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Abstract

There has recently been considerable interest in the development of statistical methodology
for the analysis of event history data. Most of the existing methods are directed to single-
event time data or to tramsitional data based on Markov and semi-Markov assumptions.
In many longitudinal studies, however, extensive subject-to-subject variability is present.
Although the literature of statistical methods for the analysis of heterogeneous failure time
data is vast, there remains a need to further investigate a number of issues pertaining to
frailty models for failure time and more general event history data. The goal of this thesis
is to develop and investigate statistical methods for modeling heterogeneous event history
data. Specifically, we will focus on three areas: (z) tests of homogeneity; (:z) estimation
with multiplicative random effects for intensity models; and (7iz) marginal models based on
cumulative mean functions for point processes. A strategy used throughout this thesis is to
adopt piecewise constant baseline functions as a compromise between standard parametric
and semi-parametric models.

Score tests are often used to test for homogeneity. We provide empirical evidence that
score tests tend to have poor performance in the context of point processes with small
to moderately large samples. Adjustments for the bias of the score statistics, induced by
the substitution of parameter estimates, are derived for Poisson processes with parametric
and semi-parametric specifications. Simulation studies suggest that the adjustment to the
score test leads to much better performance in small samples. The tests based on piecewise
constant intensities proves to be particularly attractive in terms of the type I error rate.

Methods of parameter estimation for mixed point processes are investigated by sim-
ulation based on Gauss-Hermite integration and the EM algorithm for log-normal and
non-parametric random effects distributions respectively. Mixed Poisson and mixed re-
newal processes are considered. We find that the parameters of the intensity function

can be estimated with negligible bias and with quite efficient variance estimates by these

v



methods, regardless of the true underlying mixing distribution. However, the estimate for
the dispersion parameter tends to be positively biased for the Gauss-Hermite integration
when the true mixing distribution is highly discrete. In contrast, variance estimates for
the estimates of the masses and mass points are inflated based on the EM algorithm if
the true dispersion parameter is large. These methods of estimation are also investigated
in the context of a mixed two-state processes. Models which accommodate multiple time
scales are also examined here.

Finally, when interest lies in relating the number of events of a point process to covari-
ates, an alternative approach based on mean functions and estimating functions may be
employed. We develop and investigate such a model in the context of bivariate point pro-
cesses. The model formulation only requires correct specification of the mean functions and
thus full probabilistic specification of the processes is avoided. An optimal criterion is pro-
posed for the estimation function of the mean function parameters. Estimating functions
arising from mixed bivariate Poisson processes are introduced as a working model when
the covariance structure is unknown. Simulation studies indicate that the mixed Poisson
estimating function performs satisfactorily. Data from a recently completed asthma clinical
trial are used to illustrate this approach.

Although only univariate and bivariate processes are studied here, the methods devel-
oped here provide insight and lay the groundwork for methodology directed at the analysis
of higher dimensional processes.
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Chapter 1

Introduction

1.1 Overview

In longitudinal studies, subjects are often observed over a period of time during which
certain events of interest are recorded. For example, in studies of small bowel motility,
times between the migrating motor complex are an important measure for gastrointesti-
nal function in humans (Aalen and Husebye, 1991). As another example, patients with
chronic bronchitis experience acute exacerbations of symptoms which typically alternate
with periods of good respiratory health (Fietta et al., 1992), and the durations of these
symptomatic and symptom-free periods are of interest. Other clinical examples arise from
fields such as gastroenterology (Rokkas et al., 1995), infectious disease (Nagelkerke et al.,
1990), and psychiatry (Frank et al., 1990). Such chronic disease processes are often very
naturally modeled by means of event history analysis.

A frequently occurring complication in chronic diseases, however, is that individuals ex-
hibit extensive subject-to~subject variability in their disease processes. When this variation
is inadequately characterized by available covariates, this phenomenon is termed hetero-

geneity. Latent (unobserved) genetic and environmental factors, or covariates subject to
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measurement errors, are common causes of heterogeneity. An artifact of this heterogene-
ity is that a clustering effect is induced in the data. That is, responses such as event
times, arising from subjects with comparable latent factors tend to be more similar than
responses arising from subjects with very different latent covariates. There has recently
been considerable interest in the development of methods for the analysis of heterogeneous
event history data with the two most common approaches being based on random effect
(frailty) models (Clayton and Cuzick, 1985; Aalen, 1988; Klein, 1992; Nielsen et al., 1992)
and marginal models (Lin, 1994; Lawless and Nadeau, 1995). Focus is mainly given to
multivariate survival data (Wei et al., 1989), mixed Poisson processes (Lawless, 1987) and
mixed renewal processes (Aalen and Husebye, 1991). There is, however, a lack of literature
on more general stochastic processes.

In this thesis, we aim to develop statistical models and methods of inference for het-
erogeneous multivariate processes. In what follows, we use the term multivariate processes
to refer to either multi-dimensional point processes, or multi-state processes. The general

objectives of this thesis are to
(2) develop hypothesis tests of homogeneity;

(¢2) consider issues in model formulation and statistical inference for random effect models

in event history data; and

(¢22) propose model formulation and develop robust inference procedure for mean and

covariance functions based on the cumulative number of events.

Since the frailty model plays an important role in the analysis of heterogeneous time
to event data, a review of frailty models is given in chapter 2. In chapters 3 to 5, we will
study the above three topics in details. Topics for further research are discussed in chapter
6.

In sections 1.2 and 1.3 of this chapter, the above three topics of research are briefly
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introduced. Section 1.4 presents three examples in which the proposed methods will be

applied.

1.2 Model Formulation, Estimation and Inference

1.2.1 Mixed Univariate Point Processes

A point process is a sequence of event times governed by an intensity function. Let N(s,¢)
be the number of events of a subject occurring in an interval (s,£] for s < ¢t. Furthermore
let N(t) denote N(0,t), where ¢ is an appropriate time scale, such as the time since the
diagnosis of the disease, age, time since randomization, or calendar time. Let H(t) =
{N(s)|0 < s < t} denote the history of the process up to time . Given H(¢), the intensity
function, A(¢|H(¢)), is defined through the transition probabilities in a small time interval
[t,t + &t), as 8t — 0,

Pr(N(t,t + 8t) = 1|H(t)) = A(t|H(t))dt + o(dt),
Pr(N(t, t+dt) > 1|H(t)) = o(dt).

We assume that this is an orderly process, i.e., at most one event can happen at any
instant (Cox and Isham, 1980). Two widely applied classes of point processes are the
Poisson process and the renewal process. Statistical properties of the Poisson and renewal
processes can be found in some standard textbooks such as Cox (1962), Karlin and Taylor
(1975) and Cox and Isham (1980).

The transition probabilities of a Poisson process do not depend on H(t). Its intensity
is a deterministic function of time ¢, and we said that it possesses a time trend. It is also
well known that N(f) has a Poisson distribution with mean A(t) = 5 A(s)ds and that the

numbers of events in non-overlapping time intervals are independent.
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On the other hand, the transition probabilities of a renewal process depend only on
the time since the occurrence of the last event, i.e., its intensity is a function of backward
recurrence time ¢ — tx(;—) where ¢, is the event time for the kth event. This implies that
the inter-event times are independent and identically distributed (iid) with hazard function
h(s) = A(s +tn-)|H(E)) for s > 0. Thus, a renewal process has a stable cyclical behavior.

Furthermore, if both a time trend and cycles are expected, Cox (1972a) introduced
the modulated renewal process which incorporates a time trend into a renewal process by
considering the intensity as a product of a function of time ¢ and a function of backward
recurrence time £ —£¢y(;—). Methods of estimation for parametric and semi-parametric mod-
els under homogeneity assumption were investigated by Lawless and Thiagarajah (1996)
and Oakes and Cui (1994) respectively.

" In order to study the effects of covariates over a sample of m subjects, we consider the
popular multiplicative intensity model (Andersen et al., 1993). Now the history for the ¢th

subject becomes
Hi(t) = {N;:(3), Xi(s), Yi(s)|0 < s < £}, (1.2.1)

where {X;(t)} is a p x 1 covariate process, and Y;(¢) is a censoring process for subject
i. We make the following essential assumptions on the covariate and censoring processes

(Andersen et al., 1993 Chapter VII):

1. the covariate processes are predictable with respect to the underlying filtration gen-

erated from the H;(¢)’s and locally bounded;

2. the censoring processes are predictable and do not depend on the parameters in the

intensity function.

Typically, Y:(¢) = I(t € [ri1, T:2]}, where I(-) is the indicator function, and 7;; is the time
of entry of the study and 7;, is the right-censoring time for the ith subject. We also

assume subsequently that ;, and 7, are stopping times with respect to H;(t), see Aalen



CHAPTER 1. INTRODUCTION 5

and Husebye (1991) and Andersen et al. (1993, Chapter III) for discussion. In the case of
random effect models, we further assume that 7; and 7;; are independent of the random
effects given #H;(t) (Andersen et al., 1993 Chapter IX).

Note that all inferences are based conditionally on the covariate and censoring processes.

The intensity function for subject % is formulated as

Ai(t[Ha(E)) = exp(@(¢)B) ho(¢[Hi(2)), (1.2.2)

where 3 is a vector of regression coeflicients and Ajo(¢|H;(£)) is an unknown subject-specific
baseline intensity which may be function of past events.

The baseline intensities may not be the same for all subjects due to heterogeneity.
Although this specification seems to be more flexible than the multiplicative frailty models,
there is a serious drawback. If the baseline intensities are unspecified, the time-independent
covariate effects are completely confounded with the baseline intensities and thus are not
estimable. Even when parametric baseline intensities are assumed, we still run into the
trouble of having a large number of nuisance parameters which is proportional to the
sample size.

Since the observed covariates act multiplicatively, we may assume that the subject-

specific baseline intensities are also proportional to each other and write

Aio (B[ Hi(2)) = vira(E[Hi(2)), (1.2.3)

where the v;'s are the unknown proportionality constants and Ag(:|-) are the common
baseline transition intensity. Additional model structure is still needed to overcome the
problem of over-parameterization. As in many random effect models, we postulate that
the V;’s are sampled independently from a distribution. We further assume that the three

cormponents of the model, the covariates, the random effects and the baseline intensity, are
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j(t) xll(t) xl(t)
u

Figure 1.1: A random effect model for point processes, where the box represents the
ocurrence of an event.

mutually independent. As a log-link function is adopted for the covariates, it is sometimes
more convenient to apply the log-transform for V; and denote U; = log(V;). For the sake of
identifiability, we restrict the mean of U; to be 0. Let G(u) be the distribution function of
U; and o be its variance. Very often, G(u) s also called mixing distribution. Given u; {or
v;), (1.2.2) is the conditional intensity with respect to the random effect. To distinguish
the conditional and unconditional intensities, we adopt the universal notation and write

the conditional intensity (1.2.2) as

Ai(thus; Ha(t)) = exp(2:(£)B + ui) Ao(t]Ha(2)) (1.2.4)

Note that now #;(t) contains only the observed information of the process in (0, ).
Model (1.2.4) is depicted in Figure 1.1. As covariates can be functions of past events,
autoregressive structures are allowed. For instance, the intensity may depend on the pre-
vious sojourn times.
Maximum likelihood estimation for random effect models (1.2.4) for univariate point

process requires the knowledge of the mixing distribution which is usually unknown. Mis-
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specification of the mixing distribution may lead to inconsistency and loss of efficiency in
parameter estimation. Fortunately, Pickles and Crouchley (1995) suggested that this is not
a serious problem. They carried out a comparison study for different mixing distributions
used in bivariate failure time data based on simulations and demonstrated that there is
some robustness to a misspecified mixing distribution for the estimation and testing of
regression coefficients. Models using the popular log-gamma or normal frailties perform
well even in the presence of a substantial non-susceptible group (i.e., its hazard rate is
zero). However, the non-parametric mixing distribution, which was thought to be ro-
bust to misspecification, did not perform well for heavily censored data. They suggested
that computational convenience and the chnice of the baseline intensity seem to be more
important criteria than the choice of the mixing distribution.

Model (1.2.4) can be estimated by a number of approaches which will be discussed in
chapter 2. Some approaches are particularly useful for certain types of mixing distribution,
for example, the EM algorithm is usually applied for a non-parametric mixing distribution.
A comparison of some of these estimation methods via simulations is considered in chapter

4.

1.2.2 Mixed Bivariate Processes

The concept of heterogeneity may be extended to multivariate processes in a similar fash-
ion. This amounts to specify a multivariate mixing distribution such that each mixing
component acts multiplicatively on exactly one intensity function. The choice of mixing
distribution becomes heavily reliant on the tractability of likelihood function. Aalen (1987)
suggested approaches in estimation for Markov processes in which the baseline transition
intensities are time-invariant. A model of this sort was also considered by Cook and Ng
(1997) for a two-state Markov chain in which a logistic-bivariate normal model was used to

describe heterogeneity in data from an infection field study (Chunge, 1989). In addition, a
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bivariate frailty model for in-patient mental health care was proposed by Xue and Brook-
meyer (1996) using semi-Markov processes with bivariate log-normal frailties. However,
not much work has been done for more general processes so far.

Since many applications give rise to bivariate point processes or two-state processes,
we will focus on modeling such processes.

Suppose m subjects are followed over time generating m independent bivariate point
processes characterizing two types of events. We assume that the processes are orderly. Let
N;;(t) be the number of the jth type events occurring in (0,t] and N;.(¢) = N (t) + Niao(t).
Let A;;(t[#H:()) denote the jth intensity function for subject z at time ¢ given the history of
the process up to time £, H;(t) = {Ni1(s), Nia(3), Xi(3),Yi(s)|0 < s < t}, for j = 1,2 and
t = 1,...,m, where the covariate and censoring processes are defined as in section 1.2.1.

That is, as 6t — 0%,

Pr(Ni(2,t + 6t) = 1[Ha(t)) = Yi(t)A(£[Ha(t))8t + o(8t),
Pr(N(t, t + 6t) > 1|Hi(t)) = Yi(t)o(dt),

where Nj;(s.t) = N;(t) — Ni;(s) is the number of the jth type events occurred in (s, ]
for s < t. If simultaneous occurrence of both types of event is allowed, we define the
instantaneous rate as Pr(N;; (¢,£ 4+ ) = 1, Npa(t, t + 6t) = 1|Hi(t)) = Yi(£) haro(E|Hai(2)) 0t +
o(dt).

When a two-state process is entertained, we define N;;(¢) to be the number of 7 — 3—7
transitions in (0, f] and Y;;(¢) = 1 if subject ¢ is in state j at time ¢~ and 0 otherwise. The

history of the process up to time ¢ is the collection
Hi(t) = {Nu(s), Na(s), Yar(s), Yaa (), Xi(s), Ya(s)[0 < s < t}.

Let A;;(t|Hi(t)) be the j — 3 — j transition intensity given H;(¢). Simultaneous transition
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in both directions is impossible and thus A;2(¢[H;(¢)) = 0. In addition, the transition
probabilities over a small time interval [¢,¢ + 0t) are defined as, for 6t — 0F,

i

PI‘(Nﬂ(t,t + Jt) = 1, Mz(t, t+ Jt) = Ulw(t))
Pr(N;(t,t 4 6t) = 0, Npa(t, t + dt) = 1[H:(2))

Yi(#)Ya (2) (A (2 Ha(2)) 0t + o(82)),
Yi(2)Yaa(8)( Mz (8 Ha(£)) 62 + 0(61)),
Pr(Nu(t,t + 6t) = 0, Noo(t, £+ 8t) = 0|H:(2)) = 1-Yi(¢) i Y () [ A (81 Ha(2)) 02

=1

+o(4t)],
Pr(Nyj(h, ¢ +6) > 1Hi(t)) = Hi(O)¥i(t)o(6t), G=1,2

The two-state process differs from the bivariate point process in that we observe not only
{Nu(t), Ni2(t)} over time, but also {Y;;(2), Yi2(¢)} such that Y (¢) + Yia(t) =1 for ¢ > 0.
We are now going to formulate the intensity functions for the bivariate point process or
the transition intensity functions for the two-state process. Assuming that simultaneous
occurrence of both types of event is not allowed, a mixed multiplicative intensity model

similar to (1.2.4) may be formulated as follows:
Aij (t]ui; Ha(2)) = exp(;;(8)B; + uij) Ajo (£ Ha(E)), (1.2.5)

where z{.() is a p; x 1 vector of covariates, B; is a p; x 1 vector of fixed-effect regression
coefficients, #; = (u;1,u:2)’ is a bivariate vector of random effects with distribution function
G(-;o) indexed by o, and A;p(t|H;i(t)) is an unknown baseline intensity for the jth type
of event or the § — 3 — j transition and is common to all subjects.

As in the univariate point process, we assume the U;’s are independent and identically
distributed, and the covariates, the random effects and the baseline intensities are mutually
independent. Figure 1.2 shows this model diagrammatically for a two-state process.

Markov processes and semi-Markov processes are widely applied in which the baseline
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x,(t) x,(t) x,(t) x,(t)
— 1 2 1 12—

u, u,

Figure 1.2: A random effect model for two-state processes, where the number inside the
box represents the current state.

intensities are specific functions of H;(t). We first introduce the formulations for a semi-
Markov process and a process combining the Markov and semi-Markov properties, and

then describe some issues pertaining to model inference.

Alternating Renewal Process

An ordinary two-state semi-Markov process is also known as an alternating renewal process.
This process has the following three properties (Karlin and Taylor, 1975, p207 and Cox
and Isham, 1980, p55):

1. the distribution of the duration in either state depends only on the time since the

entry to that state;
2. durations in each state are independently and identically distributed; and
3. durations in different states are independent.

Loosely speaking, these properties imply that the process under consideration is relatively

stable with fairly regular cycles of relapsing and remitting disease activity. Such a structure
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is quite plausible for applications to many chronic diseases.
Given the renewal characteristic, the baseline intensities are functions of time since the

most recent entry into the current state, in other words,
Ajo(tHi(2)) = Ajo(t — tne~)): (1.2.6)

where ti. is the kth transition time.
If the covariates are also functions of duration times (£ — ¢y, (¢-)), this process belongs

to the multivariate failure times model in time to event analysis (see chapter 2).

Modulated Alternating Renewal Process

The Markov process is a multi-state generalization of the Poisson process. Its baseline
intensities are also functions of time alone, that is. Ajo(¢|H:i(¢)) = Ajo(t). This essentially
assumes that time trends exist in all possible transitions. Incorporating this property into a
semi-Markov process gives rise to a multi-state version of Cox’s modulated renewal process.
Here we will consider two-state processes.

Since many chronic diseases consist of relapsing and remitting disease cycles, exhibit
seasonality, and show persistent risk, it is desirable to adopt a model which incorporates

these behaviors simultaneously. We propose a multiplicative components model as follows:
Aij(Elus; Ha(t)) = exp(zi;(2)B; + i) Si(ci(t)) R;(b:(¢)) Ti(¢), (1.2.7)

where S;(-), R;(-) and Tj(-) are the seasonal component, the semi-Markov component and
the Markov (time trend) component for the j — 3 — j transition respectively, ¢ is the time
since diagnosis of the disease, ¢;i(t) = t + ¢;(0) is the calendar time, ¢;(0) is the date of
diagnosis of the disease and b;(t) =t — tn; (:-) is the backward recurrence time for subject

1.
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This sort of model with parametric specification allows tests for renewal or time trend;
see Lawless and Thiagarajah (1996) for the treatment of univariate point processes. Model

(1.2.7) will be applied to a data set in chapter 4.

Mixing Distribution and Maximum Likelihood Estimation

A number of methods for constructing a bivariate mixing distribution are discussed in
Chapter 2. It is important to choose a distribution so that there is no direct functional
relationship between the variances and the correlation of the intensities, i.e., a genuine
bivariate distribution is most desirable (Lindeboom and Van Den Berg, 1994). A bivariate
normal distribution is an obvious natural candidate. In chapter 4, we will also consider a

bivariate non-parametric mixing distribution.

1.2.3 Marginal Models for Mean and Covariance Functions

Marginal models are also popular in Cox regression models (Lin, 1994) and in generalized
linear models (Clayton, 1994). In many situations, we are mainly interested in modeling
covariate effects on the average number of events occurring over a certain time interval. A
marginal approach may be useful for this purpose.

In univariate point processes, Lawless and Nadeau (1995) constructed estimating func-

tions for the cumulative mean function (CMF)

E(N () = [ " A(s)ds

using Poisson likelihood estimating equations with robust variance estimates. Nadeau and
Lawless (1996) extended this to obtain optimal estimating functions by specifying the
covariance process of {dN(t)}, where dN(t) = N(t) — N(t7).

The merit of this method is that it is not required to specify the complete probabilistic
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structure of the process and yet consistent estimates for the CMF are still available. In
chapter 5, we will develop a robust model for bivariate point processes based on this idea.

It is important to note that the assumptions on the censoring processes and covariate
processes under this framework are slightly stronger than that in intensity models which
require predictability only. Valid inference for the CMF requires that the censoring pro-
cesses are independent of the point processes and the covariate processes are external in

the sense of Kalbfleisch and Prentice (1980, p.123), see Nadeau (1995) for discussion.

1.3 Tests of Homogeneity

In epidemiology, it is often important to know whether the target population is homoge-
neous with respect to some features of interest. This also relates to testing goodness of fit
where the presence of heterogeneity may imply that the available covariates are inadequate
to explain the variation of the response.

Homogeneity in random effect models is equivalent to zero variance of the random

effects. Thus, the null hypothesis of homogeneity is stated as
Hy:0 =0.

Score tests are often employed to test for homogeneity in the context of generalized
linear models (Liang, 1987; Dean, 1992). We will construct such tests for mixed univariate
point processes in chapter 3. For small sample sizes, the distribution of the score test
statistic may not be approximated well by a normal distribution. To investigate this, we
carry out a simulation study to investigate the performance of score tests based on their
asymptotic distribution for renewal and Poisson processes with small and moderate sample
sizes. Focus will be on adjusting the test statistic in order to improve the performance of

the test in small samples. Adjusted score statistics for Poisson processes with parametric
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and semi-parametric specifications will be derived and their frequency properties will be
studied in chapter 3. Possible testing strategies with regard to bivariate processes are

discussed as well.

1.4 Applications in Medical Studies

In this section, we describe three medical applications which can be modeled by the meth-
ods proposed above. The first study furnish the so-called recurrent event data, the second
study belongs to the class of two-state processes, and the last study constitutes an example

of bivariate point processes.

1.4.1 Gamma Interferon in CGD

In 1988, the International Chronic Granulomatous Disease (CGD) Cooperative Study
Group conducted a randomized and double-biinded controlled clinical trial to study the
effect of gamma interferon on reducing the rate of recurrence of serious infections due to
CGD. There were 128 eligible patients with CGD of which 65 received placebo and 63
received gamma interferon. These patients were followed for about one year during which
dates of the diagnosis of serious infections were recorded. In the placebo group, there were
18, 5, 4, 1, 1 and 1 patients who experienced 1, 2, 3, 4, 5 and 7 serious infections respec-
tively. In the gamma-interferon group, there were only 9, 4 and 1 patients who experienced
1, 2 and 3 serious infections respectively. In addition to the treatment variable, there were
eight time-independent covariates measured at the time of randomization (see Table 3.18).

A detailed description of this study can be found in Fleming and Harrington (1991).
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Figure 1.3: Sample Profiles of Exacerbation Patterns from the CHEST Study. Filled boxes:
Exacerbation durations; Open boxes: Inter-exacerbation durations.

1.4.2 The CHEST Study

In 1993, Bayer Canada Inc. initiated a large multi-center randomized trial designed to
examine the effect of Ciprofloxacin versus standard care on acute exacerbations of chronic
bronchitis. One major objective of this trial was to assess the cost effectiveness of Cipro-
floxacin and hence the study was called “Ciprofloxacin Health Economic Study” and re-
ceived the acronym “CHEST”. The analyses that we will focus on, however, are directed
strictly at assessing the clinical effectiveness (e.g. no economic considerations will be made).

Patients with this disease experience acute exacerbations of chronic bronchitis (AECB)
and symptom-free periods in an alternating fashion. Figure 1.3 illustrates typical patterns
of chronic bronchitis durations. In this figure, the lengths of the horizontal bars represent
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the total durations of follow-up for 9 patients, the filled boxes indicate days during which
symptoms were manifested, and the open boxes reflect the symptom-free periods. It is clear
that some patients tend to have exacerbations of symptoms of a longer average duration
than the others (e.g. compare patient 1101 to patient 51106) and some tend to have these
exacerbations more frequently than the others (e.g. compare patient 7108 to patient 58201).
Clinically, this means that while a particular patient may have a relatively stable disease
process, different patients tend to experience exacerbations of symptoms at varying rates
and of varying mean durations. This is the sort of disease process described in section
1.2.2.

To be eligible for the study, patients must have been eighteen years or older, diagnosed
with chronic bronchitis, able to maintain a daily diary to record the extent of health
resource utilization, able to understand and complete detailed health status questionnaires,
and must have been concurrently experiencing an acute exacerbation of symptoms. After
randomization, follow-up visits were scheduled to take place at three-month intervals as
part of the regular assessment program. In addition, patients were also required to visit
their participating clinic when they perceived that a new exacerbation was beginuning, or
when they determined that an exacerbation was resolved. A consequence was that it was
possible to determine the exact transition times corresponding to the onset and resolution
of symptoms. Patient follow-up was to continue for 365 days, but early termination could
occur if a subject refused to complete their symptom diary, refused to return for further
follow-up visits, or died. There was a total of 115 eligible patients randomized to receive
Ciprofloxacin and 107 randomized to receive standard care. The average duration of follow-
up was 357 and 350 days in the Ciprofloxacin and standard care groups respectively.

In addition to the treatment variable, potential risk factors were also measured. These

covariates were

1. factors characterizing the exacerbation at the time of randomization:
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number of symptoms present, use of prior antibiotics therapy for the exacerbation

and duration of symptoms,

2. factors characterizing the nature of the chronic bronchitis:
severity as determined by physician assessment, bronchitis duration and the number

of exacerbations in the past twelve months,

3. miscellaneous medical abnormalities:
cardiovascular, gastrointestinal, musculoskelatal, central nervous system, endocrine,

hematologic and hepatic,

4. other factors:

gender, age at randomization and smoking history.

The codings of these covariates are listed in Table 1.1.

It is important to note that this study is somewhat different from most trials in chronic
bronchitis in that follow-up was sufficiently long that multiple exacerbations could be
observed. Most often, studies are designed to examine the impact of treatment on the
resolution of a single exacerbation (Fietta et al., 1992). In addition, the exacerbations
were defined in terms of symptoms only, with the onset and resolution dates determined
by patients themselves. Often assessments of exacerbations are based on serological tests
and laboratory measures of lung function. Finally, rather than having a specified control
treatment, patients on the standard care arm received whatever treatment their physicians
deemed appropriate. As a result, the medication corresponding to standard care varied
considerably across subjects and even within subjects over different exacerbations.

The study was initially designed based on a single patient-level response which was the
number of days per year during which symptoms of an acute exacerbation were manifested.
During the course of the study, however, it became apparent that there were problems with

this analysis strategy. Summarization of each subject’s disease process in this way may
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be reasonable in some contexts, but such an approach does not provide insight into the
nature of the disease activity. For example, a treatment that leads to longer healthy periods
between slightly longer disease periods may be of interest but may fail to be identified on
the basis of the proportion of time in the diseased state. Also, this summary measure
does not distinguish between a subject with many short exacerbations of symptoms and a
subject with very few prolonged exacerbations, when the total number of symptom days
is the same. This has been recognized in the field of migraine study; the International
Headache Society Committee on Clinical Trials (1991) states that “duration cannot be
recommended as one of the primary efficacy” responses, where duration here refers to the
overall symptom duration. Furthermore, some patients’ observation times were censored,
requiring the investigators to “annualize” the observed number of exacerbation days. It

seems preferable to utilize more standard methods for censored data.

1.4.3 Inhaled Beta-agonist Treatment in Bronchial Asthma

This is a double-blind, placebo-controlled, randomized, crossover study of the effect of
regular inhaled bronchodilator therapy using beta-agonist (Sears et al., 1990). There were
89 subjects with stable asthma participating in the study for one year during which the
subjects inhaled regularly fenoterol or placebo by a dry powder delivery system. The
subjects kept daily records of their symptoms, peak expiratory flow rates and drug use,
and were required to return for regular clinic visits every four weeks. There were 64 eligible
subjects who completed the trial. Thirty four were in the fenoterol group and thirty were
in the placebo group. Dropouts were mainly due to unstable asthma, other lung diseases,
concomitant major illness, and inability to reduce bronchodilator aerosol use below 8 puffs
daily.

Major symptoms of interest are wheezing and coughing during daytime and night-time

periods. The cumulative numbers of these symptoms can be characterized as a bivariate
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point process. We will analyze this study using a marginal model for bivariate point

processes in chapter 5.



Chapter 2

Frailty Models For Event Time Data

2.1 Overview

In many medical studies involving groups of subjects or multiple measures for each sub-
Ject, heterogeneity is often observed due to environmental, genetic, experiential, or other
differences between subjects. Although introducing covariates into appropriate regression
models can help account for subject differences, there is often extra variation between sub-
jects that remains unexplained. There are usually three reasons for this extra variation.
First, some important covariates may not have been measured or may not even be possible
to measure. Second, some of the covariates may be subject to one or more sources of
measurement error. Third, different subjects may react differently to certain conditions or
interventions, say a treatment.

Although randomized experiments are frequently used to control for hidden sources of
variation, in time-to-event analysis they cannot be considered as part of the experimental
random error as they can in the familiar linear regression analysis. This is because events
occur over time and thus the composition of the population may change with time. Suppose

a population consists of subjects with different risks. Subjects with a higher risk tend to
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experience the event earlier and the hazard rate is thus observed to be higher in the early
period. Those remaining at risk will be selected to have a lower risk and as a result, the
hazard rate decreases in the later period.

Vaupel and Yashin (1985) gave a number of interesting illustrations of this selection
effect. They showed that even if there are only two groups of different hazard rates, the
population hazard rate can be very different from the group hazard rates. In a long run,
the population hazard rate will often approach the hazard of the more robust group (i.e.
the lower risk group). For instance, using equations (2) to (4) in Vaupel and Yashin (1985),
a population consisting of two groups with constant hazard rates A; and A, where A} > A,

gives the population hazard rate

AE) = M (t) + A1 — 7(2)),

where n(t) is the proportion of the surviving population at time ¢ that is in the first group:

m(0) exp(—Ai£)
7(0) exp(—A1t) + (1 — w(0)) exp(—Azt) ’

1r(t) =

where 7(0) is the initial proportion. It is readily seen that n(¢) — 0 and A(t) — A; as
t — oco. Thus, the population hazard rate is decreasing towards the smaller hazard rate.
This demonstrates that without taking heterogeneity into account, every subject in the
population will be wrongly thought of as having a decreasing hazard rate. In general, as a
function of time the population hazard rate is the result of both the selection effects due to
the variation between subjects and the variation within each subject over time. Therefore,
misleading interpretations can follow if heterogeneity is ignored.

In survival analysis, the term “frailty” is often used to describe the unobserved tendency
for some subjects to have hazard rates above or below the population average rate. The

literature on frailty is vast. Applications can be found in various fields, such as medicine
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and epidemiology (Aalen, 1987a; 1987b; 1988; Aalen and Husebye, 1991; Clayton and
Cuzick, 1985; Hougaard, 1986a; Klein, 1992), demography (Vaupel et al. 1979; Heckman
and Singer, 1982), econometrics (Lancaster and Nickell, 1980; Elbers and Ridder, 1982;
Heckman and Singer, 1984) and reliability engineering (Lindley and Singpurwalla, 1986;
Whitmore and Lee, 1991). Some good review papers include Aalen (1994), Pickles and
Crouchley (1994), Clayton (1994), Hougaard (1995) and Liang et al. (1995).

Since there is a large amount of literature on frailty models, any review is necessarily
selective. In this chapter, we provide such a selective review and in particular, focus on
applications to medicine and epidemiology. In section 2.2, the frailty model for univariate
survival data is introduced and some properties are discussed. In section 2.3, applications
in multivariate survival data are considered, and the role of frailty models to measure
heterogeneity and correlation is addressed. In section 2.4, some commonly used frailty
distributions are presented. Finally in section 2.5, some common methods of estimation

are reviewed.

2.2 Frailty For Univariate Event Times

2.2.1 The Model

Consider a sample of m independent subjects. In multiplicative intensity models (e.g.
Kalbfleisch and Prentice, 1980; Lawless, 1982; Andersen et al. 1993), the frailty is usually

treated as a random effect acting multiplicatively on the hazard rate:
Ai(t|v:) = v exp(2i(t)B)Mo(t), 1=1,..,m, (2.2.1)

where z;(t) is a vector of possibly time-dependent observed covariates, B3 is the vector of

regression coefficients, V; > 0 is the frailty having a probability distribution G(v), and Ao(2)
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is the baseline hazard rate which is modeled either parametrically or non-parametrically,
and is common to all subjects. As a usual assumption in regression analysis, the covariates,
the frailty and the baseline hazard function are mutually independent.

The frailty is treated as time-invariant so that it may be thought of as reflecting hidden
subject characteristics present at the start of observation, and these characteristics remain
unchanged over time. More sophisticated models involving dynamic frailties are possible
to formulate, but pose harder problems in terms of identification of the frailty distribution
and the baseline hazard, as well as in parameter estimation. Aalen (1994) gave a brief
discussion on modeling the frailty as a stochastic process. Model (2.2.1) is only intended
to extract part of the unobserved variation between subjects, as suggested by Vaupel et

al. (1979).

2.2.2 Effects of Frailty on Regression Coefficients

In the ordinary linear regression model, the omission of an important covariate, which
is assumed to be independent of the observed covariates, is not a serious problem. The
maximum likelihood method still produces consistent estimates for the regression coeffi-
cients, although the precision of the estimators will be over-estimated (Gail et al., 1984).
Couversely, the omission of important covariates in a proportional hazard regression model
will usually bias the observed covariate effects towards zero and distort the proportionality
structure of risk functions (Struthers and Kalbfleisch, 1986; Bretagnolle and Huber-Carol,
1988). Introducing a frailty may thus help in adjusting for this bias. The trade-off is that
the interpretation of the regression coefficients must be made at the subject level (Aalen,
1994).

In general, the population hazard rate is a complex function of the regression coefficients
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and the baseline hazard, as can be seen from the marginal survivor function,
Si(t) = Lo(As(t)), (22.2)

where £,(-) is the Laplace transform of V; and A;(t) = J; exp(z}(s)B))o(s)ds.

Furthermore, the population relative risk is no longer time-independent. In a general
class of frailty distributions proposed by Aalen (1988; 1992), the population relative risk
is shown to be a monotonic function of time. In the presence of a non-susceptible group,
i.e. the probability that V' = 0 is positive, “cross-over” can happen. In other words, if the
population relative risk is decreasing, it starts at a value greater than 1 and decreases to
below 1 as time increases. Other frailty distributions will produce different behaviors of the
population relative risks. For example, the positive stable frailty distribution suggested by
Hougaard (1986a) provides constant relative risks, both conditionally and unconditionally.
This will be discussed further in section 2.4.

2.2.3 Identifiability of the Frailty Model

It is not always possible to estimate model (2.2.1). In the simplest case where there are no
covariates and repeated measurements, if the baseline hazard and the frailty distribution
are both unspecified, they cannot be distinguished. This is readily seen from a special case
that A(t|v) = Ao(t) and v = 1 always satisfy (2.2.2). This is, however, not surprising. In
fact, this is comparable to the one-way random effects analysis of variance model in which
the variance components can only be identified when there are multiple observations in
each group.

In order to make identifiability possible, some extra model structure is necessary. Vau-
pel et al. (1979) considered specification of a gamma frailty distribution with unit mean
and unknown variance. The gamma distribution has received considerable attention be-

cause of its mathematical convenience. Some other choices include the inverse Gaussian,
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positive stable, log-normal and non-parametric distributions. These distributions will be
discussed in section 2.4.

Elbers and Ridder (1982) proved a somewhat surprising result that under the assump-
tions that the frailty distribution has a finite mean and the model includes at least one
covariate, the frailty model (2.2.1) is identifiable from data with only a single, possibly
censored, survival time for each subject. This result is also true even for a non-parametric
baseline hazard. The argument relies on the variation of the covariate values between sub-
jects. The varying covariates enable the Laplace transform of V to be traced out on some
intervals and thus it can be uniquely determined. This suggests that it is important to
include covariates with a large variation in order to obtain precise estimate of the Laplace
transform.

On the contrary, in the analysis of multiple events if the frailty is the same for different
failure times within a cluster, Honoré (1993) proved that it is not necessary to make any
assumption about the frailty distribution in order to achieve identifiability.

2.3 Frailty Models For Multiple Event Times

2.3.1 Clustered Event Times

Apart from modeling heterogeneity in univariate failure time data, frailty can also be used

to describe the dependence among failure times.

Shared Frailty

Suppose there are m clusters of failure times. A general approach to model the multivariate
structure of a cluster is to introduce a latent variable (frailty) into the hazard rate of
each cluster member and assume that conditional on this frailty, subject failure times are

independent. Specifically, let n; denote the number of observations in the ith cluster and
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T: = (T, ..., Tn;)’ be the corresponding failure times. The hazard rate for T;; conditional
on the cluster-specific frailty v; is formulated as

Aij(tlvi) = viexp(23;(£)B)Aa(t), (23.1)

for j =1,...,n;and i = 1,...,m. The association within T’; is induced by the same frailty
v; which is assumed to have distribution function G(-). Further assuming that the V; are
independent and identically distributed, the joint distribution of T'; can be obtained by
taking the expectation with respect to v; of the conditional independent joint distribution
of T'; given v;. This is a reasonable assumption because the clusters are usually defined
such that they are unrelated.

Although the ordinary variance component analysis in linear model theory also aims
to measure the extra variation due to the correlation between observations in a cluster, it
is not always applicable in multivariate survival analysis for two important reasons. First,
the event times can be censored. Second, in repeated measurements over time, the T;’s
constitute a point process such that there exists a natural time sequence and the cluster
size n; may depend on the event times as well. The ordinary variance component analysis
certainly fails to deal with these complications.

Numerous applications can be found in genetic studies. Important examples include
family studies (Clayton, 1978), twins studies (Hougaard et al., 1992; Vaupel et al., 1992)
and nephrology (Hougaard, 1987).

It should be noted that the cluster-specific frailty induces not only correlation between
failure times but also heterogeneity between clusters. This shared characteristic creates
a confounding effect that correlation and heterogeneity cannot be measured separately.
Furthermore, only positive correlation is allowed though it is common in many situations.

We will address this issue in the next section.
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Heterogeneity and Correlation

When heterogeneity between clusters and correlation within clusters are both present, the
shared frailty model (2.3.1) is certainly not adequate to describe these two sources of
extra variation. Additional structure is necessary. Lindeboom and Van Den Berg (1994)
summarized a number of approaches for modeling bivariate survival data. Oakes (1989)
proposed a class of archimedean distributions (Genest and MacKay, 1986) as a bivariate
frailty distribution. Yashin et al. (1995) considered additive frailties in matched pairs
study.

For the ease of exposition, we consider bivariate survival data with time-independent
covariates. Let T;; and T;; be two failure times of cluster ¢ and v;; and v;; be two frailties

acting multiplicatively on the conditional hazards:
Aij (Hvir, via) = Aij(tlvi;) = vij exp(@;8;) Ao;(£), (2.3.2)

where Ag;(t) is the baseline hazard, j = 1,2. It is assumed that given v;; and v;, T;; and
T2 are independent.

The bivariate frailties V'; = (Vj;, Vi2)’ are independently and identically distributed
having a distribution function G(v). Let o; be the variance of Vj;, j = 1,2 and p be the
correlation between V;; and V;;. Although the correlation between A;; (£[vi;) and Aiz(t|viz)
coincides with that of V;; and Vj;, the correlation between T}; and T}, is difficult to derive
in a general model since it depends on the baseline hazards. In the simplest case where
there is no covariate and the baseline hazards are constant and equal to 1, the magnitude
of the correlation between T;; and T;, is always less than 1/2. Therefore, even if V;; and
Vi2 are perfectly correlated (negatively or positively), Ti; and T:; are not. The bivariate
failure times are uncorrelated, however, provided that V;; and Vi; are uncorrelated.

We describe some frequently used classes of distributions for V';. The first and perhaps
the most widely used distribution is a shared frailty distribution, i.e. V;; = V;,. However.
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as discussed above, the drawbacks are the confounding effect between heterogeneity and
correlation, and the correlation of the bivariate failure times must be positive.

A second, more general distribution for V; that relaxes the restriction of positive
correlation is a parameterized univariate specification. By taking V;; = exp(aW;) and
Viz = exp(BW;), where W; is a univariate random variable with finite mean and variance,
and a and B are parameters, the correlation between T}, and T;; can be negative (Clayton
and Cuzick, 1985). However, p never equals 0 unless V;; or V, is degenerate (e.g. « =0 or
B = 0). Moreover, changing the dependence between V;; and V;; changes the variances of
T:; and T;, as well.

A third, still not very satisfactory, approach is to use additive frailties. Analogous
with the ordinary linear mixed model, the specification may be taken as V;; = Wi +
Wi and Vo = Wy + Wi where Wy, W;; and W, are mutually independent and their
distributions belong to the same family. The variances of W;; and W;, measure the degree
of heterogeneity and that of W;, measures the association within cluster. Yashin et al.
(1995) studied this bivariate structure under the independent gamma frailty distributions
for which the distributions of W;; and W;; are the same. Petersen et al. (1995) generalized
this model to any cluster size. Nevertheless, p is still restricted to be positive.

The fourth and the most general approach is a genuine bivariate distribution of V;
(Butler et al., 1989; Lineboom and Van Den Berg, 1994). That is, there is no direct re-
lationship between the variances and the correlation of T;; and Ti;. An obvious choice is
a bivariate log-normal distribution. However, this bivariate frailty distribution does not
lead to a closed form expression for the marginal joint distribution of T;; and Tj;, and
s0 maximization routines involving numerical quadrature are required. As an alternative,
McGilchrist and Aisbett (1991) and McGilchrist (1993) applied the best linear unbiased
prediction and the residual maximum likelihood estimation similar to those used in estimat-
ing generalized linear mixed models (e.g. Breslow and Clayton, 1993), but bias correction

seems to be necessary (e.g. Breslow and Lin, 1995; Kuk, 1995).
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2.3.2 Recurrent Events

A special case of clustered event time data arises when a subject generates multiple event
times from a point process. There is assumed to be a sequence of events observed from
a subject over a period of time. This forms a point process for which the event times for
each subject are recorded. Such longitudinal studies are often found in clinical trials.

A point process is governed by its intensity function which is often expressed as a
function of its past history. Under the presence of heterogeneity, the conditional intensity
of subject ¢ given its history and frailty v; can be expressed as

Ai(tlvi, Hi(£)) = vi exp(:(£)B) Ao (2 Ha(t)), (2.3.3)

where H;(t) is the history of the process up to but not including time ¢. Note that the
covariates and the baseline intensity can be functions of H;(¢). Here the subject variation is
measured by the term exp(z}(£)3)Ao(t|H:i(¢)) and the difference between subject intensities
is measured by the variance of the frailty V..

In particular, the Poisson process for which Ao(¢|#(£)) = Ao(Z) and the renewal process
for which Ao(¢|H(t)) = Ao(t —tn(e—)) are widely applied, where N(t) is the number of events
occurring in (0, %], tx(e) is the time of the event occurring just before time ¢ and £, = 0.

The Poisson process essentially assumes that the intensity process has a time trend,
i.e., the baseline intensity does not depend on past events and it is a deterministic function
of time alone. Lawless (1987) gave a comprehensive formulation of regression models for
fixed-effect or random effect Poisson processes with parametric or non-parametric baseline
intensities. On the other hand, given the covariates and the frailty, if the inter-event times
are independent and the hazard for an event depends only on the time measured from
the occurrence of the last event, the point process is known as a renewal process. This
stable cyclical behavior is the principal characteristic of a renewal process and is common

in medical studies of biological functions and chronic diseases. For example, Aalen and
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Husebye (1991) applied the gamma frailty and a Weibull baseline hazard to model the
small bowel motility in healthy adults.

Combining a time trend and renewal behavior in a point process has been suggested by
Cox (1972a) who introduced the term “modulated renewal process”. Inference procedures
for this type of process, using fixed-effect semi-parametric and parametric approaches, have
been considered by Oakes and Cui (1994) and Lawless and Thiagarajah (1996) respectively.
Extensions to accommodate a frailty are also possible, see Chapter 4.

Further generalizations to incorporate a dynamic frailty process to account for unob-
served time-dependent covariates are formidable because the complex structure usually
leads to an intractable likelihood function. In addition, it may be necessary to obtain a
large number of recurrent times per subject so that model estimation is possible. Recent
advances in this direction employ the dynamic Bayesian approach (Gamerman, 1991), a
piecewise gamma process (Paik et al., 1994), a gamma random walk process (Yue and
Chan, 1997) and a first-order autoregressive log-normal process (Yau and McGilchrist,
1996).

2.3.3 Multivariate Processes

In event history analysis, multivariate processes often arise as Markov processes (e.g. An-
dersen, 1986), semi-Markov processes (e.g. Fietta et al., 1992), competing risks models (e.g.
Butler et al., 1989; Heckman and Taber, 1994) or three-state “illness-death™ models (e.g.
Andersen, 1988; Kalbfleisch and Lawless, 1988; Lindsey and Ryan, 1993). As an important
first step to generalize the frailty model to multi-state processes, Aalen (1987b) discussed
various ways to construct multivariate frailty distributions with known Laplace transforms
for finite-state and time-homogeneous Markov processes. The marginal likelihood is then
obtained by using the Laplace transform of the frailty distribution. Therefore, it is impor-

tant to choose a frailty distribution whose Laplace transform has a nice closed form. In
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particular, the positive stable distribution (Hougaard, 1986b) and a transformation from a
multivariate normal distribution are considered. However, numerical problems are likely to
arise in maximum likelihood estimation, except probably for processes with small number
of states which may give a more numerically tractable likelihood. For example, Xue and
Brookmeyer (1996) proposed a random effect model for the alternating renewal process
using a bivariate log-normal frailty in which the likelihood is computed by a Gaussian

quadrature rule.

2.4 Some Particular Frailty Distributions

2.4.1 TUnivariate Frailty Distributions

Univariate frailty is usually used in univariate survival data and recurrent events. In this
section we describe the features of some widely used univariate frailty distributions. In
particular, we will discuss two important classes of distributions proposed by Hougaard
(1986a) and Aalen (1988). The well-known gamma, positive stable and inverse Gaussian
distributions are special cases of these two classes. Another advantage of the Hougaard
and Aalen distributions is that they have explicit Laplace transforms so that no numerical
approximation is necessary in constructing the marginal likelihood, see (2.2.2).

Furthermore, the log-normal distribution and the non-parametric distribution are of-
ten alternative choices. They do not belong to the above two classes. Features of these
distributions will be addressed in this section too.

A summary is given in Table 2.1 to compare different distributions. For simplicity no
covariate is included in the hazard function. The population hazard and the population
relative risk based on the conditional proportional hazards are given to examine the effect
of frailty, where Ai(¢|v) = vr)o(t) and Ax(tjv) = vAo(t), » > 1 is the conditional relative

risk and the integrated baseline hazard Aq(t) is assumed to be an increasing function of ¢
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and Lim, e Ao(t) = oo.

The Hougaard Distributions

Hougaard (1986a) extended the positive stable distribution to a class of frailty distributions
which is indexed by three parameters (a,d,6), where 0 < @ < 1,6 > 0and 8 > 0. The
Laplace transform is given in Table 2.1. This class of distributions is shown to be absolutely
continuous and unimodal.

The Hougaard distribution contains the following distributions: the inverse Gaussian
distribution (@ = 1/2), the positive stable distribution (§ = 0) and the gamma distribution
(e = 0). The distribution is degenerate at § when @ = 1 and at 0 when either § = 0 or
6 — .

For a non-degenerate distribution with non-zero ¢, the mean and variance are equal to
§6°~! and §(1 — @)8=~? respectively. It also includes distributions with infinite mean and
variance when 6 = 0, for example, the positive stable distribution (§ = a). The degree of
heterogeneity can be measured by a only. The population is less heterogeneous when « is
closer to 1.

The population relative risk is a decreasing function of ¢ for § > 0. It is equal to r at
t =0. As t — oo, the population relative risk tends to r* which is still greater than 1 but
less than r. Therefore, under specification of a fixed-effect proportional hazard model, the
frailty attenuates the covariate effect.

The positive stable distribution is distinct from the other frailty distributions in that
it preserves the proportionality of the hazards. The population relative risk is a constant

independent of time, »*. Nevertheless, it also attenuates the covariate effect.
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The Aaler Distributions

Aalen (1988) modified the Hougaard distribution based on a compound Poisson distri-
bution. The Aalen distribution is usually taken to have mean 1. It has two parameters
a > 0 and b > 0. The parameter b is the variance and the parameter a divides the class of
distributions into two major categories. For a < 1, after a reparametrization, it is identical
to the Hougaard distribution with unit mean. For @ > 1, it is a compound Poisson dis-
tribution generated by gamma variables. Further properties of this class of distributions
were investigated by Aalen (1992). It should be noted that the positive stable distribution
does not belong to this class because of its infinite mean and variance.

The compound Poisson distribution (i.e. a > 1) is particularly interesting. It allows a
non-zero probability at V' = 0. This corresponds to the situations in which some subjects
are not susceptible to the studied disease while the rest have a varying degree of suscepti-
bility. Mathematically the hazard function for the non-susceptible subjects is equal to 0,
which is equivalent to V' = 0. The probability of non-susceptibility can be shown as

a

Pr(V=0)= ex'P(—g(j;_—l)),

for a > 1. The compound Poisson distribution is not unimodal as opposed to the Hougaard
distribution due to the point mass at zero. Aalen (1992) demonstrated that the continuous
part of this distribution is not necessarily unimodal either. The multiple modes imply that
there exist several subgroups of different risk levels. This usually occurs when the variance
is small or a is large.

Furthermore, the compound Poisson distribution leads to the paradox of “crossing”
relative risk. As showr in Table 2.1, the population relative risk decreases from r at £ = 0
to approach r'~* which is less than 1 for @ > 1. Therefore, this phenomenon may arise

because of the presence of a non-susceptible group.
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Other Frailty Distributions

Apart from the Hougaard distributions and the Aalen distributions, it is hard to find a
frailty distribution whose Laplace transform has an explicit form. Therefore, numerical
integration methods, such as the Gaussian quadrature and Monte Carlo approaches, are
often needed to compute the Laplace transforms. Heckman and Singer (1984) and Butler
et al. (1989) showed the use of Gaussian quadrature in estimating an unspecified frailty
distribution, while Clayton (1991) applied the Gibbs sampling approach. On the other
hand, the log-normal distribution often serves as a substitute for the gamma distribu-
tion (McGilchrist and Aisbett, 1991), especially for multivariate frailty. The log-normal
distribution is also included in Table 2.1.

Another important approach is to approximate the unknown continuous frailty distri-
bution by a discrete distribution. Under some weak regularity conditions, including that
the frailty has a finite mean and variance, this corresponds to the non-parametric maximum
likelihood representation of a continuous distribution (Laird, 1978).

Interestingly, based on some limited simulation studies, the choice of particular para-
metric (discrete or continuous) frailty distribution is not critical for the estimation and
testing of regression coefficients with multiple measurements and univariate frailty (Pick-

les and Crouchley, 1995).

2.4.2 Multivariate Frailty Distributions

Extension to multivariate frailties with independent components is straightforward and
appropriate marginal likelihood may be easily constructed by taking the product of its
component terms. However, as measures of missing covariate effects, the frailty components
are often likely to be dependent. Some approaches based on transformations of independent
random variables to generate bivariate frailties have been discussed in section 2.3.1. The

restrictions to positive dependence or possible functional relationships between variances
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and correlation of failure times within clusters make these transformations less attractive.

The multivariate log-normal distribution seems to be the simplest genuine multivariate
distribution, although there is no closed form expression for the marginal likelihood. Evans
and Swartz (1995) pointed out that the multiple quadrature method is preferred to other
numerical methods (e.g. Monte Carlo integration and Gibbs sampler) for dimension less
than or equal to 6. As in most medical applications the number of frailty components is
seldom more than 6, this approach seems to be appropriate.

Alternatively, techniques such as the penalized likelihood and the residual maximum
likelihood estimation, used widely in the generalized linear mixed models (Breslow and
Clayton, 1993) may be employed. Cluster sizes are usually small in survival analysis,
however and this may cause substantial bias making bias corrections necessary (Breslow
and Lin, 1995).

The use of a non-parametric multivariate frailty distribution may be also entertained.

Butler et al. (1989) showed some success in the bivariate case using Gaussian quadrature.

2.5 Some Methods of Estimation For Frailty Models

Estimation for frailty models is challenging due to the non-linearity of the model and the in-
troduction of the mixing distribution. Closed form marginal likelihoods are not available if
the frailty distribution does not have an explicit Laplace transform. Numerical integration
techniques, the EM algorithm, and the Gibbs sampler are popular alternative approaches.
The penalized quasi-likelihood method widely used in the generalized linear mixing models
may be useful as well. Some methods are particularly useful for certain types of processes,
for example, models for multi-state processes with a multivariate Gaussian frailty distri-
bution lead to computationally efficient estimates by Gauss-Hermite integration, and a
univariate non-parametric frailty distribution is most appropriately estimated by the EM

algorithm.
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In this section, we review these common methods of estimation with regard to their
relative merits and limitations. For the ease of exposition, we will focus on the clustered

failure time model (2.3.1) with a single frailty.

2.5.1 The Laplace Transform

Let £;1, ..., tin; be n; observed times with censoring indicators d;y, . . ., din; in cluster ¢ where
di; = 1 if t;; is a failure time and O if censoring time. We assume that censoﬁngs are non-
informative and only right-censoring is allowed. Further assuming that the covariates are
time-invariant or constant between consecutive events and independent of the frailty, and
using the conditional hazard function (2.3.1), the conditional likelihood for cluster z given

v; can be written as

La(@lus) = T Mi(tis: )% exp [—mzmﬁ(tq; e)] , (25.1)
Jj=t j=1

where 8 is the vector of parameters for the covariates and the baseline intensity, Aq(t),

is modeled parametrically by «v, di. = T7%, dij, Mij(t) = exp(z};8)Ao(t) and Ay;(t) =

Js Aij(s)ds. Then the marginal likelihood for cluster 7 is given by

Li¢) = Ang(elv;)dG(v;)
= T MosCtan) (= 1)% £ Ass(tis)), (2.5.2)

j=1 i=1

where ¢ = (6',6”’)’, o is the vector of the frailty parameters and £{?)(s) is the dth derivative
of £,(s). The full likelihood based on m independent clusters is obtained as the product
of the individual likelihoods.

The log-likelihood can be obtained provided that £{?(s) is known. For example, the

Laplace transform for the gamma density with mean 1 and variance ¢ is given by £,(s) =
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(1 + 08)~%/7 and hence,

£(s) = (=1)* dl:Il(l +(j = 1)a)(L+as)7H/7,

j=0

for d > 1. The log-likelihood for cluster z is then equal to

t(9) = z_: di; log(\is(£)) + dz__: log(1 + (j — 1)a) — (= + ds) log(1 + a‘; Asi(t:5))-
Therefore, the marginal likelihood may be directly maximized by standard maximization
methods (e.g. the Newton-Raphson procedure).

However, it may not be possible to derive a general expression for £{9(s) for other frailty
distributions even when £,(s) has a closed form. The Hougaard and Aalen distributions do
not have such general expressions as the gamma distribution. The £{?(s) for the Hougaard

distribution can be found by the following recursive relationship,

d-1

£ = 3 (47 H) e0temn)

r=0

where h,(s) = log(L,(s)) and h{*")(s) = =6 [1%=i(a ~ 7)(8 + s)>~", see Table 2.1. Unless
the cluster size is small, say < 3, the maximization procedure will be certainly complicated

by such structure.

2.5.2 The Numerical Integration

If the Laplace transform of the frailty density has no closed form or higher derivatives are
difficult to obtain, the numerical integration method is a natural alternative.

Using the transformation V' = exp(U) for the frailty, the marginal likelihood for the
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tth cluster in (2.5.2) can be written as

L) = [ Lu(Ol) S o,

where g(-) is the probability density function of u; and ¢(-) is the standard normal density

function. Combining terms involving u; into the integrand, we get

Li(¢) = IT st} [ hu(u; $)(u)du,
j=1 i
where h;(u; @) = exp(diu — e 71, Aij(ti;))g9(n)/#(u). Applying the Gauss-Hermite rule,
the integral can be approximated by

o R
[ hetas $)gtardu % Y eh(VEni )

where the ¢, ’s are weights, the z.’s are nodes, and R is the number of nodes. Tables for the
nodes and weights can be found in Abramowitz and Stegun (1972). This approximation
is more accurate if U is normally distributed. In this case, if we let U = /o2 wheré
o is the variance of U, we have a simpler expression for A(-): hi(z;¢) = exp(di.\/oz —
eVt T Aij(tis)).

Evans and Swartz (1995) surveyed a number of numerical integration methods com-
monly used in statistics. They recommended that a multiple quadrature rule, such as the
Gauss-Hermite rule, should be used for low dimension integration problems. Although it is
almost impossible to assess the error as this requires the exact evaluation of the integration,
we may use rules with more nodes to check if the results are comparable to those obtained

by using fewer nodes.
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2.5.3 The EM Algorithm

As the frailty model is a mixture model, the EM algorithm (Dempster et al., 1977) becomes
a useful tool in estimation, especially for non-parametric baseline hazards or discrete frailty
distributions. In fact, in dealing with the infinite-dimensional nuisance parameter Aq(t) the
integration over frailties destroys the construction of partial likelihood (Cox, 1975) in its
usual way. This makes direct maximization of the marginal likelihood impossible. Here we
describe briefly how to use the EM algorithm for parametric and semi-parametric models

with continuous and discrete frailty distributions.

Continuous Frailties

If the v; were observed, the complete data log-likelihood for cluster 7 is given by

15(d) = 3 (i) + 3 log(g(vi; o))

i=1 i=1

= Lo(8|v) + L, (o;v), (2.5.3)

where £;(0|v;) = log(L;(8]v;)) from (2.5.1) and g(-; &) is the density function of V' param-
eterized by o. This function could be maximized by separately maximizing £c(@|v) with
respect to @, and {,(o; v} with respect to o.

As the frailties v; are unknown, the EM algorithm considers maximizing the conditional
expectation of the complete data likelihood given the observed data and the current es-
timates of the parameters. Specifically, in the E-step, we compute E(¢z(¢)|data; ) =
Q(¢|data; ™), where ¢* is the estimate of ¢ at step k. This can be expressed as, apart

from some constants,

Qbldata; g¥) = 3°5°dis (log(his(tis)) — 58 As(t))

=1 j=1
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+3" E(log(g(vi; 7)) ldata; 6),
i=1
where 9{%) = E(v;|data; ¢*)).

The function @ is then maximized with respect to ¢ to get the next estimate. This
procedure is iterated until the estimates converge.

Maximizing £c(8|v) for given v is equivalent to maximizing the homogeneous or fixed-
effect model. If the baseline hazard is unspecified, the estimates of the regression coefficients
are obtained by maximizing the partial likelihood (Cox, 1972b) with the offsets #.)’s.
Then the Nelson-Aalen estimator (Andersen et al., 1993) can be used as a non-parametric

estimate for Ag(t) (Nielsen et al., 1992 and Klein, 1992):

A},"“’(t) = Z .(:)i(i) - (k+1) .’

b St jeRe) U exp(28 )

where t(;) is the ith smallest event time, regardless of clusters; d(;) is the number of events
at t(;); R(t()) is the set of individuals at risk at time ¢(;); ﬁj(k) is the conditional expectation
of the frailty given the data and ¢'®, z; is the covariate value associated with the jth
individual in the pooled sample respectively; and B(kﬂ) is the estimate obtained from the
Cox regression.

The conditional expectation for £, may require numerical integration. The conjugate
property of gamma distribution in multiplicative models provides a convenient way to
avoid this complication. If v; is distributed as gamma with mean 1 and variance o, it is
straightforward to show that the conditional distribution of v; given the data is also gamma
with shape parameter 1/o + d;. and scale parameter 1/0 + 372, Aij(ti;). Hence, functions
of v; in (2.5.3) are imputed by the corresponding conditional expectations with respect to

this gamma conditional distribution.
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Discrete Frailties

If the frailty distribution is unspecified, we may approximate it by a discrete distribution
whose masses and mass points are estimated along with the model parameters. Laird (1978)
showed that this is equivalent to the non-parametric maximum likelihood estimation for
the unknown frailty distribution. She also provided an EM algorithm for carrying out the
maximum likelihood estimation, see also McLachlan and Basford (1987).

Suppose the frailty distribution is given by
H
Pr(V = &) = m, for h=1,..., H; E Th =1,
h=1

where &, > 0. Let & = (&1, ..., €g)', ® = (71, ...,7gg) and o = (&', 7’)’. Define Z;, = I[(V; =
&n) where I(:) is the indicator function, and let Z; = (Z;,, ..., Z;x)’. Note that Z,, ..., Z,
are i.i.d. multinomial with probabilities w. The complete data likelihood is given by

H m

Lr(d) = YD zin(log(ma) + Li(8]6n)),

h=1i=1

where ¢ = (6’,0')". For the sake of identifiability, the covariate vector does not contain
the intercept term. We further assume a parametric baseline hazard.
In the E-step, the conditional expectations of Z’s given the data and the previous

estimates are given by

mh Li(0™]6,")
Sh-me L(6W16)

M) = B(Zin|data, p®) =

The update for 7 in the M-step is given by
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Furthermore, the update for @ and § are obtained by maximizing

H m
DI AL

h=11i=1

When the number of masses is unknown, there are usually two approaches to choose
H (Laird, 1978). One approach is to start with a small H apd gradually increase H until
the adjacent mass points become close. Another approach is to start with a large H and
combine the adjacent mass points if the distance between them is small. Butler and Louis
(1992) began with H = m and combined mass points if their distance was smaller than

104

The Observed Information

If the observed information matrix is difficult to obtain analytically, methods provided by
Louis (1982) and Meng and Rubin (1991) may be used. McLachlan and Basford (1987,
chapter 1) provides an approximate observed information matrix for the case of discrete
frailties: X o R
m H da: . !
- . Ogin(®) . Ogin(@)
I = h—— h—— | , 2.5.4
) =3 (3 228 (3 2 200 (254

i=1 \h=1 h=1

where gin(@) = log(msn) + £:(0|én). Caution must be taken when the number of mass
points is unknown because the non-parametric approach does not take into account the
variability of the estimated number of mass points. This may lead to unrealistic variance
estimates for the parameter estimates based on the observed information matrix (2.5.4).
Butler and Louis (1992) suggest that appropriate standard errors require the bootstrap or
other methods that incorporate more than the mode and curvature of the likelihood.

However, inference is not yet completely resolved in the semi-parametric approach due
to the complexity of the non-parametric baseline intensity, although Murphy (1994; 1995)

has shown the existence, consistency and asymptotic normality of the estimators in the
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special case of no covariates. Based on some empirical applications and simulation studies,
Nielsen et al. (1992) suggested that a large sample size is required to obtain reasonable
precision in estimating the frailty parameter. As recommended by some authors (Aalen,
1994; Pickles, 1994), a parametric baseline intensity may be more preferable. For instance,
the piecewise exponential specification may be used if there is no prior knowledge of the

baseline intensity.

2.5.4 The Penalized Partial Likelihood

There are some remarkable similarities between the frailty model and the generalized linear
mixed model (GLMM). The multiplicative intensity implies that the frailty is also additive
in the linear predictor #’@. In the case of recurrent events, if the events are frequent per
individuai and the intensity varies slowly with time, we can divide the continuous time
into a number of subintervals and recast the problem in terms of the number of events
occurring in each subinterval. Let yx be the counts in the kth subinterval whose width is

tx. Assuming that given the frailty v, the counts are Poisson variables with

E(gelo) = Atelo),
log(A(telv) = B +u+ log(Ao(ts)),

var(yelv) = A(tilv),

where u = log(v), then this formulation is a standard mixed Poisson regression model. On
the other hand, when events are rare and the intensity varies more rapidly, a finer division
of intervals is necessary. In the extreme, the semi-parametric approach takes the division
into infinitesimal intervals in which at most one event can occur. Therefore, estimation
methods used in the GLMM may also be useful in the frailty model with probably some
modifications. Clayton (1994) described the relationship between the frailty model and
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the GLMM.

When only the conditional mean and variance of the observations are specified, a com-
monly used method of estimation in GLMM is the penalized quasi-likelihood. A review of
this method and the marginal approach is given by Breslow and Clayton (1993). In sur-
vival analysis with an unspecified baseline hazard, the counterpart of the quasi-likelihood is
the partial likelihood. Penalized partial likelihood may be used to estimate the regression
coefficients (McGilchrist and Aisbett, 1991) and restricted maximum likelihood (REML)
to estimate the frailty parameter (McGilchrist, 1993). If the frailty has a log-normal distri-
bution, the penalized partial likelihood is the product of the usual Cox’s partial likelihood
conditional on the frailties and the joint log-normal distribution of the frailties. Given the
frailty parameter, the penalized partial likelihood is maximized with respect to the regres-
sion coefficients and the frailties. The frailty parameter is then estimated by a linearized
REML procedure given the current estimates of 8 and u.

However, the simulation studies given in McGilchrist (1993) showed a systematic bias
for the REML estimate of the frailty parameter, even though the REML aims to adjust
for the bias due to the substitution of 3 by its estimate. There are two possible reasons
for the cause of bias. First, as the REML estimate is derived from the mixed normal linear
model, it may fail to account for the bias in the frailty model which is a non-linear model.
Second, which may be the most serious aspect, the estimate of u is obtained essentially
by approximating the posterior distribution of % by a normal distribution. This can be
seen by viewing the penalized partial likelihood estimation as a posterior mode estimation
(Fahrmeir and Tutz, 1994, Chapter 7). The posterior mode estimation is an EM-type
procedure in which the posterior expectation and variance of u are approximated by the
posterior mode and curvature respectively in the E-step. This approximation is appropriate
only if the cluster sizes are large. As the cluster sizes are usually small in survival analysis,
the bias may be substantial. McCullagh and Tibshirani (1990), Breslow and Lin (1995)
and Kuk (1995) considered methods of bias correction for GLMM. Similar approaches may
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be applied in frailty model, although intensive computation is unavoidable.

2.5.5 The Bayesian Approach

Since the frailty model is already a hierarchical model, we only need to specify priors for
the parameters B3, Ag(t) and 0. We assume that the hyperparameter ¢ for the frailty
distribution is univariate.

Clayton (1991) presented an excellent account of the Gibbs sampling approach. Inspired
by Kalbfleisch’s (1978) Bayesian analysis of proportional hazard models, Clayton consid-
ered the priors for B and Aq(t) suggested by Kalbfleisch. Specifically, 3 is assumed to have
improper uniform prior on [—co, +o0], and Ag(t) is a stochastic process with independent
increments distributed as

dAo(t) ~ Ga(cdA™(t),c),

where Ga(a, b) denotes the gamma distribution with shape parameter a and scale parameter
b, ¢ > 0 and A~(%) is a known non-decreasing function. The mean and the variance of Ag(t)
are given by A*(t) and A*(t)/c respectively. Moreover, the gamma frailty with variance o
is used. The variance is assumed to have a prior Ga(n, 1) in which we taken = u = 0 to
obtain an non-informative prior.

Under this setup, the conditional distributions of any one of the parameters 8, Ag(t), v
and o given the other 3 parameters and the observed data are known, see Clayton (1991)
for the derivations. Denote the conditional distribution of z given y by [z|y]. Since the
hyperparameter only depends on the frailty, Clayton suggests the following algorithm:

In iteration k,

1. Draw 0" randomly from the previous B a’s: o571, ..., o*~5B.
2. Put ¢ = ¢~ and repeat GG times:

(a) Generate A} ~ [Ao|B* "', v*"!, Datal).
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(b) Generate 8* ~ [B|vi*, AL, Data].

(c) Generate v* ~ [v]|B*,A}, 0", Datal.
3. Generate 0* ~ [o|v"], where v~ is the current value of v.

The number B is called the buffer size which should be gradually increased with the
iterations. The number G is the number of steps needed to avoid serious serial correlation
in the samples. In the example analyzed by Clayton, he suggested that increasing B from
1 to 100 and choosing G to be 10 should be appropriate.

Nevertheless, other frailty distributions may not have a closed form for the posterior
distribution. Numerical integrations, such as the Monte Carlo integration, are necessary
in this case. The Bayesian approach is also useful for multi-level hierarchical models and
multivariate frailty models.



Chapter 3

Tests of Homogeneity For Point

Processes

3.1 Overview

In epidemiological studies, it is often important to know whether the studied population is
homogeneous. As will be seen in chapters 4 and 5, estimation methods for random effect
and marginal models are complicated whereas fixed-effect models are relatively simpler.
It is, therefore, desirable to check whether it is necessary to introduce a random effect to
reflect another component of variation in the model.

Tests of homogeneity in GLMMs are often derived via score tests (e.g. Liang, 1987;
Dean, 1992; Smith and Heitijan, 1993; Jacqmin-Gadda and Commenges, 1995; Lin, 1997).
Commenges and Andersen (1995) and Gray (1995) developed score tests in the context of
failure time data based on counting processes. These score tests can be also interpreted
as tests of model specification for fixed-effect versus random effect models provided that
the baseline intensity and the covariate effects are correctly specified. As a general model

specification test, the information matrix (IM) test (White, 1982) is often applied. Chesher

49
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(1984) showed that the implicit alternative hypothesis of the IM test is a model with
random parameters. In fact, the test statistics for the random intercept are asymptotically
equivalent for the score and the IM tests. However, tl;e finite sample estimators for the
variance of the test statistic have different representations. Choice of representation should
be determined by the efficiency in terms of size and power of the test. Some simulation
studies have been carried out for this purpose (Orme, 1990).

In this chapter, we focus on mixed univariate point processes in order to get some insight
for multivariate point processes. We construct a score test and an IM test of homogeneity
in sections 3.2 and 3.3, respectively. As there are some common representations of the
test arising from different estimates for the variance of the statistic, we assess the finite
sample performance of the tests based on these representations via simulations in section
3.4. This simulation study indicates that the test statistic in general has poor performance
in small and moderate sample sizes. Although the test statistic is asymptotically unbiased,
a non-zero bias is induced in small samples upon substitution of the parameter estimates
obtained under the nuil model of homogeneity. Adjustments for the score statistics via first
order Taylor series expansion have been previously suggested in the contexts of Poisson
regression models for count data (Dean and Lawless, 1989) and clustered failure time data
(Gray, 1995). These adjusted score statistics were shown to have better performance in
small samples in terms of the size of the test.

In section 3.5, we derive adjusted score statistics for regression models based on Poisson
processes with both parametric and semi-parametric formulations of the baseline intensity.
The primary objective is to examine the frequency properties of these statistics in mod-
est sample sizes, and to identify suitable strategies for testing for homogeneity in these
contexts. Simulation studies pertaining to the size and power of the tests are also consid-
ered. An example involving a clinical study of gamma interferon in chronic granulomatous
disease is provided in section 3.5 as well.

Furthermore, we discuss adjustment of the test statistic for other point processes and
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possible extensions for bivariate processes with correlated random effects in section 3.6.

3.2 Score Tests of Homogeneity

In random effect models, homogeneity is equivalent to zero variance of the random effect.
Thus, the null hypothesis of homogeneity is simply Hp : 0 = 0 where o is the variance of
the random effect. Score tests are particularly attractive for this purpose for three reasons.
First, although the variance is at the boundary of the parameter space under Hp, Moran
(1971) showed that under some mild regularity conditions, the usual asymptotic theory still
follows for the score test. Second, only the fixed-effect model needs to be fitted. Third,
only some weak conditions for the moments of the mixing distribution are required but
it is not necessary to specify the entire distribution so that misspecification of the mixing
distribution is less influential. This is because the test statistic is evaluated under Hp in
which the process is invariant to any random effect. The mixing distribution is usually
assumed to have a finite mean and variance, and the third and higher order moments are
of the order o(o) (Liang, 1987; Dean, 1992).

We consider m independent univariate mixed point processes with intensity (1.2.4). In
many situations, the covariates are constant between events and we assume that they are
so here for simplicity. Thus, the intensity during the (5 — 1)th to the jth events is given
by Ai(t) = exp(z;8 4 u:)Ao(t; ) for the ith process, i = 1,...,m. Recall that 8 = (8',~").
The score test statistic can be derived from a slight modification of Dean’s (1992) or
Liang’s (1987) results. We assume that the baseline intensity and the functional form of
the covariates are correctly specified.

Let 0 < t;; < +++ < tin; < 73 be the observed event times for the ith process over a
time interval [0,7;] in which 7; is a right censoring time. Let Y;(f) = 1 if t € (0, 7] and
0 otherwise for £ > 0. For notational convenience, we let ;0 = 0 and tine = T where

n{ = Ni(7:) if tin; = 7o and Ni(73) + 1 if tin; < 7; is the number of durations including the
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possibly censored duration after the last observed event.

As postulated in section 1.2.1, the process {Y:(¢)} is predictable and independent of
the parameters in the intensity function. Furthermore, we subsequently assume that 7; is
finite and therefore n; is also finite, ¢ = 1, ..., m. The asymptotic setting considered will be
for a large number of subjects, i.e., as m — oo, with bounded n;’s.

Let n;; = @};8 + u; be the linear predictor during the (j — 1)th to the jth events of
process 7 and 1; = (7, ...,r].;,.;:)’ for j = 1,...,n and 7 = 1,...,m, where the U;’s are iid
with mean zero and variance o. Let 7f; = z;;3 be the corresponding linear predictor under
Hy. We also assume that the third and higher order moments of U; are of the order o(c).
The conditional log-likelihood for process 7 given wu; is given by

&(0u:) = Y [mi; +log do(ti5)] — D €™ Ao(ti i1, tij), (3.2.1)
=1 =1

where Aqg(a,b) = [2)o(t)dt. By applying a Taylor series expansion on exp[€;(0]u;)] from
(3.2.1) at 5; = n?, we get

explts(81u:)] = exp(£:(610)] [1 + ( e

1
) usl; + -2-u§1;K,-(9)1,- + o(uf)] ,
71.-=”I?

where 1; is the n{ x 1 vector of 1’s and

2:(8lus) _ 04(6lu:) 64-(0|u;))

K;(8) = ( ,
n:=7?

whose (j, j)th element is K;;(0) = (dij —exp(nf;)Ao(ti j-1, ti5))? — exp(nf;) Aot j-1, ;) and

the (7, k)th element is Kx(6) = (dij — exp(nf;)Ao(ts j-1, 7)) (dir. — exp(nd)Ao(ti k-1, tix))

for j # kand &;; = 1 for j = 1,...,n; and 0 otherwise. Note that £;(0]0, and K;(8) are
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independent of u;. For small ¢, the marginal log-likelihood can be expressed as

t(®) = logElexp{ti(8]u:)]]
= £;(6|0) +log(1 + %O'I:.K;(B)l.- + o(0)), (3.2.2)

where ¢ = (0’,0). Differentiating (3.2.2) with respect to o and evaluating at o = 0, the

score function for ¢ under Hy based on m independent processes is given by

S = %i 1.K:(6)1;. (3.2.3)
It is interesting to note that K;(8) is the difference between the cross-product of the score
and the observed information about 7; evaluated under Hy, and thus S measures the overall
difference. In fact, this relates to the IM test which we will discuss in the next section.

In addition, since given n;, the integrated intensities exp(nf;)Ao(t:;—1,%:;) are indepen-
dently and exponentially distributed with unit mean for j = 1, ..., n;, the score function may
be thought of comparing the sample variance and model-based variance of the integrated
intensity. This interpretation is consistent with that of Dean's (1992) test.

The variance of the score function is obtained by using the Fisher information matrix.

We partition it conformably to (8,0) as

Lo Is
6,0)=| * % |.
[50' [60’

The components of I(8, c) evaluated at ¢ = 0 are easily seen as

_ = azz‘l(970)
oo = 'ZE( 0699’ )

as
Iy, = —E (8_0) )
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U

g ((1iK:(6)1.)%)

where the expectation is taken over the joint density of the (T}, ..., Tin;, Ni(7:))’s. Note
that Igg is simply the information matrix for the fixed-effect model. However, the expected
information matrix may not be obtainable in general, and so the observed information
matrix has to be used in most cases.

The asymptotic variance of S is equal to Vs = L, — I§, I35 Is, (Pierce, 1982). Hence,

the test statistic is given by
S

VVs’

which is evaluated at the maximum likelihood estimate of @ using the fixed-effect model.

Ts = (3.2.4)

The test statistic is approximately N(0, 1) distributed under Hy. As o is non-negative, this
is a one-sided test for which Hy is rejected if T's is large. Furthermore, if we are interested
in testing against either the under-dispersion or the over-dispersion alternative, we can use
T¢ as a test statistic which is asymptotically x?(1) distributed.

The score statistic is computed by replacing the unknown parameters by their esti-
mates. For small sample sizes, the distribution of the score statistic may be quite different
from its asymptotic distribution. Simulation studies for binomial and Poisson regression
models suggested that moderate to large sample sizes are needed for reasonable approx-
imation of the asymptotic distribution (Dean, 1988). Using a first-order Taylor series
approximation, Dean provides an adjusted score statistic which converges faster to the
asymptotic distribution. O’Hara Hines (1995) carried out a comparative study of score
tests for overdispersion in binomial and Poisson regressions. She found that Dean’s score
test using the observed information to estimate Vs is too liberal and the adjusted statistic
only provides a little improvement over the unadjusted statistic. Similar adjusted score
tests for Poisson processes will be considered in section 3.5.

Following Smith and Heitjan (1993), extension to multivariate random effects with inde-



CHAPTER 3. TESTS OF HOMOGENEITY FOR POINT PROCESSES 55

pendent components is straightforward. However, the theory does not follow immediately

for correlated random effects. We will discuss the bivariate case in section 3.6.

3.3 Information Matrix Tests of Homogeneity

Crouchley and Pickles (1993) illustrated the use of the IM test in parametric univariate and
multivariate proportional hazards models. Interestingly, they showed that testing for the
specification of the intercept term is equivalent to the score test of homogeneity described
in section 3.2. This is not a coincidence. In fact, Chesher (1983, 1984) gave a score test
interpretation for the IM test and showed that the implicit alternative of the IM test is a
model with random parameter variation.

In this section, we introduce the formal set-up of the IM test with some finite sample
representations. We also show how it can be used to test for homogeneity in random effect

models for point processes.

3.3.1 The Information Matrix Test

The IM test aims to detect model misspecification. The idea is to compare two estimates
of the Fisher information matrix which are consistent under the correct model specifi-
cation. In an ordinary likelihood setting, suppose {Yi,...,Yn} is a random sample from
a distribution F(Y;0). If the distribution and the parameters are correctly specified,
the Fisher information matrix can be consistently estimated by either the negative of
the Hessian of the log-likelihood, —8%£(0)/8898’, or the outer product of the gradient,
(0£(8)/50)(0£(8)/80"), where £(8) is the log-likelihood, provided that some regularity
conditions are satisfied (White, 1982). Therefore, the difference between these two esti-
mates may be used as a test statistic. A significant discrepancy indicates that the model

F(Y;0) is misspecified.
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Let f(y; @) be the probability density function of Y. Define

o = 25240

o = 25 (240)
B.(0) = ;;az(e 8&;0),
po) = 1 gE(ae‘(a)agé?))’

where £;(0) is the log-likelihood for ¥;. Let p be the dimension of 8 and ¢ = p(p + 1)/2.
The test statistic is defined as a ¢ x 1 vector

D, =—Zd,(e)

miz1
where d;(0) is the vector stacking the distinct elements of

0*:(8)  0¢;(6) 0L:(0)
2006 + o8 oo

If the model is correctly specified, White (1982) showed that /mD,,(8) is asymptotically
distributed as a normal random variable with mean zero and covariance matrix V'(6,),
where @ and 6, are the maximum likelihood estimate and the true value of 0, respectively,

under the assumed model and

v(e) = —-Z_:E(w,(())w,(e))

wi(0) = di(8) — VD(0)A0) 1 VL(8Y,

VD) = —\;E(a‘;‘;?)),

vee) = 250) (3.3.1)

a6’
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Hence, the normalized statistic is given by
IM = mD(0)V(8)'D,(6), (3.3.2)

which is asymptotically x?(q) distributed. This is also true asymptotically if V(@) is
replaced by any consistent estimate. Since the variance is obtained from expectations, we
call (3.3.2) the efficient score (ES) form of the test.

Computation of the covariance matrix V(8) could be rather involved due to the third
derivative of the log-likelihood and the fact that the expectation is often intractable. It is

a common practice that the covariance matrix is estimated by its sample moment,

Va(0) = Zw (8)wi(6Y, (3.3.3)

:—'1

where w;(0) is equal to w;(0) with VD(8) and A(8) replaced by their sample moments

8d:(8)
VD,(0) = mz ‘;‘;, and  Am(8) (3.3.4)

respectively. We call the statistic (3.3.3) using (3.3.4) the Hessian form of the IM test.
However, this sample moment is not guaranteed to be non-negative definite.

For the purpose of lessening the computation burden, Chesher (1983) and Lancaster
(1984) suggested using the outer products — 3=, di(8)V¥£:(8)/m and — B, () to approx-
imate VD(0) and A(0) respectively. This is due to the fact that if the model is correct,

we have the following relationships:
B (—a?é?)) = ~E(di(9)V4(8)) and  E(VEL(9)VL(O)) = -A(6).  (3.3.5)

We call the statistic (3.3.3) using (3.3.5) the OPG (outer product gradient) form of the
IM test. Therefore, the standardized IM test has three common representations in which
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the variance can be the expected one or approximated by its corresponding finite sample
moments or the outer products of gradients. The ES form should converge faster to the
asymptotic distribution than the other forms. Furthermore, Orme (1990) provided em-
pirical evidence based on simulations for certain regression models that the OPG form is

inferior to the Hessian form in terms of the size of the test.

3.3.2 Testing for Homogeneity

We comnsider the same model for univariate point processes in section 3.2. Sub-vectors of
D,.(8) can be considered for tests of particular hypotheses. Since random effect models
involve a random intercept, we may apply the IM test to the intercept term.

We assume that, apart from the intercept, the other components of the model are
correctly specified. Then , after some simple algebra, the statistic is given by,

m_ [ g2g. . 2
D(f) = i}:[a ‘g,},"g'oh(a‘ggo“””

m i=1

1

m

5SS LK(O)L,

i=1

where £;(6|0) is the log-likelihood under Hp and K;(8) is defined in section 3.2.1. Hence, the
IM statistic is the same as the score statistic apart from a constant (2/m). As m — oo,
D,.(Bo) converges in distribution to a normal random variable with mean 0 and variance
V(Bo) which is the (1,1)th element of V(8) in (3.3.1). It can be shown that V(85,) is
proportional to the variance of the score statistic where the proportionality constant is
equal to 4/m. We outline the proof as follows. Using (3.3.5) with V£;(8]0) in place of
V:(0), it is straightforward to find that

V(8) = = 3 E(d:(0)d:(8)) + VD(8) A(8)*V D(9).

t=1
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The first row of VD(80) is

/
= ——l,,

VD(6o) = =3 F

i=1

I(LK:(0)1)) 2
()

and A(@) = —1Igg9/m, where the I's are defined in section 3.2.1. The (1, 1)th element of
V(0) is given by

— 1 & 7 2 4 -1
ViBo) = 3 E [(LEO)1)] — =17, L5 Lo,
= iVs.
m
Hence, the standardized IM statistic
Ty = YT Dm(bo) (3.3.6)

vV (Bo)

is exactly the same as T's. This ES test statistic is computed by substituting the maximum
likelihood estimates of @ under Hy.

Although the score test and the IM test of homogeneity are equivalent using the ex-
pected variance, in most situations we have to use the sample moment approximations
which may vary with respect to the size and power. We will investigate this by some

simulation studies in the next section.

3.4 Finite Sample Performance of the Tests

In this section, we study the performance of different representations of the test via sim-
ulations based on renewal and Poisson processes with Weibull intensities. Finite sample
distributions of the test statistics are estimated and compared with their asymptotic distri-

butions. We also consider the squared statistics which are y2(1) distributed asymptotically.
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It is found that the squared statistics seem to approach their asymptotic distributions faster
than their unsquared counterparts. However, except for the ES statistic, the other statistics
require large sample sizes to achieve reasonable performance.

The power of the test is studied by incorporating a random effect into the intensity.
Crouchley and Pickles (1993) provided empirical evidence for failure time data based on
simulations that the Hessian form and the OPG form of the IM test have similar size and
power for the squared statistic.

We describe the simulation designs and introduce some common representations of the

test statistics in sections 3.4.1. The results will be discussed in sections 3.4.2 and 3.4.3.

3.4.1 Design of Simulation Studies

We consider Weibull intensity functions with a time-invariant covariate

A(E) = { exp(fo + Brz)yt" 1, for Poisson processes, (3.41)

exp(fo + Brz)y(t — tn(e—))"" !, for renewal processes,

where ¢ is the time since the process starts, ¢y (;-) is the event time just before ¢ and v > 1.
Event times are generated given known values of the parameters over a fixed time
interval [0,1]. The designs are listed in Table 3.1. The average number of events per
process is calculated from the simulation. Two different values of 3 are used in order to
see if moderate to large number of events has an effect on the distribution. Certainly we
would expect a loss in power of the test for a small number of events, say < 2.
Let 0 < t;; < ... < tin; < 7; be the event times of process ¢ and n; = N;(7:). The

log-likelihood for process ¢ under the null hypothesis is given by

£(0) = nams + 3 log(Ma(t)) — exp(ni)Ao(:),

Jj=1
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Average number of

Design  Process 7 fo A z events per process

P1 Poisson 2 1.5 0.5 Bern(0.5) 5.8
P2 Poisson 2 1.5 0.5 N(0,1) 4.5
P3 Poisson 2 2 0.5 Bern(0.5) 9.5
P4 Poisson 2 2 0.5 N(0,1) 7.4
R1 Renewal 3 5 2 Bern(0.5) 8

R2 Renewal 3 5 1 N(0,1) 5.8
R3 Renewal 3 3 2 Bern(0.5) 4.1
R4 Renewal 3 3 1 N(0,1) 2.8

Table 3.1: Simulation desigus.

where 7; = Bo+ 1%+, € = (o, £1,7) and Ag(t) is the cumulative baseline intensity function

such that
T for Poisson processes,
Ao(ri) = ™
> el; for renewal processes,
Jj=1

where e;; = t;; — t;;-; and n{ is the number of durations including the last cemsored

duration. This leads to a simpler expression for K;(0) in the test statistic:
Ki(8) = (n: - A:(8))* — A:(6), (3.4.2)

where A;(0) = exp(n:)Ao(7:). Maximum likelihood estimates, 8, for @ can be found easily
by standard methods. We note that 7, n; = ¥, exp(7;)Ao(7:) from the score function
of By. A simpler computational form for ¥, K;(8) is thus equal to ST, [(ni—A:(6))? —ny.

As the score statistic and the IM statistic differ only by a scale factor, the test statistic

can be expressed as

T—:l K,(é)

VVa(8)

T, = (3.4.3)
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where V() is an estimate for the expected variance Vg(#) in which ¢ = S, H and O
correspond to the score statistic, the Hessian form of the IM test and the OPG form of the

IM test respectively. We state these variances as follows:

Ve(6) = iE[K,-(O)z]+E(VK.(0))(E(VZZ(O)))_IE(VK.(O)’), (3.4.4)

=1

Vs(8) = gz{;(e)z + VK.(8) (V?(6)) ' VK.(Y, (3.4.5)
Vie(8) = }Z‘,w” (8)wf (Y, (3.4.6)
Vo(8) = i?;w?(o)w?(o)’ (3.47)
where
K.(0) =S Ki(8), VE.(6) = Q{%@, (0) = 3" 4:(6), V2(8) = %,

=1 i=1

w(0) = K:(68) — VK.(6) (V*(8)) " VLY,
w?(9) = K:(6) — (fj K,-(e)vz,-(o)) (i vz{(a)'vz,-(o)) VE(8)'.

=1 i=1

Here the variance of the score statistic is estimated by replacing the expectations in (3.4.4)
by their corresponding sample moments. Note that these formulations are valid for any
point process with time-invariant covariate intensity function (1.2.4). In particular, the
expected variance of the test statistic for Poisson processes with Weibull intensity can be

found from the following expectations:

E[K:(8)"] = A«(6) +2A:(6)7
E(VK.(8)) = —) Ai8)(=; logm),

i=1
Bvie) = S| MOm A«(8)(log )z
) Ai(0)(log i)z, 772Ai(0) + Ai(0)(log :)? ’

i=1
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where A;(8) = exp(z/3)7] and z; = (1, z;)’. However, there is no closed form expression
for the expected variance of the test statistic for renewal processes.

We carry out the simulation study as follows. The sample sizes are chosen as 20, 50
(small), 100, 200 (moderate), and 300 (large). We generate a process from each design
and compute the test statistic. This procedure is repeated 2,000 times, based on which
an empirical distribution of the test statistic is obtained and compared to its asymptotic
distribution. It suffices to compare their tail probabilities as the test is either a one-sided
test or a Chi-square test for which the squared statistic is used in the latter. The result
will be discussed in the next section.

On the other hand, we introduce a random effect log(v) with different variances into
the linear predictor in order to study the power of the test. The mixing distributions
considered are Bernoulli and gamma. As will be seen in the next section, the finite sample
distributions do not differ much whether the covariate is distributed as Bernoulli(0.5) or
standard normal. Therefore, we will consider only the designs with normal distributed
covariates and the sample size is taken as 100. The rates of rejections at 5% significant

level are computed for different variances. The result is given in section 3.4.3.

3.4.2 Finite Sample Distributions

Poisson Process

The empirical tail probabilities of the test statistics T, for a = E, S, H and O are tabulated
for designs P1 and P2 along with the tail probabilities of N(0,1) distribution in Tables
3.2 and 3.3. For small sample sizes (20 and 50), none of the finite sample distributions
of Tg can be approximated by N(0,1). The empirical tail probabilities of Tg for the 1%
to 10% significance levels appear reasonably well approximated by N(0,1) for sample size
of at least 100. The distributions of other statistics are far away from N(0,1) even for
large sample sizes in which they shift to the left of N(0,1). As a result, the type I error is
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m  mean variance Upper tail probabilities of N(0,1)

0.0 1.0 030 025 020 0.15 0.10 0.06 0.025 0.01
20 -0.317 0877 0.185 0.152 0.118 0.088 0.057 0.029 0.020 0.009
20 -0.656 1.489 0.168 0.128 0.090 0.053 0.030 0.006 0.002 0.000
20 -0.801 1.872 0.181 0.145 0.111 0.078 0.046 0.021 0.007 0.001
20 -0.845 2.113 0.181 0.137 0.102 0.064 0.030 0.009 0.002 0.000

50 -0.210 0.925 0.208 0.172 0.142 0.102 0.069 0.038 0.022 0.012
50 -0.412 1420 0.231 0.193 0.145 0.096 0.052 0.018 0.004 0.001
o0 -0.388 1409 0.236 0.188 0.142 0.098 0.061 0.020 0.006 0.001
o0 -0.479  1.557 0.217 0.172 0.125 0.085 0.044 0.012 0.005 0.002

100 -0.106  1.007 0.249 0.210 0.174 0.135 0.095 0.049 0.026 0.011
100 -0.354 1216 0.218 0.173 0.128 0.094 0.049 0.018 0.006 0.002
100 -0.306 1.271  0.240 0.197 0.156 0.104 0.064 0.022 0.008 0.002
100 -0.337 1.233 0.230 0.178 0.133 0.085 0.049 0.015 0.004 0.001

200 -0.054 1.000 0.273 0.226 0.183 0.133 0.089 0.046 0.026 0.015
200 -0.161 1.101  0.259 0.210 0.164 0.112 0.073 0.028 0.012 0.003
200 -0.204 1.197 0.261 0.210 0.157 0.112 0.073 0.032 0.014 0.003
200 -0.238 1.133 0.248 0.199 0.140 0.093 0.056 0.021 0.010 0.003

300 -0.045 1.018 0.282 0.240 0.198 0.150 0.103 0.053 0.026 0.012
300 -0.219 1100 0.251 0.205 0.157 0.111 0.066 0.026 0.011 0.004
300 -0.145 1.154 0.283 0.234 0.178 0.122 0.073 0.035 0.021 0.006
300 -0.201 1.053  0.257 0.207 0.153 0.104 0.066 0.023 0.011 0.005

Table 3.2: Upper tail probabilities, sample mean and sample variance of the test statistics
for design P1. First row: The efficient score statistic. Second row: The Hessian form of
the IM test. Third row: The OPG form of the IM test. Fourth row: The score statistic.
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m mean variance Upper tail probabilities of N(0,1)

0.0 1.0 030 025 0.20 0.15 0.10 0.05 0.025 0.01
20 -0.367 0.783 0.131 0.108 0.091 0.070 0.052 0.032 0.020 0.010
20 -0.709 1.257 0.150 0.118 0.086 0.048 0.024 0.005 0.000 0.000
20 -0.857 1.846 0.175 0.139 0.110 0.080 0.050 0.018 0.008 0.001
20 -0.911 2.290 0.180 0.146 0.109 0.064 0.028 0.011 0.004 0.002
50 -0.252 0.854 0.191 0.149 0.121 0.092 0.060 0.033 0.020 0.008
50 -0.521 1.325 0.194 0.161 0.120 0.070 0.038 0.012 0.003 0.002
50 -0.552 1.605 0.211 0.173 0.134 0.098 0.060 0.022 0.008 0.000
50 -0.611 1.786 0.199 0.154 0.119 0.074 0.040 0.011 0.001 0.000
100 -0.165 0.989 0.219 0.186 0.156 0.118 0.082 0.054 0.033 0.016
100 -0.390 1.271  0.222 0.175 0.138 0.098 0.053 0.015 0.005 0.001
100 -0.373 1.383 0.242 0.196 0.148 0.098 0.063 0.020 0.008 0.001
100 -0.432 1.407 0.220 0.166 0.125 0.081 0.044 0.012 0.005 0.001
200 -0.116 1.036 0.246 0.208 0.170 0.128 0.088 0.051 0.030 0.014
200 -0.282 1.093 0.226 0.180 0.136 0.096 0.055 0.016 0.007 0.002
200 -0.271 1.242 0.246 0.198 0.152 0.101 0.065 0.023 0.012 0.002
200 -0.258 1.261  0.257 0.214 0.163 0.109 0.063 0.016 0.005 0.001
300 -0.090 0.983 0.267 0.218 0.173 0.123 0.084 0.044 0.024 0.011
300 -0.224 1.112 0.247 0.206 0.161 0.108 0.061 0.024 0.008 0.002
300 -0.245 1.217  0.256 0.208 0.156 0.114 0.070 0.026 0.010 0.001
300 -0.248 1.159 0.245 0.194 0.144 0.099 0.057 0.021 0.008 0.003

Table 3.3: Upper tail probabilities, sample mean and sample variance of the test statistics
for design P2.
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m mean variance Upper tail probabilities of x(1)

1.0 2.0 030 025 020 015 0.10 0.05 0.025 0.01
20 0.976 1.588 0.321 0.259 0.199 0.136 0.073 0.033 0.012 0.007
20 1.918 8.092 0.407 0.371 0.326 0.274 0.223 0.169 0.125 0.080
20 2.512 11.49 0.485 0.442 0.403 0.355 0.303 0.220 0.174 0.131
20 2.826 19.46 0.469 0.420 0.382 0.337 0.286 0.224 0.179 0.146
50 0.969 1.962 0.300 0.249 0.187 0.137 0.086 0.045 0.025 0.008
o0 1.589 6407 0376 0.328 0.279 0.231 0.179 0.113 0.081 0.050
50 1.559 6.198 0.375 0.327 0.277 0.221 0.169 0.110 0.077 0.048
o0 1.785 11.16 0.369 0.323 0.265 0.224 0.175 0.125 0.095 0.066
100 1.017 1.860 0.314 0.268 0.221 0.164 0.099 0.046 0.022 0.007
100 1.341 5.019 0.349 0©.294 0.242 0.196 0.146 0.089 0.059 0.034
100 1.364 5.179 0.344 0.297 0.244 0.200 0.148 0.091 0.060 0.032
100 1.346 5.699 0.327 0.280 0.234 0.179 0.131 0.085 0.060 0.038
200 1.003 2.145 0.288 0.250 0.202 0.149 0.103 0.050 0.029 0.011
200 1.127 3.489 0.300 0.259 0.211 0.159 0.116 0.065 0.038 0.022
200 1238 4.023 0.318 0.276 0.229 0.181 0.134 0.081 0.047 0.028
200 1.189 3969 0.314 0.269 0.215 0.170 0.125 0.071 0.045 0.024
300 1.020 1910 0.318 0.266 0.209 0.150 0.104 0.049 0.022 0.011
300 1.148 3.489 0.314 0.266 0.215 0.173 0.122 0.071 0.038 0.017
300 1.175 3.052 0.328 0.271 0.222 0.171 0.123 0.076 0.041 0.019
300 1.092 2546 0.315 0.270 0.221 0.162 0.107 0.063 0.035 0.014
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Table 3.4: Upper tail probabilities, sample mean and sample variance of the squared
statistics for design P1.
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m mean variance Upper tail probabilities of x*(1)

1.0 2.0 030 025 020 0.15 0.10 0.05 0.025 0.01
20 0.917 1.629 0.302 0.240 0.182 0.119 0.069 0.030 0.012 0.007
20 1.759 5.304 0.429 0.386 0.343 0.287 0.237 0.152 0.099 0.055
20 2.580 10.40 0.529 0.478 0.433 0.375 0.317 0.243 0.184 0.131
20 3.118 26.48 0.490 0.443 0.399 0.359 0.314 0.257 0.204 0.156
50 0917 1.664 0.291 0.237 0.176 0.124 0.074 0.036 0.015 0.007
50 1.596 5.926 0.376 0.326 0.287 0.231 0.182 0.121 0.086 0.051
50 1.909 8.646 0.435 0.380 0.336 0.274 0.217 0.146 0.104 0.068
50 2.159 15.38 0.405 0.362 0.316 0.261 0.217 0.157 0.120 0.088
100 1.016  2.138 0.305 0.255 0.205 0.156 0.107 0.051 0.024 0.011
100 1.422  4.845 0.364 0.310 0.261 0.212 0.153 0.100 0.068 0.040
100 1.521 6.088 0.368 0.324 0.276 0.223 0.166 0.104 0.070 0.045
100 1.593 8.765 0.355 0.308 0.262 0.208 0.154 0.107 0.081 0.053
200 1.049 2.431 0.308 0.262 0.214 0.161 0.111 0.054 0.025 0.013
200 1.172 3.213 0.326 0.280 0.237 0.180 0.125 0.071 0.046 0.021
200 1.315 4493 0.330 0.286 0.240 0.198 0.144 0.094 0.052 0.033
200 1.327  5.481 0.334 0.287 0.239 0.184 0.132 0.079 0.054¢ 0.035
300 0.991 2.057 0.290 0.243 0.194 0.147 0.094 0.050 0.024 0.011
300 1.162 3.656  0.311 0.257 0.215 0.171 0.126 0.070 0.040 0.020
300 1.276 4.105 0.337 0.284 0.243 0.192 0.134 0.087 0.051 0.026
300 1.221  4.483 0.306 0.261 0.216 0.169 0.120 0.077 0.055 0.034
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Table 3.5: Upper tail probabilities, sample mean and sample variance of the squared
statistics for design P2.
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m  mean variance Upper tail probabilities of x?(1)

1.0 2.0 030 025 020 0.15 0.10 0.05 0.025 0.01
100 1.019 2.015 0.305 0.251 0.206 0.154 0.100 0.053 0.023 0.010
100 1.359 5.147 0.338 0.293 0.250 0.202 0.145 0.094 0.059 0.035
100 1.330 4.650 0.339 0.288 0.240 0.196 0.146 0.087 0.057 0.035
100 1.382 5.511 0.350 0.296 0.249 0.198 0.141 0.091 0.054 0.039

200 0.962 1.867 0.295 0.243 0.201 0.144 0.098 0.042 0.017 0.008
200 1.218 3.469 0.337 0.282 0.236 0.181 0.130 0.078 0.047 0.022
200 1.090 2.937 0.307 0.258 0.203 0.157 0.105 0.062 0.035 0.020
200 1.164 3.729 0.303 0.262 0.212 0.168 0.115 0.074 0.046 0.026

300 1.012 2.139 0.302 0.253 0.198 0.141 0.099 0.049 0.024 0.011
300 1.135 3.110 0.318 0.268 0.220 0.166 0.114 0.069 0.041 0.022
300 1.134 3.103 0.321 0.269 0.223 0.161 0.115 0.063 0.040 0.020
300 1.116 3.078 0.314 0.269 0.217 0.164 0.109 0.058 0.038 0.022

Table 3.6: Upper tail probabilities, sample mean and sample variance of the squared
statistics for design P3.

deflated too much.

On the other hand, the squared statistics seem to converge a little faster to the asymp-
totic distribution (x?(1)) (Tables 3.4 and 3.5), although the distributions for the sample
moment variance forms now shift to the right of x?(1), implying that the type I error is
inflated. The ES form counverges relatively quickly; a sample size of 100 is enough to get
a reasonable asymptotic approximation. However, a sample size of at least 200 is required
for the other statistics.

The ES form certainly out-performs the other statistics. This may be due to the fact
that the expected variance of the statistic is less variable than its finite sample approxi-
mations. On the other hand, the score statistic, the Hessian form and the OPG form of
the IM test have a similar finite sample distribution for all sample sizes. It is difficult to

specify a preferred test.
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Upper tail probabilities of x*(1)

m mean variance
1.0 2.0 030 0.25 0.20 0.15 0.10 0.05 0.025 0.01
100 0.942 1.944 0.282 0.234 0.189 0.142 0.090 0.039 0.019 0.008
100 1.333 5.052 0.341 0.296 0.245 0.193 0.137 0.087 0.057 0.030
100 1.515 5700 0.385 0.330 0.277 0.226 0.167 0.109 0.074 0.046
100 1.536 6.856 0.364 0.318 0.272 0.219 0.168 0.110 0.074 0.048
200 0.964 1.994 0.282 0.230 0.185 0.144 0.092 0.047 0.026 0.012
200 1.173 3456 0.314 0.265 0.221 0.175 0.128 0.076 0.045 0.025
200 1.296 4424 0.348 0.298 0.239 0.193 0.139 0.077 0.048 0.028
200 1.257  4.535 0.327 0.279 0.231 0.187 0.131 0.073 0.045 0.029
300 1.035 2.114 0312 0.271 0.218 0.159 0.100 0.054 0.026 0.009
300 1.154 3.135 0.316 0.269 0.219 0.175 0.121 0.075 0.047 0.020
300 1.254 4.099 0.344 0.292 0.240 0.178 0.128 0.077 0.050 0.027
300 1.216 3.958 0.323 0.280 0.239 0.191 0.135 0.075 0.046 0.025

Table 3.7: Upper tail probabilities, sample mean and sample variance of the squared

statistics for design P4.

Furthermore, the distributions of the test statistics seem not to be affected by whether
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the covariate is distributed as Bernoulli or normal, or the number of events per process

provided the number is not too smail (Tables 3.6 and 3.7).

Renewal Process

The finite sample distributions are tabulated in Tables 3.8 to 3.13 for T's, Ty and T. Recall

that the ES form for renewal process is not available. We start with moderate sample sizes

because the finite sample distributions are far away from the asymptotic distributions for

small sample sizes.

The results are very similar to the Poissonr process.
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m  mean variance Upper tail probabilities of N(0, 1)

0.0 1.0 0.30 025 0.20 0.15 0.10 0.05 0.025 0.01
100 -0.241 1.204 0.263 0.212 0.153 0.106 0.061 0.021 0.006 0.003
100 -0.316 1.393 0.242 0.200 0.162 0.118 0.071 0.026 0.009 0.003
100 -0.340 1.290 0.244 0.184 0.142 0.103 0.056 0.021 0.007 0.002

200 -0.133 1.072 0.268 0.222 0.175 0.124 0.076 0.026 0.014 0.003
200 -0.233 1.189 0.251 0.201 0.159 0.122 0.067 0.030 0.012 0.004
200 -0.208 1.156 0.262 0.217 0.166 0.114 0.068 0.025 0.013 0.003

300 -0.177 1.056 0.258 0.204 0.156 0.106 0.069 0.025 0.011 0.004
300 -0.195 1.118 0.258 0.211 0.164 0.116 0.074 0.029 0.008 0.001
300 -0.137 1.049 0.265 0.215 0.169 0.114 0.071 0.029 0.016 0.007

Table 3.8: Upper tail probabilities, sample mean and sample variance of the test statistics
for design R1. First row: The Hessian form of the IM test. Second row: The OPG form
of the IM test. Third row: The score statistic.

m mean variance Upper tail probabilities of N(0,1)

0.0 1.0 030 025 0.20 0.15 0.10 0.05 0.025 0.01
100 -0.325 1.202 0.229 0.188 0.146 0.104 0.058 0.021 0.007 0.002
100 -0.300 1.264 0.238 0.193 0.149 0.108 0.061 0.023 0.008 0.003
100 -0.375 1.292 0.224 0.180 0.137 0.088 0.049 0.018 0.006 0.001

200 -0.249 1.163 0.254 0.208 0.156 0.109 0.067 0.022 0.011 0.004
200 -0.218 1.181 0.264 0.204 0.157 0.109 0.069 0.030 0.010 0.003
200 -0.246 1.173 0.254 0.203 0.162 0.108 0.066 0.024 0.009 0.002

300 -0.137 1.111  0.283 0.231 0.184 0.135 0.082 0.029 0.010 0.004
300 -0.168 1.149 0.262 0.222 0.166 0.124 0.076 0.030 0.013 0.004
300 -0.201 1.123 0.250 0.195 0.153 0.113 0.066 0.028 0.014 0.004

Table 3.9: Upper tail probabilities, sample mean and sample variance of the test statistics
for design R2.
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m mean variance Upper tail probabilities of x3(1)

1.0 2.0 030 025 020 015 0.10 0.05 0.025 0.01
100 1.261 4.040 0.330 0.284 0.233 0.182 0.133 0.080 0.054 0.034
100 1493 6.296 0.366 0.320 0.275 0.213 0.159 0.100 0.068 0.042
100 1406 5.591 0.356 0.301 0.251 0.204 0.150 0.093 0.060 0.040

200 1.089 2964 0.310 0.253 0.203 0.147 0.102 0.063 0.032 0.021
200 1.243 3.919 0347 0.290 0.235 0.190 0.131 0.075 0.042 0.024
200 1.199 3.192 0.338 0.283 0.236 0.185 0.126 0.075 0.037 0.020

300 1.087 2.812 0.304 0.256 0.207 0.159 0.113 0.059 0.033 0.018
300 1.156 3.032 0.321 0.275 0.232 0.181 0.132 0.068 0.039 0.019
300 1.054 2596 0.300 0.255 0.200 0.150 0.102 0.059 0.030 0.017

Table 3.10: Upper tail probabilities, sample mean and sample variance of the squared
statistics for design R1.

™m mean variance Upper tail probabilities of x?(1)

1.0 2.0 030 025 0.20 0.15 0.10 0.05 0.025 0.01
100 1.307 3.991 0.352 0.307 0.263 0.210 0.148 0.085 0.049 0.026
100 1.353  4.735 0.351 0.301 0.249 0.200 0.150 0.092 0.058 0.035
100 1.432 6.127 0.346 0.302 0.252 0.208 0.156 0.094 0.061 0.037

200 1.224 3.744 0.338 0.283 0.235 0.175 0.120 0.072 0.043 0.024
200 1.228 3.845 0.324 0.273 0.231 0.181 0.132 0.078 0.049 0.027
200 1.233 3.697 0332 0.285 0.240 0.180 0.126 0.080 0.043 0.027

300 1.129 2.854 0.329 0.280 0.226 0.169 0.109 0.061 0.034 0.019
300 1.176 3.304 0.329 0.282 0.233 0.184 0.127 0.071 0.045 0.022
300 1.163 3.252 0.323 0.275 0.219 0.173 0.122 0.073 0.045 0.021

Table 3.11: Upper tail probabilities, sample mean and sample variance of the squared
statistics for design R2.
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m mean variance Upper tail probabilities of x%(1)

1.0 2.0 030 025 020 0.15 0.10 0.05 0.025 0.01
100 1.197 3.531 0.325 0.274 0.224 0.173 0.124 0.073 0.042 0.023
100 1.355 4.578 0.356 0.303 0.257 0.200 0.151 0.095 0.059 0.031
100 1.534 7.006 0.357 0.305 0.259 0.214 0.166 0.106 0.074 0.048

200 1.123 3.046 0.318 0.276 0.224 0.167 0.112 0.062 0.036 0.017
200 1.150 3.041 0.318 0.275 0.223 0.174 0.122 0.068 0.040 0.019
200 1.182 3.594 0.313 0.265 0.209 0.164 0.125 0.073 0.048 0.027

300 1.077 2.584 0.314 0.263 0.208 0.159 0.103 0.057 0.031 0.016
300 1.199 3.448 0.323 0.273 0.227 0.176 0.126 0.073 0.049 0.028
300 1.139 3.256 0.316 0.264 0.215 0.169 0.121 0.062 0.03¢ 0.020

Table 3.12: Upper tail probabilities, sample mean and sample variance of the squared
statistics for design R3.

m mean variance Upper tail probabilities of x?(1)

1.0 2.0 0.30 0.26 020 0.15 0.10 0.05 0.025 0.01
100 1.232  3.867 0.320 0.272 0.223 0.184 0.130 0.078 0.050 0.030
100 1.409 5.342 0.364 0.303 0.252 0.198 0.148 0.097 0.061 0.036
100 1.626  7.410 0.380 0.332 0.280 0.231 0.181 0.122 0.080 0.050

200 1.164 2999 0.322 0.274 0.228 0.180 0.130 0.080 0.042 0.018
200 1331 3.764 0.360 0.314 0.264 0.208 0.152 0.086 0.052 0.028
200 1.358 5.080 0.338 0.293 0.247 0.199 0.143 0.087 0.060 0.037

300 1.135 2.600 0.327 0.280 0.231 0.185 0.126 0.062 0.033 0.013
300 1.208 3.223 0.338 0.285 0.243 0.192 0.130 0.064 0.041 0.020
300 1.240 4.217 0.327 0.274 0.226 0.182 0.130 0.078 0.045 0.025

Table 3.13: Upper tail probabilities, sample mean and sample variance of the squared
statistics for design R4.
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Figure 3.1: Power curves for Poisson process, design P2

3.4.3 Power of the Tests

Power curves at 5% significance level for different squared statistics under designs P2 and
R2 with sample size 100 are displayed in Figures 3.1 to 3.2 for binary and gamma frailties.

Strictly speaking as type I errors for the statistics are not the same, the power curves
are not directly comparable. Despite this, since the test using the ES form has good type I
error rate and its power curve is definitely higher than the other power curves, this should
indicate that it has higher power than the other tests. On the other hand, since the type
I errors for Ty, To and Ts are very close, this also makes the comparison between them
reasonable. In both Poisson and renewal processes, the powers of Ty, To and Ts are very
close for binary frailty. For gamma frailty, we observe the following order: Tp > Ty > T,
although the difference is quite small.
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Figure 3.2: Power curves for renewal process, design R2

3.4.4 Summary

We summarize the results of the simulation study:

1. The ES statistic performs the best in terms of size and power. A sample size of about
100 is enough to achieve reasonable asymptotic approximation. It is recommended

that the ES statistic should be used whenever it is available.

2. The sample moment statistics have similar performance. This is consistent with
Crouchley and Pickles (1993)’s results. This makes the OPG form more attractive

because of its simpler computation.

3. Large sample sizes are required for the statistics based on sample moment estimates

of the variance in order to get a reasonable type I error rate.

4. Apart from the ES statistic, the statistics have smaller type I error rates than the

nominal type I error while the squared statistics have higher type I error rates. As
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a result, the one-sided and two-sided tests tend to reject too infrequently and too

frequently, respectively, when the null hypothesis is true.

3.5 Adjusted Score Tests for Poisson Processes

The simulation study in the last section clearly shows that the score and IM tests of
homogeneity have poor finite sample performance. Adjustments for the test statistics are
definitely desirable. In this section, we examine the frequency properties of score and
adjusted score statistics for testing the hypothesis of homogeneity in continuous time non-
homogeneous Poisson processes subject to non-informative censoring. Specifically, given

the random effect u, we express the conditional intensity for events at time ¢ as
A(t|n) = exp(2'B + ou)Ao(t), (3.5.1)

where 2 = (z,,...,z,)’ is a p x 1 vector of time independent covariates, 8 = (81, ..., 3p)’ is
a p x 1 vector of the corresponding regression coefficients, Aq(¢) is the baseline intensity
function, u is the subject-specific random effect with mean 0, variance 1 and probability
density function g(u), and o measures the extent of heterogeneity. Based on this specifi-
cation, it is clear that we assume the random effect to be distributed independently of the
covariates. A test of homogeneity is equivalent to testing Hp : o2 = 0.

We first consider an adjustment for parametric models in section 3.5.1. We then extend
the test to semi-parametric models based on counting process methodology (Fleming and
Harrington, 1991) in section 3.5.2. Simulation studies pertaining to the size and power
of the tests are described in section 3.5.3. These simulation studies also compare the
performance of the tests using a weakly parametric model based on a piecewise constant
baseline intensity and the semi-parametric model. An example involving a clinical study

of gamma interferon in chronic granulomatous disease is provided in section 3.5.4.
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3.5.1 Adjustment for Parametric Models

Here we assume that the setting given in section 3.2 is satisfied. We also assume that the
conditional baseline intensity, Ag(t), in (3.5.1) is completely specified by v, a ¢ x 1 vector
of parameters such that Ag(2) is at least twice differentiable with respect to <, and satisfies

the condition
4
Ao(t) = / Ao(s)ds < oo, 0<t< oo
0

We have shown in section 3.4 that the score statistic under this specification is given by

T,6) = 23 [(m ~ 0:8)" - )] (3.5.2)

i=1

where 8 = (B',v'), Ai(8) = exp(z!B)Ao(r:) and 6 is the m.le. of @ under the null model.

The asymptotic variance of T,(8) is given by
V;’(e) = Icf(a) - Iéd(a)la—l(a)-[ﬂa(o)a (353)

where [,(0) = T, (A:i(0) +2A%(8)), Is,(8) = E(—0T,(8)/88) and I4(8) is the expected
information matrix for the null model. The expressions for lp,(@) and I4(@) are given in

appendix A.l. We carry out the test by using the standardized statistic

s _ Tp(0)

Zy, = =
V(9

which is asymptotically distributed as N(0,1) under H,. Since o? is non-negative, we

consider a one-sided test in which the null hypothesis is rejected if Z, is large.

We are now going to derive an approximate expectation of T,(8). Consider a first-order
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Taylor series expansion for n; — A.;(é) about the true parameter value 6,

m=Ai0) = = AO) ~ 2500~ 0) + O,(m)
= n-a0) - 2O oo + 0,m), 354

where U(@) is the score function for 8 under the null model. Since U(8) has mean zero
and variance Ig(8), the left-hand side of {3.5.4) has expectation approximately equal to 0

and variance given by

OAB) 1 5 OA6) _ ,OALO)

—6—0'_[9 (9) 9 507 I;Y(8)cov(n;, U(8)).

Ai(8) +

We show in appendix A.l that cov(n;,U(@)) = dA;(0)/30 and hence, the expectation of

the score statistic evaluated at @ is approximately equal to

B(T,(8)) & 5 3 Ad0) ~ b(0) — 3 3 A(6)

:ﬁ.l t“l

as m~Y/ 2(A,(é) ~ A;(89)) converges to 0 in probability, where the approximate expected
bias is given by

aMm_

22 ael IG 1(8) (3.5.5)

Since I4(@) has order O(m) and OA;(8)/30 has order O(1), the normalized expected
bias, m~1/2b,(@), will vanish as m — oo, giving m~/2T,(0) and m~'/2T,(6) the same
asymptotic distribution. For small to moderate sample sizes, this bias may be appreciable,

so we define the adjusted score statistic as

TA4(8) = T,(8) + b,(8), (3.5.6)
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and carry out the test based on the standardized version of the statistic,

Z4 = Uy (9,) , (3.5.7)
Vu(6)

which is asymptotically distributed as N(0,1). We anticipate that the distribution of Z;‘
converges faster to N(0,1) than that of Z,, under the null hypothesis.

We also note that bp(é) is non-negative since I4(@) is a semi-positive definite matrix
with probability 1. As a consequence, the adjusted score statistic is at least as large
as the unadjusted score statistic with probability 1. This implies that the finite sample
distribution of the unadjusted score statistic is left-shifted compared to its asymptotic
distribution. The simulation study in section 3.5.3 provides empirical evidence that the

type I error for the unadjusted score statistic is indeed smaller than the nominal level.

3.5.2 Semi-parametric Models
Model Specification

In this section, we employ the counting process approach (Andersen and Gill, 1982; Fleming
and Harrington, 1991) for Poisson processes in which Ag(£) is completely unspecified. Using
the notation in section 3.5.1, we express the cumulative number of events for subject z at

time ¢, given u; as,
t
Ni(t) = exp(@8 + o) [ Yi(s)Ao(s)ds + Mi(8), (3.5.8)

where M;(t) is a zero-mean martingale.

Without loss of generality, we assume that the lengths of follow-up are in ascending
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order, 1y < -+~ < 7. Given u = (uy, ..., %)’ the conditional partial likelihood is given by

Ly(B, olu) = exp [i [ (z:ﬂ +ous ~ log [i Y;(s) exp(e} + au,-)]) dNi(s)] ,
= = (3.5.9)
i = 1,...,m (Fleming and Harrington, 1991 Chapter 4). Hence, the marginal partial
likelihood is obtained by integrating (3.5.9) with respect to the random effects (Commenges
and Andersen, 1995):
L,(B.0) = /_ Z L,(B, o|u)g(w)du. (3.5.10)

Before proceeding, we define some further notation. For £ > 0, let

SOE) = S Yilt)exp(@B), SH(t) = 3 Vilt) exp(eiB)es,

i=1 =1

m s (2)
SO = 3-Hilt) expleiBlaseh, Blt) = gy V() = gy ~ BB,

=1

Yit)exp(ziB) . _,
$O@F) ’

We assume that the regularity conditions of Fleming and Harrington (1991; chapter 8)

and T.U,'(t) = ceey ML

hold for the asymptotic arguments below.

Score Statistic

Let N.(t) = =7, N:i(t) be the total number of events in the sample occurring in (0, ¢].

Denote the martingale residual at ¢ under Hp : 02 = 0 by
. t .
Mi(t, B) = Ni(t) -exp(z;ﬁ)/o Yi(s)dAo(s), i=1,...m, (3.5.11)

where
- _ [tdN.(s)
Aolt) = |, So(5)
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is the Nelson-Aalen estimator for Aq(¢) (Andersen et al., 1993).

As suggested by Commenges and Andersen (1995), the score statistic for testing o2 = 0
has the same form as (3.5.2) except that the partial likelihood (3.5.9) is used in place of
(3.2.1). The resulting score statistic is then given by

13T o0
T(B) = 33 [M2(8) — [ (wi(s) — wX(s))an.(s)] (35.12)
=1
where M;(8) = A;I,(oo, B) (see appendix A.2 for derivation). The score statistic (3.5.12)
has a similar interpretation to its parametric counterpart (3.5.2). By expressing (3.5.11)
as Mi(t,B) = M(t) — J§ wi(s)dM.(s), since the M;(-)’s are independent zero-mean martin-
gales, the predictable variation process of A;I,-(t,ﬁ) is equal to

< () > (8) = [ (S©(s) - exp(@iB))us(s)dols)

which can be estimated by Jf(w:(s) — w?(s))dN.(s). Therefore, the expectation of M?(8),
which is equal to E[< M;(-,8) > (c0)] (Fleming and Harrington, 1991 section 2.4), can be
estimated by the second term on the right-hand side of (3.5.12).

The asymptotic distribution of T,,(8) can be obtained by noting that T,,(B) is a

martingale transform of the M;(-)’s at co. Specifically, we can show that the process

1

> [W82(2.8) ~ [ (wits) — wioD)an (o]

i=1
can be expressed as

Tolt8) = [ Hils,B)AM(), (3.5.13)

where

Hy(t,B) = Mi(t—,B) — wi(t) — i[Mj(t—,ﬁ) — w;(8)]w;(¢)
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is predictable. The proof of (3.5.13) closely follows Commenges and Andersen (1995); the
details are given in appendix A.2. The predictable variation process of T,,(¢,/3) is then

equal to
<To(8)> (1) = 3 [ B (s, B)¥is) exp(ziB)dho(s),

whose expectation is equal to the variance of T,,(¢,3). Hence, T,p(8) = Typ(o0,0) has

mean 0 and variance E[< Typp(-,3) > (o0)] which can be estimated by
18) =3 [ H2(s, Brusls)aN (o).

Under suitable regularity conditions (Gray, 1995) and by the martingale central limit
theorem (Fleming and Harrington, 1991 Chapter 5), T\p(83)/ \/E(ﬁ—) converges to N(0,1)
in distribution.

The maximum partial likelihood estimates, 3, under H, can be obtained using the
procedure suggested by Lawless (1987). When the regression parameters are replaced by
3, the asymptotic variance of T,F(B) has the same adjustment as in the parametric case
(3.5.3). Based on the idea of Theorem 8.3.3 of Fleming and Harrington (1991) with some

modifications, one may show that the asymptotic variance of T,p(3) can be estimated by

ViolB) = L.(8) — I5.(B) 5 (B)1(8), (3.5.14)

where

fae(8)= . [ Hils, Byun(s)id (o)

i=1

estimates E(—0T,,(3)/98) and
I5(8) = [~ V(s)aN.(s)

is the observed information matrix for 8. Hence, the test is based on the standardized
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statistic

> _ Tw(B)

Zep = ip ==
VVe(B)

which converges to N(0,1) in distribution.

Adjusted Score Statistic

As in the parametric case, we consider a first-order Taylor series expansion for the martin-

gale residuals around the true 3, which is equal to
Mi(B) = Mi(B) + JIB)B - B) + O,(m™), i=1,..,m,

where

58 = 25 = — [ (ai — Blo)uils)dN-(s),

which can be decomposed into two terms
Ji(B) = - ./:o(zi — E(s))w;(s)dM.(s) — /:a(:l:; — E(s))Y:(s)exp(z'B)dAo(s). (3.5.15)

The first term of (3.5.15) is a p x 1 vector of zero-mean martingales with predictable
variation [5°(z; — E(s))(z: ~ E(3))'w?(s)S® (s)dAq¢(s) which, subject to the regularity
conditions in Chapter 8 of Fleming and Harrington (1991), converges to 0 in probability.
The second term of (3.5.15) is of order Op(1) and thus J;(B) converges to E[J;(B)] =
— I E[(z: — E(3))Y:(3) exp(z!B)]dAo(s) in probability. Furthermore, using the relation
B-B=VUPB)+ O,(m~1), we have the following approximation:

E[M}(B)] ~ E[M?(8)] + E[J/(B)IVEE[J:(B)] + 2E[J{(B)|Vacov(M:(B), U(B)),
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where V3 = [E(I3(8))]~* and U(B) is the score function for B under Hp. Similar to the
parametric case, one can prove that cov(M;(8), U (8)) = —E[J:(B)] (see appendix A.2). It
is straightforward to see that the bias induced in the second term of T,p(8) is negligible.
Consequently, the expectation of Tm(ﬁ) is approximately equal to —b,,(3) where

bun(B) = 3 3 ELTBIVEELHB))

=1

which is estimated by
bun(B) = 5 2 T1(B)I54(8)J(B) (3.5.16)

i=1

for true 3. We therefore define the adjusted score statistic as
TAB) = To(B) + bup(B)- (3.5.17)

We note that the estimated bias i),p(['}) has the same properties as its parametric counter-
part, namely it is non-negative and m~/2b,,(3) converges to 0 in probability. Hence, the
unadjusted and adjusted score statistics are asymptotically equivalent.

We carry out the test using the standardized statistic

-, TAB)

Z4h = ==,
T VVa(B)

which is asymptotically distributed as N(0,1).

3.5.3 Simulation Studies

Preliminary Remarks

In this section, we compare the performance of the score and adjusted score statistics with

respect to the size and power via simulations in both the parametric and semi-parametric
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frameworks. First we make some general remarks to aid in the interpretation of the results.

The score test based on parametric models may be sensitive to the misspecification
of the baseline intensity. Although the semi-parametric model is robust in this regard,
the performance of the corresponding score test may be adversely affected by the use of
an empirical estimator for var(T,,,(,B)) based on sample moments. The simulation study
in section 3.4 provides empirical evidence of this regard. Together with the estimation
of B, (3.5.14) can be highly unstable in small samples (Breslow, 1989). As a result, the
distributions of Z,, and Z;:‘, may require large sample sizes to approach N(0, 1). In contrast,
in parametric models, the asymptotic variance of TP(B) (3.5.3) has an exact form for
given 3, and therefore Z, and Z,;“ will be expected to converge faster to N(0,1) than Z,p
and Z;:,, provided the parametric model is correctly specified. As a compromise between
a particular parametric model and the semi-parametric model, we suggest a piecewise
exponential specification for the baseline intensity. As the number of pieces increases the
model becomes weakly parametric, and so will exhibit robustness.

The objectives of this section are two-fold. First, we intend to compare the frequency
properties of the unadjusted and adjusted score statistics. Second, we plan to compare
the performance of the tests based on the piecewise exponential and the semi-parametric

formulations.

Type I Error Rates

To investigate the type I error rates, we generate m independent Poisson processes under

Hj according to the following Weibull intensity:
Xi(t) = exp(Bo + Brzi )yt i=1,..m, (3.5.18)

where exp(f) and v > 0 are scale and shape parameters respectively. The z;’s are taken
to be independently and identically distributed Bernoulli random variables such that the
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probability of z; = 1 is 0.5 and the probability of z; = 0 is 0.5. This specification was
chosen to mimic treatment assignment in a randomized trial.

We set the target length of follow-up to 7 = 1 (year) and model loss to follow-up
by simulating censoring times with an exponential distribution with mean log(0.5}; this
generates about 50% censored follow-ups. In other words, the length of follow-up for subject
iis equal to 7; = min(C;, 1), where the C;’s are independently and identically distributed as
exponential with mean log(0.5). We further specified 8, = 1 to represent a treatment effect
and v = 2 to induce a trend in the conditional intensity. The parameter Gy is determined
by the expected number of events over (0, 1] based on the baseline model, i.e., 8y = log(K),
where K = E(NV;(1)|z; = 0). We consider K = 2 and 10 to represent small and moderately
large numbers of events per subject. Qur primary interest lies in the performance for small
to moderate sample sizes and so we consider sample sizes: m = 10,20,50 and 100.

Having generated the processes, we compute the score and adjusted score statistics
according to the following specifications of the baseline intensity: (z) Weibull, (i) piecewise
exponential with 5 equally spaced sub-intervals over [0,1], denoted by PE-equal, (u:2)
piecewise exponential with 5 cut-points determined by the 20th, 40th, 60th and 80th
percentiles of the observed event times, denoted by PE-percentile, and (iv) semi-parametric
specification. All simulations were replicated 2,000 times.

The Weibull model is the correct model specification in this setting and thus serves as
the basis for comparison. We consider two ways of selecting the cut-points for the piecewise
exponential model in (iz) and (iz) above. The equally-spaced division is attractive on the
grounds of clinical interpretation of, for example, monthly rates of disease recurrence. The
division based on the percentiles of the observed event times groups the ordered event
times into a pre-determined number of strata. In the extreme case that the number of
strata is equal to the number of observed events, the piecewise exponential model and the
semi-parametric model are equivalent (Clayton, 1994).

The empirical type I errors at 10%, 5% and 1% nominal levels are reported in Tables
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3.14 and 3.15 for K = 2 and K = 10 respectively. At the nominal 10% and 5% levels, all
of the unadjusted score tests have conservative empirical type I error rates for the sample
sizes considered. In other words, the unadjusted tests tend to reject the null hypothesis
less frequently than anticipated. This feature is also exhibited at the 1% nominal level,
although to a lesser degree.

In contrast, the adjusted score tests generally have well-controlled type I error rates.
The adjusted test based on the Weibull specification is substantially less conservative than
its unadjusted version, and is satisfactory for sample sizes as small as m = 20. The unad-
justed test for the PE-equal specification is conservative to approximately the same degree
as the Weibull counterpart, but the adjustment appears to over-compensate, leading to
inflated empirical type I error rates for small to moderate sample sizes. The unadjusted
test based on the PE-percentile method is again conservative , but the adjustment per-
forms extremely well in this context. In fact the adjusted statistic competes very favorably
with the adjusted Weibull statistic, and has the attractive property of being somewhat
more robust to misspecification of the baseline intensity. The semi-parametric specifica-
tion again leads to a conservative unadjusted test statistic, as one might expect, but the
adjustment does not lead to such good improvements in the empirical type I error rates as
are observed in the Weibull and PE-percentile specifications. In fact, at the 5% nominal
level, the adjusted statistic for the semi-parametric specification leads to an unacceptably
conservative test even for m = 100.

This confirms the argument made above regarding the estimator of (3.5.14). To get
further evidence, we also carried out simulation studies for the Weibull and PE-percentile
specifications with m = 100 in which sample moment estimators were used for (3.5.3),
i.e., [,(0), Is-(0) and I4(0) in (3.5.3) were computed using their sample moments. The
empirical type I errors were severely deflated, even the adjusted statistics failed to provide
sufficient improvement (Table 3.16). Therefore, we conclude that the expected form of

(3.5.3) should be used, and therefore a weakly parametric model based on a piecewise
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Weibull PE-percentile
m 0.10 0.05 0.01 0.10 0.06 0.01
100 0.047 0.015 0.001 0.046 0.016 0.001
0.061 0.024 0.002 0.063 0.026 0.002

Table 3.16: Empirical type I errors for the unadjusted score statistic (first row) and the
adjusted score statistic (second row) using the sample moment estimates of the variance
in which E(N;(1)|z; = 0) = 2 and the number of cut-points is 5.

exponential specification of the intensity is preferred.
Finally we remark that as one would expect, the simulations based on more expected
number of events per subject (Table 3.15) had slightly better performance over the statistics

with less expected number of events per subject (Table 3.14).

Power of the Tests

We now turn to assess the power of the test based on the above four specifications. We

consider gamma random effects in which for fixed z;, the conditional intensity is given by
Ai(t]2) = ziexp(Bo + Brz:)vt" ™Y, i=1,..,m,

where we consider sample size m = 20. The z;’s are then assumed to be independently and
identically distributed gamma random variables with mean 1 and variance 4, to generate
subject-to~subject variation in the intensities. With this model specification, the ratio of
the marginal variance to the marginal mean of N;(7;) is equal to 1 + §exp(Bo + Brz:) 7~ .
We consider the case of small n; and set the parameters as Fy = log(2), 81 =1, v = 2 and
4 ranging from 0.0 to 0.8 corresponding to mild to moderate heterogeneity. The empirical
power curves for the unadjusted and adjusted statistics at the 5% nominal significance

level are displayed in Figures 3.3 and 3.4.
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Figure 3.3: Power curves for the unadjusted score statistics at 5% nominal significance
level, where m = 20.

Since the results in Tables 3.14 and 3.15 suggest that the empirical type I error rates of
the unadjusted and adjusted tests are different, it is not appropriate to compare the power
of these tests. Nevertheless, the unadjusted tests based on the four model specifications
in this section are roughly comparable, suggesting that it is reasonable to compare their
relative powers (see Figure 3.3). The power curves were almost indistinguishable, indicating
that the unadjusted tests based on these four specifications had similar performance.

The power curves for the adjusted tests are given in Figure 3.4. Here we must bear in
mind the inflated type I error rates of the adjusted PE-equal statistic and the conservative
nature of the adjusted semi-parametric specification. Since the empirical sizes of the ad-
Jjusted tests based on the PE-equal and semi-parametric specifications were different from

each other and from the other two specifications, we did not attempt to compare their
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Figure 3.4: Power curves for the adjusted score statistics at 5% nominal significance level,
where m = 20.

powers. As the adjusted Weibull and adjusted PE-percentile statistic have comparable
empirical type I error rates, comparisons between them are most relevant. It is reassuring
that there is no loss in power in adopting the robust PE-percentile approach.

On the whole, the adjusted tests seem to have reasonable power to detect heterogeneity
and the PE-percentile model seems to out-perform the semi-parametric model in terms of

the type I error rate.

Comparison to Pearson Chi-squared Statistic

The Pearson chi-squared statistic is often used to assess the goodness-of-fit in Poisson
regression models (McCullagh and Nelder, 1989) and so we compare the performance of
the score statistics with this statistic as well. Since the Pearson chi-squared statistic is
usually defined for parametric models, we consider the parametric specifications (z), (2z)

and (i22) given in above. The usual Pearson chi-squared statistic is defined in the present
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context as
(n; — Ai(@ (n: — A:(6))?
B § A:(8)

where A;(8) = exp(x;8)Ao(7:;v) with &; = (1,2;)' and z; = z; for Weibull and piecewise

b

exponential specifications respectively, B is the corresponding vector of regression coeffi-
cients, v i1s a ¢ X 1 vector of parameters specifying the baseline intensity, and 8 = (8',~v)".
Under Hp, P is approximately x? distributed with degrees of freedom m — k, where & is
the dimension of 8.

Farrington (1996) recently constructed a first-order modification to P which improved
substantially the performance of the goodness-of-fit test in generalized linear models with
overdispersion manifested by a multiplicative variance inflation factor. The modification
is directed at inducing approximate orthogonality between the adjusted statistic and the
estimates of the regression parameters in the sense that the distribution of the adjusted
statistic conditional on 6 depends only weakly on the true value of #. The modified Pearson

statistic for Poisson regression models is defined by

i n; — é

b4

which is distributed approximately as x?(m — k). Farrington (1996) also suggested using

the standardized version of P4,

PA —(m—~k)
2(m — k)

ZPA =

which is distributed approximately as N(0,1).

Here we study the type I error rate of the tests of homogeneity based on P, P4 and
ZPA4. The data were generated according to (3.5.18). Since it is well-known that the
Pearson chi-squared test has poor performance for small n; (McCullagh and Nelder, 1989),



CHAPTER 3. TESTS OF HOMOGENEITY FOR POINT PROCESSES 93

Weibull PE-equal PE-percentile
m 0.10 0.05 0.01 0.10 0.056 0.01 0.10 0.05 0.01
10 0.135 0.084 0.026 0.370 0.245 0.075 0.369 0.233 0.063
0.125 0.062 0.014 0.447 0.282 0.079 0.493 0.322 0.093
0.136 0.087 0.036 0.460 0.364 0.201 0.509 0.399 0.225

20 0.134 0.079 0.034 0.190 0.110 0.030 0.183 0.097 0.019
0.113 0.052 0.013 0.241 0.129 0.032 0.301 0.167 0.043
0.117 0.070 0.024 0.258 0.167 0.077 0.316 0.211 0.090

50 0.128 0.082 0.038 0.119 0.064 0.013 0.101 0.050 0.011
0.109 0.051 0.011 0.174 0.097 0.022 0.234 0.133 0.028
0.113 0.060 0.021 0.182 0.113 0.038 0.247 0.152 0.047

100 0.133 0.092 0.043 0.076 0.041 0.011 0.068 0.031 0.007
0.106 0.058 0.012 0.158 0.076 0.017 0.229 0.125 0.032
0.112 0.067 0.018 0.166 0.087 0.027 0.236 0.146 0.046

Table 3.17: Empirical type I errors for the Pearson statistic (first row), Farrington’s modi-
fied Pearson statistic (second row) and standardized modified Pearson statistic (third row)
in which E(N;(1)|z; = 0) = 10 and the number of cut-points is 5.

we consider it only for the case K = 10. Note that these tests detect both under-dispersion
and over-dispersion.

The empirical type I error rates of the tests based on P, P4 and ZP# are reported in
Table 3.17. The ordinary statistic P for all specifications has grossly inflated type I error
rates. The modified statistic P4 based on the correct specification (Weibull), however,
performs very well, although its standardized version Z P4 has slightly higher type I error
rates than the nominal levels. In contrast to our findings regarding the adjusted score
tests, P4 and Z P based on the piecewise exponential specifications exhibit unacceptably
inflated type I error rates. This may indicate that the Pearson statistic is very sensitive to
the specification of the baseline intensity and thus serves more as an omnibus goodness-of-

fit test, rather than a test directed at detecting extra-Poisson variation alone. Provided that
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the model is correctly specified, P4 is an attractive statistic favored over Z: because of its
simpler computation. However, correct model specification is rather difficult to achieve and
some sort of robustness is definitely preferable. Therefore, when testing for homogeneity,
the adjusted score statistic using the PE-percentile specification is recommended due to

its robustness to model specification and its satisfactory performance.

3.5.4 Gamma Interferon in CGD

We consider the CGD study described in section 1.4.1 as an illustration to the testing

procedure in this section.

We first fit a semi-parametric model involving all available covariates under the as-
sumption of homogeneity in which log-transforms were applied to the three continuous
covariates: age, height and weight. Plots for the martingale residuals from this model ver-
sus log(age), log(height) and log(weight) are shown in Figure 3.5 with a LOWESS smoother
to help elucidate any patterns. These residual plots indicate that the functional forms of
the covariates are quite reasonable under the assumption of homogeneity.

We then fit the same regression models using the Weibull and piecewise exponential
(with 5 cut-points based on the percentiles of the event times) specifications. The results
of fitting these models are given in the left panel of Table 3.18 along with the correspond-
ing tests of homogeneity. All the tests indicate that there is significant evidence against
the hypothesis of homogeneity. For all specifications of the intensity, the adjusted score
statistic is at least as large as the unadjusted one, as expected, and hence gives stronger
evidence against Hg : o = 0. Note that the estimates and, in particular, the standard
errors from the PE-percentile and semi-parametric specifications are generally in very close

agreement suggesting that the PE-percentile model with as few as five pieces is sufficiently
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Figure 3.5: Martingale residuals from the fixed-effect semi-parametric model for the CGD
data with LOWESS smoothers.

robust. Based on the simulation studies in the previous section, we favor inference using
the adjusted PE-percentile statistic and so claim that there is very strong evidence against
the hypothesis of homogeneity (p = 0.001).

Given this very strong evidence, we fit this data using a random effect model with
gamma frailties, i.e., we assume that z = exp(ou) in (3.5.1) follows a gamma distribution
with mean 1 and variance §. Since parameter estimation for mixed semi-parametric models
is very complicated, we elected to adopt the PE-percentile specification with 5 cut-points.
The maximum likelihood estimates of the regression coefficients are given in the right

panel of Table 3.18. Using the log-transform for §, we also obtained an approximate 95%



Fixed-effect Models Random-effect Model
Weibull PE-percentile Semi-parametric PE-percentile
Covariate™ Estimate s.e. Estimate s.e. Estimate s.e. Estimate s.e.
Treatment -1.060  0.272 -1.063  0.272 -1.070  0.271 -0.987 0.298
Inheritance -0.884  0.295 -0.924  0.298 -0.874  0.298 -0.857 0.343
log(Age) -1.040  0.458 -1.056  0.461 -1.032  0.462 -0.995 0.524
log(Height) 4179  2.788 4413  2.836 4229  2.820 4.072 3.170
log(Weight) -0.548 0.818 -0.603 0.830 -0.592 0.822 -0.607 0.939
Corticosteroids 2.258  0.654 2,270  0.655 2.231  0.656 2.368 0.863
Antibiotics -0.782  0.348 -0.743  0.347 -0.763  0.349 -0.789 0.420
Gender 0.968 0.394 0.944 0.394 0.907 0.395 0.947 0.468
Hospital:
US-other -0.112  0.335 -0.064  0.337 -0.017  0.338 -0.173 0.376
Amsterdam -1.176 0.502 -1.135 0.503 -1.051 0.509 -1.165 0.584
Other -0.742  0.497 -0.639  0.501 -0.587  0.504 -0.757 0.549
Test Statistic p-value Statistic p-value Statistic p-value Estimate of §
Unadjusted 1.999  0.023 2.118  0.017 1.638  0.051 0.347
Adjusted 2.937 0.002 3.069 0.001 2.369 0.009

*Treatment: 0=placebo, 1=gamma interferon; Inheritance: 0=autosomal recessive, 1=X-linked; Age in years;
Height in cm; Weight in kg; Corticosteroids: 0=not used, 1=used at time of study entry;
Antibiotics: 0= not used, 1=used at time of study entry; Gender: O=female, 1=male; Hospital category: baseline is US-NIH.

Table 3.18: Parameter estimates for the fixed-effect and random effect models and the unadjusted and adjusted
statistics for the CGD data.
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confidence interval for § as (0.071, 1.705), providing further evidence that heterogeneity was
present. Note that the effect of age and antibiotic use is no longer statistically significant
under the frailty model, underscoring the importance of testing for homogeneity before

making inferences.

3.6 Concluding Remarks and Discussion

3.6.1 General Remarks

In this chapter, we have derived score and IM statistics with different variance estimates for
univariate point processes. The performance of the tests are investigated using simulations
based on Poisson and renewal processes. The simulation study demonstrates that the test
statistics other than the ES form generally have poor finite sample properties, suggesting
that adjustment for the test is necessary.

Since the Poisson process is widely used in many applications, we construct adjusted
score tests for parametric and semi-parametric regression models arising from Poisson
processes. We have shown that the bias induced by the substitution of parameter estimates
in the score statistic is non-negative and tends to zero when normalized by +/m. Although
the bias is asymptotically negligible, we demonstrated based on simulations that the score
tests performed poorly without adjustment in small to moderately large samples. The
adjusted statistics, on the contrary, have reasonable performance in small samples. In
particular, the PE-percentile model not only performs extremely well, but also is less
restrictive than any parametric model. Although the semi-parametric model is robust to
the specification of the baseline intensity, the variance of the score statistic cannot be
estimated as efficiently as its parametric counterpart and thereby the performance of the
test will compromise.

The proposed tests can also be utilized as tests of model specification. Since the random
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effects may arise due to missing important covariates, misspecification of the functional
form for the covariates, or misspecification of the baseline intensity, one should consider
alternative model specifications when the null hypothesis is rejected.

We have not considered the important case of time-dependent covariates here. For the
semi-parametric model in section 3.5.2, we can simply replace by (t) in the test statistics
provided that =(t) is predictable (Gray, 1995). For the parametric model, we can modify
the test statistics easily for the case in which covariates are constant between consecu-
tive events. However, numerical integration may be required to compute the cumulative
intensity for general time-dependent covariates.

We remark that the development of the score statistics for the semi-parametric model
in section 3.5.2 closely follows that of Gray (1995) and Commenges and Andersen (1995).
Gray (1995) and Commenges and Andersen (1995) focused on clustered failure times data in
which the cluster sizes were fixed, while we focus on Poisson processes in which the number
of events during the follow-up is random, but the arguments are largely the same and the
resulting statistics have the same form. We have provided empirical evidence concerning
the relative performance of the unadjusted and adjusted tests, and thus provided insight
into the practical use of different formulations.

The remainder of this chapter involves some discussion about further research pertain-
ing to a test of homogeneity in stochastic processes. Section 3.6.1 suggests an adjusted
score test and a parametric bootstrap method for general parametric point processes. Fur-
thermore, tests of homogeneity for multivariate processes may not be simple extensions of
their univariate counterpart. We discuss the underlying difficulties and propose an IM test
for this purpose in section 3.6.2.
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3.6.2 General Point Processes

Adjusted Score Tests

We consider m independent point processes with parametric conditional intensity (1.2.4).
Since N;(t) is a sub-martingale, the Doob-Meyer decomposition gives the following repre-

sentation,

dNi(t) = A(t[Ha(2))det + dMi(2),

where M;(t) is a zero-mean right-continuous martingale (Fleming and Harrington, 1991,
chapter 2; Karatzas and Shreve, 1991). Using the argument for semi-parametric Poisson

processes (section 3.5.2), one can show that an approximate bias of the score statistic

Ts(8) = £, [(n: — Ai(8))? — A;(8)) is given by

9A«(6) A6
ZA'( A«(6)

bs(6) = a6’ ) a6 '’

=1
where A;(9) = f57 M(¢|Hi(t))dt, @ = (B',4') in which 3 is the vector of regression coeffi-
cients and 4 is the vector of parameters for the baseline intensity, and [3(8) is the observed
information matrix for @ under the null model. Since the expected information matrix is
not tractable in general, we have to use the observed version. The variance of the adjusted
statistic can be estimated by an empirical estimate discussed in sections 3.2 and 3.3.

Further investigation of this adjusted statistic is desirable. Since renewal processes
are popular in many applications, a simulation study of the performance of the adjusted
statistic focusing on such processes can be considered.

Another adjustment approach was suggested by Chesher and Spady (1991) for a general
IM test. They considered a more complicated second-order approximation to the distri-
bution of the IM statistic. An Edgeworth-type expansion is applied to approximate the
moment generating function to the order O(m~!) of the series expansion of the statistic.

This procedure reduces the bias due to small sample size to the order of m~!. However, it
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requires the derivatives of the log-likelihood up to order 3 and the cumulants up to order
4 of the first and second derivatives of the log-likelihood. The computation is extremely
complex even for a simple normal linear regression model considered by Chesher and Spady
(1991). In most situations, high-order cumulants are difficult to find. This complication,
together with the implementation of the method, makes this approach less attractive than
the bias-adjustment approach we considered, even though Chesher and Spady’s adjustment

seems to be more efficient.

Parametric Bootstrap

Given a data set, the finite sample distribution of the test statistic can be estimated by
the parametric bootstrap (Efron and Tibshirani, 1993). We outline the procedure here.

First, the parameters are estimated under the fixed-effect model and the test statistic
is computed. Denote this estimate by 6 and the observed test statistic by T

Second, we generate a sample from the assumed fixed-effect model with parameter
6 based on simulations. A test statistic, T, is then computed from this sample. This
simulation procedure is repeated B times, say 1,000, and an empirical distribution of the
test statistic is obtained. The ith point process with a general intensity (1.2.4) may be
generated as follows, keeping the covariate process z;(t) and the length of follow-up =;

unchanged:
1. Generate u, from Unif(0,1). The first event time is found by solving A(t;) =
—log(1 — u1), where A(¢) = J§ A(s|H(s))ds. A numerical procedure may be required

here.

2. Let tr be the time for the kth event. Given (%), the survivor function for the next

duration D4y = Tky1 — Tk is equal to

Pr(Dep > dH(t) =  JI (1 — A(s|H(s))ds)

s€(ty tx+d)
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— exp (- /t:”d,\(sm(s))ds) .

Thus, generate ur4; independently of the previous u’s from Unz f(0,1). The (k+1)th
event time is found by solving A(fx+1) = A(te) — log(1 — ur41)-

3. The process stops when t;y; > 7;.

Third, the p-value of the test is approximately equal to {# of T= > T'}/B.
As only the fixed-effect model needs to be estimated, this parametric bootstrap should

not be a computationally intensive procedure.

3.6.3 Bivariate Processes

We consider m independent bivariate processes with intensities (1.2.5). Let

g1 012
¥y =
O12 02

be the variance-covariance matrix of the bivariate random effect u; = (i1, %i2)’. The null
hypothesis of homogeneity is equivalent to Hy : £ = 0. Since a zero variance term implies
zero covariance, the score function for (o1, 02, 412) is invariant to the correlation (p) under
Hy and thus the score statistic will not asymptotically follow the X%a) distribution.

One way to tackle this problem is to impose certain additional assumptions. As the
main purpose is to detect heterogeneity, we may merely focus on the variances by assuming
that the correlation is equal to zero. This reduces to the independent components test of
Smith and Heitijan (1993). We will demonstrate this approach using the CHEST study in
chapter 4.

Alternatively, since the bivariate random effects usually arise from some unmeasured

shared covariates, we may assume that their variances are proportional, say g. = co;.
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For given ¢ and p, we need to test Hy : oy = 0 only (c.f. Sutradhar and Das, 1995 for
autocorrelated random effects in generalized linear models, where ¢ = 1 there). However,
the test statistic depends on the values of ¢ and p which are usually unknown. Sutradhar
and Das (1995) argued that since the score function for p evaluated under Hy is identically
equal to zero, p can be taken as any convenient value. They considered the score functions
for parameters other than p and the test statistic is evaluated at ¢ = 0, p = 0 and the
maximum likelihood estimates for the other parameters under Hy. Based on this argument,
it is not difficult to show that for a bivariate point process, the score function for c evaluated
under Hy is also identically equal to zero. We may then assume that in the neighborhood
of zero covariance matrix, the random effects have common variance and are uncorrelated.
In this case, the score test is not difficult to derive and it is asymptotically normally
distributed.

Another approach is to use the IM test. As pointed out by Chesher (1984), the alter-
native to Ho : ¥ = 0 is a model with both intercepts random. The IM test should focus on
testing whether the intercept terms in both intensity functions (1.2.5) are constant. The

IM statistic is obtained from

5*(0) | 24(6) 3U(6)
0B.0Bs 0B, 9B;’

where By = (B10,P20) is the vector of intercepts.
For bivariate processes, the log-likelihood of the fixed-effect model consists of two parts

arising from each component/transition:
£(6) = £,(6,) + £2(02).

If 8, and @, are not functionally related and we usually assume so, maximum likelihood

estimates for them under Hp can be found by maximizing ¢,(8,) and €;(8:) individually.
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It is readily seen that for any 0, 92£(6) /83100020 = 0 and evaluated at the maximum like-
lihood estimates, 9£(8)/38108€() [/0B20 = 0. Therefore, we may consider the IM statistic
as
1 X (da(6 1))
.Dm = 1
(:BO) mmzl (dlz(az)

9°(8;) (az;j(o,-))z
3ﬂ?o aﬂjﬂ ’

d:5(0;)

for j = 1,2. The variance of D,,(3,) may be obtained accordingly. The standardized
statistic is asymptotically x*(2) distributed. This IM test turns out to be the score test
under the assumption of zero correlation described above.

It is important to investigate the properties of these tests, possibly by means of simu-
lation. It is also interesting to consider an adjusted version of the test in order to improve

the finite sample performance. Further research in this direction is recommended.



Chapter 4

Inference for Random Effect Models

4.1 Overview

In chapter 2, we reviewed some common methods of estimation for random effect models in
the context of clustered failure time data, and contrasted their merits and limitations. The
objective of this chapter is to adapt and investigate the use of these methods for univariate
and bivariate processes. In particular, in view of adopting genuine mixing distributions for
multivariate processes, we will focus on Gauss-Hermite integration with log-normal random
effects and the EM algorithm with non-parametric (discrete) random effects.

Some methods of estimation for random effect models have been investigated for bivari-
ate survival data (Pickles and Crouchley, 1995) and mixed linear and logistic regression
models (Butler and Louis, 1992). These studies provide empirical evidence that estimates
of regression coeflicients typically have negligible bias regardless of the assumed mixing dis-
tributions and certain methods of estimation. Neuhaus et al. (1992) showed that parameter
estimates in mixed logistic regression models are inconsistent when the mixing distribution
is misspecified, but notes that the magnitude of the bias in the estimated covariate effects

is small in general and the variance estimates obtained from the misspecified likelihood are

104
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also valid for practical use. The estimate for the variance of the random effect, however,
may have large bias if the assumed mixing distribution has a very different shape from
the true mixing distribution. We anticipate similar findings for random effect models aris-
ing from point processes and intend to investigate this phenomenon systematically in this
chapter.

Simulation studies for comparing the performance of Gauss-Hermite integration and
the EM algorithm are carried out based on mixed Poisson and renewal processes in section
4.2. The comparison is made in terms of bias, coverage probability, and efficiency of the
estimators, as well as robustness to misspecification of the mixing distribution. A similar
simulation study is also carried out to examine the use of piecewise constant baseline
functions when the functional form of the baseline intensity is unknown. The CGD study
described in section 1.4.1 is analyzed using these two methods in section 4.3. Extensions of
these methods of estimation for bivariate processes are discussed in section 4.4. In section
4.5, the CHEST study (section 1.4.2) is modeled using the mixed two-state processes
proposed in section 1.2.2.

It should be noted that observed heterogeneity may be mainly due to misspecification
of the model. Proper specification of the intensity functions is thus more important than
specifying the mixing distribution for the purpose of better understanding of the process,
and avoiding “spurious” heterogeneity. Without model diagnostic tools, it may not be
possible to obtain a proper specification of model. We therefore suggest that one should
start with a more comprehensive model, e.g., using multiple time scales as in (1.2.7), then
carry out a test of homogeneity to check if a random effect component is necessary, fit a
random effect model if the test provides evidence for heterogeneity, and finally select the
significant components by likelihood ratio test or Wald test. The analysis of the CHEST
study demonstrates this modeling strategy.
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4.2 Comparison of Methods of Estimation

4.2.1 Design of Simulation Studies

In this section, we consider log-normal and non-parametric (discrete) random effects and
compare the performance of the estimators obtained from Gauss-Hermite integration for
the former and the EM algorithm for the latter, via simulations.
We generate mixed Poisson and renewal processes with conditional intensities of the
Weibull form, given v;,
Ai(tlvi) = viexp(Bo + Brz:s)at™ ™,

where ¢ is the calendar time and backward recurrence time for Poisson and renewal pro-
cesses respectively, z; ~ Bin(1,0.5) which mimics a random treatment assignment and
a = exp(y). The random effects v; have mean 1 and variance o from one of the following

distributions:
1. log-normal;
2. binary: V =1 — /o with probability 1/2 and V = 1 + /o with probability 1/2;

3. mixture of two log-normals: V' = V] with probability 1/2 and V' = V; with probability
1/2, where V; and V; are independent log-normal random variables with E(V}) = 3/2,
E(V;) = 1/2, var(V}) = 9(40 — 1)/20 and var(V3) = (40 — 1)/20.

The probability density functions of log-normal and mixture of two log-normal distributions
are plotted in Figure 4.1 for 0 = 0.3 and 0.5. We utilize these forms to examine the
robustness of the estimators to misspecification of mixing distribution.

We simulated m = 100 independent processes according to the above scheme over a
unit interval (0, 1]. The true values of the parameters are: By = log(2), 81 = 1, v = log(2)
and ¢ = 0.3 and 0.5 for Poisson processes; and B, = log(6), 81 = 1, v = log(2) and
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Figure 4.1: Probability density functions for log-normal (solid line) and mixture of two
log-normal (dotted line) distributions with mean 1 and variance ¢ = 0.3 (left) and ¢ = 0.5
(right) considered in the design of the simulation.

o = 0.3 and 0.5 for renewal processes. We simulated 1,000 times for each configuration.
Under these settings, the number of events per subject is small to moderately large, see
Table 4.1. As expected, the standard deviation of the average number of events increases
as o increases. The choice of the values for o corresponds to moderately large and large
overdispersion.

The generated data were fit by assuming log-normal random effects or discrete random
effects from an unspecified mixing distribution. Estimation for the former was carried out
by the Gauss-Hermite rule with 5, 10 and 20 nodes (section 2.5.2), and the latter by the EM
algorithm (section 2.5.3). The range of these nodes was specified to examine the effect of
the number of nodes on the properties of the resulting estimation. For the non-parametric
random effects, since the number of mass points required is usually quite small, the initial
number of mass points is set to 10. During the iteration of the EM algorithm, we combine
adjacent mass points if their difference divided by the estimated standard deviation of the
mixing distribution is less than 0.05, where the estimated standard deviation is calculated

from the current estimates of the mass points and their respective masses. For notational



CHAPTER 4. INFERENCE FOR RANDOM EFFECT MODELS

108

Log-normal Binary Log-normal Mixture

o Process z=0 z=1 z=0 z=1 z=0 z=1
0.0 Poisson 2.00 5.44
(1.40) (2.32)
Renewal 240 4.19
(0.93) (1.16)

0.3 Poisson 2.00 543 2.00 5.43 2.00 5.43

(1.78) (3.72)  (L77) (3.76)  (1.77)  (3.76)

Renewal 231 4.05 2.28 4.00 2.30 4.03

(1.15) (1.62)  (1.20) (L.73)  (1.19)  (L.68)

0.5 Poisson 1.99 5.47 2.01 5.42 1.99 5.44

(1.95) (4.45)  (1.99) (4.47)  (1.97)  (4.45)

Renewal 226  3.98 2.19 3.84 2.24 3.94

(1.25) (1.81) (1.39) (2.07) (1.28) (1.87)

Table 4.1: Average numbers of events per subject with standard deviations in parentheses.

convenience, we label the Gauss-Hermite rule with k& nodes as GHk and the EM algorithm
for non-parametric random effects as NP.

Since the baseline intensity is often of unknown form, it is desirable to examine the effect
of using a piecewise constant function as an approximation to the baseline intensity. For
the purpose of parameter parsimony, we use a 5-point piecewise constant function whose
cut-points are determined by the percentiles of the observed event times. The results in
chapter 3 also provide empirical evidence for the adequacy of using a small number of
cut-points. As will be seen below, the performance of the GH and NP estimates is quite
similar. Therefore, we consider the GH estimation only.

We computed the standardized biases, 95% coverage probabilities, averages of the
model-based standard errors of the estimates and the simulation-based standard errors.
We also included the results for the logarithmic transform for ¢ because the distribution

of the estimate of log(c) may be less skewed than that of the estimate of . The stan-
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dardized bias is the average bias divided by the simulation-based standard error and it is
approximately normally distributed, except possibly for the estimate of ¢ when the true
value of o is small. The 95% coverage probability is the proportion of the model-based 95%
confidence intervals that cover the true value of the parameter. The model-based standard
error is computed from the observed information matrix. The simulation-based standard

error is the standard deviation of the estimates computed from the simulations.

Remarks on the EM Algorithm

Here we give more details on the EM algorithm. The convergence rate of the EM is usually
very slow. Although there are a number of algorithms for speeding it up (see Meng and
van Dyk, 1997 for a review), many of them are quite difficult to implement. We do not
intend to investigate different EM algorithms, but look for simple-to-implement and yet
“fast” algorithms in terms of computational time.

For discrete mixing distributions, the E-step is very simple. However, the M-step
involves maximizing a function of possibly a large number of parameters (8 and £). The
computational time required in the M-step is likely to be high. Rai and Matthews (1993)
suggested a one-step Newton-Raphson iteration in the M-step to modify the original EM
algorithm, which is called the EM1 algorithm. They established self-consistency of the EM1
algorithm and demonstrated that although larger number of EM cycles may be required,
the overall computational time is shorter than the EM algorithm.

Jamshidian and Jennrich (1997) recently proposed two accelerated EM algorithm using
quasi-Newton methods: QN1 and QN2 algorithms. The QN1 algorithm only requires a few
more steps in the EM algorithm, and the QN2 requires more effort in implementation as
an additioral maximization for the observed data log-likelithood is needed. Jamshidian and
Jennrich demonstrated that the QN1 and QN2 algorithms can improve the computational
time dramatically over the EM algorithm. Since the QN1 algorithm is simpler to implement
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and also leads to fast convergence, we state this algorithm here.
Given an initial value ¢!®, obtain an update ¢§§}, from an EM cycle. Set g(@ =
bor — ¢ and A® = —I, where I is the identity matrix of dimension equaling the

number of parameters in ¢. Iterate the following steps until convergence:
1. Compute A¢F) = ~A4®)gk) and set p**+1) = p*) + Agp®.

2. Given ¢**1), obtain an update ¢! from an EM cycle. Compute g*+1) = ¢t —
&+ and Ag®) = gk+1) _g(®) The update for A is obtained from the quasi-Newton
method:

(APF — AR AgB) (AP Y AK)

(k+1) _ g(k)
4 =47+ (APF ) AR A glR)

Nevertheless, the QN1 is not globally convergent and the adjustment for ¢ in step 1 may
lead to a point outside the parameter space. Given these considerations, we chose the EM1

algorithm in the simulation study and illustrate the QN1 algorithm in the examples.

4.2.2 Simulation Results

First we summarize the results for mixed Poisson processes (Tables 4.2 and 4.3). Let é
be the estimate of ¢. For o = 0.3, the GH and NP estimates of the regression coeflicients
(Bo and (), the shape parameter () and the dispersion parameter (o) have negligible
bias regardless of the underlying mixing distributions The magnitudes of the bias are of
comparable sizes between the GH and NP methods for fo, 5 and 4. Although the GH
estimates of o have larger bias than the NP estimate of o, the bias is still very small
for practical purposes. For ¢ = 0.5, the GH and NP estimates for B, 3, and 4 also
have negligible bias, but & obtained from the GH has small positive bias whereas the NP

still provides an unbiased estimate for ¢ when the mixing distribution is highly discrete

(binary).
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Log-normal Binary Mixture of 2 Log-normal
Method Bo 6y v a logo Bo B ¥ o logo Po By v a loga
Std GHS 0.031 0.059 0.085 0.013 -0.204 | 0.000 -0.025 -0.017 0.880 0877 0.041 0.021¢ 0.015 0.571 0.439
Bins GH10 0.031 0.059 0.086 0.013 -0.203 | -0.006 0.0006 -0.027 0.88! 0.850 | 0.034 0.020 0.010 0.568 0.4290
GH20 0.031 0.058 0.085 0.013 -0.204 | -0.007 0.006 -0.028 0.886 0.860 { 0034 0.029 0.000 0568 0.428
NP 0.139 0.114 0228 0.199 -0,032 | 0.160 0.100 0.273 0323 0.212 | 0.186 0.105 0.251 0.208 0.030
Cover GHS 0.917 0956 0,940 0.953 0,900 0.921 0.960 0.956 0998 0,922 [ 0930 0.952 0950 0.992 0.955
Prob GH10 09015 0.957 0938 0,053 0,903 0.917 0.955 0.057 1.000 0949 | 0.930 0.950 0.950 0.992 0.964
GH20 0.915 0,957 0.937 0.953 0.993 0.91¢6 0.966 0.058 1.000 0947 | 0,928 09561 0.951 0.992 0.963
NP 0950 0963 0.942 0,932 0.972 0.952 0.963 0053 0971 0967 | 0,956 0.952 0,947 0.041 0.969
Model GHS 0.142 0.163 0.050 0.168 0.576 0.149 0.175 0.051 0201 0479 | 0.147 0.171 0051 0.187 0.509
SE GH10 0.142 01063 0.050 0.158 0576 | 0.150 0.176 0061 0.205 0488 | 0.147 0.171 0051 0.186 0.512
GH20 0.142 0.163 0.060 0.158 0.576 0.1560 0.176 0.051 0.204 0.488 ) 0.147 0.17) 0.051 0.186 0.511
NP 0.480 0.176 0.063 1.422 2.751 0.365 0.187 0.052 0.418 1.026 | 0.246 0.182 0.052 0.362 0.013
Sim GH5 0.159 0.167 0.051 0.131 0.482 0.170 0.172 0050 0.154 0358 § 0,165 0,172 0051 0.150 0.399
SE GH10 0.1569 0.158 0.051 0.132 0482 0.170 0.173 0.050 0.152 0.358 } 0165 0.173 0.051 0.145 0.334
GH20 0.169 0,158 0.051 0.132 0.482 0.169 0.173 0.050 0.351 0.357 | 0,164 0.172 0.051 0.145 0.394
NP 0.163 0.168 0.052 0.194 0.543 0.169 0.172 0.050 0.132 0.341 | 0,167 0.178 0,051 0.129 0.389
Masa points 2.66 (0.68) 2.64 (0.64) 2.74 (0.00)

Table 4.4: Comparison of the methods of estimation for mixed renewal processes based on log-normal, binary and

mixture of two log-normal mixing distributions with ¢ = 0.3.
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When o = 0.3, the 95% coverage probabilities for fo, B and 4 obtained from the GH
and the NP agree very closely to the nominal level regardless of the mixing distributions,
thereby indicating that inference based on the asymptotic normality of maximum likelihood
estimation is appropriate for these parameters. There are some discrepancies for the 95%
coverage probabilities for the GH and NP estimates for o probably due to the skewness
of the distribution of &. The empirical coverage is smaller for the log-normal mixing but
larger for the binary and mixture of log-normals mixings than the nominal level. The
log-transformed o improves slightly if GH10 and GH20 are used. In contrast, for a larger
o, the 95% coverage probabilities for the GH estimates of £, is smaller than 0.95 in log-
normal and binary mixtures, whereas the NP estimates can generally maintain a reasonable
coverage probability. The 95% coverage probabilities for & are in general quite different
from the nominal level. For the GH method, the discrepancy gets larger for the binary
mixing distribution, and using a larger number of nodes helps in narrowing the discrepancy.
There are also slight disagreements in the NP method, but this approach gives coverage
which is quite close to the nominal level for the binary mixing distribution.

We also included the model-based standard errors to examine the relative efficiencies
of the estimators. For o = 0.3, the GH model-based and simulation-based standard errors
for all parameters agree very closely, indicating that the parameters are estimated quite
efficiently by the GH estimation. Although the NP model-based and simulation-based
standard errors for B; and ~ also agree closely, the NP model-based standard errors for Fo
and o are much larger than their corresponding simulation-based standard errors. This is
because F, and & obtained from the NP are computed based on the estimated mass points
and masses. This finding is consistent with the general estimation of non-parametric
distribution which usually ignores the fact that estimation is carried out conditionally on
the number of mass points, which is unknown (see section 2.5.3 for a brief discussion).
Moreover, similar findings are obtained for o = 0.5.

Next we look at the simulation results obtained from the mixed renewal processes
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(Tables 4.4 and 4.5). The results in general are in good agreement with the findings for
mixed Poisson processes. The only major difference is that for large o, the 95% coverage
probability for Bl stays very close to the nominal level but the corresponding values for Bo
are slightly different from the nominal level. In the simulation for mixed Poisson processes,
an opposite result was observed.

On the whole, the simulation results agree with the previous studies (Pickles and
Crouchley, 1995; Butler and Louis, 1992 and Neuhaus et al., 1992). The parameter es-
timates for the regression parameters and the shape parameter are typically unbiased with
valid and quite efficient variance estimates. The major difference between the GH and NP
methods of estimation occurs in the estimation of parameters in the mixing distribution.
The variance estimate of o is more stable in the GH than in the NP, although the GH
estimate of ¢ tends to have slight positive bias when the true mixing distribution is highly
discrete and the NP estimate of o generally has negligible bias. Therefore, inference for o
can be carried out in the usual way for GH estimation, but bootstrapped variance estimate
may be necessary for NP estimation. Nevertheless, testing for ¢ = 0 should be done by
a score test described in chapter 3. Unless the underlying mixing distribution is highly
discrete, the performance of the GH and NP is very comparable. Furthermore, the number
of nodes used in the GH estimation has minimal effect in terms of bias and efficiency of the
parameters. Using 10 nodes should be sufficient in most applications involving univariate
random effects.

Finally, we examine the effect of using a piecewise constant function for the baseline
intensity. The standardized biases, 95% empirical coverage probabilities, model-based
standard errors and simulation-based standard errors for 3;, o and log(o) are given in
Table 4.6. The results in general agree quite closely to the results of specifying a correct
baseline intensity. Therefore, the use of piecewise constant baseline function has minimal
effect on the performance of the estimators and is also robust to the specification of the

baseline intensity.
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Log-normal Binary Mixture of Log-normals
Process B o logo B c logo B o log o

Std Poisson | 0.048 -0.019 -0.197 [ -0.273 1.286 1.722|-0.003 0433 0.313

Bias  Renewal | -0.384 -0.961 -0.955 | -0.536 0.825 0.860 | -0.376 -0.361 -0.522

Cover Poisson | 0.921 0.882 0.927 | 0.922 0.915 0.609} 0.954 0.958 0.915
Prob Renewal | 0.936 0.713 0.951 | 0.930 0.992 0.915} 0935 0.869 0.978

Model Poisson | 0.177 0.153 0.316 | 0.204 0.284 0.314 | 0.184 0.185 0.320
SE Renewal | 0.171 0.150 0.450 | 0.199 0.293 0.408 | 0.178 0.179 0.421

Sim Poisson | 0.191 0.183 0.368 | 0.223 0.308 0.310| 0.185 0.195 0.328
SE Renewal | 0.167 0.148 0.446 | 0.189 0.271 0.357 | 0.178 0.171  0.396

Table 4.6: Maximum likelihood estimation for mixed Poisson and renewal processes with 5-
point piecewise constant baseline intensity using 10-node Gauss-Hermite integration, where
o =0.5.

4.3 Gamma Interferon in CGD

The CGD study described in section 1.4.1 was found to have substantial heterogeneity using
the adjusted score test based on a Poisson assumption in section 3.5.4. A mixed Poisson
process with gamma random effects was also fit. Here we fit two mixed Poisson processes
to the CGD data with log-normal and non-parametric random effects. Specifically, given

the random effect v;, the conditional intensity is given by

Ai(t|v:) = viexp(z;B) Ao(t),

where v; has mean 1 and variance ¢ and is distributed either as gamma, log-normal or
discrete, and Ag(t) is a piecewise constant function with 5 cut-points determined by the
empirical percentiles of the observed event times. Gauss-Hermite integration with 10 nodes
was used for the log-normal random effects. The EM1 algorithm was employed for the
discrete random effects in which an initial number of mass points is equal to 10 and we

combine adjacent mass points if their difference divided by the standard deviation of the
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Gamma Log-normal Non-parametric
Covariate™ Estimate s.e. Estimate s.e. Estimate s.e.
Treatment -0.987 0.298 -1.009 0.299 -0.941 0.396
Inheritance -0.857 0.343 -0.888 0.348 -1.031 0.389
log(Age) -0.995 0.524 -1.013 0.528 -1.145 0.898
log(Height) 4.072 3.170 4.168 3.205 4.727 4.914
log(Weight) -0.607 0.939 -0.605 0.947 -0.649 1.204
Corticosteroids 2.368 0.863 2.341 0.825 2.696 1.010
Antibiotics -0.789 0.420 -0.796 0.423 -0.735 0.668
Gender 0.947 0.468 0.948 0.466 1.096 0.624
Hospital:
US-other -0.173 0.376 -0.176 0.382 -0.101 0.495
Amsterdam -1.165 0.584 -1.190 0.578 -1.228 0.823
Other -0.757 0.549 -0.774 0.557 -0.751 0.699
Estimate s.e. Estimate s.e. Estimate s.e.
- 0.347 0.282 0.390 0.347 0.453 0.396

*See Table 3.18.
Non-parametric
Mass Point 0.272 1.622
Mass 0.461 0.539

Table 4.7: Parameter estimates for the random effect models with gamma, log-normal and
non-parametric random effects for the CGD data.

mixing distribution is less than 0.05. The estimation result is presented in Table 4.7.

The estimates for the covariate effects are quite similar across the assumed mixing
distributions. The variance estimates in the non-parametric random effects are larger than
the corresponding values for the gamma and log-normal random effects. The gamma and
log-normal estimates for o are quite close to each other, and the variance estimate for o is
slightly larger in the latter. The NP estimate for o is larger than for the other two random
effects. It is interesting to see that the estimated number of mass points is two in which
the masses are quite close. This may imply that there are two hidden subgroups in the

sample.
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4.4 Random Effect Models for Bivariate Processes

The Gauss-Hermite rule and the EM algorithm can be utilized directly to estimate mixed
bivariate processes with intensity functions (1.2.5). In this section, we describe how these
two methods of estimation can be implemented for two-state processes. Estimation for
bivariate point processes can be obtained similarly.

Using the setup postulated in section 1.2.2, given the random effect u; = (u:y, %42)’, the

conditional intensity for the j — 3 — j transition is formulated as
X (8 051 Ha(t), ) = exp(2L4(8)B; + ui3) Ajolts ;| Hul2)) , (4.4.1)

where Ajo(t; 9;|Hi(t)) is the baseline j — 3 ~ j transition intensity common to all subjects
and is completely specified by 9;, a g; x 1 vector of parameters, z;;(t) is a p; x 1 vector of
covariates, B3; is the corresponding p; x 1 vector of regression parameters, 8; = (B, ¥%)’
and u; is the subject-specific bivariate random effect which is independent of the covariates,
7=12,i=1,...m. Let 0 = (6,0,)".

Recall that Y;;(¢) is the indicator for the jth state (section 1.2.2). Let ¢;; < -+ < t;p;
be the observed tramsition times for subject ¢ occurring during the course of follow-up.
Let D;; = {k|Y;;(£) =1 for tix—y <t <ty,k =1,..,n;} denote the set of indices for
the inter-event intervals over which subject ¢ is observed to be in state j, where ¢, =
and t; ;.41 = Ti2. Furthermore, let D;j. = D;; U {n; + 1|Y;;(t) = 1 for tin;, < t < T2}
denote the set D;; augmented to include the index of the interval between the last observed
transition and the censoring time. For simplicity, we assume subsequently that covariates
are independent of time.

Let Ajo(a,d|H:(d)) = f: Ajo(t|Hi(t))dt, 5 = 1,2, 7 = 1,...,m. Assuming that 7; is

a transition time (or the time origin if it is zero), then it follows that the likelihood for
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subject z, conditional on wu;, is given by

Li(8u;:) = fI I Aot Ha(tie), wis) - exp (— > A«'j(tik—htikl%(tik),u-:j)):l )

j=1 [ke€D;; kED;;e
(4.4.2)

and Ayj(a, b|Hi(b), ui;) = exp(2i;8; + uij)Ajo(a,b|Hi(b)). As in many clinical trials, the
time of randomization very often does not coincide with a transition time or the time origin.
In such cases, one should model the intensity in the first observed duration differently. We

will illustrate this modification in next section.

4.4.1 Gauss-Hermite Rule

To facilitate the parameter estimation, we reparameterize the overdispersion parameters

as follows. By Cholesky decomposition, the covariance matrix of the mixing distribution

Q - (775§ O ’
W3 W2

and w;, w» and wj are real numbers. Let w = (w;,ws,w3)’. The random effects are

can be writien as ¥ = Q€' where

reparametrized as z; = Q@ 'u; where z; = (zi1, zi2)’ ~ N(0, I.) and I, is the 2 x 2 identity

matrix. Then the marginal likelihood for subject ¢ is given by
Li9)= [ [ Li@lz:)dB(z)dD(z), (44.3)
e R )

where ¢ = (0’,w')’, L;(¢|z;) is the conditional likelihood (4.4.2) in which the transition
intensity is expressed as A;;(£|Hi(t), 2:) = exp(x};8; + @;2:)Aj0(t|Hi(t)) with 2; the jth
row of 2 and ®(-) is the cumulative distribution function of a standard normal random

variable.



CHAPTER 4. INFERENCE FOR RANDOM EFFECT MODELS 121

This specification ensures that all parameters lie on the whole real line so that no
restrictions on the scalar parameters are required as part of the estimation procedure.
Estimates of o;, j = 1,2 and p may be obtained by noting that o, = w?, 02 = w? + w? and
p = ws/ m .

The integrations appearing in the likelihood (4.4.3) can be approximated by Gauss-

Hermite integration. The bivariate Gauss-Hermite rule approximates integrals of the form

-/—cn [-oo exP(_zf) exp(—_z'f’)g(zlv Zz)dzldzz,

by a double sum

R R
Z Z <, cl'.'g(zlx 1 2l )’

h=1l=1
where ¢;’s are weights, z’s are nodes, and R represents the number of nodes. Tables for
the nodes and weights can be found in Abramowitz and Stegun (1972).
The unconditional likelihood for subject ¢ (4.4.3) can be re-written as

2 2 o poo
Li(9) = exp(LniszBy) - I TT Mioltie) - [ [~ gilain, m)d®(za)d®(zia),
j=1 - J—00

J=1 keD;;

where

2 2
gi(zi1, ziz) = exp (Z N — Y exp(z;8; + ui;j) > Ajoltix-1, tilc)) ,

j=1 Jj=1 keD;je
and Ajo(a,b) = J° Ajo(t|H(t))dt. By a change of variable and the Gauss-Hermite rule, the

integral in L;(¢) is approximated as

=) ) R R
[_m _/;oo 9i(zi1, 2i2)d® (21 )d®(2i2) = ;lr_ >N ¢, e, 9:(V2z1,,V2z,) = %Gi(q’)).

L=11l=1
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Hence, the log-likelihood based on m subjects is approximately equal to

m 2 2
log L(¢p) = Y {Z"iﬂ:j s+ Y log(Ajo(ti)) +log EG;(¢)] } . (4.4.4)

i=t {j=1 j=1keD;;

This function can be maximized by a standard Newton-Raphson method. The (k 4+ 1)st

iteration is given by

-1 » (k)

S (e+1) 2 (k) 8 log L("") dlog L(¢ )
v _( 043¢ 66 )

Furthermore, starting values may be obtained from the maximum likelihood estimates

of the fixed-effect model.

4.4.2 The EM Algorithm

Suppose u; follows a discrete distribution with H mass points such that
Pr(u,- = éh) = Th, h= 1, ceey H,

where the &,’s are bivariate mass points and the n,’s are masses. The EM algorithm is
then essentially the same as its univariate counterpart (see section 2.5.3).

The number of mass points may be chosen by comparing the distance between mass
points. However, this will require a large number of computations when H is even mod-
erately large. Another approach is to use the correlation between the estimates of mass
points as a measure of their distance. The idea is that if a single mass point is misspec-
ified as two mass points, the correlation between their estimates in each component, i.e.,
corr(€nj, ki), 7 = 1,2, should be very high and positive. Therefore, we may combine two
mass points if their correlations are larger than 0.95, say. However, it may not be feasible

to compute the observed information matrix for each EM cycle. Limited experience showed
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that the Hessian matrix of the function to be maximized in the M-step is close to singular
when the iterates of some mass points are very near in distance. This suggests that we
may obtain approximate correlations from the inverse of the negative Hessian matrix in

the M-step, which is already available in each EM cycle.

4.5 The CHEST study

4.5.1 Model Specification

We apply the two methods of estimation described in section 4.4 to the CHEST study
(section 1.4.2). The multiplicative components model (1.2.7) proposed in section 1.2.2
is employed to capture the intrinsic properties of the disease process in which the semi-
Markov and the Markov components are specified as piecewise constant functions and the
seasonal component is specified as a function of quarterly indicators.

More specifically, let state 1 be the AECB-free state in which patients were symptom-
free, and state 2 be the AECB state in which symptoms of an exacerbation were manifested.
The durations of exacerbation and inter-exacerbation periods were measured in days. We
took as the origin of the basic time scale, the date of diagnosis with chronic bronchitis.

The baseline transition intensities are given by
Njolt; W31 Hi(t)) = Sileslt); @) Ry(balt); v Ts(6:85), 4= 1.2, (45.1)

where S;(+), R;(-) and Tj(-) represent the seasonal, the semi-Markov and the Markov
components respectively for the 7 — 3 — j transition. Here ¢;(0) is the date of diagnosis of
the disease and ¢;(t) = t + ¢;(0) is the calendar time at t. Furthermore, b;(t) =t — tn, (¢—)
is the backward recurrence time for subject ¢ at £ (i.e. the time since entry to the current

state). Let 9; = (a}, v}, ;) denote the vector of all unknown parameters in (4.5.1).
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Partitioning the time axis into

0 =ajo < aj <--- < ajy; = o0, and

0=ejo<ejp<- - <ej =00,

we define the semi-Markov component and the Markov component respectively as

Ri(s) = 3 In(s)exp(rs),  and (45.2)
k=1

Tis) = 3 Juls)exp(n), =12, (45.3)
k=1

where [;x(s) = 1 if ajx_y £ 8 < aj and 0 otherwise, Jj(s) =1 1if ejr—1 < s < ejr and 0
otherwise, and ~v; = (7;1,-.-,7jq;)’ and 8; = (dj1, ..., 6;;)’ are parameters.

By inspection of the data, the range of the duration of chronic bronchitis was 1 to 54
years, suggesting that 5-year intervals were appropriate for the piecewise constant Markov
components in both transition intensities: {5, 10,15, 20,25,30,35,40} x 365. Since the
duration of exacerbation was typically relatively short, weekly rates were adopted for the
semi-Markov component for the transition out of the AECB state: {7,14,21,28,35,42}.
Monthly rates were used for the semi-Markov component of the transition out of the
AECB-free state: {30,60,90, 120, 150, 180, 210}.

We model the seasonal effect by partitioning the calendar year into four quarters: the
first quarter (winter) is from January 1 to March 31; the second quarter (spring) is from
April 1 to June 30; the third quarter (summer) is from July 1 to September 30; and the
fourth quarter (fall) is from October 1 to December 31. The seasonal component is defined
by \

Sji(s) = LZI Qx(s) exp(ajx), i=12, (4.5.4)

where Qi(s) = 1 if s is in the kth quarter and 0 otherwise, and a; = (a;y, ..., aj4) are the



CHAPTER 4. INFERENCE FOR RANDOM EFFECT MODELS 125

parameters.

For the purpose of identifiability, we constrain a;; = vj; = §;; = 0 and include the
constant 1 in &;; for j = 1,2,¢ =1,...m.

There are two complicating features of the design of this trial. First, selection bias
was induced by requiring patients to be in the AECB state at the time of entry and
randomization. The second related point is that the time of randomization did not coincide
with a transition time, but the transition time just prior to the time of randomization was
available here. In the presence of heterogeneity, there is no satisfactory solution to these
two problems without discarding the first incomplete observed durations. Here we consider
a rough adjustment by specifying the distribution of the first observed duration differently
from the distribution of the subsequent durations.

Since the treatment Ciprofloxacin was not given prior to the time of randomization,
the treatment variable was a time dependent covariate for A;2(£|#:(¢), u:). The conditional

transition intensities given u; are expressed as

A (tHa(t), w:) = exp(e),B; + i) Ao(E[Hi(2)),
Aia(E[Hi(t), us) = exp(2(t)B, + wiz) A20(E|Hi(2)), (4.5.5)

where z2(t) = (£[,(2), di(t)Z5,(2)), Z:2(t) = (1,trti(2), zlp)’, trti(t) = O before random-
ization and #r#;(t) = 1 if Ciprofloxacin was given and trt;(t) = 0 if standard care was
given after randomization, d;(t) = 1 if t < ¢;; and 0 otherwise, x;; is a vector of other
time independent covariates, and z;; is a vector of time independent covariates including
the treatment variable. As we model only the first observed AECB duration differently,
it seems sufficient to stratify the semi-Markov component of the AECB to AECB-free

baseline transition:

Ra(bi(t)) = 3 Doe(bi(t)) exp(ak + Yo+ di(t)), (4.5.6)

k=1
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where ¥2; = 724,41 = 0. We call (4.5.5) and (4.5.6) the initial model.

4.5.2 Test of Homogeneity

Assuming that the correlation between random effects is zero, we carry out the score
test of homogeneity proposed in section 3.6.2 for the CHEST data. As a first step, we
estimated a fixed-effect model for (4.5.5) in which a backward elimination procedure was
used to select significant covariates at the 10% level of significance. As interest lies in the
effect of Ciprofloxacin, the treatment variables were always included in the models. The
other covariates identified as prognostic variables were the duration of AECB symptoms
at randomization for the AECB to AECB-free transition, and gender and severe bronchitis
for the AECB-free to AECB transition. As a second step, the tests of homogeneity were
carried out with these covariates included. The test statistic for Hp : 03 = 02 = 0 was equal
to 5.605 (p = 0.061), which indicated that there was some evidence against homogeneity.
The individual test statistics for Hy : oy = 0 and Hp : 0, = 0 were 1.151 (p = 0.250)
and 2.069 (p = 0.039) respectively. Therefore, there was evidence that mild heterogeneity
existed which was mainly due to the AECB to AECB-free transition. Nevertheless, we fit
the full random effect model to illustrate the procedure and inferences.

4.5.3 Parameter Estimates

We first used 12-node Gauss-Hermite integration, as described in section 4.4.1, to compute
the marginal likelihood, the corresponding score functions and the information matrix.
Again a backward elimination procedure was used to select important risk factors at the
10% level of significance; treatment variables were always included in the models. The
maximum likelihood estimates of the regression parameters, the variances, and the cor-
relation of the random effects with approximate 95% confidence intervals for the initial

model, are given in the left panel of Table 4.8.
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Second, although the QN1 algorithm (section 4.2.1) was used to speed up the EM
algorithm for the non-parametric random effect model, the computational time is still
quite long compared with the Gauss-Hermite integration. Since the simulation study in
section 4.2 suggests that inference for covariate effects is typically quite robust to the GH
and NP estimations, the non-parametric random effect model was fit with the same set
of covariates chosen by the GH estimation. We started with 10 mass points and allowed
mass points to combine if their distance is small. The estimation result is given in the
right panel of Table 4.8.

The estimates of the covariate effects and the seasonality parameters agree quite closely
for these two models, although the standard errors for the seasonality parameter estimates
are larger in the non-parametric random effect model. The estimates of the variances of
the random effects are smaller in the non-parametric than the log-normal random effect
models. The 95% confidence intervals for o are unacceptably wide in the non-parametric
model, which is due to the large variance estimates for 6. Moreover, the number of mass
points is estimated to be only 4 (Table 4.9). The masses concentrate at a single point
(—4.025, —5.988), indicating that there is very mild degree of heterogeneity. This is in
close agreement with the result of the test of homogeneity.

The model can be further refined. Based on the log-normal random effect model, we
found little evidence of the need for the Markov component in the AECB to AECB-
free transition (not shown here) and the approximate 95% confidence interval for the
correlation p suggested that a reduced model without these parameters might be sufficient.
We therefore fit a reduced model (i.e. without the Markov component for the AECB to
AECB-free transition and the correlation between the random effects); the results are given
in Table 4.10. The likelihood ratio test for the reduced model against the initial model
gave a statistic 14.224 with 9 degrees of freedom (p = 0.115), which indicated that there
was insufficient evidence to claim that the reduced model was significantly inferior to the

initial model. This reduced model was also fit with non-parametric random effects. Again,



AECB to AECB-frec

Log-normal

Non-parametric

AECB-irce to AECB

AECB to AECB-frec

AECB-free to AECB ‘

Transition Transition Transition Transition
Covariate! | Estimate  s.e. p-value Estimate  a.c. p-value | Estimate s, p-value Estimate  s.e. p-value
First Observed Duration First Observed Duration
intercept -4.586 0.323 — —1 — — — — — —_ -— —
treatment 0.547 0.154 — — — —_ 0.526 0.151 < 0.001 — — —_—
symptoms -0.100 0.016 < 0.001 — — — -0.111 0022 < 0.001 —_ — —
Second and Subsequent Durations Second and Subaequent Durations
intercept -4.143 0.224 - -5.973 0.246 — — — —_ — — —
treatment 0.041 0.126 0.746 -0.038 0.131 0.770 0.100 0.109 0.3587 -0.044 0.164 0.788
gender - — — 0.276 0.136  0.043 — — — 0.257 0.149 0.083
severity e — —_ 0.642 0.186 0.001 - — —_ 0,536 0.162 < 0.001
symptoms -0.007 0.010 0.438 — — — -0.008 0.010 0.457 — — —
Seasonal Estiinate  s.e. p-value Estimate  s.c. p-value | Estimate  s.e. p-value Estimate  a.e. p-value
asg 0.376 0.117 0.001 -0.505 0.1561 0.001 0.286 0.128 0.003 -0.625 0.246 0.033
a3 0.159 0.144 0.269 -0.305 0.144 0.0356 0.138 0.166 0.400 -0,321 0.226 0.165
ay 0.290 0.121 0.016 -0.187 0.141 0.186 0.310 0.154 0.044 -0,178 0,202 0.378
Estimate 95% C.I. Estimate 95% C.I.
o) 0.153 (0.069,0.338) 0.133 (0.002,8.861)
o2 0.277 (0.132,0.581) 0.160 (0.022,1.163)
p 0.278 (~0.245,0.676) 0.024 (—0.995,0.995)

Ttreatment = 1 if subjcct was given ciprofloxacin at randomization and 0 otherwise;

gender = 1 if female and 0 if male; severity = 1 if chronic brenchitis is severe and 0 otherwise;
and symptoms = days of AECB symptoms at randomization,
INot applicable.

Table 4.8; Parameter estimates for the initial model.
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Mass points  Mass
(-4.889, -5.746) 0.214
(-4.374, -4.655) 0.041
(-4.025, -5.988) 0.725
(-2.866, -4.123) 0.020

Table 4.9: Estimated mass points and masses for the initial model.

estimates for covariate effects are very similar.

For the AECB to AECB-free transition, the duration of AECB symptoms at random-
ization remained in the model. Both the treatment variable and the duration of AECB
symptoms at randomization were significant for the first observed duration of symptoms.
Specifically, Ciprofloxacin increased the rate of resolution of AECB and patients with a
longer duration of symptoms at randomization had lower rate of resolution. None of the
covariates, however, had a significant effect in the second and subsequent AECB durations.
For the AECB-free to AECB transition, we found that the treatment variable was insignif-
icant but gender and severe bronchitis were significant. Specifically, female patients and
patients with severe bronchitis tended to have higher rates of relapse of AECB.

The semi-Markov component of the AECB to AECB-free transition changed after the
first observed duration from gradually increasing over time to leveling off to about exp(2)
on the third week in the subsequent durations (Figure 4.2). On the other hand, the semi-
Markov component of the AECB-free to AECB transition had an irregular pattern (Figure
4.3).

As mentioned earlier, the AECB to AECB-free transition did not have a Markov com-
ponent. The AECB-free to AECB transition, however, showed a slightly increasing trend
over time (Figure 4.3), suggesting that patients with a long history of chronic bronchitis
had higher rates of relapse to AECB.

Compared to the first quarter, the AECB to AECB-free transition intensity was signif-



Log-normal Non-parametric
AECB to AECB-free AECB-frce to AECB AECB to AECB-free AECB-free to AECB
Transition Transition Transition Transition
Covariate! | Estimate  s.e. p-value Estimate s.c.  p-value | Estimate  s.c. p-value Estimate  s.e. p-value
Firat Observed Duration First Observed Duration
intercept -4.742 0.310 —_ -3 — — — - — — — —
treatment 0.498 0.155 0.001 — — — 0.440 0.141 0.002 — - —_
symptoms -0.108 0016 <0.001 — — — -0.111 0.020 < 0.001 — — —
Second and Subseguent Durations Second and Subsequent Durations
intercept -4.294 0.192 — -5.973 0.247 — — — — — — —
treatinent 0.040 0.130 0.721 -0.039 0.132 0.771 0.038 0.106 0.720 -0.101 0.164 0.637
gender - —_ -_— 0.255 0.136 0.062 - —_ —_— 0.222 0.140 0.113
severity —_ — — 0.631 0.189 0.001 —_ — — 0.569 0.174 0.001
symptoms -0,009 0,009 0,359 — — — -0.007 0.010 0,485 —_ — —_
Seasonal Estimate s.e. p-value Estimate  s.e.  p-value | Estimate s.e, p-value Estimate s.c. p-value
ag 0.386 0.118 0.001 -0.508 0.151 0.001 0.369 0.120 0.002 -0.5639 0.242 0.026
a3 0.143 0.144 0,321 -0.308 0.144 0.032 0.142 0.158 0.367 -0.333 0,228 0.144
ay 0.301 0.120 0.012 -0.190 0,141 0.179 0,308 0.144 0.032 -0,174 0.200 0.384
Estimate 95% Confidence Interval Estimate 95% C.1.
o) 0.189 (0.095,0,3706) 0,110 (0.001,14.687)
oy 0.200 {0.141,0.507) 0.171 (0.033,0.888)

'See Table 4.8.
?Not applicable,

Table 4.10: Parameter estimates for the reduced model.
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Figure 4.2: Estimates (solid line) and approximate 95% pointwise confidence intervals
(dotted line) of the semi-Markov components of the AECB to AECB-free transition in
the first observed AECB duration (left) and in the subsequent observed AECB durations
(right) based on the reduced model (see (4.5.6)).

icantly higher in the second and the fourth quarters, but it had no significant difference in
the third quarter. On the other hand, the AECB-free to AECB transition intensity was
significantly lower in the second and the third quarter than the first quarter, but it was not
significantly different in the fourth quarter from the first quarter. In other words, patients
tended to have longer duration of AECB in winter and summer, and higher rate of relapse
of AECB in winter and fall.

We also fit the model without Markov components in both transition intensities and
with uncorrelated random effects. However, the likelihood ratio test indicated that the
Markov component was an important feature of the AECB-free to AECB transition inten-

sity (test statistic = 18.272 with 8 degrees of freedom (p = 0.019)). Furthermore, models
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Figure 4.3: Estimates (solid line) and approximate 95% pointwise confidence intervals
(dotted line) of the semi-Markov component (left) and the Markov component (right) of
the AECB-free to AECB transition based on the reduced model.

with finer sub-divisions for the Markov and semi-Markov components also gave similar
estimates of the covariate effects and the variances of the random effects, so the present

findings appear quite robust.

4.5.4 Remark

To demonstrate the effect of “spurious” heterogeneity, we fit the data again by using a
random effect model based on alternating renewal processes, which is a popular model.
We adopted a further simplification by ignoring the difference between the first observed

duration and the subsequent durations and assumed that the baseline intensities are of
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Weibull form:
Ajo(t) = exp(v;)ti)-1, 1=12,

where ¢ is the backward recurrence time. Using a log-normal mixing distribution, we found
that the estimates of oy, o2 and o, are 0.569, 0.568 and -0.143 respectively (Ng and Cook,
1996). The estimates of o, and o, are highly inflated compared with a more comprehensive

model considered above.

4.6 Concluding Remarks and Discussion

4.6.1 General Remarks

In this chapter, we examined the performance of two common methods of estimation for
random effect models based on Poisson and renewal processes. The regression coefficients
can be estimated with negligible bias, and valid variance estimates can also be obtained.
This desirable result is quite robust to the methods considered and the true mixing distri-
bution. In contrast, the GH estimate for ¢ may have small positive bias if the true mixing
distribution is highly discrete. Although the NP estimate for o is unbiased, its variance
estimate may be unrealistically large, probably due to the ignorance of the variability of
the estimated number of mass points. In applications, using either the GH or the NP
methods of estimation makes little difference with regard to covariate effects. Choosing
between the GH and the NP methods should be based on practical considerations such as
the ease of implementation, and prior information about the data, e.g., discrete random
effects should be used if hidden subgroups are suspected.

We also propose a quite general model for analyzing data arising from common chronic
conditions in which multiple time scales are incorporated to model simultaneously degen-
erative features of the conditions, cyclical and seasonal patterns in the disease process.

When we applied this model to data from a study of chronic bronchitis, we identified sev-
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eral important risk factors. We found that the transition intensities depend on more than
one time scale, and found there to be mild subject-to-subject variation. Most of these clin-
ical findings had not been found empirically before, suggesting that the two-state model
provides added insight into this sort of disease activity.

Although we have not considered model diagnostics for the model proposed in the
analysis of the CHEST study, the estimation result based on a simplified model specification
(section 4.5.4) suggests that it is important to specify appropriate intensity functions. The
analysis of the CHEST study also illustrates the practical value of a weakly parametric
baseline intensity using a piecewise constant function.

Finally, we remark that a satisfactory modeling strategy should consist of the following
steps: model specification; estimation; and model diagnostics. Tests of homogeneity can
serve as a model diagnostic, but general methods for model diagnostics are currently lacking
for random effect models, especially for point processes. We will address model diagnostics
in the last chapter. The next subsection discusses an important issue in event history

analysis: the problem of left-truncation.

4.6.2 Left-truncation

In many studies, the time of randomization does not coincide with a transition time, nor
does it represent the beginning of the entire process. In this case, the data are said to
be left-truncated because only the remaining durations after the time of randomization
are observed and thus the first observed durations are incomplete. As a consequence, the
selection probability of a subject may depend on the length of one or more sojourns. For
example, in the CHEST study, subjects with longer exacerbation durations are more likely
to be selected since one of the entry criteria stipulated that patients must be experiencing
an exacerbation at randomization. This selection bias (also called length-biased sampling)

must be accounted for to make valid inferences.
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Consider an orderly univariate point process with intensity A(t[H(t)), where H(Z) is
the history of the process up to time ¢~ defined in (1.2.1) with the subscript ¢ dropped.
Let [r,7;] be the observation period and ¢; < --- < ¢, be the observed event times.
Let t_; < 71 be the event time just prior to 7;. If ¢£.; is known, Guo (1993) proposed a
conditional argument to obtain the likelihood which amounts to adjusting the contribution
to the likelihood from the first observed duration. Assuming that T} = ¢, is observed, then
H(ty) ={T1 > 1, T-1 =t_1,N(¢), X (¢),Y(¢t),1 <t < t1}. Thus,

Mt [H(t1)) exp(— 2, MEIH(E))dt)
exp(— 2, A(¢[H(t))dt)

= A(ti[M(t1)) exp(— /ﬂ L ACHH(E))d).

PI’[TIIH(tl )] =

This probability does not depend on £_; for Poisson processes, but in general, is a function

of t_;. Hence, the likelihood is given by

L= ﬁl)\(tjl?t(tj)) cexp(~ [ AeIH(E))ab), (4.6.1)
i=
where ty = 7.

Ift_, is unknown, we have to multiply L by the density of T'.; and integrate this product
with respect to t_;. However, unless there is prior information on T-; or the process is
Poisson in which case L is independent of ¢_;, the probability density of T, is difficult to
specify. In the former case, discarding the first observed duration seems to be the simplest
way to achieve valid inference, although part of the information will be lost. For example,
167 out of 222 patients in the CHEST study have more than one transitions during their
observation periods and thereby 55 patients will be excluded from the analysis, and of
the remaining 167 subjects, considerably fewer exacerbations will be contributed. Another
approach is to model the first observed duration differently from the subsequent durations

as we did in the analysis of the CHEST study.
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In the presence of random effects, (4.6.1) is the conditional likelihood given the ran-
dom effect. The marginal likelihood can be maximized by the methods considered in this
chapter.

In the context of multi-state processes with random effects, selection bias can be due
to extreme subject-specific random effects. The conditional argument considered by Guo
(1993) may not be able to correct this selection bias. The approach we used in the analysis
of the CHEST study may serve as an approximate adjustment for the selection bias. As
a rough check on the appropriateness of this approach, we fit a Cox proportional hazard
model for the first observed durations and found that the treatment variable had significant
effect. This result is consistent with the finding based on the stratified model (4.5.6).
Nevertheless, further research in this direction is necessary.

In general, the construction of likelihood function under left-truncation relies on the
information available before the time of randomization and the sampling scheme. Lawless
and Fong (1997) recently described some difficulties and modeling approaches pertaining
to this problem.



Chapter 5

Robust Inference for Bivariate Point

Processes

5.1 Overview

Inference for random effect models considered in chapter 4 is likelihood-based, which re-
quires a full specification of the process conditional on the random effects. Although a
- certain degree of robustness against misspecification can be achieved through the use of a
weakly parametric baseline intensity and a non-parametric mixing distribution, appropri-
ate time scales must still be specified. For situations in which one is not sure about the
appropriate time scale and when interest lies primarily on studying covariate effects on
the number of events, models based directly on the mean number of events over time may
be entertained. This approach belongs to another popular class of models for longitudinal
data analysis and is termed “marginal models” (Diggle et al., 1994). Unlike random effect
models, marginal models only require minimal assumptions on the probabilistic structure
of the process. Lawless (1995) reviewed a number of methods of analysis for recurrent

events using both conditional (intensity function) models and marginal models. A variety

137
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of conditional models were considered in chapter 4.

In this chapter, we propose marginal models for the mean and covariance functions of
bivariate point processes for which inference is based on the theory of estimating functions.
Specifically, we construct unbiased linear estimating functions for the marginal cumulative
mean functions (CMTF's) of bivariate point processes, in which the correlation structure for
the jumps can be taken into account. A criterion for obtaining the optimal estimating
fanction for the CMF is suggested in section 5.3. Tests of hypotheses using Wald-type and
score-type tests are discussed in section 5.4. Some estimating functions for the covariance
functions are also considered in section 5.5. Since the correlation structure is usually
unknown and any assumed structures are difficult to verify, we suggest using the estimating
function arising from mixed bivariate Poisson processes as a working estimating function.
These mixed bivariate Poisson estimating functions are easy to implement and yet provide
a “working” correlation to account for the underlying correlation structure, analogous to
the generalized estimating equation (GEE) used in discrete time longitudinal data (Liang
and Zeger, 1986). The performance of the mixed bivariate Poisson estimating function is
examined through simulations in section 5.7. In section 5.8, the proposed model is applied
to data from the asthma trial described in chapter 1. Finally, some concluding remarks
and discussion are given in section 5.9.

The rest of this section is devoted to a brief review of the marginal approach for univari-
ate point processes using estimating function. The idea originated from quasi-likelihood
(QL) estimation, which is most commonly applied in the context of generalized linear
models (GLM) (McCullagh and Nelder, 1989 Chapter 9). By specifying the mean and
covariance of the response over time, and introducing covariate effects, one can construct
a quasi-likelihood which behaves in many ways like an ordinary likelihood function.

Let Y; be an n x 1 vector of responses and z; be a p x 1 vector of covariates for the

ith subject. The mean response is assumed to be a function of the linear predictor, z;3,
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through a link function,
i; = E(Y;) = g(iB),

and the variance is a function of y;,
var(Y';) = oVi(s),

where ¢ > 0 is a dispersion parameter. The QL estimator for 8 based on a sample

{Y'1,..., Y}, is obtained as the solution to the quasi-score function

m

U(B) = 32 oV (¥ - ) = O

i=1

The dispersion parameter is often estimated by the method of moments.

Under some mild regularity conditions, the QL estimator has asymptotic properties
similar to the ordinary maximum likelihood estimator, namely consistency and asymptotic
normality. In fact, the quasi-score functions are the optimal estimating functions among
the class of unbiased linear estimating functions provided the mean and covariance of the
response are correctly specified (McCullagh and Nelder, 1989 Chapter 9).

In many longitudinal studies, the responses from the same subject constitute a time
series whose the autocorrelations may be difficult to specified, especially for discrete re-
sponses. In a series of articles (Liang and Zeger, 1986; Zeger and Liang, 1986; Zeger et al.,
1988; Liang et al., 1992), generalized estimating equations (GEE) are introduced in which
only the mean function has to be correctly specified and the covariance matrix may take a

convenient form,

V(p) = A(p)R(p)A(n),

where A(p) = diag(var(Y'))*/? and R(p) is a correlation matrix parameterized by p. R(p)

is not necessarily the true correlation matrix, and thus it is referred to as a “working”
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correlation matrix. These authors showed that, using the results of White (1982), the GEE
estimators are comsistent and asymptotically normally distributed even if the covariance
structure is misspecified. As the generalized estimating equations belong to the class of
unbiased linear estimating functions, the efficiency is higher if the working correlation
matrix is closer to the true correlation matrix.

Inspired by this approach, Lawless and Nadeau (1995) proposed a robust model for uni-
variate point processes in which estimation is based on a Poisson likelihood. The estimation
is robust with respect to misspecification of the distribution. Let N(t) be the number of
events occurring over (0, ¢] and dN(t) = N(¢) - N(¢t—) = lims_,o+ (N(¢) — N(t — k)) be the
number of events (or jumps) at the instant ¢{. The cumulative mean function (CMF) for
N(t) is defined as E[N(t)] = A(t) which is assumed to be continuous, non-decreasing and
differentiable with respect to ¢ if the time scale is continuous. The CMF can be modeled
parametrically or non-parametrically. For the ease of exposition, we consider a parametric
CMF which is completely specified by a p x 1 vector 8. Regression models may also be
entertained with multiplicative covariate effects of the form A(¢) = exp(z’/B)Ao(t), where
z is a vector of covariates and Aq(t) is the baseline mean function.

We note that the probabilistic structure of the process is not fully specified unless it is
a Poisson process. Lawless and Nadeau (1995) argued that parameter estimates based on
Poisson models are valid quite generally, and derive robust variance estimates using the
theory of estimating functions.

We define a function v(t) such that v(t) = ¢ for continuous time processes and v(t) = [t]
for discrete time processes. Let A(t) = dA(t)/dv(t). Based on a sample {N;(t), ..., Nm(t)},

the Poisson estimating function (PEF) can be shown to be

Ug) = Z [ a—lﬂg—(’\——[dN(t Xi(t)dv(t)], (5.1.1)

=1

where Y;(t) is independent of N;(t). The process Y;(¢) usually indicates whether subject 7
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is under observation at time ¢. The robust asymptotic variance of the estimate is given by

var(@) = E (-?-g%?)) 1 E(U(8)U(8))E (—ﬂg;i)) 1.

When the jump sizes are uncorrelated, i.e., cov(dN(s),dN(t)) = 0 for s # t, Nadeau
and Lawless (1996) showed that the PEF is optimal among all unbiased linear estimating
functions. In general, (5.1.1) may produce meflicient estimates for correlated jump pro-
cesses, although consistency is still preserved. Nadeau and Lawless (1996) extended the
PEF to incorporate the covariance structure of the process. If the CMF and the covari-
ance between jumps (cov(dN(s),dN(t))) are correctly specified, inference can be based on

a quadratic estimating function of the form

m

v9) = LA [ titraranze +

=1

/Ooo /000 Y:(s)Y:(t)b:(s,t) [dNF(8)dNE(t) — cov(dNE(s), de(t))]} (5.1.2)
where

dNE(E) = dNi(t) — M(2)du(8),
cov(dN5(s),dNf(t)) = I(s = t)v(t)dv(t)
+ I(s # t)ci(s, t)dv(s)dy(t),

v;(t) and c;(s, ) are variance and covariance functions with parameters ¢ = (8, o’)’ respec-
tively, a;(t) and b;(s,t) are known differentiable functions of ¢, and I(-) is the indicator
function.

The optimal quadratic estimating function requires knowledge of the third and the
fourth moments of the process which are usually unavailable (Godambe and Thompson,

1989). Instead of working with (5.1.2) directly, Nadeau and Lawless consider breaking
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(5.1.2) into two components:

UiBio) = 3. [ ¥(Dait)danie)

i=1
Ua(oi8) = 3 [7 [T Hls)i(t)be(o, ) [ANE(5)dNF(¢) — cov(dNE(a), AN (D)
i=1
where the dimensions of a;(t) and b;(s,t) are the same as the dimensions of 8 and o
respectively. Let U(¢) = (U1(0; o), Uz(0;8)) .

This leads to a 2-step estimation procedure in which we solve U,(8; ) = 0 for 6 given o
and substitute this solution into U(o; @) = 0 to find a root of o. This iterative procedure
continues until convergence is met. Let ¢ be the solution to U (#) = 0. It can be shown
that the asymptotic variance of ¢ is block diagonal with the partition conformable to @

and o, and the asymptotic variance of 8 is equal to

m«»:E(-f’gg,?’) E(U(8)U(¢))E (—aiﬁ,‘“) .

This implies that even when the covariance is not correctly specified, 8 is still consistent,
whereas the estimator for & obtained from (5.1.2) may not be. Furthermore, given o, an
optimal linear estimating function for @ exists in which a;(t) is a function of X;(¢), v;(t)
and c;(s,t); see Theorem 1 of Nadeau and Lawless (1996) for the expression of a;(¢) in the
optimal estimating function. Inference for 8 can be based on the asymptotic normality of

-

6.

5.2 Model Formulation

The marginal approach for univariate point processes may be extended to multivariate
point processes. In addition to the marginal means and covariances of jumps, we have to

specify the cross-covariances of jumps between components of a process as well. For the
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ease of exposition, we focus on bivariate point processes in this chapter. We propose a
robust method via the estimating function in which optimal linear estimating functions
for the parameters in the mean functions can be obtained along the line of Nadeau and
Lawless (1996).

Suppose there are m independent bivariate point processes {IN(t), ..., N.(t)}, where
Ni(t) = (Nu(t), Nio(t))’ such that N;(t) and N;2(t) are two orderly point processes char-
acterizing two types of events. Suppose IN;(t) is observed over (0,7;] or at time points
T: = {ti, - tim;} for continuous time processes or discrete time processes, respectively.
Let Y;(t) be the indicator function that the 7th process is under observation at time ¢, i.e.
Yi(t) = I(t < 7;) for continuous time or Y;(t) = I(t € T) for discrete time. Therefore, for

any function g(¢),

T
/ g(t)dt for continuous time,
0

/o Yilt)g(t)dv(t) = S g(t)  for discrete time.

teT;

We assume that the censoring (or observation) process {Yi(¢)} is independent of the
bivariate point process {N;(t)}. Consider parametric models and define the following

marginal moments for the jumps:

E(dN5(t) = Ailt;0;)du(t),
var(dNi;(¢)) = wis(t: 0;)du(t),
cov(dNis(s), dNij(t)) = I(s = t)oss(2; 6;)du(2)
+ I(s # thesi(s, t: 075, 0;)du(s)du(t),
cov(dNix(s), dNia(t)) = I(s = t)visa(t; o1, 8)du(t)
+ I(s % t)cisa(s, t; 012, ) du(s)du(8),
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for j = 1,2, where 0; is a p; x 1 vector of parameters for the mean functions, j = 1,2,
and o; is a q; x 1 vector of parameters for the covariance functions, 7 = 1,2 and 12. We
assume that there is no common element in @ = (81,03) and o = (0},0%,0),). The
mean rate functions A;;(-), 7 = 1,2, the variance rate functions v;;(-), j = 1,2 and the
simultaneous covariance rate function v;,,(-) are assumed to be non-negative and cadlag.
The covariance rate functions ¢;(+,-), 7 = 1, 2,12 are cadlag such that ¢;;(s,t) = ¢;(¢, s),
j = 1,2. Covariates may be incorporated into the mean functions and covariance functions.
In what follows, inference is based conditionally on the censoring process and the covariate
process which is assumed to be external.

The CMF's are parameterized by 8, and 8, respectively. We note that for continuous
time processes, d/V;;(t) is a 0-1 random variable and thus v;;(t) = Ai;(t) and v;,2(t)dt is
the probability that both types of events occur simultaneously.

Let

Si(t) = ( vir(t)  viaa(t) ) and Qu(s. t) = ( cii(s,t)  ciga(s,t) ) ’

vi12(t)  via(t) ciaz(t s) (s, t)

for s # t. For convenience, we set Q;(¢,t) = O for ¢ > 0. Assuming that ¥;(t) is positive
definite for ¢ > 0. Since our interest usually lies in estimating 8, and 6, we assume that

the other parameters (o) are known for the moment.

5.3 Optimal Estimating Functions For CMF

A linear unbiased estimating function (LUEF) for 6 is defined by

Uia®) = Y- [ Yilt)at)ldNi(t) - M(e)av(2)] (5.3.1)

i=1
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where a;(t) is a (p; + p2) x 2 matrix function of ¢ = (6',0”) and A;(£) = (A (), Mia(t))'.
Let U, » be the set of all LUEF's of the form (5.3.1).

An optimal estimating function for & may be derived in a fashion similar to Theorem

1 of Nadeau and Lawless (1996). We state the result as follows:

Proposition 5.1 Let R; = {t € [0,00)|Yi(¢t) = 1} fori = 1,...,m. Let Fi(s,t;¢) : R; x
R; — (—00,0) x(—00,) be a 2 x 2 matriz of functions of ¢ such that Fi(s,t)’ = Fi(t,s)
for s,t € R;, and satisfying

/o Vi) F(s, w)Qu(u, t)dv(u) + Fi(s, )Si(t) + £71(s)Ru(s, 2) = 0, (5.3.2)

for s,t € R; andi =1,...,m. Then the optimal LUEF for 6 is given by U ,(0) for which

oY)

ai(t) = 50 Z7HE) + Gi(t), (5.3.3)
fort € R; andi = 1,...,m, where
Gi(t) = /O = K(s)g\a—iéi)ﬂ(s,t)du(s), (5.3.4)
which satisfies
/0 " Yi(s)az(s)(s, t)dv(s) + Gi(t)Ze(t) = 0, (5.3.5)
fort € R;.
Proof:  Let

Ur24(0) = fo Z Yi(t)a:(t)[dN:() — Ai(t)dv(2)].

A well-known result of the theory of estimating functions states that

Ur.(0) = Z Ui2:(8) € Uy

1=1
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is optimal within U, , if for any U; 2(6) € U, 2, we have

E(U,.2:(0)U;,,4(0)) = E (—?ﬂaa—(‘i’-) , (5.3.6)

for : = 1,...,m (Godambe and Heyde, 1987). This criterion implies that the optimal
estimating function is the projection of the score function onto U, 2. To see U7 ,(8) satisfies
(5.3.6), pre-multiply the left-hand side of (5.3.2) with ¥;(s)9A:(s)/88, and then integrate

with respect to s to get
|7 ¥i)ai(e)(s,)dv(s) = ~Gi()Zu(t), (5.3.7)
for t € R;. The optimal criterion (5.3.6) can be proved by noting that,

B(U124(8)U1240)) = /Ow Yi(t)a(t)Zi(8) Y(t)a; (2) dv(t)

+ /:o /Om Yi(s)a:(s)S%u(s, t)Yi(t)a: (t) dv(s)dv(t)
/:o Yi(t)a;(8)Z:(t)(ai (t) — Gi(t))dv(t),

(by (5.3.7) and Qi(s,t)' = (¢, s)),

_ (_aUI,z..-(e)) |

o9’
AA(t)
0

T7Y(t) + Gi(?)).

(as aj(t) =

Hence, a?(t) gives the optimal LUEF for 8. Finally, (5.3.7) proves the result (5.3.5). ©
The optimal weight function a} () consists of two parts. The first term in (5.3.3) leads

to the optimal LUEF for uncorrelated jump processes, while the second term in (5.3.3) can

be viewed as a correction factor that incorporates the covariance structure of jumps.
Consider a special case for which dN;;(s) and dN;,;(t) are uncorrelated. This gives

v;12(t) = ¢i12(8,t) = 0 and Fj(s,t) becomes a diagonal matrix. It is readily seen that
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Proposition 5.1 leads to two optimal LUEFs for 8; and 8; respectively. These optimal
LUEFs are exactly the results of Nadeau and Lawless (1996) obtained by treating the

components of the bivariate processes separately.
It is in general difficult to solve (5.3.2) or (5.3.5). The fellowing corollary provides a

solution for a particular type of covariance function.

Corollary 5.1 If the covariance function is of the form
Q;(s,t) = Ai(s)B;i(t), s, teRii=1,....m, (5.3.8)

where A;(s) and Bi(t) are 2 x 2 matrices such that B;(t) is invertible for all t € R;, then

the optimal weight function is given by

ait) = Zinri e - ([ v et ) Aot ) (5.39)

-1

(12 " / > Y,-(s)B,-(s)E;-'l(s)A;(s)du(s)) Bi(t)Z7(t),
0
fort € R; andi = 1,...,m, where I, is the 2 x 2 identity matriz.

Proof: Since B;(t) is invertible, equation (5.3.5) can be expressed as

BA .s)

| He1G s At )dvts) + [ Yi(9) 50 E (6) Ax(o)du(s) + Gilt)Ti(t) BT (1) =

We observe that the two integrals in the above equation are time independent and so is

H = Gi(t)3:(t)B7!(t). Thus, we easily find H as

H=‘(/o i) 2 g, )A,-(s)du(s)) (B4 [ Yil)Bilo) ST () Al)an(s))

Hence, the solution for G;(t) is G;(t) = HB;(t)E7'(t),t € Riand i = 1, ...,m. a
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We are now going to derive the asymptotic variance for the solution to an arbitrary
LUEF (5.3.1). Let 8 be the solution to (5.3.1) for 8. Given o, the asymptotic variance for

6 is given by the so-called sandwich estimator:
asvar(f) = (A},(0)) 7" Bn(8) A (6),
where
Am(6) = —E [M] - Z/ Y(t)a’\‘(t) al(t)dv(t),

ao =1
Ba(8) =B [0:a(0)0,0)] = 3. [ ¥ilt)as(t)Se(t)ai(t)dv )

i=1

+§/0 /0 Yi(s)Yi(t)a:(s)u(s, t)ai(t)dv(s)dv(t).

If the specification of the covariance is in doubt, an empirical covariance estimate in which

B, 1s replaced by its empirical form,

8) =3 Ur2:(8)U.,.(6),

=1
is often used (White, 1982; Liang and Zeger, 1986).
In particular, An(€) = B,,(0) for optimal LUEF with correct covariance specification

and thereby, the asymptotic variance becomes
asvar(é) = A7}(9),

which is the variance formula in the quasi-likelihood estimation; see Godambe and Heyde
(1987) for the discussion of estimating functions and quasi-likelihood.
Under some mild regularity conditions (White, 1982), the estimate @ is approximately

normally distributed with mean @ and variance asvar(8) which can be estimated by sub-
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stituting @ for 9.

5.4 Tests of Hypotheses

Tests of hypotheses concerning @ can be carried out using the asymptotic normality of
8 or the estimating function (5.3.1). The former is a Wald-type test and the latter is a

score-type test. Specifically, consider the null hypothesis
Ho : 1 = vy,

where 9 is a r-subvector of 8 and for simplicity, we let 8 = (', n’)".
The Wald test is based on the statistic

W = (% — o) (VY (8)) " (3 — ), (5.4.1)

where 8 = (12?', #')’ is the estimating function estimate for @ without restrictions, and
V',,W(é) is the asymptotic variance of 'J: evaluated at . Under H,, W, is asymptotically
x? distributed with degrees of freedom r.

The score test uses the estimating function as the test statistic. Partition U, »(8) into
two components (Uy(@)’, Ux(8)’) conformably to ¥ and =w. Given o, an estimate for =
under Hy, 7, is obtained by solving U,(m;,) = 0 for w. Denote 8 = (1}, %')'. Standard
Taylor series expansion for Uy(8) around @ = (¥4, ®’)’ under Hy gives

Uy(8) = Uy(60) —

Uy (8,) (3U,,(00)

-1
-1
a‘frl a‘n_ ) U‘l'(oo) + OP(n )'
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We also partition the matrices A,, and B, conformably to ¥ and 7 as

where the dependence of @ is suppressed. The asymptotic variance of U (0) is equal to

V:ps(é) = Bll.m + A;x,m 2-21.mBZ2,m(AI22.m)‘1A21.m
~ Bizm(A%em) "  A21m — Ay Azy B m-

The optimal estimating function provides a simpler form because A,, = By, so that
VE(8) = Aiim — ArzmAzy Ao m.
The score statistic is then given by
Sy = Uy(9)(V,;(8))7'Uy(8), (5.4.2)

which is asymptotically x? distributed with degrees of freedom r under Hp.

In addition, the empirical covariance matrix B, can be used in place of B,, for W,
and Sy if the covariance structure is unclear. We remark that the test statistics require an
estimate for o which may be obtained from a saturated model or a full regression model
which includes a large number of covariates (Breslow, 1990).

Breslow (1990) studied the performance of Wald and score tests for overdispersed Pois-
son regression. He demonstrated, based on simulations, that the Wald and score tests
derived from quasi-likelihood generally have reasonable performance in terms of size and
power. He recommended the use of a score test with the empirical covariance matrix in

practice because this empirical score test not only is robust to the specification of covari-
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ance, but also performs satisfactorily even for small sample sizes and large overdispersion.
Similar results should hold for bivariate point processes comsidered here, especially when

the optimal estimating function is used.

5.5 Joint Estimation of CMF and Covariances

The discussion in previous sections relies on the knowledge of the covariance parameter o .
However, the parameters o are usually unknown. Quadratic unbiased estimating functions

(QUETFs) for o of the following forms may be constructed, given 8, for 7 = 1,2,

Uilon) = 3 [ [ Vo) 0bisto. b $)ANG()ANG() ~ cov(dNig(s), dMi()].

=1

Unlo) = 3. [ [ ) ti®bial, t; §)dNG ()dNG(t) — cov(dNia(s), dMea(8))],
(5.5.1)

where dN;(t) = dNy;(t) — Aij(t)dv(t) and b;;(s, t) is a known function of dimension g; for
J = 1,2,12. It should be noted that Uj; and U;, are in fact functions of ¢ and they aim
to estimate o; and o, respectively. In the estimation procedure, we fix the values of the
parameters other than o ; in Uj; to find a solution for ;. The other estimating functions are
treated similarly. The procedure proceeds by solving U; 2(8) = 0, Uyy(o1) =0, Uzz(o;) =0
and Uyy(or12) = 0 iteratively. Due to the unbiasedness of these estimating functions, the
resulting estimates are consistent.

The next question is how to choose the weight functions b;;(s,t). A convenient can-
didate is b;;(s,t) = 1 for j = 1,2,12 which gives the moment estimators for o if ¢g; = 1.
An optimal QUEF requires knowledge of the third and the fourth moments of dN;;(t)
(Crowder, 1987; Godambe and Thompson, 1989) which are often unavailable. The orderly

continuous time process is an exception. Recall that v;;(t) = A;j(t) for 7 = 1,2. It is easily
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seen that (dNG(t))? = (1 — 2\;(¢)dt)dNE(t) + Aij(£)dt — (Ai;(¢)dt)? and thus,

var(dNg(s)ANG(8) = (1 — 2X;(s)ds)(1 — 2s;(£)dEVE(dN ()N (£))
= I(s =¢t)\;(t)dt + I(s # t)cii(s,t)dsdt + o(ds, dt),

and var(dN; (s)dNi(t)) = I(s = t)vi12(t)dt + I(3 # t)ci1a(s, t)dsdt + o(ds,dt) similarly,
where o(ds, dt) = o(ds) + o(dt) + o(dsdt). Estimating functions similar to the PEF may be

constructed as follows, for j = 1,2,

m

stos) = 4 [ 00 220 an ) agera

=1 60'5

+/oo/-my‘(s)y:(t)[(s;ét)alog(cu(s’t))[ch(s)d j(t)—c;j(s,t)dsdt]},

o;

—i{/ [ ooy # 978G D)y j(s)dej(t)~qj(s,t)d8dt]},
(5.5.2)

m

Uiaton) = 34 [ viervitn B2 ang (yanig(0) - watia | +

i=1 do1z

ﬁ{/ [ ¥iCsite) s # 2B D ) anv o) - ci.lz(s,t)dsdt]}.
(5.5.3)

For discrete time processes, we may use the moment estimator or define some working

covariance structures as suggested by Prentice and Zhao (1991).
The asymptotic variance for the joint estimation of @ and o can be derived similarly

as in section 5.3. We stack the estimating functions (5.3.1) and (5.5.1) together and write

U(@) = (U12(0) . Uni(o1), Uza(o2), Ur2(012)")'.
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The asymptotic variance of ¢ is given by

asvar(¢) = E ( aggb)) E(U(¢)U(¢)')E(—ag—ff—)) : (5.5.4)

The expectation E (U(¢)U(¢)’') involves third and fourth moments of the jumps which are
not available in most cases. An empirical variance formula similar to B€, considered in
section 5.3 can be used.

Since A;;(t) does not depend on o, E(—3U; 2(0)/8c) = 0 and thus E(~8U(¢)/8¢) is
an upper triangular matrix in which the lower ¢q. x p. submatrix is equal to zero, where
p- =p1 +p2 and q. = q1 + g2 + q12. Therefore, the asymptotic variance of 0 remains
unchanged whether o is known or consistently estimated. Furthermore, ¢ is asymptotically
distributed as N(¢, asvar(¢)).

The estimating functions are easily computed for discrete time processes. Here we
express the computational forms for continuous time processes. Let 0 < ¢ < --- <
tijm; < 7i be the observed event times in {Nj;(¢)}. The optimal LUEF for # and the
estimating functions for o using (5.5.2) and (5.5.3) can be expressed as follows:

Ui.(6) = i {Z (Z a;;(t) _/0"-‘ a;j(t)’\ij(t)dt) } )

i=l {j=1 \teD;;

Uji(o;) = i{ > Ologleyle,t)) > /nalog(acjfs’t))'\ij(t)dt

i=1 | {s.t€D;j|s#t} 66_1 €D

N T alog(c;j(s,t)) _ B
+_/0 /0 T(A;j(S)/\i,(t)-—c‘,(s,t))dsdt},

7

Uiz(o12) = i{zw_[) Ovina(t) 4y

=1 liem:  9on 9012

0log(ci12(s,t)) -3 /"’s Olog(ci2(s t)) At (5)ds

{s€D;) teD;a]a#t} do12 teDiy 9o 12

_ Z /1’. dlog(ei2(s, t))/\,-z(t)dt

2€D;, do12
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/f. /* dlog(ci,12(s, 2) )(z\n(s)A;z(t) —c.-'n(s,t))dsdt} ,  (5.5.5)

60'12

where aj;(t) is the jth column of a] 1(t), Di; = {tijrs.on tijm;}r for j=1,2and i =1,...,m
and D; = D;; ( D;z is the collection of the simultaneous event times for the zth process.
The above integrations may have to be computed numerically. In such situations,

simple numerical integration methods such as the Simpson’s rule may be used.

5.6 Applications

5.6.1 Mixed Bivariate Poisson Process

We consider a continuous time mixed bivariate Poisson process in which conditional on
a bivariate random effect Z = (Z,;, Z,)’, the bivariate process comprises two independent

Poisson processes. Suppose E(Z) = 1 and

oy O
var(Z)=38z=| =
Ci2 02
is positive definite. The conditional moments of jumps are given by

E(dN; () Z:) = zi;M5(t)dt,
COV(dN;j(s),dN;j(t)IZi) = I(s—‘:t)z{inj(t)dt,
cov(dNa(s), dNa(£)|Z:) = O.

The marginal moments can be shown to be

E(dN‘J(t)) = /\,‘j(t)dt,
cov(dNij(s), dN;(t)) = I(s = t)his(8)dt + I(s # t)oshis(s) i (¢)dsdt,
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cov(dNi1(s),dNa(t)) = I(s # t)o1ahin (8)Aia(¢)dsdt.

Therefore, v;,12(t) = 0, ci;(s,t) = 0;A:;(8)Nij(2) and c;12(s, ) = 1201 (8)Ai2(t). By noting
that Q:(s,t) = %;(3)Xz¥;(¢) and using Corollary 5.1, the optimal LUEF for @ is equal to

0:2(0) = 3 [ 2O D 1) - aera) - 3 P ) - s, 58.)
i=1 =1
where
M = (12 + / ()5 (u)duEg) -
_ 1 o1(1 + a2A2(13)) — i Az(T:) o12
Ks’ 012 0‘2(1 + 0'1A1(Ti)) a'loAl(T:) ’
K = (14 01M1(R))(1 + 02A2(%)) — 0i,A1 (1) Aa(7:).

The estimators for o obtained from (5.5.5) turn out to be:

- :=1[ A"J(Tl)) — 15

g; = 1 .7 = 1727
! 1—1 A'? (Tt)
5’12 — g_l(nil - A«l(fi))(ntz - A‘lz(T‘l)) (5.6.2)
T Aq (Ti)Ad(Tt)
where n;; = N;;(7;). The estimator for ¢; is approximately equal to its moment estimator
which is X i
Eallny — Aij(m:))? — Asji(m)]
Z,A%(n) ’

for j = 1,2, while 61, is exactly the moment estimator for &,,. In cases when G 1s negative,
it 1s usually set to 0.

Furthermore, when regression models are entertained, covariate effects are often mod-
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eled multiplicatively to the mean functions:
Aii(t) = exP(“’;jﬂj)/\oj(ﬁ ‘Yj),

where Ag;(t) is the baseline rate completely specified by a vector of parameters v;, 7 = 1,2
and ¢ = 1, ..., m. It remains to specify the forms of the baseline rates. A weakly parametric
specification using piecewise constant functions may be used if there is no prior knowledge
of appropriate forms.

The optimal estimating function (5.6.1) arising from mixed bivariate Poisson processes
may have great potential for practical applications. In most situations, any particular
covariance structure is unlikely to be correctly specified in a model. Thus, the covariance
structure implied by mixed bivariate Poisson processes can be viewed as a working covari-
ance similar in spirit to the GEE working correlation (Liang and Zeger, 1986). We call
(5.6.1) the mized Poisson estimating function (MPEF'). The merit of the MPEF is that it
provides consistent estimates and valid inference for the parameters in the CMF's through
the use of a robust variance estimate with the efficiency being higher the “closer” the
working covariance is to the true covariance. The parameters in o arising from the “work-
ing” random effects should be viewed as dispersion parameters in general. In practice, the
empirical formula of the sandwich estimator should be used. Some simulation studies will
be considered in the next section to investigate the performance of the MPEF.

In the case of equal duration of follow-up for each subject, i.e., 7; = 7 for all 7, the
estimates for 3,, B, and o are invariant to the forms of the baseline rates. This can be
seen from the following arguments. Let ag; = Agj(7), j = 1,2 where Ag;(t) = f§ Aoj(3)ds.
Given o, the estimating function for B; is given by, from (5.6.1),

Us;(8) = Y [rij — (rijMij; + mia-j Min2) Aij) @35,

i=1
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= 1
= Z X (1 + 0350 3-5)m35 — 0125573 5] 245, (5.6.3)

i=1 't

where A;; = exp(z};8; + aoj), Tij = mij — Aij, j = 1,2, and M;y is the (k,l)th element of
M;, k,1 = 1,2. Hence, Ug;(0) depends on the baseline rates only through aq;. Similarly,
& obtained from (5.6.2) is also invariant to the forms of the baseline rates. Therefore,
estimation of the regression coefficients and overdispersion parameters is essentially based
on the total numbers of events occurring in (0,7). In fact, (5.6.3) is equivalent to the

quasi-score equation for the overdispersed Poisson regression.

5.6.2 Longitudinal Analysis of Bivariate Count Data

We consider a longitudinal study in which each subject experiences two types of events and
is observed at a set of fixed discrete time points, for example, dates of the follow-up visit
in a clinical trial. Suppose without loss of generality that the :th subject is observed at
times R; = {1,2,...,7:}. Let D;;(¢) be the number of j type events for subject ¢ occurring
in the interval (¢ —1,¢] for j = 1,2 and ¢ = 1, ..., m. In other words, D;;(t) = dN;j(t). The

specifications for the means and covariances are, using the above notation,

E[D;(t)] = Xi;(t:6;),
COV(D,’j(s),D;j(t)) = [(8 = t)v;j(t;O,-) + I(S ?é t)c;j(s,t; 0‘_-,',0,'),
cov(Dii(s), Dia(t)) = I(s = t)via2(t; 012;0) + I(s # t)cina(s, 85 012;0),

for s,t € R;, where 8 = (6},03)".

Here we introduce some more notation and let

D;(t) = (Du(t), Dia(2))', Ai(t) = (Mult), Aa(t))
D: = (D:(l)' "'ng(Ti)),v A = (A:(l)v ooy A:’('ri)),a
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% = diag(8i(1), ..., Bi(w)), Q: = (Qu(s, ) :

s t=1,...7;

and V; = VB.I‘(D,) = 3; + Q;.
An estimating function for 6 is given by

Usa(0) = 3" a(di — As),

=1

where a; = (ai(1), ..., ai(7:)) is a matrix of weight functions. The optimal weight is obtained

by finding F;(s,t) in Proposition 5.1. Let F; = (F;(s,t)) U then (5.3.2) becomes

s.t=I1,...,

FQ; + F.X + Ei—lQ; = 0.

Simplifying, we find F; = —X7'+V;™!. Therefore, from (5.3.3), the optimal weight function
g

is given by,
e 0Ny 0N, O
=G T
Hence, the optimal LUEF for @ is
. = OAi _
Ui2(8) = 3 SV dh - Ao, (5.6.4)

i=1

which is the well-known quasi-score equation (McCullagh and Nelder, 1989).
Given o = (0},07%,07,), a solution to (5.6.4) can be found by the following scoring

algorithm (Liang and Zeger, 1986):

m -1 m
glk+1) — g(k) (z C’,-V‘-'IC,f) (Z C,-V‘."lr,-) , (5.6.9)

=1 =1

where C; = 9A;/30 and r; =d; — A;.

The estimates for o are often found by the method of moments in which b;;(s,) = 11in
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(5.5.1) for j = 1,2,12. However, the method of moments usually leads to slow convergence
in the iteration procedure. Crowder (1985) argued that a Gaussian estimation procedure
for correlated binary data may provide faster convergence. Crowder’s procedure uses a

Gaussian pseudo-likelihood for r;:
1 & rtr—1
10,0) =3 (log(IVil) + 7V ) -
i=1
The estimates for o are obtained by solving g(o) = §l/do = 0. Labeling the elements of

o as o = (0y,...,0,), the jth element of g(o) is equal to

as(o) = =33 o [Vl%‘i] — U G

= =1 J

It is noted that the entries in g(o) are quadratic estimating functions for o. A scoring

algorithm for o is given by (Rochon, 1996)
ot — gk) H(O'(k))_lg(a'(k)), (5.6.6)

where the (a,b)th element of H(co) is

1 20V, OV;
Ha(o) = Eztr [V 80}.Vi dog |’

=1

for a,b = 1,....q.. Hence, the estimates for  and o can be found by iterating through
(5.6.5) and (5.6.6).

Furthermore, a “working” correlation structure can be used as in the usual GEE ap-
proach. For example, the equicorrelation model and the autoregression model are common
choices. As seen in section 5.5, a consistent estimator for @ with a robust variance estimate

is still available.
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5.7 Simulation Study for MPEF

5.7.1 Design of Simulation Study

In this section, we study the performance of the estimators obtained from the MPEF by
examining their biases and coverage probabilities through simulations. We consider m
independent mixed bivariate Poisson processes with multiplicative covariate and random
effects. Specifically, given random effect z; = (2, z:2)’, the conditional intensity of the jth

Poisson process for the ith subject is given by

Aij(E|z:) = zijexp(Bjo + Bizi)ayt™i~!, te(0,m),

where z; ~ Bin(1,0.5) to mimic a random treatment assignment and o; = exp(7;), J =
1,2,:=1,....m.
The bivariate random effects z; are independent and identically distributed with mean

(1,1) and covariance matrix

according to one of the following distributions:
1. bivariate log-normal, i.e., log(Z;) is bivariate normal;

2. bivariate binary:

1 1—
Pr(Za = 1-v/&1, Za = 1-V) = —£i Pe(Za = 1-y/&7, Za = L+v/om) = — s
l-p 1+p
PI'(Zil = l'f-\/O'l, Z,‘z =1- g3) = —4—; Pl‘(Z{l = 1+‘/0'1,Z,'2 = 1+\/0’2 = —4—,

where p = corr(Z:1, Ziz) = 012/\/0102;
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3. mixture of two bivariate log-normals: Z; = Z" with probability 1/2 and Z; =
zﬁ” with probability 1/2, where Zf-l) and ZEZ’ are independent bivariate log-normal

random variables such that

8 1

my _ 4., wy_ 8w 1.4
E(Z; )—51, var(Z;"') 13(2 2511),
(2) __9 . (2)y _ 18 N 1 '
B(ZM) =21 va(Z2{) = (3 - 511,

where 1 = (1,1).

The purpose of considering these mixing distributions is to investigate the sensitivity of the
estimators, especially for the dispersion parameters o, to different mixing distributions.

The lengths of follow-up (7;) are generated independently of the mixed Poisson processes
from an exponential distribution with mean log(0.5) such that the follow-up periods for
about 50% of the subjects are less than the target follow-up of 1 (year). The true values of
the parameters are taken to be: 810 = log(2), A1 = 1, 11 = log(2), B2 = log(4), Ba1 = —1,
12 = log(1), oy = 02 = 0.5 and o2 = —0.25 and 0.25. The average numbers of events
generated from each component of the process under this specification are small.

We generate m = 100 mixed bivariate Poisson processes according to the above scheme,
and apply the MPEF (5.6.1) to estimate the parameters in the CMFs and (5.6.2) to
estimate the dispersion parameters. The baseline rates are chosen either as Weibull, which
is the correct model specification, or piecewise constant functions with 5 cut-points. The
cut-points for each component are determined by the empirical percentiles of the observed
event times in that component. The variance matrix is computed by the empirical formula
of the sandwich estimator. A total of 1,000 simulations are performed.

The standardized biases, 95% empirical coverage probabilities, average of the model-
based standard errors and the standard deviations of the empirical distributions of the

estimates (simulation-based standard errors) are reported in Tables 5.1 to 5.4. The stan-
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dardized bias is the average bias of an estimate divided by its simulation standard error
and is approximately distributed as standard normal. The 95% coverage probability is the
proportion of 95% confidence intervals, which are computed as § + 1.96s.e.(0), that cover
the true parameter, where s.e. is the square root of the robust variance estimate for that
parameter. Since o, and o3 are non-negative, we also consider inference based on their log-
arithmic transforms in order to obtain less skewed asymptotic and empirical distributions

for the estimates of log(o;) and log(o2).

5.7.2 Results of Simulation

We first look at the results reported in Tables 5.1 and 5.3 which correspond to the cor-
rectly specified conditional intensities. The standardized biases in all parameters are very
small regardless of the assumed mixing distributions, particularly for 811, 821, 71 and 72,
indicating that the bias produced by using the MPEF is negligible and the estimates are
robust to the mixing distribution. For the estimation of the parameters in the CMFs, the
95% coverage probabilities are slightly smaller than the nominal level 0.95 and the robust
standard errors are also only slightly less than the simulation standard errors. The same
pattern is observed across the assumed mixing distributions for different o, and thus
suggests that the estimators perform quite satisfactorily.

On the other hand, although the dispersion parameters are estimated consistently, there
are some discrepancies between their coverage probabilities and the nominal level, as well
as between the robust standard errors and the simulation standard errors. The discrep-
ancies seem to depend on the mixing distribution in which the processes generated from
binary random effects lead to smaller discrepancies. Use of the logarithmic transformations
improves the performance slightly in some cases. There is also some loss of efficiency for
the estimate of the covariance oy,, although to a lesser extent than the variances o; and

g3.
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Loss of efficiency for the dispersion parameters is the result of relaxing the model
assumptions. The merits of this method of estimation are that the CMF parameters
can still be estimated quite efficiently and the dispersion parameters can be estimated
consistently. Since within this framework, focus is on the CMF's, inference on the dispersion
parameters is often a secondary concern and hence we do not view this deficiency as
problematic.

The simulation results for the models with piecewise constant baseline rates agree
closely with those of the correct model (Tables 5.2 and 5.4). This indicates that the
piecewise constant baseline rates are an attractive robust alternative for the specification
of the baseline rates, demonstrating the practical value of a weakly parametric specification

for the baseline rate function.

5.8 Bronchial Asthma Study

We counsider the first stage of the asthma study described in chapter 1 to illustrate the
use of the MPEF. Two treatments for the control of asthma were given to 64 subjects:
placebo and fenoterol. In the first stage of this study, subjects were randomized to either
of the two treatments for a period of 167 days. The purpose is to estimate the mean rates
of two daytime symptoms: wheezing and coughing in relation to the treatment and other
covariates.

Let N;;(t) and Nj,(t) be the cumulative numbers of days with wheezing and coughing
respectively for subject ¢ in (0,¢]. We model the mean rate function multiplicatively with

respect to covariate effects:
E[dNtJ(t)] = exp(zig J)’\OJ(t; ‘YJ)dt' J = 1’ 27 1= 11 ooy T2,

where 2;; is a vector of time-independent covariates for process j of subject 7, B; is the
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corresponding vector of regression coefficients and Ag;(£) is the baseline rate specified by a
vector of parameters ;. Although inference on the regression coefficients is independent
of the form of the baseline rates due to common follow-up time (section 5.6.1), estimating
the trends is also of interest. We therefore model the baseline rates as piecewise constant
functions with 5 cut-points determined by the empirical percentiles of the observed event
times in each component.

We examine the assumption of multiplicative covariate effects by constructing the
Nelson-Aalen estimators for the cumulative mean functions of the numbers of days with
wheezing and coughing stratified by gender and treatment which are believed to be two

major effects. The Nelson-Aalen estimator at time ¢ is given by

t AN (s)
AP = [ =222 t>0,

where N,(J-h)(t) = Yiea, Nii(t), Y__.(,-h)(t) = Y icc, Yii(t), and Gy is the set of subjects who
belong to group h, h = 1,2,3,4. Here group 1 corresponds to the placebo-female group,
group 2 the placebo-male group, group 3 the fenoterol-female group and group 4 the
fenoterol-male group. In this example, Y,ﬁ-h)(t) is equal to the number of subjects in group
h for s € (0,167]. These estimates are displayed in Figures 1 and 2. There is no clear
evidence that the multiplicative assumption is violated.

Furthermore, the sample correlation between the numbers of wheezes and coughs ob-
served in (0, 167] is equal to 0.47 which clearly indicates that the wheezing and coughing
processes are correlated. Certainly, the correlation structure is unknown and the MPEF is
a convenient choice of a working model.

We applied the MPEF with the dispersion parameters estimated from (5.6.2). Robust
variance estimates were computed using the empirical formula. Parameter estimates are

presented in Table 5.5. We label this model as the full model.
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Wheeze Cough
Covariate® Estimate s.e. p-value Estimate s.€. p-value
Age -0.023 0.049 0.631 -0.042 0.052 0.425
Age? <0.001 0.001 0.871 0.001 0.001 0.404
Gender -0.738 0.290  0.011 -0.846 0.323 0.009
Drug -0.225 0.280 0.422 0.400 0.300 0.182
Gender xDrug 0.403 0.402 0.316 0.315 0.444 0.478
Smoke 0.157 0.213 0.460 -0.052 0.243 0.832
Daytime Symptoms:
< weekly 0.218 0.578  0.707 0.586 0.666 0.379
> weekly 0.338 0.552 0.541 0.944 0.666 0.156
daily 1.243 0.584  0.033 1.247 0.756 0.099
> 1 daily 0.961 0.608 0.114 1.005 0.799 0.209
Nocturnal:
< weekly 0.002 0.271 0.994 -0.831 0.278 0.003
> weekly 0.004 0.244  0.988 0.062 0.276 0.823
most nights -0.070 0.391 0.859 0.409 0.462 0.376
Tightness on waking:
< weekly 0.504 0.290 0.083 0.025 0.382 0.948
> weekly 0.795 0.284 0.005 0.169 0.396 0.669
most mornings 0.501 0.306 0.101 -0.215 0.440 0.625

“Age in year at entry; Gender: F=0,

M=1; Drug: Placebo=0, Active=1;

Smoke: Non-smoker=0, Smoker=1; Daytime Symptoms, Nocturnal and Tightness
on waking are symptoms over the past 4 weeks at entry with no symptoms at baseline,
and the categories are frequencies of symptoms.

Dispersion
Parameter Estimate s.e.
o1 0.302 0.073
a2 0.608 0.178
T12 0.252 0.070

Table 5.5: Estimation of the full model for the asthma study.
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Figure 5.1: Nelson-Aalen estimates for the cumulative mean functions of the wheeze pro-
cesses with respect to the placebo-female group, the fenoterol-female group, the fenoterol-
male group and the placebo-male group, in descending order of the curves.

The p-values for testing covariate effects based on the Wald test described in section
5.4 indicate that some covariates have no significant effects on the CMFs. We therefore
consider a reduced model with results given in Table 5.6. The score test proposed in section
5.4 was used to test if the full and reduced models are significantly different. Using the
estimates of o from the full model, we found the score statistic to be 20.606 with degrees
of freedom 26 (p-value = 0.762). Therefore, there is no evidence that the reduced model
is significantly different from the full model.

The effects of fenoterol and placebo on the number of days with wheezing are not
significantly different. In contrast, use of fenoterol led to higher number of days with
coughing than did placebo. Males appear to have a smaller number of days with symp-

toms than females on average. The severity of daytime symptoms had an adverse effect
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Figure 5.2: Nelson-Aalen estimates for the cumulative mean functions of the cough pro-
cesses with respect to the fenoterol-female group, the placebo-female group, the fenoterol-
male group and the placebo-male group, in descending order of the curves.

on wheezing but insignificant effect on coughing. However, it is puzzling that for the noc-
turnal activities variable, the number of days with coughing is smaller for subjects whose
frequency of symptoms at night is less than weekly than for subjects without symptoms
at night. Possible explanation may be due to the fact that only symptomatic activities
at randomization were considered in the analysis, but subsequent symptomatic activities
are ignored. Such covariates are time-dependent and certainly complicate the estimation
procedure considered here. The analysis of the bronchial asthma study presented here is a
preliminary investigation and an illustration of the method proposed in this chapter. We
do not intend to give a thorough analysis of this study in this thesis.

Finally, the estimates for o indicate substantial overdispersion. The estimated baseline

rates are also shown in Figures 5.3 and 5.4. The wheezing process has a slowly increasing
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Wheeze Cough
Covariate Estimate  s.e. p-value Estimate  s.e. p-value
Gender — — — -0.441 0.204 0.030
Drug — — — 0.405 0.210 0.053
Daytime Symptoms:
daily 0.823 0.167 < 0.001 — — —
> 1 daily 0.707 0.200 < 0.001 — — —
Nocturnal:
< weekly — — — -0.809 0.233 < 0.001
Dispersion
Parameter Estimate s.e.
oy 0.434 0.102
o2 0.816 0.185
O12 0.330 0.087

Table 5.6: Estimation of the reduced model for the asthma study.

trend while the coughing process has a slowly changing bath-shape trend, although there
seems to be no significant change in the trends as suggested by the 95% confidence intervals.

5.9 Concluding Remarks and Discussion

In this chapter, we proposed some marginal models for the CMF's of bivariate point pro-
cesses using estimating functions. A criterion for obtaining the optimal weight function for
the CMF is provided. A procedure for joint estimation of the parameters in the CMF and
the covariance functions is also suggested. In situations for which the covariance struc-
ture is unknown, estimating functions arising from mixed bivariate Poisson processes, the
MPEF, may be useful. We examined the properties of the estimators for the MPEF. The
estimators for the CMF parameters generally perform satisfactorily. The robust variance
estimates are quite efficient compared with the sample variance estimates. The dispersion

parameters can be estimated consistently, although some loss of efficiency is unavoidable.
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Figure 5.3: Estimate of the baseline mean rate function for the wheeze process (solid line)
with 95% pointwise confidence intervals (dashed line).

We discuss some aspects for further research of the marginal approach here.

5.9.1 Semi-parametric Models

It is interesting to extend the above method to semi-parametric models in which the mean

function is expressed as
E(dNi;(2)) = Aij(2)du(t) = gi; (¢ B;)Ajo(t)dv(t),

for j = 1,2 and 7 = 1, ...,m, where g;(¢) is a known positive function of covariates ;;(¢)
parameterized by @, for example the widely used log-link function exp(z(;(t)3;), and
Ajo(t) is an unknown positive cadlag function independent of ;;(t) and is common to all
subjects.

Nadeau and Lawless (1996) suggested estimating functions for B in univariate processes
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Figure 5.4: Estimate of the baseline mean rate function for the cough process (solid line)
with 95% pointwise confidence intervals (dashed line).

where the well-known Cox partial likelihood score is included as a special case. Optimal
linear estimating functions exist for processes with uncorrelated jumps.

For more general correlated-jump processes, piecewise constant specifications for the
mean and covariance functions should give a reasonable approximation to the semipara-
metric model, as empirical evidence has been given for mixed bivariate Poisson processes

in section 5.7.

5.9.2 Extension to Multivariate Point Processes

Since the proof of Proposition 5.1 does not rely on the dimension of the point processes as

long as it is finite, Proposition 5.1 still holds for higher dimensional point processes.
Consider a K-dimensional point process. We have to define K CMFs (A;;(t)), K vari-

ance functions (v;;(t)), K autocovariance functions (¢;;(s,t)) of jumps within components

and 2(’; ) cross-covariance functions of jumps between compornents (v; ji(t), ¢ jx(s,%)). This
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requires totally K (K + 2) specifications of the mean and covariance functions. Frequently
some covariance functions have unknown forms. In this case, a convenient working model

can be obtained from mixed multivariate Poisson processes as in section 5.6.1.

5.9.3 Two-state Processes

The marginal approach for bivariate processes does not apply to two-state processes. This
is because the numbers of 1 — 2 and 2 — 1 traunsitions over the same period of time differ
by at most 1. This creates difficulties in constructing the marginal expected numbers
of transitions which are functionally related in an unknown manner if the probabilistic
structure is not fully specified. Even if the transition intensities are specified, the expected
numbers of transitions are not always available, for example in the alternating renewal
process. Nevertheless, the main interest for such processes is usually focussed on the
analysis of transition probabilities in which case an intensity model seems to be more

appealing.



Chapter 6

Further Research

6.1 Overview

In previous chapters of this thesis, we have presented extensions of established methodology.
Here we describe two major additional areas for further research. The first topic pertains
to the estimation of mixed multi-state processes and the second topic involves methods for
model diagnostics for random effect and marginal point process models.

The difficulties in the estimation of random effect models arising from multi-state pro-
cesses lie in the specification of a genuine multivariate mixing distribution and the accuracy
of an approximate marginal likelihood computed from an estimation procedure. We briefly
discuss some potential methods of estimation using a mixed illness-death model as an
illustration in section 6.2.

Model diagnostics are important in assessing the performance of models. They are usu-
ally carried out by visual inspection of residual plots and more formally tests for goodness
of fit. In fixed-effect failure time models, there has been quite a lot of work directed at
residual analyses (Kay, 1977; Barlow and Prentice, 1988; Therneau et al., 1990; Lin et al.,
1993), goodness-of-fit tests (Lin and Wei, 1989; 1991; Crouchley and Pickles, 1993), and

176
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tests of proportionality in Cox regression models (Arjas, 1988; Grambsch and Therneau,
1994). However, there is a lack of literature on diagnostics for random effect models, due
in part to the complex distributional structure of residuals arising from the mixed models.
We will suggest some ways of constructing residuals, a deletion diagnostic for detecting
influential observations, and a goodness-of-fit test using the IM test for mixed point pro-
cesses in sections 6.3 to 6.5. The investigation here is quite preliminary. As a starting
point, we focus on the univariate point process. Finally, some concluding remarks are

given in section 6.6.

6.2 Mixed Multi-state Processes

Accommodating heterogeneity in multi-state processes requires the specification of a prob-
ably high-dimensional mixing distribution. For instance, the three-state illness-death pro-
cess illustrated in Figure 6.1 is frequently modeled in applications. Subjects make transi-
tions between the healthy state and the diseased state until a transition to death, an ab-
sorbing state. The arrows indicate possible transitions between states. The CHEST study
described in section 1.4.2 can be regarded as illness-death processes with heterogeneity if
the observed deaths were modeled. Another application is the Studies of Left Ventricu-
lar Dysfunction (SOLVD) (The SOLVD Investigators, 1991) which aims to investigate the
rates of mortality and hospitalization due to congestive heart failure in asymptomatic and
symptomatic patients with reduced left ventricular ejection fractions.

Let 4(t) be the state occupied by a subject at time ¢ > 0. Conditional on the history of
the process and the covariates up to time £, and the random effects © = (u,2, u21, u13, u23)’,

the j — k transition intensity assuming the multiplicative model, is given by

Aje(t|H(E), v) = exp(z5(8)B + wje) Ajro(E|H(E)),
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Figure 6.1: An illness-death model with multivariate random effects.

where & .(t) is the vector of covariates for the j — k transition,
H(t) = {6(s), ®12(8), 21(3), T13(s), 223(3)[0 < s < ¢},

and Ajro(t|H(t)) is the baseline intensity. Aalen (1987) suggested a construction of a
multivariate mixing distribution based on a transformation of multivariate normal random
variables for a relatively simple time-homogeneous illness-death process.

For more general time-inhomogeneous illness-death processes, the multivariate normal
mixing distribution seems to be the most feasible genuine multivariate mixing distribution.
The marginal likelihood may be evaluated in principle by numerical integration. Evans
and Swartz (1995) recommended that Gaussian quadrature rules be used for integration
problems of dimension less than about 6. The Gauss-Hermite rule is thus appropriate for
the mixed illness-death model which involves integrations of dimension 4.

However, the numerical integration method may not be suitable for mixed multi-state
processes involving high-dimensional integrations. Evans and Swartz (1995) suggested us-
ing Monte Carlo integrations for high-dimensional integration problems. Alternatively, if
the number of transitions per subject is large, the penalized likelihood may be tried. Nev-
ertheless, there is still no satisfactory estimation method for high-dimensional integration

problems.
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Non-parametric mixing distributions may also be considered. However, we have to deal
with a large number of parameters, which is likely to cause numerical problems even for
moderately large samples.

As advocated in chapter 4, specifying proper intensity functions is more important in
the sense that the degree of observed heterogeneity may be minimized and thus with an

adequate model, even a fixed-effect model may be satisfactory.

6.3 Residual Analysis

6.3.1 Fixed-effect Models

In fixed-effect models, there are three major model departures: specification of the func-
tional forms of covariates, specification of the baseline intensity and the assumption of
multiplicity. Useful residuals should have two basic properties of being sensitive to model
departures and having known distributions under the assumed model.

We consider the univariate intensity model A(¢) = exp(2’3)Ao(t). Residuals are usually

constructed via the cumulative intensity between two consecutive events:

ri=exp(@B) [ dalt)d,

where ¢; is the occurrence time for the jth event such that £g = 0. If the model is adequate,
the r’s evaluated under the true parameter values are iid exponentially distribution with
mean 1 (Lawless and Thiagarajah, 1996). A probability plot for the unit exponential
distribution and an index plot may be constructed to examine the goodness of fit. In
practice, estimates are used in place of the true values. The consequences are that the
residuals are not independent and may be distributed differently from Ezp(1).

The martingale residual is also popular in the counting process approach. It is defined
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M(t) = N(t) — exp(2'8) '[)t Y (s)Ao(s)ds,

for t > 0, where Y(t) is the indicator that the process is under observation at time ¢. This
is the difference between the number of observed events and the number of expected events
under the model in [0,¢]. It should be noted that the intensity generally depends on the
history of the process and thus the cumulative intensity itself is a model-based estimator for
the expected cumulative counts, whereas the cumulative intensity of a Poisson process is
equal to the expected cumulative counts. Strictly speaking, M(t) is the difference between
the observed and the estimated cumulative counts.

The residual is usually taken as M(o0). An index plot is often constructed to check the
model adequacy. Also, plots of the martingale residuals against covariates provides useful
clues on the appropriateness of the functional forms of covariates.

Nevertheless, all residuals have to be evaluated at the estimates of the unknown param-
eters. Baltazar-Aban and Pena (1995) showed that even for the ordinary Cox regression
model, the properties of these estimated residuals are not well understood.

The residuals may be adjusted for the bias induced by the substitution of parameter
estimates. Using a similar argument in the adjusted score test proposed in chapter 3
and treating the residuals as functions of the parameters, we may construct bias-adjusted

residuals. Further investigations are necessary to study their properties.

6.3.2 Random Effect Models

In addition to the three main model departures mentioned in section 6.3.1, the specification
of a mixing distribution is another possible departure. For the widely-used gamma frailty
models in survival analysis, Shih and Louis (1995) proposed a graphical method for the
gamma mixing assumption. They pointed out that covariate effects are usually multiplica-

tive in most situations and the unknown baseline hazard may well be specified by either a



CHAPTER 6. FURTHER RESEARCH 181

piecewise exponential model or a non-parametric model as in Clayton and Cuzick (1985),
Klein (1992) and Nielsen et al. (1992). The remaining major departure is then the gamma
frailty assumption. By treating the posterior mean of the gamma frailty, given the data
at time ¢, as a stochastic process, Shih and Louis considered a time-plot of the centered
posterior means with confidence bands, which resembles a usual residual plot. For frailties
other than gamma, or for multivariate frailties, similar approaches may be computationally
intensive as numerical integrations are necessary. Nevertheless, simulation studies (section
4.2) demonstrate that log-normal random effect models using the Gauss-Hermite integra-
tion and non-parametric random effect models using the EM algorithm provide similar
and valid inference for parameters in the intensity function, even for misspecified mixing
distribution. Therefore, checking the assumption of a mixing distribution may be of only
secondary relevance for practical problems.

In general, the adequacy of the model may be examined by constructing residuals similar
to those in fixed-effect multiplicative intensity models. Here we propose some methods for

the construction of such residuals.

Conditional Residuals

Suppose the random effects and parameters were known. We may consider the conditional

residual, given the random effect, defined as
ri = vexp(z'B)Ao(tj-1,t;),

where Ao(a,b) = f: Ao(t)dt. The r;’s are independently and identically distributed as
Ezp(1). In the case of censoring, the conditional expectation given that the event time is

greater than its censoring time, may be used (Lawless, 1982). It is expressed as

1'; = vexp(:c'ﬁ)Ag(t,-_l, tj) + 1.
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Residual plots can then be constructed. For example, a probability plot for an exponential
distribution with unit mean can be used to assess the distribution of the residuals. Plots of
the log-transformed residuals against covariates provide useful clues about the functional
form of covariates. In applications, the residuals may be estimated by replacing the pa-
rameters by their estimates and the random effects by their posterior means, E[V|H(T)],

where # (7} is the history of the entire observation period.

Marginal Residuals

For small numbers of recurrences, the posterior mean of V' may not be a good estimate of
V. In such situations, it might be more appropriate to consider the unconditional residual.

Since the marginal intensity conditional on the history is given by
A(t|H(¢t)) = E[V|H(¢)] exp(z'B)do(tIH(2)),
the unconditional residual is thus defined as
¢ ,
ri= [’ EVIH®)exp(@B)a(t)dt,

where #H(t) = {N(3)|0 < s < t}. For simplicity, we drop the dependence of H(t) on
A(t|H(t)) and Ao(t|H(Z)). Let L,(-) be the Laplace transform of V. Using the conditional
likelihood for H(t) given v,

N(t-)
V(=) exp(N (t—)z'B) H Ao(t;) exp(—vexp(2'B)Aq(t)),

j=1

it is straightforward to show that

—LYCE N (exp(2'B) Ao(t))

E[VIH(t)] = LN exp(/B)Ao(t))
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Suppose V is gamma distributed with mean 1 and variance o; then

1+ oN(t-)
1 + o exp(2'B)Ao(t)’

E[VIH(t)] =

and thus the residual becomes

[ 1+oN(t-) ,
o= /:,-_11 g AR VDL

1 V)log [ L exp(zB)Ao(ts; H(E;))
(Z + N(ti—))log (1 + o exp(z’B)Ao(t;-1; ’H(t,-))) ’

I

because N (%) is constant in the interval [t;—;,f;). Recall that the baseline intensity is
in general a function of #(t). Hence, residual plots for these r’s can be constructed.
Nevertheless, other mixing distributions may not result in such a nice expression. Further

studies are necessary.

Martingale Residuals

Alternatively, a martingale residual is given by
t
M(t) = N(t) — /0 E[V|H(s)] exp(z'B)Y (5)do(s)ds.
A gamma mixing distribution would lead to a simple expression:

M(eo) = N(r) = [(+ N(r))log(1+ o exp(@B)Aa(r; H(r)))

N(r)
~ 3" log[L + o exp(='B)Aa(;)] | -

Jj=1
Now the martingale residual and the covariates are related in a complex way. Although it
is difficult to reveal the functional forms by plotting residuals against covariates, an index
plot is still able to provide a valid overall check.
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Pearson Residuals

In GLM, the Pearson residual is widely used (McCullagh and Nelder, 1989). This approach
may be useful for mixed point processes provided we can find E(N(7)) and var(N(7)).

Consider a mixed Poisson process. The marginal mean and variance are equal to

E(N(r)) = exp(z'B8)Ao(T)
var(N(r)) = E(N(r))+ o(E(N(r)))>.
The Pearson residual is defined as

__ N(r) ~B(N(r))

J/var(N (r))

However, other point processes such as the renewal process may not have closed-form

(6.3.1)

expressions for the marginal mean and variance of N (7).

On the whole, there are serious limitations for the residuals defined in this section. Dif-
ficulties are mainly due to the random effect, which often causes computational difficulties.
Despite this, studying the properties of residuals under certain restricted assumptions, such
as gamma mixing distributions, is useful in its own right and may provide insight for more

general situations.

6.3.3 Marginal Models

Pearson residuals can be constructed for the marginal model discussed in chapter 5. Recall
that for a univariate point process, E(dN(t)) = A(t)dv(f), var(dN(t)) = v(t)dv(t) and
cov(dN(s),dN(t)) = c(s, t)dv(s)dv(t) for s # t. We find

E(N(r) = [ Mydu(t)
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var(N(r)) = /Orv(t)du(t)—l- [ /:c(s,t)dv(s)du(t).

Hence, Pearson residuals with robust variance can be defined as in (6.3.1).

6.4 Detecting Influential Observations

It is possible that the observed heterogeneity may be due to a few influential subjects.
One should first re-examine the observations from these subjects. If no human errors are
found, removal of these subjects may lead to a simpler model that provides a better fit to
the data. Analogous to the ordinary linear regression model (Cook and Weisberg, 1982),
we suggest a deletion diagnostic for the random effect model.

Recall that the parameters ¢ come from three components: the regression, the baseline
intensity function and the mixing distribution. Let @ be the Ath element of ¢. Let ¢
and &k(;) be the maximum likelihood estimates of ¢ using all subjects with and without
the zth subject in the sample respectively. The ith subject is considered to be influential

in the estimation of ¢ if X A
Pr(i) — P (6.4.1)

V 38(431:(;))

1s large. A summary influence statistic similar to the Cook’s distance may be defined as
(J’(f) - QS)"}ESI(J’(;) - ¢), (6.4.2)

where 17(;) is the estimated asymptotic covariance matrix of 45(,-). Again, the :th subject is

considered influential if this statistic is large.
Further study is certainly warranted to explore the value and role of deletion diagnostics

in the context of mixed point processes.
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6.5 Goodness-of-Fit Tests

In addition to the unclear distributional behavior of the estimated residuals, visual inspec-
tion of residual plots may be too subjective. It is therefore desirable to develop global
goodness-of-fit tests. In particular, the IM test has been widely used for this purpose.

Using the IM test, Lin and Wei (1991) constructed goodness-of-fit tests for Cox regres-
sion models. Crouchley and Pickles (1993) illustrated the use of the IM test in univariate
and multivariate parametric proportional hazards models. Using a real example, Crouchley
and Pickles demonstrated that the conventional residual plot failed to indicate a departure
due to the omission of important covariates, while the IM test of homogeneity did detect
such a departure.

The IM test may be considered as an omnibus goodness-of-fit test for the random effect
model. The model consists of three components, the covariate effect, the baseline intensity,
and the random effect, parameterized by B, ¥ and o respectively. Let ¢ = (B',v',0').

An IM test can be constructed from the distinct elements of the information difference:

I IR ()
opdd 8o ¢

The variance of the statistic can be found using the formulae in section 3.3.1. This is a
x? test with degree of freedom p~(1 + p*)/2, where p~ = dim(¢). Large value of the test
statistic indicates model inadequacy. The total number of parameters is often quite large,
and in such a case, one may use the diagonal elements of the information difference in the
test.

Specific types of model departure may be investigated by considering subsets of the
elements of the information difference. Since the effects of unmeasured covariates have
mostly been taken into account by the random effect, it seems appropriate to consider the

following three tests:
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1. Testing for constant regression coefficients, except for the intercept. Rejection of the
test may indicate non-multiplicative covariates or incorrect functional forms of the

covariate effect.

2. Testing for constant parameters of the baseline intensity. Non-constancy may indicate
functional forms other than the assumed form, or perhaps that more sub-divisions of

the time axis are required for a piecewise exponential model.

3. Testing for constant parameters of the mixing distribution. This may indicate that

the mixing distribution is misspecified.

Although the test for a particular condition may be sensitive to the other conditions, these
tests nevertheless may provide a crude indication to the type of model departure. Since the
mixing distribution may have little influence on the estimators for covariate effects based
on previous studies, and a piecewise constant baseline intensity should approximate well
the true baseline intensity, we recommend that one should focus on tests related to the

regression coefficients. Further investigation of these goodness of fit tests are required.

6.6 Concluding Remarks

In this thesis, we investigated three important aspects in the analysis of event history data
with an emphasis on developing an appropriate modeling strategy. This strategy should
consist of cycling through stages of model specification, model estimation and model diag-
nostics. In the first step of the strategy, we consider two types of models for analyzing two
different properties of the processes: the intensity functions and the mean rate functions.
The choice between these models depends mainly on the problem at hand and the assump-
tions one is willing to make. For example, an intensity model with random effects is used
for the CHEST study because the rates of transitions to exacerbation and symptom-free

states are the main concern. The transitional intensities are specified quite generally by
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incorporating different time scales, and the piecewise constant functions are employed to
achieve robustness to misspecification. In contrast, a marginal model is used for the anal-
ysis of the bronchial asthma study because the mean number of days with symptoms is
the study objective.

In the second step, we studied the performance of two popular methods of estimation
for random effect models, and developed an estimating function approach based on mixed
Poisson processes for marginal models. Gauss-Hermite integration and the EM algorithm
perform quite satisfactorily for parametric and non-parametric mixing distributions respec-
tively for univariate and bivariate processes. The mixed Poisson estimating function serves
effectively as a working structure for robust inference based on the marginal model if the
covariance structure is unknown. Consistent estimates for the parameters in the mean
function are still available with robust variance estimates.

The last step of the cycle has not yet been well developed in the literature. ’_I‘he tests
of homogeneity we proposed may serve as goodness-of-fit tests for fixed-effect models.
As discussed in the above sections, satisfactory model diagnostics for random effect and
marginal models are still unavailable.

Methodology for the analysis of event history data continues to be the focus of much
ongoing research in statistics. This thesis contributes some potentially useful models and

methods to this field, and provides useful insight for further research.
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Tests of Homogeneity

A.1 Parametric Models

A.1.1 Expression for Iy, (6)

From (3.5.2), one can easily show that

06 (2(n: — As(8)) + 1)0A:(6)/Dv

=1

0To(0) 1 & ([  (2(n — Ai8)) + 1)Ai()=:
- _2 z )

where A;(6) = exp(ziB)A¢(r:). Under Hy, the n; are independent and distributed as

Poisson with mean A;(0), therefore, we have

o 05(0), 13 A9
ler(8) = El-—55=] = 3 2, ( OA:(6)/0 ) |

189
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A.1.2 Expression for Iy(0)

The log-likelihood under Hj is given by

66) =3~ |malf + 3 log Aoltis) — exp(z:-ﬁ)Ao(n)] .

Thus, the score functions are easily seen to be

Ug(8) = i[ni - Ai(0))z; and U,(0) = i l:i 310361:')(&,') _ 31;‘(}’9)] .

By partitioning the expected Fisher information matrix conformably to (3’,v’), one can

show that . -
S Mi(@)ziz: Dz 0A:(0)/07
(@) =] .=t i=1 ,
S OM8)/0v el L(6)
=1
where

= 2i 3% log Ao(ti;) %A;(9)
L@)=> |-E E 2]+ -
+(6) = [ (J.___1 i d i lind
The expectation in I,(8) can be obtained by noting that given N;(7;) = n;, the event times

ti1, ..., tin; are L.i.d. with probability density function f(t|n:) = Ag(£)/Ao(7:), for 0 <t < m.

Ni(m) = n;)]

n; 7 §%log A ij

Therefore, we have

Zi, 0% log Ag(t:;) 2 9% log Ao(t:5)
E ——2'| = E|E ——
(g ovyovy' ;::1 linlind

Ao(m) ooy’
’ i 3% log Ao(t;;
= exp(=if) [ ——gg—ag(,—i)mou).
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Depending on the functional form of Ag(t), one may need to evaluate the above integral
numerically. Nevertheless, closed form expressions are available for Weibull and piecewise

exponential specifications.

A.1.3 Proof of cov(n;,U(8)) = 9A;(0)/96

Since the N;(t) are independent, cov(n;,U(8)) = cov(n;, U;(8)), where U;(8) is the score

function for subject z. First we consider the covariance between n; and the score function

of B:
cov(ng, (n; — A;(0))2;) = A;(0)z; = JA:(8)/983,

because n; is distributed as Poisson with mean A;(8). Next, using the argument given in

section A.2, the covariance between n; and the score function of 4 is equal to

cov (n;,i 9log Ao(t:5) — 61\,—(0)) = cov l:n,-,E (i: 91og do(ti;) Ni() = n;)}

= O O ‘gl
_ oon i Alog Ao(?)
= cov (n e [0' 5 dAo(t))

=1

_ var(n;) OAo(7:)
AQ(T{) 87

_ 9A(8)

= 9y

Hence,
dA:(9)
68

cov(n;, U(8)) =
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A.2 Semi-parametric Models

A.2.1 Derivation of the Score Statistic

The score statistic is given by

o : Ug 2 2 o pilD, T|U;
Tm(ﬁ)z_l_z[(alog(llgf,al ))) +alg(La$ olus))

=1

o=0

where L,(3,o|u:) is the conditional partial likelihood due to the ¢ subject in (3.5.9) and
7 = i3 + ou;. It is straightforward to show that

Blog(L,gf’,?,O'lui)) B - /;°° (1 — wi(8))dN;(s) = M,(ﬁ)
8% log(Lpi(B, olus)) o, ,
: n? = o = /‘; (wi (s) — w;(s)) dN.(s).

A.2.2 Martingale Representation of Score Statistic
By the integration by part formula (Fleming and Harrington, 1991 Theorem A.1.2), we

can express the squared martingale residual (3.5.11) as

W3t 8) =2 [ Mils—,B)dM(s,8) + 3 ANEs.B) (A.2.1)

0<s<t

Since no two processes can jump at the same time and the Ni(-) are orderly processes, the

last term in (A.2.1) can be written as

> AMEHs.B) = [ (dNi(s) - wil(s)dN.(5))?

0<s<t

= Ni(t)+ /(;ew?(s)dN.(s) - 2/(;tw,-(s)dN;(.s)



APPENDIX A. TESTS OF HOMOGENEITY 193
Furthermore, by (3.5.8) with o = 0, we can rewrite

dM;(t,B) = dM;(t) — wi(t)dM.(¢).
Therefore, the score statistic at time £ is given by

To(t,8) = 53 (2 [ (o=, B)dMils) — wils)dM.(s)] + Nift) + [ wd(s)dN.(s)

=1

—2 [ wils)dNi(s) ~ [ (wils) - wi(s))dN.(s))

= i (fot Mi(s—, B)[dMi(s) ~ wi(s)dM.(s)] +_/:‘w,-2(8)[dM.(s) + 5©dAq(s)]

i=1

~ fo ‘ w;(s)[dM;(s) + Yi(s) exp(zi-ﬁ)df\o(s)l)

_ i/ﬂ‘ Hi(s, B)dMi(s).

A.2.3 Proof of cov(M,-(,B), U(B)) = -E(Ji(B))

The score function under Hy at time ¢ is given by (Fleming and Harrington, 1991 p150)
m t
Ut,B) =Y [ (2 ~ E(s))dMils).
=1

The predictable covariance process of M;(t,8) and U(¢,3) is then equal to

-

< Mi(-,B8), U(-,B) > (¢)



APPENDIX A. TESTS OF HOMOGENEITY 194

=< [ dbhis) - [ wils)dbd(5), 3 [ (s~ E(s)dby(s) > (0

=1

= [(@i = BN < #:> (5) = 3 [ (25~ B(o)wsls)d < 15 > (s)

i=1

= [ (@~ B(s))¥i(s) exp(=18)dho(s)
because 377 (z; — E(s))Y;(s) exp(2}B) = 0 for s > 0. Hence,

cov(M;i(B), U(B)) = E[< Mi(-,8),U(-,B) > ()] = ~E(J:(B)).
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