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Abstract

This thesis studies the application of the wavelet filter bank (WFB) in perceptual
audio coding by providing brief overviews of perceptual coding, psychoacoustics, wavelet
theory, and existing wavelet coding algorithms. Furthermore, it describes the poor fre-
quency localization property of the WFB and explores one filter design method, in partic-
ular, for improving channel separation between the wavelet bands. A wavelet audio coder
has also been developed by the author to test the new filters. Preliminary tests indicate
that the new filters provide some improvement over other wavelet filters when coding
audio signals that are stationary-like and contain only a few harmonic components, and
similar results for other types of audio signals that contain many spectral and temporal
components.

It has been found that the WFB provides a flexible decomposition scheme through the
choice of the tree structure and basis filter, but at the cost of poor localization properties.
This flexibility can be a benefit in the context of audio coding but the poor localization
properties represent a drawback. Determining ways to fully utilize this flexibility, while
minimizing the effects of poor time-frequency localization, is an area that is still very
much open for research.
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Chapter 1

Introduction

Audio coding, an application that falls under the general area of digital waveform coding
[1], has seen significant progress in the past two decades with advances made by the
inter-workings of coding theory, signal processing, and psychoacoustics. Developing tools
for encoding audio signals has been instrumental in providing practical and cost-effective
ways to store and transmit audio data in a variety of applications. For example, audio
coders are widely used on the Internet for transmitting audio files, broadcasting radio, and
sharing music. As applications of audio coding continue to grow with growing demand for
multimedia, developing better and more efficient audio coding algorithms will continue
to be important.

An audio coding algorithm essentially operates on bitrate-intensive audio data and
reduces its required data-rate while providing transparent or near-transparent quality.
A common audio source is the Compact Disc (CD) audio format, which provides a bit
resolution of 16 bits and a sampling rate of 44.1 kHz. This results in a bitrate of 705.6 kilo
bits per second (kbps) for a monaural channel and 1.41 Mbps for a stereo channel, both of
which are far too large for transmission over common networks. But when compressed by,
for example, the MPEG-2 Advanced Audio Coding (AAC) algorithm (which represents
the state-of-the-art in audio coding) near-transparent coding of stereo signals can be
achieved at a bitrate of 128 kbps [2]. This represents a compression ratio of about 11:1
and a much more practical bandwidth requirement.

1



CHAPTER 1. INTRODUCTION 2

1.1 Historical Overview of Audio Coding

Early work on signal compression dates back to the information-theoretic foundation
that was laid out by Shannon [3]. Shannon introduced the idea of entropy as a quantity
expressing the information content of a signal and showed that a source could be coded
with zero error if encoding was done at a bitrate equal to or greater than the entropy of
the signal (and with coding delay that approached infinity). An implication of this was
that sources with infinite alphabets, such as analog audio, required infinite bitrates for
error-free coding.

In practice, however, audio signals are first digitized before any meaningful processing
is done. This digitization of a signal from analog to digital domain, typically done through
the use of an analog-to-digital (A/D) convertor, can actually be thought of as a coding
stage that reduces the entropy of a signal to a finite level while introducing some distortion
or coding noise. The type of coding done at this stage is usually simple and results in
a high bitrate so that complexity and coding noise can be minimized, e.g. pulse code
modulation (PCM). In order to further reduce the bitrate and still maintain high signal
quality, removal of statistical redundancy and perceptual irrelevancy is required [1].

A group of coding algorithms developed early on, commonly referred to as entropy or
lossless coders, were designed to exploit the statistical redundancy of the source signal.
Although the entropy provided a measure of the bitrate required to encode a signal,
practical coders were only able to approach this theoretical limit. Examples of lossless
coding schemes developed for both speech and audio have appeared in [1, 4, 5]. Since
most of the early coding work was done in speech, wideband audio coding finds its root
in speech coding. A number of differences can, however, be noted. Wideband audio
generally has a wider sampling range, wider dynamic range, and higher expectation of
quality by the listener. In terms of coding, the most notable difference could be the use of
a production model in speech coding that leads to highly efficient ways to encode speech
signals [6], whereas nothing similar exists for general audio signals.

The most significant advances in audio coding came with the introduction of percep-
tual coders. Perceptual coders are designed to take advantage of the masking phenomena
that occurs in the ear so that coding noise can be introduced in a way that minimizes or
eliminates perceived distortion. It has been noted that many of the innovations in percep-
tual coding came from people closely familiar with audio applications rather than those
involved in research, and this has caused the technology and literature of audio coding to
evolve somewhat independently [3]. A number of notable examples of perceptual coders
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are mentioned next.
The earliest examples of perceptual coders were developed in the 1970’s by Crochiere

[7], Schroeder [8], and Zelinski and Noll [9]. These algorithms utilized a time to frequency
transformation stage, e.g. Short-time Fourier Transform in [8] and 4-channel non-uniform
filter bank [7], that allowed noise shaping in the frequency domain according to some
well known psychoacoustic principles. They were followed by the work of several other
people in the 1980’s who tried to improve on the choice of the transformation stage,
accuracy of the psychoacoustic model, and use of other coding techniques that further
improved coding efficiency. Most notable of these were the works by Schroeder [10],
Brandenburg [11], Johnston [12], and Mahieux [13]. One in particular, an algorithm
called MUSICAM developed by Dehery et al. [14], was adopted in the application of
digital audio broadcasting (DAB) in Europe and also became part of the well known
MPEG-1 audio coding algorithm. Another algorithm called ASPEC [15] also became
part of the MPEG-1 audio coding algorithm as the basis to Layer III. The MPEG-1 audio
coding algorithm, perhaps the most well known audio coding algorithm, was developed
in the early 1990’s through a collaborative effort led by the International Standardization
Organization (ISO) [16, 17] and was designed to provide three layers of complexity and
performance. Layer I provided the lowest complexity and lowest performance, layer II
provided medium complexity and medium performance, and layer III provided the highest
complexity and highest performance. Layer III, also commonly referred to as “MP3”,
became popular and widely used on the Internet. Subsequent development of the MPEG
audio coding standard appeared as the MPEG-2 and MPEG-4 standard where several
improvements were made over the original algorithm in terms of performance, scalability,
and functionality [18, 19]. Variants of the MPEG algorithm outside the standard also
appeared from other groups, e.g. MPEGplus and MP3 Pro [20]. Other well known audio
coders have appeared more commercially, including the AC-3 family of coders developed
by Dolby [21], the ATRAC coder developed by Sony [22], and the PAC coder developed
by Lucent (formerly AT&T) [23]. More recently, an open-source and patent-free audio
codec called Ogg Vorbis [24, 25] appeared as an alternative to the popular but somewhat
proprietary MP3 algorithm. Many of these algorithms are used in a variety of applications
that include transmission and broadcasting on the Internet, portable audio players and
recorders, and multichannel digital sound system in DVD and movie theatres.
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1.2 Wavelets in Audio Coding

All perceptual coders share a similar structure in that they contain a filter bank, a
psychoacoustic model, and an encoding and quantization stage, as will be described in
chapter 2. The filter bank stage provides a decomposition of the input signal that makes
the application of perceptual criteria possible and also provides some decorrelation of the
input signal. Many types of filter banks and time-to-frequency transforms exist where
each offers a different set of trade-offs in its design. Many have been considered and
explored in the context of audio coding [2, 26] and one in particular called the Wavelet
Transform (WT) has shown to be interesting and potentially very useful.

The wavelet transform, or more generally the wavelet filter bank (WFB), is an iterated
filter bank that provides a flexible way of analyzing a signal at various resolutions and
across various frequency regions. This flexibility is especially appealing in audio coding
since the WFB can provide an analysis of the input signal according to the critical band
(CB) resolution of the inner ear and, more generally, provide a scheme that can adapt
to the time-varying nature of the audio signal [27]. However, the WFB has also been
found to provide poor localization properties that can be a drawback in audio coding.
The application of wavelets in perceptual audio coding, therefore, requires us to explore
ways to maximize its benefits and minimize its drawbacks.

1.3 Thesis Overview

This thesis studies the application of the wavelet filter bank in the context of perceptual
audio coding and explores one approach in minimizing the artifacts associated with the
poor localization properties of the WFB. An overview of the thesis is given as follows.

• Background and overview of:

• Perceptual Audio coding (chapter 2)

• Psychoacoustics (chapter 3)

• Wavelets and Filter Banks (chapter 4)

• Survey of existing wavelet audio coders (chapter 5)

• Study of the poor frequency localization behaviour of the WFB (chapter 5)

• Exploration of one method based on the modified Remez exchange algorithm for
eliminating side-lobes in wavelet subbands (chapter 5)
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• Implementation of a wavelet audio coder with some preliminary results (Appendix
A and B)



Chapter 2

Overview of Perceptual Audio

Coding

Perceptual coders are lossy coders that introduce coding error into the encoded signal
while trying to minimize its perceived effects. In general, coding error is comprised of pre-
filtering, aliasing, and quantization components that are the result of (re)sampling and
(re)quantization [3]. Among the three, quantization error is typically the error that we
seek to minimize. Traditional coders have relied on distortion metrics such as the mean-
squared-error (MSE) in order to minimize coding error according to an objective criteria.
Such minimization typically resulted in an optimized signal-to-noise ratio (SNR) that
corresponded to a flat noise floor in the frequency domain [28], but not necessarily to an
optimized quality in terms of how a listener perceived it. In perceptual coding, however,
coding noise is shaped so that the perceived quality of the audio signal is optimized
according to some subjective criteria.

The perceptual distortion criteria in a perceptual coder are usually computed by a psy-
choacoustic stage that tries to model the behaviour of the human auditory system (HAS).
The perceptual criteria, commonly referred as the just noticeable distortion (JND) or the
masking threshold, provides a threshold below which coding noise remains imperceptible.
The masking threshold is usually represented by a frequency domain curve that covers
the range of human hearing, and more generally by a time-frequency contour if temporal
masking is also taken into account. A perceptual coder essentially tries to control quan-
tization noise so that its shape remains below the masking threshold in the frequency
domain.

This chapter gives a description of a generic perceptual audio coder and covers is-

6
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sues that are pertinent to its design. Section 2.1 describes the overall structure of the
perceptual coder and sections 2.2 to 2.4 describe the three main stages of the encoder.
Section 2.2 describes the filter bank stage, section 2.3 describes the psychoacoustic model,
and section 2.4 describes the quantization and coding stage. Lastly, section 2.5 gives a
summary and some concluding remarks.

2.1 Structure of a Generic Perceptual Audio Coder

Figure 2.1: A generic perceptual coder (a) encoder (b) decoder

Figure 2.1 shows a diagram of the structure of a generic perceptual audio coder.
Figure 2.1(a) shows the structure of the encoder, which has three main stages and a fourth
bitstream formatting stage, and Figure 2.1(b) shows the decoder, which has three stages.
The encoder operates on the input audio signal and outputs the encoded bitstream,
and the decoder operates on the encoded bitstream and reconstructs the original signal.
The three stages in the decoder, as a result, are reverse operations of three stages in
the encoder. Namely, the signal analysis, quantization and encoding, and bitstream
formatting stages of the encoder correspond to the signal synthesis, de-quantization and
decoding, and bitstream extraction stages of the decoder, respectively. The extra stage
in the encoder is the psychoacoustic model, which is not required in the decoder since
the information is implicitly encoded as side-information. This means that perceptual
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coders are asymmetrical in that the encoder has a greater computational requirement than
the decoder, which actually can be desirable in certain applications where one “server”
encodes the signal for many “clients”.

The encoder works as follows. The input signal is typically segmented into contiguous
blocks or frames so that each block can be processed individually. This is done for a
number of reasons. First, processing a signal in terms of smaller segments reduces the re-
quired computational and memory load. Second, segmentation serves as a way to localize
the signal in time so that a frequency domain masking can be applied to a time-localized
signal. And third, the encoded bitstream can be sent as “packets” that can be trans-
mitted, decoded, and played on a real-time basis. Inside the encoder, the input frame
first enters the filter bank and the psychoacoustic stage. The filter bank stage transforms
the signal into a frequency domain representation or into a joint time-frequency repre-
sentation. The psychoacoustic model first applies a high frequency-resolution transform
(sometimes the same one as the filter bank, in which case the output from the filter bank
is used instead) and then applies rules from psychoacoustics to calculate the frequency
domain masking threshold. The output from both the filter bank and psychoacoustic
stage then goes to the quantization and encoding stage where the actual bitrate reduc-
tion occurs. The coding and quantization stage decides how bits are allocated among the
filter bank coefficients and a quantizer is used to (re)quantize the filter bank coefficients.
Sometimes, an additional lossless coding step is applied at this stage to further remove
statistical redundancy. The quantized coefficients, along with some side information, are
finally formatted into the output bitstream. The decoder, on the receiving end, simply
performs the reversing operations.

Although most perceptual coders follow this basic structure, some are difficult to
describe in terms of this simple and clear-cut model. Nevertheless, all perceptual coders
do incorporate the given four stages in some shape or form and this basic framework can
be useful in understand other existing approaches.

2.2 The Filter Bank

The choice of the optimal filter bank has, historically, been a subject of much research
and discussion in the development of perceptual coders [29]. Inherent to every filter bank
is a trade-off between time and frequency resolution. Filter banks that have high fre-
quency resolution, e.g. Discrete Fourier Transform (DFT), have low temporal resolution
and filter banks with high temporal resolution, e.g. 2-channel QMF filter bank, have
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low frequency resolution. Effective coding depends to a great extent on how the time-
frequency resolution of the filter bank is matched to the requirements of the input signal.
It has been found that no single resolution satisfies the requirements of all audio signals
[27, 18]. That is because audio signals vary greatly in their time-frequency characteristics
over time and between signals. Figure 2.2 gives examples of two musical instruments
whose masking thresholds are shown in the time-frequency plane. The two instruments,
the castanets being an atonal percussive instrument and the piccolo being a pitched wind
instrument, are in a sense diametric opposites. Note that the energy of the piccolo is
distributed with fine frequency resolution but remains essentially invariant across time,
while the castanets is localized in time but spread-out in frequency. Clearly, we require
finer frequency resolution for the piccolo and better time resolution for the castanets.

(a) (b)

Figure 2.2: Examples of signal masking thresholds in the time-frequency plane (a) cas-
tanets (b) piccolo (after [30])

This section covers issues involved in the choice and design of the filter bank. In
particular, the importance of providing a resolution similar to the masking resolution
and a resolution that decorrelates the input signal is described. Other important and
desirable filter bank properties are also described and several examples from the literature
are given.

2.2.1 Masking Resolution

The resolution of the human auditory system (HAS) is characterized by the critical band
(CB) scale that corresponds to approximately uniform bands at the lowest frequencies
and approximately 1/3 octave bands at higher frequencies (see chapter 3). This means
that frequency domain masking also occurs according to a resolution similar to the CB
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resolution and that the ear experiences masking according to the CB scale. Although
critical band measurements have been provided as fixed bands that cover the range of
hearing [31], it is important to note that the CB scale is continuous and that the masking
resolution also varies continuously (section 3.4.3). Nevertheless, common psychoacoustic
models found in coders today only provide masking thresholds according to a fixed CB
resolution, where the computed masking threshold level is constant within each masking
band. As such, filter banks need to be designed with a similar fixed CB resolution so that
coding noise can be controlled properly in the frequency domain. The cost associated
with using an inappropriate resolution can be illustrated by the following scenario.

Figure 2.3: Example of a mis-match between subband and masking band resolution

Figure 2.3 shows an example of the frequency resolution provided by the 32-band
uniform filter bank and the Psychoacoustic Model I as used in MPEG-1 Layer 1 algo-
rithm. The filter bank provides a frequency resolution of 1378 Hz for each band (at
44.1 kHz sampling frequency) and the psychoacoustic model provides 24 masking bands
where the resolution ranges from about 100 Hz at the lowest frequencies to about 4000
Hz at the highest frequencies, a variation of approximately 40:1. The discrepancy that
exists between the two resolutions results in over-coding requirements, particularly for the
lower bands where the filter bank provides insufficient resolution with respect to masking
resolution. For example, channel 1 of the filter bank overlaps with 4 different masking
bands (bands 5 to 8, inclusively) in the same frequency region and transparent coding
requires that the noise level remains below the masking threshold for the entire channel,
i.e. the masking level of the lowest masking band is used as the masking level for the
entire channel. Although this satisfies the most stringent masking requirements, this also
results in inefficient coding of the remaining bands that do not require such a high bit
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resolution. For high frequency channels where multiple channels of the filter bank fall
into one masking band, such problems do not exist, but there are redundancies in the
subband representation in that threshold values are repeated across multiple channels.
Ideally, a filter bank with matching resolution to the masking threshold provides the most
efficient resolution for coding in the frequency domain.

Figure 2.4: Example of a “Pre-echo” scenario (a) original castanets signal (b) signal
encoded with MDCT

The duality of this also exists in the time domain. Although some time localization
is provided when the input signal is processed in terms of blocks, additional time-varying
masking characteristics may exist within a given block. Unfortunately, our understanding
of temporal masking is rather limited and few attempts have been made include details
of temporal masking. However, it has been found that better time resolution is still
sometimes required in order to eliminate this so-called pre-echo. Pre-echoes occur when
the onset of a transient signal appears towards the middle or latter half of the input block,
and coding noise spreads across the frame without regard to where the onset appears in
time as shown in Figure 2.4. The listener perceives this as an “echo” that precedes the
actual onset of the signal. Note that coding noise spreads beyond the localized region
where the signal occurs, where for a high frequency resolution filter bank the noise can
spread throughout the entire frame. As a result, the lack of temporal resolution can
sometimes force a coder to over-code in order to reduce the amount of pre-echo.
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2.2.2 Redundancy Extraction

Audio signals, like many other signals, contain redundancies that can be extracted by
the use of an appropriate filter bank. It has been found that redundancy extraction
depends on the characteristics of the signal and the type of filter bank used [27]. Audio
signals, in general, contain regions that are quasi-stationary in nature with a well-defined
harmonic structure and regions that are highly transient and noise-like [32]. For example,
a typical musical excerpt contains regions that are highly tonal or stationary, e.g., pitched
instruments, and regions that contain lots of transients, e.g., percussive instruments.
Audio signals have also been described in terms of the following three categories in [29]:

• Stationary or Pseudo-stationary:
Stationary signals, such as piccolo or harpsichord, have many frequency components
with varying degrees of harmonic structure and typically with envelops that contain
a steady-state region. Filter banks with high frequency resolution are required to
resolve the spectral characteristics and to provide a good decorrelation of the signal.

• Transient or Noise-like:
Transient signals, such as percussive instruments, exhibit high non-stationarity that
appears as time-dependent events that lack fine structure in the frequency domain.
A filter bank with a CB resolution has been found to provide a good way of con-
trolling these temporal details.

• Pitch-periodic:
Pitch-periodic signals, such as speech or pulse trains, have high frequency contents
that are clustered in time around some pitched event. Coding the high frequency
details in a time-dependent manner is required if the temporal masking provided by
the fundamental pitched-signal (corresponding to the pitch period) does not mask
all of the time-domain artifacts. High-resolution filter banks provide inadequate
time localization for such signals and a filter bank based on the CB resolution has
been suggested as an alternate solution.

A common measure of redundancy in a signal representation is the so-called spectral
flatness measure (SFM) that is defined as the ratio between the geometric mean (GM)
and the arithmetic mean (AM) of the energy distribution of a signal given by [33]

SFM =
(
∏N−1

k=0 x2
k)

1
N

1
N

∑N−1
k=0 x2

k

, (2.1)
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where

N = number of spectral lines

xk = energy of kth spectral component.

The values of SFM vary between 0 and 1, where 1 represents a flat spectrum with no
redundancy, i.e. x is white, and values near 0 indicate high redundancy. If the signal
is distributed with equal energy throughout the whole spectrum, then there is nothing
gained in using such a representation as each component requires the same number of bits.
But if the signal is distributed such that the energy is concentrated into fewer components,
then more efficient coding is possible through the redistribution of the bit pool according
to the energy spectrum. Since GM ≤ AM, and only equal if all spectral components are
equal, GM will decrease as more energy gets concentrated into fewer coefficients, and as
a result also decrease the value of SFM. Therefore, a filter bank that provides the best
energy compaction, i.e. best decorrelation, will provide the smallest SFM and ideally the
best coding gain. Coding gain, consequently, is defined as the inverse of the SFM, whose
values range between 1 (no coding gain, with respect to PCM) and ∞ (infinite coding
gain).

Johnston in [27] used the SFM measure based on an N-point FFT to study the char-
acteristics of various audio signals and found that redundancy varied considerably as a
function of both audio signal and frame length. He found that redundancy extraction
generally grew with increasing frame size, which meant that signals without substantial
time-domain artifacts required long filter banks with high frequency resolution in or-
der to provide efficient coding. For signals with more time-dependent structures, longer
filter banks still provided better redundancy extraction but the cost associated with over-
coding, e.g. for eliminating pre-echoes, outweighed the gain in redundancy extraction.
As a result, shorter filter banks were considered more appropriate for such signals. Fur-
thermore, Johnston found that signal models remained constant for long periods of time,
i.e. remained pseudo-stationary, and then changed suddenly, i.e. a transient occurred.
This meant that a filter bank with high frequency resolution was required for many parts
of the signal, but also a filter bank that could switch adaptively to provide a better time
resolution when it was required.

2.2.3 Summary of Design Issues

A summary of design issues for the filter bank is given as follows.
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1) Time-Frequency Resolution
As described above in sections 2.2.1 and 2.2.2, filter banks need to consider the time-
frequency resolution of the HAS, the resolution that provides the greatest amount of
coding gain, and the resolution that provides adequate control of temporal artifacts.
In general, no single fixed filter bank can accomplish all the above requirements and
an adaptive scheme is therefore required.

2) Channel Separation
Channel separation, or frequency localization, refers to how well one channel of the
filter bank is separated from the other channels. Inter-band leakages always occur in
practical filter banks due to the non-ideal nature of the filtering operation. Channel
separation is important in the context of perceptual coding since adjacent channels
are assumed to be independent and non-overlapping when perceptual results are
applied. This is particularly important for tonal components of the signal, which
require high frequency resolution but also good frequency separation. The amount
of channel separation, or lack thereof, has been found to have a direct impact on
the coding performance in a perceptual coder [33, 18].

3) Boundary Handling and Blocking Artifacts
The segmentation or windowing of the input signal into smaller blocks gives rise to
blocking artifacts at the frame boundaries. This can be perceived as distortions in
the reconstructed signal, particularly for portions of the signal that are stationary.
To avoid blocking artifacts, coding noise must be made to be somewhat correlated
at the frame boundaries. Minimizing boundary distortions is typically done by
applying an overlap-add window [34], or by using a lapped transform [33].

4) Perfect Reconstruction
Perfect reconstruction (PR) requires that the reconstructed signal be identical to
the input signal (with a possible delay) in the absence of any coding error. Although
the PR condition is not a strict requirement, as there are coders that use a non-PR
filter bank, e.g. [18], it generally simplifies the design of a coding system.

5) Maximal Decimation
Maximally decimated, or critically sampled, filter banks provide the same number
of transform-domain coefficients as there are time-domain coefficients in the original
signal, i.e. the number of input samples per second is equal to the number of fre-
quency domain samples per second. Since the ultimate goal is to decrease the data
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rate while maintaining high audio quality, critically sampled systems are desirable.

6) Computational Complexity
Although it is becoming less of as an issue, computational complexity and coding
delay can still be important requirements for certain applications [33]. The analysis
and synthesis filter banks should provide efficient algorithms and fast implementa-
tions, e.g. FFT or DCT [32].

2.2.4 Filter Bank Examples

Most time-to-frequency transforms and filter banks used in audio coding are now viewed
under the framework of multirate signal processing [35, 36, 37]. As such, we have a way
of comparing and designing various types of filter banks where each provide a different
set of benefits and drawbacks. In general, we can not design a filter bank that provides
all the desirable properties, e.g. PR, critical sampling, good time-frequency localization,
flexible time-frequency resolution, “transparent” boundary handling, and low complexity,
that were described above. A trade-off always exists between certain parameters in any
given filter bank.

Examples of filter banks commonly found in the audio coding literature are given
next. More in depth studies and descriptions can be found in [35, 2, 38, 33, 39].

1) Fourier Transform Based Filter Banks
Some of the earliest high-quality audio coders were based on the discrete Fourier
Transform (DFT) and discrete Cosine Transform (DCT) [38]. First introduced
for speech coding, Fourier based transforms provided a relatively simple way of
obtaining a frequency domain representation and decorrelating the input signal. To
reduce blocking artifacts, a window and overlap-add technique was commonly used.
In general, high-frequency transforms provide low computational complexity, but
lack the temporal resolution that is sometimes required.

2) Quadrature Mirror Filter (QMF) Based Filter Banks
QMF filter banks, first introduced by Croisier, Estaban, and Galand in 1976 [40],
have also been proposed in a number of early speech and audio coders [38]. A QMF
filter bank provides a two-way split that could be cascaded together and used to
divide the frequency spectrum in a number of different ways. The original QMF
filters were near-PR solutions with alias cancellation, e.g. Johnston QMF filters
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[40], but PR solutions were later found as well, e.g. conjugate quadrature filters
(CQF) and generalized-QMF [40].

Another more popular variant was the pseudo-QMF (PQMF) filter bank, or also
called the polyphase filter bank, that was designed to provide near-PR and a uniform
M-channel decomposition [41]. The PQMF was a cosine-modulated filter bank that
required the design of only one prototype filter and which could be implemented
efficiently through the use of a polyphase structure. As an example, the MPEG-1
audio coder uses a PQMF filter bank that is based on a 511 tap prototype filter
and 32 uniform subbands [38].

3) Modified Discrete Cosine Transform (MDCT)
The MDCT is one of the most popular filter banks that combines a list of features
that make it particularly attractive for audio coding. Also known as modulated
lapped transform (MLT) and time domain aliasing cancellation (TDAC) transform
[2], the MDCT is a cosine-modulated filter bank that provides PR, high-frequency
resolution, high coding gain, elimination of blocking artifacts through its lapped
structure, critical sampling, simple design procedure with only one prototype filter,
and efficient implementation through an FFT-like algorithm [32]. The MDCT is
used in a number of perceptual coders, including the MPEG-1 Layer III, MPEG
AAC, AC-3, ATRAC, and PAC [33].

4) Wavelet Filter Bank
The wavelet filter bank is closely related to two-channel QMF filter banks and
can be used to provide a flexible division of the frequency spectrum. An in-depth
description and examination the WFB is given in chapters 4 and 5.

5) Hybrid Filter Banks
A Hybrid filter bank is created by cascading two or more filter banks together so
that a more flexible time-frequency resolution can be obtained. Hybrid filter banks
are commonly used for providing non-uniform divisions of the frequency spectrum
where different regions require different resolutions. Examples of hybrid filter banks
include the MPEG-1 Layer III algorithm that uses a PQMF filter bank followed by
an MDCT, and the ATRAC algorithm that uses two-channel QMF filter banks
followed by also an MDCT [2]. In addition to the design flexibility, hybrid filter
banks can also be used in adaptive schemes, as described next. The cost associated
with this increased flexibility is usually higher complexity and longer coding delays.
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6) Adaptive Filter Banks
Adaptive filter banks are time-varying filter banks that make switching decisions
based on the characteristics of the input signal. As discussed earlier, a filter bank
needs to accommodate to the requirements of the signal. Adaptive schemes can
generally be implemented in one of three ways. The first is to use a hybrid filter
bank that can adaptively decide how the signal gets analyzed by the subsequent
stages of the filter bank, e.g. MPEG-1 Layer III and ATRAC. The second approach
is to use a tree-structured decomposition scheme, e.g. wavelet filter bank, that can
make switching decisions using different tree structures. A third approach involves
using two or more entirely different filter banks and making switching decisions
between them, e.g. the EPAC coder makes a switching decision between an MDCT
and a wavelet filter bank. Adaptive filter banks generally provide the greatest
amount of flexibility as well as complexity, and are usually employed in “high-end”
audio coders.

2.2.5 Summary

The design requirements for a filter bank can be summarized as:

• Flexible time-frequency resolution

• Good time-frequency localization

• Minimized blocking artifacts

• Perfect or near-perfect reconstruction

• Maximal or near-maximal decimation

• Low computational complexity and coding delay

A flexible time-frequency resolution is a particularly important property that needs to
be driven by the requirements of the input signal and the masking characteristics of the
HAS. It has been found that filter banks with approximate CB resolution provided good
control of time-dependent artifacts, but lacked the coding gain required for stationary or
pseudo-stationary signals. On the other hand, high-frequency resolution filter banks have
shown to provide high coding gain for pseudo-stationary signals, but lacked the time-
resolution required to control time-domain artifacts and pre-echoes. As a result, adaptive
filter banks are generally employed to provide the flexibility required by the time-varying
input audio.
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2.3 The Psychoacoustic Model

The psychoacoustic model is arguably the most critical and the most difficult component
to design in a perceptual coder. The output of the psychoacoustic model directly controls
the quantization and coding stage, and indirectly controls the filter bank stage. Moreover,
its accuracy directly determines the performance of the overall algorithm. An in-depth
overview of the psychoacoustic model is given in chapter 3.

2.4 The Quantization and Coding Stage

The goal of the quantization and coding stage is to essentially achieve a data represen-
tation that is as compact as possible while introducing as little perceptual distortion as
possible. The quantization and coding stage, in many ways, is the “intelligent” part of
the coding algorithm that determines the overall coding strategy.

The quantization and coding stage is usually designed in three substages [38, 42] as
described next. First, a control structure determines how the bit pool gets distributed
among the spectral coefficients using the masking results provided by the psychoacoustic
model. Second, a quantization (or re-quantization) step maps the filter bank coefficients
to a representation of lower resolution according to the bit distribution determined by the
control structure. And third, the quantized data is sometimes encoded with an additional
lossless coding step that further tries to remove statistical redundancy. In general, these
three stages work together in an interactive way and can be designed to provide a simple
scheme like block companding, or a more complex scheme like analysis-by-synthesis with
noiseless coding. The three stages are described in more detail next.

2.4.1 The Control Structure

In order to determine the permissible coding noise level in each band, three terminologies
are commonly used according to Figure 2.5. The three measures, namely, SNR, SMR,
and NMR, are used to relate the masking threshold to the quantization noise level for a
given spectral component [43]. The three measures are described as follows:

• The Signal-to-Noise-Ratio (SNR) is defined as the ratio between the signal energy
and the quantization noise energy that results from, for example, an m-bit uni-
form quantizer. This is an objective measure of the noise level where a higher bit
resolution results in a higher local SNR.
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• The Signal-to-Mask-Ratio (SMR) is defined as the ratio between the signal energy
level and the masking threshold level as computed by the psychoacoustic model.
This is the parameter that indicates how much noise is permissible while still main-
taining transparency. Note that if the signal level is below the masking level, i.e.
SMR < 0 dB, then the signal does not require coding, i.e. zero bit resolution. On
a related note, the idea of SMR has been extended to a concept called Perceptual
Entropy (PE), which like entropy, gives a measure of the information content of
a signal, but unlike entropy, quantifies only the perceptually relevant information
[12].

• Noise-to-Mask-Ratio (NMR) is defined as the ratio between the quantization noise
level and the masking threshold level. The NMR is the measure that indicates
the perceptual quality of a signal component for a given bit resolution. In a simple
scheme, the NMR can be calculated by NMR = SMR - SNR. For transparent coding,
we need NMR ≤ 0 dB.

Figure 2.5: Relationship between SNR, SMR, and NMR (after [43])

The hypothetical scenario that is shown in Figure 2.5 represents the masking that
occurs as a result of a single tonal masker. The tonal signal is centered at the given critical
band and the masking threshold is approximated by the spreading function (section 3.3.2).
If we are using an m-bit uniform scalar quantizer, then noise might be introduced at level
m. Now, for coding noise to remain imperceptible, it needs to lie below the minimum
masking threshold within the entire band, i.e. NMR ≤ 0 dB for entire band. If we apply
this simple scenario to the encoding stage, then we need to quantize each coder band
or channel so that quantization noise remains below the lowest masking level within the
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given band. Determining the actual bit resolution in each coder band typically involves
one of two approaches. In the first approach, called constant quality coding, a constant
level of perceptual quality is maintained while the bitrate requirement for each frame is
made to vary. In the second approach, called constant rate coding, the bitrate for each
frame is maintained at a constant level while the perceptual quality is made to vary. The
two approaches are described in more detail next.

2.4.1.1 Constant Quality Coding

Maintaining constant quality is equivalent to shaping the coding distortion so that coding
noise remains parallel to the masking threshold across the whole frequency spectrum as
shown in Figure 2.6. This is also equivalent to keeping the values of NMR constant
across all the bands, where the constant value of NMR determines the level of perceptual
quality, e.g. transparency when NMR ≤ 0 dB and decreasing quality for increasing NMR
when NMR > 0 dB. In practice, however, noise levels are adjusted to give approximately
constant NMR’s as the quantizer resolution is only able vary in discrete steps.

The variability in bitrate associated with constant quality coding essentially arises
from the variability of the input signal and the masking threshold that results from it.
Due to this variability, constant quality coders are less popular and only used when the
application allows variable bitrates, e.g. Digital Video Disks (DVDs) and some audio
applications on the Internet [42].

Figure 2.6: Coding at constant quality

2.4.1.2 Constant Rate Coding

In constant rate coding, the overall bitrate is kept constant by keeping the bitrate of each
frame constant, even if this results in variable coding quality from frame to frame. In
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terms of the distortion curve in Figure 2.6, constant rate coding also tries to shape the
coding noise so that it remains parallel to the masking threshold, but the value of NMR is
made to vary from frame to frame depending on the Perceptual Entropy of a given frame,
e.g. NMR < 0 dB if PE is less than the given bitrate, NMR > 0 dB if PE is greater than
the given bitrate, and NMR = 0 dB if the two are equal. Most audio coders used toady
are based on constant rate coding since the fixed bitrate constraint is required in many
applications.

2.4.2 Quantization

The Quantization stage is where the actual data reduction occurs during the coding
process. In the context of perceptual coding, providing a flexible control of the quantizer
resolution is an important criteria for the quantizer since the coding noise needs to be
shaped carefully according to the calculated masking threshold. Usually, transparent
coding of a signal component will require a local signal-to-noise-ratio from anywhere
between 0 dB (no coding required) to 30 dB, and even higher levels for critical signal
components [42]. Two types of quantizers are commonly used as described next.

2.4.2.1 Scalar Quantizer

Scalar quantizers, the simpler of the two, perform quantization on scalar or individual
data [44]. They are also the more popular choice in perceptual coding due to their low
computational complexity and scalability over a wide range of resolutions. Among scalar
quantizers, uniform quantizers are the simplest type. They are designed with uniform
step sizes and assume a basic uniform distribution of the input signal. Some perceptual
coders that employ a uniform scalar quantizer include MPEG-1 Layer I/II, ATRAC, and
AC-3. More sophisticated in structure are the non-uniform scalar quantizers, which are
designed with a variable step size that can be adapted to the statistics of the signal or used
to exploit additional properties of masking [1]. For example, the non-uniform quantizer
used in MPEG-1 Layer III and MPEG-2 AAC audio coder is designed with a power law,
e.g. x3/4, that distributes coding noise more towards regions of higher magnitude where
masking occurs more [42].

Perceptual coders that employ scalar quantizers are usually implemented in one of
two ways. In the first, traditionally known as block companding or block floating point,
all coefficients within a coder band are first normalized by a common multiplier, also
called the scalefactor, so that the range of the coefficients can be matched to the input
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of the quantizer, e.g. |x| ≤ 1. The normalized input coefficients are then quantized with
a given bit resolution and the resulting samples and side information, which include the
scalefactor and the bit resolution, are encoded into the output bitstream. In the second
method, all the coefficients within a coder band are first scaled by a “scalefactor” value
(different from the scalefactor above) that is determined by the bit resolution assigned
to the given band. The scaled coefficients are then quantized directly using a fixed non-
uniform quantizer. The scalefactors, in this case, control the quantizer resolution, i.e.
SNR, since larger input values, which result from larger scalefactors, become quantized
with finer resolution relative to the same input coefficient that are scaled by smaller
scalefactors. Note that the meanings of “scalefactor” are different in the two cases, where
in the first case it gives a good indication of the amplitudes involved, while in the second
case it does not give any such indication as the actual amplitudes also depend on the size
of inputs to the quantizer.

2.4.2.2 Vector Quantizer

Vector quantization (VQ), the more general of the two, performs quantization on a vec-
tor, or group, of data rather than just on a single value. This provides a framework
for performing joint coding where greater amounts of statistical redundancies can be ex-
tracted from the input signal. VQ-based perceptual coders, as a result, are generally
more complex as they try to identify greater amounts of statistical redundancies as well
as providing a way of applying perceptual criteria. This has, actually, been found to
be rather difficult since adapting perceptual results to a simple table-based VQ scheme,
for example, required fairly large VQ tables and a computationally heavy search process
in order to accommodate the high variability in coding resolution. It has been found
that VQ-based schemes are most useful in the context of low bitrate audio coding that
provides coding qualities in the low to intermediate range, e.g. the TwinVQ algorithm in
the MPEG-4 Audio Coding Standard [42].

2.4.3 Noiseless Coding

Noiseless coding is typically an additional step included as part of the coding stage that
tries to obtain a further reduction in bitrate. Some well known noiseless coding techniques
used in audio coding include the grouping method used in MPEG-1 Layer II coder and
Huffman coding used in MPEG-1 Layer III and AAC audio coder [42]. Others that have
been suggested for audio coding include run-length coding, bit-sliced arithmetic coding
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(BSAC), and the LZW algorithm [2].

2.4.4 Discussion

In addition to the various techniques described above, the quantization and coding stage
can be designed to incorporate any number of other coding techniques and tools that
have appeared in various audio coders [42, 38]. In general, the overall coding strategy
of a perceptual coder involves a great deal of flexibility in terms of its complexity and
performance, and freedom in terms of its actual implementation. Furthermore, it has
been noted in [42] that this is where specific implementation know-hows and “secrets
of audio coding” contribute significantly to the overall performance. For example, the
MPEG-1 Layer III audio coding standard provides enough guidelines for guaranteeing
inter-operability between different implementations, but enough freedom so that differ-
ent implementations can add their own improvements. This is the reason why different
implementations of the MP3 algorithm, e.g. standard ISO distribution, LAME, and
Fraunhofer, provide different coding performances.

2.5 Summary and Discussion

The overview in this chapter shows that there is a great deal of choice and flexibility in
designing and implementing a perceptual audio coder, both in terms of the overall coding
strategy and in terms of the individual stages. The type of filter bank, the accuracy of
the psychoacoustic model, the coding strategy used in the quantization and coding stage,
and other coding techniques that are additionally employed all play significant roles in
determining the overall performance and complexity of the algorithm.

We can generally describe the design goals of audio coding in terms of the following
three requirements:

• High efficiency (or low bitrate).

• High signal quality (or low distortion).

• Low complexity in terms of computation, memory, and delay.

In general, not all three goals can be satisfied simultaneously as there always exist
trade-offs among the three. The choice of trade-offs in a particular audio coder needs to
be dictated by the given application. For example, the application of digital surround
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sound system in movie theatres and DVD requires the highest quality, while efficiency
and complexity are less of an issue. The application of radio broadcast on the Internet,
on the other hand, requires low bitrates and low delay (at least for now), in which case
signal quality suffers. Many audio coders available today, e.g. MPEG-1 Layers I, II,
III, and MPEG-2 AAC, are already designed to provide flexible trade-offs amng these
requirements by offering different algorithms that provide different trade-offs.

The field of perceptual audio coding is still considered to be a young and active
field where much of what we know is somewhere between art and science, and where
fundamental trade-offs between efficiency, quality, and complexity can still be improved
[38]. Some possible future work that has been suggested include the following.

• A number of relatively new filter bank techniques that are currently being explored
include wavelet based filter banks and low delay filter banks [45, 2]. As noted in [30],
the main requirement for filter banks in delivering high performance is flexibility in
terms of its time-frequency resolution and efficiency in terms of how well they can
adapt to the requirements of the input signal.

• Limitations of the current psychoacoustic models are well known and well docu-
mented. There is still much work to be done in developing more accurate and
generalized models that can provide masking information using both spectral and
temporal masking, as well as one that is not based on a fixed discrete CB scale.



Chapter 3

Overview of Psychoacoustics

The study of psychoacoustics and the human auditory system (HAS) are of significant
importance in the design of a perceptual coder. This is due to the fact that the final
quality of the audio is judged at the point where a listener hears the sound and perception
is made. Therefore, understanding how sound is processed in the ear and eventually how
it is perceived by a listener is required in order to assess which parts of the audio can
be discarded. Clearly, the aim in the design of a perceptual model would be to imitate
the biological and psychological processes that occur in the HAS and predict how coding
distortion can be introduced without introducing perceptual degradation.

Most existing models of human perception are based on the experimental work of
Zwicker and Feldtkeller [46] that started in the 1950’s, as well as earlier works by Fletcher
[47] and Helmholtz [48]. The field of psychoacoustics has since made significant progress
in characterizing the process of hearing and how the ear analyzes audio signals in the
time-frequency domain [49]. Perceptual audio coders achieve high compression rates by
identifying perceptually irrelevant information in the signal by applying psychoacoustic
principles such as the absolute threshold of hearing, the critical band resolution, and the
spread of masking.

A description of the HAS as summarized from [48, 2, 50, 49, 51] will be given in
this chapter as well as some important results from the research that has led to current
psychoacoustic models. Section 3.1 covers some basic definitions, section 3.2 looks at the
physiological structure of the human ear, section 3.3 covers some important results from
psychophysical experiments, section 3.4 discusses the design of a psychoacoustic model,
and finally section 3.5 ends with a summary.

25
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3.1 Some Definitions

3.1.1 Sound Pressure Level (SPL)

The SPL is a measure of sound intensity defined as

LSPL = 10 log10(I/I0) (dB), (3.1)

where

I = Intensity of sound [W/m2]

I0 = Standard reference level intensity = 10−12W/m2.

The SPL can also be defined in terms of pressure levels as

LSPL = 20 log10(p/p0) (dB), (3.2)

where

p = pressure of sound [N/m2orPa]

p0 = Standard reference level = 2 × 10−5N/m2.

The dynamic range of the human auditory system spans from the limit of audibility at
around 0 dB, to the threshold of pain at around 120 dB. The SPL reference level is
calibrated so that the frequency dependent absolute threshold (described next) measures
in the vicinity of 0 dB SPL. In addition to sound intensity, other more subjective measures
of loudness have also been suggested such as the phone and the sone [50].

3.1.2 Absolute Threshold and Masking Threshold

The absolute threshold of hearing represents the minimum intensity required for a person
to detect a pure tone in the absence of any other sound. The absolute threshold can be
described by a frequency domain curve that is given by

Tq(f) = 3.64(f/1000)−0.8 − 6.5 exp−0.6(f/1000−3.3)2 +10−3(f/1000)4 (dB SPL) (3.3)

and also shown in Figure 3.1 [2].
Masking is a process that occurs in the ear where one sound is rendered inaudible
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Figure 3.1: Absolute threshold of hearing

or somewhat less audible by the presence of another sound. The masking threshold or
the just noticeable difference (JDN) is the threshold of detection of a given signal, i.e.
the probe or maskee), in the presence of another signal, i.e. the masker. The masking
threshold can be thought of as a modification of the absolute threshold where the presence
of the masker raises the threshold of detection (see Fig. 3.2). Equivalently, the absolute
threshold can be thought of as a special case of the masking threshold where there is
no masker present. Naturally, this leads to the idea that masking thresholds are signal
dependent and that their shapes are determined by the presence (or absence) of various
spectral components. In fact, this is the curve that we wish to compute so that coding
noise can be shaped accordingly.

3.2 The Human Auditory System

A closer look at the human ear reveals that there are three separate stages, namely, the
outer ear, the middle ear, and the inner ear (see Figure 3.2). The outer ear is the visible
part through which sound enters the HAS, the middle ear is the part that lies between
the outer and the inner ear, and the inner ear is where the vibrational patterns of sound
get converted into neural signals. All three stages of the ear play an important role of
in the process of acoustic transduction and deficiency in any one can alter, debilitate, or
even cause loss of hearing.

The transmission of sound in the ear can be described as follows. Sound waves trav-



CHAPTER 3. OVERVIEW OF PSYCHOACOUSTICS 28

Figure 3.2: The human ear: outer, middle, and inner ear (after [48])

eling in the air enter the ear through the ear canal, some of which are “captured” by the
pinna, and reach the middle ear at the eardrum. The eardrum then vibrates mechani-
cally and sends the mechanical vibrations through the middle ear, which is comprised of
three tiny bones called the ossicles that lie inside a small air-filled chamber. The mid-
dle ear essentially acts as an (acoustic) impedance matching device that transmits the
sound from the outer ear to the inner ear. The vibration patterns reach the inner ear
at the oval window, which is the opening to the cochlea. The cochlea is a spiral-shaped
structure that is filled with fluid and which represents the main structure of the inner
ear. The cochlea is also the most important part of the ear from the point of view of
auditory perception as that is where masking occurs. As the oval window gets excited by
the incoming vibrations, the cochlear structure induces traveling waves along the length
of the basilar membrane (BM), which stretches from the oval window to the tip of the
cochlear structure. Finally, the pattern of vibrations along the BM causes various au-
ditory nerve fibres found along its length to be triggered and to generate neural signals
that are subsequently sent to higher centres of the auditory system.

In general, models of human hearing are divided into three stages, namely, the anal-
ysis, the transduction, and the reduction stage [52]. The analysis stage covers outer
ear, the middle ear, and part of the inner ear, from the point where sound enters the
ear up to the point where it reaches the cochlea and sets the BM into motion. The
transduction stage models the transformation of the mechanical vibrations along the BM
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into frequency-dependent electrical activity inside the nerve fibres. Finally, the reduction
stage models the subsequent processing that occurs inside the cochlea as well as in the
higher centres of the auditory system. The transduction stage, in particular, is described
further next.

3.2.1 The Inner Ear

Figure 3.3: Cross section of the inner cochlea (after [51])

The cochlea is a rigid bony structure that is shaped like a snail shell and filled with
incompressible fluid. The entrance to the cochlea at the oval window is termed the base,
while the farthest point in the spiral structure is termed the apex. It is divided along its
length by two membranes called the Reissner’s membrane and the basilar member (BM)
(see Figure lFigInnEar). The two larger chambers separated by the membranes are called
the scala vestibuli and the scala tympani. The oval window at the base is connected to
the scala vestibuli and the other window that exits back into the cochlea, called the round
window, is connected to the scala tympani. The two chambers are connected at the apex
of the cochlea, which allows the sound to travel through the scala vestibuli and return
through the scala tympani back to the round window. Since the sound gets reflected
at the apex, it returns back 180 degrees out of phase only to be released back into the
middle ear. Inward movement of the oval window, therefore, results in a corresponding
(and rather convenient) outward movement of the round window.

Inside the cochlea, a frequency-to-place transformation occurs along the BM where
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Figure 3.4: Traveling waves on the basilar membrane (a) The instantaneous displacement
of the basilar membrane at two successive instances in time. The pattern moves left
to right, building up gradually up until the characteristic frequency and then decaying
rapidly. The dotted line represents the envelop. (b) Envelops for a number of low-
frequency sinusoids. (after [48])



CHAPTER 3. OVERVIEW OF PSYCHOACOUSTICS 31

various regions of the BM are excited by the different frequency components of the input
signal. As sound waves enter the cochlea, a pressure difference is applied across the BM
and a pattern of motion develops along the BM in the form of traveling waves. These
traveling waves move from the base towards the apex of the cochlea with amplitudes that
increase gradually up to a certain point and then decrease abruptly. An example of a
simple sinusoidal stimulation is given in Figure 3.4. The location where a traveling wave
reaches its peak amplitude is strongly correlated to the physical properties of the BM,
where high frequency signals peak near the base where the BM is narrow and stiff and
low frequency signals peak near the apex where the BM is wider and suppler (Figure
3.5). The frequency of a signal that reaches peak amplitude at a given point on the BM
is known as the characteristic frequency (CF). The BM, as a result, can be thought of
as a crude Fourier analyzer or a parallel bank of bandpass filters that breaks a complex
signal into its frequency components.

Figure 3.5: Physical property of basilar membrane

3.2.2 Neural Responses in the Auditory Nerve

The next step in the transduction process involves the conversion of vibrational patterns
on the BM into neural patterns in the auditory fibres. Specifically, information about
frequency, magnitude, and time is converted into multiple parallel streams of data by
some 2500 inner hair cells and 30 000 neurons that are connected along the length of the
BM. These hair cells are found within a small structure called the organ of Corti, which
makes contact with the BM and vibrates as the BM vibrates. The hair cells can be divided
into two groups, namely, the inner hair cells and the outer hair cells. A great deal of the
transduction process is still poorly understood, but the general understanding seems to
be that the inner and the outer hair cells have different roles. The majority of afferent
neurons, which carry information from the cochlea to higher levels of the auditory system,
have been found to be connected to the inner hair cells, and most efferent nerve fibres,
which carry information from higher centres of the auditory system to the cochlea, are
believed to be connected to the outer hair cells. As a result, most of neural information
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generated by an input signal is carried by the inner hair cells, while the outer hair cells
are believed to be involved in some other processes that actively influence hearing, e.g.
in providing sharper tuning and better frequency selectivity. Unfortunately, very little is
understood about processing of the neural signals beyond the cochlea at higher centres
of the auditory system [48].

3.3 Summary of Relevant Psychophysical Results

Much of our knowledge about the auditory system and the facts that allow us to de-
velop models for audio coding come from psychophysical experiments, rather than our
physiological understanding of the HAS [53]. Psychophysical measurements are generally
obtained through extensive listening tests that are conducted with people who are repre-
sentative of the general population. A number of important and well-known results are
described next.

3.3.1 Critical Bands and Auditory Filters

As already mentioned, the ear performs a kind-of spectral analysis on the incoming signal
where the signal is broken down into the various frequency components. As a result, the
frequency selectivity of the peripheral auditory system has been modeled as a bank of
bandpass filters where the filters are referred to as auditory filters. Auditory filters are
found all along the BM and possess a frequency resolution that is characterized by the
critical band (CB) scale. The CB scale is approximately 100 Hz for frequencies below
500 Hz and 20% of the center frequency for frequencies above 500 Hz. The physiological
basis to the CB resolution of the auditory filters is not entirely certain, but it seems
that it is largely the result of a frequency-to-place transformation that occurs along the
BM. Results from psychophysical measurements indicate that the CB corresponds to a
constant distance along the BM, where one critical band equals to 0.9 mm according to
Moore, 1.5 mm according to Schroeder, and 1.3 mm according to Zwicker and Scharf [32].
Three well-known masking experiments used to characterize auditory filters and the CB
resolution are described next.

3.3.1.1 Fletcher’s Band-Widening Experiment

In Fletcher’s band-widening experiment [47], the detection threshold of a sinusoidal signal
(the probe) was measured in the presence of a bandpass noise (the masker) as shown
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in Figure 3.6(a). This was done by centering the bandpass noise with the probe and
adjusting the level of the probe until it became just noticeable, i.e. the JND level was
found. This was repeated while the masker bandwidth was varied, where an increase in
bandwidth resulted in an increase in the total energy of the masker. The results, when
plotted, gave a measure of the JND level as a function of masker bandwidth as shown
in Figure 3.6(b) for a 2000 Hz probe signal. It would be logical to assume that larger
bandwidths implied higher masking power, and therefore higher JND levels. This was
shown to be the case, but only up to a certain point, after which the JND level remained
constant regardless of masker bandwidth. To explain this, Fletcher suggested that the
peripheral auditory system acted like a bank of bandpass filters where, in detecting a
signal, the listener made us of the (auditory) filter that was the closest and, furthermore,
that only noise passing through this filter contributed to masking. The leveling off of the
JND level in Figure 3.6(b) could therefore be explained by the fact that an increase in
noise bandwidth, although it increased the total power, did not increase the noise power
within the given filter band. This “critical” bandwidth value, at which point an increase
in noise bandwidth no longer made a difference, was measured for various frequencies and
the resulting curve provided the CB scale.

Figure 3.6: Fletcher’s band-widening experiment (a) masker and noise (b) result for a
2000 Hz probe

Fletcher’s experiment also led to the well-known model of masking known as the power
spectrum model (PSM). The PSM is a set of assumptions about the process of masking
that can be summarized as follows [54]:

1) The peripheral auditory system contains an array of linear and overlapping bandpass
filters.
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2) When detecting a signal in a noise background, the listener is assumed to make use
of just one filter with a center frequency close to that of the signal.

3) Only the noise components that pass through this specific filter have any effect in
masking the signal.

4) The masking threshold of the signal is determined by the amount of noise passing
through the auditory filter. Specifically, threshold is assumed to correspond to a
certain constant signal-to-noise ratio, K, at the output of the filter, i.e. the ratio
of the JND level of the signal to the noise passing through the filter is assumed
to be constant. Furthermore, the stimuli are assumed to be represented by their
long-term power spectra, i.e. the relative phases of the signal components and the
short-term fluctuations in the masker are ignored.

In reality, none of the assumptions in the power spectrum model are strictly correct.
For example, the auditory filters are not in reality linear, the ear does not always use just
one filter in detecting a signal, the noise that falls outside the passband can sometimes
contribute to the detection of the signal, and time-dependent fluctuations in the masker
can not always be ignored [54]. Nevertheless, the concept of the auditory filter bank is
useful and the power spectrum model allows a convenient way of calculating the masking
threshold in the frequency domain, e.g. using the power spectral density function in the
Fourier domain.

3.3.1.2 Zwicker’s Notched-Noise Experiment

Figure 3.7: Zwicker’s notched-noise experiment (a) masker and maskee (b) results
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Zwicker in [46] also made measurements of the critical band scale using five differ-
ent experiments, all of which gave similar results, and one of which is briefly described
here. An experiment was set up with a notched noise and a tonal signal placed right
in between two noises as shown in Figure 3.7(a). The experiment involved finding the
detection threshold of the probe while moving the two notched-noises further apart, and
in the process determining the distance between the two notched-noises that caused the
threshold level to change. The threshold level was found to remain the same as long as
the separation remained within the distance of a critical bandwidth. But when separated
beyond that, the threshold level started to decrease rapidly as shown in Figure 3.7(b).
Using the PSM, the fourth statement says that a fixed amount of masking energy will
always result in a fixed masking level. This is what happens as long as the notched-noises
remain within a critical bandwidth. But when the energy of the masker (that falls under
the filter) decreases, then masking level also decreases according to the ratio K. This
is what happened in the experiment when the notched-noise became separated by more
than a critical bandwidth. Using this procedure, Zwicker made measurements of the
critical bandwidth across a wide range of frequencies and came up with an expression for
the CB scale that is given by

BWc(f) = 25 + 75[1 + 1.4(f/1000)2]0.69 Hz. (3.4)

3.3.1.3 Moor and Glasberg’s Measurements on the Shape of Auditory Filters

Another experiment by Moore and Glasberg in [55] made attempts to measure the actual
shape of the auditory filters. Building on Fletcher’s power spectrum model, an experiment
was set-up with a tonal probe and a flat notched-noise masker shaped symmetrically
around it, as shown in Figure 3.8. According to the power spectrum model, we have the
relationship

Ps = K

∫ ∞

0
NW (f)df (3.5)

where

Ps = power of tonal signal of frequency f0 at the JND level

W (f) = shape of auditory filter centered at f0

N = energy level of noise masker

K = constant SNR between masker and maskee according to PSM.
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Figure 3.8: Moore’s notched-noise experiment (after [48]). The amount of noise passing
through the auditory filter centered at the signal frequency is proportional to the shaded
area.

Now, since the value of K is a constant and the notched-noise bands were assumed
to be symmetrical placed around the maskee, we can manipulate the notched-noise sep-
aration, δf , and measure the corresponding change in Ps in order to derive the shape
of W (f) from equation 3.5 (detail of this procedure can be found in [54]). From the
estimated filter shapes, the critical bandwidth was measured for several frequencies and
the results were fitted with a function given by

ERB(f) = 24.7(4.37(f/1000) + 1), (3.6)

where ERB represents the equivalent rectangular bandwidth. Figure 3.9 shows a plot of
both BWc(f) of equation 3.4 and ERB(f) of equation 3.6. Note the slight difference that
exists between the two plots where BWc(f) remains essentially flat below 500 Hz, but
ERB(f) continues to decrease below 500 Hz.

3.3.1.4 Other Experiments

Other experiments such as two-tone masking, sensitivity to phase, musical consonance,
and harmonic discrimination have also demonstrated the existence of this critical band
scale [48, 31].

3.3.2 Masking Patterns and Excitation Patterns

The masking described so far represents masking that a probe signal experiences at a fixed
frequency, while the frequency of the masker is varied. If we fix, instead, the frequency
of the masker and vary the frequency of the probe, then we obtain what are known as
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Figure 3.9: CB values from CB and ERB equations

masking patterns or masked audiograms [48]. In fact, this is what many of the earlier
experiments did in order to characterize the spread of masking. Figure 3.10 shows exam-
ples of masking patterns of a narrow-band noise masker and a tonal probe. The masking
patterns represent three levels of intensities of the masker centered at 410 Hz. Other
curves such as these have been measured for a variety of maskers at different frequencies
and with different tonal properties (further described below). Note that masking patterns
differ from auditory filters in that a masking pattern describes how a signal as a masker
raises the level of the masking threshold, while auditory filters represent the resolution
with which the ear experiences masking.

It has been found that masking patterns exhibit various non-linear and signal-dependent
properties that reflect the active and complex processes of the ear, e.g. masking patterns
are non-symmetric in frequency, non-linear with respect to masker intensity and center
frequency, dependent on the tonal qualities of the signal, and non-additive [46]. As a
result, masking that results from a typical input signal that contains both tonal and
noise-like components at various frequencies and at various intensities is not simply equal
to the sum of the individual masking components of the signal. Determining an accurate
representation of masking that result from even the simplest of audio signals is therefore
a complex and difficult task. In a simple masking model, however, several assumptions
need to be made so that the calculation can be simplified. One of those assumptions is
to approximate the shape of the masking pattern with a single prototype function called
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Figure 3.10: masking pattern of a narrow band noise masker centered at 410 Hz

the spreading function given by [8]

SFdB(x) = 15.81 + 7.5(x + 0.474) − 17.5
√

1 + (x + 0.474)2 dB (3.7)

where x = distance along the Bark scale (the “Bark” unit corresponds to the width of one
critical band). Note that the spreading function does not take into account the tonality,
non-linearity, or the center frequency of the masker.

It has been further suggested that the masking patterns derived from the masking
experiments described above reflect a more basic activity that underlies the process of
hearing, which we refer to as excitation patterns. An Excitation pattern is essentially a
curve that represents the pattern of neural activity beneath the basilar membrane that
is evoked by an input signal. It is used as a crude indicator of what the ear senses as
opposed to what the ear receives. It has been suggested in [54, 56] that the masking
pattern and the excitation pattern are approximately parallel in their shapes and sep-
arated by a small distance. Furthermore, the excitation pattern has also been found
to be useful in predicting masking in more complex signals when multiple masker and
maskee components are present, as will be described in 3.4.2. In addition, a connection
between auditory filters and excitation patterns has been made in [54] where a procedure
for deriving the excitation pattern from the auditory filters is given.
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3.3.3 Asymmetry of Masking

As alluded to above, masking depends on the tonal or noise-like characteristics of the
masker as well as the maskee. The differences in masking abilities of tonal signals, e.g.
pure sinusoidal, versus noise-like signals, e.g. bandpass noise, has been referred to as
the asymmetry of masking. Several researchers have studied the asymmetric nature of
masking and have provided a number of useful results, some of which are briefly described
here [8, 57, 50]. As we are dealing with two types of signals in two types of roles, it is
convenient to distinguish four types of masking scenarios, namely, noise-masking-tone,
tone-masking-tone, tone-masking-noise, and noise-masking-noise.

Figure 3.11: Asymmetry of masking (a) noise-masking-tone (b) tone-masking-noise

1) Noise-Masking-Tone (NMT): A typical noise-masking-tone experiment is shown in
Figure 3.11(a) where a narrow-band noise centered at 410 Hz represents the masker and
a single tone at 410 Hz represents the maskee. The JND level of the probe in general has
been found to be directly related to the level of the masker and the shape to be similar
to the spreading function of equation 3.7. For the masker and maskee of Figure 3.11(a),
the minimum SMR, i.e. the point at which the greatest amount of masking occurs, was
found to be 4 dB for an 80 dB masker, and 3 dB for a 60 dB masker [50].

2) Tone-Masking-Tone (TMT): For the scenario where both the masker and maskee
are tonal signals, it has been found that masking is greatest for probe frequencies slightly
above and slightly below the masker frequency. For a 400 Hz masker signal, the minimum
SMR was found to be 19 dB for an 80 dB masker, 15 dB for a 60 dB masker, and 14
dB for a 40 dB masker [50]. When masker and probe frequencies were close together,
masking was interrupted by a phenomenon called beating where the masker and maskee
signal interacted so as to create this fluctuating sense of loudness. When the two signals
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were far apart, other non-linear effects came into play that again made the experiment
difficult to carry out.

3) Tone-Masking-Noise (TMN): In a tone-masking-noise experiment, the tonal signal
is now the masker and the noise signal is now the maskee. Figure 3.11(b) shows a masker
tone centered at 1000 Hz and a narrow-band noise also centered at 1000 Hz. Again, the
JND curve has been found to be dependent on the level and frequency of the masker
signal and can generally be approximated by the spreading function of equation 3.7. But
compared to the NMT scenario, masking levels have been found to be a great deal lower
due to the inferior masking abilities of tonal signals. The minimum SMR for the signals
in Figure 3.11(b) was found to be 21 dB for a 60 dB masker, 24 dB for an 80 dB masker,
and 28 dB for a 90 dB masker [50, 57].

4) Noise-Masking-Noise (NMN): Masking of a noise signal by another noise signal is
difficult to measure or characterize due to the complex phase relationships that develop
between the masker and the maskee. One study done on the intensity discrimination of
wide-band noises found minimum SMR values to lie around 26 dB [50].

3.3.4 Temporal Masking

The masking concepts discussed so far were about masking in the frequency domain, also
referred to as simultaneous masking. In contrast, temporal masking or non-simultaneous
masking is masking that occurs in the time domain before the onset of the masker and
following the removal of the masker as shown in Figure 3.12. The former is called pre-
masking or backward masking, and the latter is called post-masking or forward masking.
What this essentially means is that the ear starts to experience masking slightly before
the masker signal appears and continues to experience masking slightly after the masker
signal disappears.

Figure 3.12: Non-simultaneous masking
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Although several studies on backward masking exist, no adequate theory has yet been
suggested as to what causes it or how it can be predicted, and furthermore, there seems
to be a general lack of consensus among various results [54, 2]. For example, the amount
of measurable backward masking has been found to be anywhere between 2 and 20 ms
[58, 38], and many even suggest that backward masking depends significantly on the
training of the individual listener [2].

Forward masking, on the other hand, has been found to be dependent in a predictable
way on the frequencies of the signals involved, intensity of the masker, and duration of
the masker [2]. In general, post-masking can last anywhere between 50 and 300 ms while
exhibiting frequency-dependent behaviours similar to simultaneous masking.

3.4 Design of a Psychoacoustic Model

As stated earlier, the goal of a psychoacoustic model for an audio coder is to determine
the masking threshold that is generated by a time-localized input signal where the maskee
can be assumed to be (white) quantization noise. Ideally, this would require finding the
masking curve of the input signal that takes both spectral and temporal masking into
account so that the resulting curve can be represented in the time-frequency plane. Fur-
thermore, the psychoacoustic model would need to handle all types of signals that contain
any combinations of tonal and noise components at various frequencies and at various
intensities. In reality, however, every psychoacoustic model makes some assumptions and
simplifications that make the design practical, while introducing some inaccuracies. As
a result, there is always an inherent trade-off between accuracy and complexity that ex-
ists in any given model. Most psychoacoustic models can be broadly divided into three
categories, namely, physiological models, excitation pattern models, and masking pattern
models. Descriptions and examples of these are given next.

3.4.1 Physiological Models

Physiologically based models attempt to simulate the inner-mechanisms of the auditory
system based on existing knowledge and understanding of the ear. As mentioned earlier,
there is still a great deal about the auditory system that we do not yet understand,
particularly the physiological basis to many of the phenomena that are readily noticed in
psychophysical experiments, which make the design difficult. But physiological models do
represent the ideal way of approaching this problem and can eventually lead to solutions
that provide highly accurate results.
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An example of a physiological model was proposed by Baumgarte in [59] where the
ear was modeled by a series of stages that paralleled the outer, middle, and the inner
ear. More specifically, the processing stages were 1) an acoustic filter for the outer and
middle ear 2) a BM cochlear filter bank with 103 bands 3) an inner hair cell rectifier/low-
pass filter 4) a neural processing stage and 6) a masking curve estimation stage. Other
examples have also appeared in [60, 61] where excitation patterns were derived using
extensive modeling of the inner ear.

3.4.2 Excitation Pattern Models

Excitation pattern models work by first calculating the excitation pattern that is gen-
erated by the masker signal, i.e. the input signal, and the pattern generated by the
masker-plus-maskee signal, i.e. the reconstructed signal. Complete masking is, then, said
to be achieved if the difference between the two curves differ by no more than a certain
threshold across all frequencies. The threshold is usually taken to be between 0.1 and 1
dB. The idea behind this model is that all signals, masker and maskee, generate a certain
activity of patterns in the neural fibres according to some complex set of rules and that a
maskee signal, e.g. quantization noise, can only be detected in the presence of an existing
signal, e.g. input signal, if the additional contribution in the neural activity exceeds a
certain amount that the ear is able to detect [54].

In general, the excitation patterns alone do not directly lead to a masking threshold
as they are only able to indicate whether a given noise signal can be detected or not. As
a result, the excitation pattern model has been suggested more as a tool for evaluating
existing psychoacoustic models rather than being used as a model that computes the
masking threshold. Examples of excitation pattern models have appeared in [54, 56].

3.4.3 Masking Pattern Models

Masking pattern models are considerably simpler than the previous two as they mainly
employ a set of simple rules for deriving the masking threshold. Masking pattern models
are also the most common type used in current state-of-the-art audio coders. A typical
masking pattern model contains the following steps:

1) The power spectral density (PSD) of the input signal is first computed and divided
according to the CB scale.

2) The tonality of each masking component in the signal is identified.
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3) Spreading functions are applied to the individual masking components.

4) The overall masking threshold is found by combining the individual masking thresh-
olds while taking into account the tonality of each masking component.

5) The absolute threshold of hearing is also taken into account, i.e. masking that falls
below the absolute threshold at any point is raised to the absolute threshold level.

We can see that each step of the model is based on some psychophysical rule already
discussed in the previous sections. The first step is based on the power spectrum model of
masking (section 3.3.1.1), the second step reflects the asymmetry of masking (3.3.3), the
third step uses the spreading function described in section 3.3.2, the fourth step involves
an assumption that individual masking components can be added in a simple way, and
the fifth step includes the absolute threshold of hearing that was described in section
3.1.2.

However, a number of shortfalls in this model also exist:

1) The model only describes simultaneous masking and results only apply in the fre-
quency domain, i.e. temporal masking details are usually not incorporated into the
model.

2) The spreading function is derived from simple single-masker/single-maskee exper-
iments and applied to more complex multiple-masker/multiple-maskee scenarios,
which does not take the non-linear and complex effects in the ear into account.
Furthermore, the level-dependence and frequency-dependence of masking patterns
are usually ignored.

3) The critical band analysis is typically based on a fixed and discretized division of
the frequency domain, e.g. 24 CB-division as proposed in [31], and the resulting
masking threshold reflects this discretized resolution. In reality, however, the ear
performs a spectral analysis of the input signal using a CB scale that is continuous
across the entire range of hearing without any artificial boundaries. This means that
masking thresholds, in reality, do not exhibit the CB boundaries that are found in
the calculated masking threshold. For example, MPEG Psychoacoustic Model 1 is
based on a 24-band CB division, and Psychoacoustic Model 2 is based on a 63-band
1/3-octave division.

In spite of these shortfalls, masking pattern models have shown to perform reasonably
well with manageable complexity in a number of current audio coders that achieve very
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high compression rates, e.g. MPEG-1 Layer III, MPEG-AAC, PAC. Examples of masking
pattern models include the MPEG Psychoacoustic Models 1 and 2 [17], the non-linear
extension to MPEG Psychoacoustic Model 2 as proposed in [62], a simplified simulta-
neous masking model in [32], and a time-frequency masking model in [63] that tries to
incorporate simple temporal masking.

3.5 Summary

This chapter gave a brief overview of psychoacoustics in the context of perceptual audio
coding. A description of the human auditory system and the process of transduction
of audio signals were first given. A number of well known and important results from
psychophysical experiments were then described. In particular, the concept of the critical
band (CB) scale, the modeling of the ear as a bank of bandpass filters, the use of masking
patterns to describe the spread of masking, the asymmetric nature of masking, and the
presence of temporal masking were some of the main issues described. Finally, existing
psychoacoustic models were discussed in terms of three general categories, namely, physi-
ological, excitation pattern, and masking pattern models. Masking pattern-based models
were found to be the most popular among the three due to the reasonable trade-off that
they offered in terms of complexity and accuracy. A number of limitations in the masking
pattern models were also briefly noted.



Chapter 4

Overview of Wavelets and Filter

Banks

This chapter presents the theory of the wavelet transform (WT) and its connection to
the theory of multirate filter banks. The wavelet transform was first introduced in the
mathematical literature by Grossmann and Morlet in 1984, and further treated by Meyer,
Daubechies, Mallat, and others in the late 1980’s [35]. In particular, works by Daubechies
and Mallat established the connection between wavelets and digital filter banks that, as
a result, generated much interest and activity in the respective areas. The theory of
multirate filter banks, on the other hand, was first developed in the context of coding
applications in the late 1970’s by Croisier, Esteban, and Galand who introduced a special
class of filters called quadrature mirror filters (QMF), and also by Crochiere, Webber,
and Flanagan who introduced a similar technique in the context of speech coding [37].
Subsequently, solutions to the perfect reconstruction (PR) filter bank for the two-band
and the general M-band case were found, and a general theory on the design of multirate
filter banks was also established. Some historical perspectives on the development of
wavelets and filter banks can be found in [37, 35, 40, 36], and in-depth studies of wavelets
and filter banks can be found in [37, 35, 41].

This chapter is organized as follows. Section 4.1 describes maximally decimated two-
channel filter banks, section 4.2 presents the wavelet transform in the continuous-time and
discrete-time domain and shows its relationship to the two-channel filter bank, section 4.3
covers design issues of the wavelet filter bank, and section 4.4 ends with a brief summary.

45
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4.1 The Two-Channel Filter Bank

Digital Filter banks are commonly used in applications that require a way of transform-
ing the input signal into a frequency or time-frequency domain representation. As the
name suggests, this is done through a bank of filters that divides the signal spectrum
into approximate frequency subbands or channels and generates a time-indexed series of
coefficients that represent the frequency-localized signal energy within each band [2].

Figure 4.1: Two-channel filter bank (a) analysis and synthesis filter bank structure (b)
frequency response of analysis filters H0(z) and H1(z)

A uniform two-channel filter bank is shown in Figure 4.1(a) and the corresponding
magnitude response in Figure 4.1b). In the analysis stage, the input signal x(n) is filtered
by the low-pass filter H0(z) and the high-pass filter H1(z) and then down-sampled by
a factor of 2 to produce subband signals y0(n) and y1(n), respectively. In the synthesis
stage, the subband signals y0(n) and y1(n) are first up-sampled by a factor of 2, then
passed through low-pass filter G0(z) and high-pass filter G1(z), respectively, and finally
added together to produce the reconstructed signal x̂(n).

In the z-domain, the down-sampling and up-sampling operations can be expressed as
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[35]

g(n) = (↓2)f(n) : G(z) =
1
2
[F (z1/2) + F (−z1/2)] (4.1)

g(n) = (↑2)f(n) : G(z) = F (z2). (4.2)

Using equations 4.1 and 4.2 and the input-output relationship of the filter bank in Figure
4.1, we obtain

X̂(z) =
1
2
{H0(z)G0(z) + H1(z)G1(z)}X(z)

+
1
2
{H0(−z)G0(z) + H1(−z)G1(z)}X(−z) (4.3)

where the first term represents the amplitude and phase distortions that result from the
filtering operations and the second term represents the aliasing and imaging distortions
that result from the down-sampling and up-sampling operations. The first term is called
the distortion transfer function, T (z), and the second term is called the aliasing transfer
function, A(z), i.e.

T (z) =
1
2
{H0(z)G0(z) + H1(z)G1(z)}, (4.4)

and
A(z) =

1
2
{H0(−z)G0(z) + H1(−z)G1(z)}. (4.5)

Since any distortion caused by the filter bank is undesirable, especially aliasing error [37],
the design of the analysis and synthesis filters revolve around the requirements of alias
cancellation (AC) and perfect reconstruction (PR). The conditions for AC and PR can
be summarized as follows.

• Alias Cancellation: Choose the synthesis filters as

G0(z) = H1(−z), (4.6)

G1(z) = −H0(−z). (4.7)

Then,

A(z) =
1
2
{H0(−z)H1(−z) − H1(−z)H0(−z)} = 0. (4.8)

Notice that the AC condition simplifies the design to designing only filters H0(z)
and H1(z) and minimizing the distortion in T (z).
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• Perfect Reconstruction: For PR, we need

T (z) = cz−l, (4.9)

where c = constant and l ∈ Z, and

A(z) = 0, (4.10)

so that (with c = 1)

X̂(z) = T (z)X(z) + A(z)X(−z)

= z−lX(z) + (0)X(−z)

= z−lX(z), (4.11)

where the reconstructed signal is just a delay of the input signal by z−l.

4.1.1 Classic QMF Filters (non-PR)

The “classic” QMF filters proposed by Croisier, Esteban, and Galand [41] are designed
by first imposing the relationship

H1(z) = H0(−z) or h1(n) = (−1)nh0(n), (4.12)

which relates the low-pass and high-pass filter through a simple sign alteration. Equation
4.12 can also be expressed in the Fourier domain as

|H1(ejw)| = |H0(ej(π−w))|. (4.13)

H1(ejw) in equation 4.13 represents a high-pass filter whose response is a mirror image
of the low-pass filter response |H0(ejw)| with respect to the quadrature frequency, π

2 .
Using the AC condition of equations 4.6 and 4.7, and equation 4.12 above, the distortion
transfer function can now be simplified to

T (z) =
1
2
{H0(z)G0(z) + H1(z)G1(z)}

=
1
2
{H0(z)H1(−z) − H0(−z)H1(z)}

=
1
2
{H2

0 (z) − H2
0 (−z)}. (4.14)



CHAPTER 4. OVERVIEW OF WAVELETS AND FILTER BANKS 49

Note that the design of QMF filters according to 4.14 only involves one filter, H0(z).
Several well known solutions to this exist and a few are described next. First, note that
for PR we need

T (z) =
1
2
{H2

0 (z) − H2
0 (−z)} = z−l. (4.15)

The only solution to 4.15 using an FIR filter is the trivial Haar filter as all other solutions
involve some type of distortion in T (z) [64]. Among more practical FIR solutions, John-
ston’s filters [40] offer small reconstruction error and good overall performance. Johnston’s
filters are designed to provide high stop-band attenuations and good transition-band char-
acteristics while eliminating phase distortion and minimizing amplitude distortion in T (z).
Among IIR solutions, the well known elliptic filters offer a solution where amplitude dis-
tortion is eliminated and phase distortion is minimized [65]. Other solutions to (15) can
be found in [35, 36].

4.1.2 Smith-Barnwell Filters (PR Orthogonal)

The solution proposed by Smith and Barnwell [66] is based on the AC condition and the
relationship

H1(z) = −z−NH0(−z−1), (4.16)

where filters H0(z) and H1(z) (as well as G0(z) and G1(z)) are FIR filters of odd order
N . Also called conjugate quadrature filters (CQF), these filters provide the quadrature
mirror property like QMF filters, but also the perfect reconstruction property as T (z)
can now be made to be a pure delay. The distortion function T (z) can be simplified using
equations 4.6, 4.7, 4.16 as

T (z) =
1
2
{H0(z)G0(z) + H1(z)G1(z)}

=
1
2
{H0(z)H1(−z) − H0(−z)H1(z)}

=
z−N

2
{H0(z)H0(z−1) + H0(−z)H0(−z−1)}. (4.17)

Note that the design of CQF filters also involves only one filter, H0(z), as the other three
can be derived using equations 4.6, 4.7, 4.16. To obtain PR in equation 4.17, we need

H0(z)H0(z−1) + H0(−z)H0(−z−1) = 2. (4.18)
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If we define
P (z) = H0(z)H0(z−1), (4.19)

then we can re-write 4.18 as
P (z) + P (−z) = 2. (4.20)

P (z) represents a zero-phase half-band filter in which all even-indexed terms are zero
except the term at z0. Description and design of half-band filters have already been
discussed extensively in the filter bank literature, e.g. [35]. Once half-band filter P (z)
is designed, filter H0(z) can be obtained through symmetrical factorization of 4.19 [67].
In addition to PR, Smith-Barnwell filters also provide the orthogonality property that is
described next. First, using equation 4.16 in 4.18, we obtain

H1(z)H1(z−1) + H1(−z)H1(−z−1) = 2. (4.21)

Next, we can re-write equation 4.16 and obtain

H0(z) = −z−NH1(−z−1), (4.22)

and using the equality relationship given by

H0(z−1)H1(z) = H0(z−1)H1(z), (4.23)

we can substitute 4.23 in equations 4.16 and 4.22 to obtain

H0(z−1)H1(z) = (−zNH1(−z))(z−NH0(−z−1))

H0(z−1)H1(z) = −H1(−z)H0(−z−1)

H0(z−1)H1(z) + H1(−z)H0(−z−1) = 0. (4.24)

Equations 4.18, 4.21, and 4.24 represent the orthogonality condition in the z-domain. The
term Hi(z)Hi(z−1) in equations 4.18 and 4.19 represents the auto-correlation of Hi(z),
and the term H0(z−1)H1(z) in 4.24 represents the cross-correlation between H0(z) and
H1(z) [68]. Equations 4.18 and 4.21 are also known as the power symmetric property
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[35]. In the time domain, equations 4.18, 4.21, and 4.24 can be expressed as

∑
n

h0(n)h0(n + 2k) = δ(k), (4.25)

∑
n

h1(n)h1(n + 2k) = δ(k), (4.26)

∑
n

h0(n)h1(n + 2k) = 0, (4.27)

or more succinctly as ∑
n

hi(n)hj(n + 2k) = δ(i − j)δ(k) (4.28)

where

h = analysis filters

g = synthesis filters

i, j = 0 for low-pass, 1 for high-pass

k ∈ Z.

In general, Smith-Barnwell filters provide PR, finite support, and orthogonality, but lack
linear phase (except for the trivial Haar filter).

4.1.3 Generalized QMF Filters (PR Linear Phase)

Generalized QMF filters represent PR solutions that sacrifice orthogonality for linear
phase. Using equation 4.4 and the AC condition, we obtain

T (z) =
1
2
{H0(z)G0(z) + H1(z)G1(z)}

=
1
2
{H0(z)H1(−z) − H0(−z)H1(z)} (4.29)

where filters H0(z) and H1(−z) can be of even or odd order and the lengths of the two
are not necessarily equal. Unlike the CQF filters, the design now involves first designing
the two analysis filters H0(z) and H1(−z), and then obtaining the two synthesis filters
using equations 4.6 and 4.7. To satisfy PR, we impose

H0(z)H1(−z) − H0(−z)H1(z) = 2z−2l−1 (4.30)
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where l ∈ Z. Note that the delay term on the right-hand side has to be odd since all even
terms of H0(z)H1(−z) cancel with the even terms of H0(−z)H1(z). Defining

P (z) = z2l+1H0(z)H1(z) (4.31)

we can formulate the PR condition as

P (z) + P (−z) = 2, (4.32)

which again represents a zero-phase half-band filter. However, since orthogonality is no
longer required, P (z) in 4.31 is no longer factored symmetrically but factored so as to
provide symmetry in H0(z) and H1(z) separately. Detail and examples of this procedure
can be found in [35, 64]. Similar to the orthogonality condition given in the z-domain and
time-domain, we can summarize the biorthogonality condition in the z-domain as [37]

H0(z)G0(z) + H1(z)G1(z) = 2 (4.33)

H0(−z)G0(z) + H1(−z)G1(z) = 0 (4.34)

and in the time-domain as

∑
n

hi(n)gj(2k − n) = δ(i − j)δ(k)(35?) (4.35)

where

h = analysis filters

g = synthesis filters

i, j = 0 for low-pass, 1 for high-pass

k ∈ Z.

Note that biorthogonality is a more general condition that provides orthogonality across
the analysis and synthesis filters [40], as opposed to within the analysis and synthesis
filters, and hence the name “bi-orthogonal”.
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4.1.4 Summary and Discussion

Two-channel filter banks, in general, are characterized by the type of errors they intro-
duce into the signal and the properties that the filters provide. Reconstruction error is
made up of three components, namely, 1) aliasing distortion, 2) amplitude distortion,
and 3) phase distortion. Aliasing (and imaging) distortion is represented by A(z), and
amplitude and phase distortions are represented by T (z). Properties of filters that we are
particularly interested in are 1) finite support (i.e. FIR) 2) orthogonality, and 3) linear
phase. Ideally, all three properties need to be incorporated into the filters as they are
considered important in audio coding, e.g. orthogonality ensures that quantization noise
in different channels remain independent, linear phase provides constant group delay, and
finite support leads to stable and simple implementations [69]. But it has been found that
only two out of the three properties can be satisfied simultaneously for any given two-
channel PR filter bank [69]. This limitation is illustrated in Figure 4.2 where different
solutions to the two-channel PR filter bank are shown. Regions of solutions for the three
properties are shown where we find regions that offer two out of the three properties, but
none that offer all three, except at the center point where the three properties overlap
(i.e. Haar solution).

Figure 4.2: Two-channel PR filter bank solutions Venn diagram for 1) finite support, 2)
orthogonality, and 3) linear phase (P(z) is rational and real)

We can summarize the two-channel filter bank solutions described in this section ac-
cording to Table 4.1. Table 4.1 shows a convenient description of the four families of filters
using the properties that revolve around PR. Note that, in addition to these properties,
filter banks generally need to be designed to provide other important properties such as
good stopband attenuation, sharp cut-off rate, low pass-band and stop-band ripples, and
short delay [35].
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Filter Distortions Competing Properties
Family ALD AD PD FIR Orthogonal Linear Phase

Johnston None Min. None Yes ? Yes
Elliptic None None Min. No ? No
Smith-Barnwell None None None Yes Yes No
Generalized QMF None None None Yes No Yes

Table 4.1: Two-channel filter bank solutions described in terms of properties that revolve
around PR

It is interesting to note that during the development of two-channel (and the more
general M-channel) filter banks, the so called polyphase representation provided a con-
siderable amount of simplification in theory, design, and implementation. The polyphase
representation is essentially a regrouping of terms in the z-domain that allows an ef-
ficient representation of the filter bank according to analysis and synthesis polyphase
matrices. Some important constraints such as AC, PR, and orthogonality can be rather
conveniently expressed using these matrices. As a result, much of the filter bank theory
discussed today is based on the polyphase representation [35, 41, 37].

4.2 Wavelets

The origins of wavelets are many and multi-disciplinary. It seems that the idea of wavelet
analysis existed even before it was first introduced in the mathematical literature (under
its current name) in various forms and in different fields, including pure mathematics,
quantum physics, geophysics, artificial vision, and signal processing. For example, the
Haar wavelet was first proposed as early as 1910 by A. Haar [37]. The name “wavelet” as
we use it today derives its meaning from the works of Goupillaud, Morlet, and Grossman
from the early 1980’s [37], although the term was used by others before. More information
on the origins of wavelet and its development can be found in [70, 71, 72].

Due to this unique background, there are many different ways of looking at and in-
terpreting the wavelet transform. The definition of WT as viewed from mathematics is
a decomposition of a continuous-time signal in terms of a collection of orthonormal basis
functions called wavelets. This decomposition can also be thought of as a transformation
of a signal from the time to the time-frequency (or time-scale) domain, similar to how
we use the (short-time) Fourier transform [68]. In addition, the wavelet domain repre-
sentation is often viewed as a multiresolution analysis, where one can see the details of a



CHAPTER 4. OVERVIEW OF WAVELETS AND FILTER BANKS 55

signal at both coarse and fine scales. From a linear algebra point of view, the collection
of wavelet basis functions forms a vector space that can be represented through a matrix.
Applying the WT would, therefore, be equivalent to performing a matrix multiplication
between the wavelet transformation matrix and the signal vector. In the context of digital
filter banks, it has been found that the WT of a discrete-time signal is equivalent to a
tree-structured filter bank.

Wavelets will be described in detail next in terms of its definition in continuous-time
and discrete-time domain, connection to the two-channel PR filter bank, implementation,
and design.

4.2.1 Wavelet in Continuous-Time Domain

4.2.1.1 Continuous Wavelet Transform

The wavelet transform of a square-integrable function x(t) ∈ L2(R) is defined as

W (a, b) =
∫ ∞

−∞
ψab(t)x(t)dt, (4.36)

where

a ∈ R
+

b ∈ R

ψab(t) =
√

aψ(a(t − b)). (4.37)

ψab(t) represents the wavelet basis functions that are derived from a single mother wavelet
function, ψ(t), through dilations a and translations b according to equation 4.37. The
wavelet basis functions represent an orthonormal basis to the space of L2(R) such that

L2(R) = span{ψab(t); a ∈ R
+, b ∈ R} (4.38)

Figure 4.3 shows an example of a mother wavelet function and its dilated and translated
versions. We can see that as dilation variable a increases, ψab(t) becomes more contracted
and time-localized and as a decreases, ψab(t) becomes more expanded and less time-
localized. This allows the basis functions to “see” better the finer details of the signal
when a is small and also “see” the coarse shape of the signal when a is large. The factor√

a in 4.37 is used to normalize the energy of the wavelet basis function across scales.
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Furthermore, assuming that the Fourier transform pair of the mother wavelet is

ψ(t) ↔ Ψ(w), (4.39)

the translation and dilation operations can be expressed as

√
aψ(a(t − b)) ↔ 1√

a
Ψ(

w

a
)e−jbw. (4.40)

According to equation 4.40, a contraction by a in one domain results in a dilation by a

in the other domain, and a time-translation in the time domain produces the pure delay
term e−jbw in the frequency domain. The dilation operation, in particular, shows that
an increase in resolution in one domain results in a loss of resolution in the other. This
actually reflects the trade-off that exists between time and frequency domain resolution
as dictated by Heisenberg’s Uncertainty Principle [70].

Figure 4.3: Example of a wavelet basis function (Meyer)

Next, the inverse wavelet transform can be defined as

x(t) =
1
C

∫ ∞

−∞

∫ ∞

0

W (a, b)ψab(t)
a2

dadb, (4.41)

where

C =
∫ ∞

0

|Ψ(w)|2
w

dw. (4.42)

In order for C in equation 4.42 to be a finite value, we need Ψ(0) to be zero, which means
that ψ(t) is a zero mean function in the time domain and resembles a bandpass filter in
the frequency domain [73]. Since the forward and inverse wavelet transforms of equations
4.36 and 4.41 are defined using continuous variables a and b, they are referred to as the
continuous wavelet transform (CWT).
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4.2.1.2 Discrete Wavelet Transform

The CWT as defined above is in fact infinitely redundant and not all W (a, b) for a ∈ R
+

and b ∈ R are required for full reconstruction of x(t). A more compact representation
can be found in the Discrete Wavelet Transform (DWT) where only the required wavelet
coefficients for the reconstruction of x(t) are kept. This is done by sampling the dilation
and translation variables a and b according to [68]

a = am
0 and b = nb0a

m
0 (4.43)

where

a0 > 1

b0 	= 0

m, n ∈ Z.

a0 is an arbitrary reference scale, b0 is an arbitrary reference time position, and m and
n are the new scaling and shifting variables, respectively. Choosing a0 = 2 and b0 = 1
leads to the well known Fast Wavelet Transform (FWT), where

a = 2m and b = n2m (4.44)

and the wavelet basis function ψab(t) becomes

ψmn(t) = 2m/2ψ(2mt − n). (4.45)

The forward and inverse DWT can then, respectively, be defined as

W (m, n) =
∫ ∞

−∞
ψmn(t)x(t)dt =< x(t), ψmn(t) > (4.46)

for m, n ∈ Z, and

x(t) =
∞∑

m=−∞

∞∑
n=−∞

W (m, n)ψmn(t), (4.47)

where the operation < ·, · > in 4.46 represents the inner product between two functions.
The basis functions ψmn(t) in equation 4.45 now provide an orthonormal basis that is no
longer redundant [68]. However, equation 4.47 still requires an infinite number of terms
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to describe the infinitely coarse, i.e. m → −∞, as well as the infinitely fine, m → ∞.
Since this is still somewhat impractical, we need to take additional steps to reduce the
wavelet domain representation to a finite number of terms. This can be done by defining
a new family of basis functions called scaling functions, φmn(t), that are derived, much
like the wavelets, from a single mother scaling function, φ(t), according to

φmn(t) = 2m/2φ(2mt − n) (4.48)

Figure 4.4: Example of a scaling function (complementary to the wavelet in Figure 4.3)

Figure 4.4 shows examples of scaling functions that are scaled and shifted from a
mother φ(t). The scaling functions φmn(t) actually represent a complementary basis to
the wavelet basis functions such that

∑
n

c(l, n)φln(t) =
∑

n

l−1∑
m=−∞

d(m, n)ψmn(t) (4.49)

where
c(l, n) =< φln(t), x(t) > . (4.50)

Equation 4.49 indicates that signal details represented by wavelets at scales −∞ < m < l

can be represented by scaling functions at level m = l. This means that the scaling
functions at level l provides a “complementary” basis to the wavelet basis functions at
level l, since together they cover all scales for −∞ < m ≤ l. As we will see, this naturally
leads to the idea of multiresolution analysis. The orthonormal representation and the
complementary relationship between wavelet and scaling functions can be summarized as
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follows [68]:

< ψ(x + l), ψ(x + k) > = δ(k − l), (4.51)

< φ(x + l), φ(x + k) > = δ(k − l), (4.52)

< φ(x + l), ψ(x + k) > = 0. (4.53)

(4.54)

where l, k ∈ Z. Now, simplifying equation 4.47 can be done in a couple of steps. First,
the wavelet representation of levels m < 0 in 4.47 can be reduced to one level using the
scaling basis functions at level m = 0. Second, the wavelet representation of levels m≥L

can be ignored by assuming that function x(t) can be represented by scaling functions at
level L, i.e.

x(t) =
∑

n

c(L, n)φLn(t). (4.55)

Obviously, a continuous function can not always be expressed exactly in terms of scaling
functions at a finite resolution, but in practice the error can be minimized to an arbitrar-
ily low level by increasing resolution L. Using the above two simplifications, 4.47 now
becomes

x(t) =
∞∑

n=−∞
c(0, n)φ0n(t) +

L−1∑
m=0

∞∑
n=−∞

d(m, n)ψmn(t) (4.56)

where

c(m, n) = < x(t), φmn(t) > (4.57)

d(m, n) = < x(t), ψmn(t) > . (4.58)

Coefficients c(0, n) are referred to as approximation coefficients and coefficients d(m, n)
are referred to as detailed coefficients. Equations 4.56, 4.57, and 4.58 represent the fi-
nite L-resolution DWT that is commonly found in practice. Note that x(t) in 4.56 still
represents a continuous-time function.

4.2.1.3 Multiresolution Analysis

As already mentioned, the decomposition of a signal x(t) in terms of wavelet and scaling
functions ψmn(t) and φmn(t) results in a multiresolution analysis. And as the name
implies, multiresolution analysis provides a way of breaking down a signal into multiple
resolutions so that each resolution captures details that other resolutions are blind to.
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The idea of multiresolution relies on the basic notion of subspace, where we introduce
two families of subspaces called Vm and Wm next.

Vm is defined as the subspace of L2(R) spanned by the scaling function φ(t) at reso-
lution level m, i.e.

Vm � span{φmn(t); n ∈ Z}. (4.59)

Figure 4.5: Nested resolutions

Equivalently, the set of all translated versions of φ(t) at resolution level m represents
an orthonormal basis for the subspace Vm. Furthermore, the subspaces Vm, for m ∈ Z,
can be represented as nested subspaces in L2(R) where subspace Vl is a subset of subspace
Vl+1 as shown in Figure 4.5. This follows from the fact that φln(t) as defined in 4.49 is able
to represent the signal detail for all resolutions less than l and, therefore, φl+1,n(t) at level
l+1 encompasses the details at level l. Furthermore, we can also see this intuitively from
the definition of the scaling function in 4.48 where φmn(t) provides greater localization for
increasing resolution m. As a result, subspace Vm approaches L2(R) as m → ∞ and Vm

approaches the empty space 0 as m → −∞. More generally, a multiresolution analysis is
required to provide the following properties [73, 74]:

1) Containment: The resolution of subspaces are nested such that

V−∞ = {0} ⊂ . . . V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 . . . ⊂ V∞ = L2(R) (4.60)

where finer resolutions see coarser resolutions perfectly.

2) Completeness: All Vm are orthogonal to each other and the collection of all
subspaces Vm provide a complete space to L2(R), i.e.

⋂
m∈Z

Vm = {0} and
⋃

m∈Z

Vm = L2(R). (4.61)
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3) Scaling Property: If function f(t) is in the subspace Vm, then its scaled version
f(2t) is in the subspace Vm+1, i.e.

f(t) ∈ Vm ⇐⇒ f(2t) ∈ Vm+1. (4.62)

4) Shifting Property: If function x(t) is in the subspace Vm, then all its shifted
versions are also in the subspace Vm, i.e.

f(t) ∈ Vm ⇐⇒ f(t − k) ∈ Vm, k ∈ Z. (4.63)

Similar to how we defined Vm, we can also define Wm as the subspace spanned by the
wavelet function ψ(t) at resolution level m according to

Wm � span{ψmn(t); n ∈ Z}. (4.64)

The subspace Wm represents an orthogonal complement to the subspace Vm so that the
union of Vm and Wm forms the subspace Vm+1 at one resolution higher, i.e.

Vm ⊥ Wm and Vm+1 = Vm ⊕ Wm. (4.65)

In terms of the diagram in Figure 4.5, Wm represents the “difference” between subspaces
Vm and Vm+1, or the complementary subspace required for Vm to become Vm+1. Now, we
can setup a multiresolution scheme by choosing reference resolution Vm0 and successively
adding the subspaces Wm0 , Wm0+1, Wm0+2, etc ... to obtain the subspaces Vm0+1, Vm0+2,
Vm0+3, etc .... In fact, this is exactly what is done in equation 4.56 for the finite L-
resolution DWT. Now, since subspaces Vm and Wm represent subsets of the subspace
Vm+1 according to 4.65, the basis functions {φmn(t)} and {ψmn(t)} of Vm and Wm,
respectively, can be expressed as linear combinations of {φm+1,n(t)}, the basis function
of Vm+1. For m = 0, we then have

φ(t) =
∑

n

c0(n)
√

2φ(2t − n), (4.66)

ψ(t) =
∑

n

c1(n)
√

2φ(2t − n). (4.67)

where the lengths of c0 and c1 are finite since φ(t) and ψ(t) are of finite support [74].
Equation 4.66 is called the multiresolution analysis equation and equation 4.67 is called
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the wavelet equation. The multiresolution analysis equation relates the scaling function
at two different resolutions through c0(n), or the scaling coefficients, and the wavelet
equation relates the wavelet function at one resolution to the scaling function at the next
resolution through c1(n), or the wavelet coefficients.

4.2.2 Wavelet in Discrete-Time Domain

The description of wavelets so far was given in the continuous-time domain, whereas the
filter bank presented in section 4.1 dealt with signals in the discrete-time domain. The
connection between wavelets in continuous-time domain and two-channel PR filter banks
in discrete-time domain has been first recognized by Mallat [75] and further investigated
by Daubechies [68]. Specifically, the scaling coefficients c0 and the wavelet coefficients c1

that appear in equations 4.66 and 4.67 are precisely the same filters as h0 and h1 of the
two channel filter bank in section 4.1. It has been shown that the compactly supported
orthonormal DWT necessarily implies an underlying two-channel PR filter bank, and
conversely, the filters of a two-channel FIR PR-CQF filter bank can be used to generate
the wavelet basis functions under certain conditions. A description of this relationship is
briefly described next.

4.2.2.1 Relationship Between Orthonormal DWT and Two-channel CQF Fil-
ter Bank

We can show that filters c0 and c1 of equations 4.66 and 4.67 satisfy the same orthogonality
conditions that h0 and h1 satisfy according to equations 4.25, 4.26, and 4.27. First, note
that using equation 4.52 we obtain the relationship

< φ(2x + l), φ(2x + k) > =
∫

φ(2x + l)φ(2x + k)dx [let y = 2x]

=
∫

φ(y + l)φ(y + k)
dy

2

=
1
2

< φ(y + l), φ(y + k) >

=
1
2
δ(k − l). (4.68)
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Next, using equation 4.66 in 4.52 we get

< φ(x), φ(x + k) > = δ(k)

<
∑

n

c0(n)
√

2φ(2t − n),
∑
m

c0(m)
√

2φ(2t + 2k − m) > = δ(k) [let m′ = m − 2k]

<
∑

n

c0(n)
√

2φ(2t − n),
∑
m′

c0(m′ + 2k)
√

2φ(2t − m′) > = δ(k)

∑
n

∑
m′

c0(n)c0(m′ + 2k) · 2 < φ(2t − n), φ(2t − m′) > = δ(k) [using 4.68]

∑
n

∑
m′

c0(n)c0(m′ + 2k) · 2 · 1
2
δ(n − m′) = δ(k) [let m′ = n]

∑
n

c0(n)c0(n + 2k) = δ(k) (4.69)

In a similar manner, we can use equations 4.66 and 4.67 in equations 4.51 and 4.53 to
obtain

∑
n

c1(n)c1(n + 2k) = δ(k), (4.70)

∑
n

c0(n)c1(n + 2k) = 0. (4.71)

Notice that equations 4.69, 4.70, and 4.71 are just a repeat of equations 4.25, 4.26, and
4.27. This means that sequences c0(n) and c1(n) are precisely the same as the low- and
high-pass filters that are used in the two-channel orthogonal filter banks. Furthermore,
there is a strong connection between the scaling and wavelet functions and the filters
c0(n) and c1(n) in that one set can be derived from the other. Filters h0(n) and h1(n)
can be derived from the wavelet function according to (see [74] for derivations)

h0(n) =
√

2
∫ ∞

−∞
φ(t)φ(2t − n)dt, (4.72)

h1(n) =
√

2
∫ ∞

−∞
ψ(t)φ(2t − n)dt (4.73)

and the scaling and wavelet functions can be derived from the low- and high-pass filters
using an iterative procedure based on equations 4.66 and 4.67 as described in [74]. The
iteration has been shown to converge to a continuous wavelet basis function provided that
the filter c0(n) meets a certain regularity condition.
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4.2.2.2 Computing the Discrete Wavelet Transform Using Filter Banks

Due to the connection between the wavelet transform and the two-channel filter bank,
we can now view c0(n) and c1(n) in equations 4.66 and 4.67, and c(m, n) and d(m, n) in
the expansions 4.56, 4.57, and 4.58 as digital filters and digital signals, respectively [74].
This means that we now have a more practical way of computing the DWT through a
filter bank implementation without even requiring φ(t) and ψ(t). The approximation and
detail coefficients at a given level can be derived from the approximation coefficients at
the level above using the filtering operations given by [74]

c(i, n) =
∑

j

c0(j − 2n)c(i + 1, j), (4.74)

d(i, n) =
∑

j

c1(j − 2n)c(i + 1, j). (4.75)

Inversely, the approximation coefficients at a given level can be derived from the approx-
imation and detail coefficients at the level below according to

c(i + 1, n) =
∑

j

c(i, j)c0(n − 2j) +
∑

j

d(i, j)c1(n − 2j). (4.76)

Equations 4.74 and 4.75 represent the forward DWT and equation 4.76 represents the
inverse DWT. Figure 4.6 shows the implementation of the finite L-resolution DWT in
terms of a tree structured filter bank. In the analysis stage, the input signal x(n) is first
fed into the filter bank at resolution level L where we make

c(L, n) = x(n). (4.77)

The low- and high-pass filters are given by

h0 = c0(−n) (4.78)

h1 = c1(−n), (4.79)

where filters c0(n) and c1(n) are time-reversed in order to make 4.74 and 4.75 agree
with the convolution operation. The outputs from the filtering operations at level L are
down-sampled by a factor of 2 and we obtain the approximation and detailed coefficients
c(L − 1, n) and d(L − 1, n) at level L − 1. This procedure is then repeated for levels
L − 1 down to 1. In the synthesis stage, the reverse operation is applied where we
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start at resolution level 0 and successively apply equation 4.76 in order to obtain the
approximation coefficients at one level above until we get to level L. The synthesis
filters are given by the inverse of the analysis filters (according to orthogonal filter bank
constraint in section 4.1.2 and according to equation 4.76) as

h0 = c0(n), (4.80)

h1 = c1(n). (4.81)

Finally at level L, we obtain the reconstructed signal according to

x̂(n) = c(L, n), (4.82)

which in general is a delayed version of 4.77 due to the filtering operations.

Figure 4.6: Equivalent filter bank structure of the DWT
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4.2.2.3 Summary and Discussion

The connection that exists between orthonormal wavelets and orthogonal filter banks
can be extended to general biorthogonal wavelets and PR linear phase filter banks [68],
and even IIR filters if we wish to have non-compactly supported wavelet basis functions
[69]. In general, there is an implied equivalence between two-channel PR filter banks and
dyadic DWT as one leads to the other with proper design.

However, we make a note here of some inherent differences that still exist between
the wavelet analysis in the continuous-time domain and the finite L-resolution DWT that
is implemented in the discrete-time domain. Going back to the derivation of the DWT,
recall that we made an assumption in 4.55 by projecting the input signal x(n) ∈ L2(R)
onto a finite resolution subspace VL, where the approximation coefficients were defined
by

c(L, n) =< x(t), φLn(t) >=
∫

x(t)φLndt, (4.83)

as well as an assumption in 4.77 where we further simplified the definition of approximate
coefficients using

c(L, n) = x(n). (4.77)

Since wavelet analysis was originally defined in the continuous domain, these assumptions
were required to extend the analysis to the discrete domain. Equations 4.83 and 4.77
are approximation steps that introduce some discrepancies between the continuous and
discrete case. Specifically, the simplification in equation 4.77 does not always hold since
the inner product between φLn and x(t) is not the same thing as the time-sampling of
x(t) [73].

4.3 Design of the Wavelet Filter Bank

The design of the Wavelet Filter Bank (WFB) and different existing wavelet schemes are
considered in this section. The WFB is a filter bank that offers a great deal of flexibility in
terms of the choice of the basis filter and the decomposition tree structure. Additionally,
the WFB offers a variety of ways of handling boundary artifacts in the context of block
processing. The following sections describe the design of the WFB in terms of these broad
design “parameters”.
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4.3.1 Decomposition Tree Structure

As already shown in Figure 4.6, the standard DWT involves a dyadic tree structure in
which the low-channel side is successively split down to a certain depth. We obtain the
detail coefficients from the right-leaf node of each level and the approximation coefficients
from the left-leaf node at the lowest level. This is illustrated in Figure 4.7(a) where the
nodes represent the wavelet coefficients (at various decomposition stages) and the left and
right branches represent the low- and high-pass filtering operations, respectively. If we
allow the tree to also split on the right-hand side at each node, then we obtain the more
general Discrete Wavelet Packet Transform (DWPT) as shown in Figures 4.7(b) and (c).
In terms of the wavelet basis function (in continuous domain), the additional degree of
freedom in the DWPT comes in the form of frequency, where the standard DWT uses
wavelets that are shifted and dilated in time, but the DWPT uses wavelets that can also
be modified in terms of the number of oscillations in the basis function.

Figure 4.7: Decomposition tree structure for (a) DWT (b) DWPT (complete) (c) DWPT
(partial)

From a filter bank point-of-view, the DWT and DWPT represent particular tillings
of the time-frequency plane as shown in Figure 4.8(b) and (c). Figure 4.8(a) and (d)
also show the time-frequency tiling of the time-domain representation and the Fourier
Transform (FT) as well. We can see that at one extreme, time domain provides good
time resolution but poor frequency resolution (actually none) and at the other extreme,
the Fourier domain provides good frequency resolution but no time resolution. The DWT
and DWPT can be thought of as providing a trade-off in resolution between these two
extremes.

In Figure 4.9, the time-frequency tiling of the short-time Fourier Transform (STFT)
and a fully decomposed DWPT (of depth 2) are shown. This figure shows that the two
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Figure 4.8: Time-frequency tiling of (a) time-domain representation (b) DWT (c) DWPT
(partial) (d) Fourier representation

provide the same tiling of the time-frequency plane even though the two differ considerably
in their definitions. This is because the tilings in the time-frequency plane represent an
idealized situation where each tile is perfectly localized, i.e. there is no overlap between
adjacent tiles. The localization property of each tile is actually never ideal (since we
are using practical filters) and the localization properties of the DWPT and the STFT
are quite different. In particular, the STFT is a modulated filter bank that provides a
high frequency resolution representation and the DWPT is an iterated filter bank that
provides a flexible time-frequency resolution but suffers from poor localization properties.
In general, the localization property of each tile is determined by the choice of the basis
filter in the case of DWPT and the window function in the case of STFT.

Figure 4.9: Time-frequency tiling of (a) STFT (b) DWPT (Walsh)
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4.3.2 Wavelet Basis Filters

The choice of the basis function, or equivalently the wavelet filter, determines the time-
frequency localization properties of the individual bands of the WFB as mentioned above.
In general, we can also talk about the basis function in terms of other properties such
as time-support, number of vanishing moments, various notions of smoothness and regu-
larity, and orthogonality or biorthogonality. In terms of filters h0(n) and h1(n), we also
have properties such as the transition bandwidth (cut-off rate), stop-band attenuation,
passband and stopband ripples, and phase linearity (equivalent to biorthogonality). And
in terms of statistical properties, we can use various measures of entropy or coding gain
to determine the redundancy extraction that a WFB provides using various basis filters
(and tree structures).

There are many existing wavelet basis filters that have appeared in the wavelet liter-
ature where each wavelet or family of wavelets is designed to possess certain properties,
e.g. high regularity or large number of vanishing moments [37]. Furthermore, there have
been many filter design methods developed in the filter bank literature that allow us to
construct new wavelet filters based on a variety of design criteria. In general, these design
methods revolve around the design of FIR PR-QMF filters and can be divided into three
groups [67]. The first group is based on the design of half-band filters (as described in
sections 4.1.2 and 4.1.3) followed by spectral factorization, the second group is based
on the design using lattice structures that are associated with efficient implementations,
and the third group is based on the formulation of the problem in the time-domain and
solving it using an optimization algorithm (see [67] for more detail).

4.3.3 Other Wavelet Analysis

In addition to the many choices we have with regards to the basic WFB, i.e. DWPT
with the choice of a tree structure and basis filter, other variations and extensions of
wavelet analysis have appeared in the literature [70]. For example, basis filters that we
usually consider are FIR filters that are either orthogonal or biorthogonal, but we can
also employ basis filters that have an infinite support (e.g. IIR filters), that are over-
complete and redundant (e.g. Malvar wavelets), or even basis functions that are based
on more than one mother wavelet (e.g. multiwavelets). Furthermore, algorithms that
try to adapt or optimize the choice of the decomposition tree structure and/or the basis
filter to a given signal have also been proposed, e.g. Best Basis, Matching Pursuit, and
Basis Pursuit [70]. In the context of filter banks, the definition of the WFB has also been
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extended to include schemes such as time-varying filter banks and M-channel filter banks
[35]. Although some of these analysis schemes offer interesting possibilities, they are not
further treated in this thesis.

4.3.4 Boundary Handling

Boundary handling is an issue that arises in practical implementations when we apply
the wavelet transform to a finite-length signal. Since the WT is implemented through
convolutions between the basis filters and the input signal at each level of the decompo-
sition, a way of properly convoluting at the boundaries is required. General treatment
of boundary handling has been covered in [76] and boundary effects that occur in the
context of audio coding have been described in [77]. Some techniques for minimizing or
eliminating boundary artifacts are briefly described next.

Common methods of boundary handling are:

1) Zero-padding: The signal is padded with enough leading and trailing zeros required
to complete the convolution.

2) Symmetric-extension: The signal is symmetrically extended at both ends with the
mirror image of the signal.

3) Circular- or Periodic-extension: The signal is periodically extended at both ends,
or equivalently, the filter is made to wrap around once it reaches the end of the
signal.

Since perfect reconstruction and critical sampling are desirable properties for a filter
bank, periodic-extension is typically the method of choice as the other two suffer from
slight redundancies when PR is imposed. However, it has been found that periodic-
extension suffers from boundary artifacts that spread from one end of the frame to the
other end in the context of block processing. Figures 4.10 shows an example of an audio
signal that has been encoded with a wavelet audio coder (see Appendix A for detail)
based on a WFB with periodic-extension. We can see that the reconstructed signal in
Figure 4.10(b) contain some coding artifacts that appear at the frame boundaries as a
result of quantization noise spreading from one end of the frame to the other. In listening
tests, these boundary artifacts have been perceived as “clicking” noises that were found
to be rather objectionable.

An alternate boundary handling scheme was proposed in [77] where a way of per-
forming the WFB analysis without introducing “artificial” boundaries between frames,
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Figure 4.10: Example of a signal encoded with a Wavelet Audio Coder (a) original
signal (b) reconstructed signal using circular-extension (c) reconstructed signal using
transparent-extension

while maintaining critical sampling and PR, was developed. The scheme essentially in-
volved taking samples from the preceding and proceeding frames so as to make the frame
boundaries seem “transparent” when convolution was performed at each stage of the tree
structure. An example of this scheme applied to the same signal of Figure 4.10(a) is
shown in Figure 4.10(c). The drawback to this scheme was increased complexity and
longer delays where the delay was found to be

Delay = (2d − 1)(L − 2), (4.84)

where d = depth of tree and L = length of filter. Another widely used strategy in
audio coding for minimizing boundary artifacts is to use an overlap-add window for each
frame before the filter bank is applied. This method provides a relatively simple way of
minimizing boundary artifacts at the cost of introducing some redundancy. An example
of this scheme appears in [34] where a WFB bank with periodic-extension was used in
conjunction with an overlap-add window.
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4.4 Summary

This chapter presented the theory of the wavelet filter bank (WFB) and showed its
connection to the theory of multirate filter banks. In particular, it has been shown that
there was an implied equivalence between the two-channel PR filter bank and the dyadic
DWPT. As a result, the WFB can be implemented through efficient algorithms that are
based on cascaded filter banks and, additionally, new wavelet basis filters can be designed
using design methods based on PR-QMF filters.

Furthermore, the WFB has been found to provide a great deal of flexibility through
its decomposition tree structure and basis filter. This flexibility can be seen as a way of
providing a flexible tiling of the time-frequency plane where the tree structure controls
the overall resolution and the basis filter controls the localization properties of each tile.
This flexibility in resolution and localization of the WFB are both important features in
the context of audio coding and are further considered in the next chapter.



Chapter 5

Wavelets in Perceptual Audio

coding

The relatively successful application of wavelets in image coding has led some to also
investigate its potential usefulness in audio coding. Many types of wavelet audio coding
schemes have been proposed, as a result, and various results have indicated that the
WFB provides an interesting and potentially useful way of representing and coding audio
signals.

In image coding, the wavelet transform (WT) has been found to be a natural and well
suited representation that efficiently captures the important details of an image. The
WT captures these details through a multiresolution analysis that can “see” the details
or changes in an image signal at various resolutions and at various spatial locations so
that lack of change, i.e. small coefficients, can be safely discarded. Image signals are
generally characterized by having many regions that contain little or no change, and
some regions, especially around image “boundaries”, that contain the important changes.
These clustered distributions of signal details make the wavelet basis functions, which are
localized in space, particularly suitable for analyzing image signals. More generally, the
WT has been found to be well suited for analyzing signals that contain abrupt changes,
non-stationarities, and points of discontinuities [70].

In audio coding, the signals we encounter are generally made up of many quasi-
stationary regions and some non-stationary or transient-like regions (section 2.2.2). Fur-
thermore, significant changes generally occur at all resolutions, i.e. throughout the entire
spectral range, and throughout a resolution, i.e. throughout the entire temporal range.
Therefore, the coding strategy used in image coding can not be as readily applied in au-

73
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dio coding. A similar strategy, however, might involve adapting the decomposition tree
structure and the basis filter so that energy concentration in the wavelet domain can be
optimized. This can be thought of as a statistically based coding scheme that tries to
maximize (or minimize) the spread of the signal in the wavelet domain according to some
statistical measure. Actually, statistically based wavelet audio coders have already been
proposed (section 5.1.1) where they were found to provide only modest performances com-
pared to perceptually based schemes. Perceptual coders (as described in chapter 2), on
the other hand, rely on a perceptual criteria that is computed by a psychoacoustic model
so that coding distortion can be shaped in a way that minimizes perceived distortion.
Applying a perceptual criteria to a WFB means that the choice of the tree structure and
basis filter, and the way the wavelet coefficients of each band are encoded, need to first
consider the perceptual requirements of the audio signal and the characteristics of the
human auditory system (section 2.2.1). Moreover, unlike image coding where we think of
the wavelet decomposition as a multiresolution analysis, perceptual audio coding treats
the WFB as a filter bank that provides a time-frequency domain representation of the
input signal.

This chapter examines the application of the WFB in the context of perceptual audio
coding. First, an overview of existing wavelet audio coders is given, with particular
emphasis on the choice of the tree structure and basis filter. In so doing, we discover
that there are some important issues that have not been adequately discussed in the
literature, namely, the time and frequency localization (as opposed to resolution, as will be
explained) properties of the WFB, as well as the ordering of the subbands in the frequency
domain. These represent fundamental issues that need to be addressed when we apply
the WFB to a perceptual coding scheme and are, therefore, described in some detail. The
frequency localization property of the WFB, in particular, seems to be rather poor when
filters are iterated to obtain a subband analysis scheme. One method for improving the
channel selectivity in the WFB is explored by making use of a filter design technique that
provides some design flexibility. A number of conclusions are drawn from this study and
an implementation of a wavelet audio coder is used to compare the newly designed filters
with other well known wavelet filters. The sections of this chapter are briefly described
as follows. Section 5.1 gives an overview of existing wavelet audio coders, section 5.2
describes some fundamental issues involved in using the WFB in a perceptual audio
coder, section 5.3 explores one technique for improving the frequency domain localization
property of the WFB, section 5.4 discusses some preliminary results using the proposed
technique, and section 5.5 ends with a summary and some concluding remarks.
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5.1 Overview of Wavelet-Based Audio Coders

A number of audio coders based on the WFB have been proposed over the past decade in
order to demonstrate the feasibility of such a scheme and to explore various configurations
that lead to a better design. A brief description of several examples as well as a summary
of design approaches for the decomposition tree structure and wavelet basis filter is given
next.

5.1.1 Examples of Wavelet Audio Coders

One of the earliest examples of a wavelet audio coder was proposed by Wickerhauser
in [78], where the well known Best Basis algorithm was used. The wavelet analysis
was done by selecting the “best” tree from a library of tree structures through the use
of a simple entropy criterion. The resulting decomposition provided many coefficients
that fell below a certain threshold, where such coefficients were simply discarded so that
coding requirements were reduced. Furthermore, it was found that Huffman coding in
the wavelet domain provided better performances than applying Huffman coding in the
time domain, indicating that the wavelet transformation did provide a good decorrelation
property. The proposed coder was tested using speech signals only and results indicated
that the algorithm provided modest compression ratios of between 2 and 3. Other non-
perceptually-based wavelet audio coders have also followed, e.g. [79, 80, 81, 82, 83], but
were generally found to provide lower performances compared to the perceptually-based
audio coding schemes.

The first extensive study using a perceptually based scheme was done by Sinha and
Tewfik in [34]. The coder that they proposed was comprised of two parts, namely, a
perceptual part and a dynamic dictionary part. The two were designed to work in con-
junction so that one removed the perceptual irrelevancies and the other removed the
statistical redundancies. Only the perceptual part will be described here. The percep-
tual part consisted of a wavelet filter bank, a frequency-domain masking model, and a
bit allocation and encoding stage much like the perceptual coder described in chapter 2.
The WFB was based on a fixed 29-band CB resolution tree structure and an adaptive
basis filter. The filter selection was done by computing the bitrate required for percep-
tual transparency with each filter from a library of basis filters, and choosing the filter
that provided the best performance. The filter library was limited to wavelets with the
maximum number of vanishing moments, e.g. Daubechies, which only differed in their
phase responses. Filters with the maximum number of vanishing moments were indicated
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as being “near optimal” among different classes of filters. Boundary artifacts were mini-
mized by dividing the audio signal into overlapping frames, where the ends of each frame
were weighted by a hanning window with an overlap of 128 samples. For filter convo-
lution, periodic-extension was used. The psychoacoustic model was based on frequency
domain masking only and was designed in a similar way to MPEG Psychoacoustic Model
2. The bit-allocation and quantization stage was by far the most complex part of the
algorithm since it performed the optimization procedure that selected the basis filter for
each frame. The bit allocation was done by first translating the masking threshold from
the Fourier domain, which was the domain used by the psychoacoustic model, to the
wavelet domain and then determining the quantization noise that was allowed in each
wavelet band for maintaining perceptual transparency. When translating the masking
levels from the Fourier to the wavelet domain, this algorithm made an explicit simpli-
fication where out-of-band components that appeared outside of the frequency support
of each wavelet band were neglected [34, p. 3469]. The quantization was done using a
simple adaptive scalar quantizer. Additionally, a pre-echo protection method was used
by adaptively switching the frame size between 2048 and 1024 samples depending on
the time-domain characteristics of the input signal. Results indicated that the proposed
coder (perceptual part alone) provided “almost transparent” coding at 64-70 kbps.

Other variations on Sinha and Tewfik’s wavelet audio coder have also appeared and a
few are mentioned here. In [84], Black and Zeytinoglu proposed a simpler wavelet coder
based on the same fixed CB tree structure as [34] but using a fixed 16-tap Daubechies
filter. The psychoacoustic model employed the output from the WFB stage rather than
re-computing a Fourier domain representation, which was essentially less accurate but
also less computational load. The coding quality of the algorithm was reported to be
comparable to MPEG-1 Layer I algorithm, which provided near-transparency for bitrates
above 128 kbps [85]. Other wavelet audio coders that tried to use a wavelet analysis inside
the psychoacoustic model appeared in [86, 87, 88]. These audio coders have reported
encoding rates that ranged anywhere between 70 and 110 kbps. In [89], Leslie and
Sandler proposed a coder that used a fixed uniform 32-band tree structure, similar to
the Polyphase filter bank that was used in MPEG-1 Layer I and II algorithm, and a
fixed Daubechies filter. Listening results indicated that the coder was comparable to the
MPEG-1 Layer I coder even though the frequency localization property of the WFB was
found to be poorer than that of the Polyphase filter bank.

In [90], Srinivasan and Jamieson proposed a wavelet audio coder with a fixed basis
filter and an adaptive tree structure. The MPEG-1 Psychoacoustic Model 2 [16] was
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used for computing the masking threshold. The algorithm essentially tried to adapt the
tree structure to match the frequency resolution of the resulting masking threshold while
satisfying some computational constraint. This procedure worked as follows. An iterative
search was done at each level of the tree to find the nodes that could provide some savings
in bits by further splitting them, while an accumulator was used to keep track of the
overall computational requirement. For each node that provided a savings in bits, if its
computational requirement did not make the overall computational requirement exceed
a given computational constraint, then that node was made to split and the accumulator
was updated. This was repeated for each level of the tree until all such nodes were found
or until all computational load was drained. The idea behind the splitting of a node
was that a subdivision of a wavelet band sometimes provided a better match between
the subband and the corresponding masking resolution (section 2.2.1), which could result
in a more efficient usage of bits. This, of course, depended greatly on the resolution of
the psychoacoustic model, which was designed to provide a resolution of 63 1/3-octave
bands. Normally, this procedure would produce the same type of tree structure for a
given computational constraint (since the masking resolution remained the same) so an
additional temporal constraint was included so as to allow the tree structure to vary
according to the time-domain properties of the input signal. The resulting algorithm was
claimed to provide transparent coding at 45 kbps.

In [91, 92], Philippe et al. experimented with a WFB coding scheme that offered a
great deal of flexibility in terms of the tree structure and basis filter. This scheme was used
to determine how various choices of the tree structure and basis filter affected the overall
performance. To do this, they developed an optimization procedure that estimated the
bitrate required to encode a signal based on a perceptual criteria (MPEG Psychoacoustic
Model I) and this was used determine the required bitrate for a variety of tree structure
and basis filter configurations. More specifically, three features of the WFB were tested,
namely, the number of subbands, the resolution of the subbands, and the choice of the
filter. They found that for the tree structure, a WFB with 16 channels and a critical band
resolution provided the optimal performance and for the basis filter, they found that Onno
filters (optimal in an AR(1) coding gain sense) provided the best performance. Among the
filters included in the test were maximally regular filters and highly frequency selective
filters. A wavelet coder based on their findings was proposed and was assessed through
a listening test. Results indicated that its performance was comparable to the MPEG-1
Layer II algorithm at 80 kbps, providing “near-transparency” at that bitrate.

Lucent’s EPAC algorithm was an example of a commercial audio coder that utilized
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a WFB in its decomposition stage [93]. A switched filter bank was used in the decompo-
sition stage to provide an adaptive scheme, where stationary portions of the signal were
analyzed with the high-resolution MDCT and non-stationary portions were analyzed with
a WFB. The WFB was found to provide better coding performances for transient signals
since it provided a CB resolution that allowed better control of time-domain artifacts.
The basis filters were chosen to provide good stop-band and transition-band character-
istics and some regularity was also imposed, since this was found to provide “attractive
characteristics” that compromised time resolution and frequency resolution requirements.
The EPAC algorithm was found to provide slightly better results than the MPEG-1 Layer
III algorithm at 64 kbps [2].

In summary, the application of the WFB in perceptual audio coding has been shown
to be feasible by several proposed coders and bitrates of between 48 and 110 kbps have
been reported. We note that the wide range of performances in these wavelet coders can
be attributed to the choice of the WFB, but also to the differences in the other stages
of the coder, as well as the testing procedure used to carry out the evaluations. As a
result, an objective comparison between various WFB strategies is difficult. But we can
still analyze the various strategies and determine if any consensus exists among them.

5.1.2 Wavelet Tree Structure

As described in section 4.3, the WFB tree structure determines the time-frequency reso-
lution of the resulting representation and as described in section 2.2, this resolution needs
to be matched to the requirements of the signal. Since perceptual coders are first and fore-
most designed to eliminate perceptual irrelevancies (and then statistical redundancies),
the time-frequency resolution needs to be driven by the resolution of the psychoacous-
tic model. And since common psychoacoustic models provide masking information in
the frequency domain with a critical band resolution (section 3.4.3), the design of most
wavelet audio coders has also been based on the use tree structures that provide a similar
CB resolution, e.g. the wavelet coders in [34, 87] that use a 29-band CB structure, the
coder in [94] that uses a 24-band CB structure, and the coder in [92] that uses a 16-band
CB structure (see Figure 5.1). Other types of tree structures that have appeared in some
wavelet coders include the standard dyadic WT tree structure [95] and the uniform, i.e.
Walsh, tree structure [89].

Wavelet coders that are based on adaptive tree structures have also been explored since
they can provide a more flexible way of dealing with the time-varying nature of audio
signals. The algorithm proposed by Wickerhauser described above is the earliest example
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Figure 5.1: Examples of WFB tree structures approximating the CB (a) 16-band (b)
24-band (c) 29-band

(using an entropy-based criteria) and the algorithm proposed by Srinivasan and Jamieson
is another example (using a perceptual criteria). A more recent example that appeared in
[96] tried to develop an adaptive scheme that took both statistical and perceptual criteria
into account, although it was said to be in its developmental stage.

5.1.3 Wavelet Basis Filter

Unlike the tree structure, the choice of the basis filter of a WFB has received much less
attention, and even papers that do address it seem to lack any consensus.

Sinha and Tewfik in [34], as described above, have reported some findings from their
algorithm during the process of finding the optimal filter for audio coding. They found
that filters with the maximum number of vanishing moments provided “near-optimum”
results for a given filter length and that longer filters usually provided better results, for
lengths of up to 40 and possibly more. Since the algorithm performed a “blind” optimiza-
tion that selected the filter with the lowest associated bitrate, no clear physical meaning
was provided as to why filters with the maximum number of vanishing moments provided
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near-optimum results. On the other hand, the increase in performance with longer fil-
ters could be explained by the fact that longer filters generally provide better frequency
selectivity and even better coding gain. This relationship between filter length and per-
formance was also confirmed in [91, 97, 95], where lengths of up to 32 have typically been
considered. Another study done by Kudumakis and Sandler in [95], however, found that
four different filter families, namely, Daub-A (minimum phase), Daub-B (maximum sym-
metry), Johnston filters, and Smith-Barnwell filters, provided very similar performances
when assessed with the SSNR measure and with listening tests. Yet another experiment
by Philippe et al. in [91, 92] concluded that the coding gain (in AR(1) sense) was the
most relevant criteria for selecting the filter, and furthermore, that frequency selectiv-
ity (in terms of stop-band attenuation) and regularity (in terms of number of vanishing
moments) were less important.

Other wavelet coders that do not really address the selection of the basis filter are
usually found to be using Daubechies wavelets, e.g. [84, 88, 94], or biorthogonal wavelets,
e.g. [90, 98], with filter lengths that typically lie between 16 and 32.

5.1.4 Discussion

It is interesting to note that in the case of the tree structure, there is somewhat of a
consensus, but for the basis filter there seems to be no agreement between the various
researchers.

Also, we note that many papers, e.g. [34, 94, 89, 87, 92], have mentioned the poor
frequency localization properties of WFB, but none have provided an adequate description
of how they arise and how they can be minimized or eliminated, if that is possible to do
so. Recall that (section 4.3) the tree structure determines the overall time-frequency
resolution, while the basis filter determines the localization properties of the individual
wavelet bands. And as discussed in section 2.2.3, the localization properties of each
subband is very important in audio coding. This, as a result, motivates us to further
explore the localization properties of the WFB, particularly with respect to the choice of
the basis filter.

5.2 Audio Representation Using the Wavelet Filter Bank

As already explained above and in section 2.2, the goal of the filter bank is to provide an
appropriate representation of the input audio signal with a time-frequency resolution that
matches to the characteristics of the input signal. In the context of perceptual coding,
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the resolution has to first match the resolution of the masking threshold. Ideally, this
resolution would be determined by the psychoacoustic model and vary for each audio
frame, but using a fixed-resolution frequency-domain masking model means that:

1) A decomposition with a CB resolution is usually most efficient.

2) If temporal artifacts become important, then they need to be identified by some
other means, e.g. over-coding protection (OCP) in PAC [27] or temporal noise
shaping (TNS) in AAC [18], since the psychoacoustic model is blind to temporal
details within a given frame.

Here, we focus on the first requirement and look at the WFB as a possible solution.
In particular, we study the frequency localization properties of the WFB as an iterated
filter bank to show that the subbands are not all uniformly shaped and that large out-
of-band side-lobes appear for some bands. In addition, the ordering of the wavelet bands
in a WFB is shown to be non-sequential and that we need to design the tree structure
carefully in order to obtain a subband decomposition that correctly represents the desired
CB division. Although the second requirement is not the focus of this study, basic time
localization properties of the WFB are also briefly described.

5.2.1 Subband Representation in Frequency Domain

First, consider a wavelet filter whose response is shown in Figure 5.2 and whose scaling
and wavelet functions are shown in Fig. 5.3. This is the minimum-phase Daubechies
wavelet of length L = 32, which is characterized by being orthogonal and having the
maximum number of vanishing moments (or zeros) at the Nyquist frequency w = π for
a given support. As a result, the filters are maximally flat at w = π and the stopband
response is zero at Nyquist frequency (or close to it in practice). The transition band,
however, does not possess a very sharp cut-off rate. The phase response shows that the
filters are not linear phase, since orthogonality and linear phase can not be simultaneously
satisfied (section 4.1.4).

By taking the given two-channel filter bank and iterating it fully down to a depth
of 2, 3, 4, and 5, we obtain uniform 4-channel, 8-channel, 16-channel, and 32-channel
filter banks as shown in Figure 5.4. As can be readily seen, the frequency responses of
the uniform filter banks are far from being ideal, i.e. channel separation is poor. The
shapes of the subband channels are uneven and variable, and become progressively worse
for increasing number of channels. There is considerable overlap between some of the



CHAPTER 5. WAVELETS IN PERCEPTUAL AUDIO CODING 82

0

0.5

1

1.5

M
ag

ni
tu

de

−400

−200

0

200

M
ag

ni
tu

de
 (

dB
)

0 0.1 0.2 0.3 0.4 0.5
−4

−2

0

2

4

P
ha

se

Frequency (Normalized)

Figure 5.2: Frequency response of Daubechies (minimum-phase) filter of L = 32
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Figure 5.3: Daubechies (minimum-phase) (a) scaling function (b) wavelet function (L =
32)

adjacent bands and even between bands that are far apart due to large side-lobes. These
side-lobes, which can also be thought of as aliasing components, essentially spread noise
from one channel to other channels and can be the cause of much unwanted distortion in
audio coding. Furthermore, side-lobes become progressively worse for filter banks with
greater numbers of channels, which we can see clearly from the example of a 32-channel
filter bank that is shown in Figures 5.5 and 5.6 where the individual channels are plotted
separately (only the first 16 bands are shown since the other 16 are symmetrical to the
first half). From the figure, we can see that some bands, e.g. bands 6, 9, 12, 13, and 14,
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are particularly prone to such out-of-band energy components.
To see how these side-lobes arise, Figure 5.7 shows the iteration process (down the

tree structure) as it occurs in the frequency domain for band 14, and as a comparison
the iteration process for band 15 in Figure 5.8. The channel responses of bands 14 and
15 can be derived by “migrating” all the filters upward through the down-samplers (see
Figure 4.6) according to the noble identities [35]. The channel responses are then given
by

H14(z) = H0(z)H1(z2)H0(z4)H0(z8)H1(z16) (5.1)

and
H15(z) = H0(z)H1(z2)H0(z4)H0(z8)H0(z16). (5.2)

Figure 5.7 shows plots of depths 1 through 5 (depth 1 is at the top of the tree and depth 5 is
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at the bottom of the tree) where at each depth the solid line represents the “accumulated”
channel response and the dotted line represents the next filter to be iterated. Iteration in
the frequency domain is equivalent to multiplying the two responses (the solid and dotted
lines) to obtain the solid line at the next depth. Note that bands 14 and 15 have the same
sequence of iterations up until the last depth where the former is iterated with the high-
pass filter H1(z16) and the latter is iterated with the low-pass filter H0(z16). Now, looking
at this last iteration as shown in depth 4, we see that the accumulated response of band
14 (Figure 5.7) overlaps with two “pass-bands” of H1(z16), where the overlap with the
second “pass-band” is what gives rise to the large side-lobe as shown in the depth 5 plot.
Similarly, for band 15 (Figure 5.8 we see that the accumulated response only overlaps
with one pass-band of H0(z16) and therefore avoids the unwanted overlap. Looking at the
sequence of iterations (or multiplications) from one depth to the next, we can see that
the side-lobe of band 14 is essentially caused by the large transition bandwidth of filter
H0(z) at depth 1, and furthermore, that the uneven shapes of both bands 14 and 15 are
also caused by the poor transition-band characteristics of filter H0(z) (and H1(z)).

For a given WFB, the shape of each band and the side-lobes that appear will vary de-
pending on the transition-band and stop-band characteristics of the basis filter (and tree
structure). But it is clear from the above description that iterated filter banks have an
inherent difficulty with providing “clean” frequency separation between subbands, partic-
ularly when compared to other filter banks such as the MDCT and pseudo-QMF that are
commonly used in audio coding. The presence of such large side-lobes essentially trans-
lates into uncancelled aliasing distortions that appear during coding when coefficients are
quantized. The way the subbands overlap and spread aliasing errors in this somewhat
convoluted way is, in effect, a major drawback in using an iterated filter bank such as the
WFB. In perceptual coding, frequency localization and separation are important because
(section 2.2.3):

1) The psychoacoustic model provides masking results that only apply to the corre-
sponding subband and any additional quantization error that occurs outside of the
band is not guaranteed to be remain transparent.

2) Lots of the audio signals are quasi-stationary, which require good frequency local-
ization.

As a result, these out-of-band aliasing errors need to be eliminated or minimized when
designing an audio coder.
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Figure 5.7: Iteration for obtaining band 14 (of a 32-channel uniform WFB)
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5.2.2 Coding Examples Using Tonal Signals

The effect of out-of-band energy components in the iterated WFB is further illustrated
in Figure 5.9 where tonal, i.e. sinusoidal, signals have been encoded and decoded using
a wavelet audio coder described in Appendix A. The WFB uses the L = 32 Daubechies
wavelet filter and a uniform 32-channel decomposition scheme. The tonal signals are
located at the center of each subband. The coding is done by assigning full bits, e.g.
15 bits, to the band where the signal appears and assigning no bits to the remaining
31 bands. This would be equivalent to decomposing the signal and then reconstructing
it using only the coefficients from the band where the signal appears. As a result, the
reconstructed signal of the given band shows uncancelled aliasing components that appear
at the locations where the given band overlaps with other bands. Figure 5.9 and 5.10
shows the original and the reconstructed signals for bands 0 to 15. Note how the distortion
for each band is unique in that it reflects the overlapping “characteristics” of the given
band. Appendix B also gives references to audio samples of the original and reconstructed
signals that are shown in Figures 5.9 and 5.10. As a comparison, Figure 5.11 shows the
same 16 sinusoids that are encoded with same audio coder but using an MDCT (with a
sine window) instead of a WFB.

5.2.3 Natural Vs. Sequency Ordering of Subbands

First, consider the simple filtering and downsampling operation of the QMF filter bank as
shown in Figure 5.12. The input signal x(n) goes through low-pass filter H0(z) and high-
pass filter H1(z) and then through a down-sampler to produce signals x0(n) and x1(n).
The filtering operation followed by downsampling can be illustrated in the frequency do-
main as a multiplication followed by an expansion operation as shown in Figure 5.13. The
expansion is done with respect to center frequencies 2πm for m ∈ Z, and for convenience
the subband responses are shaded to distinguish the left and right regions, i.e. the low
and high frequency regions (the shaded region in H0(z) before down-sampling is the low
frequency region and the shaded region in H1(z) is the high-requency region). Then, for
the low-pass filter H0(z) shown in Figure 5.13(a), the “low-side” before down-sampling
becomes the low-side after down-sampling and the “high-side” before down-sampling be-
comes the high-side after down-sampling. But for the high-pass filter H1(z) in Figure
5.13(b), the low-side before down-sampling becomes the high-side after down-sampling
and high-side before down-sampling becomes the low-side after down-sampling. This es-
sentially means that high-pass filtering followed by down-sampling reverses the frequency
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order of the resulting signal spectrum.

Figure 5.12: A QMF filter bank (a) configuration (b) frequency response

Figure 5.13: Down-sampling of subband channels as expansion in the frequency domain
(a) H0(z) (shaded region is “low-side”) (b) H1(z) (shaded region is “high-side”)

For a tree-structured decomposition, a signal may be iterated many times before
reaching a leaf node and depending on the path it takes, there many be any number of
low-pass and high-pass filtering stages, where each time it encounters a high-pass stage
the frequency order of the resulting spectrum is reversed. This means that the leaf nodes
of a particular tree structure does not necessarily follow the logical frequency order as we
go from left to right, nor does every low-pass branch result in the actual low-frequency side
and high-pass branch result in the actual high-frequency side. As an example, a uniform
32-band tree structure is shown in Figure 5.14 where the natural and sequency ordering
[99] of each band (or node) is indicated. Natural ordering represents the node number as
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it appears in the tree (at a given level) and sequency ordering represents the band number
that we would normally associate with a band if all the bands were sequentially ordered
in the frequency domain. Naturally, when we think of subband analysis, we think of each
band in terms of the frequency region it occupies and when we design filter banks for
audio coding, we expect the bands to reflect a logical sequency ordering in the frequency
domain. As a result, we need to apply a decomposition tree structure (in natural order)
that reflects the desired sequency order and a way of translating one from the other. An
algorithm that provides a WFB decomposition using a sequency ordering specification
has been developed by the author and described in Appendix C. Interestingly, this issue
never comes up in the standard WT since iteration is only applied on the low-channel
side.

Figure 5.14: Natural and sequency ordering of a uniform 32-channel tree structure. Note,
natural ordering is specified inside the node, sequency ordering is specified below the node,
and d=depth

5.2.4 Localization in Time Domain

Here we briefly look at the relationship between filter length and time support, or time
localization, in the wavelet representation. Since filtering is implemented through a con-
volution operation, longer filters essentially result in longer convolutions and longer time
supports. This is illustrated in Figure 5.15(a) where we try to compute a wavelet coef-
ficient at a tree depth of 2 using a filter with length L = 6. The arrays represent the
wavelet coefficients at each tree node for depths 1 and 2, and the array at depth 0 repre-
sents the input signal with 32 samples. At each iteration, filters h0 and h1 are convolved
with the coefficients of a given node, which produces two child-nodes of half-length each.
This convolution can be thought of as finding the cross-product between the wavelet co-
efficients and the even-translates of filters h0 and h1 as shown in Figure 5.15(b). As a
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Figure 5.15: The effect on time localization by the WFB tree iteration (a) Time local-
ization of coefficient 5 in node 2 at depth 2 (b) Filtering operation from one level to the
next

result, in order to compute coefficient 5 of node 2 at depth 2 (Figure 5.15(a)), we need 6
coefficients from node 1 at depth 1, and similarly, to compute these 6 coefficients of node
1 at depth 1, we need 16 coefficients from depth 0. Thus, we can conclude that we need
16 coefficients from the original signal in order to compute any one wavelet coefficient
at depth 2 given a filter length of L = 6. More generally, we can derive the number of
coefficients we need at depth 0 in order to compute one wavelet coefficient at an arbitrary
depth d using an arbitrary filter length L according to

Tsupport = 2d + (2d − 1)(L − 2). (5.3)

Equation 5.3 essentially represents the time support associated with the wavelet coeffi-
cients of a given tree node as a function of tree depth, d, and filter length, L. Some values
of these time support have been computed for a number of depths and filter lengths and
given in Table 5.1. Note that the ideal time support is given by

Tideal = 2d, (5.4)
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since down-sampling by 2 at each depth reduces the time-resolution by a factor of 2.
From Table 5.1, we can see that only L = 2 provides this ideal time localization. We can
clearly see that similar to how wavelet bands spread and overlap with adjacent bands
in the frequency domain, wavelet coefficients also exhibit this non-ideal behaviour in the
time-domain since there will always be some overlap (in time) between adjacent wavelet
coefficients. Although the amount of overlap depends on the depth and length of the
filter, the way in which they overlap may also depend on the time-domain characteristics
of the low- and high-pass filters. For example, if a filter is shaped (in the time domain)
so that most of the energy is concentrated near the middle, then its “effective support”
can be less than a filter that has its energy more evenly spread-out across its length.
Understanding these characteristics can be important in understanding the exact time
localization properties of the WFB and could be the topic of further study. But we
can use equation 5.3 and Table 5.1 as a general measure indicating the upper bound
on the time support provided by wavelet coefficients. From the table, we can already
begin to see the trade-offs involved between time localization and frequency localization
since ideal time localization requires a filter length of L = 2, but this obviously provides
poor frequency-domain localization. Conversely, if we start increasing the filter length,
frequency-domain localization improves but time-domain localization suffers.

5.3 Minimizing Inter-Band Leakage in the WFB

The problem with inter-band leakages that arises during a WFB decomposition (described
above in section 5.2) has been recognized in some audio coding papers, e.g. [34, 92, 94],
while most others do not mention it. One possible way of minimizing, or at least dealing
with, out-of-band aliasing errors is briefly described in the next section and another
method based on the modified Remez exchange algorithm is explored in some detail in
the following section.

5.3.1 Method for Minimizing Inter-Band Leakage

One strategy for eliminating or minimizing out-of-band aliasing errors is to calculate
the amount of distortion that is introduced into all the bands when one wavelet band
is quantized and make sure that the sum of all distortions remains below the masking
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Levels (l) Ideal L=2 L=4 L=8 L=16 L=32 L=64
1 2 2 4 8 16 32 64

(0.05) (0.09) (0.18) (0.36) (0.73) (1.45)
2 4 4 10 22 46 94 190

(0.10) (0.23) (0.50) (1.04) (2.13) (4.31)
3 8 8 22 50 106 218 442

(0.18) (0.50) (1.13) (2.40) (4.94) (10.0)
4 16 16 46 106 226 466 946

(0.36) (1.04) (2.40) (5.12) (10.6) (21.5)
5 32 32 94 218 466 962 1954

(0.73) (2.13) (4.94) (10.6) (21.8) (44.3)
6 64 64 190 442 946 1954 3970

(1.45) (4.31) (10.0) (21.5) (44.3) (90.0)
7 128 128 382 890 1906 3938 8002

(2.90) (8.66) (20.2) (43.2) (89.3) (181.5)
8 256 256 766 1786 3826 7906 16066

(5.81) (17.4) (40.5) (86.8) (179.3) (364.3)

Table 5.1: Time support of a wavelet coefficient at depth d with filter of length L. Note:
values in parenthesis are duration in ms at 44.1 kHz sampling frequency

threshold for all the bands. This can be expressed as

M−1∑
i=0

σ2
i |Gi(w)|2 ≤ T (w) (5.5)

for all frequency w where

σ2
i = quantization noise energy in band i

Gi(w) = response of channel i

T (w) = masking threshold energy.

This formulation essentially takes into account the amount of coding noise that is intro-
duced into one band by all the bands (including the given band) and tries to minimize
the bit allocation of each band while keeping the overall distortion below the masking
threshold. The procedure for obtaining σ2

i for each wavelet band is complex and typi-
cally done through an optimization process. Examples of this procedure can be found
in [92, 94]. Although this method explicitly takes care of the errors associated with all
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out-of-band aliasing components, the associated difficulty in designing such a method
and the associated increase in bit requirement for some wavelet bands represent draw-
backs. Furthermore, if we think of the WFB as a tool that is used for audio coding, then
we would expect the tool to “accommodate” to the application and not the other way
around.

5.3.2 QMF Design for Minimizing Inter-Band Leakages

Another, rather straight-forward, approach that has not been explored involves designing
two-channel filter banks according to conventional filter specifications and determining if
overlaps between wavelet bands can be minimized or eliminated altogether. To eliminate
the side-lobes, the QMF filters need to have cut-off rates that are sharp enough so that
the “multiple band-overlaps” described in section 5.2.1 do not occur when the filters
are iterated. Therefore, the transition bandwidth becomes an important criteria in this
approach. Generally, QMF filter designs are constrained by the following parameters:

1) Length L

2) Transition bandwidth

3) Stop-band attenuation

4) Pass-band and stop-band ripples

5) Number of vanishing moments

6) Orthogonality or Phase linearity

As already mentioned in 4.3.2, various techniques and algorithms already exist for
designing QMF filters that allow one to control some or many of the above design pa-
rameters. Here, we focus on one technique proposed by Rioul and Duhamel based on
the Remez exchange algorithm that provides orthogonal QMF filter solutions. A short
description of this technique is given next.

5.3.3 Modified Remez Exchange Algorithm for Orthogonal QMF filters

The modified Remez exchange algorithm proposed by Rioul and Duhamel [100] provides
orthogonal QMF solutions with additional constraints on the filter length (L), transition
bandwidth (B), and number of vanishing moments (K). The algorithm also maximizes
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the stop-band attenuation level after having satisfied the given requirements. The mod-
ified Remez exchange algorithm is based on the design of half-band filters followed by
factorization, where the factorized low-pass filter is of the form

H0(z) = (1 + z−1)KQ(z), (5.6)

where

K = number of vanishing moments

Q(z) = polynomial with no poles or zeros at z = −1.

For “wavelet” solutions, filter H0(z) has to also satisfy the admissibility and the orthog-
onality conditions [74, p. 73] given by, respectively,

∑
n

h0(n) =
√

2 and
∑

n

h0(n)h0(n + 2k) = δ(k). (5.7)

The orthogonality condition above is also equivalent to the power symmetry condition in
the z-domain (section 4.1.2) and is also referred to as the QMF condition [101]. If H0(z)
is of length L, then the orthogonality condition represents L/2 equations (or constraints),
which leaves a maximum of L/2 degrees of freedom for K. The admissibility condition
requires that the zeroth moment exists, i.e. K ≥ 1, which means that we have

1 ≤ K ≤ L/2. (5.8)

The modified Remez exchange algorithm first imposes regularity K on filter H0(z) and
then uses the remaining L/2 − K degrees of freedom to satisfy the transition bandwidth
(B) constraint and then to maximize the stop-band attenuation. As a result, regularity,
transition bandwidth, and stop-band attenuation represent three competing requirements.
Note that for maximum regularity of K = L/2, the algorithm provides the Daubechies
solution and for minimum regularity of K = 0 (“non-wavelet” solution), the algorithm
provides the Smith-Barnwell solution (section 4.1.2).

Figure 5.16 shows examples of filters derived from this algorithm. The filters are all
designed with L = 32 and using various values of B and K. As already mentioned, the
filters with K = 0 (first column) are Smith-Barnwell filters, while the solution for K = 16
(not shown here) results in the Daubechies filter that has already been shown in Figure
5.2. Note that imposing greater constraints on B and K takes away the “degrees of
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Figure 5.16: QMF filters designed using the modified Remez exchange algorithm with
L = 32 and various values of B and K (a) linear (b) dB
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freedom” for improving the stop-band attenuation, which can be seen in the figure where
the filter with the widest bandwidth B = 0.185 and smallest regularity K = 0 provides
the best stop-band attenuation and the filter with the smallest bandwidth B = 0.067 and
highest regularity K = 12 provides the worst stop-band attenuation. For other values
of B and K, the stop-band attenuation levels are progressively better for increasing B

and decreasing K. Also note that since the regularity constraint puts K zeros at the
Nyquist frequency, the filters that have regularity K > 0 show responses that approach
zero at the Nyquist frequency, and get there quicker if K is larger. Lastly, the number of
oscillations in the stop-band is related to the degrees of freedom remaining after regularity
K is imposed, i.e. L/2−K, which is used by the alteration theorem within the algorithm
to provide the optimized equiripple response.

5.3.4 Filters for Eliminating Side-lobes

We can now generate filters with various transition bandwidths and stop-band attenuation
levels and determine the type of channel responses that a particular QMF filter pair
provides in an iterated filter bank.

During the experimental stage, it has been found that by using filters with sufficiently
sharp cut-off rates the side-lobes could be eliminated altogether and the overlap between
adjacent bands could be somewhat improved. The required transition bandwidth for
eliminating all side-lobes, called the critical bandwidth Bc, for each channel in uniform
4-, 8-, 16-, 32-channel filter banks has been manually determined and results have been
summarized in Table 5.2. Since reducing the transition bandwidth effectively raises stop-
band attenuation levels, this procedure amounted to manually determining the value of
B that made the largest side-lobe level to be equal to the stop-band attenuation level.
This procedure was done using filters of lengths L = 24 and 32 (both of which provided
similar results and where the average was taken) and using a small value of regularity
(K = 2) so that stopband responses could be maximized.

Two observations can be made from the results in Table 5.2. First, note that Bc

values in the lower bands remain the same down the column regardless of the number of
channels in the filter bank. For example, Bc values for channel 0 are about 0.202 for all
four filter banks and Bc values for channel 2 are 0.120 for the 8-, 16-, 32-channel filter
banks. In fact, there is a pattern that appears in the Bc measurements where the values
in the lower-half of one filter bank repeat in the “lower-quarter” of the next filter bank,
i.e. the filter bank with double the number of channels, and only the remaining values
represent new measurements. One way of explaining this is that the lowest bands of
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Filter Channels 0-7
Bank 0 1 2 3 4 5 6 7

4-channel 0.202* 0.34**
8-channel 0.202 0.202 0.120* 0.202
16-channel 0.202 0.202 0.120 0.203 0.177 0.119 0.065* 0.202
32-channel 0.200 0.203 0.120 0.203 0.179 0.120 0.065 0.202

Filter Channels 8-15
Bank 8 9 10 11 12 13 14 15

32-channel 0.202 0.065 0.119 0.119 0.066 0.066 0.031* 0.202

Table 5.2: Required bandwidth values, Bc, (normalized bandwidth) for eliminating side-
lobes in each channel (in sequency order). Note, only the first half is given as the second
half is symmetrical. *Smallest Bc among all channels. **Approximate.

a WFB always split in a similar way regardless of the number of channels in the filter
bank. For example, the lowest channel in any filter bank maintains the same shape and
subdividing it further is like subdividing the low channel of the original two-channel filter
bank. Note that since we are working with uniform filter banks which are symmetrical,
the same observation also applies to the second half of the filter bank in a symmetrical
fashion. Second, the minimum Bc value for a given filter bank appears near the center
bands, which makes sense since the outer bands just repeat the measurements from the
“previous” filter bank, and this minimum Bc value is approximately half the value of the
minimum Bc from the “previous” filter bank. A somewhat interesting implication of this
is that the low (and high) channels of a filter bank can be further split without reducing
the minimum Bc.

In order to eliminate all side-lobes in a given WFB, the wavelet filter has to be
designed so that it satisfies the minimum Bc value of the given filter bank. The channel
responses of uniform filter banks that satisfy this minimum Bc requirement (using L = 32)
are shown in Figure 5.17. Note that in comparison to Figure 5.4, the side-lobes are now
eliminated. However, the stop-band attenuation levels suffer somewhat severely when the
transition bandwidth is made small, especially for the 32-channel filter bank as shown in
Figure 5.17(d). The stopband levels measured in Figure 5.17 are 97.0, 57.3, 32.3, 17.6
dB for the plots (a), (b), (c), and (d), respectively, which when plotted against their
respective Bc values gave a near-linear plot with a slope of approximately 1, i.e. there
is a near-proportional relationship between bandwidth B and stopband attenuation in
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Figure 5.17: Uniform filter banks with L=32, B = Bc, and K=2 (a) 4-channels (b)
8-channels (c) 16-channels (d) 32-channels

Remez filters.
It has been suggested that stop-band rejection levels should be better than 96 dB

when coding high quality audio [17, p. 784]. Now, in order to satisfy both the required
Bc and an attenuation of 96 dB, we need to essentially increase the degrees of freedom
available in the design, which can only be done by increasing the filter length L. As a
result, the filter lengths required for providing a stopband attenuation of 96 dB and the
minimum transition bandwidths given in Table 5.17 were determined and are given in
Table 5.3. For a Bc value of 0.031, it has been found that the modified Remez exchange
algorithm suffered from numerical instability (as implemented in MATLAB) for filter
lengths greater than about L = 204, at which length it provided a stopband attenuation
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of As = 80 dB. The required filter length for providing Bc = 0.031 and As = 96 dB, as a
result, could not be found but could be assumed to be greater than L = 204.

Transition Bandwidth Required Filter Length
Bc L

0.202 32
0.178 38
0.120 56
0.065 104
0.031 > 204 (gives As = 80 dB)

Table 5.3: Required filter lengths for providing Bc and 96 dB stop-band attenuation.

Now, as already described in section 5.2.4, longer filters generally mean poorer time
support in the wavelet domain. From equation 5.3, a filter length of 104 will result in
a time support of 2.36 ms, 7.03 ms, 16.4 ms, and 35.1 ms for 2-, 4-, 8-, and 16-channel
uniform filter banks, respectively. As described in section 3.3.4, temporal masking is
shorter for pre-masking than post-masking, which is between 2 to 20 ms. In Sinha
and Tewfik’s wavelet coder [34], for example, a time support of 4 ms was considered
adequate for pre-echo control. It is apparent that a filter length of 104 already provides
insufficient time localization for filter banks with more than 4 channels whenever we
require better control of time-domain artifacts. A uniform filter bank with 4 channels
is rather inadequate since we usually require a WFB with many more channels in audio
coding, e.g. CB resolution as described in section 5.1.2.

Consequently, we can now see that it is not possible to design a fixed CB-resolution
WFB that satisfies all frequency and time domain localization requirements for audio
coding. The design must sacrifice either channel separation, i.e. allow side-lobes to
appear, stopband attenuation, i.e. allow attenuation levels less than 96 dB, or time
localization, i.e. allow time supports greater than about 5 ms, where each of these
represents a source of distortion during the coding process.

5.3.5 Summary and Discussion

We can summarize what we have discussed so far as follows:

1) As explained in section 5.2.1, the iteration process of the WFB results in channel
responses that are uneven and sometimes characterized by large out-of-band side-
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lobes. Filters with sharp cut-off rates can sometimes improve or eliminate these
non-ideal behaviours, but only an ideal filter can provide perfect channel separation.

2) Filters designed with the modified Remez exchange algorithm have indicated that
it is possible to design a WFB without any out-of-band side-lobes. Filters that
eliminate side-lobes are typically required to satisfy a certain critical bandwidth
requirement, Bc, and the value of the critical bandwidth becomes smaller as we
decompose the tree further down, i.e. increase the number of channels.

3) Another important requirement in audio coding is to provide high stopband atten-
uations in the channel responses, typically about 96 dB.

4) It has been found that if we design wavelet filters to eliminate side-lobes and to
provide good stopband attenuations, e.g. 96 dB, then time domain localization
property greatly suffers. As a result, not all three can be satisfied simultaneously
and a trade-off will always exist.

5) The way in which this trade-off is decided needs to take into account the require-
ments of the input signal, maybe even on a frame-by-frame basis like in an adaptive
scheme, but this is a topic of future research.

6) Furthermore, since the modified Remez exchange algorithm provides optimal, or
near-optimal, solutions in terms of the constraints in the frequency domain, we
can extend these results and generalize them for all wavelet solutions. What this
means, essentially, is that the WFB provides a flexible scheme in controlling the
time-frequency resolution, but the time-frequency localization of the wavelet bands
will always suffer.

5.4 Some Test Results

Some filters have been designed using the modified Remez exchange algorithm according
to the findings above and used in the wavelet coder described in Appendix A to determine
their performances in comparison to other wavelet filters. The filters have been designed
to eliminate side-lobes and the audio coder was designed to provide no additional handling
of inter-band leakages. This meant that reconstructed signals contained aliasing errors
that resulted from the overlapping of wavelet bands, particularly with adjacent bands.
Furthermore, the audio coder was based on frequency domain coding using a fixed CB
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resolution WFB and did not provide any control over time-domain artifacts. The tree
structure was chosen to provide an approximate CB division with a maximum depth of
5 and with 14 channels where the minimum Bc was 0.120. The resulting 14-channel CB
structure is shown in Figure 5.18. This choice was considered to provide a reasonable
time resolution and time localization property (although temporal coding was not used in
the coder) as well as a transition bandwidth requirement that was not overly restrictive.
This structure, however, did not provide a very good approximation of the CB resolution
in the low frequency range as that required a much deeper tree depth and a much longer
delay when using transparent boundary handling (section 4.3.4).

Figure 5.18: 14-channel CB tree structure (a) Desired ordering (sequency) (b) Actual
ordering (natural). The numbers under the leaf nodes indicate the band number.

The basis filter was then designed with a transition bandwidth that was better than
0.120 and a length that provided “good” stop-band attenuation levels. The transition
bandwidth was chosen as 0.118 and two different filter lengths was used, namely, L = 34
and 56, which provided stop-band levels of 61.2 dB and 99 dB, respectively. The channel
responses of the WFB using the chosen tree structure and basis filters are given in Figure
5.19. For the purpose of comparison, three other orthogonal wavelet filters of length
L = 34 and 56 were used, namely, minimum-phase Daubechies, Symmlet, and Battle-
Lemarie wavelets. The Symmlet wavelets provided the maximum number of vanishing
moments, like Daubechies, but were designed to be as symmetrical as possible. The
Battle-Lemarie wavelets are based on spline functions.

An informal listening test was carried out by the author where several audio samples
were encoded with each of the four filters at bitrates of 128, 96, 64, 48, and 32 kbps.
Results generally indicated that signals with significant amount of temporal events, e.g.
music containing lots of percussive sounds, showed similar results among the four filters
and signals with lots of spectral “activity”, e.g. music containing many instruments and
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Figure 5.19: Frequency response of WFB with 14-channel CB structure and basis filters
of length (a) L = 34 (b) L = 56

many different parts, also showed similar results among all the filters. On the other
hand, stationary-like signals with few spectral components, e.g. classical music with
only one or two parts, showed slightly better results when the Remez filter was used.
These results seem to indicate that aliasing distortions resulting from the presence of the
side-lobes becomes noticeable when there is little temporal activity and when only a few
spectral components are present. One possible explanation for this is that the presence of
many other spectral components could be masking the differences that might otherwise
be noticeable and the amount of temporal activity could also contribute to making the
“side-lobe-related” distortions inaudible. In signals where the side-lobe distortions were
audible (with the other three filters), they were perceived as high-pitched “whistling”
sounds that stood out from the rest of the music. Coding examples have been included
in Appendix B where three audio signals have been encoded and decoded with the four
given filters. ‘corelli m.wav’ is an audio clip of a classical piece that contains almost no
transients and few stationary components, ‘celine mono.wav’ is a clip of a pop tune that
contains many stationary and transient components, and ‘percussion.wav’ is a percussive
clip that contains mostly transient components. For ‘corelli m.wav’, audio files containing
just the reconstruction error have also been included. The reconstruction error files as
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well as the reconstruction files for ‘corelli m.wav’ show that the Remez filter provides a
minor improvement over the other filters since additional aliasing errors can be easily
identified in the reconstructed signals resulting from the other filters. Note that since we
are using a perceptually based scheme and are mainly interested in perceptual quality,
no additional objective measurement was used to assess the quality of the reconstructed
signal.

Two general conclusions can be made from these results:

1) The presence of side-lobes introduces disturbing artifacts that can sometimes be
readily perceived and that proper design of the basis filter can reduce or eliminate
them.

2) Temporal artifacts become important in signals with significant amounts of transient
components and, as a result, additional time domain coding is required in general.

5.5 Summary and Conclusion

This chapter explored the use of the WFB in perceptual audio coding and described, in
particular, the non-ideal localization behaviours of the WFB. Although a flexible choice
of tiling in the time-frequency plane is provided by the tree structure, the localization
properties, as determined by the choice of the basis filter, has been shown to be far from
ideal in both time and frequency domain. Localization is particularly important in audio
coding since coding distortions need to be carefully shaped in both time and frequency
so that their perceived effects can be minimized.

One approach for minimizing the effects of poor frequency localization has been ex-
plored by utilizing a filter design algorithm based on the modified Remez exchange algo-
rithm. Filters were designed to provide sharp cut-off rates, while maximizing stop-band
attenuations, so that out-of-band side-lobes could be eliminated. Eliminating side-lobes
was considered important, or at least attractive, since no additional mechanism would
then be required to take care of the inter-band leakages that occur between distant wavelet
bands. In designing such filters, some trade-off issues were identified, namely, between
the transition bandwidth and the stopband attenuation in frequency domain, and more
generally between frequency domain localization and time domain localization. It has
been found that it is not possible to satisfy all the given constraints as required in audio
coding and that some compromise was always required.
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A simple WFB based on a Remez filter designed to eliminate side-lobes was used
in an audio coder to determine its performance relative to other wavelet filters. It was
found that the Remez filter provided a minor improvement over other wavelet filters
when coding audio signals that were stationary-like and had few spectral components.
For other audio signals, the Remez filter was found to provide similar results to other
wavelet filters.



Chapter 6

Conclusion

This thesis described and explored the use of the Wavelet Filter Bank (WFB) in the
context of perceptual audio coding. A brief summary of each chapter is given next,
followed by some suggestion for future work.

6.1 Summary of Thesis

Audio coding requires the removal of both perceptual irrelevancy and statistical redun-
dancy in order to provide the kind of compression levels that are required by many
band-limited applications. It has been found that a perceptual coding scheme provides
the best framework where both perceptual irrelevancy and statistical redundancy can be
removed [33]. A perceptual coder is typically comprised of three main stages, namely,
a filter bank, a psychoacoustic model, and a coding and quantization stage. The filter
bank stage is used to transform the input signal into a domain that is more appropriate
for applying perceptual criteria as well as a domain that provides some de-correlation of
the input signal. The psychoacoustic stage is used to calculate the perceptual criteria,
i.e. masking threshold, using facts from psychoacoustics and psychophysics. And the
coding and quantization stage performs the actual bitrate reduction by re-quantizing the
transform domain coefficients according to the masking results.

The calculation of the masking threshold is of central importance in a perceptual coder
since it indicates how a listener perceives sound and how coding noise can be introduced
and shaped without introducing perceived distortion. As a result, the psychoacoustic
model dictates either directly or indirectly the design of the filter bank stage and, sub-
sequently, the action of the coding and quantization stage. Common psychoacoustic
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models found in coders today are based on the masking pattern model, which utilizes
results from simple single-masker and single-maskee experiments. These masking mod-
els are attractive due to their relatively simple implementations and reasonably accurate
results, although some shortfalls have been noted.

The Wavelet Transform, or more generally the Wavelet Filter Bank, has its roots in
various branches of mathematics, physics, and engineering and represents an interesting
and potentially very useful tool in many applications, including perceptual audio coding.
The WFB can be defined in the continuous domain and also in the discrete domain,
where a connection between the two can be established. Furthermore, the WFB provides
a great deal of flexibility in its design through the choice of tree structure and basis
filter. The tree structure essentially controls the time-frequency resolution, i.e. tiling in
the time-frequency plane, and the basis filter controls the localization of each band, i.e.
localization of individual tiles.

Various works that have explored the application of the WFB in perceptual audio
coding have indicated that the WFB provided a feasible solution to the filter bank stage,
where near-transparent bitrates of between 48 and 110 kbps were reported by various
coders. In terms of designing the WFB, the tree structure was most commonly found
to be based on the critical band (CB) resolution of the human ear, while no general
consensus existed for the choice of the basis filter. Although the flexibility of the WFB
was an attractive property, as it provided an easy way of designing a CB resolution filter
bank (and also the possibility of a signal-adaptive filter bank), work by some researchers as
well as the author indicated that the WFB possessed a rather poor frequency localization
property. More specifically, the frequency response of the WFB was un-even and variable
across bands, and some bands even contained considerable amount of side-lobes. This,
in the context of coding, was shown to introduce un-cancelled aliasing components in the
reconstructed signal that were audibly disturbing and clearly undesirable. One method
in trying to minimize or even eliminate the out-of-band aliasing components, particularly
the large side-lobes, was explored by utilizing a filter design method called the modified
Remez exchange algorithm. This method allowed filters to be designed with sharp cut-
off rates so that overlap between filters during iteration was minimized. The transition
bandwidth required to entirely eliminate the side-lobes, i.e. critical bandwidth, was
determined for WFB’s with various number of channels. In designing filters with sharp
cut-off rates, it was found that there was an inherent trade-off between the transition
bandwidth, the stopband attenuation, and temporal support. Moreover, it was found that
it was not possible to design a WFB that satisfied all the requirements of audio coding,
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e.g. eliminated side-lobes, stopband attenuation of better than 96 dB, and temporal
localization of 5 ms or less. There was always a trade-off between the three.

Finally, some Remez filters were designed and used in a wavelet audio coder in order to
determine their performances in comparison to other wavelet filters. Three other filters,
namely, Daubechies, Symmlets, and Battle-Lemarie wavelets, of same length were used
to encode a number of audio signals at various bitrates. In general, the four filters were
found to provide similar results for most signals, but for signals that contained only a few
harmonic components, the Remez filters were found to provide a slightly better result.
This was due to the fact that the un-cancelled aliasing components that might have been
masked in the other audio signals were audible in audio signals that only contained few
masking activities, and only the Remez filter provided a WFB with eliminated side-lobes.

6.2 Future Work

This thesis described the limitation of the WFB by examining the basic localization trade-
offs involved in the WFB and exploring one method in minimizing the poor frequency
localization of the WFB. As already mentioned, eliminating all undesirable distortions in
the WFB is not possible due to the inherent trade-off that exists in the design of wavelet
filters. As a result, some areas that can be further explored are:

1) Determining if the stopband attenuation levels of below 96 dB can provide accept-
able performances.

2) Experimenting with other tree structures to see how they affect performance.

3) Exploring other filter design techniques to determine how other design parameters,
e.g. linear phase, affect performance.

4) Exploring the use of the more general M-channel wavelet transform.

5) Developing a bit allocation procedure that takes care of the overlaps between ad-
jacent bands (which still exists for Remez filters). This can be used in conjunction
with the Remez filters designed to eliminate side-lobes.

6) Developing a time domain coding approach that takes advantage of the time reso-
lution of the WFB.
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In general, the flexibility of the WFB can be seen as an advantage while the poor
frequency localization property represents a drawback. As a result, determining how
this flexibility can be fully exploited and the drawback fully minimized needs to be the
goal of future research. In trying to minimize the drawback, understanding which of
and how these properties, e.g. cut-off rate, stopband attenuation, and time-localization,
can be sacrificed without sacrificing performance becomes important. In exploiting the
flexibility of the WFB, an adaptive scheme needs to be developed so that the WFB can
change according to both perceptual and statistical requirements of the input signal.

We can say that the Wavelet Filter Bank provides a flexible signal analysis scheme in
exchange for poor localization properties. Whether the benefits provided by this flexibility
outweigh the costs associated with its drawback still remains to be seen.



Appendix A

Wavelet Audio Coder

This appendix describes the Wavelet Audio Coder (WAC) as developed by the author.
The WAC was developed under the PC platform using Visual C++ 6.0 and was designed
to run through a graphical user interface (GUI) that is shown in Figure A.1. Source code
is available for download at ‘http://multicom10.uwaterloo.ca/ scplee/thesis/software/’
and accompanying documentation is found in the file ‘wac readme.txt’. For execution,
the WAC program requires the specification of a number of input parameters through
the UI, which can be summarized as follow:

Figure A.1: WAC graphical user interface

1) Input File: Input .wav file in PCM format.
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2) Bit Rate: Bitrate of encoded signal.

3) Transform: Type of filter bank used, e.g. WFB or MDCT.

4) Band Scheme: WFB tree structure.

5) Wavelet Filter: WFB basis filter

6) Frame Size: Number of samples in a frame or block.

Once all required fields are specified, the algorithm can be run by pressing on ‘Run
Algorithm’. The execution will encode and decode the signal and output two files, namely,
the encoded file with .wac extension and the decoded .wav file. A diagram of the WAC
encoder is given in Figure A.2. Note that the design of the WAC closely follows the
structure of the generic perceptual coder as described in chapter 2. A description of each
stage is given next.

Figure A.2: Structure of Wavelet Audio Coder (WAC)

A.1 The Wavelet Filter Bank (WFB)

The filter bank stage is designed with a WFB that provides a flexible choice of the tree
structure and the basis filter. Any number of arbitrary tree structures and basis filters can
be specified in the program and made available through the parameter selection boxes
in the WAC GUI. In addition, two types of boundary handling are provided, namely,
periodic-extension and “transparent-extension” as proposed in [77]. For “transparent-
extension”, the algorithm takes the required audio samples from the proceeding frame
and as a result the number of audio samples required has to be less than the size of a
frame. The number of required samples is given by equation 4.84, which is the delay.
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A.2 Psychoacoustic Model

The psychoacoustic model used in the WAC coder is based on the Psychoacoustic Model
2 from the MPEG-1 Audio Standard [16]. The MPEG-1 Audio Standard describes two
sample psychoacoustic models, the first being computationally simpler and suitable for
coding at higher bit rates and the second being more complex but also more reliable at
lower bit rates. The Psychoacoustic Model 2 was developed and refined from the psychoa-
coustic models that appeared in earlier works, namely, from a speech coder developed by
Schroeder in [8] and an audio coder developed by Johnston in [27].

The input to the psychoacoustic model is an analysis frame of length 1024 and the
output from the model is the resulting masking threshold in the frequency domain (FFT
lines) of length 513. The model works as follows [16, 102, 38]:

1) The input signal is transformed into a frequency (Fourier) domain representation.

2) The signal components are mapped into a critical band scale called the Threshold
Calculation Partition where each partition represents either one FFT line or 1/3
critical band.

3) The tonality of each partition is calculated using an unpredictability measure.

4) A spreading function is applied to each partition, whose relative masking level is
determined by the energy and the tonality of the partition.

5) The global masking threshold is computed by combining the masking threshold of
the individual partitions.

6) The masking threshold is converted back into the (linear) frequency domain.

7) The absolute threshold of hearing is taken into account.

The masking threshold from the psychoacoustic model can then be applied (by some
mapping scheme) to the subband domain that is used by the filter bank stage.

A.3 Coding and Quantization

The coding and quantization stage is based on a simple bit allocation scheme that is
described as follows. In a bit allocation scheme, the bits are allocated progressively
to bands that require it the most, i.e. to the bands that have the highest perceptual
distortion. This procedure is illustrated in Figure A.3 and works as follows:
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1) Initially, all bands are allocated 0 bits i.e. SNR = 0 dB.

2) For each iteration, the NMR is calculated for each band using NMR = SMR - SNR,
and the band with the highest NMR (or worst quality) is allocated additional bits.

3) This process is continued until either all bands reach a NMR value of 0 dB or lower
or until no more bits are available to continue the process. The perceptual quality
of the decoded signal, as a result, becomes increasingly better at the end of each
iteration.

Figure A.3: Bit allocation scheme (after [42])

Note that in calculating the NMR, the value used for SNR is derived directly from the
number of bits allocated to each band. This derivation, which is generally implementation
specific, has been simplified in this implementation since we are using a uniform scalar
quantizer with block companding where each additional bit can be assumed to provide a
6 dB increase in SNR. Furthermore, the bit allocation size is chosen to be 1 bit, and 2
bits if we are allocating bits to a band for the first time, i.e. a band that starts off with
0 bits. However, this simple approach usually only provides a locally optimum solution.

A.4 Bitstream Formatting

The bitstream is comprised of a header and the output frames as shown in Figure A.4.
The bitstream header, which appears once at the beginning, contains information about
the overall algorithm and the output frame consists of the information required to decode
each frame. The frame header consists of a synchronization word that is used to identify
the beginning of a frame. The bit allocation is specified for each band, but the scale factors
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and wavelet samples are only included if a band has been allocated bits. All encoding is
done through bitwise operations in order to make efficient usage of the bitstream.

Figure A.4: Bitstream format (a) Bitstream header (b) Output frame format (numbers
in parenthesis are the associated number of bits used

A.5 Miscellaneous

The WAC coder was found to provide near-transparent coding at a bitrate of 128 kbps for
most audio signals. Furthermore, the WAC coder was designed and implemented so that
each stage could be easily extended or modified without affecting the overall algorithm.
For example, other filter banks can be added with relative ease through a new C++ class
or a new coding and quantization scheme can be added through a new C++ function.
Additional detail to the implementation of each C++ class and function are documented
within the program.



Appendix B

Audio Samples

The audio samples mentioned in this thesis can be downloaded from
‘http://multicom10.uwaterloo.ca/ scplee/thesis/audio/’. All audio files are in PCM for-
mat and are briefly described next.

B.1 Audio Samples for Section 5.2.2

* The original samples:

sine_ch00_345_2sec.wav

sine_ch01_1034_2sec.wav

sine_ch02_1723_2sec.wav

sine_ch03_2412_2sec.wav

sine_ch04_3101_2sec.wav

sine_ch05_3790_2sec.wav

sine_ch06_4479_2sec.wav

sine_ch07_5168_2sec.wav

sine_ch08_5857_2sec.wav

sine_ch09_6546_2sec.wav

sine_ch10_7235_2sec.wav

sine_ch11_7924_2sec.wav

sine_ch12_8613_2sec.wav

sine_ch13_9302_2sec.wav

sine_ch14_9991_2sec.wav
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sine_ch15_10680_2sec.wav

sine_ch16_11369_2sec.wav

sine_ch17_12058_2sec.wav

sine_ch18_12747_2sec.wav

sine_ch19_13436_2sec.wav

sine_ch20_14125_2sec.wav

sine_ch21_14814_2sec.wav

sine_ch22_15503_2sec.wav

sine_ch23_16192_2sec.wav

sine_ch24_16881_2sec.wav

sine_ch25_17570_2sec.wav

sine_ch26_18259_2sec.wav

sine_ch27_18948_2sec.wav

sine_ch28_19637_2sec.wav

sine_ch29_20326_2sec.wav

sine_ch30_21015_2sec.wav

sine_ch31_21704_2sec.wav

* The reconstructed samples:

sine_ch00_345_2sec_n1024_s1_f36_b0_m0.wav

sine_ch01_1034_2sec_n1024_s1_f36_b0_m0.wav

sine_ch02_1723_2sec_n1024_s1_f36_b0_m0.wav

sine_ch03_2412_2sec_n1024_s1_f36_b0_m0.wav

sine_ch04_3101_2sec_n1024_s1_f36_b0_m0.wav

sine_ch05_3790_2sec_n1024_s1_f36_b0_m0.wav

sine_ch06_4479_2sec_n1024_s1_f36_b0_m0.wav

sine_ch07_5168_2sec_n1024_s1_f36_b0_m0.wav

sine_ch08_5857_2sec_n1024_s1_f36_b0_m0.wav

sine_ch09_6546_2sec_n1024_s1_f36_b0_m0.wav

sine_ch10_7235_2sec_n1024_s1_f36_b0_m0.wav

sine_ch11_7924_2sec_n1024_s1_f36_b0_m0.wav

sine_ch12_8613_2sec_n1024_s1_f36_b0_m0.wav

sine_ch13_9302_2sec_n1024_s1_f36_b0_m0.wav

sine_ch14_9991_2sec_n1024_s1_f36_b0_m0.wav
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sine_ch15_10680_2sec_n1024_s1_f36_b0_m0.wav

sine_ch16_11369_2sec_n1024_s1_f36_b0_m0.wav

sine_ch17_12058_2sec_n1024_s1_f36_b0_m0.wav

sine_ch18_12747_2sec_n1024_s1_f36_b0_m0.wav

sine_ch19_13436_2sec_n1024_s1_f36_b0_m0.wav

sine_ch20_14125_2sec_n1024_s1_f36_b0_m0.wav

sine_ch21_14814_2sec_n1024_s1_f36_b0_m0.wav

sine_ch22_15503_2sec_n1024_s1_f36_b0_m0.wav

sine_ch23_16192_2sec_n1024_s1_f36_b0_m0.wav

sine_ch24_16881_2sec_n1024_s1_f36_b0_m0.wav

sine_ch25_17570_2sec_n1024_s1_f36_b0_m0.wav

sine_ch26_18259_2sec_n1024_s1_f36_b0_m0.wav

sine_ch27_18948_2sec_n1024_s1_f36_b0_m0.wav

sine_ch28_19637_2sec_n1024_s1_f36_b0_m0.wav

sine_ch29_20326_2sec_n1024_s1_f36_b0_m0.wav

sine_ch30_21015_2sec_n1024_s1_f36_b0_m0.wav

sine_ch31_21704_2sec_n1024_s1_f36_b0_m0.wav

B.2 Audio Samples for Section 5.4

Note the following conventions (see ‘common.h’ for more info):

‘n1024’ = frame size of 1024

‘s6’ = 14-channel CB resolution tree structure

‘f43’ = Remez filter of L=34

‘f44’ = Daubechies filter of L=34

‘f45’ = Symmlet filter of L=34

‘f46’ = Battle-Lemarie filter of L=34

‘b??’ = bitrate of encoded signal

‘m0’ = WFB with ‘‘transparent-extension’’

‘diff’ = difference between original and reconstructed file

* Pop Clip:

celine_mono.wav

celine_mono_n1024_s6_f43_b96_m0.wav
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celine_mono_n1024_s6_f44_b96_m0.wav

celine_mono_n1024_s6_f45_b96_m0.wav

celine_mono_n1024_s6_f46_b96_m0.wav

* Percussive Clip:

percussion.wav

percussion_n1024_s6_f43_b32_m0.wav

percussion_n1024_s6_f44_b32_m0.wav

percussion_n1024_s6_f45_b32_m0.wav

percussion_n1024_s6_f46_b32_m0.wav

* Classical Clip:

corelli_m.wav

corelli_m_n1024_s6_f43_b48_m0.wav

corelli_m_n1024_s6_f44_b48_m0.wav

corelli_m_n1024_s6_f45_b48_m0.wav

corelli_m_n1024_s6_f46_b48_m0.wav

corelli_f43_b48_diff.wav

corelli_f44_b48_diff.wav

corelli_f45_b48_diff.wav

corelli_f46_b48_diff.wav



Appendix C

Sequency Ordered WFB

This appendix describes an algorithm that provides a WFB decomposition according
to a sequency-ordered tree structure. A structure called hedge used to specify the tree
structure is described first and a recursive algorithm that performs the WFB according
to a sequency-ordered hedge structure is then described.

C.1 Hedge Tree Structure

Figure C.1: Examples of hedge structures

The hedge structure as described in [99] is an array of leaf-nodes that can be used to
specify the structure of a binary tree. The hedge contains the position of each leaf-node
in terms of its depth in the tree as we go from the left-most leaf-node to the right-most
leaf-node. Three examples are shown in Figure C.1 where the given tree structures are
specified using hedge arrays. Note that providing the leaf-node depths is enough for
specifying the exact shape of a tree structure.

122



APPENDIX C. SEQUENCY ORDERED WFB 123

C.2 Sequency-Order WFB Algorithm

Figure C.2: Natural ordering and sequency ordering in a tree

Now, using a hedge structure that specifies the tree in sequency order, i.e. the tree
structure represents the “logical” frequency ordering as we go from the left-most node to
the right-most node, an algorithm that performs the desired WFB decomposition can be
developed by looking at the relationship between natural ordering and sequency ordering.
Figure C.2 shows a tree structure that gives the ordering of the nodes in both natural
and sequency order (same as Figure 5.14). As described in section 5.2.3, the low- and
high-frequency regions remain the same after a low-pass filtering operation, but switched
after a high-pass filtering operation. This can be seen in Figure C.2 where every time
a “high-pass child-node”, i.e. an odd numbered node in sequency ordering, is divided,
the two child-nodes are switched in their order. Therefore, if we travel down the tree
according to this sequency-ordered path, then we can decompose a tree so that it results
in a sequency ordered decomposition. The simple rule to remember is that if the current
node is the child of a low-pass operation, i.e. even-numbered, then its two child nodes
will remain in normal order, and if the current node is the child of a high-pass operation,
i.e. odd-numbered, then its two child nodes will be in reverse order. Due to the nature
of this rule, a recursive algorithm was found to be naturally suited to the problem. A
pseudo-code for this recursive algorithm is given next.

* Variables:

wpd = wavelet packet data class

t = tree structure (a hedge)

ti = tree structure index (one-based)

d = tree depth (zero-based)
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nn = tree node in natural order (zero-based)

ns = tree node in sequency order (zero-based)

* Recursive Function:

% Travel through the ‘‘actual’’ tree using natural order

function [wpd,ti] = wp_sequency(wpd,t,ti,d,nn,ns)

if (t(ti)==d) then % Base case

ti = ti + 1

else % Recursive step

t.decompose(d,nn);

if (ns is even) then

% If current node (sequency) is even, then take

% left-branch first

[wpd,ti] = wp_sequency(wpd,t,ti,d+1,2*nn,2*ns)

[wpd,ti] = wp_sequency(wpd,t,ti,d+1,2*nn+1,2*ns+1)

else

% If current node (sequency) is odd, then take

% right-branch first

[wpd,ti] = wp_sequency(wpd,t,ti,d+1,2*nn+1,2*ns)

[wpd,ti] = wp_sequency(wpd,t,ti,d+1,2*nn,2*ns+1)

end

end

end

* Calling the Algorithm:

[wpd,ti] = wp_sequency(wpd,t,1,0,0,0)

In the algorithm above, ‘wpd’ is assumed to be a class that is initialized with the
input signal but not yet decomposed and a class that provides the necessary function,
e.g. decompose(), for performing the decomposition one node at a time. The algorithm
works by starting at depth 0 and going down the tree recursively, while splitting each
node it visits, until it finds the first leaf-node, and then moves on to the second leaf-node
specified in ‘t’. The second leaf-node is also found recursively in a similar manner, and
the algorithm continues until all leaf-nodes have been found. While the algorithm travels
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through the tree, variables are used to keep track of both the natural (‘nn’) and sequency
(‘ns’) order of each node, where the natural order is used to indicate which node is to
be split in the “actual” tree and the sequency order is used to decide which branch to
take next. Note that in the recursive step, the conditional statement uses the simple rule
that has been mentioned above where the left-branch is taken first if the current node is
a low-pass child, and the right-branch first if the current node is a high-pass child. The
base case simply checks whether or not the current node is the next leaf-node that we are
looking for in the hedge array ‘t’. A similar version of this algorithm also appears in the
WAC coder inside the function ‘DefineHedge()’ under the class ‘HedgeSelect’.



Bibliography

[1] N. Jayant and P. Noll, Digital Coding of Waveform: Principles and Applications to
Speech and Video. New Jersey: Prentice Hall, 1984.

[2] T. Painter and A. Spanias, “Percetual coding of digital audio,” Proceedings of the
IEEE, vol. 88, no. 4, pp. 451–513, April 2000.

[3] N. Jayant, “Signal compression: Technology targets and research directions,” IEEE
Journal on Selected Areas in Communications, vol. 10, no. 5, pp. 796–818, June
1992.

[4] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression. Kluwer
Academic Publishers, 1992.

[5] M. Hans and R. Schafer, “Lossless compression of digital audio,” IEEE Signal
Processing Magazine, pp. 21–32, July 2001.

[6] A. Gersho, “Advances in speech and audio compression,” Proceedings of the IEEE,
vol. 82, no. 6, pp. 900–918, 1994.

[7] R. Crochiere, S. Webber, and J. Flanagan, “Digital coding of speech in subbands,”
Bell Syst. Tech. Journal, pp. 1069–1085, 1976.

[8] M. Schroeder, B. Atai, and J. Hall, “Optimizing digital speech coders by exploiting
masking properties of the human ear,” Journal Acoust. Soc. Am., vol. 66, no. 6,
December 1979.

[9] R. Zelinski and P. Noll, “Adaptive transform coding of speech signals,” IEEE Trans-
actions Acoust., Speech, and Signal Processing, vol. 25, pp. 299–309, 1975.

126



BIBLIOGRAPHY 127

[10] E. Schroeder and W. Voessing, “High quality deigital audio encoding with
2.0 bits/sample using adaptive transform coding,” in Proc. of the 80th. AES-
Convention, 1986. preprint 2321.

[11] K. Brandenburg, “OCF- A new coding algorithm for high quality sound signals,”
in ICASSP-97, pp. 5.1.1–5.1.4, 1987.

[12] J. Johnston, “Transform coding of audio signals using perceptual noise criteria,”
IEEE Journal on Selec. Areas in Comm., vol. 6, no. 2, pp. 314–323, 1988.

[13] Y. Mahieux, J. Petit, and A. Charbonnier, “Transform coding of audio signals using
correlation between successive transform blocks,” in ICASSP-89, pp. 2021–2024,
1989.

[14] Y. Dehery, M. Lever, and P.Urcun, “A MUSICAM source codec for digital audio
broadcasting and storage,” in ICASSP-91, vol. 1, pp. 3605–3609, 1991.

[15] K. Brandenburg, J. Herre, J. Johnston, Y. Mahieux, and E. Shroeder, “ASPEC:
Adaptive spectral perceptual entropy coding of high quality music signals,” in 90th
AES Convention, 1991. preprint 3011 (A-4).

[16] ISO/IEC, JTC1/SC29, Information technology- Coding of moving pictures and as-
sociated audio for digital storage media at up to about 1.5 Mbits/s-IS 11172-3 (au-
dio), 1992.

[17] K. Brandenburg, “ISO-MPEG-1 Audio: A generic standard for coding of high-
quality digital audio,” J. Audio Eng. Soc., vol. 42, no. 10, pp. 780–792, October
1994.

[18] J. Johnston, S. Quackenbush, G. Davidson, K. Brandenburg, and J. Herre, “Mpeg
audio coding,” in Wavelets, Subband, and Block Transform in Communications and
Multimedia (A. Akansu and M. Medlyey, eds.), Kluwer Academic Publishers, 1999.

[19] ISO/IEC, Overview of the MPEG-4 Standard.
http://mpeg.telecomitalialab.com/standards/mpeg-4/mpeg-4.htm, May 2002.

[20] P. Stokas, Which is the best low-bitrate audio compression algorithm? OGG vs.
MP3 vs. WMA vs. RA. http://http://ekei.com/audio/, March 2002.



BIBLIOGRAPHY 128

[21] L. Fielder, M. Bosi, G. Davidson, M. Davis, C. Todd, and S. Vernon, “AC-2 and AC-
3: Low-complexity transform-based audio coding,” in Collected Papers on Digital
Audio Bit-Rate Reduction, Audio Engineering Society, 1996.

[22] K. Tsutsui and et al., “ATRAC: Adaptive transform acoustic coding for MiniDisc,”
in Collected Papers on Digital Audio Bit-Rate Reduction, Audio Engineering Soci-
ety, 1996.

[23] J. Johnston and et al., “AT&T Perceptual Audio Coding (PAC),” in Collected
Papers on Digital Audio Bit-Rate Reduction, Audio Engineering Society, 1996.

[24] J. Moffitt, “Ogg vorbis - open, free audio - set your media free,” Linux Journal,
pp. 146–50, January 2001.

[25] Xiph.Org, OggVorbis: open, free audio. http://www.vorbis.com, April 2003.

[26] M. Sablatash and T. Cooklev, “Compression of high-quality audio signals, including
recent methods using wavelets packets,” Digital Signal Processing, vol. 6, pp. 96–
107, 1996.

[27] J. Johnston, “Audio coding with filter banks,” in Subband and Wavelet Transforms
(A. Akansu and M. Smith, eds.), pp. 287–307, Kluwer Academic, 1996.

[28] X. Wei, M. Shaw, and M. Varley, “Optimum bit allocation and decomposition for
high quality audio coding,” in ICASSP-97, pp. 315–318, 1997.

[29] J. Herre and J. Johnston, “Continuously signal-adaptive filterbank for high-quality
perceptual audio coding,” in Proceedings of 1997 Workshop on Applications of Sig-
nal Processing to Audio and Acoustics, 1997.

[30] J. Princen and J. Johnston, “Audio coding with signal adaptive filterbank,” in
ICASSP-95, pp. 3071–3074, 1995.

[31] B. Scharf, “Critical bands,” in Foundations of Modern Auditory Theory (J. Tobias,
ed.), Academic Press, 1970.

[32] A. Ferreira, “Perceptual audio coding and the choice of an analysis/synthesis fil-
ter bank and psychoacoustic model,” in 104th Convention of the AES, May 1998.
preprint 4671.



BIBLIOGRAPHY 129

[33] M. Bosi, “Filter banks in perceptual audio coding,” in AES 17th International
Conference, pp. 125–136, Audio Engineering Society, 1999.

[34] D. Sinha and A. Tewfik, “Low bit rate transparent audio compression using adapted
wavelets,” IEEE Trans. Signal Processing, vol. 41, no. 12, pp. 3463–3479, December
1993.

[35] P. Vaidyanathan, Multirate Systems and Filter Banks. Englewood Cliffs, NJ:
Prentice-Hall, 1993.

[36] A. Akansu and R. Haddad, Multiresolution Signal Decomposition. Academic Press,
2nd ed., 2001.

[37] M. Vetterli and J. Kovacevic, Wavelets and Subband Coding. Prentice Hall, 1995.

[38] K. Brandenburg, “Perceptual coding of high quality audio,” in Applications of dig-
ital signal processing to audio and acoustics (M. Kahrs and K. Brandenburg, eds.),
Kluwer Academic Publishers, 1998.

[39] A. Ferreira, “The perceptual audio coding concept: from speech to high-quality
audio coding,” in AES 17th International Conference, pp. 258–286, 1999.

[40] M. Smith and A. Akansu, “Introduction and overview,” in Subband and Wavelet
Transforms (A. Akansu and M. Smith, eds.), Kluwer Academic Publishers, 1996.

[41] G. strang and T. Nguyen, Wavelets and Filter Banks. Wellesley-Cambridge Press,
1997.

[42] J. Herre, “Temporal noise shaping, quantization and coding methods in percep-
tual audio coding: a tutorial introduction,” in AES 17th International Conference,
pp. 312–325, 1999.

[43] P. Noll, “Wideband speech and audio coding,” IEEE Communications Magazine,
pp. 34–44, November 1993.

[44] T. Ramstad, “Still image compression,” in The Digital Signal Processing Handbook
(V. Madisetti and D. Williams, eds.), CRC Press, 1998.

[45] A. Harma and U. Laine, “Warped low-delay celp for wideband audio coding,” in
AES 17th International Conference, pp. 207–215, 1999.



BIBLIOGRAPHY 130

[46] E. Zwicker and H. Fastl, Psychoacoustics Facts and Models. Berlin, Germany:
Springer-Verlag, 1990.

[47] H. Fletcher, “Auditory patterns,” Rev. Mod. Phys., vol. 12, pp. 46–65, 1940.

[48] B. Moore, An Introduction to the Psychology of Hearing. London: Academic Press,
4th ed., 1997.

[49] J. Allen, “Cochlear modeling,” IEEE ASSP Magazine, pp. 3–29, January 1985.

[50] J. Hall, “Auditory psychophysics for coding applications,” in The Digital Signal
Processing Handbook (V. Madisetti and D. Williams, eds.), CRC Press, 1998.

[51] D. Mikat, “Human auditory capabilities,” in Advanced Digital Audio (K. Pohlmann,
ed.), SAMS, 1991.

[52] X. Yang and et al., “Auditory representations of acoustic signals,” IEEE Trans. on
Information Theory, vol. 38, no. 2, pp. 824–839, March 1992.

[53] A. Pena, “A global theoretical auditory model for application on audio coders de-
sign and objective perceptual assessment,” in Proceedings of EUSIPCO-94: 7th
European Signal Processing Conference, vol. 3, pp. 1457–60, September 1994.

[54] B. Moore, “Masking in the human auditory system,” in Collected Papers on Digital
Audio Bit-Ratee Reduction (N. Gilchrist and C. Grewin, eds.), Audio Engineering
Society, 1996.

[55] B. Moore and B. Glasberg, “Suggested formulae for calculating auditory-filter band-
widths and excitation patterns,” J. Acoust. Soc. Am., vol. 74, pp. 750–753, 1983.

[56] R. Veldhuis, “Bit rates in audio source coding,” IEEE Journal on Selected Ares in
Communications, vol. 10, no. 1, pp. 86–96, January 1992.

[57] R. Hellman, “Asymmetry of masking between noise and tone,” Perception and
Psychophysics, vol. 11, no. 241–246, 1972.

[58] A. Oxenham and B. Moore, “Modeling the additivity of nonsimultaneous masking,”
Hearing Res., vol. 80, pp. 105–118, 1994.

[59] F. Baumgarte, “A psychoacoustic model for audio coding based on a cochlear filter
bank,” in Proceedings of the 2001 IEEE Workshop on the Applications of Signal
Processing to Audio and Acoustics, pp. 139–42, October 2001.



BIBLIOGRAPHY 131

[60] C. Colomes and et al., “A perceptual model applied to audio bit-rate reduction,”
J. Audio Eng. Soc., vol. 43, no. 4, pp. 233–240, April 1995.

[61] B. P. et al., “PERCEVAL: Perceptual evaluation of the quality of audio signals,”
J. Audio Eng. Soc., vol. 40, no. 1, pp. 21–31, January 1992.

[62] F. Baumgarte, “A nonlinear psychoacoustic model applied to the ISO MPEG Layer
3 Coder,” in 99th AES Convention, Audio Engineering Society, October 1995.
preprint 4087.

[63] B. Carnero and A. Drygajlo, “Perceptual speech coding using time and frequency
masking constraints,” in ICASSP-97, vol. 2, pp. 1363–1366, 1997.

[64] S. Mitra, Digital Signal Processing: A Computer Based Approach. McGraw-Hill,
2nd ed., 2001.

[65] J. Proakis and D. Manolakis, Digital Signal Processing: Pinciples, Algorithms, and
Applications. Prentice Hall, 3rd ed., 1996.

[66] M. Smith and I. T.P. Barnwell, “A procedure for designing exact reconstruction
filter banks for tree-structured subband coders,” in ICASSP-84, pp. 27.1.1–27.1.4,
1984.

[67] J. Arrowood and et al., “Filter bank design,” in The Digital Signal Processing
Handbook (V. Madisetti and D. Williams, eds.), CRC Press, 1998.

[68] M. Vetterli and C. Herley, “Wavelets and filter banks: Theory and design,” IEEE
Trans. Signal Processing, vol. 40, no. 9, pp. 2207–2232, September 1992.

[69] C. Herley, “Wavelets and filter banks,” in The Digital Signal Processing Handbook
(V. Madisetti and D. Williams, eds.), CRC Press, 1998.

[70] B. Hubbard, The World According To Wavelets. Natick, MA: A K Peters, 2nd ed.,
1998.

[71] I. Daubechies, “Where do wavelets come from? - a personal point of view,” Pro-
ceedings of the IEEE, vol. 84, no. 4, pp. 510–513, April 1996.

[72] A. Abbate, C. DeCusatis, and P. Das, Wavelets and Subbands: Fundamentals and
Applications. Boston: Birkhauser, 2002.



BIBLIOGRAPHY 132

[73] A. Akansu and R. Haddad, “Fundamentals and optimal design of subband and
wavelet transforms,” in Subband and Wavelet Transforms (A. Akansu and M. Smith,
eds.), Kluwer Academic Publishers, 1996.

[74] C. Burrus, R. Gopinath, and H. Guo, Introduction to Wavelets and Wavelet Trans-
forms, A Primer. Prentice Hall, 1998.

[75] S. Mallat, “A theory of multiresolution signal decomposition: The wavelet repre-
sentation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, no. 7,
pp. 674–693, July 1989.

[76] C. Taswell and K. McGill, “Algortihm 735: Wavelet transform algorithms for finite-
duration discrete-time signals,” ACM Trans. on Mathematical Software, vol. 20,
no. 3, pp. 398–412, September 1994.

[77] B. Leslie and M. Sandler, “A wavelet packet algorithm for 1-d data with no block
end effects,” in Proceedings of the 1999 IEEE International Symposium on Circuits
and Systems VLSI, pp. 423–426, 1999.

[78] M. Wickerhauser, “Acoustic signal compression with wavelet packets,” in Wavelets:
A Tutorial in Theory and Applications (C. Chui, ed.), Academic Press, 1992.

[79] S. Chan and et al., “A hybrid coder using the wavelet transform,” in Proceedings of
the IEEE International Symposium on Time-Frequency and Time-Scale Analysis,
pp. 463–466, 1992.

[80] W. Kinsner and A. Langi, “Speech and image signal compression with wavelets,”
in IEEE WESCANEX 93, Communications, Computers and Power in the Modern
Environment Conference Proceedings, pp. 368–375, 1993.

[81] A. Erdemir and et al., “Data compression using wavelet transforms and vector
quantization,” in Proceedings of 1994 Midwest Symposium on Circuits and Systems,
pp. 965–968, 1994.

[82] Y. Karelic and D. Malah, “Compression of high-quality audio signal using adaptive
filterbanks and a zero-tree coder,” in 1995 Convention of Electrical and Electronics
Engineers in Israel, p. 3.2.4, 1995.

[83] R. Wannamaker and E. Vrscay, “Fractal wavelet compression of audio signals,” J.
Audio Eng. Soc., vol. 45, no. 7/8, pp. 540–553, 1997.



BIBLIOGRAPHY 133

[84] M. Black and M. Zeytinoglu, “Computationally efficient wavelet packet coding of
wide-band stereo audio signals,” in ICASSP-95, pp. 3075–3078, 1995.

[85] D. Pan, “A tutorial on MPEG/Audio compression,” IEEE Multimedia, vol. 2, no. 2,
pp. 60–74, 1995.

[86] T. Blu, “An iterated rational filter bank for audio coding,” in IEEE-SP Interna-
tional Symposium on Time-Frequency and Time-Scale Analysis, pp. 81–84, 1996.

[87] W. Dobson and et al., “High quality low complexity scalable wavelet audio coding,”
in ICASSP-97, pp. 327–330, 1997.

[88] H. Dongmei and et al., “Complexity scalable audio coding algorithm based on
wavelet packet decomposition,” in Proceedings of 5th International Conference on
Signal Processing, pp. 659–665, 2000.

[89] B. Leslie and M. Sandler, “Audio compression using wavelets,” in IEE Colloquium
on Audio and Music Technology: The Challenge of Creative DSP, 1998.

[90] P. Srinivasan and L. Jamieson, “High-quality audio compression using an adaptive
wavelet packet decomposition and psychoacoustic modeling,” IEEE Transactions
on Signal Processing, vol. 46, no. 4, pp. 1085–1093, 1998.

[91] P. Philippe and et al., “On the choice of wavelet filters for audio compression,” in
ICASSP-95, pp. 1045–1048, 1995.

[92] P. Philippe and et al., “Wavelet packet filterbanks for low time delay audio coding,”
IEEE Transactions on Speech and audio processing, vol. 7, no. 3, pp. 310–322, May
1999.

[93] D. Sinha, “The perceptual audio coder (PAC),” in CRC DSP Handbook (V. Madis-
etti and D. Williams, eds.), CRC Press, 1998.

[94] M. Zurera and et al., “A new algorithm for translating psycho-acoustic information
to the wavelet domain,” Signal Processing, vol. 81, pp. 519–531, 2001.

[95] P. Kudumakis, Synthesis and coding of audio signals using wavelet transforms for
multimedia applications. PhD thesis, King’s College, London, April 1996.



BIBLIOGRAPHY 134

[96] M. Erne and G. Moschytz, “Audio coding based on rate-distortion and perceptual
optimization techniques,” in 17th International Conference of the Audio Eng. Soc.,
pp. 220–225, 1999.

[97] B. Lim and Z. Ying, “Performance analysis of audio signal compression based on
wavelet and wavelet packet transforms,” in International Conference on Informa-
tion, Communications, and Siganl Processing, September 1997.

[98] P. Chang and J. Lin, “Scalable embedded zero tree wavelet packet audio coding,”
in IEEE Signal Processing Workshop on Signal Processing Advances in Wireless
Communications, pp. 384–387, 2001.

[99] M. Wickerhauser, Adapted Wavelet Analysis from Theory to Software. A.K. Peters,
1994.

[100] O. Rioul and P. Duhamel, “A remez exchange algorithm for orthonormal wavelets,”
IEEE Trans. Circuits Syst. II, vol. 41, pp. 550–560, August 1994.

[101] G. Freeman, “Wavelet and fractal based methods for image compression,” in ICR
Short Course Notes, University of Waterloo, June 1998.

[102] S. Shlien, “Guide to MPEG-1 audio standard,” IEEE Trans. on Broadcasting,
vol. 40, no. 4, December 1994.


