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Abstract

Human vision is remarkable. Through clever physical and neurological mechanisms, we are able to
extract useful information from the light reflected by objects around us. Generations of evolution
has fine-tuned these mechanisms for their tasks; an example of an optimized eye function is
foveated vision. By limiting the main concentration of high-acuity photoreceptors to a small
central region in the eye, we efficiently view the world by redirecting the fovea from point-of-
interest to point-of-interest using eye movements called saccades. This results in a very effective
and resource-efficient visual acquisition system that can quickly respond and adapt to the real
world.

Active vision is a special branch of computer vision where processing of visual data is
reserved for relevant regions in the scene. Typically, active vision applications require real-time
analysis of scene information; it is therefore necessary to quickly filter out data that does not
contribute to the system’s accomplishment of its task.

This thesis comprises two main parts. Part I describes a saccadic vision system that uses a
commercial, programmable image sensor mounted on a servomotor. The dual-resolution saccadic
camera is able to detect objects of interest in a scene based on processing of low-resolution image
information, and then revisit the salient regions of the same scene in high-resolution. The location
of foveal fixations is determined through an assignment of salience to each coordinate of the low-
resolution image, where salience is determined by the presence of various stimuli in the local
neighbourhood. The end product is a dual-resolution image in which background information is
displayed in low-resolution, and salient areas are captured in high-acuity and locally appropriate
exposures. This lends to a resource-efficient active vision system that can be used in numerous
computer vision and control applications.

Part II describes CMOS image sensor design considerations for active vision applications.
Specifically, this discussion focuses on methods to determine regions of interest and achieve high
dynamic range on the sensor.
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Chapter 1

Introduction

“It might be said that by moving from the centre of the human retina to its periphery

we travel back in evolutionary time; from the most highly organized structure to a

primitive eye, which does little more than detect movements of shadows. The very

edge of the human retina... gives primitive unconscious vision; and directs the highly

developed foveal region to where it is likely to be needed for its high acuity.”

— R.L. Gregory [1]

Look up for a moment from this thesis. What do you see? Chances are, without moving

your head, you can see almost 180◦ of the scene before you. If you were to pay attention to the

objects in the room, you would perhaps note the various pieces of furniture or assess the facial

expressions of the people in your company. Furthermore, assuming that all the major objects are

within 20 feet, you would likely agree that you can see most of the 180◦ view in front of you with

equal clarity.

Intuition tells us that our eyes are like real-time, high resolution cameras that can see as

clearly as the camera lens will allow. But intuition does not take into account the enormity of

resources and processing that would be required to provide an immediate response to abundant

visual details. Even with the brain’s extraordinary complexity, how can it possibly process 180◦

worth of high-acuity visual information instantaneously? It turns out that, while human vision

is indeed real-time, the eye is not a constantly high-resolution device. In fact, the human eye is

1
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anisotropic: its acuity decreases eccentrically from the centre. The high-resolution fovea, which

is responsible for high-acuity vision, is essentially time-shared; it jumps from point-of-interest to

point-of-interest across the visual field. Our brain then reconstructs a coherent interpretation

of the scene based on a combination of foveal details and generalized low-acuity information

acquired from the eye’s periphery. The eye is therefore a highly resource-efficient data-acquisition

instrument that has been optimized through generations of evolution to reduce the amount of

information that must be transmitted through the optic nerve and processed by the brain. Now

how can this naturally optimized elegance be applied towards an engineering problem?

1.1 Research Motivation

This research project was inspired by the recorded eye movement patterns shown in Figure 1.1.

The subject spends most of the time and attention on the eyes, nose and mouth, and performs

a rough examination of the outline of the hair. A large percentage of the face (i.e. cheeks) does

not receive attention from the fovea.

Figure 1.1: Visual examination of a face. Each dot represents a time unit spent on that location
[2].
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Yarbus is generally credited with providing the first modern understanding of human eye

movements. He noted that:

“When looking at a human face, an observer usually pays most attention to the

eyes, the lips, and the nose. The other parts of the face are given much more cursory

consideration. The human eyes and lips are the most mobile and expressive elements

of the face. The eyes and lips can tell an observer the mood of a person and his

attitude towards the observer... It is therefore absolutely natural and understandable

that the eyes and lips attract the attention more than any other part of the human

face [3].”

The question, however, is whether the eyes, nose and lips of a human face represent instinc-

tively stimulating features to which an observer’s attention is naturally drawn, or whether an

observer’s interest in these elements is a conditioned response upon which we are trained through

experience to study. That is, would an untrained machine, designed to look for raw stimulating

features in a general scene, fixate on the same parts of a face to which a human observer would

attend?

The ability to use low resolution information to infer the contents of a scene has many inter-

esting consequences. For example, it allows several different people to look at an abstract work

of art and agree on the interpretation. This is the basis of the Impressionism, a painting style

where the context of the artwork is implied through broad brushstrokes; for example, see Figure

1.2. These brushstrokes make little sense when considered on their own, and seen up close, an

Impressionist painting would appear to be a low resolution ‘blob’. However, when viewed from

a distance, the brain is able to make sense of the combination of brushstrokes and form an un-

derstanding of the context. This implies that we really only need to see most of a scene in low

resolution, and only certain important areas need to contain high resolution detail. This further

means that valuable resources are not wasted in processing an abundance of detail that may not

necessarily contribute to a better understanding of the scene. The resources of our visual system

are therefore used efficiently.
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Figure 1.2: a) Self portrait of Vincent van Gogh [4]. Most of the information is inferred through
broad brushstrokes. However, the most important part of the painting, the expressive eyes,
contains finer detail. b) Rouen Cathedral by Claude Monet [5]. The details of the cathedral
facade are implied through the combination of coarse brushstrokes.

1.2 Key Engineering Benefits

An engineering design based on the principle that the context of a scene can be understood by

roughly analyzing a low-resolution view and attending only to the salient points of interest has

several engineering benefits, including reduced processing and reduced transmission bandwidth

requirements, allowing for a real-time response to the visual field. Such a system would be appro-

priate for applications such as the navigation of autonomous vehicles, object recognition, target

tracking, robotic control, security monitoring, and industrial inspection (quality control). These

applications require some method by which excess and irrelevant information can be filtered. Al-

though data compression, such as runlength encoding1 employed by JPEG (Joint Photographic

Experts Group), can be used to alleviate transmission traffic, it does not address the problem of
1Runlength encoding is a lossless scheme, where redundant strings are reduced to a shorter description. For

example:
Uncompressed data: ABCCCCCCCCDEFGGG, Compressed data: ABC!8DEFGGG [6]
The ‘!’ is used as an M-byte flag to mark the beginning of encoded data. The 8 following the M-byte indicates the
amount of redundancy.



CHAPTER 1. INTRODUCTION 5

processing the complex image.

Active vision is a branch of computer vision where processing is reserved for selected regions

of the image. Typical active vision applications require specific, real-time information for control

purposes, such as for robotic or autonomous vehicle guidance. Such projects employ various

artificial intelligence techniques to determine how to efficiently and effectively allocate system

resources in order to quickly extract information.

1.3 An Engineering Problem

In the summer of 2003, NASA launched the two Mars Exploration Rovers, Spirit and Opportunity,

in hopes of gaining insight on the inhospitable planet’s geology. To investigate the planetary

surface, the Rovers traverse the Mars terrain outfitted with visual navigation systems that provide

position and heading estimations to help guide their paths [7]. There are several potential issues

to consider in the design of an autonomous navigation system, including:

• real-time processing of visual data (in response to changes in the terrain);

• tradeoffs between resolution, processing time and power, and data transmission bottlenecks;

• field of view; and

• fault tolerance and adaptability to the environment.

The autonomous navigation of the Mars Rover is just one example of an application that requires

a real-time, resource efficient, and adaptable visual acquisition methodology. Other applications

include industrial inspection, security surveillance, and target tracking.

1.4 A Proposed Solution

Project Mike, named for a fictional Cyclops-like character [8], is an active vision system that

borrows from the design of its biological inspiration: the human vision system. Like the eye, Mike

has a small high resolution fovea, which selectively attends to salient regions of a scene. It is an

electronically and mechanically reconfigurable “saccadic” camera system, that efficiently examines
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scenes through foveated imaging, where scrutiny is reserved for salient regions of interest. The

system’s “eye” is an electronic image sensor used in dual modes of resolution. A subwindow set at

high resolution acts as the system’s fovea, and the remaining wide-angle visual field is captured at

a lower resolution. The ability to program the subwindow’s size and position provides an analog

to biological eye movements. Similarly, the system’s mechanical components can be programmed

to provide the “neck’s” locomotion for modified perspectives.

Mike is an active vision design that can be used for industrial inspection, security, and au-

tonomous guidance systems, such as the system required by the Mars Rovers.

1.5 Related Projects

Resulting from generations of evolution, designs in nature are often optimized for their functions

and their environment. The human vision system is a particularly impressive information ac-

quisition system, and lessons can be drawn from its design. Resources are efficiently utilized in

foveated, selectively attentive vision: bulk processing is conducted on low-resolution information

to extract regions of interest where further processing is required. This means that processing

and data transmission resources are used economically.

There are numerous engineering applications for active vision systems, including autonomous

navigation of vehicles, robotic guidance (visual servoing), and industrial inspection. Several works

have reported projects on active vision systems that steer camera saccades mechanically [9], [10],

[11], [12]. Some of these projects employ multiple cameras to achieve different resolutions for

foveated imaging [12]. In 1999, the Jet Propulsion Laboratory reported the development of a

non-mechanical, reconfigurable vision system with the ability to track targets using a multi-

resolution sensor [13].

Visual servoing is a branch of computer vision closely related to active vision; it pertains to

the use of cameras to guide robotic pose control. [14], [15], [16] describe the development of hand-

eye coordinated robotic systems that rely on pre-calibrated vision (the eye) to calibrate robotic

movements and tasks. In his robotic state estimation model, Bishop also considers the effect of

lens distortion on the image [17]. It would be interesting to take the opposite approach, and use

a known physical state to configure a vision system with uncharacterized image formation issues.
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This will be further explored in Chapter 5.

1.6 Thesis Outline

This thesis comprises two main parts. Part I describes the Mike prototype, which uses a commer-

cial, programmable image sensor mounted on a servomotor. The dual-resolution saccadic camera

is able to detect objects of interest in a scene based on processing of low-resolution image infor-

mation, and then revisit the salient regions of the same scene in high-resolution. The end product

is a dual-resolution image in which background information is displayed in low-resolution, and

salient regions are captured in high-acuity. This lends to a resource-efficient active vision system

that can be used in numerous computer vision and control applications.

Part II describes CMOS image sensor design considerations for active vision applications.

Specifically, these chapters discuss methods of determining regions of interest and achieving high

dynamic range on the sensor.



Part I

System-Level Active Vision Design

8



Chapter 2

The Human Vision System

At the highest level of abstraction, the eye is a lens that focuses onto a retina. The retina is a

mosaic of two types of photoreceptive cells: rods and cones. Rods are sensitive to most visible

wavelengths and are used for low-light vision. Cones are sensitive to details and colour, and are

responsible for high-acuity vision. The fovea, shown in Figure 2.1 is the centre of the retina; it

contains the highest concentration of detail and colour-sensitive cones, and is used for fine vision

and tasks such as reading [18].

Figure 2.1: The fovea, located at the centre of the eye [19].

The fovea covers approximately 3% of the field of view, which is roughly equivalent to the

area of a thumbnail held at arm’s length [20]. Figure 2.2 shows that the concentration of cones

peaks at the fovea, and drops drastically in the regions away from the centre. While the fovea is

9
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rich in cones, the peripheral areas are filled with rods, which detect light under low illumination.

The eye can only resolve spatial detail with high acuity at the fovea; thus the fovea must be

redirected around the visual field in order to inspect all the pertinent points of interest.

Figure 2.2: Visual acuity distribution in the eye [19].

2.1 Photoreceptor Concentration versus Acuity

In the early 1990’s, Cha conducted a series of experiments to determine the relationship between

number of pixels (in a visual prosthesis) and human visual acuity. He concluded that an array of

600 stimulation points implanted in a 1cm2 area would suffice for 20/30 visual acuity1, providing

adequate acuity for reading [22] and visually guided walking [23]. He further found that a subject’s

reading rate increased with number of pixels in a contained viewing window, suggesting that the

increased density of pixels improved acuity and allowed quicker recognition of characters [22].

At the centre, the fovea is estimated to contain approximately 180,000 cones per mm2 [24]; this

is the concentration of photoreceptors that provides our highest level of acuity. However, Cha’s
1In 1862, Hermann Snellen designed the Snellen Chart to quantify visual acuity. By definition, a person with

“normal vision” should be able to (barely) resolve the letters on the eighth line of the chart from a distance of 20
feet; this denotes 20/20 vision. The same person should be able to resolve the sixth line (the 20/30 line) from a
distance of 30 feet. A person who can barely resolve the sixth line from a distance of 20 feet is said to have 20/30
vision.[21].
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experiments show that we are not crippled by a lower concentration of photoreceptors; we simply

are not able to resolve as ably. A vision system with reduced photoreceptors can therefore prove

functional and provide adequate acuity for simple tasks, such as basic shape recognition and

feature detection.

2.2 Dynamic Range

Human vision is able to adapt to a wide range of luminance levels. Although the eye will initially

become saturated when introduced to strong light (and similarly have trouble seeing in the sudden

absence of light), it can quickly adjust to the scene’s light conditions. Once adjusted, the eye is

capable of distinguishing over nine orders of magnitude of luminance [25].

The cones in the fovea are not only responsible for high-acuity vision, but are also used to view

details in the presence of high illumination. Their counterparts, rods, dominate the peripheral

regions of the eye and are effective at distinguishing information under low illumination [26]. The

combination of cone and rod sensitivities gives the eye its ability to perceive details in both dark

and light regions of the same scene.

2.3 Eye Movements

Eye movements serve many purposes, including redirection of attention, gaze stabilization, and

refresh of visual signals on the photoreceptors (cones and rods saturate if exposed to the same

signal for overly long [20]). There are two main types of eye movements that are associated with

attention: smooth pursuit and saccade.

2.3.1 Smooth Pursuit

When an object moves within the visual field, the eye fixates onto the target and follows its path

by smoothly matching the motion. When the object nears the boundaries of the field of view,

the neck moves the head to maintain the object within the field. The eye continues to fixate on

the object, stabilizing it on the fovea.
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2.3.2 Saccade

From the French word saquier, “to twitch” [27], saccades are quick, jerky eye movements that

direct the fovea’s attention from one point of interest to another. The eye makes approximately 3

saccades per second, fixating on each point of interest for 300ms at a time [18]. The brain acquires

an understanding of the scene through a series of saccade-fixation sequences. It then incorporates

this information to construct a coherent representation of the scene [3]. This is all transparent

to the consciousness, as the viewer is only aware of seeing the entire scene instantaneously. In

order to prevent image blur and jerky transitions between fixations, the eye experiences saccadic

suppression during the jumps: that is, the eye suppresses the optical signal and is essentially

blind during the eye movement [26].

2.4 Mapping Eye Movements

When a new scene is introduced to the eye, certain stimuli will ‘catch the eye’s attention’, marking

some regions in the scene as more conspicuous than others. The measure of a stimulus’ conspicuity

depends on many factors, including the context of the scene, the object’s proximity to other

stimulating sources, the objective task, and the personal preferences of the subject. There are

also some aesthetic features that might be considered intrinsically stimulating, such as bright

objects, high contrast, etc. The orientation of an edge might also affect an object’s conspicuity.

The brain’s cortex is responsible for the evaluation of sensory input. Visual sensations trigger

signal responses from the rods and cones. These signals are fed to the feature extraction engines in

the cortex, which map regions of salience in the scene. In neural psychology, the composite of the

various feature maps is termed the ‘saliency map.’ The brain uses the saliency map to determine

the regions in the scene that require foveal attention. Figure 2.3 shows Fulton’s block diagram, in

which he outlines the relationship between the various sensory centres and the processing of their

inputs. The brain retains a database in its short term memory to preserve some basic knowledge

of the scene [24].

Studies of human visual attention suggest two visual search patterns: bottom-up (”preatten-

tive”) and top-down (”attentive”) analysis [28]. In a bottom-up search strategy, foveal attention
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Figure 2.3: Mapping saliency in the brain, with emphasis on vision [24].
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is directed at locations containing generic stimulating features, such as color, orientation, and

intensity [29]. The scanpath results from the salient conspicuity of each location in the scene.

A top-down search strategy is task-driven, where the vision system hunts for objects that

are relevant to the specific scenario. Consider the illustration depicting the foveal attention of a

subject who intends to boil water, Figure 2.4. Each dot indicates a unit of time that the fovea

spends on a location. It makes sense that the fovea searches out only the details relevant to the

task, and leaves the “less important” information to low-acuity detection regions of the eye. This

is a top-down, task-specific search [18].

Figure 2.4: A top-down survey of a scene, made by a person who has the intention of boiling
water [18].

Now consider Figure 2.5, which shows eye movements recorded while studying a photograph

of an Egyptian bust. Again, each dot represents a unit of time. Note that the subject’s analysis

of the statue does not require foveation to every point of the face; the subject is satisfied by only

attending to the eye, nose, mouth, ear and outline areas. This is a bottom-up search, where the

subject only foveates to those areas that are conspicuous, or those features which the subject is

conditioned to consider a priority. From only a small percentage of the visual field captured in

high-acuity, the subject is able to reconstruct a useful understanding of the object. This image

is part of a collection of recorded eye movements measured during an experiment conducted

by Yarbus. He noted that the attention of the fovea is reserved for those elements that contain

“essential information” necessary for the perception of the scene. The “less essential information”
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is ignored by the fovea and obtained by the lower resolution periphery [3].

Figure 2.5: A bottom-up survey of the photograph of a statue [3].



Chapter 3

Mike: Prototype Design

3.1 Project Goals and System Requirements

The Mike project’s objective is to realize a closed-loop, selectively attentive, visual data acqui-

sition system that can respond to the image data in real time. Consider again the example of

the Mars Rover [7]. Although Mike is not intended specifically for the Rover, the application of

a visual navigation system for an autonomous vehicle provides a useful application for which to

define the system requirements:

1. low processing time and power;

2. minimal data transmission;

3. real-time access to data presented in a useful form; and

4. fault tolerance against minor damage to potentially vulnerable system components.

3.2 The Need for Reduced Resolution

Consider a computer vision system with a SXGA monochrome sensor (1.3 MPixels). For real-time

use, assume that the system operates at a frame rate of 30fps, using 3x3 pixel kernels (structuring

elements) for the image analysis. The image analysis would therefore require image processing on

16
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350 Mpixels per second. The transmission of 30 uncompressed frames containing 8-bits per pixel

would require a communications rate of 315Mbit/s. Although USB 2.0 can transmit at 480 Mbit/s

[30] and IEEE 1394a (FireWire) can transmit at 400Mbit/s [30], the Mars Microrover’s radio has

an effective maximum data transmission rate of 2400bit/s using its 100mW RF transmitter [31].

Employing Jet Propulsion Laboratory’s incremental cost-effectiveness ratio (ICER) compression

scheme [32] to compress the image, the system would still be required to transmit 26.24Mbit/s;

this is 4 orders of magnitude beyond the capabilities of the Microrover’s radio. It is therefore

imperative to limit the amount of information placed on the transmission stream. This can

be achieved by either reducing the effective field of view to a smaller window, or reducing the

resolution of the image. The former approach constrains the system’s vision to a small physical

area. While this approach will allow the system to respond to its visual field in real-time, the

response is only to a very small portion of the physical space. The latter approach maintains a

wide-angle view of the scene, but reduces the density of pixels that encodes each physical region.

This will diminish the level of detail describing physical objects, but will maintain the general

shapes of the objects. It is comparable to taking a low-level detailed description to a higher

level of abstraction. This work proposes a system that analyzes a reduced resolution image to

determine the salient regions that warrant full resolution image capture; thereby conserving both

processing time and power, and efficiently utilizing transmission resources.

3.3 Top-Level Architecture

Mike comprises four main subsystems: the camera (the ‘eye’), the servomotor (the ‘neck’), the

control block (the ‘brain’), and the saliency map engine (which entails a combination of eye and

brain functions). These four subsystems are shown in Figure 3.1.

3.4 The Eye

The camera is responsible for image acquisition. It contains an image sensor (an array of photo-

sensitive pixels), a lens (that focuses light onto the sensor array), and an interface board (that

sends commands to the sensor chip and reads the raw image data). The imaging chip converts
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Figure 3.1: Block diagram of the system architecture.

analog signals (proportional to the incident light intensity) into digital representations. There-

fore, an ‘image’ is a numerical matrix whose elements contain digital values proportional to the

incident light.

There are two major types of solid state image sensors: charge coupled device (CCD) and

complementary metal oxide semiconductor (CMOS). The two technologies differ in the method

by which charge is transferred off of the sensor array. CCD image sensors boast higher fill factor

and noise immunity, but CMOS sensors can be integrated with in-pixel processing circuitry [33].

This means that specific pixels, or groups of pixels, can be selectively addressed, thereby allowing

for efficient subwindowing, fast frame readout, and programmability. The addressability of pixels

is particularly useful for the Mike design because it provides subwindowing capability: the ability

to read out a specific set of pixels, demonstrated in Figure 3.2. (A CCD camera may also claim to

provide subwindowing readout, but in reality, specific columns cannot be isolated and thus entire

rows must be read out; the subwindow would then be assembled external to the readout circuit.)

Furthermore, the flexible readout of CMOS imagers can be exploited to generate low resolution

images through decimation, where only pixels from a select pattern of rows and columns are read

(such as every 2nd or every 4th pixel along each row and column).

The Mike prototype uses a commercial, programmable monochrome 1.3MPixel (SXGA) CMOS

camera [34]. The camera connects to a 2.4GHz computer via an IEEE 1394a (FireWire) interface

that transfers camera instructions and data at up to 400Mbps [30].
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Figure 3.2: Subwindowing on a CMOS sensor array.

3.5 The Neck

The camera is mounted on a programmable pan/tilt servomotor, see Figure 3.3. Once the system

has completed inspection of a static visual field, coordinates are sent to the servo to modify the

camera’s perspective of the scene. The servomotor can also be used for a wide-angle pursuit of a

moving target or for stabilization of a moving/vibrating object in the camera’s view.

3.6 The Saliency Map Engine

The term ‘preprocessing’ refers to the first-pass image processing that is used during early stage

vision; its purpose is not to extract exact information from the scene, but rather to generate a raw

primal sketch that represents the major objects and structures in the visual field [26]. In a bottom-

up visual search, the vision system conducts a topographic survey of the scene, generating maps

of conspicuous locations, (where conspicuity is a measure of the presence of a specific stimulus

in that location). Several maps are generated; each map contains weighted salience information

about a different feature or stimulus, such as corner and edge information. The maps are then
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Figure 3.3: The Mike prototype consists of a commercial CMOS camera mounted on a pro-
grammable servomotor.

combined and tallied for overall salience in the space. A more detailed discussion on the saliency

map is presented in Chapter 4.

3.7 The Control Block

The control block sends and receives commands and messages between the camera and the CPU,

and between the servomotor and the CPU. Mike is a closed-loop active vision system that operates

in two modes: scan mode and saccade mode, shown in Figure 3.4. (There is also a third mode,

an adaptation mode, used to recalibrate the system in a situation where distortion is introduced

and the lens cannot be easily replaced.) In scan mode, the camera is set to 1/4 SXGA resolution

for a coarse sampling of the visual field. The low-resolution image acquired in this mode is

‘preprocessed’ to quickly identify regions of interest that require more detailed inspection at

high-resolution. Specifics on the image analysis are described in Chapter 4. In saccade mode, the

imager serially revisits the regions of interest with a small subwindow set at full SXGA resolution.

This subwindow serves as the system’s ‘fovea.’ Since the dynamic fovea is electronically guided,

eye movements are not hindered by issues typically faced by mechanical systems, such as slow

response, non-precise repeatability, and backlash. The control block also determines the pan
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and tilt coordinates for the servomotor. After the camera has completed a round of scan and

saccade, the servomotor is redirected to another angle to study a different field of view. If there

are any foreground pixels that lie along a boundary of the frame (i.e. if an object straddles

the frame border), then the servo is programmed to redirect the camera perspective such that

more of that object is contained in the field of view. Since there is no information on how far

the camera needs to move in order to view the entire object, the degree of motion is a random

value. Foreground objects are determined through binarization of the image. Therefore, if any

foreground pixels lie along the frame boundary, the servo is given the command to continue

‘looking’ in that direction. If there are foreground pixels along more than one boundary, then

the final pan and tilt coordinates of the servo take into account both boundaries. The boundary

with the largest number of foreground pixel dominates the final choice of coordinates. If there

are no foreground pixels along any of the boundaries, then the control block randomly selects a

new set of pan and tilt coordinates.

3.7.1 Scan Mode

Mike employs a bottom-up search strategy to determine potential regions of interest during scan

mode. The camera captures a 1/4 SXGA survey image of the scene and extracts the locations

of salient areas based on this image. The output of this mode is the saliency map: a list of the

most conspicuous points in the scene (a detailed discussion on this topic is provided in Chapter

4).

3.7.2 Saccade Mode

The saccade mode accepts as input the ordered saliency list generated by the scan mode. The

camera serially traverses the list, capturing a fully resolved 32x32 subwindow image ( 3% of full

view) at each of the salient coordinates. The final output of the saccade mode is a reconstruction

of the scene, where only the salient areas are detailed in high-resolution. After the saliency list is

exhausted for the current scene, the motorized servo shifts the camera’s position for a new view.
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Figure 3.4: Flow diagram of the scan and saccade operation modes.



CHAPTER 3. MIKE:PROTOTYPE DESIGN 23

Motion Detection and Tracking

Since the fovea and periphery occupy separate parts of the biological eye, the eye can quickly

detect motion concurrently to foveation. However, on the camera, both low-resolution and high-

resolution image captures share the same sensor space, and the camera’s firmware does not

allow for multiple resolutions to be applied simultaneously. Thus, low-resolution scan and high-

resolution fixation must be performed separately. During high-resolution fixation, Mike is essen-

tially ‘blind’ to all areas of the visual field other than the region of interest attended by the foveal

subwindow. Thus motion detection must be performed in saccade, rather than scan, mode. Ev-

ery five saccades (an optimal value obtained through experimentation), the system recaptures a

quick low-resolution image of the full view and compares it to the original survey image acquired

during scan mode. Motion is defined here simply as a detectable difference between the two

low-resolution images. If a change has occurred, the system suspends attention to the locations

marked by the saliency map and attends to the changed areas. Otherwise, the subwindow con-

tinues through the list of saliency coordinates. Multithreading the software would reduce delays

in saccade execution during motion detection.

Motion pre-empts all other salient stimuli. When motion is detected, saccades are reserved for

“vital” regions of interest that provide cues useful for tracking and identifying the object. This

necessarily reduces the number of saccades and allows the system to keep pace with the moving

object, as each foveation constitutes one frame readout. Using data obtained from foveating the

vital regions, the system computes an estimate of the moving object’s position relative to the

camera. In order to improve the speed and accuracy of tracking, the system employs a simple

predictive algorithm based on a history of the object’s previous locations (more details on motion

detection are provided in Chapter 6).

Locally Adaptive Exposure Times to Salient Regions

Most photographs of scenes with a range of light levels suffer from either over-exposure (of bright

regions), or underexposure (of dark regions). A camera’s exposure time can be optimized for

either the bright or the dark regions, but not both. This results in images with poor dynamic

range. The PixeLink camera contains a CMOS image sensor with an average of 50dB dynamic
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range for a contant exposure setting [34]. This is 6.5 orders of magnitude less than the dynamic

range of a human eye [25].

A simple, but extremely useful application of the Mike camera is to use it as a high dynamic

range system. As the subwindow fixates on each salient region, the camera’s exposure time is

adjusted for the light conditions local to that region. Therefore, the salient points in the scene are

not only presented in high resolution, but are properly exposed. Wilburn uses a similar technique

to adjust the dynamic range of a wide-angle scene by capturing the scene using an array of

cameras; each camera’s exposure time is specifically adjusted for its narrow field of view [35].

Larson also constructs a high dynamic range photograph using a composite of 16 photographs

taken at different exposures [25]. In Mike’s implementation, the local exposure time adjustment

is reserved only for the salient regions in the scene, shown in Figure 3.5.

Figure 3.5: a) Image taken with one global exposure time and one resolution. b) Image taken
with two resolutions and locally optimized exposure times in the salient regions.

3.7.3 Adaptation Mode

In addition to the two operational modes, (scan and saccade), the design includes a third mode

for fault tolerance: the adaptation mode. This mode functions outside of regular operation.

It is intended for applications that require a knowledge of the relationship between the image
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information and real-world locations, such as a navigation guidance system. Mike enters this

mode in a situation where the camera’s optics are exposed to harsh conditions and cannot be

easily repaired or replaced. The adaptation scheme exploits the knowledge of the image sensor’s

electronic coordinates relative to the camera’s mechanical movement, to develop an empirical

distortion model of the image formation process. This allows Mike to dynamically adapt to

changes in its image quality. Details on the determination of the lens distortion model are

presented in Chapter 5.

3.8 System Parameter: Resolution for Survey Image

The Pixelink camera is able to decimate an image by 2 or by 4 [34]. Decimation is the process

whereby only every other pixel is read (in the case of decimation by 2) or every fourth pixel

is read (in the case of decimation by 4). Figure 3.6 shows a decimate by 4 readout, which

effectively produces a 1/4 SXGA image. This process retains the general information contained

in most images, while decreasing the density of pixels that record the physical details of the

scene. Although this particular camera unit only allows two decimation settings, the image can

be further decimated in software prior to processing. Therefore, this section will investigate the

optimal resolution setting for the survey image used in Mike’s scan mode.

Figure 3.7 shows the effects of decimation. Decimation introduces aliasing and false corners.

The aliasing effect is apparent in the rooftop surface of Figure 3.7 b, c and d, and in the parallel

logs of the cottage facade in Figure 3.7 c and d; the steeper the slopes, the stronger the aliasing

effect. The false corners are also most pronounced in the 1/16 resolution image, but can also be

noted along the right edge of the cottage roof in the 1/4 resolution image.

Figure 3.8 plots the top 100 salient points that result from analysis of the four differently

resolved images. Four features are considered in the determination of saliency: corners, edges,

intensity contrast, and connectivity (the connection of salient points belonging to the same ob-

ject). These features will be discussed in further detail in Chapter 4. Of the four features, the

corner detector is most affected by the loss of resolution. In general, the outlines of large objects

are maintained even when the image is decimated, and the general grey level of object regions

are also preserved, thereby providing similar results in the intensity contrast and connectivity
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Figure 3.6: Decimation in a CMOS image sensor array.
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Figure 3.7: a) SXGA resolution (original image). b) 1/4 SXGA resolution (obtained through
decimation in software). c) 1/8 SXGA resolution (obtained through decimation in software). d)
1/16 SXGA resolution (obtained through decimation in software).
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routines. An excessive reduction of the image resolution can have one of two consequences: i) the

introduction of numerous false corners, or ii) the removal of corner detail, such that the corner

detector is unable to function properly. This is the case in Figure 3.8, where the corner detector is

unable to return many corners from analysis of the 1/16 SXGA image. Therefore, the information

from the contrast intensity map determines saliency in the bright sky, rather than the cottage

rooftop. It can also be seen, however, that the full resolution image focused almost entirely on

the trees, and almost completely ignored the house.

An unexpected but interesting consequence of false corners (from the pixelation in low reso-

lution images), is that the false corners allow the corner detector to track curved surfaces. Figure

3.9a-d show the effects of decimation on a curved object. Normally a curve detection algorithm

would require fitting object shapes to pre-defined curves, using a computation intensive routine

such as the Hough algorithm [36]. However, since the goal is to draw attention to the curve, and

not characterize its properties, it is enough to simply classify the curved surface as ‘salient’. This

is certainly achieved if the curved surface exhibits false corners. Therefore, there is no need to

implement a special curve detector when the curves are represented as corners. For comparison,

Figure 3.9e-h show the effects of decimation on straight edges at different orientations. Edges

that are parallel (or within a few degrees of) the image axes do not exhibit false corners under

decimation; edges that are at an angle with respect to the axes do suffer from the appearance of

false corners, but not as severely as curved edges.

The choice of resolution is an important design parameter, as the overall number of pixels

directly affects the time required for processing the image matrix. Figure 3.10 shows the rela-

tionship between image resolution and processing time of the corner detection algorithm run in

MatLab (see Appendix B for the implementation). The processing time decreases exponentially

with number of pixels in the image: the 1/4 resolution contains 1/16 the number of pixels (reduc-

tion by 4 along the rows and reduction by 4 along the columns), however analysis of the corners

in the 1/4 resolution image takes a factor of 20 less time than processing of the full resolution

image.

In Figure 3.8, analyses of the 1/4 and 1/8 resolution images provide similar results. This

however, may not be the case for all types of scenes. To balance the tradeoff between speed and
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Figure 3.8: Spatial location of the top 100 salient points determined through analysis of the input
image at: full resolution, 1/4 resolution, 1/8 resolution, and 1/16 resolution. The coordinates
of the salient points from the 1/4, 1/8 and 1/16 resolution images were multiplied by 4, 8 and
16 respectively in order to map the ‘equivalent’ coordinate in the full-resolution space. The size
of the markers represent the area of uncertainty due to this mapping process. For example, the
markers for the 1/16 resolution salient points occupy a 16x16 pixel space.
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Figure 3.9: Pixelation effects on specific geometries. a-d are the effects of pixelation on a curved
shape in SXGA, 1/4 SXGA, 1/8 SXGA, and 1/16 SXGA resolution, respectively. e-f are the
effects of pixelation on a triangular shape in SXGA, 1/4 SXGA, 1/8 SXGA, and 1/16 SXGA
resolution, respectively.
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Figure 3.10: Feature extraction execution times vs image resolution

quality of results from the feature detectors, 1/4 SXGA is selected as the resolution used in the

scan image. However, for applications that require very quick and less accurate analysis of survey

scenes, 1/8 SXGA would also suffice for the low-resolution feature detection. Too much detail is

lost in 1/16 SXGA images, therefore that is not a recommended alternative for the scan mode

resolution.
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3.9 Foveal Grid

Although the PixeLink camera allows the subwindow to be programmed anywhere in the sen-

sor array, it would be inefficient to saccade to locations that overlap regions that have already

been visited by previous saccades. Therefore, to prevent the system from repetitively capturing

overlapping subwindows, Mike divides the sensor into a pre-defined grid of 32x32 pixel sectors.

The fovea can therefore be any integer multiple of a 32x32 pixel sector. Sectors containing the

coordinates of salient points listed in the saliency map are visited during saccade mode. Once a

sector has been visited, it is inhibited from further visitation until the next round of saccades.



Chapter 4

The Saliency Map

This chapter discusses the saliency map engine in the Mike system. The saliency map charts the

topology of the salience of a scene. It is a weighted tally of the conspicuity of the scene based

on four criteria: corners, edges, relative brightness/darkness, and connectivity (to other salient

regions).

4.1 A Measure of Conspicuity

The conspicuity of an object and its features is highly subjective to its surroundings. A blue

Smartie in a bowl full of multi-coloured Smarties is nondescript, whereas a blue Smartie in a

bowl full of red cinnamon hearts is conspicuous. There are several visual features that might

be considered conspicuous, and these are often cues that contribute to the cognition of objects

and scenes. Such features include shape, texture, contrast (to surrounding area), intersections

of edges (corners), repetitive patterns, edge orientations, colour, and general relationship to the

surrounding area (the object’s similarity to its neighbours) [26]. The visual stimulus that provides

the most relevant information depends on the scene. Considering again the example of the blue

Smartie in the bowl of cinnamon hearts, the most conspicuous feature would likely be colour,

followed by shape. However, in a scene full of various wooden building blocks, corner detection

would probably be the most useful, and the colour feature would provide very little distinguishing

information between different blocks. Without an a priori knowledge of the contents of a scene,

33
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it is difficult to know which type of feature would provide the most relevant information.

4.2 Implementation of the Saliency Map

Mike’s saliency map has two implementations: in MabLab (for experimental simulations), and

in C++ (to interface with the camera). Both sets of code are provided in the Appendix. The

saliency map is a weighted tally of a combination of various features: corners, edges, intensity

contrast, and connectivity with other salient points in the local neighbourhood. Corners are not

strictly the intersection of two lines; rather, ’corners’ refer to a sharp pattern in intensity change

in the image. Contrast intensity is the deviation of a pixel’s intensity value from the mean grey

level of the scene. ‘Connectivity’ categorizes pixels with other pixels that potentially belong to

the same shape or object. Edges are the outlines of shapes. The detection of these features is

discussed in more detail in subsequent sections.

Consider the six figures presented on the following pages (Figures 4.1-4.6). They show a variety

of greyscale scenes and their detected features. These figures are generated by the MatLab code

presented in Appendix B. Their input images are encoded in 256 (8-bit) greyscale format with

1/4 SXGA (320x256) resolution, which is the resolution used in Mike’s scan mode. Part a shows

the most prominent corners detected in the scene, part b shows object edges, part c shows the

intensity contrast, and part d shows the segmented shapes. Part e shows the three-dimensional

plot of the combined feature maps, depicting the salience-magnitude. For example, in Figure 4.3,

Dr. Hornsey’s right hand is the most salient point in the scene. These many examples cover a

variety of scenes to demonstrate the determination of salience in different types of scenes that

contain different types of objects and features.
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Figure 4.1: Bei Hai Garden in Beijing, China. Parts a-d display the output of various feature
detectors: a) corner, b) edge, c) intensity contrast, d) connectivity (the different segments on
the image show the different detected objects). Part e) shows the 3D mesh plot of the combined
saliency map. The most salient point in this scene is located at pixel (296,41), which is near the
top right.
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Figure 4.2: Docks at the Carr Cottage in Georgian Bay, Ontario. Parts a-d display the output of
various feature detectors: a) corner, b) edge, c) intensity contrast, d) connectivity (the different
segments on the image show the different detected objects). Part e) shows the 3D mesh plot of
the combined saliency map. The most salient point in this scene is located at pixel (112, 37),
which is near the top of the image.
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Figure 4.3: Armoury at Mu Mansion in Lijiang, China. Parts a-d display the output of various
feature detectors: a) corner, b) edge, c) intensity contrast, d) connectivity (the different segments
on the image show the different detected objects). Part e) shows the 3D mesh plot of the combined
saliency map. The most salient point in this scene is located at pixel (138,194), Dr. Hornsey’s
hand.
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Figure 4.4: Mars terrain, taken by the left navigation camera of the Spirit Rover on its way to
Gusev Crater [37]. Parts a-d display the output of various feature detectors: a) corner, b) edge,
c) intensity contrast, d) connectivity (the different segments on the image show the different
detected objects). Part e) shows the 3D mesh plot of the combined saliency map. The most
salient point in this scene is located at pixel (153, 172), near the centre of the image.
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Figure 4.5: Test scene containing various geometric shapes. Parts a-d display the output of
various feature detectors: a) corner, b) edge, c) intensity contrast, d) connectivity (the different
segments on the image show the different detected objects). Part e) shows the 3D mesh plot of
the combined saliency map. The most salient point in this scene is located at pixel (57, 50), the
upper vertex of the triangle.
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Figure 4.6: Bust of Nefertiti [3]. Parts a-d display the output of various feature detectors: a)
corner, b) edge, c) intensity contrast, d) connectivity (the different segments on the image show
the different detected objects). Part e) shows the 3D mesh plot of the combined saliency map.
The most salient point in this scene is located at pixel (181, 77), Nefertiti’s eye.
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Figure 4.7 plots the 100 most salient points found in the test image processed in Figure 4.6.

The points are connected in order of salience.

Figure 4.7: Top 100 salient points from the saliency analysis of the bust of Nefertiti.

The utility of the information provided by each of the feature detectors depends on the

individual input image. In all of these test images, the corner detector seemed to provide the

most amount of useful information. However, in Figure 4.1, the segmentation map is also quite

useful. Similarly, intensity contrast would be useful in a scene with a homogenous background,

such as in Figure 4.4, but with a distinctive object in the foreground, which would have a different

texture and brightness than the background. The discussion will return to this topic at the end

of the chapter. The following sections describe the methods by which features are extracted from

raw images.
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4.3 Feature Detector #1: Corners

Corners can either be detected by using a morphological hit and miss routine, where corner shapes

are matched to the structuring element, or by finding the intersection of two sharp changes in

intensity gradient. The main disadvantage of the hit and miss routine is that it will only find

corners that are specifically described by the structuring elements. This can be improved by

placing some don’t care values in the structuring elements (to relax the definition of the corner

shape); however a structuring element that is too general will result in the detection of false

corners. The latter algorithm is much more complex, but also more robust and accurate; it was

used to generate the results shown in Figures 4.1 - 4.6a.

4.3.1 Morphological Hit and Miss Operator

Morphology pertains to the shapes and structures of image objects; binary morphology operates

on binary (black and white) images. The morphological hit and miss operator searches the image

matrix for patterns that match the structure described by the kernel (structuring element). The

hit and miss corner detector receives as input the binarized scene image and returns a second

binary image: the pixels that are active in the output image are those whose neighbourhoods

match the structure described by the structuring element. Each structuring element can only

describe one corner shape/orientation; therefore, multiple passes of the hit and miss operator are

necessary, using a variety of structuring elements that describe different corner orientations. This

implementation uses four structuring elements to describe corners oriented at 0◦, 90◦, 180◦ and

270◦ from the positive x-axis.

A ‘1’ in the structuring element indicates a pixel that is on (i.e. ‘1’) in the input binary image,

a ‘-1’ indicates a pixel that is off (i.e. ‘0’), and a ‘0’ indicates a don’t care condition, where the

output is true regardless of whether the input pixel is on or off. The don’t care condition relaxes

the corner shape specification; therefore the same structuring element can be used to detect sharp

corners as well as rounded corners. The size of the kernel also determines the strictness on the

corner shape; the larger the structuring element, the more pixels that need to be included in the

corner shape. The smallest structuring element that describes a corner is a 3x3 matrix. It is

tricky to determine optimal size of the structuring element. On the one hand, if the rules are too
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(4.1)

strict, then not many corners will be found; on the other, if the rules are too relaxed, then many

false corners will be returned. Also, increasing the size of the structuring elements proportionally

increases the number of iterations of the processing routine per pixel. In the set of structuring

elements shown in Equation 4.1, the 6x6 matrices imposes the condition that each edge along the

corner junction must contain at least 6 pixels, requiring 36 iterations per pixel.

The main advantages of the morphological hit and miss operator are its ease of implementa-

tion and its fast execution time (since only simple computations are required). However, there

are several obvious disadvantages to this routine: i) only those corners whose acuteness and

orientations match the shapes specifically described by the structuring elements will be found;

and ii) the output decision is boolean (pass or a fail), and provides no information regarding

the strength of a corner (therefore no degree of salience can be predicted through this routine).

These disadvantages of the routine result in an expensive tradeoff between speed and accuracy,

especially since the corner is generally the most useful feature to detect in the determination of

an object’s salience.
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4.3.2 Detection of Intensity Gradient Changes

The gradient-based corner detection scheme essentially looks for the junction of two or more

strong edges, which are defined as strong regions of intensity variation. The corner detection

algorithm is given by [36]:
Inputs: 1. Image, I

2. Threshold parameter, τcorner

3. Neighbourhood size parameter, N, where the window under consideration

will be of size 2N+1

Output: 1. Co-ordinates of the most prominent corners in the scene

Algorithm: 1. Compute the spatial image derivatives along the x and y directions:

Jx = ∂I/∂x, Jy = ∂I/∂y. These describe the gradient changes in intensity

in the image, and are computed by convolving the columns (rows) of I with

the kernel [1 0 -1].

2. For each point, p:

a. Let J2
x,p = ∂I/∂x and J2

y,p = ∂I/∂y in the (2N+1)x(2N+1)

neighbourhood surrounding p. Compute the lower eigenvalue (if it

exists), λ2, of C, where:

C =




∑
J2

x,p

∑
Jx,pJy,p∑

Jx,pJy,p
∑

J2
y,p




b. If λ2 > τcorner, save the coordinates of p in the list L.

3. If there are multiple coordinates stored in L that belong to the same

(2N+1)x(2N+1) neighbourhood, keep only the coordinates of the local

maxima.
C describes the structure of the intensity changes in the (2N+1)x(2N+1) neighbourhood

around a given point, p. Since C is a 2x2 matrix, it will have two eigenvalues: λ1 and λ2. These

eigenvalues indicate the edge strengths in the local neighbourhood; the stronger the edges, the

higher the eigenvalues. Therefore, if there are two strong edges with different orientations in

the neighbourhood, then both λ1 and λ2 will be large. Mathematically, a corner exists if both

eigenvalues are above the threshold, τcorner. Since λ1 is by definition larger than λ2, only λ2 2
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needs to be computed and compared to τcorner. λ2 is given by1:

λ2 =
(
∑

J2
x,p +

∑
J2

y,p)−
√

4(
∑

Jx,pJy,p)2 + (
∑

J2
x,p −

∑
J2

y,p)2

2
(4.2)

An appropriate value for the threshold, τcorner, will vary for different images; rather than use

a pre-defined value for τcorner, the code (Appendix B) simply starts with a relatively low value

of τcorner to filter out most of the false corners, and then retains the top 100 prominent corners

in the list.

The optimal value for N will also vary for different images. A choice of N between 2 and

10 will generally yield reasonable results [36]; in this implementation, N is chosen to be 4, such

that the neighbourhood under consideration for corners is 9x9. This neighbourhood size was

determined experimentally using a set of test images.

Figure 4.8 shows a plot of the corners detected by a) the gradient-based corner detection

algorithm (diamonds), b) a hit-and-miss operation using a set of four 5x5 kernels (squares), and

c) a hit-and-miss operation using a set of four 6x6 kernels (triangles). The output of the hit-

and-miss using the 5x5 kernels present closer results to the gradient-based corner detector than

the hit-and-miss operation using the 6x6 kernels. However, the 5x5 kernel operation resulted

in 203 detected corners; in the gradient-based method, the code is instructed to select the peak

100 detected corners. Since there is no way to differentiate between the strengths of the corners

detected by the hit-and-miss operator, it is necessary to accept the entire output set as valid. The

only way to reduce the number of corners that are detected are to change the structuring elements

and tighten their corner descriptions. However, the results from the hit-and-miss operator using

the set of 6x6 kernels did not produce much better results. In fact, if the diamonds are used as

a measure of corner validity, then results of the hit-and-miss operator (using both kernel sizes)

are incomplete. Unfortunately, there is no way to control how many corners are returned by the

hit-and-miss operator. Furthermore, the corners that do not coincide with the four orientations

described by the structuring elements are left undetected.
1Note: The larger eigenvalue, λ1, is the addition, rather than the subtraction, of the two major terms.
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Figure 4.8: Comparison of results from the two corner detection algorithms. Diamonds denote
results from the gradient-based corner detection algorithm, squares denote results from a hit-
and-miss operation using a set of four 5x5 kernels (squares), and triangles denote a hit-and-miss
operation using a set of four 6x6 kernels.
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4.3.3 Runtime Comparison

Figure 4.9 plots the average execution time to run the gradient-based and hit-and-miss algorithms.

These execution times are averaged over 100 samples, using a variety of input images. For

comparison, the run-time of the gradient-based routine was also measured in the C++ prototype

implementation. Both executions were run on the same computer, using a 2.4GHz processor and

256MB memory. For the analysis of a 1/4 SXGA image, the hit-and-miss operator performed

over 50 times faster than the gradient-based algorithm, implemented in MatLab. However, while

the hit-and-miss operator (which is a built-in function provided in MatLab’s Image Processing

ToolKit [38]) is an optimized routine, the gradient-based corner detector is a non-optimized

routine written by the thesis author; it was implemented for the intention of testing the function

of the algorithm, rather than the optimization of its performance. Fortunately, the same algorithm

implemented in C++, which is used in the Mike prototype, ran an order of magnitude faster than

the MatLab code.

Figure 4.9: Runtime of corner detection algorithms.
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4.4 Feature Detector #2: Edges

Edges, like corners, can also be detected through a combination of morphological operations, or

through the detection of gradient changes. There are many gradient-based methods of detecting

image edges, including the Sobel, Roberts, Prewitt, and Canny edge detectors. The following

sections discuss the morphological and Canny edge detectors.

4.4.1 Morphology

Before the morphological edge detector can be understood, it is necessary to first understand the

binarization process.

Binarization

Binarization is the process of converting greyscale images to a binary image: an image composed

of pixels that hold one of two values, ‘1’ (foreground) or ‘0’ (background). A pixel is ‘1’ if the

original image’s grey value is above the binarization threshold; otherwise it is ‘0’.

If a good binarization threshold can be found, morphology can yield comparable results to its

much more complex counterparts (i.e. Sobel and Canny). Unfortunately, the determination of a

proper binarization threshold can prove to be a complex task in itself. Binarization is achieved

differently in the C++ and MatLab implementations (see Appendix A and B). In the C++ proto-

type code, the binarization threshold is set to two standard deviations above the mean grey value.

This was determined experimentally to provide adequate binarization results, with a tradeoff be-

tween complexity (speed) and quality (distinction between foreground and background). The

MatLab code uses the built-in Otsu routine to find a proper threshold. Otsu’s method deter-

mines an image-specific binarization threshold level that mimimizes the intraclass variance in the

image. Although Otsu’s method is generally agreed to be a good method for determining bina-

rization thresholds [39],[40], it can still often remove important detail from foreground objects.

No known binarization technique provides consistently perfect separation between foreground and

background for all images. Figure 4.10 shows binary images obtained using various thresholding

methods.
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Figure 4.10: Binarization using various threshold levels. a) Original 320x256 greyscale image. b)
Binary image thresholded by a value calculated by Otsu’s method. c) Binary image thresholded
by the mean grey value. d) Binary image thresholded by two standard deviations above the mean
grey value.
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Morphological Edges

Edges are determined by finding the outlines of shapes. There are two main morphological

operators: erosion and dilation. Erosion removes a layer of foreground pixels along the perimeter

of an object; it effectively shrinks objects and opens holes within an object. Dilation adds a

layer of foreground pixels along the perimeter of an object; it effectively enlarges objects and

closes small holes. Figure 4.11 illustrates this process. Conceptually, erosion can be considered

as an ‘AND’ operation, while dilation can be considered as an ‘OR’ operation. For erosion, if

all of the pixels surrounding an active foreground pixel are also active, then the corresponding

result is true; otherwise it is false. For dilation, if any of the pixels surrounding the pixel under

consideration are active or if the pixel itself is active, then the result is true; otherwise it is false.

Object outlines can have two definitions:

1. Background pixels lying on the boundary of the object; or

2. Foreground pixels along the perimeter of the object.

The first type of outline is achieved by subtracting the original binary image from its dilated

image. Similarly, the second type of outline is achieved by subtracting the eroded image from the

original binary image. The definition of background and foreground is grossly generalized: the

binarization process assumes that the background is darker than the foreground objects. This is

not always the case. However, both methods of determining outlines will find the border between

distinctively light and dark areas in the scene.

4.4.2 Canny Edge Detector

Given the speed and ease of implementation for a morphological edge detector, the results of mor-

phology are good enough for this application (since the scan mode only requires pre-processing to

roughly determine salient regions and edge information is the lowest weighted feature). However

the gradient-based corner detection scheme is very similar to Canny edge detection, and many of

the intermediate values that are computed during corner detection can be reused in the Canny

calculation. Therefore, although the morphological routine is faster, an implementation of the
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Figure 4.11: Effects of erosion and dilation. a) Original binary image. b) Left: Eroded image,
right: original image minus eroded image. c) Left: Dilated image, right: dilated image minus
original image.
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Canny edge detector is also available in the Mike C++ code (Appendix A). The Canny edge

detector essentially looks for local maxima of intensity variation. Its algorithm is given by [36]:
Input: Image, I

Output: Boolean (binary) image depicting detected edges, Iedge

Algorithm: 1. Convolve I with a Gaussian matrix (a matrix of quantized Gaussian

values) to smooth the image and filter noise. This is called Gaussian

smoothing.

2. Compute the spatial image derivatives along the x and y directions:

Jx = ∂I/∂x, Jy = ∂I/∂y. These describe the gradient changes in intensity

in the image, and are computed by convolving the columns (rows) of I with

the kernel [1 0 -1]. (Note: this is the same as step 1 in gradient-based

corner detection).

3. Compute the edge strength matrix, Es, where each element,

es(i, j) =
√

J2
x(i, j) + J2

y (i, j)

Edge strengths in Es are distributed in the surrounding neighbourhood.

The true edges are located at the local peaks along an edge orientation.

4. Compute the edge orientation matrix, Eo, where each element,

eo(i, j) = arctan
Jy

Jx

5. Thin the edges described by Es to determine the local maxima and

store the result in the matrix Iedge. This is called Canny suppression.

In this step, four edge directions are considered:

d1 = 0◦, d2 = 45◦, d3 = 90◦, and d4 = 135◦.

a. Determine the direction dk that best describes the edge

orientation at each Eo(i, j).

b. Compare Es(i, j), with the edge strength of its two neighbours

along the direction dk. If Es(i, j) is not the maximum, then the pixel

at (i,j) does not belong to an edge. Iedge(i, j) is assigned the value of

Es(i, j) if it is a maximum, 0 otherwise.
A final step in the Canny algorithm is hysteresis thresholding, where the edge strengths

are compared with a minimum threshold level. This filters out all weak edges and it improves
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the quality of results from the Canny detector. However, this added level of complexity is not

necessary for the construction of the saliency map, which is only intended to be a rough sketch.

Thus this final step is skipped in the prototype implementation.

4.4.3 Runtime Comparison

Figure 4.12 plots the average execution times to run the two edge detection algorithms described

in the previous sections. The execution times were averaged over 100 samples, using a variety of

input images to test the performance of the algorithms. In the C++ implementation, morphology

took 2/3 less time to run than the Canny edge descriptor. However, it should be noted that the

Canny routine shares some computations with the corner detection scheme, and therefore the

combined runtime between corner detection and Canny edge detection is less than their individual

totals. Still, morphological edge detection was much faster and is chosen to be the active routine

in the prototype code.

Figure 4.12: Runtime of edge detection algorithms.
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The quality of results from the morphological edge detector is highly dependent on the quality

of results from the binarization process. Although both Otsu’s method and the method used in

the prototype code provide reasonable results, they still do not isolate all objects properly in a

complex scene. This method will find the outlines of most of the major shapes in the scene. Since

edges are given a low priority in the salience sequence, the inaccuracy of the edge detector is not

a major concern. However, in an application where edge information is important and the edge is

given a higher weighting, then perhaps the Canny detector should be used to gain more accurate

results.

4.5 Feature Detector #3: Intensity Contrast

The purpose of the intensity contrast routine is to locate any abnormally bright or dark objects

in the image. It calculates the absolute difference between a pixel’s intensity and the mean grey

value of the overall image, and returns the pixel’s deviation from the mean if it is more than a

predefined threshold value:

Icontrast(i, j) =




|I(i, j)−MeanV al|, if |I(i, j)−MeanV al| ≥ τcontrast

0, otherwise
(4.3)

τcontrast is a parameter that determines how much brighter/darker an object needs to be in

relation to the background, in order to be considered salient.

4.6 Feature Detector #4: Connectivity

The connectivity between salient points is loosely determined by grouping pixels that belong

to the same object. For a static scene, the intention of this routine is to provide a deciding

factor between two similarly strong corners that belong to different objects. The high-priority

objects and their features will therefore be attended first, which is important in case there is an

interruption to the saccading process (such as the sudden detection of motion). For a dynamic

scene (where one or more objects are moving), it is intended for to aid in tracking objects.

The implementation of connectivity is achieved differently in the MatLab test code and the
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C++ prototype code. In the MatLab test code, the image is first converted to a binary image

and the built-n MatLab bwlabel routine [38] groups the foreground objects. The bwlabel routine

assigns a numerical label to all the segmented objects in the image; all pixels belonging to the

same object share the same label.

In the C++ prototype code, the connectivity implementation categorizes all the corners,

rather than all the foreground pixels, in the image. The membership of two corners to the same

object is defined by an imaginary line drawn between those two corners. If the line crosses over

only foreground pixels, then the two corners are assigned the same object label. Frame 1 of Figure

4.13 shows four distinct shapes with the corners grouped together. The lines in Figure 4.13 have

been superimposed onto the image to indicate the corners that have been grouped together (i.e.

determined to belong to the same object).

Although this connectivity definition works well for this type of input image, where shapes

are simple and distinct, it has not been tested on more complex images. The ability to track the

corners of an object, however, is potentially useful in tracking moving targets, especially when the

moving target moves in front of or behind other foreground objects and the two or more objects

become indistinguishable during the target motion.
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Figure 4.13: Image features grouped by their connectivity. Lines are drawn between each corner
that belongs to the same object.
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4.7 Top-Down Visual Search

The previous discussion considered the construction of the saliency map based on a bottom-up

visual search. This section briefly considers the conditions on salience for a top-down visual

search.

A top-down visual is task-oriented, and therefore requires a basic understanding of the fea-

tures, or combinations of features, that categorize objects to judge their relevance to the task.

4.7.1 Learning and Classification

In 1961, Shepard conducted a series of experiments to determine the complexity of classifying

objects based on a set of stimuli. He defined classification as “a grouping of a given set of stimuli

into two or more mutually exclusive and exhaustive classes [41].” Using three sets of binary

stimuli (i.e. having two possible values), Shepard investigated six different ways of classifying

eight objects based on the stimuli: colour (grey or white), size (large or small), and shape (square

or triangle). Although there are 70 ( 8!
4!2

) possible combinations of 2-group arrangements of the

eight objects, there are only six unique types of classifications; the rest are all variants of these six

types [41]. Figure 4.14 shows examples of these six types of classifications discussed by Shepard.

Figure 4.14: Examples of the six types of categorizing objects based on three binary features.
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Type I : The “necessary and sufficient condition [41]” for the objects in column A is that each

object must be grey. Similarly, the objects in column B must be white. Therefore, only the

colour feature is considered; size and shape are ignored. Type I classification is based on

the value of one feature.

Type II : The objects in column A are either i) grey and triangular, or ii) white and square.

Type II classification is based on the combination of values from two features.

Types III-VI : Types III-VI classifications require consideration of values from all three fea-

tures; however, they differ in the logical evaluation of the features.

Type III : The objects in column A are either i) grey and large, or ii) small and triangular.

Thus, although all three features must ultimately be considered, each condition only requires

the consideration of two features.

Type IV : The objects in column A are either i) large and triangular, or ii) large and grey, or

iii) grey and triangular. Here, there are three conditions, but two features considered in

each condition.

Type V : The objects in column A are either i) grey and triangular, or ii) large and grey, or

iii) square and small and white. Two of the three conditions require the evaluation of two

features; the third condition evaluates all three features.

Type VI : The objects in column A are either i) grey and large and triangular, or ii) small and

white and triangular, or iii) grey and small and square, or iv) white and large and square.

The four separate conditions each evaluate all three features.

According to Shepard, the complexity of classification is ranked in the following order: Type I

< II < (III, IV, V) < VI [41]. This ordering of classification complexity suggests that the process

of learning how to categorize objects requires that the subject also learns how to selectively attend

only to the features specifically relevant for a given type of classification [42]. Evidence supporting

this hypothesis was presented by Rehder, who measured the eye movements of subjects presented
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with classification tasks of eight objects that differed in three binary features [43]. Rehder found

that, after an initial period of learning, subjects attended to only those features relevant to the

rules of the classification type, and ignored the features that were not specified by the rules [43].

Based on these findings, Zhang developed a category learning task model that selectively attends

to relevant features and develops a fixation pattern for each of the six classification types [44].

4.7.2 Categorical Learning in Mike

With the addition of a set of rules describing Shepard’s the six classification types [41], Mike

can be trained to perform basic categorical learning using the output of its feature detectors.

Using the example shown in Figure 4.14, the following rules describe the classification of objects

according to the six types.

Assigning a boolean descriptor for each feature, let:

isGrey = 1 : grey; isGrey = 0 : white

isLarge = 1 : large; isLarge = 0 : small

isSquare = 1 : square; isSquare = 0 : triangle

An object is in column A if:

TypeI : isGrey = true

TypeII : (isGrey ⊗ isSquare)⊕ (isGrey ⊗ isSquare)

TypeIII : (isGrey ⊗ isLarge)⊕ (isLarge⊗ isSquare)

TypeIV : (isLarge⊗ isSquare)⊕ (isGrey ⊗ isLarge)⊕ (isGrey ⊗ isSquare)

TypeV : (isGrey ⊗ isSquare)⊕ (isGrey ⊗ isLarge)⊕ (isGrey ⊗ isLarge⊗ isSquare)

TypeV I : (isGrey ⊗ isLarge⊗ isSquare)⊕ (isGrey ⊗ isLarge⊗ isSquare)

⊕(isGrey ⊗ isLarge⊗ isSquare)⊕ (isGrey ⊗ isLarge⊗ isSquare)isSquare)

(4.4)

A routine containing the above rules incorporated with some minor modifications to Mike’s

feature detectors (Appendix B), analyzes the objects in the input test image shown in Figure

4.15. The three ternary variables, isGrey, isLarge and isSquare, can hold a possible value of

‘true’, ‘false’, or ‘uncertain.’ The variables are initialized to the ‘uncertain’ state. For each
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object in the image, the isGrey flag is evaluated from the output of the intensity contrast and

connectivity routines; it is ‘true’ if the object is grey (i.e. having an intensity value between

100-200), ‘false’ if the object is white (i.e. having an intensity value above 200), and ‘uncertain’

if the object contains both white and grey pixels or if the object’s grey level is less than 100.

The isLarge flag can be evaluated using the connectivity routine; it is ‘true’ if the bounding

box around the object contains more than 60 pixels along its diagonal, ‘false’ if the diagonal is

between 10-60 pixels, and ‘uncertain’ if the diagonal is less than 10 pixels. The isSquare flag is

evaluated based on the output of the corner detection and connectivity routines; it is ‘true’ if

the object contains four vertices, ‘false’ if it contains three vertices, and ‘uncertain’ if the object

contains any other number of vertices. Figure 4.16 shows the output of the classification routine.

Figure 4.17 shows the classification results if corner detection is disabled, and Figure 4.18 shows

the classification results if intensity contrast is disabled. The question marks indicate that there

is insufficient information from the detected features to classify the objects based on the rules in

Equation 4.4. It is apparent that Type I classification can still be possible if some detectors are

turned off, but Types III-VI, which are more complex, rely on the output of all the detectors.

Although Type II classification only requires two out of the three feature dimensions described by

Shepard [41], the size of the object is calculated by Mike’s connectivity routine; the connectivity

routine is therefore essential for all types of classification as it is used to segment the objects.

Figure 4.15: Input image for object cateogorization.
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Figure 4.16: Classification of objects using Mike’s feature detectors.
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Figure 4.17: Object classification with corner detector disabled.

Figure 4.18: Object classification with intensity detector disabled.
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4.7.3 Weighing the Features

The saliency map is a weighting function. Its output depends on the detected features, Fi, and

their respective assigned weights, ki. For n feature detectors, the salience at a point is given by:

Salience(x, y) =
n−1∑

i=0

kiFi(x, y) (4.5)

Certain combinations of features and weights would be appropriate for some types of applications,

while different combinations would be appropriate for other applications. If each of Mike’s four

feature detectors is assigned a unique ranking, then there are 24 (4!) possible combinations of

rankings. However, the feature detectors are not required to be assigned unique rankings; two

or more features can have the same ranking. Moreover, one or more features may be disabled,

and the weight values, ki, can be any natural number. Therefore, there exists an infinite number

weight assignments for the feature detectors. Rather than assign arbitrary values of k to each

feature, there needs to be a systematic way to determine the appropriate weight assignments of

feature detection for a given application.

The saliency maps from Figures 4.1-4.6 were generated by assigning a weight of 7 to the corner

detector, 5 to the intensity contrast calculation, 3 to the edge detector, and 1 to the connectivity

indicator. This set of weightings was determined through experimentation, and worked well for

the test images. Although these weightings can be used for general bottom-up searches, specific

applications might require an emphasis on certain types of features. Tables 4.1-4.4 qualitatively

demonstrate the effects on the saliency calculation ( Equation 4.5) as emphasis is varied for Mike’s

four feature detectors on the images shown in Figure 4.19. These images represent sample data

that might be used in autonomous navigation applications, security/biometric applications, and

industrial inspection applications. Tables 4.1-4.4 also show the salient areas that would be studied

during different durations. In his experiments, Yarbus noted that when a subject initially looks

at a scene, the subject will first attend to the features that are most important to the scene’s

interpretation. When more time is allotted for study, the subject will then move on to some

of the secondary regions of the scene, and perhaps also return to the top salient areas to fixate

on them for longer [3]. Assuming an average of 3 saccades per second [18], Tables 4.1-4.4 show
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the corresponding fixation points for examination durations of 5 seconds (15 salient points), 20

seconds (60 salient points), 45 seconds (135 salient points), and 70 seconds (210 salient points).

Tables 4.1-4.4 indicate that the strongest corners in the image dominate the top salient points,

even when the corner detector is assigned a low weighting. Since corners mark the junction

between two strong edges, the edge detector will also indicate salience in a corner region. Fur-

thermore, the junction of strong edges indicates a sharp change in intensity; there is typically

a large contrast value in that region, thus the intensity contrast calculation will also indicate

salience in the neighbourhood of a strong corner. However, after the initial set of strong corners

are exhausted, the edge detector, intensity contrast calculator, and connectivity indicator do not

provide sufficient information to differentiate the salience between the secondary regions. This

is apparent in the bottom row of images in Tables 4.1-4.4, where the corner detector is disabled;

the remaining three detectors do not provide many new salient points after the initial 15 points.

Figure 4.19: Sample images for autonomous navigation, security and industrial inspection appli-
cations. a) and b) Images of Mars terrain taken from the navigation camera on Spirit Rover [37].
c) Actress and model Elizabeth Hurley [45]. d) Circuit board [46].

For general applications, it is recommended that the corner detector be enabled and assigned

a strong weighting relative to the other feature detectors. Unless the specific application requires

object outline information, the edge detection may be redundant after corner detection, as corner

detection will generally provide hits on most strong edges. It should be noted however, that corner

detection will not detect edges do not intersect with other edges, such as along a surface horizon.

The intensity contrast calculation can be useful in distinguishing unusually bright or unusually

dark objects relative to the rest of the scene. Although the connectivity indicator is useful for

grouping salient points that belong to the same object, its results are generally meaningless on

their own. Therefore, the connectivity indicator should be assigned a relatively low weighting.
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Table 4.1: Duration of scene examination versus feature weighting, autonomous navigation ap-
plication.
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Table 4.2: Duration of scene examination versus feature weighting, autonomous navigation ap-
plication.
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Table 4.3: Duration of scene examination versus feature weighting, facial examination (secu-
rity/biometrics) application.
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Table 4.4: Duration of scene examination versus feature weighting, industrial inspection applica-
tion.



Chapter 5

The Empirical Distortion Model

This chapter discusses the implementation of the adaptation mode. This mode operates sepa-

rately from the scan and saccade modes, and is intended for camera calibration to map image

information to physical locations in the real world. Camera calibration is essential for visual

servoing, where visual information is used to guide robotic or vehicular pose.

The human vision system (HVS) performs remarkably well under adverse conditions. Even

under the most non-ideal of circumstances, we are often able to circumvent obstacles by calibrating

our vision system to properly function and interact with the physical world. There are several

possible explanations to account for the robustness of the HVS; one such explanation is that

the system uses its eye movement capabilities in conjunction with a feedback mechanism, to

compensate for low acuity, distorted, or occluded visual data. Jakobson reported on studies

of a subject’s accuracy in reaching for physical objects, while the subject’s eyes are covered by

prismatically-displacing goggles. Jakobson concluded that visual feedback allowed the subjects to

”subconsciously” calibrate their distorted vision systems for an accurate estimation of real-world

locations of physical objects, even in the presence an over 10 degree-shift in displacement [47].

5.1 Scenario of Interest

Consider once again the example of the autonomous Mars Rover. Since it would be difficult to

repair physical damage to a vehicle on Mars, there needs to be a ‘work-around’ such that the

69
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system can still function in the presence of optical flaws. Potential faults that might hinder the

performance of the visual navigation system include:

1. Sensor malfunction due to space radiation;

2. Dust particles on the lens; and

3. Thermal degradation of the lens.

Bombardment of ionized particles in space can often alter the performance of image sensors.

CMOS sensors tend to be much more resilient against the effects of space particle radiation than

CCD sensors. Research to characterize the nature of radiation effects on image sensors can be

used to increase the tolerance of sensor designs against charged particles [48],[49],[50].

In the event of the second listed fault, visual obstruction due to dust settling on the lens could

be handled by maintaining an internal memory of the dust locations.

The problem of interest for the following sections pertains to the third fault: thermal degra-

dation to the lens. In a harsh environment such as Mars, where the camera is exposed to low

atmospheric pressures and solar energy, the lens material could degrade over time. This will cause

unknown lens distortions. Although there is much literature on models to characterize common

lens distortions [51],[52],[53], this design assumes no knowledge of the nature of the lens distortion

in this situation. Therefore, the proposed method examines a way by which the visual navigation

system can develop an empirical model of the lens distortion.

5.2 Experimental Setup

The goal of this experiment is to empirically characterize a lens distortion whose nature is un-

known, by finding an approximate mapping between the world coordinate system with the image

coordinate system, making use of the camera pose with respect to visual targets. The first step is

to place a distorted lens on the system. To visually assess the distortion, an image of a Gaussian

random target is captured by the camera, shown in Figure 5.1. This image is clearly focused in

the central region, and its quality degrades along the edges.
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While the image in Figure 5.1 demonstrates the effects of lens distortion, it does not provide

useful information for calibration. A less visually impressive, but more useful image, is shown

in Figure 5.2a. This is an image of a visual target that contains a pattern of equally-spaced

dots. By calculating the centroid of each dot, it was determined that the distance between two

dots in the central region differed from the measured distance between two dots captured at the

periphery. However, through knowledge of the actual distance between dots, equations can be

used to transform the distorted measurement values to corrected measurement values.

Figure 5.1: Visual target showing effects of lens distortion.

Naturally, the Mars rover can not readily access a target of equally spaced dots. However,

the same information could be generated by choosing a point source target (e.g. a clearly defined

rock peak, Figure 5.2b and mechanically moving the camera in small, equally-spaced intervals.

This idea is the basis of the experiment.

Although Mike’s prototype system has a camera mounted on a servomotor, the particular

servomotor unit used by the prototype is not suitable for fine movements. Therefore, for the
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Figure 5.2: Calibration Images: a) visual target of equally spaced dots, b) image of rocks with
sharp features on Planet Mars taken by Spirit Rover’s Left Panoramic Camera [37].

sake of this experiment, the target is mounted on a translation stage that can be adjusted at µm

increments along the vertical and horizontal directions1. To artificially recreate the image shown

in Figure 5.2a, the target is moved at small increments and the relative motion of the target is

measured by determining the centroid location of the point source at each position. A useful

model of the distortion effects can be developed with this set of empirical measurements.

5.3 Distortion Model

The lens distortion is clearly non-uniform across the entire visual field (see Figure 5.1). The

calibration method assumes that the distortions can be modeled as first order linear effects,

as long as the model only describes a small region of the lens at a time. The visual field is

arbitrarily divided into a grid of smaller regions, and the first-order distortions in each region

are modeled locally. The advantage of this is that the distortion can be modeled linearly with

the measured data. The drawback is that there will be discontinuities in the model along the
1In addition to providing a higher degree of accuracy and control, use of the precision translator to provide

relative motion between the camera and the target keeps the target motion approximately perpendicular to the
camera, rather than in an arced trajectory.
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regional boundaries. For the sake of simplicity, this is an acceptable caveat of the experiment, as

the discontinuities can be reduced through a careful choice of region sizes/shapes, interpolation

along borders, and defined overlap between regions.

Table 5.1 presents the notation that will be used in this discussion.

Table 5.1: Distortion Model Notation
Notation Definition„

a b
c d

«
The set of distortion coefficients for each region of the lens field.

(xm, ym) The set of measured coordinates of the target’s centroid, given in image pixel units.

(xi, yi) The set of ideal coordinates of the target’s centroid, as would be measured from
an undistorted lens, given in image pixel units.

Dpixels The target’s displacement in pixel units.

Dworld The target’s displacement in world units.

(xworld, yworld) The target’s position in the world coordinate system.

n Number of measurements per data set.

xmap Scale factor to map horizontal displacements in the real world, to x-axis values in
the image coordinate system.

ymap Scale factor to map vertical displacements in the real world, to y-axis values in the
image coordinate system.

„
am bm

cm dm

«
The empirically obtained set of distortion parameters for a given lens region.

(xc, yc) The corrected values of the target’s centroid location, taking into account the
regional distortion model. These are in pixel units.

(xworld,guess,
yworld,guess)

The target’s position, estimated by scaling (xc, yc) with xmap and ymap, in world
coordinates.

In each region of the visual field, the lens distortion can be described by:


 a b

c d





 xm

ym


 =


 xi

yi


 (5.1)

The motion of the target in the real world, relative to the camera, is known to a certain

degree of confidence. Treating the world as a 2D field, the world coordinate axes are defined by

horizontal and vertical displacements of the target, perpendicular to the camera. The parameters

xmap and ymap, which scale real-world distances to the pixel domain, are first determined for an

ideal lens. If the system had a distortion-free lens, measurements of the target’s location could

be taken at any two positions to find their distance in the x (and y) direction. Dividing the
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real-world distance by the pixel distance, this would determine a unit mapping between the real

world and the image coordinate system. However, since the actual lens is indeed distorted, it

would be better to take a series of measurements, and normalize the real world distances through

an average of these measurements. By sampling enough distance measurements from different

portions of the lens, the distortion contribution to the final horizontal scale factor, xmap, can be

minimized. The horizontal distance between two measurements is calculated by:

Dpixels =
√

(x2 − x1)2 + (y2 − y1)2 (5.2)

Since the target’s motion is not exactly perpendicular to the camera, it is necessary to take

into account the y-components of the motion as the horizontal distance is calculated. Taking an

average of the horizontal distance measurements, the real world motion to the image coordinate

system is mapped through:

Dworld∑
(Dpixels)/(n− 1)

= xmap (5.3)

where n is the number of measurements, and xmap is the scale factor to map the real world

coordinates to ideal pixel coordinates, xi. (This calculation is repeated for a mapping of vertical

displacement in y-values.)

Using a set of displaced measurements for each region (recall that the visual field is divided

into regions with separate distortion parameters), the parameters a, b, c, d can be calculated.

Based on 5.1:

axm + bym = xi (5.4)

cxm + dym = yi (5.5)

A minimum of two measurements are required to solve for the unknown parameters. With

more measurements, the parameter value solutions can be averaged for a better representation

of the region.

Results of an experiment based on this method are presented in Chapter 6.



Chapter 6

Prototype Testing

A test scene consisting of clearly defined white geometric shapes against a dark background was

constructed to test the Mike prototype. The testbed is shown in Figure 6.1.

Figure 6.1: Practical experimental setup consisting of clearly defined white geometric shapes
against a dark background.

75
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6.1 Experiment #1: General System Function

When Mike faces a new scene, it will scan the scene by capturing a resolution image and generate

the saliency map based on the survey image. The camera then serially traverses the saliency

list, capturing a fully resolved 32x32 subwindow image (a practical value based on the camera’s

minimum allowable subwindow size) at each of the salient coordinates. The final output is a

reconstruction of the scene, where only the salient areas are detailed in high-resolution. After the

saliency list is exhausted for the current scene, the motorized servo shifts the camera’s position

for a new view. Figure 6.2 shows various frames captured by the system as it saccades through a

test scene. The borders around the fovea windows are included in the images for demonstration;

in practice, the images would simply contain the low resolution survey image overlaid with the

high resolution detail captured by the subwindow. Only corner and edges were considered in this

experiment; intensity contrast and connectivity detectors were disabled.

6.2 Experiment #2: Motion Detection and Tracking

Using the test set up from the first experiment, the second experiment tests the scenario when

a moving object is introduced to the scene. Initially, all the shapes in the scene are static. As

intended, Mike attends to the corners and edges of the shapes, following the priority sequence.

Since the corner detector determines the corner coordinates from the 1/4 SXGA low resolution

image, there is a level of uncertainty associated with the corner coordinates; furthermore, to

account for the object motion, the subwindow size is increased to 80x80 pixels during corner

foveation. Figure 6.3 shows a reconstruction of the scene, first shown in low-resolution from

the initial scan. The image gains further details about the edges and shapes as the subwindow

saccades to conspicuous locations. After a time, the scene changes and the square begins to

move. The system detects the object motion and commences tracking of the square. As the

square moves across the screen, the subwindow saccades to its corners to track its location and

maintain shape information. By foveating the square’s corners in high-resolution, the location of

the object’s centroid can be estimated by averaging corner coordinates.

Figure 6.4 plots an estimation of the object’s location based on information returned from
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Figure 6.2: Frames captured during saccading. The white borders around the subwindow regions
are drawn on the images for demonstration of the process only. In practice, there would be no
borders distinguishing the high resolution from low resolution data.
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Figure 6.3: a) The high-resolution fovea serially visits the regions of interest (here shown outlined).
b) The system detects movement of the square and tracks the object; motion takes priority in
saliency considerations and the non-moving shapes are ignored. c) The system foveates the
square’s corners to track the object’s frame-by-frame location.
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tracking the square’s corners. These approximations are compared against the actual object

locations, calculated by a separate setup that took multiple high-resolution images of the entire

object at finely distributed locations along the object’s path, and applied a centre of geometry

calculation to each image.

Figure 6.4: The centroid coordinates (in pixel units) of the square as it moves across the field of
view in an arbitrary pattern. The line marks the target’s actual path, whereas the dots mark the
estimated centroid locations based on corner information. Error bars measure 5 pixels from the
centroid estimations.

Although there is slight overshoot in the centroid estimations during sudden changes of di-

rection, the estimates are within five pixels of the actual object coordinates, in both x and y

directions. It should be noted that in this experiment, the object is moving slowly relative to

the camera ( 1 degree per second). The system’s ability to track moving objects is limited by

the camera’s framerate. Although the camera is capable of achieving an average of 125 fps with

the subwindow parameter settings (a theoretical number derived by a calibration utility from the

camera’s manufacturer [34]), the camera responds slowly to reprogramming of the subwindow’s

position. These are constraints specific to this particular camera’s firmware. However, these

limits do not affect the overall potential of an electronic saccadic vision system to achieve rapid

selective image acquisition.
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6.3 Experiment #3: Adaptation Mode

This experiment tests the creation of an empirical distortion model in the adaptation mode.

Using a point source target on a precision translator, 50 target positions were measured at

horizontal displacements to determine xmap, and 50 additional measurements were taken for

vertical displacements to determine ymap. For better results, more measurements can be taken at

horizontal and vertical paths in different regions of the lens to increase the range of samples. The

measured displacements contained some variation, in spite of the uniform target displacements

in the real world. Therefore, to improve the accuracy of xmap and ymap, outlier values beyond 3

standard deviations of the mean were discarded.

The 1280x1024 pixel visual field was arbitrarily divided into 9 equal regions (see Figure 6.5)

and the middle region and the four corner regions were parameterized by this experiment. These

5 regions exhibited the least, and the most, amount of distortion, respectively.

Figure 6.5: Division of the visual field into regions where the distortion effects could be parame-
terized.

Each set of data (for each region) contained measurements of 100 displacements, providing

101 sets of (xm,ym) to calculate the distortion coefficients: am, bm, cm, and dm. The set of (xi,yi)

were the known target displacements in the real world, scaled by xmap and ymap.

The corrected values of the target’s centroid were determined through:
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
 am bm

cm dm





 xm

ym


 =


 xc

yc


 (6.1)

where the m subscript denotes empirically obtained distortion coefficients.

The set of (xc, yc) was then scaled using xmap and ymap to obtain (xworld,guess, yworld,guess).

These final estimated values of the real-world target positions were used to verify the system’s

ability to determine an object’s position in the real world, while equipped with a distorted lens.

Table 6.1 provides a summary of the experimental results. It shows the average target dis-

placements estimated by mapping the uncorrected (unprocessed) centroid positions to the real

world coordinate system, and the displacements estimated by the corrected centroid values, calcu-

lated using the empirical distortion parameters. Normalizing the uniform target displacements to

1.0 unit per displacement, the error denotes the deviation between the predicted target location

and its actual position.

Table 6.1: Calibration Results
Image Region Uncorrected %error Corrected %error

Displacement Displacement

Middle 0.99677 0.32% 0.95564 4.44%
Top Left 0.94266 5.73% 1.02668 2.67%
Bottom Left 0.92342 7.66% 1.00213 0.21%
Top Right 0.85494 14.5% 1.07453 7.45%
Bottom Right 0.91296 8.70% 1.07143 7.14%

Interestingly, the distortion model performed better than the raw data for all regions other

than the middle, which is least affected by the lens distortions. It can be noted that in the regions

most affected by the lens distortions, the modeling of the distortion effects helped to improve the

system’s ability to predict target positions.

This experiment demonstrates that, if the lens of Mike becomes damaged due to environmental

conditions, it is possible for the system to continue to function (that is, provide reliable navigation

and target tracking coordinates), by calibrating its interpretation of the measured data through

an empirical correction model.
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6.4 Simulation vs Practical Implementation

The original intention of the Mike project was to build a saccadic vision system and test the

saccadic operations on the prototype, combining both the hardware and software elements of the

system. However, several constraints of the hardware components made it difficult to properly

utilize the software capabilities of the system. The commercial camera that was used in the

prototype was chosen for its programmability and the high framerates that were cited by the

camera’s datasheet [34]. Although the camera is programmable and has subwindowing capability,

it is not intended to be frequently reprogrammed, as the Mike design requires. Thus the camera

does not respond quickly to reprogramming of the subwindow’s location and size. Furthermore,

a bug in the camera’s API creates problems in setting the camera’s exposure beyond a certain

range; the camera cannot be easily programmed to function beyond a small range of exposure

times, especially when the subwindow is set to a small size. This required the use of external light

sources in the test environment in order to account for the small range of achievable exposures.

The testing of the Mike prototype therefore needed to use noisy images due to the uneven light

sources and low exposure times.

Due to the problems incurred from using this particular camera unit, much of the testing of

the system concept was performed in simulation, rather than in hardware testing.

The current Mike prototype is the result of one potential method of implementation. The

Mike system can have several alternate realizations, such as a trainable neural network system,

or a system on a chip, where the early stage preprocessing is conducted in hardware. Part II of

this thesis discusses design considerations for custom on-chip imaging systems for active vision

applications.



Part II

Image Sensor Considerations for

Active Vision Applications
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Chapter 7

Overview of CMOS Image Sensors

Computer vision is the analysis of electronic visual data, with the intention to extract information

that can be used by an artificially intelligent system. Active vision is a branch of computer vision

where the available visual information is filtered such that bulk processing is reserved for the

most relevant components of the scene.

Prior to the analysis of electronic visual data, a computer vision system must first acquire the

data. This is typically achieved using an electronic camera, which consists of a chip containing a

photosensitive array. There are two major competing technologies for electronic image acquisition:

charge coupled device (CCD) and complementary metal oxide semiconductor (CMOS). Although

both types of imaging systems serve the same fundamental purpose, they entail different designs.

CMOS image sensors are a more suitable technology choice for custom on-chip computer vision

systems than their charge-coupled counterparts. Although CCDs historically produced better

quality images (lower noise and higher uniformity) [33], CMOS sensors boast several advantages:

• lower fabrication costs (CMOS image sensors are fabricated under standard CMOS pro-

cesses, which are high-volume processes used in the production of computer processors and

memories);

• reduced power consumption;
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• improved tolerance to radiation1; and

• ability to integrate circuits within pixels.

The lower costs and lower power consumption (and hence higher battery life) of CMOS tech-

nology motivate market development of CMOS image sensors for consumer products. New fab-

rication process techniques and photodetector structures (e.g. the pinned photodiode) improve

the sensitivity and signal to noise ratios of CMOS sensors, such that their images are competitive

with those captured by CCDs [54],[55]. The foremost appeal of CMOS over CCD image sensors

for computer vision applications is the integrability of circuits within pixels, thereby allowing

random access for selective pixel readout and in-pixel processing.

7.1 CMOS Image Sensor Basics

A solid state image sensor is an array of photosensitive devices that convert optical informa-

tion into electronic signals. Silicon is commonly used for imaging in the visible spectrum, as it

demonstrates high absorption in the visible range, and is low in cost. Photodetectors that can be

fabricated in standard CMOS processes include the photodiode, photogate, MOS capacitor, and

bipolar phototransistor [56].

7.1.1 Photodiode

A photodiode is a pn-junction diode that is operated in reverse-bias mode; it converts photonic

energy into electrical currents. A brief overview of photodiode operation follows.

A photodiode circuits operate under an applied reverse bias voltage to increase the amount of

electron-hole generation within the depletion region. The total pn-junction current is a combina-

tion of diffusion current (current resulting from electron-hole pairs outside the depletion region),

and drift current (current inside the depletion region). Figure 7.1 illustrates the generation of

the electric field across the depletion region and movement of charge carriers.

Conceptually, a photodiode can be modeled as a capacitor in parallel with a current source

(Figure 7.2). Iphoto denotes the current resulting from electron-hole generation caused by optical
1The radiation hardness of CMOS imagers is of particular utility to space applications.
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Figure 7.1: Charge carrier motion along a pn-junction [57].
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energy. A parasitic diode in parallel with the photocurrent and capacitor models the small

thermally-generated current that flows through a real photodiode. This current exists regardless

of the presence of illumination, and is thus termed Idark. Since the photodiode normally operates

under reverse bias, the dark current can be modeled as a parallel current source, and the net

current, Itotal, is the sum of Iphoto and Idark.

Figure 7.2: Equivalent circuits of a pn-junction photodiode. Part b) models the circuit under
reverse bias conditions.

When the reverse-bias voltage is applied to the photodiode, charge collects on its capacitor.

This is the reset mode of the photodiode operation. After reset, the reverse bias voltage is removed

and the photo-generated current in the pn-junction discharges the voltage over a period of time,

the integration time, tint. In operation, the photodiode is initially charged to a reset level, VRST .

When light illuminates the photodiode surface, the photocurrent will discharge the capacitor

(recall i = C dv
dt ), lowering the voltage from VRST to a reduced level. Since the photocurrent

is a function of the intensity and wavelength of the illumination, the stronger the illumination

intensity, the faster the capacitor will discharge (see Appendix C for a complete derivation of the

relationship between incident illumination and photocurrent). Thus, for a set integration time,

the voltage difference between the original applied voltage level and the resulting discharged level

provides a measure of the illumination intensity over the photodiode area.
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7.1.2 Pixel

Over years of development, pixel circuits have evolved from passive pixel sensors (PPS) to active

pixel sensors (APS) [54]. The simplest APS architecture consists of a photodiode and three

transistors, and is aptly named the 3T APS (shown in Figure 7.3).

RST V
DD

ROW_SELECT

V
OUT

V
RST

T1
T2 T3

1

2

Figure 7.3: 3T Active Pixel Sensor.

When the control signal RST is pulsed low to turn on the transistor T1, the voltage at node

1 (the voltage across the photodiode capacitance) is charged to VRST , which is typically tied

to power, VDD. This is the pixel’s reset mode. When T1 is off (i.e. RST is high), the circuit

enters integration mode, and the photocurrent discharges the capacitor, lowering the voltage at

node 1. T2 acts as a source-follower amplifier that transfers the voltage at node 1 to node 2.

It introduces a voltage drop due to its threshold voltage; thus Vnode2 = Vnode1 - Vt,sourcef ollower.

When ROW SELECT is high, VOUT ≈ Vnode2. Figure 7.4 shows a timing diagram of a typical

pixel operation scenario. Assuming a relatively small dark current, the slope of Vnode1 during the

integration time, tint, is proportional to the photocurrent generated by the photonic flux, Fo:

Fo = Io,transmitted/Eph (7.1)

Io,transmitted = (1−R)Io (7.2)

Eph =
hc

λ
(7.3)
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where Io is the incident illumination, Io,transmitted is the transmitted incident illumination, R is

the reflectivity of the material, and Eph is the energy of a photon proportional to its wavelength.

The photocurrent, Iphoto, that results from Fo discharges the voltage across the photodiode’s

internal capacitance over the integration time, tint. The difference between the reset voltage,

VRST , and VOUT is therefore a measure of the intensity of the incident light on the pixel surface.

Appendix C provides a set of characteristic equations that describe the photodiode operation in

more detail.

Figure 7.4: Timing diagram for a 3T APS.

7.1.3 Fill Factor

The pixel’s fill factor is the percentage of the pixel occupied by the photodiode; it indicates how

much of the pixel geometry is responsible for the detection of light. Ideally, the fill factor should

be as large as possible in order to reduce the integration time (the larger the photosensitive area,

the faster the photodiode response). On the other hand, the integrability of transistors within the
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pixel offers several useful functions, such as the random accessibility of pixels and the potential

for in-pixel processing. The tradeoff from the presence of transistors in the pixel is reduced fill

factor.

7.1.4 Dynamic Range

Dynamic range describes the range between the minimum detectable illumination level and the

maximum detectable illumination level. A pixel is said to ‘saturate’ when the incident light

intensity causes the voltage across the photodiode to drop to Vss during the integration time.

The dynamic range of a typical 3T APS structure is determined by the voltage swing between

VRST (which is typically VDD) and ground, VSS . As technology scales (i.e. transistors become

smaller), the power supply also reduces (e.g. VDD = 3.3V for 0.35µm technology and VDD=1.8V

for 0.18µm techology). This in turn compresses the voltage swing across the photodiode, imposing

a limit on the number of decipherable intensity levels. Futhermore, the voltage drop across

the source follower diminishes the range of voltages that can be detected at the pixel’s output.

Unfortunately, although power supply reduces with the scaled technology, the threshold voltage

of the source follower does not reduce as aggressively. Thus, dynamic range is limited at the low

end by dark current, and at the high end by the source follower.

While technology scaling is advantageous for fill factor, (because as transistors become smaller,

they occupy less percentage of the pixel area), technology scaling limits dynamic range.

7.1.5 Noise

Noise in an image sensor array causes effects such as fixed pattern noise (FPN) and photo-

response non-uniformity (PRNU). Common noise sources include: dark current (thermal noise),

reset noise, flicker noise, and read noise.

Dark current , which contributes to shot noise (random noise), results from the generation of

electron-hole pairs from thermal energy. It exists independently of illumination and is due

to the inherent statistical behaviour of an electron.
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Reset noise is often called kTC noise because it is a function of the sensor’s temperature and

capacitance:

〈ne〉 =

√
kTC

q
(7.4)

Reset noise causes variance in the voltage to which a photodiode is initially charged.

Flicker noise is inversely proportional to frequency and dominates at low frequencies. Its root

cause is not well understood [56], but it causes conductively fluctuations along junction

between metals and semiconductors.

Read noise is the culmination of noise along the read path, which might include a chain of

amplifiers and storage circuits.

7.1.6 Sensitivity/Response

The bulk of photodetection in a photodiode is achieved in the depletion region along the pn

junction. Although a percentage of all visible wavelengths can penetrate the photodiode surface,

blue light tends to stop near the surface (due it its short wavelength) and red light is absorbed in

regions generally deeper than the depletion region (due it its long wavelength). There are various

design and process techniques that can be used to improve the photodiode’s response to red and

blue light. The depth of the depletion region can be increased by fabrication on a wafer with a

thicker epitaxial layer [58]. The pinned photodiode structure, which employs modifications to the

CMOS implanting process, can also be used to improve quantum efficiency (especially for blue

light) [59].
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7.1.7 Sensor Array

In a typical CMOS pixel array readout scheme, all the pixels along a column share an output

bus, and the ROW SELECT signal controls which row drives the bus at a given time. A readout

circuit at the end of the column bus might consist of various combinations of circuit blocks, such

as an analog sample and hold circuit, an analog-to-digital converter (ADC), and perhaps digital

memory. In the readout scheme for a typical mxn array, one row is enabled at a time, and there

is a reset and integration cycle for each row readout. Therefore, for the mxn pixel array, one full

frame requires m reset and integration cycles (see Figure 7.5).

Figure 7.5: Readout scheme for a 3T APS. The column read lines are shared by all the rows.
Although several (or all) columns can be read in parallel, each row is read one at a time.

7.1.8 Region of Interest

A region of interest (ROI) is a subwindow that containing information of interest. For example,

in a laser tracker, the ROI would contain the laser spot, or in the Mike system, the ROI would

contain a salient area. Rather than waste time and resources on a full frame readout, a selected
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subgroup of pixels can be isolated by addressing individual row and column select lines (see Figure

7.6).

Figure 7.6: The subwindow readout takes three read cycles. During all three cycles, COL-
UMN SELECT(3..5) = 1, and on the first read cycle ROW SELECT(2) = 1, on the second read
cycle ROW SELECT(3) = 1, and on the third read cycle ROW SELECT(4) = 1.

ROI is typically considered to have more intelligence than simple subwindowing; it includes

the choice of the subwindow parameters (i.e. size and location). A ‘smart’ CMOS imager therefore

includes a means by which the ROI is determined.



Chapter 8

Custom CMOS Imagers for Active

Vision

This chapter will discuss two functional requirements for custom CMOS image sensors for active

vision applications: region of interest and high dynamic range.

8.1 Region of Interest (ROI)

For the purpose of fast readout, many machine vision applications (such as 3D imaging, etc.)

require custom image sensors with region of interest (ROI) capability. As the name implies,

a region of interest is a subwindow, whose size and location are chosen because it contains

information of value. The design problem lies in how to chose the ROI’s size and location. For

example, the commercial PixeLink camera allows selective subwindow readout, but the onus is

on the user to specify the parameters of the subwindow (i.e. size and location). Without an a

priori knowledge of the contents of the scene, it is difficult to determine those parameters.

There are various potential solutions to the ROI problem, including Burn’s cumulative cross

section method to estimate the region of interest around a laser spot [60], De Nisi’s region of

interest identification of a laser spot using a two-row array [61], and Schrey’s skip logic technique

[62]. In Burn’s cumulative cross section scheme, he projected the laser spot shape onto single row
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and column vectors, creating a rectangular description of the spot [60]. In De Nisi’s work, two

rows are stacked; the top row consists of larger pixels with faster response than the bottom row.

The general region containing the spot is detected by a winner-take-all circuit attached to the top

row. The corresponding region is then read out of the higher-resolution but slower responding

bottom row [61].

Schrey’s skip logic is an on-chip method of addressing 32x32 pixel regions of interest, whose

locations are determined externally [62]. The skip logic reduces the burden of decoding every

pixel’s address in the sensor by grouping pixels into minimum sized subwindows. The design’s

name comes from the skipping pattern of addressing the subwindows. Logic corresponding to

each pre-defined grouping of subwindows, called ‘skip blocks’, determine whether or not a skip

block is valid for readout. High level logic scans the skip blocks to search for valid skip blocks

for reading. Multiple skip blocks can be combined for readout to scale the size of the region of

interest. According to Schrey, skip blocks can be quickly addressed and their address decoders

would occupy less chip space than a decoder for fully random addressable subwindows. Since

Mike uses a pre-defined grid of sectors to determine the foveal locations (see Section 3.9) this

ROI addressing technique would be particularly suitable for a custom chip for Mike. The saliency

map would provide the ROI locations and the skip logic could be used to quickly address those

regions.

8.2 Dynamic Range

A large range of detectable intensities is necessary for computer vision applications. As technology

scales, so does power supply voltage. This has unfortunate consequences for dynamic range

because a reduced power supply reduces the pixel’s voltage swing. This section discusses a pixel

design technique that addresses the issue of dynamic range.

8.2.1 Pulse Frequency Modulation Pixels

The 3T APS readout scheme described in Chapter 7 is typical: upon reset, the photodiode

capacitance is charged to the reset voltage level, and upon integration, the photocurrent discharges
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the capacitance at a linear rate proportional to the incident light intensity. However, the ability

to detect a wide range of light levels is hindered by the reduction in supply voltage as technology

scales. This is true for a typical APS readout.

In a pulse frequency modulation (PFM) scheme, the source follower amplifier (T2 of Figure

7.3) is replaced by an analog comparator. This comparator evaluates the photodiode voltage level

against a pre-defined threshold voltage. When the photodiode voltage drops below the threshold,

the comparator output triggers the reset transistor (T1), thus recharging the photodiode. Figure

8.1 shows two possible implementations of a PFM pixel. Therefore, rather than a single linear dis-

charge of the photodiode during the traditional integration time (tint), the photodiode discharges

and recharges multiple times. However, as the discharge slope is still proportional to the incident

light, the reset frequency is also proportional to the light. Therefore, the average intensity of

light during the ‘integration time’ is encoded in the pulse frequency. Figure 8.1a shows the pixel

proposed by Wang [57], which contains an n-bit counter within the pixel; the output is a n-bit

digital bus. Figure 8.1b shows the same pixel with a single analog output, which is intended

to connect to a column-wise counter when the row is selected; in this implementation, the n-bit

counter is shared by the entire column. The first implementation has the advantage of in-pixel

analog to digital conversion (ADC), but with a severe loss of fill factor (due to the area occupied

by the counter). The buffer along the feedback path restores voltage swing of the comparator

output. The second implementation performs column-wise ADC and therefore takes up less area

within the pixel. Since the analog output is read and converted one row at a time, the gate signal

for T1 is function of ROW SELECT and the comparator output, thereby inhibiting the constant

switching and power drain of the pixel during the read cycles of other rows.

The output pulse frequency is dependent on the capacitance across the photodiode, the pho-

tocurrent, the dark current, and the reference voltage:

f =
iphoto + idark

C(VDD − Vref )
(8.1)

Figure 8.2 shows the timing diagram for a PFM pixel based on the implementations described

in Figure 8.1.
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Figure 8.1: Two implementations of a PFM pixel. a) Wang’s pixel [57]. b) Modification to
Wang’s pixel, where the counter is shared along the column, and the integration operation is
suspended when the row readout is inactive.
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Figure 8.2: Timing diagram for PFM pixels. a) Timing diagram for pixel shown in Figure 8.1a.
b) Timing diagram for pixel shown in Figure 8.1b; this design assumes that the digital counter
is shared by the column.
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8.2.2 Comparator Designs

The main design consideration in the choice of comparator architecture is area. In her evaluation

of comparators for the pixel shown in Figure 8.1a, Wang considered the use of four comparator ar-

chitectures: i) a two-stage differential comparator biased in the subthreshold region (Figure 8.3a),

ii) a symmetrical operational transconductance amplifier (OTA) (Figure 8.3b), iii) a symmetri-

cal OTA with a feedback network (Figure 8.3b), and iv) a hysteresis-controllable Schmitt-Trigger

(Figure 8.3c) [57]. Each circuit was intended for operation at 1.2V power supply (to reduce power

consumption), and smaller transistor dimensions (for smaller area) were selected at the expense

of gain, speed and matching (between different pixels). This thesis presents a fifth comparator

design, using two simple back-to-back inverters, Figure 8.3d.

Figure 8.3: Various comparator designs for use in a PFM pixel. a) Two-stage differential com-
parator biased in the subthreshold region. b) Symmetrical operational transconductance amplifier
(OTA), can be implemented with feedback transistors (dotted lines). c)Hysteresis-controllable
Schmitt-Trigger. d)Inverter.
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8.2.3 Using an Inverter as a Comparator

A static CMOS inverter is the simplest CMOS circuit; it is formed by a pmos and an nmos

transistor joined at their gates (input), and connected between the pmos drain and nmos source

(output). Its switching threshold voltage is the brief point at which both the pullup (pmos)

and pulldown networks (nmos) conduct current (i.e. are both in the saturation region) [63].

Graphically, it is the intersection of the voltage transfer characteristic curve with the line VOUT =

Vin (see Figure 8.4).

Figure 8.4: Voltage transfer characteristics of a CMOS inverter.

An input signal below the threshold voltage will result in a high output, while an input above

the threshold voltage will result in a low output. The switching threshold is given by [64]:

Vth =
VDD − |Vtp|+

√
kn/kpVtn

1 +
√

kn/kp

(8.2)

where Vtn,p are the transistor threshold voltages of nmos and pmos transistors, respectively, and:

kn,p = µn,pCox

(
W

L

)

n,p

(8.3)
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In a matched inverter, the relationship between the pmos and nmos transistor size is [64]:

(
W

L

)

p

=
µn

µp

(
W

L

)

n

(8.4)

When the pullup and pulldown networks are matched, the switching threshold becomes VDD
2 .

Typically, this is ideal. However, it is possible to set the switching threshold to higher (or lower)

than VDD
2 by adjusting the ratio of transistor widths between the pmos and nmos. An inverter can

therefore be used as a voltage comparator, using its switching threshold as the reference voltage

Vref . The static inverter has several attractive circuit qualities: fast switching, full voltage swing

at the output, low power, and occupation of small area. However, inverters (in their traditional

forms) are typically unsuitable as analog comparators because the reference voltage is determined

by the physical dimensions of the circuit devices and therefore cannot be easily changed. Also,

it would take overly long for the photodiode to discharge from VDD-Vtp to below VDD
2 , which is

necessary in order to trigger the reset in the PFM scheme. The following two subsections will

discuss design strategies that will allow an inverter to be used as a comparator in the PFM pixel.

The first strategy is an inverter design with programmable switching threshold. The second

technique varies the initial pixel reset voltage in order to reduce the voltage difference between

VRST and Vth.

Inverter with Programmable Switching Threshold

If the transistors in the pullup and pulldown networks share the same transistor length (which is

typically the case), then Equation 8.2 becomes [65]:

Vth =
Vtn +

√
µpWp

µnWn
(VDD − |Vtp|)

1 +
√

µpWp

µnWn

(8.5)

It is important to note that Wp and Wn denotes the effective width of the pullup and pulldown

networks. Therefore, if the (Wp/Wn) could be adjusted, then the switching threshold could be

made programmable.

Segura proposed a variable threshold voltage inverter that consisted of a single pmos transistor
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in the pullup network, and multiple nmos transistors in the pulldown network [65]. The parallel-

connected nmos transistors could be individually turned on or off, thereby adjusting the size of

the pulldown network (the effective width is the sum of the individual widths). Therefore, the

design had a fixed Wp and a variable Wn,effective. The threshold voltage would be a function of

the number of nmos transistors that are enabled in the pulldown network. If each of the nmos

transistor were a different width, then there would be 2n−1 values of Vth [65]:

Vth,i =
Vtn +

√
µpWp

µn(Wn+
Pn−1

j=1 pjWn,j)
(VDD − |Vtp|)

1 +
√

µpWp

µn(Wn+
Pn−1

j=1 pjWn,j)

(8.6)

Segura’s design single-gate nmos and pmos enhancement transistors, and double-gate nmos

transistors in the programmable portion of the pulldown network [65].

The proposed inverter circuit uses the same concept as Segura’s design, implemented in a

single-poly process. Although the effective width can be varied for either (or both) the pullup or

pulldown network, the transistors in the pullup network are typically much larger than those in the

pulldown network (due to the difference in carrier mobilities). Therefore, the pulldown network

is a better choice for the implementation of the variable width. Each programmable portion

of the circuit requires two transistors: a transistor to provide the pulldown path to ground,

and another transistor to enable/disable the pulldown path to ground. This arrangement has

two configurations, shown in Figure 8.5: i) the enabling transistor is connected to the pulldown

transistor’s gate, and ii) the enabling transistor’s drain is connected to the pulldown transistor’s

source.

Inverter with Variable Reset Voltage

Alternatively, a regular inverter can be used, and the range of its input voltage (Vnode2 in the

PFM pixel) could be modified. Typically, a pixel’s reset transistor is tied to VDD, to maximize

the voltage swing between VSS and VDD. However, the PFM scheme intentionally only utilizes

a small fraction of the voltage swing, thus a maximum swing is unnecessary. Assuming that

the photodiode discharges at an approximately linear rate, the photodiode in a PFM pixel can
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Figure 8.5: Two configurations of an inverter with programmable switching threshold.

theoretically be reset to any value above VSS , and the reference threshold (for the comparator)

can be assigned any value between VSS and VRST . Therefore, VRST can be assigned a value much

lower than VDD, and an nmos transistor can replace the traditionally pmos reset transistor.

Although this strategy is conceptually very simple, its implications towards the PFM imple-

mentation is extremely useful, as it allows an inverter to be used as the comparator. Similarly,

this technique could be used for a PFM pixel using the Schmitt trigger. Wang reported that

the Schmitt trigger displayed better linearity than the analog comparators, but did not achieve

the same dynamic range because it required excess time for the photodiode to discharge to the

Schmitt trigger’s threshold level [57]. Using Wang’s pixel simulation testbench, a fifth imple-

mentation of her PFM pixel (Figure 8.1a) is implemented using an inverter comparator with

reduced reset voltage. The following sections present the results of simulations on Wang’s four

comparators and the proposed inverter comparator with variable reset voltage.

Simulation Results

Each comparator (from Figure 8.3) was tested using the same Cadence testbench, which models

the pixel shown in 8.1a1. The photodiode was modeled as a current source in parallel with a 50fF

capacitor and VOUT was connected to a 3-bit static counter. Table 8.1 lists the average pulse
1Actually, when the inverter is used as the comparator, it is unnecessary to include the feedback buffer, as the

inverter output will have full voltage swing. However, in order to compare results from the different implementa-
tions, all the designs are tested with the same pixel architecture. In an actual implementation, the results from
the inverter comparator would be better than the results reported here because the buffer would be removed from
the feedback path.
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widths and reset delays resulting from various levels of photocurrent. The pixel’s frequency is

the inverse of the pulse width.

Table 8.1: PFM Simulation Results
Symmetrical OTA Symmetrical OTA Two Stage Schmitt Inverter

OTA with Feedback Comparator Trigger
Pulse Reset Pulse Reset Pulse Reset Pulse Reset Pulse Reset

Width Delay Width Delay Width Delay Width Delay Width Delay
[µs] [ns] [µs] [ns] [µs] [ns] [µs] [ns] [µs] [ns]

100 2487.5622 5.100 2109.7046 5.651 2481.3896 11.265 20000.0000 2.006 1439.0000 1.713
101 288.4000 5.628 262.9000 5.870 269.9784 10.803 1663.8935 2.006 93.2500 1.700
102 8.7900 5.127 27.2700 7.003 27.4997 13.889 162.9992 1.852 8.4890 1.735
103 3.0370 5.969 2.9390 11.640 2.9000 27.624 16.3591 1.852 0.9327 1.671
104 0.4036 9.189 0.4994 24.850 0.3500 59.414 1.7031 2.006 0.0941 1.624
105 0.0763 17.380 0.1113 45.110 0.0700 86.574 0.2003 1.698 0.0124 1.597

Performance (Dynamic Range)

The dynamic range is the range of intensities that can be detected by the pixel. In a typical APS

pixel, the dynamic range is the number of light levels that can be encoded between VSS and VRST

during the integration time. When the incident illumination is high, the photocurrent is large,

causing the photodiode to discharge quickly. Therefore, it is necessary to reduce the integration

time in order to prevent the pixel from saturating (discharging completely). However, when

the incident illumination is low, the photocurrent is small, causing the photodiode to discharge

slowly. In this case, it would be necessary to increase the integration time in order to allow

the photodiode to discharge enough to provide a detectable signal at VOUT . Unfortunately, the

integration time is constant for all the pixels in the frame. Therefore, if tint is set to accommodate

the bright light, the dim light regions in the scene will appear overly dark; similarly, if tint is set

to accommodate the dim light regions, the bright regions will appear overexposed.

In a PFM scheme, the minimum detectable illumination is the intensity that results in a

photocurrent that will discharge the photodiode at the minimum rate specified by the system.

The upper limit on dynamic range is bound by the reset delay, treset, which is the time required

to turn on the reset transistor and recharge the photodiode.

Figure 8.6 plots photocurrent versus frequency of PFM pulses using the five comparators

under consideration. Due to its fast switching speeds, the inverter operates much quicker than
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the other comparators and it has a lower minimum detectable photocurrent; therefore the inverter

has the potential of achieving a higher dynamic range.

Figure 8.6: Photocurrent versus Frequency of PFM pulses.

To determine the lower and upper bounds of dynamic range, let the frame rate be 30fps (a

practical value); therefore, tint = 33ms. If the minimum number of pulses that are required

to resolve a valid signal is pulsesmin, then the minimum frequency, fmin = pulsesmin

tint
. Further-

more, let there be at least a 70% integration duty cycle; therefore, the maximum frequency,

fmax = 0.3
treset,worstcase

, where treset,worstcase is the highest reset delay from simulation. The optical

dynamic range is the ratio between the photocurrent corresponding to the maximum frequency

(Iphoto@fmax) and the photocurrent corresponding to the minimum frequency (Iphoto@fmin):
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DR =
Iphoto@fmax

Iphoto@fmin

(8.7)

Using reset delay values listed in Table 8.1 and the frequency versus photocurrent relation-

ships from Figure 8.6, Table 8.2 lists the theoretical achievable dynamic ranges for each of the

comparators.

Table 8.2: PFM Dynamic Range
Symmmetrical Symmetrical OTA Two Stage Schmitt Inverter

OTA with Feedback Comparator Trigger

treset,worstcase 17.38 ns 45.11 ns 86.57 ns 2.01 ns 1.74 ns
fmax 17,261,220 Hz 6,650,410 Hz 3,465,240 Hz 149,536,437 Hz 172,910,663 Hz

f = 464.71I0.9253 f = 568.22I0.872 f = 464.71I0.9253 f = 56.977I0.999 f = 922.97I1.0077

Iphoto@fmax 97,875.38 pA 46,293.31 pA 15,317.38 pA 2,663,624.02 pA 170,743.87 pA
fmin 3030 Hz 3030 Hz 3030 Hz 3030 Hz 3030 Hz

Iphoto@fmin
7.79 pA 6.74 pA 7.50 pA 52.86 pA 3.22 pA

Dynamic Range 82 dB 77 dB 66 dB 94 dB 94 dB

For reference, a typical dynamic range for a commercial CMOS monochrome sensor is ap-

proximately 50dB [34].

Power

Due to the constant switching of the photodiode voltage, the PFM scheme is inherently high in

dynamic power [66]:

Pdynamic = CLV 2
DDf (8.8)

However, the system-level power can be minimized by enabling the photo integration cycle

only when a pixel’s row is enabled. Therefore, for an mxn sensor array, the integration of a pixel

would only occur 1/n of the total time. The photo integration process can be easily disabled by

tying the ROW SELECT signal to the logic controlling the reset transistor (e.g. Figure 8.1b).

Table 8.3 lists the average power during PFM pixel operation, with Iphoto = 0.1mA. The load

is a 3-bit static counter.

The inverter comparator consumed nearly twice the amount of power as the other comparators

due to its high frequency. The other source of power consumption in the inverter is short circuit
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Table 8.3: PFM Power Measurements
Symmmetrical Symmetrical OTA Schmitt Inverter

OTA with Feedback Trigger

Frequency [Hz] 13,104,442 8,984,726 4,991,302 80,580,177
Paverage [µW] 69.00 67.85 73.81 128.32

current incurred during the switching of the inverter and both the pullup and pulldown transistors

are briefly on. This is a tradeoff between performance (which results in high dynamic range) and

power.

Linearity

Figure 8.7 shows that the pixels using the Schmitt trigger and inverter comparators exhibited the

best linearity in response to the photocurrents. These two designs also had the most constant

and lowest reset delays.

Other Issues to Consider/Resolve

In addition to dynamic range, power, and linearity, there are several issues that need to be

resolved for a PFM pixel design, including:

• Non-uniformity between pixels (due to mismatch between comparators); and

• Coupled-noise (which might result from high frequency switching between neighbouring

pixels).
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Figure 8.7: Photocurrent versus Reset Delay.



Chapter 9

Conclusions

This thesis presented a discussion on system-level and chip-level active vision designs: Part I

reviewed the design and implementation of a saccadic camera prototype for active vision appli-

cations, and Part II presented custom CMOS image sensor designs considerations.

9.1 Saccadic Camera: Mike

Mike is a system-level implementation of an active vision system, where the wide-angle scene

is captured in low-resolution, and salient regions are revisited by a high-resolution subwindow.

The final product is a dual-resolution reconstruction of the scene where only the salient regions

contain high resolution details. The camera’s exposure time can also be locally adjusted for each

foveal fixation, thus increasing the overall dynamic range of the salient regions in the scene.

The following lists the system requirements for a typical active vision application:

1. low processing time and power;

2. minimal data transmission;

3. real-time access to data presented in a useful form; and

4. fault tolerance against minor damage to potentially vulnerable system components.

109
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9.1.1 Low Processing Time and Power

By performing bulk processing on the low-resolution image and attending only to salient regions,

this system allocates resources efficiently and effectively. Measurements of algorithmic runtimes

on various image resolutions show that, for the most computation intensity algorithm (corner

detection), the execution time on the 1/4 SXGA resolution image requires 1/20 (5%) of the time

to analyze the full resolution image. This results in major time and consequently, power, savings.

9.1.2 Minimal Data Transmission

Assuming an average of 100 salient regions captured during saccade mode, then 100x32x32 =

102,400 pixels contain high-resolution information. Out of the possible 1280x1024 pixels in the

full SXGA resolution sensor, the top 100 salient regions constitute 7.8% of the sensor space.

Therefore, over 92% of irrelevant data is filtered from the transmission stream, allowing for faster

transmission and efficient use of the available bandwidth.

9.1.3 Real-time Access to Data Presented in a Useful Form

The output of Mike is high-resolution salient information captured at locally adjusted exposure

times. This allows active vision applications immediate access to information relevant to their

tasks, with irrelevant information removed. Although an alternate configuration of the Mike

system has the potential for real-time performance, the current prototype does not perform

quickly enough for real-time use. Combined feature extraction, on average, is achieved in under

2 seconds; this can be further reduced by optimizing the code for speed and by multi-threading

the processing with camera commands. The major bottleneck of the system, however, is the

camera unit: the system performance is constrained by the speed of reprogramming subwindow

locations. This is a constraint of the particular camera model used in the prototype and does not

hinder the potential of realizing a truly real-time Mike system with a different choice of hardware

components, such as a custom imaging chip.
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9.1.4 Fault Tolerance

The adaptation mode allows the Mike prototype to utilize its mechanical components to calibrate

physical locations in the real world relative to its own self-motion. This allows the system to

function even in the presence of lens distortion and provides a level of tolerance against certain

hardware faults.

9.2 CMOS Image Sensor Design Considerations

CMOS image sensors are more suitable for computer vision applications than CCD cameras, due

to the addressability of pixels and integrability of circuits within pixels. Mike’s saliency map may

be used to provide region of interest locations off-chip.

As technology scales, dynamic range becomes an important issue for image sensors, due to

reduced voltage swing. An PFM readout scheme increases the dynamic range capabilities of

CMOS pixels, because the scheme does not require large voltage swings. A PFM pixel was

proposed using an inverter as the comparator. This pixel is able to achieve a theoretical dynamic

range of 95dB.

9.3 Research Motivation Revisited

Figure 9.1a/c show the recorded eye movements of an observer examining the photographs of two

female faces; Figure 9.1b/d show the respective saliency map output using those same photographs

as input. As Yarbus noted, the human observer instinctively attends to the eyes, nose and lips;

these are indeed the most expressive aspects of the face [3]. Nevertheless, even without an

understanding of the word ‘expressive’, Mike, who is programmed to look for corners, contrast,

and edges, is also drawn to the eyes. In terms of the corner detection algorithm, this makes perfect

sense, as the shape of the eyes comprise sharp, distinct corners, and the striking contrast between

the pupil and the iris also provides a stimulating demand for attention. While the emphasis of

Mike’s attention is on the eyes and outline of the face/hair, however, Mike does not attend much

to the lips. This is where Mike’s operation diverges from its biological inspiration. It should
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be understood that the intention of the Mike system is to realize a practical design that meets

the needs of an active vision system. While it borrows from certain aspects of the biological

eye, it is not a model of the eye and not intended to mimic the eye’s exact functions. There is,

however, flexibility in Mike’s programming; the weighting of the various feature detectors can be

adjusted, and the addition of categorization rules in Mike programming can be used to train Mike

to search for specific features or types of objects. Thus, Mike could be programmed to behave as

its biological counterpart in the task of face examination.

Figure 9.1: Comparison of recorded eye movements to simulation results. a and c show the
recorded eye movements of an observer looking at photographs; b and d show the respective
saliency map output using those same photographs as input.

Figure 9.2 shows an analysis of the salience of nine famous faces. In all cases, the saliency

map counts the eye among the top salient regions in the photograph. This perhaps suggests that,

even if we did not consciously consider eyes as important indicators of a person’s mood, we would

as likely fixate on them during a bottom-up search, as well as a top-down search. The nose and

the lips, on the other hand, are generally ignored by the Mike code, suggesting that these two

facial elements draw attention due to learned behaviour.

9.3.1 Practical Considerations and Recommendations for Future Works

Implementation and testing of the Mike prototype revealed the difficulties in realizing the design

in hardware. The feature extraction routines generally performed much better on test images

captured by commercial cameras (typically with ideal lighting conditions), rather than images
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Figure 9.2: Saliency map results on analysis of famous faces [45],[8].
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captured by the system camera. In a practical prototype, there exists a tradeoff between camera

settings (i.e. exposure time and subwindow size) and the performance of the system.

A second generation prototype design of Mike should consider the use of either a commercial

camera with faster subwindow programming and more flexible exposure time settings, or a custom

CMOS imaging chip, perhaps with some on-chip preprocessing capabilities to generate the saliency

map. A fast region of interest addressing scheme, such as the skip logic scheme [62], could be

used to quickly access the foveal subwindows. Furthermore, the use of PFM pixels could increase

the dynamic range of the system; if high dynamic range is unnecessary, the PFM scheme could

also be used to achieve fast frame rates, as the reduced voltage swing requirements of PFM pixels

means that integration time (i.e. exposure time), can be shortened.

9.3.2 Mike for the Real World

Although the previous section discusses the practical problems associated with the Mike proto-

type, the concept of a saccadic camera is nonetheless potentially useful for active vision appli-

cations. The main benefit of a saccadic camera is its selective attention towards salient regions

of the scene, which drastically reduces processing, transmission and storage of image data. If a

custom CMOS imaging chip is able to provide fast enough re-programming of foveal subwindows,

then a truly real-time saccadic camera could certainly be realized and used in an active vision

system.



Appendix A

Prototype Code (C++)

A.1 Corner Detection

/******************************************************************************************

*

* Function: DetectCorner

*

* Purpose: To estimate the locations of the intersection of two sharp/abrupt changes

* in intensity.

*

* Algorithm: The input is formed by an image, I and two parameters: tau (the threshold on

* lambda2) and the linear size of a square window (neighbourhood), say 2N+1

* pixels.

*

* 1. Compute the image gradient over the entire image I.

* 2. For each image point p:

* a) form the matrix C over (2N+1)*(2N+1) neighbourhood Q of p.

* b) compute lambda2, the smaller eigenvalue of C.

* c) if lambda2 > tau, save the coordinates of p into a list, L.

* 3. Sort L in decreasing order of lambda2.

* 4. Scanning the sorted list top to bottom: for each current point, p,

* delete all points appearing further on in the list which belong to the

* neighbourhood of p.

*

* The output is a list of feature points for which lambda2 > tau and whose

* neighbourhoods do not overlap.

*

*******************************************************************************************/

void CMike::DetectCorner(PU8 pInputImage, unsigned w, unsigned h) {

unsigned i, j;

double SumEx2, SumEy2, SumExEy;

unsigned a, b;

double Qx[9][9];

double Qy[9][9];

double Lambda2;

double DetQuadratic;
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Corner* pCnr;

POSITION CurrentPos, NextPos;

for (j = 0; j < h; j++)

{

for (i = 0; i < w; i++)

{

for (b = 1; b <= 4; b++)

{

for (a = 1; a <= 4; a++)

{

Qx[4-a][4-b] = ((i >= a) && (j >= b)) ? PixelMatrix[i-a][j-b].Jx : 0;

Qy[4-a][4-b] = ((i >= a) && (j >= b)) ? PixelMatrix[i-a][j-b].Jy : 0;

}

for (a = 0; a <= 4; a++)

{

Qx[4+a][4-b] = ((i <= (w-1-a)) && (j >= b)) ? PixelMatrix[i+a][j-b].Jx : 0;

Qy[4+a][4-b] = ((i <= (w-1-a)) && (j >= b)) ? PixelMatrix[i+a][j-b].Jy : 0;

}

}

for (b = 0; b <= 4; b++)

{

for (a = 1; a <= 4; a++)

{

Qx[4-a][4+b] = ((i >= a) && (j <= (h-1-b))) ? PixelMatrix[i-a][j+b].Jx : 0;

Qy[4-a][4+b] = ((i >= a) && (j <= (h-1-b))) ? PixelMatrix[i-a][j+b].Jy : 0;

}

for (a = 0; a <= 4; a++)

{

Qx[4+a][4+b] = ((i <= (w-1-a)) && (j <= (h-1-b))) ? PixelMatrix[i+a][j+b].Jx : 0;

Qy[4+a][4+b] = ((i <= (w-1-a)) && (j <= (h-1-b))) ? PixelMatrix[i+a][j+b].Jy : 0;

}

}

SumEx2 = 0;

SumEy2 = 0;

SumExEy = 0;

for (b = 0; b < 9; b++)

{

for (a = 0; a < 9; a++)

{

SumEx2 += Qx[a][b] * Qx[a][b];

SumEy2 += Qy[a][b] * Qy[a][b];

SumExEy += Qx[a][b] * Qy[a][b];

}

}

if (((SumEx2*SumEy2)-(SumExEy*SumExEy)) > 0) // if matrix is positive definite

{

DetQuadratic = pow((SumEx2 + SumEy2),2.0) - (4*((SumEx2*SumEy2)-pow(SumExEy,2.0)));

}

else

{

DetQuadratic = -1.0;

}
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if (DetQuadratic > 0)

{

Lambda2 = ((SumEx2 + SumEy2) - sqrt(DetQuadratic))/2;

}

else

{

Lambda2 = -1.0;

}

if (Lambda2 >= TAU)

// check if corner is on a white pixel i.e. lies on the object

// and not outside the object

{

CurrentPos = CornerList.GetHeadPosition();

NextPos = CurrentPos;

Corner *pTemp;

pCnr = new Corner;

pCnr->Pt.x = i;

pCnr->Pt.y = j;

pCnr->Lambda2 = Lambda2;

if (CurrentPos != NULL)

{

do

{

CurrentPos = NextPos;

if (CurrentPos == NULL)

{

break;

}

pTemp = (Corner*)CornerList.GetNext(NextPos);

} while (pTemp->Lambda2 > Lambda2);

//} while ((pTemp->Lambda2 > Lambda2) && (pos != NULL));

if (CurrentPos != NULL)

{

CurrentPos = CornerList.InsertBefore(CurrentPos,pCnr);

}

else

{

CurrentPos = CornerList.AddTail(pCnr);

}

}

else

{

CurrentPos = CornerList.AddTail(pCnr);

}

}

}

}

{

// to compensate for problems iterating to the tail of the list, I’m adding a dummy tail

// which will be deleted at the end of this routine

Corner *pTail = new Corner;
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pTail->Lambda2 = -1;

pTail->Pt.x = -1;

pTail->Pt.y = -1;

CornerList.AddTail(pTail);

}

POSITION posC = CornerList.GetHeadPosition();

Corner *pCnrC = (Corner*)CornerList.GetHead();

do

{

pCnrC = (Corner*)CornerList.GetNext(posC);

} while (posC != NULL);

pCnrC = (Corner*)CornerList.GetTail();

POSITION posA = CornerList.GetHeadPosition();

POSITION posB1;

POSITION posB2;

Corner *pCnrA;

Corner *pCnrB;

Corner *pTempCnr;

int NumIter = 0;

posB1 = posA;

//pCnrA = (Corner*)CornerList.GetAt(posA);

pCnrA = (Corner*)CornerList.GetNext(posA); // this line will return the head

pCnrB = (Corner*)CornerList.GetNext(posB1); // this line is necessary to increment B1

do

{

NumIter++;

//for (pCnrB = (Corner*)CornerList.GetNext(posB1); (posB2 = posB1) != NULL;)

for (pCnrB = (Corner*)CornerList.GetNext(posB1); posB1 != NULL;)

{

if (((pCnrA->Pt.x-7) <= pCnrB->Pt.x) && (pCnrB->Pt.x <= (pCnrA->Pt.x+7)) &&

((pCnrA->Pt.y-7) <= pCnrB->Pt.y) && (pCnrB->Pt.y <= (pCnrA->Pt.y+7)))

{

pTempCnr = pCnrB;

posB2 = CornerList.Find(pTempCnr);

if (posB1 != NULL)

pCnrB = (Corner*)CornerList.GetNext(posB1);

CornerList.RemoveAt(posB2);

delete pTempCnr;

}

else

{

if (posB1 != NULL)

pCnrB = (Corner*)CornerList.GetNext(posB1);

}

}

// need to iterate through list to get posA because when I remove nodes from the list

// it seems that I need to reiterate through the list to get valid position values

posA = CornerList.GetHeadPosition();
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for (int n=0; n <= NumIter; n++)

pCnrA = (Corner*)CornerList.GetNext(posA);

posB1 = posA;

posC = CornerList.GetTailPosition();

pCnrC = (Corner*)CornerList.GetTail();

} while (posA != NULL);

posC = CornerList.GetTailPosition();

pCnrC = (Corner*)CornerList.GetTail();

posC = CornerList.GetHeadPosition();

pCnrC = (Corner*)CornerList.GetHead();

do

{

pCnrC = (Corner*)CornerList.GetNext(posC);

} while (posC != NULL);

posA = CornerList.GetHeadPosition();

pCnrA = (Corner*)CornerList.GetHead();

do

{

if (*(pInputImage + pCnrA->Pt.x + pCnrA->Pt.y*w) == BLACK)

{

pTempCnr = pCnrA;

posB2 = CornerList.Find(pTempCnr);

if (posA != NULL)

pCnrA = (Corner*)CornerList.GetNext(posA);

CornerList.RemoveAt(posB2);

delete pTempCnr;

}

else

{

pCnrA = (Corner*)CornerList.GetNext(posA);

}

}while (posA != NULL);

pCnrA = (Corner*)CornerList.RemoveTail();

delete pCnrA;

}
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A.2 Edge Detection

A.2.1 Morphological Operator

/******************************************************************************************

*

* Function: Erode

*

* Purpose: Perform morphological erosion on binary image

*

*******************************************************************************************/

PU8 CMike::Erode(PU8 pBinaryImage8Bpp, unsigned w, unsigned h) {

unsigned x, y;

PU8 pErodedImage = new U8[w*h];

signed Index;

unsigned ErodedValue, PixCount;

for (y = 0; y < h; y++)

{

for (x = 0; x < w; x++)

{

Index = x + (y*w);

ErodedValue = *(pBinaryImage8Bpp + Index); // centre pixel

PixCount = 1;

if (x != 0) // not in leftmost column

{

ErodedValue = ErodedValue + *(pBinaryImage8Bpp + Index - 1); // left pixel

PixCount++;

}

if (y != 0) // not in top row

{

ErodedValue = ErodedValue + *(pBinaryImage8Bpp + Index - w); // upper pixel

PixCount++;

}

if (x != (w-1)) // not in rightmost column

{

ErodedValue = ErodedValue + *(pBinaryImage8Bpp + Index + 1); // right pixel

PixCount++;

}

if (y != (h-1)) // not in bottom row

{

ErodedValue = ErodedValue + *(pBinaryImage8Bpp + Index + w); //lower pixel

PixCount++;

}

ErodedValue = (unsigned)(ErodedValue / PixCount);

((PU8)pErodedImage)[Index] = (ErodedValue < WHITE) ? BLACK : WHITE;

} // for x

} // for y

return pErodedImage;

}
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/******************************************************************************************

*

* Function: Dilate

*

* Purpose: Perform morphological dilation on binary image

*

*******************************************************************************************/

PU8 CMike::Dilate(PU8 pBinaryImage8Bpp, unsigned w, unsigned h) {

unsigned x, y;

PU8 pDilatedImage = new U8[w*h];

signed Index;

unsigned DilatedValue;

for (y = 0; y < h; y++)

{

for (x = 0; x < w; x++)

{

Index = x + (y*w);

DilatedValue = *(pBinaryImage8Bpp + Index); // centre pixel

if (x != 0) // not in leftmost column

{

DilatedValue = DilatedValue + *(pBinaryImage8Bpp + Index - 1); // left pixel

}

if (y != 0) // not in top row

{

DilatedValue = DilatedValue + *(pBinaryImage8Bpp + Index - w); // upper pixel

}

if (x != (w-1)) // not in rightmost column

{

DilatedValue = DilatedValue + *(pBinaryImage8Bpp + Index + 1); // right pixel

}

if (y != (h-1)) // not in bottom row

{

DilatedValue = DilatedValue + *(pBinaryImage8Bpp + Index + w); //lower pixel

}

((PU8)pDilatedImage)[Index] = (DilatedValue > BLACK) ? WHITE : BLACK;

} // for x

} // for y

return pDilatedImage;

}
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/******************************************************************************************

*

* Function: DiffImage

*

* Purpose: Find the difference between two images with the same dimensions.

* Returns Image1 - Image2

*

*******************************************************************************************/

PU8 CMike::DiffImage(PU8 pImage1, PU8 pImage2, unsigned w, unsigned

h) {

PU8 pDiffedImage = new U8[w*h];

unsigned x, y, Index;

Index = 0;

for (y = 0; y < h; y++)

{

for (x = 0; x < w; x++)

{

((PU8)pDiffedImage)[Index] = ((PU8)pImage1)[Index] - ((PU8)pImage2)[Index];

Index++;

}

}

return pDiffedImage;

}
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A.2.2 Canny Edge Detector

/******************************************************************************************

*

* Function: CalcGradient

*

* Purpose: Compute the gradient matrices Jx and Jy

*

*

*******************************************************************************************/

void CMike::CalcGradient(PU8 pInputImage, unsigned w, unsigned h) {

unsigned i, j, index;

index = 0;

for (j = 0; j < h; j++)

{

for (i = 0; i < w; i++)

{

PixelMatrix[i][j].value = ((PU8)pInputImage)[index++];

}

}

// convolve rows with [1 0 -1]

for (j = 0; j < h; j++)

{

for (i = 0; i < w; i++)

{

if ((i == 0) || (i == (w-1)))

{

PixelMatrix[i][j].Jx = 0;

}

else

{

PixelMatrix[i][j].Jx = PixelMatrix[i-1][j].value - PixelMatrix[i+1][j].value;

}

}

}

// convolve columns with [1 0 -1]

for (i = 0; i < w; i++)

{

for (j = 0; j < h; j++)

{

if ((j == 0) || (j == (h-1)))

{

PixelMatrix[i][j].Jy = 0;

}

else

{

PixelMatrix[i][j].Jy = PixelMatrix[i][j-1].value - PixelMatrix[i][j+1].value;

}

}

}

return;

}
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/******************************************************************************************

*

* Function: CalcEdgeProp

*

* Purpose: Estimate edge strength and orientation (Canny edge detector)

* Es(i, j) = sqrt(Jx^2(i,j) + Jx^2(i,j))

* Eo(i, j) = arctan(Jy/Jx);

* Note: the assumption is that CalcGradient has been called already

* Note: i’m skipping the gaussian smoothing for the canny algorithm

*

*

*******************************************************************************************/

void CMike::CalcEdgeProp(unsigned w, unsigned h) {

unsigned i, j;

RawPix Pix;

for (j = 0; j < h; j++)

{

for (i = 0; i < w; i++)

{

Pix = PixelMatrix[i][j];

PixelMatrix[i][j].Es = sqrt((Pix.Jx*Pix.Jx) + (Pix.Jy*Pix.Jy));

PixelMatrix[i][j].Eo = (Pix.Jx != 0) ? atan(Pix.Jy/Pix.Jx) : atan(Pix.Jy/0.0001);

}

}

}

/******************************************************************************************

*

* Function: CannySuppress

*

* Purpose: Detect thinned edges from output of the canny enhancer

*

*

*******************************************************************************************/

PU8 CMike::CannySuppress(unsigned w, unsigned h) {

unsigned i, j, index;

int Dk;

double Mask[3];

PU8 pImage = new U8[w*h];

double Dir;

// quantise the orientation

index = 0;

for (j = 0; j < h; j++)

{

for (i = 0; i < w; i++)

{

Dir = PixelMatrix[i][j].Eo;

if (sqrt(Dir*Dir) <= PI/8)

{

Dk = ZERO;

}

else

{

if (sqrt(Dir*Dir) >= PI/8*3)
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{

Dk = NINETY;

}

else

{

if (Dir < 0)

{

Dk = ONETHIRTYFIVE;

}

else

{

Dk = FORTYFIVE;

}

}

}

Mask[1] = PixelMatrix[i][j].Es;

switch(Dk)

{

case NINETY :

Mask[0] = (j > 0) ? PixelMatrix[i][j-1].Es : 0;

Mask[2] = (j < (h-1)) ? PixelMatrix[i][j+1].Es : 0;

break;

case FORTYFIVE :

Mask[0] = ((i<(w-1)) && (j>0)) ? PixelMatrix[i+1][j-1].Es : 0;

Mask[2] = ((i>0) && (j<(h-1))) ? PixelMatrix[i-1][j+1].Es : 0;

break;

case ONETHIRTYFIVE :

Mask[0] = ((i>0) && (j>0)) ? PixelMatrix[i-1][j-1].Es : 0;

Mask[1] = ((i<(w-1)) && (j<(h-1))) ? PixelMatrix[i+1][j+1].Es : 0;

break;

default : // ZERO

Mask[0] = (i > 0) ? PixelMatrix[i-1][j].Es : 0;

Mask[2] = (i < (w-1)) ? PixelMatrix[i+1][j].Es : 0;

break;

}

PixelMatrix[i][j].In = ((Mask[1] >= Mask[0]) && (Mask[1] >= Mask[2])) ?

Mask[1] : 0;

((PU8)pImage)[index++] = (U8)PixelMatrix[i][j].In;

}

}

return pImage;

}
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A.3 Connectivity

/******************************************************************************************

*

* Function: ConnectCorners

*

* Purpose: To draw imaginary lines between all detected corners for shape detection

*

* Algorithm: Find all lines connecting two corners that do not

* cross over any background pixels. If the line crosses a background

* pixel, it may or may not connect two corners that belong to the same

* object. However, if the line only crosses foreground pixels, then

* both corners are guaranteed to belong to the same

* object.

*

*

*******************************************************************************************/

void CMike::ConnectCorners(PU8 pBinaryImage, unsigned w, unsigned h)

{

Point A, B;

float Slope, Intercept;

unsigned x, y;

unsigned xMax, xMin, yMax, yMin;

unsigned n = CornerList.GetCount();

pConnections = new bool[n*n];

for (y = 0; y < n; y++)

{

for (x = 0; x < n; x++)

{

*(pConnections + x + (y*n)) = false;

}

}

{

// to compensate for problems iterating to the tail of the list, I’m adding a dummy tail

// which will be deleted at the end of this routine

Corner *pTail = new Corner;

pTail->Lambda2 = -1;

pTail->Pt.x = -1;

pTail->Pt.y = -1;

CornerList.AddTail(pTail);

}

POSITION posA = CornerList.GetHeadPosition();

POSITION posB = posA;

Corner *pCnrA, *pCnrB;

bool SameShape = true;

unsigned IterA, IterB;

pCnrA = (Corner*)CornerList.GetNext(posA); // this line will return the head

pCnrB = (Corner*)CornerList.GetNext(posB); // this line is necessary to increment B

A.x = pCnrA->Pt.x;

A.y = pCnrA->Pt.y;
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B.x = pCnrB->Pt.x;

B.y = pCnrB->Pt.y;

IterA = 0;

do

{

IterB = IterA+1;

for (pCnrB = (Corner*)CornerList.GetNext(posB); posB != NULL; pCnrB = (Corner*)CornerList.GetNext(posB))

{

SameShape = true;

B.x = pCnrB->Pt.x;

B.y = pCnrB->Pt.y;

xMax = (A.x > B.x) ? A.x : B.x;

xMin = (A.x > B.x) ? B.x : A.x;

yMax = (A.y > B.y) ? A.y : B.y;

yMin = (A.y > B.y) ? B.y : A.y;

Slope = ((float)B.y - (float)A.y)/((float)B.x - (float)A.x);

Intercept = A.y - (Slope*A.x);

for (x = xMin+1; x < xMax; x++)

{

y = (unsigned)((Slope*x) + Intercept + 0.5);

if ((y >= yMin) && (y <= yMax))

{

//((PU8)pBinaryImage)[x+(y*w)] = 192;

if (((PU8)pBinaryImage)[x+(y*w)] == BLACK)

{

SameShape = false;

}

}

}

*(pConnections + IterA + (IterB++ * n)) = SameShape;

}

pCnrA = (Corner*)CornerList.GetNext(posA);

A.x = pCnrA->Pt.x;

A.y = pCnrA->Pt.y;

posB = posA;

IterA++;

} while (posA != NULL);

return;

}



Appendix B

Simulation Code (MatLab)

B.1 Feature Detection

clear all;

default_tau = 30000;

corner_weight = 7;

intensity_weight = 5;

segment_weight = 1;

edge_weight = 3;

for TestNum = 1:10,

for ResolutionCase = 1:4,

switch ResolutionCase

case 1

Resolution = ’1280x1024’;

zone = 17;

case 2

Resolution = ’320x256’;

zone = 7;

case 3

Resolution = ’160x128’;

zone = 3;

case 4

Resolution = ’80x64’;

zone = 3;

end;

tau = default_tau;

[I, imgMap] = imread(imgFile);

nRows = size(I,1);

nCols = size(I,2);

% calc gradient

128
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Hx = [1 0 -1];

Hy = Hx’;

Jx1 = convn(I,Hx);

Jx = Jx1(:, 1:nCols);

Jy1 = convn(I,Hy);

Jy = Jy1(1:nRows, :);

% calc lambda2

Jx_temp = zeros(4+nRows+4, 4+nCols+4);

Jx_temp(5:nRows+4,5:nCols+4) = Jx;

Jy_temp = zeros(4+nRows+4, 4+nCols+4);

Jy_temp(5:nRows+4,5:nCols+4) = Jy;

for y = 5:nRows+4,

for x = 5:nCols+4,

Qx = Jx_temp(y-4:y+4,x-4:x+4);

Qy = Jy_temp(y-4:y+4,x-4:x+4);

SumEx2 = sum(sum(Qx.^2));

SumEy2 = sum(sum(Qy.^2));

SumExEy = sum(sum(Qx.*Qy));

if (((SumEx2*SumEy2)-(SumExEy^2)) > 0) % if matrix is positive definite

DetQuadratic = ((SumEx2+SumEy2)^2) - (4*((SumEx2*SumEy2)-SumExEy^2));

lambda(y-4,x-4) = ((SumEx2+SumEy2) - sqrt(DetQuadratic))/2;

else

DetQuadratic = -1.0;

lambda(y-4,x-4) = -1.0;

end;

clear Qx;

clear Qy;

clear SumEx2;

clear SumEy2;

clear DetQuadratic;

end;

end;

% remove corner results in the same neighbourhood

lambda_temp = zeros(zone+nRows+zone, zone+nCols+zone);

lambda_temp(zone+1:nRows+zone,zone+1:nCols+zone) = lambda;

for y = zone+1:nRows+zone,

for x = zone+1:nCols+zone,

mask = lambda_temp(y-zone:y+zone,x-zone:x+zone);

maxVal = max(max(mask));

if lambda_temp(y,x) ~= maxVal

lambda_temp(y,x) = -1.0;

end;

end;

end;

lambda2 = lambda_temp(5:nRows+4,5:nCols+4);

corner = lambda2>tau;

% if there are more than 100 corners detected, reset threshold

corner(1:10,1:10) = 0; % delete false corner at top of image

while (size(nonzeros(corner),1)) > 100

tau = tau + 2000;
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corner = lambda2>tau;

end;

[I_circle, imgMap] = imread(circleFile);

circlesize = size(I_circle,1);

halfcir = double((circlesize-1)/2);

I_markcorner = uint8(ones(halfcir+nRows+halfcir, halfcir+nCols+halfcir)*255);

I_markcorner(halfcir+1:nRows+halfcir, halfcir+1:nCols+halfcir) = I;

corner_temp = zeros(halfcir+nRows+halfcir, halfcir+nCols+halfcir);

corner_temp(halfcir+1:nRows+halfcir, halfcir+1:nCols+halfcir) = corner;

for y = halfcir+1 : nRows+halfcir,

for x = halfcir+1 : nCols+halfcir,

if corner_temp(y,x) == 1

I_markcorner(y-halfcir:y+halfcir, x-halfcir:x+halfcir)

= uint8(double(I_markcorner(y-halfcir:y+halfcir, x-halfcir:x+halfcir)).* double(I_circle));

end;

end;

end;

clear corner_temp;

lambda(1:10,1:10) = 0;

maxLambda = max(max(lambda));

I_corner = (lambda)/maxLambda*(corner_weight); %normalize corners

%intensity map

meanval = mean(mean(I));

I_intensity = double(abs(I - meanval));

%normalize and multiply by weight

I_intensity = (double(I_intensity > 32) .* I_intensity)/255*intensity_weight;

%segmentation

% Binarize the image

OtsuLevel = graythresh(I);

I_bin = im2bw(I, OtsuLevel);

I_cornertemp = lambda;

I_segment2 = bwlabel(I_bin,5);

I_segment = double(zeros(nRows,nCols));

for n = 1:5

n_reverse = 6-n;

[MaxCornerVal xCorner]= max(max(I_cornertemp));

[MaxCornerVal yCorner] = max(max(I_cornertemp’));

MaxLabel = I_segment2(yCorner,xCorner);

for x = 1:nCols

for y = 1:nRows

if (I_segment2(y,x) == MaxLabel)

I_segment(y,x) = n_reverse;

I_segment2(y,x) = 0;

end;

end;

end;

end;

%normalize and multiply by weight

I_segmentPlot = (I_segment/max(max(I_segment)))*segment_weight;
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EC1 = edge(I,’canny’);

EC1_max = max(max(EC1));

%normalize and multiply by weight

I_edge = double(EC1/EC1_max)*edge_weight;

%final

I_total = I_edge + I_segmentPlot + I_corner + I_intensity;

fid2 = fopen(outFileSalient, ’w’);

for n = 1:100,

[salientVal x]= max(max(I_total));

[salientVal y] = max(max(I_total’));

lowerY = max(1, (y-zone));

upperY = min(nRows, (y+zone));

lowerX = max(1, (x-zone));

upperX = min(nCols, (x+zone));

I_total(lowerY:upperY,lowerX:upperX) = 0; %remove maximums from neighbourhood

fprintf(fid2, ’%d %d\n’,x,y);

if salientVal == 0

n = 100;

end;

end;

fclose(fid2);

%%%%%%

% clear all intermediate variables

%%%%%%

end; % for loop of resolutions

end; % for loop of test cases
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B.2 Object Categorization

numShapes = 8;

countCorners = 1; % 0 = off, 1 = on;

findColour = 1;

findSize = 1;

for TestNum = 100,

for ResolutionCase = 2,

switch ResolutionCase

case 1

Resolution = ’1280x1024’;

case 2

Resolution = ’320x256’;

case 3

Resolution = ’160x128’;

case 4

Resolution = ’80x64’;

end;

[I, imgMap] = imread(imgFile);

nRows = size(I,1);

nCols = size(I,2);

numCorners = zeros(numShapes+1,1);

whitePixels = zeros(numShapes+1,1);

greyPixels = zeros(numShapes+1,1);

diagonal = zeros(numShapes+1,1); % diagonal size of bounding box around a shape

%%%%%%%%%%%%segment the image%%%%%%%%%%%%%%%%

OtsuLevel = graythresh(I)

I_bin = im2bw(I, OtsuLevel);

I_segment = bwlabel(I_bin,numShapes) + 1;

% add one so that object numbers can match matrix indices

%%%%%%%%%%%%%find corners%%%%%%%%%%%%%%%%%%

if (countCorners == 1)

SE = ones(3,3);

I_erode = imerode(I_bin,SE);

topLeftMask = [-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

-1 -1 1 1 1

-1 -1 1 1 1

-1 -1 1 1 1];

topLeft = bwhitmiss(I_erode,topLeftMask);

topRightMask = [-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

1 1 1 -1 -1

1 1 1 -1 -1

1 1 1 -1 -1];

topRight = bwhitmiss(I_erode,topRightMask);

botLeftMask = [-1 -1 1 1 1
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-1 -1 1 1 1

-1 -1 1 1 1

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1];

botLeft = bwhitmiss(I_erode,botLeftMask);

botRightMask = [ 1 1 1 -1 -1

1 1 1 -1 -1

1 1 1 -1 -1

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1];

botRight = bwhitmiss(I_erode,botRightMask);

topTriMask = [-1 -1 0 -1 -1

-1 0 1 0 -1

0 1 1 1 0

0 1 1 1 0

1 1 1 1 1];

topTri = bwhitmiss(I_erode,topTriMask);

leftTriMask = [-1 -1 0 0 1

-1 0 0 1 1

0 1 1 1 1

-1 0 0 0 0

-1 -1 -1 -1 -1];

leftTri = bwhitmiss(I_erode,leftTriMask);

rightTriMask = [ 1 0 0 -1 -1

1 1 0 0 -1

1 1 1 1 0

0 0 0 0 -1

-1 -1 -1 -1 -1];

rightTri = bwhitmiss(I_erode,rightTriMask);

corner = double(topTri) + double(leftTri) + double(rightTri) + double(topLeft)

+ double(topRight) + double(botLeft) + double(botRight);

for y = 1:nRows,

for x = 1:nCols,

if (corner(y,x) == 1)

%if more than one hit for the same corner

%keep top left hit

corner(y-1:y+1,x-1:x+1) = zeros(3,3);

corner(y,x) = 1;

numCorners(I_segment(y,x)) = numCorners(I_segment(y,x)) + 1;

end;

end;

end;

end; % if countCorners

%%%%%%%%%%%%%%%%%classify colour/intensity of shapes%%%%%%%%%%%%%%%

if (findColour == 1)

I_1D = I(:,:,1);

I_white = I_1D > 200;



CHAPTER B. SIMULATION CODE (MATLAB) 134

I_grey = (I_1D > 100) & (I_1D < 200);

for i = 2:numShapes+1,

temp = double((I_segment == i)) .* double(I_white);

whitePixels(i) = size(nonzeros(temp),1);

clear temp;

temp = double((I_segment == i)) .* double(I_grey);

greyPixels(i) = size(nonzeros(temp),1);

clear temp;

end;

end; % if findColour

%%%%%%%%%%%%%%determine size of shapes%%%%%%%%%%%%%%%%%%%%%

maxY = zeros(numShapes+1,1);

minY = ones(numShapes+1,1) * nRows;

maxX = zeros(numShapes+1,1);

minX = ones(numShapes+1,1) * nCols;

for y = 1:nRows,

for x = 1:nCols,

for i = 2:(numShapes+1),

% ignore case 1 because that’s the background

if (I_segment(y,x) == i)

if (y > maxY(i))

maxY(i) = y;

end;

if (y < minY(i))

minY(i) = y;

end;

if (x > maxX(i))

maxX(i) = x;

end;

if (x < minX(i))

minX(i) = x;

end;

end;

end;

end;

end;

if (findSize == 1)

% diagonal = zeros(numShapes+1,1);

% diagonal size of bounding box around a shape

for i = 2:(numShapes+1),

diagonal(i) = sqrt((maxY(i)-minY(i))^2 + (maxX(i)-minX(i))^2);

end;

end; % if findSize

%%%%%%%%

end; end;

% %%%%%%%%%%%%% begin categorization%%%%%%%%%%%%%%%%%%%
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% % let 0 = no

% % 1 = yes

% % -1 = not enough information

% isSquare = -1; % 1 = square, 0 = triangle

% % isTriangle = -1; % since there are only two shapes,

% % % can also assume that if it’s not

% % % a square, then it’s a triangle

% isLarge = -1; % 1 = large, 0 = small

% isWhite = -1; % 1 = white, 0 = grey

% % isGrey = -1; % again, since there are only two colours,

% % % can assume that if an object isn’t white

% % % then it’s grey

isSquare = ones(numShapes+1,1) * -1; % initial to unknown state

isLarge = ones(numShapes+1,1) * -1; isGrey = ones(numShapes+1,1) *

-1;

typeI = ones(numShapes+1,1) * 3; % 1 = columnA, 2 = columnB, 3 = unknown

typeII = ones(numShapes+1,1) * 3; % 1 = columnA, 2 = columnB, 3 = unknown

typeIII = ones(numShapes+1,1) * 3; % 1 = columnA, 2 = columnB, 3 = unknown

typeIV = ones(numShapes+1,1) * 3; % 1 = columnA, 2 = columnB, 3 = unknown

typeV = ones(numShapes+1,1) * 3; % 1 = columnA, 2 = columnB, 3 = unknown

typeVI = ones(numShapes+1,1) * 3; % 1 = columnA, 2 = columnB, 3 = unknown

for i = 2:numShapes+1, % ignore background

switch numCorners(i)

case 3

isSquare(i) = 0; % triangle

case 4

isSquare(i) = 1; % square

otherwise

isSquare(i) = -1; % unknown

end;

if (diagonal(i) > 60)

isLarge(i) = 1; % large

else

if (diagonal(i) > 10)

isLarge(i) = 0; % small

else

isLarge(i) = -1; % unknown

end;

end;

if (whitePixels(i) > 0)

if (greyPixels(i) > 0)

isGrey(i) = -1; % if the shape was found to be both grey and white

else

isGrey(i) = 0;

end;

else

if (greyPixels(i) > 0)

isGrey(i) = 1;

end;

end;
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%typeI

if (isGrey(i) == -1)

typeI(i) = 3;

else

if (isGrey(i) == 1)

typeI(i) = 1;

else

typeI(i) = 2;

end;

end;

%typeII

if ((isGrey(i) == -1) | (isSquare(i) == -1))

typeII(i) = 3;

else

if ((isGrey(i) == 1) & (isSquare(i) == 0))

| ((isGrey(i) == 0) & (isSquare(i) == 1))

typeII(i) = 1;

else

typeII(i) = 2;

end;

end;

%typeIII

if ((isGrey(i) == -1) | (isSquare(i) == -1) | (isLarge(i) == -1))

typeIII(i) = 3;

else

if ((isGrey(i) == 1) & (isLarge(i) == 1))

| ((isLarge(i) == 0) & (isSquare(i) == 0))

typeIII(i) = 1;

else

typeIII(i) = 2;

end;

end;

%type IV

if ((isGrey(i) == -1) | (isSquare(i) == -1) | (isLarge(i) == -1))

typeIV(i) = 3;

else

if ((isLarge(i) == 1) & (isSquare(i) == 0))

| ((isGrey(i) == 1) & (isLarge(i) == 1))

| ((isGrey(i) == 1) & (isSquare(i) == 0))

typeIV(i) = 1;

else

typeIV(i) = 2;

end;

end;

%type V

if ((isGrey(i) == -1) | (isSquare(i) == -1) | (isLarge(i) == -1))

typeV(i) = 3;

else

if ((isGrey(i) == 1) & (isSquare(i) == 0))

| ((isGrey(i) == 1) & (isLarge(i) == 1))

| ((isGrey(i) == 0) & (isLarge(i) == 0) & (isSquare(i) == 1))

typeV(i) = 1;
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else

typeV(i) = 2;

end;

end;

%type VI

if ((isGrey(i) == -1) | (isSquare(i) == -1) | (isLarge(i) == -1))

typeVI(i) = 3;

else

if ((isGrey(i) == 1) & (isLarge(i) == 1) & (isSquare(i) == 0))

| ((isGrey(i) == 0) & (isLarge(i) == 0) & (isSquare(i) == 0))

| ((isGrey(i) == 1) & (isLarge(i) == 0) & (isSquare(i) == 1))

| ((isGrey(i) == 0) & (isLarge(i) == 1) & (isSquare(i) == 1))

typeVI(i) = 1;

else

typeVI(i) = 2;

end;

end;

end;

figure

imshow(I)

for i = 2:numShapes+1,

x = (maxX(i) - minX(i))/2 + minX(i)-4;

y = (maxY(i) - minY(i))/2 + minY(i)+2;

switch typeI(i)

case 1

text(x,y,’A’);

case 2

text(x,y,’B’);

otherwise

text(x,y,’?’);

end;

end;

saveas(gcf, outFileTypeI, ’bmp’)
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Photodiode Model

Itotal = A× Jtotal

= A(Jdiff + Jdrift)
= A

[
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]
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pno =
n2

i

Nd
(C.9)

C = εA

= A√
Vo−V

√
qε(NaNd)
2(Na+Nd)

(C.10)

Vo =
(

kT

q

)
ln

(
NaNd

n2
i

)
(C.11)

where, Itotal : total current ni : intrinsic carrier concentration
Eph : photon energy k : Boltzmann constant
Io : incident illumination T : temperature
Fo : photonic flux q : electronic charge
R : reflectivity C : capacitance
W : depletion width ε : permittivity
α : absorption coefficient Nd, Na : ion concentration
Lp : diffusion length pno : equilibrium minority carrier concentration
Dp : diffusion coefficient τp : carrier lifetime

Equations C.1-C.5 are derived in Hornsey’s short course notes [56], Equation C.6 is an empirical
relationship for the visible spectrum [67]. The rest of the equations are derived from concepts
discussed in [68].



Bibliography

[1] R.L Gregory, Eye and Brain. New York: McGraw-Hill Book Company, 1966.

[2] G. Palmieri, G. Anna Oliva, and M. Scotto, “C.R.T. spot-follower device for eye-movement
measurements,” Kybernetik, vol. 8, pp. 23–30, January 1971.

[3] Alfred Yarbus, Eye Movements and Vision. New York: Plenum Press, 1967.

[4] WebMuseum, “WebMuseum: Gogh, vincent van: Self-portraits.”
http://www.ibiblio.org/wm/paint/auth/gogh/self/, 2006.

[5] Boston College, “Digital archive of art.” http://www.bc.edu/bc_org/avp/cas/fnart/,
2006.
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