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Abstract 
 

In the chemical or biochemical industry most processes are modeled by nonlinear 

equations. It is of a great significance to design high-performance nonlinear controllers 

for efficient control of these nonlinear processes to achieve closed-loop system’s stability 

and high performance. However, there are many difficulties which hinder the design of 

such controllers due mainly to the process nonlinearity. In this work, comprehensive 

design procedures based on robust control have been proposed to efficiently deal with the 

design of gain-scheduled controllers for nonlinear systems. 

 

Since all the design procedures proposed in this work rely strongly on the process model, 

the first difficulty addressed in this thesis is the identification of a relatively simple model 

of the nonlinear processes under study. The nonlinearity of the processes makes it often 

difficult to obtain a first-principles model which can be used for analysis and design of 

the controller. As a result, relatively simple empirical models, Volterra series model and 

state-affine model, are chosen in this work to represent the nonlinear process for the 

design of controllers.  

 

The second major difficulty is that although the nonlinear models used in this thesis are 

easy to identify, the analysis of stability and performance for such models using nonlinear 

control theory is not straightforward. Instead, it is proposed in this study to investigate the 

stability and performance using a robust control approach. In this approach, the nonlinear 

model is approximated by a nominal linear model combined with a mathematical 

description of model error to be referred to, in this work, as model uncertainty. In the 

current work it was assumed that the main source of uncertainty with respect to the 

nominal linear model is due to the system nonlinearity.  Then, in this study, robust 

control theoretical tools have been especially developed and applied for the design of 

gain-scheduled Proportional-Integral (PI) control and gain-scheduled Model Predictive 

Control (MPC).  
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Gain-scheduled controllers are chosen because for nonlinear processes operated over a 

wide range of operation, gain-scheduling has proven to be a successful control design 

technique (Bequette, 1997) for nonlinear processes. To guarantee the closed-loop 

system’s robust stability and performance with the designed controllers, a systematic 

approach has been proposed for the design of robust gain-scheduled controllers for 

nonlinear processes. The design procedure is based on robust stability and performance 

conditions proposed in this work. For time-varying uncertain parameters, robust stability 

and performance conditions using fixed Lyapunov functions and parameter-dependent 

Lyapunov functions, were used. Then, comprehensive procedures for the design and 

optimization of robust gain-scheduled PI and MPC controllers tuning parameters based 

on the robust stability and performance tests are then proposed. 

 

Since the closed-loop system represented by the combination of a state-affine process 

model and the gain-scheduled controller is found to have an affine dependence on the 

uncertain parameters, robust stability and performance conditions can be tested by a finite 

number of Linear Matrix Inequalities (LMIs). Thus, the final problems are numerically 

solvable.  

 

One of the inherent problems with robust control is that the design is conservative. Two 

approaches have been proposed in this work to reduce the conservatism. The first one is 

based on parameter-dependent Lyapunov functions, and it is applied when the rate of 

change of the time-varying uncertainty parameters is a priori available. The second one is 

based on the relaxation of an input-saturation factor defined in the thesis to deal with the 

issue of actuator saturation. 

 

Finally, to illustrate the techniques discussed in the thesis, robust gain-scheduled PI and 

MPC controllers are designed for a continuous stirred tank reactor (CSTR) process. A 

simple MIMO example with two inputs and two outputs controlled by a multivariable 

gain-scheduled MPC controller is also discussed to illustrate the applicability of the 

methods to multivariable situations. All the designed controllers are simulated and the 
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simulations show that the proposed design procedures are efficient in designing and 

comparing robust gain-scheduled controllers for nonlinear processes. 
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1  Introduction 
 

Chemical or biochemical processes are in general highly nonlinear especially when 

operated over a wide range of operating conditions. The nonlinearity is generally related 

to reaction kinetics or nonlinearity of physical properties. Therefore, there is a strong 

motivation to control these processes with nonlinear controllers. However, there are not 

many general design procedures to deal with this task, and there are many difficulties to 

design such controllers because of the systems nonlinearity. 

 

For model-based control design problems for highly nonlinear processes, the first 

difficulty is to obtain a good simple model of the processes under study. Relatively 

simple empirical models can be identified from process input/output data. Different 

techniques such as Volterra series or nonlinear auto-regressive moving average models 

(NARMA) have been used to identify reduced-order empirical models of the process.  

 

The second major difficulty is that although the nonlinear models used in this thesis are 

easy to identify, the analysis of stability and performance for such models using nonlinear 

control theory is not straightforward. Since the state-affine models used in this work can 

be easily approximated by a nominal linear part and model uncertainty, robust control 

theory is a natural choice to analyze this type of models. This research deals with the 

application of robust control theory for the design of control techniques such as gain-

scheduling control, Proportional-Integral (PI) control, and Model Predictive Control 

(MPC). Methods for quantifying the model uncertainty from experimental data are shown. 

Then, the corresponding controllers are designed to provide robust stability and 

performance in the presence of model/plant mismatch. 

 

1.1 Empirical Modeling 
 

In general, the design of high performance controllers requires accurate mathematical 

modeling of the nonlinear processes to be regulated. Two types of nonlinear models may 
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be considered: 1-first principle models, i.e., models based on mass and energy balances; 

and 2-empirical models.  

 

In many cases it is difficult to find proper first principle models due to, for example, the 

fact that kinetic properties are very difficult to identify or may change as a function of the 

operating conditions and thus, it is difficult to come up with the correct model. Even in 

cases where the kinetic properties are known accurately, the development of first 

principle models may be impractical for model based control if the model requires a large 

number of differential equations with a significant number of dynamic states. These 

models may also include a significant number of parameters that may be very costly to 

identify.  

 

For the above reasons, an attractive alternative is to use relatively simple and compact 

empirical models obtained directly from measured input/output data. Examples of 

nonlinear empirical models are NARMA models, Volterra series models and state-affine 

models. This work uses an algorithm that produces nonlinear state-affine models from 

process input/output data, through an intermediate-step identification of the Volterra 

series models.  

 

1.2 Robust Control 
 

This study proposes the design of a robust controller based on a nonlinear state-affine 

model of a nonlinear process. The main subject of this work deals with the analysis and 

design of the nonlinear closed-loop control system. In the design, given a nonlinear plant 

to be controlled and some closed-loop specifications, the task is to construct a controller 

such that the closed-loop system meets the desired characteristics.  

 

Linear control is a mature subject with a wide variety of powerful design methodologies 

and a long history of successful industrial applications. However, there is an active 

interest in the development and applications of nonlinear control methodologies. Many 

reasons can be cited for this: 
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1. Improvement of existing control systems: Linear control methods rely on the key 

assumption of small range operation for the linear model to be valid. When the required 

operation range is large, a linear controller is likely to perform very poorly or be unstable, 

because the nonlinearities in the system can not be properly compensated for. Nonlinear 

controllers, on the other hand, may handle the nonlinearities in a larger range of operation.  

 

2. Analysis of hard nonlinearities: Another assumption of linear control is that the 

system model is indeed linearizable. However, in control systems, there are many 

nonlinearities whose discontinuous nature does not allow linear approximation. These so-

called “hard nonlinearities” (Slotine and Li, 1991) such as saturation and dead-zones, are 

often found in control engineering. Their effects cannot be derived from linear methods, 

and nonlinear analysis techniques must be developed to predict a system’s performance 

in the presence of these inherent nonlinearities.  

 

3. Dealing with model uncertainties: In designing linear controllers it is usually 

necessary to assume that the parameters of the system model are reasonably well known. 

However, many control problems involve uncertainties in the model parameters. This 

may be due to slow time-variation of the parameters or parameter dependence on 

conditions. A linear controller based on inaccurate values of the model parameters may 

exhibit significant performance degradation or even instability. Nonlinearities can be 

intentionally introduced into the controller so that model uncertainties can be tolerated. 

Two classes of nonlinear controllers for this purpose are robust controllers and adaptive 

controllers.  

 

Robust controllers are the focus of the current study. As a result, a comprehensive 

methodology to design robust gain-scheduled PI controllers and robust gain-scheduled 

MPC controllers, is presented here in this work. Our methodology comprises an 

identification step from plant data and the finding of the optimal model parameters. The 

objective is to propose a methodology that will be easy and fast to apply in industrial 

applications. Conditions which guarantee robust stability and performance are formulated 
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as a finite set of Linear Matrix Inequalities (LMIs) and hence, the resulting problem is 

numerically tractable. 

 

1.3 Objectives and Novelties 
 

In summary, the objective of this work is to propose a comprehensive design procedure 

for gain-scheduled controllers, which can guarantee the robust stability and performance 

of the closed-loop systems. The fundamental basis of this work is the state-affine model 

previously developed and used in the work of Budman and Knapp (2000, 2001). By 

representing a nonlinear process with this model, it is possible to quantify the system 

uncertainty from the process nonlinearity, which is a function of the current input 

variable only.  

 

The traditional gain-scheduling design technique is based on local linearization of the 

nonlinear processes, and it has proven to be a successful design methodology in many 

engineering applications (Bequette, 1997). However, in the absence of a sound theoretical 

analysis, these designs come with no guarantees of robust stability, performance or even 

nominal stability of the overall gain-scheduled design (Shamma and Athans, 1990). This 

work presents such an analysis for one type of nonlinear gain-scheduled control system. 

This gain-scheduled control system is novel in that it is based on the process input, 

different from the gain-scheduled designs in the literature based on the process output or 

system reference trajectory (Shamma and Athans, 1990). The gain-scheduling PI 

controller parameters are changing as a continuous function of the scheduling variable, 

i.e., the process input, instead of being switched at discrete values. 

 

A methodology is proposed for the design and optimization of the robust gain-scheduled 

controllers. Conditions which guarantee robust performance are proposed in this work as 

extensions of the previous work on robust stability by Budman and Knapp (2001) 

formulated as a finite set of Linear Matrix Inequalities (LMIs). The work by Budman and 

Knapp (2001) was only applied to the design of traditional gain-scheduled PI controllers, 

which satisfy closed-loop robust stability. In this work, both the robust stability and the 
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robust performance conditions are applied for the design of the novel continuous gain-

scheduled PI controllers. The resulting problem formulated as a finite set of LMIs is 

numerically tractable. Issues of modeling error and input-saturation are explicitly 

incorporated into the analysis. 

 

Additionally and in contrast with the nonlinear MPC controllers used in the literature 

(Chen and Allgower (1998)), gain-scheduled MPC controllers, based on the discretization 

of the operation range, are proposed in this work. The design of the gain-scheduled MPC 

controllers consists of optimizing the controller parameters, specifically the input weights, 

and of scheduling the step response matrix of the MPC controller, based on the input 

variables.   

 

The inherent conservatism of robustness analysis results in smaller ranges of controller 

parameters that satisfy the design criteria and consequently in degraded performance. 

Two approaches, the use of parameter-dependent Lyapunov function and relaxation of 

the input saturation factor bounds, are proposed to reduce the conservatism of the 

controller design. The parameter-dependent Lyapunov function has been proposed in the 

literature (Gahinet, Apkarian and Chilali in 1994), and applied for continuous systems. In 

this work, it is extended to the robustness analysis of discrete-time systems. The 

relaxation of the input-saturation factor is proposed in this work, and to our knowledge it 

has not been reported in the literature. 

 

Finally, several alternatives to reduce the conservatism of the analysis, are proposed at 

the end of the work as subjects for future study. 

 

1.4 Outline of the Work 
 

The thesis is organized in chapters as follows: 

 

Chapter 1. provides an overview of the work.   
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Chapter 2. includes a complete literature review, which covers the available techniques to 

approach the problem of empirical modeling and robust stability and performance 

analysis. Robustness issues with respect to gain-scheduled PI and MPC controllers are 

also specifically reviewed. 

 

Chapter 3. reviews identification methods of nonlinear processes using state-affine 

models from its input/output data. The representation method of the state-affine model as 

affine parameter-dependent systems is illustrated, and the approach for quantifying the 

model uncertainty is also given.  

 

Chapter 4. presents the most fundamental analysis tools used in this work, including the 

approach based on Lyapunov function and the approach using structured singular value 

(SSV) analysis. For the first approach, the concept of quadratic Lyapunov stability and its 

extension to stability and performance analysis of nonlinear systems are reviewed.  

Several techniques, based on parameter-dependent Lyapunov functions, are proposed in 

this work for reducing the conservatism of the quadratic Lyapunov stability and 

performance tests. For the second approach, the original SSV theory in frequency-domain 

is first given, and then the development of the SSV extensions to deal with nonlinear and 

time-varying uncertainty is summarized. Finally, the two approaches are compared.  

 

Chapter 5. proposes the gain-scheduled PI controller design methodology. First, a gain-

scheduled PI controller structure is proposed which schedules the tuning parameters as a 

continuous function of the manipulated variable. The systematic robust design approach 

is then proposed to generate regions of the gain-scheduled PI controller parameters in the 

parameter space, which guarantee the closed-loop systems’ robust stability and 

performance. The design is based on the satisfaction of the robust stability and 

performance conditions. The robustness conditions include the quadratic Lyapunov 

stability and performance conditions, the less conservative parameter-dependent 

Lyapunov function proposed in this thesis, and the SSV extensions. An analytical 

approach calculating the input-saturation factor bounds is also first developed in this 

work and applied to reduce the conservatism of the design. 
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Chapter 6. proposes the gain-scheduled MPC controller design methodology. A 

systematic robust design approach is proposed to compute proper input weights in the 

objective function of the MPC controllers, which guarantee the closed-loop systems’ 

robust stability and performance. The design is based on the global satisfaction of the 

robust stability and performance conditions, and in this chapter, only the conditions based 

on the quadratic Lyapunov functions are used. This approach is different from the gain-

scheduled designs proposed before in the literature. Modifications have been developed 

in this work to improve the traditional linear MPC formulation, which are very important 

to the design approach proposed here. First, explicit incorporation of plant uncertainty 

into the optimization objective function is realized by using the state-affine model for 

process output approximation. Second, to calculate the model based control actions, the 

step-response matrix is modified such that it changes according to the manipulated 

variable, to compensate for the system nonlinearity. Finally, extensions have been made 

for the design of MPC controllers for multi-input-multi-output (MIMO) processes. 

 

Chapters 1.-5. concentrate on single-input-single-output (SISO) nonlinear systems 

represented in discrete-time form. Both SISO and MIMO nonlinear systems are 

considered in Chapter 6.  The SISO case study example selected for this work is a typical 

chemical engineering process, a continuously stirred tank reactor (CSTR). Results on the 

CSTR process are presented in the different chapters. The theorems and approaches 

developed in this work can also be applied to other types of nonlinear chemical systems 

as explained in the thesis. The CSTR was selected as a case study example due, on the 

one hand, to the simplicity of its mathematical representation with only two dynamical 

states, i.e. reactor temperature and reactor concentration, and on the other hand, to its 

inherent nonlinearity. For the MIMO case study in Chapter 6, a simple 2x2 system is 

selected for simplicity, which is in the form of a state-affine model. If a real process is 

selected, it will be represented by this 2x2 state-affine model in the end, for the 

application of the approached proposed in this work.  
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2 Literature Review 
 

The emphasis of this PhD work has been in developing accurate models of nonlinear 

processes and the development of stable and robust controllers for these processes. One 

of the main areas of interest in this field is robust control using nonlinear empirical 

models. This chapter will discuss some of the important work that has been performed in 

this field in recent years. Section 2.1 will discuss work that has been conducted in the 

area of nonlinear modeling based on input/output data. In section 2.2, major contributions 

to the analysis of robust stability and performance will be reviewed. Section 2.3 will 

focus on the gain-scheduling design approach. In section 2.4, the work on robustness of 

MPC controllers for nonlinear and uncertain processes is reviewed. 

 

2.1 Empirical Modeling of Nonlinear Processes 
 

Two key problems arise during the design stage of a robust controller for a nonlinear 

process: 

 

1. Accurate mechanistic models are often difficult to obtain especially since many of the 

parameters are poorly known; 

 

2. Even when mechanistic models are available, it is not trivial to quantify from them 

uncertainty bounds for robustness analysis purposes. 

 

For example, Doyle et al. (1989, 1990) using a structured singular value approach, 

designed a robust linear controller for an exothermic CSTR. The method requires that: 

 

• A mechanistic first-principles model of the process is available; 

 

• An optimization procedure is carried out to find bounds on the perturbations 

representing nonlinearities of the model. 

 



 9

Unfortunately, in many situations, a mechanistic model of a nonlinear chemical process is 

not readily available from first principles. For instance, for biological reactors, the 

reaction kinetics are often unknown or very difficult to measure. Additionally, the 

optimization procedure proposed by Doyle to calculate uncertainty bounds was not trivial 

and may become very difficult when the model contains a large number of states.  

 

A viable alternative to mechanistic modeling is to develop nonlinear empirical models 

directly from experimental input/output data. Using persistent-excitation signals based on 

the rules developed by Nowak and Van Veen (1994), limited experimental effort is 

required to identify nonlinear empirical models. One disadvantage with the use of 

empirical models is that they may have a structure, which is not totally correct to describe 

the actual nonlinear process, making it difficult to extrapolate the model predictions for 

operating conditions beyond the experimental data used for model training. Despite this, 

nonlinear empirical models still find a wide application in the field of nonlinear model-

based control. 

 

Based on the above considerations, in the current work, nonlinear empirical models were 

used. Examples of nonlinear empirical models are nonlinear auto-regressive moving 

average models (NARMA) (Haber, 1990; Hernandez, 1993), Volterra series models (e.g., 

Nowak, 1994) and state-affine models (Dang Van Mien, 1984; Diaz, 1988). However, 

NARMA and Volterra series models are not directly suitable for robust stability and 

performance analysis due to the dependence of the output on past inputs and outputs 

raised to different powers and in different product combinations. If all these products and 

high-order terms will be accounted for as model uncertainty in a robustness analysis, a 

very conservative design may result. On the other hand, it was found in a previous work 

by Knapp and Budman (2000) that nonlinear state-affine models initially proposed by 

Sontag (1978) and represented by equation (2.1) are ideally suited for the robustness 

analysis. The form of the model is as follows: 
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where x  is the state vector and (.)(.),(.), HGF  are polynomial matrices, for example, 

K+++= 2
210))(( uutu FFFF . These models have the distinct advantage that the 

nonlinear terms, which are assumed to be the source of model mismatch with respect to a 

nominal linear model, have a clear structure and are a polynomial function of the current 

inputs )(tu  only. This fact greatly facilitates the calculation of the uncertainty bounds 

since the inputs have a priori known limits due to, e.g., actuator limits or economic 

constraint considerations. Then, for the purpose of robustness analysis, a minimal state-

affine realization in the form of equation (2.1) may produce less conservative results, 

regarding stability and performance compared to other nonlinear modeling techniques. It 

has been shown that nonlinear state-affine models can be synthesized from a Volterra 

series (Sontag, 1978). This will be further reviewed in the current work. 

 

Empirical modeling of nonlinear processes has been a topic of much research for many 

years and several types of models have been reported. Only the nonlinear models relevant 

to this thesis will be discussed in the sequel, i.e., Volterra series models and state-affine 

models.  

 

2.1.1 Volterra series model 
 

A Volterra series model relates the output of a process to a polynomial of past inputs.  

Volterra theory is a generalization of the linear convolution integral approach often 

applied to linear, time-invariant systems.  The theory states that any time-invariant, 

nonlinear system can be modeled as an infinite sum of multidimensional convolution 

integrals of increasing order. This method is the generalization of an impulse response for 

linear processes.  

 

Sandberg (1992) showed that for a large class of systems, a truncated Volterra series 

provides a uniform approximation to the infinite Volterra series on a hyper-volume of 

bounded inputs. The Volterra series model is attractive because it is a straightforward 

generalization of the linear system description. Specifically, the parameters of the model 
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are linearly related to the output, hence the identification of the parameters is a linear 

regression problem that can be solved by standard least squares regression. 

 

A complete review of Volterra series models can be found in the textbook of Schetzen 

(1989). In the present work, the identification of Volterra series model was conducted as 

an intermediate step towards the identification of a state-affine model. This identification 

procedure is explained in Chapter 3. 

 

Nowak and Van Veen (1994) identified an input signal that provides persistent excitation 

(PE) for nonlinear Volterra series approximation using a least squares method. They 

showed that deterministic pseudo-random multilevel sequences (PRMS) are persistently 

exciting for a truncated Volterra series of polynomial order N only if the sequences take 

on (N+1) or more distinct levels. In the current work, this input signal is used to generate 

input/output data for Volterra series model identification. Marmarelis (1978) gave 

definitions and properties of PRMS for reference.  

 

2.1.2 State-affine model 
 

Sontag (1978) studied a general type of input/output nonlinear relation known as a 

response map, which specified how past values of the input affect the present output of 

the system. Using the response map description, Sontag developed a very general 

realization theory for a class of nonlinear systems called state-affine system, i.e. systems 

that are affine in the state variables but are nonlinear with respect to the inputs. This 

system is represented by equation (2.1). The theoretical proofs and realization algorithms, 

in Sontag’s work, offered a basis for the subsequent research work on discrete-time state-

affine model realization. The idea behind Sontag’s work is to find a minimal state-affine 

realization departing from a Volterra series model, which can be identified from 

input/output data. Sontag’s algorithm is provided in Chapter 3 of this work for reference. 

 

Based on Sontag’s algorithm, for nonlinear processes, Knapp and Budman (1999, 2000, 

2001) used an empirical state-affine model extracted from a Volterra series model for 
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robustness analysis of a nonlinear system under linear PI control. The state-affine model 

is of the form: 
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where iii HGF ,,  are matrices of model coefficients, )(tx  are the process states, )(ty  is 

the output, )(tu  is the manipulated variable. The model given in equation (2.2) can be 

easily identified from input/output data as explained by Budman and Knapp (2000, 2001). 

 

The nonlinear terms with respect to the nominal linear model, assumed to be the main 

source of the uncertainty, are directly related to powers of the input. Since in practice the 

inputs are bounded by known limits, it is easy to quantify the uncertainty bounds. Thus, 

the optimization procedures such as the one proposed by Doyle (1989, 1990) to calculate 

the uncertainty bounds can be avoided, facilitating the application of the technique to 

systems with a large number of states. Sontag’s algorithm (1978) calculated the model in 

equation (2.2) from a Volterra series model directly identified from input/output data. 

Thus, a first-principles model is not necessary.  

 

2.2 Robustness Analysis 
 

There are many options to consider when choosing a control strategy for a process, but, 

regardless of which control strategy is implemented, the controller will generally be 

designed based on a simplified model of the process. These models generally have 

varying degrees of accuracy, which do not take into account all model behavior. 

Controllers designed based on these models are desired to be robust in the presence of 

model uncertainty or model inaccuracy. A-posteriori robustness analysis is then 

necessary to validate the design and obtain guarantees of stability and performance in the 

face of plant uncertainty. In the literature, a variety of tools are available to assess robust 

stability and performance.  
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This section reviews most of the available Lyapunov-based analysis techniques: quadratic 

stability and performance analysis, and tests involving parameter-dependent Lyapunov 

functions, and structured singular value (SSV) analysis. Since all of these tests are based 

on sufficient conditions, they are only useful when they succeed in establishing finite and 

feasible robust stability and performance bounds. 

 

2.2.1 Quadratic Lyapunov functions 
 

The most useful and general approach for studying the stability of nonlinear control 

systems is the theory introduced in the late 19th century by the Russian mathematician 

Alexandr Mikkailovich Lyapunov. Lyapunov’s work, The General Problem of Motion 

Stability, first published in 1982, includes two methods for stability analysis, the 

linearization method and the direct method. The linearization method draws conclusions 

about a nonlinear system’s local stability around an equilibrium point from the stability 

properties of its linear approximation. The second method, referred to as the direct 

method, is not restricted to infinitesimal localized motion, and determines the stability 

properties of a nonlinear system by constructing a scalar “energy-like” function for the 

system and examining the function’s time variations. The details of these two methods 

are summarized in many books, e.g., Slotine and Li (1991). Today, Lyapunov’s 

linearization method is the basic theoretical analysis method for linear control. The 

Lyapunov’s direct method has become the most important tool for nonlinear system 

analysis and design. Together, the linearization and the direct method constitute the so-

called Lyapunov stability theory. The objective of this section is to review the application 

of Lyapunov stability theory in the analysis and design of nonlinear control systems.  

 

Lyapunov’s direct method and its extensions to performance analysis are applied in this 

work to uncertain time-varying systems. In the literature, linear matrix inequalities (LMIs) 

based tests have been derived to assess closed-loop robust stability and robust 

performance. LMIs problems are convex and efficient polynomial-time optimization 

algorithms are available to solve them, e.g., MathWorks MATLAB. The stability and 
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performance tests can be formulated as a finite set of LMIs and hence, the resulting 

problem is numerically tractable.  

 

Gahinet and Apkarian (1994) have solved continuous and discrete-time  ∞H  control 

problems via elementary manipulations on LMIs. A LMIs-based parameterization of all 

suboptimal ∞H  controllers has been given, including reduced-order controllers. 

Gahinet’s work has also been based on quadratic Lyapunov functions for stability and 

performance analysis.  

 

Budman and Knapp (2001) proposed the use of empirical state-affine model to design 

robust controllers. A novel methodology was proposed for the analysis of robust stability 

of a nonlinear process under Proportional-Integral (PI) control. This methodology has the 

advantage that it is based solely on empirical models. The state-affine model is nonlinear 

with respect to the manipulated variables. This model in combination with a linear PI 

controller results in a closed-loop model that can be shown to lie in a polytope of 

matrices. This allows for the formulation of a Lyapunov stability test in terms of a finite 

set of LMIs. The stability analysis has been used in their work to produce regions of 

stability in the PI controller parameters space. This technique has also been applied to test 

the stability of the closed-loop system with a simple traditional gain-scheduled PI 

controller. The analysis has been based only on robust stability while no robust 

performance has been considered in that work. 

 

Gao and Budman (2003) have extended the robust stability analysis (Budman and Knapp, 

2001) by considering robust performance for the design of a novel class of gain-

scheduled PI controllers. The tuning coefficients of the controller used by Gao and 

Budman are continuous linear functions of the manipulated variable and these linear 

functions are defined in terms of four parameters only, whereas in the work of Budman 

and Knapp (2001) the switching of the controller parameters was effected at finite 

discrete values. A PI controller structure was selected because it is widely accepted in 

chemical process control practice. Subsequently, Gao’s work addresses the optimization 

of these parameters. The parameterization of the proposed controller in terms of a 
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relatively small number of parameters greatly facilitates the optimization step. These new 

results are the core of the present thesis and will be shown in later chapters of this thesis. 

 

2.2.2 Parameter-dependent Lyapunov functions 
 

Quadratic Lyapunov stability and ∞H  performance tests guarantee stability and 

performance in the presence of uncertain parameters without considering the parameter 

rate of change. As a result, compared to the case when this information is taken into 

account intot he design, these tests can be very conservative for time-varying parameters, 

thus affecting the efficiency of the design (Gahinet, Apkarian and Chilali, 1994; Gao and 

Budman, 2003).  

 

To reduce conservatism in such cases, the notion of parameter-dependent Lyapunov 

functions was proposed by Gahinet, Apkarian and Chilali (1994). That is, for Lyapunov 

functions )()()()( tttV t
T ηδPη= , the Lyapunov matrix )( tδP  is no longer constant, but it 

is now a function of tδ . In their work, it was shown that by imposing additional 

constraints on the parameter-dependent Lyapunov functions, the calculation of a 

Lyapunov matrix of the form: 

 

tnnttt ,,22,110)( δδδ PPPPδP ++++= L  (2.3) 

 

can be formulated into a LMIs problem for the unknown matrices nPPPP L,,, 210 . The 

resulting test is therefore numerically tractable while always less conservative than 

quadratic tests based on fixed Lyapunov matrices, i.e. 0PP =  in equation (2.3) because 

there are more parameters available for optimization. 

 

2.2.3 Linear matrix inequalities (LMIs) in control 
 

LMIs based techniques have emerged as powerful design tools in control engineering. 

Boyd and et al. (1994) have given a good introduction to LMIs concepts.  It has been 
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shown that a wide variety of problems rising in system and control theory can be reduced 

to a convex optimization problem involving LMIs. Since these resulting optimization 

problems can be solved numerically very efficiently using recently developed interior-

point methods (Boyd and et al., 1994), the resulting LMIs formulation is an attractive 

form of solution to complex problems.  In comparison, the more conventional approach is 

to seek an analytic or frequency-domain solution to the matrix inequalities. In summary, 

three factors make LMIs techniques appealing: 

 

1. A variety of design specifications and constraints can be expressed as LMIs. 

 

2. Once formulated in LMIs, a problem can be solved using efficient numerical convex 

optimization algorithms available in MATLAB. 

 

3. The main strength of LMIs formulations is the ability to combine various design 

constraints or objectives, with no analytical solutions in terms of matrix equations, in a 

numerically tractable manner (Wang and Balakrishnan, 1999; Budman and Knapp, 2001). 

 

Many control problems and design specifications can be formulated as LMIs conditions, 

especially for Lyapunov-based analysis and design (Apkarian, 1995; Watanabe, 1996; 

Sivrioglu and Nonami, 1996). Packard et al. (1991) have given a collection of robust 

control problems that may be formulated in terms of LMIs. This is also true for optimal 

LQG control, ∞H  control, etc. Further applications of LMIs arise in estimations, 

identification, optimal design, matrix scaling problems, and so on.  

 

To show the principles underling the LMIs based design, the following two LMIs 

formulations of typical design objectives are shown here, while they are further detailed 

in later chapters in this work. 

 

Stability: the stability of the dynamical system 

 



 17

0)0(),()1( ηηAηη ==+ tt  (2.4) 

 

is given based on Lyapunov by the following problem:  

 

Find TPP0P => ,  such that 0PPAA <−T  (2.5) 

 

This can be generalized to the case where A  is assumed to vary within a polytope of 

matrices. Specifically,  

 

10,11 =>++= ∑
i

iiKK qqqq AAA K  (2.6) 

 

where KAA ,,1 K  are fixed. Here the sqi '  are the coefficients of a convex decomposition 

of A  over the set },,{ 1 KAA K  of vertices of the polytope. A sufficient condition for the 

asymptotic stability of this system is the feasibility of a set of LMIs as follows:  

 

Find TPP0P => ,  such that Kii
T

i ,,1, K=<− 0PPAA  (2.7) 

 

RMS gain: for a stable system as follows: 
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The random-mean-squares (RMS) gain is the largest input/output gain γ , 
22 LL

ve γ< , 

over all bounded inputs. This gain is the global minimum of the following linear 

objective minimization problem: 
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Efficient interior-point methods (Boyd and et al., 1994) are available to solve the LMIs 

problems. In this work, the MATLAB LMIs Toolbox is used for the formulation and for 

the solution of the LMIs. 

 

2.2.4 Structured singular value (SSV) analysis 
 

A second technique to analyze the robustness of a closed-loop system is based on the 

structured singular value, referred to as µ , of a matrix. The basic concepts and results are 

summarized and reviewed by Doyle and Packard (1988, 1989).  

 

For the case of linear model/plant mismatch, i.e. linear model with linear time-invariant 

perturbation, the model uncertainty has been handled most efficiently by the SSV 

approach (Packard and Doyle, 1987). The authors based the robust stability test on the 

closed-loop system’s state-space representation, which can be decomposed into a linear-

fractional transformation (LFT) structure made of a nominal constant part and an 

uncertain part representing changes in operating conditions. Necessary and sufficient 

conditions are obtained which guarantee stability and performance levels for the 

perturbed system, based on the bounds calculated from the above uncertain part. 

However, the stability and performance conditions with structured uncertainty reduce to 

computing µ  for constant matrices )( jwG  and then taking sup over jw . 

 

Suppose an uncertainty structure has only full blocks, and the perturbations are modeled 

as linear and time-invariant. It is shown by Doyle and Packard (1987) that the frequency 

domain µ  test can conceptually be reduced to a single constant matrix µ  test, but the 

actual uncertainty structure must be augmented with a repeated scalars block of size 
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equal to the state dimension. The key idea there is that the Laplace transform variable s  , 

when appropriately transformed to the unit disk 1≤z , can itself be interpreted as an 

additional block of repeated scalars in an augmented structure, replacing the search over 

the jw  term in the frequency domain. In view of the counter example given by Packard 

and Doyle (1988), it is likely that in this case of the augmented uncertainty structure, the 

upper bound of µ  will not equal µ , and the conclusions will be conservative. Instead, 

for the original full block structure uncertainty, a frequency domain upper bound test is 

appropriate, since it has been found that for the frequency domain test, µ  and the upper 

bound are very close. However, it is important to realize that the frequency domain test 

only gives conclusions about linear time-invariant perturbations. It is also applicable to 

time-invariant parameter-dependent systems by first deriving an equivalent LFT 

representation. 

 

If the uncertainties are nonlinear and/or time-varying, then in general, the frequency 

domain tests are not valid. The upper bound approaches based on constant matrix 

operations proposed by Packard and Doyle (1988) handle this type of uncertainty, and the 

motivation which led to their development was the relationship between µ  and the upper 

bound. These new advances in SSV theory allowed the application of the results to a 

class of time-varying and nonlinear models. Doyle, Packard and Morari (1989) have 

applied this technique to the calculation of margins of robust stability and robust 

performance for a nonlinear CSTR model, which is represented as a dynamical system 

with cone-bounded nonlinearities.   

 

Doyle, Packard and Morari (1989) identified these bounds and designed a robust linear 

controller for the CSTR using extensions of SSV results to handle a class of time-varying 

and nonlinear systems. In Doyle’s work, a first-principles model of the process is 

developed, from which conic bounds on the nonlinearities are found. Assuming that the 

model uncertainty is entirely due to the nonlinearities of the process, it was possible to 

use these conic bounds to describe the process with a linear nominal model augmented by 

a suitable uncertainty structure. Sufficient robust stability and robust performance 
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conditions for time-varying complex uncertainty are given, while the authors also 

mentioned that less conservative results are possible by considering real variations in the 

uncertainty, as the uncertainty for the CSTR model is more accurately described by real 

perturbations. Suppose that a real parameter k  is assumed to be constant but uncertain, 

and the value of k  is modeled to lie in an interval with a real uncertainty δ , shown by 

the dark line inside the disc in Figure 2.1 , as follows: 

 

}1,:4.02.1{]6.1,8.0[ ≤∈+∈⇒∈ δδδ Rkk  (2.10) 

 

 
Figure 2.1 Complex disc covering real interval 

 

However, the value of k  is modeled to be the disc in Figure 2.1 with a complex 

uncertainty δ  as follows:  

 

}1,:4.02.1{]6.1,8.0[ ≤∈+∈⇒∈ δδδ Ckk  (2.11) 

 

In general, using discs instead of intervals to model real uncertain parameters leads to 

more conservative robustness properties. 

 

The identification of the bounds shown by Doyle (1989) is not trivial and requires careful 

observation of the nonlinearities to be bounded and the solution of an optimization 

problem to calculate the conic sectors. Additionally, Doyle’s analysis (1989, 1990) was 

based on a mechanistic model, which for many processes is often not available. 

Im 
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To deal with these issues, Knapp and Budman (2000) used state-affine models identified 

from input/output data to design robust linear controllers for the nonlinear CSTR based 

on SSV robust stability analysis. A key advantage in using this state-affine model is that 

the model uncertainty, related to the system nonlinearity, is a function of the inputs only. 

This greatly facilitates the quantification of model uncertainty since bounds on the inputs 

are generally known, e.g., due to saturation limits of process actuators. One difficulty in 

using SSV analysis is that it is currently not clear how to integrate hard constraints on 

actuators into the test. This can be accomplished by using a LMIs formulation based on 

Lyapunov stability theory as shown by Knapp and Budman (2001).  

 

Another problem is that the function )(M∆µ  is not necessarily a continuous function 

when all of the perturbation blocks are real. This mathematical fact is pointed out by 

Barmish and et al. (1990), and an example is given where the robustness margin to real 

parameter uncertainty changes abruptly for infinitesimal changes in the problem data. 

Also, in the Barmish and et al. (1990) example, the structured singular value of the 

frequency response exhibits discontinuities across frequency. What is the significance of 

these issues on )(M∆µ ? The discontinuities can cause problems in the convergence of 

the lower bound algorithm. For problems with purely real uncertainty, the lower bound 

algorithm may converge to a value which is significantly lower than )(M∆µ  itself, or 

may not even converge at all. This could be a serious problem, but usually it is not, 

because almost all problems have a full complex block associated with a robust 

performance specification. It turns out that if a )(M∆µ  problem has at least one complex 

block that counts, then the function )(M∆µ  will be continuous at the problem data. 

Sometimes, though, a robust stability calculation for an uncertain system with only real 

uncertainties is needed.  

 

2.3 Gain-scheduled Controller Design 
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Gain-scheduling is a common engineering practice used to control nonlinear plants in a 

variety of engineering applications. Bequette (1997) reviewed the traditional gain-

scheduled process control. A typical gain-scheduled design procedure for nonlinear 

plants is as follows: 

 

1. The designer selects several operating points which span the range of operation of the 

process.  

 

2. At each of these operating points, the designer constructs a linear time-invariant 

approximation of the plant and designs a linear compensator for the linearized plant 

model. 

 

3. In between operating points, the parameters or gains of the compensators are then 

interpolated, or scheduled, thus resulting in a global compensator applicable to the whole 

window of operation.  

 

Since the local designs are based on linear time-invariant approximations to the plant, the 

designer may be able to guarantee that at each operating point, the feedback system has 

the needed feedback properties, such as stability and performance of the local linear 

model. However, since the actual system is nonlinear, the overall gain-scheduled system 

may not satisfy the stability and performance margins for the actual nonlinear process. In 

other words, one typically cannot assess a priori the guaranteed stability and performance 

properties of this traditional gain-scheduled design. Rather, any such properties have to 

be inferred from extensive computer simulations (Shamma and Athans, 1990).  

 

In addition to simulations, gain-scheduled designs are guided by heuristic rules-of-thumb 

(Shamma and Athans, 1990). The two most fundamental guidelines are:   

 

1. The scheduling variable should vary slowly. 

 

2. The scheduling variable should be related to the plant’s model nonlinearities.  
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These guidelines are simply reminders that the local operating point designs were based 

on linear time-invariant approximations to the actual plant. Thus, these approximations 

must be sufficiently accurate if one expects the local feedback properties to carry over to 

the overall gain-scheduled system.  

 

Shamma and Athans (1990) analyzed two types of nonlinear gain-scheduled systems: 1) 

controller scheduling along a reference trajectory; and 2) controller scheduling based on 

the plant output. In each case, sufficient conditions were given which guarantee that the 

overall gain-scheduled system will retain the feedback properties of the local designs. 

These conditions formalize the rules-of-thumb, and again, the most fundamental idea 

behind the analysis is that the original designs are based on local linear time-invariant 

approximations of a nonlinear plant. 

 

However, Shamma and Athans (1990, 1991) revealed certain limitations of this 

traditional gain-scheduling approach. More explicitly, the guidelines of “varying slowly” 

and “capturing the plant’s nonlinearity” in fact place fundamental limitations on the 

achievable performance of current gain-scheduling practices.  

 

The case of the restriction to slow variations most likely is due to the nature of the 

scheduling algorithms. More precisely, the scheduling of controller gains is such that 

good performance may be expected for any fixed interpolated operating condition. 

However, performance may deteriorate rapidly as one experiences rapid changes 

throughout the range of operating conditions. Shamma and Athans (1992) analyzed the 

potential hazards of the traditional gain-scheduled designs, and pointed out that without a 

modification of the gain-scheduling design procedure, the aforementioned fundamental 

limitations will remain. If the possibility of fast parameter variations is not addressed in 

the design process, then guaranteed properties of the overall design cannot be established. 

The limitation of capturing the nonlinearities can be addressed through the appropriate 

selection of the scheduling variables.  
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In contrast with Shamma and Athans’ work (1990, 1991 and 1992), in the current study, 

the scheduling variable is chosen to be the manipulated variable, which is able to capture 

the nonlinearity because it will be shown to be the sole source of the process nonlinearity 

in the state-affine models used along this work. A novel robust gain-scheduling design 

approach, which is different from the traditional gain-scheduling approach will be 

presented in this paper. This robust gain-scheduling design will be applied for the design 

of the widely-used PI controllers. 

 

2.4 Robustness of MPC 
 

MPC techniques widely used in the chemical industry are those based on the optimization 

of a quadratic objective function involving the error between the set-point and the 

predicted outputs. The success of linear MPC (LMPC) algorithms in industry has led to 

various extensions to handle nonlinear systems. Chen and Allgower (1998b) reviewed a 

number of nonlinear MPC (NLMPC) schemes, that address issues related to nominal or 

robust closed-loop stability. 

 

For example, Mutha, Cluett and Penlidis (1997) designed a NLMPC algorithm to handle 

control nonaffine systems, i.e., nonlinear in the manipulated variable. The algorithm is 

based on a reinterpretation of the prediction equation as a Taylor series expansion. The 

key feature of this algorithm lies in the use of a process output prediction that accounts 

for changes in process dynamics as a function of the operating point as well as of the 

magnitude of the process input change.  

 

Due to the presence of nonlinearities, a system behaves differently for different operating 

conditions. Closed-loop stability can be achieved by a suitable tuning of MPC design 

parameters such as prediction horizon, control horizon, and weighting matrices. However, 

the tuning for stability often can not deliver satisfactory performance for various different 

operating points. Thus, guaranteed stability and performance, independent of the choice 

of the operating point, is of great interest not only in theory, but also for practitioners.  
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Chen, Scherer and Allgower (1997) proposed a robust NLMPC scheme that can be 

conceptually viewed as a combination of NLMPC and nonlinear ∞H  control. This 

approach potentially combines the strengths of both methods, thus, the designed 

controllers have guaranteed robust stability and achieved good disturbance rejection in 

the face of input constraints. The major obstacle of this approach is the high on-line 

computational demand which prevents the industrial application of this method. The 

designed controllers are not able to optimize the performance index in terms of 

disturbance rejection. 

 

A computationally attractive nonlinear MPC scheme for open-loop stable systems was 

proposed by Chen and Allgower (1998a), for the problem of stability. The open-loop 

optimal control problem was formulated as minimizing a finite horizon cost plus a 

terminal penalty term subject to nonlinear system dynamics and constraints. The terminal 

penalty term forces the system states at the end of the horizon to lie in a prescribed region 

around the system equilibrium point. The authors reported that there was no performance 

improvement introduced by this proposed algorithm. 

 

However, a fundamental question that was not addressed by existing MPC-based control 

techniques, linear or nonlinear, is their robustness to model uncertainty and noise. Most 

known formulations of MPC minimize, on-line at each sampling step, a nominal 

objective function, using a single linear model (LMPC) or a nonlinear model (NLMPC) 

to predict the future plant behavior. Feedback, in the form of plant measurement at the 

next time step, is expected to account for the plant/model mismatch. Needless to say, 

such control systems that provide optimal performance for particular model may perform 

poorly when implemented on a physical system that is not exactly described by the model 

(Zheng and Morari, 1993). This section gives an overview of the attempts in the literature 

to provide MPC with some robustness guarantees in the presence of model uncertainty. 

 

Broadly, the existing literature on robustness in MPC can be summarized as follows:  

 

1. Analysis of robustness properties of MPC. 
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By using a contraction mapping theorem, Zafiriou (1990) derived a set of sufficient 

conditions for nominal and robust stability of MPC. Because the conditions are difficult 

to check, he also stated some necessary conditions associated to these sufficient 

conditions. 

 

Gencilli and Nikolaou (1993) gave sufficient conditions for robust closed-loop stability 

and investigated robust performance of dynamic matrix control (DMC) systems with hard 

input/soft output constraints. The authors considered an 1l  -norm performance index, a 

terminal state condition as a state constraint, and used an impulse-response model with 

bounds on the variations of the coefficients. They derived a robustness test in terms of 

simple inequalities to be satisfied. This simplicity is largely lost in the extension to the 

MIMO case.  

 

Zanovello and Budman (1999) proposed a model predictive control algorithm which 

deals with soft constraints. The issues of nominal and robust stability of the control 

system were assessed offline. Robust stability was assessed using a structured singular 

value (µ ) test. The model uncertainty was obtained from several step tests performed on 

the system around different operating conditions. The dimension of the problem studied 

by the authors is very large, so a frequency-domain µ  test was used, which has the 

advantage of reducing the dimensions. However, the calculation has to be repeated at 

each frequency in the relevant range, and the uncertainty was assumed to be time-

invariant. 

 

2. Robust synthesis of MPC. 

 

The basic philosophy in the literature for optimizing the performance of MPC-based 

design algorithms that explicitly account for plant uncertainty is to modify the on-line 

minimization problem to a min-max problem, where the worst-case value of the objective 

function is minimized over the set of plants that account for the nominal model and 

uncertainty (Campo and Morari, 1987; Zheng and Morari, 1993).   
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Min-max robust MPC was first proposed by Campo and Morari (1987), and further 

developed by Zheng and Morari (1993), for SISO plants with finite impulse response 

(FIR), given uncertainty bounds on the impulse response coefficients. Kothare et al. 

(1996) applies this min-max formulation for polytopic/multi-model and structured 

feedback uncertainty. However, this approach has a few drawbacks. The first one is 

computational: solving the min-max problem for a family of plants is computationally 

much more demanding than solving it for a nominal plant. The second one is that the 

control action may be excessively conservative. To simplify the computational 

complexity, one must choose simplistic, albeit unrealistic, model uncertainty descriptions, 

e.g., fewer impulse response coefficients. 

 

Another problem is the fact that, the above methods inherently assume that by solving the 

min-max problem to obtain a sequence of future inputs and then implementing the first 

one and repeating the computation at the next sampling point, one is guaranteed robust 

stability and performance, provided that a sufficiently long horizon is used in the 

objective function. However, feedback from an uncertain plant exists in reality and it is 

not taken into account in the formulation of the optimization problem, which is an open-

loop minimization of the objective function over all possible plants. This fact can result 

in performance deterioration and instability of the actual closed-loop system. The 

problems cannot possibly be satisfactorily addressed without considering the problem in 

its proper nonlinear framework. Zafiriou (1990) argued that instead of augmenting the 

objective functions to account for robustness, an action that dramatically increases the 

computational load and at the same time produces no rigorous robustness guarantees, one 

should study the problem accounting for its nonlinear nature, i.e., obtain conditions that 

guarantee nominal and robust stability and performance and tune the parameters of the 

original MPC optimization problem accordingly. 

 

The robust gain-scheduled MPC design approach proposed in this work addresses some 

of the above problems efficiently. The state-affine model, which depends nonlinearly on 

the manipulated variable u , is used to generate the process predictions. As a result, these 
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output predictions take into account explicitly the model uncertainty and approximate the 

feedback from the uncertain plant. In this work, to avoid the nonlinear optimization 

formulation, it is proposed to do predictions with step response models as done for the 

linear case. However, to account for the process nonlinearity, instead of using one step 

response model, a family of step response models will be defined for different sub-ranges 

based on the values of the manipulated variable u . This approach results in a simple 

gain-scheduled MPC strategy, which has not been reported in the literature to the author’s 

knowledge. The key advantage is that in this work, global closed-loop stability and 

performance will be tested instead of testing only the local closed-loop stability and 

performance as proposed by practitioners for the traditional gain-scheduling approach. In 

addition, the input weight will be assumed as the tuning parameter scheduling against u . 
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3 Uncertain Dynamical Systems 
 

Two classes of uncertain dynamical systems are of particular relevance to this work, 

which are affine parameter-dependent models and linear-fractional models. In this work, 

a nonlinear process will be represented by a state-affine model, which depends 

nonlinearly on the manipulated variable. If the process nonlinearity is treated as 

uncertainty, the uncertainty can then be quantified from the nonlinear terms of the state-

affine model. The process nonlinearity, i.e., the process uncertainty, is shown to be a 

polynomial function of the current input only and this facilitates the calculation of the 

uncertainty bounds.  

 

The state-affine model has the form of parameter-dependent systems with affine 

parameter-dependence on the uncertain parameters. This allows for the formulation of a 

Lyapunov stability and performance test in terms of a finite set of Linear Matrix 

Inequalities (LMIs). The state-affine model can also be transformed into linear-fractional 

models, such that the robustness analysis based on SSV approach can also be applied. 

 

This chapter is organized as follows. In section 3.1, model uncertainty is briefly reviewed. 

One class of uncertain dynamical systems, i.e., parameter-dependent models, is 

introduced in section 3.2. Methods of quantifying uncertainty are developed from the 

state-affine model in section 3.2. The other class of uncertain dynamical systems, i.e., 

linear-fractional models, is discussed in section 3.4. The identification algorithm of the 

state-affine model from process input/output data, through an intermediate step of 

Volterra series model identification, is summarized in section 3.5. The case study process, 

a CSTR, is introduced in section 3.5. A state-affine model is identified for the nonlinear 

CSTR. This state-affine model will be used throughout the work to illustrate the different 

theoretical developments proposed in this thesis. The uncertainty expression and its 

bounds are also given in this section. 
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3.1 Model Uncertainty 
 

The notion of uncertain dynamical systems is central to robust control theory. For control 

design purposes, the possibly complex behavior of dynamical systems is often 

approximated by models of relatively low complexity. The difference between a process 

model and the true physical system behavior is called model uncertainty. A key cause of 

uncertainty is the imperfect knowledge of some parameters of the system, or their 

variability due to changes in operating conditions, fouling, etc. Note that model 

uncertainty should be distinguished from variable exogenous actions such as disturbances 

or measurement noise.  

 

The current work focuses on the class of dynamical systems that can be approximated by 

linear models, which in combination with a model uncertainty description, may represent 

the behavior of the real system. When deriving the nominal linear model and estimating 

the uncertainty, two fundamental principles must be remembered: 

 

• Uncertainty should be small where high performance is desired, i.e., there is a tradeoff 

between performance and robustness. 

 

• The more information one has about the uncertainty, e.g., phase, structure, time 

invariance, etc., the higher the achievable performance will be. 

 

There are two major classes of uncertainty: 

 

• Dynamical uncertainty, which consists of dynamical components not accounted for by 

the linear model due to e.g., nonlinear behavior as well as variations in the dynamical 

behavior during operation. 

 

• Parameter uncertainty, which stems from imperfect knowledge of the physical 

parameter values, or from variations of these parameters during operation. Examples of 

physical parameters include stiffness and damping coefficients in mechanical systems, 
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aerodynamical coefficients in flying devices, capacitors and inductors in electric circuits, 

etc. 

 

Some important characteristics of uncertainty include whether it is linear or nonlinear, 

and whether it is time-invariant or time-varying. Model uncertainty is generally a 

combination of dynamical and parametric uncertainty, and may arise at different points in 

the control loop. For instance, there may be dynamical uncertainty on the system 

actuators, and parametric uncertainty on some sensor calibration coefficients. 

 

Two representations of model uncertainty can be used in robust control designs: 

 

• Uncertain state-space models. This representation is relevant for systems described by 

dynamical equations with uncertain and/or time-varying coefficients. 

 

• Linear-fractional representation of uncertainty. Here the uncertain system is described 

as an interconnection of known LTI (linear time-invariant) systems with uncertain 

components called “uncertainty blocks”. Each uncertainty block )(⋅∆ i  represents a family 

of systems of which only a few characteristics are known. For instance, the only available 

information about )(⋅∆ i  may be that it is a time-invariant nonlinearity with gain less than 

0.01. 

 

Determining factors in the choice of representation include the available model, e.g., 

state-space equations, frequency-domain models, etc., and the analysis or synthesis tool 

to be used. In the current work, state-affine models are obtained to represent the physical 

nonlinear process. This model has the form of uncertain state-space models, and is 

suitable for the robust stability and performance conditions based on quadratic Lyapunov 

functions. The state-affine model can also be transformed into linear-fractional models, 

such that the robustness analysis based on SSV approach can also be applied. 
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3.2 Uncertain State-space Models 
 

The nonlinear process is assumed to be modeled by a state-space nonlinear model. The 

resulting state-space equations typically involve physical parameters whose values are 

only approximately known, as well as approximations of nonlinear or more complex 

phenomena. In other words, the system is described by an uncertain state-space model: 
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where the state-space matrices DCBA ,,,  depend affinely on uncertain and/or time-

varying parameters, or vary in some bounded sets of the space of matrices. The class of 

parameter-dependent models is of particular relevance to this work and it is discussed 

next. 

 

3.2.1 Affine Parameter-dependent models 
 

Affine parameter-dependent models (PDS) are of the following form: 
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where )(),(),(),( ⋅⋅⋅⋅ DCBA  are known functions of some uncertain parameter vector 
n

nt R∈= ),,,( 21 δδδ Lδ . This work focuses on analyzing the stability and performance 

of parameter-dependent models with an affine dependence on the parameter vector 

),,,( 21 nt δδδ L=δ , that is, a PDS where: 

 

nnδδδ AAAAδA +++= K22110)(  (3.3) 
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Affine parameter-dependent models are well-suited for Lyapunov-based analysis and 

synthesis and can be also easily converted to linear-fractional uncertainty models for 

Structured Singular Value (SSV) based analysis. 

 

In this work, a state-affine model is identified to represent the nonlinear process, and the 

nonlinearity of the process is considered as the main source of model uncertainty. The 

development of the uncertainty description to account for nonlinearity of the state-affine 

model is illustrated in the sequel. For nonlinear processes, Budman and Knapp (2000, 

2001) proposed the use of state-affine models as follows: 
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where iii HGF ,,  are model coefficients, )(tx  are the process states, )(ty  is the output, 

)(tu  is the manipulated variable. This model given in equation (3.4) can be easily 

identified from input/output data using the methodology proposed by Sontag (1978), and 

Budman and Knapp (2000, 2001). 

 

For a process given by the state-affine model (3.4), it is valid to assume that in a small 

neighborhood of a pre-selected nominal operating point, i.e., for 1)( <<tu , the process 

can be accurately modeled by the linear part of the state-affine model given as follows: 
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The uncertainty of the system will be assumed to be the difference between the nonlinear 

model given by equation (3.4) and the nominal linear model defined by equation (3.5). It 

is also assumed that all of the uncertainty in the state-affine model is due to the time-
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varying nonlinearity of the state-affine model around this operating point. It is therefore 

possible to describe the model uncertainty perturbation ti,δ  in the following form: 

 
i

ti tu )(, =δ  (3.6) 

 

Equation (3.6) represents the key advantage of using the state-affine model given by 

equation (3.4) to model the system. Generally it is not trivial to quantify the uncertainty 

ti,δ  from mechanistic first-principles models (Doyle, 1990). In our case, since ti,δ  is 

equal to the powers of the current input, it can be easily quantified. Each input in a 

process is generally bounded between a lower limit and an upper limit known during the 

design stage due to, for example, actuator constraints or economic considerations. 

Specifically, according to equation (3.4), each parameter ti,δ  ranges between a priori 

known extreme values iδ  and iδ  as follows: 

 

[ ] ],[)( , iitiuutu δδδ ∈→∈  (3.7) 

 

In summary, the major motivation for representing a nonlinear process with the state-

affine model given by equation (3.4) derives from the fact that, the uncertainty is shown 

to be a function of the current input only, and it can be easily quantified with known 

bounds. The nonlinearity of the process is treated as model uncertainty and thus a robust 

control design approach can be applied. 

 

Rewriting equation (3.4) using the uncertainty expression (3.6) gives: 
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Or equivalently by the following parameter-dependent model: 
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where 1
121 ),,,( −
− ∈= n

nt Rδδδ Lδ  is the uncertain parameter vector, (.)(.),GF  are 

polynomial matrices which depend affinely on the uncertain parameters, for example, 

1122110)( −−++++= nnt δδδ FFFFδF K . 

 

3.2.2 Quantification of model uncertainty 
 

Parameter uncertainty can be quantified based on the range of parameter values and 

possibly based on the rates of parameter variation. The parameter uncertainty range can 

be described as a hyper-rectangle in the parameter space. This corresponds to the case 

where each uncertain and/or time-varying parameter ranges between two empirically 

determined limits. Specifically, according to equation (3.6), each parameter ti,δ  ranges 

between a priori known extreme values iδ  and iδ , i.e., [ ] ],[)( , iitiuutu δδδ ∈→∈ . 

 

If n
nt R∈= ),,,( 21 δδδ Lδ  is the vector of all uncertain parameters of tδ , equation (3.7) 

delimits a hyper-rectangle of the parameter space nR  called the parameter box. In the 

sequel, W  denotes the n2  vertices or corners of this parameter box as follows: 

 

]},[:),,,{(: 21 iiin δδωωωω ∈= LW  (3.10) 

 

Similarly, it is assumed that the rate of variation tδ∆  is well defined at all time-intervals 

and satisfies:  

 

tititi ,1,, δδδ −=∆ + , [ ]iiti ννδ ∈∆ ,  (3.11) 
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where ii νν ,  are a priori known lower and upper bounds on this rate of variation. To 

handle the time-varying case with less conservatism when the knowledge of parameter-

variation is available, the rates n
tKttt R∈∆∆∆=∆ ),,,( ,,2,1 δδδ Lδ  are considered as 

additional time-varying uncertain parameters. As a whole, the vector tδ∆  evolves in a n -

dimensional hyper-rectangle whose vertices are in the set:  

 

]},[:),,,{(: 21 iiin ννττττ ∈= LS  (3.12) 

 

3.3 Linear-Fractional Models of Uncertainty 
 

Fro systems with both dynamical and parametric uncertainty, a general representation of 

uncertainty is the linear-fractional model of Figure 3.1. In this linear fractional 

transformation (LFT) representation, the linear time-invariant (LTI) system nn×∈CM  

represents all the known LTI components including the controller, the nominal models of 

the systems, sensors, and actuators. The input vector d   includes all external actions on 

the system, i.e., disturbance, noise and reference signal, and the vector e  consists of all 

output signals generated by the system. The uncertainty block ),,( 1 ndiag ∆∆= K∆ , 

which satisfies 1)(
_

≤∆ iσ , is a norm-bounded LTI uncertainty with some prescribed 

structure. σ  denotes the maximum singular value of a matrix. Each uncertainty block i∆  

accounts for one particular source of uncertainty, e.g., neglected dynamics, nonlinearity, 

uncertainty parameters, etc. The diagonal structure of ∆  reflects how each uncertainty 

component i∆  enters the loop and affects the overall behavior of the true system.  

 

In linear-fractional uncertainty models, each block i∆  of ),,( 1 ndiag ∆∆= K∆  is a 

dynamical system characterized by the following aspects:  

 

• The dynamical nature: linear time-invariant or time-varying, nonlinear; 
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• The dimensions and structure: full block or repeated scalars block Iii δ=∆ . Scalars 

blocks are used to represent uncertainty parameters. 

• Whether i∆  is a complex or real-values matrix 

• Quantitative information such as norm bounds.  

 

 

Figure 3.1 General ∆−M  LFT framework 

 

For systems with linear time-invariant linear-fractional uncertainty, SSV analysis 

investigates the robust stability and performance of. SSV approach is also applicable to 

parameter-dependent systems based on an equivalent LFT representation. The general 

procedure to derive a linear-fractional model of an uncertain state-space model is 

illustrated in section 4.4.2. A state-affine model can also be transformed into a linear-

fractional model, and the procedure is given in section 5.3.1. 

 

3.4 Model Identification Methodology 
 

3.4.1 Volterra series models 
 

The algorithm (Sontag, 1978) used in this work to find state-affine models is based on an 

intermediate step where a Volterra series model is identified. Thus, an algorithm to find a 

Volterra series must be explained first. A Volterra series model relates the output of a 

process to a polynomial of past inputs. A Volterra series model has the form: 
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where iji hhh ,,0  are the 0th-order, 1st-order, 2nd-order Volterra kernels. The maximum 

power of the inputs on the right hand side of equation (3.13) is referred to as the 

nonlinearity order n , Assuming that there is no immediate response of the manipulated 

input, the coefficient 0h  is zero. If the series is truncated to finite M  time steps into the 

past, it is possible to estimate the Volterra kernels from input/output data. A Volterra 

series model which has only 2nd-order terms is given as follows: 
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where )}({ ty  is the observed output sequence associated with the input sequence )}({ tu . 

}{ tη  is an observation noise sequence that is independent of the input.  

 

Suppose that the system output is being observed beginning at time t  and data are 

collected over an observation period of τ>0. Then, the vector of outputs, 
T

t tyty )](,),([ τ+= LY  is related to the input by:  
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where tη  is a vector containing samples of the observation noise sequence, tX  is the 

data matrix, and θ  is the parameter vector. If tX  is full rank, then the least squares 

estimate of the parameters is given by: 
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tt
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In case of 0)( =tE η , i.e., the noise has zero-mean, the estimate given by equation (3.16) 

is an un-biased estimate.  

 

3.4.2 State-affine models 
 

Once the Volterra kernels are obtained from least squares regression, a generalized 

Behavior matrix )( fB  must be developed in order to find a state-affine model, where 

f denotes a finite input/output response. A Behavior matrix is a block matrix constructed 

as follows. The rows of )( fB  are indexed by [ ]+J  and the columns of )( fB  are indexed 

by [ ]+J , where: 

 

},000,,,10,0,,01,00,,,1,0{][ KKKK nnnn=+J  (3.17) 

 

},100,,,20,1,,11,10,,,2,1{][ KKKK nnnn=+J  (3.18) 

 

where n  is the maximum order of the Volterra series. The thβα  entry (denoted by βαb , 

row β , columnα ) of )( fB  contains the coefficient αβa  which corresponds to a Volterra 

kernel in equation (3.13).  For example, 110a  corresponds to 011b , i.e., 11,0 == αβ . To 

illustrate this index notation, Table 3.1 shows the first few blocks of )( fB  for 2=n .  

 

The Volterra kernels are placed in the matrix based upon the Volterra terms to which they 

correspond. The locations of the nonzero terms in the index αβ  indicate the number of 
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time steps in the past that each input in the polynomial term represents while the 

magnitudes of the nonzero values in the index represent the power of the corresponding 

term. For example, the Volterra kernel 1123h , which corresponds to the input term 

)()1()2()3( 0211 tutututu −−− , would have a Behavior matrix entry of 1120a . Once the 

Behavior matrix is properly constructed, a state-affine model may be obtained based on 

the algorithm explained in the sequel. 

 

Table 3.1 Example of Behavior matrix )( fB  

 1 2 10 11 12 22 … 

0 10a  20a  100a  110a  …   

1 11a  21a  101a  111a  …   

2 12a  22a  102a  112a  …   

00 100a  200a  1000a  1100a  …   

01 101a  201a  1001a  1101a  …   

02 M  M  M  M     

M         

 

Sontag (1978) proposed an algorithm to find a state-affine model given a properly 

constructed Behavior matrix. Let φ  be an mm×  nonsingular sub-matrix of )( fB  and let 

mii ,,1, K=α  denote the rows of φ  and let mii ,,1, K=β  denote the columns of φ . A 

state-affine model may then be determined from the realization:  
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where iφ  is a sub-matrix of )( fB  with the same rows as φ  but with the columns 

indexed by ii mαα ,,1 K . 
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The state-affine models are found recursively by the following algorithm: 

 

1. Find a nonzero row of )( fB  and define φ  and iφ , ni ,,0 K= . Set 1=m  (model of 

dimension =1); 

 

2. Find a state-affine model using equation (3.19); 

 

3. Add a row to φ  by choosing the next available row of )( fB . Find the rank of φ . If φ  

is full rank, keep the row and proceed with step 2. If φ  is not full rank, remove the most 

recently added row and add the next available row from )( fB . Repeat this procedure 

until the rank of φ  increases. This step is necessary to ensure that φ  is nonsingular and 

therefore 1−φ  can be calculated. 

 

The result of this algorithm is a model of the form: 
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(3.20) 

 

Assuming that for a physical system there is no instantaneous response, i.e., the output at 

time t , )(ty , is not affected by the input at time t , )(tu , the state-affine model in 

equation (3.20) can be simplified to:  
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3.5 Case Study 
 

3.5.1 Nonlinear process: CSTR  
 

The issue of model identification and uncertainty quantification is illustrated for a 

specific process. The case study under investigation is a CSTR with a first-order 

exothermic reaction. Doyle, Packard and Morari (1989) provided an example of a CSTR 

with single-input-single-output (SISO) for which the dynamic behavior can be described 

using the following non-dimensional normalized equations representing the component 

and energy balances respectively: 
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(3.22) 

 

where the states 1x  and 2x  are the dimensionless reactant concentration and reaction 

temperature respectively, and the input or manipulated variable u= cx  is the 

dimensionless temperature of the cooling jacket surrounding the reactor. In this work, the 

reactant concentration 1x  was selected as the controlled variable.  

 

A summary of the variables used in the above equations is summarized in the 

nomenclature in Appendix A. The process has one stable steady state when aD =0.072, 

B =1.0, β =0.3 and γ =20.0. 

  

Seborg et al. (1989) illustrated that the CSTR is an important nonlinear process because it 

embodies many of the features of more commonly encountered reaction systems. At the 

same time, CSTR models, although highly nonlinear, tend to be simpler than models for 

other types of continuous reactors, such as packed-bed reactors that are modeled by 
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partial differential equations. Therefore, CSTR’s have been used to illustrate new control 

algorithms for nonlinear systems. 

 

Open-loop simulation of the output 1x  is shown in Figure 3.2 under an initial condition of 

[0.4759, 2.9045]. The CSTR has one stable steady state at ]0543.0,0706.0[],[ 2010 =xx  

and a settling time of 9 sampling intervals. 
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Figure 3.2 Open loop simulation 

 

3.5.2 Volterra series models of the CSTR 
 

A Volterra series model can be identified from the simulated input/output data of the 

nonlinear CSTR, using the first-principles model given by equation (3.22). Following the 

guidelines of Novak and Van Veen (1994), an 1+n -level PRMS input is created and the 

process output y  is simulated using equation (3.22). n  is the maximum power of the 

inputs of the Volterra series model given by equation (3.14). As a start, it is chosen to be 

2=n  for equation (3.14), and it can be increased as necessary based on comparisons of 
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the model predictions with the actual measured data. For M, it is reasonable to choose it 

such that it is equal to or larger than the system settling time. Based on this fact, M is set 

to 9 (time steps) for the CSTR system under study. The model obtained has the following 

form: 

 

t

M

i

M

i

M

ij
iji jtuituhituhty η∑ ∑∑

= = =

+−−+−=
1 1

)()()()(  
(3.14) 

 

Since 2=n , the PRMS for identification has to have at least 3 levels to guarantee 

persistent excitation. The 3-level PRMS of inputs ]23,14,5[=cx  is generated and shown 

in Figure 3.3. The output of the system for the PRMS input is predicted using the CSTR 

equations (3.22). The input and output data are shown in Figure 3.3. The above 

simulation data are normalized to the range of ]1,1[−  before being used for identification. 
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Figure 3.3 Input/output data 
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Based on least squares algorithm given in equation (3.16), a Volterra series model was 

obtained with kernels listed in Table 3.2. The number of parameters to be identified is the 

number of the different elements in Table 3.2, and it is calculated as follows. The 1st-row 

of Table 3.2 consists of M   1st-order Volterra kernels. The lower MM ×  symmetric 

matrix consists of M  elements on the diagonal, and )
2

( MMM −×  elements in the upper 

triangle block, i.e., )
2

( MMMM −×
+  2nd-order Volterra kernels. In summary, the 

number of parameters to be identified is a nonlinear function of the memory length, and 

can be calculated from )
2

( MMMMM −×
++ . Thus, when 9=M , the total number of 

parameters is 54. 

 

Table 3.2 Volterra kernels ( 9=M ) 

I 1 2 3 4 5 6 7 8 9 

ih  0.4566 0.2837 0.0919 0.0361 0.0105 0.0021 0.0012 0.0006 -0.0008 

1,ih  0.0782 -0.0064 -0.0367 -0.0058 -0.0017 -0.0010 0.0023 0.0021 -0.0033 

2,ih   -0.1036 0.0042 -0.0026 -0.0038 -0.0006 -0.0016 -0.0002 0.0013 

3,ih    -0.0062 -0.0023 0.0039 -0.0084 -0.0017 0.0004 0.0001 

4,ih     0.0004 -0.0034 0.0176 -0.0030 -0.0038 0.0039 

5,ih      0.0115 -0.0085 -0.0038 0.0015 -0.0020 

6,ih       0.0066 0.0015 0.0052 -0.0025 

7,ih        0.0073 0.0019 -0.0137 

8,ih         -0.0063 0.0054 

9,ih          0.0378 
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Figure 3.4 CSTR process output (solid line) and Volterra series model output (dotted line) 

 

Simulation result of this Volterra series model is given in Figure 3.4 , and compared to 

the real CSTR process output. The sum of squared errors is 1.2019, calculated using 

∑ −
i

iyiy 2))(ˆ)(( , which is 0.5% of the sum of squares output. )(iy  is the real process 

output data used for identification, and )(ˆ iy  is the prediction of the identified model for 

the same input. 

 

3.5.3 State-affine models of the CSTR 
 

Using the algorithm described in section 3.4.2, a state-affine model given by equation 

(3.4) will be generated for the process CSTR, using the Volterra kernels obtained in the 

previous section.  
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3.5.3.1 Behavior matrix of 1st-order Volterra kernels  

 

Initially, to simplify the explanation of the procedure, only the 1st-order Volterra kernels 

are considered. The 1st-order Volterra kernels with corresponding values given in Table 

3.2 and the corresponding Behavior matrix terms are shown in Table 3.3. 

 

Table 3.3 1st-order Volterra kernels and corresponding Behavior matrix entries 

Volterra kernel Values Behavior matrix entry 

1h  0.4566 10a  
2h  0.2837 100a

3h  0.0919 1000a

4h  0.0361 10000a

5h  0.0105 100000a

6h  0.0021 1000000a

7h  0.0012 10000000a

8h  0.0006 100000000a

9h  -0.0008 1000000000a
 

It should be noticed that, since there are no 2nd–order or higher order entries in the 

Behavior matrix when only 1st-order Volterra kernels are considered, there will be many 

rows and columns of zeros. It is possible to remove these rows and columns without 

affecting the state-affine modeling algorithm. A Behavior matrix with the rows and 

columns of zeros removed is therefore: 
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)(

aaaaa
aaaaa
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fB  

(3.23)

 

The indices of the rows of this reduced Behavior matrix, corresponding to the column 

indices of αβa , i.e., β , are as follows: 
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}00000,0000,000,00,0{][ =+J  (3.24) 

 

and the indices of the columns of this reduced Behavior matrix, corresponding to the row 

indices of αβa , i.e., α , are as follows: 

 

}10000,1000,100,10,1{][ =+J  (3.25) 

 

State-affine models can now be found recursively using the algorithm described in 

section 3.4.2 and illustrated in the sequel for the 1st-order Volterra case, using the data 

given in Table 3.3. 

 

1. Take a 11×  nonzero sub-matrix of )( fB : 

 

0,14566.0 11
1)(

10 ==⎯⎯⎯ →⎯== = βαφφ ranka  (3.26) 

 

Obviously since 4566.010 =a  is nonzero, the matrix φ  is full rank. By substitution of the 

values from Table 3.3, the state-affine model coefficients are as follows: 
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2. To find the model with dimension 2, one row is added to φ  and the rank of the matrix 

is computed. In this example,  
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(3.29) 

 

Again the following state-affine model is found: 
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(3.30) 
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(3.31) 

 

3. As a final illustration, two more rows are added to the above φ : 
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which is a full rank matrix as follows, after the substitution of the values of the Volterra 

kernels: 
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The matrix 0φ  is as follows: 
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(3.34) 

 

and the obtained state-affine model is as follows: 
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(3.35) 

 

3.5.3.2 Behavior matrix of all Volterra kernels  

 

For brevity, part of the Volterra kernels and their corresponding Behavior matrix entries 

are shown in Table 3.4. The other entries are generated based on the same principles. The 

resulting Behavior matrix with the rows and columns of zeros removed is as follows: 
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(3.36)

 

The Behavior matrix can also be written with the original Volterra kernels as follows: 
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Table 3.4 Volterra kernels and corresponding Behavior matrix entries 

Volterra kernels Values Behavior matrix entries 

11h  0.0782 20a  

13h  -0.0367 1010a  

23h  -0.0026 1100a  

29h  0.0013 1000000100a  

44h  0.0004 20000a  

 

Based on the same procedures shown in section 3.5.3.1 using the 1st-order Volterra 

kernels, the state-affine model dimension, i.e., the dimension of the iF  matrices, was 

obtained, such that the state-affine model with this dimension will exhibit the minimum 

sum of squared errors. Simulation results show that dimension 3 is the optimal dimension 

of the model, and this means that only those Volterra kernels that make up the upper-left 

33×  sub-matrix of the Behavior matrix are used to produce the state-affine model. Since 

all of the Volterra kernels are contributing to approximate the CSTR system behavior, 

partial use of the kernels will result in increasing modeling error for the resulting state-

affine model.  
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3.5.3.3 Simulation of the state-affine model 

 

The resulting state-affine model is of dimension 3, with the matrices given by equation 

(3.39).  
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Simulation of this state-affine model is shown in Figure 3.5, and compared to the real 

CSTR process output. The sum of squared errors of the simulation is 2.8066, which is 1% 

of the sum of squares output. Results were generated using MATALB.  
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Figure 3.5 CSTR process output (solid line) and state-affine model output (dotted line) 
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Based on the discussion in section 3.2, the uncertainty of this state-affine model is 1st-

order, and shown as follows: 

 

)(,1 tut =δ  (3.40) 

 

Using the above uncertainty expression, equation (3.38) is rewritten as follows: 

 

)()(
)(}{)(){)1(

0

,121,110

tty
tutt tt

xH
GGxFFx

=

+++=+ δδ
 

(3.41) 

 

This model will be used in later chapters of this work for robustness analysis and design. 

The uncertain parameter is quantified based on the bounds of the manipulated variable. In 

section 3.5.2, it has been discussed that the input variable is in the range of [-1,1], and 

this can also be seen from Figure 3.3. As a result, the uncertain parameter is quantified as 

follows: 

 

[ ] ]1,1[11)( ,1 −∈→−∈ ttu δ  (3.42) 

 

If this model uncertain parameter is the only uncertainty in the system, the two vertices of 

the parameter box W  are as follows: 

 

]}1,1[:){(: 11 −∈= ωωW  (3.43) 
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4 Robust Stability and Robust Performance Analysis 
 

Control systems are often designed based on a simplified model of the physical plant that 

often does not take into account complex behaviors such as nonlinear and high order 

dynamics. The difference between the simplified model and the real process is model 

uncertainty. A robustness analysis is necessary to validate the design and obtain 

guarantees of the stability and performance in the face of model uncertainty. In this 

chapter, two approaches are introduced and compared, with respect to the analysis of 

robust stability (RS) and robust performance (RP) of the system.  

 

First, RS and RP tests based on quadratic Lyapunov functions and their LMIs 

formulations will be presented. The theory of LMIs is introduced in detail and three 

generic LMIs problems are reviewed. RS and RP conditions specific for our problem are 

formulated based on fixed-parameter Lyapunov functions, and then on parameter-

dependent Lyapunov functions. Under the affine parameter-dependence assumption of 

the parameter-dependent systems introduced in the previous chapter, these conditions are 

all reduced to a finite set of LMIs, which can be solved using one of the three generic 

LMIs algorithms. Different approaches have been investigated to reduce the conservatism 

of the analysis towards more reliable designs. The key novelty of this part of the work is 

that a set of gain-scheduled PI controller and MPC controller design problems have been 

formulated based on the robustness conditions proposed in this chapter. These 

formulations are further explained in details in Chapter 5 and 6.  

 

Second, RS and RP tests based on the extensions of structured singular values (SSV) will 

be reviewed for nonlinear and/or time-varying uncertainty. SSV analysis investigates the 

robust stability and performance of systems with linear time-invariant linear-fractional 

uncertainty. It is also applicable to parameter-dependent systems based on an equivalent 

linear fractional transformation (LFT) representation. The procedure to partition a system 

model into an equivalent LFT is required before the application of SSV approach. Gain-

scheduled PI controller design problems will be formulated using the RS and RP 

conditions in Chapter 5.   
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Finally, the two approaches, i.e., the quadratic Lyapunov approach and the approach 

based on the extensions of SSV, are compared. 

 

This chapter is organized as follows. In section 4.1, the background knowledge related 

with the LMIs theory and the LMIs techniques used in this work is summarized for 

reference. Section 4.2 presents conditions of quadratic stability and performance based on 

Lyapunov’s direct method, and their corresponding LMIs formulation. In section 4.3, to 

reduce the conservatism of the analysis developed in section 4.2, parameter-dependent 

Lyapunov functions are introduced, and LMIs-based robust stability and performance 

tests are formulated. Section 4.4 reviews the SSV analysis and proposes the RS and RP 

conditions for time-varying uncertainty. In section 4.5, the comparison of the SSV 

approach with the quadratic Lyapunov approach is presented.  

 

4.1 Linear Matrix Inequalities (LMIs) 
 

4.1.1 LMIs and LMIs problems  
 

A linear matrix inequality (LMI) is any expression of the form  

 

0AAAxA <+++= NNxx K110:)(  (4.1) 

 

where 

 

• [ ]Nxx K1=x  is a vector of unknown scalars, also referred to as the decision 

or the optimization variables. 

• NAA ,,0 K  are given symmetric matrices. 

• The inequality is negative definite, i.e., the largest eigenvalue of )(xA  is negative, 

or 0ηxAη <)(T  for all nonzero Nℜ∈η .  
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Although the form of LMIs given by equation (4.1) may seem to be restrictive, it can 

represent a wide variety of constraints on x . It should be noted that the constraints 

0xA >)(  and )()( xBxA <  are special cases of equation (4.1), since they can be 

rewritten as 0xA <− )(  and 0xBxA <− )()( , respectively.  

 

The LMIs in equation (4.1) is a convex constraint on x  since 

0
2

zyA0zA0yA <
+

⇒<< )()(,)( . As a result,  

 

• its solution set, called the feasible set, is a convex subset of  Nℜ ; 

 

• finding a solution x  to equation (4.1), if any such solution exists, it is a convex 

optimization problem. 

 

Convexity has an important consequence: even though equation (4.1) has no analytical 

solution in general, it can be solved numerically with guarantees of finding a solution 

when one exists. A system of LMIs constraints can be regarded as a single LMI since 
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where ))(,),(( 1 xAxA Kdiag K  denotes a block-diagonal matrix with )(,),(1 xAxA KK  on 

its diagonal. Hence multiple LMIs constraints can be imposed on the vector of decision 

variables x  while preserving convexity.  

 

In most control applications, LMIs do not naturally arise in the canonical form given by 

equation (4.1), but rather in the following form: 

 

),,(),,( 11 nn XXRXXL KK <   
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where )(),( ⋅⋅ RL  are affine functions of some structured matrix variables nXX ,,1 K . A 

simple example is the Lyapunov inequality: 

 

0XXAA <−T   

  

where the unknown X  is a symmetric matrix. Defining Nxx K1  as the independent 

scalar entries of X , these LMIs could be rewritten in the form of equation (4.1). 

Expressing LMIs in a condensed form as follows: 0xA <)( , in addition to saving 

notation, may lead to more convenient and efficient computation. This natural form 

0xA <)(  is the approach taken in this work.   

 

The three generic problems that can be formulated in terms of LMIs are as follows: 

 

1. Feasibility problem (FEASP in MATLAB). Finding a solution to the LMIs system  

 

0xA <)(  (4.2) 

       

is called the feasibility problem. 

 

2. The eigenvalue problem. The eigenvalue problem is to minimize the maximum 

eigenvalue of a matrix that depends affinely on a variable, subject to an LMIs constraint, 

i.e., 

 

0xB0xAI ><− )(,)(λλ tosubjectMinimize  (4.3) 

 

where BA,  are symmetric matrices that depend affinely on the optimization variable x . 

This is also a convex optimization problem. Eigenvalue problems can appear in the 

equivalent form of minimizing a linear function (MINCX in MATLAB) subject to an 

LMIs, as follows:  
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0xAxc <)(tosubjectMinimize T  (4.4) 

 

3. Generalized eigenvalue minimization problem (GEVP in MATLAB). The GEVP is to 

minimize the maximum generalized eigenvalue of a pair of matrices that depend affinely 

on a variable, subject to a LMIs constraint. The general form of a GEVP is: 

  

0xC0xB0xAxB >>>− )(,)(,)()(λλ tosubjectMinimize  (4.5) 

 

where CBA ,,  are symmetric matrices that are affine functions of the optimization 

variable x . This problem can also be expressed as follows:  

 

0xC0xBxBxA >> )(,)())(),((max tosubjectMinimize λ (4.6) 

 

where ))(),((max xBxAλ  denotes the largest generalized eigenvalue of 

0xB0xAxB >>− )(,)()( withλ .  

 

4.1.2 Well-posedness issues 
 

The LMIs solvers included in the MATLAB LMIs Toolbox to solve the three generic 

LMIs problems listed above are based on the interior-point optimization techniques. To 

compute a feasible solution for these problems, such techniques require that the system of 

LMIs constraints be strictly feasible, i.e., that the feasible set have a nonempty interior 

(Boyd and et al., 1994). As a result, the solvers may encounter difficulty when the LMIs 

constraints are feasible but not strictly feasible. That is, feasible solutions exist for the 

LMIs of the following form: 

 

0xL ≤)(thatsuchxFind  (4.7) 

 

while no feasible solutions exist for the following strict LMIs: 
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0xL <)(thatsuchxFind  (4.8) 

 

According to MATLAB LMIs Toolbox manual (Gahinet, Nemirovski and et al., 1995), 

for feasibility problems, this difficulty is automatically circumvented by the Toolbox 

function FEASP by reformulating the problem given by equation (4.7) as follows: 

 

IxL ×< ttosubjecttMinimize )(  (4.9) 

 

In this modified problem, the LMIs constraint is always strictly feasible in tx,  and the 

original LMIs given by equation (4.7) is feasible if and only if the global minimum mint  

of equation (4.9) satisfies   

 

0min ≤t  (4.10) 

 

For feasible but not strictly feasible problems, however, the computational effort is 

typically higher as the FEASP function strives to approach the global optimum 

corresponding to 0min =t  to a high accuracy. 

 

For the LMIs problems addressed by the LMIs Toolbox functions MINCX and GEVP, 

non-strict feasibility generally causes the solvers to fail and to return an “infeasibility” 

diagnosis. Although there is no universal remedy for this difficulty, it is sometimes 

possible to eliminate underlying algebraic constraints to obtain a strictly feasible problem 

with fewer variables. Boyd and et al. (1994) have given an algorithm of reducing a set of 

feasible non-strict LMIs to a set of strictly feasible LMIs.  

 

4.1.3 Semi-definite )(xB  in GEVP problems  

 

Consider the generalized eigenvalue minimization problem 

 

0xC0xB0xAxB >>>− )(,)(,)()(λλ tosubjectMinimize  (4.5) 
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Technically, the positivity of )(xB  for some Nℜ∈x  is required for the well-posedness of 

the LMIs problem and the applicability of the interior-point methods. Hence, problems 

with the following )(xB : 

 

feasiblestrictlywith )(,
)(

)( 1
1 xB

00
0xB

xB ⎥
⎦

⎤
⎢
⎣

⎡
=  

(4.11) 

 
can not be directly solved with the GEVP function in MATALB because of the additional 

zero eigenvalues in )(xB . A simple remedy consists of replacing the following 

constraints given by equation (4.12) by the ones given by equation (4.13): 

 

0xC0xB0xAxB >>>− )(,)(,)()(λ  (4.12) 

 

0xBxBY
00
0Y

xA ><⎥
⎦

⎤
⎢
⎣

⎡
< )(),(,)( 11λ  

(4.13) 

 

where Y  is an additional symmetric variable of proper dimension. The resulting problem 

is now equivalent to equation (4.5) and can be solved directly with the GEVP function in 

MATLAB.  

 

4.2 Quadratic Lyapunov Functions 
 

Lyapunov stability theory is based on two methods: the linearization method and the 

direct method, which are briefly introduced in the following. 

 

The Lyapunov’s linearization method is concerned with the local stability of a nonlinear 

system. It is a formalization of the intuitive argument that a nonlinear system should 

behave similarly to its linearized approximation within a small neighbourhood of an 

equilibrium point. Because all physical systems are inherently nonlinear, the Lyapunov’s 
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linearization method serves as the fundamental justification for using linear control 

techniques for the local analysis of nonlinear processes. The Lyapunov’s linearization 

theorem states the following (Slotine and Li, 1991) 

 

• If linearized the system is strictly stable, i.e., if all the eigenvalues of the closed-loop 

matrix are strictly inside the unit circle, then the equilibrium point is asymptotically 

stable for the actual nonlinear system. 

 

• If linearized the system is unstable, i.e., if at least one eigenvalue of the closed-loop 

matrix is outside of the unit circle, then the equilibrium point is unstable for the actual 

nonlinear system. 

 

• If linearized the system is marginally stable, i.e., if all the eigenvalues of the closed-

loop matrix are inside the unit circle, but at least one of them is on the unit circle, then a 

conclusion regarding stability for the actual nonlinear system can not be established from 

the linear approximation. Thus, the equilibrium point may be stable, asymptotically stable 

or unstable for the actual nonlinear system. 

 

The Lyapunov’s linearization theorem shows that the linear control design is a matter of 

consistency, i.e., the control system must be designed such as the system output and input 

remain within a small neighborhood of the nominal operating point, justifying the linear 

approximation. It also raises major questions regarding the limitations of linear design, 

i.e., how large are the linear ranges? what is the extent of the stability range? These 

questions motivate a more fundamental approach to the nonlinear control problem, the 

Lyapunov’s direct method.  

 

The Lyapunov’s direct method is the mathematical extension of the energy conservation 

concepts associated with a mechanical system: the motion of a mechanical system is 

stable if its total mechanical energy decreases all the time. The basic procedure of this 

direct method is to construct a scalar energy-like function, referred to as the Lyapunov 
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function, for the dynamic system, and to examine the time-variation of this scalar 

function as time progresses.  

 

However, there is no systematic way of finding Lyapunov functions for nonlinear 

systems that will result in the least conservative designs. This is a fundamental drawback 

of the direct method. Slotine and Li (1991) have discussed a number of techniques which 

can facilitate the search for appropriate Lyapunov functions. They showed that Lyapunov 

functions can be systematically found to describe stable linear systems. Given a linear 

time-invariant system of the form )()1( tt Aηη =+ , a quadratic Lyapunov function is 

defined to have the following form: 

 

)()()( tttV T Pηη=  (4.14) 

 

This has been proposed for the stability analysis, where P  is a symmetric positive-

definite matrix, usually called Lyapunov matrix. The Lyapunov’s direct method to assess 

the global stability of a system states the following (Slotine and Li, 1991): 

 

• Assume that there exists a scalar function V  of the state η , with continuous first-

order derivatives such that  

 

• )()()( tttV T Pηη=  is positive-definite; 

• 0)()1( <−+ tVtV  

• ∞→∞→ )()( tastV η  

 

Then the equilibrium at the origin is globally asymptotically stable. 

 

Stability analysis based on the quadratic Lyapunov function given above is usually 

referred to as quadratic Lyapunov stability. This quadratic Lyapunov function and 

quadratic stability analysis are fundamental to the present work, and they are applied to 

nonlinear time-varying systems with proper modifications.   



 64

 

In this work, the following system is considered 
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)(
)()(

)(
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ηη

η
DC
BδAη
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⎥
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⎦

⎤
⎢
⎣

⎡
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⎦

⎤
⎢
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⎡ +
t
t

te
t t

ν  

(4.15) 

 

where n
nt R∈= ),,,( 21 δδδ Lδ  is a vector of uncertain and time-varying real parameters.  

 

Throughout this work, the following assumptions are made: 

 

1. Each parameter ti,δ  is real and ranges between known extreme values iδ  and iδ  as 

follows: 

 

],[, iiti δδδ ∈  (4.16) 

 

2. The state matrix )( tδA  depends affinely on the parameters as follows: 

 

tnnttt δδδ ,,22,110)( AAAAδA +++= K  (4.17) 

 

where nAAA L,, 10  are known fixed matrices. This dependence is referred to as affine 

parametric dependence. 

 

The first assumption means that the parameter vector tδ  is valued in a hyper-rectangle 

called the parameter box. In the sequel, W  denotes the n2  vertices or corners of this 

parameter box as follows: 

 

}},{:),,,{(: 21 iiin δδωωωω ∈= LW  (4.18) 
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The second assumption above is introduced for technical and simplicity reasons. Several 

extensions of this approach to more complex parameter dependences are also possible. 

Though somewhat restrictive, the state matrix form given by equation (4.17) still coves a 

wide variety of relevant problems.  

 

4.2.1 Quadratic Lyapunov stability (QLS) 
 

Given a control system, the most important question is whether it is stable. Every control 

system, whether linear or nonlinear, involves a stability problem which should be 

addressed. The approach in this work is built upon quadratic Lyapunov stability, and the 

details are reviewed now. 

 

Definition 4.1 (Quadratic Lyapunov Stability, QLS, Gahinet and et al., 1994) For 

systems defined by (4.15), a sufficient condition for asymptotic stability is the existence of 

a positive-definite quadratic Lyapunov function )()()( tttV T Pηη= , 

0)( >tV , TPP0P => ,  such that 

 

0)()1( <−+ tVtV  (4.19) 

 

for all admissible uncertainties tδ  and for all initial conditions 0η .  

 

It should be noted that 0xPδPAδAx <−⇔<−+ ))()((0)()1( t
T

t
TtVtV , so the 

condition given by equation (4.19) is equivalent to equation (4.20) for all admissible 

values and trajectories of the parameter vector tδ . 

 

0PδPAδA <−)()( t
T

t  (4.20) 
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Assessing quadratic stability is not tractable in general since equation (4.20) places an 

infinite number of constraints on P . However, equation (4.20) can be reduced to a finite 

set of LMIs constraints for the following two cases,  

 

1. )( tδA  ranges in a fixed polytope of matrices as follows:  

 

10
)( 11

=>

++=

∑
i

ii

KKt

qq
qq AAδA K

 
(4.21) 

 

This is referred to as a polytopic model. 

 

2. )( tδA  is a fixed affine function of some uncertainty time-varying parameters 

n
nt R∈= ),,,( 21 δδδ Lδ  as follows: 

 

tnnttt δδδ ,,22,110)( AAAAδA +++= K  (4.17) 

 

This is referred to as an affine parameter-dependent model. 

 

The first case corresponds to time-varying systems modeled by an envelope of linear 

time-invariant systems, and the second case corresponds to systems whose state-space 

equations depend affinely on time-varying parameters, i.e., parameter-dependent systems. 

The details of these systems have been summarized in section 3.2.1. Budman and Knapp 

(2001) obtained a finite set of LMIs for the first case. In this work, the specific problem 

under study can be formulated in the form of the second case, and as a result, the 

conditions of QLS can be reduced to a finite set of LMIs. This result is summarized in the 

following theorem.  

 

Theorem 4.1 Let n
tnttt R∈= ),,,( ,,2,1 δδδ Lδ  be a vector of time-varying uncertain real 

parameters varying in the hyper-rectangle defined by (4.18) and let W  denote the set of  
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vertices of this hyper-rectangle. Consider the time-varying system (4.15) where )( tδA  

depends affinely on tδ  according to equation (4.17). 

 

The system (4.15) satisfies QLS if there exists TPP0P => ,  such that 

 

W0PPAA ∈<− ωωω allforT ,)()(  (4.22) 

 

In other words, it suffices that P  be positive-definite and satisfy the LMIs at each corner 

iω  of the parameter box. This reformulation has the merit of reducing the problem with 

infinitely many constraints to a finite set of matrix inequalities. The resulting LMIs given 

by equation (4.22) are then solved numerically with existing LMIs software, e.g., 

MATLAB LMIs Toolbox. This test can be extended to quadratic Lyapunov ∞H  

performance assessment as explained in the following section (Gao and Budman, 2003). 

 

4.2.2 Quadratic Lyapunov ∞H  performance (QLP) 

 

A way to measure performance is required before a controller which achieves nominal or 

robust performance can be designed. In robust control theory, the 2l -norm, which is 

related to the energy of the signal, is usually used. For vector signals )(te , this norm is 

defined to be: 

 

∑
∞

=

=
0

)()(
2

t

T
l

tt eee  
(4.23) 

 

For simplicity, it is usually written as e . The operator norm induced by the 2l -norm is 

the ∞H -norm , and it is defined as follows: 
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(4.24) 

 

where G  is a proper stable transfer-function.  

 

Definition 4.2 (Quadratic Lyapunov ∞H  Performance, QLP, Gahinet and et al., 1994) 

The system (4.15) with zero initial state satisfies QLS and  

 

22 ll
ve γ<  (4.25) 

 

for all 2l -bounded input ν  if there exists TPP0P => ,  and a positive-definite  quadratic 

Lyapunov function )()()( tttV T Pηη= , 0)( >tV , such that 

 

0)()()()()()1( 2 <−+−+ tvtvtetetVtV TT γ  (4.26) 

 

for all admissible uncertainties tδ  and for zero initial conditions 0η .  

 

For zero initial states, equation (4.25) follows from the summation of equation (4.26) 

over an infinite period of time. Inequality (4.26) is true iff equation (4.27) holds for all 

admissible values and trajectories of the parameter vector tδ  according to the following 

Theorem 4.2. 
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Assessing quadratic Lyapunov ∞H  performance is not tractable in general since (4.27) 

places an infinite number of constraints on P . Under the affine dependence assumption 
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give by equation (4.17), Gao and Budman (2003) have proposed the following theorem to 

show that equation (4.27) holds iff P  satisfies a specific system of LMIs. 

 

Theorem 4.2 Consider the stable time-varying system (4.15) where tδ , )( tδA  and W  

are defined the same as in Theorem 4.1. A sufficient condition for QLP of this system is 

the existence of TPP0P => ,  such that 
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(4.28) 

 

Proof of Theorem 4.2: For a stable system with zero initial states, the summation of 

equation (4.26) over an infinite period of time gives the following: 
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(4.29) 

 

This explains Definition 4.2. To prove Theorem 4.2, consider the time-varying system 

given by equation (4.15), where tδ , )( tδA , W  are defined the same as in Theorem 4.2. 

Inequality (4.26) can be expanded using equation (4.15) and the definition of the 

quadratic Lyapunov function given by equation (4.14), as follows: 
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Which can be rewritten in a matrix form as follows: 
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The function in inequality (4.31) is quadratic with respect to all the uncertain parameters 

st 'δ , which under the assumption given by equation (4.16), are all valued in a convex 

parameter box. Also, the coefficient of the quadratic terms can be easily shown to be 

positive. Thus, if the inequality (4.31) is proven at the vertices of the parameter box, it 

will also be satisfied for any uncertain parameter combination within the box. As a result, 

and also under the parameter-affine dependence assumption by equation (4.17), equations 

(4.30) and (4.31) hold iff: 
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This is true iff the symmetric positive-definite matrix P  satisfies the system of LMIs: 

 

W0
IDC

DIPBBPAB
CPBAPPAA

∈<
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
ωγω

ωωω
allforTTT

TTT

,)(
)()()(

2

(4.28) 

     

Thus, Theorem 4.2 is proved. 

 

Inequality (4.28) can be solved as a feasibility problem (FEASP) for a pre-specified γ , or 

as a generalized eigenvalue problem (GEVP), to minimize the performance index γ . The 
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minimization of γ  guarantees that 
2l

v  will have the least possible effect on 
2l

e . It is 

clear that equation (4.28) falls into the standard form of a GEVP (Boyd and et al., 1994) 

problem if it is rewritten in the following alternative form: 
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(4.33)

 

4.3 Parameter-dependent Lyapunov Functions 
 

Quadratic stability guarantees stability against arbitrarily fast parameter variations. As a 

result, the QLS and QLP conditions based on quadratic Lyapunov functions given in the 

previous section can be unnecessarily conservative for constant or slowly-varying 

parameters. To reduce conservatism in such cases, the notion of parameter-dependent 

Lyapunov functions, proposed by Gahinet, Apkarian and Chilali (1994) for continuous 

systems, is further developed in this work for discrete systems. The quadratic parameter-

dependent Lyapunov function is given as follows: 

 

)()()()( tttV t
T ηδPη=  (4.34) 

 

where the Lyapunov weighting matrix )( tδP  is no longer constant, but it is now a 

function of tδ  in the following form: 

 

tnnttt ,,22,110)( δδδ PPPPδP ++++= L  (4.35) 

 

where sti ',δ  are parameters relevant to the system under study. Such affine parameter-

dependent Lyapunov functions are central to our approach. In the present work, it will be 
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shown that by imposing additional constraints on the parameter-dependent Lyapunov 

functions, the calculation of the parameter-dependent Lyapunov matrix of the form can 

be formulated into a LMIs problem for the unknown matrices nPPPP L,,, 210 . The 

resulting test is therefore numerically tractable while always less conservative than 

quadratic tests based on fixed Lyapunov functions because of the additional variables 

available for optimization. Note that the usual quadratic Lyapunov stability corresponds 

to the special case where 0PPP ==== nL21 . The use of the function (4.34) suggests a 

natural extension of quadratic stability and performance, described by the definitions 

shown below. 

 

Definition 4.3 (Affine Quadratic Lyapunov Stability, AQLS, Gahinet and et al., 1994) 

For systems defined by (4.15), a sufficient condition for asymptotic stability is the 

existence of 1+n  symmetric matrices nPPPP L,,, 210  such that 

 

0PPPPδP >++++= tnnttt ,,22,110)( δδδ L  (4.36) 

 

0δPδAδPδA <−+ )()()()( 1 ttt
T

t  (4.37) 

 

for all admissible values and trajectories of the uncertainties tδ  and for all initial 

conditions 0η .  

 

Definition 4.4 (Affine Quadratic Lyapunov ∞H  Performance, AQLP, Gahinet and et al., 

1994) The system (4.15) with zero initial state satisfies AQLP if there exist 

1+n symmetric matrices nPPPP L,,, 210  such that 

 

0PPPPδP >++++= tnnttt ,,22,110)( δδδ L  (4.36) 
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for all admissible values and trajectories of the uncertainties tδ  and for zero initial 

conditions 0η .  

 

From these definitions, affine quadratic stability and quadratic Lyapunov ∞H  

performance amount to finding the 1+n  symmetric matrices nPPPP L,,, 210  that satisfy 

equations (4.37) and (4.38). In the next section, this task will be discussed first in the 

general case of time-varying uncertain parameter, and then for the simpler special case of 

constant uncertain parameters. 

 

It should be noted that even when )(),( tt δPδA  are affine in tδ , it is no longer sufficient 

to check equations (4.36) and (4.37) for AQLS or equations (4.36) and (4.38) for AQLP, 

at the corners of the parameter box. The conditions (4.37) and (4.38) are no longer 

quadratic with respect to the uncertain parameters sti ',δ , because the term 

)()()( 1 tt
T

t δAδPδA +  leads to 3rd-order terms of sti ',δ . Consequently, checking the 

conditions at the vertices of the parameter box will not guarantee that the conditions are 

satisfied as well inside the box. However, convexity can be guaranteed by imposing a 

convexity requirement (Budman and Knapp 2000; Gahinet, Apkarian and Chilali, 1994), 

which relies on the concept of convexity along each direction ti,δ  of the parameter space. 

To recover convexity, an additional constraint must be introduced on )( tδP . Obviously, 

this constraint restricts the choice of affine Lyapunov matrix )( tδP , and therefore may 

lead to conservatism. However, the use of the rate of variation in parameters will be 

helpful to compensate for the increased conservatism. This convexity condition is 

detailed in the following section. 
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4.3.1 Time-varying uncertain parameters 
 

In this section, the case of time-varying parameters tδ  with a bounded rate of variation is 

considered. To handle the time-varying case with less conservatism when the knowledge 

of parameter variation is available, the following set of rate of changes 
n

tnttt R∈∆∆∆=∆ ),,,( ,,2,1 δδδ Lδ  are considered as additional time-varying uncertain 

parameters in the design. As shown below, this more general case can be handled by 

extensions of Theorem 4.1 and Theorem 4.2 and the resulting LMIs conditions become 

less conservative than the previous quadratic Lyapunov tests. Throughout the section, the 

following two assumptions are made: 

 

1.The rate of variation tδ∆  is well defined at all time-intervals; 

2. tδ∆  satisfies 

 

tititi ,1,, δδδ −=∆ + , [ ]iiti ννδ ∈∆ ,   (4.39) 

 

where ii νν ,  are a priori known lower and upper bounds on this rate of variation. 

Practically, these bounds are set during the process design stage due to the process 

limitations and operation specifications.   

 

As a whole, the vector tδ∆  evolves in a n -dimensional hyper-rectangle whose vertices 

are given in the set:  

 

}},{:),,,{(: 21 iiin ννττττ ∈= LS  (4.40) 

 

For )( tδP  of the form given by equation (4.36):  

 

)()()( 1 ttt δPδPδP ∆+=+  (4.41) 
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The results of Theorem 4.1 and Theorem 4.2 can then be generalized to the parameter-

dependent cases as follows. 

 

3.5.3.4 Affine quadratic Lyapunov stability (AQLS) 

 

Theorem 4.3 Consider the time-varying system (4.15) where tδ , )( tδA  and W  are 

defined the same as in Theorem 4.1, tδ∆  and S  are defined according to equations  

(4.39) and (4.40). A sufficient condition for AQLS of this system is the existence of 1+n  

symmetric matrices nPPPP L,,, 210  such that 

 

W0P ∈> ωω allfor,)(  (4.42) 
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Proof of Theorem 4.3:  First note that the positivity constraint given by equation (4.36) 

is affine in tδ . Consequently, equation (4.36) holds for all tδ  in the parameter box if it 

holds at all corners, which is exactly the condition given by equation (4.42). Hence, the 

only difficulty is to enforce equation (4.37) over the entire parameter box.  

 

Substitute the expressions given by equations (4.17) and (4.35) into the following 

condition: 

 

0δPδAδPδAδL <−= + )()()()()( 1 ttt
T

tt  (4.45) 
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For any nonzero vector λ , clearly λδLλδ )()( t
T

tf =  is a scalar function of the following 

form: 

 

λδLλδ )()( t
T

tf =  
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2
,

2
,,,, titjtititjtitit ff δδδδδδδ=δ  

(4.46) 

 

In general, the negative sign of )( tf δ  values at all corners of SW ×  does not guarantee 

its negativity over the entire parameter box. However, negativity is obtained when )( tf δ  

is convex in the sti ',δ . For a function with 3rd-order dependence with respect to sti ',δ , 

this is true when ni
f

ti
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)(
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 for all tδ  (Gahinet, Apkarian and Chilali, 1994). 
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 based on equations (4.45) and (4.46), the following 

condition is obtained: 
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(4.47) 

 

This condition of the convexity requirement leads to the additional condition (4.44) in 

Theorem 4.3.  

 

To conclude the proof, observe that equation (4.43) ensures the negativity of )( tf δ  at all 

corners of the parameter box. Consequently, for nonzero λ , 0)()( <= λδLλδ t
T

tf  holds 
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over the entire parameter box, from which, it can be concluded that 0δL <)( t  for all 

admissible tδ . 

 

To summarize, the additional constraint (4.44) reduces the problem of finding affine 

parameter-dependent Lyapunov matrices to a finite LMIs problem. Though somewhat 

restrictive, this still provides a significant additional number of degrees of freedom when 

compared to quadratic stability.  

 

3.5.3.5 Affine quadratic Lyapunov ∞H  performance (AQLP) 

 

Theorem 4.4 Consider the time-varying system (4.15) where tδ , )( tδA , W , tδ∆  and S  

are defined the same as in Theorem 4.3. A sufficient condition for AQLP of this system is 

the existence of 1+n  symmetric matrices nPPPP L,,, 210  such that 
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Proof of Theorem 4.4:  Similarly, the convexity requirement to enforce equation (4.38) 

over the entire range of the parameters is equivalent to the convexity condition given by 

equation (4.45) and is given as follows:  

 

0BδPδAδG <= + )()()( 1t
T

tt  (4.50) 

 

Follow similar algebraic steps as applied in the previous theorem, the following 

convexity condition is obtained:  
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Thus, the additional condition (4.49) in the Theorem 4.4 is the convexity requirement. 

 

4.3.2 Constant uncertain parameters 
 

In this section, the special case for which the uncertain parameters are assumed to be 

time-invariant and valued in the interval ],[, iiti δδδ ∈  is considered.  The set S   of the 

parameter variation bounds given by equation (4.40) then reduces to the zero element, 

and hence, 0)(,0 == ττ P  for all S∈τ  in Theorems 4.3 and 4.3. Consequently, in case 

of constant parameters, the conditions (4.37) and (4.38) reduce to the following 

inequalities: 
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The following theorems are the corresponding simplifications of Theorems 4.3 and 4.4 

respectively and apply to the case of constant uncertain parameters. 

 

Theorem 4.5 Consider the time-varying system (4.15) where tδ , )( tδA , W  and tδ∆  

are defined the same as in Theorem 4.3, except that tδ  is a vector of time-invariant but 

uncertain parameters. A sufficient condition for AQLS of this system is the existence of 

1+n  symmetric matrices nPPPP L,,, 210  such that 

 

W0P ∈> ωω allfor,)(  (4.54) 
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Theorem 4.6 Consider the time-varying system (4.15) where tδ , )( tδA , W  and tδ∆  

are defined the same as in Theorem 4.5. A sufficient condition for AQLP of this system is 

the existence of 1+n  symmetric matrices nPPPP L,,, 210  such that 

 

W0P ∈> ωω allfor,)(  (4.54) 
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Theorem 4.3, Theorem 4.4, Theorem 4.5, and Theorem 4.6 provide valuable 

representations for both the case of time-varying uncertain parameters and constant 

uncertain parameters. Specifically, the conditions given by Theorem 4.3 and Theorem 4.4, 

are equivalent to Theorem 4.5 and Theorem 4.6 for the case of constant uncertain 

parameters.  

 

Finally, it should be noted that in the face of real time-varying parameters with bounded 

rate of variations, the sufficient conditions of Theorem 4.3 and Theorem 4.4 are always 

less conservative than the QLS and QLP tests of  Theorem 4.1 and Theorem 4.2, because 

more variables are available for optimization. The reduction of conservatism will be 

clearly illustrated in Chapter 5 for the case studies.  

 

4.4 SSV Analysis  
 

The structured singular value for linear systems is also referred to in the literature as µ . 

This section will review the µ -based methods for analyzing the robust stability and 

performance properties of uncertain linear feedback systems, and then introduce some 

powerful extensions of this theory for nonlinear time-varying systems.  
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For simple unstructured uncertainty, robust stability leads naturally to a 
∞
⋅  test. The 

∞
⋅  

norm, related to the largest singular value of an operator, thus provides a single norm 

which handles both the nominal performance and robust stability problems. 

Unfortunately, norm bounds are inadequate for dealing with more realistic models of 

process uncertainty with structure. Then, more complicated mathematical objects 

involving µ , are required. This leads to a robust stability test of the form 1)( ≤⋅
∞

µ  

(Doyle and Packard, 1987). Obviously, it would be desirable to treat performance with 

both disturbance and uncertainties occurring simultaneously. This also leads to tests using 

µ . Thus µ  emerges as an essential analysis tool in dealing with robust performance as 

well as with structured uncertainties.  

 

4.4.1 Review of the SSV concept  
 

The mathematical properties and computation of µ  are first reviewed in the sequel for 

the case of complex perturbations. Here µ  is viewed as a natural generalization of both 

spectral radius and spectral norm, and this viewpoint leads to useful characterizations of 

µ  in terms of these more familiar quantities. One consequence is that estimates for µ  

can be obtained by scaling of ordinary singular values. 

 

The structured singular value is useful to assess the robust stability and robust 

performance of systems represented by linear fractional interconnections, presented 

schematically in Figure 3.1 and Figure 4.1. This class of models has been introduced in 

section 3.3 and shown in Figure 3.1 for robust stability. It is shown in this section for 

robust performance and an additional uncertainty block RP∆  is added for this purpose. In 

this generic model, the linear time-invariant (LTI) system nn×∈CM  represents all the 

known LTI components including the controller, the nominal models of the systems, 

sensors, and actuators. The input vector d  includes all external actions on the system, i.e., 

disturbance, noise and reference signal, and the vector e  consists of all output signals 

generated by the system. The uncertainty block ),,( 1 ndiag ∆∆= K∆ , which satisfies 
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1)(
_

≤∆ iσ , is a norm-bounded LTI uncertainty with some prescribed structure. σ  

denotes the maximum singular value of a matrix. ),,( 1 ndiag ∆∆= K∆  is characterized 

by the following aspects:  

 

• the dimensions of each block i∆  

• whether i∆  is a complex or real-values matrix 

• whether i∆  is a full matrix or a scalar matrix of the form Iii δ=∆  

 

Generally, the block nn×∈C∆  is defined as follows: 

 

},:],,,,,[{ 111
mjmj

jifrssr Cdiag ×∈∈= C∆∆∆II∆ δδδ KK  (4.59) 

 

Two nonnegative integers s  and f , represent the number of repeated scalar blocks and 

the number of full blocks of uncertainties respectively. This structure is generally 

problem-specific and it depends on the nature of the uncertainty and the performance 

objectives of the problem. Real uncertainties typically arise from uncertain coefficients in 

the models of the physical systems. The focus here is on complex uncertainties because 

the theory is far more developed for complex uncertainties than for real ones, and also the 

algorithms for real uncertainties suffer often from discontinuity problems (Barmish and et 

al, 1990). Therefore, most applications use only complex uncertainties that include the 

real ones and therefore produce bounds for the original real uncertainty problem.  

 

Let M  in Figure 3.1 and Figure 4.1 be partitioned as follows: 
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such that the block structure ∆  is compatible in size with 22M . Then, the linear fractional 

transformation (LFT) based operator, ),( ∆MFl  is defined as follows: 
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21
1

221211 )(),( MMIMMMF −∆−∆+=∆l  (4.61) 

 

 

Figure 4.1 General ∆−M  LFT framework 

 

From a system point of view, 11M  is the nominal map between d  and e , and ∆  affects 

the map in a known way, namely, through the additional matrices 222112 ,, MMM  and 

the formula lF . The subscript “ l ” in lF  pertains to the “lower” loop of M  which is 

closed by the uncertainty block ∆ . An analogous formula can be used to describe 

),( ∆MFu , which is the resulting matrix obtained by closing the “upper” loop of M . 

 

Formally, the SSV of nn×∈CM  with respect to the perturbation structure ∆ , is defined as 

 

}0)det(:)({min
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∆ MI
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∆
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(4.62) 

 

unless no ∆∈∆  makes )( ∆−MI  singular, then )(M∆µ =0. From this definition, 

)( ∆−MI  remains invertible as long as ∆∈∆  satisfies  

 

)(/1)( M∆<∆ µσ  (4.63) 
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i.e., as long as the size of ∆∈∆  does not exceed )(/1: M∆∆ = µK . The critical size ∆K  is 

called the well-posedness margin. For unstructured perturbation nn×∈C∆ , 

)()( M∆=∆ µσ . Thus )(M∆µ  extends the notion of maximum singular value to the case 

of structured perturbations. µ  is generally used as a frequency domain design tool, 

specifically, as a generalization of the σ  design tools. Maximum singular values σ  are 

useful for one full block of uncertainty, but are generally conservative when the 

uncertainty has structure, and the gap between µ  and σ  may be very large.  

 

With the above definitions of µ , robust stability and performance of the system in Figure 

3.1 and Figure 4.1 are given by the following theorems (Doyle and Packard, 1987). 

 

Theorem RS: Assume an uncertainty set ∆  is defined. The feedback system in Figure 3.1 

satisfies robust stability for stable ∆  and 1≤∆
∞

 , iff 

 

1)( 22 ≤
∞∆ Mµ  (4.64) 

 

where  

))((sup)( 2222 ωµµ
ω

jdef MM
∞∆  (4.65) 

 

Theorem RP: Assume an uncertainty set ∆  is defined. The feedback system in Figure 

4.1 satisfies robust performance for stable ),( ∆MFl  and 1),( ≤∆
∞

MFl , and for 

1≤∆
∞

 , iff 

 

1)( ≤
∞∆ Mµ  (4.66) 

 

In summary, the robust stability and performance conditions with structured uncertainty 

reduce to computing µ  for constant matrices )( ωjM , and then taking sup over all the 

ranges of frequencies ω . Unfortunately, definition (4.62) is not typically useful for 
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computing µ . )(M∆µ  can be easily calculated when ∆  belongs to either one of the 

following two extreme sets. 

 

• If }:{ C∈= δδI∆  ( nrfs === 1,0,1 ), then )()( MM ρµ =∆ . )(⋅ρ  denotes the 

spectral radius of a matrix, i.e., the largest absolute value of the matrix’s eigenvalues.  

 

• If nn×= C∆  ( nmfs === 1,1,0 ), then )()( MM σµ =∆ . 

 

For a general ∆  as in equation (4.59), nnC ×⊂⊂∈ C∆I }:{ δδ . From the definition of µ  

and the above two extreme cases, it can be concluded that )()()( MMM σµρ ≤≤ ∆ . 

These bounds can be refined by considering transformations on M  that do not affect 

)(M∆µ , but do affect ρ  and σ . To do this, define the following two subsets of nn×C : 
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(4.68) 

 

Therefore the bounds can be tightened as follows:  

 

)(inf)()(max 1−

∈∆∈ ∆∆

≤≤ DMDMQM
DDQQ
σµρ  (4.69) 

 

It is desirable to use both lower and upper bounds for µ  using equation (4.69), since the 

existing bounds nicely complement each other. The lower bound is always an equality 

(Doyle, 1982). Unfortunately, the quantity )(QMρ  can have multiple local maxima. 

Thus, a local search of this quantity cannot guarantee the finding of the true )(M∆µ , but 

can only yield a lower bound. The upper bound can be reformulated as a convex 

optimization problem because the function )( 1−DMDσ  is convex with respect to D , so 
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the global minimum can, in principle, be found. Unfortunately, the upper bound is not 

always equal to )(M∆µ . For block structures ∆  satisfying 32 ≤+ fs , the upper bound 

is always equal to )(M∆µ , and for block structures with 32 >+ fs , there exist matrices 

for which )(M∆µ  is less than the upper bound. 

 

It is important to realize that the frequency domain test, where D  is frequency-varying, 

only applies to linear and time-invariant perturbations. If the perturbations are time-

varying, such as the ones considered in this work, Doyle and Packard (1988) proposed 

the upper bound approaches based on constant matrix D  optimization. These conditions 

will be reviewed in the next section.  

 

Consider the class of matrices D , which commute with the perturbation block ∆  

according to equation (4.68). If D  and ∆  commute, then by definition: 

 

∆D∆D =⋅⋅ −1  (4.70) 

 

A list of appropriate ∆D −  commuting pairs is given in Table 4.1. If equation (4.70) 

holds, then it is possible to formulate less conservative robust stability and performance 

conditions than those proposed earlier in this section.  

 

Table 4.1 Commuting ∆D −  pairs 

∆  :complex D  

Time-invariant, full-block Frequency-varying, scalar-times-identity 

Time-invariant, scalar-times-identity Frequency-varying, full-block 

Time-varying, full-block Constant, scalar-times-identity 

Time-varying, scalar-times-identity Constant, full-block 

 

Theorem RSD: Assume an uncertainty set ∆  is defined. The feedback system in Figure 

3.1  satisfies robust stability for stable and time-varying ∆  and 1≤
∞

∆  , iff 
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1)(supinf 1
22 <−DDM

D
σ

ω
 (4.71) 

 

where D  is appropriately constructed as in Table 4.1.  

 

The D  scale which achieves or gets arbitrarily close to the infimum in equation (4.71) is 

referred to as the optimal D  scale. Absorbing the D  scale into the M  block yields the 

transformed M  matrix for the following robust performance condition. 

 

Theorem RPD: Assume an uncertainty set ∆  is defined. The feedback system in Figure 

4.1 satisfies robust performance for stable ),( ∆MFu  and 1),( ≤∆
∞

MFu , and for time-

varying 1≤
∞

∆  , iff 
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(4.72) 

 

where D  is appropriately constructed as in Table 4.1.  

 

This condition implies that  

 

)( 22222
22 udye +≤+ γ  (4.73) 

 

Furthermore, from equation (4.70) and 1≤
∞

∆ , it can be concluded that 22
22 uy ≥ . 

Thus  222 de γ≤  and 1),( ≤∆
∞

MFl . In a typical closed-loop system, d  represents 

the disturbance inputs and e  represents the output feedback errors. In order to use 

theorems RSD and RPD, a procedure has to be found for finding the optimal scaling 

matrices D ’s which are required on the left hand side of the inequalities (4.71) and (4.72). 

The following two sections establish an equivalent minimization problem which is easier 

to solve. 
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4.4.2 Generation of an ∆−M  LFT  
 

As an illustration of the general procedure to obtain the ∆−M  LFT description, consider 

a discrete-time model completely described by a nominal linear process and some model 

uncertainty as follows: 
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(4.74) 

 

Here the scalar parameters si 'δ  represent the model uncertainty for the system. An LFT 

can be constructed for this perturbed system with an appropriate state-space matrix ∆W : 
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This model is represented in Figure 4.2, and the perturbed LFT is given by:  

 

),( 1IWFG

dGe

∆

∆
−

∆=
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zu

 
(4.76) 

 

where 1−z  is the typical one interval shift used in z -transform theory for discrete 

systems. It is desirable to transform it into the general ∆−M  framework Figure 3.1 and 

Figure 4.1 so that SSV analysis can be applied. To do this, it is first desired to isolate the 

uncertainty elements from the overall transfer function ),( 1IWFG ∆
−

∆= zu . The matrix 

∆W  is rewritten as a feedback connection of a matrix N  and an uncertainty block ∆ , and 

its LFT representation is ),( ∆=∆ NFW l , shown in Figure 4.3. The matrix N  is an 

algebraic function of the elements of ∆W , but is independent of the uncertainty elements 
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si 'δ . The block ∆  is composed of n  diagonal scalar-times-identity blocks. For example, 

the model given by equation (4.74) will be rewritten as follows: 
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where 2221122222 ,,,, DDDCB  are defined as follows: 
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(4.78) 

 

where sn  is the number of states and n  is the number of individual uncertainties. The 

matrix N  and the uncertainty block ∆  are given by:  
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Figure 4.2 Equivalent ∆−M  framework (Equation (4.74) )  
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Figure 4.3 Equivalent ∆−M  framework (Equation (4.77)) 

 

Finally, a general LFT for the transfer-function from d  to e  can be given by: 

 

}),,({ 1 ∆= −
∆ ΙNFFG zul  (4.80) 

 

Define ),( 1ΙNFM −= zu , then 

 

),( ∆=∆ MFG l  (4.81) 

 

Thus, the standard ∆−M  framework given in Figure 3.1 and Figure 4.1 can be 

constructed based on these definitions.   

 

4.4.3 RS and RP conditions for time-varying uncertainty 

 

Figure 4.4 Equivalent ∆−M  framework (equation (4.82)) 
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For time-varying uncertainty, Packard and Doyle (1988) have proposed sufficient 

conditions for robust stability and robust performance in the time domain. The motivation 

for this analysis is twofold: first, the usual Lyapunov results for stability and performance 

can be clearly represented in time domain; and second, the actual calculations involved 

for the scaled singular values are computationally more attractive in the time domain.  

 

For robust stability, consider the closed-loop system represented in the standard ∆−M  

structure Figure 4.4 and described by: 

 

)())(,()1( ttt l ηMFη ∆=+  

},,,{ 21 III ndiag δδδ K=∆  

(4.82) 

 
)()(,)( mnmnnt +×+∈∈ CMCη  and, for each time interval t , )(t∆  is an element of the 

uncertainty set ∆ .  )(t∆  satisfies the following conditions: 

 

1.  1))(( ≤∆ tσ  

2.  )(t∆  varies with discrete time t  

 

The time-varying nature of )(t∆  invalidates the spectral radius arguments which do not 

guarantee that )(tη decreases for all t , as for the time-invariant case. However, the 

following sufficient condition does yield exponential stability: 

 

1))](,([max
)(

<∆
∆

tlt
MFσ  (4.83) 

 

If this condition is satisfied, the operator ))(,( tl ∆MF  is referred to as a contraction.  This 

conservative result can be strengthened by searching for a single quadratic Lyapunov 

function, Pηη* , for the entire set of operators. A necessary and sufficient condition for 

the existence of such a function is given by 
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This result is equivalent to the usual discrete-time Lyapunov result 
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In other words, TTP *=  is a suitable Lyapunov function and equivalently, given P  

satisfying equation (4.85) then 2/1PT =  satisfies equation (4.84). Equation (4.84) can be 

rewritten as follows: 
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(4.86) 

 

Comparing equations (4.71) and (4.86), it is clear that the Lyapunov approach involves a 

type of scaling similar to the optimal D  scale mentioned in the previous section. In this 

case, the scaling consists of a coordinate transformation T  on the state variable. It is 

possible to reformulate equation (4.86) by incorporating the appropriate D  scale. Then a 

sufficient robust stability condition for the closed-loop system given in Figure 4.5 is 

given as follows: 
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where nn×∈CT  is invertible and 2D  commutes with )(t∆ . A list of ∆D −  commuting 

pairs is given in Table 4.1. This condition implies 22 )()1( tt ηη <+ , which is 
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equivalent to the stability of the system. For a limited special class of uncertainties, 

equation (4.87) is also necessary for the existence of a single quadratic Lyapunov 

function. According to the SSV theory, this class is precisely those problems for which 

the SSV is equal to its upper bound.  

 

Similarly, a sufficient robust performance condition for the closed-loop system given in 

Figure 4.6 is: 
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(4.88) 

 

where N  is obtained by augmenting the matrix M  to include the effect of external inputs 

on the process. It is shown in Figure 4.6 for robust performance that an additional 

uncertainty block RP∆  is added for this purpose. The diagram describing the robust 

performance condition, given by equation (4.88), is shown in Figure 4.6. 

 

Figure 4.5 Equivalent scaled and transformed loops for robust stability 
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Figure 4.6 Equivalent scaled and transformed loops for robust performance  

 

The proof of the robust stability and performance conditions given above can be found in 

Doyle, Packard and Morari (1989). The authors showed that the inequality (4.88) implies 

the desired ∞H  robust performance result: 222 de γ≤ , if the system has zero initial 

states. 

 

4.5 Comparison of Quadratic Lyapunov Analysis and SSV 

Analysis  
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relationship between quadratic Lyapunov analysis and SSV analysis. As a summary, for 
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both guarantee the ∞H  robust performance result: 222 de γ≤ , if the system has zero 

initial states. The conditions based on quadratic Lyapunov approach and the conditions 

using the upper bound of the SSV approach, are all sufficient conditions, and they can 

give useful conclusions when they succeed in establishing finite and feasible robust 

)1( +tη

)(td  )(te  

)(tη  
 

N 
 )(2 tu  

)(2 ty  

1−D  

1−T  T

D

I1−z

∆  

RP∆  



 95

stability and performance bounds. Both approaches are inherently conservative to some 

degree, because they are based on robust control design approach and they depend on the 

accuracy of the uncertainty bounds. However, there are many differences between the 

two approaches, which make one approach more functional and less conservative than 

the other. 

 

First, it will be shown in a later section that quadratic Lyapunov analysis can easily deal 

with additional issues of input-saturation and modeling error. Also the rate of change of 

the uncertain time-varying parameters can be incorporated into the quadratic Lyapunov 

approach based design to reduce the conservatism. Specifically, parameter-dependent 

Lyapunov functions have been proposed to be used as an alternative to the fixed 

Lyapunov functions in the analysis, such that the information on the parameter time-

variation can be integrated into the design. The SSV analysis can in principle also deal 

with additional issues of input-saturation and modeling error, but the resulting closed-

loop system formulation when these issues are considered, is more complicated than for 

the quadratic Lyapunov approach.  

 

Second, for time-varying uncertainties, SSV approach has assumed complex 

perturbations. Effect of real uncertainties can be covered by using complex ones, but 

more conservative results will be obtained. This makes quadratic Lyapunov approach less 

conservative in the case of real uncertain parameters, and this is the case of this work. 

 

Third, the SSV analysis results reviewed in section 4.4 are based on the upper bound of 

the SSV, and it will give more conservative conclusions if SSV is far from its upper 

bound. One problem with µ  is that the real value can not be accurately calculated, and it 

depends on the calculation of its lower and upper bounds. The calculation of its lower 

bound has local minimum, so it is the upper bound that is usually calculated in the case of 

time-varying uncertainty. For an uncertainty structure which has s  repeated scalar blocks 

and f  full blocks, the upper bound has been proven to be equal to the SSV when 

1,1;3,2,1,0 ==== fsfs  . Otherwise, the upper bound will be far from SSV, and 

conservative conclusions will be obtained from the upper bound.  Since the cases 
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considered in this thesis include a number of repeated scalars blocks, the SSV analysis is 

clearly conservative. Thus, the SSV approach based on its upper bound will give 

conservative conclusions, because it is based on sufficient conditions only.  

 

Fourth, the application of the SSV analysis requires that the bounds of the uncertain 

parameters be absorbed into the system matrices M  and N  given by equation (4.87) and 

(4.88), so that the uncertainty is bounded between known bounds. It is often inconvenient 

to implement the uncertain parameters’ bounds into the system and to obtain the closed-

loop formulation shown in Figures 4.4 and 4.5. On the other hand, the quadratic 

Lyapunov approach uses the bounds of the uncertainty as the vertices of the parameter-

box in a straightforward way. This point also favors the application of the quadratic 

Lyapunov approach over the SSV approach. 

 

Based on the above discussions, for the generality of the approach proposed in this work, 

quadratic Lyapunov analysis is chosen instead of the SSV analysis. In Chapter 5, results 

based on both analysis methods will be given for the design of linear and gain-scheduled 

PI controllers. The results will be shown to favor, as expected, the use of the quadratic 

Lyapunov function approaches over the SSV approach, consistent with the above 

qualitative comparisons between these two approaches. However, the SSV approach still 

remains a useful tool for robust control design of linear time-invariant systems. 
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5 Robust Gain-Scheduled PI Controller  
 

Gain-scheduling has proven to be a successful design methodology in many engineering 

applications. However, in the absence of a sound theoretical analysis, these designs come 

with no guarantees of robust stability, performance or even nominal stability of the 

overall gain-scheduled design (Shamma and Athans, 1990). The main purpose of this 

chapter is to present a new systematic approach to design robust gain-scheduled 

controllers for nonlinear processes, which guarantees closed-loop robust stability and 

performance. This approach is based on the analysis tools presented in Chapter 4. A large 

part of the work shown in this chapter has been previously reported by Gao and Budman 

(2004). 

 

A gain-scheduled PI controller structure scheduling on the process input for nonlinear 

chemical processes is proposed in this chapter. The state-affine model under this gain-

scheduled PI control results in a closed-loop system that can be shown to be an affine 

parameter-dependent model, with affine parameter-dependence on the process inputs. In 

Chapter 4, conditions on the robust stability and robust performance have been developed 

for this class of closed-loop system, i.e., affine parameter-dependent models. Based on 

these conditions, a robustness analysis is carried out to validate the design and obtain 

bounds, in terms of the controller tuning parameters of the closed-loop stability and 

performance, in the face of plant uncertainty. Thus, the robustness analysis is conducted 

to produce ranges of parameter values that result in closed-loop robust stability and 

performance. 

 

Two additional issues, input-saturation and modeling error, are incorporated into the 

design, using a quadratic Lyapunov based analysis.  First, the input-saturation situation 

occurring when the process inputs reach the controller limits, is explicitly addressed in 

this chapter. Second, since the state-affine model used in this work is an empirical model 

obtained from transformations of a Volterra series model (Sontag, 1978) identified from 

input/output data, modeling errors will result. The study of input-saturation and the 

modeling errors by the LMIs performance test, not studied in the previous work by 
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Budman and Knapp (2001), is discussed here. A simple way to incorporate these two 

problems into the LMIs test for robust stability and performance will be shown in this 

chapter.  

 

This chapter is organized as follows. Section 5.1 proposes the novel gain-scheduled PI 

controller structure used in this work, and presents the closed-loop mathematical 

formulation of the process state-affine model in conjunction with this gain-scheduled PI 

controller. In section 5.2, design and optimization procedures are introduced for gain-

scheduled PI controllers based on the robust stability and performance conditions. This 

section also shows the integration of the issues of input-saturation and modeling error 

into the design and optimization procedures. Two approaches are developed to reduce the 

conservatism of the design. One approach uses parameter-dependent Lyapunov functions, 

which has been first proposed in Chapter 4. The other approach is based on analytical 

calculation of the input-saturation factor bounds, which is proposed here in section 5.2. 

For comparison with the quadratic Lyapunov approach, in section 5.3, the design of the 

gain-scheduled PI controllers based on SSV (structured singular value) analysis is given.  

Section 5.4 illustrates the CSTR case study results and section 5.5 summarizes the 

conclusions of this chapter. 

 

5.1 Gain-scheduled PI Controller 
 

Gain-scheduling is a widely accepted technique for controlling nonlinear systems. In this 

section, a novel gain-scheduled PI controller, which is different from the traditional gain-

scheduling approach will be presented. In contrast with Shamma and Athans’ work (1990, 

1991, 1992) where scheduling was conducted with respect to the output variable, in the 

current work, the scheduling variable is chosen to be the manipulated variable. This is a 

logical choice for the current work since the manipulated variable has been shown to be 

the source of the nonlinearity in the mathematical model representing the process in 

Chapter 3.  
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5.1.1 Closed-loop system 
 

A gain-scheduled PI controller of the following form is proposed, where the tuning 

parameters are scheduled as continuous functions of the scheduling variable, i.e., the 

manipulated variable u  as follows: 
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where cccc DCBA ,,,  are control parameters and dici WW ,  are scheduling weights. )(tξ  is 

the controller state, )(te  is the feedback error, and )(tyd  is the desired set-point of the 

process. )(ˆ tu  is the PI controller output and )(tu  is the actuator output. The control 

action )(ˆ tu  is calculated without saturation whereas )(tu  is computed with saturation 

limits. It should be noticed that this controller does not involve the problem of state 

estimation, which is usually not easy. The controller is used to stabilize the process and 

the tuning parameters to be tuned are diciIc WWK ,,,τ . In this work, for simplicity, only 

the 1st-order scheduling weights, i.e., 11 , dc WW , will be considered, and they will be 

referred to heretofore as dc WW ,  . This gain-scheduled PI controller is rewritten as 

follows: 
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(5.2) 
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When 0== dc WW , the control law û  reduces to a conventional discrete PI controller 

with proportional gain and reset time cK  and Iτ  respectively. Otherwise when 0≠cW  or 

0≠dW  or both, the coefficients cC  and cD  of the PI controller are augmented in 

equation (5.2) by a linear dependency with respect to the manipulated variable )(tu  to 

allow for scheduling as a function of )(tu .  

 

This controller is an output-feedback controller, and it does not require measurement of 

all the process states as state-feedback controllers do. In practice, measurement of the 

process states is usually very difficult and has to be estimated mathematically, while 

measurement of the process output is usually available. 

 

The process state-affine model discussed in Chapter 3 is given as follows: 

 

)()(

)(}{)(}{)1(

0

1

1
,11

1

1
,0

tty

tutt
n

i
tii

n

i
tii

xH

GGxFFx

=

+++=+ ∑∑
−

=
+

−

=

δδ
 

(5.3) 

 

For performance analysis, the rejection of output unmeasured disturbances is considered 

in this work, and the control objective is that the error )(0)( tyte −=  remains in a desired 

bounded set for all bounded uncertainties and inputs. High-frequency disturbances can 

not be effectively rejected unless an infinite closed-loop bandwidth is used. This is 

clearly unattainable because of robust stability limitations. Therefore, the actual 

disturbance )(tν  entering the process is assumed to be modeled by the following set of 

equations: 
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where )(td  represents the filtered unmeasured disturbances in the system, and 

10 ≤≤ fW  is a disturbance weight, and 10 ≤≤ BW  is a bandwidth weight in 

performance computations.  

 

Thus, to analyze the closed-loop performance, the system is described by the following 

parameter-dependent model: 
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(5.5) 

 

The uncertainty description developed in Chapter 3, is given as follows:  

 
i

ti tu )(, =δ  (5.6) 

 

After substitution of equation (5.6) into equation (5.2), the following uncertain expression 

for the gain-scheduled PI controller is obtained: 
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The process given by equation (5.5) and the controller given by equation (5.7) are 

combined together into one state-space representation as follows: 
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where 
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where n
nt R∈= ),,,( 21 δδδ Lδ  is a vector of uncertain and time-varying real parameters, 

and according to equation (5.6), tjitjti ,,, +=× δδδ . Then, the state matrix )( tδA  can be 

easily shown to depend affinely on the parameters as follows: 

 

tnnttt δδδ ,,22,110)( AAAAδA +++= K  (5.10) 

 

where nAAA L,, 10  are a priori known fixed matrices. 

 

Then, equation (5.8) can be rewritten in the more compact form: 
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where the closed-loop state vector is defined as TT ttt )](,)([)( ξxη = . Because the closed-

loop systems of the state-affine model and the gain-scheduled PI controllers, given by 

equations (5.10) and (5.11), have affine-dependence with respect to the uncertain 

parameters sti ',δ , the robust stability and performance conditions developed in Chapter 4 

can be used to design gain-scheduled PI controllers. 

 

5.1.2 Input-saturation 
 

In defining ti,δ  according to (5.6), it was assumed that the inputs )(tu  remain between 

upper and lower limits determined, for example, by actuator constraints. Input-saturation 

would occur when the controller outputs )(ˆ tu  exceeded the limits, e.g., [-1 1] in terms of 

normalized input values. However, in the closed-loop equations (5.8) and (5.11), the fact 

of controller saturation was not explicitly accounted for. To address this issue, the gain-

scheduled PI controller can be reformulated using a variable gain cK~  as follows. Define: 
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When the actuator is not saturated, i.e., when 1ˆ <u : 

1=ψ  

(5.12) 

 

Then the gain of the controller is given by: 

  

When the actuator is saturated: (5.13) 
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 ψψ cc KKif =≤≤ ~10  

When the actuator is not saturated: 

constantKKelse cc === ~1ψ  

 

This variable gain formulation ensures that )(tu  never exceeds the saturation limits, and 

the ψ  is referred heretofore as a saturation factor with [ ]ψψψ ∈ , where ψ  is the lower  

bound, and ψ  is the upper bound of this factor. When there is no input-saturation, i.e., 

1ˆ <u , then from equation (5.12) 1>ψ , and the limits of ]1,1[,1ˆ ∈→ ψu  will be 

considered. When input-saturation occurs, i.e., 1ˆ ≥u , then from equation (5.12), the 

limits of 1=ψ  corresponding to 1ˆ =u , and 0=ψ  corresponding to ∞→û  will be 

considered, i.e., ]1,0[∈ψ .  

 

This formulation raises the problem that for 0=ψ , the interaction between )(tξ  and 

)1( +tx  is cancelled according to equation (5.7), and consequently, it is not possible to 

attain convergence of )(tξ  to the origin. For instance, assuming )(tx  converges to the 

origin, following equation (5.7), )()1( tt ξξ =+ . Consequently, the controller state may 

converge to a constant value different than zero, which is not the asymptotic stability 

required by Lyapunov theory. To ensure convergence of )(tξ  to the origin, a rudimentary 

form of anti-windup is implemented whenever the input saturation occurs. The resulting 

controller is then rewritten as follows: 
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In addition, when the lower limit of saturation factor is assumed to be zero for the case 

that ∞→û , i.e., when 0=ψ , the closed-loop performance condition as defined by 

Theorem 4.2 was found in the examples to be very conservative, and in some cases could 
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not be met. Fortunately, the output in a real process is always bounded due to sensor 

saturation or the physical limitation of the process, e.g., concentration is always between 

[0 1]. Thus, in reality, the controller output )(ˆ tu  in a process will not achieve infinity, but 

bounded by practical constraints. As a result, the lower limit of ψ  would be 0>ψ . This 

fact can be used to relax the lower limit of the saturation factor in order to meet the robust 

performance criterion and will be further discussed later in section 5.2.3. 

 

The closed-loop system models for the purpose of the LMIs based approach, taking into 

account the input-saturation factor ψ , are obtained as follows.  
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where 
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The inclusion of the input-saturation factor as an additional uncertain parameter will add 

more vertices to the LMIs test corresponding to limits of [ ]ψψψ ∈ . The closed-loop 

system given by equations (5.15) and (5.16) does not have the standard parameter affine-

dependence structure shown in Chapter 4, with respect to both sti ',δ  and ψ . However, 

the robustness conditions developed in Chapter 4 can still be applied to the system. The 

rationale is that equation (5.15) is quadratic with respect to the uncertain parameters 

sti ',δ  when 1=ψ , i.e., for the case when there is no input saturation, and equation (5.15) 

is linear with respect to ψ  and quadratic with respect to the uncertain parameters sti ',δ , 

when 1, =tiδ  corresponding to the saturation situation. Thus, the robust stability and 

performance conditions are still quadratic or linear with respect to the uncertain 

parameters sti ',δ  and ψ , and it is possible to check the vertices of the uncertain 

parameter box instead of checking each internal point of it. 

 

For SSV analysis method, the ∆−M  LFT framework of the closed-loop system must be 

obtained, and the uncertainty will include not only the uncertain parameters sti ',δ , but 

also the input-saturation factor ψ . Since SSV is not the main design approach in this 

work, the corresponding SSV formulation has not been investigated for the saturation 

case. 

 

5.1.3 Modeling error 
 

In addition to the nonlinear time-varying powers of )(tu  accounted for as model 

uncertainty between the state-affine model and the linear nominal model, the 

approximation of the real process by an empirical state-affine model also results in some 

modeling error. 

 

Modeling error will arise due to both truncations of the infinite Volterra series model to a 

finite one and its subsequent transformation step into the state-affine model. There are 
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different ways to account for the modeling error in the final state-affine model. In 

principle, modeling error exists in each one of the polynomial matrices iii HGF ,,  in the 

state-affine model due to the truncation and approximation issues. However, it is difficult 

to identify how the modeling error is distributed among these matrices. In the current 

study, for simplicity, a lumped error tδ  in the output is considered so that the H  matrix 

can be rewritten as follows:  

 

ttWt δδ +=⎯→⎯= 00 HHHH  (5.17) 

 

The modeling error uncertainty is normalized so that 1=tδ  and the weight tW  gives the 

magnitude of the largest expected modeling error. tW  is calculated from comparisons of 

the actual system output with the prediction output of the state-affine model, by solving 

the following minimum problem: 

 

))()()((max(min 0 kttactualktWtt txWtyW
kt

δδ +−= H  (5.18) 

 

where actualkty )(  is the output of the actual process and )()( 0 ktt txW δ+H  is the 

prediction output of the state-affine model including the modeling error. The input 

sequence used to identify the model may be also used to identify the modeling error ttW δ  

by solving the above problem. Starting with an initial estimate of ttW δ , equation (5.18) is 

solved using iterative optimization. The matrix 0H  in the closed-loop equations (5.15) 

and (5.16), needs to be modified to include this modeling error based on equation (5.17). 

When modeling error is not considered, 0=tW . When there is modeling error, tW  is set 

to be the magnitude of the modeling error calculated from equation (5.18), with 1±=tδ . 

In summary, for the quadratic Lyapunov approach, the inclusion of modeling error as an 
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additional uncertain parameter will add more vertices to the LMIs test corresponding to 

limits of ]1[],1[],0[ −=tδ .  

 

The resulting closed-loop system does not have the standard parameter affine-dependence 

structure shown in Chapter 4, with respect to both sti ',δ , ψ  and tδ . However, the 

robustness conditions developed in Chapter 4 can still be applied to the system. The 

reason is that the robust stability and performance conditions are still quadratic or linear 

with respect to the uncertain parameters sti ',δ , ψ  and tδ , and it is possible to check the 

vertices of the uncertain parameter box instead of checking each internal point of it. 

 

For the SSV design method, the ∆−M  LFT framework of the closed-loop system must 

be obtained, and the uncertainty will include not only the uncertain parameters sti ',δ , but 

also the modeling error tδ . This will be shown later in section 5.3.1. 

 

5.2 Design and Optimization using Quadratic Lyapunov 

Functions 
 

Note that in Chapter 4, for systems that can be put in the form of equation (5.11), LMIs-

based conditions have been developed for the analysis of robust stability and performance. 

Based on these conditions, robust gain-scheduled PI controllers are designed and 

optimized. 

 

5.2.1 Design of robust gain-scheduled PI controller 
 

By trial and error, regions of controller parameters values in the parameter space given by 

=θ { ,cK ,Iτ ,cW dW } are generated by checking if the conditions in Theorems 4.1 and 

4.2 are satisfied. A set of gain-scheduled PI controllers are designed based on the 

feasibility of equation (4.26), which guarantees that a desired performance criterion 

objectiveγ  is satisfied. 
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For a pre-specified performance index objectiveγ  for a process, the procedure to design a 

robust gain-scheduled PI controller is as follows: 

 

1. Set a range and a discrete grid of values in that range for the controller design 

parameters set θ , i.e., ,cK ,Iτ ,cW dW . 

 

2. Choose values for θ  according to the grid values within the parameter range. Set 

,cW dW  in the set θ  to zero if linear PI controllers are designed. 

 

3. Substitute values of the set θ  and objectiveγ  into equations of Theorem 4.2. 

 

4. Solve the above equation as a FEASP problem in MATLAB.  

 

5. If a feasible solution exists for the above equation, accept values chosen in step 2, 

otherwise, discard the current values. 

 

6. Go to step 2. 

 

The same procedure as above will be used to design a PI controller satisfying robust 

stability, but equations of Theorem 4.1 are used in step 3, instead of Theorem 4.2 

equations. For reducing conservatism, parameter-dependent Lyapunov functions could be 

used instead of the fixed-parameter Lyapunov functions. In this case, the equations 

corresponding to Theorems 4.3 and 4.4 are used instead of Theorems 4.1 and 4.2 

respectively. Theorems 4.5 and 4.6 will be applied in the case of constant uncertain 

parameters. 

 

5.2.2 Optimization of robust gain-scheduled PI controllers 
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The performance index γ  can be optimized by solving equations of Theorem 4.2 as a 

GEVP (generalized eigenvalue problem) problem in MATLAB. Since the performance of 

the controller is directly related to the parameter γ, the objective of this optimization 

problem is to minimize this parameter γ. The equation of Theorem 4.2 is as follows: 
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It is easy to show that this problem falls into the standard form of a GEVP problem if it is 

rewritten in the following alternative form: 
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If a controller which optimizes the closed-loop performance is sought, the procedure to 

design a robust gain-scheduled PI controller with near optimal performance is as follows: 

 

1. Set a range and a discrete grid of values in that range for the controller design 

parameters set θ , i.e., ,cK ,Iτ ,cW dW . 

 

2. Choose values for θ  according to the grid values within the parameter range. Set 

,cW dW  in the set θ  to zero if linear PI controllers are designed. 

 

3. Substitute values of the set θ  into equation (4.33). 

 

4. Minimize γ  subject to equation (4.33) (GEVP problem in MATLAB).   
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5. If a feasible solution exists for equation (4.33), accept values chosen in step 2 and the 

optimized performance index γ , otherwise, discard the current values. 

 

6. Go to step 2 until )min(γγ =optimal is obtained over the whole parameter range. 

 

For reducing conservatism, parameter-dependent Lyapunov functions could be used 

instead of the fixed-parameter Lyapunov functions. In this case, Theorem 4.4 is used 

instead of Theorem 4.2. Theorem 4.6 can also be applied in the case of constant uncertain 

parameters. 

 

The problem of searching for the optimal performance index, optimalγ  , is not quadratic in 

terms of the controller parameters ,cK ,Iτ ,cW dW  and the optimization matrix variable 

P  simultaneously. Thus, the resulting problem is a nonlinear matrix inequality for all of 

these parameters. For example, equation (4.33) includes higher-order terms like 

dcIc WWK PP ,/2 τ . Thus, the optimization in terms of all of these parameters may be near 

optimal instead of a global optimal solution. Branch and bound methods have been 

proposed to solve LMIs that are not convex with respect to certain variables (Fukuda and 

Kojima, 2001; Braatz, VanAntwerp & Sahinidis, 1997). This is beyond the scope of the 

current study. 

 

5.2.3 Relaxation of the input-saturation factor ψ  

 

In section 5.2.1, a robust control approach has been proposed to design gain-scheduled PI 

controllers, which guarantee closed-loop stability and performance. The inherent 

conservatism of the robust control analysis results in smaller ranges of parameters that 

satisfy the design criteria and consequently in degraded performance based on these 

parameter ranges. When the rate of change of the uncertain parameters is available, a 

design based on parameter-dependent Lyapunov functions may be used to reduce 

conservatism. This approach has been proposed in detail in Chapter 4. The main focus of 
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this section is to propose a second approach to reduce conservatism based on the 

calculation of less conservative saturation factor bounds.  

 

When the lower limit of the saturation factor is assumed to be zero for the case that the 

calculated control action tends to infinity, i.e., when 0=ψ , the closed-loop performance 

condition as defined by the equation in Theorem 4.2 was found to be very conservative, 

and in some cases could not be met. Fortunately, the output in a real process is always 

bounded due to sensor saturation or the physical limitation of the process, e.g., 

concentration is always between [0 1] and this fact can be used to reduce conservatism 

and to meet the robust performance criterion. For example, using the physical limits of 

the output, a finite upper limit for the control action û  exists and consequently a lower 

bound of ψ  different than zero according to equation (5.12) can be calculated 

analytically as follows. 

 

Method 5.1  (saturation factor lower bound ψ ) Consider the controller (5.7)  with the 

error signal bounded [ ]eete ∈)( . The analytical saturation factor lower bound is 

calculated as follows: 

 

Step 1: For any [ ]eete ∈)( , if { 1)1(ˆ <−ku and 1)(ˆ ≥ku }, then )(ˆ/1)( kut =ψ ; 

Step 2: For all [ ]eete ∈)( , ))(min( tψψ = . 

 

Step 1 involves iterative calculation of the controller output )(ˆ ku  using equation (5.1) for 

each error )(te  in the range of [ ]ee  until a )(tψ  is obtained for each )(te  based on 

equation (5.12). Then a set of )(tψ  values is obtained for the range of the error signal 

[ ]eete ∈)( . Step 2 consists in deriving the minimum value of all the )(tψ  values 

obtained in Step 1, i.e., ))(min( tψψ = , which is then adopted as the lower bound of the 

saturation factor to be used for the LMIs analysis.  
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5.3 Design based on SSV Analysis  
 

Nonlinear and/or time-varying uncertainty can be also addressed using extensions of SSV 

analysis, and for simplicity, these extensions based on the upper bound of µ  will be 

referred to as SSV analysis in this section. The application of SSV analysis to the design 

of gain-scheduled PI controllers is presented in the sequel, for comparison with the LMIs 

based methodology. 

 

5.3.1 Generation of an ∆−M  LFT: simple case 
 

It has been shown in a previous section that a nonlinear process can be completely 

described by a state-affine model given by equation (5.5), which is composed of a 

nominal linear process and some model uncertainty. The proposed gain-scheduled PI 

controller is given by equation (5.7). To apply the SSV approach to the robust stability 

and robust performance analysis of the closed-loop system, it is desired to first transform 

equations (5.5) and (5.7) into the standard ∆−M  structure.  

 

For this purpose the state-affine model is partitioned as follows: 
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where tii ,δδ =  for simple notation, and k  is the number of uncertainties in the state-

affine model. The schematic description of this formulation is shown in Figure 4.3. The 

matrices 2221122222 ,,,, DDDCB  are 
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The gain-scheduled PI controller, equation (5.7) is partitioned as follows: 
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The closed-loop system is obtained by combining equations (5.21), (5.22) and (5.23) and 

the closed-loop state vector is defined as TT ttt )](,)([)( ξxη = . The input and output of the 

uncertainty block are [ ]Tc
T ytt 22 )()( yy =∆  and [ ]Tc

T utt 22 )()( uu =∆ . For the robust 

stability framework shown in Figure 4.5, the effect of external inputs on the process is 

not considered, so the M  matrix and the uncertainty block structure are given as follows: 
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where the matrices are as follows: 
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For robust performance framework shown in Figure 4.6, the filtered output unmeasured 

disturbance d  is considered, and the closed-loop state is augmented as 

[ ]TT tdttt )()()()( ξxη = . The matrix N  and the uncertainty block structure are given 

as follows: 
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where the matrices are: 
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5.3.2 Generation of an ∆−M  LFT: with modeling error 

 



 116

If the effect of modeling error is considered, the following state-affine model is obtained 

by combining equations (5.5) and (5.17). 
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The state-affine model is partitioned into the structure shown in Figure 4.3 as follows: 
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where tii ,δδ =  for simple notation, and k  is the number of uncertainties in the state-

affine model. The matrices 2221122222 ,,,, DDDCB  are 
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(5.30) 

 

The gain-scheduled PI controller given by equation (5.7) is partitioned into equation 

(5.23) obtained in the previous section. 
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The closed-loop system is obtained by combining equations (5.29), (5.30) and (5.23) and 

the closed-loop state is defined as TT ttt )](,)([)( ξxη = . The input and output of the 

uncertainty block are [ ]Tc
T ytt 22 )()( yy =∆  and [ ]Tc

T utt 22 )()( uu =∆ . For robust 

stability, the M  matrix and the uncertainty structure in Figure 4.5 are given as follows: 
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where the matrices are: 
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For robust performance test, the output unmeasured disturbance d  is considered, and the 

closed-loop state is augmented as [ ]TT tdttt )()()()( ξxη = . The matrix N  and the 

uncertainty structure in Figure 4.6 are given as follows: 
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where the matrices are: 
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5.3.3 Design of robust gain-scheduled PI controllers: SSV analysis 

 

According to equation (5.6), the perturbations are equal to the powers of the manipulated 

variable u  and consequently, the uncertainty is time-varying. For this type of uncertainty, 

Packard and Doyle (1988) have proposed sufficient conditions for robust stability and 

robust performance.  

 

A sufficient robust stability condition for the system given by equation (5.24) is: 
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where )1()1( +×+∈ ss nnCT  is invertible and D  commutes with )(t∆ . According to equation 

(5.24), the uncertainty block is time-varying scalar-times-identity, and the commuting D  

is a constant full-block matrix, i.e., )1()1( +×+∈ ss knknCD . If the modeling error tδ  is going to 

be considered during the design, then the closed-loop system will be given by equation 

(5.31), and the uncertainty structure is also given in equation (5.31). According to this 

equation, the commuting D  is a constant full-block matrix but with a dimension of 
)2()2( +×+∈ ss knknCD . 

 

Similarly, a sufficient robust performance condition for the system given by equation 

(5.26) is: 
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where )11()11( ++×++∈ ss nnCT  is invertible and )1()1( +×+∈ ss knknCD  commutes with )(t∆ . If the 

modeling error tδ  is being considered during the design, then the closed-loop system will 

be given by equation (5.33), and the uncertainty structure is given by equation (5.33). 

According to this equation, the commuting D  is a constant full-block matrix but with a 

dimension of )2()2( +×+∈ ss knknCD . 

 

The conditions given by equations (4.87) and (4.88) are investigated for the closed-loop 

system given by equations (5.24) and (5.26), or equations (5.31) and (5.33), to guide the 

selection of the gain-scheduled PI controller parameters ,cK  ,Iτ  cW  and dW . According 

to these conditions for robust stability, only the dynamic states and the uncertainty 

feedback related variables are considered, whereas for robust performance, the external 

disturbances and the error are also considered.  

 

By trial and error, regions of controller parameters, =θ { ,cK ,Iτ ,cW dW }, will be 

generated by checking if the conditions (4.87) and (4.88) are satisfied. A set of gain-

scheduled PI controllers can be designed, which satisfy a desired performance criterion 

objectiveγ .  

 

For a pre-specified performance index objectiveγ , the procedure to design a robust gain-

scheduled PI controller is as follows: 

 

1. Set a range of values and a discrete numerical grid of values within that range for the 

controller design parameters set θ , i.e., ,cK ,Iτ ,cW dW . 
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2. Choose values for the set θ  according to the parameter grid inside the parameter range. 

Set ,cW dW  in θ  to zero if linear PI controllers are designed. 

 

3. Substitute values of θ  and objectiveγ  into equation (4.88). 

 

4. Solve the above equation.  

 

5. If a feasible solution exists for the above equation, accept values chosen in step 2, 

otherwise, discard the current values. 

 

6. Go to step 2. 

 

The same procedure as above is used to design a gain-scheduled PI controller satisfying 

robust stability, by using equation (4.87) in step 3, instead of equation (4.88). 

 

5.4 CSTR Case Study 
 

For the CSTR problem, the open-loop system was initially studied by performing step 

changes in the input, i.e., cooling water temperature, and measuring their effect on the 

output, i.e., the reactor concentration. Then, 1st-order transfer functions were identified 

from these step tests. A summary of the open-loop properties of the CSTR process 

selected for the current study is given in Figure 5.1 and it shows that, assuming that the 

process can be approximated as a 1st-order one, the CSTR system has varying process 

gain and time-constant over the input range of [ ]4010−=cx . This is assumed to be the 

operating range for the current work, and the CSTR process is nonlinear over this range.  

 

The state-affine model obtained in Chapter 3 is used in the design of the gain-scheduled 

PI controllers. A modeling error weight of 025.0=tW  was identified from simulations 
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according to equation (5.18) and it will be included in all the following design results. 

First, no input-saturation is included, and the cases of fixed-parameter Lyapunov 

functions in section 5.4.1.1 and parameter-dependent Lyapunov functions in section 

5.4.2.1 are compared, based on the quadratic Lyapunov designs. Second, the effect of 

input-saturation will be investigated through different designs in section 5.4.2.2. Last, the 

results obtained using the SSV approach are given in section 5.4.3. In all the design 

results shown in this chapter, for the linear PI controllers, the stability region is the area 

above the stability boundary including the boundary, and for the gain-scheduled PI 

controllers, the stability region is the area inside the boundary including the boundary. 

These rules apply to the performance regions as well.  
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Figure 5.1 Open-loop properties of CSTR ( [ ]4010−=cx ) 
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5.4.1 Design and optimization using quadratic Lyapunov functions 
 

This section will summarize the design and optimization results based on fixed-parameter 

Lyapunov functions. As explained in the beginning of this section, the state-affine model 

obtained in Chapter 3 is used in the design of the gain-scheduled PI controllers. A 

modeling error weight of 025.0=tW  is included in the design and input saturation is 

initially not considered. Part of the results shown here has been reported by Gao and 

Budman (2003). 

 

5.4.1.1 Design of gain-scheduled PI controllers 

 

First, linear PI controllers, i.e., with the scheduling parameters cW  and dW  set to zero, are 

designed using the procedure proposed in section 5.2.1. The design results are plotted in 

Figure 5.2 as regions in a system of coordinates corresponding to the proportional gain 

and reset time IcK τ, , respectively. Linear PI controllers with the parameter values inside 

these regions will guarantee robust stability and robust performance, i.e., 1≤γ , for the 

closed-loop system, whereas parameter values outside these regions do not satisfy the 

robust stability and robust performance tests, i.e., 1>γ .  
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Figure 5.2 Stability and performance regions (to the left of the lines) of linear PI 

controller parameters. 

 

Second, gain-scheduled PI controllers with cW  and dW  different than zero are designed 

using the procedure proposed in section 5.2.1. For the purpose of comparison with the 

linear PI controllers and also as an initial guess for further optimization of controller 

parameters, a set of linear PI controller parameters was first selected in Figure 5.2 as 

follows: 1545.1,2 == IcK τ  on the robust performance boundary, shown as a circle on 

the boundary in Figure 5.2. This set of parameters was selected as follows. Assuming that 

the process can be modeled by a 1st-order transfer-function around the nominal operating 

point, i.e., 0=cx , where cx  is the normalized deviated variable of cx , the time-constant 

τ  is found to be 1.1545 seconds based on a step test around this point. According to the 

Internal Model Control (IMC) rules for PID controller settings, available in the literature 

(Morari and Zafiriou, 1989, Rivera, Morari and Skogestad), Iτ  is set equal to 1545.1=τ . 

Thus, the controller with 1545.1,2 == IcK τ  corresponds to the IMC tuning parameters 
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around the nominal operating point on the robust performance boundary, and it is referred 

heretofore as 1-IMC-LPI. Based on the linear IMC PI controller parameters, gain-

scheduled PI controller weights cW  and dW  will be calculated according to the 

performance test. Figure 5.3 shows the regions in terms of cW  and dW  required to satisfy 

robust performance conditions. The gain-scheduled PI controllers defined by parameter 

values within the regions in Figure 5.3 will guarantee robust performance with 1≤γ . The 

circle in Figure 5.3 corresponds to the 1-IMC-LPI controller selected on the limit of the 

robust performance, i.e., with 0,0 == dc WW . 

 

Similarly, the controller with 1545.1,42.2 == IcK τ  corresponds to the IMC tuning 

parameters around the nominal operating point on the robust stability boundary, shown as 

a circle on the boundary in Figure 5.2. Based on the linear IMC PI controller parameters, 

gain-scheduled PI controller weights cW  and dW  will be calculated according to the 

stability tests. Figure 5.4 shows the regions in terms of cW  and dW  required to satisfy 

robust stability conditions. The gain-scheduled PI controllers defined by parameter values 

within the regions in Figure 5.4 will guarantee robust stability. The circle in Figure 5.4 

corresponds to the linear IMC PI controllers selected on the limit of the robust stability, 

i.e., with 0,0 == dc WW . 
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Figure 5.3 Performance region (inside the lines) of gain-scheduled PI controller 

parameters. 

 
5.4.1.2 Optimization of gain-scheduled PI controllers 

 

In order to improve upon the performance, the designed gain-scheduled PI controllers are 

to be optimized based on the optimization procedure proposed in section 5.2.2. In section 

5.2.2, it has been discussed that the problem of searching for the optimal performance 

index, optimalγ  , is not quadratic in terms of the controller parameters, resulting in a 

nonlinear matrix inequality for these parameters. For simplicity, it was decided to limit 

the search to a near optimal design in the neighborhood of the selected linear PI 

controller using the FMIN optimization function in MATLAB, by selecting the linear PI 

parameters as initial guess for optimization. The FMIN algorithm is based on golden 

section search and parabolic interpolation, and it tries to find a minimum of a function. 
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Figure 5.4 Stability region (inside the lines) of gain-scheduled PI controller parameters. 

 

The optimization can be carried out in different ways depending on the design objectives 

as follows: 

 

• To obtain a set of optimized linear PI controller parameters. In this case, only the 

controller parameters IcK τ,  are optimized.  

 

• To obtain a gain-scheduled PI controller, which improves over a designed linear 

PI controller. In this case, only the controller scheduling weights dc WW ,  are 

optimized.  

 

• To obtain a set of optimized gain-scheduled PI controller parameters. In this case, 

all the four controller parameters IcK τ,  and dc WW ,  are optimized.  

 

Specifically, the optimization carried out in this work for the case study example CSTR 

started with initial guesses corresponding to the values of the linear PI controller tuned 
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using the IMC rules, i.e., the 1-IMC-LPI controller. The five design cases carried out in 

this work are explained as follows: 

 

1. The linear PI controller, 1545.1,2 == IcK τ , referred to as 1-IMC-LPI in the sequel 

has a performance index 0
optimalγ  of 0.9634. 

 

2. A gain-scheduled PI controller is designed based on the optimization procedure to 

improve closed-loop performance over the 1st controller, 1-IMC-LPI. A pair of gain 

scheduling weights dc WW ,  is to be sought inside the robust performance parameter 

region defined in Figure 5.3. The resulting controller will be referred in the following 

discussion as 2-IMC-GSPI. The controller 2-IMC-GSPI, shown as a star in Figure 5.3, 

produces *
optimalγ =0.5890 and this is an improvement of 38.9% over 0

optimalγ =0.9634 of the 

1-IMC-LPI design. 

 

3. A set of linear PI controller parameters IcK τ, , was obtained through optimization, 

and the resulting controller is referred to as 3-OPT-LPI. The optimized linear PI 

controller 3-OPT-LPI, shown as a star in Figure 5.2, improved the robust performance by 

63.1% with optimalγ =0.3552 over the 1-IMC-LPI design. 

 

4. Using the IcK τ,  obtained for 3-OPT-LPI, the values of the weights dc WW ,  were 

further optimized. This controller is referred to as 4-OPT-GSPI-1. This design further 

improved the performance to optimalγ =0.3291, which is an additional improvement of 

7.35% over 3-OPT-LPI.  

 

5. Subsequently, an additional optimization was conducted where all the parameters, i.e., 

IcK τ,  and the weights dc WW , , were allowed to change simultaneously in order to 

minimize γ . The resulting controller based on the optimization of all the four parameters 

is referred to as 5-OPT-GSPI-2. When all the four parameters are optimized, the best 

result, i.e., the smallest γ , is obtained. This case is better than all the other four cases as 
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expected. For this case an additional 45.6% improvement in performance over 2-IMC-

GSPI is obtained with optimalγ =0.3204.  

 

The above results are summarized in Table 5.1. 

 

Table 5.1 Optimization design results 

Controller parameters θ  No. Controller 

name cK  Iτ  cW  dW  

 

optimalγ  

 

simulationγ
 

1 IMC-LPI 2 1.1545 0 0 0.9634 0.3787 

2 IMC-GSPI 2 1.1545 0.6547 -0.015 0.5890 0.3495 

3 OPT-LPI 1.4023 3.2087 0 0 0.3552 0.2022 

4 OPT-GSPI-1 1.4023 3.2087 0.1033 0.0721 0.3291 0.2009 

5 OPT-GSPI-2 1.2168 1.9309 0.1802 0.009 0.3204 0.2025 

 

5.4.1.3 Simulation of gain-scheduled PI controllers 

 

Clearly, all the values of the performance index γ  reported in Table 5.1 represent the 

worst possible performance according to the robust performance test. Therefore, some 

conservatism is expected. To assess the conservatism of the analysis, a detailed 

simulation study is conducted for the CSTR process using the different controllers 

synthesized in this work. simulationγ  is the performance index obtained from the simulation, 

calculated using 
22 lsimulationl

ve γ= . Different disturbance signals were used in the 

simulations, including for example step signals, sinusoidal signals, white noise and 

combinations of them. A multi-spike disturbance signal was selected to be used in the 

following simulations, because it resulted in the worst performance among different cases 

for the different signals and the results are clear to quantify for comparison purpose. Then 

for the worst case found from simulation, simulationγ  was calculated for the different 

controllers and the results are reported in Table 5.1. It is clear from this table that 



 129

simulationγ  is always bounded by optimalγ , confirming that the analysis tests produce the 

worst-performance bound as expected. However, the differences between optimalγ  and 

simulationγ  for all controllers show that the designs are conservative to some degree. 

 

Simulation results for the 1-IMC-LPI controller and the near optimal gain-scheduled PI 

controller 5-OPT-GSPI-2 are shown in Figure 5.5. These simulations correspond to a 

two-consecutive-spike-like disturbance signal shown in Figure 5.5.  
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Figure 5.5 Closed-loop simulations of state-affine model (lower two curves). 

1-IMC-LPI (dotted line), simulationγ =0.3787.  

5-OPT-GSPI-2 (solid line), simulationγ =0.2025. 

 

The results in Table 5.1 show that optimization of the tuning parameters has reduced the 

conservatism of the designs. For the 1-IMC-LPI controller, the difference between the 

analysis 9634.0=optimalγ  and the simulation 3787.0=simulationγ  is bigger than the 

difference between 3204.0=optimalγ  and 2025.0=simulationγ  for the optimized 
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controller 5-OPT-GSPI-2. A simulated performance worse than the one shown in Figure 

5.5, that will bring the simulated result closer to the analysis result, may be possible but 

there is no systematic way to find the specific disturbance function that will lead to the 

largest γ  value. 

 

Conservatism associated with the design approach comes from a number of facts. First, a 

possible source of this conservatism is that the simulation can only be done for a limited 

period of time, while the calculation of the performance index simulationγ  requires an 

infinite simulation interval. Second, conservatism is obviously inherent to the robust 

control approach where several scenarios included in the analysis will not actually occur 

during actual closed-loop operation. Last but not the least, for time-varying uncertainty 

parameters, conservatism might be introduced if the time-variation of the parameters is 

not explicitly considered in the design and optimization. The conservatism of the analysis 

associated with this time-variation can be somewhat reduced with parameter-dependent 

Lyapunov functions instead of the fixed Lyapunov functions as shown in the following 

section.   

 

5.4.2 Reducing conservatism of the quadratic design and 
optimization 

 

In this section, the two approaches proposed in this work will be applied to the previous 

designs shown in section 5.4.1.1, and the results will show that the two methods are both 

efficient in terms of reducing conservatism of the quadratic designs. In section 5.4.2.1, 

the parameter-dependent Lyapunov function is used and the design results are compared 

with those results obtained with fixed Lyapunov function (section 5.4.1.1). In section 

5.4.2.2, the method of obtaining a less conservative lower bound of the input-saturation 

factor ψ  is applied, and its effectiveness in reducing the conservatism of the designs will 

also be given in that section. As in the previous sections, the same state-affine model 

obtained in Chapter 3 is used in this section, and the modeling error weight of 
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025.0=tW  is included in the designs. Part of the results shown here has been reported by 

Gao and Budman (2004). 

 

5.4.2.1 Design based on parameter-dependent Lyapunov functions 

 

In this section, stability and performance conditions were calculated with parameter-

dependent Lyapunov functions and compared to the results using a fixed-parameter 

Lyapunov function. The purpose is to reduce the conservatism of the designs obtained in 

the previous sections. No input-saturation was considered in this section. 

 

In Chapter 3, it has been discussed that the simplicity in the quantification of the 

uncertainty is the key advantage of using the state-affine model, i.e., the function given 

by equation (5.37).  For a normalized process input, it is valid to assume that 

[ ]11)( −∈tu . According to equations (5.37) and (5.38), the bound of [ ]iiti δδδ ∈,  can 

thus be obtained, for example, [ ] [ ]10,11 ,2,1 ∈−∈ tt δδ , where 2
,2,1 )(),( tutu tt == δδ . 

According to equation (5.39), the bound of [ ]iiti ννδ ∈∆ ,  can also be obtained, for 

example, assuming the largest possible change [ ]22,1 −∈∆ tδ , because [ ]11)( −∈tu . 

 
i

ti tu )(, =δ  (5.37) 

                 

[ ] ],[)( , iitiuutu δδδ ∈→∈  (5.38) 

 

tititi ,1,, δδδ −=∆ + , [ ]iiti ννδ ∈∆ ,     (5.39) 

 

Based on the above information, the parameter box W  for the uncertain parameters and 

S  for the rate of change of the uncertainty parameters can both be determined based on 

the following definitions: 
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}},{:),,,{(: 21 iiin δδωωωω ∈= LW  (5.40) 

 

}},{:),,,{(: 21 iiin ννττττ ∈= LS  (5.41) 

 

In Chapter 4, Theorems 4.3 and 4.4 have been developed to assess robust stability and 

robust performance. The theorems depend on the application of parameter-dependent 

Lyapunov functions when the rate of change of the uncertain parameters is available. In 

the sequel, these two theorems will be applied to design gain-scheduled PI controllers. 

The design results will be compared with the results obtained in the section 5.4.1.1. 
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Figure 5.6 Stability region (to the left of the lines) of linear PI controller parameters 

(comparing: fixed Lyapunov function (solid) and parameter-dependent Lyapunov 

function (dotted)). 

 

First, linear PI controllers with cW  and dW  set to zero are designed.  The stability 

boundaries in terms of the values of the tuning parameters cK  and Iτ  are shown in 
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Figure 5.6. The solid line, calculated by Theorem 4.1, is based on the fixed-parameter 

Lyapunov function and the dotted line, calculated by Theorem 4.3, is based on the 

parameter-dependent Lyapunov function. Linear PI controllers with the parameter values 

inside these regions will guarantee robust stability. The stability boundaries are very 

close to each other, but the one based on the parameter-dependent Lyapunov function 

defines, as expected, a slightly larger stability region. For a clearer illustration of this 

slight difference, a portion of these two lines is shown again in Figure 5.6a. 
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Figure 5.6a Stability region (to the left of the lines) of linear PI controller parameters 

(comparing: fixed Lyapunov function (solid) and parameter-dependent Lyapunov 

function (dotted)). 

 

Similar results are obtained for the performance boundaries and shown in Figure 5.7. For 

the fixed parameter Lyapunov function, the results are shown by the solid line and for the 

parameter-dependent Lyapunov function, shown by the dotted line. These lines were 

calculated using Theorems 4.2 and 4.4. Once again, the region of robust performance  

obtained using the parameter-dependent Lyapunov function is slightly larger than the one 
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obtained with the fixed parameter Lyapunov function. For a clearer illustration of this 

slight difference, a portion of these two lines is shown again in Figure 5.7a. 
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Figure 5.7 Performance region (to the left of the lines) of linear PI controller parameters 

(comparing: fixed Lyapunov function (solid) and parameter-dependent Lyapunov 

function (dotted)). 
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Figure 5.7a Performance region (to the left of the lines) of linear PI controller parameters 

(comparing: fixed Lyapunov function (solid) and parameter-dependent Lyapunov 

function (dotted)). 

 

A more significant reduction in the conservatism of the design is observed when gain-

scheduled PI controllers are designed. In this case, cW  and dW  are different from zero. 

The stability results are shown in Figure 5.8 in terms of the gain-scheduling weights cW  

and dW .  

 

The results in Figure 5.8 were computed for a specific set of 4.3=cK  and 20=Iτ , 

which was selected on the stability boundary, shown as a star in Figure 5.6. The solid line 

corresponds to the fixed parameter Lyapunov function analysis, Theorem 4.1, whereas 

the dotted line is obtained using the variable parameter Lyapunov function design, 

Theorem 4.3. It is clear that the range of stability given by the region enclosed by the 

lines is much larger when the parameter-dependent Lyapunov function is used. Similar 

calculations were performed for robust performance and the results are shown in Figure 

5.9. The results in Figure 5.9 were computed for a specific set of 98.2=cK  and 20=Iτ , 
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which was selected from Figure 5.7 on the performance boundary, shown as a star in 

Figure 5.7. The results indicate a clear improvement in the design, i.e., a larger 

performance region of parameter values defined by the dotted line, when the parameter-

dependent Lyapunov function is used for analysis. 
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Figure 5.8 Stability region (inside the lines) of gain-scheduled PI controller parameters 

(comparing: fixed Lyapunov function (solid) and parameter-dependent Lyapunov 

function (dotted)). 
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Figure 5.9 Performance region (inside the lines) of gain-scheduled PI controller 

parameters (comparing: fixed Lyapunov function (solid) and parameter-dependent 

Lyapunov function (dotted)). 

 

5.4.2.2 Design based on the relaxation of the input-saturation factor ψ  

 

In the previous sections, input-saturation was not accounted for. In this section, the effect 

of input-saturation and its bounds will be investigated.  First, the two cases in terms of 

linear PI controller designs are compared. One case does not consider input-saturation, 

while the other case does. Second, Method 5.1 will be applied to calculate a less 

conservative value for ψ  when saturation occurs.  

 

First, the two cases of design results of linear PI controllers are compared. The first case 

without input-saturation has been considered in section 5.4.1.1, and the design results are 

given by the two lines in Figure 5.2. The second case considers the effect of input-

saturation. Initially, the saturation factor ψ  was assumed to be in the range of [0,1]. 

However, for this range of ψ , it was not possible to meet the robustness criteria for any 
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possible values of the gain-scheduled PI controller parameter set θ . To illustrate the 

effect of the lower bound of ψ , it was decided to test for an arbitrary lower limit ψ . 

Later in this section, a more accurate lower limit of ψ  was found analytically based on 

the Method 5.1 described earlier in this chapter. Following the same procedures described 

in section 5.4.1.1 to obtain the two lines in Figure 5.2, regions of linear PI controller 

tuning parameters in the parameter space are obtained when input-saturation is 

considered. The closed-loop system matrix is given by equation (5.15) which includes the 

input-saturation factor. The results are shown in Figure 5.10 and Figure 5.11. 
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Figure 5.10 Stability regions (to the left of the lines) of linear PI controller parameters 

(comparing: without input-saturation (solid) and with [ ]14.0∈ψ (dotted)). 
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Figure 5.11 Performance regions (to the left of the lines) of linear PI controller 

parameters (comparing: without input-saturation (solid) and with [ ]14.0∈ψ (dotted)). 

 

The results in Figure 5.10 and Figure 5.11 both clearly show the following: 1- the 

inclusion of input-saturation makes the stability and performance regions smaller, thus 

the designs are more conservative; and 2- by selecting the lower bound of ψ  to be larger 

than zero, the robustness criteria can be met. Since the input-saturation problem cannot 

be ignored in practice, one possible solution to this problem is to obtain less conservative 

lower bounds of the input-saturation factor using the analytical method proposed in this 

work, i.e., Method 5.1, and hopefully less conservative designs will be obtained.  

 

As a result, Method 5.1 is applied to calculate a less conservative value for ψ . It is 

desired to obtain a saturation factor lower bound ψ  which applies to all the tuning 

parameter combinations in the stability region given by the solid line in Figure 5.10. It is 

easy to obtain from equation (5.12) that for cK  values on the stability limit, ψ  increases 

as Iτ  increases. This means that the [ ]ψψψ ∈  calculated along the stability limit will 
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include as well all the possible values of ψ  inside the stability region shown in Figure 

5.10, since in that region, Iτ  is higher than the values on the boundary. Since the stability 

region is larger than the performance region, the bound on ψ  obtained from the stability 

limit will surely apply also to the parameter sets in the robust performance region. The 

results obtained using Method 5.1 along the stability limit, the solid line in Figure 5.10, 

are summarized in Table 5.2.  
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Figure 5.12 Stability regions (to the left of the lines) of linear PI controller parameters 

(comparing: without input-saturation (solid), with [ ]14.0∈ψ  (dotted) and with 

[ ]16203.0∈ψ  (dashed)). 
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Figure 5.13 Performance regions (to the left of the lines) of linear PI controller 

parameters (comparing: without input-saturation (solid), with [ ]14.0∈ψ (dotted) and 

with [ ]16203.0∈ψ  (dashed)). 

 

Table 5.2 Input-saturation factor lower bound for controllers on stability limit 

(the solid line in Figure 5.10) 

cK  0.86 1.86 2.31 2.42 2.55 2.97 3.3 3.38 

Iτ  0.3 0.6 1 1.1545 1.4 3 10 20 

ψ  0.7583 0.6203 0.7215 0.7562 0.8074 0.8418 0.8418 0.8418 

 

Results obtained using Method 5.1 gives the less conservative bounds of the input-

saturation factor, i.e., [ ]16203.0∈ψ .  

 

To show the effectiveness of reducing conservatism with this approach, the regions of 

linear PI controllers are obtained again with this new bounds of ψ , and compared with 

those shown by Figure 5.10 and Figure 5.11. The new boundaries are shown by dashed 
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lines in Figure 5.12 and Figure 5.13. The dashed lines in Figure 5.12 and Figure 5.13 are 

closer to the solid lines than those dotted lines are. This shows that bigger regions of 

robust stability and robust performance in terms of linear PI controller parameters can be 

obtained with the input-saturation factor bounds obtained using Method 5.1.  

 

To illustrate the impact of the input-saturation limits on the design, the performance 

index optimalγ  for different situations are computed and tabulated for comparison in Table 

5.3.  

 

Table 5.3 Relaxation of input-saturation factor bound and conservatism reduction 

Case [ ,cK ,Iτ ,cW dW ] ψ  
t,1δ  t,2δ  optimalγ  

1 [1.3,2.5,0,0] [ ]10∈ψ  [-1,1] [0,1] ∞  

2 [1.3,2.5,0,0] [ ]16203.0∈ψ  [-1,1] [0,1] 0.4702 

3 [1.3,2.5,-0.05,0.01] [ ]18376.0∈ψ  [-1,1] [0,1] 0.4280 

4 [1.3,2.5,-0.05,0.01] [ ]11∈ψ  [-1,1] [0,1] 0.3979 

5 [1.3,2.5,-0.05,0.01] [ ]11∈ψ  [-0.4,0.4] [0,0.16] 0.2846 

6 [1.3,2.5,-0.05,0.01] 
simulationγ =0.2010 

 

The case 1 in Table 5.3 corresponds to a fixed PI controller where the lower bound of ψ  

was assumed to be zero corresponding to a maximum control action of infinity according 

to equation (5.12). For this case the design results in unfeasible robust performance, i.e., 

an infinite value of the index optimalγ . Case 2 corresponds to the same PI controller in case 

1, but the lower bound of the saturation factor obtained from Method 5.1, i.e., 

[ ]16203.0∈ψ , was used, and the robust performance was obtained with a finite value 

of 4702.0=optimalγ . 
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Subsequently, a gain-scheduled PI controller was selected to show the conservatism 

reduction based on relaxation of the saturation factor bounds. This controller has the 

same 3.1=cK , 5.2=Iτ  as used in cases 1 and 2, and scheduling weights 05.0−=cW , 

01.0=dW . For this case, the lower bound of ψ  was recalculated using Method 5.1 to be 

0.8376, covered by the bound of [ ]16203.0∈ψ . The design results are given as case 3 

in Table 5.3. This gain-scheduled controller of case 3 results in a better performance 

index than the fixed PI controller given in case 2. 

 

Case 4 corresponds to the same gain-scheduled controller used in case 3 but without the 

input-saturation condition defined by equation (5.12). This was done to show the 

significant decrease in the value of optimalγ  indicating that the saturation condition is a 

major contributor to the conservatism of the design. For the purpose of comparison, case 

5 consists in the recalculation of case 4 with a smaller range of variation in )(tu , i.e., a 

smaller uncertainty range of [ ]iiti δδδ ∈, . This results in an even smaller value of 

optimalγ  of 0.2846. 

 

Finally, to realistically assess the conservatism of the analysis, the system was 

numerically simulated for a large range of possible disturbances and the worst case was 

used to compute the simulationγ  obtained in these simulations. This largest value was 

obtained from a two-consecutive-opposite-sign-pulse disturbance as shown in Figure 5.5. 

The simulation result simulationγ =0.201 of case 6 in Table 5.3, is smaller than the analysis 

results in cases 1-5. This indicates that some conservatism is inherent to any robust 

control analysis where many scenarios assumed in the robust analysis will not actually 

happen during closed-loop operation. If a smaller range of uncertainty was assumed in 

the analysis, as done in case 5, the analysis performance index γ  will be closer to the 

simulated γ . 
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5.4.3 Design based on the SSV analysis  
 

The state-affine model obtained in Chapter 3 is used in the design of the gain-scheduled 

PI controller in this section. A modeling error weight of 025.0=tW  is included in the 

design and input-saturation is not considered. The SSV design is based on the two upper 

bound conditions (4.87) and (4.88), which are summarized in section 5.3.3. Since the 

modeling error is included, the closed-loop LFT frameworks are those obtained in section 

5.3.2 and given by equations (5.31) and (5.33). The design results of SSV approach will 

be compared with those of quadratic Lyapunov approach obtained in section 5.4.1.1.  

 

First, for linear PI controllers, following the same procedures described in section 5.4.1.1, 

regions of robust stability and performance in terms of the controller parameters are 

obtained and compared with the results from section 5.4.1.1 based on quadratic 

Lyapunov approach. The two design approaches gave almost the same design results, 

shown by the two lines in Figure 5.2.  
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Figure 5.14 Stability region (inside the lines) of gain-scheduled PI controller parameters 

(comparing: quadratic Lyapunov approach (solid) and SSV approach (dotted)). 
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Second, gain-scheduled PI controllers are designed, for the same two linear PI controllers 

chosen as in section 5.4.1.1, i.e., 1545.1,42.2 == IcK τ  for robust stability and 

1545.1,2 == IcK τ  for robust performance. The stability and performance limits in 

terms of the scheduling weights are shown in Figure 5.14 and Figure 5.15 as dotted lines 

and compared to the results obtained with the quadratic Lyapunov tests.  
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Figure 5.15 Performance region (inside the lines) of gain-scheduled PI controller 

parameters (comparing: quadratic Lyapunov approach (solid) and SSV approach 

(dotted)). 

 

Figure 5.14 and Figure 5.15 show that the stability and performance regions obtained 

with the SSV approach are smaller than those obtained with the quadratic Lyapunov 

approach. This shows that the SSV approach is more conservative than the LMIs based 

quadratic tests. The reason for this conservatism is as follows.  
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SSV analysis is based on the upper bound of µ , and when the uncertainty structure has 

repeated scalar blocks, the upper bound of µ  will not equal µ . In this case, the 

conclusions drawn from the upper bound of µ  will be conservative, especially more 

conservative as the number of repeated scalars blocks increases. According to the closed-

loop system formulation given by equations (5.31) and (5.33), the uncertainty structures 

have repeated scalars blocks for both the tests of robust stability and performance. The 

number of repeated scalars blocks is 1+k  for linear PI controllers design and 2+k  for 

gain-scheduled PI controllers design. Because the number of repeated scalars blocks for 

the design of gain-scheduled PI controllers is more than the number for linear PI 

controllers, the design results for gain-scheduled controllers are more conservative than 

the results for the design of linear PI controllers from SSV approach. As a result, the 

designs using SSV approach are more conservative than the results obtained from the 

quadratic Lyapunov approach. As the SSV approach is more conservative as explained 

above, it is not chosen as the main method in this work. However, it still remains a useful 

tool for robust control design of linear time-invariant systems. 

 

5.5 Conclusions 
 

A systematic approach has been proposed to design gain-scheduled PI controllers for 

nonlinear processes. It is based on the empirical state-affine models of the process that 

can be directly identified from process data. The proposed gain-scheduled PI controller 

contains small number of parameters, which facilitates the controller design. The 

designed robust gain-scheduled PI controllers guarantee robust stability and robust 

performance of the closed-loop system.  

 

The linear PI controllers and gain-scheduled PI controllers can also be optimized to 

achieve near optimal performance based on a GEVP based optimization algorithm. The 

optimized controllers all showed improvement in terms of robust performance. 

Simulations showed that the gain-scheduled controller provided better performance than 

a linear PI controller tuned according to IMC rules. A performance index γ , although 
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conservative, has been found to be a reliable indicator of the relative performance of the 

different controllers considered in this work.  

 

It was also shown that the designed robust controllers tend to be conservative, and thus, 

conservatism reduction has turned out to be an important emphasis of the current research. 

Two approaches have been proposed in this work to improve over the design of gain-

scheduled PI controllers. The first approach is based on parameter-dependent Lyapunov 

functions and the second one is for the relaxation of the input-saturation factor. 

 

For characterization of time-varying uncertain parameters, the rate of parameter variation 

is as important as the parameter range. When the bounds of the parameter and the rate of 

change are both available, it is desired to integrate them into the stability and 

performance analysis for less conservative designs. Parameter-dependent Laypunov 

function takes into account parameter variation, and thus, it represents the general case of 

time-varying uncertain parameters, including the special case of constant uncertain 

parameters. Stability and performance tests have been developed based on it and the 

improvements were shown over the original design procedure. Design results based on 

these parameter-dependent Lyapunov functions showed that conservatism can be reduced, 

especially by a large amount, for the design of gain-scheduled PI controllers.  

 

Relaxation of saturation factor lower bound is another approach proposed in this work to 

reduce the conservatism. The relaxation of this bound is made possible by the fact that 

controlled variables will have physical bounds due to process limits or sensor saturation. 

Simulation results on a CSTR process and comparison to the analysis results showed that 

this approach is very efficient in reducing the conservatism of the design.  

 

Linear and gain-scheduled PI controllers have also been designed based on the SSV 

approach. The design results showed that the SSV approach is more conservative than the 

quadratic Lyapunov approach, especially for the design of gain-scheduled PI controllers. 

As it has been explained in Chapter 4, the SSV approach is generally more conservative 

than the quadratic Lyapunov approach for time-varying uncertainties. As a result, the 
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quadratic Lyapunov approach has been chosen as the main design approach in this work. 

Therefore, in the following chapter, the SSV design approach will not be used and only 

results obtained with the less conservative quadratic Lyapunov designs will be shown. 
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6 Robust Gain-scheduled MPC 
 

In this chapter, a more general approach, Model Predictive Control (MPC), will be 

considered, where the process model is used to predict future outputs over a long time 

period. MPC is a widely accepted control algorithm in the chemical industry used for 

multivariate systems with constraints. The main purpose of this chapter is to present a 

new systematic approach to design robust gain-scheduled MPC controllers for nonlinear 

processes, which guarantee closed-loop robust stability and performance. This approach 

is based on the analysis tools presented in Chapter 4. 

 

A gain-scheduled MPC controller scheduling on the process input for nonlinear chemical 

processes is proposed in this chapter. The state-affine model under this gain-scheduled 

MPC control results in a closed-loop system that can be shown to be an affine parameter-

dependent model, with affine parameter-dependence on the process inputs. In Chapter 4, 

conditions on the robust stability and robust performance have been developed for this 

class of closed-loop system, i.e., affine parameter-dependent models. Based on these 

conditions, a robustness analysis is carried out to validate the design and obtain a series 

of input weights over the operation range according to the discretization, in the face of 

plant uncertainty.  

 

The primary disadvantage of the design techniques in the literature for MPC is their 

inability to deal explicitly with plant uncertainty. In this chapter, a new approach for 

robust MPC synthesis is presented that allows explicit incorporation of the description of 

plant uncertainty in the problem formulation. The state-affine model is used to model the 

process output in the MPC optimization objective function, using the uncertainty 

description associated with the nonlinearity of the state-affine model. In this way, it is 

possible to account for the effect of model/plant mismatch and unmeasured disturbances. 

By using this approach, it is also possible to formulate the closed-loop system of the 

state-affine model together with a state-space form of the gain-scheduled MPC controller 

into a form suitable for robustness analysis.  
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The output predictions are done with step response models as for the linear case. 

However, to account for the process nonlinearity, instead of using one step response 

model, a family of step or equivalently impulse response models will be defined for 

different sub-ranges of values of the manipulated variable u . Then, for each of these 

models a linear MPC calculation can be conducted based on the current value of u . This 

approach results in a simple gain-scheduled MPC strategy that it somewhat resembles the 

traditional gain-scheduled approach based on local linearization. The key difference is 

that in this work, global closed-loop stability and performance will be tested instead of 

testing only the local closed loop stability and performance as proposed by practitioners 

for the traditional gain-scheduling approach. 

 

In this approach, calculations are conducted offline to produce a sequence of optimal 

design tuning parameters for the MPC algorithm based on the values of the manipulated 

variable. Then, the resulting gain-scheduled MPC controller can be implemented on-line 

with the calculated tuning parameters scheduled based on the manipulated variable. The 

designed robust gain-scheduled MPC controller guarantees closed-loop system robust 

stability and performance. 

 

In this chapter, section 6.1 reviews the traditional linear MPC (LMPC) based on step 

response models. Initially, the single-input-single-output (SISO) case, and the multi-

input-multi-output (MIMO) version of MPC are presented. Then, the unconstrained MPC 

control law is formulated into a state-space form based on a straightforward matrix 

manipulation. Based on this state-space formulation, the closed-loop equations, 

composed of the state-affine model and the MPC controller, are formulated as an affine 

parameter-dependent system. The controller parameters can be tuned to achieve a 

desirable performance, and comments on their effects are given in section 6.2. The robust 

gain-scheduled design approach, similar to the one used in Chapter 5, is proposed to 

design MPC controllers based on the robust stability and performance conditions 

proposed in Chapter 4. The procedures for the design and optimization of robust gain-

scheduled MPC are detailed in section 6.2. In section 6.3, the above proposed approach is 
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applied to the SISO CSTR case study and a simple 2x2 system, leading to a series of 

results and conclusions. 

 

6.1 Unconstrained MPC Control Law 
 

6.1.1 Model prediction based on step response models 
 

Step response models are based on the following idea: for a linear time-invariant SISO 

system, assuming the system is at a rest, i.e., 0,0)( >=+∆ iitu , the output change for the 

unit input change at 1−t  is given by },,,,,,,{)( 210 KK u
n

u
n

u
n

uuu SSSSSSty =  or, by equation 

(6.1). Here it is assumed that the system settles after exactly n  sampling steps. uS0  is zero 

and this is because it is assumed that there is no immediate effect of the manipulated 

variable on the output. The step response of a process can also be shown by the following 

figure: 

 

 

 

 

 

 

 

Figure 6.1 Step response of a process 
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For continuous systems, the impulse response can be expressed as the first derivative of 

the step response. Equivalently, for a digital system with a zero-order hold the impulse 

response can be found by taking the first backward difference of the step response. The 
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unit impulse response coefficients of the process, nhhhh ,,,, 210 K , are then given as 

follows: 

 

niSShh u
i

u
ii ,,2,1,,0 10 K=−== −  (6.2) 

 

and the discrete impulse response model using the impulse response coefficients is: 

 

∑
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(6.3) 

 

Equation (6.3) can be rearranged into the form of equation (6.1) by substituting the 

expression for ih  in (6.2) and then grouping terms for each u
iS .  

 

The step response model (6.1) can be made general to include an arbitrary number of 

output predictions into the future. Also, for a linear time-invariant system, using the 

superposition principle, the effect of the initial condition is added to the effect of the 

manipulated variable move on the response to obtain the overall response. 

 

The prediction vectors are defined as follows 
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(6.4) 

 

Then it is possible to find the effect of the initial conditions and the manipulated variables 

as follows: 
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1. Effect of the initial conditions: 

 

For a linear time-invariant system, if 1,0)( −≥=+∆ iitu , then 
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or  
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2. Effect of the manipulated variable move: 

 

For the system at rest, 0)1( ≠−∆ tu , the effect of the manipulated variable on the output 

is as follows: 
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3. The combined effect of initial condition and manipulated variable move: 
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After adding the effect of the initial conditions and of the manipulated variable move, 

assuming there is no measured disturbance, the prediction vector is as follows: 

 

)1()1()( −∆+−= tutt u
I sYMY  (6.8) 

 

For the general case of an arbitrary sequence of m  input changes, i.e., for 

[ ]Tmtututut )1()1()()( −+∆+∆∆=∆ KU , the prediction vector can be calculated 

using the following matrix equation 
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where the step response matrix uS  is given as follows:  
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Equation (6.9) gives the n -step-ahead prediction. In order to simplify computations, the 

prediction is generally performed over a prediction horizon )(, npp ≤ , which is then 

obtained simply by taking the first p  rows of equation (6.9).  

 

The above prediction given by equation (6.9) is an open-loop prediction, in the sense that 

it does not provide any corrections due to model errors or unmeasured disturbances that 

may have occurred at any previous time step. To address this shortcoming, a vector 

)1( tt +W  is defined to represent the unmeasured disturbance and model/plant mismatch. 

It is assumed that the disturbances are step-like, i.e., the current difference between the 

measurement and the prediction is applicable for any prediction into the future. )1( tt +W  

is then given as follows: 
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)(ty  is the new value of the measured output. The purpose of using this measurement at 

each time step is to compensate for unmeasured disturbances and model inaccuracy, both 

of which cause the system output to be different from the one predicted by the model.  

 

The −p step-ahead prediction vector )1( tt +Y , including the effect of modeling error 

and unmeasured disturbances, is then given as follows: 

 

)()1()()1( tttttt u
pp USWYMY ∆+++=+  (6.12) 

 

where u
pS  is the sub-matrix made of the first p  rows of uS , i.e., [ ] u

nppp
u
p SIS

××= 0 , 

and similarly [ ] Inpppp MIM
××= 0 . In equation (6.12), the first two terms are 

completely defined by past control actions and present measurements, and the last term 

describes the effect of future manipulated variable moves. )(tY  is obtained from (6.8) 

and now it is referred to as the model update vector. 

 

6.1.2 Unconstrained SISO MPC control law 
 

The MPC control law can be easily explained by referring to Figure 6.2. 
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Figure 6.2 Model predictive control problem 

 

The current time interval k  in the above figure is denoted with t  in the sequel. For any 

assumed set of present and future control moves )1(,),1(),( −+∆+∆∆ mtututu K , the 

future behavior of the process outputs )(,),2(),1( tptyttytty +++ L  can be predicted 

over a horizon p  ( pm ≤ ) using equation (6.12). Though m  control moves are 

calculated, only the first one ( )(tu∆ ) is actually implemented at time t . At the next 

sampling interval, new values of the measured output are obtained, the control horizon is 

shifted forward by one step, and the same computations are repeated. Hence, the resulting 

control law is referred to as “moving horizon” or “receding horizon.” 

  

The control objective is to force the predictions )1( tt +Y  approach the set-point 

trajectory as closely as possible. The set-point trajectory, that is, the desired values of the 

set point p  time steps into the future, is defined as 

[ ]Tptrtrtrt )()2()1()( +++= KR . Then, the unconstrained model predictive 

control problem consists of computing future control moves 

[ ]Tmtututut )1()1()()( −+∆+∆∆=∆ KU  so that the future sum of squares errors 

between the output and target is minimized, i.e., MPC solves the following optimization 

problem:  
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ΓΛ,  are positive-definite weighting matrices for u  and y  respectively at future time 

intervals. The Λ ’s weight’s purpose is to penalize large moves in the manipulated 

variables, while the Γ ’s weight is used to penalize the errors according to the relative 

importance of the outputs in the problem under consideration. The parameters of ΓΛ,  

are tuned to improve the performance of the model predictive controller.  

 

Equation (6.13) can be solved via linear least squares algorithm. A solution that 

minimizes the sum of squares of the residuals of these equations, is given by 

bAA)(Ax T1T −= , i.e., 

 

)1()()( 1 ttt TTu
p

Tu
p

TTu
p ++=∆ − ΓεΓSΛΛΓSΓSU  (6.15) 

 

where [ ]Ttpttttttt )()2()1()1( +++=+ εεε Lε  is the feedback corrected vector 

of future output deviations from the reference trajectory, assuming all present and future 

input moves )1(,),1(),( −+∆+∆∆ mtututu K  are zero. The solution of equation (6.15) 

gives a sequence of control moves, i.e., [ ]Tmtututut )1()1()()( −+∆+∆∆=∆ KU , 

but only the first control move )(tu∆  is implemented using equation:  

 

)()1()( tututu ∆+−=  (6.16) 
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Then the calculations are redone at the next time step when new information about 

outputs and disturbances is available. Rewriting the above equations, the present control 

move )(tu∆  is obtained as follows 
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εK
TTu

p
Tu

p
TTu
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MPC tttu
1

1 )(001

)1()(
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L
 

(6.17)

 

The matrix MPCK  can be computed offline according to equation (6.17). 

 

The algorithm is summarized as follows: given )(),1( tytu −∆  

 

1. Assume the system is at steady-state )0(y , initialize the model prediction vector at 

time 0=t  as 

 

[ ]Tyyyy )0()0()0()0()0( L=Y  (6.18) 

 

2. Update the model according to equation (6.8) 

 

)1()1()( −∆+−= tutt u
I sYMY  (6.8) 

 

The first element of  )(tY  , i.e., )(ty , is the model prediction of the output at time t . 

 

3. Compute the reference trajectory error vector 

 

)1()()1()1( tttttt p +−−+=+ WYMRε  (6.19) 

 

where   
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4. Compute the current manipulated variable move 
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)(tu∆  is implemented on the plant. 

 

5. Go to step 2.  

 

6.1.3 Unconstrained MIMO MPC control law 
 

The results developed in the previous sections can be generalized to MIMO systems. For 

a system with un  inputs and yn  outputs, the step response coefficient u
iS  in equation (6.1) 

would be  
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where u
iklS ,,  is the thi  step response coefficient describing the effect of thk  input on thl  

output. The step response vector us  defined in equation (6.7) is then given by the 

following:  
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and the step response matrices uS  and u
pS  defined in equations (6.10), are then given by 

the following: 
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(6.22) 

 

For the multivariable case, the relevant variables are redefined as follows: 
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)1()1()( −∆+−= ttt u
I usYMY  (6.26) 

 

)1()()1()1( tttttt p +−−+=+ WYMRε  (6.27) 
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In analogy with the derivations for the SISO system, the MPC controller for a MIMO 

system can be solved with the algorithm in section 6.1.3, substituting all the vectors 

defined above in this section, and then the MPC controller’s manipulated variable moves 

can be calculated as follows:  
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The model predictive control method can be advantageous for MIMO control problems 

when the process outputs exhibit dynamic interaction or when it is crucial to meet 

constraints on the manipulated and/or controlled variables. When constraints exist, a 

constrained optimization problem has to be solved to calculate the optimal control moves. 

However, in this work, as a preliminary study, only unconstrained case is considered. 

 

6.1.4 Unconstrained MIMO MPC control law in state-space form 
 

Since all LMIs based tests developed in Chapter 4 for robust stability and robust 

performance are only applicable to state-space formulation, a state-space version of the 

MPC controller is developed in this section. 

 

Following Zanovello and Budman (1999) on SISO MPC controller, a MIMO state-space 

MPC controller representation can be obtained as follows. Assuming there is no 

measured disturbance, a controller state vector )1( −tU  is defined as follows: 

 

[ ]
unn

TTTT ntttt ×−−−=− 1)()2()1()1( uuuU K  (6.33) 

 

and the controller output )(tu  is defined as follows: 

 

)()1(
)()1()(

1 tt
ttt

uUe
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(6.34) 

 

where the matrix 1e  is given by: 

 

[ ]
uuuuuuu nnnnnnnn ×××= 00Ie .1  (6.35) 

 

Using the relation between the step response and the impulse response coefficients: 
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where ikl ,,h  is the thi  impulse response coefficient describing the effect of thk  input on 

thl  output, and assuming the system reaches steady-state in n  sampling periods, the 

model update vector )(tY  defined by equation (6.26) can also be calculated from the 

following vector equality: 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+

+
=

××

×

)(
.
.

)2(
)1(

..
.....
.....

.
..

)1(
.
.

)1(
)(

)(
32

21

nt

t
t

nt

t
t

t

uyuy

uy

nnnn
u
n

nnn
u

n
u

u

u
u

00S

0hhS
hhS

y

y
y

Y  

(6.37)

 

or, in compact form:  

 

)1()( −= × tt
uy nnnn UHY  (6.38) 

 

where u
iS  is defined in equation (6.20), and ih  is defined as follows: 
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Equations (6.26) and (6.37) can be shown to be equivalent. For example, consider the 2nd 

row of )(tY  from equation (6.26): 
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and, from equation (6.37):  
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Equations (6.40) and (6.41) are equivalent and this shows that the equations (6.26) and 

(6.37) are equivalent. Therefore, equation (6.37) will be used instead of equation (6.26) 

because it favors the following development of the MIMO state-space MPC controller.  

 

The general case with unmeasured disturbances and/or error due to model/plant mismatch 

is considered, i.e., )/1( tt +W  is different than zero. Then, assuming 0R =  without loss 

of generality, the following is obtained from equations (6.33), (6.32) and (6.27): 

 

)]1()([)1()( 12 ttttt pMPC +−−+−= WYMKTUTU  (6.42) 

 

where the matrices 21 ,TT  are given as follows: 
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As explained in the previous sections, the MPC controller depends on the current output 

measurement for the calculations of output predictions and control moves. This 
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requirement limits the application of the stability and performance analysis of the closed-

loop system. Fortunately, the explicit dependence on the output measurement can be 

removed if a process model can be used to estimate the measured value of the output. The 

state-affine model used in the previous chapters in this work is also used in this chapter to 

represent the nonlinear process. This model has been shown before to account for the 

nonlinear behavior and time-varying dynamics of the process. The process output 

measurement will be approximated by the state-affine model output. Following a robust 

control approach, the state-affine model is made up of a nominal linear model plus some 

model error due to the nonlinear terms of the model. 

 

The state-affine model of the process with unmeasured disturbance is as follows: 
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(6.44) 

 

For a MIMO system with xn  states, un  inputs and yn  outputs, the dimensions of the 

matrices in the above process model are xx nn
i

×ℜ∈F , ux nn
i

×ℜ∈G , xy nn
i

×ℜ∈H  and 

1×ℜ∈ yn
fW  respectively. The uncertain parameter ti,δ  is redefined as shown above to 

include cross-products between two different inputs. )(ty  is the measured process output; 

thus the predicted output and the measured output are given respectively as follows: 
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From equations (6.38), (6.30) and (6.45), equation (6.42) can be rewritten as: 



 166

 

)()()1(
)]}1()()([)1({)1(

)]}()([)1({)1(

)}/1()({)1()(

210212

20212

212

12

tdtt
ttdttt

tttt

ttttt

MPCMPC

pMPC

pMPC

pMPC

f

f

WNKTxHNKTUE
HUeWxHNHUMKTUT

yyNHUMKTUT

WYMKTUTU

−−−=

−−+−−−+−=

−−−−+−=

+−−+−=

 

(6.46)

 

where the matrix 2E  is given as follows: 

 

HeNKTHMKTTE 221122 MPCpMPC +−=  (6.47) 

 

and the current control action can be calculated from the following expression: 
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where 

 

][ 2211 HeNKHMKeC MPCpMPCu +−=  (6.49) 

 

Then, the state-space representation of the MPC controller can be found by combining 

equations (6.46) and (6.48) as follows: 
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(6.50) 

 

From equations (6.44) and (6.50), the closed-loop system is obtained by combining the 

state-affine model and the MPC controller equations into the following equation:  
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where 
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The above state-space system representation can be used for robust performance analysis. 

For robust stability, the disturbance )(td  does not have to be considered, so the system 

matrix A  to be considered for the robust stability analysis is as follows: 
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The closed-loop systems for robust stability analysis, given by equation (6.53) and for 

robust performance analysis, given by equations (6.51) and (6.52), both have affine-

parameter dependence with respect to the uncertain parameters sti ',δ . This allows the 

application of the robust stability and performance conditions developed in Chapter 4 to 

the design of MPC controllers given by equation (6.50). 
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6.2 Design and Optimization using Quadratic Lyapunov 

Functions 

 

6.2.1 Selection of MPC tuning parameters  
 

The MPC technique presented in the previous section includes a number of design 

parameters which can be adjusted to give the desired response as well as an appropriate 

amount of manipulated variable movement. For open-loop stable plants, stability and 

performance of the closed-loop system depends only on MPCK , which in turn is a 

function of the MPC design parameters, m , p , Λ  and Γ , and step response coefficients. 

Systematic guidelines to select these parameters to obtain closed-loop stability are not 

available in the literature, but the following guidelines have been generally followed by 

practitioners: 

 

1. The control horizon m  is the number of future control actions that are calculated in 

the optimization step to reduce the predicted sum of squares errors. Too large a value of 

m  results in excessive control action. A smaller value of m  leads to a robust controller 

that is relatively insensitive to model errors. The parameter m  is also the dimension of 

the matrix in equation (6.17) that must be inverted. Therefore, the computational effort 

increases as m  is increased. 

 

2. The parameter p  is the number of future output predictions that are used in the 

optimization calculations. Increasing p  results in more conservative control action which 

has a stabilizing effect but also increases the computational effort. In general, decreasing 

m  relative to p  makes the control action less aggressive and tends to stabilize a system. 

 

3. The weighting matrices Λ  and Γ  contain a potentially large number of design 

parameters, possibly time-varying. However, for SISO systems, for simplicity it is 

possible to select IΓ =  and a diagonal IΛ λ= , with λ  as a design parameter. Larger 
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values of Λ  penalize the magnitude of the control moves )(tU∆ , thus resulting in less 

aggressive control.  

 

In general practice, Λ  is used as the main tuning parameter because its effect on the 

performance is straightforward. For SISO systems, it has been mentioned above that it is 

sufficient to select IΛ λ= . For MIMO systems, this is equivalent to the following choice: 

 

},,,{},,,,{ 21 uuu nmnmn diagdiag λλλ KK ==× ΛΛΛΛΛ  (6.54) 

 

For a system with un  inputs, there are un  design parameters 
unλλλ ,,, 21 K . In this work, 

an approach for the design of Λ  has been developed, based on the proposed robust 

stability and performance tests presented in Chapter 4. This will be discussed in detail in 

the following section. 

 

6.2.2 Design and optimization of gain-scheduled MPC 
 

The linear MPC (LMPC) algorithms are being widely used in industry because of their 

straightforward model representation, i.e., by using step or impulse response model 

directly identified from data. These advantages can be realized for nonlinear systems by 

modifying the linear algorithm. To understand the changes required, consider the effect 

of the system being nonlinear in the equations and variables used by LMPC. 

 

As shown in the previous section, the MPC control calculation is based on output 

predictions obtained using a model. If the model is nonlinear, the prediction has to be 

calculated from a nonlinear function. Clearly, this will result in a nonlinear optimization 

problem that in many cases is difficult to solve. 

 

In this work, to avoid the nonlinear optimization formulation, an alternative simpler 

approach for prediction and control calculation is proposed. It is proposed to do 

predictions with step response models as done for the linear case. However, to account 
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for the process nonlinearity, instead of using one step response model, a family of step or 

equivalently impulse response models will be defined for different sub-ranges based on 

the values of the manipulated variable u . Then, for each of these models a linear MPC 

calculation can be conducted based on the current value of u . This approach results in a 

simple gain-scheduled MPC strategy that somewhat resembles the traditional gain-

scheduled approach based on local linearization. The key difference is that in this work, 

global closed-loop stability and performance will be tested instead of testing only the 

local closed-loop stability and performance as proposed by practitioners for the 

traditional gain-scheduling approach. 

 

The impulse response models and consequently the control actions are scheduled with 

respect to the input u . The input weight, for simplicity, will be assumed as the only 

tuning parameter scheduling against u .  For a SISO system, the overall range of change 

of the input variable )(tu  is discretized into k  sub-ranges. For example, for the input 

variable over the range of [-1 1], two evenly split sub-ranges can be selected to be 

]0,1[1 −=u  and ]1,0[2 =u . For a discretization into multiple sub-ranges kju j ,,2,1],[ K= , 

an MPC controller will be designed satisfying the robust stability and performance 

conditions for all the sub-ranges. Step responses and impulse responses are calculated for 

each sub-range, and )( jMPC uK  will be obtained based on the optimization of the 

parameters of )( juλ  that composes the weight Λ .   

 

This gain-scheduled MPC controller design approach can be also applied to the MIMO 

case. For a MIMO system with un  inputs, the overall range of change of each input 

variable ui nitu ,,2,1),( K=  is discretized into ui nik ,,2,1, L=  sub-ranges. For example, 

for a 22×  system, assuming the operation range of each input will be discretized into 

two sub-ranges, i.e., 2=ik , the sub-ranges of u  are as follows: 

 

2],1,0[
1],0,1[

]1,1[,
2],1,0[
1],0,1[

]1,1[
2

2
2

1

1
1 ==

=−=
→−∈

==
=−=

→−∈ gu
gu

u
ru
ru

u
g

g

r

r  
(6.55)



 171

 

As a result, the whole operation range will be discretized into four sub-ranges, 

corresponding to the combinations of the input sub-ranges, i.e., 

]2,2[],1,2[],2,1[],1,1[],[ =gr , referred to as sub-ranges set rg  in the sequel. Accordingly, 

the weighting matrix Λ  penalizing the control moves is as follows 
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(6.56) 

 

Which contains 4 design parameters 22122111 ,,, λλλλ , where r  denotes the sub-range of 

operation related to the first input and g  denotes the sub-range related to the second 

input. In general, for a MIMO system with un  inputs, when each input is discretized into 

ui nik ,,2,1, L=  sub-ranges, the corresponding total number of design parameters s'λ  

will be ∑
=

un

i
ik

1

. These parameters can be defined as a parameter vector 

{ } iuji kjni ,,2,1;,,2,1,, LL === λθ . The impulse response model )(uH  will be 

identified in each of the sub-ranges defined above. 

 

In Chapter 4, it has been shown that for systems that can be represented in the form of 

equation (6.51), LMIs-based tests have been developed for the analysis of robust stability 

and performance. Based on these conditions, the robust gain-scheduled MPC controllers 

proposed in this section can be designed and optimized. The objective of this 

optimization problem is to minimize the parameter γ  according to the following GEVP 

problem in MATLAB: 
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(6.57)

 

which is an alternative form of the equation in Theorem 4.2. 

 

To summarize, the procedure to design an optimal robust gain-scheduled MPC controller 

is as follows: 

 

1. Set ui nik ,,2,1, L=  for each input. Select values of pm, . Set a range and a discrete 

grid of values in that range for the controller design parameters set θ . 

 

2. Choose values for θ  according to the grid values within the parameter range.  

 

3. Substitute values of θ  into the equation of Theorem 4.2. 

 

4. Minimize γ  subject to the equation of Theorem 4.2 (GEVP problem in MATLAB).   

 

5. If a feasible solution exists for the above equation, accept values chosen in step 2 and 

the optimized performance index γ , otherwise, discard the current values. 

 

6. Go to step 2 until )min(γγ =optimal  is obtained over the whole parameter range. 

 

The problem of searching for the optimal performance index, optimalγ  , is not quadratic in 

terms of the controller parameters sji ',λ  and the optimization matrix variable P  

simultaneously. Thus, the resulting problem is a nonlinear matrix inequality for all of 

these parameters. For example, equation (4.33) includes higher-order terms like 
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bajijiji ,,,, , λλλλ PP . Thus, the optimization in terms of all of these parameters may be near 

optimal instead of a global optimal solution. Branch and bound methods have been 

proposed to solve LMIs that are not convex with respect to certain variables (Fukuda and 

Kojima, 2001; Braatz, VanAntwerp & Sahinidis, 1997). This is beyond the scope of the 

current study. 

 

6.3 Case Study Results and Conclusions 
 

For the SISO CSTR process, the state-affine model obtained in Chapter 3 is used in this 

section for the design of gain-scheduled MPC controllers in section 6.3.1. In section 6.3.2, 

a simple 22×  process will be used as an illustration of the MIMO design. 

 

6.3.1 Design results for SISO processes 
 

6.3.1.1 Design results for the SISO CSTR process 

 

For the state-affine model of the CSTR example, as a preliminary study, a simple gain-

scheduled MPC controller will be designed according to the following even discretization 

of the scheduling variable, i.e., the manipulated variable u :  
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(6.58)

 

In summary, the operation range of ]1,1[−∈u  is discretized evenly into two sub-ranges, 

01 ≤≤− u , and 10 ≤< u . Then two MPC controllers are designed, one controller for 

each sub-range. If u  is within the first sub-range, the controller ),( 111 λMPCMPC K  is 

applied, which is based on the step response coefficients corresponding to a step input 

changing from -1 to 0. If u  is within the second sub-range, the controller 

),( 222 λMPCMPC K  is applied, which is based on the step response coefficients 

corresponding to the step input changing from 0 to 1. 
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For one specific sub-range of u , the matrix A  of the closed-loop system, given by 

equation (6.53), has to be calculated with the λ  value corresponding to the sub-range. As 

a result, over the whole operation range, a family of matrices A  will be obtained, each 

corresponding to one sub-range. The two bounds of the manipulated variable u  for each 

sub-range, represent two vertices of the uncertain parameter box. The LMIs robust 

stability test of the closed-loop system will be checked against all the matrices A  at each 

vertex of the uncertain parameter box.  

 

Additional vertices have to be added to account for the boundaries between the sub-

ranges of u . For example, for the controller given by equation (6.58), the vertices of 
−+= 0,0u , using 0== i

i uδ  in the state-affine model will be added. These vertices are 

necessary to account for the discontinuity of the controller at the discretization point 0. 

The discontinuity is due to the different values of λ  and the step response from the two 

sides of 0. For example, when there is only one uncertain parameter u=1δ , the 

parameter box without a controller discontinuity at 0 will be represented by the dotted 

line shown in Figure 6.3, while the parameter box that accounts for all the cases in the 

gain-scheduled MPC controller consists of the two triangles in Figure 6.3, which are 

outside the range of the dotted line. This parameter box is accounted for only when the 

two additional vertices corresponding to −+= 0,0u  are considered. This is also true for 

the case when there is more than one uncertain parameter. Consequently, for the 

controller given by equation (6.58), all the vertices required for robust stability test are as 

follows: 
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(6.59) 

 

where  
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Figure 6.3 Vertices of the parameter box to be tested for robust stability 

 

For the robust performance test of the closed-loop system, the system matrix A  given by 

equation (6.51) is used instead. This analysis can be easily extended to the case where a 

more complex scheduling with a larger number of sub-ranges will be used. In that case, 

additional vertices, corresponding to the connection point of every two adjacent sub-

ranges, have to be added into the LMIs tests.  

 

Table 6.1  Gain-scheduled MPC controller optimization (SISO) 

GSMPC 

k  
],,,[ 21 kλλλ K  optimalγ  

1 [0.7287] 0.5928 

2 [0.2732,0.9499] 0.4926 

3 [0.3297,0.8219,1.1513] 0.4907 

4 [0.8303,0.8743,0.8446,1.0287] 0.6068 

5 [0.9369,1.0456,1.0464,1.0038,1.0821] 0.6152 

 

The gain-scheduled MPC controllers are referred to as GSMPCk in the sequel, where k  

indicates the number of sub-ranges specified for scheduling. A linear MPC is obtained 

1
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when 1=k . The optimal input weights ],,,[ 21 kλλλ K  are obtained based on the 

optimization procedure described in the previous section and shown in Table 6.1. For 

different number of evenly discretized sub-ranges from 1 to 5, the optimal performance 

index optimalγ  is also shown in the table. 

 

The results for optimalγ  in Table 6.1 are very close to each other among all the cases. 

Therefore, it is hard to make significant conclusions on what the best choice of k  is. 

optimalγ  decreases from 1=k  to 3=k , and then increases from 3=k  to 5=k . This 

shows that the system performance depends on the number of sub-range separations, and 

in this case, the GSMPC3 controller gives the best robust performance with a optimalγ  of 

0.4907. The reason that optimalγ  increases from 3=k  to 5=k  is that more LMI tersm and 

vertices are added to the problem thus increasing the problem conservatism. In addition, 

optimalγ  also depends on what are the limits between the sub-ranges in terms of the values 

of the variable u . Some a priori knowledge about the process nonlinearity may be 

helpful to guide the separation, i.e., more sub-ranges are needed if the system in a 

particular operation range is highly nonlinear. This point is further explained in Chapter 7 

as one of the future research directions.  

 

Table 6.2  Gain-scheduled MPC controller simulation (SISO) 

Controller 

name 

],,,[ 21 kλλλ K  optimalγ simulationγ  ∑
=

100

1

)()(
t

T tt uu  

GSMPC5-1 [0.9369,1.0456,1.0464,1.0038,1.0821] 0.6152 0.3108 2.1345 

GSMPC5-2 [5,5,5,5,5] 0.7230 0.3295 1.0426 

 

To show the effect of the input weights optimization, one case is taken from the 

optimization results in Table 6.1, and compared to another case which has the same 

number of sub-ranges but non-optimized input weights. This comparison in Table 6.2 

shows that the optimization of the input weights results in a reduction of the performance 



 177

index and thus results in a better robust performance. Simulation results of the two 

controllers are obtained and summarized in Table 6.2. 

 

simulationγ  is the performance index obtained from the simulation, calculated using 

22 LsimulationL
ve γ= . Different disturbance signals were used in the simulations, 

including for example step signals, sinusoidal signals, white noise and combinations of 

them. A multi-spike disturbance signal was selected to be used in the following 

simulations, because it is resulting in the worst performance among different cases and 

the results are clear for comparison reasons. Then for the worst case found from 

simulation, simulationγ  was calculated. The comparison in Table 6.2 shows that γ  is a 

reliable performance index, in that simulationoptimal γγ ≥   for both controllers GSMPC5-1 and 

GSMPC5-2. Figure 6.4 shows the simulation results of the gain-scheduled MPC 

controllers for a specific disturbance signal shown in Figure 6.5.  
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Figure 6.4 GSMPC5-1 (solid line) and GSMPC5-2 (dotted line) simulation 
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Figure 6.5 Disturbance signal used for the results in Table 6.2 

 

6.3.1.2 Comparison of an optimal gain-scheduled MPC controller and an optimal gain-

scheduled PI controller for the SISO CSTR process 

 

For SISO processes, the robust performance analysis has been applied to design the 

optimal gain-scheduled MPC controllers, shown in Table 6.1. The optimal gain-

scheduled MPC controller has turned out to be the GSMPC3 controller with a optimalγ  of 

0.4907. This controller is then compared to the optimized gain-scheduled PI controller 5-

OPT-GS-PI-2, which has a optimalγ  of 0.3204 from Chapter 5 and will be referred to as 

GSPI for simplicity in the sequel.  

 

In the following, these two controllers are compared, in terms of analysis and simulation, 

and the comparison results are summarized in Table 6.3. The simulation results of both 

controllers, GSMPC3 and GSPI, are shown in Figure 6.6, and these results were obtained 

for the same disturbance as the one shown in Figure 6.5.  
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Table 6.3  Compare: Gain-scheduled PI and Gain-scheduled MPC 

Controller  Parameters:θ  optimalγ  simulationγ  ∑
=

100

1

)()(
t

T tt uu

GSMPC3 =],[ 1 kλλ L [0.3297,0.8219,1.1513] 0.4907 0.2998 2.5524 

GSPI ],,,[ dcIc WWK τ  

=[1.2168,1.9309,0.1802,0.0009] 

0.3204 0.2007 2.6360 
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Figure 6.6 GSPI (dotted line) and GSMPC3 (solid line) simulation 

 

The results in Figure 6.6 and Table 6.3 show that the GSPI controller gives better robust 

performance than the optimal GSMPC3 controller, with a slightly less aggressive control 

action. Both designs are based on the same robust performance condition proposed in 

Chapter 4, and the process model is also the same SISO state-affine model. The 

difference between the design results can only originate from the difference between the 

controller structures. The gain-scheduled PI controller given by equation (5.2) has only 

one controller state )(tξ , and it is much simpler than the MPC controller given by 

equation (6.50), which has 1>n  states. As a result, the closed-loop system with the MPC 

controller, given by equations (6.51) and (6.52), is more complex than the one with PI 
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controller given by equations (5.14) and (5.15). The addition of controller states makes it 

more difficult for the robust performance condition to be met because the robust 

performance condition requires the stability of all the closed-loop system states, including 

the controller states. This increases the conservatism of the LMIs analysis for the gain-

scheduled MPC controller. As a result, the difference between the analysis and simulation, 

i.e., the difference between optimalγ  and simulationγ , is bigger for the MPC controller than 

that for the PI controller.  

 

This also shows the importance of reducing the conservatism of the robust performance 

analysis for the MPC controller design. However, these results should not be interpreted 

necessarily as to favor the PI controller over the MPC controller since the structure of 

these controllers and the uncertainty considered in the analysis are significantly different 

in the two cases, and the performance index is only an upper bound. 

 

6.3.2 Design results for MIMO processes 
 

In this section, the design of a gain-scheduled MPC controller for MIMO processes will 

be shown. To illustrate the technique, a simple 2-input-2-output example is used. The 

22×  state-affine model example is as follows: 
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(6.60) 

 

where the model coefficient matrices are as follows: 
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First, a simple linear MPC controller will be designed, which has the following form: 
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Then, a simple gain-scheduled MPC controller will also be designed as follows: 
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(6.63)

 

where ),( ijMPCijijMPC ΛK  refers to the thij  MPC controller, when 1u  is in its thi  sub-

range, and 2u  is in its thj  sub-range. Then, according to equation (6.56), ijΛ  has the 

following form: 
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MPCijK  will be calculated based on the step response corresponding to each of the sub-

ranges defined by equation (6.63) using equation (6.32). For example, 12MPCK  will be 

calculated using step response corresponding to [ ]10,01 21 ≤<≤≤− uu . 

 

The gain-scheduled MPC controller and the linear MPC controller are referred to as 

GSMPC-M and LMPC-M in the sequel. The robust performance analysis results of the 

controllers GSMPC-M and LMPC-M are summarized in Table 6.4. Assuming that the 

input weights are not optimized and set all equal to one, the optimalγ  is calculated and 

tabulated in Table 6.4. If the input weights are not optimal, the linear MPC controller 

seems to provide a better robust performance.  

 

Table 6.4 MPC controller analysis (comparing LMPC-M and GSMPC-M) 

LMPC-M 

],[:],[: 22221111 δδωδδδωδ ∈∈  ],[ 21 λλ  optimalγ  
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0.9350 

 

Following the guidelines of Chapter 3, and according to the MIMO state-affine model 

given by equation (6.60), two uncertain parameters )(),( 2,21,1 tutu tt == δδ  are considered 

in this section. Table 6.4 shows the values of 21 ,ωω  that denote the bounds of )(1 tu  and 

)(2 tu  respectively. In general, the uncertainty bounds will be described as follows: 

 

]},[:),,,{(: 21 iiin δδωωωω ∈= LW  (6.65) 
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The linear and gain-scheduled MPC controllers in Table 6.4 are simulated against a 

disturbance signal. The corresponding performance index simulationγ , and the sum of 

squares of the control moves are summarized in Table 6.5.  

 

Table 6.5 MPC controller simulation (comparing LMPC-M and GSMPC-M) 

Simulation  

Controller name 

 

optimalγ  simulationγ  ∑
=

500

1

)()(
t

T tt uu  

LMPC-M 0.7698 0.3523 22.0861 

GSMPC-M 0.9350 0.3410 10.7434 

 

The results in Table 6.5 show that there is inconsistency between the analysis results and 

the simulation results with respect to the comparison between the two controllers. The 

analysis shows that the LMPC-M controller is better than the GSMPC-M controller, 

because the worst-case performance index optimalγ  of the LMPC-M controller is smaller. 

However, the simulation results show that the GSMPC-M controller gives a smaller 

performance index simulationγ . The simulations have been carried out against a few 

different disturbance signals, and the worst results, i.e., the ones that gave the largest 

simulationγ , are shown here. It should be remembered that the simulation results can not be 

exactly the same as the analysis results, because it is impossible to find the specific 

disturbance that achieves the worst-case performance index, and also, the computation of 

the theoretical performance bound assumes an infinite period of operation, which is also 

impossible to achieve with computer simulations.  

 

It is believed that the inconsistency between the analysis and simulation is also partly 

because of the inherent conservatism of the robust analysis approach. The approaches 

proposed in Chapter 4, for example the analysis using the parameter-dependent Lyapunov 

functions, may be used in the future for the design of MPC controllers with the purpose 
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of reducing the conservatism. This is beyond the scope of the current work and is left for 

future research. 

 

The controller simulation results are shown in Figure 6.7 and Figure 6.8. The two figures 

are showing the same results, only that Figure 6.7 shows part of the results for the period 

of ]100,1[=t , and Figure 6.8 shows the results over the whole simulation period 

]500,1[=t . The disturbance signal used in this simulation is shown in Figure 6.9. 
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Figure 6.7 LMPC-M (solid line) and GSMPC-M (dotted line) simulation ( ]100,1[=t ) 
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Figure 6.8 LMPC-M (solid line) and GSMPC-M (dotted line) simulation ( ]500,1[=t ) 
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Figure 6.9 Disturbance signal used for the simulation 
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It is interesting to notice from Table 6.5 that the LMPC-M controller effort, represented 

by ∑
=

500

1

)()(
t

T tt uu , is much bigger (2.0558 times) than that of the GSMPC-M controller. 

This can also be observed from the lower two plots in both Figure 6.7 and Figure 6.8, for 

the inputs 1u  and 2u  respectively. It means that the linear MPC controller may provide a 

slightly better output but at the cost of a large control effort. Large control actions are 

undesirable since they may imply large wear of actuators.  

 

This also shows that the performance index optimalγ  could be augmented by some term to 

reflect the effect of the controller effort in the robust performance analysis of the MPC 

controllers. This might also be a direction for future research which may lead to less 

conservative designs of controllers.  

 

The input weights can be also optimized to improve the performance of the MPC 

controllers. For linear MPC controllers, optimized weights ],[ 21 λλ  are obtained, and for 

gain-scheduled MPC controllers, optimized weights ⎥
⎦

⎤
⎢
⎣

⎡

2221

1211

λλ
λλ

 can also be obtained. 

The robust performance analysis shows that a smaller optimalγ  is achieved for both the 

linear MPC controllers and the gain-scheduled MPC controllers.  

 

The MPC controllers with these optimized weights are referred to as LMPC-M-OPT and 

GSMPC-M-OPT respectively. The optimized controllers LMPC-M-OPT and GSMPC-

M-OPT are simulated against the same disturbance shown in Figure 6.9, which was used 

in the simulations of the LMPC-M and GSMPC-M controllers. The simulation results of 

the LMPC-M-OPT and GSMPC-M-OPT controllers are shown in Figure 6.10 and Figure 

6.11. The analysis and simulation results of all the four MPC controllers for the MIMO 

process given by equation (6.60), are summarized in Table 6.6. 
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Table 6.6 MPC controller optimization 

Linear MPC (equation (6.62))  

Controller name ],[ 21 λλ  optimalγ  simulationγ  ∑
=

500

1
)()(

t

T tt uu

LMPC-M [1,1]  0.7698 0.3523 22.0861 

LMPC-M-OPT [0.5009,0.4983] 0.7472 0.3396 42.5782 

Gain-scheduled MPC (equation (6.63))  

Controller name 
⎥
⎦

⎤
⎢
⎣

⎡

2221

1211

λλ
λλ

 optimalγ  simulationγ  ∑
=

500

1
)()(

t

T tt uu

GSMPC-M 
⎥
⎦

⎤
⎢
⎣

⎡
11
11

 
0.9350 0.3410 10.7434 

GSMPC-M-OPT 
⎥
⎦

⎤
⎢
⎣

⎡
5034.04980.0
5029.05164.0

 
0.8694 0.3238 62.1820 
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Figure 6.10 LMPC-M-OPT (solid line) and GSMPC-M-OPT (dotted line) simulation  
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Figure 6.11 LMPC-M-OPT (solid line) and GSMPC-M-OPT (dotted line) simulation 

 

It can be seen from Table 6.6 that the performance index optimalγ   for gain-scheduled MPC 

controllers has been reduced by 7.02% from 0.9350 for GSMPC-M to 0.8494 for 

GSMPC-M-OPT, while the reduction for the linear case is only 2.94% from 0.7698 for 

LMPC-M to 0.7472 for LMPC-M-OPT. In summary, the optimization of the input 

weights has reduced the conservatism of the analysis by a larger amount for the gain-

scheduled MPC controllers than for the linear MPC controllers. This is because there are 

four parameters to be optimized for the gain-scheduled case, which is twice the number 

of parameters to be optimized for the linear case.  

 

The results in Table 6.6 also show that the performance index optimalγ  for the LMPC-M 

controller is bigger than the optimalγ  for the LMPC-M-OPT controller, and the 

performance index from simulation, i.e., simulationγ , of the two controllers shows the same 

trend. This is also true for the other pair of controllers, i.e., GSMPC-M and GSMPC-M-

OPT. As a result, it can be concluded that γ  is a reliable performance index, in terms of 

differentiating robust performance among different controllers. γ  showed some  
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inconsistency in Table 6.5 when it is compared among controllers which have different 

structures, i.e., a linear MPC controller and a gain-scheduled MPC controller.  

 

In Table 6.6, the value ∑
=

500

1
)()(

t

T tt uu  of the optimized controllers are larger than the 

controllers with non-optimized input weights. This is because the optimized input 

weights are smaller compared to the non-optimized ones, for example, [0.5009,0.4983] 

smaller than [1,1] for the LMI-M-OPT controller. These smaller weights impose a 

smaller penalty on the controller moves than the weights of [1,1], and as a result, 

∑
=

500

1
)()(

t

T tt uu  will increase. Smaller input weights will always result in more aggressive 

control.  

 

6.3.3 Conclusions 
 

In this chapter, the LMIs based robustness analysis techniques are applied to the design 

and optimization of gain-scheduled MPC controllers. For the application of the LMIs 

based approaches, the state-space formulation of the MPC controllers have been obtained 

in this work, based on the previous results obtained by Zanovello and Budman (1999). 

Design and optimization procedures for gain-scheduled MPC controllers are proposed in 

Section 6.2.2, and then all the techniques and approaches developed in this chapter are 

extended to MIMO processes. The optimal robust gain-scheduled MPC controllers are 

designed for both the SISO CSTR case study process and a simple 2x2 MIMO process. 

The analysis and simulations results of all the designed controllers are show in section 

6.3.  

 

First for the CSTR process, gain-scheduled MPC controllers are designed using different 

number of operation range discretization. The results in Table 6.1 show that the system 

performance depends on the number of sub-range separations and optimalγ  also depends on 

what are the limits between the sub-ranges in terms of the values of the variable u . Some 

a priori knowledge about the process nonlinearity may be helpful to guide this 
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discretization step, i.e., more sub-ranges are needed if the system in a particular operation 

range is highly nonlinear. This point is further explained in Chapter 7 as one of the future 

research directions. The results in Table 6.2 show that the optimization of the input 

weights reduces the performance index and thus results in a better performance. It also 

shows that γ  is a reliable performance index, since simulationoptimal γγ ≥   for both controllers 

GSMPC5-1 and GSMPC5-2.  

 

The optimal gain-scheduled MPC controller and the optimal gain-scheduled PI controller 

are compared. The results in Figure 6.6 and Table 6.3 show that the GSPI controller gives 

better robust performance than the optimal GSMPC3 controller, with a less aggressive 

control action. This also indicates the importance of reducing the conservatism of the 

robust performance analysis for the MPC controller design.  

 

For MIMO processes, a gain-scheduled MPC controller is designed for s simple 2x2 

system. In this section, the operation range for each input is discretized evenly into two 

sub-ranges. If the input weights are not optimized, the linear MPC controller seems to 

provide a better robust performance. The simulation results also show that the linear 

MPC controller provides a slightly better output, but at the cost of a large undesirable 

control effort. This suggests that the performance index optimalγ  could be augmented by 

some term to reflect the effect of the controller effort in the robust performance analysis 

of the MPC controllers.  

 

If the input weights are optimized, the performance index from the analysis has been 

reduced by a larger amount for the gain-scheduled MPC controllers than for the linear 

MPC controllers. This is because there are four parameters to be optimized for the gain-

scheduled case, which is twice the number of parameters to be optimized for the linear 

case.  

 

In summary, the results in this chapter have shown that the procedures proposed here are 

efficient in obtaining linear and gain-scheduled MPC controllers, which guarantee 

closed-loop system’s robust stability and performance. Optimization of the input weights 
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has improved the robust performance, showing the importance of optimal tuning of the 

MPC controller parameters. The simulation results show that γ  is a reliable performance 

index, in terms of differentiating robust performance among different controllers of the 

same structure. Gain-scheduled MPC controllers are designed with a purpose to 

compensate for the process nonlinearity, and it is expected to provide a better 

performance than the linear MPC controllers for nonlinear processes. Most of the design 

results and all of the simulation results in this chapter show that the gain-scheduled MPC 

controllers achieve better performance at a cost of less control action. However, there are 

some counter examples for this point in the designed results. This may be due to the 

conservatism of the analysis, and as a result, a few directions for future research have 

been suggested to reduce the conservatism of the design, and they will be explained in 

detail in Chapter 7.  
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7 Conclusions and Future Work 
 

7.1 Conclusions 
 

Chemical or biochemical processes are highly nonlinear, especially when operated over a 

wide range of operating conditions. It is of a great significance to design high-

performance nonlinear controllers for efficient control of these nonlinear processes to 

achieve closed-loop system’s stability and good performance. However, there are not 

many general design procedures to deal with this task, and there are many difficulties to 

design such controllers because of the system nonlinearity.     

 

For model-based control design problems for highly nonlinear processes, the first 

difficulty is to obtain a good simple model of the process under study. Two available 

options are first-principles models obtained from conservation equations, and empirical 

models identified from process input/output data. The nonlinearity of the processes is 

generally related to reaction kinetics or nonlinearity of physical properties, thus making it 

often difficult to obtain a first-principles model which can be used as the basis of control 

design task. As a result, in this work, relatively simple empirical models are chosen to 

represent the nonlinear process for the design of controllers. 

 

First, a Volterra series model is identified using least squares algorithm from process 

input/output data. Then, a state-affine model that is nonlinear with respect to the 

manipulated variable is obtained through mathematical transformations of the Volterra 

series model coefficients, based on the algorithm proposed by Sontag (1978). Knapp and 

Budman (2000) have used this technique to design linear controllers for nonlinear 

processes. This state-affine model is especially suitable for robust control design since it 

can be easily partitioned into a nominal linear model and a nonlinear part. If the 

controller design is based on a nominal linear model, it is valid to assume that the model 

nonlinearity is the main source of model uncertainty, and the uncertainty can be directly 

quantified based on the information of process nonlinearity. Since the model nonlinearity 

is a function of the current manipulated variable only, the model uncertainty can be easily 
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quantified as compared to other studies in the literature where the uncertainty 

identification requires the solution of difficult optimization problems. The manipulated 

variable is naturally bounded due to, for example, actuator saturation limits. The problem 

of actuator saturation is also explicitly accounted for in Chapter 5 by defining an input-

saturation factor and reformulating the gain-scheduled PI controller.  

 

A state-affine model was identified for a CSTR case example, which gave the minimal 

sum of squares errors comparing to the real process output. The difference between the 

model output and the real process output is due to truncation of the Volterra series model 

and due to the transformation of the Volterra series model to the state-affine model. This 

modeling error has been effectively accounted for as an additional uncertain parameter in 

the design. This state-affine model was used throughout this work for the model-based 

robust control design of the CSTR example. The work summarized here is explained in 

detail in Chapter 3.     

 

Since the state-affine models used in this work can be easily approximated by a nominal 

linear part and model uncertainty, robust control theory is a natural choice to analyze this 

type of models. Also the robust control approach is easier to apply and more general than 

a pure nonlinear analysis that relies on the finding of an appropriate Lyapunov function. 

Therefore, robust control theory has been applied for the design of gain-scheduled 

Proportional-Integral (PI) control in Chapter 5, and gain-scheduled Model Predictive 

Control (MPC) in Chapter 6. 

 

The gain-scheduling formulations proposed in this work are different from the traditional 

ones reported in the literature. For example, the gain-scheduled PI controller parameters 

are changed as a continuous function of the scheduling variable, i.e., the manipulated 

variable, instead of switching these parameters at discrete values of the scheduling 

variable as generally proposed in the literature. Also, the traditional gain-scheduling 

(Bequette, 1997) approach is based on the analysis of local linear models, such that the 

overall designs cannot guarantee closed-loop system’s global stability and performance 

(Shamma and Athans, 1990). The gain-scheduled controllers proposed in this work are all 
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designed based on the nonlinear state-affine model, which represents the nonlinear 

process over the whole operation range. The application of this model has also made it 

possible to incorporate model uncertainty into the gain-scheduled designs. To guarantee 

the global closed-loop system’s stability and performance with the designed controllers, 

robustness analysis has been applied into the design approach.  

 

The design procedure is based on the robust stability and performance conditions 

proposed in Chapter 4, a large part of the work shown in this chapter has been previously 

reported by Gao and Budman (2004). For time-varying uncertain parameters, robust 

stability and performance conditions are proposed in Theorems 4.1 and 4.2 using fixed 

Lyapunov functions, and in Theorems 4.3 and 4.4 using parameter-dependent Lyapunov 

functions. The results in Theorems 4.3 and 4.4 represent the main contributions of this 

work for discrete-time systems. The case of constant uncertain parameters is also 

summarized in Theorems 4.5 and 4.6. The comprehensive procedures for the design and 

optimization of robust gain-scheduled PI controllers are proposed in Chapter 5 and for 

MPC controllers in Chapter 6.  

 

The closed-loop system modeled by combining the state-affine model and the controller 

is found to have an affine dependence on the uncertain parameters, and as a result, two 

important conclusions can be drawn for the closed-loop systems. The first conclusion is 

that all the uncertain parameters are valued in a convex parameter box, with the 

uncertainty bounds as the vertices of the box. The basis for this conclusion is found in the 

method for quantifying the model uncertainty from experimental data, shown in Chapter 

3. The second conclusion is that each of the possible closed-loop system matrices within 

the uncertainty description is a fixed affine function of the uncertain parameters. These 

two conclusions reduce all the above robust stability and performance conditions 

proposed in Theorems 4.1 and 4.2, Theorems 4.3 and 4.4, which are originally an infinite 

set of Lyapunov inequalities, to a finite number of Linear Matrix Inequalities (LMIs). 

Thus, the final problems are numerically solvable. This is explained in Chapter 4.  
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One of the inherent problems with robust control is that the design is conservative. Two 

approaches have been proposed in this work to reduce the conservatism. The first one is 

based on parameter-dependent Lyapunov functions, and it is applied when the rate of 

change of the time-varying uncertainty parameters is available a priori.  The robustness 

conditions based on this approach are summarized in Theorems 4.3 and 4.4. The second 

one is based on the relaxation of the lower bound of the input-saturation factor ψ  defined 

in Chapter 5, to reduce the conservatism, which is proposed in Method 5.1. 

 

For the case study CSTR example, gain-scheduled PI controllers were designed and 

optimized in Chapter 5. The design results are summarized in Chapter 5, which showed 

that the performance index γ  is an efficient indicator for designing, comparing and 

optimizing the tuning parameters of gain-scheduled PI controllers. It was also found that 

the performance index simulationγ  from the simulation is always significantly smaller than 

the optimalγ  from the analysis for the designed controllers. For example, for the GS-PI-1 

controller, simulationγ  is 0.3495 while optimalγ  is 0.5890. Based on these comparisons with 

simulations, the analysis has been found to be conservative to some degree. 

 

To reduce the conservatism of the above design results, the first approach used in this 

work is based on parameter-dependent Lyapunov functions. Regions of robust stability 

and performance in the gain-scheduled PI controller parameter space have been obtained 

based on this approach in Chapter 5, and compared to the regions based on fixed-

parameter Lyapunov functions. The results showed that the application of parameter-

dependent Lyapunov functions has enlarged the design regions defined in terms of the 

tuning parameters. This reduction in conservatism was especially significant for the 

design of robust gain-scheduled PI controllers as compared to the design of linear PI 

controllers. 

 

The second novel method that has been proposed in this work is the relaxation of the 

input-saturation factor ψ  to reduce the conservatism. This approach has been very 

efficient in reducing the conservatism of the CSTR designs. For example, for the linear PI 
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controller with parameters of 5.2,4.1 == IcK τ , it is impossible to meet the robust 

performance condition without the relaxation of the input-saturation factor. That is, when 

0=ψ , ∞=optimalγ . When the lower bound of the input-saturation factor was relaxed to 

be 0.8376 using Method 5.1, the performance index was reduced to a finite value of 

0.4280. These results are given in Chapter 5. 

 

For comparison, extensions of Structured Singular Value (SSV) approach have been 

reviewed and summarized in this work. In Chapter 4, the general procedures to obtain the 

Linear Fractional Transformation (LFT) for an uncertain system are given, and the robust 

stability and performance conditions are reviewed for time-varying uncertainties. Under 

the same set of conditions, the SSV approach is compared to the quadratic Lyapunov 

approach in the last section of Chapter 4. Case study results were obtained for the CSTR 

process in Chapter 5 and the results showed that the stability and performance regions 

obtained with the SSV approach are smaller than those obtained with the quadratic 

Lyapunov approach. SSV analysis is based on the upper bound of µ , and when the 

uncertainty structure has repeated scalar blocks, as is the case in this work, the upper 

bound of µ  will not equal µ . Then, the conclusions drawn from the upper bound of µ  

will be conservative. In addition, the Lyapunov approach was found to be more versatile 

than the SSV approach to deal with the issues of input-saturation and for reducing 

conservatism by using parameter-dependent Lyapunov functions. As a result, the SSV 

approach is not pursued further beyond the basic comparisons described in Chapters 4 

and 5. 

 

The results in Chapters 3, 4 and 5 are obtained for SISO processes. In Chapter 6, the 

robustness analysis conditions developed in Chapter 4 are extended to MIMO processes. 

MPC controllers are designed instead of PI controllers, since MPC controllers are 

especially suitable to handle MIMO systems in the chemical industry. To compensate for 

the nonlinearity of the processes, gain-scheduled MPC controllers are designed, instead 

of the nonlinear MPC controllers reported in the literature based on nonlinear 

optimization. The operation range of the manipulated variable is discretized into a 
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number of sub-ranges. The controller tuning parameters and the step response matrix, are 

scheduled based on the input variable. This approach is different from the local-

linearization design approach reported in the literature since the design in this work 

guarantees global stability and performance. 

 

For the SISO CSTR example, gain-scheduled MPC controllers were designed based on 

different number of sub-ranges. Simulation results of these controllers show that the 

design procedure is effective because the designed controllers guarantee closed-loop 

system stability and performance in terms of disturbance rejection. The best gain-

scheduled MPC controller (GSMPC3) from these designs, was compared to an optimal 

gain-scheduled PI controller (GSPI), and both the analysis and simulation results showed 

that GSMPC3 is more conservative than the GSPI controller. GSMPC3 has a simulationγ  of 

0.2998 and a optimalγ  of 0.4907, while the GSPI controller has a smaller simulationγ  of 

0.2007 and a smaller optimalγ  of 0.3204. First, these results show the importance of 

reducing the conservatism of the analytical approach. Second, these results should not be 

interpreted necessarily as to favor the PI controller over the MPC controller since the 

structure of these controllers and the uncertainty considered in the analysis are 

significantly different in the two cases, and the performance index is only an upper bound.  

 

For s simple MIMO process with two inputs and two outputs, gain-scheduled MPC 

controllers were also designed. When the input weights were not optimized, the linear 

MPC controller showed a smaller optimalγ  than the gain-scheduled MPC controller. 

However, the simulations of these two controllers showed that the gain-scheduled MPC 

controller showed a smaller optimalγ  at only 50% of the linear controller’s control effort. If 

the input weights are optimized, the performance index optimalγ   for gain-scheduled MPC 

controllers has been reduced by 7.02%, while the reduction for the linear case is only 

2.94%. In summary, the optimization of the input weights leads to improvement of the 

robust performance index by more than twice for the gain-scheduled MPC controllers as 

compared to linear MPC controllers. This is because there are four parameters to be 
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optimized for the gain-scheduled case, which is twice the number of parameters to be 

optimized for the linear case. 

 

Gain-scheduled MPC controllers are designed with a purpose to compensate for the 

process nonlinearity, and it is expected to provide a better performance than the linear 

MPC controllers for nonlinear processes. Most of the design results and all of the 

simulation results in Chapter 6 show that the gain-scheduled MPC controllers achieve 

better performance at a cost of less control action. However, there are some counter 

examples for this point in the designed results. This may be due to the conservatism of 

the analysis, and as a result, a few directions for future research have been suggested to 

reduce the conservatism of the design. One example is that the analysis conservatism 

could be reduced by incorporating the control effort into the analysis.  

 

For practical application of the proposed design procedures in industry, the complicated 

mathematical analysis could be carried out offline. The design results, i.e., the robust 

stability and performance regions in the controller parameter space, are produced by the 

procedures and can be applied online easily. In summary, the robustness analysis has 

been found to be efficient, but inherently conservative, and it is desired in the future to 

further reduce this conservatism, such that the design results will approach the simulation 

results. In the following section, a few future directions are suggested that focus mainly 

on reducing the conservatism of the analysis and design. 

 

7.2 Future work 
 

The main focus of the future work is suggested to be the reduction of the conservatism of 

the robustness analysis and the design based on the analysis. In Chapter 6, it has been 

shown by the design and simulation results that the LMIs based analysis for robust 

stability and performance is even more conservative for gain-scheduled MPC controllers 

than for the gain-scheduled PI controllers. 
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7.2.1 Reducing conservatism of the gain-scheduled MPC design 
 

In Chapter 6, a gain-scheduled MPC controller design procedure has been proposed. The 

procedure consists of discretely scheduling the step response matrix and input weights 

based on discretization of the manipulated variable. In Chapter 6, it has been studied for 

the case that the whole operation range is discretized into even sub-ranges. However, the 

discretization of the operation range is not necessarily to be even, and the number of sub-

ranges is itself a parameter that could be optimized. An MIMO process example with 2 

inputs and 2 outputs will be used in this section to illustrate the importance of proper 

discretization of the scheduling variable for the design of gain-scheduled MPC 

controllers. Simulation results will be shown in this section 

 

The 22×  state-affine model is: 
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where the model coefficient matrices are as follows: 
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The operation range for this process is defined to be 11,11 21 ≤≤−≤≤− uu , which will 

be discretized into two sub-ranges at the middle limits a  and b  for 1u  and 2u  

respectively. In Chapter 6, a similar gain-scheduled MPC controller was designed for the 
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case of 0=a  and 0=b  because an even discretization was used in that section. In this 

section, a  and b  will be designed to achieve better control performance, and the 

resulting gain-scheduled MPC controller is as follows: 
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where ),( ijMPCijijMPC ΛK  refers to the thij  MPC controller, when 1u  is in its thi  sub-

range, and 2u  is in its thj  sub-range. Then, the input weight matrix ijΛ  has the following 

form: 
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MPCijK  will be calculated based on the step response corresponding to each of the sub-

ranges defined by equation (6.63). For example, 12MPCK  will be calculated using step 

responses corresponding to [ ]1,1 21 ≤<≤≤− ubau . In this section, a  and b  will be 

designed based on the step response of the process given by equations (7.1) and (7.2). It 

has been found from simulations that the step responses from input 2u  to both outputs 

change abruptly at the point of 8.0−=b . The step responses corresponding to 0=a  and 

8.0−=b  are shown in Figure 7.1 and Figure 7.2. Based on this observation, it will be 
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chosen that 0=a  and 8.0−=b  for the gain-scheduled MPC controller in the sequel, and 

this MPC controller, given by equation (6.63), will be referred to as GS-MPC-1.  
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Figure 7.1 Step response ( ]1,8.0[],1,0[ 21 −∈∈ uu ) 
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Figure 7.2 Step response ( ]8.0,1[],0,1[ 21 −−∈−∈ uu ) 

 

For the purpose of comparison between even discretization and proper designed 

discretization, a second gain-scheduled MPC controller based on  0=a  and 0=b  is also 

simulated, and this MPC controller, given by equation (6.63), will be referred to as GS-

MPC-2. The simulation results are shown in Figure 7.3 with the solid line corresponds to 

the GS-MPC-1 controller and dotted line to the GS-MPC-2controller. The two controllers 

have the same parameter’s values, for example the input weights are equal to one, and are 

simulated against the same disturbance, shown in Figure 7.4. In Figure 7.3, the upper two 

plots show the process outputs, and the lower two plots show the corresponding inputs.  
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Figure 7.3 GS-MPC-1 (solid line) and GS-MPC-2 (dotted line) simulation  
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Figure 7.4 Disturbance signal used for the simulation results in Figure 7.3 and Table 7.1 

 

Table 7.1 Simulation results of two MPC controllers  

Controller name Discretization simulationγ  ∑
=

100

1
)()(

t

T tt uu  

GS-MPC-1 
⎥
⎦

⎤
⎢
⎣

⎡
−∈∈

−−∈−∈
]1,8.0[],1,0[

]8.0,1[],0,1[

21

21

uu
uu

 
0.3517 1.8716 

GS-MPC-2 
⎥
⎦

⎤
⎢
⎣

⎡
∈∈

−∈−∈
]1,0[],1,0[

]0,1[],0,1[

21

21

uu
uu

 
0.3582 12.4613 

 

Observing the upper two plots in Figure 7.3, the outputs of GS-MPC-1 and GS-MPC-2 

are very close to each other, and it is difficult to conclude which controller is better than 

the other. However, the inputs are very different showing by the lower two plots in 

Figure 7.3, especially by the plots at the lower right corner. In the plot at the lower right 

corner of Figure 7.3, the solid line shows that the GS-MPC-1 controller results in a much 

less aggressive control action to achieve the similar output, than the GS-MPC-2 

controller that is based on a different discretization of the input range.  
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The simulation results show that the GS-MPC-1 controller based on properly designed 

discretization of the input, results in a much less aggressive control action to achieve a 

desired performance than the GS-MPC-2 controller based on an even input discretization. 

This motivates further study in the design of gain-scheduled MPC controllers, including 

not only the design of the input weights studied in Chapter 6, but also the discretization 

of the operation range. The number of the discretized sub-ranges and the discretization 

points are both important design parameters towards a less conservative gain-scheduled 

MPC controller design.  

 

In addition, it can be concluded from the above simulation results that the control action, 

represented as the sum of squares inputs, is also an important measure of robust 

performance. It is suggested for future work that this control action is incorporated into 

the design in addition to the performance index γ  that reflects the sum of squares errors 

only. This will also reduce the conservatism of the analysis, by differentiating between 

controllers which will take different control action to give a similar γ . 

 

Two approaches have been proposed in Chapters 4 and 5 to reduce conservatism of the 

design, which are based on parameter-dependent Lyapunov functions, and relaxationof 

the imput-saturation factor. In the future, these two approaches should be applie to the 

design of robust gain-scheduled MPC controllers as well, for further reduction of the 

conservatism. 

 

Last but not the least, MPC controllers are known to handle hard constraints with success, 

and the future application of the MPC controller design will be focused on MPC 

controllers with constraints. 

 

7.2.2 Reducing conservatism of the robustness analysis 
 

The LMIs based robust stability and performance analysis is inherently conservative 

because it considers cases that will not actually happen during operation. The more 
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conservative the analysis is, the less reliable the design results are. In other words, the 

success of the robust designs of gain-scheduled controllers relies heavily on the less 

conservative analysis of the closed-loop system’s robust stability and performance. It is 

of extreme importance to reduce the conservatism of the robustness analysis conditions 

proposed in this work. For future work, the following issues are suggested towards less 

conservative analysis and thus more reliable designs. 

 

7.2.2.1 Alternative robust performance condition formulation 

 

In this section, the same system which has been considered in this work is applied to 

illustrate an alternative robust performance formulation. The system is given as follows:  
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(7.5) 

 

where n
nt R∈= ),,,( 21 δδδ Lδ  is a vector of uncertain and time-varying real parameters. 

For this class of systems, the definition for quadratic Lyapunov robust performance has 

been given by Definition 4.2 in Chapter 4. It will be reformulated in this section to reduce 

the conservatism. If the process will be assumed to be always operated for disturbances 

within a specific time-dependent envelope, tighter robust performance bounds could be 

obtained. This formulation is based on the assumption that the disturbance will always 

evolve with time along some a priori known set of process disturbance trajectories. This 

is expected to reduce conservatism of the robustness analysis, such that the resulting 

LMIs performance index γ  is as close to the simulation performance index simulationγ  as 

possible. 

 

The robust performance condition is formulated in Definition 4.2 as follows:  

 

0)()()()()()1( 2 <−+−+ tttetetVtV TT ννγ  (7.6)
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An alternative robust performance condition is suggested here, by summing up equation 

(7.6) over the time interval [ ]1−+ ntt , as follows: 
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TT itititeitetVntV ννγ  
(7.7) 

 

As ∞→n , the above equation (7.7) is equivalent to the condition 
22 LL

ve γ< . For a 

finite n , equation (7.7) represents the new formulation of the robust performance 

condition proposed in this section. To illustrate this condition for a finite n , the 

formulations for 2=n  are given in the following. 
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(7.8) 

 

By substitution of the closed-loop system given by equation (4.15) into equation (7.8), it 

can be rewritten as the sum of the following three parts: 
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and 
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and 
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where ))1(()),(( 1 +== + tt tt δAAδAA . ηW  is the weight for the state )(tη  at 0=t , and 

it is zero for zero initial states, 10 , νν WW  define the bounds of an envelope of possible 

disturbances represented by )1(),( +tt νν .  

 

The advantage of using this formulation is that the information of the disturbance 

trajectory can be taken into account in the robustness analysis, by using the values of 

10 , νν WW  to represent an envelope of possible disturbances. The key difference is that the 

disturbance weight considered in previous chapters was constant whereas here it is 

proposed to vary this weight with respect to time in order to consider a narrower 

envelope of possible disturbances. 

 

In summary, equation (7.8) can be rewritten as the sum of the three equations (7.9), (7.10)  

and (7.11), as follows: 
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(7.12)

 

Based on the two assumptions associated with equation (4.15) and the results developed 

in Chapter 4, equation (7.12) can be formulated as a finite set of LMIs and thus be solved 

with the FEASP or GEVP problem with MATLAB. 

 

7.2.2.2 Elimination of the convexity condition for the parameter-dependent Lyapunov 

function analysis 

 

In Chapter 4, the parameter-dependent Lyapunov functions have been used in the LMIs 

based robust stability and performance conditions to reduce the conservatism of the 

robustness analysis. The finite LMIs conditions are summarized in Theorem 4.3 and 4.4, 

where a convexity condition is included in each of them. The reason for this convexity 

condition is given in detail in Chapter 4.  As a reminder, the robust stability condition 

leads to a term as follows: 

 

0δPδAδPδAδL <−= + )()()()()( 1 ttt
T

tt  (7.13) 

 

For any nonzero vector λ , clearly λδLλδ )()( t
T

tf =  is a scalar function of the following 

form: 
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In general, the negative sign of )( tf δ  values at all corners of the parameter box SW× , 

defined in Chapter 3, does not guarantee its negativity over the entire parameter box, 

because of its 3rd-order dependence with respect to sti ',δ . However, negativity is 

obtained when )( tf δ  is convex in the sti ',δ , that is, when ni
f

ti

t ,,1,0
)(

2
,

2

L=≥
∂

∂

δ
δ

 for all 

tδ . The parameter-dependent Lyapunov functions have been proposed to reduce the 

conservatism of the analysis, but the addition of the convexity conditions will affect the 

reduction efficiency. It is desired to eliminate these additional convexity conditions to 

achieve much less conservative designs. This can be realized based on the application of 

the state-affine model, and it will be explained in the sequel. 

 

The key advantage of using state-affine model in this work is that the process uncertainty 

is a function of the current input only, as follows: 

 
i

ti tu )(, =δ  (7.15) 

 

As a result, the 3rd-order terms in equation (7.14) can be transformed into 1st-order terms 

as follows: 
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Based on this, equation (7.14) can be rewritten as follows: 

 

λδLλδ )()( t
T

tf =  

),,,,()( ,3,2,2,, titjititjitit ff ×+××+= δδδδδδ  

(7.17) 

 

And it is no longer a function which has a 3rd-order dependence with respect to sti ',δ . 

Thus, the corresponding convexity condition in Theorems 4.3 and 4.4 is no longer 
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necessary, and the resulting LMIs may potentially be less conservative by having fewer 

LMI terms. At the same tume, this order-reduction has removed the correlation between 

the uncertain parameters ti,δ  and 3
,tiδ . 

 

However, this may raise another problem related to the addition of more uncertain 

elements to the uncertainty vector. For example, titjititji ,3,2,2, ,,, ×+××+ δδδδ  are added and 

additional vertices corresponding to the bounds of these new perturbations have to be 

integrated into the parameter box. Thus, there is a tradeoff between the elimination of the 

convexity condition and the addition of uncertain elements. Some future research effort is 

desired to look into this issue. 

 

7.2.2.3 Selection of the vertices of the uncertain parameter box 

 

The parameter box, defined in chapter 3, represents the range of the uncertain parameters 

upon which the robust stability and performance conditions have to be tested. The size 

and shape of the parameter box should be representing the true uncertain parameters as 

accurate as possible, and this could be manipulated by careful selection of the vertices 

based on the uncertain parameter bounds. If it is possible to consider a smaller parameter 

box, it is possible to reduce the conservatism of the analysis. However, it is not always 

possible to find out the correlation among the uncertain parameters, which may be helpful 

in determining the smaller parameter box. In this work, based on the application of the 

state-affine model, the uncertainty is a function of the current input variable, shown by 

equation (3.6). As a result, all the uncertain parameters can be expressed as a function of 

other uncertain parameters. For example, in the case of two uncertain parameters 21 ,δδ , 

according to equation (3.6), 2
12 )(δδ = , the true relationship between the two uncertain 

parameters is represented by the dotted curve in Figure 7.5. 
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Figure 7.5 Parameter box 

 

In the LMIs based robustness analysis, the bounds of the two uncertain parameters are 

used as vertices of a parameter box, to approximate this dotted curve. If the bounds of the 

two uncertain parameters 21 ,δδ  are ]1,1[1 −∈δ  and ]1,0[2 ∈δ  respectively, then the four 

vertices to represent them are ]1,1[],0,1[],1,1[],0,1[],[ 21 −−=δδ . The corresponding 

parameter box is the shaded rectangle area a in Figure 7.5. It is easy to notice that this 

area a is unnecessarily conservative for bounding the parabolic functional dependency 

existent between the uncertainty elements.  

 

For example, a less conservative alternative is to use an additional vertex, ]0,0[],[ 21 =δδ , 

to define a less conservative parameter box. The new two sets of vertices are 

]0,0[],1,1[],0,1[],[ 21 −−=δδ  and ]0,0[],1,1[],0,1[],[ 21 =δδ , and they define the two 

triangles b1 and b2 in Figure 7.5. The total area of the two triangles b1 and b2 is half of 

the area of the rectangle area a, thus conservatism is expected to be reduced. However, 

two more vertices are added to the LMIs and thus the resulting problem will have more 

LMI conditions. This is another tradeoff scenario that could be studied in the future. 

 

7.2.2.4 Schedule the robustness analysis along the operation range 

 

If the nonlinear process is represented with a state-affine model, the uncertain parameters 

are functions of the current input according to equation (3.6), and the LMIs tests have 

been formulated around the process steady state corresponding to 0)( =tu . However, the 
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gain-scheduled controller design has assumed the input variable to change over the 

operation. For the design of gain-scheduled PI controllers, the controller parameters are 

designed to change as a continuous function of the variable )(tu  over the operation range. 

For the design of gain-scheduled MPC controllers, the controller tuning parameters are 

scheduled discretely along the sub-ranges, discretized of the operation range. As a result, 

it may be less conservative to formulate the LMIs around different steady states, 

corresponding to a set of values of the input variable over the operation range. This will 

require that a corresponding empirical model be identified around each of the steady state, 

and the uncertainty bounds will be obtained based on the corresponding model. The 

resulting LMIs will be reformulated along the operation range using this approach, and 

possibly more vertices will be required to cover the entire window of operation in terms 

of the manipulated variable u . It will also be interesting to integrate a highly nonlinear 

process example operated around different operating conditions. It requires more future 

work to find this out.  
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8 Appendix A: Nomenclature for CSTR 
 

Table 8.1 Nomenclature for exothermic CSTR 

 

A heat transfer surface area 

B dimensionless heat of reaction: B=
0fpf TCHC γ∆−  

C  reactant concentration  

fC  feed concentration of reactant 

pC  heat capacity 

Da  Damkohler number: fQeVkDa /)( 0
γ−=  

Ea  activation energy 

∆H heat of reaction 

0k  reaction rate constant 

fQ  mass feed flow-rate 

R ideal gas constant 

T reaction temperature 

cT  coolant temperature 

fT  feed temperature 

0f
T  nominal feed temperature 

U overall heat transfer coefficient 

V reactor volume 

1x   dimensionless concentration: ff CCCx /)(1 −=  

2x  dimensionless temperature: 
00

/)(2 ff TTTx γ−=  

cx  dimensionless coolant temperature: 
00

)( ffcc TTTx γ−=  

β  dimensionless cooling rate: pf CQUA /=β  

γ  dimensionless activation energy: 
0

/ fRTEa=γ  
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9 Appendix B: MATLAB Code 
 
The MATALB files used in this work are summarized in this Appendix, in an order 
similar to the outline of this thesis. 
 
9.1 Model Identification 
 
The following MATLAB files have been used to generate process input/output data, 
identify the Volterra series model, and obtain the state-affine model. 
 

Table 9.1 MATLAB files for model identification  
 

No. File name Description 
1.  InputDat I/O data using PRMS as input 
2.  CSTR Deviated CSTR model for I/O data 
3.  Volterra I/O to Volterra( M=5) 
4.  Vol2b5.M Arrange Volterra kernels into Behavior matrix 
5.  StateAff Volterra to State-affine 

 
Code 1: InputDat.M 
 
clear  
global U 
 
%Variable list 
% 
%x10         Initial process conditions 
%u             Process input 
%x             Process output 
%Tc           CSTR cooling water temperature 
%length     Simulation time period 
%U            Input to differential equation solver 
% 
 
% Initial Conditions of Process 
 
x10=0*[0.62195;3.7092];%[0.4759;2.9045]; 
Tc(1)=0; 
x(1)=x10(1,1); 
temp=x(1); 
 
% PRMS sequence, the input 
baseVal=3; 
powerVal=3; 
shift=0; 
whichSeq=3; 
ms=mseq(baseVal,powerVal,shift,whichSeq); 
bitNum=baseVal^powerVal-1; 
Tc=ms;b=16; 
for i=1:bitNum 
    Tc((i-1)*b+1:i*b)=ms(i); 
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end 
length=bitNum*b; 
 
% corresponding process response 
ooo(1)=1; 
for i=2:length 
    ooo(i)=i; 
    x(i)=temp; 
    U=Tc(i);  
    [t,x1]=ode23('cstrd',[0,1],x10); 
    A=[t,x1]; 
    [a,b]=size(A); 
    temp=x1(a,1); 
    x10=[x1(a,1);x1(a,2)]; 
end 
 
%plot the input/output data 
figure(1) 
subplot(2,1,1) 
plot(ooo(1:length),Tc(1:length),'k') 
title('Input: 3-level PRMS') 
axis([0 length -1.2 1.2]) 
subplot(2,1,2) 
plot(ooo(1:length),x(1:length),'k') 
title('Output: CSTR') 
axis([0 length -0.6 0.4]) 
 
%save input/output data to file 
save datacstr x Tc length; 
 
Code 2:CSTR.M 
 
function x1p=cstr(t,x1) 
 
global U 
u=U*9+14; 
Da=0.072; 
B=1; 
beta=0.3; 
gamma=20; 
x11=[0.62195;3.7092]; 
x1=(x1+x11); 
x1p(1,1)=-x1(1)+Da*(1-x1(1))*exp(x1(2)/(1+(x1(2)/gamma))); 
x1p(2,1)=-x1(2)+B*Da*(1-x1(1))*exp(x1(2)/(1+(x1(2)/gamma)))-
beta*(x1(2)-u); 
 
Code 3:Volterra.M 
 
%identify Volterra series model using Matlab System identification 
toolbox 
 
clear 
load datacstr 
 
%Variable list 
%start     memory length of Volterra series model 
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%length    Simulation time period 
%u         Process input 
%y         Process output 
%coeff     Volterra series model kernels 
 
% Least Square Regression of the Volaterra series model 
start=6; 
y=x(start:length)'; 
u=Tc(start:length); 
ooo=[start:length]; 
z=[y u Tc(start-1:length-1).*u Tc(start-2:length-2).*u Tc(start-
3:length-3).*u... 
      Tc(start-4:length-4).*u Tc(start-5:length-5).*u]; 
na=[0];nk=[1 1 2 3 4 5];nb=[5 5 4 3 2 1]; 
th=arx(z,[na nb nk]); 
par=th2par(th); 
ys=idsim([u Tc(start-1:length-1).*u Tc(start-2:length-2).*u ... 
      Tc(start-3:length-3).*u  Tc(start-4:length-4).*u Tc(start-
5:length-5).*u],th); 
coeff=par; 
 
%Simulation of the Volterra series model to compare to the original ata 
for i=start:length, 
ooo(i-start+1)=i-start+1; 
y1(i-start+1)=coeff(1)*Tc(i-1)+coeff(2)*Tc(i-2)+coeff(3)*Tc(i-
3)+coeff(4)*Tc(i-4)+coeff(5)*Tc(i-5)+... 
      coeff(6)*Tc(i-1)*Tc(i-1)+coeff(7)*Tc(i-2)*Tc(i-1)+coeff(8)*Tc(i-
3)*Tc(i-1)... 
   +coeff(9)*Tc(i-4)*Tc(i-1)+coeff(10)*Tc(i-5)*Tc(i-1)... 
   +coeff(11)*Tc(i-2)*Tc(i-2)+coeff(12)*Tc(i-3)*Tc(i-2)+coeff(13)*Tc(i-
4)*Tc(i-2)... 
   +coeff(14)*Tc(i-5)*Tc(i-2)+coeff(15)*Tc(i-3)*Tc(i-3)... 
   +coeff(16)*Tc(i-4)*Tc(i-3)+coeff(17)*Tc(i-5)*Tc(i-3)... 
   +coeff(18)*Tc(i-4)*Tc(i-4)+coeff(19)*Tc(i-5)*Tc(i-4)... 
   +coeff(20)*Tc(i-5)*Tc(i-5); 
end 
 
figure(2) 
plot(ooo,y,'k',ooo,y1,'k:') 
title('Volterra series model(:) and CSTR') 
axis([0 length -0.6 0.4]) 
save volcoefcstrq1 coeff 
 
Code 4:Vol2b5.M 
 
%Arrange Volterra kernels into Behavior matrix 
 
%Variable list 
%g         1st-order Volterra kernels 
%b         2nd-order Volterra kernels 
 
function [g,b]=vol2b5(coeff) 
g(1)=0; 
m=5; 
g(2:m+1,1)=coeff(1:5); 
b=zeros(5,5); 
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b(:,1)=coeff(6:10); 
b(2:m,2)=coeff(11:14); 
b(3:m,3)=coeff(15:17); 
b(4:m,4)=coeff(18:19); 
b(5:m,5)=coeff(20); 
save v1cstrg5 g; 
save v2cstrg5 b; 
 
Code 5: StataAff.M 
 
clear; 
 
%Variable list 
% 
%u         Process inout 
%y         Process output 
%g         1st-order Volterra kernels 
%b2        2nd-order Volterra kernels 
%phi       Submatrix of B(f) 
%phi0      Submatrix of B(f) for 1st-order terms 
%phi1      Submatrix of B(f) for 2nd-order terms 
%F0        State-affine model matrix 
%F1        State-affine model matrix 
%F2        State-affine model matrix 
%G1        State-affine model matrix 
%G2        State-affine model matrix 
%H0        State-affine model matrix 
%ysa1st    Simulation of 1st-order State-affine model 
%ysa2nd    Simulation of 2nd-order State-affine model 
 
load volcoefcstrq1; 
coeff=coeff; 
[g,b]=vol2b5(coeff); 
load v1cstrg5; 
load v2cstrg5; 
load datacstr; 
u=(Tc)-mean(Tc)); 
a=max(abs(u)) 
u=u/a; 
y=(x-mean(x)); 
y=y/max(abs(y)); 
b2=b; 
 
% 1st Order State-Affine Model 
 
phi=[g(2) g(3);g(3) g(4)]; 
phi0=[g(3) g(4);g(4) g(5)]; 
phi1=zeros(2); 
phi2=zeros(2); 
 
for i=1:2, 
 F0=inv(phi(1:i,1:i))*phi0(1:i,1:i); 
 F1=inv(phi(1:i,1:i))*phi1(1:i,1:i); 
 F2=inv(phi(1:i,1:i))*phi2(1:i,1:i); 
 G1=inv(phi(1:i,1:i))*phi(1:i,1); 
 H0=phi(1,1:i); 
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%Simulation of 1st-order State-affine model 
 
 x=zeros(i,length); 
 for j=2:length, 
   x(:,j)=(F0+F1.*u(j-1)+F2.*u(j-1)^2)*x(:,j-1)+G1.*u(j-1); 
  ysa1st(i,j)=(H0)*x(:,j); 
 end 
end 
 
% 2nd Order State-Affine Model 
 
phi=[g(2) b2(1,1) g(3) b2(2,1) b2(2,2); 
g(3) b2(2,2) g(4) b2(3,2) b2(3,3); 
b2(2,1) 0 b2(3,1) 0 0; 
g(4) b2(3,3) g(5) b2(4,3) b2(4,4); 
b2(3,1) 0 b2(4,1) 0 0]; 
 
phi0=[g(3) b2(2,2) g(4) b2(3,2) b2(3,3); 
g(4) b2(3,3) g(5) b2(4,3) b2(4,4); 
b2(3,1) 0 b2(4,1) 0 0; 
g(5) b2(4,4) g(6) b2(5,4) b2(5,5); 
b2(4,1) 0 b2(5,1) 0 0]; 
 
phi1=[b2(2,1) 0 b2(3,1) 0 0; 
b2(3,2) 0 b2(4,2) 0 0; 
0 0 0 0 0; 
b2(4,3) 0 b2(5,3) 0 0; 
0 0 0 0 0]; 
 
phi2=zeros(5);ord=2; 
for i=1:ord 
 F0=inv(phi(1:i,1:i))*phi0(1:i,1:i); 
 F1=inv(phi(1:i,1:i))*phi1(1:i,1:i); 
 F2=inv(phi(1:i,1:i))*phi2(1:i,1:i); 
 G1=inv(phi(1:i,1:i))*phi(1:i,1); 
 G2=inv(phi(1:i,1:i))*phi(1:i,2); 
 H0=phi(1,1:i); 
 
 %Simulation of 2nd-order State-affine model 
 
 x=zeros(i,length); 
 for j=2:length, 
   x(:,j)=(F0+F1.*u(j-1)+F2.*u(j-1)^2)*x(:,j-1)+G1.*u(j-
1)+G2.*u(j-1)^2; 
       ysa2nd(i,j)=H0*x(:,j-1); 
    end 
end 
for i=1:length,ooo(i)=i;,end 
sumerror=0; 
for i=1:length 
   sumerror=sumerror+(ysa2nd(ord,i)-y(i))^2; 
end 
sume5=sumerror 
 
figure(1); 
plot(ooo,y,'k',ooo,ysa2nd(ord,:),'k:') 
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title('State-affine(:) and CTSR') 
save cstrmat F0 F1 F2 G1 G2 H0 
 
9.2 Gain-scheduled PI Controllers Design 
 
The following MATLAB files have been used to design and simulate gain-scheduled PI 
controllers, based on Lyapunov functions and parameter-dependent Lyapunov functions, 
and SSV approach.  
 
9.2.1 Quadratic Lyapunov functions 
 

Table 9.2 MATLAB files for Gain-scheduled PI design: fixed Lyapunov functions  
 

No. File name Description 
6.  LMIopt Optimization of PI parameters dcIc WWK ,,,τ , calls the 

following function 8  
7.  sysRS The set of LMI for RS, calls 9, 10, and 13 
8.  sysRP The set of LMI for RP, calls 11, 12, and 13 
9.  closysRS Closed-loop system for RS 
10. LMIkRS A single LMI of RS for each vertex 
11. closysRP Closed-loop system for RP 
12. LMIkRP A single LMI of RP for each vertex 
13. InputSat Relaxation of input-saturation factor (Method 5.1)  
14. SimuPI Simulate one Gain-Scheduled PI controller 

 
Code 6: LMIopt.M 
 
x0=[0.38 0.3 0 0]; 
[xopt,gopt]=fminsearch('sysrp',x0) 
 
Code 7: sysRS.M 
 
clear 
 
%Variable list 
%x                     Gain-scheduled PI controller parameters 
%u1bnd             Bounds for uncertainty 1 
%u2bnd             Bounds for uncertainty 2 
%psai                 Input-saturation factor 
%psailow           Input-saturation factor lower bound (u=-1) 
%psailow1         Input-saturation factor lower bound (u=1) 
%A0,A1,A2      Closed-loop system matrices 
%P0                   Lyapunov matrix 
 
x=[3.39 20 0 0]; %controller parameters,x=[Kc,taui,Wc,Wd] 
 
%uncertainty bounds 
u1bnd=[-1,1]; 
[n1,i1]=size(u1bnd); 
u2bnd=[0,1]; 
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[m1,j1]=size(u2bnd); 
 
%LMI formulation  
setlmis([]) 
P0=lmivar(1,[ns+1 1]);%P0 is symmetric block diagonal 
k=1; 
lmiterm([k 1 1 0],0);%P0>0 
lmiterm([-k 1 1 P0],1,1); 
 
%no input-saturation 
psai=1; 
[A0,A1,A2,ns]=closysrs(x,psai); 
 
for i=1:i1 
  for j=1:j1 
k=k+1; 
u1=u1bnd(i);u2=u2bnd(j); 
polA=A0+A1*u1+A2*u2; 
lmikrs(polA,P0,k); 
end 
end 
 
%with input-saturation 
inpusat=1; 
if inpusat==1 
[psailow,psailow1]=inputsat(x); 
i=1; 
[A0,A1,A2,ns]=closysrs(x,psailow); 
for j=1:j1 
k=k+1; 
u1=u1bnd(i);u2=u2bnd(j); 
polA=A0+A1*u1+A2*u2; 
lmikrs(polA,P0,k); 
end 
i=i1; 
[A0,A1,A2,ns]=closysrs(x,psailow1); 
for j=1:j1 
k=k+1; 
u1=u1bnd(i);u2=u2bnd(j); 
polA=A0+A1*u1+A2*u2; 
lmikrs(polA,P0,k); 
end 
end 
 
lmilio=getlmis; 
[tmin,xfeas]=feasp(lmilio,[]); 
P0=dec2mat(lmilio,xfeas,P0); 
save Pcons P0 
 
Code 8: sysRP.M 
 
%Variable list 
%x                     Gain-scheduled PI controller parameters 
%u1bnd             Bounds for uncertainty 1 
%u2bnd             Bounds for uncertainty 2 
%psai                 Input-saturation factor 
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%psailow           Input-saturation factor lower bound (u=-1) 
%psailow1         Input-saturation factor lower bound (u=1) 
%A0,A1,A2      Closed-loop system matrices 
%P0                   Lyapunov matrix 
%gamma            Performance index 
 
function gamma=sysrp(x) 
x=[0.38 0.3 0 0]; %controller parameters,x=[Kc,taui,Wc,Wd] 
 
%uncertainty bounds 
u1bnd=[-1,1]; 
[n1,i1]=size(u1bnd); 
u2bnd=[0,1]; 
[m1,j1]=size(u2bnd); 
 
%LMI formulation  
setlmis([]) 
P0=lmivar(1,[ns+1+1 1]);%P0 is symmetric block diagonal 
k=1; 
lmiterm([k 1 1 0],0);%P0>0 
lmiterm([-k 1 1 P0],1,1); 
 
%no input-saturation 
psai=1; 
[A0,A1,A2,B,C,D,ns]=closysrp(x,psai); 
for i=1:i1 
   for j=1:j1 
k=k+1; 
u1=u1bnd(i);u2=u2bnd(j); 
polA=A0+A1*u1+A2*u2; 
lmikrp(polA,P0,k,B,C,D); 
end 
end 
 
inpusat=1; 
if inpusat==1 
[psailow,psailow1]=inputsat(x); 
 
i=1; 
for j=1:j1 
k=k+1; 
u1=u1bnd(i);u2=u2bnd(j); 
psai=psailow; 
[A0,A1,A2,B,C,D,ns]=closysrp(x,psai); 
polA=A0+A1*u1+A2*u2; 
lmikrp(polA,P0,k,B,C,D); 
end 
 
i=i1; 
for j=1:j1 
k=k+1; 
u1=u1bnd(i);u2=u2bnd(j); 
psai=psailow1; 
[A0,A1,A2,B,C,D,ns]=closysrp(x,psai); 
polA=A0+A1*u1+A2*u2; 
lmikrp(polA,P0,k,B,C,D); 
end 
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end 
 
lmilio=getlmis; 
[tmin,xfeas]=gevp(lmilio,k-1,[1.0*exp(-6) 0 0 0 0]); 
%[tmin,xfeas]=feasp(lmilio); 
gamma=sqrt(tmin) 
 
Code 9: closysRS.M 
 
function [A0,A1,A2,ns]=closysrs(x,psai) 
 
load C:\gjy2003\model\cstrmat 
f0=F0;f1=F1;g1=G1;g2=G2;h0=H0; 
[ns,nt]=size(f0);% number of states 
Wf=1;bw=0.8;%performance weight 
Wt=0.025;gam=Wt*eye(ns);%modeling error 
 
[s,c]=size(x); 
kc=x(1); 
taui=x(2); 
Wc=0;Wd=0; 
if c==4 
Wc=x(3); 
Wd=x(4); 
end 
ac=1; 
bc=1; 
cc=kc/taui; 
dc=kc+kc/taui; 
 
%psai=1; 
A0=[f0-g1*dc*psai*h0 g1*cc*psai;-h0*psai psai]; 
A1=[f1-(g1*Wd+g2*dc)*psai*h0 (g2*cc+g1*Wc)*psai;zeros(1,nt) 0]; 
A2=[-g2*Wd*psai*h0 g2*Wc*psai;zeros(1,nt) 0]; 
 
Code 10: LMIkRS.M 
 
%kth single LMI, for robust stability 
 
function lmikrs(polA1,P0,k) 
 
lmiterm([k 1 1 P0],polA1',polA1);      %A'*P0*A    
lmiterm([k 1 1 P0],-1,1);     %-P0    
lmiterm([-k 1 1 0],0);   % A'*P0*A-P0<0 
 
Code 11: closysRP.M 
 
function [A0,A1,A2,B,C,D,ns]=closysrp(x,psai) 
 
load C:\gjy2003\model\cstrmat; 
f0=F0;f1=F1;g1=G1;g2=G2;h0=H0; 
[ns,nt]=size(f0);% number of states 
Wf=1;bw=0.8;%performance weight 
Wt=0.025;gam=Wt*eye(ns);%modeling error 
 
[s,c]=size(x); 
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kc=x(1); 
taui=x(2); 
Wc=0;Wd=0; 
if c==4 
Wc=x(3); 
Wd=x(4); 
end 
ac=1; 
bc=1; 
cc=kc/taui; 
dc=kc+kc/taui; 
 
%psai=1; 
A0=[f0-g1*dc*psai*h0 g1*cc*psai -g1*dc*Wf*psai;-h0*psai psai -
Wf*psai;zeros(1,ns) 0 bw]; 
A1=[f1-(g1*Wd+g2*dc)*psai*h0 (g2*cc+g1*Wc)*psai -
(g1*Wd+g2*dc)*Wf*psai;zeros(2,nt+2)]; 
A2=[-g2*Wd*psai*h0 g2*Wc*psai -g2*Wd*Wf*psai;zeros(2,nt+2)]; 
B=[zeros(ns,1);0;1-bw]; 
C=[-h0 0 -Wf]; 
D=[0]; 
 
Code 12: LMIkRP.M 
 
%kth single LMI, for robust performance 
 
function lmikrp(polA1,P0,k,B,C,D) 
 
small=exp(-20);[ns1,ns2]=size(polA1); 
small1=eye(ns1)*small; 
lmiterm([k 1 1 P0],polA1',polA1);%A'*P0*A    
lmiterm([k 1 1 P0],-1,1);%-P0    
lmiterm([k 1 2 P0],polA1',B);%A'*P0*B 
lmiterm([k 1 3 0],C');%C'   
lmiterm([k 2 2 P0],B',B);%B'*P0*B   
lmiterm([k 2 3 0],D');%D' 
lmiterm([k 3 3 0],-1);%1   
lmiterm([-k 1 1 0],small1); 
lmiterm([-k 2 2 0],1); 
lmiterm([-k 3 3 0],small); 
 
Code 13: InputSat.M 
 
function [psailow,psailow1]=inputsat(x) 
length=21; 
kc=x(1); 
taui=x(2); 
Wc=x(3); 
Wd=x(4); 
Ac=1;Bc=1; 
Cc=kc/taui; 
Dc=kc+kc/taui; 
uk=-1; 
for i=1:length 
   e(i)=(-1+(i-1)*0.1); 
      xc(i)=(uk-(Dc+Wd*uk)*e(i))/(Cc+Wc*uk); 
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  xc1=xc(i)+e(i); 
      u(i)=(Cc*xc1+Dc*e(i))/(1-Wc*xc1-Wd*e(i)); 
 end 
usat=max(abs(u)); 
psailow=1/usat; 
 
uk0=1; 
for i=1:length 
      xc0(i)=(uk0-(Dc+Wd*uk0)*e(i))/(Cc+Wc*uk0); 
  xc01=xc0(i)+e(i); 
      u0(i)=(Cc*xc01+Dc*e(i))/(1-Wc*xc01-Wd*e(i)); 
 end 
usat0=max(abs(u0)); 
psailow1=1/usat0; 
 
Code 14: SimuPI.M 
 
function [u1,y1,ooo]=sisosimuPI(xopt,v,d,sumv,length) 
 
%Variable list 
%xopt               Gain-scheduled PI controller parameters 
%nx                   number of states 
%length            Simulation time period 
%v                    Unmeasured disturbance 
%d                    Filtered disturbance of v 
%sumv             Sum of squared disturbance 
 
load cstrmat; 
[nx,nx]=size(F0); 
%xopt=[1.3723 2.949 -0.004 0.001]; 
 
kc1=xopt(1);taui1=xopt(2);Wc1=xopt(3);Wd1=xopt(4); 
Cc1=kc1/taui1; 
Dc1=kc1+kc1/taui1; 
Ac=1; 
Bc=1; 
 
bw=0.8; 
w=10; 
 
Wf=1;  %disturbance weight 
e1=[];e2=[];u1=[];u2=[];ooo=[]; 
amp=0;%setpoint=0 for analysis, so for comparison, set to 0 as well 
ooo(1)=1; 
u1(1)=0;u2(1)=0; 
xcprev1=0;xcprev2=0; 
x1(:,1)=zeros(nx,1);x2(:,1)=x1(:,1); 
y1(1)=H0*x1(:,1);y2(1)=H0*x2(:,1); 
psai1=ones(length,1);psai1(1)=1;psai2=1; 
 
for i=1:length 
   psai1(i)=1; 
   ooo(i)=i; 
    y1(i)=H0*x1(:,i)+d(i);  %gain-scheduling output with disturbance 
    e1(i)=amp-y1(i); 
    u1(i)=(Cc1*xcprev1+Dc1*e1(i))/(1-Wc1*xcprev1-Wd1*e1(i));   
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    if u1(i)>1 
     psai1(i)=abs(1/u1(i)); 
       u1(i)=1; 
   elseif u1(i)<-1 
     psai1(i)=abs(1/u1(i)); 
      u1(i)=-1; 
  end 
x1(:,i+1)=(F0+F1.*u1(i))*x1(:,i)+G1.*u1(i)+G2.*u1(i)^2; 
xc1=psai1(i)*(Ac*xcprev1+Bc*e1(i)); 
    xcprev1=xc1; 
end 
 
sumerrorgs1=0; 
for i=1:length 
sumerrorgs1=sumerrorgs1+e1(i)^2; 
end 
PIgamma=sqrt(sumerrorgs1/sumv) 
PIsumu=u1*u1' 
 
9.2.2 Parameter-dependent Lyapunov functions 

 
Table 9.3 MATLAB files for Gain-scheduled PI design:parameter-dependent Lyapunov 

functions  
 

No. File name Description 
15. LMIoptP Optimization of PI parameters dcIc WWK ,,,τ , 

calls the following function 17  
16. sysPRS RS, calls 18, 9, and 13 
17. sysPRP RP, calls 19, 11, and 13 
18. LMIkPRS LMI of RS for each vertex 
19. LMIkPRP LMI of RP for each vertex 

 
Code 15: LMIoptP.M 
 
x0=[0.38 0.3 0 0]; 
[xopt,gopt]=fminsearch('sysprp',x0) 
 
Code 16: sysPRS.M 
 
clear 
 
%Variable list 
%u1bnd        Bounds for uncertainty 1 
%u2bnd        Bounds for uncertainty 2 
%du1bnd      Bounds for rate of uncertainty 1 
%du2bnd      Bounds for rate of uncertainty 2 
 
x=[2.44 1.34 0 0]; %controller parameters,x=[Kc,taui,Wc,Wd] 
%uncertainty bounds 
u1bnd=[-1,1]; 
[n1,i1]=size(u1bnd); 
du1bnd=[2,-2]; 
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[n2,i2]=size(du1bnd); 
u2bnd=[0,1]; 
[m1,j1]=size(u2bnd); 
du2bnd=[1,-1]; 
[m2,j2]=size(du2bnd); 
 
%no input-saturation 
psai=1; 
[A0,A1,A2,ns]=closysrs(x,psai); 
 
%LMI formulation  
setlmis([]) 
P0=lmivar(1,[ns+1 1]);%P0 is symmetric block diagonal 
P1=lmivar(1,[ns+1 1]);%P1is symmetric block diagonal 
P2=lmivar(1,[ns+1 1]);%P2 is symmetric block diagonal 
k=1; 
lmiterm([(4*(k-1)+1) 1 1 0],1);%P0>0 
lmiterm([-(4*(k-1)+1) 1 1 P0],1,1); 
lmiterm([(4*(k-1)+2) 1 1 0],0);%P1>0 
lmiterm([-(4*(k-1)+2) 1 1 P1],1,1); 
lmiterm([(4*(k-1)+3) 1 1 0],0);%P2>0 
lmiterm([-(4*(k-1)+3) 1 1 P2],1,1); 
 
for i=1:i1 
for j=1:j1 
for l=1:i2 
for m=1:j2 
k=k+1; 
u1=u1bnd(i);u2=u2bnd(j); 
du1=du1bnd(l);du2=du2bnd(m); 
polA=A0+A1*u1+A2*u2; 
lmikprs(pol1,A0,A1,A2,P0,P1,P2,k,u1,du1,u2,du2) 
end 
end 
end 
end 
 
lmilio=getlmis; 
[tmin,xfeas]=feasp(lmilio,[]); 
 
Code 17: sysPRP.M 
 
function gamma=sysprp(x); 
x=[2.98 20 0.075 0.075]; %controller parameters,x=[Kc,taui,Wc,Wd] 
%uncertainty bounds 
u1bnd=[-1,1]; 
[n1,i1]=size(u1bnd); 
du1bnd=[2,-2]; 
[n2,i2]=size(du1bnd); 
u2bnd=[0,1]; 
[m1,j1]=size(u2bnd); 
du2bnd=[1,-1]; 
[m2,j2]=size(du2bnd); 
 
%no input-saturation 
psai=1; 
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[A0,A1,A2,B,C,D,ns]=closysrp(x,psai); 
 
%LMI formulation  
setlmis([]) 
P0=lmivar(1,[ns+2 1]);%P0 is symmetric block diagonal 
P1=lmivar(1,[ns+2 1]);%P1 is symmetric block diagonal 
P2=lmivar(1,[ns+2 1]);%P2 is symmetric block diagonal 
k=1; 
lmiterm([(4*(k-1)+1) 1 1 0],0);%P0>0 
lmiterm([-(4*(k-1)+1) 1 1 P0],1,1); 
lmiterm([(4*(k-1)+2) 1 1 0],0);%P1>0 
lmiterm([-(4*(k-1)+2) 1 1 P1],1,1); 
lmiterm([(4*(k-1)+3) 1 1 0],0);%P2>0 
lmiterm([-(4*(k-1)+3) 1 1 P2],1,1); 
 
for i=1:i1 
   for j=1:j1 
k=k+1; 
u1=u1bnd(i);u2=u2bnd(j); 
du1=du1bnd(i);du2=du2bnd(j); 
lmikprp1(A0,A1,A2,P0,P1,P2,k,u1,du1,u2,du2) %convexity condition 
end 
end 
 
%performance condition, have to be the last 
l=0; 
for i=1:i1 
   for j=1:j1 
      for di=1:i2 
         for dj=1:j2 
            l=l+1; 
u1=u1bnd(i);u2=u2bnd(j); 
du1=du1bnd(di);du2=du2bnd(dj); 
polA=A0+A1*u1+A2*u2; 
lmikprp(polA,A0,A1,A2,B,C,D,P0,P1,P2,l,u1,du1,u2,du2) 
end 
end 
end 
end 
 
lmilio=getlmis; 
[tmin,xfeas]=gevp(lmilio,l,[1.0*exp(-6) 0 0 0 0]); 
gamma=sqrt(tmin);   
 
Code 18: LMIkPRS.M 
 
function lmikprs(pol1,A0,A1,A2,P0,P1,P2,k,u1,du1,u2,du2) 
 
lmiterm([4*(k-1)+1 1 1 0],-exp(-20));%condition 3,i=1,j=0,2 
lmiterm([-(4*(k-1)+1) 1 1 P1],A1',A1*(3*u1+du1)); 
lmiterm([-(4*(k-1)+1) 1 1 P1],A1',A0,'s'); 
lmiterm([-(4*(k-1)+1) 1 1 P0],A1',A1); 
lmiterm([-(4*(k-1)+1) 1 1 P1],A2',A1*u2,'s'); 
lmiterm([-(4*(k-1)+1) 1 1 P2],A1',A1*u2); 
lmiterm([-(4*(k-1)+1) 1 1 P2],A2',A2*du2); 
lmiterm([(4*(k-1)+4) 1 1 0],-exp(-20));%condition 3,i=2,j=0,1 
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lmiterm([-(4*(k-1)+4) 1 1 P2],A2',A2*(3*u2+du2)); 
lmiterm([-(4*(k-1)+4) 1 1 P2],A2',A0,'s'); 
lmiterm([-(4*(k-1)+4) 1 1 P0],A2',A2); 
lmiterm([-(4*(k-1)+4) 1 1 P2],A2',A1*u1,'s'); 
lmiterm([-(4*(k-1)+4) 1 1 P1],A2',A2*u1); 
lmiterm([-(4*(k-1)+4) 1 1 P1],A2',A2*du1); 
lmiterm([(4*(k-1)+2) 1 1 0],0);%condition 2 
lmiterm([-(4*(k-1)+2) 1 1 P0],1,1); 
lmiterm([-(4*(k-1)+2) 1 1 P1],u1,1); 
lmiterm([-(4*(k-1)+2) 1 1 P2],u2,1); 
lmiterm([(4*(k-1)+3) 1 1 P0],pol1',pol1);%condition1 
lmiterm([(4*(k-1)+3) 1 1 P0],-1,1); 
lmiterm([(4*(k-1)+3) 1 1 P1],pol1',pol1*(u1+du1)); 
lmiterm([(4*(k-1)+3) 1 1 P1],-1,u1); 
lmiterm([(4*(k-1)+3) 1 1 P2],pol1',pol1*(u2+du2)); 
lmiterm([(4*(k-1)+3) 1 1 P2],-1,u2); 
lmiterm([-(4*(k-1)+3) 1 1 0],0); 
 
Code 19: LMIkPRP.M 
 
function lmikprp(pol1,A0,A1,A2,B,C,D,P0,P1,P2,k,u1,du1,u2,du2) 
 
small=exp(-20);[ns1,ns2]=size(pol1); 
small1=eye(ns1)*small; 
lmiterm([(4*(k-1)+3) 1 1 P0],pol1',pol1);%condition1 
lmiterm([(4*(k-1)+3) 1 1 P0],-1,1); 
lmiterm([(4*(k-1)+3) 1 1 P1],pol1',pol1*(u1+du1)); 
lmiterm([(4*(k-1)+3) 1 1 P1],-1,u1); 
lmiterm([(4*(k-1)+3) 1 1 P2],pol1',pol1*(u2+du2)); 
lmiterm([(4*(k-1)+3) 1 1 P2],-1,u2); 
lmiterm([(4*(k-1)+3) 1 2 P0],pol1',B);%A'*P0*B 
lmiterm([(4*(k-1)+3) 1 2 P1],pol1'*(u1+du1),B);%A'*P0*B 
lmiterm([(4*(k-1)+3) 1 2 P2],pol1'*(u2+du2),B);%A'*P0*B 
lmiterm([(4*(k-1)+3) 1 3 0],C');%C'   
lmiterm([(4*(k-1)+3) 2 2 P0],B',B);%B'*P0*B   
lmiterm([(4*(k-1)+3) 2 2 P1],B'*(u1+du1),B);%B'*P0*B   
lmiterm([(4*(k-1)+3) 2 2 P2],B'*(u2+du2),B);%B'*P0*B   
lmiterm([(4*(k-1)+3) 2 3 0],D');%D' 
lmiterm([(4*(k-1)+3) 3 3 0],-1);%1   
lmiterm([-(4*(k-1)+3) 1 1 0],small1); 
lmiterm([-(4*(k-1)+3) 2 2 0],1);%gamma*gamma  
lmiterm([-(4*(k-1)+3) 3 3 0],small);% 
 
function lmikprp1(A0,A1,A2,P0,P1,P2,k,u1,du1,u2,du2) 
 
lmiterm([(4*(k-1)+1) 1 1 0],-exp(-20));%condition 3,i=1,j=0 
lmiterm([-(4*(k-1)+1) 1 1 P1],A1',A1*(3*u1+du1)); 
lmiterm([-(4*(k-1)+1) 1 1 P1],A1',A0,'s'); 
lmiterm([-(4*(k-1)+1) 1 1 P0],A1',A1); 
lmiterm([(4*(k-1)+4) 1 1 0],-exp(-20));%condition 3,i=2,j=0,1 
lmiterm([-(4*(k-1)+4) 1 1 P2],A2',A2*(3*u2+du2)); 
lmiterm([-(4*(k-1)+4) 1 1 P2],A2',A0,'s'); 
lmiterm([-(4*(k-1)+4) 1 1 P0],A2',A2); 
lmiterm([-(4*(k-1)+4) 1 1 P2],A2',A1*u1,'s'); 
lmiterm([-(4*(k-1)+4) 1 1 P1],A2',A2*u1); 
lmiterm([-(4*(k-1)+4) 1 1 P1],A2',A2*du1); 
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lmiterm([(4*(k-1)+2) 1 1 0],0);%condition 2 
lmiterm([-(4*(k-1)+2) 1 1 P0],1,1); 
lmiterm([-(4*(k-1)+2) 1 1 P1],u1,1); 
lmiterm([-(4*(k-1)+2) 1 1 P2],u2,1); 
 
9.2.3 Structured Singular Value 
 

Table 9.4 MATLAB files for Gain-scheduled PI design: SSV  
 

No. File name Description 
20. tvssvMAIN Time-varying µ . Optimization of T  and D , calls the 

following functions 21 and 22  
21. tvssvRS Robust stability 
22. tvssvRP Robust performance 
23. tvssvMN Generate the matrices: M for RS and N for RP 

 
Code 20: tvssvMAIN.M 
 
clear  
 
%Variable list 
% xPI    Gain-scheduled PI controller parameters 
 
xPI=[2 1.1545 -0.1 -0.75]; 
RS=0;RP=0;%1:fix real uncertainty with complex uncertainty 
liner=0;%if 1, linear PI; not 1, G-S PI 
[M,Mblk,N,Nblk]=tvssvMN(xPI,RS,RP,liner); 
RSRP=1; %1 for RS;2 for RP 
 
if RSRP==1 
Tsize=abs(Mblk(1,1)); 
Dsize=abs(Mblk(2,1)); 
else 
Tsize=abs(Nblk(1,1)); 
Dsize=abs(Nblk(2,1)); 
end 
 
x0=rand(Tsize*Tsize+Dsize*Dsize,1); 
 
%x=x0; 
save x0 x; 
load x0 
x0=x; 
[x,tv]=fminunc('tvssvRP',x0,[],xPI,RS,RP,liner);   
 
Code 21: tvssvRS.M 
 
function [tvmu]=tvssvRS(x,xPI,RS,RP,liner) 
 
t=x;%weighting matrix 
 
[M,Mblk,N,Nblk]=tvssvMN(xPI,RS,RP,liner); 
Tsize=abs(Mblk(1,1)); 
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Dsize=abs(Mblk(2,1)); 
Xsize=Tsize+Dsize; 
 
for i=1:Tsize 
for j=1:Tsize 
    T(i,j)=t((i-1)*Tsize+j); 
end 
end 
 
for i=1:Dsize 
for j=1:Dsize 
    D(i,j)=t(Tsize*Tsize+(i-1)*Dsize+j); 
end 
end 
 
T1=inv(T); 
D1=inv(D); 
 
TD=zeros(Xsize); 
TD(1:Tsize,1:Tsize)=T; 
TD(Tsize+1:Tsize+Dsize,Tsize+1:Tsize+Dsize)=D; 
 
TD1=zeros(Xsize); 
TD1(1:Tsize,1:Tsize)=T1; 
TD1(Tsize+1:Tsize+Dsize,Tsize+1:Tsize+Dsize)=D1; 
 
TMT=TD*M*TD1; 
 
tvmu=norm(TMT);%max(abs(svd(ma))) 
 
Code 22: tvssvRP.M 
 
function [tvmu]=tvssvRP(x,xPI,RS,RP,liner) 
 
t=x;%weighting matrix 
 
[M,Mblk,N,Nblk]=tvssvMN(xPI,RS,RP,liner); 
Tsize=abs(Nblk(1,1)); 
Dsize=abs(Nblk(2,1)); 
Xsize=Tsize+Dsize+1; 
 
for i=1:Tsize 
for j=1:Tsize 
    T(i,j)=t((i-1)*Tsize+j); 
end 
end 
 
for i=1:Dsize 
for j=1:Dsize 
    D(i,j)=t(Tsize*Tsize+(i-1)*Dsize+j); 
end 
end 
 
T1=inv(T); 
D1=inv(D); 
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TD=zeros(Xsize); 
TD(1:Tsize,1:Tsize)=T; 
TD(Tsize+1:Tsize+Dsize,Tsize+1:Tsize+Dsize)=D; 
TD(Xsize,Xsize)=1; 
 
TD1=zeros(Xsize); 
TD1(1:Tsize,1:Tsize)=T1; 
TD1(Tsize+1:Tsize+Dsize,Tsize+1:Tsize+Dsize)=D1; 
TD1(Xsize,Xsize)=1; 
 
TNT=TD*N*TD1; 
 
tvmu=norm(TNT);%max(abs(svd(ma))) 
 
Code 23: tvssvMN.M 
 
%generate the main matrix 
%M for RS, N for RP 
 
function [M,Mblk,N,Nblk]=tvssvMN(xPI,RS,RP,liner) 
load C:\gjy2003\model\cstrmat 
 
[ns,nt]=size(F0);% number of states 
Wf=1;BW=0.8;%performance weight 
 
%LFT of state-affine 
k=1;%number of uncertainties 
b22=eye(ns); 
c22=F1; 
d12=zeros(1,ns); 
d21=G2; 
d22=zeros(ns); 
 
%LFT of g-s PI 
x=xPI; %[3.06 14 0 0]; 
kc=x(1); 
taui=x(2); 
Wc=x(3); 
Wd=x(4); 
 
ac=1; 
bc=1; 
cc=kc/taui; 
dc=kc+kc/taui; 
 
bc22=0; 
cc22=Wc; 
dc12=1; 
dc21=Wd; 
dc22=0; 
 
if liner==1  %linear PI 
    %M matrix for robust stability, linear PI 
M11=[F0-G1*dc*H0 G1*cc;-bc*H0 ac]; 
M12=[b22-G1*dc*d12;-bc*d12]; 
M21=[c22-d21*dc*H0 d21*cc]; 
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M22=[d22-d21*dc*d12]; 
M=[M11 M12;M21 M22]; 
% Uncertainty block for RS, M-delta 
%states:x,kesai 
%diag[z-1*eye(ns+1) u1*eye(ns)] 
Mblk=[ns+1 0;-(ns) 0]; 
else 
%M matrix for robust stability, g-s PI 
M11=[F0-G1*dc*H0 G1*cc;-bc*H0 ac]; 
M12=[b22-G1*dc*d12 G1*dc12;-bc*d12 bc22]; 
M21=[c22-d21*dc*H0 d21*cc;-dc21*H0 cc22]; 
M22=[d22-d21*dc*d12 d21*dc12;-dc21*d12 dc22]; 
M=[M11 M12;M21 M22]; 
% Uncertainty block for RS, M-delta 
%states:x,kesai 
%diag[z-1*eye(ns+1) u1*eye(ns) u1] 
Mblk=[ns+1 0;-(ns+1) 0]; 
end 
 
if liner==1 
%N matrix for robust performance, linear PI 
N11=[F0-G1*dc*H0 G1*cc -G1*dc*Wf;-bc*H0 ac -bc*Wf;zeros(1,ns) 0 BW]; 
N12=[b22-G1*dc*d12;-bc*d12;zeros(1,ns)]; 
N13=[zeros(ns,1); 0; 1-BW]; 
N21=[c22-d21*dc*H0 d21*cc -d21*dc*Wf]; 
N22=[d22-d21*dc*d12]; 
N23=[zeros(ns,1)]; 
N31=[-H0 0 -Wf]; 
N32=[zeros(1,ns)]; 
N33=0; 
N=[N11 N12 N13;N21 N22 N23;N31 N32 N33]; 
% Uncertainty block for RP, N-delta 
%states:x,kesai,d 
%diag[z-1*eye(ns+1+1) u1*eye(ns) deltaRP] 
Nblk=[ns+1+1 0;-(ns) 0;1 1]; 
else 
%N matrix for robust performance, g-s PI 
N11=[F0-G1*dc*H0 G1*cc -G1*dc*Wf;-bc*H0 ac -bc*Wf;zeros(1,ns) 0 BW]; 
N12=[b22-G1*dc*d12 G1*dc12;-bc*d12 bc22;zeros(1,ns) 0]; 
N13=[zeros(ns,1); 0; 1-BW]; 
N21=[c22-d21*dc*H0 d21*cc -d21*dc*Wf;-dc21*H0 cc22 -dc21*Wf]; 
N22=[d22-d21*dc*d12 d21*dc12;-dc21*d12 dc22]; 
N23=[zeros(ns,1) ;0]; 
N31=[-H0 0 -Wf]; 
N32=[zeros(1,ns+1)]; 
N33=0; 
N=[N11 N12 N13;N21 N22 N23;N31 N32 N33]; 
% Uncertainty block for RP, N-delta 
%states:x,kesai,d 
%diag[z-1*eye(ns+1+1) u1*eye(ns) u1 deltaRP] 
Nblk=[ns+1+1 0;-(ns+1) 0;1 1]; 
end 
 
%if it is required to fix the real uncertain block problem 
%RS=0;%1 fix 
%RP=1;%1 fix 
if RS==1 
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Tsize=abs(Mblk(1,1)); 
Dsize=abs(Mblk(2,1)); 
Xsize=Tsize+Dsize; 
%fix real block with complex block 
pdim=Xsize; 
belta=0.01; 
fixl=[eye(pdim);belta*eye(pdim)]; 
fixr=fixl'; 
blk=Mblk; 
Mblk=[blk;abs(blk)]; 
M=mmult(fixl,M,fixr); 
end 
if RP==1 
Tsize=abs(Nblk(1,1)); 
Dsize=abs(Nblk(2,1)); 
Xsize=Tsize+Dsize+1; 
%fix real block with complex block 
pdim=Xsize; 
belta=0.01; 
fixl=[eye(pdim);belta*eye(pdim)]; 
fixr=fixl'; 
blk=Nblk; 
Nblk=[blk;abs(blk)]; 
N=mmult(fixl,N,fixr); 
end 
 
9.3 Gain-scheduled MPC Controllers Design 
 
The following MATALB files have been used to design gain-scheduled MPC controllers. 
 
9.3.1 SISO processes 
 

Table 9.5 MATLAB files for Gain-scheduled MPC design: SISO  
 

No. File name Description 
24. LMIoptMPC1 Optimization of input weights λ , calls the 

following functions 26  
25. LMImainRS RS, calls 27 and 28 
26. LMImainRP RP, calls 29 and 30 
27. LMIsysRS Closed-loop system for RS, calls 31 
28. LMIsubRS LMI of RS for each vertex 
29. LMIsysRP Closed-loop system for RP, calls 31 
30. LMIsubRP LMI of RP for each vertex 
31. SISOresponse Step-response of a SISO process 
32. SISOsimu Simulate one linear MPC 
33. SISOsimuGS Simulate one gain-scheduled MPC 
34. SISOsimuGSplot Compare and plot simulations of more than one 

G-S MPC, and G-S MPC with G-S PI. It calls 
14, 32, and 33. 
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Code 24: LMIoptMPC1.M 
 
tot=4; 
step=[-1:2/tot:1]; 
weit0=0.9*ones(1,tot); 
 
weit=weit0; 
save weit0 weit; 
load weit0 
weit0=weit; 
[Weit,gopt]=fminsearch('lmimainrp',weit0,[],tot,step) 
 
Code 25: LMImainRS.M 
 
clear 
 
%Variable list 
%n            Process settling time 
%p            Prediction horizon 
%m           Control horizon 
%tot          Total number of sub-ranges 
%step                sub-ranges 
%Weit,weiu      Input weights 
 
n=12;p=8;m=2; 
tot=5; 
step=[-1:2/tot:1]; 
Weit=1*ones(1,tot); 
 
i=1; 
step1=step(i); 
step2=step(i+1); 
weiu=Weit(i); 
[A0,A1,ns]=lmisysrs(step1,step2,n,p,m,weiu); 
 
%LMI formulation  
setlmis([]) 
P0=lmivar(1,[ns 1]);%P0 is symmetric block diagonal 
lmiterm([1 1 1 0],0);%P0>0 
lmiterm([-1 1 1 P0],1,1); 
 
for i=1:tot 
   %steps used for H and step-responses 
   step1=step(i); 
   step2=step(i+1); 
   weiu=Weit(i); 
   [A0,A1,ns]=lmisysrs(step1,step2,n,p,m,weiu); 
   k=i+1; 
   eig1=eig(A0+A1*step1); 
   eig2=eig(A0+A1*step2); 
    
   lmisubrs(k,P0,A0,A1,step1,step2); 
end 
 
lmilio=getlmis; 
[tmin,xfeas]=feasp(lmilio,[]); 
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tmin 
 
Code 26: LMImainRP.M  
 
function gamma=lmimainrp(Weit,tot,step) 
 
%tot=3; 
%step=[-1:2/tot:1]; 
%Weit=1*ones(1,tot); 
 
n=6;p=4;m=2;weiy=1; 
 
i=1; 
step1=step(i); 
step2=step(i+1); 
weiu=Weit(i); 
[A0,A1,B,C,D,H,Au,Kmpc,M,Mp,ns]=lmisysrp(step1,step2,n,p,m,weiu,weiy); 
%LMI formulation  
setlmis([]) 
P0=lmivar(1,[ns 1]);%P0 is symmetric block diagonal 
k=1; 
lmiterm([k 1 1 0],0);%P0>0 
lmiterm([-k 1 1 P0],1,1); 
f=1; 
for i=1:f:tot 
      step1=step(i); 
      step2=step(i+f); 
      weiu=Weit(i); 
      
[A0,A1,B,C,D,H,Au,Kmpc,M,Mp,ns]=lmisysrp2(step1,step2,n,p,m,weiu,weiy); 
      eig1(:,i)=eig(A0+A1*step1); 
      eig2(:,i)=eig(A0+A1*step2); 
      k=k+1; 
      lmisubrp(k,P0,A0,A1,B,C,D,step1,step2); 
end 
 
lmilio=getlmis; 
load feasov 
tmin0=tmin; 
xfeas0=xfeas; 
[tmin,xfeas]=gevp(lmilio,(k-1)*2,[1.0*exp(-6) 1000 0 0 0],tmin0,xfeas0); 
save feasov tmin xfeas 
gamma=sqrt(tmin)%tmin should be smaller than 1 
 
Code 27: LMIsysRS.M 
 
%closed-loop system matrics for LMI of MPC and state-affine 
 
function [A0,A1,ns]=lmisysrs(step1,step2,n,p,m,weiu) 
load C:\gjy2003\model\cstrmat 
[nx,nx]=size(F0); 
 
[h,su]=SISOresponse(step1,step2,n); 
su=su'; 
 
%close loop formulation of MPC and state-affine 
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Wf=1;BW=0.8; 
M=zeros(n,n); 
for i=1:n-1 
   M(i,i+1)=1; 
end 
M(n,n)=1; 
Mp=M(1:p,:); 
Wu=weiu*eye(m);%to be designed 
Wy=10*eye(p); 
Y(:,1)=zeros(n,1);%initial steady-state 
du(1)=0;ek1k(:,1)=zeros(p,1);ek1k(:,2)=zeros(p,1); 
wk1k(:,1)=zeros(p,1);wk1k(:,2)=zeros(p,1); 
SU=zeros(p,m); 
for i=1:m 
SU(i:p,i)=[su(1:p-i+1)']; 
end 
mm=zeros(1,m);mm(1,1)=1; 
Kmpc=mm*inv(SU'*Wy'*Wy*SU+Wu'*Wu)*SU'*Wy'*Wy; 
N2=ones(p,1); 
T1=zeros(n,1);T1(1,1)=1; 
T2=zeros(n,n); 
for i=2:n 
   T2(i,i-1)=1; 
end 
T2(1,1)=1; 
e1=T1'; 
H=zeros(n,n);H(:,1)=su(1:n)'; 
for i=2:n 
   H(1:n-i+1,i)=h(i:n)'; 
end 
KMH=Kmpc*Mp*H; 
KNH0=Kmpc*N2*H0; 
KNH=Kmpc*N2*e1*H; 
KNW=Kmpc*N2*Wf; 
Cu2=e1-KMH; 
E=T2-T1*KMH; 
E2=E+T1*KNH; 
Cu1=(e1-KMH+KNH); 
B=[zeros(nx,1);zeros(n,1);1-BW]; 
C=[H0 zeros(1,n) Wf]; 
D=zeros(1,1); 
deltu=0; 
A110=(F0)-(G1)*KNH0; 
A11=(F1)-(G2)*KNH0; 
A120=(G1)*Cu1; 
A12=(G2)*Cu1; 
A130=-(G1)*KNW; 
A13=-(G2)*KNW; 
A21=-T1*KNH0; 
A22=E2; 
A23=-T1*KNW; 
A0=[A110 A120;A21 A22]; 
A1=[A11 A12;zeros(n,nx) zeros(n,n)]; 
[ns,ns]=size(A0); 
 
Code 28: LMIsubRS.M  
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function lmisubrs(k,P0,A0,A1,step1,step2) 
small=exp(-20); 
%case a) 
u1=step1; 
polA1=A0+A1*u1; 
lmiterm([(k-1)*2 1 1 P0],polA1',polA1);%A'*P0*A    
lmiterm([(k-1)*2 1 1 P0],-1,1);%-P0    
lmiterm([(k-1)*2 1 1 0],-small); 
 
%case b), 
u1=step2; 
polA2=A0+A1*u1; 
lmiterm([(k-1)*2+1 1 1 P0],polA2',polA2);%A'*P0*A    
lmiterm([(k-1)*2+1 1 1 P0],-1,1);%-P0    
lmiterm([(k-1)*2+1 1 1 0],-small); 
 
Code 29: LMIsysRP.M 
 
%closed-loop system matrices for LMI of MPC and state-affine 
 
function 
[A0,A1,B,C,D,H,Au,Kmpc,M,Mp,ns]=lmisysrp(step1,step2,n,p,m,weiu,weiy) 
%step1=-1;step2=-0.8; 
%n=12;p=8;m=2;weiu=1; 
load C:\gjy2003\model\cstrmat 
 [nx,nx]=size(F0); 
Wf=1;BW=0.8; 
 
[h,su]=SISOresponse(step1,step2,n); 
su=su'; 
   
%close loop formulation of MPC and state-affine 
M=zeros(n,n); 
for i=1:n-1 
   M(i,i+1)=1; 
end 
M(n,n)=1; 
Mp=M(1:p,:); 
Wu=weiu*eye(m);%to be designed 
Wy=weiy*eye(p); 
Y(:,1)=zeros(n,1);%initial steady-state 
du(1)=0;ek1k(:,1)=zeros(p,1);ek1k(:,2)=zeros(p,1); 
wk1k(:,1)=zeros(p,1);wk1k(:,2)=zeros(p,1); 
SU=zeros(p,m); 
for i=1:m 
SU(i:p,i)=[su(1:p-i+1)']; 
end 
mm=zeros(1,m);mm(1,1)=1; 
Kmpc=mm*inv(SU'*Wy'*Wy*SU+Wu'*Wu)*SU'*Wy'*Wy; 
N2=ones(p,1); 
T1=zeros(n,1);T1(1,1)=1; 
T2=zeros(n,n); 
for i=2:n 
   T2(i,i-1)=1; 
end 
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T2(1,1)=1; 
e1=T1'; 
H=zeros(n,n);H(:,1)=su(1:n)'; 
for i=2:n 
   H(1:n-i+1,i)=h(i:n)'; 
end 
KMH=Kmpc*Mp*H; 
KNH0=Kmpc*N2*H0; 
KNH=Kmpc*N2*e1*H; 
KNW=Kmpc*N2*Wf; 
Cu2=e1-KMH; 
E=T2-T1*KMH; 
E2=E+T1*KNH; 
Cu1=(e1-KMH+KNH); 
deltu=0; 
A110=(F0)-(G1)*KNH0; 
A11=(F1)-(G2)*KNH0; 
A120=(G1)*Cu1; 
A12=(G2)*Cu1; 
A130=-(G1)*KNW; 
A13=-(G2)*KNW; 
A21=-T1*KNH0; 
A22=E2; 
A23=-T1*KNW; 
A0=[A110 A120 A130;A21 A22 A23;zeros(1,nx) zeros(1,n) BW]; 
A1=[A11 A12 A13;zeros(n,nx) zeros(n,n) zeros(n,1);zeros(1,nx) zeros(1,n) 
0]; 
[ns,ns]=size(A0); 
B=[zeros(nx,1);zeros(n,1);1-BW]; 
C=[H0 zeros(1,n) Wf]; 
D=[0]; 
Au=[-KNH0 Cu1 -KNW]; 
 
%controller state-space 
Ac=E2;Bc=-T1*Kmpc*N2;Cc=Cu1;Dc=Kmpc*N2; 
mpcsys=ss(Ac,Bc,Cc,Dc,1); 
[num,den]=ss2tf(Ac,Bc,Cc,Dc); 
[z,p,k]=ss2zp(Ac,Bc,Cc,Dc); 
pols=pole(mpcsys); 
 
Code 30: LMIsubRP.M 
 
function lmisubrp(k,P0,A0,A1,B,C,D,step1,step2) 
 
%case a) 
u1=step1; 
polA1=A0+A1*u1; 
small=exp(-20);[ns1,ns2]=size(polA1); 
small1=eye(ns1)*small; 
lmiterm([(k-1)*2 1 1 P0],polA1',polA1);%A'*P0*A    
lmiterm([(k-1)*2 1 1 P0],-1,1);%-P0    
lmiterm([(k-1)*2 1 2 P0],polA1',B);%A'*P0*B 
lmiterm([(k-1)*2 1 3 0],C');%C'   
lmiterm([(k-1)*2 2 2 P0],B',B);%B'*P0*B   
lmiterm([(k-1)*2 2 3 0],D');%D' 
lmiterm([(k-1)*2 3 3 0],-1);%1   
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lmiterm([-(k-1)*2 1 1 0],small1); 
lmiterm([-(k-1)*2 2 2 0],1); 
lmiterm([-(k-1)*2 3 3 0],small);%  
 
%case b), 
u1=step2; 
polA2=A0+A1*u1; 
lmiterm([(k-1)*2+1 1 1 P0],polA2',polA2);%A'*P0*A    
lmiterm([(k-1)*2+1 1 1 P0],-1,1);%-P0    
lmiterm([(k-1)*2+1 1 2 P0],polA2',B);%A'*P0*B 
lmiterm([(k-1)*2+1 1 3 0],C');%C'   
lmiterm([(k-1)*2+1 2 2 P0],B',B);%B'*P0*B   
lmiterm([(k-1)*2+1 2 3 0],D');%D' 
lmiterm([(k-1)*2+1 3 3 0],-1);%1   
lmiterm([-((k-1)*2+1) 1 1 0],small1); 
lmiterm([-((k-1)*2+1) 2 2 0],1); 
lmiterm([-((k-1)*2+1) 3 3 0],small);  
 
Code 31: SISOresponse.M 
 
function [h,su]=SISOresponse(step1,step2,n) 
 
load C:\gjy2003\model\cstrmat 
 [nx,nx]=size(F0); 
length=n+1; 
%obtain the steady-state corresponding to step1 
x(:,1)=zeros(nx,1);u=step1; 
for i=1:length 
   y(i)=H0*x(:,i); 
x(:,i+1)=(F0+F1.*u)*x(:,i)+G1.*u+G2.*u^2; 
end 
 
%step-responses of state-affine 
   x(:,1)=x(:,length+1); 
   y0=H0*x(:,1);%+Wf*d(i); 
    
  for i=1:length 
      u=step2; 
      x(:,i+1)=(F0+F1.*u)*x(:,i)+G1.*u+G2.*u^2; 
   if (step2-step1)==0 
       map=1; 
   else map=1/(step2-step1); 
   end 
       
   y(i)=map*H0*x(:,i); 
   s1(i)=y(i); 
   end 
    
  ss1=s1(1); 
  s1=s1-ss1; 
  su=s1(2:length)'; 
 
     for i=2:length-1 
    hs(i)=su(i)-su(i-1); 
    end 
    hs(1)=su(1); 
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    h=hs; 
 
Code 32: SISOsimu.M 
 
clear 
 
load C:\gjy2003\model\cstrmat 
[nx,nx]=size(F0); 
tend=50;n=12;p=8;m=2; 
length=15+1; 
Wf=1;BW=0.8; 
weiu=1; 
weiy=1; 
step1=0;step2=1; 
[h,su]=SISOresponse(step1,step2,length); 
 
%setpoints 
r=0+zeros(tend+p,1);  
%disturbance 
[v,d,sumv]=disturbance(tend,BW); 
 
[A0,A1,B,C,D,H,Au,Kmpc,M,Mp,ns]=lmisysrp(step1,step2,n,p,m,weiu,weiy); 
 
N2=ones(p,1); 
T1=zeros(n,1);T1(1,1)=1; 
T2=zeros(n,n); 
for i=2:n 
   T2(i,i-1)=1; 
end 
T2(1,1)=1; 
e1=T1'; 
KMH=Kmpc*Mp*H; 
KNH0=Kmpc*N2*H0; 
KNH=Kmpc*N2*e1*H; 
KNW=Kmpc*N2*Wf; 
Cu2=e1-KMH; 
E=T2-T1*KMH; 
E2=E+T1*KNH; 
Cu1=(e1-KMH+KNH); 
 
%initialize 
ooo(1)=1; 
uc(1)=0;uc(2)=0; 
y(1)=0;y(2)=0; 
du(1)=0;du(2)=0; 
x(:,1)=zeros(nx,1);x(:,2)=zeros(nx,1); 
 
Y(:,1)=zeros(n,1); 
ek1k(:,1)=zeros(p,1);ek1k(:,2)=zeros(p,1); 
wk1k(:,1)=zeros(p,1);wk1k(:,2)=zeros(p,1); 
 
%MPC design 
for k=2:tend  
      ooo(k)=k; 
      R(:,k+1)=r(k+1:k+p); 
      Y(:,k)=M*Y(:,k-1)+su(1:n)*du(k-1);%update the model 
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      y(k)=H0*x(:,k)+Wf*d(k); 
      wk1k(:,k+1)=ones(p,1)*(y(k)-Y(1,k)); 
      ek1k(:,k+1)=R(:,k+1)-Mp*Y(:,k)-wk1k(:,k+1);%; 
      du(k)=Kmpc*ek1k(:,k+1);   
      uc(k)=uc(k-1)+du(k); 
      u=uc(k); 
      x(:,k+1)=(F0+F1.*u)*x(:,k)+G1.*u+G2.*u^2; 
end 
 
sumerror=y*y'; 
LinMPCgamma=sqrt(sumerror/sumv) 
 
Code 33: SISOsimuGS.M 
 
function [uc,y2,opo]=sisosimugs(step,tot,weit,v,d,sumv,tend) 
 
load C:\gjy2003\model\cstrmat 
[nx,nx]=size(F0); 
length=15+1; 
Wf=1;BW=0.8;weiy=1; 
n=12;p=8;m=2; 
 
%tot=5; 
%step=[-1:2/tot:1]; 
%weit=1*ones(1,tot); 
 
 
%step-responses of state-affine 
for j=1:tot 
   step1=step(j);%unit step response 
   step2=step(j+1);%unit step response 
   [hj,suj]=SISOresponse(step1,step2,length); 
   hu(j,:)=hj; 
   su(j,:)=suj'; 
end 
 
% MPC design 
r=0+zeros(tend+p,1);%setpoints  
 
M=zeros(n,n); 
for i=1:n-1 
   M(i,i+1)=1; 
end 
M(n,n)=1; 
Mp=M(1:p,:); 
Wy=weiy*eye(p); 
Y(:,1)=zeros(n,1);%initial steady-state 
Y1(:,1)=zeros(n,1);%initial steady-state 
du(1)=0;ek1k(:,1)=zeros(p,1);ek1k(:,2)=zeros(p,1); 
wk1k(:,1)=zeros(p,1);wk1k(:,2)=zeros(p,1); 
 
SU=zeros(p,m); 
for j=1:tot 
for i=1:m 
SU(i:p,i)=[su(j,1:p-i+1)']; 
end 
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mm=zeros(1,m);mm(1,1)=1; 
Wu=weit(j)*eye(m); 
Kmpc1(j,:)=mm*inv(SU'*Wy'*Wy*SU+Wu'*Wu)*SU'*Wy'*Wy; 
end 
 
ooo(1)=1; 
uc(1:n)=zeros(1,n);y2(1:n)=zeros(1,n); 
du(1:n)=zeros(1,n);d(1:n)=zeros(1,n); 
x(:,1:n)=zeros(nx,n); 
 
U(:,1)=zeros(n,1); 
gs=zeros(tend,1); 
 %MPC design 
 for k=2:tend  
   ooo(k)=k; 
   R(:,k+1)=r(k+1:k+p); 
   m2=(uc(k-1)); 
  for i=1:tot 
      if (step(i))<=m2 & m2<=(step(i+1)) 
        gs(k)=i;j=i; 
      end 
   end 
           Kmpc=Kmpc1(j,:); 
        j1=j;jj=1;j2=j1+1; 
 
                for i1=2:length-2 
            hs(i1)=su(j,i1)-su(j,i1-1); 
         end 
            hs(1)=su(j,1); 
            h=hs; 
            H=zeros(n,n);H(:,1)=su(j,1:n)'; 
         for i2=2:n 
            H(1:n-i2+1,i2)=h(i2:n)'; 
         end 
  
  while j1~=j2&jj<10 
      j=j1; 
      jj=jj+1; 
      j2=j1; 
      
     Y(:,k)=H*U(:,k-1); 
         
      d(k)=BW*d(k-1)+(1-BW)*v(k-1);%filter disturbance 
      y2(k)=H0*x(:,k)+Wf*d(k); 
      opo(k)=k; 
      wk1k(:,k+1)=ones(p,1)*(y2(k)-Y(1,k)); 
      ek1k(:,k+1)=R(:,k+1)-Mp*Y(:,k)-wk1k(:,k+1);%-SD*dd(k); 
      du(k)=Kmpc*ek1k(:,k+1);   
      uc(k)=uc(k-1)+du(k); 
       
      if uc(k)>1 uc(k)=1;end 
      if uc(k)<-1 uc(k)=-1;end 
       
      m1=(uc(k)); 
             for i=1:tot 
              if (step(i))<=m1 & m1<=(step(i+1)) 
                  j1=i;     Kmpc=Kmpc1(i,:); 
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              end 
             end 
             
          
        h=hu(j1,:);  
        H=zeros(n,n);H(:,1)=su(j1,1:n)'; 
         for i2=2:n 
            H(1:n-i2+1,i2)=h(i2:n)'; 
         end 
              
    U(2:n,k)=U(1:n-1,k-1); 
    U(1,k)=uc(k); du1(k)=uc(k)-uc(k-1); 
  end       
           u=uc(k);    
           x(:,k+1)=(F0+F1*u)*x(:,k)+G1*u+G2*u^2;  
  end 
        sumerror=y2*y2'; 
        MPCgamma=sqrt(sumerror/sumv) 
        MPCsumu=uc*uc' 
        gssumdu=du1*du1'; 
        gssum=sumerror+MPCsumu; 
           
figure(1) 
plot(opo,uc,'k:',opo,y2,'k') 
title('G-S MPC input(:) and output') 
axis([0 tend -1 1]); 
figure(2) 
plot(opo,y2,'k:',opo,v(1:tend),'k') 
title('G-S MPC output(:) and disturbance') 
axis([0 tend -1 1]); 
 
Code 34: SISOsimuGSplot.M 
 
tend=100;BW=0.8; 
 
[v,d,sumv]=disturbance(tend,BW); 
%save dist v d sumv 
%load dist 
 
%Simulation of first MPC 
tot=4; 
step=[-1:2/tot:1]; 
weit1=[0.6426,0.6616,0.7410,0.7509]; 
[u1,y1,t1]=sisosimugs(step,tot,weit1,v,d,sumv,tend); 
%Simulation of second MPC 
%weit2=[10 10 10 10 10 10]; 
%[u2,y2,t2]=sisosimugs(step,tot,weit2,v,d,sumv,tend); 
 
%Simulation of gain-scheduled PI 
xopt=[1.2168,1.9309,0.1802,0.0009];%[1.4023,3.2087,0.1033,0.0721]; 
[u2,y2,t2]=sisosimuPI(xopt,v,d,sumv,tend); 
 
figure(1) 
plot(t1,u1,'k:',t1,u2,'k') 
title('G-S MPC input. MPC1(:),MPC2(-)') 
%title('input. G-S MPC(:),G-S PI(-)') 



 250

%axis([0 tend -1 1]); 
figure(2) 
plot(t1,y1,'k:',t1,y2,'k') 
title('G-S MPC output. MPC1(:),MPC2(-)') 
%title('output.G-S MPC(:),G-S PI(-)') 
%axis([0 tend -1 1]); 
figure(3) 
plot(v,'k') 
title('disturbance') 
 
9.3.2 MIMO processes 

 
Table 9.6 MATLAB files for Gain-scheduled MPC design: MIMO  

 
No. File name Description 
35. LMIoptMPC2 Optimization of input weights λ , calls 

the following function 37 
36. MIMOGSLMImainRS RS, calls 38 and 39 
37. MIMOGSLMImainRP RP, calls 40 and 41 
38. MIMOLMIsysRS Closed-loop system for RS 
39. MIMOLMIsubRS LMI of RS for each vertex 
40. MIMOLMIsysRP Closed-loop system for RP 
41. MIMOLMIsubRP LMI of RP for each vertex 
42. MIMOmodel 2*2 state-affine model 
43. MIMOresponse Step-response of a MIMO process 
44. MIMOsimu Simulate one linear MPC 
45. MIMOGSsimu Simulate one linear MPC and one G-S 

MPC (2-switch) 
 
Code 35: LMIoptMPC2.M 
 
nu=2; 
weit0=1*ones(1,nu);%for mimolmimainrp 
%weit0=0.8*ones(2,nu);%for mimogslmimainrp 
 
weit=weit0; 
save weit0 weit; 
load weit0 
weit0=weit; 
 [Weit,gopt]=fminsearch('mimolmimainrp',weit0,[],nu) 
%[Weit,gopt]=fminsearch('mimogslmimainrp',weit0,[],nu) 
 
Code 36: MIMOGSLMImainRS.M 
 
clear 
 
nu=2; 
Weightu=(0.6)*ones(2,nu); 
Weightu 
ny=2;u1step1=0;u1step2=1;u2step1=0;u2step2=1; 
n=6;p=4;m=2; 
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weiy=1*ones(1,ny);Wf=[1;0]; 
 
MIMOmodel; 
weiu=Weightu(1,:); 
[A0,A1,A2,Au,Kmpc,ns,H,M,Mp,SU0]=MIMOlmisysrs(nu,ny,n,p,m,weiu,weiy,Wf,
... u1step1,u1step2,u2step1,u2step2); 
%LMI formulation  
setlmis([]) 
P0=lmivar(1,[ns 1]);%P0 is symmetric block diagonal 
Q=lmivar(1,[1 1]);%Q is symmetric block diagonal 
k=1;lmitag=[]; 
ll=1; 
lmiterm([1 1 1 0],0);%P0>0 
lmiterm([-1 1 1 P0],1,1); 
 
range1=[-0.3 0;0 0.3];%for uncertain parameter u1 
range2=[-0.3 0;0 0.3];%for uncertain parameter u2 
mrange1=[-1 0;0 1];% for model of step-response 
mrange2=[-1 0;0 1]; 
[r g]=size(range1); 
 
  %G-S robust stability 
   for i=1:r 
   for j=1:r 
         k=k+1; 
         u1step1=range1(i,1); 
         u1step2=range1(i,g); 
         weiu(1)=Weightu(i,1); 
         u2step1=range2(j,1); 
         u2step2=range2(j,g); 
         weiu(2)=Weightu(j,2); 
         mu1step1=mrange1(i,1); 
         mu1step2=mrange1(i,g); 
         mu2step1=mrange2(j,1); 
         mu2step2=mrange2(j,g); 
            
      %robust stability 
      
[A0,A1,A2,Au,Kmpc,ns,H,M,Mp,SU0]=MIMOlmisysrs(nu,ny,n,p,m,weiu,weiy,Wf,
...mu1step1,mu1step2,mu2step1,mu2step2); 
      mimolmisubrs((k-1)*4+1,P0,A0,A1,A2,u1step1,u2step2); 
      mimolmisubrs((k-1)*4+2,P0,A0,A1,A2,u1step2,u2step1); 
      mimolmisubrs((k-1)*4+3,P0,A0,A1,A2,u1step2,u2step2); 
      mimolmisubrs((k-1)*4+4,P0,A0,A1,A2,u1step1,u2step1); 
      k=k+1; 
  end 
end 
 
lmilio=getlmis; 
[tmin,xfeas]=feasp(lmilio); 
 
Code 37: MIMOGSLMImainRP.M 
 
clear  
 
function gamma=mimogslmimainrp(Weightu,nu) 
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%nu=2; 
%Weightu=(0.6)*ones(2,nu); 
ny=2;u1step1=0;u1step2=1;u2step1=0;u2step2=1; 
n=6;p=4;m=2; 
weiy=1*ones(1,ny);Wf=[1;0]; 
 
MIMOmodel; 
weiu=Weightu(1,:); 
[A0,A1,A2,B,C,D,Au,Kmpc,ns,H,M,Mp,SU0]=MIMOlmisysrp(nu,ny,n,p,m,weiu,we
iy,Wf,...u1step1,u1step2,u2step1,u2step2); 
%LMI formulation  
setlmis([]) 
P0=lmivar(1,[ns 1]);%P0 is symmetric block diagonal 
Q=lmivar(1,[1 1]);%Q is symmetric block diagonal 
k=1;lmitag=[]; 
ll=1; 
lmiterm([1 1 1 0],0);%P0>0 
lmiterm([-1 1 1 P0],1,1); 
 
range1=[-0.3 0;0 0.3];%for uncertain parameter u1 
range2=[-0.3 0;0 0.3];%for uncertain parameter u2 
mrange1=[-1 0;0 1];% for model of step-response 
mrange2=[-1 0;0 1]; 
[r g]=size(range1); 
 
  %G-S robust stability 
   for i=1:r 
   for j=1:r 
 
         k=k+1; 
         u1step1=range1(i,1); 
         u1step2=range1(i,g); 
         weiu(1)=Weightu(i,1); 
         u2step1=range2(j,1); 
         u2step2=range2(j,g); 
         weiu(2)=Weightu(j,2); 
         mu1step1=mrange1(i,1); 
         mu1step2=mrange1(i,g); 
         mu2step1=mrange2(j,1); 
         mu2step2=mrange2(j,g); 
            
      %robust performance 
      
[A0,A1,A2,B,C,D,Au,Kmpc,ns,H,M,Mp,SU0]=MIMOlmisysrp(nu,ny,n,p,m,weiu,we
iy,Wf,...mu1step1,mu1step2,mu2step1,mu2step2); 
      mimolmisubrp((k-1)*4,P0,Q,A0,A1,A2,B,C,D,u1step1,u2step1); 
      mimolmisubrp((k-1)*4+1,P0,Q,A0,A1,A2,B,C,D,u1step1,u2step2); 
      mimolmisubrp((k-1)*4+2,P0,Q,A0,A1,A2,B,C,D,u1step2,u2step1); 
      mimolmisubrp((k-1)*4+3,P0,Q,A0,A1,A2,B,C,D,u1step2,u2step2); 
 
end 
end 
 
lmiterm([(k-1)*4+6 1 1 0],0);%Q>0 
lmiterm([-(k-1)*4-6 1 1 Q],1,1); 
 
lmiterm([(k-1)*4+7 1 1 Q],1,1);%Q<gamma^2    
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lmiterm([-(k-1)*4-7 1 1 0],1); 
 
lmilio=getlmis; 
load feasov  %to use initial guess,do not initialize P0 
tmin0=tmin; 
xfeas0=xfeas; 
[tmin,xfeas]=gevp(lmilio,1,[1.0*exp(-2) 50 0 0 0],tmin0,xfeas0); 
save feasov tmin xfeas 
gamma=sqrt(tmin) 
 
Code 38: MIMOLMIsysRS.M 
 
%MIMO system of 2*2  
%closed-loop system matrices for LMI of MPC and state-affine 
 
function 
[A0,A1,A2,Au,Kmpc,ns,H,M,Mp,SU0]=MIMOlmisysrs(nu,ny,n,p,m,weiu,weiy,Wf,
...u1step1,u1step2,u2step1,u2step2) 
%nu=2;ny=2;n=12;p=8;m=2;weiu=ones(1,nu);Wf=[1;0];u1step1=-
1;u1step2=0;u2step1=-1;u2step2=0; 
load C:\gjy2003\mpc\MIMOstateaffine 
 
[nx,nx]=size(F0); 
prit=0; 
[Su,Hu]=MIMOresponse(prit,nu,ny,n,p,m,u1step1,u1step2,u2step1,u2step2); 
 
%sparse diagonal matrix 
%M is nny*nny 
e0=ones(n*ny,1); 
M=spdiags([e0],[ny],n*ny,n*ny); 
M(n*ny-1,n*ny-1)=1; 
M(n*ny,n*ny)=1; 
%Mp is pny*nny 
Mp=M(1:p*ny,:); 
%Wu is mnu*mnu,weiu is 1*nu,EU is nu*mnu 
clear EU: 
EU0=eye(nu);EU=EU0; 
for i=1:m-1 
    EU=[EU EU0]; 
end 
Wu=spdiags([weiu*EU]',[0],m*nu,m*nu); 
%Wy is pny*pny 
clear EY; 
EY0=eye(ny);EY=EY0; 
for i=1:p-1 
    EY=[EY EY0]; 
end 
Wy=spdiags([weiy*EY]',[0],p*ny,p*ny); 
%Y is nny*1 
Y(:,1)=zeros(n*ny,1);%initial steady-state 
 
%Su(1:n,1:4) are for s11,s12,s21,s22, step-responses 
SU=zeros(n*ny,m*nu); 
for i=1:n 
SU((i-1)*ny+1,1)=Su(i,1); 
SU((i-1)*ny+1,nu)=Su(i,2); 
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SU(i*ny,1)=Su(i,3); 
SU(i*ny,nu)=Su(i,4); 
end 
for j=2:m 
   SU((j-1)*ny+1:n*ny,(j-1)*nu+1:j*nu)=SU(1:(n-(j-1))*ny,1:nu); 
end 
SU0=SU; 
SU=SU(1:p*ny,:); 
mm=zeros(nu,m*nu);mm(1:nu,1:nu)=eye(nu); 
Kmpc=mm*inv(SU'*Wy'*Wy*SU+Wu'*Wu)*SU'*Wy'*Wy; 
N2=EY'; 
T1=zeros(n*nu,nu);T1(1:nu,1:nu)=eye(nu); 
e3=ones(n*nu,1); 
T2=spdiags([e3],[-nu],n*nu,n*nu); 
T2(1,1)=1; 
T2(nu,nu)=1; 
e1=T1'; 
%Hu(1:n,1:4) are for h11,h12,h21,h22, impulse-responses 
H=zeros(n*ny,n*nu);H(:,1:nu)=SU0(:,1:nu); 
for i=1:n-1 
    H((i-1)*ny+1,nu+1)=Hu(i+1,1); 
    H((i-1)*ny+1,2*nu)=Hu(i+1,2); 
    H(i*ny,nu+1)=Hu(i+1,3); 
    H(i*ny,2*nu)=Hu(i+1,4); 
end 
for j=3:n 
    H(1:(n-(j-1))*ny,(j-1)*ny+1:j*nu)=H((j-2)*ny+1:(n-1)*ny,nu+1:2*nu); 
end 
 
e2=zeros(ny,n*ny);e2(1:ny,1:ny)=eye(ny); 
KMH=Kmpc*Mp*H; 
KNH0=Kmpc*N2*H0; 
KNH=Kmpc*N2*e1*H; 
KN2H=Kmpc*N2*e2*H; 
KNW=Kmpc*N2*Wf; 
Cu2=e1-KMH; 
E=T2-T1*KMH; 
E2=E+T1*KN2H; 
Cu1=(e1-KMH+KN2H); 
Au=[-KNH0 Cu1 -KNW]; 
deltu=0; 
A110=(F0)-(G1)*KNH0; 
A11=(F1)-(G2)*KNH0; 
A211=F2-G3*KNH0; 
A120=(G1)*Cu1; 
A12=(G2)*Cu1; 
A212=G3*Cu1; 
A21=-T1*KNH0; 
A22=E2; 
A0=[A110 A120;A21 A22]; 
A1=[A11 A12;zeros(n*nu,nx) zeros(n*nu,n*nu)]; 
A2=[A211 A212;zeros(n*nu,nx) zeros(n*nu,n*nu)]; 
[ns,ns]=size(A0); 
 
Code 39: MIMOLMIsubRS.M  
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function mimolmisubrs(k,P0,A0,A1,A2,u1,u2) 
polA1=A0+A1*u1+A2*u2; 
small=exp(-20); 
lmiterm([k 1 1 P0],polA1',polA1);%A'*P0*A    
lmiterm([k 1 1 P0],-1,1);%-P0    
lmiterm([k 1 1 0],-small); 
 
Code 40: MIMOLMIsysRP.M  
 
%MIMO system of 2*2  
%closed-loop system matrices for LMI of MPC and state-affine 
 
function 
[A0,A1,A2,B,C,D,Au,Kmpc,ns,H,M,Mp,SU0]=MIMOlmisysrp(nu,ny,n,p,m,weiu,we
iy,Wf,... 
    u1step1,u1step2,u2step1,u2step2) 
%nu=2;ny=2;n=12;p=8;m=2;weiu=ones(1,nu);Wf=[1;0];u1step1=-
1;u1step2=0;u2step1=-1;u2step2=0; 
load C:\gjy2003\mpc\MIMOstateaffine 
 
[nx,nx]=size(F0); 
prit=0; 
[Su,Hu]=MIMOresponse(prit,nu,ny,n,p,m,u1step1,u1step2,u2step1,u2step2); 
 
%sparse diagonal matrix 
%M is nny*nny 
e0=ones(n*ny,1); 
M=spdiags([e0],[ny],n*ny,n*ny); 
M(n*ny-1,n*ny-1)=1; 
M(n*ny,n*ny)=1; 
%Mp is pny*nny 
Mp=M(1:p*ny,:); 
%Wu is mnu*mnu,weiu is 1*nu,EU is nu*mnu 
clear EU: 
EU0=eye(nu);EU=EU0; 
for i=1:m-1 
    EU=[EU EU0]; 
end 
Wu=spdiags([weiu*EU]',[0],m*nu,m*nu); 
%Wy is pny*pny 
clear EY; 
EY0=eye(ny);EY=EY0; 
for i=1:p-1 
    EY=[EY EY0]; 
end 
Wy=spdiags([weiy*EY]',[0],p*ny,p*ny); 
%Y is nny*1 
Y(:,1)=zeros(n*ny,1);%initial steady-state 
 
%Su(1:n,1:4) are for s11,s12,s21,s22, step-responses 
SU=zeros(n*ny,m*nu); 
for i=1:n 
SU((i-1)*ny+1,1)=Su(i,1); 
SU((i-1)*ny+1,nu)=Su(i,2); 
SU(i*ny,1)=Su(i,3); 
SU(i*ny,nu)=Su(i,4); 
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end 
for j=2:m 
   SU((j-1)*ny+1:n*ny,(j-1)*nu+1:j*nu)=SU(1:(n-(j-1))*ny,1:nu); 
end 
SU0=SU; 
SU=SU(1:p*ny,:); 
mm=zeros(nu,m*nu);mm(1:nu,1:nu)=eye(nu); 
Kmpc=mm*inv(SU'*Wy'*Wy*SU+Wu'*Wu)*SU'*Wy'*Wy; 
N2=EY'; 
T1=zeros(n*nu,nu);T1(1:nu,1:nu)=eye(nu); 
e3=ones(n*nu,1); 
T2=spdiags([e3],[-nu],n*nu,n*nu); 
T2(1,1)=1; 
T2(nu,nu)=1; 
e1=T1'; 
%Hu(1:n,1:4) are for h11,h12,h21,h22, impulse-responses 
H=zeros(n*ny,n*nu);H(:,1:nu)=SU0(:,1:nu); 
for i=1:n-1 
    H((i-1)*ny+1,nu+1)=Hu(i+1,1); 
    H((i-1)*ny+1,2*nu)=Hu(i+1,2); 
    H(i*ny,nu+1)=Hu(i+1,3); 
    H(i*ny,2*nu)=Hu(i+1,4); 
end 
for j=3:n 
    H(1:(n-(j-1))*ny,(j-1)*ny+1:j*nu)=H((j-2)*ny+1:(n-1)*ny,nu+1:2*nu); 
end 
 
e2=zeros(ny,n*ny);e2(1:ny,1:ny)=eye(ny); 
KMH=Kmpc*Mp*H; 
KNH0=Kmpc*N2*H0; 
KNH=Kmpc*N2*e1*H; 
KN2H=Kmpc*N2*e2*H; 
KNW=Kmpc*N2*Wf; 
Cu2=e1-KMH; 
E=T2-T1*KMH; 
E2=E+T1*KN2H; 
Cu1=(e1-KMH+KN2H); 
Au=[-KNH0 Cu1 -KNW]; 
deltu=0; 
A110=(F0)-(G1)*KNH0; 
A11=(F1)-(G2)*KNH0; 
A211=F2-G3*KNH0; 
A120=(G1)*Cu1; 
A12=(G2)*Cu1; 
A212=G3*Cu1; 
A130=-(G1)*KNW; 
A13=-(G2)*KNW; 
A213=-(G3)*KNW; 
A21=-T1*KNH0; 
A22=E2; 
A23=-T1*KNW; 
A0=[A110 A120 A130;A21 A22 A23;zeros(1,nx) zeros(1,n*nu) BW]; 
A1=[A11 A12 A13;zeros(n*nu,nx) zeros(n*nu,n*nu) 
zeros(n*nu,1);zeros(1,nx) zeros(1,n*nu) 0]; 
A2=[A211 A212 A213;zeros(n*nu,nx) zeros(n*nu,n*nu) 
zeros(n*nu,1);zeros(1,nx) zeros(1,n*nu) 0]; 
B=[zeros(nx,1);zeros(n*nu,1);1-BW]; 
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C=[H0 zeros(ny,n*nu) Wf]; 
D=zeros(ny,1); 
[ns,ns]=size(A0); 
 
%controller state-space 
Ac=E2;Bc=-T1*Kmpc*N2;Cc=Cu1;Dc=Kmpc*N2; 
mpcsys=ss(Ac,Bc,Cc,Dc,1); 
[num1,den1]=ss2tf(Ac,Bc,Cc,Dc,1); 
[num2,den2]=ss2tf(Ac,Bc,Cc,Dc,2); 
[z1,p1,k1]=ss2zp(Ac,Bc,Cc,Dc,1); 
[z2,p2,k2]=ss2zp(Ac,Bc,Cc,Dc,2); 
pols=pole(mpcsys); 
 
Code 41: MIMOLMIsubRP.M 
 
function mimolmisubrp(k,P0,Q,A0,A1,A2,B,C,D,u1,u2) 
polA1=A0+A1*u1+A2*u2; 
lmiterm([(k) 1 1 P0],polA1',polA1);%A'*P0*A    
lmiterm([(k) 1 1 P0],-1,1);%-P0    
lmiterm([(k) 1 2 P0],polA1',B);%A'*P0*B 
lmiterm([(k) 1 3 0],C');%C'   
lmiterm([(k) 2 2 P0],B',B);%B'*P0*B   
lmiterm([(k) 2 3 0],D');%D' 
lmiterm([(k) 3 3 0],-1);%1   
lmiterm([-(k) 2 2 Q],1,1); 
 
Code 42: MIMOmodel.M 
 
load C:\gjy2003\model\cstrmatq1 
model01=1; 
if model01==1 
G1=[G1';0 1]';G2=0.1*[G2';1 0]';G3=[-0.01 -0.0159;-0.0508 -0.0928]; 
H0=[H0;0 0.1]; 
else 
G1=[G1';0 1]';G2=[G2';1 0]';G3=G2; 
H0=[H0;H0]; 
end 
 
BW=0.8; 
 
save MIMOstateaffine F0 F1 F2 G1 G2 G3 H0 BW 
 
Code 43: MIMOresponse.M  
 
%closed-loop system matrices for LMI of MPC and state-affine 
 
function 
[Su,Hu]=MIMOresponse(prit,nu,ny,n,p,m,u1step1,u1step2,u2step1,u2step2) 
%prit=3;nu=2;ny=2;n=6;p=4;m=2; 
%range1=[-1 1;0 1;-1 0]; 
%range2=[-1 1;-0.8 1;-1 -0.8]; 
%u1step1=range1(prit,1);u1step2=range1(prit,2); 
%u2step1=range2(prit,1);u2step2=range2(prit,2); 
 
MIMOmodel; 
load C:\gjy2003\mpc\MIMOstateaffine 
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[nx,nx]=size(F0); 
length=n+1; 
 
%step-responses of state-affine 
% u(1) to y(1),y(2) 
%obtain the steady-state corresponding to step1 
x(:,1)=zeros(nx,1);u=zeros(nu,1);u(1)=u1step1; 
for i=1:length 
   y(:,i)=H0*x(:,i); 
   x(:,i+1)=(F0+F1*u(1)+F2*u(2))*x(:,i)+(G1+G2*u(1)+G3*u(2))*u; 
end 
 
%step-responses of state-affine 
   x(:,1)=x(:,length+1);u=zeros(nu,1);u(1)=u1step2; 
   for i=1:length 
       x(:,i+1)=(F0+F1*u(1)+F2*u(2))*x(:,i)+(G1+G2*u(1)+G3*u(2))*u; 
       if (u1step2-u1step1)==0 
           map=1; 
       else 
       map=1/(u1step2-u1step1); 
       end 
       y(:,i)=map*H0*x(:,i); %scaled to unit-step response 
       Su(i,1)=y(1,i)-y(1,1); 
       Su(i,3)=y(2,i)-y(2,1); 
   end 
    
  % u(2) to y(1),y(2) 
  %obtain the steady-state corresponding to step1 
  x(:,1)=zeros(nx,1);u=zeros(nu,1);u(2)=u2step1; 
  for i=1:length 
   y(:,i)=H0*x(:,i); 
   x(:,i+1)=(F0+F1*u(1)+F2*u(2))*x(:,i)+(G1+G2*u(1)+G3*u(2))*u; 
end 
 
   x(:,1)=x(:,length+1);u=zeros(nu,1);u(2)=u2step2; 
   for i=1:length 
       x(:,i+1)=(F0+F1*u(1)+F2*u(2))*x(:,i)+(G1+G2*u(1)+G3*u(2))*u; 
        if (u2step2-u2step1)==0 
           map=1; 
       else 
       map=1/(u2step2-u2step1); 
   end 
          y(:,i)=map*H0*x(:,i); %scaled to unit-step response 
       Su(i,2)=y(1,i)-y(1,1); 
       Su(i,4)=y(2,i)-y(2,1); 
   end 
if prit~=0; 
 figure(prit) 
 subplot(2,2,1) 
 plot(Su(:,1),'k') 
 title('Step-response of input 1 to output 1,S11') 
% axis([1 15 -0.2 0.4]); 
 subplot(2,2,2) 
 plot(Su(:,2),'k') 
 title('Step-response of input 2 to output 1,S12') 
 % axis([1 15 -0.2 0.4]); 
subplot(2,2,3) 
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 plot(Su(:,3),'k') 
 title('Step-response of input 1 to output 2,S21') 
 % axis([1 15 -0.1 0.2]); 
subplot(2,2,4) 
 plot(Su(:,4),'k') 
 title('Step-response of input 2 to output 2,S22') 
% axis([1 15 -0.1 0.2]); 
end 
 
 Su(1:n,:)=Su(2:n+1,:); 
  
 %impulse response  
 Hu(1,:)=Su(1,:);   
  for i=2:n 
    Hu(i,:)=Su(i,:)-Su(i-1,:); 
end 
Hu0(1,:)=zeros(1,4); 
Hu0(2:n+1,:)=Hu; 
%figure(2) 
% subplot(2,2,1) 
% plot(Hu0(:,1)) 
% title('Impulse-response of input 1 to output 1,H11') 
% subplot(2,2,2) 
% plot(Hu0(:,2)) 
% title('Impulse-response of input 2 to output 1,H12') 
% subplot(2,2,3) 
% plot(Hu0(:,3)) 
% title('Impulse-response of input 1 to output 2,H21') 
% subplot(2,2,4) 
% plot(Hu0(:,4)) 
% title('Impulse-response of input 2 to output 2,H22') 
 
Code 44: MIMOsimu.M 
 
clear 
 
nu=2;ny=2; 
n=6;p=4;m=2; 
weiu=1*[1 1];weiy=1*ones(1,ny); 
Wf=[1;0];prit=2;u1step1=-1;u1step2=1;u2step1=-1;u2step2=1; 
MIMOmodel; 
load C:\gjy2003\mpc\MIMOstateaffine 
[nx,nx]=size(F0); 
[A0,A1,A2,B,C,D,Au,Kmpc,ns,H,M,Mp,SU0]=MIMOlmisysrp(nu,ny,n,p,m,weiu,we
iy,Wf,u1step1,u1step2,u2step1,u2step2); 
 
tend=50; 
 
clear EY; 
EY0=eye(ny);EY=EY0; 
for i=1:p-1 
    EY=[EY EY0]; 
end 
N2=EY'; 
 
T1=zeros(n*nu,nu);T1(1:nu,1:nu)=eye(nu); 
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e3=ones(n*nu,1); 
T2=spdiags([e3],[-nu],n*nu,n*nu); 
T2(1,1)=1; 
T2(nu,nu)=1; 
e1=T1'; 
e2=zeros(ny,n*ny);e2(1:ny,1:ny)=eye(ny); 
KMH=Kmpc*Mp*H; 
KNH0=Kmpc*N2*H0; 
KNH=Kmpc*N2*e1*H; 
KN2H=Kmpc*N2*e2*H; 
KNW=Kmpc*N2*Wf; 
Cu2=e1-KMH; 
E=T2-T1*KMH; 
E2=E+T1*KN2H; 
 
 
r=0+zeros(tend+p,1);%setpoints  
for i=3+1:3+n 
   r(i)=-0.1; 
end 
for i=3+n+1:3+2*n 
   r(i)=0.1; 
end 
r=0*r; 
%disturbance 
[v,d,sumv]=disturbance(tend,BW); 
 
%initialize 
Y(:,1)=zeros(n*ny,1);%initial steady-state 
du(:,1)=zeros(nu,1);du(:,2)=zeros(nu,1); 
ek1k(:,1)=zeros(p*ny,1);ek1k(:,2)=ek1k(:,1); 
wk1k(:,1)=zeros(p*ny,1);wk1k(:,2)=wk1k(:,1); 
uc(:,1)=zeros(nu,1);uc(:,2)=zeros(nu,1); 
x(:,1)=zeros(nx,1);x(:,2)=zeros(nx,1); 
y(:,1)=H0*x(:,1);y(:,2)=H0*x(:,2); 
ooo(1)=1; 
 
%Simulation of MPC, using the state-affine model from MIMOmodel 
for k=2:tend  
   ooo(k)=k; 
   for i=1:p 
      R((i-1)*ny+1:i*ny,k+1)=r(k+1)*ones(ny,1); 
  end 
   Y(:,k)=M*Y(:,k-1)+SU0(:,1:nu)*du(:,k-1);%update the model 
   y(:,k)=H0*x(:,k)+Wf*d(k);  
   wk1k(:,k+1)=N2*(y(:,k)-Y(1:ny,k)); 
   ek1k(:,k+1)=R(:,k+1)-Mp*Y(:,k)-wk1k(:,k+1); 
   du(:,k)=Kmpc*ek1k(:,k+1);   
   uc(:,k)=uc(:,k-1)+du(:,k); 
   u=uc(:,k); 
   x(:,k+1)=(F0+F1*u(1))*x(:,k)+(G1+G2*u(1)+G3*u(2))*u; 
 
end 
 
sume1=y(1,:)*y(1,:)'; 
sume2=y(2,:)*y(2,:)'; 
gammasimu=sqrt((sume1+sume2)/sumv) 
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 clsume1=ycl(1,:)*ycl(1,:)'; 
clsume2=ycl(2,:)*ycl(2,:)'; 
clgammasimu=sqrt((clsume1+clsume2)/sumv) 
 
 figure(1) 
 subplot(2,2,1) 
 plot(ooo,y(1,:),'k',ooo,v,'k:') 
 title(' design output 1,disturbance(:)') 
 subplot(2,2,2) 
 plot(ooo,y(2,:),'k',ooo,v,'k:') 
 title('design  output 2,disturbance(:)') 
 subplot(2,2,3) 
 plot(uc(1,:),'k') 
 title('design input 1') 
 subplot(2,2,4) 
 plot(uc(2,:),'k') 
 title('design input 2') 
 
Code 45: MIMOGSsimu.M 
 
clear 
 
nu=2;ny=2; 
n=6;p=4;m=2;weiy=1*ones(1,ny); 
Wf=[1;0];prit=0; 
MIMOmodel; 
load C:\gjy2003\mpc\MIMOstateaffine 
[nx,nx]=size(F0); 
tend=500; 
 
clear EY; 
EY0=eye(ny);EY=EY0; 
for i=1:p-1 
    EY=[EY EY0]; 
end 
N2=EY'; 
 
r=0+zeros(tend+p,1);%setpoints  
for i=3+1:3+n 
   r(i)=-0.1; 
end 
for i=3+n+1:3+2*n 
   r(i)=0.1; 
end 
r=0*r; 
%disturbance 
%[v,d,sumv]=disturbance(tend,BW); 
save compargslin v d sumv 
load compargalin 
%initialize for linear MPC 
Y(:,1)=zeros(n*ny,1);%initial steady-state 
du(:,1)=zeros(nu,1);du(:,2)=zeros(nu,1); 
ek1k(:,1)=zeros(p*ny,1);ek1k(:,2)=ek1k(:,1); 
wk1k(:,1)=zeros(p*ny,1);wk1k(:,2)=wk1k(:,1); 
uc(:,1)=zeros(nu,1);uc(:,2)=zeros(nu,1); 
x(:,1)=zeros(nx,1);x(:,2)=zeros(nx,1); 
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y(:,1)=H0*x(:,1);y(:,2)=H0*x(:,2); 
ooo(1)=1; 
%initialize for G-S MPC 
Yg(:,1)=zeros(n*ny,1);%initial steady-state 
dug(:,1)=zeros(nu,1);dug(:,2)=zeros(nu,1); 
ek1kg(:,1)=zeros(p*ny,1);ek1kg(:,2)=ek1k(:,1); 
wk1kg(:,1)=zeros(p*ny,1);wk1kg(:,2)=wk1k(:,1); 
ucg(:,1)=zeros(nu,1);ucg(:,2)=zeros(nu,1); 
xg(:,1)=zeros(nx,1);xg(:,2)=zeros(nx,1); 
yg(:,1)=H0*xg(:,1);yg(:,2)=H0*xg(:,2); 
 
%linear MPC design,using the state-affine model from MIMOmodel 
u1step1=-1;u1step2=1;u2step1=-1;u2step2=1;weiu=[1 1];%[0.5009 0.4983];%; 
[A0,A1,A2,B,C,D,Au,Kmpc,ns,H,M,Mp,SU0]=MIMOlmisysrp(nu,ny,n,p,m,weiu,we
iy,Wf,u1step1,u1step2,u2step1,u2step2); 
for k=2:tend  
   ooo(k)=k; 
   for i=1:p 
      R((i-1)*ny+1:i*ny,k+1)=r(k+1)*ones(ny,1); 
   end 
   Y(:,k)=M*Y(:,k-1)+SU0(:,1:nu)*du(:,k-1);%update the model 
   y(:,k)=H0*x(:,k)+Wf*d(k);  
   wk1k(:,k+1)=N2*(y(:,k)-Y(1:ny,k)); 
   ek1k(:,k+1)=R(:,k+1)-Mp*Y(:,k)-wk1k(:,k+1); 
   du(:,k)=Kmpc*ek1k(:,k+1);   
   uc(:,k)=uc(:,k-1)+du(:,k); 
    
%  input-saturation limits 
for j=1:nu 
   if uc(j,k)>1 
       uc(j,k)=1; 
   elseif uc(j,k)<-1 
          uc(j,k)=-1; 
   end 
end 
%  end of input-saturation limits 
   u=uc(:,k); 
   x(:,k+1)=(F0+F1*u(1)+F2*u(2))*x(:,k)+(G1+G2*u(1)+G3*u(2))*u; 
end 
 
%G-S MPC design,using the state-affine model from MIMOmodel 
%u1step1=-1;u1step2=1;u2step1=-1;u2step2=1;weiu=1*[1 1]; 
%  
[A0,A1,A2,B,C,D,Au,Kmpc,ns,H,M,Mp,SU0]=MIMOlmisysrp(nu,ny,n,p,m,weiu,..
.weiy,Wf,u1step1,u1step2,u2step1,u2step2); 
for k=2:tend  
   for i=1:p 
      R((i-1)*ny+1:i*ny,k+1)=r(k+1)*ones(ny,1); 
   end 
   Yg(:,k)=M*Yg(:,k-1)+SU0(:,1:nu)*dug(:,k-1);%update the model 
   yg(:,k)=H0*xg(:,k)+Wf*d(k);  
   wk1kg(:,k+1)=N2*(yg(:,k)-Yg(1:ny,k)); 
   ek1kg(:,k+1)=R(:,k+1)-Mp*Yg(:,k)-wk1kg(:,k+1); 
   dug(:,k)=Kmpc*ek1kg(:,k+1);   
   ucg(:,k)=ucg(:,k-1)+dug(:,k); 
 
 %input-saturation limits 
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 %%  for j=1:nu    
 %  if ucg(j,k)>1 
 %      ucg(j,k)=1; 
 %  elseif ucg(j,k)<-1 
 %      ucg(j,k)=-1; 
 %  end 
%end 
%end of input-saturation limits 
 
   ug=ucg(:,k);ug1=ucg(1,k);ug2=ucg(2,k); 
Weight=[0.5164, 0.5029,0.4980,0.5034]; 
   xg(:,k+1)=(F0+F1*ug1+F2*ug2)*xg(:,k)+(G1+G2*ug1+G3*ug2)*ug; 
    
    if ug1<0 
       u1step1=-1;u1step2=0;weiu=Weight(1)*[1 1];  
    else  
      u1step1=0;u1step2=1;weiu=Weight(2)*[1 1]; 
    end 
    if ug2<0 
       u2step1=-1;u2step2=0;weiu=Weight(3)*[1 1]; 
    else 
       u2step1=0;u2step2=1;weiu=Weight(4)*[1 1]; 
    end   
[A0,A1,A2,B,C,D,Au,Kmpc,ns,H,M,Mp,SU0]=MIMOlmisysrp(nu,ny,n,p,m,weiu,… 
weiy,Wf,u1step1,u1step2,u2step1,u2step2); 
end 
 
%linear 
sume1=y(1,:)*y(1,:)';sume2=y(2,:)*y(2,:)'; 
sumu1=uc(1,:)*uc(1,:)';sumu2=uc(2,:)*uc(2,:)'; 
Lingamma=sqrt((sume1+sume2)/sumv) 
Linsumu=sumu1+sumu2 
%G-S 
gsume1=yg(1,:)*yg(1,:)';gsume2=yg(2,:)*yg(2,:)'; 
gsumu1=ucg(1,:)*ucg(1,:)';gsumu2=ucg(2,:)*ucg(2,:)'; 
GSgamma=sqrt((gsume1+gsume2)/sumv) 
GSsumu=gsumu1+gsumu2 
 
%linear vs gain-scheduled 
figure(2) 
 subplot(2,2,1) 
 plot(ooo,y(1,:),'k',ooo,yg(1,:),'k:') 
 title('output 1.linear(-),G-S(:)') 
 subplot(2,2,2) 
 plot(ooo,y(2,:),'k',ooo,yg(2,:),'k:') 
 title('output 2.linear(-),G-S(:)') 
 subplot(2,2,3) 
 plot(ooo,uc(1,:),'k',ooo,ucg(1,:),'k:') 
 title(' input 1.linear(-),G-S(:)') 
 subplot(2,2,4) 
 plot(ooo,uc(2,:),'k',ooo,ucg(2,:),'k:') 
 title('input 2.linear(-),G-S(:)') 
 
 aaa=100; 
 figure(1) 
 subplot(2,2,1) 
 plot(ooo(1:aaa),y(1,1:aaa),'k',ooo(1:aaa),yg(1,1:aaa),'k:') 
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 title('output 1.linear(-),G-S(:)') 
 subplot(2,2,2) 
 plot(ooo(1:aaa),y(2,1:aaa),'k',ooo(1:aaa),yg(2,1:aaa),'k:') 
 title('output 2.linear(-),G-S(:)') 
 subplot(2,2,3) 
 plot(ooo(1:aaa),uc(1,1:aaa),'k',ooo(1:aaa),ucg(1,1:aaa),'k:') 
 title(' input 1.linear(-),G-S(:)') 
 subplot(2,2,4) 
 plot(ooo(1:aaa),uc(2,1:aaa),'k',ooo(1:aaa),ucg(2,1:aaa),'k:') 
 title('input 2.linear(-),G-S(:)') 
  
 figure(3) 
 subplot(2,1,1) 
 plot(ooo(1:aaa),v(1:aaa),'k') 
  title('disturbance: part') 
   subplot(2,1,2) 
 plot(ooo,v,'k') 
  title('disturbance: whole') 
 
 
%plot gain-scheduled MPC only 
gs=0; 
if gs==1 
figure(4) 
 subplot(2,2,1) 
 plot(ooo,yg(1,:),'k:',ooo,v,'k') 
 title(' output 1, G-S(:),disturbance(:)') 
 subplot(2,2,2) 
 plot(ooo,yg(2,:),'k:',ooo,v,'k') 
 title('output 2, G-S(:),disturbance(:)') 
 subplot(2,2,3) 
 plot(ooo,ucg(1,:),'k:') 
 title(' input 1, G-S(:)') 
 subplot(2,2,4) 
 plot(ooo,ucg(2,:),'k:') 
 title('input 2, G-S(:)') 
end 
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10 Appendix C: Nomenclature 
 

English symbols 

DCBδA ,,),( t  Closed-loop system matrices 

BW  Bandwidth weight, 10 ≤≤ BW  

)(td  The filtered unmeasured disturbance 

)(te  The output error 

iii HGF ,,  State-affine model matrices containing model coefficients 

nhhhh ,,,, 210 K  Impulse response coefficients 

cK  Proportional gain 

cK~  Variable gain to deal with input-saturation 

MPCK  MPC controller function 

m  Control horizon 

n  Settling time 
p  Prediction horizon 

P  Lyapunov matrix 0PP >= T  

)(tR  Set-point trajectory, [ ]Tptrtrtrt )()2()1()( +++= KR . 

S  Parameter box }},{:),,,{(: 21 iiin ννττττ ∈= LS  

u
n

uuu SSSS ,,,, 210 K  Step response coefficients 

uS  Step response matrix 

)(tu  Control action calculated with saturation limits 

)1( −tU  MPC controller state, 

[ ]
unn

T ntttt ×−−−=− 1)()2()1()1( uuuU K  

)(ˆ tu  Control action calculated without saturation limits 

)(tV  Quadratic Lyapunov function )()()( tttV T Pηη=  

W  Parameter box }},{:),,,{(: 21 iiin δδωωωω ∈= LW  
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)/1( tt +W  A vector defined to represent the unmeasured disturbance and 

model/plant mismatch 

cW  , dW   The controller tuning parameters 

fW  Disturbance weight, 10 ≤≤ fW  

tW  Magnitude of the modeling error 

)(tx  The process states 

)(ty  The output 

)(tY  Model update vector. 

)/1( tt +Y  −p step-ahead prediction vector  

 

Greek symbols 
γ  Performance index  

Γ  Weighting matrices y   

iδ , iδ  Lower and upper bounds of uncertain parameter ti,δ , 

],[, iiti δδδ ∈  

ti,δ  Uncertain parameter, i
ti tu )(, =δ  

tδ  Modeling error in the output 

tδ  Uncertain parameter vector n
tnttt R∈= ),,,( ,,2,1 δδδ Lδ  

nn×∈C∆  Uncertainty block 

},:],,,,,[{ 111
mjmj

jifrssr Cdiag ×∈∈= C∆∆∆II∆ δδδ KK  

ti ,δ∆  Uncertain parameter time-variation, tititi ,1,, δδδ −=∆ +  

tδ∆  Rate of variation, n
tnttt R∈∆∆∆=∆ ),,,( ,,2,1 δδδ Lδ  

)(tu∆  First control move, )()1()( tututu ∆+−=  

)/1( tt +ε  Feedback corrected vector of future output deviations from the 

reference trajectory, 

[ ]Ttpttttttt )/()/2()/1()/1( +++=+ εεε Lε   
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)(tη  Closed-loop system state 

Λ  Weighting matrices for u   
 µ  Structured singular value of a matrix 

)(tν  The unfiltered unmeasured disturbance 

ii νν ,  Lower and upper bounds of uncertain parameter 

ti ,δ∆ , [ ]iiti ννδ ∈∆ ,  

)(tξ  The PI controller state 

)(⋅ρ  Spectral radius of a matrix, i.e. the largest absolute value of the 

matrix’s eigenvalues 

)(⋅σ  The largest absolute value of the matrix’s singular values 

Iτ  Reset time 

ψ  Input-saturation factor with [ ]ψψψ ∈ , where ψ  is the lower  

bound, and ψ  is the upper bound. 
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11 Appendix D: Defense Presentation Slides 
 

1

Robust Control Design of 
Gain-scheduled Controllers 

for Nonlinear Processes

Jianying (Meg) Gao
Supervisor: Professor Hector M. Budman

Department of Chemical Engineering

 
 

2

Outline
1. Motivation

2. Model Nonlinear Processes

3. Robust Gain-scheduled Proportional-Integral Controller 
Design (SISO)

4. Robust Gain-scheduled Model Predictive Controller 
Design (SISO)

5. Conclusions and Future Directions
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3

Nonlinear Process: CSTR
Continuous Stirred Tank Reactor: CSTR

Mass Balance:

Nonlinear process: Arrhenius

A & B

A

Cooling TCQf ,,

TV ,,ρ

fff TCQ ,,

cTu =
Input Output

BA orderst

⎯⎯ →⎯1

Heat

VkCCCQ
dt
dCV ff −−= )(

RT
E

eTk
−

=)(
 

 

4

Motivation
Problem: chemical or bio-chemical processes are highly 
nonlinear! High-performance controllers are desired!        
Solutions: linear control v.s. nonlinear control

Conclusion: Nonlinear control, e.g. gain-scheduling!

Linear control assumes:

•Small range operation!

•System model is linearizable!

Nonlinear control improves!

•Handle nonlinearity in large range operation!

•Analysis of discontinuous nonlinearity!

Process nonlinearity
Large range operation

Performance Performance
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5

Gain-Scheduling Control
Successful design approach for nonlinear processes!

However, no guarantee of global stability and 
performance! (Shamma & Athans, 1990)
How to guarantee global stability and performance?

Nonlinear approach: Find a Lyapunov function for a nonlinear 
model!               
Robust control approach: nonlinear model=linear+uncertainty!
Non-traditional gain-scheduling: no local linearization!

01− 1

? ?

Linear 
Model 3

PI 3

Linear 
Model 2

PI 2

Linear 
Model 1

PI 1

Traditional G-S

  

6

Objective and Novelties
Objective: Propose a comprehensive design procedure 
for gain-scheduled controllers, such that Robust 
Stability and Robust Performance are guaranteed!
Novelties:
1. Model nonlinear process as linear+uncertainty!
2. Guarantee RS & RP

RS and RP conditions
Reduce conservatism: Parameter-dependent Lyapunov
functions
Reduce conservatism: Relaxation of input-saturation factor 
Empirical modeling: 

3. Robust gain-scheduling: PI and MPC
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7

Model Nonlinear Process
First-principles model:

Difficult to identify: kinetics, time-variation               
Impractical to use: dimension, structure

Empirical model:
Easy to identify: experimental I/O data  
Choose model structure              
Volterra series model is a classical nonlinear empirical model

I/O 
Data

Least 
squares Volterra 

series model

Sontag’s 
algorithm State-affine

model

Linear 
model NonlinearityRobust 

Control

  
 

8

Volterra Series Model
Advantages

Black box model for nonlinear process from I/O
Linear least squares algorithm

K+−−−

+−−

+−=

∑∑∑

∑∑

∑

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

)()()(

)()(

)()(

1 1 1

1 1

1

ktujtuituh

jtuituh

ituhty

i j k
ijk

i j
ij

i
i

2nd order

3rd order

1st order
linear

Disadvantages
Not suitable for robust 
control approach

The output depends on past inputs raised to different powers 
and in different product combinations, )3()2(,)1( 2 −−− tututu
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9

State-affine Model
Nonlinear state-affine model

Deal with the Nonlinearity as Uncertainty!

)()(
)(...)()(...)()1(

0

21
2

210

tty
tuutuut

xH
GGxFFFx

=
++++++=+

)()(
)(...)()(...)()()()1(

0

2
2

2
2110

tty
tuutuututt

xH
GxFFGxFx

=
++++++=+

2
,2,1, )(),(,)( tututu tt

i
ti === δδδ

Linear 
model

Nonlinearity
Modeling 
error tδ

  
 

10

Uncertainty Quantification 1
Assumption 1: Each uncertain parameter is bounded

Uncertainty can be bounded much easier!
Convexity: Parameter vector is valued in a hyper-
rectangle called the parameter box W

[ ]11,1 −∈tδ[ ]11)( −∈tu
-1

1

t

t,1δ

[ ] ],[)( , iitiuutu δδδ ∈→∈

]},[:),,,{(: 21 iiin δδωωωω ∈= LW

2
,2,1, )(),(,)( tututu tt

i
ti === δδδ
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11

Uncertainty Quantification 2
Time-variation of the uncertain parameters is available!

Assumption 2: Each uncertain parameter-variation is 
bounded

Convexity: Parameter vector is valued in a hyper-
rectangle called the parameter box S 

]},[:),,,{(: 21 iiin ννττττ ∈= LS

[ ]iiti ννδ ∈∆ ,

tititi ,1,, δδδ −=∆ +

  
 

12

Results 1 (modeling)
State-affine model for CSTR

I/O data        Volterra series model       state-affine model 

⎥
⎦

⎤
⎢
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⎡
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−
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⎥
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⎤
⎢
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⎡
=

0
1

1G ⎥
⎦

⎤
⎢
⎣

⎡
=

1
0

2G [ ]0382.01755.00 −=H

0,, HGF ii

)()(
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GGxFFx
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t,1δt,1δ

State-affine model
True process output
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Modeling error     is 
included in the analysis
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13

G-S PI Design
Gain-Scheduled Proportional-Integral Controller

Design parameters:
Traditional gain-scheduling: linearization

dcIc WWK ,,,τ

u

Continuous

u

Traditional

cK

I

c
cc

I

c
ccc

dd

m

i

i
dic

m

i

i
cic

cc

K
KD

K
CBA

tytytyte

tetuWDttuWCtu

teBtAt

ττ

ξ

ξξ

+====

=−=

+++=

+=+

∑∑
==

,,1,1

0)(),()()(

)())(()())(()(ˆ

)()()1(

11
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Closed-loop System: APS
Closed-loop system: affine parameter-dependent system 

Assumption 3:Affine dependence on the uncertain 
parameters

Important: reduces infinite problem to a finite set of LMIs 
(Linear Matrix Inequalities)!

0
tt

tt )0(,
ν(t)

(t)
)D()(
)()(

e(t)
1)(t

ηη
η

δδC
δBδAη

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ +

tnnttt δδδ ,,22,110)( AAAAδA +++= K

Global RS and RP
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15

Robust Stability (RS)
Quadratic Lyapunov stability (QLS)

W0PPAA ∈<− ωωω allforT ,)()(

0PδPAδA <−)()( t
T

t

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥
⎦

⎤
⎢
⎣

⎡ +
ν(t)
(t)

)D()(
)()(

e(t)
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Robust Performance (RP) 
Quadratic Lyapunov performance (QLP)

Disturbance rejection
Performance index:
It can be optimized!       
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Robust Performance (RP)
Quadratic Lyapunov performance (QLP)
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Results 2 (Linear PI RS&RP)
Figure 5.2: RS and RP regions (                     )0== dc WW
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• RS region is bigger than 
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•G-S PI are designed 
around linear PI
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Results 2 (G-S PI RP)
Figure 5.3: Improve over linear PI

Iτ

cK

• G-S PI is designed 
around linear PI

•RP region is efficiently 
enlarged!

•Optimization improves the 
performance by 39% dW
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Results 2 ( PI Simulation)
Table 5.1

0.3204

0.9634

0.2025

0.3787

0.0090.18021.93091.2168G-S PI 

001.15452Linear

PI
dW optimalγcWcK Iτ simulationγ

Conservatism

Conservatism

Improve

•G-S PI better than linear 
PI!

•Reduce conservatism for 
time-varying uncertainty!

Guarantee 
RS and RP

2 4 6 8 10 12 14 16 18 20
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0.5

1

linear
G-S
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RS (parameter-dependent)
Affine quadratic Lyapunov stability (AQLS)
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RP (parameter-dependent)
Affine quadratic Lyapunov performance (AQLP)
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Results 2 (G-S PI RS)
Figure 5.8:
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Input Saturation Factor
Input-saturation (I-S)

Saturation factor: additional uncertain parameter

Problem:

Relaxation of input-saturation factor

1)(ˆ,1)(ˆ =−= tutu

ψ

0=ψ No RP(             )
∞→û ∞=γ

∞<û
0>ψ

[ ]ψψψ ∈Method 5.1
[ ]eete ∈)(

[ ]10∈C

û
1

=ψ 10 ≤≤ψI-S: 1ˆ >u
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Results 2 ( Linear PI    )

Table 5.3

Conservatism is reduced!

0.4702
2.51.3

ψ

optimalγ
cK Iτ
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Unconstrained MPC

State-space MPC 
(Zanovello and Budman,1999)
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Gain-scheduled MPC (SISO)
Gain-scheduled MPC: non-traditional, no linearization

Closed-loop system: APS

Global RS and RP
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Results 3 (G-S MPC SISO)
Optimization Design Results: Table 6.1

],,,[ 21 kλλλ K optimalγ

0.6152[0.9369,1.0456,1.0461,1.0038,1.0821]5

0.6068[0.8303,0.8743,0.8448,1.0287]4

0.4907[0.32797,0.8219,1.1513]3

04926[0.2732,0.9499]2

0.5928[0.7827]1

GSMPCk

Conclusions
close to each other

Best RP: k=3
RP depends on the discretization number k!

1

2

3

4

5

optimalγ
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Results 3 (G-S MPC SISO)
Table 6.2

0.7230

0.6152

0.3295[5,5,5,5,5]GSMPC5-2

0.3108[0.9369,1.0456,1.0464,1.0038,1.0821]GSMPC5-1
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Conclusions 
State-affine model

Linear model

Nonlinearity

Uncertainty
Quantification

Robust control design

G-S PI
SISO

G-S MPC
SISO, MIMO

Continuous 
scheduling

Discretization

Closed-loop Closed-loopAPS

Global 
RS&RP

LMI (Lyapunov function)
LMI (parameter-dependent)
Structured Singular Value

Nonlinear 
Process

Robust G-S
controllers!
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Future Directions: conservatism

Gain-scheduled MPC design
# of discretization and discretization point
Apply the proposed approaches to reduce conservatism

Robust Performance Condition
Integrate               into the performance index
Formulate RP along a priori known disturbance trajectories
Eliminate higher-order terms from conditions based on 
parameter-dependent Lyapunov functions 

Construct less conservative parameter box by vertex selection
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