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Abstract

Complex systems consist of a core of digital signal processing (DSP) buffered
from external environments by analog interface circuitry. “Analog sampled data”
circuits can be predominantly found in the data conversion portions of these mixed-
mode integrated circmits. Delta-Sigma modulator is an example. Analog sampled
data circuits also perform signal processing tasks, and are used in many filtering
applications. Switched-capacitor, and switched-current circuits are the examples of

these applications.

Sampled data circuits are dual time systems that contain a rapidly varying
clock and a slowly varying input signal. As a result, most of the simulation effort
is dedicated to the transient analysis at switching instants, where information is
usually not needed. The important required information is the response of the
circuit at the end of the clock period, when it reaches the steady state. Searching
for a method that can provide the solution of the circuit at discrete instants of time

led to the “sampled data simulation” technique [1].

This thesis looks at different aspects of analog sampled data systems. It extends
the idea of sampled data simulation to provide an accurate and efficient method
of computing the time domain sensitivity of linear circuits. The method is applied
to sensitivity analysis of an important class of sampled data systems, Delta-Sigma
modulators. We also provide efficient methods for analysis of switched networks,
including the group delay and group delay sensitivity of periodically switched lin-
ear networks in general, and harmonic distortion of switched-current circuits in
particular. Sources of distortion in switched-current circuits are examined, and
both upper and lower bounds are derived on total harmonic distortion of a current

memory cell.
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Chapter 1

Introduction

Analog sampled data systems are used as filters and also as interfaces between
analog and digital circuits. Complex systems consist of a core of digital signal
processing (DSP), buffered from external environments by analog interface circuitry.
It is now becoming common to find a single mixed analog and digital (mixed-
mode) integrated circuit that contains both the digital signal processor and all the
interface circuits required to interact with the outside world, which is inherently
analog (Fig.1.1). It is in the data conversion portions of these mixed-mode chips
that analog sampled data circuits can be predominantly found. Analog sampled
data systems also perform signal processing tasks. As a result, they are used in

many filtering applications, such as anti-aliasing filter in Fig.1.1.

Switched-capacitor circuits, switched-current circuits, and Delta-Sigma modu-
lators are examples of sampled data systems. The switched-capacitor technique
eliminates resistors from the design of analog filters. It is based on the idea that
a periodically switched capacitor can be used to simulate a resistor (provided that

the switching frequency is much higher than the signal frequencies of interest).
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Analog Sampled Data Circuits

lnp ——> > aDp |»| D |> DA | 5 ou
Switched-Capacitor ~ Delta- Switched-Capacitor
or Slgﬂlﬂ or
Switched-Current Modulator Switched-Current

Figure 1.1: A mixed analog and digital (mixed-mode) integrated circuit.

Switched-current circuits do not require linear floating capacitors, and can be
integrated in a standard digital CMOS process. This allows integrated circuit
manufacturers to implement both digital and analog circuits on the same chip
with the existing low-cost CMOS processes. Operating in the current mode, and
eliminating the need for a large voltage swing, make the switched-current technique

suitable for low voltage applications.

Delta-Sigma modulators are important blocks of oversampled A/D convert-
ers. Oversampling A/D converters depend on relatively simple and modest analog
circuitry. They are less insensitive to circuit imperfections and component mis-
matches, since they usually employ a simple two-level quantizer embedded within
a feedback loop.

If analog sampled data systems are to be widely used in signal processing and

data conversion, they require a suite of computer aided design (CAD) tools to
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simulate the circuits, perform the sensitivity analysis, and automate the design -
processes. General purpose analog simulation tools, such as SPICE (2], can be used
for simulation of these circuits. However, these tools are provided for simulation
of general nonlinear circuits and do not simultaneously provide both the accuracy

and speed necessary for simulation of specialized circuits.

Sampled data circuits are dual time systems that contain a rapidly varying
clock and a slowly varying input signal. As a result, most of the simulation effort
is dedicated to the transient analysis at switching instants, where information is
usually not needed. Sampled data systems are usually working at frequencies that
allow the output become stable. The important required information is therefore
the response of the circuit at the end of the clock period, when it reaches the
steady state between the switching instants. Consider, for instance, a Delta-Sigma
modulator for which we collect the output data at the end of the phase, when mod-
ulator reaches the steady state, and take FFT of the data to obtain the frequency
spectrum. Searching for a method that can provide the solution of the circuit at
discrete instants of time led to the “sampled data simulation” technique proposed
in [1]. Sampled data simulation (SDS) is an efficient, accurate, and stable method
for transient analysis of lumped linear time invariant circuits. It generates some
constant matrices before the simulation, and provides the transient solution at each
time point by performing only one matrix-vector multiplication. The time points
are equally spaced, and can be chosen arbitrarily regardless of the circuit time

constants.

We extend the idea of sampled data simulation to compute the time domain
sensitivity of linear circuits (switched and unswitched). There are several reasons
for the importance of sensitivity in analog circuit design. In addition to providing

more insight into the behavior of a physical system, sensitivity function plays an
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important part in the design and optimization of reliable circuits. The circuit
manufacturing process results in the spread of parameter values, known as the
element tolerances. Also, during the lifetime of a manufactured circuit, parameters
are subject to change through aging, and environment effects, such as temperature
and humidity. A sensitivity analysis is therefore required to find out which circuit
parameters are critical, i.e. the network sensitivity with respect to them is very

large.

Group delay is another aspect of analog sampled data filters that is analyzed
in this thesis. In filter design, the magnitude response requirements are normally
considered, and the corresponding phase response is ignored. This is because the
reduction of antialiasing by stopband attenuation is the first issue, and phase infor-
mation can be corrected later. For some applications, such as speech transmission,
this consideration is sufficient as the human ear is insensitive to the phase shift. For
video applications, however, the distortion caused by system nonlinear phase re-
sponse is unacceptable. A fast and accurate method for the computation of group
delay and the group delay sensitivity of periodically switched linear networks is

presented in this thesis.

1.1 Thesis Outline

The objectives of this thesis are: (i) to extend the idea of sampled data simulation
to compute the time domain sensitivity of linear circuits (switched and unswitched),
and a class of nonlinear circuits— Delta-Sigma modulators, (ii) to provide efficient
method for analysis of group delay and its sensitivity in periodically switched linear
networks, (iii) to compute the harmonic distortion in switched-current circuits.

Fig.1.2 shows the various classes of analog sampled data circuits, and the different
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types of analysis considered in this thesis.

I‘ Switched-Current I Switched-Capacitor Delta- Sigma Modulator
Distortion :
Group Delay

NS

Time Domain Sensitivity

Figure 1.2: The outline of the thesis.

Each chapter of this thesis looks at one aspect of sampled data systems. There-
fore, each chapter starts with its own introduction in the first section, continued by

new material in subsequent sections as my contribution to each topic.

Chapter 2 is dedicated to time domain sensitivity of linear circuits using sam-
pled data simulation. It presents a new method which is accurate, because no
approximation is made, and efficient because some parts of the computations are
performed only once, in a pre-processing step before simulation starts. We discuss
the applications of the method in both sensitivity and adjoint networks, and illus-
trate the theory with some examples. A program, called SDSEN, was written based
on the theory developed in this chapter, and applied to some examples. Extension
of sampled data simulation to the case of inconsistent initial conditions is another

subject presented in this chapter.

Chapter 3 employs the theory implemented in chapter 2 and applies it to an
important class of sampled data circuits, Delta-Sigma modulators. This chapter
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presents the formulation of sensitivity networks for Delta-Sigma modulators, from
which the sensitivity of the output magnitude with respect to any circuit elements
is obtained. The method can be applied to all types/configurations of modulators
if all elements, except the comparator, are linear. We establish a set of equations
for the sensitivity network by taking the differential of the original network with
respect to element A, and solve them in parallel to obtain the sensitivity of all nodes
with respect to that element value. During the simulation we also need sensitivity
of the output of the comparator with respect to its input. We distinguish between
the unclocked and clocked comparators to explain their behavior.

Chapter 4 presents a fast and accurate method for the calculation of group delay
and group delay sensitivity of periodically switched linear networks. Group delay
is an important measure used in the design of precision filters. In a distortionless
filter, the magnitude of the transfer function and the group delay must be flat
over the passband. Since the method uses the MNA formulation of the circuit,
and considers all types of linear elements, it can be used to simulate the switched-
capacitor networks when the switches are replaced by their resistances, and the
operational amplifiers have frequency-dependent as well as the other nonideal linear
characteristics. Switched-current networks are another application, as long as the
MOS transistors are modeled by linear components such as dependent sources,
capacitors, and resistors. A program, called GRPSN, was written based on the

theory developed in this chapter, and applied to some examples.

Chapter 5 introduces some nonfiltering applications of switched-current circuits.
Switched-current is a relatively new analog sampled-data technique that promises
to overcome the problems associated with switched-capacitor circuits. Although
filtering applications have received most of the attention among switched-current

circuits, there are other analog signal processing tasks that can be performed with
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the same fabrication technology and circuit elements as those used in switched-
current filters. In this chapter, we present some non-filtering applications including
a current-controlled oscillator, a modulator and a full-wave rectifier. We also pro-

pose a switched-current oversampling Delta-Sigma A /D converter.

Chapter 6 focuses on the distortion analysis of switched-current networks. Har-
monic distortion in switched-current circuits is more severe than in switched-capacitor
networks. Clock feed through and mismatch in the transistor threshold voltage are
two major sources of distortion in switched-current circuits. These sources are in-
troduced in this chapter, and their contributions to distortion are examined. We
also present a general expression for the total harmonic distortion (THD) of non-
linear circuits. Using this expression, we impose both upper and lower bounds on

the THD of a switched-current memory cell.

Chapter 7 summarizes the important aspects of the work performed, and gives

future research directions.

The thesis is concluded with three appendices. Appendix-A explains the nu-
merical Laplace inversion and the stepping algorithm used in computation of the
constant matrices required in SDSEN. Appendix-B presents the intermediate matrix
manipulations used in the computation of group delay and group delay sensitivity.
Appendix-C explains some selected switched-current building blocks that are used

to implement the non-filtering applications.



Chapter 2

Time Domain Sensitivity of
Linear Circuits Using Sampled

Data Simulation

In the design of any system, it is important to know the effect of the variations
of system parameters on the system’s performance. In the case of lumped linear
time invariant networks, a precise measure of this effect can be expressed in terms
of the sensitivity to parameter values. The parameter can be a circuit element,
such as a resistor or capacitor, or any other characteristic, such as the gain of the
operational amplifier. There are several reasons for the importance of sensitivity in

analog circuit design :

1. The study of the network sensitivity enhances insight into circuit behavior. By
dividing the circuit parameters into critical and non-critical ones, an effective

method is provided to simplify circuit models for efficient circuit analysis.
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2. Network sensitivity plays an important part in the design and optimization of
reliable circuits. The objective of optimization is to minimize the discrepancy

between the actual and the desired circuit behavior.

3. During the lifetime of a manufactured circuit, parameters are subject to
change through aging, and environment effects, such as temperature and hu-
midity. A sensitivity analysis is therefore required to find out which circuit

parameters are critical.

4. The spread of parameter values resulting from the circuit manufacturing pro-
cess requires the knowledge of the circuit performance in a certain range of
parameter values, known as the tolerance range. This generates the need for

tolerance analysis.

5. Knowledge of the network sensitivity can be used as a basis for comparing
different circuits. It helps the circuit designer in selecting the proper circuit

for a specified application.

Various sensitivity definitions of linear networks were introduced in the fre-
quency domain [3]. In this chapter, we focus on the time domain sensitivity anal-
ysis using sampled data simulation method. An accurate and efficient method of
computing time domain sensitivity is introduced. The method is accurate because
no approximation is made, and is computationally efficient because some parts of
the computations are performed only once, in a pre-processing step. It is similar
to SDS in the manner of generating some constant matrices before simulation, and
then providing the sensitivity at each time point by performing only matrix-vector

multiplications.

We apply both sensitivity network and adjoint network [4-6) approaches to com-

pute the time domain sensitivity. In the sensitivity network approach, the sensi-
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tivities of all variables with respect to one element are found at all time points.
In the adjoint network approach, the sensitivities of one variable with respect to
all elements are calculated at one time point. The application of the sensitivity
at one instant of time is in the calculation of error gradients for linear networks,
and in the time domain sensitivity analysis of objective functions used in circuit

optimization [3,7].

A review of sampled data simulation is given in section 1. Sections 2, 3, and 4
present my contributions to this topic. In section 2, I extend SDS to the case of
inconsistent initial conditions. In section 3, I present the derivations for the time
domain sensitivity using SDS. In this section, the derivations are for the sensitivity
network. The adjoint network is discussed in section 4. A program was written in
MATLAB, based on the theories developed in this chapter. Appendix-A shows the
algorithms used in this program for computation of the constant matrices in the

pre-processing step.

2.1 Sampled Data Simulation of Linear Circuits

Sampled data simulation (SDS) of linear circuits proposed in [1] is an efficient,
accurate, stable, and explicit method for the transient analysis of lumped linear
time invariant circuits. The method formulates a set of finite difference equations
in the time domain. The solution of these equations gives the network response at
fixed and equally spaced discrete instants of time. The fixed time interval between
each solution can be chosen arbitrarily and does not depend on the circuit time
constants. The transient solution at each time point requires only one matrix-
vector multiplication. The algorithm is a general computer oriented formulation

method that can be applied to any linear circuit.
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To explain the method, we assume that the linear circuit is formulated using

Modified Nodal Analysis (MNA) [3,8]:
Gx + C%’t‘- = w(t), x(07) =xq (2.1)

where G is the conductance matrix (mxm), C the capacitance matrix (m xm), w(t)
the input source vector (m x 1), x(¢) the unknown vector (m x 1) containing nodal
voltages and some branch currents needed for MNA, and Xq the initial condition

vector (m x 1). The Laplace transform of (2.1) is
RX =W 4+ Cx(07), (2.2)
where R = G + sC is the system matrix. The formal solution of (2.2) is
X =R'W +R™Cx(07). (2.3)

The first term on the right-hand side of (2.3) is related to the zero-state response,
and the second term to the zero-input response of the linear circuit. Without loss of
generality, we assume that there is one input source, which is a complex exponential
w(t) = e*. If there is more than one input source, the superposition principle is
applied to sum the responses due to individual inputs. Taking the inverse Laplace

transform of (2.3) and considering the circuit response at the first time point £ = T,

x(T) = £ (R™'W) +£7 (R7'C) x(07) (2.4)

t="T

where £71(-) denotes the inverse Laplace transform. Define the constant matrices

M and P as

(25)

x C. (2.6)
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P is a vector with dimension m x 1, and M is an m x m matrix. Equations (2.5)
and (2.6) are formal definitions for the M and P matrices. In practice, as explained
in the next section, these matrices are computed numerically by the solutions of
two system of equations in the time domain, i.e. by integrating the equations ovex

the interval [0, T]. Rewrite (2.4) using (2.5) and (2.6)
x(T) = P + Mx(0™).

Next, consider the circuit response at the second time point ¢ = 2T. In lumped
linear networks, any time can be selected as the origin by taking the initial condi-
tions into account. These initial conditions “reset” the problem so that the next
calculation can start without any reference to previous history. To move the time
origin from ¢ = 0 to £t = T. we must consider x(T') as the initial conditions, and

w(t) = e***T) as the input. The response at the end of the second time slot becomes
x(2T) = Pe'T + Mx(T).
In general, by considering any time instant ¢ = nT + T', the complete response is
x(nT + T) =P ™7 + Mx(nT), (2.7)

where T is the interval between two subsequent discrete time points at which the
response is calculated. Eq.(2.7) computes the response of the circuit in a sampled
data manner after equal intervals of time as long as the M and P matrices are
known. These matrices are constant and need to be computed only once, in a

pre-processing step before simmulation starts.

Sampled data simulation can jump over large time steps and still maintain
accuracy whereas simulators like SPICE [2,9] must take many small time steps to
maintain accuracy. In addition, SDS is an explicit method that is not slowed down

by iterations or time step control algorithms.
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The time step T can be chosen arbitrarily and does not depend on the cir-
cuit time constants. Thus, if T is larger than the time steps taken by ordinary
integration methods to solve (2.1), the sampled data simulation method will be
computationally efficient. This is very evident if the response is needed at many
time points. Simulation of oversampled Delta-Sigma modulators is an example of

such a case.

2.1.1 Numerical Computation of M and P Matrices

As suggested by (2.5), the vector P is obtained by setting the initial conditions to
zero and numerically integrating the circuit equations (2.1) over the time interval
[0,T]. According to (2.6), the matrix M is also obtained by integrating (2.1) while
the input is an identity matrix (as explained in the next paragraph)., over the
interval [0, T], and then postmultiplying the result by the matrix C.

The matrix M can be computed also by turning all sources off, then considering
the circuit response due to initial conditions only, and after a time interval T'. This

results in
x(T) = Mx(07).

As explained in [10], if we choose x(0~) to be the j-th column of an m x m identity
matrix, then, after integrating over the interval [0, T}, we obtain x(T') equal to the
j-th column of M. This suggests that the j-th column of M can be calculated
by setting the input sources to zero and by exciting only the j-th initial condition
(by setting the j-th entry of x(0~) to unity and all other entries to zero), and
numerically integrating the circuit equations (2.1} over the interval [0,T]. The

complete M matrix is obtained by repeating this process for each column. The
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reader is referred to [11] for more details about computations of M and P matrices,

especially when the circuit is formulated using the MNA method.

The computation of M and P requires the time domain solution of (2.1), and
hence a numerical integration method for the solution of a set of linear differen-
tial equations is required. We use numerical Laplace inversion [12-15] because it
provides very accurate results and is equivalent to an absolutely stable, very high
order integration method. As shown in [13], the numerical Laplace inversion cor-
rectly inverts the first p+ 1 terms of the Taylor series expansion of the time domain
response of the network, and is equivalent to an integration method of order p
(in our work we used p = 18). If a small time step h is used at each time step.
then the total truncation error is proportional to A? and can be made arbitrarily
small. Other integration methods such as the Backward Differentiation Formula
and Runge-Kutta method [3] are normally lower order methods (p < 5), and can
not provide the same level of accuracy. Furthermore, finite precision arithmetic on
a digital computer limits the smallest time step that can be used with low order
integration methods and ultimately the accuracy of the computed results.

Computation Cost

A computer program, called MPgen, was written in MATLAB [16] to compute
M and P matrices. The program accepts the circuit matrices G and C, and the
time interval T, then generates the M and P matrices. MPgen proceeds with the
stepping algorithm [3] that is explained in Appendix-A. The matrix inversions indi-
cated in (2.5) and (2.6) are performed by LU decompositions followed by forward-
backward substitutions. The computation cost is of order O(m?®/3) [17]. However,

the computation can be performed in sparse with the cost of O(m!-1-1-%) [18].



CHAPTER 2. TIME DOMAIN SENSITIVITY ANALYSIS USING SDS 15

The order of integration used in MPgen is 18, and the local truncation error is
set to 1072, equivalent to 180 dB simulation accuracy per time step. The numerical
Laplace inversion performed in MPgen requires complex arithmetic as opposed to
real arithmetic in ordinary integration methods, and requires the solution of the
network at 5 frequency points for each integration time step. As a result, the cost
is usually larger thar ordinary integration methods. However, this higher cost can
be tolerated because of the accuracy we obtain, and because the calculation of the
M and P matrices is needed only once in a pre-processing step, before simulation

starts.

2.2 Inconsistent Initial Conditions

In some situations, especially in networks with ideal switches, it may happen that
the initial conditions before switching and just after switching are not the same.
Consider the network in Fig. 2.1, where the capacitor on the left is initially charged
to 2V and the capacitor on the right has no charge. When the switch is closed, there
are simultaneously two different voltages on the node: 2V from the left capacitor

and OV from the right one. This is a case of inconsistent initial conditions [19,20].

In this section, we propose an extension to SDS by generating the transition
matrices needed to integrate the circuit equations from nT~ to nT*. In particular,
we are looking for the matrix My and the vector Py that provide the following
relation at each instant nT,(n =0,1,...,N):

x(nT*) = Mo x(nT") + Py eT. (2.8)

If Mo and P, are computed once at the beginning of the simulation, then the
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/

c, 4tav 1 ¢ G

Figure 2.1: Network with inconsistent initial voltages.

inconsistent initial conditions at each instant nT,(n = 0,1,..., N) can be handled

very quickly by performing only a matrix-vector multiplication.

SDS provides the time domain response at either (0=,T7~,....NT~) or (0%,
T+, ..., NT*). This means that the method can not detect the presence of Dirac
impulses at the time instances nT'. However, it considers the effect of impulses in
the computation of responses at the next time point. To illustrate this, consider
the simple RC circuit in Fig. 2.2 with zero initial condition, and the input of Dirac
impulses applied at two different time points, r(t) = §(¢)+6(t—37T'). The analytical

solution of the circuit provides
Vour(t) = e tu(t) + e 3 Ty(t — 37T),

where u(-) denotes the step function. The output v,(¢) at both T~ and nT* are
shown in Table 2.1. The effects of Dirac impulses can be seen as the differences

between voy:(0~) and voue(0), and voue(3T ™) and voyue (3T ).

To simulate the circuit using the sampled data simulation technique, we consider
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ut) P70 w)

O Vous (1)

(t) C—j—) == C=IF

Figure 2.2: RC circuit with Dirac impulse input.

t Voue(£™) Vout(t+) Voue(t)
Time | Analytical | Analytical SDS
0 0 1 0
T e T e T e T
oT e=2T e~2T e—2T
T e=3T e 11 e=3T
AT |e™*T 4T | e T 4T | 4T 4 T

Table 2.1: The output of RC circuit at a few time points.

the modified nodal formulation of the circuit, and compute the M and P matrices.

1 -1 1 Vi 0
-1 1+4+s 0 Va|=1}0
1 0 o Ig 1

v
w

N s

R x
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0 0 0
M=C,"(R") C=]0eTo0
t=T
0 eT 0
0
P=L7'(RT'W) = | eT
t=T
e-—T
The time domain response based on (2.7) becomes
vl(nT + T) 0 0 0 vl(nT) 0
v,(rRT+T) [ =]0 T 0 vo(nT) | + | e T | xg(nT) (2.9)
ig(nT +T) 0 eT 0 ig(nT) e~ T

where, because of the Dirac impulse inputs at ¢ =0 and ¢ = 3T,

1 fn=00rn=3T
g(nT) =
0 otherwise

Assuming zero initial condition, (2.9) generates the time domain responses listed
in the third column of Table 2.1. The response at ¢ = 0 is valid for 0~, not for 0%.
Also the response at ¢t = 3T is valid only for 3T~.

A technique, called fwo step method, was proposed in [19] to take into account
the effects of Dirac impulses and inconsistent initial conditions. In this technique,
we first take a relatively long step forward from 0~ to T~. At this time point,
we have good accuracy for the time domain response, and no Dirac impulse or
inconsistent initial conditions are present. Next, we take exactly the same step size
backward in time from T~ to 0*. The error of this step is very low since we are now

dealing with a situation without a Dirac impulse or inconsistent initial conditions.

With the combination of the “two step” and “SDS” methods, we generate My

and Py, the matrices needed to integrate the circuit equations from nT~ to nT* in
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(2.8). First, integrate the circuit equations from nT~ to (nT + T')
x(nT + T) = Mx(nT") + Pe7. (2.10)
Then, integrate the equations backward from (T + T') to nT*
x(nT*) = Mx(nT + T) + Pe~ " T+7), (2.11)
Substituting (2.10) into (2.11) yields
x(nT+) = MMx(nT") + [MP + Be * T+ T, (2.12)
Comparing (2.12) with (2.8) gives
M, = MM (2.13)
Po = M Pe'T 4 Pe*(nT+T) (2.14)

The matrices M, P, ﬁ, and P are constant. The matrix My is therefore constant
and computed once. Only the last term of Py in (2.14) depends on the time point.
This is not a big concern because it introduces only a vector-vector addition per
time point. In the special case, when the input is a unit step function, Py also

becomes a constant vector

P,=MP+P.

A program was written in MATLAB based on the above equations to generate
My and P, for switched linear networks. The program was tested on several circuits
among which is the circuit in Fig. 2.3. This network was considered in [3] and [19].
It has two switches and two equal phases, the elements have unit values, and the
switching frequency is 10 Hz. During the first phase, switch S2 is closed and S1

is open. In the second phase, the positions of the switches are reversed. A unit
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step input is applied. The time domain response is given in Fig.2.4. At the start
of phase 1 (¢ = 0.1,0.2,...), the network has a loop of capacitors and thus a jump
occurs at the output. To detect these jumps, we use the Mg and Py matrices. After
that, we proceed with M and P. For instance, at ¢t = 0.1 s, to detect the jump, we

compute
x(0.1%) = M, x(0.17) + Po.
Then. to integrate for the rest of the phase, we compute
x(0.15) = M x(0.1%) + P.

The solid line in Fig.2.4 shows the response when using the M and Py matrices all
each switching instants. The dotted line shows the results when we proceed without
using My and Py (i.e. when we discard inconsistent initial conditions). Since the
use of Mg and Py costs only one matrix-vector multiplication, it is advisable to use

them to obtain more reliable answers.
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w(t)

Figure 2.3: Switched network with inconsistent initial conditions.
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Figure 2.4: Unit step response of the network in Fig.2.3 with and without using
M; and P, matrices.




CHAPTER 2. TIME DOMAIN SENSITIVITY ANALYSIS USING SDS 22

2.3 Time Domain Sensitivity Using Sensitivity

Network

This section presents a new method for computation of the time domain sensitiv-
ity of linear networks. It is similar to sampled data simulation in the manner of
generating some constant matrices before the simulation, and then providing the
sensitivity at each time point by performing only matrix-vector multiplications.
The method is accurate because no approximation is made, and efficient because

most of the computation is performed only once, in a pre-processing step.

To evaluate the sensitivity of all components of the vector x(¢) with respect to
a single parameter h, we start from the MNA formulation (2.1), and differentiate

it with respect to h.

a Ox(t) , 0Cdx(t) L dx(t) o Ox(07) _0x

G
)+ G+ 5h e o oh -~ Oh

(2.15)

We assume that & does not depend on the frequency variable s or the time step 7',

thus 258 = 5‘:.;;1 = 0. Define
ax t
and substitute it in (2.15)

Gz(t) + C (2.16)

dz(t) £+ 9C dx(t)
dt ( Bn dt |
In (2.16) there are the differentials of z(t) and x(t) with respect to time. Taking
the Laplace transform of this equation, and considering the initial conditions of the

variables z(t) and x(t) give

0G 0C Cc , _ -
(G+sC)Z——[§-h—+sa-]X+b—h—x(0 ) +Cz(07),



CHAPTER 2. TIME DOMAIN SENSITIVITY ANALYSIS USING SDS 23

or

dR_ 8C , _ _
RZ = - ==X + 2-x(07) + Ca(07). (2.17)

Eq. (2.17) describes the sensitivity network that is the same as the original network
but with a different right-hand side. The input of the sensitivity network is com-
posed of the solution of the original network(X) and its initial condition (x(07)).
Substituting X from (2.3) into (2.17) gives

_ R - -1 ac_ _ -
RZ = 'a—h[R Cx(0") +R W]+a—h"(° ) + Cz(07),
_ 8R__, R__, . dC]  _ _
RZ = —-a—hR W+|:—ER C+‘E{] x(07) + Cz(07),
R R aC
— _p-1YRpn _p-1Ytm -19% -
zZ = ‘R Sh R VVJ-%-[ RS R™'C+R ah]x(O)
Provides p, Provides a,
+ R7IC z(07). (2.18)
Provides M

The first term in (2.18) corresponds to the zero-state response of the sensitivity

network, and its integral over the interval [0, T'] provides the vector Py

P, = ! (—R‘la—RR-IW) (2.19)

Oh

t=T )

The second and third terms in (2.18) are related to the zero-input response of the
sensitivity network, and their integral over the interval [0, T] provide the M, and

M matrices

R ac
— r-1{_p-1 -1 o Buthd
M, = C ( R™-R7IC+R 6h) g (2.20)
M = £7(R7C) . (2.21)
t=T
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In the time domain, (2.18) can be written in sampled data manner as
z(nT + T) = M,x(nT) + Mz(nT) + P,e™7 (2.22)

Eq.(2.22) is the core algorithm used in the sensitivity analysis described in this
section. It can be used to compute the time domain sensitivity in a sampled data
manner as long as the My and P, matrices are known. The computation of P,
and Mj, based on (2.19) and (2.20), can be performed simultaneously with the
computation of P and M, based on (2.5) and (2.6). These matrices are constant,
and need to be computed only once. It is therefore reasonable to spend extra care
in their calculations. The reader is referred to Appendix-A for the algorithm of
calculating My and Py using the numerical Laplace transform inversion. A program

called MPMPSgen, was written in MATLAB to generate these matrices.

The accuracy and cost of performing (2.22) are the same as discussed in [1}
for computing (2.7). If the matrices M, M,, and P; are known, then the only
operations required in the seusitivity computation given in (2.22) are two matrix-

vector multiplications and one vector addition for every sample of T seconds.

To simplify (2.19) and (2.20), we start from the following identity, and differen-

tiate it with respect to h:

RR!'=I
BR- R <0
B = _RIER (2.23)

Substituting (2.23) into (2.19) provides

oR™!
— -1
P, = C ( o W)

a0 fa_
= (mEw)|
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0 ._ -
L™ (R™'W) g SO (2.24)

We took the differential operator 2 out of the bracket because k does not depend
on the frequency s or the time step T. The source vector W is also assumed to
be independent of k, thus = 0. The matrix M, can be similarly simplified by
substituting (2.23) into (2.20)

M, = £ (aR-lc R“ac)

dh k)| ;- b= T
_ 9 (g _om
= ah[' (r*c) fp =R (2.25)
Considering (2.24) and (2.25) in (2.22) results in
z(nT + T) = 3Mx(nT) + Mz(nT) + 21; mT, (2.26)

It is interesting to note that (2.26) could have been directly derived from (2.7) by

snT
a‘ = 0. Of course, we

differentiating (2.7) with respect to h, and considering
still need to compute the Py and My matrices by (2.19) a.nd (2.20).

2.3.1 Example

We illustrate the procedures developed in the previous section with a simple ex-
ample. In each step, the analytical solutions in the time domain will be given. Of
course, for any nontrivial network, solutions of My, Py, and time domain sensitivi-
ties must be obtained numerically with the program MPMPSgen, or the algorithms
in Appendix-A and the formula presented in the previous section. Consider the RC
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circuit shown in Fig.2.5 with the unit step input and zero initial conditions. We

calculate the time domain sensitivity of the output v2(t) with respect to G; and C.
First, we find the analytical solutions. The system equation is
i H v,(0) 0
Vi 0 | v0) 0

1

Gi+sC —-sC
—sC G2 + sC

The Laplace domain output is

Va(s)

The exact time domain response is

=1 %
‘Uz(t)— (G1+G2)e + .

The derivative with respect to G is

3v2(t) _ -1 [1 +
6G1 - (Gl + C;z)2 C(G1 + GZ)

e ClGi+Ga)

Git }_6121‘__.

C=1
|
|

1=} Gi=1 Gy =1

Figure 2.5: RC circuit with unit step input.
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The derivative with respect to C is

6‘!!2(t) G1G,t 'TGGI%Q_)
aC ~ CHG,+Go)E° ’

For the element values indicated on Fig.2.5, and assuming the step size of ¢t = T

naT)=  te oy =g (2.27)
Ovs(nT 1 T _.
%1) = 1+ ey =1+ ) (2.28)
21-]—25(—0";1—1-)- = ite"/2 |le=nT = inTe""T/2 (2.29)

where n = 0,1,..., N is the number of time steps.

Next, we compute v2(nT) and its sensitivities using M, P, My, and P, matrices

and the recurrence equations of (2.7) and (2.22).

R = (G+sC)=[1+s — }

—s 1+s
14s s
R = 1+2s 1+2s
2 148
1428 1+42s

M = £ (R““C)

1 _—¢f2 1 _-t/2
[ Lot gt/ ]
_ 1_—¢/2 1_-¢t/2
t=T "-'26 / 26 / r
1 -T/2 1 _-T/2
1T/ Lo/
LT/ Le~TP2

2
1+s
=L -1 (1+2s)s
t = 1
1+2s t=T

il
reee
'-""
|~'.;
a3
+
[
[ N |
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To get the time domain response of the circuit at discretized points »T", we use (2.7)

(T +T 1e~T/2  _Lle=T/2 | | y(nT —1e-Tl2 41
1( ) — 2 2 1( ) + 2 (2‘30)
v2(nT +T) —ie T/ Le7T/? vo(nT) le~T/2
It is clear that (2.30) generates the same response as indicated in (2.27) at time

points »T,(n =0,1,...,N).

To find the sensitivity with respect to G,, we first calculate ggl-, and then
substitute it in (2.19) and (2.20) to obtain the corresponding P, and M, matrices.

IR 10
G, 00

I

(1+8)®
P. = (! _R—l aRR—IW =1 _(1+-;a)2:
® 3G1 t=T __i+s
(1422 l,._r

1 =T/2 4 3.-T/2 ]
_ [gTC /+zc /—1

1 -T/2 _ 1 .-T/2
8Te ¢

-

R
S | -1 -1
M, = C ( R 3G, R C)

__14s 1+s
~ ! [ (42 (1420)° ]
_ __14s 14s
t=T (1+22)2 (1+429)* |,._p

1 -T, 1,-T/2 1 -T/2 1 -T
[—ETC /2—26 / ETC /+4—e 2 }

ITe~T/2 _le~T/2  _L1TeT/24 1 e=T/2

To calculate the time domain sensitivity of all nodes with respect to G, rewrite

(2.22) as follows

8G,y
v (nT+T) ‘Uz(‘nT)

[ G (nT+T) } [ —iTe T2 — 1eT/2  LTe T/ 4 LeT12 } [ v1(nT)
Gy

%Te—Tﬂ — %e—le _%Te—T/2 + %e-—T/z

+ 2 8G,

—Le=T/2  L,-T/2 duz(nT)
2 2 Gy

[ 1.-T12 —Lle~T/2 } [ Buy(nT) J
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LTe-T/2 4 3¢-T/2 _
[ s 1° ] . (2.31)

Lpp -T/2 _ 1_.-T/2
sTe G

Assuming zero initial conditions for the circuit in Fig. 2.5 and for its sensitivity
network, Eq.(2.31) generates the same results as that of (2.28) at discretized time
points »nT,(n =0,1,...,N).

Without going into the details, and following the same procedure, we find the
following equations for the time domain sensitivity of the network with respect

to C.

OR [ s —s

acC | -5 s

p, = | T

-:—Te"rl2

v, o [T e

s —1lpe-T/2 1p.-T/2
61:.(;5-{-1‘) _ [ _%Te-T/2 —“lTe"T/z v, (nT)
2ua(nT41) | —1Te 72 LTe T/ va(nT)

+

[ - - dvy (nT -
LT/ _le T/z} [ o) } [—-%Te T/2 }(2.32)

_1_,-T/2 1_.-T/2 dva(nT) 1 -T/2
2¢ 2¢ ac iLe

Again, assuming zero initial conditions for the original and the sensitivity networks,
Eq.(2.32) generates exactly the same results as (2.29) at time points nT. Fig. 2.6
shows the simulation results for the sensitivity of the output with respect to G,

and C at a few time points.
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Figure 2.6: Simulation results for the sensitivity of v,(t) (a) with respect to G,.
and (b) with respect to C.



CHAPTER 2. TIME DOMAIN SENSITIVITY ANALYSIS USING SDS 31

2.4 Time Domain Sensitivity Using Adjoint Net-

work

The time domain sensitivity of one variable, which is usually the single output ¢,
with respect to many variable elements h; at one instant of time (t = ;) is con-
sidered in this section. The application of sensitivity at one instant of time is in
the calculation of error gradients for linear networks, and in the time domain sen-
sitivity analysis of objective functions used in circuit optimization [3,5,7]. Another
application is in the time domain sensitivity analysis of switched networks at the
end of each phase when the circuit does not reach the steady state. Transient anal-
ysis of rise/fall time in digital circuits and transmission lines are the other types of

applications.

In the frequency domain, the application of adjoint network (sometimes called

transpose network) in the calculation of sensitivity is well known [3,5]. The pro-
cedure for computing frequency domain sensitivity using an adjoint network is

summarized as follows:

I- Solve the given system of linear equations RX = W.

II- Solve the adjoint network defined by R*X* = —d where d is a constant vector
that relates the output ¢ to the nodal vector X, ¢ =d* X.

III- For each parameter h;, form g,%_, and insert this in the following equation to

compute g,?_;

OB
Oh;

% _ xeyBx (2.33)

oh;
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As the vector X and X*° are independent of the parameters h;, Eq.(2.33) requires
the solution of only two sets of algebraic equations (in steps I and II), irrespective

of the number of parameters h;.

In the time domain, the sensitivity is computed by the procedure explained

in 7] as follows:

1- Perform a transient analysis of the original network N for the time interval
t = [0,t4]. Obtain i(t) or v(t) for resistive , 9() for capacitive, and (¢} for

inductive branches.

2- Construct the adjoint network N according to the fact that the adjoint network
of R, L, and C are unchanged, and the adjoint network of dependent sources
are dependent sources with a new configuration and transfer function given
in [7]. Set all initial conditions and all independent sources equal to zero, and

apply a current source of —4(t) between the output nodes.

3- Perform a transient analysis of the adjoint network N for the time interval
T = [0,t], where T = t; — ¢ (time reversal). Obtain i(7) or #(r) for resistive

branches, #(r) for capacitive, and z(r) for inductive branches.

4- Evaluate the following equations to find the sensitivity of the output with
respect to R, and C (for other elements refer to [7]).
avm, t TN .
_a;g 1 - fo [zg(r)zg(t)]f:t!_t dt

% = - ! lo(r)oc(t)],—, -, dt
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2.4.1 Adjoint Network in Time Versus Frequency Domain

In the time domain, the adjoint network is obtained from a more general principle
known as Tellegen’s theorem [7,21,22], whereas in the frequency domain, the adjoint
network can be obtained after some matrix manipulations [3]. The applications of
the adjoint network in these two domains were derived separately without making
any explicit link between them. We establish here a one-by-one correspondence
between these two applications as shown in Table 2.2. Based on the relations shown
in this table, the adjoint network can be established in either the time or frequency

domain, and finally, can be transformed to the other one, if necessary. Considering

Frequency Domain Time Domain
step I: Solving the original system step 1: Solving the original system
step II : Creating the transpose system | step 2 : Constructing the adjoint network
of R*X?* = —d N and applying a source of —4&(t)
step III : Multiplication in the step 3 : The solution of the transpose
frequency domain system reversed in time, needed for the

convolution involved in step 4
step 4 : Convolution of ip(t) and ia(t)
for resistive elements,and convolution of

vc(t) and 9¢(t) for capacitive elements

step III : If the parameter h is a step 4 : If the parameter h is a frequency
frequency dependent element, dependent element, use the derivative of
R produces a s the voltage, v(t)

Table 2.2: Relationship between the adjoint methods in time and frequency do-

mains.
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this, and by applying sampled data simulation, we introduce two approaches for

time domain sensitivity of linear networks using an adjoint network.

2.4.2 Approach I : Convolution

The formulation of the adjoint network in the frequency domain is straightforward.
It performs a multiplication in the frequency domain (step III) which can be trans-
lated to a convolution in the time domain. Since the sampled data simulation is an
accurate and efficient method for computing the circuit response in the time do-
main. we transform the frequency domain sensitivity analysis into the time domain

as follows :

1- Solve the original system of equations Gx(t)+C4"-’;—£ﬂ = w(t) in the time domain

using P and M matrices
x(nT + T) = Mx(nT) +Pe™ , n=0,1,...,N

where P and M are given by (2.5) and (2.6). This step is equivalent to solving
RX = W in frequency domain.

2- Solve the system of equations Gy(t) + C%ﬂ = ‘%{Q in the time domain to get
the solution of y(t) = & = x(¢)

x(nT+T) =Mx(nT)+Pe™T , n=0,1,...,N

where M is the same as in the previous step, and
P=C""(sR7'W)

t="T

We need x(t) to compute the sensitivity with respect to frequency dependent

elements like capacitors and inductors.
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3- Solve the transpose system of G*x?(t) + C‘%ﬂ = —dé(¢) in the time domain
which is equivalent to the solution of the transpose system R!X® = —d in
the frequency domain.

x*(nT + T) = M*x*(nT) + P°g(nT) , n=0,1,...,N

where, because of the Dirac impulse input,

1 ifn=0

0 otherwise

g(nT) = {
and M* and P* are given by

Mt —_ E-l ((Rt)—l)

= transpose of M

t=T

P* = £7'(—(R%)™d)

t=T

4- Evaluate the equation F(s) = 53,% = (xn)t-g%x in the time domain using

discrete-time convolution. For instance, if h; is a conductance appearing at

column #1 and row #1 of R

F(s) = X* X,
N
FINT) = z¥NT)®z(NT) = 3_ z3(mT)z,(NT — mT).

If h; is a capacitor appearing at column #1 and row #1 of R

F(s) = X{sX;
f(NT) = zi(NT)® z,(NT) = i zi(mT)z,(NT — mT).

m=0
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Since we are interested in the sensitivity at one instant in time, the above convolu-
tions are evaluated at only that time point (NT'). The computation cost depends
on N. If we do not consider the steady state, and concentrate only on the tran-
sient response of the circuit and its sensitivity, N is normally a small number. In
switched networks, if one is interested in the time domain analysis within each

phase, N could be less than 10.

The drawback of this approach is that we are convolving the samples of two
signals z; and z{ to generate the time domain equivalent of the multiplication
X¢(s) Xi(s) in the Laplace domain. This is accurate only if the original analog
signals are sampled at a rate that is twice the maximum frequency component of the
signals. Otherwise, some errors are encountered in the discrete-time convolution
due to sampling. Another minor drawback may be the need for memory storage

for the circuit response from 0 to NT for the purpose of convolution.

2.4.3 Approach II : Numerical Laplace Transform Inver-
sion
This approach is basically a translation of the adjoint method from the frequency

domain into the time domain. Assume X to be the solution of the original network

in the frequency domain
RX=W,
and X*° to be the solution of the adjoint network
R! X = —d,
where d is a selector vector defining the output ¢

¢ =d* X.
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Also assume m to be the size of the system matrix R, and { the number of pa-
rameters h; with respect to which the sensitivities are computed. Define matrix Q

as

[ t3R
(X) 5as

(xa)t_g’%_

Xe)t3R
- ( Oht Jixm

Since we are interested in the sensitivities at only one time point, ¢ = t;, they can

be computed using the numerical Laplace inversion

Pu= L7 (QX)
t=ty

The numerical Laplace inversion has to be performed separately for each row of
Q X. Each entry ¢ in P 44 now contains the time domain sensitivity of the output

¢ with respect to each parameter h; at a fixed time point ¢ = ;.

Comparing to Approach I, the above proceeds continuously in time, and does
not include discrete time convolution. In addition, all computations are performed
in the forward direction in time. This may reduce the memory space requirement
because there is no need to store the whole response of the circuit (or its adjoint)

from 0 to 4.



Chapter 3

Analysis and Sensitivity of

Delta-Sigma Modulator

An obvious application of the method developed in chapter 2 is in the sensitivity
analysis of Delta-Sigma Modulators (DSM). Due to the presence of a comparator,
which is a nonlinear element, the sensitivity analysis of DSM can not be performed
directly in the frequency domain. Instead, we apply the method of chapter 2
(sensitivity network) to do a fast sensitivity analysis in the time domain, and finally
transfer the results into the frequency domain by means of the FFT.

A brief review of DSM is given in section 1. The reader is referred to [23-28]
for more details. Analysis of a second-order DSM using sampled data simulation
is discussed in section 2. My contribution to this topic, the sensitivity analysis
of a DSM, is presented in section 3, where I derive the sensitivity network for
the DSM, and distinguish between unclocked and clocked comparators to explain
the sensitivity of the comparator output with respect to its input. A discussion

about the incremental and differential sensitivity is also given in section 3. The

38
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derivations, although explained on a specific circuit, are general and can be applied
to all types/configurations of modulators if all elements, except the comparator,

are linear.

3.1 Oversampled Delta-Sigma A /D Converters

With the emergence of digital signal processing applications, there is an increasing
demand for high resolution on-chip A/D converters. Conventional A /D converters,
which sample and quantize the input signal at the Nyquist rate, have attributes that
make it difficult to implement in fine-line VLSI technology. They need sharp cutoff
analog filters, high precision analog components, and they suffer from increased
noise levels due to high circuit densities. Oversampling A/D converters, on the
other hand, depend on relatively simple and modest analog circuitry. They combine
high sampling rates with negative feedback in order to trade off resolution in time
for resolution in amplitude. Oversampled A /D converters are insensitive to circuit
imperfections and component mismatch, since they usually employ a simple two-

level quantizer embedded within a feedback loop [26,27].

The basic structure of the oversampled Delta-Sigma A /D converter consists of
four blocks: the input anti-aliasing analog filter, the Delta-Sigma modulator, the
decimator, and a digital low pass filter. The input anti-aliasing filter is a non-critical
low-order passive filter whose cutoff frequency is set at some frequency far above the
Nyquist rate. The Delta-Sigma modulator performs two important functions: one
is to modulate the band-limited analog input signal into a one-bit digital code at a
frequency much higher than the Nyquist rate. The other function is to noise-shape
the quantization noise and transfer most of its energy to high frequencies. The

decimator converts the low resolution high bit rate signal to the high resolution low
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bit rate signal. Finally, the digital filter removes out-of-band quantization noise.
The decimator and the digital filter are usually combined into a single digital circuit,
where the digital filter comes first to suppress the high frequency noise before doing

decimation.

A second-order modulator is shown in Fig. 3.1-(a). The input analog signal
x(t) is sampled at the sampling frequency, f,, much higher than the signal Nyquist
rate. The ratio of the sampling frequency to Nyquist rate is called the oversampling
ratio M

A quantizer with only two levels is employed to avoid the distortion generated by
step-size mismatch in multibit quantizers. The integrators force the average of the
error signal e(t) to be zero. This error signal results from subtraction of the output

signal from the input.

To analyze the operation of the second-order SDM,we assume that the quanti-
zation noise is uncorrelated with the input signal. In such a case, the modulator
can be linearized as shown in Fig. 3.1-(b). In this model, each integrator is replaced
by a z-domain Forward Euler non-inverting integrator, Q(z) is the additive quan-
tization noise, and the delay cell in the feedback path represents the latch in the
output of the quantizer. In this model,

Y(2) = Fw(z)W(2) + Fqo(=)Q(2)

where Fiy(2) is the signal transfer function, and Fg(z) is the noise transfer function.
If the gains of the integrators are K; and K,, and the gain of DAC is Kj, the

following expressions can be derived for Fw(z) and Fp(z) :

K1K2H2(z)
K\ K, K32~ H?(z) + K2 Kaz—*H(z) + 1

Fy(z) =
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e R
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Figure 3.1: (a) Block diagram of a second-order Delta-Sigma modulator, (b} Lin-

earized model of modulator.

1
K1 K3;K3z7'H?*(z) + K, K327'H(z) + 1

where H(z) = %= . In practice, Fi(z) is a lowpass filter with unity gain in

1—z—1"

Fo(z) =

the passband. In contrast, Fg(z) has a highpass behavior, effectively attenunating
the quantization noise in the modulator passband at the expense of amplifying the

quantization noise at higher frequencies.

The maximum in-band signal-to-noise ratio (SN Rmsz) of an ideal second-order

DSM is approximately expressed by [28] :
SNRpaz = 15Loga(M) — 13 (dB) (3.1)

where M is the oversampling ratio. For an input signal of 10kHz (fx is 20kHz),
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and with an oversampling ratio of 128 (fs = 2.56 M Hz), the SNR is 92dB, equiv-
alent to 15 bits of resolution. In theory, the SNR can be increased without limit
by increasing the oversampling ratio. However, the higher sampling frequency is
limited in practice by the circuit frequency response. In addition, the total noise
is the summation of the in-band quantization noise and in-band noise coming from
other error sources, such as thermal noise, flicker noise, and clock feed through.
The non-linearity of the circuit also limits the signal dynamic range, thus limiting
the SNR.

3.2 Sampled Data Simulation of Delta-Sigma Mod-

ulator

As explained in [1], sampled data simulation, although developed for linear circuits,
can be applied to a restricted set of nonlinear elements whose characteristics change
only at switching instants. The change in characteristics could include a change of
the value (resistance, capacitance etc.), or a change of topology. Examples of such
nonlinear elements are single and multibit quantizers that are used as analog to
digital converters in oversampled DSMs. These circuits are externally clocked, and
their output changes only at the switching instants based on their input at that

time.

A second-order continuous-time oversampled DSM [29] is shown in Fig. 3.2. It is
partitioned into the linear and nonlinear blocks. Sampled data simulation proceeds
by calculating the output of the linear block after one clock cycle, updating the
state of the comparator based on the output of the linear block and then repeating
the process for the next clock cycle. The output of the linear block is needed only
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Figure 3.2: Second-order continuous-time Delta-Sigma modulator

at the clock edges when the quantizer samples its input. In between the clock
edges, the output of the linear block changes, but does not affect the operation of
the overall circuit. Since the output of the linear block is needed only at the clock
instants, sampled data simulation is used. During simulation we have two types of
inputs to the linear block: the primary input, which is the signal to be converted,
and the feedback from the quantizer. For theoretical studies, the primary input is
considered to be a sinusoidal function. The feedback signals are constant over a

clock cycle and can be treated as a step input for the clock duration.

The MNA formulation of the linear block in Fig.3.2 provides
RX =W, where R =G+ sC.

The linear block is stimulated by two inputs: the primary input Agcos(wot), and the
feedback from quantizer (which is a step function). These inputs are considered in

separate source vectors Wip,, and W;. The M and P matrices needed for sampled

-
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data simulation are

M = (R C)

t="T

Pip = L7 (R7'Wiyy) r
t =

Pyl = [,"l (R-lwl) t—T ’

where T is the sampling period. The linear block operates on the primary input
and the feedback signals, and provides the output ¢(nT) to be applied to the
comparator. The output of the comparator y(nT') changes only at the rising (or
falling) edges of the external clock, and remains at the same level until the next
edge of the clock.

1 ifp(nT) >0

y(nT) = sign ((nT)) = { ,
-1 if¢p(nT) <0

The following sampled data equation determines the time domain response of the

linear block
x(nT + T) = Mx(nT) + Real (Pinp &™) + Py, y(nT). (3.2)

After each clock cycle, the state of the comparator is updated based on the output
of the linear block. The comparator then generates the feedback signals, and the
process is repeated for the next clock cycle.

The Delta-Sigma circuit in Fig. 3.2 was simulated considering a clock frequency
of 1IMHz with equal phase widths, and the input frequency of 1kHz with 0.6V
peak to peak amplitude. It took 3 minutes CPU execution time on a SPARC-10
Sun workstation to simulate the modulator for 74k clock cycles. The spectrum at
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the output of the modulator is shown in Fig. 3.3. The results were obtained by
simulating the circuit for 74k clock cycles, discarding the first 10k data points to
remove any circuit transients, and performing a Fast Fourier Transform(FFT) on
the remaining 64k data points. Discarding the first 10K data points ensures that all
the transients are passed, because it is equivalent to ignoring the circuit response

from 0 to 10mSec while the circuit time constants are around uSec.

For comparison, the circuit of Fig.3.2 was also simulated using HSPICE. To
make the circuit similar to what was simulated using sampled data simulation, all

elements were considered ideal, and defined by behavioral models. The latch circuit

8
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Figure 3.3: DSM output spectrum for a 1 kHz sinusoidal input.
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in the quantizer was also designed using a few ideal switches. It took 14 hours CPU

execution time on the same machine to simulate the modulator for 74k clock cycles.

The complete SNR curve vs. input amplitude is shown in Fig. 3.4 for 20 different
input amplitudes. A 4 kHz bandwidth was assumed for SNR calculations. This
SNR curve needs 20 simulations of the Delta-Sigma modulator one for each input
amplitude. Each simulation is for 74k clock cycles. This is an expensive task for
general purpose simulators like SPICE [2,9]. Since sampled data simulation is
a very fast method, it can provide the SNR curve in less than 45 minutes CPU

execution time on a SPARC-10 Sun workstation.

Bo T ] 1 1) ]
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8
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8 8 8
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0
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Figure 3.4: Signal to noise ratio vs. input amplitude for the DSM in Fig. 3.2.
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3.3 Sensitivity of Delta-Sigma Modulators

Sampled data simulation provides a fast and accurate method of calculating the
SNR curve for a Delta-Sigma modulator when all elements are linear except the
comparator. The method allows us to repeat the simulation of the circuit several
times, each time with an increment in one of the element values. The new circuit
obtained from changing one of the element values in the original circuit is called
the perturbed circuit. By simulating several perturbed circuits, we can investigate
the effect of the change in element values on the output magnitude. This type of
analysis is called incremental sensitivity analysis. It is In contrast with differential
sensitivity analysis in which we take the differential of the circuit equations. and
solve it simultaneously with the circuit equations without perturbing the circuit

itself.

As an example of incremental sensitivity, we simulate the circuit in Fig. 3.2 for
different values of G1. The value of Gl is changed form 0.3 mS down to 0.1 mS, and
the simulation is repeated from the beginning for each value. After taking the FFT
of the output, the magnitude of the tone at the input frequency is plotted versus G1
in Fig 3.5. The slope of the curve is the sensitivity, i.e. %%"‘T‘-l. Considering nominal

values of | Voue |= 0.6 and G1 = 33, the normalized sensitivity is about 1.

SlVoutI — G]' a l Vaut I ~ 1
G1 [Voue | OG1

This result can be verified by looking at the modulator circuit in Fig. 3.2.
Since the opamps are ideal, G1 is connected to the virtual ground at one end, and
the input signal at the other. Any change in Gl is converted to a proportional
change in the current through G1, which is integrated by the first integrator. The
current through G1 can be also controlled by the input signal. Therefore, instead
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Figure 3.5: The DSM output magnitude of input tone for different values of G1.

of changing G1, we may change the amplitude of the input signal. With this
interpretation, the normalized sensitivity of the modulator output with respect to
Gl is equivalent to the normalized sensitivity of the output with respect to the
input, which is 1 if the opamps do not saturate and the modulator remains in its

linear operating region.

After understanding that the normalized sensitivity of the output with respect
to Gl is about 1, let us make a very small change in G1. This is equivalent to holding
G1 fixed but making a very small change in the amplitude of the input signal. If
this change is smaller than the resolution of the Delta-Sigma modulator, its output
on average (after taking FFT and considering the magnitude of the signal at the
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input frequency) does not change. This produces the same output (on average) as
in the nominal case. This can be seen in Fig. 3.6 which shows a magnified area of
Fig. 3.5 (assuming that the input magnitude is changed instead of G1). In fact, the
curve in Fig. 3.5 is not a straight line. Some parts have the slope of zero resulting
in a sensitivity of zero, and some other parts have larger slopes. But overall, the

curve has a slope that results in a normalized sensitivity of 1.
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Figure 3.6: The magnified area of the curve in Fig. 3.5 (assuming that the input
magnitude is changed instead of G1).
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3.3.1 Sensitivity Network

Changing the element values in the original circuit and repeating the simulation
of the perturbed circuit from the beginning is not usually the best method for the
sensitivity analysis. Instead, a set of equations can be derived and simultaneously
solved with the original circuit equations. For instance, in chapter 2 we explained
how to establish a sensitivity network from an original network, and solve them in
parallel to get the sensitivity of all nodes with respect to an element value. The
system matrix of the sensitivity network is the same as that of the original network.
It has only a different right-hand side. The question that arises here is “Is there any
possibility to obtain the sensitivity of a Delta-Sigma modulator using the sensitivity
network, without perturbing the original circuit and repeating the simulation from

the beginning?” In this section we try to answer this question.

Due to the presence of the comparator, which is a nonlinear element, the sen-
sitivity analysis of Delta-Sigma modulators can not be performed directly in the
frequency domain. Instead, we do the analysis in the time domain, and finally
transform the results into the frequency domain by means of the FFT.

Taking the differential of (3.2) with respect to element h gives

Ix(nT+T) M Ix(nT) OPinp iwonT
—2n = x(nT)+M h + Real oh e’
ap dy(nT
+ S2y(nT)+ Py yg; ) (3.3)

Since h does not depend on the frequency wo or the time period T, Z-eionT = 0.
Eq.(3.3) can be used to compute the time domain sensitivity in a sampled data
manner. The matrices %l}f-, -8%,}'2, and %P,f‘- are constant, and computed once before
simulation starts. These matrices can be computed simultaneously with M and P

as explained in Appendix-A.
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The only term in (3.3) which needs more investigation is %l, the sensitivity
of the output of the comparator. For more explanations, we distinguish between

unclocked and clocked comparators.

Sensitivity of The Unclocked Comparator

Assume y(t) to be the output of the unclocked comparator in Fig. 3.7. y(t) repre-

sents the sign of ¢(t), and can be written as any one of the following equations

L ifé(t) >0
y(t) = { i
-1 ifp(t) <0
y(t) = sign(4(t))
_ ()
0 = Temn
The derivative of y(t) with respect to ¢(t) becomes

oy(t) _
5o = 2 56(0)

P(t)— ‘ | y(t)

Pt
+1
0 )
-1

Figure 3.7: The comparator and its input-output characteristic.
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which is nonzero only when ¢(t) = 0. This is shown in Fig. 3.8, where the signals
#(t), y(t). and the derivatives of y(t) are plotted versus time. Applying the chain

#(t)

/
R

y(t)
+1
tl t2 t
-1 |
dy(t
at
9 b---i
tl gZ t
2 [Tt
3y(t)
a¢(t)

Figure 3.8: The input and output of the unclocked comparator.

rule gives

9¢(t)

dy(t) _ dy(t) o4(t) 94(t)
oh

ah ~oe@) ok 2o

(3.4)

Eq.(3.4) relates the sensitivity of the output of the comparator to the sensitivity
of its input with respect to h. This equation can be derived also by the limiting
approach: we approximate the characteristic equation of the comparator with a

parametric continuous function, then change the parameter to make the function
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the same as that of the ideal comparator. One approximation is based on an

exponential curve with a time constant of % as the parameter.
y(t) = (1 — X4 u(g(t)) — (1 — 5*®) u(—g(t))

where u(-) denotes the step function. This curve is shown in Fig. 3.9 for K =1
and K = 10.
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Figure 3.9: Exponential approximation of the comparator.

Another approximation is based on a trigonometric function,
2
y(t) = —arctan (K¢(t)) . (3.5)

Fig. 3.10 shows y(t) for two values of K. Taking the differential of (3.5) with respect
to h, and applying the chain rule

dy(t) _ dy(t) ¢(t) _ ( 2K/m ) 04(t)
Oh — 84(t) dh ~ \1+ K24(t)2) Ok °

(3.6)
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Figure 3.10: Trigonometric approximation of the comparator.

When K goes to infinity, the curve in Fig. 3.10 approaches the characteristic of an
ideal comparator. On the other hand, when K goes to infinity

y(t) _ ( 2K/ ) ap(t) | 0 ifs(t) #0
T Koo \1+ K24(t)2) OR = ifg(t) = 0

0

lim

K=o 0Oh (3.7)

8¢(t)

where the sensitivity of the input of the comparator =<3~ is assumed to be finite.

As K goes to infinity, the magnitude of gf;ﬁ)) at ¢(t) = 0 goes to infinity too (This

is shown in Fig. 3.11 for K = 1 and K = 10). But the area under the curve is

always 2 :

dy(t) [+ 2K/=n _
The acea of 57+ = [_ i (l_fl?zcﬁ_(i)—’) dé = arctan(K¢(t))

Therefore, (3.7) can be written as

3y(t)

K—boo

= 26(s(en 22
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Figure 3.11: Differential of the trigonometric approximation of the comparator.

Sensitivity of The Clocked Comparator

The output of the clocked comparator changes only at the rising (or falling) edge of
the clock and remains at the same level until the next edge. As shown in Fig. 3.12,
the output changes at discrete instants of time, nT, and only when ¢(nT) has a
different polarity compared to ¢(rT —~ T'). If the input of the comparator crosses

zero several times but returns back to the same polarity at the edge of the clock,

dy(nT)
3¢4(nT)

Fig. 3.12 at instants (rT — 2T')and (nT — T'). The output changes only if the input

the output of the comparator does not change, and = 0. This is shown in

crosses zero (at any arbitrary time between the two time points) and also changes
its polarity at the next edge of the clock. This happens at ¢ = nT in Fig. 3.12.
Note that even though the signal ¢(nT') crosses zero at an arbitrary time between
(nT —T) and (nT), the output of the comparator changes exactly at ¢t =nT.

For the clocked comparator, the sensitivity 9%',"—1')- does not contain any Dirac
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Figure 3.12: The input and output of the clocked comparator.

impulses. It is either zero or a pulse with the width of T' and a limited amplitude.
This is illustrated on Fig. 3.13. Assume we change one of the circuit elements
to make a small change in the input of the comparator. This perturbed input is
called @pere(nT). The corresponding output is called ypere(nT'). Define the following

mmcrements

Ag(nT) = &(nT)— Ppere(nT)
Ay(nT) = y(nT) — Ypere(nT)

If both ¢(t) and ¢pere(t) have the same polarity, the output of the comparator does

not change, and

Ay(nT) =0
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Figure 3.13: The change in the output of the clocked comparator due to the change

in its input.

The output changes only if ¢(£) and ¢p.re(t) have different polarities when the edge
of the clock comes. This happens at ¢ = »nT in Fig.3.13. In this case, Ay(nT)

becomes 2 (or -2), and remains at the same level until the next edge of the clock.

Ay(nT) = £2

Hence, the terms Ay(nT), 2:((:%, and A;g;:r) are no longer Dirac impulses. They

are pulses with the width of T, and a limited amplitude. In the case of the clocked
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comparator, Eq.(3.4) becomes approximately

dy(rT) _ Ay(nT) _ Ay(nT) Aé(nT)
oh AR Ad(nT) Ak

By(nT) _ { 2240T) if 4(nT) changes polarity at ¢ = nT

(38)

oh 0 otherwise

We will discuss the approximations made in (3.8) in the next section. Substituting

(3.8) in (3.3) gives

ox(nT+T) _ M ox(nT) OPinp iwonT
3 = h x(»T)+M oh + Real 5 —e
BP dp(nT
+ SEy(aT) + 2P, ¢(nT) (3.9)
oh
where ¢(nT) is one of the elements in the vector x(nT'), and M in the vector

ax("T) . The last term in (3.9) is nonzero only if ¢(nT') changes polarity at ¢t = nT.
This term exists only for one period, then becomes zero. Eq.(3.9) defines the
sensttivity network for the second-order Delta-Sigma modulator in Fig. 3.2. The
same equation can be derived for any other types/configurations of DSM. After
generating the time domain sensitivity by (3.9), we take the FFT of the data

points, and measure the magnitude of the component at the input frequency.

3.3.2 Approximations

There are two approximations in our derivations. The first approximation is in the
condition specified in (3.8). It says if ¢(nt) crosses zero, a pulse with the magnitude
of a_%(_;:_:l is applied to the sensitivity network. This is not always true. There are
some situations that even ¢(nt) crosses zero but no Ay(nT) is generated, and no
stimulation is applied to the sensitivity network. It happens when the sensitivity

of the input to the comparator, %(,?1, 1s zero or a very small number. In this case,
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the term ﬂghﬂl must be zero, but we consider it to be a small nonzero value of
294'%3‘,‘11. We couldn’t exclude these exemptions from the condition in (3.8), because
it is not known how small ‘—9%%‘1 should be in order no change is produced at the

output of the comparator.

The second approximation is in ignoring the effect of A¢(nT) in (3.8). This
effect can be considered by multiplying % by a factor A :

dy(nT) . .04(nT)
ah ~ 2 " on

We did not consider this factor because we do not have any estimate about the

amount of perturbation needed in ¢(nT) to produce a change in y(nT).

More investigations of these approximations, and the methods to improve them

are left for future research.

3.3.3 Example

The second-order Delta-Sigma modulator of Fig. 3.2 was simulated for its sensitiv-
ity. First, to get a feeling about the circuit sensitivity, we calculated the incremental
sensitivity by perturbing the element values by 1%, and simulating the circuit sev-
eral times for each new element value. The second column in Table-3.1 shows the
magnitude of this incremental sensitivity. Next, we computed the differential sen-
sitivity using the sensitivity network in (3.9). The third column in Table-3.1 shows
the magnitude of the results.

Although the differential sensitivity is not always close to the incremental one,
which is due to the approximations made in (3.8), it still conveys useful information
about the circuit. For instance, the sensitivity of the modulator with respect to

G3 and G4 is much less than the sensitivity with respect to G1 and G2. This
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information is provided without the excessive computational cost associated with

the incremental sensitivity.

Element | [Incremental Sensitivity| | [Differential Seusitivity|
Gl 1.02 1.00
G2 1.54 1.00
G3 0.005 0.06 i
G4 0.003 0.05

Table 3.1: Sensitivities of the second-order continnous-time DSM (The incremen-
tal sensitivity was calculated by perturbing the element values by 1%, and the
differential sensitivity was calculated using (3.9)).



Chapter 4

Group Delay and Group Delay
Sensitivity of Periodically

Switched Linear Networks

Group delay (sometimes called envelope delay) is an important measure used in the
design of precision filters. If a band-limited signal is passed through a filter having
a flat amplitude response over the bandwidth of that signal, one might expect the
signal to be passed without distortion; however, this is not the case unless the
filter also has a linear phase response over the signal bandwidth. In this case, all
the components of the input signal in the passband are magnified with the same

amplification factor, and delayed by the same amount of time.

In filter design, the magnitude response requirements are normally considered,
and the corresponding phase response is ignored. This is because the reduction of
antialiasing by stopband attenuation is the first issue, and phase information can

be corrected later. For some applications, such as speech transmission, this con-

61
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sideration is sufficient as the human ear is insensitive to the phase shift. For video
applications, however, the distortion caused by system nonlinear phase response is
unacceptable [30]. As a result, the subjects of “phase equalization” and “maximally
flat group delay” are considered in several filter design texts [30~33]. The process
of equalization consists of building up the passband delay of a filter to its peak level
by the addition of all-pass networks. Linearizing the phase reduces the impulse and

step response overshoots, and makes them more symmetric [33].

This chapter presents a fast and accurate method for the computation of group
delay and the group delay sensitivity of periodically switched linear networks (PSLN).
These networks consist of linear resistors, capacitors, inductors, independent sources,
all four types of dependent sources, and frequency dependent amplifiers. Switches
are modeled by the resistors that have arbitrary values (including zero and infin-
ity) when they are closed or open. Examples of these networks include switched-
capacitor (SC), switched-current (SI), and, frequency modulator and demodulator
circuits. The method is accurate because no approximation is made, and efficient
because some parts of the computations are performed only once, in a pre-processing
step before simulation starts. The method can be used for analysis of SC filters
where the resistances of the switches, or frequency-dependence and nonideal char-
acteristics of the amplifiers can not be neglected. The other application is in the
design of SI filters as long as their MOS transistors are linearized around the DC

operating points.

Analysis and simulation of SC circuits, in time and frequency domains, are
already well established, and we refer the interested reader to [34-42]. Several
simulators were produced for simulation of SC circuits both at the behavioral and
circuit levels. The circuit level SC simulators mainly assume that the opamps and

the switches are ideal. The only linear elements allowed in the circuits are capac-
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itors and voltage-controlled voltage sources. To consider nonideal switches, and
nonideal opamps with offset voltages, input and output impedances, and frequency
dependent open-loop gains, the simulator should be able to accept all types of de-
pendent and independent sources as well as resistors. Some other simulators were
therefore introduced in [43-45] for simulation of general linear switched networks.
However, they do not provide the group delay and group delay sensitivity.

In this chapter we present an efficient method for the calculation of group delay
in PSLN containing all types of linear elements. Furthermore, by computing the
group delay sensitivity, we examine how a change in the element value k influences
the group delay. This study can be utilized for the computerized optimization of

switched capacitor and switched current filters.

A brief review of the frequency domain analysis of a PSLN is given in section 1.
Section 2 to 5 present my contributions to this topic. I explain the computation of
group delay in section 2, its sensitivity in section 3, and the computer algorithm in
section 4. In case of sinusoidal inputs, a more efficient method of computing the
vectors P and g—g is presented in section 5. A program was written in MATLAB
based on the theories developed in this chapter. Appendix-B shows the detailed

algorithm and intermediate matrix manipulations used in the program.

4.1 Frequency Domain Analysis of Periodically

Switched Linear Networks

The frequency domain analysis of PSLN is explained in [3,43]. We review it here

to provide a proper background for the derivations presented in the next sections.

General switched networks may have more than two phases. We use N for the
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Figure 4.1: Timing definitions for an N-phase switched network.

total number of phases, and the subscript k& for the kth phase. The various time
slots, and related definitions are shown in Fig. 4.1. It is also shown that

k
=Y.

=1

In addition, we define
gg = 0, ON = T

where T is the switching period. For the kth phase the network is described by the

system of differential equations
d
Gkvk(t) + Ckzt-vk(t) = gkw(t) (4-1)

where Gj, is the conductance matrix, C; the capacitance matrix, and vi(t) the
unknown nodal vector in phase k. g is a vector defining the connection of the input

w(t) to the circuit. This equation can be decomposed into two sets of equations as
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explained in {43]: one set of equations is valid inside the phase where switching does
not occur, and the other set is valid across the switching instant. The following is
a brief description of these equations.

1 - Discrete-time equations, valid only at the switching instants,
vi(nT + o) = Mivi—i(nT +0py) + Pkejwo(nr+"“‘), k=1,2,...,N (4.2)

where the input signal is assumed to be a complex exponential et v; is the
nodal vector in phase k, and the matrices M and P, are obtained by integration,
as explained in chapter 2. My is a real matrix that involves the zero input response
of the circuit, and is independent of the input signal frequency wqy. Py is the zero
state response of the network in the kth phase, and is a complex vector which
depends on the input signal. The numerical computations of these matrices are
discussed in Appendix-A. Eq.(4.2) relates the nodal vector in phase k to the nodal
vector in the previous phase £ — 1, and to the input. W;: also define

Vo =VxN
2 - Continuous-time equations, valid inside each phase,
d
G.vi(t) + Ck ka(t) = grw(t)ée(t) + Ic — Fc (4.3)

where Ic represents the initial conditions, and F¢ the final conditions in each
phase [45]. Initial conditions in phase k are determined by the final nodal voltages
in the previous phase. Matrix B transforms the final conditions of the previous

phase into initial conditions of the next phase as
Ic = Bevi—1(nT + 04—1) 6(t — nT — 0r—y)

The final conditions in phase &k are given by the nodal voltages at the end of the
phase

Fc = Civi(nT + 03) 6(t — nT — o)
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Figure 4.2: Definition of the kth window function & ().

where C;. is the matrix in (4.1). The function &(t), called the window function,
is periodic with the same period T. The kth window function &.(¢) is sketched in
Fig.4.2. It is nonzero only in the interval from (nT + 0¢-1) to (nT + o), and its
height is unity. This function ensures that each system equation is valid in only
one interval.

For frequency domain analysis, (4.2) and (4.3) must be expressed by their
Fourier transforms. We first apply the Fourier transform to (4.2),

Fve(nT +0r)] = &“*V,, k=12,....N

where the tilde over the variable denotes its Fourier transform. The Fourier trans-
form of the windowed input signal is

400
F [ejwo(nT-f-dk_[)] — ejwod'k—lz% E J(w —wg — nw').

n=—co

The infinite sums indicate that the result is valid only at frequencies w = wg + nw,.
Keeping this in mind, we drop the infinite sums and consider all frequency variables
as w = wg. The coefficient 27 generated by the Fourier transform is also dropped.

The Fourier transform of (4.2) therefore becomes

e-"“"’*V,, — Wt Mka_l = %ejw"“l Pe, £k=1,2,...,N (4.4)
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The equations for all phases can be written in matrix form

1ledvot 0 0 s —M1 Vl P,
-Mzej""‘ 1eiwo2 1] .o 0 Vz Pl P,
. . — 1 ]
0 —Mge?wo2  1elwos .o 0 Vs = i,‘ etV P,
0 0 0 —Mpyeivon-t 1T Vi eJwIN-1P

where 1 denotes the identity matrix. This system of equations provides V., the
frequency response of the discrete-time system. We rewrite (4.5) with the following

notation for future reference
RV,=W (4.6)

where R denotes the system matrix, Vp the unknown vector, and W the right-
hand side of (4.5).
Next, we apply Fourier transform to (4.3). Assuming a continuous exponential

signal as the input, w(t) = e“ot
F [w(t)] = W(w) = 278(w — wo). (4.7)

The Fourier transform of the product of a periodic function §.(t) and an arbitrary
function w(t) is the convolution of the respective transforms:

Flo@&®)] = o [ WS- u)d

2 Jco

Q0 e
- 511; [ ’; W (u)2n Lz O nd(w — nw,) — u]] du

=—00

= E:o Ok nW(w — nw,) (4.8)

n=-=00

where

Wy = —

(4.5)
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is the switching frequency, and 6y ,, are the Fourier series coefficients of the window

function & (t)

b — L/TE (£)e—Tmetds = * for n =0 (baseband) (4.9)
kn = T Jo k - N N T ind Al : ’
e * T otherwise

Substituting (4.7) in (4.8) gives

F [w(t)ée(t)] = 2x ?_:o Or nd(w — wo — nw,).

n=-—o0
As before, the infinite sums and the coefficient 27 are dropped, and all frequency

variables are considered as w = wy. We also denote Fourier transforms of the final

conditions by Ve:
Vi = F[vi(nT + or 8(t —nT — o] .
The Fourier transform of (4.3) therefore becomes
(G +jwCt) Vi = gibkn +BiVio —CiVi, k=1,2,...,N

The equation for all phases in matrix form is

- - - -

G1 + jw01 0 L 0 V1 g101 + B),VN - Clvl
0 Gz + ij2 e 0 V2 _ g202 + Bzvl - Csz
i 0 0 -+ Gy +jwCy | | VN | | gnOn + ByVwn_1 —CyVy ]
(4.10)
or

RVep=W (4.11)
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The solution of (4.10) provides the frequency domain nodal voltages in each phase.

The complete nodal vector is the summation of the vectors corresponding to each

phase:

4.2 Group delay

Assume that the output of the filter is related to the nodal vector V by the selector

vector d
$=d* V. (4.12)
#(jw) is a complex variable with magnitude | ¢(jw) | and phase p(w)
$(jw) =| $(jw) | ), (4.13)

and its group delay 7(w) is defined as

dp(w)
Ow

T(w) = —

Taking the logarithm of (4.13) and differentiating with respect to w

19¢ _ 10|41, -dew)
60w 4| 0w 1 Bw

the group delay can be defined also as

- m |12
T(w) = —Im [Z 30| (4.14)

We therefore need to compute the derivatives of the frequency domain nodal vec-

tors V. with respect to frequency w. First, differentiate (4.4) with respect to w to
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obtain 2¥k
. o~ - V > g :, av
jore Vi + e Ve _ jOE_ 1T MV — €4 M —= =
Ow w
1 - 1 ., . OP
FITe1€™ T Py o+ e a_;’ k=1,2,....N (4.15)

Since the vectors Pr depend on the input signal, their derivatives with respect to
w are not zero. An efficient method of numerical calculation of % is explained in

Section 4.5. In matrix form, (4.15) becomes

1eieen 0 0 e oMy | o
_].\/[2 ej“" 1eiwor 0 o 0 a_av}
0 “M;;Cj‘""2 lej‘"o’ .ee 0 aa_j:'; —
0 0 0 —MNej"’"-'N-I leij 8_5‘;1
- —joy edwa Vl ] [ %E_:‘J. 1
jo edwo sz L — jazejmgvz . jorein Py + edwen %%2
jo.zejwoz Msvz - ja':!ej“cs 73 + T jdzejwagps + ejw” %
ja-N_IejwtrN—l MNVN—I — jTe’""TVN jo,N_lejwa'N-l Py + efwon-t 3;;& ]

(4.16)

This is the same system as (4.5), only with a different right-hand side. The com-
ponents V. at the right-hand side are provided by the solution of (4.5).

We next differentiate (4.10) with respect to w to obtain %%‘L. Since 8y, depends only
on the switching frequency w,, its derivative with respect to the input frequency

w = wy IS zero.

(G + jwCr) Ne _ Bk%—_l —Ck%—jckvk, k=1,...,N (4.17)
Ow Ow ow
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This is also the same system as (4.10), only with a different right-hand side. The

components V. and % are provided by the solutions of (4.10) and (4.16), re-

spectively. The solution of (4.17) provides the derivatives é;—:f required for the

computation of group delay. The algorithm for the group delay calculation is:

1. Prepare the matrices Mg, P, and éa%k in each phase, k =1,2...,N.

2. Solve (4.5) to obtain Vy, the discrete-time nodal vector in the frequency

domain.

3. Solve (4.10) to obtain Vi, the continuous-time nodal vector in the frequency

domain.
4. Add all V¢ to get the complete nodal vector V.

5. Using the solution of (4.5) construct the right-hand side of (4.16), and solve
it to obtain 2V,

6. Using the solutions of (4.10) and (4.16) construct the right-hand side of (4.17),
and solve it to obtain %—‘:}.

7. Add all %ﬁ to get the complete nodal vector %% =i, %—‘:f.

8. Specify the selector vector d which determines the output of interest in (4.12),
and use (4.14) to calculate the output group delay.

4.2.1 Example

The above algorithm is applied on the simple circuit in Fig.4.3. Since the switches
S1 and S2 are alternatively ON, the circuit is equivalent to an un-switched RC
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Figure 4.3: Switched RC circuit.

circuit whose group delay is 7(w) = 5r. This allows us to verify the results
produced by the algorithm. The number of phases is two, & = 1,2. They are
equally spaced, so 1, = T, = %. If we are considering only the baseband, n = 0,
and 6y, = % = . Define W = g,6, 0 = 820, = 0,0, 0, 1]*. Switches are modeled
by the conductances g,; and g,, with zero values when they are open, and large

values (10°) when closed. The system MNA formulation is

gs1 + gs2 ~gst — 9s2 0 1 i 0

Y81 — Ys s + £ + G —G 0 V 0
Gs1 — Gs2 Gs1 T Gs2 2 - (4.18)

0 -G G+Cs 0 V3 0

| 1 0 0 0] [ e | ] % ]
The discrete-time equation of (4.5) becomes
1072 _M \'Z P
. ol DAl - B (4.19)
—M,eiwT/2 1T V. T i T/2p,

Since we consider the switches as conductances, the circuit topology is the same

in both phases, and B = Ci, & = 1,2. The continuous-time equation of (4.10)
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becomes

G jwC 0
l: 1+ Jwly (4.20)

0 G: + jwC,

Vi{ | W+Ci(Va-Vy)
\L W+C; (Vi -V,)
The total vector V is equal to V; + V,. To obtain %, we first solve the following

system of equation obtained from (4.16)

) , - : . _ | (4.21)
—M,eT/? 1eiT | | 22 iT/2eT*M, —15TeT || V,

and consider its solution in the following equations obtained from (4.17)

G, +jwC, 0 %—‘:f [ -jC1 0 A4
0 G, + JwC, %_‘:’z i 0 —*jCz V.,
C, (- 4%)
+ oWl (422)
C: (% -%)

The total vector 2Y is equal to Z¥L + 2¥2_ The output group delay is calculated by

1 6V(3)]
V3) 6w |’

r(w) = am[ (4.23)

Assuming unit values for the elements in Fig. 4.3, and T' = 0.01, the group delay
is computed as shown in Fig. 4.4. The curve is in agreement with the analytical

expression of the group delay for this simple RC circuit, 7(w) = ;}ﬁ

4.3 Group Delay Sensitivity

In this section, we see how the change in the element value h influences the group
delay. This study can be utilized in the computerized optimization of switched-
capacitor and switched-current filters. The group delay sensitivity is calculated by
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Figure 4.4: Group delay of the output in Fig. 4.3

differentiating (4.14) with respect to element h

Or(w) _ 10409 1 9%¢
on ~m [q52 how  $Ohow (4.24)
Differentiating (4.6) with respect to w and h, separately, gives
=dVp  ORs W
T T Ta e )
= JdVp JRs OW
Boh = "o "t on (4.26)

Differentiate either (4.25) with respect to h or (4.26) with respect to w to obtain

=0Vp ORIV, RS ORIV, &W
Ohiw = Ok 9o hdw'’ 9w Oh T dhiw (4.27)

The discrete-time equations (4.25) to (4.27) have the same system matrix R, and

different right-hand sides. To generate the terms at the right-hand sides, we need

to precompute Py, %%‘, Qa%l, and g—g—: vectors, and the matrix M;. with the same
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derivatives. Refer to Section 4.5 and also Appendix-A for the numerical com-
putations of these matrices. Solutions of the discrete-time equations are used to
construct the continuous-time equations. Considering the continuous-time equation

(4.11), and differentiating it with respect to w and h

aVp R oW
R?”— = —5-Ve+ aa“’ (4.28)
Vp R w
R = V" on (4.29)
9*Vp ORVe O°R ORIVp W
- _ _ Vp — :
R Show %% 90 ohoo'® 9w ok T oRee (30
where
[ B, 3_‘&1 C, g"a ]
oW _ | BB " - C%52
ow ’
| B - ontf |
BV -5% | [ BgE-cg ]
oW WY, ~ 22V, B,2Y _ C,2%
= = + L)
oh
| BVra %5V | | BT - Cu g |
| RE-RE | | BE-cg
ow | meogak || Bgk-cgk
Ohow ’
| BuVoy _2Cxo¥y | | Byfvas - Cy L |

are provided by the solutions of (4.25) to (4.27). The complete vectors of nodal volt-
ages and their derivatives are the summation of the vectors corresponding to each
phase. The particular components of these vectors, corresponding to the output

node of interest, are substituted into (4.24) to obtain the group delay sensitivity.
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4.4 The Algorithm

To illustrate the intermediate steps, and to organize the method for the purpose of
computer programming, we provide here the algorithm of the method. The reader
is referred to Appendix-B for the detailed structures of the matrices. A program,
called GRPSN, was written in MATLAB based on this algorithm. It accepts all
types of periodically switched linear networks. The program was tested on several

switched networks. One example is given at the end of this section.
Part 1 : Pre-Processing

We apply the one-Graph modified nodal analysis to formulate the circuit equations.
The switches are modeled as resistors with a small resistance when they are closed
and infinite resistance when open. The topology of the circuit therefore does not
change during the different phases, and the matrices B become equal to C. The
number of phases is denoted by N.

1-1- Prepare (G;,C;),(G2,C,),-..,(Gx,Cy), where the matrices G, and C,.
construct the system matrix Ry during phase %, i.e. R = G + s Cg.

. 3G, 8C, (ag, acg) (f'ﬁx M)
12 Pl’epal'e(ah, Sh 3 8h * Bh L ] 6h * Oh

1-3- Prepare (Plv Ml) ’ (P2, MZ) 1res (PN1 MN)

Q

_ 8P, oM, ( P; oMy Py My
14—Prepare(ah,ah), N &

Q.
¥

~
o]
-
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1-5- Prepare (%‘:’L) , (%.f:’z) e, (%’wm)
1-6- Prepare (ahau) (g.:.l.g“z') e, (?Tgwx)

Part 2 : Solution of the Discrete-Time Equations

2-1- Construct the following matrices related to the Discrete-Time set of equations:

R R 2R W W W
R W~ 3w’ Oh° Dhdw® dw'® Oh ® hdw

2-2- Compute
Ve=R1'W (4.31)

2-3- Using Vp from (4.31), compute

Ve _ R oW

I 1 S T 1
e R o Ve+R Do (4-32)
2-4- Using Vp from (4.31), compute
Ve = Rs = ,0W
Bh - R G VrtRG- (4.33)
2-5- Using Ve, —23 and -37%3 obtained in the previous steps, compute
#Vp - [ RV, R ORIV, W
PR & [*Eii 3o Ohdw " " 9w oh T Bhdw (4:34)

Part 3 : Solution of the Continuous-Time Equations

3-1- Construct the following matrices related to the Continuous-Time set of

equations. Use the results of (4.31) to (4.34) to construct these matrices:

R R O9’R AW W W
R W’ k' Bw®'® Bhdw’® Oh' Ow'® Ohdw




CHAPTER 4. GROUP DELAY AND ITS SENSITIVITY IN PSLN 78

3-2- Compute

Ve=R'W (4.35)

3-3- Using Vp from (4.35), compute
aVp JR oW

gve _ _p-191 ~10W ]
. R 7o Ve +R . (4.36)
3-4- Using Vp from (4.35), compute
advp  _ _,0R L OW
T = R G VetRTG (4:37)
3-5- Using Vp, %—:}’—, and %—’{- obtained in the previous equations, compute
9*Vp 1| ORIV &R IR OVp W
how = | Ok G0 Bhow'®  Bw Oh T Ghdw (4.38)

Part 4 : Computing the Group Delay, and Group Delay Sensitivity

The complete vector of nodal voltages is the summation of the vectors corresponding

to each phase:

N
V=3V
b=1
oV _ ¥ ov,
oh =i Oh
av N oV,
Erliall Ok
*v X oav,
Bhdw = Ohiw

Assume that the output is related to the vector V by the selector vector d, i.e.
¢ = d* V). The group delay is calculated by (4.14), and the group delay sensitivity
by (4.24).
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4.4.1 Example

The standard two-phase switched-capacitor band-pass filter {39], shown in Fig. 4.5,
is simulated by GRPSN. The switches are modeled as conductances with large
values when they are closed (106S) and zero values when open. The element values
are chosen to provide a center frequency of 1kHz, and quality factor of @ = 30.
The switching frequency is 20kHz, with equal phases. A 100 resistor is connected
to the output as the load. The filter’s group delay and its sensitivity with respect
to Cy = InF were computed as shown in Fig. 4.6, and Fig.4.7. The group delay
is not flat inside the pass band. Its normalized sensitivity is around -1, suggesting

that increasing C4 reduces the group delay, and makes it more flat. Considering

C, "—'”_ -

' Jﬁ[?}ﬁh}l—b P

L
1

Figure 4.5: A standard SC band-pass filter with f, = 1kHz, (C, = 10nF,C, =
C3 = 9.781nF,C, = InF,Cpy = Crp = 31.25nF, R = 100Q2).
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Figure 4.6: Group delay of the output in Fig. 4.5.
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Figure 4.7: Group delay sensitivity of the output in Fig. 4.5 with respect to Cj.
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Cs = 1.5nF, we computed the group delay and plotted it in Fig. 4.6. The modified
circuit has flatter group delay. This example indicates that by coupling GRPSN

with an optimizer, an automatic tool is obtained for the design of distortionless

filters.
In the next example, we consider some of the nonideal effects of the elements

in Fig. 4.5. The switches are replaced by the resistors with the value of 1kQ when

closed, and 1M when open. The opamp is nonideal with the open-loop gain of
A(s) = %
(1+2)
where Ag = 1000 %, and wp = 100 Hz. The circuit group delay and its sensitivity

with respect to Cy were computed as shown in Fig. 4.8, and Fig.4.9.

Group Delay [mas}
wn N
L)

o
)

'
'
}
1
[/
)
f
}
b
i
!
1
i
4
!
i
1
I
1
!

n
-

[2]
T

\ N W

1 .

% 0 w0 %0 w0 10 1oo 1150 1200

Input Frequency [Hz]
Figure 4.8: Group delay of the output in Fig. 4.5 with ideal opamp (infinite gain-
bandwidth) and switches (Roxy = 0, Rorr = 00) in compare to nonideal opamp (gain-

bandwidth=10%) and switches (Roy = 1kQ, Rorr = 1M Q).
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This simulation demonstrates GRPSN’s ability in simulating switched-capacitor
networks where the resistances of the switches, or frequency-dependence of the
amplifiers can not be neglected. GRPSN also simulates the switched-current circuits
as long as the MOS transistors are modeled by linear components such as dependent

sources, capacitors, and resistors.

4.5 Computation of P and %5 with Sinusoidal In-

puts

The numerical computations of P, M, and their derivatives with respect to h are

explained in Appendix-A. In this section, we compute the derivatives of P and

=

[od
[
¥

-

Normalized Sensitivity w.r\, C4
=]

&

&
N

&

800 850 900 90 1000 1050 1100 1150 1200
Input Frequency [Hz]

Figure 4.9: Group delay sensitivity of the output in Fig. 4.5 with ideal opamp (in-
finite gain-bandwidth) and switches (Roxy = 0,RorFr = o0) in compare to nonideal
opamp (gain-bandwidth=10°) and switches (Rox = 1£Q, Rorr = LMQ).
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M with respect to the input frequency w. Assume that the input is a complex
exponential, w(t) = e’*. The derivative of M with respect to w is zero because M

relates to the zero-input response of the network and does not depend on the input

frequency.
M =0 (4.39)
Bw
To compute P we note that W(s) = . Jw
oP 4 ., 1 Y AU |
— = = —_— 4
®_ 3. (R s_,-w) Y- (R )| w0
Similarly, it can be verified that
2P, ) | S |
Ohdw £ (—R ahR (s—jw))|s=1T (4.41)
M
OhOw 0 (4.42)

The Laplace inversions incorporated in (4.40) and (4.41) can be simultaneously
performed using the stepping algorithm and numerical Laplace inversion method

explained in Appendix-A.

Normally, when the frequency of the input signal changes. a new integration
must be performed to recompute vector P and its derivatives. However, for si-
nusoidael inputs, once the vectors P, gf:, g}:, and — are calculated at one input
frequency, they can be computed at the other frequencles without any further inte-
gration. To explain this, we start from the theory developed in [46] and extend it to
our application. In [46] an efficient method for the time domain solution of linear
circuits to sinusoidal inputs is given. It is proved that if the zero-state response of

the linear circuit to a sinusoidal input with the frequency of w, is known as x(t),
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then the zero-state response of the circuit at another frequency w; can be computed

¥(t) = (G + jwiC) ™ [(G + jwi C) x(t) + de’** — de?| (4.43)

where d is a constant vector related to the input node, and w;, (t = 2,3,...,m) are
the different input frequencies at which the response is needed. We extend this idea
to efficiently compute the vector P and its derivatives at different input frequencies.

Consider the following notation
Ri=G+jwC :=12,....m
and rewrite (4.43) as
y(t) = R [Ryx(t) + deT —de™T|  i=2,3,...,m (4.44)
Since the zero-state response of the circuit at ¢ = T is equivalent to the vector P,
we write
x(T)=P (4.45)
y(T)=P; (4.46)

Consider ¢t = T, and substitute (4.45) and (4.46) in (4.44)
P; =R;' [R,P; +de™T —de™T|  i=23,...,m (4.47)

Eq.(4.47) provides an explicit relation between P; and P;, (2 = 2,...,m). It means
that if we prepare P; by integration, there is no need for more integration to
compute Py, P, ..., Py. Each P; can be calculated by the solution of (4.47).
Taking the derivative of (4.47) with respect to the parameter h, and the input
frequency w; gives
R, 0P, OR;

oP;
= R |S2P, + R, L

a—h - i oh oh _WP; 1=23,...,m (4.48)
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aP; - o N
e = iR [~CP: +d T 7] i=23,...,m (449)
#P; o, [.8C, ORGP . 0P ._
Phaa; ~ T [’ okt ok ow t C:—ah] i=2,3,...,m (4.50)

Again, based on (4.48) to (4.50), if we know the sensitivity vectors at the input
frequency w,, they can be computed at other frequencies w; by the solution of some

linear systems, and without any further integration.



Chapter 5

Switched-Current Circuits

Switched-Current (SI) [47,48] is a relatively new analog sampled-data technique
that promises to overcome the problems associated with Switched-Capacitor (SC)
circuits. SI circuits use MOSFET gate capacitance as the storage element to provide
analog memory capability. They do not require linear floating capacitors, and
can be integrated into a standard digital CMOS process. This enables digital IC
manufacturers to implement both digital and analog circuits on the same chip with
the existing low-cost CMOS processes. The fact that SI circuits can be designed
exclusively with MOS transistors makes the chip area 30% less than that of similar

SC implementation [49].

SI circuits can operate with low power supply because of the small voltage swings
associated with the low-impedance nodes. Another key performance feature of SI
circuits is their inherent wide bandwidth capability. Since additional capacitors and
high impedance nodes do not exist in an SI circuit, its bandwidth can approach the
MOSFET transition frequency, fr. An SI bandpass Delta-Sigma modulator which
operates at 10 MHz with a clock frequency of 40 MHz was reported in [50].

86
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A brief review of SI circuits is given in section 1. While studying the switched-
current technique, I proposed some nonfiltering applications such as a current-
controlled oscillator, a modulator, a rectifier, and a Delta-Sigma modulator. Sec-
tion 2 presents the building blocks of these applications [51]. The circuit level im-
plementation of these building blocks were performed with the help of the current-
mode circuits proposed in [52-57]. These circuits are explained in Appendix-C.

5.1 A Review of Switched-Current Circuits

This section presents the concepts of SI circuits. First, current-mirror and current
track-and-hold are explained as the basic building blocks of SI circuits. Next, a
brief survey of SI filtering applications is given.

5.1.1 Current Mirror

The current mirror circuit in Fig.5.1 consists of two transistors M; and M, with
the aspect ratios of V{:- and %sz, respectively. L and W are the transistor effective

length and width. Define
Wa/L,
Wi/L,

There are two biasing current sources in Fig.5.1, I and KI, and the transistor

K= (5-1)

M, is diode connected. M; and M, are biased in the saturation region (Vgs > Vr
and Vps > (Vgs —Vr)). Neglecting channel-length modulation effects, the following

relationship is considered between the drain current ipgs, and the gate-source voltage

vgs-
) K'W
ips = ?-L—(vcs - Vr)3, (5.2)

where K’ is the device transconductance. If we apply two small-signal currents z;
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' ™

Vbop

;. I CP KI
1

iout = -K(il + iz)
-

173

tpsi=I+1 +1i2

M,

:’ I_f": KI liusz=K(I+i1+iz)
M,
o

Vss

Figure 5.1: A simple current mirror.

and ¢, at the input, the current flowing into the drain of M; is the sum of the bias
and signal currents :

tps1 = [ +14; + 1. (5.3)

This current generates a corresponding voltage on the gate-source capacitance of
M, . Since the gates and sources of M; and M, are connected to each other, vgs; =
vgs2, and because of the different aspect ratios of the transistors, a current equal

to K tpg; will flow into the drain of M, :

ips: = Kipsy = K(I + 11 + 12). (5.4)
Applying KCL at the drain of M, :

tout = KI —ipsy = —K (i1 +13). (5.5)

The output of the current mirror, Z,u, is an inverted sum of the input currents

scaled by a factor of K. Thus, the current mirror performs the operations of signal
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inversion, scaling and summation. In this basic building block, the summation
of input signals is accomplished without requiring any additional circuitry, but
generation of more than one output current requires adding branches identical to

the M; branch. These two characteristics are the dual of the voltage-mode system.

5.1.2 Current Track-and-Hold Circuit

The current track-and-hold (T/H) or memory circuit [47] is constructed by placing
a switch Ms between the gates of the mirror transistors M, and M, (Fig. 5.2).
When ON, the switch shorts the gates of the two mirror transistors. In this mode,
the circuit functions similarly to the current mirror, and the output tracks the
input signal (track mode). When the switch is turned off, the gates of M; and
M, are disconnected. The gate voltage of M), corresponding to the value of the
r A
Voo

bd

tin Cv ' CLK |_—
——— _L c

iDL

Figure 5.2: Current track-and-hold circuit.
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input current at the instant the switch is opened, is sampled onto C,,2. While the
switch is open, vgss remains constant; consequently, the output current is held at
a constant value corresponding to the input current at the instant when the switch
was opened (hold mode). The output is expressed by the following discrete-time

equation
. . T
laut(n) =~K tin("'T - E)v (5'6)

where T is the clock period, and we assumed that the clock has a 50% duty cycle.
Taking the z transform of (5.6), the expression for the output current is:

Lwt(2) = —Kz7'? [,(2). (5.7)

The dynamic current mirror or current copier [58,59] is another current memory
circuit (Fig. 5.3). This circuit is controlled by two-phase non-overlapping clocks.
When ¢, is active and ¢, is inactive, M; is diode-connected and vgs; tracks the
total input current I; +1;,. To configure the circuit as a hold amplifier, ¢, is active
and ¢, is inactive. The voltage corresponding to the input current, just before S;
is opened, is held on C,, and, with S, closed, the held signal current is sensed
at the output. In a dynamic current mirror, there are no errors due to transistor
mismatches (a difficulty associated with the current T /H), but only one copy of the
output current is produced. In addition, while the current T/H performs mirroring

in space, the dynamic current mirror performs the mirroring in time.

5.1.3 Switched-Current Filters

The most common application of switched-current circuits, like switched-capacitor

ones, is frequency domain filtering. Some design principles, building blocks, and
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e ™

VSS

- J

Figure 5.3: Dynamic current mirror (current copier).

actual circuits of such filters have been proposed [60-66]. Since the SI integrator
is shown to be directly analogous to the SC integrator, all the synthesis techniques
developed for the design of SC filters can be applied to synthesize SI filters. In ad-
dition, it has been shown that the signal flow graph (SFG) for a multiple-input SC
filter is equivalent to the transpose of the SFG of a multiple-output SI filter [64]. In
other words, they are inter-reciprocal. As a consequence of their inter-reciprocity,
they will also posses identical component sensitivities. This suggests that the trans-
formation of low sensitivity SC filters will lead to low sensitivity SI filters.

The track-and-hold circuit (Fig 5.2) performs four essential operations required
for signal processing: signal inversion, summation, scaling, and time delay. Using
these operations, we implement the SI integrator as one of the basic building blocks
of SI filters. One configuration of the SI integrator is composed of two cascaded
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current T/H circuits (Fig. 5.4). The switches are controlled by two-phase non-
overlapping clocks. The output of the second T/H is connected to the input of
the first. Breaking the feedback loop at the output, and assuming Al=A2=1, the

expression for the output current at the drain of M, is :
if(z) = (ir(z) +ir(2))2~". (5.8)

Rearranging this expression yields :

z—l

The integrator output is amplified by scaling the aspect ratio of M5 to M,:

. . i1zt

ioue(z) = K ig(z) = Kf‘t;, (5.10)
where K = {,—W;,/Lﬁ)% is the integrator scale factor. The (1 — z7!) term in the de-

nominator represents discrete-time integration. In fact, the expression for iz(z) is

' )

5
&
L 3
0.
&
B
_L“
-
&

Figure 5.4: An SI integrator.
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a Forward Euler transformation of a non-inverting integrator from the s-domain to

the z-domain (s — %1:3-1 )-

The SI integrator current output is directly analogous to the SC integrator
voltage output (Fig. 5.5), where
Cr (1 - z‘l) )

In the SC integrator, the capacitor ratio %‘IL determines the integrator scale factor,

Vout(2) = (5.11)

while in the SI integrator, the integrator scale factor is determined by the transistor
aspect ratio, K. There are other configurations of SI integrators corresponding to
the Backward Euler (s — £(1 — z7!)) and the Bilinear (s — %-Ej—:—:—) mapping
from the s-domain to the z-domain.

Table 5.1 shows some fabricated SI filters. The numbers in the third column
refer to the papers that report the filter performances, and f.,. denotes the filter

cutoff frequency.

The interested reader is referred to [67-74] for more investigation on the prac-

tical considerations in SI circuit design, such as device mismatch, finite output

4 3\

LFTI 1l >_v.
L . _T[_+

i B I

Figure 5.5: An SC integrator, the dual of an SI integrator.

—r
.
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impedance, bandwidth, and noise.

Filter Comments Ref.
Biquad filter LPF , BPF , HPF [61]
374 order Elliptic filter foue = 3kHz |, fouu = 128kHz | [60,75]
5t order Chebyshev filter | f... = 5kHz , fur = 128kHz | [60,75]
6t* order Chebyshev filter | f.,. = IMHz , f.r = 10MHz | [48]
FIR filter for =1MHz | fo. = 10MHz | [76]
Digitally programmable Variable Gain,f¢, and Q [77]

Table 5.1: Reported SI filters.

5.2 Non-Filtering Applications of Switched-Current

Circuits

Although filtering applications have received most of the attention among SI cir-
cuits, there are other analog signal processing tasks that can be performed with the
same fabrication technology and circuit elements as those used in switched-current
filters. In this section, we present some non-filtering applications of SI circuits [51].
They include a current-controlled oscillator, a modulator and a full-wave rectifier.
We also propose a switched-current oversampling Delta-Sigma A /D converter. All
proposed circuits have been implemented using the circuits in Appendix-C, and

simulated at device level using SPICE.
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Figure 5.6: Block diagram of an SI current-controlled oscillator.
5.2.1 Current-Controlled Oscillator (CCO)

To provide various frequencies in a circuit, we may use digital scalers to divide the
frequency of a master clock signal. This method results in good frequency stability
since the master clock is usually crystal controlled. However, the frequencies are
restricted to subharmonics of the master-clock frequency, and they can not be
readily changed by a control current (or voltage), as required in some applications

like phase-locked loops (PLL).

The block diagram of an oscillator which does not require a master clock and
can be controlled by a reference current is shown in Fig.5.6. Assume switches SW1

and SW2 are in the position shown on the figure. They apply a constant current,
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I..s, to the SI integrator. The integrator creates a ramp output current :

K
Lo = 7 Leg ¢ (5.12)

where K is the integrator amplification factor, T, is the switching period (T, = £-),
and t is time. If this ramp signal goes through a current Schmitt trigger (with
threshold Ix and Ip), the output of the trigger will change when the input ramp
current approaches [y. Since the reference current switches are controlled by the
output of the Schmitt trigger, their states will change, producing another constant
current, —I,.¢, at the input of the integrator. Following the circuit operation contin-
uously, we get a triangular current at the output of the integrator. The oscillation

frequency is:

_K_ 1
TT, 2Ig-1Ip) ¢

The oscillation frequency depends linearly on I,.s, making the circuit a current-

fo (5.13)

controlled oscillator. In addition, the oscillation frequency is determined by the
hysteresis of the Schmitt trigger and by the parameters of the SI integrator, like
the switching frequency and the transistors aspect ratio. These facts can be utilized
to implement a programmable oscillator. In addition, the oscillator provides three
types of signals: a triangular current wave at the output of the SI integrator, a
square current wave at the input of the integrator, and a square voltage wave at

the output of the Schmitt trigger.

To implement the current-controlled oscillator, we need a reference current
switch, an integrator, and a current Schmitt trigger. Appendix-C describes these

circuits.
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Figure 5.7: Oscillation frequency vs. reference current.

Simulation Results

The proposed SI current-controlled oscillator was simulated with 1.2um technol-
ogy parameters. The hysteresis width for the Schmitt trigger was chosen to be
50uA to prevent saturation of the integrator. I,.s can be changed between 5uA
to 30uA, since a current less than 5uA can not be switched accurately, and a cur-
rent of more than 30zA may saturate the integrator. The switching frequency for

the integrator was set to 1 MHz, and its amplification factor was considered as

W/L)ns —  W/L)ns o

Fig.5.7 shows the plot of the I,.; versus oscillation frequency. The plot shows
that for 5uA < I,y < 30uA the oscillation frequency is linearly proportional to
I..s. For currents more than 30uA, the integrator is saturated causing nonlinearity
in the curve. For currents less than 5u A, the reference current switch can not be

turned on completely.
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Output Curren [uA)

Figure 5.8: Oscillator output for I,.; = 10uA .

Fig.5.8 shows the output waveforms corresponding to I,.; = 10uA and f.ocr =
LM Hz. The oscillation frequency is about 37 kHz, which corresponds to the value
obtained by (5.13) :

f_g 1, _ 04 1
° T T,2(Ig-1Ir) " 1052 x 50 x 10-¢

x (10 x 107°) = 40kH z

5.2.2 Modulator

A modulator is a nonlinear circuit which produces replicas of the spectrum of the
input signal, shifted along the frequency axis. To shift the spectrum M (w) of the
input signal m(t) by the amount of w,,, the input signal is multiplied by the carrier
signal z(t) = cos(weat)

y(t) = m(t) cos(weqt)-
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Figure 5.9: Switched-current modulator circuit.
This time domain multiplication shifts the frequency spectrum by Fwe,:
1 1
Y(w)= EM(w + Wea) + EM(w — Wea) (5.14)

Generally, the carrier signal can be any periodic signal. The square wave is a
periodic carrier signal which is readily generated by SI circuitry. Its Fourier series
expansion is
+oo
z(t) = Z Ggpq @ ErHlIweat
n=—co

where the coeflicients asn4; decrease as 1/(2n+1). Due to the square wave carrier,
only odd-indexed side bands are created at weq,3wWeq, SWeq, ... The modulated signal
can be extracted by filtering the spectrum around w,,.

A method to perform modulation with a square wave carrier is to switch the

polarity of the input signal periodically. Fig.5.9 shows the proposed circuit. The
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first current mirror (M;, M,, M3, M,) inverts the input signal and the second current
mirror (Ms, Mg, M2, M) performs summation. In each half period of the square
wave, the input signal or its inverse, is added in the second current mirror, and
constructs the final modulated signal. To switch the input signal to two different
paths we use the high-speed current switch explained in Appendix-C. To avoid
aliasing, the input spectrum should be band limited and the modulating frequency
must be at least twice the maximum signal frequency. A fully balanced current
mirror [53,54] can be used instead of a simple current mirror to reduce the nonideal
characteristics and get more precise amplification. Fig.5.10 shows the modulator

output waveform obtained from SPICE simulation.
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Figure 5.11: Full-wave current-mode rectifier.
5.2.3 Full-Wave Rectifier

A full-wave current rectifier converts an input signal I; () to its absolute value
| Iin(t) |. By adding a current comparator to the modulator explained in the
previous section, a SI full-wave rectifier is implemented. When the input signal is
positive, the output of the comparator is “high” letting the input signal go directly
to the output, and if the input is negative, the comparator output is “low” letting

the input become inverted. Thus, ..(t) is proportional to | I;,,() |-

Fig.5.11 shows the proposed circuit of an SI full-wave rectifier. It is composed
of two subcircuits: a current modulator, and a current comparator. Appendix-C
explains class-B and class-AB current comparators that can be used to implement
the proposed rectifier. Fig.5.12 shows the simulation results. The DC offset and
AC gain error are two types of errors associated with the output signal. Using fully

balanced current mirrors reduces these errors.
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Input and Output cuirents (uA)

Figure 5.12: Input and output currents of full-wave rectifier.
5.2.4 Oversampled Delta-Sigma Modulator

The block diagram of the proposed second-order Delta-Sigma modulator designed
with the SI technique is shown in Figure 5.13. The input is a current signal, and
the output is a voltage signal that can be applied to a digital filter. The modulator

consists of two integrators, a comparator with a latch, and two D/A converters.

Fully-differential configurations are used for all blocks. The differential topology
offers increased dynamic range, increased rejection of noises coming from the power
supply and the digital circuit on the chip, and the first-order cancellation of clock
feed through effects, resulting in higher accuracy. Summation is simply performed
by connecting the outputs of the DACs to the inputs of the integrators.
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Figure 5.13: Block diagram of the switched-current Delta-Sigma modulator.
One-Bit Quantizer Design

A current comparator can be used as a one-bit quantizer. Neither sensitivity nor off-
set considerations are important in the design of the comparator in a second-order
DSM [78]. Therefore, a simple regenerative current comparator without preampli-
fication or offset cancellation, such as described in Appendix-C, satisfies the com-
parator requirements. A D-type flipflop, activated on the rising edge of the clock,
is used to latch the output of the comparator and provide a glitch-free output.

Digital-to-Analog Converter Design

Two D/A converters are required to convert the one-bit digital output of the mod-

ulator back into a current signal to be applied as inputs to the SI integrators. A
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Figure 5.14: A differential switch as 1-bit D/A converter .

fully differential high-speed switch, such as that in Appendix-C, can be used to
switch the reference current, I, s, into the integrators. To get two directions of
reference current, two differential pair switches are connected together as shown in
Fig.5.14. The modulator output, V(t), determines the switch positions through

control circuitry.

Simulation Results

The overall circuit of the Delta-Sigma modulator is shown in Fig.5.15. The SI inte-
grators, current comparator, and D/A converters shown in this figure are explained
in Appendix-C. The circuit was simulated using HSPICE considering l.épm tech-
nology parameters. The sampling frequency was 6.4 M Hz and the oversampling
ratio was 128. This resulted in a baseband signal limit of 25 kHz. The reference

current was I, = 30uA. We considered a sinusoidal input with an amplitude
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Figure 5.15: The proposed circuit of switched-current Delta-Sigma modulator.
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of 20uA and a frequency of 25 kHz. The circuit was simulated for 10 periods of
the input signal and the first two periods were discarded to remove the modulator
transients. HSPICE took about 90 minutes CPU execution time on a SPARC-10

workstation to simulate the circuit.

With 8 periods of input signal, consisting of 2048 equally spaced samples, we
determine the spectrum of the output by taking a 2048-point FFT. Fig.5.16 shows
the spectrum of the output signal. The signal-to-noise ratio is about 60 dB, equiv-
alent to 9.5-bits of linear resolution. Table 5.2 shows a summary of the measured

results.

This work shows that the design of a Delta-Sigma modulator using the SI tech-
nique results in a fairly simple circuit which does not require linear capacitors, and

is controlled by only two phases of the clock.



CHAPTER 5. SWITCHED-CURRENT CIRCUITS 107

aB

.

8
8
g8
8F
g
2

20 L]

Figure 5.16: Spectrum of the output of switched-current DSM.

Clock Frequency 6.4 MHz
Signal Bandwidth 25 kHz
S(N+D)R 60 dB
Resolution 9.5b

Power Supply +25V

Power Dissipation 10 mW

Table 5.2: Simulated switched-current DSM performances.



Chapter 6

Harmonic Distortion in

Switched-Current Circuits

Harmonic distortion in SI circuits is more severe than in SC networks. Clock feed
through and mismatch in the transistor threshold voltage are two major sources
of distortion in SI circuits. These sources are introduced in section 1, and their
contributions to distortion are examined. In section 2, we impose both upper and

lower bounds on the total harmonic distortion of a SI memory cell.

6.1 Sources of Harmonic Distortion

We study the nonlinear behavior of SI circuits on the current memory cell of Fig. 6.1
as one of the basic building blocks. The first transistor (M;) takes the square-root
of the input signal and generates the corresponding voltage on the gate-source.
The second transistor (M) generates a current proportional to the square of this

voltage. Therefore, the total characteristic of the circuit from input to output

108
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Figure 6.1: Current track-and-hold circuit.
becomes linear. This is valid under the following conditions:
1. The transistors are matched (same V7),

2. The switch is ideal and does not generate clock feed through,

3. The signal and the switching frequencies are much lower than the circuit
bandwidth.

In this section, we examine the effect of these conditions on the distortion of SI

circuits.
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6.1.1 Vr Mismatch

The accuracy of current-mode sampled-data systems relies on an accurate matching
of the mirror transistors. Assuming M; and M, (Fig. 6.1) operate in the saturation

region, the drain-to-source current is :

X K'W
ips = —Z——L—(’vag — Vr)z(l + J\‘vps). (6.1)

Mismatches in the transistor threshold voltage Vr, device aspect ratio —Vg-, transcon-
ductance parameter K’, and the channel-length modulation A cause errors in the
output current. Only the threshold voltage mismatch produces harmonic distor-
tion, because the other parameters are linearly related to the drain-source current,
i.e. may generate DC offset and/or AC gain error.

To evaluate the contribution of Vr mismatch to the distortion, we assume M;
and M, are identical except for the threshold voltage. Also we assume that the DC

bias currents I are identical. The drain current in M, is
B )
tpr =tin+1 = 3 (ves1 — Vr1) (6.2)

where 8 = K’ %— In the sampling mode, the gates of M; and M, are connected

together, vgs:1 = vgs2, and

ip2 = g(vc.s'; ~ Vra)® (6.3)
Substituting (6.2) in (6.3) for vgs; gives
ipr =+ i + SAVZ + PAVe) S+ 1)
where AVr = Vp; — Vpy is the device mismatch. The output current is
towe = tp2—1
= i+ g./_\V,? + \/Eﬂ-IAVT 1+ ’—‘I’i (6.4)
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The last term in (6.4) can be expanded in a Taylor series

1 1 1 i,

ioe = i + SAVE 4 BBIAV: (14 3050) ~ 22V 4 (2P - ) (65)

Ideally %oy = 25, but the actual current in (6.5) has a DC offset I.;,,, and an AC

€ITOr tzirq AS

Ltea = éAV§+\/2ﬂIAVT

e = o)

The remaining terms in (6.5), which have the exponent of 2,3, and more, gener-
ate the harmonic distortion. Considering a sinusoidal input i;, = ;'sin(wt), and

assuming % < 1, we get

THD ~ HD, =\/28IAVy (})

‘/_BAVT( ‘ ) (6.6)

8 vi
Eq.(6.6) suggests the following solutions to reduce THD :

@ reducing the signal peak 7 ,
e increasing the bias current I ,

¢ reducing 8 by reducing the _v{_ ratio.

6.1.2 Clock Feed Through

Clock feed through (CFT) is due to to the non-ideal characteristics of the switch
transistor [79-85). Considering the structure of a MOS transistor (Fig. 6.2), two

types of parasitic capacitances can be recognized: overlap capacitance, and channel



CHAPTER 6. HARMONIC DISTORTION IN SI CIRCUITS 112

y—J

Figure 6.2: The structure of a MOS transistor with its parasitic capacitances.

capacitance. Due to over diffusion (lateral diffusion), an overlap is made between
the gate and source (gate and drain). With the presence of the oxide layer between
the gate and the over-diffused areas, overlap capacitance is constructed between
gate and source (gate and drain) which is indicated by Cgsov and Cgpov in
Fig. 6.2. When the voltage at the gate of the switch transistor changes rapidly,
a portion of it transfers to the data-holding node through this overlap capacitance.

Channel capacitance is another type of parasitic which is constructed between
the gate and the channel (depletion area). These capacitances are indicated by Cgs
and Cgp in Fig. 6.2. The values of these capacitances are not constant across the
channel, but normally an average value is considered. When the switch is turned
off, the channel charge flows out of the drain, source, and substrate and a portion

of it gets dumped to the gate capacitance of the memorizing transistor.

The total gate capacitance of the switch is [80]

Csw =2Cov + Cg = 2Cov + WLCox, (6.7)
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where Cov and Cpy are the overlap and the channel capacitances, respectively.
Following the circuit proposed in [84,86] the model of the transistor in the ON
and OFF state can be shown as Fig. 6.3 (a),(b). When the transistor is ON,
both channel and overlap capacitances exist. A voltage dependent conductance
(g = B(Ve — V1)) also appears between the source and drain. When the transistor
is OFF, just the overlap capacitance exists and there is almost zero conductance

between the source and gate.

The injected charge produces an error in the held drain current, corresponding
to (Vs — Vr)2. Clock feed through effects in SI circuits are similar to those in SC
circuits, which have been studied extensively in [79,85]. The amount of injected
charge is a function of the switch turn-off rate, the aspect ratio of M, to M. the
source-to-load capacitance ratio, the switch-to-source resistances, and the voltage

at the hold node. According to [72], the CFT voltage can be expressed as :

. (Ve — Vi )Wsw(LD + n(Lsw/2)]
= W, L,

where LD is the lateral diffusion length, Wgsw is the switch width, W, and L, are

[ )

Vese (6.8)

N D

Figure 6.3: Model for switch transistor in (a) ON state, (b) OFF state
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the memory transistor dimensions, and 7 denotes the fraction of the clock voltage

swing during which the switch is ON.

The V.4 causes the same distortion as the threshold voltage mismatch. To
calculate the CFT current in Fig.6.1, we express the total current in the drain of
M; as

eotal = I+ tac +icqe- (6.9)

Here I is the DC bias current, i,. the AC signal, and .4 the CFT current. We can

also write:
trotal = KEV 4+ Vipe — V1)?
2 L,
K'W, K'W, W
= LVt 3L Ve VIl + KTV~ Vi)V (6:10)

Since the second term in (6.10) is equal to [ + 74, the remaining terms are due to

the CFT voltage:
kK W,

e = 5 Vepe + K :(V,,.—Vr)v.,ﬂ. (6.11)
Considering
]2 i)
Vou = V2 =\ RAWa/ L)’
we write
) K'W, w. ]
fege = 5 Lth+V;ﬂ‘/2K’f23(I+zac). (6.12)

It is clear from (6.12) that the current i.j is not only a square function of V.4,
which generates harmonic distortion, but also varies with bias and signal currents,

which results in a signal-dependent CFT. This equation can be separated into a
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DC offset term and a polynomial which exhibits harmonic distortion

. K'W;
left.DC = _—2V}t + Vop[2IK'(Wa/ L) M?

WAL
icgeac = ‘/;,,[21K'(W2/Lz)]"’[(i““2/ D _ (i“él - (’“1{; LI

The first term in 7.4, ac represents the AC gain error. The other terms, , with expo-
nent of 2,3, and more, generate the harmonic distortion. Considering a sinusoidal
input i, = 1sin(wt), and assuming % < 1, we get the same equation as (6.6) for

the harmonic distortion.

~| 0

THD ~HD, = é’\/?IK’(PVz/Lz)Vcﬂ()
i

\/2K'(W2/L2)V ( )
8 cft _‘/_—}'

6.1.3 Operating Frequency

Denote the 3dB frequency bandwidth of the current memory cell in Fig.6.1 by
fzap. If the input signal frequency is comparable to fsyg, the nonlinear settling-time
behavior of the circuit generates distortion as explained in [87]. Also at this range of
signal frequency, the switching operation transfers the high frequency components
back into the circuit bandwidth which directly contributes to distortion.

6.2 Predicting Harmonic Distortion in the SI Mem-

ory Cell

The nonlinearity of SI circuits has been studied in [87] and variations in the settling

behavior of the current memory cell were shown to be the major source of distortion
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in SI circuits. In addition, an approximate formula for the upper bound on the
total harmonic distortion (THD) was derived. In this section, we present a general
expression for the THD of non-linear circuits. Using this expression, we impose

both upper and lower bounds on the THD of a switched-current memory cell.

We follow similar derivations as in [87], but provide the following improvements:

e a general equality expression for the THD of non-linear circuits is introduced
instead of an inequality,

e a lower bound on the THD is derived from the general expression,

e aslightly tighter upper bound (compared to that presented in [87]) is imposed
on the THD.

The method is applied to some examples. The bounds predicted by our method

are in agreement with SPICE simulation results.

6.2.1 THD Measurement

Denote the input signal of a SI circuit by ¢ry and the output by ioyr. The THD of
the circuit can be measured by applying a pure sinusoidal signal to the input and
measuring the power associated with the fundamental tone and harmonics at the
output. Since the input is periodic, the output is also periodic and can be expressed
in terms of its Fourier series

o

iour(t) = Y iouT,(t)
k=1

where iy, (t) (k =1,2,~~~,00) are harmonically related

touT,(t) = arcos(kwot + ¢1.)
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The DC component is disregarded as it does not introduce THD. We separate
touT, (t) into two components: alinear component oy, () which is the fundamental

component, and a deviation from the fundamental component Aigyr
oo
Aiour = iout — tout, = ¥ iouT,(t). (6.13)
k=2

The THD is defined as the square-root of the sum of the powers of the harmonics
divided by the power of the fundamental component

o0 . 2 1/2
THD = Zk.‘:z"l ”OUTk " (6.14)
| ‘o, II?

where || z ||? denotes the power associated with the signal z(t)
l2 =5 [ s
*N=T)h

Recalling Parseval’s theorem, the power of a periodic signal is equal to the sum of

the powers in it’s harmonics

oo
| Aiour |I*=|l tour —toum [I>= Y. |l iour. |1 - (6.15)
k=2

Substitute (6.15) in (6.14)

. 1/2 - . 1/2
| Aioyr llz] / _ [II iovr —iovn 71" (6.16)
| Zour ||? | iou, |I?

THDz[

Given this definition, the THD can be computed if we know ioyr—iouT, and touT, -
Although these terms can not be usually measured, we can still impose the bounds
on THD. In [87] the authors gave only an upper bound. We impose both upper
and lower bounds on THD.

6.2.2 The Upper Bound on the THD

An upper bound on the THD of the current memory cell (Fig. 6.4) was given in [87].
Considering the small signal model of the cell during the memorizing phase ¢,



CHAPTER 6. HARMONIC DISTORTION IN SI CIRCUITS 118

(Fig. 6.5), we define the time constant =
Cgo + Cd
T =———
9m
where C,, denotes gate-to-source capacitance, Cy the capacitance connected to the
drain node, and g,, the transconductance of the transistor. The output resistance

1, is ignored because 7, > %m. The difference equation that relates the input and

output current signals of the memory cell was shown to be

. . 1 ; )

tour(n) = —(1 —y(n))En(n - ’2‘) +tour(n — 1)] + igyr(n — 1) (6.17)
where

y(n) = e~T/C7) = oTeriegom

represents the settling error that occurs in the nth sample, and can be written as a

deviation Ay(n) from a linear component ~;;,
() = Yiin + Av(n). (6.18)
From (6.13), the output signal can be written as
tour(n) = touT, (n) + Aiour(n). (6.19)
Substituting (6.18) and (6.19) back into (6.17)

touti(n) + Aiour(n) = —(1 = Yin — Av(n))[irn(n — 1/2)
+ tourn(n —1) + Aigur(n - 1)] + [iovT, (r — 1) + Aiour(n — 1)].
(6.20)

We decompose this equation into a time-invariant linear, and a time-varying non-

linear part. The linear time-invariant equation is

touni(n) = —(1 — Yin)[Ern(n — ';‘) +iour, (n — 1)] + iour,(n — 1), (6.21)
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Figure 6.4: Current memory cell (current copier).

Figure 6.5: Small-signal model of the current memory cell for the clock phase ¢;.
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and the nonlinear time-varying equation is

Aioyr(n) = (A7(n) + Min)Aiour(n — 1) + Av(n)[iovr,(n — 1) + irn(n — ';')]‘
(6.22)

The term vy(n) is bounded between Ymin and Ypmq. allowing us to observe the worst-
case conditions imposed on the THD. Based on (6.16), the THD is proportional to
the ratio of the power associated with Aioyr over the power associated with igyr.
To find an upper bound on THD, we therefore maximize Aigyr(n) and minimize
touT, (7). According to (6.21), igur,(n) is smallest when v, is largest (note that
v is less than one). This will occur when v = Ymaz- The resulting difference

equation then becomes
. . 1 . .
touT, (n) = —(1 — Yemaz)[Ern(n — 5) +igur(n — 1)] + iovr (n — 1).

Taking the z-transform of this equation and re-arranging it, we get

lour(z) _ _ 1= Ymaz 12 (6.23)

Irn(z) 1= Ymazz !

Also, the largest Aiour(n) is determined from (6.22) as
. - . . 1
Aioyr(n) = YmazAtour(n — 1) + (AY)mezltovr,(n — 1) +in(n — 5)],

where (A7)maz is the maximum change in 4(n) when the input signal sweeps from
the minimum peak to maximum. Since the above equation is now linear and time-
invariant, we can take the z-transform. Taking the z-transform, and substituting
IoyT,(z) from (6.23), we get

Aloyr(z)

_ (1-2z71) ,1/2
I[N(Z) - (A'Y)maz . (6'24)

(1 = Ymazz™!)?
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Assuming an input sine wave with the amplitude A and frequency wq, the power
associated with igyr, and Aigyr are calculated from the following equations:

2

Az
2
2

2

louT; (2) .
Trn(z) |e=eivaT

I

| tour, I
2

Aloyr(2)

- 2
” AzOUT " = Irn(z) Iz=cj”°T

where 20902 apq Alour(s) ,pe the transfer functions obtained from (6.23) and
Irn(2) Irn(z)

(6.24), and T is the switching period. Substituting the expression for || igur, |2

and || Aioyr ||* into (6.16), and cancelling common terms, we finally obtain
(A7)max 1 — e~wT

(1 = Ymaz) (1 — Ymaze™707)

THD(wo) < (6.25)

where wp is the input signal frequency. It is evident from (6.25) that the THD
bound changes with the frequency of the input signal. In fact, as ¥mnez and ymin are
normally quite small, the THD increases with increasing input frequency because

of the term (1 — e?°T) in the numerator of (6.25).

To calculate the upper bound in (6.25), we need an estimate on (Av)maz- One

estimate was suggested in [87] as

(A'Y)maz = Ymaz — Ymin,

which uses only the information about the extreme case of y(n). To find a better
estimate of (A7Y)maez, We try to use all information available for 4(n): when the
circuit input signal is zero, y(n) is equal to 4nom, and when the input signal sweeps
from minimum value to maximum, 4(n) changes from Ynaz tO Ymin, respectively.

A better estimate of (A%)min is therefore

(A'Y)moz = Maz (7nom — TYmin s Ymaz — 7nom) . (6.26)
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6.2.3 The Lower Bound on the THD

We now try to find the smallest Aipyr(n) and the largest iopyr, () to obtain a lower
bound on THD given by (6.16). Based on the difference equation (6.21), tour;(n)
is 2 maximum when 7y, is a minimum (considering that + is less than one). This

happens when tin = Ymin- The resulting difference equation is
. . 1. . .
iouty(n) = —(1 = Fmin)lizn(n — 35) + fovn (n — 1)] +iovry(n ~ 1).

Taking the z-transform and re-arranging the equation, we get

Lun(2) (1 — Ymin) -1/2
Iin(z) 1= "minz! £ (6-27)

To minimize Aigyr(n), (6.22) is written as
. . . . 1
Aiour(n) = YminAtour(n — 1) + (AY)minltovr (n — 1) + 2rn(n — 5)], (6.28)

in which (A9)min is the minimum change in y(n) when the input signal sweeps
from peak to peak. Taking the z-transform of (6.28), and substituting (6.27) for

Toue, (2), we get

ALu(z)

1-2z1
Tat) (AT =

(1= Jminz

Following the same steps given in the calculation of the upper bound, we establish

a lower bound on the THD as

(AY)min 1 — el
(1 - 7min) (1 - Vmine—juor) ’

THD(wo) > (6.29)
and consider the following estimate for (A<)min

(A'T)min = Mn (‘Ynam — Ymin y Ymaz — 7nom) . (6.30)
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6.2.4 Comparing the THD Bounds With Simulation Re-

sults

We choose two examples given in [87], and impose our new bounds on them .

Example-1 :
The current memory cell of Fig. 6.4 with a bias current of 20uA (Ypom = 0.0233)
is excited by a 16kHz tone having a 10uA amplitude. The drain current in the
memory transistor varies between 10uA and 30uA producing a Ymin = 0.01 and a
Ymaz = 0.071. According to our derivations, (6.25) and (6.29), the bounds on the
THD would be 0.26% < THD < 1.082%. When compared to the result obtained
from HSPICE analysis, i.e. 0.26%, we see that it is within the bounds predicted by
(6.25) and (6.29).

Since the THD depends on the input frequency, the frequency of the input
tone was changed from 1kHz to 64kHz, and the THD bounds for different input
frequencies are computed and plotted in Fig. 6.6. This figure also shows simulation
results and the computed upper bound presented in [87]. As seen, the THD obtained
from the HSPICE simulation is always within the bounds predicted by (6.25) and
(6.29). The new upper bound is also improved.
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Figure 6.6: Comparing the THD computed by HSPICE with results predicted by

our method. .

Example-2 :
For the first generation SI memory cell in Fig. 6.1 the following parameters were
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given in [87]:

J = 200pA , C,.; = 1000pF
Anom = 0.0201 , Ymin = 0.006 , Ymaz = 0.0649

The circuit was constructed using discrete MOSFET components (RCA 4007,RCA
4066), and clocked at the frequency of 64kHz. A 1000pF capacitor was placed
across the gate-source terminal of transistor T,. A 60uA sinusoidal current signal,
with a frequency varying between 125Hz and 15kHz, was applied as input. The
measured THD and the upper bound predicted in [87] are shown in Fig. 6.7. Also
shown on this figure are the bounds predicted by our method, (6.25) and (6.29).
Again, the validity of the two bounds computed by the method and the improve-
ment on the upper bound are evident. At frequencies below 500Hz the switch

charge injection dominates the distortion caused by settling error variation.
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Figure 6.7: Comparing the measured THD of the circuit in Fig.6.1 with results
predicted by our method.



Chapter 7

Conclusions

This thesis presents analysis of analog sampled data systems. Each chapter looked
at one of the different aspects of these systems, starting with chapter 2 on time do-
main sensitivity of linear circuits using sampled data simulation. An obvious appli-
cation of the theory developed in chapter 2 is in sensitivity analysis of Delta-Sigma
modulators, which was presented in chapter 3. Another aspect of sampled data
systems, the group delay and group delay sensitivity of switched linear networks,
was derived in chapter 4. The switched-current circuit was introduced in chapter 5
as a new analog sampled data technique, and some nonfiltering applications of this
technique were proposed. Finally, sources of distortion in switched-current were
examined in chapter 6, and both upper and lower bounds were imposed on total

harmonic distortion of current memory cell.

A detail list of my contribution in each area is given in section 1. Section 2

presents the proposal for continuation of the work and future research directions.

127
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7.1 Contributions

My contributions to each area are as follows. I tried to list them in order of their

significance.

1.

(3]

A new method for computation of the time domain sensitivity of linear circuits
was proposed. The method is accurate because no approximation is made,
and efficient because some parts of the computations are performed only once.

in a pre-processing step before simulation starts (Chapter 2).

. A fast and accurate method for the calculation of group delay, and the group

delay sensitivity of periodically switched linear networks was proposed. The
method handles all types of linear elements, and therefore can be applied to

nonideal switched-capacitor and switched-current circuits (Chapter 4).

We formulated the sensitivity networks for Delta-Sigma modulators, and com-
puted the sensitivity of the output magnitude with respect to any circuit el-
ements. The proposed method can be applied to all types/configurations of
modulators as long as all elements, except the comparator, are linear. The
sensitivity of the output of the clocked/unclocked comparator with respect to
its input was derived (Chapter 3).

We proposed some non-filtering applications of switched-current circuits. They
include a current-controlled oscillator, a modulator, and a full-wave rectifier.
We also proposed a switched-current oversampling Delta-Sigma A/D con-
verter (Chapter 5).

Sampled data simulation of linear circuits was extended to the case of incon-

sistent initial conditions (Chapter 2).
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6. We analyzed the harmonic distortion of switched-current circuits, investigated
the sources of distortion, and imposed both upper and lower bounds on the

total harmonic distortion of a switched-current memory cell (Chapter 6).

7. When the input signal is sinusoidal, an efficient method was proposed for the
computation of the vector P, its derivatives with respect to frequency %,
and with respect to element values %. It was shown that if these vectors
are evaluated at one frequency w,, there is no need for further integrations to
compute them at other frequencies w;, w3, etc. They can be obtained by a

few matrix manipulations (Chapter 4).

8. Considering both sensitivity and adjoint networks, we explained that the
adjoint method in frequency domain is equivalent to that in time domain

(Chapter 2).

9. As a side work, we wrote two programs in MATLAB based on the theories
developed in this thesis: SDSEN for transient analysis and the time domain
sensitivity of linear circuits, and GRPSN for the computation of group de-
lay and the group delay sensitivity of switched linear networks. Some other
pieces of programs, MPgen and MPsgen, were written based on the numerical
Laplace inversion, to provide the pre-processing matrices (M, P) and their

derivatives (Chapters 2, and 3).

7.2 Future Research

During the course of this research, the following points have been detected. They

are suggested here for future investigations.



CHAPTER 7. CONCLUSIONS 130

1. We wrote a program for computation of group delay and the group delay
sensitivity of switched linear networks, and explained how it can be used to
obtain a flatter group delay of switched networks. As the next step, this pro-
gram can be coupled with an optimizer to provide an integrated environment

for the optimized design of switched capacitor and switched current filters.

2. Using an adjoint network for the time domain sensitivity gives the sensitivity
of one output with respect to all elements at one instant of time. The following

subjects can be investigated as the applications of the adjoint network :

(a) the time domain sensitivity analysis of switched network at the end of

each phase when the circuit does not reach the steady state,

(b) transient analysis of the rise/fall time in digital circuits and transmission

lines.

3. We imposed both lower and upper bounds on the harmonic distortion of
the switched-current memory cell. To do this, we suggested an estimation
of the settling behavior. The next step is investigating a better estimate of
the settling behavior in the switched-current memory cell to tighten up the

bounds we imposed on the total harmonic distortion.

4. To calculate the sensitivity of the Delta-Sigma modulator, we considered some
approximations in the sensitivity of the comparator with respect to its input.
The computation of the sensitivity of the Delta-Sigma modulator can be im-
proved by considering more conditions, such as comparator hysteresis, on the

signal applied to the input of the comparator.

5. We calculated the sensitivity of the magnitude of the output of Delta-Sigma

modulator. The next step is computing the sensitivity of the signal-to-noise ratio
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(SNR) with respect to an element, because the SNR curve conveys more in-

formation about the modulator.

6. The sampled data simulation has been shown to be a fast and accurate method
of simulation for dual time systems. One application, the Delta-Sigma mod-
ulator, was presented in chapter 3. The next step could be the investigation
of sampled data simulation in other dual time systems, such as phased-locked
loops (PLL), and frequency modulators.
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Appendix A

Computation of P, M, and Their

Derivatives

Using the modified nodal formulation, let the system matrix be defined as
R(s) =G +sC

where G is the conductance matrix (m xm), and C the capacitance matrix (m xm).

The system equations are
R(s)X(s) =W(s)+1I (A.1)

where W(s) is the Laplace transform of the sources and I the vector of impulse
sources C;Vjo or —L;I;, due to initial conditions. The solution of (A.1) at the time
t = h is calculated by [12-15]
1 & sy L& &
x(h) = — g KX(7) -7 §1 K:X(")
where z; (poles) and K; (residues) are given in Table (A.1), M’ is the number of

rows in the table, and the bar denotes the complex conjugate. To go to the next
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%

2 * K;

11.83009373916819 +;j 1.593753005885813
11.22085377939519 +j 4.792964167565670
9.933383722175002 +; 8.033106334266296
7.781146264464616 +j 11.36889164904993
4.234522494797000 +j 14.95704378128156

16286.62368050479 -j 139074.7115516051
~28178.11171305163 +j 74357.58237274176
14629.74025233142 -j 19181.80818501836
-2870.418161032078 +j 1674.109484084304
132.1659412474876 +) 17.47674798877164

Table A.1: Poles z; and residues K; used in numerical Laplace transform inversion

(M=10 , N=8).

point in time, we reset the problem so that in the next evaluation the previous

result is considered as the initial point for

condition I is obtained from x by means of

I

Cx

the new step. To do this, the initial

We apply the above method, called stepping algorithm, to compute the P and P,

vectors defined by

P = £ (R'W)
P, = L (—R“%%

The algorithm is

t=T

RW)

t=T

1. Prepare the vector of initial conditions I(, = 0) for the original network,

and I,(¢o = 0) for the sensitivity network. These are null vectors for initially

relaxed circuits. Select the step size h =

T/N, where N is the number of steps.
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It is an arbitrary number that determines the accuracy of the computation,

and is explained later. Set k = 1.

2. Substitute # for each s in the system of equation
R(s)X(s) = W(s) + I((k ~ 1)h),
and solve it to get
X3 = R [W(E) + 1k~ ).

Create the right hand side of the sensitivity network (sensitivity with respect
to element 1)

z R z
Q(-,:)= al(h)x‘(_)+ (h)

and solve
Z 2, Ez_ .
R(C)Y:(E) = Q(F) + L(tk - DA
to obtain Y;{%).

3. Multiply X;(3) by K; and add the products. Multiply Y:(%) by K: and add

the products.

4. Repeat step 2 and step 3 for all z;’s and K;’s in Table (A.1) to get

X = ZKX;( )

;:1

y= EKY( )

=1
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5. Consider the conjugates of z; and K;, repeat the steps 2,3, and 4, and divide
the results by (—h) to obtain

IM' 1 ¥

x(t = kh 21{.&( )~ = ZKx,( 3

1“’ 1”’

y(t = kh) = ZKY( Z)-= ZKY‘( )

6. Prepare the new initial vector I(kh) = C x(kh),I,(kh) = C y(kh). Set
k =k + 1, repeat steps 2 to 6 till k reaches N.

7. Vector x now contains the time domain solution of the original network at
= Nh = T, which is equivalent to vector P required for sampled data
simulation. Vector y contains the time domain solution of the sensitivity
network at ¢ = Nh = T, which is considered as P5 in the time domain

sensitivity analysis.

The number of steps, N, determines the step size h = and so the truncation
error. The above algorithm is repeated once with the number of steps equal to N,
and then equal to 2N. The difference of the two results gives the truncation error.
If the error is more than the desired value, the number of steps is multiplied by 2,
the step size is divided by 2, and the computation is repeated with the new step
size.

The matrices M and M, are calculated with the same algorithm. Since the
source vector W does not appear in the computation of M and M, an identity
matrix is considered as the input. With this artificial input, all of the computation

steps are the same as what we explained for P and P,.



Appendix B

The Algorithm for Calculation of
Group Delay and Its Sensitivity

Part 1 : Pre-Processing

We apply one-Graph modified nodal analysis to formulate the circuit equations.
The switches are modeled as resistors with a small resistance when they are closed
and infinite resistance when open. The topology of the circuit therefore does not
change during the different phases, and the matrices B; become equal to C;. The
number of phases is denoted by N.

The the input frequency is wg. All of the frequency variables in the following
steps are w = wy. If the input frequency is changed, all of the following steps (ex-
cept 1-1 and 1-2) have to be repeated at the new frequency. An efficient method
for computation of matrices in steps (1-3) to (1-6) is given in chapter 4. N is the
total number of phases, and T is the clock period.
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1-1- Prepare (Gy,C,),(G2,C:),...,(Gn, Cn) where the matrices G and C;
construct the system matrix R, during phase k, i.e Re = G + s C,.

S8 (8

dG, dC
1-2- Prepare (7,-:-, ‘%hl s yeees

N’
~~
Y

1-3- Prepa.re (Plv Ml) v (PZa MZ) reeey (PN7 MN)

Part 2 : Solution of the Discrete-Time Equations

2-1- Construct the following matrices related to the Discrete-Time set of equations:

1eiwot 0 0 .o -M,
—M,eivn 1eiwos 0 ees 0
R= 0 —Mjeiwor  1eiwes e 0

0 0 0 —~Mpyeov-t 16T
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P,
P,
P=| P,
| Pwv |
1 (] 0 0
0 1levr 0
D=0 0 1 ... 0
4] 0 0 .- lefwon-
W=1DpP
T
1jo, e’ 0 0 0
— —szO'l ej“"" ljd‘z CJ.“M2 0
¥ 0 —M3jj02e74%? 1j03€7%"3 ces 0
0 0 0 ~Mpyjoy_e84on-1 1jTei*T
[ dM
0 0 — 5t
. — M giun 0 (] 0
dR .
= 0 — B giw 0
0 ] 0 -—fpxeiont 0|
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0
_dMe - eiwer
— Jo1
R _ |
dhdw
0
0 0
— 0 ljalej“’"‘
dW 1
o =T o 0
0 0
-
0 0
. 0 1joev
W 1
dhdw T| 9 O
0 0
2-2- Compute

—dMy jwer
g JON-1€ 0 |

0

1j0’N..1 CdeN‘l

le'N_l ej""'N"l

0 0
0 0
-d—rh-ljdzejwz 0
0 0
0
0
ljagej“"’=
0
dP;
dh
dP2
— dh
W _15| e
dh T dh
dPy
dh
0
0
ljtJ'ze“i""'d'2
0
Vp = ﬁ—l W

P+ip

5 &5 &

2

& oy of3

B

=]
Es Bl &

N~

(B.1)

B
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2-3- Using Vp from (B.1), compute

Vo o dBe | o AW
» =-R dep-i-R 2o (B.2)

2-4- Using Vp from (B.1), compute

ah R I Vep+R ah (B.3)

o~

2-5- Using Vp, ‘%f’—, and %ﬂ obtained in the previous equations, compute

d’Vp_ﬁ_l[dﬁde FR_.  dRdVe W

dhde - X T TV o ah T T (B4)

Part 3 : Solution of the Continuous-Time Equations

3-1- Construct the following matrices related to the Continuous-Time set of
equations. Use the results of (B.1) to (B.4) to construct these matrices.

[ G, + jwC, 0
R = 0 Gz-!-jMCz 0
o 0 -++ Gy + jwCy |

g6, + CIVN - vax
202 + C.V, - C,V,

| gv0x + CxVy_1 ~CyVy |
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[jC. © 0
dR 0 jC; 0
dw .
] 0 0 --- jCy |
Goriv o 0
dR _ T 0
dh ~ ,
dG dC
I 0 0 T IR
w0 0
-dC.
dzR — 0 ]-d—hz 0
dhdw
| 0 o i
cs 0,
w_| ef-cd
dw
Ot — Gyl |
9Ve-2V, | [ af-af
daW _| G-V | | GR-G
dh
| SV -GV | | Cwf o
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_ -~ - e s
ffx-gd | [ ofl-add
v v £V &2V
rw_| 2 -2 | | cfh-cih
dhdw
gl | | onSi - ongls
3-2- Compute
Vp=R1W (B.5)
3-3- Using Vp from (B.5), compute
dVp LdR _ AW
—=-R!'—Vp+R'— B.6
o R o Yet T (B.6)
3-4- Using Vp from (B.5), compute
dVp L dR W
—_— = - —V: 1 .
- R R YRR (B-7)

3-5- Using Vp, %ﬂ, and ‘%’hf- obtained in the previous equations, compute

d’Vp_R_l[ dRdVe &R dRdVe  &£W

dhdw “dh do dhde ® 4o ah T dhdo (B-8)

Part 4 : Computing the Group Delay, and Group Delay Sensitivity

The complete vector of nodal voltages is the summation of the vectors corresponding

to each phase:

N
V=YV

k=1
v _ KdV,
T el
v _ KdVe
dw & dw
&V N &2V,

dhde ~ & dhdw
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Assume that the output is one of the elements in V, like V(k) (in general, the
output is related to the vector V by the selector vector d, i.e ¢ = dt V).
The group delay is calculated as

_1_dV(R)

m(w) = ~Im [V(k) Tdw

and the group delay semsitivity with respect to element h is calculated by

1 dV(k)dV(k) 1 d*V(k)
V(k) dh  dw  V(K) dhdw]

T(w) _

W-I’“[




Appendix C

Selected Switched-Current

Circuits

The nonfiltering applications of switched-current circuits proposed in section 2 of
chapter 5 were implemented using the circuits selected from the literature. The
citations to the references and a brief explanations of the circuits are presented in

this appendix.
I - Reference Current Switch

To provide two levels of reference current, I,.; and —I,.f, we consider a fully-
differential current switch reported in [52]. Such a switch achieves fast settling
times and high switching speeds.

A circuit diagram for differential current switch is shown in Figure C.1. In this
circuit, the reference current I,.s is switched to either I, or I, using an NMOS
differential pair consisting of transistors M; and M,. Switching the reference current

to Iy requires driving the gate of transistor M; to a positive potential V;;,, while
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e || s

M1 e

Figure C.1: A fully differential current switch.

pulling the gate of transistor M, to ground. Driving the gate potential of M; to
Viias 1s done with the transmission gate composed of transistors M3 and M; while

the gate of M, is pulled to ground using a single N-channel device Ms.

The transmission gate is driven by a pair of complementary signals, B, and B..
These signals are driven from the digital input clock by using two inverter strings
I, I, I3 and I, I5. By equalizing the delay through each inverter string, the rising
and falling transitions of B, and B can be made to overlap. Furthermore, if the
delay through inverter i equals T, then choosing T, = T5 and T) + T3 = T ensures
that the rising and falling transitions of B, and B, occur simultaneously, even in
the face of process variations [52]. To satisfy the above conditions, device sizes are
chosen such that each of the inverters I; to I5 drives the same load capacitance.

Inverters Iy, I, Is and I5 have the same size with W,/L, = 36u/3pu and W, /L, =
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15p/3p, while inverter Iy is chosen to have twice the channel length W,/L, =
36u/6u, W, /L, = 154/6u. The pull down transient at the gate of M, is controlled
by the device Mg driven by inverter I;. Adding inverter I7 delays the pull down
transient at the gate of M, until the voltage at the gate of M; has risen sufficiently
to turn M; on. Both inverters Is and I have W, /L, = 6u/3u, W, /L, = 15u/3pu.

II - Fully Balanced SI Integrator

We consider a fully balanced SI integrator proposed in [53,54] because of its first-
order cancellation of clock feed through effects, 6-dB increase in dynamic range,
improvement in common-mode rejection ratio (CMRR) and power supply rejection
ratio (PSRR). To understand the operation of the fully balanced integrator, we
first explain the operation of the fully balanced current mirror shown in Figure C.2.
When a signal current +i;./2 is injected into the low-impedance node associated
with the diode-connected device P;, the current (I — i;,/2) that follows through
the N; — p; branch is converted to a voltage between the gates of N; and P;. The
resulting voltage is applied to the gate of P> while the gate of N3 is connected to
Vi. Hence, the current (I —%;,/2) is mirrored from P; — N; to P, — N3 and reflected
to the differential outputs as shown. Assuming matched pairs, the fully balanced
current mirror has a small signal current gain of two since the differential-mode
output current is 2¢;,,. One way to increase the current gain is to scale the current
mirror aspect ratios. As shown in Figure C.2, if P, — P; and N, — N3 are scaled by
K, relative to P, — Py and N; — Ny, and the output mirrors are scaled by K, the
small signal current gain is 2K, K.

A fully balanced SI integrator is obtained from the fully balanced mirror by
adding MOS switches between current-mirror transistor pairs as shown in Fig-

ure C.3. During ¢;, the input currents are applied to the low impedance nodes
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Figure C.2: A fully balanced current mirror with open loop current gain 2K, K.

associated with P; and P, and during ¢,, the signal currents are sampled by the
output T/H stages N5 — Ng, Ng — Ny, Ps — Ps, and Ps — P,.The integration function
is obtained by feedback of the balanced outputs +iyy and —ie: to the balanced
inputs. Scaled output branches N7, Py and Nyg, Pig provide the desired integrator

gain constant.
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Figure C.3: A fully balanced SI integrator.

III - Current Schmitt Trigger

A two-input CMOS current Schmitt trigger with adjustable hysteresis reported
in [55] is shown in Figure C.4. Tranmsistors M;, M., My,, My, and M5, Ms, Mo, M1
are matched pairs which compare the currents Iz + I;;,; and Iys + Iinz. The output
of this comparison controls the differential switching stage (M7, Mg). We start with
the input Iins, very small in comparison with I;,;. Vi3 is then “high” and V4 is
“low”. It means M- is ON and Mj is OFF. The current through M, is Iy + I,-
If I;n; increases and exceeds the above value, V3 will snap to “low” and V4 to
“high”. Therefore, when

Lin2 > (Liny + Iny) (C.1)
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Figure C.4: Two-input current Schmitt trigger with adjustable hysteresis.

the transistor M7 is OFF and M, is ON. The current through Mg is Linz + Iiy, if Liny
exceeds this value, the circuit comes back to the starting state where V3 is “high”
and V4 is “low” (M7 is ON and M; is OFF). Therefore, the following condition
will change the state of the Schmitt trigger :

Iinl > (I:nz + Ihy) (C-z)

From (C.1) and (C.2) we conclude that the following conditions will change the
state of the Schmitt trigger:

Iimi = L2 < —Ipy
Liny = Lin2 > Iy, (C.3)

As long as we consider the difference of the two input currents, [;;; — I;n2, equa-

tion( C.3) indicates that the hysteresis is equal to I4,, and is independent of pro-
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Figure C.5: A class B current comparator.

cess parameters, transistor dimensions and power supplies. The only requirement

is matching of all transistors in current mirrors.
IV - Current Comparator

The current comparator reported in [56] is shown in Figure C.5. Transistors M,, My,
and Mg have W,,/L, = 3u/1.2u, and transistors M, M3, and M; have W, /L, =
9u/1.2u. M, and M; form a class B voltage buffer and M; to M form two inverting
amplifiers, each with gain —gn/gas. Iin is the input current. When I, is positive,
V(1) is pulled high. This is amplified by M; and M,, causing V(2) to go low. Vgs:
and Vgs, are negative, turning M; off and M, on. When [;, changes sign, there is
insufficient gate drive for the buffer to supply I;,, thus V(1) is temporarily a high
impedance node. When I;, is negative, V(1) is pulled low and V(2) is high, turning
M, off and M, on.

Another alternative is a class AB current comparator proposed in [57]. In the
circuit of Figure C.5 the size of dead region is determined by the threshold voltages
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Figure C.6: A class AB current comparator.

of M; and M, which could be a large value. In Figure C.6, M; and M, are biased
in class AB operation with gate-source voltages of VB1 and VB2, respectively. As
the magnitudes of VB1 and VB2 are increased towards the magnitude of Vr; and
Vr2, the dead-band in the transfer characteristic of the buffer is reduced. This
results in smaller voltage swings at V(1) and V(2) and hence faster response times.
Transistors MB1 and MB2 develop the voltage VB1 and VB2. Because the bulk-
source voltage for MB1 and MB2 is less than that for M; and M,, the threshold
voltages are also lower due to the body effect. Since K’ and Vr are different for
NMOS and PMOS, the bias currents are different for MB1 and MB2. IB1A and
IB1B are used to bias MB1, and IB2A and IB2B are used to bias MB2. Ideally,
IB1A=IB1B and IB2A=IB2B.
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