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Abstract 

Cornplex systems consist of a core of digital signai processing (DSP) baffered 

from external envkonments by analog interface Cucuitry. '%nalog sampled data* 

circuits can be predominantly fomd in the data conversion portions of these mixed- 

mode integrated clcaits. Delta-Sigma modulator is an example. Analog sampled 

data circuits also perform signal processing tasks, and are used in many fütering 

applications. S wit ched-capacitor , and swi tched-ment circuits are the examples of 

t hese applications. 

Sampled data circuits are dual tirne systems that contain a rapidly varying 

clock and a slowly varying input signal. As a result, most of the simulation effort 

is dedicated to the transient analysis at switehing instants, where information is 

usually not needed. The important required information is the response of the 

circuit at the end of the clock period, when it reaches the steady state. Searehing 

for a method that can provide the solution of the &cuit at disaete instants of t h e  

led to t h  Usampled data simulation3 technique [l]. 

This thesis looks at diffaent aspects of analog sampled data systems. I t  extends 

the idea of sampled data simulation to provide an accurate and efficient method 

of compating the time domain sensitivity of linear circuits. The method is applied 

to sensitivity analysis of an important class of sampled data systems, Delta-Sigma 

modulators. We also provide efficient methods for analysis of switched networks, 

including the gronp delay and group delay sensitivity of periodically switched lin- 

ear networks in general, and harmonic dis tor tion of swit ched-current circuit s in 

particular . Sources of distortion in switched-curent circuits are examined, and 

both upper and lower bounds are derived on total hannonic distortion of a current 

memory cd. 
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Chapter 1 

Introduction 

Analog sampled data systems are nsed as füters and &O as interfaces between 

analog and digital circuits. Cornplex systems consist of a core of digital signal 

processing (DSP), buffered from external envkonments by analog interface circuitry. 

It is now becoming common to h d  a single mixed analog and digital (mixed- 

mode) integrated circuit that contains both the digital signal processor and all the 

interface circuits required to interact with the outside world, which is inherently 

analog (Fig.l.1). It is in the data conversion portions of these eed-mode  chips 

that analog sampled data circuits can be predominantly found. Analog sampied 

data systems also perform signal processing tasks. As a result, they are used in 

many filtering applications, such as anti-aliasing füter in Fig. 1.1. 

Switched-capacitor circuits, switched-ment circuits, and Delta-Sigma modu- 

Iators are examples of sampled data sys tems. The switched-capacitor technique 

eliminates resistors kom the design of analog filtas. It is based on the idea that 

a periodicdy switched capacitor can be used to simulate a resistor (provided that 

the swit ching fkequency is much higher t han the signal fieqnencies of interes t ) . 



Analog Sampled Data Circuits 

Figure 1.1: A 

S witched-Capacitor Delta- 

L 

Signa 
Modulator 

mixed analog and digital (mixed-mode) 

S wit ched-current circuits do no t require linear floating 

integrated chcuit. 

capacitors, and can be 

Out 

integrated in a standard digital CMOS process. This dows  integrated circuit 

manufacturers to implement both digital and analog circuits on the same chip 

with the existing low-cost CMOS processes. Operating in the current mode. and 

eliminating the need for a large voltage swing, make the switched-current technique 

suitable for low voltage applications. 

Delt a-Sigma modulators are important blocks of oversampled A/D convert- 

ers. Oversamplùig A/D converters depend on relatively simple and modest analog 

circuitry. They are less insensitive to circuit imperfections and component mis- 

matches, since they usually employ a simple two-level quantizer embedded within 

a feedback loop. 

If analog sampled data systems are to be widely used in signal processing and 

data conversion, they require a suite of cornputer aided design (CAD) bols to 
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simulate the circuits, perform the sensitivity analysis, and automate the design - 

processes. General purpose analog simulation toolç, such as SPICE [2], can be used 

for sixhation of these Wrcuits. However, these tools are provided for simulation 

of general nonlinear circuits and do not simdtaneonsly provide both the accuracy 

and speed necessazy for simulation of specialized circuits. 

Sampled data circuits are dual time systems that contain a rapidly varying 

dock and a slowly varyiag input signal. As a result, most of the simulation effort 

is dedicated to the transient analysis at switching instants, where information is 

usudy not needed. Sampled data systems are usually working at freqnencies that 

d o w  the output become stable. The important required information is therefore 

the response of the circuit a t  the end of the dock period, when it reaches the 

steady state between the switching instants. Consider, for instance, a Delta-Sigma 

modulator for which we collect the output data at the end of the phase, when mod- 

dator reaches the steady state, and take FFT of the data to obtain the frequency 

spectrum. Searching for a method that can provide the solution of the circuit at 

discrete instants of time led to the "sampled data simulation" technique proposed 

in (11. Sampled data simulation (SDS) is an efficient, accurate, and stable method 

for transient analysis of lumped hear  time invariant &cuits. I t  generates some 

constant matrices before the simulation, and provides the transient solution at each 

time point by performing only one matrix-vector multiplication. The time points 

are equally spaced, and can be chosen arbitrarily regardless of the circuit tirne 

constants. 

We extend the idea of sampled data simulation to compute the t h e  domain 

sensitivity of h e a r  circuits (switched and unswitched). There are several reasons 

for the importance of sensitivity in analog circuit design. In addition to providing 

more insight into the behavior of a physical system, sensitivity function plays an 



important part in the design and optimization of reliable &cuits. The circuit 

manufacturing process results in the spread of parameter values, knom as the 

element tolerances. Also, during the lifetime of a mannfactmed circuit, parameters 

are subject to change throagh aging, and environment dects, such as temperature 

and humidity. A sensitivity analysis is therefore required to find ont which circuit 

parameters are critical, i-e. the network sensitivity with respect to them is very 

large. 

Group delay is another aspect of analog sampled data filters that is analyzed 

in this thesis. In filter design, the magnitude response requirements are normally 

considered, and the corresponding phase response is ignored. This is because the 

reduction of antialiasing by stopband attenuation is the f ist  issue, and phase infor- 

mation can be corrected later. For some applications, such as speech transmission, 

this consideration is sufficient as the hwnan ear is insensitive to the phase shift. For 

video applications, however, the distortion caused by system nonlinear phase re- 

sponse is unacceptable. A fast and accurate method for the computation of group 

delay and the group dday sensitivity of periodically switched linear networks is 

presented in this thesis. 

1.1 Thesis Outline 

The objectives of this thesis are: (i) to extend the idea of sampled data simulation 

to compute the t h e  domain sensitivity of linear circuits (switched and unswitched), 

and a clam of nonlinear circuits- Delta-Sigma modulators, (ii) to provide efficient 

method for analysis of group delay and its sensitivity in periodicdy switched linear 

networks, (iii) to compute the harmonie distortion in switched-current circuits. 

Fig.l.2 shows the varions classes of analog sampled data circuits, and the difkrent 
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types of analysis considered in this thesis. 

Switched-Current Switched-Capacitor Delta- Sigma Modulator 

v 

Figure 1.2: The outline of the thesis. 

Each chapter of this thesis looks at one aspect of sampled data systems. There- 

fore, each chapter starts with its own introduction in the first section? continued by 

new material in subsequent sections as m y  contribution to each topic. 

Chapter 2 is dedicated to time domain sensitivity of linear circuits using Sam- 

pled data simulation. It presents a new method which is accurate, because no 

approximation is made, and efficient because some parts of the computations are 

performed only once, in a pre-processing step before simulation starts. We discuss 

the applications of the method in both sensitivity and adjoint networks, and illus- 

trate the theory with sorne examples. A program, called SDSEN, was written based 

on the theory developed in this chapter, and applied to some examples. Extension 

of sampled data simulation to the case of inconsistent initial conditions is another 

sub ject presented in this chap ter. 

Chapter 3 employs the theory implemented in chapter 2 and applies it to an 

important ckss of sampled data circuits, Delta-Sigma modulators. This chapter 



presents the formulation of sensitivity nehrorks for Delta-Sigma modnlators, h m  

which the sensitivity of the output magnitude with respect to any circuit elements 

is obtained. The method can be applied to al l  types/configurations of modulators 

if all elements, except the cornparator, are linear. We establish a set of equatims 

for the sensitivity network by taking the differential of the original network with 

respect to element h, and solve them in pardel to obtain the sensitivity of all nodes 

with respect to that element value. During the simulation we also need sensitivity 

of the output of the comparator with respect to its input. We distinguish between 

the undocked and clocked comparators to explain th& behavior. 

Chapter 4 presents a fast and accurate method for the caldation of group delay 

and group delay sensitivity of periodically switched linear networks. Group delay 

is an important measure used in the design of preusion filters. In a distortionless 

filter, the magnitude of the transfer h c t i o n  and the group delay must be flat 

over the passband. Since the method uses the MNA formulation of the circuit, 

and considers all types of h e a .  elements, it can be used to simulate the switched- 

capacitor networks when the switches are replaced by th& resistances, and the 

operationd amplifiers have fiequency-dependent as well as the other nonideal linear 

charac t eris tics. Switched-ment networks are anot her application, as long as the 

MOS transistors are modeled by h e a r  components such as dependent sources, 

capacitors, and resistors. A program, cded  GRPSN, was written based on the 

theory developed in this chapter, and applied to some examp1es. 

Chap ter 5 introduces some nonfiltering applications of switched-current circuits. 

S wi t ched-cnrrent is a relatively new analog sarnpled-data technique that promises 

to overcome the problems associated with switched-capacitor circuits. Althongh 

fdtering applications have received most of the attention among switched-current 

circuits, there are other analog signal processing tasks that can be performed with 



CHAPTER 1. INTRODUCTION 7 

the same fabrication teehnology and circnit elements as those used in switched- 

current filters. In this chapter, we present some non-filtering applications includhg 

a curent-controiled osdator, a modulator and a fall-wave rectifier. We also pro- 

pose a switched-ment oversampling Delta-Sigma A/D converter. 

Chapter 6 focuses on the distortion analysis of switched-ment networks. Har- 

monic distortion in swit ched-current circuits is more severe t han in swit ched-capatitor 

networks. Clock feed through and mismatch in the transistor threshold voltage are 

two major sources of distortion in switched-ment circuits. These sources are in- 

troduced in this chapter, and their contributions to distortion are examined. We 

also present a general expression for the total harmonic distortion (THD) of non- 

Linear circuits. Using this expression, we impose both upper and Iowa bounds on 

the THD of a switched-ment memory c d .  

Chapter 7 summarizes the important aspects of the work performed, and gives 

fiiture research directions. 

The thesis is conduded with three appendices. Appendix-A explains the nu- 

merical Laplace inversion and the stepping algorithm used i .  compntation of the 

constant matrices required in SDSEN. Appenàix-B presents the intermediate matrix 

manipulations used in the computation of group delay and group delay sensitivity. 

Appendix-C explains some selected swit ched-cunent building blocks t hat are used 

to impiement the non-filtering applications. 



Chapter 2 

Time Domain Sensitivity of 

Linear Circuits Using Sampled 

Data Simulation 

In the design of any systern, it is important to know the &ect of the variations 

of system parameters on the system's performance. In the case of lumped linear 

time invariant networks, a precise measme of this d e c t  can be expressed in terxns 

of the sensitivity to parameter values. The parameter can be a circuit element, 

su& as a resistor or capacitor, or any other characteristic, such as the gain of the 

operational amplifier. There are several reasons for the importance of sensitivity in 

analog &cuit design : 

1. The study of the network sensitivity enhances insight into circuit behavior. By 

dividing the circuit parameters into aitical and non-critical ones, an effective 

method is provided to simplify circuit models for efficient circuit analysis. 
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2. Network sensitiviky plays an important part in the design and optimization of 

reliable circuits.  The objective of optïmïzation is to minimbe the discrepancy 

between the actnal and the desired circuit behavior. 

3. Durhg the lifetime of a manufactnred circuit, parameters are snbject to 

change through aging, and environment effiects, such as temperature and hu- 

midity. A sensitivity analysis is therefore requked to find out which circuit 

parameters are critical. 

4. The spread of parameter values resdting Ecom the circuit manufactnring pro- 

cess requiFes the knowledge of the circuit performance in a certain range of 

parameter dues, knom as the tolerance range. This generates the need for 

tolerance analysis . 

5. Knowledge of the network sensitivity can be used as a basis for comparing 

different circuits. It helps the &cuit designer in sdecting the proper circuit 

for a spedied application. 

Various sensitivity definitions of hear networks were introduced in the ke- 

quency domain [3]. In this chapter, we focus on the time domain sensitivity anal- 

ysis using sampled data simuiation method. An accurate and efficient method of 

computing time domain sensitivity is introduced. The method is accurate because 

no approximation is made, and is computationdy efficient because some parts of 

the computations are performed only once, in a pre-processing step. It is similar 

to SDS in the manner of generating some constant matrices before simulation, and 

then providing the sensitivity at each time point by performing only matrix-vector 

multiplications. 

We apply both sensitiuity network and adjoint netuiork [4-61 approaches to com- 

pute the time domain sensitivity. In the sensitivity network approach, the sensi- 
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tivities of all variables with respect to one element are foand at dl time points. 

In the adjoint network approach, the sensitivities of one variable *th respect to 

all elements are calculated at one time point. The application of the sensitivity 

at one instant of time is in the caldation of -or gradients for linear networks; 

and in the tirne domain sensitivity analysis of objective fanctions used in &cuit 

optimization [3,7]. 

A review of sampled data simulation is given in section 1. Sections 2, 3, and 4 

present my contributions to this topic. In section 2, 1 extend SDS to the case of 

inconsistent initial conditions. In section 3, 1 present the derivations for the time 

domain sensitivity using SDS. In this section, the derivations are for the sensitivity 

network. The adjoint network is discussed in section 4. A program was writ ten in 

MATLAB, based on the theories developed in this chapter. Appendix-A shows the 

algorithms used in this program for computation of the constant matrices in the 

pre-processing step. 

2.1 Sampled Data Simulation of Linear Circuits 

Sampled data s i d a t i o n  (SDS) of linear circuits proposed in [1] is an efficient, 

accurate, stable, and expliut method for the transient analysis of lumped linear 

time invariant circuits. The method formulates a set of finite clifference equations 

in the time domain. The solution of these equations gives the network response at 

fixed and equally spaced discrete instants of time. The fixed t h e  intenml between 

each solution can be chosen arbitrarily and does not depend on the circuit t h e  

constants. The transient solution at each time point reqaires only one matrix- 

vector multiplication. The dgorit hm is a general cornputer oriented formulation 

method that can be applied to any linear circuit. 
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To explain the method, we assume that the hear circuit is formulated using 

Modified Nodal Analysis (MNA) [3,8]: 

where G is the conductance matrix (mxm), C the capautance ma& (m x m) , ~ ( t )  

the input source vector (m x l), x( t )  the itnknown vector (rn x 1) containhg nodal 

voltages and some branch nurents needed for MNA, and a the initial condition 

vector (m x 1). The Laplace transform of (2.1) is 

where R = G + SC is the system matrix. The formal solution of (2.2) is 

The first term on the right-hand side of (2.3) is related to the zero-state response, 

and the second term to the zero-input response of the linear circuit. Withont loss of 

generality, we assume that there is one input source, which is a complex exponential 

w ( t )  = eat. If there is more than one input source, the superposition principle is 

applied to sum the responses due to individual inputs. Taking the inverse Laplace 

transform of (2.3) and considering the circuit response at the first time point t = T' 

where L-' ( 0 )  denotes the inverse Laplace transform. Define the constant matrices 

M and P as 
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P is a vector with dimension m x 1, and M is an m x m matrix. Equations (2.5) 

and (2.6) are formal definitions for the M and P matrices. In practice, as explained 

in the next section, these matrices are compnted numerically by the solutions of 

two system of equations in the tirne domain, i.e. by integrating the equations nvei 

the interval [O, Tl. Rewrite (2.4) txsing (2.5) and (2.6) 

Next, consider the circuit response at the second time point t = 2T. In lumped 

linear networks, any tirne can be selected as the ongin by taking the initial condi- 

tions into account. These initial conditions "reset" the problem so that the next 

calcuiation can start without any reference to previons history. To move the tirne 

origin from t = O to t = T. we must consider x(T)  as the initial conditions, and 

w (t ) = as the input. The response at the end of the second time dot becomes 

In generd, by considering any time instant t = nT + T, the complete response is 

where T is the interval between two subsequent discrete thne points at which the 

response is caldated.  Eq.(2.7) computes the response of the circuit in a sampled 

data manner after equal intervals of tirne as long as the M and P matrices are 

known. These matrices are constant and need to be computed only once, in a 

pre-processing step before simulation starts. 

Sampled data simulation can jump over large thne steps and stdl maintain 

accuracy whereas simulators like SPICE [2,9] must take many s m d  time steps to 

maintain accuracy. In addition, SDS is an explicit method that is not slowed d o m  

by i t erat ions or t h e  s tep control algori t hms . 
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The time step T can be chosen arbitrarily and does not depend on the Qr- 

cuit tirne constants. Thus, if T is larger than the time steps taken by ordinary 

integration methods to solve (2.1), the sampled data simulation method will be 

computationally efficient. This is very evident if the response is needed at many 

time points. Simulation of ovasampled Delta-Sigma modulators is an example of 

such a case. 

2.1.1 Numerical Computation of M and P Matrices 

As suggested by (2.5), the vector P is obtained by setting the initial conditions to 

zero and numerically integrating the c i r d  equations (2.1) over the time i n t d  

[O' Tl. According to (2.6), the matrix M is also obtained by integrating (2.1) while 

the input is an identity mat* (as explained in the next paragraph), over the 

interval [O, Tl, and then postmultiplying the resuit by the matrix C. 

The matrix M can be compnted also by turning all sources off, then considering 

the circuit response due to initiai conditions only, and after a time i n t e r d  T. This 

results in 

As explained in [IO], if we choose x(0-) to be the j-th column of an m x m identity 

rnatrix, then, after integrating over the interval [O, Tl, we obtain x(T)  eqnal to the 

j-th column of M. This suggests that the j-th column of M c m  be calculated 

by setting the input sources to zero and by exciting ody  the j-th initial condition 

(by setting the j-th entry of x(0-) to nnity and all other enhies to zero), and 

numerically integrating the circuit equations (2.1) over the interval [O, Tl. The 

cornplete M matrix is obtained by repeating this process for each column. The 
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reader is referred to [Il] for more details about compntations of M and P matrices, 

especially when the circuit is formulateci using the MNA method. 

The compntation of M and P requires the t h e  domain solution of ( 2 4 ,  and 

hence a numerical integration method for the solution of a set of h e a r  diffaen- 

tial equations is required. We use numerical Laplace inversion [12-151 because it 

provides very accnrate results and is equivalent to an absolutely stable, very high 

orda integration method. As shown in [13], the numerical Laplace inversion cor- 

rectly inverts the f i s t  p + 1 terms of the Taylor series expansion of the time domain 

response of the network, and is equivalent to an integration method of order p 

(in our work we used p = 18). If a smail time step h is used at each tirne step. 

then the total tmcat ion error is proportional to h P  and can be made arbitrarily 

smd.  O ther integration methods such as the Backward DifZerentiation Formula 

and Runge-Kutta method (31 are normdy lower order methods ( p  < 5), and can 

not provide the same level of accuracy. Farthermore, finite precision arithmetic on 

a digital computer limits the smdest time step that can be used with low order 

int egration met hods and ultimately the accuracy of the computed resuits. 

Computation Cost 

A computer program, cded MPgen, was written in MATLAB [16] to compute 

M and P matrices. The program accepts the circuit matrices G and C, and the 

time intervai T, then generates the M and P matrices. MPgen proceeds with the 

stepping algorithm [3] that is explained in AppendLr-A. The matrix inversions indi- 

cated in (2.5) and (2.6) are pdormed by LU decompositions followed by forward- 

backward substitutions. The computation cost is of order 0 ( r n 3 / 3 )  [17]. However, 

the computation can be peâormed in sparse with the cost of 0(m1-1-'5) [18]. 
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The order of integration used in MPgen is 18, and the local truncation errot is 

set to IO-', equivaient to 180 dB simulation accnracy per time step. The numerical 

Laplace inversion performed in MPgen reqnires complex arithmetic as opposed to 

real arithmetic in ordinary integration methods, and reqaires the solution of the 

network at 5 frequency points for each integration tirne step. As a result, the cost 

is usually larger than ordinary integration methods. However, this higher cost caa 

be tolerated because of the accuracy we obtain, and because the calculation of the 

M and P matrices is needed only once in a pre-processing step. before simulation 

starts. 

2.2 Inconsistent Initial Condit ions 

In some situations, especidy in networks with ideal switches, it may happen that 

the initial conditions before switdiing and just after switching are not the same. 

Consider the network in Fig. 2.1, where the capautor on the left is initially charged 

to 2V and the capacitor on the right has no charge. When the switch is closed, these 

are simultaneously two différent voltages on the node: 2V fiom the left capacitor 

and OV fiom the right one. This is a case of inconsistent initial conditions [M. 201. 

In this section, we propose an extension to SDS by generating the transition 

matrices needed to integrate the circuit equations from nT- to nT+. In particular, 

we are looking for the matrix Mo and the vector Po that provide the following 

relation at each instant nT, (n = 0,1,. . . , N): 

If Mo and Po are computed once at the beginning of the simulation, then the 



CKAPTER 2. T .  DOMALN SENSITMTY ANALYSIS USLNG SDS 16 

Figure 2.1: Network wit h inconsistent initial voltages. 

inconsistent initial conditions at each instant nT, (n = 0,1,. . . , N) can be handled 

very quickly by performing only a matrix-vector multiplication. 

SDS provides the t h e  domain response at either (O-, 7'- . . . NT-) or (O+ 

T+, ..., NTi). This means that the method can not detect the presence of Dirac 

impulses at the time instances nT. However, it considers the &ect of impulses in 

the computation of responses at the next time point. To illustrate this, consider 

the simple RC circuit in Fig. 2.2 with zero initial condition, and the input of Dirac 

impulses applied at  two different time points, r(t ) = 6( t )  + 6(t - 3T). The andytical 

solut ion of the k c u i  t provides 

where u ( e )  denotes the step function. The output v-(t )  at both nT- and nTf are 

shown in Table 2.1. The effects of Dkac impulses can be seen as the diffwences 

between vmt(O-) and vmt(O+), and v 4 3 T d )  and vd(3T+). 

To simulate the circuit using the sampled data simulation technique, we consider 
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Figare 2.2: RC circuit with Dirac impulse input. 

Table 2.1: The output of RC circuit at a few time points. 

the modified nodal formulation of the circuit, and compute the M and P matrices. 

T h e  

O 

Analytical 

O 

Analy tical 

1 

SDS 

O 
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The time domain response based on (2.7) becomes 

where. because of the Dirac impulse inpnts at t = O and t = 32'. 

Assuming zero initial condition, 

in the third column of Table 2.1. 

1 i f n = O o r n = 3 T  

O otherwise 

[2.9) genaates the time domain responses Iisted 

The response at t = O is vaüd for O-, not for O+. 

Also the response at t = 3T is valid only for 3T-. 

A technique, cded two step method, was proposed in [19] to take into account 

the effects of Dirac impulses and inconsistent initial conditions. In this technique, 

we fkst take a relatively long step forward fiom O- to T-. At this tirne point, 

we have good accuracy for the t h e  domain response, and no Dirac impulse or 

inconsistent initial conditions are present. Neut, we take exactly the same step size 

backward in time fiom T- to Of. The error of this step is very low since we are now 

dealhg with a situation without a Dirac impulse or inconsistent initial conditions. 

With the combination of the "two step" and "SDS" methods, we generate Mo 

and Po, the matrices needed to integrate the circuit eqnations fiom nT- to nT+ in 
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(2.8). First, integrate the circuit equations fkom nT- to (nT f T) 

Then, integrate the equations baclcward fkom (nT + T) to nTf 

Substituting (2.10) into (2.11) yields 

Comparing (2.12) with (2.8) gives 

The matrices M, P, M, and @ are constant. The matrix Mo is therefore constant 

and computed once. Only the last term of Po in (2.14) depends on the time point. 

This is not a big concern because it introduces only a vector-vector addition per 

tirne point. In the special case, when the input is a unit step fimction, Po also 

becomes a constant vector 

A program was written in MATLAB based on the above equations to generate 

Mo and Po for switched linear networks. The program was tested on several circuits 

among which is the circuit in Fig. 2.3. This network was considered in [3] and [19]. 

It has two switches and two equal phases, the elements have unit values, and the 

switching fkequency is 10 Hz. During the first phase, switch 52 is closed and S1 

is open. In the second phase, the positions of the switches are reversed. A unit 
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step input is appiied. The time domain response is given in Fig.2.4. At the start 

of phase 1 (t = 0.1,0.2,. . .)' the network has a loop of capautors and thus a jump 

occurs at the output. To detect these jnmps, ne use the l& and Po matrices. After 

that, we proceed with M and P. For instance, at t = 0.1 s, to detect the jump. we 

compute 

Then. to integrate for the rest of the phase, we compnte 

The solid line in Fig.2.4 shows the response when using the Mo and Po matrices aU 

each switching instants. The dotted line shows the results when we proceed without 

using Mo and Po (i.e. when we discard inconsistent initial conditions). Since the 

use of Mo and Po costs only one rnatrk-vector multiplication, it is advisable to use 

them to obtain more reliable answers. 
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Figure 2.3: S wit ched network with inconsis tent initial conditions. 

Figure 2.4: Unit step response of the network in Fig.2.3 with and without using 

Mo and Po matrices. 
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2.3 Time Domain Sensitivity Using Sensitivity 

Network 

This section presents a new method for compntation of the time domain sensitiv- 

ity of linear networks. It is similar to sampled data simulation in the maMer of 

generating some constant matrices before the sindation, and then providing the 

sensitivi ty at each time point by performing only matnr-vector multiplications. 

The method is accurate because no approximation is made. and efficient because 

most of the computation is performed only once, in a pre-processing step. 

To evaluate the sensitivity of aI.l components of the vector x( t )  with respect to 

a single parameter h, we start £iom the MNA fo rda t ion  ( 2 4 ,  and differentiate 

it with respect to h. 

We assume that h does not depend on the fkequency variable s or the time step T, 
- hJnT = 0. Define thus ,, - ah 

and substitute it in (2.15) 

In (2.16) there are the differentials of z ( t )  and x( t )  with respect to t h e .  Taking 

the Laplace transfonn of this equation, and considering the initial conditions of the 

variables z ( t )  and x( t )  give 
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or 

Eq. (2.17) describes the semitiuity network that is the same as the original netaork 

but with a different right-hand side. The input of the sensitivity network is com- 

posed of the solution of the original network(X) and its initial condition (~ (0 - ) ) .  

Substitnting X fiom (2.3) into (2.17) gives 

dR Z = -R-lER-lW + [-R-l-R-lC + R-1- 
dh ah dC] dh *(O-) -, 

Provides P. 
f 

/ 

Provides M. 

+ "-% .(O-)- 
Provides M 

The first term in (2.18) corresponds to the zero-state response of the sensitivity 

network, and its integral over the interval [O, TI provides the vector P. 

The second and third terms in (2.18) are related to the zero-input response of the 

sensitivity network, and their integral over the interval [O, TI provide the Ms and 

M matrices 
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In the time domain, (2.18) can be written in sampled data maaner as 

Eq42.22) is the core algorithm used in the sensitivity analysis described in this 

section. It can be used to compnte the tirne domain sensitivity in a sampled data 

manna as long as the Ms and P. matrices are known. The computation of P. 

and M., based on (2.19) and (2.20), can be performed simultaneously with the 

computation of P and M, based on (2.5) and (2.6). These matrices are constant, 

and need to be computed only once. It is thedore reasonable to spend extra care 

in th& caldations. The reader is refenred to Appendix-A for the algosthm of 

calculating M. and P. using the n u e c d  Laplace transfonn inversion. A program 

c d e d  MPMPSgen, was written in MATLAB to generate these matrices. 

The accuracy and cost of performing (2.22) are the same as discussed in [Il 

for computing (2.7). I€ the matrices M, M., and P. are known, then the only 

operations required in the sensitivity computation given in (2.22) are two matrix- 

vector mnltiplications and one vector addition for every sample of T seconds. 

To simplify (2.19) and (2.20), we start from the following identity, and clifferen- 

tiate it witk respect to h: 

Substituting (2.23) into (2.19) provides 
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We took the differential operator & out of the bracket because h does not depend 

on the Erequency s or the time step T. The s m c e  vector W is also assumed to 

be independent of h, thus = O. The ma& M. can be similarly simplified by 

snbstituting (2.23) into (2.20) 

Considering (2.24) and (2.25) in (2.22) results in 

It is interesting to note that (2.26) could have been directly derived from (2.7) by 

aesnT differentiating (2.7) with respect to h, and considering = O. Of course, we 

still need to compute the P. and M. matrices by (2.19) and (2.20). 

2.3.1 Example 

We illustrate the procedures developed in the previous section with a simple ex- 

ample. In each step, the analytical solutions in the time domain wi. be given. Of 

course, for any nontrivial network, solutions of M., P., and time domain sensitivi- 

ties must be obtained numericdy with the program MPMPSgen, or the algonthms 

in Appendix-A and the f o d a  presented in the previous section. Consider the RC 



CRAPTER 2. TLME DOMAIN SENSITMTY ANALYSIS USLlVG SDS 26 

circuit shown in Fig.2.5 with the unit step input and zero initial conditions. We 

calculate the t h e  domain sensitivity of the output vI(t) with respect to G1 and C. 

Firs t , we find the analytical solutions. The system equation is 

The Laplace domain output is 

The exact t h e  domain response is 

The derivative with respect to Gl is 

av2 (t ) -- -l [If - 
aGi (Gi + G2)2 C(G + G2) 

Figure 2.5: RC circuit with unit step input. 



CHAPTER 2. TlME D O W  SENSITMTY ANALYSIS USllVG SDS 27 

The derivative with respect to C is 

Fos the element values indicated on Fig.2.5, and assuming the step size of t = T 

where n = 0,1, .  . . , N is the number of t h e  steps. 

Next, we compute v2(nT) and its sensitivities using M, P, M., and P. matrices 

and the recurrence equations of (2.7) and (2.22). 

P = C1 (R-'w) 
If. 

t = T  



CHAPTER 2. TIME D O U  SENSITWITY ANALYSIS USING SDS 28 

To get the time domain response of the circuit at discretized points nT, we use (2.7) 

It is dear that (2.30) generates the same response as indicated in (2.27) at time 

points nT, (n = 0,1,. . . , N). 

To find the sensitivity with respect to G1, we first calculate & and then 

substitute it in (2.19) and (2.20) to obtain the corresponding P. and M. matrices. 

To calculate the t h e  domain sensitivity of d nodes with respect to G1, rewrite 

(2.22) as follows 
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Assuming zero initial conditions for the circuit in Fig. 2.5 and for its sensitivity 

network, Eq.(2.31) generates the same results as that of (2.28) at discretized time 

points nT, (n = 0,1,. . . , N). 

Without going into the details, and following the same procedure, we find the 

following equations for the time domain sensitivity of the network with respect 

Again, assuming zero initiai conditions for the original and the sensitivity networks, 

Eq.(2.32) generates exactly the same r e d t s  as (2.29) at thne points nT. Fig. 2.6 

shows the simulation results for the sensitivity of the output with respect to G1 

and C at a few time points. 
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Figure 2.6: Simulation results for the sensitivity of vp( t )  (a) with respect to Glo 

and (b) with respect to C. 
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2.4 Time Domain Sensitivity Using Adjoint Net- 

work 

The time domain sensitivity of one variable, which is nsnally the single output 4, 
with respect to man3 variable elements at one instant of tirne (t = t r )  is con- 

sidered in this section. The application of sensitivity at one instant of tirne is in 

the calcdation of errot gradients for linear networks, and in the tirne domain sen- 

sitivity analysis of objective functions nsed in circuit optimization [3,5,7]. Ano ther 

application is in the time domain sensitivity andysis of swïtched networks at the 

end of each phase when the circuit does not reach the steady state. Transient anal- 

ysis of rise/fd time in digital circuits and transmission lines are the other types of 

applications. 

In the frequency domain, the application of adjoint network (sometimes c d e d  

transpose network) in the calcdation of sensitivity is well known [3,5]. The pr- 

cedure for computing fiequency domain sensitivity using an adjoint network is 

siimmarized as follows: 

1- Solve the given system of linear equations RX = W. 

II- Solve the adjoint network defbed by RtXa = -d where d is a constant vector 

that relates the output 4 to the nodal vector X, 9 = dt X. 

III- For each parameter hi, form 2, and insert this in the following equation to 
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As the vector X and Xa are independent of the parameters hi, Eq.(2.33) reqnires 

the solution of only two sets of algebraic equations (in steps 1 and II), irrespective 

of the number of parameters hi. 

In the time domain, the sensitivity is computed by the procedure q l a ined  

in [7] as follows: 

1- Perfom a transient analysis of the original network N for the time intenml 

t  = [O, t f ] .  Obtain i(t) or v ( t )  for resistive , V(t) for capacïtive, and ;(t) for 

inductive branches. 

2- Construct the adjoint network N according to the fact that the adjoint network 

of R, L, and C are nnchanged, and the adjoint network of dependent sources 

are dependent sources with a new configuration and transfer h c t i o n  given 

in [7]. Set ali initial conditions and all independent sources equal to zero, and 

apply a curent source of -6(t) between the output nodes. 

3- Perform a transient analysis of the adjoint network 2 for the time interval 

7 = [O ,  t f l t  where r = t f  - t (tirne reversal). Obtain ;(T) or î(r) for resistive 

branches, û ( r )  for capacitive, and ;(r) for inductive branches. 

4- Evaluate the following equations to find the sensitivity of the output with 

respect to R, and C (for other elements refer to [7]). 
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2.4.1 Adjoint Network in Time Versus Ekequency Domain 

In the tirne domain, the adjoint network is obtained from a more general p ~ c i p l e  

known as Tellegen's theorem [?,2l, 221, whereas in the freqnency domain, the adjoint 

network can be obtained f ier  some matrix manipulations [3]. The applications of 

the adjoint network in these two domains were derived separately without making 

any explicit link befxreen them. We establish here a one-by-one correspondence 

between these two applications as shown in Table 2.2. Based on the relations shown 

in this table, the adjoint netwotk can be established in either the time or fiequency 

domain, and findy, can be transformed to the other one, if necessary. Considdg 

Frequency Domain 

step 1: Solving the original system 

step II : Creating the transpose system 

of RtXa = -d 

step III : Multiplication in the 

fiequency domain 

step III : If the parameter h is a 

frequency dependent element , 
produces a s 

step 1: Solving the original system 

step 2 : Constructing the adjoint network 

fi and spplying a source of -b(t) 
- - - - - - 

.step 3 : The solution of the transpose 

system reversed in tirne, needed for the 

convolution involved in step 4 

step 4 : Convolution of iR(t) and iR(t) 

for resistive elements,and convolut ion of 

uc(t) and ûc(t) for capacitive elements 

step 4 : If the parameter h is a frequency 

dependent element, use the derivative of 

the voltage, ù(t) 

Table 2.2: Relationship between the adjoint methods in time and frequency do- 

mains. 
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this, and by applying sampled data simulation, we introduce two approaches for 

time domain sensitivity of hear networks nsing an adjoint netaork. 

2.4.2 Approach 1 : Convolution 

The formulation of the adjoint nefmork in the fiequency domain is straightforward. 

It performs a mdtiplication in the fiequency domain (step III) which can be trans- 

lated to a convolution in the time domain. Since the sampled data simulation is an 

accurate and efficient method for computing the circuit response in the time do- 

main. we transform the fiequency domain sensitivity analysis into the time domain 

as follows : 

1- Solve the original system of eqnations ~ x ( t )  + CY = w(t) in the time domain 

using P and M matrices 

where P and M are given by (2.5) and (2.6). This step is equivalent to solving 

RX = W in frequency domain. 

*inthetimedomaintoget 2- Solve the system ofequations Gy(t)+C d, = dt 

the solution of y(t)  = y = x( t )  

where M is the same as in the previous step, and 

We need x(t ) to compnte the sensitivity with respect to kequency dependent 

elements like capacitors and inductors. 
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3- Solve the hampose system of GtxO(t) + C'V = -dJ(t) in the time domain 

which is equivalent to the solution of the transpose system RtXa = -d in 

the freqnency domain. 

where, because of the Dirac impulse input, 

1 i f n = 0  

O otherwise 

and Mt and Pa are given by 

a tm 4- Evaluate the equation F ( s )  = 8 = (X ) ahiX 

= transpose of M 
t = T  

in the time domain nsing 

discrete-the convolution. For instance, if hi is a conductance appearing at 

col- #1 and row #1 of R 

If hi is a capacitor appearing at columa #1 and row #1 of R 

F ( s )  = XF s Xl 
N 

f ( N T )  = xY(NT) $ x l ( N T )  = zY(mT)I1(NT - BT) .  
m=O 
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Since we are interested in the sensitivity at one instant in t h e ,  the above convolu- 

tiom are evaluated at only that time point (NT). The cornpntation cost depends 

on N. If we do not consider the steady state, and concentrate only on the tran- 

sient response of the circuit and its sensitivity, N is normdy a s m d  number. In 

switched networks, if one is interested in the t h e  domain analysis within each 

phase, N codd be l e s  than 10. 

The drawback of this approach is that we are convolving the samples of two 

signals zl and x: to generate the time domain equivalent of the multiplication 

Xr(s )  Xl(s) in the Laplace domain. This is accurate only if the original analog 

signals are sampled at a rate that is twice the maximum frequency component of the 

signals. O therwise, some mors are enco~tered  in the discrete-time convolution 

due to sampling. Another minor drawback may be the need for memory storage 

for the circuit response fkom O to NT for the purpose of convolution. 

2.4.3 Approach II : Numerical Laplace Transform Inver- 

sion 

This approach is basically a translation of the adjoint method from the frequency 

domain into the time domain. Assume X to be the solution of the original network 

in the frequency domain 

R X = W ,  

and Xa to be the solution of the adjoint network 

Rt Xa = -d, 

where d is a selector vector defining the output q5 

4 = dt X. 
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Also assume m to be the size of the system matrix R, and 1 the nnmber of pa- 

rameters hi with respect to which the sensitivities are compated. Dehe rnatrix Q 

as 

Since we are interested in the sensitivities at only one tirne point, t = tft  they can 

be compnted using the numerical Laplace inversion 

The numerical Laplace inversion has to be performed separately for each row of 

Q X. Each entry i in Pw now contains the time domain sensitivity of the output 

6 with respect to each parameter hi at a fked time point t = tt. 

Comparing to Approach 1, the above proceeds contkiuously in tirne, and does 

no t include discrete time convolution. Ln addition, all comput ations are performed 

in the forward direction in tirne. This may reduce the memory space requirement 

because there is no need to store the whole response of the circuit (or its adjoint) 

from O to t f .  



Chapter 3 

Analysis and Sensitivity of 

Delta-Sigma Modulator 

An obvious application of the method developed in chapter 2 is in the sensitivity 

analysis of Delta-Sigma Modulators (DSM). Due to the presence of a comparator, 

which is a nonlinear element, the sensitivity analysis of DSM can not be performed 

directly in the fkequency domain. Instead, we apply the method of chapter 2 

(sensitivity network) to do a fast sensitivity analysis in the tirne domain, and h d y  

transfer the results into the frequency domain by means of the FFT. 

A brief review of DSM is given in section 1. The reader is referred to [23-281 

for more details. Analysis of a second-order DSM using sampled data simulation 

is discussed in section 2. My contribution to this topic, the sensitivity analysis 

of a DSM, is presented in section 3, where 1 derive the sensitivity network for 

the DSM, and distinguish between undocked and clocked comparators to explain 

the sensitivity of the comparator output with respect to its input. A discussion 

about the incremental and differentid sensitivity is &O given in section 3. The 
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derivations, althongh explained on a specific &cuit, are general and can be applied 

to all types/codgurations of modulators if all elements, except the comparator, 

are linear. 

3.1 Oversampled Delta-Sigma A/D Converters 

Wi t h the emergence of digital signal processing applications, t here is an increasing 

demand for high resolntion on-chip A/D converters. Conventional A/D converters, 

which sample and quantize the input signal at  the Nyqnist rate, have attributes that 

make it difbcult to implement in fine-1Ùie VLSI technoIogy. They need sharp cutoff 

analog filters, high precision analog components. and they s&er kom increased 

noise levels due to high circuit densities. Oversampling A/D converters: on the 

ot her hand, depend on relatively simple and modest analog circuitry. They combine 

high sampling rates with negative feedback in order to trade off resolution in time 

for resolution in amplitude. Oversampled A/D converters are insensitive to circuit 

imperfections and component mismatch, since they nsudy employ a simple tw* 

level quantizer embedded within a feedback loop [26,27]. 

The basic stnicture of the oversarnpled Delta-Sigma A/D converter consists of 

four blocks: the input anti-aliasing analog fdter, the Delta-Sigma modulator, the 

decimator, and a digit al low pass filter. The input anti-aliasing fdter is a non-critical 

Iow-order passive filter whose cutoff fkequency is set a t  some fiequency far above the 

Nyquist rate. The Delta-Sigma modulator performs two important fonctions: one 

is to modulate the band-limited analog input signal into a one-bit digital code at a 

fiequency much higher than the Nyquist rate. The other h c t i o n  is to noise-shape 

the quantbation noise and t r a d e r  most of its energy to high frequencies. The 

decimator converts the low resolution high bit rate signal to the high resolution low 
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bit rate signal. Findy, the digital filter removes out-of-band quantization noise. 

The decimator and the digital fdter are umdy combined into a single digitd circuit, 

where the digital filter cornes first to snppress the high fiequency noise before doing 

decimation. 

A second-osder modulator is shown in Fig. 3.1-(a). The input analog signal 

x(t) is sampled at the sampling frequency, fa, much higher than the signal Nyquist 

rate. The ratio of the sampling Bequency to Nyquist rate is called the oversampling 

ratio M 

A quantizer with only h o  levels is employed to avoid the distortion generated by 

step-size mismatch in multibit quantizers. The integrators force the average of the 

error signai e( t )  to be zero. This error signal resdts fkom subtraction of the output 

signal from the input. 

To analyze the operation of the second-order SDM,we assume that the quanti- 

zation noise is uncorrelated with the input signal. In such a case, the modulator 

can be Iinearized as shown in Fig. 3.1-(b) . In this model, each integrator is replaced 

by a z-domain Fonaard Euler non-inverting integrator, Q(z) is the additive quan- 

tization noise, and the delay cell in the feedback path represents the latch in the 

output of the quantizer. In this model, 

where Fw(z) is the signal transfer fnnction, and F'(z) is the noise transfer function. 

If the gains of the integrators are Ki and Kz, and the gain of DAC is K3, the 

following expressions can be derived for Fw(z) and FQ(s) : 
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p =p p =n.-.d =-  
t -Bit 

+ y(nT) 

1 - Bit 
a DAC - 

Figure 3.1: (a) Block diagram of a second-order Delta-Sigma moddator, (b) Lin- 

earized mode1 of modulator. 

kg(%) = 
Ki Ka K3z-' Hz ( r )  + Kz K3z-l H(z) + 1 

where H ( r )  = -. In practice, Fw(t) is a lowpass filter with unity gain in 

the passband. In contrast, FQ(z) has a highpass behavior, effectively attenuating 

the quantization noise in the modulator passband at the expense of amplifying the 

quantization noise at higher fiequemies. 

The maximum in-band signal-tcmoise ratio (SNI?!,,-) of an ideal second-order 

DSM is approximately expressed by [28] : 

where M is the oversampling ratio. For an input signal of lOkHz ( fN is SOkHz), 



CHAPTER 3. ANALYSIS AND S E N S I T n / I Y  OF DSM 42 

and with an oversampling ratio of 128 (fs = 2.56MHz), the SNR is 92dB, equiv- 

dent to 15 bits of resolntion. In theory, the SNR can be increased without limit 

by increasing the oversampling ratio. However, the higher samphg fiequency is 

lunited in practice by the &cuit fiequency response. In addition, the total noise 

is the s m a t i o n  of the in-band quantkation noise and in-band noise coming fkom 

other error sources, sach as thermal noise, fiicker noise, and dock feed through. 

The non-linearity of the circuit also limits the signal dynamic range, thus limiting 

the SNR. 

3.2 Sampled Data Simulation of Delta-Sigma Mod- 

ulat or 

As explained in [l] , sampled data simulation, although developed for linear circuits, 

can be applied to a restricted set of nonlinear elements whose characteristics change 

ody at switching instants. The change in characteristics could include a change of 

the value (resistance, capacitance etc.), or a change of topology. Examples of such 

nonlinear elements are single and multibit quantizers that are used as analog to 

digital converters in oversampled D SMs. These circuits are extemdy clocked, and 

their output changes only at the switching instants based on th& input at that 

tirne. 

A second-order continuous-time oversampled DSM [29] is shown in Fig. 3.2. It is 

partitioned into the linear and nonlinear blocks. Sampled data simulation proceeds 

by calculating the output of the lùiear block after one dock cycle, updating the 

state of the comparator based on the output of the h e a r  block and then repeating 

the process for the next dock cycle. The output of the linear block is needed only 
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Figure 3.2: Second-order continuons-time Delta-Sigma modulator 

at the clock edges when the quantizer samples its input. In between the clock 

edges, the output of the linear block changes, but does not affect the operation of 

the overd circuit. Since the output of the linear block is needed only at the dock 

instants, sampled data simulation is used. During s i d a t i o n  we have two types of 

inputs to the linear block: the primary input, which is the signal to be converted, 

and the feedback fiom the quantizer. For theoretical studies, the primary input is 

considered to be a sinusoidal function. The feedback signals are constant over a 

dock cycle and can be treated as a step input for the clock duration. 

The MNA formulation of the linear bloc& in Fig.3 -2 provides 

R X = W ,  where R = G + s C .  

The linear block is stimuiated by two inputs: the primary input Aocos(wot), and the 

feedback from quantizer (which is a step function). These inputs are considered in 

separate source vectors Win*, and Wl . The M and P matrices needed for sampled 
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data simulation are 

where T is the sarnpling ~eriod. The linear block operates on the primary input 

and the feedback signals, and provides the output 4(nT) to be applied to the 

comparator. The output of the comparator y(nT) changes only at the nsing (or 

f a g )  edges of the external clock, and remains at the same level u t i l  the next 

edge of the clock. 

The following sarnpled data equation determines the time domain response of the 

linear block 

x(nT + T) = Mx(nT) + Real (P, gWonT ) + KI Y ( ~ T ) -  

After each clock cycle, the state of the comparator is updated based on the output 

of the linear block. The comparator then generates the feedback signais, and the 

process is repeated for the next dock cycle. 

The Delta-Sigma circuit in Fig. 3.2 was s i d a t e d  considering a dock eequency 

of lMHz with equal phase widths, and the input frequency of lkaz with 0.6V 

peak to peak amplitude. It took 3 minutes CPU execution t h e  on a SPARClO 

Sun workstation to simdate the modulator for 74k dock cycles. The spectrum at 
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the output of the moddator is shown in Fig. 3.3. The resnlts were obtained by 

simdating the circuit for 74k dock cycles, discarding the fist 10k data points to 

remove any circuit transients, and performing a Fast Fonrier Transform(FFT) on 

the remaining 64k data points. Discarding the first 10K data points ensures that all 

the transients are passed, because it is equivalent to ignoring the circuit response 

fiom O to lOmSec while the circuit t h e  constants are around pSec. 

For cornparison, the circuit of Fig.3.2 was also simdated using HSPICE. To 

make the circuit similar to what was simulated nsing sampled data simulation. all 

elements were considered ideal, and defined by behavioral models. The latch circuit 

lnrJut F w e w  [Hz) 

Figure 3.3: DSM output spectrum for a 1 lcHz sinusoidal input. 
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in the quantizer was also designed osing a few ideal mitches. It took 14 hours CPU 

execution time on the same machine to simulate the moddator for 74k clock cycles. 

The complete SNR cume vs. input amplitude is shown in Fig. 3.4 for 20 different 

input amplitudes. A 4 kHz bandwidth was assmned for SNR calculations. This 

SNR cnrve needs 20 simulations of the Delta-Sigma moddator one for each input 

amplitude. Each simulation is for 74k clock cycles. This is an expensive task for 

general purpose simulators like SPICE [2,9]. Since sampled data simulation is 

a very fast method, it can provide the SNR cuve in less than 45 minutes CPU 

execution time on a SPARC-10 Sun workstation. 

-60 -50 -40 -30 -20 -10 O 
Relative Input Ampliide [dB] 

Figure 3.4: Signal to noise ratio vs. input amplitude for the DSM in Fig. 3.2. 
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Modulat ors 

Sampled data simulation provides a fast and accnrate method of caldating the 

SNR m e  for a Delta-Sigma moduiator when id elements are linear except the 

comparator. The method allows us to repeat the simulation of the circuit several 

times, each time with an inerement in one of the element valaes. The new circuit 

obtained fiom changing one of the dement &es in the original circuit is c d e d  

the perturbed circuit. By simulating several perturbed circuits, we can investigate 

the &ect of the change in element values on the output magnitude. This type of 

malysis is c d e d  incremental sensitivity analysis. It is in contrast with differential 

sensitivity analysis in which we take the differential of the circuit equations. and 

solve it simultaneously with the circuit equations without perturbing the circuit 

i t self. 

As an example of incremental sensitivity, we simulate the circuit in Fig. 3.2 for 

diffkrent d u e s  of G1. The value of G1 is changed form 0.3 mS down to 0.1 mS, and 

the simulation is repeated from the beginning for each value. After taking the FFT 

of the output, the magnitude of the tone at the input frequency is plotted versus G1 

in Fig 3.5. The dope of the c w e  is the sensitivity, i.e. W. Considering nominal 

values of 1 Vd [= 0.6 and G1 = &, the normalized sensitivity is about 1. 

This result can be verified by looking at  the modulator circuit in Fig. 3.2. 

Since the opamps are ideal, G l  is connected to the virtuai ground at one end, and 

the input signal at the other. Any change in G1 is converted to a proportional 

change in the curent through G1, which is integrated by the f is t  integrator. The 

curent through G1 can be &O controlled by the input signal. Therefore, instead 
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Figure 3.5: The DSM output magnitude of input tone for diff'ent values of G1. 

of changing Glo  we may change the amplitude of the input signal. With this 

interpretation, the normalized sensitivity of the moddator output with respect to 

GL is equivalent to the normalized sensitivity of the output with respect to the 

input, which is 1 if the opamps do not saturate and the modulator remains in its 

linear operating region. 

After understanding that the normalized sensitivity of the output with respect 

to G1 is about 1, let us make a very s m d  change in G1. This is equident to holding 

G1 fixed but making a very srnall change in the amplitude of the input signal. If 

this change is smaller than the resolation of the Delta-Sigma modulator, its output 

on average ( d e r  taking FFT and considering the magnitude of the signal at the 
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input frequency) does not change. This produces the same output (on average) as 

in the nominal case. This can be seen in Fig. 3.6 which shows a magnified area of 

Fig. 3.5 (assuming that the input magnitude is changed instead of Gl). In fact, the 

c u v e  in Fig. 3.5 is not a straight he .  Some parts have the slope of zero resulting 

in a sensitivity of zero, and some other parts have larger dopes. But overd, the 

c u v e  has a dope that results in a normalized sensitivity of 1. 

Figure 3.6: The magnified area of the curve in Fig. 3.5 (assuming that the input 

magnitude is changed instead of Gl). 
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3.3.1 Sensitivity Network 

Changing the element values in the original circuit and repeating the simulation 

of the perturbed circuit h m  the beginning is not umdy the best method for the 

sensitivity analysis. Instead, a set of equations caa be derived and simultaneously 

solved with the original circuit equations. For instance, in chapter 2 we explôined 

how to establish a sensitivity network fiom an original network, and solve them in 

pardel to get the sensitivity of all nodes with respect to an element value. The 

system mat* of the sensitivib network is the same as that of the original network. 

It has only a different right-hand side. The question that &ses here is "1s there any 

possibility to obtain the sensitivity of a Delt a-Sigma modulatoc using the sensitivity 

network? withoot perturbing the original circuit and repeating the simulation firom 

the beginning?" IR this section we try to answer this question. 

Due to the presence of the comparator, which is a nonlinear element, the sen- 

sitivity analysis of Delta-Sigma modulators can not be performed directly in the 

frequency domain. Instead? we do the analysis in the tirne domain, and finally 

transform the results into 

TaLing the differential 

the frequency domain by means of the FFT. 

of (3.2) with respect to element h gives 

Since h does not depend on the fkequency wo or the 

BP,&,,, 
(ah ) 

Eq43.3) can be used to compnte the time domain sensitivity in a sampled data 
aM ap,, manner. The matrices ah, +, and % are constant, and computed once before 

simulation starts. These matrices can be computed simult aneously with M and P 

as explained in Appendix-A. 
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The only tena in (3.3) ahich needs more investigation is w: the sensitivity 

of the output of the comparator. For more explanations, we distinguish between 

undodred and docked comparators. 

Sensitivity of The Unclocked Comparator 

Assume y(t) to be the output of the unclocked comparator in Fig. 3.7. y ( t )  repre- 

sents the sign of #(t) ,  and can be written as any one of the following equations 

The derivative of y ( t )  with respect to +(t)  becomes 

Figure 3.7: The comparator and its input-output characteristic. 
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which is nonzero only when +( t )  = O. This is shown in Fig. 3.8, where the signais 

4(t) ,  y ( t )  and the derivatives of y(t) are plotted versas tirne. Applying the Chain 

Figure 3.8: The input and output of the undocked comparator. 

d e  gives 

Eq.(3.4) relates the sensitivity of the output of the comparator to the sensitivity 

of its input with respect to h. This equation can be derived also by the limiting 

approach: we approximate the characteristic equation i f  the comparator with a 

parametric continuous hction,  then change the parameter to make the function 
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the same as that of the ideal comparator. One approximation is based on an 

exponential m e  with a time constant of as the parameter. 

where u(-) denotes the step fknction. This cuwe is shown in Fig. 3.9 for K = 1 

and K = 10- 

Figure 3.9: Exponentiai approximation of the comparator. 

Another approximation is based on a trigonometric hct ion,  

Fig. 3.10 shows y ( t )  for two d u e s  of K. T a h g  the differential of (3.5) with respect 

to h, and applying the chah d e  
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Figure 3.10: Trigonometnc approximation of the comparator. 

When K goes to infinity, the curve in Fig. 3.10 approaches the characteristic of an 

ideal comparator. On the other hand, when K goes to infinifgr 

where the sensitivity of the input of the comparator 9 is asswned to be finite. 

M t )  As K goes to infinity, the magnitude of at #(t)  = O goes to i f i t y  too (This 

is shown in Fig. 3.11 for K = 1 and K = 10). But the area under the curve is 

always 2 : 

Therefore, (3.7) can be written as 

2 ( 2K'T ) d# = - arctan(K+(t)) The area of - = W) 1 + K24(q2 7r 

+- 2 n  .~r 

-00 = -(- n 2 + ;z)= 
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Figure 3.11: Dinerential of the tngonometnc approximation of the comparator. 

Sensitivity of The Clodced Comparator 

The output of the clocked comparator changes only at the nsing (or f a h g )  edge of 

the dock and remains at the same level until the next edge. As shown in Fig. 3.12, 

the output changes at discrete instants of tirne, nT, and only when +(nT) has a 

different polarity compared to t#(nT - T). If the input of the comparator crosses 

zero several times but retums back to the same polarity at the edge of the dock, 

the output of the comparator does not change, and = O. This is shown in 

Fig. 3.12 at instants (nT - 2T)and (nT - T). The output changes only if the input 

crosses zero (at any arbitrary time between the h o  time points) and also changes 

its polarity at the next edge of the dock. This happens at t = nT in Fig. 3.12. 

Note that even though the signal t#(nT) crosses zero at an arbitrary time between 

(nT - T) and (nT), the output of the comparator changes exactly at t = nT. 

For the clocked comparator, the sensitivity does not contain any Dirac 
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Figure 3.12: The input and ontpnt of the clocked comparator. 

impulses. It is either zero or a pulse with the width of T and a limited amplitude. 

This is illustrated on Fig. 3.13. Assume we change one of the circuit elements 

to make a s m d  change in the input of the comparator. This perturbed input is 

called +-(nT). The correspondhg output is cded yWt(nT). Define the following 

increments 

If both 4( t )  and q5pL(t) have the same polarity, the output of the comparator does 

not change, and 
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Figure 3.13: The change in the output of the clocked comparator due to the change 

in its input. 

The output changes only if 4( t )  and 4,4t) have different polarities when the edge 

of the dock cornes. This happens at t = nT in Fig.3.13. In this case, Ay(nT) 

becomes 2 (or -2), and remains at the same level mtil the next edge of the dock. 

-(nTL and are no longer Dirac impulses. They Hence, the terms Ay(nT), OQ(nT), 

are pulses with the width of T, and a E t e d  amplitude. Li the case of the clocked 
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comparator, Eq. (3 -4) becomes approxhnately 

2 9  if $(nT) changes polarity at t = nT 
dh 

We will discuss the approximations made in (3.8) in the next section. Substituting 

(3.8) in (3.3) gives 

adnT1 vvhere q5(nT) is one of the elements in the vector x(nT), and ah in the vector 

m. ah The last term in (3.9) is nonzero only if q5(nT) changes polarity at t = nT. 

This term exists only for one period, then becomes zero. Eq43.9) defines the 

sensitivity network for the second-order Delta-Sigma modulator in Fig. 3.2. The 

same equation can be derived for any other types/configurations of DSM. After 

generating the time domain sensitivity by (3.9), we take the FFT of the data 

points, and measure the magnitude of the component at the input frequency. 

3.3.2 Approximations 

There are two approximations in our derivations. The fmst approximation is in the 

condition specified in (3.8). It says if +(nt) crosses zero, a pulse with the magnitude 

of Bai, is applied to the sensitivity network. This is not always true. There are 

some situations that even $(nt) crosses zero but no Ay(nT) is generated, and no 

stimulation is applied to the sensitivity network. It happens when the sensitivity 

of the input to the comparator, is zero or a very small number. In this case, 
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the term mnst be zero, bnt we consider it to be a small nonzero value of 

B''nT'. W e  couldn7t exdade these exemptions fiom the condition in (3.8), becanse 2 - r  
it is not kno- how s m d  shodd be in order no change is prodnced at the 

output of the comparator. 

The second approximation is in ignoring the effect of At$(nT) in (3.8). This 

d e c t  can be considered by multiplying by a factor X : 

We did not consider this factor because we do not have any estimate about the 

mount of perturbation needed in +(nT) to produce a change in y(nT). 

More investigations of these approximations, and the methods to improve them 

are Ieft for future research. 

The second-order Delta-Sigma modulator of Fig. 3.2 was simulated for its sensitiv- 

it y. Firs t , to get a feeling about the circuit sensitivity, we calculated the inmement al 

sensitivity hy perturbing the element values by 1%, and simulating the circuit sev- 

eral times for each new element value. The second colwnn in Table-3.1 shows the 

magnitude of this incremental sensitivity. Next, we computed the differential sen- 

sitivity using the sensitivity network in (3.9). The third column ki Table-3.1 shows 

the magnitude of the results. 

Although the differential sensitivity is not always close to the inmemental one, 

which is due to the approximations made in (3.8), it still conveys useful information 

about the circuit. For instance, the sensitivity of the moduktor with respect to 

G3 and G4 is mach less than the sensitivity with respect to G1 and G2. This 
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information is provided without the excessive compntationai cost associated with 

the incremental sensitivity. 

Table 3.1: Sensitivities of the second-order continnous-time DSM (The incremen- 

r 

tal sensitivity was calculated by perturbing the element values by 1%, and the 

differential sensitivity was caldated nsing (3.9)). 

[DifiFaential Sensitivity 1 

1-00 

Element 

I Gr 

Ihcremental Sensitivity 1 

1.02 



Chapter 4 

Group Delay and Group Delay 

Sensit ivity of Periodically 

Switched Linear Networks 

Group delay (sometimes cailed envelope delay) is an important measure used in the 

design of precision füters. If a band-limited signal is passed through a filter having 

a flat amplitude response over the bandwidth of that signal, one might expect the 

signal to be passed without distortion; howeva, this is not the case unless the 

filter also has a linear phase response over the signal bandwidth. In this case, all 

the components of the input signal in the passband are magnified with the same 

amplification factor, and delayed by the same amount of tirne. 

In filter design, the magnitude response requirements are normdy considered, 

and the corresponding phase response is ignored. This is because the reduction of 

antialiasing by stopband attenuation is the fmst issue, and phase information can 

be corrected later. For some applications, such as speech transmission, this con- 
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sideration is saffiüent as the human ear is insensitive to the phase shiR. For video 

applications, however, the distortion caused by system nonlinear phase response is 

unacceptable [XI]. As a r e d t ,  the sub jects of "phase equalization" and "maximdy 

flat group delayn are considered in s e k a l  filter design texts [30-331. The procesi 

of equalization consists of building up the passband delay of a flter to its peak level 

by the addition of all-pass networks. Linearizing the phase reduces the impulse and 

step response overshoots, and makes them more symmetric [331. 

This chapter presents a fast and accurate method for the computation of group 

delay and the group dday sensitivity of periodically switched linear networks (PSLN). 

These networks consist of linear resistors, capacitors, inductorso independent sources. 

ail four types of dependent sources, and frequency dependent amplifiers. Switches 

are modeled by the resistors that have arbitrary values (including zero and infin- 

ity) when they are closed or open. Examples of these networks include switched- 

capacitor (SC), switched-ment (SI), and, fiequency modulator and demodulator 

circuits. The method is accurate because no approximation is made, and efficient 

because some parts of the computations are performed only once, in a pre-processing 

step before simulation starts. The method can be used for analysis of SC fdters 

where the resistances of the switches, or frequency-dependence and nonideal char- 

acteristics of the amplifiers can not be neglected. The other application is in the 

design of SI filtas as long as their MOS transistors are linearized around the DC 

operating points. 

Analysis and simdation of SC circuits, in tirne and fiequency domains, are 

already well established, and we refer the intereçted reader to [34-421. Several 

simulators were produced for simulation of SC circuits both at the behavioral and 

circuit levels. The circuit level SC simulators mainly assume that the opamps and 

the switches are ideal. The only linear elements allowed in the circuits are capac- 
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itors and voltage-controlled voltage sources. To consider nonideal swit ches, and 

nonideal opamps with offset voltages, input and output impedances, and fcequency 

dependent open-loop gains, the simdator shodd be able to accept all types of de- 

pendent and independent sonrces as w d  as resistors. Some other simulators were 

therefore introduced in [43-451 for simulation of general Iinear switched networks. 

However, they do not provide the group delay and group dday sensitivity. 

In this chapter we present an efficient method for the caldation of group dday 

in PSLN containing all types of linear elements. Furthennore, by computing the 

group delay sensitivity, we examine how a change in the element value h influences 

the gronp delay. This study can be utilized for the computerized optimization of 

switched capacitor and switched current filtas. 

A brief review of the frequency domain analysis of a PSLN is given in section 1. 

Section 2 to 5 present my contributions to this topic. 1 explain the compntation of 

group delay in section 2, its sensitivity in section 3, and the cornputer algorithm in 

section 4. In case of sinusoidal inputs, a more efficient method of computing the 

vectors P and is presented in section 5. A program was written in MATLAB 

based on the theones developed in this chapter. Appendix-B shows the detailed 

algorithm and intermediate matrix manipulations used in the program. 

4.1 Frequency Domain Analysis of Periodically 

Switched Linear Networks 

The £iequency domain analysis of PSLN is explained in [3,43]. We review it here 

to provide a proper background for the derivations presented in the next sections. 

General switched networks may have more than two phases. We use N for the 
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Figure 4.1: Timing definitions for an N-phase switched nefmork. 

total number of phases, and the subscrïpt k for the kth phase. The various time 

slots. and related definitions are shown in Fig. 4.1. It is also shown that 

In addition, we define 

% = O ,  U N = T  

where T is the switchuig period. For the kth phase the network is described by the 

system of differential equations 

where Gi is the conductance matrix, CE the capacitance rnatrix, and vk(t) the 

unknown nodal vector in phase le. gk is a vector defmîng the connection of the input 

w ( t )  to the circuit. This equation can be decomposed into two sets of equations as 
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explained in [43]: one set of equations is valid inside the phase where switching does 

not occur, and the o t h a  set is valid across the switching instant. The following is 

a brief description of these equations. 

1 - Disaete-tirne equations, valid only at the switching instants, 

where the input signal is assumed to be a complex exponential eiYo', vk is the 

nodal vector in phase k, and the matrices Mk and Pi are obtained by integration, 

as explained in chapter 2. Mk is a real matrix that involves the zero inpnt response 

of the circuit, and is independent of the input signal fiequency wo. PI is the zero 

state response of the network in the kth phase, and is a complex vector which 

depends on the input signal. The numerical computations of these matrices are 

discussed in Appendix-A. Eq.(4.2) relates the nodal vector in phase k to the nodal 

vector in the previous phase k - 1, and to the input. W e  also define 

2 - Continuous-time equations, valid inside each phase, 

where Ic represents the initial conditions, and Fc the final conditions in each 

phase [45j. Initial conditions in phase k are determined by the final nodal voltages 

in the previous phase. Matrix Bk hansforms the final conditions of the previous 

phase into initial conditions of the next phase as 

The final conditions in phase k are given by the nodal voltages at the end of the 

phase 
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Figure 4.2: DeGnition of the Bth window function &(t). 

where CE is the matrix in (4.1). The fnnction &(t): cded the window hc t ion ,  

is periodic with the same period T. The hth window fonction &(t) is sketched in 

Fig.4.2. It is nonzero only in the interval kom (nT + ~ k - ~ )  to (nT + CQ), and its 

height is unity. This function ensures that each system equation is valid in only 

one interval. 

For frequency domain analysis, (4.2) and (4.3) must be expressed by their 

Fourier transforms. We fîrst apply the Fourier transform to (4.2), 

where the tilde over the variable denotes its Fourier transform. The Fourier trans- 

form of the windowed input signal is 

The infinite sums indicate that the result is d d  ody at fkequencies w = wo +W.. 

Keeping this in mind, we drop the infinite snms and consider all frequency variables 

as w = wo. The coefticient 27r generated 

The Fourier transform of (4.2) t herefore 

by the Fourier transform is also dropped. 

becomes 

1 
-+i-i Pt, 
T 

1= 1 , 2 , - . . , N  (4.4) 
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The equations for dl phases can be wrieten in ma& form 

where 1 denotes the identity ma&. This system of equations provides vk. the 

fiequency response of the disuetethe  system. We rewrite (4.5) with the following 

notation for h t  ure reference 

where R denotes the system matrix, Vp the unknom veetor, and * the Bght- 

hand side of (4.5). 

Neut: we apply Fourier transform to (4.3). Assuming a continnous exponential 

signal as the input, w ( t )  = ejWot 

The Fourier transform of the product of a periodic fnnction &(t) and an arbitrary 

fnnction w(t  ) is the convohtion of the respective transforms: 

where 
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is the switching Gequency, and B k ,  are the Fourier series coefficients of the window 

hct ion  &(t) 

1 T for n = O (baseband) 
0 , .  = &(t)ëj"'8tdt = l-C-i-~ tir 

otherwise 
(4.9) 

+.T 

As before, the intinite sums and the coefficient 27r are dropped, and all frequency 

variables are considered as w = wo. We also denote Fourier transforms of the final 

. conditions by vk: 

The Fourier transform of (4.3) t herefore becomes 

The eqnation for all phases in matrix form is 
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The solution of (4.10) provides the fiequency domain nodal voltages in each phase. 

The complete nodal vector is the snmmation of the vectors corresponding to each 

phase: 

4.2 Group delay 

Assume that the output of the filter is related to the nodal vector V by the selector 

vector d 

4 ( j w )  is a complex variable with magnitude 1 + ( j w )  1 and phase <p(w) 

and its group delay ~ ( w )  is defined as 

Taking the logarithm of (4.13) and differentiating with respect to w 

the group delay can be defined also as 

We therefore need to compute the derivatives of the freqnency domain nodal vec- 

tors Va with respect to frequency W .  First, differentiate (4.4) with respect to w to 



CRAPTER 4. GROUP DELAY AND ITS SENSITMTY nV PSLN 

obtain 

Since the vectors Pk depend on the inpnt signal, theh derivatives wîth respect to 

w are not zero. An efficient method of numerical caladation of 9 is explained in 

Section 4.5. In matrix form, (4.15) becomes 

This is the same system as (4.5), ody with a different right-hand side. The corn- 

ponents vk at the right-hand side are provided by the solution of (4.5). 

We next difkrentiate (4.10) with respect to w to obtain 9. Since B k ,  depends only 

on the switching frequency W., its derivative with respect to the input fiequency 

w = wo is zero. 
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This is also the same system as (4.10), only with a diffaent right-hand side. The 
CI 

components Vk and axe provided by the solutions of (4.10) and (4.16), re- 

spectively. The solution of (4.17) provides the derivatives 2 required for the 

computation of group delay. The algorithm for the group delay calculation is: 

1. Prepare the matrices Mk, PI, and 2 in each phase, k = 1,2.. . , N. 

2. Solve (4.5) to obtain vk, the dismete-time nodal vector in the kequency 

domain. 

3. Solve (4.10) to obtain Vk, the continuoas-time nodal vector in the frequency 

domain. 

4. Add ail Vk to get the complete nodal vector V. 

5. Using the solution of (4.5) construct the right-hand side of (4.16), and solve 

it to obtain 3. 
6. Using the solutions of (4.10) and (4.16) construct the right-hand side of (4.17), 

and solve it to obtain 9. 

7. Add all 2 to get the complete nodal vector = CE, %- 
8. Spe* the selector vector d which detenaifles the output of interest in (4.12), 

and use (4.14) to calculate the output group delay. 

The above algorithm is applied on the simple circuit in Fig.4.3. Since the switches 

S I  and S2 are altanatively ON, the circuit is equivalent to an un-switched RC 
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Figure 4.3: Switched RC circuit. 

circuit whose group dday is ~ ( w )  = b. Th" dows  us to verify the results 

produced by the algorithm. The namber of phases is h o ,  k = 1,2. They are 

equdy spaced, so TI = r 2  = $. If we are considering only the baseband, n = 0, 

and 8 1 ,  = % = f. Define W = gi81,0 = g292,0 = [O, 0, 0, ilt. Switches are modeled 

by the conductances g.1 and g.2 with zero values when they are open, and large 

values (106) when dosed. The system MNA f o d a t i o n  is 

The discrete-time equation of (4.5) becomes 

Since we consider the switches as conductances, the circuit topology is the same 

in both phases, and Br. = CL, h = 1,2. The continnous-time equation of (4.10) 
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becomes 

The total vector V is equal to VI + V2. To obtain E, we first solve the following 

system of equation obtained from (4.16) 

and consider its solution in the following equations obtained &om (4.17) 

The total vector is equal to $ + S. The output group delay is c d d a t e d  by 

Assuming unit values for the elements in Fig. 4.3, and T = 0.01, the group delay 

is computed as shown in Fig. 4.4. The curve is in agreement with the analytical 
1 expression of the group delay for this simple RC circuit, ~ ( w )  = ;r+i 

4.3 Group Delay Sensitivity 

Ln this section, we see how the change in the element value h iduences the group 

delay. This study can be utilized in the computerked optimisation of switched- 

capacitor and switched-current filtas. The goup delay sensitivity is calculated by 
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Figure 4.4: Group delay of the output in Fig. 4.3 

differentiating (4.14) with respect to element h 

DifFerentiating (4.6) with respect to w and h, separately, gives 

Differentiate either (4.25) with respect to h or (4.26) with respect to w to obtain 

The discrete-time eqnations (4.25) to (4.27) have the same system ma* R, and 

different right-hand sides. To generate the terms at the right-hand sides, we need 
BP ap to precompnte Ph, ;lY, +, and 2 vectm, and the m a t ,  Mk with the same 
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derivatives. Ref'er to Section 4.5 and &O Appendix-A for the numericd com- 

putations of these matrices. Solutions of the discrete-time eqaations are nsed to 

constmct the continnoas-the eqnations. Considering the continuous-time eqnation 

(4.11), and differentiating it wïth respect to w and h 

where 

are provided by the solutions of (4.25) to (4.27). The complete vectors of nodal volt- 

ages and their derivatives are the summation of the vectors corresponding to each 

phase. The particular components of these vectors, corresponding to the output 

node of interest, are substituted into (4.24) to obtain the group delay sensitivity. 
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4.4 The Algorithm 

To illustrate the intermediate steps, and to organize the method for the purpose of 

compnta prognrmming, we provide here the algorithm of the method. The reader 

is referred to Appendix-B for the detailed structures of the matrices. A program, 

c d e d  GRPSN, was written in MATLAB based on this algorithm. It accepts all 

types of periodically switched linear nehoks .  The program was tes ted on sever al 

switched networks. One example is given at  the end of this section. 

Part 1 : Pre-Processing 

We apply the one-Graph modified nodal analysis to formulate the circuit equations. 

The switches are modeled as resistors with a s m d  resistance when they are dosed 

and infinite resistance when open. The topology of the circuit therefore does not 

change during the different phases, and the matrices Bk becorne equal to Ck. The 

number of phases is denoted by N. 

1-1- Prepare (G1, Cl) , (Ga? Ca) , - . . , (GN, CN), where the matrices Gr. and Ce 

construct the system mat& Rk during phase k, Le. Rk = Gk + s Ck. 
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Part 2 : Solution of the Discrete-Tirne Equations 

2-1- Constract the fonowïng matrices related to the DismeteTime set of equations: 

2-2- Compute 

av, -- -- as- a* - -R-1-vp + E-1- 
dw 8w dw 

% obtained in the previous steps, compte 

Part 3 : Solution of the Continuous-The Equations 

3-1- Construct the following mahices related to the Continuous-The set of 

equations. Use the results of (4.31) to (4.34) to constmct these matrices: 
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3-2- Compute 

3-3- Using VP fiom (4.35), 

3 4  Using V p  fkom (4.35), 

compute 

compute 

3-5- Using VP ,%, and 9 obtained in the previous eqnations, compute 

Part 4 : Computing the Group Delay, and Group Delay Sensitivity 

The complete vector of nodal voltages is the summation of the vectors corresponding 

to each phase: 

a2v - -  AT a 2 V k  
dhdw - k l  

A s s u e  that the output is related to the vector V by the selector vector d, i.e. 

4 = d V). The group delay is calculated by (4.14), and the group delay sensitivity 

by (4.24). 
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The standard twephase swit ched-capacitor band-pass filter [39], shown in Fig . 4.5 

is simulated by GRPSN. The switches are modeled as conductances with large 

values when they are dosed (10%) and zero values when open. The element values 

are chosen to provide a center fiequency of IlrHz, and quality factor of Q = 30. 

The switching fkequency is 20&, with equal phases. A lOOQ resistor is connected 

to the output as the load. The filter% gronp delay and its sensitivity witith respect 

to C4 = InF were computed as shown in Fig. 4.6, and Fig.4.7. The group delay 

is not flat inside the pass band. Its normalized sensitivity is around -1, suggesting 

that increasing C4 reduces the group delay, and makes it more flat. Considering 

Figure 4.5: A standard SC band-pass flter with fo = IkHz,  (Ci = IOnF, C2 = 

C3 = 9.781nF, C4 = InF, Cpl = CF2 = 31.25nF, R = 100n). 
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Figure 4.6: Group delay of the output in Fig. 4.5. 

Figure 4.7: Group delay sensitivity of the output in Fig. 4.5 with respect to C4. 
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C4 = 1.572 F, we computed the group delay and plot ted it in Fig. 4.6. The modified 

circuit has flatter gronp dday. This example uidicates that by coupling GRPSN 

with an optimizer, an automatic tool is obtahed for the design of distortionless 

fdters. 

In the next example, we consider some of the nonideal dects of the elements 

in Fig. 4.5. 

dosed, and 

The switches are replaced by the tesistors with the vahe of lkQ when 

1MQ when open. The opamp is nonideal with the open-loop gain of 

where A. = 1000 $. and wb = 100 Hz. The circuit group delay and its sensitivity 

with respect to C4 wete computed as shown in Fig. 4.8, and Fig.4.9. 

Figure 4.8: Group delay of the output in Fig. 4.5 with ideal opamp (infinite gain- 

bandwidth) and switches (RON = O, ROFF = ao) in compare to nonideal opamp (gain- 

bandwidth=10~) and switches (RoN = lkn, R o ~ ~  = LMR). 
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This simulation demonstrates GRPSN's ability in simdating switched-capautor 

networks where the resistances of the switches, or fkequency-dependence of the 

amplifiers can not be neglected. GRPSN &O s idates  the switched-ment circuits 

as long as the MOS transistors are modded by linear components such as dependent 

sources, capacitors, and resistors. 

4.5 Computation of P and with Sinusoidal In- 

puts 

The numerical computations of P, M, and th& derivatives with respect to h are 

explained in Appendix-A. In this section, we compte the derivatives of P and 

Figure 4.9: Group delay sensitivity of the output in Fig. 4.5 with ideal opamp (in- 

finite gain-bandwidth) and swïtches (RoN = O, ROpF = 00) in compare to nonideai 

opamp (gain-bandwidth=105) and snitches (RoN = l k R ,  R o ~ ~  = 1MR). 
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M with respect to the inpnt freqaency W. Assume that the input is a complex 

exponential, w( t )  = eiY<. The derivative of M with respect to w is zero because M 

relates to the zero-input response of the network and does not depend on the input 

fiequency. 

To compute we note that W(s)  = -&. 

Similady, it can be verified that 

- -  a2p - L-1 
dhdw 

a2M. - -  - O 
dhdw 

The Laplace inversions incorposated in (4.40) and (4.41) can be simult aneously 

performed using the stepping algorithm and numerical Laplace inversion method 

explained in Appendix-A. 

Normally, when the frequency of the input signal changes, a new integration 

must be performed to recompute vector P and its derivatives. Bowever, for si- 

nwoidal inputs, once the vectors P - and 2 are calculated at one input ' 8h'ôw' 

fiequency, they can be computed at the other fiequencies without any further inte- 

gration. To explain this, we start fkom the theory developed in (461 and extend it to 

our application. In [46] an efficient method for the time domain solution of linear 

circuits to sinusoidal inputs is given. It is proved that if the zero-state response of 

the linear circuit to a sinusoidal input with the frequency of wl is known as x(t ), 
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then the zerestate response of the circuit at another fkequency wi can be computed 

as 

where d is a constant vector related to the input node, and w;, (i = 2,3, . . . , m) are 

the different input frequencies at which the response is needed. We extend this idea 

to efficiently compute the vector P and its daivatives at diffaent input fkequencies. 

Consider the foIlowing notation 

and rewrite (4.43) as 

Since the zero-state response of the circuit at t = T is equivaient to the vector P: 

we w d e  

Consider t = Tl and substitute (4.45) and (4.46) in (4.44) 

Eq.(4.47) provides an explicit relation between Pi and Pi, (i = 2, . . . , m) . It  means 

that if we prepare Pl by integration, there is no need for more integration to 

compute Pz, Pql . . ., PM. Each Pi can be caleulated by the solution of (4.47). 

Taking the derivative of (4.47) with respect to the parameter hl and the input 

fiequency WC gives 
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Again, based on (4.48) to (4.50), if we know the sensitivity vectors at the input 

frequency w i ,  they can be compnted at other fkequencies wi by the solution of some 

linear systems, and without any hirther integration. 



Chapter 5 

Switched-Current Circuits 

Switched-Current (SI) [47,48] is a relatively new analog sampled-data technique 

that promises to overcome the problems associated with Switched-Capautor (SC) 

circuits. SI circuits use MOSFET gate capacitance as the storage element to provide 

analog rnemory capability. They do not require linear fioating capacitors, and 

c m  be integrated into a standard digital CMOS process. This enables digital IC 

mannfacturers to implement both digital and analog circuits on the same chip with 

the existing low-cost CMOS processes. The fact that SI circuits can be designed 

exclusively with MOS transistors makes the chip area 30% less than that of similar 

SC implementation [49]. 

SI circuits can operate with low power supply because of the small voltage swings 

associated with the low-impedance nodes. Another key performance feature of SI 

circuits is th& inherent wide bandwidth capability. Since additional capacitors and 

high impedance nodes do not &st in an SI circuit, its bandwidth can approach the 

MOSFET transition fiequency, fT. An SI bandpass Delta-Sigma modulator which 

operates at 10 MHz with a dock fkequency of 40 MHz was reported in (501. 
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A brief review of SI &cuits is given in section 1. While studying the k t ched -  

cwrent technique, 1 proposed some nonfilterhg applications such as a ctment- 

controlled oscillator, a modulator, a rectifier, and a Delta-Sigma modulator. Sec- 

tion 2 presents the building blocks of these applications [51]. The circuit level im- 

plementation of these building blocks were perforxried with the help of the current- 

mode circuits proposed in [52-571. These circuits are explained in Appendix-C. 

5.1 A Review of Switched-Current Circuits 

This section presents the concepts of SI circuits. First , current-mirror and current 

track-and-hold are explained as the basic building blocks of SI circuits. Next, a 

brief survey of SI filtering applications is given. 

The current mirror circuit in Fig.5.1 consists of two transistors Mi and M2 with 

the aspect ratios of 2 and $, respectively. L and W are the transistor effective 

length and width. D e h e  

There are two biasing curent sources in Fig.5.1, I and KI, and the transistor 

Ml is diode connected. Ml and M2 are biased in the saturation region (V& > VT 
and VDs 2 (Vos - VT ) ) . Neglecting channel-length modulation dects ,  the following 

relationship is considered between the drain current iDs, and the gate-source voltage 

where Kf is the device transconductance. If we apply two small-signal cnrrents il 



Figare 5.1: A simple cment  mirror. 

and i2 at the input, the current flowing into the drain of Ml is the sum of the bias 

and signal currents : 

iDsl = I +il + i2. (5-3) 

This current generates a corresponding voltage on the gate-source capacitance of 

Ml. Since the gates and sources of Ml and M2 are connected to each other, vcs i  = 

V G S ~ ,  and tecause of the dXerent aspect ratios of the transistors, a current equai 

to K iDsl will flow into the drain of M2 : 

Applyhg KCL at the drain of M2 : 

The output of the current &or, i&, is an inverted s u m  of the input currents 

scaled by a factor of K. Thus, the cnirent &or pdorms the operations of signal 
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inversion, scaling and snmmation. In this basic building block, the snmmation 

of input signals is accomplished withont reqniring any additional circuitry, but 

generation of more than one output m e n t  requires adding branches identical to 

the Mt brandi. These two characteristics are the duai of the voltage-mode system. 

5.1.2 Current Tkack-and-Hold Circuit 

The cment  track-and-hold (T/H) or memory circuit [47] is constructed by placing 

a switch Ms between the gates of the minor transistors Ml and M2 (Fig. 5.2). 

When ON, the switch shorts the gates of the h o  mirror transistors. In this mode, 

the circuit Eonctions similady to the carrent mirror' and the output tracks the 

input signal (track mode). When the switch is tnrned off, the gates of Ml and 

M2 are disconnected. The gate voltage of Ml, corresponding to the value of the 

\ d 

Figure 5.2: Current track-and-hold circuit. 
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input m e n t  at the instant the switch is opened, is sampled onto CP2. While the 

switch is open, VOS* remaius constant; con~equently~ the outpat m e n t  is held at 

a constant value corresponding to the input current at the instant when the switch 

was opened (hold mode). The outpat is expressed by the following discrete-tirne 

eqnation 

where T is the dock period, and we assumed that the dock has a 50% duty cycle. 

Taking the z transform of (5.6), the expression for the output current is: 

The dynamic current rnirror or cturent copier (58,591 is another m e n t  memory 

circuit (Fig. 5.3). This circuit is controlled by two-phase non-ovdapping clocks. 

When #1 is active and & is inactive, Ml is diode-connected and vos1 tracks the 

total input carrent Il + ih. To configure the circuit as a hold amplifier, is active 

and #i is inactive. The voltage corresponding to the input current, just before S3 

is opened, is held on and, with S2 dosed, the held signal curent is sensed 

at the output. In a dynamic m e n t  mirror, there are no errors due to transistor 

mismatches (a difnculty associated with the current T/H), but only one copy of the 

output m e n t  is produced. In addition, while the curent  T/H perfonns mirroring 

in space, the dynamic current mirror performs the mirroruig in time. 

5.1.3 Switched-Current Filters 

The mos t common application of switched-curent circuits, like swit ched-capacitor 

ones, is frequency domain fütering. Some design principles, building blochs, and 



VDD 

v 

VSS 

Figure 5.3: Dynamic cment mirror (current copier). 

actual circuits of such fdters have been proposed [60-661. Since the SI integrator 

is shown to be directly analogous to the SC integrator, all the synthesis techniques 

developed for the design of SC flters can be applied to synthesize SI filters. In ad- 

dition, it has been shown that the signal flow graph (SFG) for a multiple-input SC 

füter is eqnivalent to the transpose of the SFG of a multiple-output SI füter [64]. Ln 

other words, they are inter-reciprocal. As a consequence of th& inter-reuprocity, 

they d l  also posses identical component sensitivities. This suggests that the trans- 

formation of low sensitivity SC füters d l  lead to low sensitivity SI filters. 

The track-and-hold circuit (Fig 5.2) performs four essential opaations required 

for signal processing: signai inversion, summation, scaling, and time delay. Using 

these operations, we implement the SI integrator as one of the basic building blocks 

of SI filters. One configuration of the SI integrator is composed of two cascaded 
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m e n t  T/H circuits (Fig. 5.4). The switches are controlled by two-phase non- 

overlapping docks. The output of the second T/H is connected to the input of 

the fkst. Breakhg the feedback loop at the outpnt, and assnming Al=A2=1, the 

expression for the output m e n t  a t  the drain of M4 is : 

Remanging this expression yields : 

The integrator output is arnplified by scaling the aspect ratio of Mg to M4: 

where K = @Ek (w,9, is the inkgrator scale faetor. The (1 - r-') term in the de- 

nominator represents discrete-time integration. In fact , the expression for i&) is 

Figure 5.4: An SI integrator. 



a Forward Euler transformation of a non-inverting integrator fiom the s-domain to 
L 1-2" the z-domah (8  t TL=T). 

The SI integrator cuxrent output is directly analogous to the SC integrator 

voltage output (Fig. 5.5), where 

In the SC integrator, the capautor ratio 2 determines the integrator scale factor, 

whiIe in the SI integrator, the integrator scale factor is determined by the transistor 

aspect ratio, K. There are other configurations of SI integrators corresponding to 

2 1 2-' the Backward Euler (s + $(1- r-')) and the BilLiear (s -.t TB) mapping 

fkom the s-domain to the z-domain. 

Table 5.1 shows some fabricated SI filters. The numbers in the third col- 

refer to the papas that report the filter performances, and fat denotes the füter 

cutoff fkequency. 

The interested reader is referred to [67-741 for more investigation on the prac- 

tical considerations in SI circuit design, such as device mismatch, finite output 

Figure 5.5: An SC integrator, the dual of an SI integrator. 
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impedance, bandwidth, and noise. 

- - - -  

Fiter 

Biquad filter 

3'd order EUiptic filter 

5* order Chebyshev filter 

6th order Chebyshev filter 

Table 5.1: Reported SI füters. 

- - -  

Digitdy programmable 

5.2 Non-Filtering Applications of Switched-Curent 

Circuits 

Comment s 

LPF , BPF , HPF 

fd = 3- , fdL = 128kEI~ 

fd = 5lrHz , fdk = 128kEIz 

fd = î M H z  , fdr = lOMHz 

Although filtering applications have received most of the attention among SI cir- 

cuits, there are other analog signal processing tasks that can be performed with the 

Ref. 

[cl] 
[60,75] 

[60,75] 

[48] 

- -  - - -  - - -- 

Variable Gain, fc , and Q 

same fabrication technoIogy and circuit element s as t hose used in swit ched-current 

filters. In this section, we psesent some non-filtering applications of SI circuits [!il]. 

They include a current-controlled oscillator, a modulator and a M-wave rectifier. 

We also propose a switched-cuxrent oversampling Delta-Sigma A/D converter. AU 

proposed circuits have been implemented using the circuits in Ap pendix-C , and 

simulated at device level using SPICE. 

.- - - - - 

[771 



Figure 5.6: Block diagram of an SI ment-controlled oscillator. 

5.2.1 Curent-Controlled Oscillator (CCO) 

To provide various fkequencies in a circuit, we may use digital scalers to divide the 

frequency of a master dock signal. This method results in good frequency stability 

since the master dock is usudy crystal controlled. However, the frequencies are 

restricted to subharmonics of the master-dock frequency, and they can not be 

readily changed by a control current (or voltage), as required in some applications 

like p hase-locked loops (PLL ) . 

The block diagram of an osdator  which does not require a master dock and 

can be controlled by a refaence current is shown in Fig.5.6. Assume switches SW1 

and SW2 are in the position shown on the figure. They apply a constant current, 



I&, to the SI integrator. The integrator eceates a ramp output m e n t  : 

where K is the integrator amplification factor, T, is the switching period (TB = i )  , 
and t is tirne. If this ramp signal goes throngh a m e n t  Schmitt trigger (with 

threshold IH and k), the output of the trîgger wdl change when the input ramp 

current approaches 1'. Since the reference current switches are controlled by the 

output of the Schmitt trigger, th&. states d l  change, produchg another constant 

current? -Id? at the input of the integrator. Following the circuit operation contin- 

uously, we get a tnangular eunent at the output of the integrator. The osdation 

fiequency is: 

The osdation frequency depends linearly on I&, making the circuit a curent- 

controlled oscillator. In addition, the oscillation fiequency is determined by the 

hysteresis of the Schmitt trigger and by the parameters of the SI integrator, like 

the switching fkeqnency and the transistors aspect ratio. These facts can be utilized 

to implement a programmable oscillator. In addition, the osdator provides three 

types of signals: a triangular m e n t  wave at the output of the SI integrator, a 

square curent wave at the input of the integrator, and a square voltage wave at  

the output of the Schmitt trigger. 

To implement the ment-controlled oscillator, we need a reference curent 

switch, an integrator, and a cnrrent Schmitt trigger. Appendix-C describes these 

circuits. 



Figure 5.7: Osdlation fkequency vs. reference current. 

Simulation Results 

The proposed SI curent-controlled o sda to r  was s i d a t e d  with 1.2pm technol- 

ogy parameters. The hysteresis width for the Schmitt trigger was chosen to be 

50pA to prevent saturation of the integrator. Ire. can be changed between 5 p A  

to 30/rA, since a current less than 5 p A  can not be switched accurately, and a cur- 

rent of more than 30pA may saturate the integrator. The switching fkequency for 

the integrator was set to 1 MHz, and its amplification factor was considered as 

Fig.5.7 shows the plot of the Irer versus oscillation fkequency. The plot shows 

that for 5 p A  5 1& 5 30pA the oscillation fkquency is lineady proportional to 

Irer For currents more than 30pA, the integrator is saturated causing nonlinearity 

in the curve. For currents less than 5pA,  the reference m e n t  switch can not be 

turned on completely. 



Figure 5.8: OsciIlator output for I& = lOpA . 

Fig.5.8 shows the output waveforms correspondhg to I& = 10pA and fdd = 

1 MHz. The osdation fceqnency is about 37 kHz, which corresponds to the value 

obtained by (5.13) : 

5.2.2 Modulator 

A modulator is a nonlinear circuit which produces replicas of the spectrum of the 

input signal, shifted dong the fkequency axis. To shift the spectrnm M(w) of the 

input signal m ( t )  by the amount of w,, the input signal is multiplied by the carrier 

signal z ( t )  = cos(w,t)  
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Figure 5.9: Switched-current moddator circuit. 

This time domain multiplication shifts the fiequency spectnim by &w,: 

1 1 

Generaily, the carrier signal can be any periodic signal. The square wave is a 

periodic carrier signal which is readily generated by SI circuitry. Its Fo- series 

expansion is 

where the coefficients a,,+l decrease as 1/(2n+l). Due to the square wave carrier, 

only odd-indexed side bands are created at w, ,3w,, 5w,, . . . The modulated signal 

can be extracted by Ntering the spectrum around w,. 

A method to perform modulation with a square wave carrier is to switch the 

polarity of the input signal periodicdy. Fig.5.9 shows the proposed &cuit. The 
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Figure 5.10: Modulator output . 

first curent mirror ( M l ,  Mz, Ma, M4) inverts the input signal and the second m e n t  

mirror (Ms, Me, MT, Mg) performs summation. In each half period of the square 

wave, the input signal or its inverse, is added in the second current mirror, and 

constructs the final modulated signal. To switch the input signai to two different 

paths we use the high-speed current switch explained in Appendix-C. To avoid 

aliasing, the input spectrum should be band iimited and the moddating freqnency 

must be at least twice the maximum signal kequency. A M y  balanced current 

mirror [53,54] can be used instead of a simple carrent &or to rednce the nonideal 

characteristics and get more precise amplification. Fig.5.10 shows the modulator 

output waveform ob tained h m  SPICE simulation. 
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Figure 5.11: M-wave curent-mode rectifier. 

5.2.3 Full-Wave Rectifier 

A fi&-wave current rectifier converts an input signal Ik( t )  to its absolute value 

1 1 )  1. By adding a current comparator to the modulator explained in the 

previous section, a SI full-wave rectifier is Mplemented. When the input signal is 

positive, the output of the comparator is "high" letting the input signal go directly 

to the output, and if the input is negative, the comparator output is "low" letting 

the input become inverted. Thus, I , ( t )  is proportional to 1 Ih(t) 1. 

Fig.5.11 shows the proposed circuit of an SI hill-wave rectifier. It is composed 

of two subcircuits: a current modulator, and a m e n t  comparator. AppendU-C 

explains class-B and class-AB current comparators that can be used to implement 

the proposed rectifier. Fig.5.12 shows the simulation results. The DC offset and 

AC gain error are two types of errors associated with the output signal. Using fully 

balanced current mirrors reduces these errors. 



Figure 5.12: Input and output currents of full-wave rectifier. 

5.2.4 Oversampled Delt a-Sigma Modulator 

The block diagram of the proposed second-order Delta-Sigma modulator designed 

with the SI technique is shown in Figure 5.13. The input is a m e n t  signal, and 

the output is a voltage signal that can be applied to a digital füter. The modulator 

consists of two integrators, a comparator with a latch, and two D/A converters. 

Fully-differential configurations are used for all blocks. The differential topology 

offers increased dynamic range, increased rejection of noises coming fkom the power 

supply and the digital circuit on the chip, and the fist-order cancdation of dock 

feed through effects, resulting in higher accucacy. Summation is simply perfomed 

by comecting the outputs of the DACs to the inputs of the integrators. 



1 

1 - DAC 

Figure 5-13: Block diagram of the swi t ched-ment Delta-Sigma modulator . 

One-Bit Quantizer Design 

A current comparator can be used as a one-bit quantizer. Neither sensitivity nor off- 

set considerations are important in the design of the comparator in a second-order 

DSM [78]. Therefore, a simple regenerative m e n t  comparator without preampli- 

fication or offset cancdation, such as described in Appendix-C, satisfies the com- 

parator requirements. A D-type fiipflop, activated on the rising edge of the dock. 

is used to latch the output of the comparator and provide a glitch-free output. 

Digital-to-Analog Converter Design 

Two DIA converters are required to convert the one-bit digital output of the mod- 

ulator back into a current signal to be applied as inputs to the SI integrators. A 
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VDD 

Figure 5.14: A differential switch as 1-bit D/A converter . 

M y  difFerential high-speed switch, such as that in Appendix-C, can be used to 

switch the reference current, Imr, into the integrators. To get two directions of 

reference current , two differential pair swit ches are c o ~ e c t e d  toge t her as shown in 

Fig.5.14. The modulator output. Vat (t), determines the switch positions through 

control circuitry. 

Simulation Results 

The overall circuit of the Delta-Sigma modulator is shown in Fig.5.15. The SI inte- 

grators, curent comparator, and DIA converters shown in this figure are explained 

in Appendk-C. The circuit was simulated nsing HSPICE considering 1.2pm tech- 

nology parameters. The sampling fkequency was 6.4 MHz and the oversampling 

ratio was 128. This resulted in a baseband signal limit of 25 kHz. The reference 

current was I& = 30pA. We considered a sinusoidal input with an amplitude 



Figure 5.15: The proposed circuit of switched-ment Delta-Sigma modulator. 
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of 20pA and a kequency of 25 kHz. The circuit was simdated for 10 periods of 

the input signal and the first two periods were discarded to remove the moddator 

transients. ESPICE took about 90 -tes CPU execution t h e  on a SPARC-10 

workstation to s i d a t e  the circuit- 

With 8 periods of input signal, consisting of 2048 equally spaced samples, we 

determine the spectrum of the output by taking a 204û-point FFT. Fig.5.16 shows 

the spectnun of the output signal. The signal-to-noise ratio is about 60 dB, equiv- 

dent to 9.5-bits of linear resolution. Table 5.2 shows a summary of the measnred 

results. 

This work shows that the design of a Delta-Sigma modulator using the SI tech- 

nique results in a fairly simple circuit which does not reqnire linear capacitors, and 

is controlled by only h o  phases of the dock. 



Figure 5.16: Spectrum of the output of switched-current DSM. 

Resolu tion 9.5 b 1 

Power Dissipation 10 mW 

Table 5.2: Simulated switched-ment DSM performances. 



Chapter 6 

Harmonic Distortion in 

Switched-Current Circuits 

Harmonic distortion in SI circuits is more severe thon in SC networks. Clock feed 

through and mismatch in the transistor threshold voltage are two major sources 

of distortion in SI circuits. These sources are introdnced in section 1, and thek 

contributions to distortion are examined. In section 2, we impose both upper and 

lower bounds on the total harmonic distortion of a SI memory ce& 

6.1 Sources of Harmonic Distortion 

We study the nonlinear behavior of SI circuits on the cunent memory c d  of Fig. 6.1 

as one of the basic building blocks. The f is t  transistor (Ml) takes the square-root 

of the input signal and generates the corresponding voltage on the gate-source. 

The second transistor ( M z )  generates a current proportional to the square of this 

voltage. Therefore, the total characteristic of the circuit fiom input to output 
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CLK 

Figure 6.1: Current track-and-hold circuit. 

becomes linear. This is valid under the following conditions: 

1. The transistors are matched (same VT)? 

2. The switch is ideal and does not generate dock feed through, 

3. The signai and the switchlig fiequencies are much lower than the circuit 

bandwidth. 

In this section, we examine the &ect of these conditions on the distortion of SI 

circuit S. 
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6.1.1 VT Mismatch 

The accnracy of ment-mode sampled-data systems relies on an acctuate matching 

of the mirror transistors. Assaming M' and M2 (Fig. 6.1) operate in the satnration 

region, the drain-to-source m e n t  is : 

Mismatches in the transistor threshold voltage VT, device aspect ratio transcon- 

ductance parameter Kt, and the chamel-length modulation A cause mors in the 

out put current. Only the t hreshold voltage mismatch prodnces hannonic dis tor- 

tion, because the other parametas are linearly related to the drain-source current. 

i.e. may generate DC offset and/or AC gain error. 

To evaluate the contribution of VT mismatch to the distortion, we assume Mi 

and Ma are identical except for the threshold voltage. Also we assume that the DC 

bias currents 1 are identical. The drain current in Ml is 

w k e  p = K'F. In the sampling mode, the gates of Mi and M2 are connected 

together, vcsi = vcst, and 

Substituting (6.2) in (6.3) for vos1 gives 

where AVT = VTl - VTI is the device mismatch. The output m e n t  is 
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The last term in (6.4) can be expanded in a Taylor series 

the actnal enrrent in (6.5) has a DC offset I&., and an AC 

The remaining terms in (6.5), which have the exponent of 2,3, and more, gener- 

ate the harmonic distortion. Considering a 

assuming i < 1, we get 

sinusoida1 input i, = kin(wt).  and 

- - eAh(l) 8 
Ji- 

Eq.(6.6) suggests the following solutions to reduce THD : 

reducing the signal peak ; , 

O increasing the bias current I , 

O redacing P by reduchg the ratio. 

6.1.2 Clock Feed Through 

Clock feed t h g h  (CFT) is due to to the non-ideal characteristics of the switch 

transistor [79-851. Considering the structure of a MOS transistor (Fig. 6.2), two 

types of parasitic capacitances can be recognized: overlap capacitance, and channel 



Fignre 6.2: The structure of a MOS transistor with its parasitic capacitances. 

capacitance. Due to over diffusion (lateral dihsion), an ovdap  is made between 

the gate and source (gate and drain). With the presence of the oxide Iayer between 

the gate and the over-diffosed areas, overlap capacitance is constmcted between 

gate and source (gate and drain) which is indicated by CGsOv and CGDov in 

Fig. 6.2. When the voltage at the gate of the switch transistor changes rapidly, 

a portion of it transfers to the data-holding node through this overlap capacitance. 

Channel capacitance is another type of parasitic which is constmcted between 

the gate and the channel (depletion area). These capacitances are indicated by Ca 

and Cm in Fig. 6.2. The values of these capacitances are not constant across the 

diannel, but normdy an average value is considered. When the switch is turned 

off, the channd charge flows out of the drain, source, and substrate and a portion 

of it gets dumped to the gate capacitance of the mernorizhg transistor. 

The total gate capacitance of the switch is [80] 



where Cov and Ca are the overlap and the channel capautances, respectively. 

Following the circuit proposed in (84,861 the modd of the transistor in the ON 

and OFF state can be shown as Fig. 6.3 (a),(b). When the transistor is ON, 

both chand and overlap capa~tances exist. A voltage dependent conductance 

(g = P(VG - VT)) also appears betweea the source and drain. When the transistor 

is OFF, jnst the overlap capacitance exists and there is almost zero conductance 

between the source and gate. 

The injected charge produces an error in the held drain current, corresponding 

to (K. - VT)'- Clock feed through efFects in SI circuits are similar to those in SC 

circuits. which have been studied extensively in [79,85]. The amount of injected 

charge is a function of the switch turn-off rate, the aspect ratio of M. to M2: the 

source-to-load capacitance ratio, the mit ch-bsource resistances, and the voltage 

at the hold node. According to [72], the CFT voltage can be expressed as : 

where LD is the lateral diffusion length, Wsw is the switch width, Wz and L2 are 

Figure 6.3: Mode1 for switch transistor in (a) ON state, (b) OFF state 
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the memory transistor dimensions, and r)  denotes the fraction of the dock voltage 

swing dnring which the surîtch is ON. 

The Kft causes the same distortion as the threshold voltage mismatch. To 

calculate the CFT m e n t  in Fig.6.1, we express the total m e n t  in the drain of 

M2 as: 

Here 1 is the DC bias current, i, the AC signal. and icf the CFT m e n t .  We can 

ako write: 

KfW2 KtW2 = -- w2 

2 L2 Kf t  + 3-L; (V, - VT)~ + Kf-(VO. - h)Kft (6.10) 
L2 

Since the second term in (6.10) is equal to 1 + i,, the remaining tems are due to 

the CFT voltage: 

Considering 

we write 

It is clear fiom (6.12) that the m e n t  is not only a square fnnction of Kft, 
which generates ha~nonic distortion, but also varies with bias and signal currents, 

which resdts in a signal-dependent CFT. This equation can be separated into a 



DC offset term and a polynomial which exhibits harmonie distortion 

The first term in icMC represents the AC gain aror. The other terms, , with expo- 

nent of 2,3, and more, generate the harmonic distortion. Considering a sinusoidal 

input iin = Lin(wt) ,  and assnming $ < 1, we get the same equation as (6.6) for 

the harmonic distortion. 

THD zs HDz = 

6.1.3 Operat ing Frequency 

Denote the 3dB freqnency bandwidth of the current memory c d  in Fig.6.1 by 

f3&3. If the input signal fiequency is comparable to f3dB, the nonhear set t h g -  t h e  

behavior of the circuit generates dis tortion as explained in [87]. Also at this range of 

signal frequency, the switchlig operation transfers the high frequency components 

back into the circuit bandwidth which directly contributes to distortion. 

6.2 Predicting Harmonic Distortion in the SI M e m -  

ory Ce11 

The nonlinearity of SI circuits has been stndied in [87] and variations in the settling 

behavior of the current memory c d  were shown to be the major source of distortion 



in SI circuits. In addition, an approximate f o r d a  for Che upper bound on the 

total harmonic distortion (THD ) was derived. In this section, we present a generd 

expression for the THD of non-linear circnits. Using this expression, we impose 

both upper and lower bounds on the THD of a switched-ment memory cd. 

We follow similar derivations as in [87], but provide the following improvements: 

a general equality expression for the THD of non-linear circuits is introduced 

instead of an inequaüty, 

0 a lower bound on the THD is derived fiom the general expression, 

O a slightly tighter npper bound (compared to that presented in [87]) is imposed 

on the THD. 

The method is applied to some examples. The bounds predicted by our method 

are in agreement with SPICE simulation results. 

6.2.1 THD Measurement 

Denote the input signal of a SI circuit by irN and the output by iovT. The THD of 

the circuit c m  be measured by applying a pure sinusoidal signal to the input and 

measuring the power associated with the fundamental tone and harmonies at the 

output. Since the input is periodic, the output is also periodic and can be expressed 

in tenns of its Fourier series 

where i ou~k  (t  ) (k = 1,2, , oo ) are harmonically related 



The DC component is disregarded as it does not introduce THD. We separate 

iouTk (t) into two components: a linear component iOuTl (t) which is the fandamental 

component, and a deviation fiom the fundamental component AiovT 

The THD is defined as the square-root of the mm of the powers of the harmonics 

divided by the power of the nuidamental component 

where II x Il2 denotes the power associated wïth the signal x ( t )  

Recalling Parseval's theorem, the power of a periodic signal is equal to the surn of 

the powers in it's harmonics 

Substitute (6.15) in (6.14) 

Given this definition, the THD can be computed if we know iouT - i o u ~ ,  and i o u ~ , .  

Although these terms can not be nsuaily measured, we can still impose the bounds 

on THD. In [87] the authors gave only an upper bound. We impose both upper 

and lower bounds on THD. 

6.2.2 The Upper Bound on the THD 

An upper b o ~ d  on the THD of the current memory c d  (Fig. 6.4) was given in [87]. 

Considering the s m d  signal mode1 of the c d  during the memorizing phase 



CHAPTER 6. HARMONlC DISTORTION IN SI CIRCUITS 

(Fig. 6.5), ne define the time constant r 

where C,. denotes gate-to-sonrce capacitance, Cd the capacitance connected to the 

drain node, and g, the transcondüctance of the transistor. The output resistance 

r, is ignored because r, > &. The clifference eqnation that relates the input and 

output carrent signalsi of the memory cell was shown to be 

where 

= e-T/(*) = 

represents the settling error that occurs in the nth sample, and can be written as a 

deviation A7(n) fiom a linear component 71, 

7(4 = %in + A7(+ 
From (6.13), the output signal can be wrîtten as 

iouz(n) = D OUT^ (n) + Aiou~(n)  - 
Substituting (6.18) and (6.19) back into (6.17) 

 UT^ (n) + A ~ o w T ( ~ )  = 4 1 -  71in - &y@))  [ i r ~ ( n  - 112) 

+  OUT^ (n - 1) + A ~ o u T ( ~  - l)] +  OUT, (n - 1) + A~ouT(~ - l)]. 

(6.20) 

We decompose this equation into a the-invariant linear, and a time-varying non- 

part. The linear theinvariant equation is 

1 
ioun(n) = -(l  - 7tin)[ir~(n - ;Z) + i ov~ , (n  - l ) ]  + i o u ~ ~ ( n  - 1), (6.21) 
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VDD 

P 

Figure 6.4: Current memory ceU (current copier). 

Figure 6.5: Smail-signal mode1 of the current memory c d  for the dock phase di. 
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and the nonlinear tirne-varying equation ïs 

The term 7(n) is bounded between 7- and 7- allowing us to observe the worst- 

case conditions imposed on the THD. Based on (6.16), the THD is proportional to 

the ratio of the power associated with AiOVT over the powa associated aith iooT- 

To find an upper bound on THD, we therefore rnackïze AiOUT(n) and minimize 

iovT, (n). According to (6.21), iorrT, (n) is smallest when 71im is largest (note that 

7 is less than one). This will occur when ri, = 7,,. The resdting diffaence 

equation then becomes 

Taking the r-transform of this equation and re-arranging it, we get 

Also, the largest AiouT(n) is determined fiom (6.22) as 

where (AT),, is the maximum change in ~ ( n )  when the input signal sweeps fkom 

the minimum pealc to maximum. Since the above equation is now linear and time- 

invariant, we can take the z-transfom. Taking the z-trandorm, and substituting 

lovTl (r) kom (6.23), we get 
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Assnming an input sine wave with the amplitude A and freqnency wo, the power 

assouated with iouTi and AiowT are caiculated firom the foilowing equations: 

(=) and E&&l are the transfér functions obtained from (6.23) and where I ~ L )  IXN(Z)  

(6.24), and T is the switching period. Substituting the expression for II iorrT, Il2 
and II P~OUT Il2 into (6.16), and cancelling common terms, we finaily obtain 

(Wmnt 1 - e- iw~T 

(1 - 7-1 (1 - 7mae-jw~T) 

where wo is the input signal frequency. It is evident kom 

(6.25) 

(6.25) that the THD 

bound changes with the fkquency of the input signal. In fact, as 7- and Tmin are 

normally quite smd ,  the THD inmeases with inaeasing input fiequency because 

of the term (1 - ejWoT) in the numerator of (6.25). 

To calculate the upper bound in (6.25), we need an estimate on (AT)*-. One 

es timate was suggested in [87] as 

which uses only the information about the extreme case of -y(n). To find a better 

estimate of (A&=, we try to use all information aMilabIe for ~ ( n ) :  when the 

circuit input signal is zero, ~ ( n )  is equal to 7-, and when the input signal sweeps 

fiom minimum value to maximum, ~ ( n )  changes fkom 7- to rmin3 respectively. 

A better estimate of (AT),, is therefore 
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6.2.3 The Lower Bound on the THD 

We now try to h d  the smdest AiouT(=) and the larges t iOLIT1 (n) to ob tain a lower 

bound on THD given by (6.16). Based on the difference equation (6.21), iovTl (n) 

is a maximum when 7h is a minimum (considering that 7 is less than one). This 

happens when = 7 ~ .  The resdting difference equation is 

Taking the z-transform and re-arrangïng the equation, we get 

in which (Ar), is the minimum change in 7(n) when the input signal sweeps 

fkom peak to peak. Taking the z-transform of (6.28), and substituting (6.27) for 

Lut,  (4, we get 

Following the same steps given in the calculation of the upper bound, we establwh 

a lower bound on the THD as 

and consider the foIlowing estimate for (AT),,,, 
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6.2.4 Comparing the THD Bounds With Simulation Re- 

sults 

We choose two examples given in [87], and impose o u  new bounds on them . 

Example-1 : 
The current memory cell of Fig. 6.4 with a bias m e n t  of 20pA (7- = 0.0233) 

is d t e d  by a 1 6 k n z  tone having a 10pA amplitude. The drain current in the 

memory transistor M n e s  between 10pA and 30pA producing a 7rnifl = 0.01 and a 

7,- = 0.071. According to our denMtions? (6.25) and (6.29), the bounds on the 

THD would be 0.26% 5 T H D  5 1.082%. When compared to the result obtained 

from HSPICE analysis, i.e. 0.26%, we see that it is within the bounds predicted by 

(6.25) and (6.29). 

Since the THD depends on the input frequency, the fkequency of the input 

tone was changed from l h H z  to 64kHr' and the THD bounds for Merent input 

fkequencies are computed and plotted in Fig. 6.6. This figure also shows simulation 

results and the computed upper bound presented in [87]. As seen, the THD obtained 

fkom the HSPLCE simulation is always within the bounds predicted by (6.25) and 

(6.29). The new upper bound is also improved. 



THD 
( log scde ) 

Normdized Frequency ( fo / fs ) 

Figure 6.6: Comparing the THD computed by HSPICE with results predicted by 

our method. 

Example-2 : 

For the first generation SI memory c d  in Fig. 6.1 the following parameters were 



The circuit was constrncted ushg discrete MOSFET components (RCA 4007,RCA 

4066), and clocked at the fkequency of 64kHz. A lOOOpF capacitor was placed 

across the gate-source terminal of transistor Tt. A 60pA sinusoida1 m e n t  signal, 

with a fiequency varyïng between 125Hz and 15k& was applied as input. The 

measured THD and the upper bound predicted in [87] are shown in Fig. 6.7. Also 

shown on this figure are the bounds predicted by our method, (6.25) and (6.29). 

Again, the validity of the two bounds computed by the method and the improve- 

ment on the npper bound are evident. At fiequencies below 500Hr the switch 

charge injection dominates the distortion caused by set tling error variation. 
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THD 
( log scaie ) 

10% 

1% 

Upper Bound In [ 87 1 --.- 

NoniIized Frequency ( fo f fs ) 

Figure 6.7: Comparing the measured THD of the circuit in Fig.6.1 with results 

predicted by our method. 



Chapter 7 

Conclusions 

This thesis presents analysis of analog sampled data systems. Each chapter looked 

at one of the different aspects of these systems, starting with chapter 2 on tirne do- 

main sensitivity of linear circuits using sampled data sirndation. An obvions appli- 

cation of the theory developed in chap ter 2 is in sensitivity analysis of Delta-Sigma 

modulators, which was presented in chapter 3. Another aspect of sampled data 

sys tems, the group delay and group delay sensitivity of switched linear networks, 

was derived in chapter 4. The switched-curent circuit was introduced in chapter 5 

as a new analog sampled data technique, and some nonfiltering applications of this 

technique were proposed. Finally, sources of distortion in switched-current were 

examined in chapter 6, and both upper and Iowa bounds were imposed on total 

harmonic dis tortion of curent memory cd .  

A detail list of my contribution in each area is given in section 1. Section 2 

presents the proposal f a  continuation of the work and fnture research directions. 
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7.1 Contributions 

My contributions to each area are as follows. 1 tned to list them in order of their 

A new method for computation of the time domain sensitivity of linear circuits 

was proposed. The method is accurate because no approximation is made, 

and efficient becanse some parts of the computations are pedormed only once. 

in a pre-processing step before simulation starts (Chapter 2). 

A fast and accurate method for the calculation of group delay, and the group 

delay sensitivity of periodically switched linear networks was proposed. The 

method handles all types of linear elements, and therefore can be applied to 

nonideal switched-capacitor and switched-enrrent circuits ( Chap ter 4). 

We formulated the sensitivity networks for Delta-Sigma modulators, and com- 

puted the sensitivity of the output magnitude with respect to any circuit el- 

ernents. The proposed method can be applied to ali types/configurations of 

modulators as long as ail elements, except the comparator, are linear. The 

sensitivity of the output of the clocked/uncIocked comparator with respect to 

its input was derived (Chapter 3). 

We proposed some non-filtering applications of switched-curent circuits. They 

include a current-controlled oscillator, a modulator, and a fi&-wave rectifier. 

We also proposed a switched-current oversampling Delta-Sigma A/D con- 

verter (Chapter 5). 

Sampled data simulation of linear circuits was extended to the case of incon- 

sistent initial conditions (Chapter 2). 



We analyzed the harmonic distortion of switched-ment &cuits, investigated 

the sources of distortion, and imposed both upper and lower bonnds on the 

total harmonic distortion of a switched-current memory c d  (Chap ter 6). 

When the input signal is sinusoidal, an efficient method was proposed for the 

computation of the vector P, its derivatives with respect to fkequency 

and with respect to element vaiues g. It was shown that if these vectors 

are evaluated at one freqnency wi , there is no need for fnrther integrations to 

compute them at other frequencies wz, w3, etc. They can be o b t a e d  by a 

few matrix manipulations (Chapter 4). 

Considering both sensitivity and adjoint networks, we ewplained that the 

adjoint method in fkequency domain is equivalent to that in time domain 

(Chapter 2). 

As a side work, we wrote two programs in MATLAB based on the theories 

developed in this thesis: SDSEN for transient analysis and the time domain 

sensitivity of linear circuits, and GRPSN for the computation of group de- 

lay and the group delay sensitivity of switched hear networks. Some other 

pieces of programs, MPgen and MPsgen, were written based on the numerical 

Laplace inversion, to provide the pre-processing matrices (M, P) and their 

derivatives (Chapters 2, and 3). 

7.2 Future Research 

During the course of this research, the following points have been detected. They 

are sugges ted here for future investigations. 
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1. We wrote a program for computation of group deky and the group delay 

sensitivity of swïtched linear networks, and explaïned how it can be used to 

obtain a flatter groap delay of switched networks. As the ne*t step, this pro- 

gram can be coupled with an optimizer to provide an integrated environment. 

for the optimized design of switched capacitor and switched m e n t  fdters. 

2. Using an adjoint network for the time domain sensitivity giva the sensitivity 

of one output with respect to 4 elements at o s  instant of time. The following 

subjects can be investigated as the applications of the adjoint network : 

(a) the time domain sensitivity analysis of switched network at the end of 

each phase when the circuit does not reach the steady state, 

(b) transient analysis of the rise/fd time in digital circuits and transmission 

lines. 

3. We imposed both lower and npper bounds on the harmonic distortion of 

the switched-current memory c d .  To do this, we suggested an estimation 

of the settling behavior. The next step is investigating a better estimate of 

the settling behavior in the switched-current memory c d  to tighten up the 

bounds we imposed on the total harmonic distortion. 

4. To c a l d a t e  the sensitivity of the Delta-Sigma moddator, we considered some 

approximations in the sensitivity of the comparator with respect to its input. 

The computation of the sensitivity of the Delta-Sigma modulator can be im- 

proved by considering more conditions, such as comparator hysteresis, on the 

signal applied to the input of the comparator. 

5. We calculated the sensitivity of the magnitude of the output of Delta-Sigma 

modulator. The next step is computing the sensitivity of the signal-tenoise ratio 
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(SNR) with respect to an element, becaase the SNR m e  conveys more in- 

formation about the moddator, 

6. The sampled data simulation has been shown to be a fast and accurate method 

of simulation for dual time systems. One application, the Delta-Sigma mod- 

dator, was presented in chapter 3. The next step could be the investigation 

of sampled data simulation in other dud time systems, such as phased-locked 

loops (PLL) , and frequency modulators. 
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Appendix A 

Computation of P, M, and Their 

Derivat ives 

Using the modified nodal formulation, let the system rnatrix be defùied as 

where G is the conductance matrix (m x rn), and C the capacitance matrix (m x m). 

The system equations are 

where W(s) is the Laplace transform of the sources and I the vector of impulse 

sources Ci& or -LiIio, due to initial conditions. The solution of (A.l) at the t h e  

t = h is calculated by [12-151 

where zi (poles) and Ki (residues) are given in Table (A.l),  M' is the number of 

rows in the table, and the bar denotes the complex conjugate. To go to the next 



Table A.1: Poles ri and residues Ki osed in numericd Laplace trandorm invasion 

(M=10 N=8). 

point in time, we reset the problem so that in the next evaluation the previous 

result is considered as the initial point for the new step. To do this, the initial 

condition 1 is obtained fiom x by means of 

We apply the above method, called stepping algorithm, to compute the P and P, 

vectors defined by 

The algorithm is 

1. Prepare the vector of initial conditions I(tc = 0) for the original network, 

and I.(to = 0) for the sensitiviky network. These are n d  vecton for initially 

relaxed circuits. Select the step size h = T / N ,  where N is the number of steps. 
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It is an arbitrary number that determines the accaracy of the compntation, 

and is explained later. Set k = 1. 

2. Substitute 2 for each s in the system of eqnation 

and solve it to get 

Create the right hand side of the sensitivity network (sensitivity with respect 

to element 1)  

and solve 

3. Multiply &(:) by Ki and add the prodncts. Multiply Yi(:) by Ki and add 

the prodncts. 

4. Repeat step 2 and step 3 for all zi7s and Ki's in Table (A.1) to get 



5. Consider the conjtxgates of ri and Ki, repeat the steps 2,3, and 4, and divide 

the results by (-h) to obtain 

1" 2.i 1 - 
z; ~ ( t  = kh) = -hxK'x-(h) - n ~ ~ ~ ( h )  

k 1  k 1  

6. Prepare the new initial vector I(kh) = C x(kh), IJkh) = C y(kh). Set 

k = k + 1, repeat steps 2 to 6 till k reaches N. 

7. Vector x now contains the t h e  domain solution of the original network at 

t = Nh = T, which is equivalent to vector P required for sampled data 

simulation. Vector y contains the time domain solution of the sensitivity 

network at t = Nla = T, which is considered as Pr in the time domain 

sensitivity analysis. 

The number of steps, N, determines the step size h = 5, and so the mincation 

error. The above algorithm is repeated once with the number of steps equd to N. 

and then equd to 2N. The difference of the two results gives the trnncation error. 

If the error is more than the desired value, the nnmber of steps is multiplied by 2, 

the step size is divided by 2, and the computation is repeated with the new step 

size, 

The matrices M and M. are calculated with the same algorithm. Since the 

source vector W does not appear in the computation of M and M., an identity 

matrix is considered as the input. With this artSual input, all of the computation 

steps are the same as what we explained for P and P.. 



Appendix B 

The Algorit hm for Calculation of 

Group Delay and Its Sensitivity 

Part 1 : Pre-Processing 

W e  apply one-Graph modified nodal analysis to formulate the circuit equations. 

The switches are modeled as resistors with a small resis tance when they are closed 

and infinite resistance when open. The topology of the circuit therefore does not 

change during the different phases, and the mahices Br become equal to Ck. The 

number of phases is denoted by N. 

The the input fkequency is wo. AU of the fiequency variables in the following 

steps are w = wo. If the input fkequency is changed, all of the following steps (ex- 

cept 1-1 and 1-2) have to be repeated at the new fiequency. An efficient method 

for computation of matrices in steps (1-3) to (1-6) is given in chapter 4. N is the 

total number of phases, and T is the dock period. 
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1-1- Prepare (Gi, Cl) , (G2, C2), . . - , (GN, CN) where the matrices Gk and CL 

constrnct the system matRx Rk during phase k, i.e Rk = G k  + s Ci. 

dP dM 1 4  Prepare (*: &) , (%, 9) , . . . , (*, 9) 

%Y 1-5- Prepare (9) , (c) , . . . , ( dw ) 

Part 2 : Solution of the Discrete-Time Equations 

2-1- Construct the following matrices related to the Discrete-Time set of equations: 
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AG 1 - -  
dw - T  

8W 1 -- 
dhdw - T 

d'PL 
dhdw 

d?pz 
dhdw 

! e x  
dMw 

.o. 

dlPN 
dhdw 

2-2- Compnte 
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2-3- Using F p  fkom (B.l), compte 

2-5- Using Vp,  and $$ obtained in the previous equations, cornpute 

h 

~ V P  - gp -- 'PR - ----- 
dhdw [ dh dw d h d w V p - d w d h  dRdV,+el dh* 

Part 3 : Solution of the Continuous-The Equations 

3-1- Construct the following matrices related to the Continuous-Time set of 

equations. Use the results of (B.1) to (BA) to constrnct these matrices. 
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d C 2 E L  - && 
d h d w  d i r d w  

3-2- Compnte 

3-3- Using Vp from (B.5)? compute 

3-4- Ushg Vp hom (B.5), compnte 

3-5- Using Vp , 2, and 9 obtained in the previous equations, compute 

-- dRN, bR dZVp - R-l[-_- - - 
dhdw dh dw dhdw 

vp - -- 
dw dh dhdw dRdVp +-1 

Part 4 : Computing the Group Delay, and Group Delay Sensitivity 

The complete vector of nodal voltages is the summation of the vectors corresponding 

to  each phase: 

@v - -  d2Vk 
dhdw - '-1 xzz 
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Assume that the output is one of the elements in V, Iilte V ( k )  (in genaal, the 

output is related to the vector V by the selector vector d, i.e 4 = dt V). 

The gronp delay is caicnlated as 

and the group delay sensitivity with respect to element h is caldated by 



Appendix C 

Selected Switched-Current 

Circuits 

The nonfiltering applications of switched-curent circuits proposed in section 2 of 

chapter 5 were implemented nsing the circuits selected kom the Iiterature. The 

citations to the references and a brief explanations of the circuits are presented in 

this appendix. 

1 - Reference Curent Switch 

To provide two levels of reference current, I& and -fret, we consider a fully- 

difFerential current switch reported in [52]. Such a switch achieves fast se t thg  

times and high switching speeds. 

A circuit diagram for differential current switch is shown in Figure C.1. In this 
- 

circuit, the reference current IPer is switched to either I' or I,t using an NMOS 

diaerential pair consis ting of transis tors Mi and M2. Swit ching the reference current 

to Imt requires driving the gate of transistor Ml to a positive potential VKa. while 



Figure C.1: A M y  differential current switch. 

puLling the gate of transistor Ma to ground. Dri~ing the gate potential of Mi to 

Vha. is done with the transmission gate composed of transistors M3 and M4 while 

the gate of MZ is pulled to ground using a single N-channe1 device MG. 

The transmission gate is driven by a pair of complementary signals, Bz and B, 

These signals are driven fiom the digital input dock by using h o  inverter strings 

I l ,  12, 1. and 4, Ise By equalizing the delay through each inverter string, the nsing 

and falling transitions of B, and can be made to overlap. Furthemore, if the 

delay through inverter i equals z, then choosing T2 = Tg and Tl + T3 = T4 ensures 

that the nsing and f&g transitions of B, and occur simdtaneously, even in 

the face of process variations [52]. To satisfy the above conditions, device &es are 

chosen such that each of the inverters Il to I5 drives the same load capacitance. 

Inverters I l ,  1 2 ,  1' and Is have the same size with Wp/Lp = 36~138 and W,/L, = 



15p/3p, while inverter II is chosen to have twice the channe1 length Wp/Lp = 

36p/6p, W,/Lm = 15p/6p. The pull d o m  transient at the gate of Ma is controned 

by the device Ma driven by inverter 17. Adding inverter If delays the puü d o m  

transient at the gate of M2 mtil the voltage at the gate of Ml has risen sdiciently 

to turn Mi on. Both inverters and i+ have W,/L, = 6p/3p, Wn/Ln = 15pf3p. 

II - FuUy Balanced SI fntegrator 

We consider a fdly baianced SI integrator proposed in [53,54] becanse of its first- 

order cancdation of dock feed through dects,  6-dB inaease in dynamic range, 

improvement in co~nmon~mode rejection ratio ( CMRR) and power sup ply reject ion 

ratio (PSRR). To understand the operation of the M y  balanced integrator, we 

first explain the operation of the fdly balanced curient rnirror shown in Figure C.2. 

When a signal current +i*/2 is injected into the low-impedance node assouated 

with the diode-connected device Pl, the canent ( I  - i in/2)  that follows through 

the Ni - p i  branch is converted to a voltage behneen the gates of NI and Pl. The 

resulting voltage is applied to the gate of Pz while the gate of NÎ is connected to 

VB. Hence, the current (1 - &/2) is mirrored from Pl - Ni to Pz - N3 and reflected 

to the differential outputs as shown. Assnming matched pairs, the hlly balanced 

current mirror has a small signal current gain of two since the differential-mode 

output current is 2ih. One way to increase the current gain is to scaie the current 

minor aspect ratios. As shown in Figure C.2, if P2 - P3 and Na - N3 are scaled by 

KI relative to Pl - fi and NI - NI, and the output mirrors are scaled by K2, the 

s m d  signal m e n t  gain is 2 KI Kz. 

A M y  balanced SI integrator is obtained fiom the M y  balanced mirror by 

adding MOS switches between current-mirror transistor pairs as shown in Fig- 

ure C.3. During #1, the input cnrrents are applied to the low impedance nodes 



r i ,  

Figure C.2: A fully balanced m e n t  mirror with open loop current gain 2 K1 K2. 

associated with Pi and P4, and dnring &, the signal currents are sampled by the 

output T/H stages N5 - NB> N8 - N9, P5 - P6, and Ps - P9.The integration function 

is obtained by feedback of the balanced outputs +id and -id to the balanced 

inputs. Scaled output branches NT, PT and Nlo, P10 provide the desired integrator 

gain constant. 
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Figure C.3: A f d y  bdanced SI integrator. 

III - Current Schmitt Tkigger 

A two-input CMOS m e n t  Schmitt trigger with adjustable hysteresis reported 

in [55] is shown in Figure C.4. Transistors Ml,  Mz, Ml,, MI2 and Mg, Mg, Mg, Mlo 

are matched pairs which compare the cnnents Id7 + Iinl and IdB + rin2- The output 

of this comparison controis the Mkrential switching stage (MT, Ma). We start with 

the input ri*, very s m d  in comparison with Iinl- Va is then "high" and V& is 

"Iow". It means MT is ON and Ma is OFF. The current through Ml is Iinl + Iha. 

If IinZ increases and exceeds the above value, Va will snap to "low" and b4 to 

"high" . Therefose, when 

4n2 > (LI + l h y )  (CJ) 



Figure C .4: Two-input current Schmitt trigger with adjustable hys teresis. 

the transistor M7 is OFF and M2 is ON. The current through Ms is Iin2 + Ihv, if Iinl 

exceeds this value, the circuit cornes back to the starting state where Vd3 is 'highn 

and h4 is "low" (M7 is ON and M' is OFF). Therefore, the following condition 

will change the state of the Schmitt tngger : 

From ((2.1) and (C.2) we condude that the following conditions d l  change the 

state of the Schmitt trigger: 

As long as we consider the clifference of the two input cuxrents, l à n 1  - Imz, equa- 

tion( (2.3) indicates that the hysteresis is equal to Ihui and is independent of pro- 
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Figure C.5: A dass B cnrrent comparator. 

cess parameters, transistor dimensions and power supplies. The only requuement 

is matchùig of ail transistors in m e n t  mirrors. 

IV - Current Comparator 

The m e n t  comparator reported in [56] is shown in Figure C.5. Transistors Ml,  M4. 

and Mg have Wn/Ln = 3p/1.2p, and transistors Ma, M3, and Ms have Wp/Lp = 

9p/l.2p. Mt and M2 form a dass B voltage b&er and M3 to Ms form two inverting 

amplifiers, each with gain -gm/gh. k is the input m e n t .  When Iin is positive, 

V(1) is pded  high. This is amplified by M3 and Mq, causing V(2) to go low. V& 

and VGSS are negative, turning Ml off and Mz on. When Ih changes sign, there is 

insuffident gate drive for the b&er to supply I,, thus V(l) is temporarily a high 

impedance node. When Iin is negative, V(1) is pulled low and V(2) is high, turning 

Ml off and M2 on. 

Another alternative is a class AB cnnent comparator proposed in [57]. In the 

circuit of Figure C .5 the size of dead region is determined by the threshold voltages 



Figure C.6: A class AB current comparator. 

of Mt and M2 which could be a large value- In Figure C.6, Ml and M2 are biased 

in dass AB operation with gate-source voltages of VB1 and VB2, respectively. As 

the magnitudes of VB1 and VB2 are increased towards the magnitude of VTi and 

VT2, the dead-band in the transfer characteristic of the b&er is reduced. This 

results in smaller voltage swings at V(l)  and V(2) and hence faster response times. 

Transistors MI31 and Ml32 develop the voltage VB1 and VB2. Because the bulk- 

source voltage for MI31 and MB2 is Iess than that for Ml and M2, the threshold 

voltages are &O lower due to the body eEect. Since K' and VT are different for 

NMOS and PMOS, the bias currents are different for MB1 and MB2. IBlA and 

IBlB are used to bias MB1, and IB2A and IB2B are used to bias MB2. Idedy, 

IBlA=IBlB and IB2A=IB2B. 
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