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Abstract 

There has recently been considerable interest in the development of statistical methodology 

for the analysis of event history data. Most of the existing methods are directed to single- 

event time data or to transitional data based on Markov and semi-Markov assumptions. 

In many longitudinal studies, however, extensive sub ject-to-sub ject Mnability is present . 
Alt hough the literature of s t atis tical methods for the analysis of heterogeneous failure time 

data is vast, there remains a need to further investigate a number of issues pertaining to 

fkailty rnodelç for failme t h e  and more general event history data. The goal of this thesis 

is to develop and inves tigate s t atis tical met hods for modeling heterogeneous event his tory 

data. Specifically, we will focus on three areas: (i) tests of homogeneity; (ai) estimation 

with multiplicative random effects for intensity models; and (tii) marginal models based on 

cumulative mean functions for point processes. A strategy used throughout this thesis is to 

adopt piecewise constant baseline functions as a compromise between standard parametric 

and semi-parametric models. 

Score tests are often used to test for homogeneity. W e  provide empirical evidence that 

score tests tend to have poor performance in the context of point processes with small 

to moderately large samples. Adjustments for the bias of the score statistics, induced by 

the substitution of parameter estimates, are derived for Poisson processes with parametric 

and semi-parametric specifications. Simulation studies suggest t t r i  the adjustment to the 

score test leads to much better performance in s m d  samples. The tests based on piecewise 

constant intensities proves to be particularly attractive in terms of the type 1 error rate. 

Methods of parameter estimation for mixed point processes are investigated by sim- 

ulation based on Gauss-Hermite integration and the EM algorithm for log-normal and 

non-parametric random effects distributions respectively. PvIixed Poisson and mked re- 

newal processes are considered. We b d  that the parameters of the intensity h c t i o n  

can be estimated with negligible bias and with quite efficient variance estimates by these 



methods, regardless of the true undedying mking distribution. However, the estimate for 

the dispersion parameter tends to be positively biased for the Gauss-Hermite integration 

when the true mixing distribution is highly discrete. In contrast, variance estimates for 

the estimates of the masses and mass points are inflated based on the EM algorithm if 

the true dispersion parameter is large. These methods of estimation are also investigated 

in the context of a mixed two-state processes. Models which accommodate multiple t h e  

scales are also examined here. 

Finally, when interest lies in relating the number of events of a point process to covari- 

ates, an alternative approach based on mean functions and estimating functions may be 

employed. We develop and investigate such a model in the context of bivariate point p r e  

cesses. The model formidation only requires correct specification of the mean functions and 

thus fd probabilistic specification of the processes is avoided. An optimal criterion is pro- 

posed for the estimation function of the mean function parameters. Estimating hinctions 

arising fiom mixed bivariate Poisson processes are introduced as a working mode1 when 

the covariance structure is unknown. Simulation studies indicate that the mixed Poisson 

estimating function performs satisfactorily. Data ftom a recently completed as thma clinical 

trial are used to illustrate this approach. 

Although only univariate and bivariate processes are studied here, the methods devel- 

oped here provide insight and lay the groundwork for methodology directed at the analysis 

of higher dimensional processes. 
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Chapter 1 

Introduction 

1.1 Overview 

In longitudinal studies, subjects are often observed over a period of time during which 

certain events of interest are recorded. For example, in studies of s m d  bowel motility, 

times between the migrating motor complex are an important measure for gas trointesti- 

na1 function in humans (Aden and Husebye, 1991). As another example, patients with 

chronic bronchitis experience acute exacerbations of symptoms which typicdy alternate 

with periods of good respiratory health (Fietta et al., 1992), and the durations of these 

symptomatic and symptom-&ee periods are of interest. O ther clinical examples arise fkom 

fields such as gas troenterology (Rokkas et al., l995), infectious disease (Nagelkerke et al., 

1990), and psychiatry (Frank et al., 1990). Such chronic disease processes a e  often very 

naturdy modeled by means of event history analysis. 

A fkequently occurring complication in chronic diseases, however, is that individu& ex- 

hibit extensive subject-tesubject variability in their disease processes. When this variation 

is inadequately characterized by a d a b l e  covariates. this phenornenon is temed hetero- 

geneity. Latent (unobserved) genetic and environmental factors, or covariates subject to 



measurement errors, are common causes of het erogenei t y. An ar tifact of t his heterogene- 

ity is that a clustering effect is induced in the data. That is, responses such as event 

times, arising fkom subjects with comparable latent factors tend to be more similar than 

responses arising from subjects with very different latent covariates. There has recently 

been considerable interest in the development of methods for the analysis of heterogeneous 

event history data with the two most common approaches being based on random effect 

(fiailty) models (Clayton and Cuzick, 1985; A b ,  1988; Klein, 1992; Nielsen et al., 1992) 

and marginal models (Lin, 1994; Lawless and Nadeau, 1995). Focus is mainly given to 

multivariate sunrival data (Wei et al., 1989), mixed Poisson processes (Lawless, 1987) and 

mixed renewal processes (Aden and Husebye, 1991). There is, however, a lack of literature 

on more general stochastic processes. 

In this thesis, we aim to develop statistical models and methods of inference for het- 

erogeneous multivariate processes. In what follows. we use the term multivariate processes 

to refer to either multi-dimensional point processes, or multi-state processes. The general 

objectives of this thesis are to 

(i) develop hypot hesis tests of homogenei ty; 

(22 )  consider issues in mode1 formulation and statistical inference for random effect models 

in event history data; and 

(iii) propose model formulation and develop robust inference procedure for mean aad 

covariance h c t i o n s  based on the cumulative number of events. 

Since the fiailty model plays an important role in the analysis of heterogeneous t h e  

to event data, a review of frailty models is given in chapter 2. In chapters 3 to 5, we will 

study the above three topics in details. Topics for further research are discussed ia chapter 

6. 

In sections 1.2 and 1.3 of this chapter. the above three topics of research are briefly 
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introduced. Section 1.4 presents three examples in which the proposed methods will be 

applied. 

1.2 Mode1 Formulation, Estimation and Inference 

1.2.1 Mixed Univariate Point Processes 

A point process is a sequence of event times governed by an intensity function. Let N(s ,  t )  

be the number of events of a subject occurring in an intenml (s, t] for s < t. Furthermore 

let N(t) denote N(0,  t) ,  where t is an appropriate time scde, such as the time since the 

diagnosis of the disease, age, time since randomization, or cdendar t h e .  Let R(t)  = 

( N ( s )  10 < s < t )  denote the history of the process up to time t. Given N ( t ) ,  the intensity 

function, X(tliH(t)), is defmed through the transition probabilities in a s m d  time intenml 

We assume that this is an orderly process, i.e., at most one event c m  happen at any 

instant (Cox and Isham, 1980). Two widely applied classes of point processes are the 

Poisson process and the renewal process. Statistical properties of the Poisson and renewal 

processes can be found in some standard textbooks such as Cox (1962), Karlin and Taylor 

(1975) and Cox and Isham (1980). 

The transition probabilities of a Poisson process do not depend on H ( t ) .  Its intensity 

is a deterministic function of tirne t, and we said that it possesses a time trend. It is also 

well known that N(t) has a Poisson distribution with mean A( t )  = j,' X ( s ) d s  and that the 

numbers of events in non-overlapping time intervals are independent. 
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On the other hand, the transition probabilities of a renewd process depend only on 

the tirne since the occurrence of the last event, i.e., its intensity is a function of backward 

recurrence t h e  t - tN(&) where tk is the event time for the hth event. This implies that 

the inter-event times are independent and identicdy distnbuted (iid) with hazard function 

h ( s )  = A ( s  + t ~ ( ~ - ~ l X ( t ) )  for s  > O. Thus, a renewal process has a stable cyclical behavior. 

Furthmore, if both a t h e  trend and cycles are expected, Cox (1972a) introduced 

the modulated renewal process which incorporates a time trend into a renewal process by 

considering the intensity as a product of a fnnction of t h e  t and a b c t i o n  of backward 

recurrence t h e  t - t N p ) .  Methods of estimation for parametric and semi-parametric mod- 

eIs under homogeneity assumption were investigated by Lawless and Thiagarajah (1996) 

and Oakes and Cui (1994) respectively. 

In order to study the effects of covariates over a sample of rn subjects, we consider the 

popdar multiplicative intensity model (Andersen et al., 1993). Now the history for the ith 

subject becomes 

'Fli(t) = {N; ( s ) ,  X ( s ) ,  Yi(s)JO i s < t), (1.2.1) 

where {Xi(t)} is a p x l covariate process, and Y;-(t) is a censoring process for subject 

i. W e  make the following essential assumptions on the covariate and censoring processes 

(Andersen et al., 1993 Chapter VU): 

1. the covariate processes are predictable with respect to the underlying filtration gen- 

erated fkom the 7&(t)'s and locally bounded; 

2. the censoring processes are predictable and do not depend on the parameters in the 

intensity function. 

Typically, x(t) = I ( t  E [ql, riz] 1, ~ h e r e  I ( - )  is the indicator function, and 7.1 is the t h e  

of entry of the study and rit is the right-censoring time for the ith subject. We also 

assume subsequently that r;l and riz are stopping times with-respect to ?&(t),  see Aden 
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and Husebye (1991) and Andersen et al. (1993, Chapter III) for discussion. In the case of 

random effect models, we fùrther assume that Ti1 and T ~ Z  are independent of the random 

effects given x(t) (Andersen et al., 1993 Chapter IX). 

Note that ail inferences are based conditionally on the covariate and censoring processes. 

The intensity function for subject i is formulated as 

where p is a vector of regression coefficients and Xia (t lx(t)  ) is an unknown sub ject-specSc 

baseline intensity which may be function of past events. 

The baseline intensities may not be the same for all subjects due to heterogeneity. 

Although this specification seems to be more flexible than the multiplicative fkailty models, 

there is a serious drawback. If the baseline intensities are nnspecified, the the-independent 

coMnate effects are completely confounded with the baseline intensities and thus are not 

estimable. Even when parametric baseline intensities are rrssumed, we still run into the 

trouble of having a large number of nuisance paxameters which is proportional to the 

sample size. 

Since the observed covariates act multiplicatively, we rnay assume that the subject- 

specific baseline intensities are also proportional to each other and &te 

where the vils are the unknown proportionality constants and Ao(+) are the common 

baseline transition intensity. Additional model structure is stiU needed to overcome the 

problem of over-parameterization. As in many random effect models, we postdate that 

the K's are sampled independently from a distribution. We further assume that the three 

components of the model. the covariates, the random effects and the baseline intensity, are 
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Figure 1.1: A random effect mode1 for point processes, where the box represents the 
ocurrence of an event. 

mutually independent. As a log-link function is adopted for the covariates, it is sometimes 

more convenient to apply the log-transform for and denote V; = log(K). For the sake of 

identifiability, we restnct the mean of Ui to be O. Let G(u) be the distribution fimction of 

Ui and o be its variance. Very often, G(u) is &O c d e d  mixing distribution. Given ui (or 

v;), (1.2.2) is the conditional intensity with respect to the random effect. To distinguish 

the conditional and unconditional intensi ties, we adopt the universal notation and write 

the conditional intensity (1.2.2) as 

Note that now %(t)  contains only the observed information of the process in (O, t) .  

Mode1 (1.2.4) is depicted in Figure 1.1. As covariates can be functions of past events, 

autoregressive structures are allowed. For instance, the intensity may depend on the pre- 

vious sojourn times. 

Maicimum Mcelihood estimation for random effect models (1.2.4) for univariate point 

process requires the knowledge of the mixing distribution which is usually unknown. Mis- 



CHAPTER 1. INTRODUCTION 

specification of the mixing distribution may lead to inconsistency and Ioss of efficiency in 

parameter estimation. Fortunately, Pickles and Crouchley (1995) suggested that this i s  not 

a serious problem. They carried out a cornparison study for different mkhg  distributions 

used in bivariate failure t h e  data based on simulations and demonstrated that there is 

some robustness to a misspecified mWng distribution for the estimation and testing of 

regression coefficients. Models using the popular log-gamma or normal fkilties perform 

well even in the presence of a substantial non-susceptible group (i.e., its hazard rate is 

zero). However, the non-parametric d g  distribution, which was thought to be ro- 

bust to misspecification, did not perform well for heavily censored data. They suggested 

that computational convenience and the choice of the baseline intensity seem to be more 

important criteria than the choice of the mixing distribution. 

Model (1.2.4) can be estimated by a number of approaches which WU be discussed in 

chapter 2. Some approaches are particularly usefid for certain types of mixhg distribution? 

for example, the EM algonthm is usually applied for a non-pararnetric &g distribution. 

A cornparison of some of these estimation methods via simulations is considered in chapter 

4. 

1.2.2 Mked Bivariate Processes 

The concept of heterogeneity may be extended to multivariate processes in a similar fash- 

ion. This amounts to specify a multivariate mWng distribution such that each mixing 

comp onent act s mul t iplicatively on exac tly one int ensity function. The choice of mi.xing 

distribution becomes heavily reliant on the tractability of likelihood function. Aalen (1987) 

suggested approaches in estimation for Markov processes in which the baseline transition 

intensities are time-invariant. A mode1 of this sort was also considered by Cook and Ng 

(1997) for a two-state Markov chah in which a logistic-bivariate normal mode1 was used to 

describe heterogeneity in data from an infection field study (Chunge, 1989). Ln addition, a 
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bivariate frailty mode1 for in-patient mental health care was proposed by Xue and Brook- 

meyer (1996) using semi-Markov processes wit h bivariate lognormal frailties. However, 

not much work has been done for more general processes so far. 

Since many applications give rise to bivariate point processes or two-state processes, 

we wil l  focas on modeling such processes. 

Suppose m subjects are followed over time generating rn independent bivariate point 

processes characterizhg two types of events. We assume that the processes are orderly. Let 

Nij( t )  be the n - a b e r  of the j th  type events occurring in ( O ,  t ]  and Ni-(t)  = Nil ( t )  + N;f(t) .  

Let Xij(t17&(t)) denote the j th  intensity hinction for subject i at tirne t  given the history of 

the process up to time t ,  %( t )  = {Nil (s), Nil ( s )  , Xi(3) , X(S) IO 5 s < t ) ,  for j = l , 2  and 

i = 1, . . . , m, where the covariate and censoring processes are defined as in section 1.2.1. 

That is, as 6t + O+, 

where Nij(s ,  t )  = N,(t) - Nij(3) is the number of the j th  type events occurred in (3, t ]  

for s  < t .  If simultaneous occurrence of both types of event is dowed, we define the 

instantaneous rate as Pr(Nil( t ,  t  + 6t)  = 1, Niz(t, t  + 6 t )  = 11%(t)) = Y;.(t)Xi12(t(?&(t))bt + 
O(&) .  

When a two-state process is entertained, we d e h e  Ni j ( t )  to be the number of j -t 3 - j 

transitions in (O, t] and xj(t)  = 1 if subject i is in state j at time t -  and O otherwise. The 

history of the process up to time t  is the collection 

Let Xij(t l X - ( t ) )  be the j -t 3 - j transition intensity given x - ( t ) .  Simultaneous transition 
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in both directions is impossible and thus AilZ(t(X(t)) = O. In addition, the transition 

probabilities over a s m d  time intervaI [t , t + bt ) are defined as, for St -t O+, 

The two-state process difFers from the bivariate point process in that we observe not only 

(Ni&), Ni2(t)) over tirne, but also {xi ( t ) ,  &(t) )  such that &(t) + &(t) = 1 for t 2 0. 

We are now going to formulate the intensity functions for the bivariate point process or 

the transition intensity functions for the two-state process. Assuming t hat simult aneous 

occurrence of both types of event is not dowed, a rnixed multiplicative intensity model 

similar to (1.2.4) may be formulated as follows: 

where x i j ( t )  is a pj x 1 vector of covariates, P is a pj x 1 vector of fked-effect regessian 

coefficients, ui = (uii, a;?)' is a bivariate vector of random effects with distribution function 

G ( - ; c )  indexed by a, and Xjo(t('fli(t)) is an unknown baseline intensity for the j th  type 

of event or the j + 3 - j transition and is common to all subjects. 

As in the univariate point process, we assume the Ui's are independent and identically 

dis tributed, and the covariates, the random effec t s and the baseline intensities are mutually 

independent. Figure 1.2 shows this model diagrammatically for a two-st ate process. 

Markov processes and semi-Markov processes are widely applied in which the baseline 
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Figure 1.2: A random effect model for two-state processes, where the number inside the 
box represents the current state. 

intensities are specXc functions of 'fG-(t). We f is t  introduce the formulations for a semi- 

Markov process and a process combining the Markov and semi-Markov properties. and 

then desaibe some issues pertaining to model inference. 

Alternating Renewal Process 

An ordinary two-s tate semi-Markov process is also known a ating renewal process. 

This process has the following three properties (Karlin and Taylor, 1975, p207 and Cox 

and Isham, 1980, p55): 

1. the distribution of the duration in either state depends only on the time since the 

entry to that state; 

2. durations in each state are independently and identicdy distributed; and 

3. durations in different states are independent. 

Loosely speaklig, these properties imply that the process under consideration is relatively 

stable with fairly regular cycles of relapsing and remitting disease activity. Such a structure 



is quite plausible for applications to many chronic diseases. 

Given the renewal characteristic, the baseline intensities are functions of time siace the 

most recent entry into the curent state, in other words, 

where t k  is the kth transition tirne. 

If the covariates are &O functions of duration times ( t  - tNî .( , - ))? this process belongs 

to the multivariate fdure  times model in time to event analysis (see chapter 2). 

Modulated Alternating Renewal Process 

The Markov process is a multi-state generalization of the Poisson process. Its baseline 

intensities are also functions of t h e  alone, that is. Ajo(tlx(t)) = Ajo(t) This essentially 

assumes that time trends exist in all possible transitions. Incorporating this property into a 

semi-Markov process gives rise to a multi-state version of Cox's moddated renewal process. 

Here we will consider twmstate processes. 

Since many chronic diseases consist of relapsing and remitting disease cycles, exhibit 

seasonality, aad show persistent risk, it is desirable to adopt a model which incorporates 

these behaviors simultaneously. We propose a multiplicative components model as follows: 

where Sj(*), Rj(m) and Ti(*) are the seasonal component, the semi-Markov component and 

the Markov (tirne trend) component for the j -t 3 - j transition respectively, t is the time 

since diagnosis of the disease, ~ ( t )  = t + ci(0) is the calendar time, %(O) is the date of 

diagnosis of the disease and bi(t) = t - tNi.(t-) is the backward recurrence time for subject 

2. 
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This sort of mode1 with parametric specification allows tests for renewal or time trend; 

see Lawless and Thiagarajah (1996) for the treatment of Mivariate point processes. Model 

(1.2.7) will be applied to a data set in chapter 4. 

Mixing Distribution and Maximum Likelihood Estimation 

A number of methods for constructing a bivariate mixing distribution are discussed in 

Chapter 2. It is important to choose a distribution so that there is no direct functional 

relationship between the variances and the correlation of the intensities, i.e., a genuine 

bivariate distribution is most desirable (Lindeboom and Van Den Berg, 1994). A bivariate 

normal dishibution is an obvious natural candidate. In chapter 4, we will also consider a 

b i k a t e  non-parametric mixing dis tnbution. 

1.2.3 Marginal Models for Mean and Covariance Functions 

Marginal models are also popular in Cox regression models (Lin, 1994) and in generalized 

linear models (Clayton, 1994). In many situations, we are mainly interested in modeling 

covariate effects on the average number of events occurring over a certain time interval. A 

marginal approach may be useful for this purpose. 

h univariate point processes, Lawless and Nadeau (1995) constmcted estimating f u c -  

tions for the cumulative mean function (CMF) 

using Poisson likelihood estimating equations with robust variance estimates. Nadeau and 

Lawless (1996) extended this to obtain optimal estimating functions by specifying the 

covariance process of { d N ( t ) ) ,  where d N ( t )  = N ( t )  - N ( t W ) .  

The merit of this method is that it is not required to specify the complete probabilistic 
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structure of the process and yet consistent estimates for the CMF are still available. In 

chapter 5, we will develop a robust model for bivariate point processes based on this idea. 

It is important to note that the assumptions on the censoring processes and covariate 

processes urider this framework are slightly stronger than that in intensity models which 

require predictability only. Valid inference for the CMF' requires that the censoring p r e  

cesses are independent of the point processes and the covariate processes are external in 

the sense of Kalbfleisch and Prentice (1980, p.123), see Nadeau (1995) for discussion. 

1.3 Tests of Homogeneity 

In epidemiology, it is often important to know whether the target population is homoge- 

neous with respect to some features of interest. This also relates to testing goodness of fit 

where the presence of heterogeneity may imply that the a d a b l e  covariates are inadequate 

to explain the variation of the response. 

Homogeneity in random effect models is equivalent to zero variance of the random 

effects. Thus, the n d  hypothesis of homogeneity is stated as 

Score tests are often employed to test for homogeneity in the context of generalized 

linear models (Liang, 1987; Dean, 1992). We wfl  constnict such tests for mixed univariate 

point processes in chapter 3. For s m d  sample sizes, the distribution of the score test 

statistic may not be approximated well by a normal distribution. To investigate this, we 

carry out a simulation study to investigate the performance of score tests based on their 

asymptotic distribution for renewa! and Poisson processes with small and moderate sample 

sizes. Focus will be on adjusting the test statistic in order to improve the performance of 

the test in s m d  samples. Adjusted score statistics for Poisson processes with parametric 
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and semi-parametric specifications will be derived and thek fiequency properties dl br 

studied in chapter 3. Possible testing strategies with regard to bivariate processes are 

discussed as well. 

1.4 Applications in Medical St udies 

In this section, we describe three medical applications which can be rnodeled by the meth- 

ods proposed above. The f is t  study furnish the s-cded recurrent event data, the second 

study belongs to the class of twestate processes, and the last study constitutes an example 

of bivariate point processes. 

1.4.1 Gamma Interferon in CGD 

In 1988, the International Chronic Granulomatous Disease (CGD) Cooperative Study 

Group conducted a randomized and double-biinded controlled clinical trial to study the 

effect of gamma interferon on reducing the rate of recurrence of serious infections due to 

CGD. There were 128 eligible patients with CGD of which 65 received placebo and 63 

received gamma interferon. These patients were followed for about one year during which 

dates of the diagnosis of serious infections were recorded. In the placebo grmp, there were 

18, 5, 4, 1, 1 and 1 patients who experienced 1, 2, 3, 4, 5 and 7 sesious infections respec- 

tively. In the gamma-interferon group, there were oniy 9, 4 and 1 patients who experienced 

1, 2 and 3 serious infections respectively. In addition to the treatment variable, there were 

eight the-independent covariates measured at the time of randomization (see Table 3.18). 

A detailed description of this study can be found in Fleming and Harrington (1991). 
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Figure 1.3: Sample Profiles of Exacerbation Patterns fkom the CHEST S tudy. Filled boxes: 
Exacerbation durat ions; Open boxes: Inter-exacerbation durations. 

1.4.2 The CHEST Study 

In 1993, Bayer Canada Inc. initiated a large rnulti-center randomized trial designed to 

examine the effect of Ciprofloxacin versus standard care on acute exacerbations of chronic 

bronchitis. One major objective of this trial was to assess the cost effectiveness of Cipro- 

floxacin and hence the study was c d e d  "Ciprofloxacin Health Economic Study" and re- 

ceived the acronym "CHEST". The analyses that we will focus on, however, are directed 

strictly at  assessing the clinical effectiveness (e.g. no economic considerations will be made). 

Patients with this disease experience acute exacerbations of chronic bronchitis (AECB) 

and symptom-free periods in an alternating fashion. Figure 1.3 illustrates typical patterns 

of chronic bronchitis durations. In this figure, the lengths of the horizontal bars represent 



the total durations of follow-up for 9 patients, the f i ed  hsxes indicate days during which 

symptoms were manifested, and the open boxes reflect the symptom-fke periods. It is clear 

that some patients tend to have exacerbations of symptoms of a longer average duration 

than the others (e-g. compare patient 1101 to patient 51106) and some tend to have these 

exacerbations more fiequently than the others (e.g. compare patient 7108 to patient 58201). 

Clinicdy, this means that while a particular patient may have a relatively stable disease 

process, different patients tend to experience exacerbations of symptoms at varying rates 

and of Miying mean durations. This is the sort of disease process described in section 

1.2.2. 

To be eligible for the study, patients must have been eighteen years or older, diagnosed 

with chronic bronchitis, able to maintain a daily diary to record the extent of health 

resource utilization, able to understand and complete detailed health status questionnaires, 

and must have been concurrently experiencing an acute exacerbation of symptoms. After 

randomization, follow-up visits were scheduled to take place at three-month intervals as 

part of the regular assessrnent program. In addition, patients were also required to visit 

their participating clinic when they perceived that a new exacerbation was beginning, or 

when they determined that an exacerbation was resolved. A consequence was that it was 

possible to determine the exact transition times correspondhg to the onset and resolution 

of symptoms. Patient follow-up was to continue for 365 days, but early termination could 

occur if a subject refused to complete their symptom diary, refitsed to return for further 

follow-up visits, or died. There was a total of 115 eligible patients randomized to receive 

Ciprofloxacin and 107 randomized to receive standard care. The average duration of follow- 

up was 357 and 350 days in the Ciprofloxacin and standard care groups respectively. 

In addition to the treatment variable, potential risk factors were also measured. These 

covariates were 

1. factors characterizing the exacerbation at the t h e  of randomization: 



CHAPTER 1. INTRODUCTION 

number of symptoms present, use of prior antibiotics therapy for the exacerbation 

and duration of symptoms, 

factors characterizing the nature of the chronic bronchitis: 

severity as determined by physician assessrnent , bronchitis duration and the number 

of exacerbations in the past twelve rnonths, 

miscellaneous medical abnormalities: 

cardiovascular, gastrointestinal, musculoskelatal, central nervous system, endocrine, 

hematologic and hepatic, 

ot ber factors: 

gender, age at randomization and smoking history. 

The codings of these covariates are Listed in Table 1.1. 

It is important to note that this study is somewhat different fiom most trials in chronic 

bronchitis in that follow-up was sdlîciently long that multiple exacerbations could be 

observed. Most often, studies are designed to examine the impact of treatment on the 

resolution of a single exacerbation (Fietta et al., 1992). In addition, the exacerbations 

were defined in terms of symptoms only, with the onset and resolution dates determined 

by patients themselves. Often assessrnents of exacerbations are based on serological tests 

and laboratory measures of lung function. Findy, rather than having a specified control 

treatment , patients on the standard care arm received whatever treatment their physicians 

deemed appropriate. As a result, the medication corresponding to standard care varied 

considerably across subjects and even within subjects over different exacerbations. 

The study was initially designed based on a single patient-level response which was the 

number of days per year during which symptoms of an acute exacerbation were manifested. 

During the course of the study, however, it became apparent that there were problems with 

this analysis strategy. Summarization of each subject's disease process in this way may 
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be reasonable in some contexts, but such an approach does not provide insight into the 

nature of the disease activity. For example, a treatment that leads to longer healthy periods 

between slightly longer disease periods may be of interest but may fail to be identified on 

the basis of the proportion of time in the diseased state. Also, this summary measure 

does not distinguish between a subject with many short exacerbations of symptoms and a 

subject with very few prolonged exacerbations, when the total nurnber of symptom days 

is the same. This has been recognized in the field of migraine study; the International 

Headache Society Committee on Clinical Trials (1991) states that "duration cannot be 

recommended as one of the primary efficacy" responses, where duration here refers to the 

overd symptom duration. Furthemore, some patients' observation times were censored. 

requiring the investigators to "annudizen the observed number of exacerbation days. It 

seems preferable to utilize more standard methods for censored data. 

1.4.3 Inhaled Beta-agonist Treatment in Branchial Ast hma 

This is a double-blind, placebo-controued, randomized, crossover study of the effect of 

regular inhaled bronchodilator therapy using beta-agonist (Sears et al., 1990). There were 

89 subjects with stable asthma participating in the study for one year during which the 

subjects inhaled regularly fenoterol or placebo by a dry powder delivery system. The 

subjects kept daily records of their symptoms, peak expiratory flow rates and drug use, 

and were required to return for regular clinic visits every four weeks. There were 64 eligible 

subjects who completed the trial. Thirty four were in the fenoterol group and thirty were 

in the placebo group. Dropouts were mainly due to unstable asthma, other lung diseases, 

concomitant major illnessl and inability to reduce bronchodilator aerosol use below 8 pdfs 

dail y. 

Major symptoms of interest are wheezing and coughing during daytime and night-the 

penods. The cumulative numbers of these symptoms can be characterized as a bivariate 
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point process. W e  will analyze this study using a marginal mode1 for bivariate point 

processes in chapter 5. 



Chapter 2 

Frailty Models For Event Time Data 

2.1 Overview 

In many medical studies involving groups of subjects or multiple measures for each sub- 

ject, heterogeneity is often observed due to environmental, genetic? expenential, or other 

differences between subjects. Although introducing covariates into appropriate regression 

models can help account for subject differences, there is often extra variation between sub- 

jects that remains unexplained. There are usually three reasons for this extra variation. 

First, some important covariates may not have been rneasured or may not even be possible 

to measure. Second, some of the covariates rnay be subject to one or more sources of 

measurement error. Third, different subject s may react differently to certain conditions or 

interventions, Say a treatment . 

Although randomized experirnents are fiequently used to control for hidden sources of 

variation, in t i m e - t ~ v e n t  analysis they c w o t  be considered as part of the experimental 

random error as they can in the familiar linear regression analysis. This is because events 

occur over time and thus the composition of the population may change with t h e .  Suppose 

a population consists of subjects with different risks. Subjects with a higher risk tend to 
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experience the event earlier and the hazard rate is thus observed to be higher in the early 

period. Those remaining at risk will be sdected to have a lower risk and as a resuit, the 

hazard rate decreases in the later period. 

Vaupel and Yashin (1985) gave a number of interesthg illustrations of this selection 

effect. They showed that even if there are only two groups of d35erent hazard rates, the 

population hazard rate can be very difFerent fkom the group hazard rates. In a long run, 

the population hazard rate will often approach the hazard of the more robust group (i.e. 

the lower risk group). For instance, using equations (2) to (4) in Vaupd and Yashin (1985), 

a population consisting of two groups with constant hazard rates Al and Xz where Al > A2 

gives the population hazard rate 

where n(t)  is the proportion of the swiving population at time t that is in the first group: 

where n(0) is the initial proportion. It is readily seen that n( t )  -+ O and A ( t )  -t Aa as 

t + oo. Thus, the population hazard rate is decreasing towards the smaller hazard rate. 

This dernonstrates that without taking heterogeneity into account, every subject in the 

population will be wrongly thought of as having a decreasing hazard rate. In general, as a 

function of time the population hazard rate is the result of both the selection effects due to 

the variation between subjects and the variation within each subject over time. Therefore, 

misleading interpret ations can follow if heterogeneity is ignored. 

In swiva l  analysis, the term "fiailty" is often used to describe the unobserved tendency 

for some subjects to have hazard rates above or below the population average rate. The 

literature on fiailty is vast. Applications can be found in various fields, such as medicine 
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and epidemiology (Aden, 1987a; 1987b; 1988; Aden and Rusebye, 1991; Clayton and 

Cuzick, 1985; Hougaard, 1986a; mein, 1992), demography (Vaupel et al. 1979; Heckman 

and Singer, 1982), econometrics (Lancaster and NickeU, 1980; Elbers and Ridder, 1982; 

Heckman and Singer, 1984) and reliability engineering (Lindley and Singpurwalla, 1986; 

Whitmore and Lee, 1991). Some good review papers include Aden (1994), Pickles and 

Crouchley (1994), Clayton (1994), Hougaard (1995) and Liang et al. (1995). 

Since there is a large amount of literature on frailty models, any review is necessarily 

selective. In this chapter, we provide such a selective review and in particular, focus on 

applications to medicine and epidemiology. ki section 2.2, the fkailty mode1 for univariate 

swiva l  data is introduced and some properties are discussed. In section 2.3, applications 

in multivariate survival data are considered, and the role of kailty models to measure 

heterogeneity and correlation is addressed. In section 2.4, some commonly used frailty 

distributions are presented. Finally in section 2.5, some common methods of estimation 

z e .  reviewed. 

2.2 Frailty For Univariate Event Times 

2.2.1 The Model 

Consider a sample of m independent sub jects. In multiplicative intensity models (e-g. 

Kalbfleisch and Prentice, 1980; Lawless, 1982; Andersen et al. 1993), the frailty is usudy  

treated as a random effect acting multiplicatively on the hazard rate: 

where x i ( t )  is a vector of possibly time-dependent observed covariates, P is the vector of 

regression coefficients, > O is the frailty having a probability distribution G(v), and & ( t )  
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is the baseline hazard rate which is modeled either parametrically or non-parametricdy, 

and is common to al1 subjects. As a usual assumption in regression andysis, the covariates, 

the fiailty and the baseline hazard function are mutudy independent. 

The fiailty is treated as the-invariant so that it may be thought of as reflecting hidden 

subject characteristics present at the start of observation, and these characteristics remain 

unchanged over t h e .  More sop his ticat ed models involving dynamic fkailties are possible 

to formulate, but pose harder problems in t ems  of identification of the kailty distribution 

and the baseline hazard, as well as in parameter estimation. Aden (1994) gave a brief 

discussion on modeling the fiailty as a stochastic process. Mode1 (2.2.1) is only intended 

to extract part of the unobserved variation between subjects, as suggested by Vaupel et 

ai. (1979). 

2.2.2 Effects of Frailty on Regression Coefficients 

In the ordinary linear regression model, the omission of an important covariate, which 

is assumed to be independent of the observed covariates, is not a serious problem. The 

maximum likelihood method still produces consistent estimates for the regression coeffi- 

cients, although the precision of the estimators will be over-estimated (Gd et al., 1984). 

Conversely, the omission of important covariates in a proportional hazard regression model 

WU usually bias the observed covariate effects towards zero and distort the proportionality 

structure of risk functions (Struthers and Kalbfleisch, 1986; Bretagnolle and Huber-Carol, 

1988). Introducing a frailty may thus help in adjusting for this bias. The trade-off is that 

the interpretation of the regression coe6cients must be made at the subject level (Aden, 

1994). 

In general, the population hazard rate is a complex fùnction of the regression coefficients 
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and the baseline hazard, as can be seen fiom the marginal suMvor hinction, 

where C, ( 0 )  is the Laplace transform of & and &(t)  = J,' exp(xf ( s )P )Ao(s )ds .  

Furthermore, the population relative risk is no longer time-independent. In a general 

class of hailty distributions proposed by Aden (1988; 1992), the population relative risk 

is shown to be a monotonie function of tirne. In the presence of a non-susceptible group, 

i.e. the probability that V = O is positive, 'cross-oves" can happen. ln other words, if the 

population relative risk is decreasing, it starts at a value greater than 1 and decreases to 

below 1 as time increases. O ther fiailty distributions will produce dXerent behaviors of the 

population relative risks. For example, the positive stable frailty dis tribu tion sugges ted by 

Hougaard ( l986a) provides constant relative ris ks, bot h condi t iondy and uncondi tiondy. 

This will be discussed further in section 2.4. 

2.2.3 Identifiability of the Frdty  Mode1 

It is not always possible to estimate model (2.2.1). In the simplest case where there are no 

covariates and repeated measurements, if the baseline hazard and the hailty distribution 

are both unspecified, they cannot be distingguished. This is readily seen fkom a special case 

that A(tlv) = X o ( t )  and v 1 aiways satis@ (2.2.2). This is, however, not surprising. In 

fact, this is comparable to the one-way random effects analysis of variance mode1 in which 

the variance components can only be identified when there are multiple observations in 

each group. 

In order to make identifiability possible, some extra model structure is necessary. Vau- 

pel et al. (1979) considered specification of a gamma fiailty distribution with unit mean 

and unknown variance. The gamma distribution has received considerable attention be- 

cause of its mathematical convenience. Some other choices include the inverse Gaussian. 
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positive stable, log-normal and non-parametric distributions. These distributions will be 

discussed in section 2.4. 

Elbers and Ridder (1982) proved a somewhat surprising result that under the assump 

tions that the frailty distribution has a finite mean and the model includes at least one 

covariate, the frailty model (2.2.1) is identifiable from data with only a single, possibly 

censored, survival t h e  for each subject. This result is &O true even for a non-parametrie 

baseline hazard. The argument relies on the variation of the covariate values between sub- 

jects. The varying covariates enable the Laplace transform of V to be traced out on some 

intervak and thus it c m  be uniquely determined. This suggests that it is important to 

indude covariates with a large variation in order to obtain precise estimate of the Laplace 

transform. 

On the contrary, in the analysis of multiple events if the frailty is the same for different 

failme times within a cluster, Honoré (1993) proved that it is not necessary to make any 

assumption about the frailty distribution in order to achieve identifiability. 

2.3 Frailty Models For Multiple Event Times 

2.3.1 Clustered Event Times 

Apart fiom modeling heterogeneity in univariate failure t h e  data, fkailty can also be used 

to describe the dependence among failme times. 

Shared Frailty 

Suppose there are rn clusters of failure times. A general approach to model the multivariate 

structure of a cluster is to introduce a latent variable (h i l ty )  into the hazard rate of 

each cluster member and assume that conditional on this frailty, subject failme times are 

independent. Specifically, let ni denote the number of observations in the ith chster and 
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Ti = (Till ..., Tini)' be the corresponding failure times. The hazard rate for T,  conditional 

on the cluster-specific fiailty vi is fomulated as 

for j = 1, . .. , ni and i = 1, . . . , m. The association within Ti is induced by the same kailty 

vi which is assumed to have distnbution function G(-). Further assuming that the are 

independent and identicdy distributed, the joint distnbution of Ti can be obtained by 

taking the expectation with respect to vi of the conditional independent joint distribution 

of Ti given vi. This is a reasonable assumption because the clusters are usually defined 

such that they are unrelated. 

Although the ordinary variance component analysis in linear mode1 theory also aims 

to measure the extra variation due to the correlation between observations in a cluster, it 

is not dways applicable in multivariate survival analysis for two important reasons. First, 

the event times can be censored. Second, in repeated measurements over t h e ,  the Ti's 

constitute a point process such that there exists a natural t h e  sequence and the cluster 

size ni may depend on the event times as well. The ordinary variance component analysis 

certainly fails to deal with these complications. 

Numerous applications can be found in genetic s tudies. Important examples include 

f d y  studies (Clayton, 1978), twins studies (Hougaard et al., 1992; Vaupel et al., 1992) 

and nephrology (Hougaard, 1987). 

It should be noted that the cluster-specific fkailty induces not only correlation between 

failure times but also heterogeneity between clus ters. This shared charact eris t ic creat es 

a confounding effect that correlation and heterogeneity cannot be measured separately. 

Furthemore, only positive correlation is allowed thongh it is common in many situations. 

We will address this issue in the next section. 



CHAPTER 2. FRAILTY MODELS FOR EVENT TIME DATA 

Het erogeneity and Correlation 

When heterogeneity between dusters and correlation within clus ters are both present , the 

shared hailty mode1 (2.3.1) is certainly not adequate to describe these two sources of 

extra variation. Additional structure is necessary. Lindeboom and Van Den Berg (1994) 

summarized a number of approaches for modeling bivariate survival data. Oakes (1989) 

proposed a class of archimedean distributions (Genest and MacKay, 1986) as a bivariate 

frailty distribution. Yashin et al. (1995) considered additive frailties in matched pairs 

s tudy. 

For the ease of exposition, we consider bivariate survival data with the-independent 

covariates. Let Til and be two failure times of cluster i and vil and via be two fkailties 

acting multiplicatively on the conditional hazards: 

where h j ( t )  is the baseline hazard, j = 1,2. It is assumed that given vil and vi2, z1 and 

Tiz are independent. 

The bivariate fkailties V; = (KI, E2)' are independently and identicdy distributed 

having a distribution h c t i o n  G(v) .  Let cj be the variance of Ej7 j = 1,2 and p be the 

correlation between K1 and K2- Although the correlation between A&(V;~) and Ai2(t(vi2) 

coincides with that of q1 and &, the correlation between Tii and is difficult to denve 

in a generd mode1 since it depends on the baseline hazards. In the simplest case where 

there is no covariate and the baseline hazards are constant and equal to 1, the magnitude 

of the correlation between Til and Ti2 is always less than 112. Therefore, even if' Kl  and 

are perfectly correlated (negatively or positively), Tii and Tii are not. The bivariate 

failure times are uncorrelated, however, provided that and are uncorrelated. 

We describe some frequently used classes of distributions for V;. The fist  and perhaps 

the most wideiy used distribution is a shared frailty distribution, i.e. = K2. However. 
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as discussed above, the drawbacks are the confounding effect between heterogeneity and 

correlation, and the correlation of the bivariate f d u e  times must be positive. 

A second, more general distribution for Vi that relaxes the restriction of positive 

correlation is a parameterized univariate specification. By taking = exp(aWi) and 

K2 = exp(PWi), where Wi is a univariate random variable with finite mean and variance, 

and a and p are parameters, the correlation between Til and TiZ can be negative (Clayton 

and Cuzick, 1985). However, p never equals O d e s s  or is degenerate (e.g. a = O or 

p = O). Moreover, changing the dependence between and K2 changes the variances of 

Ti1 and Ti2 as  w&. 

A third, still not very satisfactory, approach is to use additive frailties. Analogous 

with the ordinary linear mixed model, the specification may be taken as = Wio + 
Wil and K2 = Wi0 + Wiî where Wiol Wil and Wi2 are mutudy  independent and their 

distributions belong to the same family. The variances of Wil and Wi2 measure the degree 

of heterogeneity and that of Wio measmes the association within cluster. Yashin et al. 

(1995) studied this bivariate structure under the independent gamma frailty distributions 

for which the distributions of Wil and Wi2 are the same. Petersen et al. (1995) generalized 

this model to any chster size. Nevertheless, p is still restricted to be positive. 

The fourth and the most general approach is a geniline bivariate distribution of V i  

(Butler et al., 1989; Lineboorn and Van Den Berg, 1994). That is, there is no direct re- 

lationship between the Mnances and the correlation of Til and Tiz- An obvious choice is 

a bivariate log-normal dis tribution. However, t his bivariate frailty distribution does not 

lead to a closed form expression for the marginal joint distribution of Til and Ti*, and 

so maximization routines involving numerical quadrature are required. As an alternative, 

McGilchnst and Aisbett (1991) and McGilchnst (1993) applied the best linear unbiased 

prediction and the residual maximum likelihood estimation similar to those used in estimat- 

ing generalized linear mixed models (e.g. Breslow and Clayton, 1993), but bias correction 

seems to be necessary (e-g. Breslow and Lin, 1995; Kuk, 1995). 
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2.3.2 Recurrent Events 

A special case of clustered event time data arises when a subject generates multiple event 

times fiom a point process. There is assumed to be a sequence of events observed fkom 

a subject over a period of time. This forms a point process for which the event times for 

each subject are recorded. Such longitudinal studies are often found in clinical trials. 

A point process is governed by its intensity h c t i o n  which is often expressed as a 

function of its past history. Under the presence of hetaogeneity, the conditional intensity 

of subject i given its history and frailty vi can be expressed as 

where x ( t )  is the history of the process up to but not including time t .  Nok that the 

covariates and the baseline intensity can be functions of ' fk( t ) .  Here the subject variation is 

measured by the term exp(x:(t)P)Ao(t lx(t)) and the difference between subject intensities 

is measured by the variance of the frailty K. 
In particular, the Poisson process for which Xo(t l;H(t)) = A&) and the renewal process 

for which Xa(tlR(t))  = Ao(t - tN( , - ) )  are widely applied, where N ( t )  is the number of events 

occurring in (O, t ] ,  tN(t-)  is the t h e  of the event occurring just before time t and to = 0. 

The Poisson process essentidy assumes that the intensity process has a time trend, 

Le., the baseline intensity does not depend on past events and it is a deterministic function 

of t h e  alone. Lawless (1987) gave a comprehensive formulation sf regession models for 

fixed-effect or random effect Poisson processes with parametric or non-parametric baseline 

intensities. On the other hand, given the covariates and the fkailty, if the inter-event times 

are independent and the hazard for an event depends only on the time measured from 

the occurrence of the last event, the point process is known as a renewal process. This 

stable cyclical behavior is the principal characteristic of a renewal process and is common 

in medical studies of biological functions and chronic diseases. For example, Aden and 
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Husebye (1991) applied the gamma frailty and a Weibull baseline hazard to model the 

small bowel motility in healthy adults. 

Combining a t h e  trend and renewal behavior in a point process has been suggested by 

Cox (1972a) who introduced the term 'modulated renewal process" . Inference procedures 

for this type of process, using fixed-effect semi-parametric and parametric approaches, have 

been considered by Oakes and Cui (1994) and Lawless and Thiagarajah (1996) respectively. 

Extensions to accommodate a fkailty are also possible, see Chap ter 4. 

Further generalizations to incorporate a dynamic frailty process to account for unob- 

served time-dependent covariates are formidable because the complex structure usudy 

leads to an intractable likelibood function. In addition, it may be necessary to obtain a 

large number of recment times per snbject so that model estimation is possible. Recent 

advances in this direction employ the dynamic Bayesian approach (Gamerman, 1991), a 

piecewise gamma process (Paik et al., 1994), a gamma random walk process (Yue and 

Chan, 1997) and a first-ordes autoregressive log-normal process (Yau and McGilchrist, 

1996). 

2.3.3 Multivariat e Processes 

ki event history andysis, multivariate processes often arise as Markov processes (e-g. An- 

dersen, 1986), semi-Markov processes (e.g. Fietta et al., 1992), competing nsks modelç (e.g. 

Butler et al., 1989; Heckman and Taber, 1994) or three-state "illness-deathn modeis (e-g. 

Andersen, 1988; Kalbfleisch and Lawless, 1988; Lindsey and Ryan, 1993). As an important 

n s t  step to generalize the frailty model to multi-state processes, Aden (1987b) discussed 

various ways to construct m u l t i h a t e  frailty distributions with known Laplace transforms 

for finite-state and the-homogeneous Markov processes. The marginal likeiihood is then 

obtained by using the Laplace transform of the fiailty distribution. Therefore, it is impor- 

tant to choose a hailty distribution whose Laplace transform has a nice closed form. In 
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particular, the positive stable distribution (Hougaard, 1986b) and a transformation fkom a 

multivariate normal distribution are considered. However, numerical problems are likely to 

arise in maximum likelihood estimation, except probably for processes with s m d  number 

of states which may give a more numericdy tractable likelihood. For example, Xue and 

Brookrneyer (1996)  proposed a random effect mode1 for the alternathg renewal process 

using a bivariate lognormal Gailty in which the Likelihood is computed by a Gaussian 

qua& a t ure rule. 

2.4 Some Particular Frailty Distributions 

2.4.1 Univariat e Frailty Distributions 

Univariate frailty is usually used in univariate survival data and recurrent events. In this 

section we describe the features of some widely used univariate fiailty distributions. In 

particular, we will discuss two important classes of distributions proposed by Hougaard 

(1986a) and Aalen (1988).  The well-known gamma, positive stable and inverse Gaussian 

distributions are special cases of these two classes. Another advantage of the Hougaard 

and Aalen distributions is that they have explicit Laplace transforms so that no numerical 

approximation is necessary in constnicting the marginal likelihood, see (2.2.2). 

Furt hermore, the log-normal dis tribution and the non-parametric dis tribution are of- 

ten alternative choices. They do not belong to the above two classes. Features of these 

distributions will be addressed in this section too. 

A summary is given in Table 2.1 to compare difFerent distributions. For simplicity no 

covariate is included in the hazard function. The population hazard and the population 

relative risk based on the conditional proportional hazards are given to examine the effect 

of frailty, where Xi(tlv) = vrA0(t) and X2(t (v)  = v A o ( t ) ,  T > 1 is the conditional relative 

risk and the integrated baseline hazard Ao(t) is assumed to be an increasing function of t 
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and Ibnt+, &(t) = oc. 

The Hougaard Distributions 

Hougaard (1986a) extended the positive stable distribution to a class of frailty distributions 

which is indexed by three parameters (a, 6,8), where O 5 a 5 1, 6 > O and O 2 O. The 

Laplace transfonn is given in Table 2.1. This dsss of distributions is shown to be absolutely 

continuous and unimodal. 

The Hougaard distribution contains the following distributions: the inverse Gaussian 

distribution (a = 1/2), t h  positive stable distribution (0 = 0) and the gamma distribution 

(a -t O). The distribution is degenerate at 6 when a = 1 and at O when either b = O or 

8 -t 00. 

For a non-degenerate distribution with non-zero 8, the mean and variance are equal to 

60a-' and b(1 - respectively. It also includes distributions with &te mean and 

variance when B = 0, for example, the positive stable distribution (6 = a). The degree of 

heterogeneity can be measured by a only. The population is less heterogeneous when a is 

closer to 1. 

The population relative risk is a decreasing function of t for 9 > O. It is equal to r at 

t = O. As t -t oo, the population relative risk tends to ru which is still greater than 1 but 

less than t .  Therefore, under spedcation of a fbced-effect proportional hazard model, the 

frailty at tenuates the covariate effect . 
The positive stable distribution is distinct kom the other frailty distributions in that 

it preserves the proportionality of the hazards. The population relative risk is a constant 

independent of tirne, ta. Nevertheless, it also attenuates the covariate effect. 
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The Ader, Distributions 

Aalen (1988) modified the Hougaard distnbution based on a compound Poisson distri- 

bution. The Aalen distribution is usudy taken to have mean 1. It has two parameters 

a > O and b 2 O. The parameter b is the variance and the parameter a divides the class of 

distributions into two major categories. For a 5 1, after a reparametrization, it is identical 

to the Hougaard distribution with unit mean. For a > 1, it is a compound Poisson dis- 

tribution generated by gamma variables. Further properties of this class of distributions 

were investigated by Aalen (1992). It should be noted that the positive stable distribution 

does not belong to this class because of its infinite mean and variance. 

The compound Poisson distribution (i.e. o > 1) is particularly interesting. It d o w s  a 

non-zero probability at V = O. This corresponds to the situations in which some subjects 

are not susceptible to the studied disease while the rest have a varying degree of suscepti- 

bility. Mathematically the hazard function for the non-susceptible subjects is equal to O, 

which is equivalent to V = O. The probability of non-susceptibility can be shown as 

for a > 1. The compound Poisson distnbution is not unimodal as opposed to the Hougaard 

distribution due to the point mass at zero. Aalen (1992) demonstrated that the continuous 

part of this distribution is not necessarily unimodal either. The multiple modes imply that 

there exist several subgroups of difîerent risk levels. This usudy occurs when the variance 

is small or a is large. 

Furthemore, the compound Poisson distribution leads to the paradox of "crossing" 

relative risk. As shom in Table 2.1, the population relative risk decreases fiom r at t = O 

to approach rl-" which is less than 1 for o > 1. Therefore, this phenornenon may arise 

because of the presence of a non-susceptible group. 
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Other Fkailty Distributions 

Apart kom the Hougaard distributions and the Aden distributions, it is hard to fhd a 

frailty distribution whose Laplace transform has an explicit form. Therefore, numerical 

integration methods, such as the Gaussian quadrature and Monte Car10 approaches, are 

often needed to compute the Laplace transforms. Heckman and Singer (1984) and Butler 

et al. (1989) showed the use of Gaussian quadrature in estimating an unspecified frailty 

distribution, while Clayton (1991) applied the Gibbs samplkig approach. On the other 

hand, the log-normal distribution ofken serves as a substitute for the gamma distnbu- 

tion (McGiichrist and Aisbett, 1991), especially for multivariate frailky. The log-normal 

distribution is also included in Table 2.1. 

Another important approach is to approximate the unknown continuous frailty distri- 

bution by a discrete distribution. Under some weak regularity conditions, including that 

the frailty has a finite mean and variance, t his corresponds to the non-parametric maximum 

likeIthood represent ation of a continuous dis tribut ion (Laird, 1978). 

kit eres tingly, based on some limited simulation s t udies, the choice of particular para- 

metric (discrete or continuous) frailty distribution is not critical for the estimation and 

testing of regression coefficients with multiple measurements and univariate fkailty (Pick- 

les and Crouchley, 1995). 

2.4.2 Multivariate Frailty Distributions 

Extension to multivariate frailties with independent components is straightforward and 

appropriate marginal likelihood may be easily constmcted by taking the product of its 

component terms. However, as measures of missing covariate dects ,  the frailty components 

are often likely to be dependent. Some approaches based on transformations of independent 

random variables to generate bivariate frailties have been discussed in section 2.3.1. The 

restrictions to positive dependence or possible functional relationships between Mnances 
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and correlation of fdure times within clusters make these transformations less attractive. 

The multivaiiate log-normal dis tribution seems to be the simples t genuine multivariate 

distribution, dthough there is no closed form expression for the marginal likelihood. Evans 

and Swartz (1995) pointed out that the multiple quadrature method is prefared to other 

numerical methods (e.g. Monte Car10 integration and Gibbs sampler) for dimension less 

than or equd to 6. As in most medical applications the number of fiailty components is 

seldom more than 6, this approach seems to be appropriate. 

Alternatively, techniques such as the penalized likelihood and the residud maximum 

likelihood estimation, used widely in the generalized linear mixed models (Breslow and 

Clayton, 1993) may be employed. Cluster sizes are usually s m d  in survival analysis, 

however and this may cause substantial bias making bias corrections necessary (Breslow 

and Lin, 1995). 

The use of a non-parametric rnultivariate kailty distribution may be also entertained. 

Butler et al. (1989) showed some success in the bivariate case using Gaussian quadrature. 

2.5 Some Methods of Estimation For Frailty Models 

Estimation for frailty models is challenging due to the non-linearity of the model and the in- 

troduction of the mWng distribution. Closed form marginal likelihoods are not available if 

the frailty dis tribution does not have an explicit Laplace transfom. Numerical integration 

techniques, the EM algorithm, and the Gibbs sampler are popular alternative approaches. 

The penalized quasi-Iikelihood method widely used in the generalized linear mucing models 

may be usefd as well. Some methods are particularly usefd for certain types of processes, 

for example, models for multi-state processes with a multivariate Gaussian fiailty distri- 

bution lead to computationdy efficient estimates by Gauss-Hermite integration, and a 

univariate non-parametric frailty distribution is most appropriately estimated by the EM 

algori t hm. 
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In this section, we review these common methods of estimation with regard to their 

relative rnerits and limitations. For the ease of exposition, we will focus on the clustered 

failure t h e  mode1 (2.3.1) with a single frailty. 

2.5.1. The Laplace Tkansform 

Let till . . . , tini be ni observed times with censoring indicators dil, . . . ,dini in duster i where 

d, = 1 if t i j  is a failure time and O if censoring tirne. We assume that censorings are non- 

informative and only right-censoring is dowed. Further assuming that the covariates are 

tirneinvariant or constant between consecutive events and independent of the frailty, and 

using the conditional hazard function (2.3.1) , the conditional likelihood for cluster i given 

vi can be written as 

where 8 is the vector of parameters for the conriates and the baseline intensity, A&!), 

is modeled parametricdy by 7, 4. = C;L1 4, A i j ( t )  = e ~ p ( x ~ ~ P ) A ~ ( t )  and kj(t) = 

Ji Xi i (s)ds.  Then the marginal likelihood for cluster i is given by 

j=l j=l 

where #I = (Of ,  cl)', O is the vector of the fiailty parameters and (3) is the dth derivative 

of & ( a ) .  The f d  likelihood based on m independent clusters is obtained as the product 

of the individual likelihoods. 

The log-likelihood can be obtained provided that 13P(a) is known. For example, the 

Laplace transforrn for the gamma density with mean 1 and variance a is given by G ( s )  = 
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( 1  + os)-'lu and hence, 

for d > 1. The log-likelihood for cluster i is then equal to 

Therefore, the marginal likelihood rnay be directly maJcimized by standard m d z a t i o n  

methods (e.g. the Newton-Raphson procedure). 

However, it may not be possible to derive a general expression for L p  (s) for other frailty 

distributions even when L,(s) has a closed form. The Hougaard and Aden distributions do 

not have such general expressions as the gamma distribution. The L : ~ ( S )  for the Hougaard 

distribution can be found by the following recursive relationship, 

where &(s) = log& (s) ) and hg-') (s) = -6 @-:(a - j ) ( 8  + s)"-', see Table 2.1. Unless 

the cluster size is s m d ,  Say < 3, the maximization procedure wiU be certainly complicated 

by such structure. 

2.5.2 The Numerical Integrat ion 

If the Laplace transform of the frailty density has no closed form or higher derivatives are 

difF~cult to obtain, the numencal integration method is a natural alternative, 

Using the transformation V = exp(U) for the fiailty, the marginal likelihood for the 
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i th cluster in (2.5.2) can be written as 

where g ( - )  is the probability density function of ui and +(*) is the standard normal density 

function. Combining terms involving ui into the integrand, we get 

where hi(u; 4 )  = exp(4.u - eu x;;, & s j ( t i j ) ) g ( ~ ) / + ( ~ ) .  Applying the Gauss-Hermite rule, 

the integral can be approximated by 

where the ~ ' s  are weights, the zv's are nodes, and R is the number of nodes. Tables for the 

nodes and weights can be found in Abramowitz and Stegun (1972). This approximation 

is more accurate if U is normdy distributed. In this case, if we let U = f i 2  where 

o is the variance of U, we have a simpler expression for h(*) :  hi(x; 4)  = q ( d i . f i ~  - 
e f i x  xy.l kj(tij)). 

Evans and Swartz (1995) surveyed a number of numerical integration methods corn- 

monly used in statistics. They recommended that a multiple quadrature rule, such as the 

Gauss-Hermite d e ,  should be used for low dimension integration problems. Although it is 

almost impossible to assess the error as this raquires the exact evaluation of the integration, 

we may use d e s  with more nodes to check if the results are comparable to those obtained 

by using fewer nodes. 
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2.5.3 The EM Algorithm 

As the fiailky model is a mixture model, the EM algorithm (Dempster et al., 1977) becomes 

a useful tool in estimation, especidy for non-parametric baseline hazards or discrete hi l ty  

distributions. In fact, in dealing with the infinite-dimensional nuisance parameter & (t ) the 

integration over frailties destroys the constmction of partial likelihood (Cox, 1975) in its 

usud way. This makes direct maiamization of the marginal likelihood impossible. Here we 

describe briefly how to use the EM algorithm for parametric and semi-parametric models 

with continuous and discrete fiailty distributions. 

Continuous Frailties 

If the vi were observed, the complete data log-likelihood for cluster i is aven by 

where Li(@ Ivi) = 10g(L~(01~~))  fkom (2.5.1) and g ( - ;  U )  is the density function of V param- 

eterized by cr. This function could be maximized by separately ma;icimzulg cc (@lu) with 

respect to 0, and &(m; v )  with respect to o. 

As the fiailties vi are unknown, the EM algorithm considers rnaJcimizing the conditional 

expectation of the complete data likelihood given the observed data and the current es- 

tirnates of the parameters. Specifically, in the Estep, we compute E(LF(#) [data; #')) = 
Q(4ldata; q5(&)): where &(" is the estimatt: of q5 at step k. This can be expressed as, apart 

fiom some constants, 
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The function Q is then mairimized with respect to 4 to get the next estimate. This 

procedure is iterated until the estimates converge. 

Maximiring fc  (8 lu) for given o is equivalent to mruOmizing the homogeneous or fked- 

efEect model. If the baseline hazard is unspecified, the estimates of the regression coefficients 

are obtained by maxhizing the partial likelihood (Cm, 1972b) with the offsets ii;(')k 

Then the Nelson-Aden estimator (Andersen et al., 1993) can be used as a non-parametric 

estimate for Ao(t)  (Nielsen et al., 1992 and Klein, 1992): 

where t ( i )  is the ith smdest  event tirne, regardless of clusters; d(i, is the number of events 

at t(i); R(t(i)  ) is the set of individu& at risk at time t( i);  G?) iis the conditional expectation 

of the firailty given the data and $(k), xj is the covariate value associated with the jth 
a (k+I) 

individual in the pooled sample respectively; and is the estimate obtained fkom the 

Cox regression. 

The conditional expectation for I, may require numerical integration. The conjugate 

property of gamma distribution in multiplicative models provides a convenient way to 

avoid this complication. If vi is distributed as gamma with mean 1 and variance 0, it is 

straightforward to show that the conditional distribution of vi given the data is also gamma 

with shape parameter l/a + 4. and scale parameter l/o + xy& Lj(tG). Hence, functions 

of ui in (2.5.3) are Mputed by the corresponding conditional expectations with respect to 

this gamma conditional distribution. 
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Discrete E'railties 

If the frailty distribution is unspecSed, we may approximate it by a discrete distribution 

whose masses and mass points are estimated along with the model parameters. Laird (1978) 

showed thst this is equident to the non-parametric maximum likelihood estimation for 

the nnknown frailty distribution. She also prmided an EM algorithm for carrying out the 

maximum likelihood estimation, see also McLachlan and Basford (1987). 

Suppose the &&y distribution is given by 

H 

Pr(V = th) = ah, for h = 1, ..., H ;  Cm= 1, 
h= 1 

where & > O. Let 5 = (G, ..-, CH)', r = (xl, ...,?rH)' and rn = (t', d)'. Define Zih = I ( K  = 

ch) where I ( * )  is the indicator function, and let Zi = (Zi i ,  ..., ZiH)'. Note that Z1, ..., 2, 
are i.i.d. multinomial with probabilities x. The complete data likelihood is given by 

where 4 = (€l',Cr')'. For the sake of identifiability, the conriate vector does not contain 

the intercept term. We further assume a parametric baseline hazard. 

In the Estep, the conditional expectations of Z's given the data and the previous 

estimates are given by 

(k) p) 
^ik' = ~ ( ~ ~ ~ ( d a t t z ,  d(k))  = 3 h  

i 1 h ) 
c;=~ 1tE) ) ' 

The update for rr in the M-step is given by 
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Furthermore, the update for 0 and E are obtained by miucimizing 

When the number of masses is unknown, there are usudy two approaches to choose 

H (Laird, 1978). One approach is to start with a srnall H and gradually increase H until 

the adjacent mass points become close. Another approach is to start with a large H and 

combine the adjacent mass points if the distance between them is s m d .  Butler and Louis 

(1992) began with H = m and combined mass points if their distance was s m d e r  than 

10'~. 

The Observed Information 

If the observed information matrix is f i c u l t  to obtain analyticdy, methods provided by 

Louis (1982) and Meng and Rubin (1991) may be used. McLachlan and Basford (1987, 

chapter 1) provides an approximate observed information mat& for the case of discrete 

where gih(+) = log(rh)  + 4(91&). Caution must be taken when the number of mass 

points is unknown because the non-parametric approach does not take into account the 

variability of the estimated number of mass points. This may lead to unrealistic variance 

estimates for the parameter estimates based on the observed information matrix (2.5.4). 

Butler and Louis (1992) suggest that appropriate standard mors require the bootstrap or 

other methods that incorporate more than the mode and curvature of the likelihood. 

However, inference is not yet completely resolved in the semi-parametric approach due 

to the complexity of the non-parametric baseline intensity, dthough Murphy (1994; 1995) 

has shown the existence, consistency and asymptotic normality of the estimators in the 
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speciaî case of no covariates. Based on some expirical al;~lications and simulation studies, 

Nielsen et al. (1992) suggested that a large sample size is requked to obtain reasonable 

preusion in estimating the fiailty parameter. As recommended by some authors (Aden, 

1994; Pickles, 1994), a parametnc baseline intensity may be more preferable. For instance, 

the piecewise exponential specification may be used if there is no prior knowledge of the 

baseline intensity. 

2.5.4 The Penalized Partial Likelihood 

There are some remarkable similarities between the frailty model and the generalized linear 

mixed mode1 (GLMM). The multiplicative intensity implies that the frailty is &O additive 

in the hear  predictor x'@ In the case of recurrent events, if the events are fiequent per 

individuai and the intensity varies slowly with time, we can divide the continuous time 

into a number of subintervals and recast the problem in terms of the number of events 

occurring in each subinterval. Let yk be the counts in the kth subintenml whose width is 

tk .  Assuming that given the fiailty v ,  the counts are Poisson variables with 

where u = log(v), then this formulation is a standard mixed Poisson regression model. On 

the other hand, when events are rare and the intensity varies more rapidly, a finer division 

of intervals is necessary. In the extreme, the semi-parametnc approach takes the division 

into infinitesimal intervals in which at most one event c m  occur. Therefore, estimation 

methods used in the GLMM may also be useM in the frailty model with probably some 

modifications. Clayton (1994) described the relationship between the frailty model and 
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the GLMM. 

When only the conditional mean and variance of the observations are specified, a corn- 

monly used method of estimation in GLMM is the penalized quasi-likeliliood. A review of 

this method and the marginal approach is given by Breslow and Clayton (1993). Ln sur- 

vival analysis with an unspecified baseline hazard, the counterpart of the quasi-likelihood is 

the partial likelihood. Penalized partial likelihood may be used to estimate the regression 

coefficients (McGikhrist and Aisbett , 1991) and restricted maximum likelihood (REML) 

to estimate the &&y parameter (McGilchrist, 1993). If the fiailty has a log-normal distri- 

bution, the penalized partial likelihood is the product of the usnal Cox's partial Likelihood 

conditional on the frailties and the joint log-normal distribution of the fkailties. Given the 

fkdty parameter, the penalized partial likelihood is maximized with respect to the regres- 

sion coefficients and the fkailties. The frailty parameter is then estimated by a linearized 

REML procedure given the current estimates of P and u. 

However, the simulation studies given in McGiIchris t (1993) showed a systematic bias 

for the REML estimate of the frailty parameter, even though the REML aims to adjust 

for the bias due to the substitution of p by its estimate. There are two possible reasons 

for the cause of bias. Fkst, rcs the REML estimate is derived fkom the mixed normal linear 

model, it may fail to account for the bias in the frailty model which is a non-hear model. 

Second, which may be the most serious aspect, the estimate of u is obtained essentially 

by approximating the posterior distribution of u by a normal distribution. This can be 

seen by viewing the penalized partial likelihood es tirnation as a pos terior mode es tirnation 

( F h e i r  and Tutz, 1994, Chapter 7). The posterior mode estimation is an EM-type 

procedure in which the posterior expectakion and variance of u are approximated by the 

postenor mode and curvature respectiveiy in the Estep.  This approximation is appropriate 

only if the cluster sizes are large. As the cluster sizes are usually s m d  in s w i v a l  analysis, 

the bias may be substantial. McCdagh and Tibshirani (1990), Breslow and Lin (1995) 

and Kuk (1995) considered methods of bias correction for GLMM. Similar approaches may 
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be applied in frailty model, although intensive computation is unavoidable. 

2.5.5 The Bayesian Approach 

Since the frailty model is aheady a hierarchicd model, we only need to spedy  priors for 

the parameters p, A.&) and u. We assume that the hyperparameter a for the fkailty 

distribution is univariate. 

Clayton (1991) presented an excellent account of the Gibbs s a m p h g  approach. Inspired 

by Kalbfleisch's (1978) Bayesian analysis of proportional hazard models, Clayton consid- 

ered the priors for p and A&) suggested by Kalbfleisch. SpecXcally, P is assumed to have 

improper d o r m  prior on [-m, +ml, and &(t ) is a stochastic process with independent 

increments distributed as 

d&(t) - Ga(cdAR(t), c ) ,  

where Ga(a, b) denotes the gamma distribution with shape parameter a and scale parameter 

b, c > O and A'@) is a known non-decreasing funetion. The mean and the variance of Ao(t)  

are given by A'(t) and A'(t)/c respectively. Moreover, the gamma frailty with variance cr 

is used. The variance is assumed to have a pnor Go(r],p) in which we take q = p = O to 

ob t ain an non-informative prior . 
Under this setup, the conditional distributions of any one of the parameters P, I\o(t), v 

and a given the other 3 parameters and the observed data are known, see Clayton (1991) 

for the derivations. Denote the conditional distribution of x given y by [xly]. Since the 

hyperpiirameter ody depends on the frailty, Clayton suggests the following algorith: 

In iteration k, 

1. Draw a' randomly fiom the previous B o's: ok-' , ...? crk-B. 

2. Put a = a' and repeat G times: 

(a) Generate -- [AO 1pi-', vi-', Data]. 
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(b) Generate pi - (Plui-l, A& Data]. 

(c) Generate o' .- [VI@, 4, os, Data]. 

3. Generate ok - [clos], where v' is the cment value of o. 

The number B is cded  the b&er size wkich should be gradually inaeased with the 

iterations. The number G is the numba of steps needed to avoid serious serial correlation 

in the samples. In the example analyzed by Clayton, he suggested that inaeasing B fiom 

1 to 100 and choosing G to be 10 should be appropriate. 

Nevertheless, other frailty distributions may not have a dosed fonn for the posterior 

distribution. Numerical integrations, such as the Monte Carlo integration, are necessary 

in this case. The Bayesian approach is also useful for multi-level hierarchicd modeis and 

muhivariate frailty models. 



Chapter 3 

Tests of Homogeneity For Point 

Processes 

3.1 Overview 

In epidemiological studies, it is ofken important to know whether the studied population is 

homogeneous. As will be seen in chapters 4 and 5, estimation methods for random effect 

and marginal models are complicated whereas fixed-efFect models are relatively simpler . 
It is, therefore, desirable to check whether it is necessary to introduce a random effect to 

reflect another component of variation in the model. 

Tests of homogeneity in GLMMs are ofken derived via score tests (e.g. Liang, 1987; 

Dean, 1992; Smith and Heitijan, 1993; Jacqmin-Gadda and Commenges, 1995; Lin, 1997). 

Commenges and Andersen (1995) and Gray (1995) developed score tests in the context of 

failure time data based on counting processes. These score tests can be also interpreted 

as tests of model specification for fixed-effect versus random effect models provided that 

the baseline intensity and the covariate effects are correctly specified. As a general model 

specification test, the information matrix (IM) test (White, 1982) is often applied. Chesher 
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(1984) showed that the implicit alternative hypothesis of the IM test is a model with 

random parameters. En fact, the test statistics for the random intercept are asymptoticdy . 
equivalent for the score and the IM tests. However, the finite sample estimators for the 

variance of the test s tatistic have different representations. Choice of representation should 

be determined by the efficiency in terms of size and power of the test. Some simulation 

studîes have been camied out for this purpose (Orme, 1990). 

In this chapter, we focus on mixed univariate point processes in order to get some insight 

for multivariate point processes. We construct a score test and an IM test of homogeneity 

in sections 3.2 and 3.3, respectively. As there are some common representations of the 

test arising from different estimates for the variance of the statistic, we assess the f i t e  

sample performance of the tests based on these representatiom via simulations in section 

3.4. This simulation study indicates that the test statistic in general has poor performance 

in small and moderate sarnple sizes. Although the test statistic is asymptotically unbiased, 

a non-zero bias is induced in s m d  samples upon substitution of the parameter estimates 

obtained under the null model of homogeneity. Adjustments for the score statistics via first 

order Taylor series expansion have been previousiy suggested in the contexts of Poisson 

regression models for count data (Dean and Lawless, 1989) and clustered failure tirne data 

(Gray, 1995). These adjusted score statistics were shown to have better performance in 

s m d  samples in t e m s  of the size of the test. 

In section 3.5, we derive adjusted score statistics for regression models based on Poisson 

processes wit h bot h parametric and semi-parametric formulations of the baseline int ensity. 

The primary objective is to examine the fkequency properties of these statistics in mod- 

est sample sizes, and to identify suitable strategies for testing for homogeneity in these 

contexts. Simulation studies pertaining to the size and power of the tests are &O consid- 

ered. An example involving a clinical study of gamma interferon in chronic granulomatous 

disease is provided in section 3.5 as well. 

Furthemore, we discuss adjustment of the test statistic for other point processes and 
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possible extensions for bivariate processes with correlated random effects in section 3.6. 

3.2 Score Tests of Homogeneity 

In random effect models, homogeneity is equivalent to zero Mnance of the random effect. 

Thus, the n d  hypothesis of homogeneity is simply Ho : t~ = O where u is the variance of 

the random effect. Score tests are particularly attractive for this purpose for t k e e  reasons. 

First, although the variance is at the boundary of the parameter space under Ho, Moran 

(1971) showed that under some mild regularity conditions, the usual arymptotic theory still 

follows for the score test. Second, only the fixed-effect mode1 needs to be fitted. Thkd, 

only some weak conditions for the moments of the mixing distribution are required but 

it is not necessary to specify the entire distribution so that misspecifkation of the mixing 

distribution is less iduential. This is because the test statistic is evaluated under Ho in 

which the process is invariant to any random effect. The mWng distribution is usually 

assumed to have a finite mean and variance, and the third and higher order moments are 

of the order o ( c )  (Liang, 1987; Dean, 1992). 

We consider m independent univariate mixed point processes with intensity (1.2.4). In 

many situations, the covariates are constant between events and we assume that they are 

so here for simplicity. Thus, the intensity d&g the ( j  - 1)th to the jth events is given 

by Ai ( t )  = e ~ p ( x : ~ p  + ui)Ao(t; y) for the ith process, i = 1, ..., m. Recall that 0 = (Pt, y')'. 

The score test statistic can be derived fiom a slight modification of Dean's (1992) or 

Liang's (1987) results. We assume that the badine  intensity and the hinctional f o m  of 

the covariates are correctly specified. 

Let O 5 til < O - =  < thi  5 T; be the observed event times for the ith process over a 

time interval [O, ri] in which ri is a right censoring tirne. Let Y;. (t ) = 1 if t E (O, T;] and 

O otherwise for t > O. For notational convenience, we let tio = O and t;,+: = Ti where 
I 

n: = Ni(r;) if tini = ri and N;(T;) + 1 if th < ri is the number of durations including the 



CHAPTER 3. TESTS OF HOMOGENElTY FOR POINT PROCESSES 

possibly censored duration after the last observed event. 

As postulated in section 1.2.1, the process { K ( t ) )  is predictable and independent of 

the parameters in the intensity hinction. Furthermore, we subsequently assume that ri is 

finite and therefore ni is also finite, i = 1, ..., m. The asymptotic setting considered will be 

for a large number of subjects, Le., as m + oo, with bounded %'S. 

Let = xij/3 + +i be the linear predictor during the ( j  - 1)th to the jth events of 

process i and qi = (r)il, ..., rl,;)' for j = 1, ..., ni and i = 1, ..., m, where the Ui7s are iid 

with mean zero and variance a. Let 77; = xijP be the corresponding linear predictor under 

Ho. We also assume t hat the third and higher order moments of Ili are of the order o ( o )  . 
The conditional log-likelihood for process i given u; is given by 

where &(a, b) = ~ , 6  A. ( t )d t .  By applying a Taylor series expansion on e ~ p [ 4 ( 8 1 ~ i ) ]  from 

O (3.2.1) at qi = q i ,  we get 

where li is the nt x 1 vector of 1's and 

whose (j, j ) t h  element is Kijj(@) = ( & j - e ~ p ( ~ ~ ) A o ( t i , j - i ,  t i j ) ) 2  - e x p ( ~ : ~ ) & ( t i , j - ~ ,  t i j )  a d  

the ( j ,  k) th elexnent is Kijk  (0) = (4 - exp(q$)&(ti, j - 1 ,  t i j ) )  (& - exp(r),k)A~(ti,k- 1, t a ) )  

for j # k and d, = 1 for j = 1, ..., ni and O otherwise. Note that ti(810j and K i ( 0 )  are 
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independent of ui. For s m d  u, the marginal log-Likelihood can be expressed as 

where q5 = (O', 0)'. Differentiating (3.2.2) with respect 

score function for o under Ho based on m independent 

to a and evaluating at cr = 0, the 

processes is given by 

It is interesthg to note that Ki(@) is the Merence between the cross-product of the score 

and the observed information about qi evaluated under Ho, and thus S measures the overall 

merence. Li fact, this relates to the ZM test which we will discuss in the next section. 

In addition, since &en ni, the integrated intensities e ~ p ( q $ ) A ~ ( t ~ ,  j-i, t,) are indepen- 

dently and exponentially distributed with unit mean for j = 1, ..., ni, the score function may 

be thought of comparing the sample variance and model-based variance of the integrated 

intensity. This interpretation is consistent with that of Dean's (1992) test. 

The variance of the score function is obtained by using the Fisher information rnatrix. 

We partition it conformably to (8, o) as 

The components of I ( 8 ,  o) evaluated at a = O are easily seen as 
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where the expectation is taken over the joint density of the (Tii, ..., fini, Ni(ri))'s- Note 

that Iee is simply the information m a t h  for the fixed-&ect model. However, the expected 

information matrix may not be obtainable in general, and so the observed information 

matrix bas to be used in most cases. 

The asymptotic variance of S is equal to Vs = IuG - I é , I ~ l X e ,  (Pierce, 1982). Hence, 

the test statistic is given by 
S 

Ts = - 
fi ' 

which is evaluated at the maximum likelihood estimate of 8 using the fixed-effect model. 

The test statistic is approximately N(0,l) distributed under Ho. As t~ is non-negative, this 

is a one-sided test for which Ho is rejected if Ts is large. Furthermore, if we are interested 

in testing against either the under-dispersion or the ovedispersion alternative, we can use 

Ti as a test statistic which is asymptotically XZ(l) distributed. 

The score statistic is computed by replacing the irnknown parameters by their esti- 

mates. For small sample sizes, the distribution of the score statistic may be quite ditferent 

fiom its asymptotic distribution. Simulation studies for binomial and Poisson regression 

models suggested that moderate to large sample sizes are needed for reasonable approx- 

imation of the asymptotic distribution (Dean, 1988). Using a first-order Taylor series 

approximation, Dean provides an adjusted score statistic which converges faster to the 

asymptotic distribution. O'Hara Hines (1995) c k e d  out a comparative study of score 

tests for overdispersion in binomial and Poisson regressions. She found that Dean's score 

test using the observed information to estimate Vs is too liberal and the adjusted statistic 

only provides a little improvement over the unadjusted statistic. Similar adjusted score 

tests for Poisson processes will be considered in section 3.5. 

Following Smith and Heitjan (1993), extension to multivariate random effects with inde- 
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pendent components is straightforward. However, the theory does not foliow immediately 

for correlated random effects. We will discuss the bivariate case in section 3.6. 

3.3 Informat ion Matrix Tests of Homogeneity 

Crouchley and Pickles (1993) illustrated the use of the IM test in parametric univariate and 

multivariate proportional hazards models. Interestingly, they showed that testing for the 

specification of the intercept term is equivalent to the score test of homogeneity described 

in section 3.2. This is not a coincidence. ki fact, Chesher (1983, 1984) gave a score test 

interpretation for the IM test and showed that the implicit alternative of the IM test is a 

mode1 wit h random paramet er variation. 

In this section, we introduce the formal set-up of the IM test with some finite sample 

representations. We also show how it can be used to test for homogeneity in random effect 

models for point processes. 

3.3.1 The Information Matrix Test 

The IM test aims to detect model misspecification. The idea is to compare two estimates 

of the Fisher information matrix which are consistent under the correct model specifi- 

cation. In an ordinary likelihood setting, suppose {Yl, ..., Y,) is a random sample fkom 

a distribution F(Y;O). If the distribution and the parameters are correctly specified, 

the Fisher information matrix can be consistently estimated by either the negative of 

the Hessian of the log-likelihood, -a2L(B)/aûdB', or the outer product of the gradient, 

(at(9) /a@) (a!($) log'), where !(O) is the log-likelihoo d, provided t hat some regularity 

conditions are satisfied (White, 1982). Therefore, the difference between these two es ti- 

mates may be used as a test statistic. A significant discrepancy indicates that the model 

F (Y; O )  is misspecified. 
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Let f (y; 8) be the probability density fnnction of Y. Define 

where 4 

The test 

(8) is the log-Likelihood for k;-. Let p be the dimension of 8 and q = p(p + 1)/2. 
statistic is defined as a q x 1 vector 

where & ( O )  is the vector stacking the distinct elements of 

If the model is correctly specified, White (1982) showed that a(&) is asymptotically 

distributed as a normal random variable with mean zero and covariance matrix V(Bo), 

where 6 and are the maximum likelihood estimate and the true value of 6 ,  respectively, 

under the assumed model and 
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Hence, the normalized statistic is given by 

which is asymptoticdy x2(q) distributed. This is &O tme asymptotically if ~ ( 0 )  is 

replaced by any consistent estimate. Since the variance is obtained hom expectations, we 

c d  (3.3.2) the efficient score (ES) form of the test. 

Computation of the covariance matrix V ( 0 )  could be rather involved due to the third 

derivative of the log-likelihood and the fact that the expectation is ofken intractable. It is 

a common practice that the covariance matrix is estimated by its sample moment, 

where w@) is equal to wi(6) with V D ( B )  and 

respectively. We c d  the statistic (3.3.3) using 

However, this sample moment is not guaranteed 

A(@) replaced by their sample moments 

(3.3.4) the Hessian form of the IM test. 

to be non-negative definite. 

For the purpose of lessening the computation burden, Chesher (1983) and Lancaster 

(1984) suggested using the outer products - Cg"=,(@) V&(G-(B)/m and -Ba(@) to approx- 

imate V D ( 8 )  and A(0) respectively. This is due to the fact that if the model is correct, 

we have the following relationships: 

a4(e) - -E(di(@)V&(B)) and E(Vei(@)'VLi(O)) = -A(@) .  (3.3.5) E(T) - 

We c d  the statistic (3.3.3) using (3.3.5) the OPG (outer product gradient) form of the 

IM test. Therefore, the standardized IM test has t kee  common representations in which 
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the variance can be the expected one or approlcimated by its corresponding finite sample 

moments or the outer products of gradients. The ES form should converge faster to the 

asymptotic distribution than the other forms. Fur thmore ,  Orme (1990) provided em- 

pirical evidence based on simulations for certain regression models that the OPG form is 

inferior to the Hessian form in terms of the size of the test. 

3.3.2 Testing for Homogeneity 

We consider the same mode1 for univariate point processes in section 3.2. Sub-vectors of 

Dm(@) can be considered for tests of particular hypotheses. Since random effect modeh 

involve a random intercept, we may apply the IM test to the intercept term. 

We assume that, apart fkom the intercept, the other components of the mode1 are 

correctly specified. Then , after some simple algebra, the statistic is given by, 

J. 
= - 1; K;(8) l;, 

i=1 

where I.(0 [O)  is the log-likelihood under Ho and Ki(8) is defined in section 3.2.1. Hence, the 

IM statistic is the same as the score statistic apart fiom a constant (2 /m) .  As m t oo, 

Dm(Po) converges in distribution to a normal random variable with mean O and variance 

V(Po) which is the (1, l ) th element of V ( 0 )  in (3.3.1). It can be shown that V(Po) is 

proportional to the variance of the score statistic where the proportionality constant is 

equal to 4/m. We outline the proof as follows. Using (3.3.5) with Vti(ûlO) in place of 

V&(B), it is straightforward to find that 
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The first row of V D ( 0 )  is 

and A(0) = -Iee/m, where the 1 ' s  are dehed  in section 3.2.1. The (1,l)th element of 

V(0)  is given by 

Hence, the standardized IM statistic 

is exactly the same as Ts. This ES test statistic is computed by substituting the maximum 

Likelihood estimates of 8 under Ho. 

Although the score test and the IM test of homogeneity are equivalent using the ex- 

pected variance, in most situations we have to use the sample moment approximations 

which may vary with respect to the size and power. We will investigate this by some 

simulation studies in the next section. 

3.4 Finite Sample Performance of the Tests 

In this section, we study the performance of different representations of the test via sim- 

ulations based on renewal and Poisson processes with Weibull intensities. Finite sample 

distributions of the test statistics are estimated and compared with their asymptotic distri- 

butions. We also consider the squared statistics which are x2(1) distnbuted asymptotically. 
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It is found that the sqx3ied st atis tics seem to approach their asymptotic distributions faster 

than their unsquared counterparts. However, except for the ES statistic, the O ther statis tics 

require large sample sizes to achieve reasonable performance. 

The power of the test is studied by incorporating a random effect into the intensity. 

CrouchIey and Pickles (1993) provided empirical evidence for failure time data based on 

simulations that the Hessian form and the OPG form of the IM test have similar size and 

power for the squared statistic. 

We describe the simulation designs and introduce some common representations of the 

test statistics in sections 3.4.1. The results d be discussed in sections 3.4.2 and 3.4.3. 

3.4.1 Design of Simulation Studies 

We consider Weibull intensity functions with a time-invariant covariate 

where t is the t h e  since the process starts, t ~ ( ~ - )  is the event time just before t and 7 2 1. 

Event times are generated given known values of the parameters over a fixed t h e  

interval [O, 11. The designs are listed in Table 3.1. The average number of events per 

process is calculated fiom the simulation. Two different d u e s  of P are used in order to 

see if moderate to large number of events has an effect on the distribution. Certainly we 

would expect a loss in power of the test for a small number of events, Say < 2. 

Let O < til < ... < tini 5 T; be the event times of process i and n; = N;(ri). The 

log-likelihood for process i under the null hypothesis is given by 
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Design Process 7 a Average number of 
events per process 

Pl Poisson 2 1.5 0.5 Beïn(O.5) 5.8- 
P2 Poisson 2 1.5 0.5 N ( 0 , l )  4.5 
P3 Poisson 2 2 0.5 Be~n(0.5) 9.5 
P4 Poisson 2 2 0.5 N(0,l) 7.4 

R1 Renewal 3 5 2 Bern(O.5) 8 
R2 Renewal 3 5 1 N(O,1) 5.8 
R3 Renewal 3 3 2 Be~n(O.5) 4.1 
R4 Renewal 3 3 1 N ( 0 , l )  2.8 

Table 3.1: Simulation designs. 

where qi = ,Oo +fixi7 B = (Po, Pi, 7)' and Ao(t) is the cumulative baseline intensity function 

such that 
[ for Poisson processes, 

where eij = tij - tij-1 and n; i s  the number of durations induding the Iast censored 

duration. This leads to a simpler expression for Ki(@) in the test statistic: 

where &(O)  = e x p ( ~ ) & ( . r i ) .  Maximum likelihood estimates, 9, for û can be found easily 

by standard rnethods. We note that C27zi = Cgl exp(fi)&(r;) from the score function 

of Do. A simpler cornput ational f o m  for  CE"=,^ (e ) is thus equal to ~ g ,  [(ni - &(O))" ni]. 

As the score statistic and the IM statistic differ only by a scale factor, the test statistic 

can be expressed as 
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where ~ ( 0 )  is an estimate for the expected variance ~ ~ ( 0 )  in which e = S, H and O 

correspond to the score statistic, the Hessian f o m  of the LM test and the OPG form of the 

IM test respectively. We state these variances as follows: 

where 

m BK. (8 )  m 

K-(O) = C Ki(@), VK. (B)  = 
a2e(e) 

de' 
, e p )  = C 4(e), v2c(e) = - 

i= 1 i= 1 8880' ' 

Here the variance of the score statistic is estimated by replacing the expectations in (3.4.4) 

by their corresponding sample moments. Note that these formulations are valid for any 

point process with tirneinvariant covariate intensity fimction (1.2.4). In particular, the 

expected variance of the test statistic for Poisson processes with Weibull intensity can be 

found fiom the following expectations: 
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where Ai(@) = e x p ( x ~ ~ ) r ~  and xi = (1,~;)'. However, there is no dosed form expression 

for the expected variance of the test statistic for renewal processes. 

We carry out the simulation study as follows. The sample sizes are chosen as 20, 50 

(small), 100, 200 (moderate), and 300 (large). We generate a process from each design 

and compute the test statistic. This procedure is repeated 2,000 times, based on which 

an empirical distribution of the test statistic is obtained and compared to its asymptotic 

distribution. I t  suffices to compare their tail probabilities as the test is either a one-sided 

test or a Chi-square test for which the squared statistic is used in the latter. The resdt 

will be discussed in the next section. 

On the other hand, we introduce a random eEect log(v) with different variances into 

the linear predictor in order to study the power of the test. The mixing distributions 

considered are Bernoulli and gamma. As will be seen in the next section, the finite sample 

distributions do not m e r  much whether the covariate is distributed as Bernoulli(O.5) or 

standard normal. Therefore, we will consider only the designs with normal distnbuted 

covariates and the sample size is taken as 100. The rates of rejections at 5% significant 

level are computed for different variances. The result is given in section 3.4.3. 

3.4.2 Finite Sample Distributions 

Poisson Process 

The empirical tail probabilities of the test statistics Ta for a = E, S, H and O are tabulated 

for designs Pl and P2 dong with the tail probabilities of N(0, l )  distribution in Tables 

3.2 and 3.3. For s m d  sample sizes (20 and 50), none of the finite sample distributions 

of TE can be approximated by N(0,l). The empincal tail probabilities of TE for the 1% 

to 10% significance levels appear reasonably well approximated by N ( 0 , 1 )  for sample size 

of at l e s t  100. The distributions of other statistics are far away fiom N(O, 1) even for 

large sample sizes in which they shift to the left of N(0, l  ). As a result , the type 1 error is 
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rn mean variance Upper tail probabilities of N(0,l) 
0.0 1.0 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01 

20 -0.317 0.877 0.185 0.152 0.118 0.088 0.057 0.029 0.020 0.009 

Table 3.2: Upper tail probabilities, sample mean and sample variance of the test statistics 
for design P 1. First row: The efficient score statistic. Second row: The Hessian form of 
the IM test. Third row: The OPG form of the IM test. Fourth row: The score statistic. 



CHAPTER 3. TESTS OF HOMOGENEITY FOR POINT PROCESSES 

m mean variance Upper tail probabilities of N(O, 1) 
0.0 1.0 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01 

20 -0.367 0.783 0.131 0.108 0.091 0.070 0.052 0.032 0.020 0.010 

Table 3.3: Upper tail probabilities, ~ample mean and ~ample Miiance of the test statistics 
for design P2. 
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m mean variance Upper tail probabilities of X2(l) 
1.0 2.0 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01 

20 0.976 1.588 0.321 0.259 0.199 0.136 0.073 0.033 0.012 0.007 

Table 3.4: Upper tail probabilities, sample mean and sample variance of the squared 
statistics for design Pl. 
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m mean variance Upper tail probabilities of XZ(l) 
1.0 2.0 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01 

20 0.917 0.302 0.240 0.182 0.119 0.069 0.030 0.012 0.007 

Table 3.5: Upper tail probabilities, sample mean and sample Mnance of the squared 
statistics for design P2. 
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m mean variance Upper tail probabilities of x2(1) 
1.0 2.0 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01 

100 1.019 2.015 0.305 0.251 0.206 0.154 0.100 0.053 0.023 0.010 
100 1.359 5.147 0.338 0.293 0.250 0.202 0.145 0.094 0.059 0.035 
100 1.330 4.650 0.339 0.288 0.240 0.196 0.146 0.087 0.057 0.035 
100 1.382 5.511 0.350 0.296 0.249 0.198 0.141 0.091 0.054 0.039 

Table 3.6: Upper tail probabilities, sample mean and sample variance of the squared 
statistics for design P3. 

deflated too much. 

On the other hand, the squared statistics seem to converge a little faster to the asymp 

totic distribution (~'(1)) (Tables 3.4 and 3.5), although the distributions for the sample 

moment Mnance forms now shift to the right of X2(l), implying that the type 1 error is 

inflated. The ES form couverges relatively quickly; a sample size of 100 is enough to get 

a reasonable asymptotic approximation. However, a sample size of a t  least 200 is required 

for the other statistics. 

The ES form certainly o u t - p e b s  the other statistics. This may be due to the fact 

that the expected variance of the statistic is less variable than its finite sample approxi- 

mations. On the other hand, the score statistic, the Hessian form and the OPG form of 

the IM test have a similar finite sample distribution for ail sample sizes. It is difficult to 

specdjr a preferred test. 
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m mean variance Upper tail probabilities of x2(1) 
1.0 2-0 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01 

100 0.942 1.944 0.282 0.234 0.189 0.142 0.090 0.039 0.019 0.008 
100 1.333 5.052 0.341 0.296 0.245 0.193 0.137 0.087 0.057 0.030 

Table 3.7: Upper tail probabilities, sample mean and sample variance of the squared 
statistics for design P4. 

Furthemore, the distributions of the test statistics seem not to be affected by whether 

the covariate is distributed as Bernoulli or normal, or the number of events per process 

provided the nuxnber is not too small (Tables 3.6 and 3.7). 

Renewal Process 

The finite sample distributions are tabulated in Tables 3.8 to 3.13 for Ts, TH and To. R e c d  

that the ES form for renewal process is not available. We start with moderate sample sizes 

because the finite sample distributions are far away from the asymptotic distributions for 

small sample sizes. 

The results are very similar to the Poisson process. 
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m mean variance Upper tail probabilities of N(0,l) 
0.0 1.0 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01 

Table 3.8: Upper tail probabilities, sample mean and sample variance of the test statistics 
for design RI. First row: The Hessian fonn of the IM test. Second row: The OPG form 
of the IM test. Third row: The score statistic. 

rn mean variance Upper tail probabilities of N(0,l) 
0.0 1.0 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01 

100 -0.325 1.202 0.229 0.188 0.146 0.104 0.058 0.021 0.007 0.002 
100 -0.300 1.264 0.238 0.193 0.149 0.108 0.061 0.023 0.008 0.003 
100 -0.375 1.292 0.224 0.180 0.137 0.088 0.049 0.018 0.006 0.001 

Table 3.9: Upper tail probabilities, sample mean and sample variance of the test statistics 
for design R2. 
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m mean variance Upper tail probabilities of X2(1) 
1 .O 2.0 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01 

100 1.261 4.040 0.330 0.284 0.233 0.182 0.133 0.080 0.054 0.034 
100 1.493 6.296 0.366 0.320 0.275 0.213 0.159 0.100 0.068 0,042 
100 1.406 5.591 0.356 0.301 0.251 0.204 0.150 0.093 0.060 0.040 

Table 3.10: Upper tail probabilities, sample mean and sample variance of the squared 
statistics for design RI. 

rn mean variance Upper tail probabilities of x2 (1) 
1.0 2.0 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01 

100 1.307 3.991 0.352 0.307 0.263 0.210 0.148 0.085 0.049 0.026 
100 1.353 4.735 0.351 0.301 0.249 0.200 0.150 0.092 0.058 0.035 
100 1.432 6.127 0.346 0.302 0.252 0.208 0.156 0.094 0.061 0.037 

- - - -- - - -  - . - - - - - 

Table 3.11: Upper tail probabilities, sample mean and sample variance of the squared 
statistics for design R2. 
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m mean variance Upper tail probabilities of x2(l) 
1.0 2.0 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01 

100 1.197 3.531 0.325 0.274 0.224 0.173 0.124 0.073 0.042 0.023 

Table 3.12: Upper tail probabilities, sample mean and sample variance of the squared 
statistics for design R3. 

rn mean variance Upper tail probabilities of xZ(l) 
1.0 2.0 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01 

100 1.232 3.867 0.320 0.272 0.223 0.184 0.130 0.078 0.050 0.030 
100 1.409 5.342 0.364 0.303 0.252 0.198 0.148 0.097 0.061 0.036 
100 1.626 7.410 0.380 0.332 0.280 0.231 0.181 0.122 0.080 0.050 

Table 3.13: Upper tail probabilities, sample mean and sample variance of the squared 
statistics for design R4. 
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Binary Frailty Gamma Frailty 

I I 1 
0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.0 0.05 0.10 0.15 0.20 0.25 0.30 

Variance of the mixing distribution Variance of the mixing distribution 

Figure 3.1: Power curves for Poisson process, design P2 

3.4.3 Power of the Tests 

Power curves at 5% signûicance level for different squared statistics under designs P2 and 

R2 with sample size 100 are displayed in Figures 3.1 to 3.2 for binary and gamma frailties. 

Strictly speaking as type 1 errors for the statistics are not the same, the power curves 

are not directly comparable. Despite this, since the test using the ES form has good type 1 

error rate and its power curve is definitely higher than the other power c w e s ,  this should 

indicate that it has higher power than the other tests. On the other hand, since the type 

1 errors for G, To and Ts are very dose, this also makes the cornparison between them 

reasonable. In both Poisson and renewal processes, the poweis of TH, To and Ts are very 

close for binary frailty. For gamma fiailty, we observe the fouowing order: To > TH > Ts, 

although the difference is quite s m d .  
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Binary Frailty Gamma Frailty 

0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.0 0-05 0.10 0.15 0.20 0.25 0.30 
Variance of the mixing distribution Variance of the rnixing distribution 

Figure 3.2: Power c w e s  for renewal process, design R2 

3.4.4 Summary 

We summarize the results of the simulation study: 

1. The ES statistic perfoms the best in terms of size and power. A sample size of about 

100 is enough to achieve reasonable asymptotic approximation. It is recommended 

that the ES statistic should be used whenever it is available. 

2. The sample moment statistics have similar performance. This is consistent with 

Crouchley and Pickles (1993)'s results. This makes the OPG form more attractive 

because of its simpler comput ation. 

3. Large sample sizes are required for the statistics based on sample moment estimates 

of the variance in order to get a reasonable type 1 error rate. 

4. Apart hom the ES statistic, the statistics have s m d e r  type 1 error rates than the 

nominal type I error while the squared statistics have higher type 1 error rates. As 
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a result, the one-sided and twesided tests tend to reject too infrequently and too 

fkequently, respectively, when the n d  hypothesis is true. 

3.5 Adjusted Score Tests for Poisson Processes 

The simulation study in the last section clearly shows that the score and IM tests of 

homogeneity have poor finite sample performance. Adjustments for the test statis tics are 

definitely desirable. In this section, we examine the fkequency propeities of score and 

adjusted score statistics for testing the hypothesis of homogeneity in continuous time non- 

homogeneous Poisson processes subject to non-informative censoring. Specificdy, given 

the random effect u, we express the conditional intensity for events at t h e  t as 

where x = (x17 ..., xp)' is a p x 1 vector of time independent covariates, /3 = (Pt, ..., &,)' is 

a p x 1 vector of the corresponding regression coefficients, Ao( t )  is the baseline intensity 

function, u is the subject-speciiic random effect with mean O, variance 1 and probability 

density function g(u) ,  and a measures the extent of heterogeneity. Based on this specifi- 

cation, it is clear that we assume the random effect to be distributed independently of the 

covariates. A test of homogeneity is equivalent to testing Ho : o2 = 0. 

We first consider an adjustment for parametric models in section 3.5.1. We then extend 

the test to semi-parametric models based on counting process methodology (Fleming and 

Harrington, 1991) in section 3.5.2. Simulation studies pertaining to the size and power 

of the tests are described in section 3.5.3. These simulation studies also compare the 

performance of the tests using a weakly parametric model based on a piecewise constant 

baseline intensity and the semi-parametric model. An example involving a clinical study 

of gamma interferon in chronic granulomatous disease is provided in section 3.5.4. 
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3.5.1 Adjustment for Parametric Models 

Here we assume that the setting given in section 3.2 is satisfied. We &O assume that the 

conditional baseline intensity, Xo(t), in (3.5.1) is completely spe&ed by 7, a q x 1 vector 

of parameters 

the condition 

such that Xo(t) is at  least twice differentiable with respect to 7. and satisfies 

We have shown in section 3.4 that the score statistic under this specification is given by 

(3.5.2) 

where 0 = (Pr,  y')', &(O)  = ~ x ~ ( x ~ ) A ~ ( T ~ )  and 9 is the m.1.e. of 8 under the null model. 

The asymptotic variance of ~ ~ ( 6 )  is given by 

where 1,,(8) = f CE"=,(110) + 2G(6)), Is,(û) = E(-âTp(0)/BO) and le(e) is the expected 

idormation rnatrix for the n d  model. The expressions for Ie,(0) and le(@) are given in 

appendix A.1. We carry out the test by using the standmdized statistic 

which is asymptoticdy distributed as N ( 0 , l )  under Ho. Since o2 is non-negative, we 

consider a one-sided test in which the n d l  hypothesis is rejected if &, is large. 

We are now going to derive an approximate expectation of ~ , ( e ) .  Consider a fust-order 
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Taylor series expansion for ni - &(b) about the true parameter value 0, 

ni - &(8) = ni - &(O) - a&(@) 
det 

(ê - e) + Op(m-l) 

= TI+ -A,(@) - an,(e) çl(e)v(e) + o , ( ~ - ~ ) ,  
(30' 

(3.5.4) 

where U ( 8 )  is the score function for 0 undm the n d  model. Since U ( 9 )  has mean zero 

and variance l e ( B ) ,  the left-hand side of (3.5.4) has expectation approximately equal to O 

and variance given by 

Ai(@) + 

We show in appenduc A. 1 that cov(w, U(0))  = d&-(@)/a$ and hence, the expectation of 

the score statistic evaluated at 0 is approxknately equal to 

as rn-'l2(&(@ - & ( O ) )  converges to O in probability, where the approximate expected 

bias is given by 

Since le(@) has order O ( m )  and a&(û)/a@ has order 0(1), the normalized expected 

bias, m-1/2bp(8), wiU. vanish as na -+ oo, giving rn-1/2~p(e)  and m-112~p(8) the same 

asymptotic distribution. For s m d  to moderate sample sizes, this bias may be appreciable, 

so we define the adjusted score statistic as 
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and carry out the test based on the standardized version of the statistic, 

which is asymptotically distributed as N(0,l). We anticipate that the distribution of 2; 

converges faster to N(O, 1) than that of 4, under the null hypothesis. 

We also note that b p ( 9 )  is non-negative since le(@ is a semi-positive definite mat& 

with probability 1. As a consequence, the adjusted score statistic is at least as large 

as the unadjusted score statistic with probability 1. This implies that the finite sample 

distribution of the unadjusted score statistic is left-shifted compared to its asymptotic 

distribution. The simulation study in section 3.5.3 provides empirical evidence that the 

type 1 error for the unadjusted score statistic is indeed smaller than the nominal level. 

3.5.2 Semi-parametric Models 

Model Specification 

In this section, we ernploy the counting process approach (Andersen and Gill, 1982; Fleming 

and Hamngton, 1991) for Poisson processes in which Xo(t) is completely unspecified. Using 

the notation in section 3.5.1, we express the cumulative number of events for subject i at  

time t, given ui as, 

where Mi(t) is a zero-mean martingale. 

Without loss of generality, we assume that the lengths of follow-up are in ascending 
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order, TI < - - 5 r,. Given u = (ul, ... , uJ, the conditional partial likelihood is given by 

i = 1, ..., m (Fleming and Harrington, 1991 Chapter 4). Hence, the marginal ~ a r t i a l  

Wrelihood is obtained by integrating (3.5.9) with respect to the randorn effects (Commenges 

and Andersen, 1995): 

Before proceeding, we define some fnrther notation. For t 2 O, let 

and 

We assume that the regularity conditions of Fleming and Harrington (1991; chapter 8) 

hold for the asymptotic arguments below. 

Score Statistic 

Let N.(t) = CEl Ni(t) be the total number of events in the sample occurring in (O, t]. 

Denote the martingale residual at t under Ho : a2 = O by 

where 
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is the Nelson-Aden estimator for &(t) (Andersen et al., 1993). 

As suggested by Commenges and Andersen (1995), the score statistic for testing a2 = O 

has the 

(3.2.1). 

same form as (3.5.2) except that the partial likelihood (3.5.9) is used in place of 

The resdting score statistic is then given by 

where A&(B) = Mi(oo,p) (see appendix A.2 for derivation). The score statistic (3.5.12) 

has a similar interpretation to its parametnc counterpart (3.5.2). By expressing (3.5.11) 

as Mi(t, P )  = M;(t) - Ji wi(s)dM. (s), since the Mi(-)'s are independent zero-mean martin- 

gales, the predietable variation process of Mi(t,@) is equd to 

which can be estimated by $(v;(s) - w:(s))dN.(s). Therefore, the expectation of M:(B), 

which is equal to E[< Mi(-, f i )  > (oo)] (Fleming and Harrington, 1991 section 2.4), can be 

estimated by the second term on the right-hand çide of (3.5.12). 

The asymptotic distribution of Tw(P) can be obtained by noting that TT@) is a 

martingale transform of the M;(=)'s at W. Specifically, we can show that the process 

can be expressed as 

where 
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is predictable. The proof of (3.5.13) closely follows Commenges and Andersen (1995); the 

details are given in appendix A.2. The predictable variation process of T'(t,P) is then 

equal to 

whose expectation is equal to the variance of T,(t, P) .  Hence, T,(P)  = TV(=, 6)  has 

mean O and variance E[< T,(-,P) > (oo)] which can be estimated by 

Under suitable regularity conditions (Gray, 1995) and by the martingale central limit 

theorem (Fleming and Harringtoa, 1991 Chapter 5 ) ,  T-(P)/ Jî,(p>- converges to N(O, 1) 

in distribution. 

The maiam- likelihood estimztes, b, under Ho can be obtained using the 

procedure suggested by Lawless (1987). When the regression parameters are replaced by 

b, the asymptotic Mnance of T,(& has the same adjustment as in the parametic case 

(3.5.3). Based on the idea of Theorem 8.3.3 of Fleming and Harrington (1991) with some 

modifications, one may show that the asymptotic Miiance of T,@) can be estimated by 

where 

estimates E(-OT,(p)/Bp) and 

is the observed information matrix for P.  Hence, the test is based on the standardized 
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statistic 

which converges to N ( 0 , l )  in distribution. 

Adjusted Score Statistic 

As in the parametric case, we consider a first-order Taylor series expansion for the martin- 

gale residuals around the tme P,  which is equal to 

where 

which can be decomposed into two terms 

The first term of (3.5.15) is a p x 1 vector of zero-mean martingales with predictable 

variation J-;(xi - E ( s ) ) ( x ;  - ~(s))'w~(s)S(~)(s)dA~(s) which, subject to the regularity 

conditions in Chapter 8 of Fleming and Harrington (1991), converges to O in probability. 

The second term of (3.5.15) is of order 0,(1) and thus J;(P)  converges to E[Ji(P)] = 

- JOm E[(xi  - E(s))Y;-(s)  exp(x~p) ]dA&)  in probability. Furthermore, using the relation 
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where l$ = [E(&~))I-' and U(P) is the score fnnction for p under Ho. Similar to the 

parametric case, one can prove that COV(M~(P), U@)) = -E[Ji(/3)] (see appendix A.2). It 

is straightfmard to see that the bias induced in the second tenu of T&) is negligible. 

Consequently, the expectation of T&) is approximately equal to - b,(P) where 

which is estimated by 

for true p. We therefore define the adjusted score statistic as 

We note that the estimated bias &,(b) has the same properties as its parametnc counter- 

part, namely it is non-negative and rn-'/2&,(& converges to O in probability. Hence, the 

unadjusted and adjusted score statistics are asymptotically eqnivalent. 

We carry out the test using the standardized statistic 

which is asymptoticdy distributed as N ( 0 , I ) .  

3.5.3 Simulation Studies 

In this section, we compare the performance of the score and adjusted score statistics with 

respect to the size and power via simulations in both the parametric and semi-parametric 
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fiameworks. First we make some general remarks to aid in the interpretation of the results. 

The score test based on parametnc models may be sensitive to the misspeufication 

of the baseline intensity. Although the semi-parametric model is 

the performance of the correspondhg score test rnay be adversely 

an empiricd estimator for var(~,(b)) based on sample moments. 

robust in this regard, 

affected by the use of 

The simulation study 

in section 3.4 provides empirical evidence of this regard. Together with the estimation 

of p, (3.5.14) can be highly unstable in small samples (Breslow, 1989). As a result, the 

distributions of 2, and 2; may require large sample sizes to approach N ( 0 , l ) .  In contrast, 

in parametric models, the asymptotic variance of T,(& (3.5.3) has an exact form for 

given p, and therefore Zp and 2; will be expected to converge faster to N(O, 1) than 2, 

and 22, provided the parametric mode1 is correctly specified. As a compromise between 

a particular parametric model and the semi-parametrie model, we suggest a piecewise 

exponential specification for the baseline intensity. As the number of pieces inneases the 

model becomes weakly parametric, and so will exhibit robus tness. 

The objectives of this section are two-fold. First, we intend to compare the bequency 

properties of the unadjusted and adjusted score statistics. Second, we plan to compare 

the performance of the tests based on the piecewise exponential and the semi-parametric 

formulations. 

Type 1 Error Rates 

To investigate the type 1 error rates, we generate rn independent Poisson processes under 

Ho according to the following Weibull intensity: 

where exp(Po) and 7 > O are scale and shape parameters respectively. The xi's are taken 

to be independently and identicdy distributed Bernoulli random variables such that the 
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probability of xi = 1 is 0.5 and the probability of si = O is 0.5. This specification was 

chosen to mimic treatment assignment in a randomized trial. 

We set the target length of follow-up to r = 1 (year) and model loss to follow-up 

by simulating censoring times with an exponential distribution wit h mean Iog(0.5) ; t his 

generates about 50% censored follow-ups. Ln other words, the length of foIlow-up for subject 

i is equal t O ri = min(Ci, 1) , where the Ci's are independently and identically distributed as 

exponential with mean log(0.5). We further specified = 1 to represent a treatment effect 

and 7 = 2 to induce a trend in the conditional intensity. The parameter ,& is determined 

by the expected number of events over [O, 11 based on the baseline model, Le., Po = log(K), 

where K = E(Ni(l)lxi = O). We consider K = 2 and 10 to represent small and moderately 

large numbers of events per subject . Our primary interest lies in the performance for s m d  

to moderate sample sizes and so we consider sample sizes: rn = 10,20,50 and 100. 

Having generated the processes, we cornpute the score and adjusted score statistics 

accordkig to the following specifkations of the baseliie intensity: (i) Weibd, (ii) piecewise 

exponential with 5 equally spaced sub-intervals over [O, 11, denoted by PEequal, (iii) 

piecewise exponential with 5 cut-points determined by the 2Oth, 40th, 60th and 80th 

percentiles of the observed event times, denoted by PEpercentile, and (iv ) semi-parametric 

specification. All simulations were replicated 2,000 times. 

The Weibull model is the correct model specification in this setting and thus serves as 

the basis for cornparison. We consider two ways of selecting the cut-points for the piecewise 

exponential model in (ii) and (iii) above. The equally-spaced division is attractive on the 

grounds of clinical interpretation of, for example, mont My rates of disease recurrence. The 

division based on the percentiles of the observed event times groups the ordered event 

tirnes into a pre-determined number of strata. In the extreme case that the number of 

strata is equal to the number of observed events, the piecewise exponential model and the 

semi-parametric model are equivalent (Clayton, 1994). 

The empirical type 1 errors at IO%, 5% and 1% nominal levels are reported in Tables 
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3.14 and 3.15 for K = 2 and K = 10 respectively. At the nominal 10% and 5% levels, all 

of the unadjusted score tests have conservative empirical type I error rates for the sample 

sizes considered. In other words, the unadjusted tests tend to reject the null hypothesis 

less frequently than anticipated. This feature is also exhibited at the 1% nominal level, 

although to a lesser degree. 

In contrast, the adjusted score tests generdy have well-controlled type 1 error rates. 

The adjusted test based on the Weibull specification is substantially less conservative thaa 

its unadjusted version, and is satisfactory for sample sizes as s m d  as n = 20. The unad- 

justed test for the PEequal specification is conservative to approximately the same degree 

as the Weibd counterpart, but the adjustment appears to over-compensate, ieading to 

idated empirical type 1 error rates for s m d  to moderate sample sizes. The unadjusted 

test based on the PEpercentile method is again conservative , but the adjustment per- 

foms extremely well in this context. In fact the adjusted statistic cornpetes very favorably 

with the adjusted We ibd  statistic, and has the attractive property of being somewhat 

more robust to rnisspecification of the baseline intensity. The semi-parametric specifica- 

tion again leads to a conservative unadjusted test statistic, as one might expect, but the 

adjustment does not lead to such good irnprovements in the empincal type 1 error rates as 

are observed in the Weibd  and PEpercentile specifications. In fact, at the 5% nominal 

level, the adjusted s t atistic for the semi-parametsic specïfication leads to an unaccept ably 

conservative test even for m = 100. 

This confirms the argument made above regarding the estimator of (3.5.14). To get 

further evidence, we also carried out simulation studies for the Weibull and PEpercentile 

specifications with m = 100 in which sample moment estimators were used for (3.5.3), 

i.e., In(@) ,  Iso(B) and Id($)  in (3.5.3) were computed using their sample moments. The 

empirical type 1 errors were severely deflated, even the adjusted statistics failed to provide 

sufficient improvement (Table 3.16). Therefore, we conclude that the expected form of 

(3.5.3) should be used, and therefore a weakly parametric mode1 based on a piecewise 
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Table 3.16: Empirical type 1 errors for the unadjusted score statistic (first row) and the 
adjusted score statistic (second row) using the sample moment estimates of the variance 
in which E(Ni(l)lxi = 0) = 2 and the number of tut-points is 5. 

exponential specification of the intensity is preferred. 

Finally we remark lhat as one would expect, the simulations based on more expected 

number of events per subject (Table 3.15) had slightly better performance over the statistics 

with less expected number of events per subject (Table 3.14). 

Power of the Tests 

We now tuni to assess the power of the test based on the above four specifications. We 

consider gamma random effects in which for fixed ti, the conditional intensity is given by 

where we consider sample size m = 20. The zi's are then assumed to be independently and 

identicdy distributed gamma random variables with mean 1 and variance 6, to generate 

subject-twubject variation in the intensities. With this model specification, the ratio of 

the marginal variance to the marginal mean of Ni(ri) is equal to 1 + Qexp(Po + AX~)TJ-'- 

We consider the case of srnall and set the parameters as Po = log(2), ,O1 = 1, 7 = 2 and 

6 ranging fkom 0.0 to 0.8 correspondhg to mild to moderate heterogeneity. The empincal 

power curves for the unadjusted and adjusted statistics at the 5% nominal significance 

level are displayed in Figures 3.3 and 3.4. 
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r 

0.0 0.2 0.4 0.6 0.8 
Variance of gamma random effects 

Figure 3.3: Power curves for the unadjusted score statistics at 5% nominal significance 
level, where m = 20. 

Since the results in Tables 3.14 and 3.15 suggest that the empirical type I error rates of 

the unadjusted and adjusted tests are different, it is not appropriate to compare the power 

of these tests. Nevertheless, the unadjusted tests based on the four model spefications 

in this section are roughly comparable, suggesting that it is reasonable to compare their 

relative powers (see Figure 3.3). The power cunres were almos t indis tinguishable, indicating 

that the unadjusted tests based on these four specifications had similar performance. 

The power curves for the adjusted tests are given in Figure 3.4. Here we must bear in 

mind the i d a t e d  type 1 error rates of the adjusted PEequal statistic and the conservative 

nature of the adjusted semi-parametric specification. Since the empirical sizes of the ad- 

justed tests based on the PEequal and semi-parametric specifications were different from 

each other and from the other two specifications, we did not attempt to compare their 
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0.0 0.2 0.4 0.6 0.8 
Variance of gamma random effects 

Figure 3.4: Power curves for the adjusted score statistics at 5% nominal signifieance level, 
where m = 20. 

powers. As the adjusted Weibull and adjusted PEpercentile statistic have comparable 

empirical type 1 error rates: cornparisons between them are most relevant. It is reassuring 

that there is no loss in power in adopting the robust PEpercentile approach. 

On the whole, the adjusted tests seem to have reasonable power to detect heterogeneity 

and the PEpercentile model seems to out-perform the semi-parametric model in tenns of 

the type I enor rate. 

Cornparison to  Pearson Chi-squared Statistic 

The Pearson chi-squared statistic is often used to assess the goodness-of-fit in Poisson 

regression models (McCdagh and Nelder, 1989) and so we compare the performance of 

the score statistics with this statistic as weU. Since the Pearson chi-squared statistic is 

usually defined for parametric models, we consider the parametric specifications (i), (ii) 

and (iii) given in above. The usual Pearson chi-squared statistic is defined in the present 
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context as 
" (ni - P=C 

k(@ 
7 

i=l 

where &(O)  = ~ x ~ ( x ~ ) A ~ ( T ~ ;  y) with xi = (1,~;)' and xi = X; for Weibull and piecewise 

exponential specifications respectively, P is the correspondkig vector of regression coeffi- 

cients, 7 is a q x 1 vector of parameters specifying the baseline intensity, and 8 = (Pf,7)'. 
Under Ho, P is approximately x2 distnbuted with degrees of freedom m - k, where k is 

the dimension of 8. 

Farrîngton (1996) recently constructed a first-order modification to P which improved 

substantidy the performance of the goodness-of-fit test in generalized linear models with 

overdispersion manifested by a multiplicative variance d a t i o n  factor. The modification 

is directed at induchg approxhate orthogonality between the adjusted statistic and the 

estimates of the regression parameters in the sense that the distribution of the adjusted 

statistic conditional on 6 depends only weakly on the tme value of 0. The modified Pearson 

statistic for Poisson regression models is defined by 

rn 

p A = p - C  (ni - 6(8)) 
i=i ~ ( ê )  

? 

which is distnbuted approxîmately as ~ ~ ( r n  - k). Farrington (1996) &O suggested using 

the standardized version of PA, 

which is distnbuted approximately as N ( 0 , l ) .  

Here we study the type 1 error rate of the tests of homogeneity based on P, PA and 

ZpA.  The data were generated according to (3.5.18). Since it is well-known that the 

Pearson chi-squared test has poor performance for smdl ni (McCdagh and Nelder, 1989), 
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Wei bull PEequal PEpercentile 
rn 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 

Table 3.17: Empirical type 1 errors for the Pearson statistic (fùst row), Farrington's rnodi- 
fied Pearson statistic (second row) and standardized modified Pearson statistic (third row) 
in which E(Ni ( l ) l x i  = 0) = 10 and the number of cut-points is 5. 

we consider it only for the case K = 10. Note that these tests detect both under-dispersion 

and over-dispersion. 

The empirical type 1 error rates of the tests based on P, pA and Z P ~  are reported in 

Table 3.17. The ordinary statistic P for all specifications has grossly inflated type 1 error 

rates. The rnodified statistic pA based on the correct spedcation (Weibd), however, 

performs very well, although its standardized version ZP" has slightly higher type 1 error 

rates than the nominal levels. In contrast to our hdings regarding the adjusted score 

tests, PA and ZPA based on the piecewise exponential specifications exhibit unacceptably 

infiated type I error rates. This may indicate that the Pearson statistic is very sensitive to 

the speciiication of the baseline intensity and thus serves more as an omnibus goodness-of- 

fit test, rather than a test directed at detecting extra-Poisson variation alone. Provided that 
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the model is correctly specified, PA is an attractive statistic favored over 2: because of its 

sirnpler computation. However, correct model specXcation is rather difEcult to achieve and 

some sort of robustness is definitely preferable. Therefore, when testing for homogeneity, 

the adjusted score statistic using the PEpercentile specfication is recommended due to 

its robustness to model specification and its satisfactory performance. 

3.5.4 Gamma Interferon in CGD 

We consider the CGD study described in section 1.4.1 as an illustration to the testing 

procedure in this section. 

We e s t  fit a semi-parametric model involving all a d a b l e  covariates under the as- 

sumption of homogeneity in which log-transfonns were applied to the three continuous 

covariates: age, height and weight. Plots for the martingale residuals from this model ver- 

sus log(age): log(height) and log(weight) are shown in Figure 3.5 with a LOWESS smoother 

to help elucidate any patterns. These residual plots indicate that the functiond forms of 

the covariates are qui  te reasonable under the assump tion of homogeneity. 

We then fit the same regression models using the Weibull and piecewise exponential 

(with 5 cut-points based on the percentiles of the event times) specifications. The results 

of fitting these models are given in the left panel of Table 3.18 dong with the correspond- 

ing tests of homogeneity. AU the tests indicate that there is significant evidence against 

the hypothesis of homogeneity. For all specifications of the intensity, the adjusted score 

statistic is at least as large as the unadjusted one, as expected, and hence gives stronger 

evidence against Ho : O* = O. Note that the estimates and, in particular, the standard 

errors from the PEpercentile and semi-parametnc specifications are generally in very close 

agreement suggesting that the PEpercentile mode1 with as few as five pieces is sufficiently 
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Figure 3.5: Martingale residuals from the fixed-effect semi-parametric mode1 for the CGD 
data with LOWESS smoothers. 

robust. Based on the simulation studies in the previous section, we favor inference using 

the adjusted PEpercentile statistic and so c l a h  that there is very strong evidence against 

the hypothesis of homogeneity (p = 0.001). 

Given this very strong evidence, we fit this data using a random effect mode1 with 

gamma fkailties, i-e., we assume that r = exp(<ru) in (3.5.1) follows a gamma distribution 

with mean 1 and variance 6. Since parameter estimation for mixed semi-parametric models 

is very complicated, we elected to adop t the PEpercentile specification with 5 cut-points. 

The maximum lilrelihood estimates of the regression coefficients are given in the right 

panel of Table 3.18. Using the log-transform for 6, we also obtained an approximate 95% 



Fixed-efTect Models Random-effect Mode1 
Wei bull PEpercentile Semi-parametric PEpercentile 

Covariate" Estirnate s.e. Estimate s,e. Estimate s.e. Estimate s.e. 
Treatment -1.060 0.272 -1.063 0.272 -1.070 0.271 -0.987 0.298 
Inheritance -0.884 0.295 -0.924 0.298 -0.874 0.298 -0,857 0.343 
1% (A& -1.040 0.458 -1.056 0.461 -1.032 0.462 -0.995 0.524 
log(Beight) 4.179 2.788 4.413 2.836 4.229 2.820 4.072 3.270 
log( Weight) -0.548 0.818 -0.603 0.830 -0.592 0.822 -0.607 0.939 
Corticosteroids 2.258 0.654 2.270 0.655 2.231 0.656 2.368 0.863 
Antibiotics -0.782 0.348 -0.743 0.347 -0.763 0.349 -0,789 0.420 
Gender 0.968 0.394 0.944 0.394 0.907 0.395 0.947 0.468 
Hospital: 

US-other -0.112 0.335 -0.064 0.337 -0.017 0,338 -0.173 0.376 
Amsterdam -1.176 0.502 -1.135 0.503 -1.051 0.509 -1.165 0.584 
Other -0.742 0.497 -0.639 0.501 -0,587 0.504 -0.757 0,549 

Test Statistic pvalue Statistic pvalue Statistic pvalue Estimate of S 
Unadjusted 1.999 0.023 2.118 0.017 1.638 0,051 0.347 
Adjusted 2.937 0.002 3.069 0.001 2.369 0.009 
"Ikcatiiient: O=pIacebo, l=gaimiia iiiterferoii; Iiilicritaticc: O=rrutosoiiial receesive, l=X-linkcd; Age in ycars; 
Heiglit iii cin; Weiglit iii kg; Corticostcraids: O=not used, l=iiacd at time of etudy entry; 
Antibiotics: 0= not used, l=used at tiiiie of stiidy eiitry; Gciider: O=fcriialc, l=iiiale; Hospital catcgory: basclinc ie US-NIH. 

Table 3.18: Parailieter estilliates for the fixed-effect aiid raiidoiii effect iiioclcls aiid the uiiadjusted aiid adjusted 
statistics for the CGD data. 
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confidence intenml for d as (0.071,l. 7O5), providing fbrther evidence that heterogeneity was 

present. Note that the effect of age and antibiotic use is no longer statisticdy significant 

under the h i l ty  model, underscoring the Mpor tance of tes ting for homogenei ty before 

making inferences. 

3.6 Concluding Remarks and Discussion 

3.6.1 General Remarks 

In this chapter, we have derived score and IM statistics with different variance estimates for 

univariate point processes. The performance of the tests are investigated using simulations 

based on Poisson and renewal processes. The simulation study demonstrates that the test 

statistics other than the ES form generdy have poor finite sample properties, suggesting 

that adjustment for the test is necessary. 

Since the Poisson process is widely used in many applications, we constmct adjusted 

score tests for parametric and semi-parametric regsession models arising fkom Poisson 

processes. We have shown that the bias induced by the substitution of parameter estimates 

in the score statistic is non-negative and tends to zero when normalized by fi. Although 

the bias is asymptotically negligible, we demonstrated based on simulations that the score 

tests performed poorly without adjustment in s m d  to moderately large samples. The 

adjusted statistics, on the contrary, have reasonable performance in s m d  samples. In 

particular, the PEpercentile model not only performs extremely well, but also is less 

restrictive than any parametric rnodel. Although the semi-parametric model is robust to 

the specification of the baseline intensity, the variance of the score statistic cannot be 

estimated as efnciently as its parametric couterpart and thereby the performance of the 

test will compromise. 

The proposed tests can also be utilized as tests of mode1 specification. Since the random 
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effects may &se due to missing important covariates, misspedîcation of the functional 

form for the covariates, or misspecification of the baseline intensity, one should consider 

alternative model specifications when the null hypothesis is rejected. 

We have not considered the important case of time-dependent covariates here. For the 

semi-parametric modd in section 3.5.2, we can simply replace x by ~ ( t )  in the test statistics 

provided that x ( t )  is predictable (Gray, 1995). For the parametxic model, we can m o d G  

the test statistics eady for the case in which covariates are constant between consecu- 

tive events. However, numerical integration may be required to compute the cumulative 

int ensi ty for general time-dependent covariat es. 

We remark that the development of the score statistics for the semi-parametric model 

in section 3.5.2 closely follows that of Gray (1995) and Commenges and Andersen (1995). 

Gray (1995) and Commenges and Andersen (1995) focused on clustered failure times data in 

which the cluster sizes were fixed, while we focus on Poisson processes in which the number 

of events during the follow-up is random, but the arguments are largely the same and the 

resulting statistics have the sune form. We have provided empirical evidence conceming 

the relative performance of the unadjusted and adjusted tests, and thus provided insight 

into the practical use of different formulations. 

The remainder of t his chap ter involves some discussion about fwther research pert ah- 

ing to a test of homogeneity in stochastic processes. Section 3.6.1 suggests an adjusted 

score test and a parametric bootstrap method for general parametric point processes. Fur- 

thermore, tests of homogeneity for multivariate processes may not be simple extensions of 

the& univariate couterpart. We discuss the underlying difficulties and propose an IM test 

for this purpose in section 3.6.2. 
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3.6.2 General Point Processes 

Adjusted Score Tests 

We consider m independent point processes with parametric conditional intensity (1.2.4). 

Since N i ( t )  is a sub-martingale, the Doob-Meyer decomposition gives the following repre- 

sentation, 

dNi(t )  = Ai(tlK(t))dt + dMi(t)7 

where M;(t) is a zeremean right-conti~nous martingale (Fleming and Harrington, 1991, 

chapter 2; Karatzas and Shreve, 1991). Using the argument for semi-parametric Poisson 

processes (section 3.5.2),  one can show that an approximate bias of the score statistic 

T~ (8 )  = Cz [(ni - A; ( B  ) ) - & (8)] is given by 

where A,(@) = Jo* &(t l%(t))dt, 9 = (P', y)' in which P is the vector of regression coeffi- 

cients and y is the vector of parameters for the baseline intensity, and & ( O )  is the observed 

information matrix for ê  under the nulI model. Since the expected information matrix is 

not tractable in general, we have to use the observed version. The variance of the adjusted 

statistic can be estimated by an ernpirical estimate discussed in sections 3.2 and 3.3. 

Further investigation of this adjusted statistic is desirable. Since renewal processes 

are popular in many applicationsl a simulation study of the performance of the adjusted 

statistic focusing on such processes can be considered. 

Another adjustment approach was suggested by Chesher and Spady (1991) for a general 

IM test. They considered a more complicated second-order approximation to the distri- 

bution of the DM statistic. An Edgeworth-type expansion is applied to approximate the 

moment generating function to the order O(m-') of the series expansion of the statistic. 

This procedure reduces the bias due to small sample size to the order of m-l. However. it 
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requires the derivatives of the log-likelihood up to order 3 and the cumulants up to order 

4 of the first and second derivatives of the Iog-likelihood. The computation is extremely 

complex even for a simple normal linear regession model considered by Chesher and Spady 

(1991). In mos t situations, high-order cumulants are difficult to find. This complication, 

together with the implementation of the method, makes this approach less attractive than 

the bias-adjustment approach we considered, even though Chesher and Spady7s adjustment 

seems to be more efficient. 

Parametric Bootstrap 

Given a data set, the finite sample distribution of the test statistic can be estimated by 

the parametric bootstrap (Efion and Tibshirani, 1993). We outline the procedure here. 

First, the parameters are estimated under the fixed-eEect model and the test statistic 

is computed. Denote this estimate by 6 and the observed test statistic by T. 

Second, we generate a sample fkom the assumed fixed-effect model with parameter 

6 based on simulations. A test statistic, T*, is then computed fiom this sample. This 

simulation procedure is repeated B times, Say 1,000, and an empiricd distribution of the 

test statistic is obtained. The ith point process with a general intensity (1.2.4) may be 

generated as follows, keeping the covariate process x i ( t )  and the length of follow-up ri 

unchanged : 

1. Generate 211 fiom U n i f ( 0 , l ) .  The fbst event time is found by solving A ( t i )  = 

- log(1- ul), where A@) = Ji X ( s l N ( s ) ) d s .  A numerical procedure may be required 

here. 

2. Let tk  be the t h e  for the kth event. Given N(tk), the survivor h c t i o n  for the next 

duration Dk+1 = Tkfl  - Tk is equal to 
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Thus, generate uk+l independently of the previous u's fkom Uni f (O, 1). The (k+ 1)th 

event tirne is found by solving = A(&) - log(1 - u ~ + ~ ) .  

3. The process stops when tk+l > .ri. 

Third, the pvdue  of the test is approximately equal to (# of 2'' > P) /B .  
As only the fixed-effect mode1 needs to be estimated, this parametric bootstrap should 

not be a computationally intensive procedure. 

3.6.3 Bivariate Processes 

We consider m independent bivariate processes with intensities (1.2.5)- Let 

be the Mnance-covariance matrix of the bivariate random effect ui = (uill ui2)'. The n d  

hypothesis of homogeneity is equivalent to Ho : C = O. Since a zero variance term implies 

zero covariance, the score function for (al, u2, q 2 )  is invariant to the correlation (p) under 

Ho and thus the score statistic will not asymptotically follow the x&) distribution. 

One way to tackle this problem is to impose certain additional assurnptions. As the 

main purpose is to detect heterogeneity, we rnay rnerely focus on the variances by assuming 

that the correlation is equal to zero. This reduces to the independent components test of 

Smith and Heitijan (1993). We will demonstrate this approach using the CHEST study in 

chapter 4. 

Alternatively, since the bivariate random effects usually arise from some unmeasured 

shared covariates, we may assume that their variances are proportional, Say 0 2  = col. 
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For given c and p, we need to test Ho : (11 = O only (c.f. Sutradhar and Das, 1995 for 

autocorrelated random effects in generalized linear models, where c = t there). Rowever, 

the test statistic depends on the values of c and p which are usually unknown. Sutradhar 

and Das (1995) argued that since the score function for p evaluated under Ho is identicdy 

equal to zero, p can be taken as any convenient value. They considered the score functions 

for parameters other than p and the test statistic is evaluated at a = O, p = O and the 

maximum likelihood estimates for the other parameters under Ho. Based on this argument, 

it is not W c u l t  to show that for a bivariate point process, the score function for c evduated 

under Ho is also identicdy equal to zero. We may then assume that in the neighborhood 

of zero covariance mat&, the random effects have common variance and are uncorrelated. 

In this case, the score test is not difEcdt to derive and it is asymptotically norrnally 

distnbuted. 

Another approach is to use the A4 test. As pointed out by Chesher (1984), the alter- 

native to Ho : C = O is a model with both intercepts random. The IM test shodd focus on 

testing whether the intercept terms in both intensity functions (1.2.5) are constant. The 

IM statistic is obtained from 

where Po = (&, P20)' is the vector of intercepts. 

For bivariate processes, the log-likelihood of the fixed-effect model consists of two parts 

arising from each component / transi tion: 

If and û2 are not functionally related and we usually assume so? maximum likelihood 

estimates for them under Ho can be found by maximizing Ji (O1) and e2(02) individudy. 
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It is readily seen that for any O, ~21(8)/El~lo&?20 = O and evaluated at the maximum like- 

lihood estimates, a!(~)/&tW(9)/a~m = O. Therefore, we may consider the IM statistic 

as 

for j = 1,2. The variance of D,(P,) may be obtained accordingly. The standardized 

statistic is asymptoticdy X2(2) distributed. This IM test turns out to be the score test 

under the assumption of zero correlation described above. 

It is important to investigate the properties of these tests, possibly by means of simu- 

lation. It is also interesthg to consider an adjusted version of the test in order to improve 

the finite sample performance. Further research in this direction is recommended. 



Chapter 4 

Inference for Random Effect Models 

4.1 Overview 

In chapter 2, we reviewed some common methods of estimation for random effect models in 

the context of clustered failure time data, and contrasted their merits and limitations. The 

objective of this chapter is to adapt and investigate the use of these methods for univariate 

and bivariate processes. In particular, in view of adopting genuine &ng distributions for 

multivariate processes, we will focus on Gauss-Hermite integration wit h log-nonnal random 

effec t s and the EM algori t hm wit h non-parame t n c  (discret e) random effec t S. 

Some methods of estimation for random effect models have been investigated for bivari- 

ate survival data (Pickles and Crouchley, 1995) and mixed h e a r  and logistic regression 

models (Butler and Louis, 1992). These s tudies provide empirical evidence t hat es timat es 

of regression coefficients typicdy have negligible bias regardless of the assumed mWng dis- 

tributions and certain methods of estimation. Neuhaus et al. (1992) showed that parameter 

es timates in mixed logis tic regression models are inconsis t ent when the d n g  dis tribu tion 

is misspecified, but notes that the magnitude of the bias in the estimated covariate effects 

is s m d  in general and the variance estimates obtained fkom the misspecified likelihood are 
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&O d d  for practical use. The estimate for the variance of the random effect, however, 

rnay have large bias if the assumed mixing distribution has a very different shape fkom 

the tme mixing distribution. We anticipate similar hdings for random effect models aris- 

ing fkom point processes and intend to investigate this phenornenon systematically in this 

chap ter. 

Simulation studies for comparing the performance of Gauss-Hermite integration and 

the EM algorithm are camied out based on mixed Poisson and renewal processes in section 

4.2. The cornparison is made in terms of bias, coverage probability, and eaiciency of the 

estimators, as well as robustness to misspecification of the mucing distribution. A similar 

simulation study is also carried out to examine the use of piecewise constant baseline 

functions when the functional form of the baseline intensity is unknown. The CGD study 

described in section 1.4.1 is analyzed using these two methods in section 4.3. Extensions of 

these methods of estimation for bivariate processes are discussed in section 4.4. In section 

4.5, the CHEST study (section 1.4.2) is modeled using the mixed two-state processes 

proposed in section 1.2.2. 

It should be noted that observed heterogeneity rnay be maidy due to misspecification 

of the model. Proper specification of the intensity functions is thus more important than 

speci&ing the mWng distribution for the purpose of better understanding of the process, 

and avoiding '%purious* heterogenei ty. Wit hout model diagnostic tools, it may no t be 

possible to obtain a proper specüication of model. We therefore suggest that one should 

start with a more comprehensive model, e.g., using multiple time scales as in (1.2.7), then 

carry out a test of homogeneity to check if a random effect component is necessary, fit a 

random effect model if the test provides evidence for heterogeneity, and finally select the 

significant components by likelihood ratio test or Wald test. The analysis of the CHEST 

study demonstrates this modeling strategy. 
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4.2 Cornparison of Methods of Estimation 

4.2.1 Design of Simulation Studies 

In this section, we consider log-normal and non-parametric (discrete) random dec t s  and 

compare the performance of the estimators obtained fkom Gauss-Hermite integration for 

the former and the EM algorithm for the latter, via simulations. 

We generate mixed Poisson and renewal processes with conditional intensities of the 

Weibull form, given vi, 

where t is the calendar time and backward recurrence t h e  for Poisson and renewal pro- 

cesses respectively, xi -v Bin(1,0.5) which rnimics a random treatment assignment and 

a = exp(7). The random effects vi have mean 1 and variance 5 fiom one of the following 

distributions: 

1. log-normal; 

2. binary: V = 1 - f i  with probabdity 112 and V = 1 + f i  with probability 112; 

3. mixture of two log-nomals: V = with probability 1/2 and V = & with probability 

112, where V; and are independent log-normal random Mnables with E(Vi) = 312, 

E(&) = 1/2, var(%) = 9(4a - 1)/20 and var(%) = (40 - 1)/20. 

The probability density functions of lognormal and mixture of two log-normal distributions 

are plotted in Figure 4.1 for a = 0.3 and 0.5. We utilize these forms to examine the 

robustness of the estimators to misspecification of rnixing distribution. 

We simulated m = 100 independent processes according to the above scheme over a 

unit interval [O, 11. The true values of the parameters are: Po = log(2), a = 1, 7 = log(2) 

and cr = 0.3 and 0.5 for Poisson processes; and ,ûo = log(6), ,BI = 1, 7 = log(2) and 
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Figure 4.1: Probability density functions for log-normal (solid line) and mixture of two 
log-normal (dot ted line) dis tributions with mean 1 and variance u = 0.3 (left) and a = 0.5 
(right) considered in the design of the simulation. 

o = 0.3 and 0.5 for renewal processes. We simulated 1,000 times for each configuration. 

Under these settings, the number of events per subject is small to moderately large, see 

Table 4.1. As expected, the standard deviation of the average number of events increases 

as o increases. The choice of the values for a corresponds to moderately large and large 

over dispersion. 

The generated data were fit by assuming lognormal random effects or discrete random 

effects from an unspecified mixing distribution. Estimation for the former was carried out 

by the Gauss-Hermite d e  with 5, 10 and 20 nodes (section 2.5.2), and the latter by the EM 

algonthm (section 2.5.3). The range of these nodes was specified to examine the effect of 

the number of nodes on the properties of the resdting estimation. For the non-parametric 

random effects, since the number of mass points required is usually quite small, the initial 

number of mass points is set to 10. During the iteration of the EM algorithm, we combine 

adjacent mass points if thek clifference divided by the es timated standard deviation of the 

mWng distribution is less than 0.05, where the estimated standard deviation is calculated 

fkom the current estimates of the mass points and their respective masses. For not ational 
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Log-normal Binar y Log-normal Mixture 
a Process x = O  z = l  z=O x = 1  x = O x = 1  

Poisson 2.00 
(1.40) 

Renewal 2.40 
(0.93) 

Poisson 2.00 
(1.78) 

Renewal 2.31 
(1.15) 

Poisson 1.99 
(1.95) 

Renewd 2.26 
# .  , . 

Table 4.1: Average numbers of events per subject with standard deMations in parentheses. 

convenience, we label the Gauss-Hermite d e  with I; nodes as GHk and the EM algorithm 

for non-pararnetric random effects as NP. 

Since the baseline intensity is often of unknown form, it is desirable to examine the effect 

of using a piecewise constant function as an approximation to the baseline intensity. For 

the purpose of parameter parsimony, we use a 5-point piecewise constant function whose 

cut-points are determined by the percentiles of the obsenred event times. The results in 

chapter 3 also provide empiricd evidence for the adequacy of using a small number of 

cut-points. As wïü be seen below, the performance of the GH and NP estimates is quite 

similar. Therefore, we consider the GH estimation only. 

We computed the standardized biases, 95% coverage probabilities, averages of the 

model-based standard errors of the estimates and the simulation-based standard errors. 

We also included the results for the logarithrnic transform for cr because the distribution 

of the estimate of log(o) may be less skewed than that of the estimate of a. The stan- 
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dardized bias is the average bias divided by the simdation-based standard error and it is 

approximately normdy distrïbuted, except possibly for the estimate of o when the true 

value of o is s m d .  The 95% coverage probability is the proportion of the rnodel-based 95% 

confidence intervals that cover the true value of the parameter. The model-based standard 

error is cornputed fiom the obsemed information matrix. The simulation-based standard 

error is the standard deviation of the estimates computed fiom the simulations. 

Remarks on the EM Algorithm 

Here we give more details on the EM algorithm. The convergence rate of the EM is usually 

very slow. Although there are a number of algorithms for speeding it up (see Meng and 

van Dyk, 1997 for a review), many of them are quite difficult to implement. We do not 

k t  end t O inves tigate difFerent EM algorit hms, but look for simple- teimplement and ye t 

"fast" algorithms in terms of computational t h e .  

For discrete mixing distributions, the Estep is very simple. However, the M-step 

involves maximizing a function of possibly a large number of parameters (0 and 6 ) .  The 

computational t h e  required in the M-step is likely to be high. Rai and Matthews (1993) 

suggested a onestep Newton-Raphson iteration in the M-step to rnodify the original EM 

algorithm, which is called the EM1 algorithm. They established self-consistency of the EMI 

algorithm and demonstrated that although larger number of EM cycles may be required, 

the overall computational t h e  is shorter than the EM algorithm. 

Jamshidian and Jennrich (1997) recently proposed two accelerated EM algorithm using 

quasi-Newton methods: QN1 and QN2 algorithms. The QN1 algorithm only requires a few 

more steps in the EM algorithm, and the QN2 requires more effort in implementation as 

an additional maximization for the observed data log-likelihood is needed. Jamshidian and 

Jennrich demonstrated that the QN1 and QN2 algonthms can improve the computational 

thne dramaticdy over the EM algorithm. Since the QN1 algorithm is simpler to Mplement 
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and also leads to fast convergence, we state this algorithm here. 

Given an initial value +(O), obtain an update t&& fkom an EM cycle. Set g(o) = 

#&L - 4(') and A(') = -1, where I is the identity mat* of dimension eqnaling the 

number of parameters in 4. Iterate the following steps until convergence: 

(kfl) - 2. Given @("+'), obtain an update &&') fiom an EM cycle. Cornpute CJ("+') = #BM 

&k+l) and Ag(k) = g(k+l) - g ( k ) .  The update for A is obtained h m  the quasi-Newton 

method: 

Nevertheless, the QN1 is not globdy convergent and the adjustment for q5 in step 1 may 

lead to a point outside the parameter space. Given these considerations, we chose the EM1 

algorithm in the simulation study and illustrate the QN1 algorithm in the examples. 

4.2.2 Simulation Results 

First we summzuize the results for mixed Poisson processes (Tables 4.2 and 4.3). Let # 
be the estimate of 4. For a = 0.3, the GH and NP estimates of the regsession coefficients 

(Po and Pl), the shape parameter (7) and the dispersion parameter (o) have negligible 

bias regardless of the underlying mixing distributions The magnitudes of the bias are of 

comparable &es between the GH and NP methods for ,do, ,& and 7. Although the GH 

estimates of o have larger bias than the NP estimate of a, the bias is still very s m d  

for practical purposes. For o = 0.5, the GH and NP estimates for ,&, & and aIso 

have negligible bias, but ô obtained kom the GH has small positive bias whereas the NP 

still provides an unbiased estimate for o when the mixing distribution is highly discrete 

(binary - 
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0 = 0.3, the coverage probabilities for the GH 

and the NP agree very closely to the nominal level regardless of the mWng distributions, 

thereby indicating that inference based on the asymptotic normality of maximum likelihood 

estimation is appropriate for these parameters. There are some discrepancies for the 95% 

coverage probabilities for the GH and N P  estimates for t~ probably due to the skewness 

of the distribution of 6. The empirical coverage is smaller for the log-normal d n g  but 

larger for the binary and mixture of log-normals mWngs than the nominal level. The 

log-transformed a improves slightly if GHlO and GR20 are used. In contrast, for a larger 

a ,  the 95% coverage probabilities for the GH estimates of Pi is smaller than 0.95 in log- 

normal and binary mixtures, whereas the NP estimates can generally maintain a reasonable 

coverage probability. The 95% coverage probabilities for & are in general quite different 

from the nominal level. For the GH method, the discrepancy gets larger for the binary 

mixing distribution, and using o larger number of nodes helps in narrowing the discrepancy. 

There are also slight disagreements in the NP method, but this approach gives coverage 

which is quite close to the nominal level for the binary mWng distribution. 

We &O included the model-based standard errors to examine the relative effciencies 

of the estimators. For cr = 0.3, the GH model-based and simulation-based standard errors 

for all parameters agree very closely, indicating that the parameters are es timated quite 

efficiently by the GH estimation. Although the NP model-based and simulation-based 

standard errors for Pl and 7 also agree closely, the NP model-based standard errors for Po 
and a are much larger than their corresponding simulation-based standard errors. This is 

because and â obtained &om the NP are cornputed based on the estimated masç points 

and masses. This finding is consistent with the general estimation of non-parametric 

distribution which usually ignores the fact that estimation is carried out conditionally on 

the number of mass points, which is unknown (see section 2.5.3 for a brief discussion). 

Moreover, s i d a  hdings are obtained for a = 0.5. 

Next we look at the simulation results obtained from the mixed renewal processes 
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(Tables 4.4 and 4.5). The results in general are in good agreement with the findings for 

mixed Poisson processes. The only major difference is that for large o, the 95% coverage 

probability for Di stays very close to the nominal level but the corresponding values for Bo 
are slightly different from the nominal level. In the simulation for mixed Poisson processes, 

an opposite result was observed. 

On the whole, the simulation results agree with the previous studies (Pickles and 

Crouchley, 1995; Butler and Louis, 1992 and Neuhaus et al., 1992). The parameter es- 

timates for the regession parameters and the shape parameter are typicdy unbiased with 

valid and quite escient variance estimates. The major difference between the GH and NP 

methods of estimation occurs in the estimation of parameters in the mUcing distribution. 

The variance estimate of cr is more stable in the GH than in the NP, although the GH 

estimate of o tends to have slight positive bias when the true mixhg distribution is highly 

discrete and the NP estimate of a generally has negligible bias. Therefore, inference for o 

can be carried out in the usual way for GH estimation, but bootstrapped Mnance estimate 

may be necessary for NP estimation. Nevertheless, testing for a = O should be done by 

a score test described in chapter 3. Unless the underlying rnixing distribution is highly 

discrete, the performance of the GH and NP is very comparable. Furthemore, the number 

of nodes used in the GH estimation has minimal effect in terms of bias and efficiency of the 

parameters. Using 10 nodes should be sufficient in most applications involving univariate 

randorn effects. 

FhaUy, we examine the effect of using a piecewise constant function for the baseline 

intensity. The standardized biases, 95% empirical coverage probabilities, model-based 

standard errors and simulation-based standard errors for Pl, O and log(o) are given in 

Table 4.6. The results in general agree quite closely to the results of speufying a correct 

baseline intensity. Therefore, the use of piecewise constant baseline function has minimal 

effect on the performance of the estimators and is also robust to the specification of the 

baseline intensity. 
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Bias Renewal 

Process 
Std Poisson 

Cover Poisson 
Prob Renewal 

Mode1 Poisson 
SE Renewai 

Log-normai 
pi h ! ~  
0.048 -0.019 -0.197 

Sim Poisson 
SE Renewal 

Table 4.6: Maximum likelihood estimation for mixed Poisson and renewal processes with 5- 
point piecewise constant baseline intensity using 10-node Gauss-Hermite integration, where 
s = 0.5. 

Binary 
Pt a loge 

-0.273 1.286 1-722 

4.3 Gamma Interferon in CGD 

Mixture of Log-nonnals 
Pl u h g  u 

-0.003 0.433 0.313 

The CGD study described in section 1.4.1 was found to have substantial heterogeneity using 

the adjusted score test based on a Poisson assumption in section 3.5.4. A mixed Poisson 

process with gamma random effects was also fit. Here we fit two mixed Poisson processes 

to the CGD data with log-normal and non-parametric random dects .  Specificdy, given 

the random effect vit the conditional intensity is given by 

where vi has mean 1 and variance a and is distributed either ss gamma, log-normal or 

discrete, and Xo(t) is a piecewise constant function with 5 cnt-points determined by the 

empkical percentiles of the observed event times. Gauss-Hermite integration with 10 nodes 

was used for the log-normal random effects. The EM1 algorithm was employed for the 

discrete random effects in which an initial number of mass points is equal to 10 and we 

combine adjacent mass points if their merence divided by the standard deviation of the 
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Gamma Log-normal Non-parametric 
Covariat e' Estimate s.e. Estimate s.e. Estimate s.e. 
Treat ment -0.987 0.298 -1.009 0.299 -0-941 0.396 
IIiheri t ance -0.857 0.343 -0.888 0.348 -1-031 0.389 
1% (Ag4 -0.995 0.524 -1.013 0.528 -1.145 0.898 
log (Height ) 4.072 3.170 4.168 3.205 4.727 4.914 
log ( Weight ) -0.607 0.939 -0.605 0.947 -0.649 1.204 
Corticos teroids 2.368 0.863 2.341 0.825 2.696 1.010 
Antibiotics -0.789 0.420 -0.796 0.423 -0.735 0.668 
Gender 0.947 0.468 0.948 0.466 1.096 0.624 
Hospital: 

US-ot her -0.173 0.376 -0.176 0.382 -0.101 0.495 
Amsterdam -1.165 0.584 -1.190 0.578 -1.228 0.823 
Other -0.757 0.549 -0.774 0.557 -0.751 0.699 

Estimate s.e. Estimate s.e. Estimate s.e. 

(7 0.347 0.282 0.390 0.347 0.453 0.396 
'See Table 3.18. 

Non-parametric 
Mass Point 0.272 1.622 
Mass 0.461 0.539 

Table 4.7: Parameter estimates for the random effect models with gamma, log-normal and 
non-parametric random effects for the CGD data. 

mixing distribution is less than 0.05. The estimation result is presented in Table 4.7. 

The estimates for the covariate efFects are quite similar across the assumed mixing 

distributions. The variance estimates in the non-pararnetric random effects are larger than 

the correspondhg values for the gamma and lognormal random effects. The gamma and 

log-normal estimates for cr are quite close to each other, and the variance estimate for u is 

slightly larger in the latter. The NP estimate for o is larger than for the other two random 

effects. It is interesting to see that the estimated number of mass points is two in which 

the masses are quite close. This may imply that there are two hidden subgroups in the 

sample. 
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4.4 Random Effect Models for Bivariate Processes 

The Gauss-Hermite d e  and the EM algorithm can be utilized directly to estimate mixed 

bivariate processes with intensity functions (1.2.5). In this section, we describe how these 

two methods of estimation can be implemented for twestate processes. Estimation for 

bivariate point processes can be obtained similady. 

Using the setup postulated in section 1.2.2, given the random effect u i  = (uil1 ui2)', the 

conditional intensity for the j -t 3 - j transition is formulated as 

where Ajo(t; +j l?&(t)) is the badine  j + 3 - j transition intensity common to dl subjects 

covariates, pj is the corresponding pj x 1 vector of regression parameters. 8 = (Pi, $1)' 
and u; is the subject-specsc bivariate random effect which is independent of the covariates, 

j = 1,2, i = 1,. . . m. Let 0 = (O:,  8;)'. 

Recall that xj(j(t) is the indicator for the j th  state (section 1.2.2). Let til < - * -  < t;,; 

be the observed transition times for subject i occurring during the course of follow-up. 

Let 'D, = {Hlxj(t) = 1 for ti,h-l 5 t < tik, k = 1, ..., ni) denote the set of indices for 

the inter-event intervals over which subject i is observed to be in state j ,  where tio = ri1 

and ti,ni+l = 7 . 2 .  Furthemore, let Vijc = 'D, U {ni + 1 lxj(t) = 1 for tini 5 t < riz) 

denote the set Vij  augmented to include the index of the interval between the last observed 

transition and the censoring tirne. For simplicity, we assume subsequently that covariates 

are independent of time. 

Let Ajo(a,b17&(b)) = j ~ ~ ~ ~ ( t l ? & ( t ) ) d t ,  j = 1,2, i = 1, ...,m. Assuming that ~1 is 

a transition time (or the time origin if it is zero), then it follows that the Iikelihood for 
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subject i, conditional on u;, is given by 

time ofrandomization very often does not coincide with a transition time or the time origin. 

In such cases, one should mode1 the intensity in the first observed duration differently. We 

will illustrate this modification in next section. 

4.4.1 Gauss-Hermite Rule 

To facilit ate the parameter estimation, we reparameterize the overdispersion parameters 

as follows. By Cholesky decomposition, the covariance matrix of the mWng distribution 

can be writien as C = OSt' where 

and w l ,  (*L and w3 are real numbers. Let w = (wl ,  W Z ,  w3)'. The random effects are 

repararnetrized as si = f 2 - l ~ ~  where ri = (zii7 G*)' - N ( 0 ,  12) and la is the 2 x 2 identity 

matrix. Then the marginal likelihood for sub ject i is given by 

where 4 = (Of7 w')', is the conditional Likelihood (4.4.2) in which the transition 

intensity is expressed as &j(tl'fli-(t), t i )  = exp(xijPj + f2jjx;)Xjo(t(~(t)) with Slj the j th  

row of and a(-) is the cumulative distribution function of a standard normal random 

variable. 
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This specification ensures that all parameters lie on the whole real line so that no 

restrictions on the scalar parameters are required as part of the estimation procedure. 

Estimates of aj, j = 1,2 and p may be obtained by noting that ui = w:, CQ = w i  + w i  and 

The integrations appearing in the likelihood (4.4.3) can be approximated by Gauss- 

Hermite int egra tion. The bivaria t e Gauss-Hermit e d e  approxima tes in t egrals of the form 

by a double s u m  

where cl's are weights, q ' s  are nodes, and R represents the number of nodes. Tables for 

the nodes and weights can be found in Abramowitz and Stegun (1972). 

The unconditional likelihood for subject i (4.4.3) can be re-written as 

w here 

and Ajo(a, 6 )  = 10 Xjo(t lX( t ) )d t .  By a change of variable and the Gauss-Hermite d e ,  the 

integral in Li(#) is approximated as 
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Hence, the log-likelihood based on m sub jects is approximately equal to 

This function can be rn-ed by a standard Newton-Raphson method. The (k + 1)st 

iteration is given by 

Furthemore, starting d u e s  rnay be obtained fiom the maimura likelihood estimates 

of the fixed-effect model. 

4.4.2 The EM Algorithm 

Suppose Ui  follows a dismete distribution with H mass points such that 

where the &'s are bivariate m a s  points and the r h 7 s  are masses. The EM algorithm is 

then essentially the same as its univariate counterpart (see section 2.5.3). 

The number of mass points may be chosen by cornpaxkg the distance between mass 

points. However, this will require a large nurnber of computations when H is even mod- 

erately large. Another approach is to use the correlation between the estimates of mass 

points as a measure of their distance. The idea is that if a single mass point is rnisspec- 

ified as two mass points, the correlation between their estimates in each component, i.e.. 

~ ~ m ( c ~ ~ ~  t k j ) ,  j = 1 , 2 ,  should be very high and positive. Therefore, we may combine two 

mass points if their correlations are larger than Say. However, it may not be  feasible 

to compute the observed information matrix for each EM cycle. Limited experience showed 
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that the Hessian matrix of the function to be maximized in the M-step is dose to singular 

when the iterates of some mass points are very near in distance. This suggests that we 

may obtain approximate correlations fkom the inverse of the negative Hessian matrix in 

the M-step, which is akeady availabIe in each EM cycle. 

4.5 The CHEST study 

We apply the two methods of estimation described in section 4.4 to the CHEST study 

(section 1.4.2). The multiplicative components mode1 (1.2.7) proposed in section 1.2.2 

is employed to capture the intrinsic properties of the disease process in which the semi- 

Markov and the Markov components are specified as piecewise constant functions and the 

seasonal component is specified as a function of quarterly indicators. 

More specifically, let state 1 be the AECB-free state in which patients were symptom- 

fkee, and state 2 be the AECB s tate in which symptoms of an exacerbation were manifested. 

The durations of exacerbation and inter-exacerbation periods were measured in days. We 

took as the origin of the basic time scde, the date of diagnosis with ckonic bronchitis. 

The baseline transition intensities are given by 

where Sj(*) ,  Rj(*) and Tj(*)  represent the seasonal, the semi-Markov and the Markov 

components respectively for the j -t 3 - j transition. Here ~ ~ ( 0 )  is the date of diagnosis of 

the disease and ci(t) = t $ ~ ~ ( 0 )  is the calendar time at t. Furthemore, b i ( t )  = t - tNi.(r-) 

is the backward recurrence time for subject i at t (i.e. the time since entry to the curent 

state). Let qbj = (a:,7;,61)' denote the vector of ail unknown parameters in (4.5.1). 
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Partitioning the time axis into 

we define the serni-Markov component and the Markov component respectively as 

where I jk ( s )  = 1 if aj,k-1 5 s < ajk and O otherwise, Jjk(3) = 1 if ej,k-1 5 8 < ejk and O 

otherwise, and yi = (yjl7 -..,7jqj)' and 6j = (bjl, ..., &)' are parameters. 

By inspection of the data, the range of the duration of chronic bronchitis was 1 to 54 

years, suggesting that 5-year intervals were appropriate for the piecewise constant Markov 

components in both transition intensities: {5,10,15,20,25,30,35,40) x 365. Since the 

duration of exacerbation was typicdy relatively short, weekly rates were adopted for the 

semi-Markov component for the transition out of the AECB state: {7,14,21,28,35,42). 

Monthly rates were used for the semi-Markov component of the transition out of the 

AECB-free state: (30,60,90,120,150,180,210). 

We mode1 the seasonal effect by partitioning the calendar year into four quarters: the 

fust quarter (winter) is from January 1 to March 31; the second quarter (spring) is from 

April 1 to June 30; the third quarter (summer) is from July 1 to September 30; and the 

fourth quarter (fd) is from October 1 to December 31. The seasonal component is d e h e d  

where Q k ( s )  = 1 if s is in the kt h quarter and O otherwise, and a j = (qi, .-., aj4)' are the 
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parameters. 

For the purpose of identifiability, we constrain ajl = yjl = Jji = O and inchde the 

constant 1 in xi j  for j = 1,2, i = 1, ... m. 
There are two complicating features of the design of this trial. First, selection bias 

was induced by requiring patients to be in the AECB state at the time of entry and 

randomization. The second related point is that the t h e  of randomization did not coincide 

with a transition t h e ,  but the transition time just prior to the time of randomization was 

available here. In the presence of heterogeneity, there is no satisfactory solution to these 

two problems wit hout discarding the first incomplete observed durations. Here we consider 

a rough adjustment by specifyhg the distribution of the first observed duration differently 

fiom the distribution of the subsequent durations. 

Since the treatment Ciprofloxacin was not given prior to the tirne of randomization, 

the treatment variable was a time dependent covariate for Xiz (t lK(t), ui). The conditional 

transition intensities given u; are expressed as 

where zu( t )  = (5f2 (t), 4(t)%i2(t))', r i2(t)  = (1, trti(t), xi,)', trti(t) = O before random- 

ization and trti(t) = 1 if Ciprofloxacin was given and trti(t) = O if standard care was 

given after randomization, &(t) = 1 if t 5 til and O otherwise, xi2 is a vector of other 

time independent covariates, and xi1 is a vector of time independent covariates including 

the treatment variable. As we mode1 only the first observed AECB duration differently, 

it seems sufficient to s t r a t e  the semi-Markov component of the AECB to AECB-free 

baseline transition: 
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where 7 2 1  = 7 2 , a + l  = O. We c d  (4.5.5) and (4.5.6) the initial model. 

4.5.2 Test of Homogeneity 

Assuming that the correlation between random effects is zero, we carry out the score 

test of hornogeneity proposed in section 3.6.2 for the CHEST data. As a f i s t  step, we 

estimated a fuced-efEect model for (4.5.5) in which a backward elimination procedure was 

used to select significant covariates at the 10% level of signficance. As interest lies in the 

effect of Ciprofloxacin, the treatment variables were always included in the models. The 

other covariates identified as prognostic variables were the duration of AECB symptoms 

at randomization for the AECB to AECB-free transition, and gender and severe bronchitis 

for the AECB-fiee to AECB transition. As a second step, the tests of homogeneity were 

carried out with t hese covariates included. The test statistic for Ho : ol = oz = O was equal 

to 5.605 (p = 0.061), which indicated that there was some evidence against homogeneity. 

The individual test statistics for Ho : nl = O and Ho : 02 = O were 1.151 (p = 0.250) 

and 2.069 (p = 0.039) respectively. Therefore, there was evidence that mild heterogeneity 

existed which was mainly due to the AECB to AECB-fkee transition. Nevertheless, we fit 

the fidl random a e c t  model to illustrate the procedure and inferences. 

4.5.3 Parameter Estimates 

We first used 1Znode Gauss-Hermite integration, as described in section 4.4.1, to cornpute 

the marginal likelihood, the corresponding score functions and the information matrix. 

Again a backward elimination procedure was used to select important risk factors at the 

10% level of significance; treatment variables were always included in the models. The 

maximum likelihood es timates of the regression paramet ers, the variances, and the cor- 

relation of the random effects with approximate 95% confidence intervals for the initial 

model, are given in the left panel of Table 4.8. 
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Second, although the QN1 algorithm (section 4.2.1) was used to speed up the EM 

algorithm for the non-parametric random effect model, the computational t h e  is stiU 

quite long compared with the Gauss-Hermite integration. Since the simulation study in 

section 4.2 suggests that inference for covariate eEects is typicdy quite robust to the GH 

and NP estimations, the non-parametric random effect model was fit with the same set 

of covariates chosen by the GH estimation. We started with 10 mass points and allowed 

mass points to combine if their distance is s m d .  The estimation result is given in the 

right panel of Table 4.8. 

The estimates of the covariate effects and the seasonality parameters agree quite closely 

for these two models, although the standard mors  for the seasonality parameter estimates 

are larger in the non-parametric random effect model. The estimates of the variances of 

the random effects are smaller in the non-parametric than the log-normal random effect 

models. The 95% confidence intervals for u are unacceptably wide in the non-parametric 

model, which is due to the large variance estimates for ô. Moreover, the number of mass 

points is estimated to be only 4 (Table 4.9). The masses concentrate at a single point 

(-4.025, -5.988), indicating that there is very mdd degree of heterogeneity. This is in 

close agreement with the result of the test of homogeneity. 

The model can be further refined. Based on the log-normal random efFect model, we 

found Little evidence of the need for the Markov component in the AECB to AECB- 

free transition (not shown here) and the a p p r o h a t e  95% confidence intenml for the 

correlation p suggested that a reduced model without these parameters might be sufficient. 

We therefore fit a reduced mode1 (i.e. without the Markov component for the AECB to 

AECB-free transition and the correlation between the random effects) ; the results are given 

in Table 4.10. The likelihood ratio test for the reduced model against the initial model 

gave a statistic 14.224 with 9 degrees of fieedom (p = 0.115), which indicated that there 

was insufficient evidence to claim that the reduced model was significantly inferior to the 

initial model. This reduced model was also fit with non-parametric random effects. Again, 



Covaria te t -4  
intercept 
trcntinent 
tiyiiiptoriin 

1 iiitcrcept 1 
1 treatnietit 1 

eyiiiptonie 

-- -- - - 
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0.041 0.12(3 0.74U -0,038 0.131 0.770 
- - - 0.270 0,136 0.043 
- - - 0.642 0.186 0.001 

-0.007 0.010 0.438 - - - 
Estiinate a.e. pvalue Estiiiiate ex. pvnlue 

0.290 0.121 0.01(3 -0.187 0.141 0.180 
Eetirtiatc 95% C.I. 
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AECB to AECB-free AECB-frec to AECB 
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Estiiiiate m. p-vnliie Eetinaate 8.e. pvt~liie 

First Obscrocd Dumtion 

Second and Subsequcnt Durutions 
** - - - - 

0.100 0.109 0.357 -0.044 0.164 0.788 
- - - 0.257 0.140 0.083 
- - - 0,536 0.152 < 0.001 

-0.008 0.010 0.457 - - - 
Eetiniate 8.e. p-value Eatiiiiatc s.e. pvalue 

0.310 0.154 0.044 -0.178 0.202 0.378 
Estininte 05% C.1. 

0 2  

P 0.278 (10.245.0.678) ' treatnient = 1 if eubjcct w u  giveii ciprofloxacit~ st randotiiizatioo aiid O otlicrwise; 
geiider = 1 if fenialc and O if iiiale; nevcrity = 1 if chronic broi~cliitie in ecvere aiid O otlierwisc; 
and ayttiptotnn = dtrye of AECB syiiiptotne nt raridoitiizatioii. 

3Not applicublu. 

Table 4.8: Parameter e s t i r l i a t e s  for the ixii tial riiodel. 
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Mass points Mass 

Table 4.9: Estimated mass points and masses for the initial model. 

estimates for covariate effect s are very similar. 

For the AECB to AECB-free transition, the duration of AECB symptoms at random- 

ization remained in the model. Both the treatment variable and the duration of AECB 

symptoms at randomization were sigdcant for the îust observed duration of symptoms. 

Specifically, Ciprofloxacin increased the rate of resolution of AECB and patients with a 

longer duration of symptoms at randomization had lower rate of resolution. None of the 

covariates, however, had a significant effect in the second and subsequent AECB durations. 

For the AECB-Eree to AECB transition, we found that the treatment Mnable was insignif- 

icant but gender and severe bronchitis were significant. Specifically, female patients and 

patients with severe bronchitis tended to have higher rates of relapse of AECB. 

The semi-Markov component of the AECB to AECB-free transition changed after the 

f is t  observed duration fiom gradually increasing over t h e  to levehg off ho about exp(2) 

on the third week in the subsequent durations (Figure 4.2). On the other hand, the semi- 

Markov component of the AECB-free to AECB transition had an irregular pattern (Figure 

4.3). 

As mentioned earlier, the AECB to AECB-free transition did not have a Markov corn- 

ponent. The AECB-free to AECB transition, however, showed a slightly increasing trend 

over time (Figure 4.3), suggesting that patients with a long history of chronic bronchitis 

had higher rates of relapse to AECB. 

Compared to the fvst quarter, the AECB to AECB-free transition intensity was signif- 



Log-norri~al 
AECB to AECB-free AECB-frce to AECB 

l imai  tiaii 'Il-ansitiorr 
Cav~riatc' Estimrstc m. p-vdue Estiiiiate a.c. pvaliie 
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-4.742 0.310 - -2 - - 
0.498 0.156 0.001 -- - - 
-0.108 0.016 < 0.001 - - - 

Second und Subsequent Durations 
-4.294 0.102 - -6.073 0.247 - 
0.040 0,130 0.721 -0.03D 0.132 0.771 
A - - 0.255 0.130 0.002 

- - 0.631 0.18D 0,001 
-0.000 0.000 0.350 - - - 

Estirnate e x .  pvol i~e  Entiiiiatc e.e. p-value 

0.301 0.120 0.012 -0,100 0.141 0.170 
Eetimatc 95% Coiifi<leiicc Intcrvnl 

01 0.180 (0.005,0.37t3) 
0 3  0.200 (0.141 ,0.507) 
'Sec Table 4.8. 
2Not appliciillc. 

Non-paraniet ric 
AECB to AMB-Cree A m B  

li.alisitioii 'Ikansi tiori 
Entirnate a.c. pvalite Entirriate tm p-valiie 

Fàrst Obscrved Durution 

Second an J Subacquent Dunations 

-0.007 0.010 0.485 - - - 
Eetiriiate s.e. p-value Eetimate m. pvalue 

Table 4.10: P i u a i u e t e r  es timatcs for the reduced iriodel. 
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First AECB Duration Subsequent AECB Duration 

Figure 4.2: Estimates (solid line) and approximate 95% pointwise confidence intervals 
(dotted line) of the semi-Markov components of the AECB to AECB-hee transition in 
the f is t  observed AECB duration (left) and in the subsequent observed AECB durations 
(right) based on the reduced model (see (4.5.6)). 

icantly higher in the second and the fourth quarters, but it had no significant Merence in 

the third quarter. On the other hand, the AECB-kee to AECB transition intensity was 

significantly lower in the second and the third quarter than the first quarter, but it was not 

sigdcantly Werent in the fourth quarter from the ibst quarter. In other words, patients 

tended to have longer duration of AECB in winter and summer, and higher rate of relapse 

of AECB in winter and f d .  

We also fit the model without Markov components in both transition intensities and 

with uncorrelated random effects. However, the likelihood ratio test indicated that the 

Markov component was an important feature of the AECB-free to AECB transition inten- 

sity (test statistic = 18.272 with 8 degrees of freedom (p = 0.019)). Furthemore, models 
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Semi-Markov Markov 

Figure 4.3: Estimates (solid line) and approximate 95% pointwise confidence intervals 
(dotted line) of the semi-Markov component (left) and the Markov component (right) of 
the AECB-free to AECB transition based on the reduced model. 

with finer sub-divisions for the Markov and semi-Markov components also gave similar 

estimates of the covariate effects and the variances of the random effects, so the present 

hdings appear quite robust. 

4.5.4 Remark 

To demonstrate the effect of "spuriousn heterogeneity, we fit the data again by using a 

random effect model based on alternating renewal processes, which is a popular model. 

We adopted a further simplification by ignoring the Merence between the first obsenied 

duration and the subsequent durations and assumed that the baseline intensities are of 
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Weibd form: 

where t is the backward recurrence t h e .  Using a log-normal mking distribution, we f o u d  

that the estimates of ol, 02 and 012 are 0.569, 0.568 and -0.143 respectively (Ng and Cook, 

1996). The estimates of al and a2 are highly i d a t e d  compared with a more comprehensive 

model considered above. 

4.6 Concluding Remarks and Discussion 

4.6.1 General Remarks 

In this chapter, we examined the performance of two common methods of estimation for 

random effect models based on Poisson and renewal processes. The regression coefficients 

can be estimated with negligible bias, and valid variance estimates can &O be obtained. 

This desirable result is quite robust to the methods considered and the true mucing distn- 

bution. In contrast, the GH estimate for a may have s m d  positive bias if the true mixing 

distribution is highly discrete. Although the NP estimate for a is unbiased, its variance 

estimate may be unrealistically large, probably due to the ignorance of the variabiüty of 

the estimated number of mass points. In applications, using either the GH or the NP 

methods of estimation makes lit tle difference with regard to covariate dects .  Choosing 

between the GH and the NP methods should be based on practical considerations such as 

the ease of implementation, and prior information about the data, e.g., discrete random 

efEects should be used if hidden subgroups are suspected. 

We also propose a quite general model for analyzing data arising from common chronic 

conditions in which multiple time scales are incorporated to model simdtaneously degen- 

erative features of the conditions, cyclical and seasonal patterns in the disease process. 

When we applied this model to data £rom a study of chronic bronchitis, we identified sev- 
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eral important risk factors. We found that the transition intensities depend on more than 

one time scale, and found there to be mild subject-t-subject variation. Most of these clin- 

ical findings had not been found empkically before, suggesting that the two-state model 

provides added insight into this sort of disease activity. 

Although we have not considered model diagnostics for the model proposed in the 

analysis of the CHEST study, the estimation result based on a simplified model specification 

(section 4.5.4) suggests that it is important to specify appropriate intensity functions. The 

analysis of the CHEST study &O illustrates the practical value of a weakly parametric 

baseline intensity using a piecewise cons tant h c t i o n .  

Findy, we remark that a satisfactory modeling strategy should consist of the followuig 

steps: model specification: estimation; and model diagnostics. Tests of homogeneity can 

serve as a model diagnostic, but general methods for model diagnostics are currently lacking 

for random effect models, especially for point processes. We will address model diagnostics 

in the last chapter. The next subsection discusses an important issue in event history 

analysis: the problem of left-truncation. 

In many studies, the t h e  of randomization does not coincide with a transition time, nor 

does it represent the beginning of the entire process. In this case, the data are said to 

be left- tnincated because only the rernaining durations after the t h e  of randomization 

are observed and thus the first observed durations are incomplete. As a consequence, the 

selection probability of a subject may depend on the length of one or more sojourns. For 

example, in the CHEST study, subjects with longer exacerbation durations are more likely 

to be selected since one of the entry criteria stipulated that patients must be experiencing 

an exacerbation at randomization. This selection bias (&O called length-biased sampling) 

must be accounted for to make valid inferences. 
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Consider an orderly univariate point process with intensity )i(tl'fl(t)), w k e  R(t) is 

the history of the process up to t h e  t- defined in (1.2.1) with the subscript i dropped. 

Let [ T ~ ,  r2] be the observation period and tl < - O -  < t, be the observed event times. 

Let tel < TI be the event time just prior to ri. If t-1 is known, Guo (1993) proposed a 

conditional argument to obtain the likelihood which amounts to adjusting the contribution 

to the Likelihood from the first observed duration. Assuming that Tl = tl is observed, then 

'tt(tl) = {Tl > TI,T-1 = t-1, N ( t ) ,  X(t) ,Y(t) ,  7-1 < t < tl). Thus, 

This probability does not depend on t-1 for Poisson processes, but in general, is a hinetion 

of t+ Hence, the likelihood is given by 

where to = ri. 

Et -l is unknown, we have to multiply L by the density of T-l and integrate this prodnct 

with respect to t-1. However, unless there is prior information on T-i or the process is 

Poisson in which case L is independent of t-1, the probability density of T-l is difEcult to 

spec&y. In the former case, discarcihg the first observed duration seems to be the simplest 

way to achieve MLid inference, although part of the information will be lost. For example, 

167 out of 222 patients in the CHEST study have more than one transitions during their 

observation periods and thereby 55 patients will be excluded from the analysis, and of 

the remaining 167 subjects, considerably fewer exacerbations will be contributed. Another 

approach is to mode1 the f i s t  observed duration differently from the subsequent durations 

as we did in the analysis of the CHEST study. 
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In the presence of random efXects, (4.6.1) is the conditional likelibood &en the ran- 

dom dec t .  The marginal Likelihood can be maximized by the methods considered in this 

chap ter. 

In the context of mdti-state processes with random effects, selection bias can be due 

to extreme subject-spedic random effects. The conditional argnment considered by Guo 

(1993) rnay not be able to correct this selection b i s .  The approach we used in the andysis 

of the CHEST study may serve as 8n approximate adjustment for the selection bias. As 

a rough check on the appropriateness of this approach, we fit a Cox proportional hazard 

model for the first observed durations and found that the treatment variable had significant 

effect. This result is consistent with the finding based on the stratified model (4.5.6). 

Nevertheless, further research in this direction is necessary. 

In general, the construction of Iikelihood function under left-tmcation relies on the 

information a d a b l e  before the time of randomization and the sarnpling scheme. Lawless 

and Fong (199 7) recently described some difficulties and modeling approaches pertaining 

to this problem. 



Chapter 5 

Robust Inference for Bivariate Point 

Processes 

Merence for random effect models considered in chapter 4 is likelihood-based, whick re- 

quires a full specification of the process conditional on the random effects. Although a 

certain degree of robustness against misspecification c m  be achieved through the use of a 

weakly parametric baseline intensity and a non-parametric mixing distribution, appropri- 

ate t h e  scales must still be specified. For situations in which one is not sure about the 

appropriate time scale and when interest lies primarily on studying covariate effects on 

the number of events, models based directly on the mean number of events over t h e  may 

be entert ained. This approach belongs to another popdar class of models for longitudinal 

data andysis and is termed "marginal models" (Diggle et al., 1994). Unlike random effect 

models, marginal models only require minimal assumptions on the probabilistic structure 

of the process. Lawless (1995) reviewed a number of methods of analysis for recnrrent 

events using both conditional (intensity function) models and marginal models. A variety 
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of conditional rnodels were considered in chapter 4. 

In this chapter, we propose marginal models for the mean and covariance functions of 

bivariate point processes for which inference is based on the theory of estimating functions. 

Specifically, we constnict unbiased linear estimating h c t i o n s  for the marginal cumulative 

mean functions (CMFs) of bivariate point processes, in which the correlation structure for 

the jumps can be taken into account. A criterion for obtaining the optimal estimating 

function for the CMF is sugges ted in section 5.3. Tests of hypotheses using Wald-type and 

score-type tests are discussed in section 5.4. Some estimating funetions for the covariance 

functions are also considered in section 5.5. Since the correlation structure is usually 

rinkriown and any assumed structures are difficult to ve*, we suggest using the estimating 

function arising £rom mixed bivariate Poisson processes as a working estimating function. 

These mixed bivariate Poisson estimating functions are easy to implement and yet provide 

a "working" correlation to account for the underlying correlation structure, analogous to 

the generalized estimating equation (GEE) used in discrete time longitudinal data (Liang 

arid Zeger, 1986). The performance of the mixed bivariate Poisson estimating function is 

examined through simulations in section 5.7. In section 5.8, the proposed model is applied 

to data from the asthma trial described in chapter 1. Finally, some concluding remarks 

and discussion are given in section 5.9. 

The rest of this section is devoted to a brief review of the marginal approach for univari- 

ate point processes using estimating function. The idea originated from quasi-likelihood 

(QL) estimation, which is most commonly applied in the context of generalized Iinear 

models (GLM) (McCdagh and Nelder, 1989 Chapter 9). By specifying the mean and 

covariance of the response over time, and introducing conriate effects, one can construct 

a quasi-likelihood which behaves in many ways like an ordinary likelihood function. 

Let Y i  be an n x 1 vector of responses and xi be a p x 1 vector of covariates for the 

ith subject. The mean response is assumed to be a function of the linear predictor, x;p, 



CHAPTER 5. ROBUST INFERENCE FOR BIVARIATE POINT PROCESSES 139 

through a link function, 

and the variance is a function of pi, 

where > O is a dispersion parameter. The QL estimator for P based on a sample 

{Y ..., Y,), is obtained as the solution to the quasi-score function 

The dispersion parameter is often estimated by the method of moments. 

Under some mild regularity conditions, the QL estimator has asymptotic properties 

similar to the ordinary m d u m  likelihood es timator, namely consistency and asymp totic 

normality. In fact, the quasi-score functions are the optimal estimating functions among 

the dass  of unbiased linear estirnating functions provided the mean and covariance of the 

response are correctly specified (McCulIagh and Nelder, 1989 Chapter 9). 

h many longitudinal studies, the responses from the same subject constitute a time 

series whose the autocorrelations may be difEcult to specified, especially for discrete re- 

sponses. In a series of articles (Liang and Zeger, 1986; Zeger and Liang, 1986; Zeger et d., 

1988; Liang et al., 1992), generalized estimating equations (GEE) are introduced in which 

only the mean function has to be correctly specfied and the covariance matrix may take a 

convenient form , 

V ( P )  = A ( P ) ~ ~ ( P ) A ( P ) ?  

where A(p)  = diog(var(y))'I2 and R ( p )  is a correlation matrix parameterized by p. R ( p )  

is not necessarily the true correlation matrk, and thus it is referred to as a "workingn 
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correlation matrix. These authors showed that, using the results of White (1982), the GEE 

estimators are consistent and asymptoticdy normdy distributed even if the covariance 

structure is misspecified. As the generalized estimating equations belong to the dass of 

unbiased linear estimating functions, the efficiency is higha if the working correlation 

matrix is closer to the true correlation matrix. 

Inspired by this approach, Lawless and Nadeau (1995) proposed a robust mode1 for uni- 

variate point processes in which estimation is based on a Poisson likelihood. The estimation 

is robust with respect to misspecification of the distribution. Let N(t) be the number of 

events occurring over (O, t] and dN(t) = N ( t )  - N(t -) = limh,o+ (N(t) - N(t - h)) be the 

number of events (or jumps) at the instant t. The cumulative mean function (CMF) for 

N(t) is defined as E[N(t)] = A(t) which is assumed to be continuous, non-decreasing and 

differentiable wit h respect to t if the time scale is continuous. The CMF can be modeled 

parametricdy or non-parametrically. For the ease of exposition, we consider a parametric 

CMF which is completely specified by a p x 1 vector 0. Regression models may also be 

ent ert ained with multiplicative covariate effect s of the form A(t ) = exp(xr/3) A. (t ) , where 

x is a vector of covariates and Ao(t) is the baseline mean function. 

We note that the probabilistic structure of the process is not f d y  specified unless it is 

a Poisson process. Lawless and Nadeau (1995) argued that parameter estimates based on 

Poisson models are valid quite generdy, and derive robust variance estimates using the 

theory of estimating functions. 

We define a function v(t) such that u(t ) = t for continuous time processes and v(t) = [t] 

for discrete time processes. Let A ( t )  = dA(t)/dv(t). Based on a sample {Nl(t), ..., N,(t)), 

the Poisson estimating function (PEF) can be shown to be 

where x(t) is independent of Ni(t). The process X(t)  usudy indicates whether subject i 
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is under observation at time t .  The robust asymptotic variance of the estimate is given by 

When the jump sizes are uncorrelated, Le., cov(dN(s),dN(t)) = O for s # t, Nadeau 

and Lawless (1996) showed that the PEF is optimal among all unbiased linear estimating 

functions. In general, (5.1.1) may produce inefficient estimates for correlated jump pro- 

cesses, although consistency is still preserved. Nadeau and Lawless (1996) extended the 

PEF to incorporate the covariance structure of the process. If the CMF and the covari- 

ance between jnmps (cov(dN(s), dN(t))) are correctly specified, inference can be based on 

a quadratic estimating fnnction of the form 

where 

vi(t) and q(s,  t  ) are variance and covariance functions wit h parameters t$ = (Otl  4')' respec- 

tively, a i ( t )  and bi(s7 t )  are known differentiable functions of #, and I(-) is the indicator 

func t ion. 

The optimal quadratic estimating function requires knowledge of the third and the 

fourth moments of the process which are usually unadab le  (Godambe and Thompson, 

1989). Instead of working with (5.1.2) directly, Nadeau and Lawless consider breaking 
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(5.1.2) into two components: 

where the dimensions of a i ( t )  and bi(8, t  ) are the same as the dimensions of 8 and a 

respectiveiy. Let U(4) = (Ul (8; c)', U2(n;  8)')'- 

This leads to a 2-step estimation procedure in which we solve U@; o) = O for 8 given a 

and substitute this solution into U 2 ( a ;  8 )  = O to find a root of o. This iterative procedure 

continues until convergence is met. Let 4 be the solution to U(4) = O. It can be shown 

that the asymptotic variance of 4 is block diagonal with the partition conformable to 8 

and a, and the asymptotic variance of 0 is equal to 

This implies that even when the covariance is not correctly specified, 8 is still consistent, 

whereas the estimator for 8 obtained fiom (5.1.2) rnay not be. Furthermore, given c, an 

optimal linear estimating function for B exists in which a i ( t )  is a function of &(t) ,  v i ( t )  

and ~ ( s ,  t ) ;  see Theorem 1 of Nadeau and Lawless (1996) for the expression of a i ( t )  in the 

optimal estimating function. Inference for 0 can be based on the asymptotic nomality of 

ê. 

5.2 Mode1 Formulation 

The marginal approach for univariate point processes may be extended to rnultivariate 

point processes. In addition to the marginal means and covariances of jumps, we have to 

s p e c e  the cross-covariances of jumps between components of a process as well. For the 
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ease of exposition, we focus on bivariate point processes in this chapter. We propose a 

robust method via the estimating h c t i o n  in which optimal linear estimating functions 

for the parameters in the mean functions can be obtained dong the line of Nadeau and 

Lawless (1996). 

Suppose there are rn independent bivariate point processes {Ni ( t ) ,  .. ., N,(t )), where 

N i ( t )  = (Nil ( t  ), Ni2(t))' S U C ~  that Nil ( t )  and Ni2(t) are two orderly point processes char- 

acterizing two types of events. Suppose N i ( t )  is observed over ( O , T ~ ]  or at time points 

Ti = ( t i l ,  ... :th,) for continuous t h e  processes or discrete time processes, respectively. 

Let K ( t )  be the indicator function that the ith process is under observation at time t ,  i.e. 

x(t)  = I(t 5 T . )  for continuous t h e  or x ( t )  = I( t  E Ti) for discrete t h e .  Therefore, for 

any function g ( t ) ,  

- { 
g(t)dt  for continuous t h e 7  

g ( t )  for discrete t h e .  

We assume that the censoring (or observation) process {x( t ) )  is independent of the 

bivariate point process {Ni(t)). Consider parametric modeis and define the following 

marginal moments for the jumps: 



CHAPTER 5. ROBUST 1NFERE:NCE FOR BIVMATE POINT PROCESSES 144 

for j = 1,2, where B j  is a pj x 1 vector of parameters for the mean functions, j = 1,2, 

and mj is a a x 1 vector of parameters for the covariance functions, j = 1,2 and 12. We 

assume that there is no common dement in 8 = (Bi,@;)' and rn = (d,,c~,o;,)'. The 

mean rate fnnctions A i j ( - ) ,  j = 1,2, the Mnance rate functions v&), j = 1,2 and the 

simult aneous covariance rate function vi,lz ( 0 )  are assumed to be non-negative and cadlag. 

The covariance rate functions c i j ( * , * ) ,  j = 1,2,12 are cadlag such that c;i(s, t) = ~ ( t , s ) ,  

j = 1,2. Covariates may be incorporated into the mean functions and covariance functions. 

Ln what follows, inference is based conditionally on the censoring process and the covariate 

process which is assumed to be external. 

The CMFs are parameterized by O1 and B2 respectively. We note that for continuous 

time processes, dNij( t )  is a 0-1 random Mnable and thus vi j ( t )  = L j ( t )  and viVlz(t)dt is 

the probability that both types of events occur simultaneously. 

Let 

for s # t. For convenience, we set &(t,  t )  = O for t  2 0. Assuming that Ci( t )  is positive 

definite for t  3 O .  Since our interest usudy  lies in estimating 81 and 02, we assume that 

the other parameters (c) are known for the moment. 
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where a ; ( t )  is a (pl  + p z )  x 2 rnatrix function of t$ = (@',cf)' and &(t) = (Xi l ( t ) ,  k2 ( t ) ) ' .  

Let UIv2 be the set of all LUEFs of the form (5.3.1). 

An optimal estimating b c t i o n  for 0 may be derived in a fashion similar to Theorem 

1 of Nadeau and Lawless (1996). We state the result as follows: 

Proposition 5.1 Let R, = { t  E [O, oo)lK(t) = 1) for i = 1, ..., m. Let F;(s, t ;  9) : & x 

R, t (-cm, m) x (-00, m) be a 2 x 2 matrix offunctzom of q5 such thnt A(s, t)' = Fi(& s) 

for s, t E fG,  and satZgfyng 

for s, t E & and i = 1, ... ,m. Then the  o p t i m a l  LUEF for 6 is gzven by U;,2(8) for which 

for t E a- and i = 1, ..., rn, where 

which satasfies 

Proof: Let 

A weU-known result of the theory of estimating functions states that 



CHAPTER 5. ROBUST INFERENCE FOR BIKARIATE POINT PROCESSES 146 

is optimal within Ul12 if for any Uls(B) E Ul,Zi we have 

for i = 1, ..., m (Godambe and Heyde, 1987). This criterion implies that the optimal 

estimating h c t i o n  is the projection of the score function onto Ul12. To see U:lz(B) satisfies 

(5.3.6), pre-multiply the left-hand side of (5.3.2) with &(s)d&(s)/aO, and then integrate 

with respect to s to get 

for t E a. The optimal aiterion (5.3.6) can be proved by noting that, 

(by (5.3-7) and Qi(s, t)' = ni(tl s)), 

(as a;(t) = - 8:'(t) + Gi(t)). 
68 

Hence, a;(t) gives the optimal LUEF for 6. Finally, (5.3.7) proves the result (5.3.5). 

The optimal weight function or ( t)  consists of two parts. The f i s t  term in (5.3.3) leads 

to the optimal LUEF for uncorrelated jump processes, while the second terru in (5.3.3) can 

be viewed as a correction factor that incorporates the covariance structure of jumps. 

Consider a special case for which dNil(s) and dNi2(t)  are uncorrelated. This gives 

viT12(t) = G ? I ~ ( S ?  t )  = O and Fi($, t )  becomes a diagonal matrix. It is readily seen that 
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Proposition 5.1 leads to two optimal LUEFs for 91 and O2 respectively. These optimal 

LUEFs are exactly the resdts of Nadeau and Lawless (1996) obtained by treating the 

components of the bivariate processes separately. 

It is in general difticult to solve (5.3.2) or (5.3.5). The fcllowing orollary provides a 

solution for a particular type of covariance function. 

Corollary 5.1 If the covariance function is of the f o m  

urhere &(s) and Bi(t) are 2 x 2 matrices svch that Bi(t) is invertible for al2 t E &, then 

the optimal wezght funct ion is given by  

for t E l& and i = 1, ..., rn, where I2 iS the 2 x 2 identi ty mat*. 

PTOO f: Since Bi(t) is invertible, equation (5.3.5) can be expressed as 

We observe that the two integrals in the above equation are time independent and so is 

H E ~ ~ ( t ) ~ ~ ( t ) ~ ~ l ( t ) .  Thus, we easily h d  H as 
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We are now going to derive the asymptotic variance for the solution to an arbitrary 

LUEF (5.3.1). Let 6 be the solution to (5.3.1) for 6. Given o, the asymptotic variance for 

6 is given by the so-called sandwich eçtimator: 

where 

If the specfication of the covariance is in doubt, an empirical covariance estimate in which 

B, is replaced by its empirical form, 

is ofken used (White, 1982; Liang and Zeger, 1986). 

In particular, & ( O )  = B,(B) for optimal LUEF with correct covariance speufication 

and t hereby, the asymptotic variance becomes 

which is the variance formula in the quasi-likelihood estimation; see Godambe and Heyde 

(1987) for the discussion of estimating fünctions and quasi-likelihood. 

Under some mild regularity conditions (White, 1982), the estimate & is approximately 

normally distributed with mean 8 and variance asvat(6) which can be estimated by sub- 
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stituting O for 8.  

5.4 Tests of Hypotheses 

Tests of hypotheses concerning 0 can be carried out using the asymptotic normality of 

e or the estimating function (5.3.1). The former is a Wald-type test and the latter is a 

score- type test . Specificdy, consider the a d  hypot hesis 

where + is a T-subvector of 0 and for simplicity, we let 0 = ($', r')'. 

The Wald test is based on the statistic 

where 0 = (+',îrt)' is the estimating function estimate for O without restrictions. and 

vT(@ is the asymptotic variance of li> evaluated at O. Under Ho, W$ is asymptotically 

x2 distnbuted with degrees of freedom T. 

The score test uses the estimating function as the test statistic. Partition U&J) into 

two components (U'.(0)', UT(@)') conformably to qb and ?r. Given u, an estimate for ~r 

under Ho, ?TT is obtained by solving U.&; do) = O for W .  Denote = ($;,ar)'. Standard 

Taylor series expansion for u@) around Bo = (&, nt)' under Ho gives 
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We also partition the matrices A, and Bm conformably to and ?r as 

where the dependence of 8 is suppressed. The asymptotic variance of u@) is equal to 

The optimal estimating function provides a simpler form because A, = B,, so that 

The score statistic is then given by 

which is asymptoticdy X* distributed with degrees of fieedom r under Ho. 

In addition, the empirical covariance matrix Bz can be used in place of B, for W+ 

and S+ if the covariance structure is nnclear. We remark that the test statistics require an 

estimate for which may be obtained from a saturated model or a fd regression model 

which includes a large number of covariates (Breslow , 1990). 

Breslow (1990) studied the performance of Wald and score tests for overdispersed Pois- 

son regression. He demonstrated, based on simulations, that the Wald and score tests 

denved from quasi-likelihood generally have reasonable performance in terms of size and 

power. He recommended the use of a score test with the empirical covariance rnatrix in 

practice because this empLical score test not only is robust to the specification of covari- 
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ance, but also performs satisfactorily even for s m d  sample sizes and large overdispersion. 

Similar results should hold for bivariate point processes considered here, especially when 

the optimal estimating function is used. 

5.5 Joint Estimation of CMF and Covariances 

The discussion in previous sections relies on the knowledge of the covariance parameter u. 

However , the parame ters a are usually unknown. Quadratic unbiased es timating functions 

(QUEFs) for c of the following forms may be constructed, given 8, for j = 1,2, 

where dN&(t)  = dNi j ( t )  - Aij(t)dv(t) and bii(s, t )  is a knom function of dimension qj for 

j = 1,2,12. It should be noted that Ujj and Ulz are in fact functions of 4 and they aim 

to estimate oj and o l ~  respectively. In the estimation procedure, we fix the values of the 

parameters other than cj in Ujj to fmd a solution for oj. The other estimating functions are 

treated similady. The procedure proceeds by solving UlV2 ( O )  = O, Uil (al ) = O, Uzz (uz) = O 

and Ui2(cl2) = O iteratively. Due to the unbiasedness of these estimating functions, the 

resulting estimates are consistent. 

The next question is how to choose the weight functions bij(s7 t ) .  A convenient can- 

didate is b&, t )  = 1 for j = 1,2,12 which gives the moment estimators for CT if qj = 1. 

An optimal QUEF requires knowledge of the third and the fourth moments of dNij(t) 

(Crowder, 1987; Godambe and Thompson, 1989) which are often unavailable. The orderly 

continuous time process is an exception. R e c d  that v i j ( t )  = Xij(t) for j = 1,2. It is easily 
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seen that (dN$(t) )*  = (1 - Z&j(t)dt)dN$(t) + & j ( t ) d t  - (&j( t )dt )2  and thus, 

w ( d Q ( s ) d N G ( t ) )  = ( 1  - 2Aij(s)ds)(l  - 2&j(t)dt)E(dN;(s)dN;(t)) 
= I ( s  = t ) k j ( t ) d t  + I(s # t ) î j ( s 7  t ) d ~ d t  + ~ ( d s ,  d t ) ,  

and var(dNi(s)dNi2( t ) )  = I ( s  = t)vi,la(t)dt + I ( s  # t)ciV12(s, t ) d ~ d t  + ~ ( d s ,  d t )  similarly, 

where o(ds, d t )  = o(ds) + o(dt)  + ~ ( d s d t ) .  Estimating hc t ions  similar to the PEF rnay be 

constructed as follows, for j = 1,2, 

For discrete time processes, we may use the moment estimator or define some working 

covariance structures as suggested by Prentice and Zhao (1991). 

The asymptotic variance for the joint estimation of 8 and O can be derived similarly 

as in section 5.3. We stack the estimating functions (5.3.1) and (5.5.1) together and mite 
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The asymptotic variance of 4 is given by 

The expectation E ( U ( 4 ) U ( 4 ) ' )  involves third and fourth moments of the jumps which are 

not a d a b l e  in most cases. An empiricd variance formula similar to B: considered in 

section 5.3 can be used. 

Since Xii(t) does not depend on u, E(-dUl,2(t3)/Cb) = O and thus E(-ôU(t$)/â+) is 

an upper tnangukr matrix in which the lower q. x p. submatrix is equal to zero, where 

p. = pl + pz and q. = qi + qz + 412. Therefore, the asymptotic Msiance of 9 remaius 

unchanged whether O is known or consistently estimated. Furthemore, t$ is asymptotically 

distributed as N ( + ,  asvar(&). 

The estimating functions are easily computed for discrete time processes. Here we 

express the computational foms for continuous time processes. Let O 5 t i j t  < < 

t,,, 5 r. be the observed event times in (Nij(t)}. The optimal LUEF for 0 and the 

estimating functions for u using (5.5.2) and (5.5.3) can be expressed as follows: 

alog(cij(s7 t ) )  Ti d l ~ g ( ~ j j ( ~ ,  t ) )  
u''("') = { { 8 , t E ~ l , , + t l  amj  SE nij amj ~ , ( t )d t  
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where azj(t) is the j th column of ~ ; ( t ) ,  Dij = (tijll ..., t i jmj),  for j = 1,2 and i = 1, ..., tn, 
and Di = Dil n Vi2 is the collection of the simultaneous event times for the ith process. 

The above integrations may have to be computed numericdy. In such situations, 

simple numerical integration methods such as the Simpson's d e  may be used. 

5.6 Applications 

5.6.1 Mixed Bivariate Poisson Process 

We consider a continuons t h e  mixed bivariate Poisson process in which conditional on 

a bivariate random effect Z = (Zi, &)', the bivariate process comprises two independent 

Poisson processes. Suppose E(Z) = i and 

is positive definite. The conditional moments of jumps are given by 

The marginal moments can be shown to be 
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cov(dNài (s), dNia ( t ) )  = I(s # t )a l2A1 (s)A2 (t)dsdt.  

Therefore, vi,lz(t) = 0 ,  ei j (s,  t )  = ujAii(s)XG(t) and C ; , ~ ~ ( S ,  t )  = c ~ ~ A ~ ~ ( s ) A ~ ~ ( ~ ) .  By noting 

that Q;(s, t )  = Xi(s)XzZi( t )  and ushg Corollary 5.1, the optimal LUEF for 8 is equal to 

where 

The estimators for c obtained hom (5.5.5) tum out to be: 

ej ;.= 
CEl[(% - - nij] 

CE1 ej (ri) 
7 

where nij = N i j ( ~ i ) -  The estimator for crj is approximately equal to its moment estimator 

which is 

for j = 1,2, while oI2 is exactly the moment estimator for 0 1 2 -  ln cases when iij is negative, 

it is usually set to O .  

Furthemore, when regession models are entertained, covariate effects are ofken mod- 
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eled multiplicatively to the mean functions: 

k j ( t )  = e x p ( ~ : ~ P j ) X o j ( t ;  rj), 

where Xoj(t) is the baseline rate completely specified by a vector of parameters rj, j = 1,2  

and i = 1, ..., m. It remains to specifjr the forms of the baseline rates. A weakly parametic 

specification using piecewise constant functions may be used if there is no prior knowledge 

of appropriate forms. 

The optimal es timating function (5.6.1) arising from mixed bivariate Poisson processes 

may have great potential for practical applications. In most situations, any particular 

covariance structure is unlikeIy to be correctly specified in a model. Thus, the covariance 

structure implied by mixed bivariate Poisson processes can be viewed as a working covari- 

ance similar in spirit to the GEE working conelation (Liang and Zeger, 1986). We c d  

(5.6.1) the mized Poisson estimatzng function (MPEF). The merit of the MPEF is that it 

provides consistent estimates and valid inference for the parameters in the CMFs through 

the use of a robust variance estimate with the efficiency being higher the "closer" the 

working covariance is to the true covariance. The parameters in u arising fkom the "work- 

hg" randorn effects should be viewed as dispersion parameters in general. In practice, the 

empirical formula of the sandwich estimator should be used. Some s i d a t i o n  studies will 

be considered in the next section to investigate the performance of the MPEF. 

In the case of equal duration of follow-up for each subject, i.e., Ti = T for dl i. the 

estimates for pl, P, and u are invariant to the forms of the baseline rates. This can be 

seen fiom the following arguments. Let a a j  = Aoj(r), j = 1 , 2  where &j(t)  = 5: Xoj ( ~ ) d s .  

Given cr, the estimating function for ,B is given by, fiom (5.6. l), 
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where &j = e ~ p ( x ; ~ @ ~  + aoj), rij = nij - Aij, j = 1,2, and Mivu is the ( k ,  1)th element of 

Mi, k, 1 = 1,2. Hence, Ug, (9)  depends on the baseline rates only through W. Similady, 

ô- obtained from (5.6.2) is also invariant to the forms of the baseline rates. Therefore, 

estimation of the regression coefficients and overdispersion parameters is essentially based 

on the total numbers of events occurring in (0,~). In fact, (5.6.3) is equivalent to the 

quasi-score equation for the overdispersed Poisson regression. 

5 -6.2 Longitudinal Analysis of Bivariate Count Data 

We consider a longitudinal study in which each subject experiences two types of events and 

is observed at a set of fixed discrete time points, for example, dates of the follow-up visit 

in a clinical trial. Suppose without loss of generality that the ith subject is observed at 

times & = {l, 2, ..., .ri). Let Dij ( t )  be the number of j type events for subject i occufiing 

in the interval (t - 1, t ]  for j = 1,2 and i = 1, ..., m. In other words, D,(t)  = dN,(t) .  The 

specifications for the means and covariances are, using the above notation, 

for s, t E a, where 8 = (Bi, Bi)'. 
Here we introduce some more notation and let 
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An estimating function for 0 is given by 

where ai = (a;(l), ..., ai(ri)) is a mat+ of weight functions. The optimal weight is obtained 

by finding Fi(s, t ) in Proposition 5.1. Let Fi = (F&, t )) 
s,t=l. .... r; ; then (5.3.2) becomes 

SimpMying, we find Fi = - Z;' + K-' . Therefore, from (5.3.3), the optimal weight function 

is given by, 

Hence, the optimal LUEF for 0 is 

which is the well-known quasi-score equation (McCullagh and Nelder, 1989). 

Given c = ( a ~ , d , , ~ ~ , ) ' ,  a solution to (5.6.4) c m  be found by the following scoring 

algorithm (Liang and Zeger, 1986): 

where Ci = d&/a0 and t i  = di - &. 

The estimates for a are ofien found by the method of moments in which b,(s, t )  = 1 in 
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(5.5.1) for j = 1,2,12. However, the method of moments usually leads to slow convergence 

in the iteration procedure. Ciowder (1985) argued that a Gaussian estimation procedure 

for comelated binary data may provide façter convergence. Crowder's procedure uses a 

Gaussian pseudo-likelihood for Ti :  

The estimates for u are obtained by solving g(a) = al/au = O. Labeling the elements of 

O as u = (al, ...: %.)', the jth element of g ( u )  is equal to 

It is noted that the entnes in g(u )  are quadratic estimating functions for u. A scoring 

algorithm for Q is given by (Rochon, 1996) 

where the (a, 6)th element of H ( a )  is 

for a, b = 1 , .  q.. Hence, the estimates for û and u can be found by iterating through 

(5.6.5) and (5.6.6). 

Furthermore, a "workingn correlation structure can be used as in the usual GEE ap- 

proach. For example, the equicorrelation mode1 and the autoregression mode1 are common 

choices. As seen in section 5.5, a consistent estimator for û with a robust variance estimate 

is still amilable. 
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5.7 Simulation Study for MPEF 

5.7.1 Design of Simulation Study 

In this section, we study the performance of the estimators obtained fkom the MPEF by 

examining theh biases and coverage probabilities through simulations. We consider m 

independent mixed bivariate Poisson processes with multiplicative covariate and random 

effects. Specifically, given random effect ri = (cl, zjz)', the conditional intensity of the j th  

Poisson process for the ith subject is given by 

where xi - Bin(l,0.5) to mimic a random treatment assignment and aj = exp(yj), j = 

1,2, i = 1 ,...: m. 

The bivariate random effects zi are independent and identically distnbuted with mean 

(1,l) and covariance matrix 

according to one of the following distributions: 

1. bivariate log-normal, i-e., log(&) is bivariate normal; 

2. bivariate binary: 
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3. mixture of two bivariate log-normals: Zi = 2:') with probability 112 and 2; = 

2i2' with probability 112, where 2:') and 2i2) are independent bivariate log-normal 

random variables such that 

where 1 = (1,l)'. 

The purpose of considering these mixing distributions is to investigate the sensitivity of the 

estimators, especially for the dispersion parameters u, to Merent mixing distributions. 

The lengths offollow-up ( T ~ )  are generated independently of the rnixed Poisson processes 

from an exponential distribution with mean log(0.5) such that the follow-up periods for 

about 50% of the subjects are less than the target follow-up of 1 (year). The true values of 

the parameters are taken to be: plo = log(2), hl = 1, = log@), pzo = l0g(4), pzl = -1, 

7, = log(l), o1 = 02 = 0.5 and a l z  = -0.25 and 0.25. The average numbers of events 

generated fiom each component of the process under this specification are small. 

We generate n = 100 mixed bivaxiate Poisson processes according to the above scheme, 

and apply the MPEF (5.6.1) to estimate the parameters in the CMFs and (5.6.2) to 

estimate the dispersion parameters. The baseline rates are chosen either as Weibull, which 

is the correct model specification, or piecewise constant functions with 5 cut-points. The 

cut-points for each component are determined by the empincal percentiles of the observed 

event tirnes in that component. The variance matrix is computed by the empirical formula 

of the sandwich estimator. A total of 1,000 simulations are performed. 

The standardized biases, 95% empirical coverage probabilities, average of the model- 

based standard errors and the standard deviations of the empirical distributions of the 

estimates (simulation-based standard errors) are reported in Tables 5.1 to 5.4. The stan- 
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dardized bias is the average bias of an estimate divided by its simulation standard error 

and is approximately distributed as standard normal. The 95% coverage probability is the 

proportion of 95% confidence intervals, which are computed as 4 f 1.96s.e.(d), that cover 

the true parameter, where s.e. is the square root of the robust variance estimate for that 

parameter. Since cl and 02 are non-negative, we also consider inference based on their log- 

arithmic transforxns in order to obtain less skewed asymptotic and empirical distributions 

for the estimates of log(al) and log(a2). 

5.7.2 Results of Simulation 

We fkst look at the results reported in Tables 5.1 and 5.3 which correspond to the cor- 

rectly specified conditional intensities. The standardized biases in d parameters are very 

s m d  regardless of the assumed mWng distributions, particularly for Pll, &, 71 and 7 2 ,  
indicating that the bias produced by using the MPEF is negligible and the estimates are 

robust to the mixing distribution. For the estimation of the parameters in the CMFs, the 

95% coverage probabilities are slightly srnder than the nominal level0.95 and the robust 

standard errors are &O only slightly less than the simulation standard errors. The same 

pattern is observed across the assumed mWng distributions for different atz, and thus 

sugges ts that the estimators perform quite satisfactorily. 

On the other hand, although the dispersion parameters are estimated consistently, there 

are some discrepancies between their coverage probabilities and the nominal level, as well 

as between the robust standard errors and the simulation standard errors. The discrep- 

ancies seem to depend on the mixing distribution in which the processes generated fiom 

binary random effects lead to smaller discrepancies. Use of the logarithmic transformations 

improves the performance slightly in some cases. There is also some loss of efficiency for 

the estimate of the covariance ~ 1 2 ,  although to a lesser extent than the variances al and 
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Loss of efficiency for the dispersion parameters is the result of relaxing the model 

assumptions. The merits of this method of estimation are that the CMF parameters 

can still be estimated quite efficiently and the dispersion parameters can be estimated 

consistently. Since within this fiamework, focus is on the CMFs, inference on the dispersion 

parameters is often a secondary conceni and hence we do not view this deficiency as 

problernatic. 

The simulation results for the models with piecewise constant baseline rates agree 

closely with those of the correct model (Tables 5.2 and 5.4). This indicates that the 

piecewise constant baseline rates are an attractive robust alternative for the specification 

of the baseline rates, demonstrating the practical value of a weakly parametric specification 

for the baseline rate function. 

5.8 Bronchial Asthma Study 

We consider the first stage of the asthma study desaibed in chapter 1 to illustrate the 

use of the MPEF. Two treatments for the control of asthma were given to 64 subjects: 

placebo and fenoterol. In the first stage of this study, subjects were randomized to either 

of the two treatments for a period of 167 days. The purpose is to estimate the mean rates 

of two d a y t h e  symptoms: wheezing and coughing in relation to the treatment and other 

covariates . 

Let Ni l ( t )  and Niz(t) be the cumulative numbers of days with wheezing and coughing 

respectively for subject i in (O, t]. We model the mean rate function multiplicatively with 

respect to covariate effects: 

where x, is a vector of time-independent covariates for process j of subject i ,  Pj  is the 
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corresponding vector of regression coefficients and Aoj(t) is the baseline rate specified by a 

vector of parameters rj. Although inference on the regression coefficients is independent 

of the form of the baseline rates due to common follow-up tirne (section 5.6.l), estimating 

the trends is also of interest. We therefore model the baseline rates as piecewise constant 

functions with 5 cut-points determined by the empirical percentiles of the observed event 

times in each component. 

We examine the assumption of multiplicative covariate effects by constructing the 

Nelson-Aden estimators for the cumulative mean functions of the numbers of days with 

wheezing and coughing stratified by gender and treatment which are believed to be two 

major effects. The Nelson-Aden estimator at time t is given by 

belong to group h l  h = 1 , 2 , 3 , 4 .  Here group 1 corresponds to the placebsfemale group, 

group 2 the placebwnale group, group 3 the fenoterol-fernale group and group 4 the 

fenoterol-male group. In this example, r y ) ( t )  is equal to the number of subjects in group 

h for s E (0,167). These estimates are displayed in Figures 1 and 2. There is no clear 

evidence that the multiplicative assumption is violated. 

Furt hemore, the sample correlation between the numbers of wheezes and coughs ob- 

served in (0,1671 is equal to 0.47 which clearly indicates that the wheezing and coughing 

processes are correlated. Certainly, the correlation structure is unknown and the MPEF is 

a convenient choice of a working model. 

We applied the MPEF with the dispersion parameters estimated fiom (5.6.2). Robust 

variance estimates were cornputed using the empirical formula. Parameter estimates are 

presented in Table 5.5. We label this model as the full model. 
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Wheeze Cough 
Covariat e* Estimate s.e. pvalue Estimate s.e. pvalue 
Age -0.023 0.049 0.631 -0-042 0.052 O -425 
Age2 <0.001 0.001 0.871 0.001 0.001 0.404 
Gender -0.738 0.290 0.011 -0.846 0.323 0.009 

Dr% -0.225 0.280 0.422 0.400 0.300 0.182 
Gender x Dmg 0.403 0.402 0.316 0.315 0.444 0.478 
Smoke 0.157 0.213 0.460 -0.052 0.243 0-832 
Daytime Symptoms: 
< weekly 0.218 0.578 0.707 0.586 0.666 0.379 
> weekly 0.338 0.552 0.541 0.944 0.666 0.156 
dail y 1.243 0.584 0.033 1.247 0.756 0.099 
> 1 daily 0.961 0.608 0.114 1.005 0.799 0.209 

Noctumal: 
< weekly 0.002 0.271 0.994 -0.831 0.278 0.003 
> weekly 0.004 0.244 0.988 0.062 0.276 0.823 
most nights -0.070 0.391 0.859 0.409 0.462 0.376 

Tightness on waking: 
< weekly 0.504 0.290 0.083 0.025 0.382 O. 948 
> weekly 0.795 0.284 0.005 0.169 0.396 0.669 
most momings 0.501 0.306 0.101 -0.215 0.440 0.625 

'Age in year at entry; Gender: F=O, M=l; Dmg: Placebo=O, Active=l; 
Smoke: Non-smoker=O, Smoker=l; Daytime Symptoms, Nocturnal and Tightness 
on waking are symptoms over the past 4 weeks at entry with no symptoms at baseline, 
and the categories are hequencies of symptoms. 

Dispersion 
Parameter Estimate s.e. 

4 1  0.302 0.073 
0 2  0.608 0.178 
0 1 2  0.252 0.070 

Table 5.5: Estimation of the full mode1 for the asthma study. 
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Figure 5.1: Nelson-Aden estimates for the cumulative mean functions of the wheeze pro- 
cesses wit h respect to the placeb-fernale group , the fenoterol-female group, the fenoterol- 
male group and the placeb+male group, in descending order of the curves. 

The pvalues for testing covariate effects based on the Wald test described in section 

5.4 indicate that some covariates have no significant effects on the CMFs. We therefore 

consider a reduced model with results given in Table 5.6. The score test proposed in section 

5.4 wos used to test if the full and reduced models are significantly different. Using the 

estimates of u from the full model, we found the score statistic to be 20.606 with degrees 

of freedom 26 (p-value = 0.762). Therefore, there is no evidence that the reduced model 

is significantly different hom the fidl model. 

The effects of fenoterol and placebo on the number of days with wheezing are not 

sigdicantly different. In contrast, use of fenoterol led to higher number of days with 

coughing than did placebo. Males appear to have a smaller number of days with symp 

toms than females on average. The severity of daytime symptoms had an adverse effect 
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Figure 5.2: Nelson- Aden estimates for the cumulative mean functions of the cough pro- 
cesses with respect to the fenoterol-female group, the placebo-female group, the fenoterol- 
male group and the placebo-male group, in descendhg order of the curves. 

on wheezing but insignificant effect on coughing. However, it is puzzling that for the noc- 

tunial activities variable, the number of days with coughing is smaller for subjects whose 

frequency of symptoms at  night is less than weekly than for subjects without symptoms 

at night. Possible explanation may be due to the fact that only symptomatic activities 

at randomization were considered in the analysis, but subsequent symptomatic activities 

are ignored. Such covariates are time-dependent and certainly complicate the estimation 

procedure considered here. The analysis of the branchial asthma study presented here is a 

preliminary investigation and an illustration of the method proposed in this chapter. We 

do not intend to give a thorough analysis of this study in this thesis. 

Finally, the estimates for u indicate substantial overdispersion. The estimated baseline 

rates are also shown in Figures 5.3 and 5.4. The wheezing process has a slowly increasing 



CHAPTER 5. ROBUST INFERENCE FOR BrVARlATE POINT PROCESSES 172 

Wheeze Cough 
Covariate Estimate s.e. p-value Estimate s.e. vvalue 
Gender - - - -0.441 0.204 0.030 
Drng - - - 0.405 0.210 0.053 
Daytime Symptoms: 

daily 0.823 0.167 < 0.001 - - - 
> 1 daily 0.707 0.200 < 0.001 - - - 

Noctumal: 
< weekly - - - -0.809 0.233 < 0.001 

Dispersion 
Parameter Estimate s.e. 
0 1  0.434 0.102 
0 2  0.816 0.185 
612 0.330 0.087 

Table 5.6: Estimation of the reduced mode1 for the asthma study. 

trend while the coughing process has a slowly changing bath-shape trend, although there 

seems to be no significant change in the trends as suggested by the 95% confidence intervals. 

5.9 Concluding Remarks and Discussion 

In this chapter, we proposed some marginal models for the CMFs of bivariate point pro- 

cesses using estimating functions. A criterion for ob taining the optimal weight function for 

the CMF is provided. A procedure for joint estimation of the parameters in the CMF and 

the covariance functions is also suggested. In situations for which the covariance struc- 

ture is unknown, estimating functions arising from mixed bivariate Poisson processes, the 

MPEF, may be usefd. We examined the properties of the estimators for the MPEF. The 

estimators for the CMF parameters generally perform satisfactody. The robust variance 

estimates are quite efficient compared with the sample variance estimates. The dispersion 

parameters can be estimated consistently, although some loss of efficiency is unavoidable. 
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Figure 5.3: Estimate of the baseline mean rate h c t i o n  for the wheeze process (solid line) 
with 95% pointwise confidence intenalç (dashed line). 

We discuss some aspects for further research of the marginal approach here. 

5.9.1 Semi-pararnetric Models 

It is interesting to extend the above method to semi-parametnc models in which the mean 

function is expressed as 

for j = 1,2 and i = 1, .. ., m, where gi(t) is a known positive fïmction of covariates xG( t )  

parameterized by Bj, for example the widely used log-Iink b c t i o n  e~p(xU(t) /3~),  and 

Ajo ( t )  is an unknown positive cadlag function independent of xij(t) and is cornmon to all 

subjects. 

Nadeau and Lawless (1996) suggested estimating fanctions for P in univariate processes 
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Figure 5.4: Estimate of the baseline mean rate function for the cough process (solid line) 
with 95% pointwise confidence inte& (dashed line). 

where the well-known Cox partial likelihood score is included as a special case. Optimal 

linear estimating functions exis t for processes with uncorrelated jumps. 

For more general conelated-jump processes? piecewise constant specifications for the 

mean and covariance functions should give a reasonable approximation to the semipara- 

metnc model, as ernpirical evidence has been given for mixed bivariate Poisson processes 

in section 5.7. 

5.9.2 Extension to Multivariate Point Processes 

Since the proof of Proposition 5.1 does not rely on the dimension of the point processes as 

long as it is finite, Proposition 5.1 stiU holds for higher dimensional point processes. 

Consider a K-dimensional point process. We have to define K CMFs (Xij(t)), K vari- 

ance functions (v;,(t )), K autocovariance functions (cj(s, t )) of jumps within components 

and 2 (F) cross-covariance functions of jumps between components (vi, jk(t), C ~ . ~ & ( S ,  t )). This 
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requires totally K(K + 2) specifîcations of the mean and covariance functions. Frequently 

some covariance functions have unlcnom forms. In this case, a convenient working model 

can be obtained from mked multivariate Poisson processes as in section 5.6.1. 

5.9-3 Two-state Processes 

The marginal approach for bivariate processes does not apply to twwstate processes. This 

is because the numbers of 1 + 2 and 2 1 transitions over the same period of tMe  differ 

by at most 1. This creates difficulties in constructing the marginal expected numbers 

of transitions which are functionaliy related in an wlknown mamer if the probabilistic 

structure is not fdly specified. Even if the transition intensities are specified, the expected 

numbers of transitions are not always availabte, for example in the alternathg renewal 

process. Nevertheless, the main interest for such processes is usually focussed on the 

analysis of transition probabilities in which case an intensity model seems to be more 

appealing. 



Chapter 6 

f i r t  her Research 

6.1 Overview 

In previous chapters of this thesis, we have presented extensions of established methodology 

Here we describe two major additional areas for hirther research. The first topic pertains 

to the estimation of mixed multi-state processes and the second topic involves methods for 

model diagnostics for random eEect and marginal point process models. 

The difficulties in the estimation of random effect models arising from multi-state pro- 

cesses lie in the specikation of a genuuie multivariate m.-g distribution and the accuracy 

of an approximate marginal Wrelihood computed fkom an estimation procedure. We briefly 

discuss some potential methods of estimation using a mixed illness-death model as an 

illustration in section 6.2. 

Mode1 diagnostics are important in assessing the performance of models. They are usu- 

ally carried out by visual inspection of residual plots and more fomally tests for goodness 

of fit. In hed-effect fadure time models, there has been quite a lot of work directed at 

residual analyses (Kay, 1977; Barlow and Prentice, 1988; Therneau et al., 1990; Lin et al., 

1993), goodness-of-fit tests (Lin and Wei. 1989; 1991; Crouchley and Pickles, 1993), and 



tests of proportionality in Cox regression models (Arjas, 1988; Grambsch and Therneau, 

1994). However, there is a la& of literature on diagnostics for random effect models, due 

in part to the complex distributional structure of residu* arising fiom the mixed models. 

We will sugges t some ways of cons truc ting residuals, a deletion diagnostic for det ec ting 

influential observations, and a goodness-of-fit test using the IM test for mixed point pro- 

cesses in sections 6.3 to 6.5. The investigation here is quite prelimiaary. As a starting 

point, we focus on the univariate point process. Finally, some concluding remarks are 

given in section 6.6. 

6.2 Mixed Multi-state Processes 

Accommodating heterogeneiky in multi-state processes requkes the specikation of a prob- 

ably high-dimensional mWng distribution. For instance, the three-st ate illness-death pro- 

cess illustrated in Figure 6.1 is fiequently modeled in applications. Subjects make transi- 

tions between the healthy state and the diseased state until a transition to death, an ab- 

sorbing state. The arrows indicate possible transitions between states. The CHEST study 

described in section 1.4.2 c m  be regarded as iuness-death processes with heterogeneity if 

the observed deaths were modeled. Another application is the Studies of Left Ventricu- 

Iar Dysfunction (SOLVD) (The SOLVD Investigators, 1991) which aims to investigate the 

rates of mortality and hospitalization due to congestive heart failure in asymptomatic and 

symptomatic patients with reduced left ventricular ejection fractions. 

Let 6(t) be the state occupied by a subject at  time t 2 O. Conditional on the history of 

the process and the covariates up to time t, and the random effects u = (ulz, 821, U ~ J ?  u~~)', 

the j + lr transition intensity assuming the multiplicative model, is given by 
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Healthy 
State 1 

Figure 6.1: An illness-death model with multivariate random effects. 

where xjk(t) is the vector of covariates for the j -t b transition, 

and Ajko(tl'fl(t)) is the baseline intensity. Aden (1987) suggested a construction of a 

multivariate miKing distribution based on a transformation of multivariate normal random 

variables for a relatively simple time-homogeneous illness-death process. 

For more general the-inhomogeneous illness-death processes, the multivariate normal 

mixing distribution seerns to be the most feasible genuine multivariate mi-9ng distribution. 

The marginal likelihood may be evaluated in principle by numerical integration. Evans 

and Swartz (1995) recommended that Gaussian quadrature rules be used for integration 

problems of dimension less than about 6. The Gauss-Hermite d e  is thus appropriate for 

the mixed ilhess-death model which involves integrations of dimension 4. 

However, the numerical integration method may not be suitable for mixed multi-state 

processes involving high-dimensional integrations. Evans and Swartz (1995) suggested us- 

ing Mont e Carlo integrations for high-dimensional integration problems. Alternatively, if 

the number of transitions per subject is large, the penalized Wrelihood may be tried. Nev- 

ertheless, there is still no satisfactory estimation method for high-dimensional integration 

pro blems . 
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Non-parametnc mixing distributions may also be considered. However, we have to deal 

with a large number of parameters, which is Wrely to cause numerical problems even for 

moderately large samples. 

As advocated in chapter 4, speWfying proper intensity hinctions is more important in 

the sense that the degree of obsesved heterogeneity may be minimized and thus with an 

adequate model, even a fixed-&ect model may be satisfactory. 

6.3 Residual Analysis 

Ln fixed-effect models, there are three major model departures: specification of the func- 

tional forms of coMnates, specification of the baseline intensity and the assumption of 

multiplicity. Usefd residuals should have two basic properties of being sensitive to model 

departures and having known distributions under the assumed model. 

We consider the uniMnate intensity model A ( t )  = exp(xtf3)Ao(t).  Residuals are usudy 

constructed via the cumulative intensity between two consecutive events: 

where t j  is the occurrence time for the j t h  event such that to = O. If the rnodel is adequate, 

the r's evaluated under the trne parameter values are iid exponentially distribution with 

mean 1 (Lawless and Thiagarajah, 1996). A probability plot for the unit exponential 

distribution and an index plot may be constructed to examine the goodness of fit. In 

practice, estimates are used in place of the true values. The consequences are that the 

residuals are not independent and may be distributed differently fiom Ezp(1).  

The martingale residual is also popdar in the counting process approach. It is dehed  



for t > O, where Y( t )  is the indicator that the process is under observation at time t. This 

is the clifference between the number of observed events and the number of expected events 

under the model in [O, t]. It should be noted that the intensity generdy depends on the 

history of the process and thus the cumulative intensity itself is a model-based estimator for 

the expected cumulative counts, whereas the cumulative intensity of a Poisson process is 

equal to the expected cumulative counts. S trictly speaking, M ( t )  is the clifference between 

the observed and the estimated cumulative counts. 

The residual is usually taken as M(oo). An index plot is often constructed to check the 

rnodel adequacy. Also, plots of the martingale residuak against covariates provides useful 

ches on the appropriateness of the factional forms of covariates. 

Nevertheless, all residuals have to be evaluated at the estimates of the unknown param- 

eters. Baltazar-Aban and Pena (1995) showed that even for the ordinary Cox regression 

model, the properties of these estimated residuals are not weU understood. 

The residuals may be adjusted for the bias induced by the substitution of parameter 

estimates. Using a sùnilar argument in the adjusted score test proposed in chapter 3 

and treating the residuals as functions of the parameters, we may constrnct bias-adjusted 

residuals. Furt her investigations are necessary to study their properties. 

6.3.2 Random Effect Models 

In addition to the three main model departures mentioned in section 6.3.1, the specification . 

of a mixing distribution is another possible departue. For the widely-used gamma frailty 

models in survival analysis, Shih and Louis (1995) proposed a graphical method for the 

gamma mucing assumption. They pointed out that coMRate effects are usually multiplica- 

tive in most situations and the unknown baseline hazard may well be specified by either a 
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piecewise exponential model or a non-parametric model as in Clayton and Cuzidc (1985), 

Klein (1992) and Nielsen et al. (1992). The remaining major departure is then the gamma 

frailty assumption. By treating the posterior mean of the gamma kailty, given the data 

at  time t, as a stochastic process, Shih and Louis considered a the-plot of the centered 

posterior means with confidence bands, which resembles a usual residual plot. For frailties 

other than gamma, or for multivariate frailties, similar approaches may be computationally 

intensive as numerical integrations are necessary. Nevertheless, simulation studies (section 

4.2) demons trate that log-normal random effect models using the Gauss-Hermite integra- 

tion and non-parametric random effect models using the EM algorithm provide similar 

and valid inference for parameters in the intensity function, even for misspecïfied mixing 

distribution. Therefore, checking the assumption of a mWng distribution may be of only 

secondary relevance for practicd problems. 

In general, the adequacy of the model may be examined by constructing residuals similar 

to those in fixed-effect multiplicative intensity models. Here we propose some methods for 

the construction of such residuds. 

Conditional Residuals 

Suppose the random effects and parameters were known. We may consider the conditional 

residual, given the random efTect, defined as 

where &(a, b) = j:Xo(t)dt. The rj's are independently and identically distributed as 

Exp(1 ) .  In the case of censoring, the conditional expectation given that the event t h e  is 

greater than its censoring time, may be used (Lawless, 1982). It is expressed as 



CHAPTER 6. FURTHER RESEARCH 182 

Residual plots can then be constructed. For examph, a probability plot for an exponential 

distribution with unit mean can be used to assess the distribution of the residuals. Plots of 

the log-transformed residuals against conriates provide u s a  clues about the functional 

form of covariates. In applications, the residuals may be estimated by replacing the pa- 

rameters by their estimates and the random effects by thek posterior means, E[VlR(r)], 

where R(T) is the history of the entire observation period. 

Margind Residuals 

For small numbers of recurrences, the posterior mean of V may not be a good estimate of 

V. In such situations, it might be more appropriate to consider the unconditional residual. 

Since the marginal intensity conditional on the history is given by 

the unconditional residual is thus defined as 

where X ( t )  = (N(s)lO < s < t).  For simplicity, we drop the dependence of R(t) on 

A(t(.tr(t)) and Ao(t lX( t ) ) .  Let & ( O )  be the Laplace transform of V. Using the conditional 

likelihood for X ( t )  given v ,  

it is straightforward 

j=l 

to show that 
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Suppose V is gamma distributed with mean 1 and variance o; then 

and thus the residual becomes 

because N ( t )  is constant in the interval [tjml, t j ) .  Recall that the baseline intensity is 

in general a function of 'Fl(t). Etence, residual plots for these r's can be constructed. 

Nevertheless, other mWng di~tnbutions may not result in such a nice expression. Further 

s tudies are necessary. 

Martingale Residuals 

Alternatively, a martingale residual is given by 

A gamma mixing distribution would lead to a simple expression: 

Now the martingale residual and the covariates are related in a complex way. Although it 

is difficult to reveal the functiond forms by plot ting residuals against covariates, an index 

plot is still able to provide a valid overall check. 



Pearson Residuals 

In GLM: the Pearson residual is widely used (McCdagh and Nelder, 1989). This approach 

may be useful for muted point processes provided we can find E ( N ( r ) )  and var(N(r) ) .  

Consider a mixed Poisson process. The marginal mean and variance are equal to 

The Pearson residual is defined as 

However, other point processes such as the renewal process may not have closed-form 

expressions for the marginal mean and variance of N ( r ) .  

On the whole, there are serious limitations for the residuals defined in this section. Dif- 

ficulties are mainly due to the random effect, which often causes computational difficulties. 

Despite this, studying the properties of residuals under certain restricted assumptions, such 

as gamma mixing distributions, is useful in its own right and may provide insight for more 

general situations. 

6.3.3 Marginal Models 

Pearson residuals can be constructed for the marginal mode1 discussed in chapter 5. Recd  

that for a univariate point process, E ( d N ( t ) )  = h( t )dv( t ) ,  var(dN(t)) = v( t )dv( t )  and 

cov(dN(s), dN(t))  = c(s, t)dv(s)dv(t) for s # t. We find 
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Hence, Pearson residuals with robust variance can be defined as in (6.3.1). 

6.4 Detecting Influential Observations 

It is possible that the observed heterogeneity may be due to a few iduential subjects. 

One should first re-examine the observations from these subjects. If no human errors are 

found, removal of these subjects may lead to a simpler model that provides a better fit to 

the data. Analogous to the ordinary linear regression model (Cook and Weisberg, 1982), 

we suggest a deletion diagnostic for the random effect model. 

Recall that the parameters 4 corne from three components: the regression, the baseline 

intensity function and the mWng distribution. Let 4k be the kth element of 4. Let 4k 
and Jkci) be the maximum likelihood estimates of q5 using ail subjects with and without 

the ith subject in the sample respectively. The ith 

in the estimation of #k if 
&(il - J k  

Jzz 

subject is considered to be i d l e n t i d  

(6.4.1) 

is large. A summary influence statistic similar to the Cook's distance may be defined as 

(6(il - 6 ) ' ~ ~ 1 ( 6 ~ i l  - 6) 7 (6.4.2) 

where fii) is the estimated asymptotic covariance matrix of #( i l .  Again, the ith subject is 

considered influentid if this statistic is large. 

Further study is certainly warranted to explore the value and role of deletion diagnostics 

in the context of mixed point processes. 
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6.5 Goodness-of-Fit Tests 

In addition to the unclear distributional behavior of the estimated residuals, visual inspec- 

tion of residual plots may be too subjective. It  is therefore desirable to develop global 

goodness-of-fit tests. In particular, the IM test has been widely used for this purpose. 

Using the IM test, Lin and Wei (1991) constructed goodness-of-fit tests for Cox regres- 

sion models. Crouchley and Pickles (1993) illustrated the use of the IM test in univariate 

and multivariate parametric proportional hazards models. Using a real example, Crouchley 

and Pickles demonstrated that the conventional residnal plot failed to indicate a departure 

due to the omission of important covariates, while the IM test of homogeneity did detect 

such a departure. 

The Ih4 test may be considered as an omnibus goodness-of-fit test for the random effect 

model. The model consists of t hree components, the covariate &ect , the baseline intensity, 

and the random effect, parameterized by P ,  7 and a respectively. Let Q = (P 'J ' ,~) ' .  

An IM test can be constructed hom the distinct elements of the information difference: 

The variance of the statistic can be found ushg the formulae in section 3.3.1. This is a 

X2 test with degree of freedom pR(l  + p')/2, where p. = d i n ( 4 ) .  Large value of the test 

statistic indicates model inadequacy. The total nwnber of parameters is often quite large, 

and in such a case, one may use the diagonal elements of the information diffaence in the 

test. 

Specific types of model departure rnay be investigated by considering subsets of the 

elements of the information Merence. Since the effects of iinmeasured covariates have 

mostly been taken into account by the random effect, it seems appropriate to consider the 

following three tests : 
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Testing for constant regression coefficients, excep t for the intercept . Rejection of the 

test may indicate non-multiplicative covariates or incorrect fimctional forms of the 

covariate effect. 

Testing for constant parameters of the baseline intensity. Non-cons t ancy may indicate 

h c t i o n a l  forms other than the assumed form, or pahaps that more subdivisions of 

the t h e  axis are required for a piecewise exponential model. 

Testing for constant parameters of the mixing distribution. This may indicate that 

the mixing distribution is misspecsed. 

Although the test for a particular condition may be sensitive to the other conditions, these 

tests nevert heless may provide a m d e  indication to the type of model departure. Since the 

miKing distribution may have little influence on the estimators for covariate effects based 

on previous studies, and a piecewise constant baseline intensity should approximate well 

the tnie baseline intensity, we recommend that one should focns on tests related to the 

regression coefficient S. Further investigation of these goodness of fit tests are required. 

6.6 Concluding Remarks 

Ln this thesis, we investigated three important aspects in the analysis of event history data 

with an emphasis on developing an appropriate modeling strategy. This strategy should 

consist of cyding through stages of mode1 specification, mode1 estimation and model diag- 

nostics. In the f i s  t step of the strategy, we consider two types of models for analyzing two 

difFerent properties of the processes: the intensity functions and the mean rate functions. 

The choice between these models depends mainly on the problem at hand and the assump 

tions one is willing to make. For example, an intensity model with random effects is used 

for the CKEST study because the rates of transitions to exacerbation and symptom-fiee 

states are the main concern. The transitional intensities are specified quite generally by 
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incorporating difFerent time scales, and the piecewise constant h c t i o n s  are employed to 

achieve robustness to misspecification. In contrast, a marginal model is used for the anal- 

ysis of the bronchid asthma study because the mean number of days with symptoms is 

the study objective. 

In the second step, we studied the performance of two popular methods of estimation 

for random effect models, and developed an estimating function approach based on mixed 

Poisson processes for marginal models. Gauss-Hermite integration and the EM algorit hm 

perf'orm quite satisfactorily for parametric and non-parametric mixing distributions respec- 

tively for univariate and bivariate processes. The mixed Poisson estimating h c t i o n  serves 

effectively as a working structure for robust inference based on the marginal mode1 if the 

covariance structure is iinknown. Consistent estimates for the parameters in the mean 

h c t i o n  are still a d a b l e  with robust variance estimates. 

The last step or the cycle has not yet been well developed in the literature. The tests 

of homogeneity we proposed may serve as goodness-of-fit tests for fixed-effect rnodels. 

As discussed in the above sections, satisfactory model diagnostics for random effect and 

marginal models are s t ill unavailable. 

Methodology for the analysis of event history data continues to be the focus of much 

ongoing research in statis tics. This thesis contributes some potentially usefid models and 

met hods to this field, and provides useM insight for furt her research. 



Appendix A 

Tests of Homogeneity 

A. 1 Parametric Models 

A. 1.1 Expression for Te, (6)  

From (3.5.2), one can easily show that 

where &(O) = exp(x~)Ao(ri). Under Ho, the ni are independent and distributed as 

Poisson with mean & ( O ) ,  therefore, we have 
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A.1.2 Expression for Io(@)  

The log-likelihood under Ho is given by 

Thus, the score functions are easily seen to be 

By partitioning the expected Fisher information matrix conformably to (P': 77, one can 

show that 

where 

The expectation in 1,(8) can be obtained by noting that given N;(T;) = ni, the event times 

fil ,  ..., tini are i.i.d. with probability density function f (tlni) = A o ( t ) / ~ ( ~ i ) i  for O 5 t 5 Ti. 

Therefore, we have 

a2 log Xo (t,) 
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Depending on the fimctional form of Ao(t), one may need to evaluate the above integral 

numerically. Nevert heless, closed form expressions are a d a b l e  for Weibull and piecewise 

exponential specifications. 

Since the Ni(t) are independent, C O V ( ~ ~ ,  U ( 8 ) )  = C O V ( ~ ~ ,  Il@)), where Ui(8) is the score 

function for subject i. Fkst we consider the covariance between ni and the score h c t i o n  

of p: 
cov(ni, (ni - k(0 ) )x i )  = Ai(@)=, = a&(O)/&3, 

because ni is distributed as Poisson with mean &(O) .  Next, using the argument given in 

section A.2, the covariance between ni and 

Hence , 

the score h c t i o n  of 7 is equal to 

( ni / . . a l ~ g & ( t ) ~ ~ ~ ( ~ ) )  
cov ni, - 

M G )  0 a7 

ni a log Xo (tij ) 
Ni(7i) = n; 
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A.2 Semi-parametric Models 

A.2.1 Derivation of the Score Statistic 

The score statistic is given by 

where L& alai) is the conditional partial likelihood due to the i subject in (3.5.9) and 

r)i = x:P + (TU;. It is straightforward to show that 

A.2.2 Martingale Representation of Score Statistic 

By the integration by part formula (Fleming and Harrington, 1991 Theorem A.1.2), we 

can express the squared martingale residual (3.5.1 1) as 

Since no two processes can jump at the same t h e  and the Ni(=)  are orderly processes, the 

last term in (A.2.1) can be written as 
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Fiirthermore, by (3.5.8) with o = O, we can rewx-ite 

Therefore, the score statistic at t h e  t is given by 

A.2.3 Proof of c o v ( ~ ~ ( p ) ,  U(p))  = -E(J i (P))  

The score function under Ho at time t is given by (Fleming and Harrington, 1991 ~150) 
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=< l - d M ( s )  - Il w i ( s ) d ~ - ( s ) ,  2 / ( x j  - E(8))dMj(s)  > ( t )  
j=l O 

because Cg, ( x j  - E ( s ) ) q ( s )  exp(x>/3) = O for s > O. Hence, 
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