturation limits

 ug=ucg(:,k);ug1=ucg(1,k);ug2=ucg(2,k);
Weight=[0.5164, 0.5029,0.4980,0.5034];
 xg(:,k+1)=(F0+F1*ug1+F2*ug2)*xg(:,k)+(G1+G2*ug1+G3*ug2)*ug;

 if ug1<0
 u1step1=-1;u1step2=0;weiu=Weight(1)*[1 1];
 else
 u1step1=0;u1step2=1;weiu=Weight(2)*[1 1];
 end
 if ug2<0
 u2step1=-1;u2step2=0;weiu=Weight(3)*[1 1];
 else
 u2step1=0;u2step2=1;weiu=Weight(4)*[1 1];
 end
[A0,A1,A2,B,C,D,Au,Kmpc,ns,H,M,Mp,SU0]=MIMOlmisysrp(nu,ny,n,p,m,weiu,…
weiy,Wf,u1step1,u1step2,u2step1,u2step2);
end

%linear
sume1=y(1,:)*y(1,:)';sume2=y(2,:)*y(2,:)';
sumu1=uc(1,:)*uc(1,:)';sumu2=uc(2,:)*uc(2,:)';
Lingamma=sqrt((sume1+sume2)/sumv)
Linsumu=sumu1+sumu2
%G-S
gsume1=yg(1,:)*yg(1,:)';gsume2=yg(2,:)*yg(2,:)';
gsumu1=ucg(1,:)*ucg(1,:)';gsumu2=ucg(2,:)*ucg(2,:)';
GSgamma=sqrt((gsume1+gsume2)/sumv)
GSsumu=gsumu1+gsumu2

%linear vs gain-scheduled
figure(2)
 subplot(2,2,1)
 plot(ooo,y(1,:),'k',ooo,yg(1,:),'k:')
 title('output 1.linear(-),G-S(:)')
 subplot(2,2,2)
 plot(ooo,y(2,:),'k',ooo,yg(2,:),'k:')
 title('output 2.linear(-),G-S(:)')
 subplot(2,2,3)
 plot(ooo,uc(1,:),'k',ooo,ucg(1,:),'k:')
 title(' input 1.linear(-),G-S(:)')
 subplot(2,2,4)
 plot(ooo,uc(2,:),'k',ooo,ucg(2,:),'k:')
 title('input 2.linear(-),G-S(:)')

 aaa=100;
 figure(1)
 subplot(2,2,1)
 plot(ooo(1:aaa),y(1,1:aaa),'k',ooo(1:aaa),yg(1,1:aaa),'k:')

 264

 title('output 1.linear(-),G-S(:)')
 subplot(2,2,2)
 plot(ooo(1:aaa),y(2,1:aaa),'k',ooo(1:aaa),yg(2,1:aaa),'k:')
 title('output 2.linear(-),G-S(:)')
 subplot(2,2,3)
 plot(ooo(1:aaa),uc(1,1:aaa),'k',ooo(1:aaa),ucg(1,1:aaa),'k:')
 title(' input 1.linear(-),G-S(:)')
 subplot(2,2,4)
 plot(ooo(1:aaa),uc(2,1:aaa),'k',ooo(1:aaa),ucg(2,1:aaa),'k:')
 title('input 2.linear(-),G-S(:)')

 figure(3)
 subplot(2,1,1)
 plot(ooo(1:aaa),v(1:aaa),'k')
 title('disturbance: part')
 subplot(2,1,2)
 plot(ooo,v,'k')
 title('disturbance: whole')

%plot gain-scheduled MPC only
gs=0;
if gs==1
figure(4)
 subplot(2,2,1)
 plot(ooo,yg(1,:),'k:',ooo,v,'k')
 title(' output 1, G-S(:),disturbance(:)')
 subplot(2,2,2)
 plot(ooo,yg(2,:),'k:',ooo,v,'k')
 title('output 2, G-S(:),disturbance(:)')
 subplot(2,2,3)
 plot(ooo,ucg(1,:),'k:')
 title(' input 1, G-S(:)')
 subplot(2,2,4)
 plot(ooo,ucg(2,:),'k:')
 title('input 2, G-S(:)')
end

 265

10 Appendix C: Nomenclature

English symbols

DCBδA ,,),(t Closed-loop system matrices

BW Bandwidth weight, 10 ≤≤ BW

)(td The filtered unmeasured disturbance

)(te The output error

iii HGF ,, State-affine model matrices containing model coefficients

nhhhh ,,,, 210 K Impulse response coefficients

cK Proportional gain

cK~ Variable gain to deal with input-saturation

MPCK MPC controller function

m Control horizon

n Settling time
p Prediction horizon

P Lyapunov matrix 0PP >= T

)(tR Set-point trajectory, []Tptrtrtrt)()2()1()(+++= KR .

S Parameter box }},{:),,,{(: 21 iiin ννττττ ∈= LS

u
n

uuu SSSS ,,,, 210 K Step response coefficients

uS Step response matrix

)(tu Control action calculated with saturation limits

)1(−tU MPC controller state,

[]
unn

T ntttt ×−−−=− 1)()2()1()1(uuuU K

)(ˆ tu Control action calculated without saturation limits

)(tV Quadratic Lyapunov function)()()(tttV T Pηη=

W Parameter box }},{:),,,{(: 21 iiin δδωωωω ∈= LW

 266

)/1(tt +W A vector defined to represent the unmeasured disturbance and

model/plant mismatch

cW , dW The controller tuning parameters

fW Disturbance weight, 10 ≤≤ fW

tW Magnitude of the modeling error

)(tx The process states

)(ty The output

)(tY Model update vector.

)/1(tt +Y −p step-ahead prediction vector

Greek symbols
γ Performance index

Γ Weighting matrices y

iδ , iδ Lower and upper bounds of uncertain parameter ti,δ ,

],[, iiti δδδ ∈

ti,δ Uncertain parameter, i
ti tu)(, =δ

tδ Modeling error in the output

tδ Uncertain parameter vector n
tnttt R∈=),,,(,,2,1 δδδ Lδ

nn×∈C∆ Uncertainty block

},:],,,,,[{ 111
mjmj

jifrssr Cdiag ×∈∈= C∆∆∆II∆ δδδ KK

ti ,δ∆ Uncertain parameter time-variation, tititi ,1,, δδδ −=∆ +

tδ∆ Rate of variation, n
tnttt R∈∆∆∆=∆),,,(,,2,1 δδδ Lδ

)(tu∆ First control move,)()1()(tututu ∆+−=

)/1(tt +ε Feedback corrected vector of future output deviations from the

reference trajectory,

[]Ttpttttttt)/()/2()/1()/1(+++=+ εεε Lε

 267

)(tη Closed-loop system state

Λ Weighting matrices for u
 µ Structured singular value of a matrix

)(tν The unfiltered unmeasured disturbance

ii νν , Lower and upper bounds of uncertain parameter

ti ,δ∆ , []iiti ννδ ∈∆ ,

)(tξ The PI controller state

)(⋅ρ Spectral radius of a matrix, i.e. the largest absolute value of the

matrix’s eigenvalues

)(⋅σ The largest absolute value of the matrix’s singular values

Iτ Reset time

ψ Input-saturation factor with []ψψψ ∈ , where ψ is the lower

bound, and ψ is the upper bound.

 268

11 Appendix D: Defense Presentation Slides

1

Robust Control Design of
Gain-scheduled Controllers

for Nonlinear Processes

Jianying (Meg) Gao
Supervisor: Professor Hector M. Budman

Department of Chemical Engineering

2

Outline
1. Motivation

2. Model Nonlinear Processes

3. Robust Gain-scheduled Proportional-Integral Controller
Design (SISO)

4. Robust Gain-scheduled Model Predictive Controller
Design (SISO)

5. Conclusions and Future Directions

 269

3

Nonlinear Process: CSTR
Continuous Stirred Tank Reactor: CSTR

Mass Balance:

Nonlinear process: Arrhenius

A & B

A

Cooling TCQf ,,

TV ,,ρ

fff TCQ ,,

cTu =
Input Output

BA orderst

⎯⎯ →⎯1

Heat

VkCCCQ
dt
dCV ff −−=)(

RT
E

eTk
−

=)(

4

Motivation
Problem: chemical or bio-chemical processes are highly
nonlinear! High-performance controllers are desired!
Solutions: linear control v.s. nonlinear control

Conclusion: Nonlinear control, e.g. gain-scheduling!

Linear control assumes:

•Small range operation!

•System model is linearizable!

Nonlinear control improves!

•Handle nonlinearity in large range operation!

•Analysis of discontinuous nonlinearity!

Process nonlinearity
Large range operation

Performance Performance

 270

5

Gain-Scheduling Control
Successful design approach for nonlinear processes!

However, no guarantee of global stability and
performance! (Shamma & Athans, 1990)
How to guarantee global stability and performance?

Nonlinear approach: Find a Lyapunov function for a nonlinear
model!
Robust control approach: nonlinear model=linear+uncertainty!
Non-traditional gain-scheduling: no local linearization!

01− 1

? ?

Linear
Model 3

PI 3

Linear
Model 2

PI 2

Linear
Model 1

PI 1

Traditional G-S

6

Objective and Novelties
Objective: Propose a comprehensive design procedure
for gain-scheduled controllers, such that Robust
Stability and Robust Performance are guaranteed!
Novelties:
1. Model nonlinear process as linear+uncertainty!
2. Guarantee RS & RP

RS and RP conditions
Reduce conservatism: Parameter-dependent Lyapunov
functions
Reduce conservatism: Relaxation of input-saturation factor
Empirical modeling:

3. Robust gain-scheduling: PI and MPC

 271

7

Model Nonlinear Process
First-principles model:

Difficult to identify: kinetics, time-variation
Impractical to use: dimension, structure

Empirical model:
Easy to identify: experimental I/O data
Choose model structure
Volterra series model is a classical nonlinear empirical model

I/O
Data

Least
squares Volterra

series model

Sontag’s
algorithm State-affine

model

Linear
model NonlinearityRobust

Control

8

Volterra Series Model
Advantages

Black box model for nonlinear process from I/O
Linear least squares algorithm

K+−−−

+−−

+−=

∑∑∑

∑∑

∑

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

)()()(

)()(

)()(

1 1 1

1 1

1

ktujtuituh

jtuituh

ituhty

i j k
ijk

i j
ij

i
i

2nd order

3rd order

1st order
linear

Disadvantages
Not suitable for robust
control approach

The output depends on past inputs raised to different powers
and in different product combinations,)3()2(,)1(2 −−− tututu

 272

9

State-affine Model
Nonlinear state-affine model

Deal with the Nonlinearity as Uncertainty!

)()(
)(...)()(...)()1(

0

21
2

210

tty
tuutuut

xH
GGxFFFx

=
++++++=+

)()(
)(...)()(...)()()()1(

0

2
2

2
2110

tty
tuutuututt

xH
GxFFGxFx

=
++++++=+

2
,2,1,)(),(,)(tututu tt

i
ti === δδδ

Linear
model

Nonlinearity
Modeling
error tδ

10

Uncertainty Quantification 1
Assumption 1: Each uncertain parameter is bounded

Uncertainty can be bounded much easier!
Convexity: Parameter vector is valued in a hyper-
rectangle called the parameter box W

[]11,1 −∈tδ[]11)(−∈tu
-1

1

t

t,1δ

[]],[)(, iitiuutu δδδ ∈→∈

]},[:),,,{(: 21 iiin δδωωωω ∈= LW

2
,2,1,)(),(,)(tututu tt

i
ti === δδδ

 273

11

Uncertainty Quantification 2
Time-variation of the uncertain parameters is available!

Assumption 2: Each uncertain parameter-variation is
bounded

Convexity: Parameter vector is valued in a hyper-
rectangle called the parameter box S

]},[:),,,{(: 21 iiin ννττττ ∈= LS

[]iiti ννδ ∈∆ ,

tititi ,1,, δδδ −=∆ +

12

Results 1 (modeling)
State-affine model for CSTR

I/O data Volterra series model state-affine model

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

0937.03416.2
0345.01188.0

0F ⎥
⎦

⎤
⎢
⎣

⎡
=

02289.1
01076.0

1F

⎥
⎦

⎤
⎢
⎣

⎡
=

0
1

1G ⎥
⎦

⎤
⎢
⎣

⎡
=

1
0

2G []0382.01755.00 −=H

0,, HGF ii

)()(
)())(()())(()1(

0

2110

tty
tututtut

xH
GGxFFx

=
+++=+

t,1δt,1δ

State-affine model
True process output

0 50 100 150 200 250 300 350 400 450
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Modeling error is
included in the analysis

tδ

 274

13

G-S PI Design
Gain-Scheduled Proportional-Integral Controller

Design parameters:
Traditional gain-scheduling: linearization

dcIc WWK ,,,τ

u

Continuous

u

Traditional

cK

I

c
cc

I

c
ccc

dd

m

i

i
dic

m

i

i
cic

cc

K
KD

K
CBA

tytytyte

tetuWDttuWCtu

teBtAt

ττ

ξ

ξξ

+====

=−=

+++=

+=+

∑∑
==

,,1,1

0)(),()()(

)())(()())(()(ˆ

)()()1(

11

14

Closed-loop System: APS
Closed-loop system: affine parameter-dependent system

Assumption 3:Affine dependence on the uncertain
parameters

Important: reduces infinite problem to a finite set of LMIs
(Linear Matrix Inequalities)!

0
tt

tt)0(,
ν(t)

(t)
)D()(
)()(

e(t)
1)(t

ηη
η

δδC
δBδAη

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ +

tnnttt δδδ ,,22,110)(AAAAδA +++= K

Global RS and RP

 275

15

Robust Stability (RS)
Quadratic Lyapunov stability (QLS)

W0PPAA ∈<− ωωω allforT ,)()(

0PδPAδA <−)()(t
T

t

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥
⎦

⎤
⎢
⎣

⎡ +
ν(t)
(t)

)D()(
)()(

e(t)
1)(t

tt

tt η
δδC
δBδAη

0)()1(<−+ tVtVFind Such that
TPP0P => ,

)()()(tttV T Pηη=

Satisfy [2] for finite
vertices of W

Theorem 4.1

[1]

[2]

APS

Satisfy [1] for
infinite
values of δ

16

Robust Performance (RP)
Quadratic Lyapunov performance (QLP)

Disturbance rejection
Performance index:
It can be optimized!

e

νγ

Find Such that
TPP0P => ,

)()()(tttV T Pηη=

0)()()()()()1(2 <−+−+ tvtvtetetVtV TT γ

1
2

2 ≤< γ
L

L

v

e

[1]

 276

17

Robust Performance (RP)
Quadratic Lyapunov performance (QLP)

W

0
C

IPBBPAB
CPBAPPAA

∈

<
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−

ω

γω
ωωω

allfor

ID
DTTT

TTT

2)(
)()()(

0
IDC

DIPBBδPAB
CPBδAPδPAδA

<
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
TT

t
T

TT
tt

T
t

2)(
)()()(
γ

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥
⎦

⎤
⎢
⎣

⎡ +
ν(t)
(t)

)D()(
)()(

e(t)
1)(t

tt

tt η
δδC
δBδAη

Theorem 4.2

[1]

[2]

APS

Satisfy [1] for
infinite
values of δ Satisfy [2] for finite

vertices of W

18

Results 2 (Linear PI RS&RP)
Figure 5.2: RS and RP regions ()0== dc WW

Good

cK

RS limit

RP limit

0.5 1 1.5 2 2.5 3 3.5

2

4

6

8

10

12

14

16

18

20

Iτ

• RS region is bigger than
the RP region

•G-S PI are designed
around linear PI

 277

19

Results 2 (G-S PI RP)
Figure 5.3: Improve over linear PI

Iτ

cK

• G-S PI is designed
around linear PI

•RP region is efficiently
enlarged!

•Optimization improves the
performance by 39% dW

1545.1,2 == IcK τ

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
-1

-0.5

0

0.5

cW

RP

9634.00 =optimalγ

5890.00 =optimalγ

Good

20

Results 2 (PI Simulation)
Table 5.1

0.3204

0.9634

0.2025

0.3787

0.0090.18021.93091.2168G-S PI

001.15452Linear

PI
dW optimalγcWcK Iτ simulationγ

Conservatism

Conservatism

Improve

•G-S PI better than linear
PI!

•Reduce conservatism for
time-varying uncertainty!

Guarantee
RS and RP

2 4 6 8 10 12 14 16 18 20

-1

-0.5

0

0.5

1

linear
G-S

 278

21

RS (parameter-dependent)
Affine quadratic Lyapunov stability (AQLS)

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥
⎦

⎤
⎢
⎣

⎡ +
ν(t)
(t)

)D()(
)()(

e(t)
1)(t

tt

tt η
δδC
δBδAη

0)()1(<−+ tVtV

Find

Such that

LMI:Theorem 4.3

)()()()(tttV t
T ηδPη=

0δP >)(t tnnttt ,,22,110)(δδδ PPPPδP ++++= L

)()()(1 ttt δPδPδP ∆+=+

0δPδAδPδA <−+)()()()(1 ttt
T

t [1]

APS
Satisfy for finite
vertices of WxS

22

RP (parameter-dependent)
Affine quadratic Lyapunov performance (AQLP)

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥
⎦

⎤
⎢
⎣

⎡ +
ν(t)
(t)

)D()(
)()(

e(t)
1)(t

tt

tt η
δδC
δBδAη

Find

Such that

LMI:Theorem 4.4

)()()()(tttV t
T ηδPη=

0δP >)(t tnnttt ,,22,110)(δδδ PPPPδP ++++= L

)()()(1 ttt δPδPδP ∆+=+

0
IDC

DIBδPBδAδPB
CBδPδAδPδAδPδA

<
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−

++

+++
T

t
T

tt
T

T
t

T
tttt

T
t

2
11

111

)()()(
)()()()()()(
γ

[1]APS Satisfy for finite
vertices of WxS

 279

23

Results 2 (G-S PI RS)
Figure 5.8:

-0.05 0 0.05 0.1 0.15 0.2-1

-0.8

-0.6

-0.4

-0.2

0

0.2

-0.05 0 0.05 0.1 0.15 0.2-1

-0.8

-0.6

-0.4

-0.2

0

0.2

dW

cW

20,4.3 == IcK τ

)()()()(tttV t
T ηδPη=

0)(PδP =t tnnttt ,,22,110)(δδδ PPPPδP ++++= L

RS

RS

24

Input Saturation Factor
Input-saturation (I-S)

Saturation factor: additional uncertain parameter

Problem:

Relaxation of input-saturation factor

1)(ˆ,1)(ˆ =−= tutu

ψ

0=ψ No RP()
∞→û ∞=γ

∞<û
0>ψ

[]ψψψ ∈Method 5.1
[]eete ∈)(

[]10∈C

û
1

=ψ 10 ≤≤ψI-S: 1ˆ >u

 280

25

Results 2 (Linear PI)

Table 5.3

Conservatism is reduced!

0.4702
2.51.3

ψ

optimalγ
cK Iτ

[]10∈ψ
ψ

[]16203.0∈ψ
∞

Iτ

cK

RS
Method 5.1

ψ

6203.0=ψ

26

Unconstrained MPC

State-space MPC
(Zanovello and Budman,1999)

K+m

[] ΓΓSΛΛΓSΓSK

εK
TTu

p
Tu

p
TTu

pmMPC

MPC kkku
1

1)(001

)/1()(
−

× +=

+=∆

L

I

Gain-
schedule

Gain-scheduleMPC
Performance

⎥
⎦

⎤
⎢
⎣

⎡ −
⎥
⎦

⎤
⎢
⎣

⎡
−
−

=⎥
⎦

⎤
⎢
⎣

⎡
)(

)1(
)(
)(

21

212

k
k

k
k

mpcu

mpc

y
U

NKC
NKTE

u
U

IΛ λ=

 281

27

Gain-scheduled MPC (SISO)
Gain-scheduled MPC: non-traditional, no linearization

Closed-loop system: APS

Global RS and RP
0

tt

tt)0(,
ν(t)

(t)
)D()(
)()(

e(t)
1)(t

ηη
η

δδC
δBδAη

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ +

SISO
k=2

1− 0 111,λMPCK 22 ,λMPCK

0

1

-1

0

1

-1
Step
response

• Compensates for
process nonlinearity
• Prediction takes
into account nonlinearity!]0,1[−∈u]1,0[∈u

tnnttt δδδ ,,22,110)(AAAAδA +++= K

28

Results 3 (G-S MPC SISO)
Optimization Design Results: Table 6.1

],,,[21 kλλλ K optimalγ

0.6152[0.9369,1.0456,1.0461,1.0038,1.0821]5

0.6068[0.8303,0.8743,0.8448,1.0287]4

0.4907[0.32797,0.8219,1.1513]3

04926[0.2732,0.9499]2

0.5928[0.7827]1

GSMPCk

Conclusions
close to each other

Best RP: k=3
RP depends on the discretization number k!

1

2

3

4

5

optimalγ

 282

29

Results 3 (G-S MPC SISO)
Table 6.2

0.7230

0.6152

0.3295[5,5,5,5,5]GSMPC5-2

0.3108[0.9369,1.0456,1.0464,1.0038,1.0821]GSMPC5-1

],,,[21 kλλλ K optimalγ simulationγ

Conservatism

Conservatism

0 10 20 30 40 50 60 70
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

80 90

30

Conclusions
State-affine model

Linear model

Nonlinearity

Uncertainty
Quantification

Robust control design

G-S PI
SISO

G-S MPC
SISO, MIMO

Continuous
scheduling

Discretization

Closed-loop Closed-loopAPS

Global
RS&RP

LMI (Lyapunov function)
LMI (parameter-dependent)
Structured Singular Value

Nonlinear
Process

Robust G-S
controllers!

 283

31

Future Directions: conservatism

Gain-scheduled MPC design
of discretization and discretization point
Apply the proposed approaches to reduce conservatism

Robust Performance Condition
Integrate into the performance index
Formulate RP along a priori known disturbance trajectories
Eliminate higher-order terms from conditions based on
parameter-dependent Lyapunov functions

Construct less conservative parameter box by vertex selection

∑
=

100

1

)()(
t

T tt uu

ti
iiii

ti tutututu ,3
33

,)()()()(×
× === δδ

2δ

1δ-1 1

1

0
b1 b2

1δ

2δ

-1 1

1

a

0

32

Acknowledgements
Professor Hector M. Budman
Committee members:

Professors Thomas Duever, Daniel Davison, James
McLellan, Peter Douglas, and Ali Elkamel

Professors in the Department:
Jeno M. Scharer, Alexander Penlidis, and Park Reily

My friends and officemates!

