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ABSTRACT 

Increased awareness of the vulnerability of coral reef ecosystems to the 

synergistic effects of natural and anthropogenic environmental changes has lead to 

subjective reporting of observed changes. but there has been a significant lack of 

objective monitoring of coral reef ecosystems on a repetitive basis. Only consistent, 

repetitive monitoring over time will increase our understanding of the dynamic and 

complex nature of coral reef ecosystems and the ways in which changes in the ecosystem 

are related to environmental changes. One limiting factor to remote detection of coral 

reef well-being is the lack of a quantitative means of identifying optically similar features 

such as healthy coral and macroalgae. 

In this study. a field program was designed to explore the differences in spectral 

reflectance characteristics of various coral reef features. High spectral resolution in situ 

data were collected with a hand-held hyperspectral radiometer. In 1996, in siru spectral 

reflectance data of submerged coral reefs were collected in Beqa Lagoon. Fiji: in 1997. in 

siiu spectral reflectance measurements of exposed coral reef features were co!lected in 

Manado. Indonesia. Finally. in siru data of submerged coral reefs were collected in 1998 

in Savusavu Bay. Fiji. 

The spectra collected were divided into populations of healthy coral. unhealthy 

coral. algae-covered surfaces and rubble surfaces based on feature type according to field 

notes and photographic records. These data sets were compared and analyzed to test the 

following hypotheses. First, the within-population variability is low such that spectra of 

similar coral reef features display similar spectral reflectance characteristics, and 



conversely, there are discemable spectral reflectance differences between populations. 

Secondly. the geographic location of measurement does not affect the spectral reflectance 

characteristics. The final hypothesis tested is that the slopes and changes in slopes of the 

spectral reflectance curves will allow differentiation of populations and subsequent 

classification. 

Cluster and correlation analyses indicate that both the within- and between-' 

population variability is low. Therefore. while spectra of similar features are comparable, 

there are predictable inaccuracies in classification due to spectral similarities between 

populations. Nevertheless, principal components analysis was used successfully as a 

data reduction tool to reduce the large data set of 334 spectra to 6 spectra representative 

of the pre-defined populations. A classification scheme was devised based on these 

representative spectra such that the slope. change in slope and magnitude of reflectance 

of the spectral curves enabled identification. This classification procedure was applied to 

the remainder of the data set and an error analysis was performed to investigate accuracy 

of identification. The overall accuracy was 80.1% and an investigation of the errors of 

omission and commission indicate that the majority of the errors are a result of an 

inability to characterize bleached coral conectly. The results of this study indicate that 

hyperspectral remote sensing may be a feasible means of accurate identification and 

subsequent monitoring of changes in coral health and overall well-being. 
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CHAPTER 1 

RESEARCH PROBLEM, OBJIXTIVES AND THESIS ORGANIZATION 

1.1 INTRODUCTION TO CORAL REEF ECOSYSTEMS 

Coral reefs around the world are being damaged and destroyed at a seemingly 

increasing rate. The serious global decline of coral reefs is of urgent concern, for a coral 

community is but one component of a collection of highly integrated and interrelated 

biological communities. such as seagrass. mangroves and mudflats. Furthermore, coral 

reef communities represent one of the most diverse ecosystems in the world, and appear 

to be sensitive indicators of water quality and ecological integrity of the entire ecosystem. 

Coral reefs are important for a number of reasons. There is great biodiversity 

preserved in a coral reef ecosystem. In hct. there are approximately 4000 species of fish 

m d  800 species of  reef-building cords that h a ~ e  been described, and expens have only 

just begun to catalogue the total numhcr of species (Brown, 1997). Furthermore, coral 

reefs are an imponant source of seafood and thus protein for coastal communities, 

especially in developing regions. Unfortunately. fishers are depleting this resource 

through overexploitation and destructive fishing practices. 

Coral reefs are now recognized as an important source of medicine, as coral reef 

species offer a promising array of chemicals produced for self-protection. Many coral 

reef organisms are already used for bone grafts, treating viruses, leukemia and skin 



cancer (Bryant et al.. 1998). Coral reefs are also important sources for other products and 

economic goods such as jewelry and curios, aquarium fish. as well as sand and limestone 

used in the construction industry. 

Recreational value is difficult to quantiQ, but the tourism industry commonly 

relies upon coral reefs to provide exceptional snorkeling. scuba diving, fishing and 

beaches. Another reason that coral reefs are important is their role in protecting the 

coast. Reefs buffer adjacent shorelines from wave action and the impact of storms, 

maintain highly productive mangrove fisheries and wetlands as well as support the local 

economy built around ports and harbours. 

There are a number of threats to coral reef ecosystems. For instance. global 

climate change may be detrimental to coral reefs. as models predict increasing sea surface 

temperatures. increasing sea levels. as well as increasing frequency and intensity of 

storms (Jokiel and Coles. 1990). The physical damage to coral reefs due to damage from 

storms or the stress placed upon them due to increased water temperatures will increase 

-'natural" stress levels and may leave them more vulnerable to human-induced 

disturbances (X1umbq et al.. 1995). While reefs often recover from short-term natural 

catastrophic events. such as hurricanes. and usually recover to normal community 

structure. they are reportedly not well adapted to survive exposure to long-term stress, 

such as agricultural and industrial run-off and toxic discharges (Bryant et al., 1998). 

Coastal development is another threat to coral reefs, as dredging of harbours and 

shipping channels. hot water discharge from power plants, mine runoff and industrial 

toxic waste effluents are known to be detrimental to coral reefs (Goreau, 1964). Nutrient- 

rich runoff promotes growth of bottom-dwelling algal competitors and interferes with 



coral reproduction. while sediment resulting from construction and dredging settles on 

the reef and effectively starves it of light (Bryant et al.. 1998). Furthermore. over fishing 

results in a shift in fish size. abundance and species composition. while removal of key 

herbivore and predator species causes large-scale ecosystem changes, and blast fishing, 

using cyanide and other poisons and non-selective trawling are common destructive 

fishing techniques that fishers use (McClanahan, 19%). 

Unfortunately. there are no precise appraisals regarding the extent and location of 

coral reef degradation due to the special difficulties in monitoring underwater ecosystems 

(Mumby et al. 1998). Consequently, there is an immediate need to assess how, where 

and why coral reef damage is occurring. and determine the best methods for prevention. 

In order to aid management and sustainable conservation of coral reefs, it is essential to 

assess the status and trends in coral reef well-being through observation of appropriate 

indicators of stress. This objective can be met through effective use of remote sensing 

technology. 

Monitoring coral reef ecosystems will help document the scale. extent and 

duration of ecosystem degradation related to nmural changes as well as those related to 

human influence. Before such relationships can be established, coral reef stress must be 

( I ) monitored on site or remotely. (2) quantitatively investigated and reported and (3) 

coupled with precise data regarding prevailing environmental conditions (Hayes and 

Goreau. 1992). The quantitative means of remotely identifying coral reef features 

presented in this thesis satisfies the first two requirements, and makes it possible for 

correlations to be made with prevailing environmental conditions. 



1.2 OVERVIEW OF RESEARCH PROBLEM 

Conceptually. using remote sensing as a tool to monitor coral reef and related 

ecosystems is ideal. A satellite image covers large geographic areas and repetitive 

images can be captured consistently over time. Furthermore, the information recorded on 

a satellite image allows for objective. quantitative analysis. Operationally, however, 

there are numerous restrictions. The operational impediment investigated herein is the 

optical similarity of spectral reflectance characteristics of features within a coral reef 

environment. For example. a similar optically dark signal is expected for deep water, 

healthy coral substrate and dark sand. so confusion can arise in identification. Broad- 

band signals have proven to be insufficient for detecting the subtle differences in spectral 

response expected for seemirigly identical features (Mumby et al., 1998). High spectral 

resolution sensors are required to perceive these subtle differences; this is demonstrated 

through analysis of in silu measurements in this study. 

Unfonunately. the images available from current satellite sensors are generally 

inappropriate for accurate monitoring of coral reef ecosystems. As mentioned above, the 

spatial and spectral resolution is too coarse to detect subtle differences in spectral 

reflectance and to accurately identify substrate types. Nevertheless, within the next few 

years. satellite sensors will be capable of generating imagery with spatial resolution of 

4m in multispectral mode (Alpin et al.. 1997) and hyperspectral satellite sensors are 

currently planned for launch in the United States and Australia by 2000. Additionally, 

currently available airborne spectroradiometers, such as the casi (Compact Airborne 



Spectrographic Imager) system. offer acceptable spatial and spectral resolution for 

mapping submerged coral reef geographic extent (Mumby et al.. 1998). At the present 

time. however. the finest spatial resolution available in a global mapping instrument is 

the French satellite. SPOT HRV, which offers coarse spectral resolution imagery (3 broad 

wavelength bands) at spatial resolutions of 20m. 

Consequently. in preparation for fbture utilization of high spectral and spatial 

resolution airborne or satellite imagery, a feasibility study is necessary using high 

spectral resolution in situ reflectance measurements. For this study, spectral 

measurements using an identical radiometer were collected in Beqa Lagoon, Fiji in 

August 1996: in Manado. Indonesia in July 1997; and in Savusavu Bay, Fiji in July and 

August of 1998. A large spectral reflectance data set now exists for the first time 

consisting of measurements of typical conl reef features including healthy coral, 

unhealthy coral. algae-covered surfaces. and sand substrates. 

The ultimate goal of this research is to establish a replicable and objective method 

of remotely monitoring changes in coral reef degradation and recovery. Toward this end, 

the objective of this study is to create an operational high spectral resolution 

classification procedure with which to identify both the geographic extent of coral reefs 

and the well-being of the reef with respect to the proportion of bleached and algae- 

covered coral versus healthy coral present. To meet this objective, measurements of 

spectral reflectivity are compared to determine if there is a wavelength-specific 

distinction between various coral reef components based on spectral reflectivity. It 

appears from the literature that coral stress is a direct indicator of the overall well-being 

of the coral reef ecosystem. Therefore, once baseline information can be reliably 



archived relating to the well-being of a coral reef over time, then correlations to 

environmental changes can be determined. 

1.3 OBJECTIVES 

The objective of this thesis is to determine the specific wavelength ranges that 

allow discrimination of specific coral reef ecosystem characteristics. To attain this 

objective, a field program was designed incorporating a hyperspectral radiometer, an 

underwater optical cable and cosine receptor and scuba diving technology. 

In this study, a series of analyses is performed on the field data collected in three 

consecutive years in different geographic locations. The first stage of analysis involves 

separately comparing the spectral data collected in the three geographically distinct 

locations. Intuitively. the reflectance response of a coral reef feature should display 

similar spectral characteristics regardless of the geographic location. This type of 

comparison has not been conducted with respect to spectral reflectance, so the datasets 

collected in Beqa Lagoon. Manado and Savusavu Bay with the same radiometer are 

compared to test the hypothesis that there is no spectral reflectance difference between 

measurements taken in these three locations. In other words, it is hypothesized that 

similar features possess similar spectral characteristics regardless of geographic location. 

If geographic location has no effect on the spectral characteristics of corals, quantitative 

comparisons of coral spectral reflectance may be possible globally. 



The morphology of coral is also investigated as a possible factor in the spectral 

reflectance response. There are two broad categories of coral morphology: branching and 

solid massive corals. Theoretically. the shape of a coral should affect the spectral 

response due to varying slope. shape. size. texture and shadow. Furthermore. the 

substrate underlying a branching coral will contribute to the overall reflectance of a coral 

if it is visible though branches. I t  is therefore hypothesized that the spectral reflectance 

of branching coral will differ from that of solid massive coral thus allowing broad 

categories of coral morphology to be distinguished. 

Subsequent analysis is focused on discriminating between the populations of 

healthy coral. non-healthy coral. algae-covered dead coral, and sand. The hypothesis that 

these broad populations commonly found in a coral reef environment are spectrally 

distinct is tested using a number of techniques. Cluster analysis is used to examine the 

between- and within-population variability. and correlation coefficients are calculated to 

further examine the similarities and difkrences. Principal components analysis is used as 

a data reduction tool to identify one spectral reflectance curve for each of the broadly 

defined populntions. These represcnutivc spccrn are used as the basis for devising a 

classification scheme that a.ill alloir idcnti tication of the populations. 

The slope of the spectral rellcctancc curves in specific wavelength regions is 

examined in an effort to distinguish between populations and develop a classification 

scheme for identification. A procedure is created to accurately discriminate between the 

populations based on the representative spectra identified using principal components 

analysis. This procedure is based on a 4-step classification scheme whereby first and 

second derivatives and magnitude of reflectance are used to identify populations. 



The final stage of analysis is to apply the developed classification procedure to 

the remainder of the data set in an attempt to classify the spectra into populations based 

on feature type. The Cstep procedure is performed on the entire spectral data set, and the 

accuracy examined. An error matrix allows interpretation of errors of omission 

(exclusion) and commission (inclusion). which provides insight into the classification 

accuracies within each population. 

1.4 THESIS ORGANIZATION 

A brief introduction to the topic of coral ecosystems and their relationship to 

environmental change as well as a statement of the specific research objectives were 

provided in this chapter. The concept of coral bleaching and its relationship with global 

climate change. anthropogenic influences and natural variability are discussed in Chapter 

2. In addition. a discussion of the management of coral reef resources. and the issues 

involved in discriminating healthy and bleached corals i s  included. The purpose of 

Chapter 2 is to provide background information revealing the importance of monitoring 

coral reef ecosystems for reasons beyond preservation of global biodiversity. 

The research context is provided in Chapter 3 with respect to both active and 

passive marine remote sensing and coral reef monitoring using remote sensing. The 

purpose of Chapter 3 is to reveal the complexity of marine remote sensing due to the 

variable conditions of the overlying water column and the difficulties in establishing a 

confident methodology for submerged coral reef monitoring. Various case studies are 



discussed as an indication of the broad range of approaches to the problem of submerged 

feature detection. 

In Chapter 4. I describe the study areas and present the sampling strategies used in 

the field data collection in 1996, 1997 and 1998. The various steps in data processing are 

also discussed. Additionally, potential sources of error are discussed in Chapter 4 

relating to the use of remotely sensed imagery as a tool and the collection of spectral 

reflectance field data. Objectives as well as data analysis methodology and processing 

steps are presented and justified in Chapter 4. 

The spectral reflectance data collected in the field in 1996, 1997 and 1998 are 

investigated in Chapter 5. For each separate year, the data available are presented, and 

average and standard deviation spectra compared. Second, cluster analysis is performed 

in an effort to determine the similarity among spectra of a given population. as well as 

determine the differences between spectra of different populations. Correlation 

coefficients are then calculated to further examine the between- and within-population 

variability. The goal of Chapter 5 is to present the data available and investigate the 

spectral characteristics of the coral reef features. 

The spectra collected in 1996. 1997 and 1998 are amalgamated and compared in 

Chapter 6. Broadly defined populations are used to categorize the three years of spectra. 

Eight populations are examined for the within- and between-population variability. 

Cluster analysis is performed and correlation coefficients calculated to quantify the 

similarities and difference among and between spectra collected in geographically diverse 

areas. The goal of this chapter is to demonstrate that the between-population variability 



is high and the within-population variability is low. regardless of the geographic location 

of data collection. 

Principal components analysis is used in Chapter 7 to reduce the data set to 

representative spectra for each population. These representative spectra comprise the 

training set on which a classification procedure is based. Spectral derivative analysis is 

the basis of this classification procedure. First and second derivatives are calculated in 

narrow wavelength regions in an effort to differentiate between populations. The final 

classification scheme devised is a 4-step procedure whereby first and second derivatives 

and magnitude of reflectance are used to identify populations defined by feature type. 

Finally, this classification procedure is applied to the remainder of the data set and an 

error matrix is used to examine the accuracy of the classification. The error matrix 

allows for an examination of errors of omission and commission. A summary of the 

work contained in this thesis as well as future work to be performed is discussed in 

Chapter 8. 



CHAPTER 2 

MONITORING CORAL REEF ECOSYSTEMS 

2.1 INTRODUCTION 

The purpose of this chapter is to provide background information on corals and 

coral reef ecosystems. the threats to corals. both natural and anthropogenic, as well as 

how corals typically respond to stress. Information is also provided on efforts that have 

been made to monitor and manage coral reef ecosystems and the approaches that have 

been taken. In addition. remote sensing is discussed in the context of monitoring coral 

reef ecosystems. 

2.2 CORAL REEFS 

Coral reefs were first formed more than 500 million years ago in warm tropical 

climates. and since that time they have successfully developed and supported a 

tremendous array of plant and animal life (Goreau. 1964). Amazingly, an entire coral 

reef ecosystem is built upon tiny animals that are typically less than 0.5cm in diameter 

and are called polyps. Coral reefs are formed by calcium carbonate produced by these 

tiny coral polyps and are important land builders in tropical areas, forming islands and 



altering continental shorelines. A coral colony may consist of thousands of polyps, 

which are typically carnivorous. feeding on small organic particles floating in the water 

(Surnich, 1992). 

Corals are invertebrates that can be one of two types: hermatypic (hard corals that 

build reefs), or ahermatypic (soft corals that do not). Reef building hermatypic hard 

corals, which are of interest for this study, are of the order Scleractinia in the class 

anthozoa of the phylum cnidaria. In hard corals. many microscopic plant cells called 

endosymbionts. or zooxanthella. live in symbiotic relationships with the coral animal. and 

occur in concentrations of up to one million cells per cm' of coral surface (Sumich, 

1992). The algae provide the polyp with food through the process of photosynthesis in 

which the plant cells use sunlight to convert carbon dioxide into oxygen and 

carbohydrates. The polyp uses oxygen for respiration and the carbohydrates are used to 

build the limestone skeleton. The polyp thus provides the endosymbionts with nutrients. 

protection and carbon dioxide. 

The colour of the coral comes from the photosynthetic pigments with the 

symbiotic zooxanthellae living in the polyp's tissue. This colour can vary from white, 

yellou.. brown and olive. to red. green. blue and purple. but without the symbiotic 

zoosanthellae. the coral is white. Furthermore. it is the nutrients provided by these 

symbionts that make it possible for the corals to grow and reproduce quickly enough to 

create reefs. In fact. the naturally high productivity of a coral reef is often attributed to an 

individual coral's mutualistic relationship with its symbiotic zooxanthellae. This 

mutualism. however. is especial1 y sensi tive to numerous environmental stresses, and 

appears to be experiencing disruption at an increasing rate. 



When environmental conditions are altered. the stress placed upon the coral 

causes it to either expel its symbiotic zooxanthellae or experience a decrease in 

photosynthetic pigment concentration within the zooxanthellae. In a process popularly 

known as bleaching, they may lose 60-90% of their zooxanthellae, and/or the 

zooxanthellae may lose 50-80% of their photosynthetic pigment (Glynn, 1996). The 

result of both reactions is a loss of colour. as the coral tissue becomes translucent without 

its pigment. and the coral appears bleached. Bleaching greatly affects the coral host 

because those photosynthetic symbionts supply approximately 63% of the coral's 

nutrients, and also because zooxanthellae facilitate calcification (Glynn, 1991). 

Fortunately. bleached corals are not necessarily dead, but bleaching can cause 

varying degrees of coral mortality depending on past exposure to stress. length of time 

the coral was under stress. and magnitude of the stress relative to the normal 

environment. In some cases. bleached corals recover when environmentd conditions 

return to normal. and in others. zoosanthellae is regained through direct contact with 

healthy corals (Jokiel and Coles. 1990). Rates of mortality can vary considerably within 

and between species depending on the degree and duration of stress. Glynn (1 99 1)  states 

that if corals do not regain their zoosonthrllac. they usually die. but if the bleaching is not 

severe. the corals will often recow. L'ntbnunatcly. the extent of zooxanthellae loss and 

tissue damage that can be tolerated is unknown. 

Not all corals. even of the same species. will have identical responses to the same 

environmental stress: some coral heads of n given species may remain normally 

pigmented while adjacent colonies may bleach (Wells, 1995). Furthermore, closely 

related cord species might contain dissimilar strains or species of zooxanthellae, which 



may also show different physiological tolerances (Brown, 1997). Intra- and inter-specific 

variation in bleaching may result from ( 1 ) differential stress responses in the coral host 

(Gates ct al., 1992); (3) varying susceptibilities of different genetic strains of 

zooxanthellae (Rowan and Knowlton, 1995); or (3) micro-scale environmental processes 

that could produce varying spatial effects ( G l y ~ ,  1996). 

2.3 THREATS TO CORAL REEF ECOSYSTEMS 

Coral reef degradation is the result of both natural and anthropogenic causes. 

Although natural disturbances may cause severe changes in coral communities. 

anthropogenic disturbances have been linked to the vast majority of decreases in coral 

cover and colony health in recent decades. 

2.3. I .LI~lrrrrul Cotcses of Coral Reef Deeradation 

In addition to natural phenomena such as hurricanes, diseasemd bioeroders, 

bleaching is also induced as a result of increased water temperature due to the El Nifio- 

Southern Oscillation (ENSO) and decreased salinity resulting from increased storminess. 

Furthermore. high natural light intensity accelerates bleaching at high temperatures, 

increases mortality rate. reduces carbon fixation and lowers the growth rate (Jokiel and 

Coles. 1990). Of the many documented stresses that are known to cause coral bleaching, 

elevated temperature has been suggested as the primary cause (Glynn, 199 1). Several 



physical factors have been proposed to cause bleaching (Table 2. l), although a lack of 

long-term in siru data and systematic monitoring of coral health limit efforts to correlate 

mass bleaching events with extreme environmental anomalies (Glynn. 1996). 

Solar 
Radiation 

Table 2.1 : Ecological causes of coral bleaching. 

Subaerial - FACTOR 
Temperature 

sudden temperature drops due to upwelling episodes (Glynn and 
D'Croz 1990) 
large range of wavelengths responsible for bleaching varies with 
circumstance (GI ynn, 1 996) 
photosynthetically active radiation (PAR, 400-700 nm) (Brown et 
al., 1994) 
ultraviolet radiation (UVR. 280-400 nrn) (Gleason and Wellington. 
1993: Shick et al.. 1996) 
reduced light levels (Glym. 1996) 
sudden exposure during extreme low tides, ENSO-related sea level 

CASE STUDY CONCLUSIONS 
anomalously low and high sea temperatures (Lesser. 1996) 
ENSO-induced sea warming (Brown, B. and Suharsono. 1990) 

Esposure 
I Sedimentation 

I related factors I temperature. solar irradiance, sea level, carbon dioxide and marine 

drops or tectonic uplift ( G l y ~ .  1984) 
sediment loading associated with river runoff contributes to coral 

Fresh Water 
Diiution 
Climate- 

I I and atmospheric circulation patterns (Smith and Buddemeier. 1992) 

reef degradation (Grigg and Dollar, 1 990) 
rapid dilution from storm-generated precipitation and runoff 
(Goreau, 1964) 
regional scale bleaching may result from synergistic changes in air 

Another common threat to coral populations is the crown-ofithorns starfish, 

Acunthuster planci, which feeds on corals by extruding its stomach out onto the coral to 

digest the living tissue layer (Birkland. 1989). Coral reefs can usually recover from these 

natural attacks if anthropogenic stresses do not impede the recuperation process. 



2.3.2 Anthro~o-qenic Causes o f  Coral Reef Desyudation 

As human population and influence on the coastal zone increases. so does the 

need to generate wider awareness of the social. technical, political and ecological 

problems facing coral reefs (Table 2.2). Tropical coastal zones, within which coral reefs 

can be found. are subject to a number of potentially damaging activities (Mumby et al., 

1995). Corals are extremely sensitive. and slight changes in the reef environment may 

have detrimental effects on the health of entire coral colonies. 

Table 2.2. Coral reefs provide many resources, yet they are under constant human 
induced stress. 

1 I careless anchoring I 

Human Benefits of Coral Reefs 
Provide shorelines with protection 
Serve as nurseries for growing fish 
Supply protein source for healthy diet 
Provide jobs through fishing and tourism 

Provide sources of medicine 

Provide food. shelter and protection for Recreational damage from reef 
variety of marine species walking, careless diving, souvenir 

Human Threats to Coral Reefs 
Pollution from sewage and toxins 
Destructive fishing habits 
Mining explosives 
Runoff and sedimentation from 
logging and coastal development 
Boat damage from grounding and 

! collecting 

Coral reefs throughout the world are being degraded through resource use beyond 

sustainable levels. Coral reef flats. for example. often suffer fiom nutrient stress fiom 

sewage discharge, sedimentation from terrestrial runoff, and water level change due to 

engineering works (Ahmad and Neil. 1994). Additionally, many coral reefs are 

becoming unproductive through over fishing, as they are colonized by undesirable 

grazers such as sea urchins (McClanahan, 1996). 



One of the greatest threats to coral reefs is human expansion and development. 

As development continues to alter the landscape, the amount of Freshwater runoff 

increases. which may include large amounts of sediment from land-clearing, high levels 

of nutrients from agricultural areas or septic systems, as well as many pollutants such as 

petroleum products or insecticides. Whether it is direct sedimentation onto the reef or an 

increase in the turbidity of the water due to eutrophication, a decrease in the amount of 

light reaching the corals may cause bleaching (Brown 1997). 

In addition. increases in the amount of nutrients enhance the growth of other reef 

organisms such as sponges. which may out-compete the corals for space on crowded 

reefs. Outflows from water treatment plants and large power plants are the cause of 

much damage to coral reefs. as sewage treatment facilities greatly increase the nutrient 

levels surrounding outflow pipes. while large power plants alter water temperatures by 

discharging hot water into the coastal waters. 

Harmful fishing practices and techniques. such as over fishing, cyanide poison 

fishing and dynamite fishing. have replaced traditional fishing methods in many 

situations. In some areas. people use fish traps with small mesh diameters, which catch 

even the small juvenile fish. and in others. the use of explosives or poisons has become 

quite common (Bryant et al.. 1998). These practices kill all fish in the affected areas and 

severely damage the corals. Due to over fishing. reef fish populations have been greatly 

reduced in some areas of the world. and the removal of these fish has caused the coral 

reef ecosystem to become unbalanced (Glym. 1996). Another significant result is that 

more competitive organisms, such as alga, which were once controlled by large fish 

populations, have become dominant on reefs in many regions (Green et al., 1996). 



Coral reefs also sustain much damage Erom both commercial and private vessels. 

The leakage of hels into the water and the occurrences of spills by large tanken are 

extremely damaging to local corals (Bryant et al., 1998). Boat anchors are also 

detrimental to reefs, as they break and destroy entire colonies. while the grounding of 

large sea-going vessels also results in large sections of coral reefs being destroyed. 

Furthermore. it has been found that the anti-fouling bottom paints used by many boats 

contribute to the formation of toxic concentrations of chemical compounds, which may 

be harmful to coral reef ecosystems (Bryant et al., 1998). Since most corals mass spawn 

and produce floating gametes. pollutants and toxins on the surface can affect coral 

reproduction and development for a large area. 

There are thus a great number of threats to coral reefs, and many of the threats can 

be attributed either directly or indirectly to humans. Work must be done quickly to 

protect our threatened resources. The list of solutions to the many coral reef problems is 

extensive. ranging from better methods of coastal development in order to decrease 

runoff. to the installation of permanent moorings at heavily used anchorage sites 

depending on the nature of the problem. 

2.3.3 Coral Reef Respclnse to ,'?tress 

It is unknown how the reefs will respond to changes in the long term, and there is 

little evidence regarding reef recovery after repetitive bleaching events. There are, 

however. suggestions that corals may be able to acclimate by regulating physiological 

processes. Community composition would likely change with more tolerant genera such 



as massive Porites replacing more vulnerable ones such as branching Acropora (Glynn, 

199 1 ; Hoegh-Guldberg, 1994). Furthermore, parasitic and mutualistic species that 

require healthy corals for shelter and sustenance suffer when their hosts are stressed, and 

mortality of protective branching corals results in predation by corallivores such as the 

C rown-o f-Thorns starfish (A canthaster planci). 

The response of corals to a given ecological factor varies with changes in other 

environmental parameters, and these synergistic interactions are most important near the 

limits of tolerance for a given parameter. Departure of light, salinity, or other factors 

from optimal conditions narrows the range of tolerable temperatures and interferes with 

vital temperature-related physiological mechanisms in reef corals. 

Alternatively. it is possible that coral bleaching actually has a natural role in reef 

ecology and evolution. rather than simply being a reaction to environmental change. 

In other words. bleaching may not be pathological. but rather a normal regulatory process 

that maintains remarkably stable populations of symbiotic algae. While Buddemeier and 

Smith ( 1 988) believe that bleaching is a generalized stress response resulting from a 

variety of environmental conditions outside the normal local range. they argue that 

bleaching allows the host to be re-populated with a different symbiotic partner. 

Therefore. bleaching may provide an opportunity for reshuffling: a potent adaptive 

mechanism that instantly creates a host-symbiont combination with features that may 

prove more robust under altered conditions. This hypothesis could account for local and 

regional variations in sensitivity to stress of identical host species. Although bleaching 

may represent instability in the short term, it may promote long term stability by 

enhancing the survival chances of zooxanthellae and hosts. 



2.4 MONITORING AND MANAGING CHANGES IN CORAL REEFS 

While geologic history shows that coral reefs have survived times of major 

climatic change, corals still appear to be sensitive to the combined and synergistic effects 

of natural and anthropogenic environmental changes on a short time scale. Coral reefs 

are not stable communities living in a benign environment lacking seasonal fluctuations, 

but are ecosystems subjected to frequent disturbances on various time scales (Brown, 

1997). In fact. corals may be the first organisms to react to such natural and 

anthropogenic environmental changes as increased ultraviolet radiation, extreme sea 

surface temperatures (SST). and sedimentation. 

Glynn ( 1  996) surveyed global corn1 bleaching events that were reported during a 

17-\t.ar period. and found that 5 i events were recorded between 1979 and 1990. and 55  

events between 199 1 and 1995. which suggests an increasing trend over this time scale. 

It is unclear i f  there has been an increase in frequency and intensity of coral bleaching, or 

an increase in awareness resulting from greater frequency and intensity of observations 

and the increasing popularity of SCUBA diving as a recreational sport. It has become 

very common to hear reports of changes in coral reef ecosystems, but it remains to be 

shown that change has actually occurred. Monitoring coral reef ecosystems 



systematically and repetitively will help document the scale. extent and duration of 

ecosystem changes. 

A thematic map delineating areas where the corals are under stress and appear 

bleached would enable change detection studies to determine the extent and rate of coral 

health decline or recovery. This information could be correlated with climatic variables 

to gain insight on ozone depletion. incoming uluaviolet radiation, thermal pollution or the 

El Niiio-Southern Oscillation (ENSO). for instance. Furthermore, a time series of 

thematic maps revealing areas of coral bleaching or stress would also be a useful tool in 

resource management and planning applications. For example, the user could identify 

areas that appear to be under stress or recognize the periods of time that may be related to 

stress. Such a thematic map would be an ideal component of a GIs, which contains 

information regarding local industrial and mining activity, sewage depositories, river 

discharge and protected areas. 

Over the past decade. there haw been increasing efforts to establish better 

management and consen.arion rncasurcs ro p r i ~ c r  the diversity of the biologically rich 

areas of coral reefs (Table 2.3). blanapcmenr practices have historically focused on the 

coral reef proper and have not considcrcd associated communities. such as seagrass. 

mangroves. mudflats or watersheds. in a meaningful manner. This approach did little 

more than manage the reef in isolation. Current management efforts recognize the 

importance of including reefs as part of a larger system, where integrated coastal zone 



management tools can be used in the development of comprehensive management and 

conservation plans. 

Table 2.3. A summary is provided of current organizations with the common goal of 
monitoring and managingcoral reef and related ecosvstems. - 
Monitoring 
Program - 
International 
Center for 
Living 
Aquatic 
Resources 
Management 
(ICLARM) 

Coral Cay 
Conservation 

Great Barrier 
Reef Marine 
Park 
Authority 
(GBRMPA) 

- 

Since 

1973 

1986 

1988 

Goals 

Resolve 
technical and 
socioeconomic 
constraints to 
increased 
production. 
improved 
management 
and equitable 
distribution of 
benefits in 
economically 
developing 
countries 

Train 
volunteers to 
conduct 
detailed 
surveys of 
marine 
resources in 
preparation for 
sound 
management 
initiatives 
Sustainable 
management, 
protection and 
wise use of the 
Great Barrier 
Reef (GB R), 
Australia 

Approach 

Develop a central 
repository of coral reef 
information to provide 
global and regional 
estimates of the status 
and utility of coral reefs 
such that management 
priorities and actions can 
be initiated: such a 
global database 
facilitates geographic 
comparison of reefs 

Use a volunteer 
workforce of over 900 
specially mined dilrers 
to collect detailed 
topographic. bathymetric 
and biological data for 
the establishment of 
management plans 

Community involvement 
in the protection, use, 
care and development of 
the GBR; provide for 
economic development; 
achieve integrated 
management 

Comments 

The degree to 
which such a 
database is able to 
facilitate 
geographic 
comparisons of the 
status of cord reefs 
worldwide is 
limited by the 
nature of the 
observation. For 
example, 
qualitative 
observations are not 
reliable means of 
comparison. 
Extremely people- 
intensive and 
therefore time 
consuming; 
although specially 
trained. subjective 
and potentially 
inconsistent data 
are collected 

Quantitative 
techniques of 
monitoring coral 
reef resources 
would be a valuabie 
component to an 
effective 



Coastal Zone 
Management 
Unit 
(CZMU) 

Planetary 
Coral Reef 
Foundat ion 
( P C W  

International 
Cord Reef 
initiative 
(ICRI) 

Global Coral 
Reef 
Monitoring 
Network 
(GCRMN) 

Develop . 
management 
initiatives for 
the protection 
and sustainable 
use of the 
country's 
coastal 
resources 

Further 
knowledge 
regarding 
global coral 
reefs, global 
climatology 
and provide 
new ideas for 
ecological 
management 

Ecosystem and 
community 
based 
management: 
impiement 
sustainable 
management 
practices for 
the benefit of 
coral reefs and 
related 
ecosystems 
Improve 
management 
and sustainable 
conservation of 
coral reefs with 
emphasis on 
the 

Use satellite imagery to 
direct a volunteer field 
survey program by 
crudely identifying 
geomorphologic zones 

Develop technique to 
monitor coral reef health 
worldwide using satellite 
imagery; establish a 
global database of cord 
reefs; track the health of 
corals worldwide; 
provide the technology 
for restoration of coral 
reef ecosystems 

Sponsor international 
workshops on coral reefs 
to define regional needs 
and priorities and initiate 
the development of 
national coral reef 
awareness programs 

Strengthen existing 
capabilities to examine 
reefs by providing a 
consistent monitoring 
program tci identify 
trends in coral reefs; 
facilitate networks of 

management 
program 
Sate!lite imagery is 
not corrected for 
effects of the water 
column and 
classification is 
based solely on 
colour, which limits 
reliability. More 
efficient use could 
be made of the 
satellite imagery to 
provide a thematic 
map of the area. 
This research has 
not yet begun, but 
requires an 
appropriate 
algorithm to 
account for the 
contributions of the 
water column and 
also an index to 
discriminate 
between spectrally 
similar substrates 

Networks of people 
provide good 
observations on a 
local scale, but the 
objective nature of 
the database limits 
the reliability and 



consistency. 

Florida Keys 
Coral Reef 
Monitoring 
Project 

involvement of I people trained to look 
locaI 
communities 

Assess the 
status and 
trend of 
Florida's 
offshore reefs, 
patch reefs and 
hardbottom 
communities to 
evaluate 
progress 
towards 
protecting and 
restoring living 
marine 
resources 

closely at coral reefs and 
rnoni tor their progress 
over time 
Reefs are sampled with 
underwater video units 
using transects to 
provide large-area 
coverage; video images 
are analyzed for percent 
cover of corals and other 
organisms using random 
dot overlay procedure 

Extremely labour- 
intensive and 
therefore expensive 
and time 
consuming. The 
spatial resolution is 
perhaps too fine for 
the purpose of 
managing a large 
coastal area. 

The concept of adaptive management provides a good framework in which 

scientists and managers can work together. as management measures are established to 

enable objective testing and evaluation so that approaches and goals can be revised 

according to new information (Wells. 1995). Adaptive management partnerships built 

between scientists and managers may lead to more rapid progress in managing reefs. 

Clearly. dependable scientific data are crucial in convincing policy makers, funding 

agencies and society in general that management is necessary. Furthermore. adaptive 

management decisions may benefit from reliable scientific data providing information to 

address questions such as what requires management in what geographic area and for 

what purpose, as well as what is the most appropriate technology for management. 



2.43 Remote Sensing as a Coral Reef ~Cfmitorina Tool 

Since coral reefs appear to be sensitive indicators of regional climate change, it is 

of immediate importance to improve our ability to detect and monitor changes in coral 

reef ecosystems using remote sensing techniques. Although not necessarily an indicator 

of the absolute health of the coral reef. coral bleaching or macroalgae overgrowth is a 

readily observable measure of change in a coral reef environment. Under environmental 

stress, coral polyps expel their photosynthetic algae (zooxanthellae), lose their colour and 

are referred to as bleached. Loss of zooxanthellae will be used as a remotely detectable 

measure of coral health. as it results in a distinct loss of colour and change in spectral 

reflectance. Remote sensing of the spectral reflectance of corals may provide a 

quantitative observational technique for identifying changes in a coral reef ecosystem 

consistently and accurately. Furthermore. a database of the spectral reflectivity of 

various coral reef components could be used as an objective index to remotely identify 

areas of coral reef bleaching. 

Remote sensing is the only means of repeatedly and nonintrusively obtaining such 
. . 

integrated spatial data for large coastal areas uniformly in both space and time. but the 

use of remote sensing in tropical marine environments is limited by the selection of 

appropriate technology and data availability (Green et. al, 1996). When proposing the 

use of a mapping and monitoring technology for a given application, it is important to 

recognize varying agendas. purposes and goals, including scientific advancement, 

accuracy. cost effectiveness, technique comparison and turnover time. For instance, it 

would be inappropriate to attempt to map small patch reefs using Landsat TM with 30- 



meter pixels. as the spatial resolution is inadequate; in this case, an airborne multispectral 

scanner might be more appropriate. 

Remote sensing and geographic information system (GIs) technologies are 

becoming less expensive, more user-friendly. more versatile. and it is widely accepted 

that such technologies have extensive potential for environmental monitoring and 

management. The extent to which this type of approach can work on a regional scale or 

at the community level needs to be evaluated on an individual case basis to determine the 

appropriate technology. The issue of cost versus accuracy must be assessed on an 

individual case basis as well. For example. global positioning systems (GPS) provide an 

inexpensive means of geocoding to accuracies of 30-50m while the improved differential 

GPS increases that accuracy to less than 1 rn. but with a substantial increase in cost. A 

GIs is an excellent way to integrate several types of information, such as locations of 

coral bleaching. coastal land use and climate data. The cost of maintaining the adequate 

computer hardware and software. however. may be beyond the budget limits of many 

interested groups. The application must therefore dictate the type of technology. as 

suggcstcd in Table 2.4 (after Poole. 1995). 

Table 1.4: Various applications demand different data and mapping technologies based 
on need. cost and purpose. 

I I ground truth measures I corrected to various degrees based I 

APPLICATION 
Land use 

Ecological status 

I I periodic field measures I required for on-going monitoring 1 

DATA NEEDED 
Spatial data based on local 
knowledge 
High resolution imagery. 

Resource 
mapping 
Change detection 

MAPPING TECHNOLOGY 
Sketch maps, GPS 

Airborne or satellite imagery 

Local field data imposed on 
base map 
Remotely sensed imagery, 

on amount of ground truth 
Remotely sensed data compatible 
with ground truth measures 
Consistent techniques and data 



Remote sensing cannot totally replace traditional means of exploration. but it has 

been shown by Apinan (1 986) in Thailand to shorten the time and financial requirements 

of a coastal zone survey. Remote sensing of coral reefs could be a valuable tool for 

informed coastal zone management because it can provide a synoptic view of the eanh 

consistently and repeatedly. According to Kuchler et al. (1988), however, progress in 

transferring high technology remote sensing tools into mapping and monitoring practical 

application has been slow. For modem remote sensing technologies, such as 

multispectral scanners. to be widely accepted and utilized. the recording, interpretation 

and use of the information must be more cost-effective than traditional practices of aerial 

photography and ground surveys. Additionally. potential users of coral reef remote 

sensing technology require the product to be appropriate to their needs. 

This slow progress may be thc result of the historica1 dichotomy between 

academic and applied research in man! sectors. where scientists might demand higher 

confidence levels than managers. Thcre is thus a need to compromise and balance 

scicntific uncertainties and management needs. Coral reef scientists rarely undertake 

research with the objective of making intentional value judgements or risk assessments 

(Done. 1995). which places the onus upon coral reef managers to evaluate the scientific 

results. For a rigorous decision making process. managers need to specifically 

communicate their objectives and precise requirements in order for scientists to develop 

an appropriate method. use the most suitable technology, and assess the accuracy of their 

results. Clearly, these scientific tasks are beyond the scope and ability of one individual 

researcher. which emphasizes the need for long-term interdisciplinary collaboration. 



2.5 SUMMARY 

A large proportion of the coral reef resources in the world is in danger of 

destruction due to overexploitation and degradation of habitat. Several initiatives are 

underway to monitor the status of and threats to reefs at global. national and regional 

scales. but little progress has been made in developing database systems that will ensure 

broad dissemination of data and consistent. reliable quantitative interpretation and 

comparison of results. 

Global awareness of coral reef ecosystem degradation has increased recently, 

which has encouraged monitoring and sustainable conservation endeavours. The 

majority of the monitoring programs use trained observers to document changes in the 

ecosystem over a relatively small area. While this technique is potentially thorough and 

accurate. it is inefficient with respect to time. money and space. 

Alternatively. remote sensing can provide quantitative information quickly and 

relatively inexpensively compared to the cost of employing researchers to observe an 

equivnlent area. The spatial coverage of a satellite image would provide managers with 

valuable geographic information regarding coral reef ecosystems. and allow informed 

decisions to be made on a regional basis. While managers do not demand 99% accuracy. 

sound management decisions rely partially upon reliable scientific techniques and results. 

A quantitative means of mapping and monitoring the well-being of coral reef 

environments will provide decision makers with the baseline information with which to 

develop management programs. 



CHAPTER 3 

MARINE REMOTE SENSING 

3.1 INTRODUCTION 

The purpose of this chapter is to provide an overview of the problems and 

advantages associated with remote sensing in a marine or coastal environment. Future 

planned satellite missions are discussed with reference to their applicability to monitoring 

the coral reef environment and previous attempts to applied remote sensing technology to 

the marine or coastal environment are outlined. Furthermore. the potential sources of 

error associated with remote sensing in general and remote sensing in the coastal zone in 

particular are presented. 

3.2 !MARINE REMOTE SENSING 

Historically. aerial photography and navigational charts have been the basis of our 

knowledge of the regional-scale geographic extent of coral reefs. Navigational charts are 

restricted to deep areas accessible by ship-borne depth sounders, and photographic 

coverage of tropical coral reefs is often out of date due to the expenses involved in 

acquiring such information. Furthermore, although qualitative information on bottom 

composition of shallow water zones can be provided by aerial photographs, interpretation 



is complicated by the fact that water depth variations are difficult to distinguish from 

bottom colour variations. 

Multispectral sensors on board satellite or airborne platforms are superior in 

quality to aerial cameras with respect to spectral resolution. This is primarily because 

multispectral sensors have distinct wavelengths in which radiance is sensed rather than 

the panchromatic feature of a traditional camera. Specific wavelengths in the visible 

region of the electromagnetic spectrum can be selected with multispectral sensors to 

maximize the penetration of energy through the water column, thus providing the most 

information regarding subsurface features. 

The availability of accurate base maps is a prerequisite for the ecological 

assessment of marine resources. but the current inventory of maps is inadequate (Murnby 

et al.. 1 995). One of the greatest limiting factors in assessing the effects of stress on coral 

reefs is the general lack of quantitative data. both spatial and temporal (Grigg and Dollar, 

1990). Although remote sensing technologies have potential for overcoming this 

quantitative void. there are many complications associated with extracting valuable 

information from imagery with confidence. One problem with remotely sensed 

measurements is that the atmospheric path between object and sensor will modify 

characteristics of the received radiation. The air-sea interface introduces to a second 

complicating factor since the amount of energy transmitted into the sea versus that 

reflected off the surface depends on sea surface state, wind speed and sun angle (Figure 

3. I ). A third problem with remote sensing of shallow water substrates is the difficulty in 

separating the water column signal from the substrate signal. 
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Figure 3.1. This schematic of the interactions between electromagnetic energy 
and the atmosphere and water reveals the complexity of the problem of radiative transfer 
in a marine environment. 

3.3 FUTURE SATELLITE SENSORS 

The next generation of satellites promises to host high-resolution sensors capable 

of generating imagery with spatial resolutions of 4m in multispectral mode (Alpin et al., 

1 997). Both the United States and Australia are planning launches of hyperspectral 

sensors onboard satellite platforms in the year 2000. The availability of many narrow 

spectral bands will greatly improve the ability to identify submerged coral reef features. 

The expected spatial resolution will be coarse (approximately 30m), which will limit high 

detail mapping of the coastal zone. but will enable regional scale inventories to be 

accomplished. 

The poor spatial resolution of most future satellite sensors will limit their use for 

coral reef ecosystem mapping. Pixel size limits the amount of detail that can be extracted 

from the satellite image, but for regional-scale mapping, larger pixel sizes are preferable 



in order to minimize costs. The limiting factor for accurate identification is the spectral 

resolution of the sensor: the bandwidth and number of bands. There appears to be a 

technology-limited trade-off between spatial and spectral resolution (Alpin et al.. 1997) 

such that as the pixel size decreases. typically the width of the spectral bands increases. 

Broad wavelength bands do not allow detection of subtle spectral characteristics. which 

decreases feature identification accuracy. In short. high spectral resolution allows 

identification of features in a scene. while high spatial resolution allows location of 

features in a scene (Gross and Schott. 1998). 

The most important characteristic to consider when selecting a passive marine 

remote sensor is its ability to penetrate the water to the depths of interest. Therefore, only 

sensors with wavcbands in the visible portion of the electromagnetic spectrum are useful 

for submerged feature detection. This requirement eliminates passive sensors using 

synthetic aperture radar (SAR). for example. 

Furthermore. remote detection of submerged corals is complicated by the fact that 

large. discrete patches of bleached con1 are rare. and the spectral signatures of individual 

cord heads are strongly influenced by surrounding coral and substrate. as well as the 

overlying water column within the sensor's field of view (FOV). Therefore, a 

sufficiently small pixel size is required to detect individual coral head bleaching. 

Additionally. a sufficiently high spectral resolution is required to enable spectral 

distinction of coral reef substrate types. which may have only very subtle spectral 

differences. 

Table 3.1 briefly lists some characteristics of available satellites and sensors, 

which have capabilities of investigating marine features, and a table explaining 



abbreviations and acronyms is provided in Table 3.2. A more complete discussion of the 

satellite sensors available at present and in the near future is provided following the 

summary tables. 

Table 3.1. Visible wavelength/multispectral sensors and their satellite platforms of use in 
marine remote sensing listed in chronological order. 

LANDSAT 

SPOT 

IRS-P3 

Spectral Resolution 

IRS- I C. 
RESURS 
ADEOS 

ORBVIEWZ 

Spatial Launch Satellite 

Earl>.Bird 

ORBVIEW3 & 
I KONOS I 

LANDSAT-7 

EOS-AM 
NEMO 

ARIES 

SPOT-5 

AVNIR-2 

Resolution 
30 -80 m 

Sensor 

7 visible, 1R and 
thermal bands with 60- 

l4Onm resolution 
3 visible and 1R bands 

with 70- 100nm 
resolution 

1 8 multispectral bands 

t 

PAN. LISS. 
WIFS. MSU 
OCTS 

SeaWiFS 

250 - 1 OOOm 

TM. MSS 

HRV 

MOS-IRS 

hi-res optical 

hi-res optical 

ETM 

30-60m 

30m 

10 and 20m 

yes 

yes 

yes 

yes 

Failed. 
1997 
\ es 

India, 
Germany 

India, 
Russia 

panchromatic 

8 visible and NIR; 4 
thermal IR 

8 multispectral bands 

Failed. 
1997 

1999 

1999 

Australia zq 

3 visible and IR bands 
with 50-1 10nm 

resolution 
4 visible and IR bands 
with with 70-140nm 

resolution 
8 visible. 1R and 

thermal bands with 60- 
l4Onrn resolution 

36 bands 
2 I O bands with l Onm 

bandwidth 
106 bands with 16nm 

bandwidths 
J v~sible and IR bands 

with 70-290nm 
resolution 

4 visible and IR bands 
with 80- 100nm 

resolution 

1 
b100lS 
COlS 

ARIES 

HRG 

ALOS 

1990 
Junc. 
2000 
2(1(10 

2002 

2002 



Table 3.2. An explanation of acronyms used in the table above. listed in alphabetical 
order. 

Acronym 
ADEOS 
ARIES 

I 

EOS I Earth Observinrr Svstem 

Explanation 
Advanced Earth Observing Satellite 
Australian Resource Information and Environment Satellite - - 

ASAR 
AVNIR 
COIS 
ENVISAT 

Advanced Synthetic Aperture Radar 
Advanced VisibIe and Near Infia-red Radiometer 
Coastal Ocean Imaging Spectrometer 
Environmental Satellite 

- 

ETM 
HRG 
HRV 
IRS 
LANDSAT 
MERIS 
MODIS 
MSS 

Y d 

Enhanced Thematic Mapper Plus 
High Resolution Geometry 
High Resolution Visible 
India Remote Sensing Satellite System 
Land Remote Sensing SatelIite 
Medium Resolution Imaging Spectrometer 
Moderate Resolution Imaging Spectrometer 
Multis~ectrd Scanner 

NEMO 
OCTS 

The "hi-res optical" onboard tho EarlyBird/ Space Imaging/ Orbview satellite, 

was launched in December 1997. but the mission failed. The pixel size of the "hi-res 

optical" was to be im for panchromatic images and 4m for rnultispectral images, which 

would have been a substantial improvement over the spatial resolution available at the 

present time. 

The Indian Space Research Organization (ISRO) successfully launched the IRS- 

1 D Earth Imaging satellite on September 29, 1997. This satellite and its identical twin, 

Naval Earth Map Operation I 

Ocean Colour and Temperature Scanner 
SeaWiFS 
SPOT 
TM 

Sea-Viewing Wide ~iel-d of View Sensor 
Satellite pour I'Observation de la Terre 
Thematic M a ~ ~ e r  

I 



IRS-1C launched in December 1995. will not commence full operation until onsrbit 

testing is complete early in 1999. The dual use of these twin satellites allows 5.8171 

spatial resolution to be available to customers twice as often as with just IRS-IC. 

Additionally. users of IRS- 1 C and D will be able to take advantage of frequent updates of 

as little as three days. which is crucial for monitoring events that are changing quickly 

over time. Unfortunately. this 5.8m resolution imagery is only available in panchromatic 

(black and white) mode. which has limited applicability when attempting to identify 

spectrally similar submerged features such as distinguishing between bleached and 

healthy coral. Panchromatic images are especially limiting in a coral reef environment if 

the objective is to map submerged features. as only visible wavelengths penetrate the 

water column to appreciable depths. These satellites are also equipped with LISS-3 

multispectnl sensors that provide 233m spatial resolution, which may be adequate for 

certain large-scale monitoring applications. More information can be obtained at the 

Web Site: http:~/wnv.spaceima~e.com. 

The usefulness of ocean colour remote sensing is well recognized. largely as a 

result of the successful launch of the Coastal Zone Colour Scanner (CZCS) on Nimbus-7 

in 1978. No spaceborne ocean colour sensor replaced the CZCS when it ceased to 

operate in early 1986 until August 1 7. 1996 when the Advanced Earth Observing Satellite 

(ADEOS) was launched successfully by the National Space Development Agency of 

Japan (NASDA) (Ishizaka et al.. 1997). The OCTS sensor onboard the ADEOS satellite 

is no longer available, as it failed after only 7 months. While OCTS had 8 bands in the 

visible and near-infrared. a spatial resolution of 700m at nadir made its use for mapping 



coral reef ecosystems marginal. For further information, see 

htt~://mentor.eorc.nasda.go.ip/ADEOS/Dat~deos.html. 

The OrbView-2 spacecraft (formerly SeaStar) was launched on August 1, 1997 

carrying the SeaWiFS instrument, and data from the satellite can be acquired from 

ORBIMAGE and NASA. The objective of this project is to obtain broad-area 

multispectral remotely sensed imagery. and it is the first privately owned remote sehsing 

satellite to be launched and operated. While SeaWiFS will provide valuable information 

for global change research and large scale environmental monitoring, the spatial 

resolution of greater than 1000m limits its use for coral reef remote sensing. Further 

information can be obtained at htt~://~vww.orbimage.com. 

The Moderate resolution imaging Spectroradiometer (MODIS) has an 

unscheduled launch date in 1999 on the EOS-AM satellite platform. MODIS will enable 

a comprehensive daily evaluation of the earth's surface with 36 spectral bands with a 

spatial resolution of 250- 1000m. 

Also scheduled for launch in 1999 is Landsat-7. which will carry the Enhanced 

Thematic Mapper Plus (ETM) sensor. The ETM is based on the design of the Thematic 

Mapper TM instruments flown aboard Landsat 4/5 and it will provide 8 spectral bands in 

the visible. near IR. short-wave IR and :henna1 IR regions at spatial resolution of 15m, 

30m and 60m. ETM scenes will provide affordable (cUSD600/image) moderate spatial 

and spectral resolutions. which may be of use for coastal mapping for many regional- 

scale applications. 

The Medium Resolution Imaging Spectrometer (MERIS) will be launched by the 

European Space Agency in 1999. and will provide the first spaceborne European remote 



sensing capability for observing oceanic biology through observations of water colour 

(Bezy et al.. 1996). MERIS is a 15 band programmable imaging spectrometer with a 

spectral range restricted to the visible near-infrared portion of the spectrum between 390 

and 1040nm and a spectral bandwidth of between 1 .X and 30nm. Although MERIS will 

have a high spectral and radiometric resolution. the best spatial resolution possible will be 

3OOm. which is a limiting factor for accurate and confident coral reef remote sensing. 

In partnership with Space Technology Development Corp., the US Navy is 

planning to launch NEMO (Naval Earth Map Operation) in June 2000. A hyperspectral 

sensor, COIS (Coastal Ocean Imaging Spectrometer), will be onboard NEMO, which will 

provide 30-60m spatial resolution imagery in 2 10 bands with 1 Onrn bandwidths. The 

spectral range will be from 400-2500nm and the swath width will be 30km. The data 

provided from this sensor will be highly appropriate for mapping submerged features in 

the coastal zone on a regional scale. The large pixel size will provide relatively low 

detail mapping for a large area. thus allowing cost-effective regional analysis. The high 

spectral resolution will enable identification of subsurface features with higher accuracy 

than possible with presently available satellite sensors. The cost of one image is not yet 

known. as of October 1998 at the Fifth international Conference on Remote Sensing for 

Marine and Coastal Environments. San Diego. 

Competing with the USA to be the first to launch a satellite with a hyperspectral 

sensor onboard are the Australians with their ARIES (Australian Resource Information 

and Environment) satellite. This satellite has a planned launch in 2000, although a 

specific launch date has not been set. The hyperspectral sensor onboard ARIES will have 

30m spatial resolution and a spectral coverage from 400-2500nm with 16nm wavelength 



bands. The swath width will be 15km with a revisit time of 7 days. The cost of each 

image is unknown although they will be making the satellite imagery as well as 

simulation airborne imagery available to a limited number of successfbl applicants 

competing for access. 

3.3.2 Airborne Sensors 

Presently available airborne spectroradiometen offer acceptable spatial and 

spectral resolution for mapping submerged coral reef geographic extent. The price of 

acquiring such airborne imagery is often quite high due to the fact that reefs of interest 

are often isolated and located in developing countries. Airports do not commonly serve 

these areas. and it is difficult to rent appropriate aircraft. In addition, a smaller 

geographic area is covered on one image. so it takes longer to acquire coverage of an area 

equivalent to a satellite image. 

The Airborne Visible/lnfrarrd Imaging Spectrometer (AVIRIS), designed by the 

JCI Propulsion Laboratory in 198;. has been used to collect high-resolution imagery since 

1987. AVIRIS was the first imaging spectrometer to measure from 400 to 2500nm in 

$21 contiguous spectral channels at l Onm intervals. AVIRIS images are I I km in width 

and up to 800km in length with 20m spatial resolution. Use of AVIRIS imagery in the 

visible wavelengths able to penetrate the water would be an excellent option for mapping 

and monitoring submerged coral reef ecosystems. 

Airbome casi (Compact Airbome Spectrographic Imager) imagery has been used 

recently by George (1997) to map bathymetric data of a lake with the assumption that the 



bright pixels on the image were areas of shallow water. George (1997) tested a variety of 

water depth algorithms for bathymetric charting in marine and freshwater environments. 

George ( 1 997) reported that the quality of the casi instrument produces low-noise, high- 

resolution images of very low reflectance targets. which allows for operation over land 

and water without saturating the sensor. 

Clark et al. ( 1 997) acquired cusi data at 1 m spatial resolution of a tropical coastal 

environment. and attempted to map a reef habitat without performing ground-based 

reference measurements. This study was done to provide a high resolution best-case 

assessment of coastal mapping to test the accuracy of coarser spatial and spectral 

resolution satellite imagery. While the authors acknowledge that some of the variations 

in colour on the image result from bathymetric changes, they concluded that the dominant 

control is the nature of the marine habitat. Therefore. no correction was applied to 

account for attenuation and multiple scattering. which contributes to the remotely sensed 

signal of a submerged habitat. 

Other high-resol ution airborne spectrometers are available such as the Daedalus 

Airborne Thematic Xlappcr. which has been recmtl) used to survey phytoplankton 

chlorophyll in lakes (George. 1997 1. With ground truth verification available, algorithms 

were tested in this stud!. to dckm~inc t11c optimal procedure for estimating chlorophyll 

concentrations. 

The Advanced Airborne Hyperspectral Imaging System (AAHIS) is a compact, 

lightweight. portable hyperspectral imaging spectrometer developed by a US company 

called Science and Technology International. AAHIS is optimized for coastal 

environments with an operational range between 433 and 832n.m at 5.5n.m resolution. 



The spatial resolution of AAHIS is dictated by height at which it is flown. For example. 

when flown at 6000 feet. AAHIS images have ?-meter pixels with 72 spectral channels. 

This would be an ideal instrument for high-detail mapping of coral reef ecosystems and 

related coastal ecosystems due to its high spatial and spectral resolution. The cost of 

operating this instrument. especially for coverage of large areas, is prohibitive to all but 

rnaj or government agencies. 

An alternative to the passive techniques discussed above is an active airbome 

system. wch as an airbome laser system, which is a proven tool for shallow water 

bathymetric surveying. An airbome laser sounder transmits green and infrared laser 

pulses to measure water depth. The infrared beam is reflected from the water surface and 

the green beam penetrates the surface into the water and is reflected from the bottom, 

objects in the water. and the water itself. The water depth is determined from the time 

difference between surface and bottom "echoes" (Steinvall et al.. 1997). The use of 

airbome laser technology is presently being investigated for its usefulness in mapping 

bottom topography and substrate type (Steinvall et al., 1997). 

3.4 MARINE REMOTE SENSING RESEARCH 

Recently. remote sensing technologies have been used successfully in marine 

environments to gain valuable information on the extent and state of various submerged 

features (Table 3.3). Much of the work in Table 3.3 is based on classification of spectral 

response (e.g. Bina et al., 1979; Bour et al., 1986; and Mumby et al., 1994), yet few 



attempts have been made to account for effects attributable to variable water depth and 

turbidity. In some cases. to remove water depth and turbidity variation, images have 

been assumed horizontally and vertically homogeneous, and corrections have been 

applied to the entire image by subtracting a constant digital value or computing ratio 

values (e.p. Lyzenga, 1978; Vel and Bour, 1990; Estep 199 1 b). The assumption that both 

the vertical water column and the horizontal water surface are homogeneous may be . 

unrealistic in many coral reef environments. 

Table 3.3. A summary of work PI 
features. listed in alphabetical or( 

Ahmad and 
Neil. 1994 
Bierwirth et. 
al.. 1993 

Clark et al.. Tropical 
coasts 

Coral reef 
zones 
Shallow 
bottom 
reflectance 

Bour. 1988 

sediments 

Living Corals 

Bina et al.. 
1979 
Borstad et. al, 
I 994 
Bour et. al, 
1986 

Coral reefs 

Coastal Areas 

Trochus 
shells 

Gordon and 
Brown. 1974 
Hardv et. al. 

blished to date on remote sensing of subsurface 
er. 

Water column 
constituents 
Coral 

SENSOR 
Landsat 
MSS and 
TM 
Landsat TM 

Simulation I aerial photography, polar coordinate 

TECHNIQUE 
Comparison of ability to detect 
submerged vegetation using classified 
MSS and TM images 

' Canonical variate analysis 

Landsat TM 

Landsat TM 

Airborne 
cusi 
SPOT 

Mathematical constraint used to create 
residual representative of substrate 
reflectance 
Supervised and unsupervised 
classification 
Integration with GIs 

Comparison with ground truthing and 

images 
SPOT HRV 

transformation, classification 
Classification based on bidimentional 

Airborne 
histogram 
Initial visual interpretation 

cusi 
Analytical 

I 

Laser- [ Laboratory study of use of remotely 

Inverted single scatter irradiance model 

Scanning 
spectro- 
radiometer 
Analytical 

Eigenanalysis of in situ data to estimate 
bottom reflectance spectra to 
understand radiative transfer processes 
Monte Carlo 



Holden and I Coral reef 
LeDrew, 1998 
Holden and 
LeDrew, I998 
Jupp et al.. 
1985 

Khan et. al.. 

fluorosensor 
in situ 

monitor coral pigmentation 
Principal components analysis. cluster 

features 
Coral reef 
features 
Coral reefs 

1992 I coastal I I enhance bottom type variation and 

radiometer 
in situ 

Subtidal 

I habitats I I reduce the effect of water depth 

analysis, derivative spectroscopy 
Principal components analysis. cluster 

radiometer 
Landsat 

I depth and substrate type 
Landsat TM I Eigenvector rotation of TM 1 and 2 to 

LeDrew et. al, 
1995. 1996 
Lubersac et. al., 
1991 
Luczkovich et. 
al.. 1993 

analysis, derivative spectroscopy 
BRIAN System: Barrier Reef Image 
Analysis; band ratios used to separate 

Lyzenga 1978 

Lyzenga 1981 

Coral reefs 

Geomorpholo 
gy of bokom 
Coral reefs, 
sea grass and 
sand 
Bottom 

I variation 
SPOT HRV I Optical correction of water column with 

SPOT HRV 

Multispecu I Ratio processing algorithms, principal 

published algorithm 
Numerical transformation method for 

Landsat TM 

I features and I a1 scanner I components analysis 

decorrelating XS I and 2 
Multivariate analysis of variance 

1992 I Bleaching I induced I sensed laser induced fluorescence to 

water depth 
Bottom 
reflectance 
Shallow water 

I 1 I 

Mobley. 1993 1 Underwater I Analytical I Invariant imbedding 

1994 
Michalek et al.. 
1995 

data 
Lindsat 
MSS 
Analytical 

Linear transformation algorithm 

.4nalytical formulae 
reflectance 
Submerged 
features 

Morel. 1996 

Mumby et. al.. 
1994 
Peddle et. al. 

Vel and Bour, 

Landsat TM 

light fields 
Coral reef 

1995. 1996a & 
b 
Philpot. 1987 
Spitzer and 
Dirks. 1987 

Change vector analysis 

lagoon 
Coral reefs 

Coral reefs 

1990 I reefs I I transforma~on, created texture pseudo- 

SPOT HRV 

Ocean colour 
Bottom depth 
and 
composition 
Shallow coral 

I I I channel for feature detection. 

Published algorithms and coefficients 

SPOT PAN 

SPOT HRV 

Supervised training classification 

Spectral mixture analysis to separate 1 end member spectra at sub-pixel scales 

SPOT HRV 

Analytical 
Analytical 

Non-linear polar coordinate 

Single scattering irradiance model 
Two-flow radiative transfer 



features 

I I I 1 supervised classification 

- 

Zwick et al., 
1981 

Distribution 
and 
concentration 
of suspended 
material and 
chloro~hvll 

Landsat TM 

Mazel ( 1  997) has developed a new spectrofluororneter to measure in situ 

Principal components analysis 

Landsat TM 

Analytical 

fluorescence emission over the full spectrum. This instrument has been used successfdly 

Analysis of GIs of digital elevation 
model (DEM) and digital numbers 
(W 
Mathematical models for atmosphere, 
water-air interface, and water optics 

at several field locations for investigating the optical properties of coral reef organisms 

and for collecting baseline data in support of remote sensing systems. This active sensor 

is proving to be a valuable tool for collecting spectral fluorescence and reflectance 

signatures of submerged organisms thus enabling the beginnings of a library of spectral 

signatures. This information will be used to interpret remotely sensed data and as a tool 

in understanding the nature and variability of the optical properties of benthic organisms 

and substrates. Mazel has not published any quantitative analysis of the spectra collected 

to date. 

Hardy et al. (1 992) examined the potential of using actively sensed laser-induced 

fluorescence to monitor coral pigmentation. Bleached coral samples, containing fewer 

photosynthetic pigments than healthy samples. were irradiated at 532 and 337nm with 

pulsed laser light. and spectral scans of fluorescence were collected at lnm intervals. 

Clear and dramatic changes in active fluorescence spectra of corals using laser-induced 



spectroscopy were found: distinct reflectance peaks were found at 685 and 740nm 

corresponding to fluorescence in all five species. Moreover. under the influence of 

artificial temperature-induced stress. changes in the fluorescence spectra were detected 

prior to visible bleaching. 

The NASA airborne laser can penetrate 30 meters in clear oceanic water (Hoge et 

al.. l986a & b). which lends encouragement to future studies of submerged coral 

fluorescence. Airborne laser-induced fluorescence (LIF) sensors can cover large areas 

rapidly. but pose problems of scale and resolution. For example, at a flight speed of 100 

meters per second and 20 pulses per second, one fluorescence measurement would be 

collected every 5 meters. so several over-flights would be necessary to characterize the 

pigment of a reef (Hardy et al.. 1992). Furthermore, the maximum depth from which a 

useful return signal can be processed and distinguished is dictated by the attenuation of a 

projected laser light source through the water (Cianciotto. 1995). An attenuation 

coefficient. described in a simple equation for light intensity as a function of distance 

from the light source in water. can be calculated to account for loss of light (Cianciotto, 

19964. 

.A L I DAR (Light Detection and Ranging) system uses a pulsed laser to measure 

the fluorescence emitted by aquatic and terrestrial chlorophyll pigments (Hardy et al., 

1992). With high directionality and intensity of laser radiation, LIDAR is able to observe 

large volumes of the ocean at high spatial and temporal resolutions while operating in 

narrow frequency bandwidths. which permits high signal-to-noise ratios (Cianciotto, 

1995). The major advantage of gated LIDAR is that backscatter from layers of water 



above the coral substrate is eliminated. so the sensor only receives a return signal from 

the underlying substrate. 

Since an imaging LIDAR system can be optimized by customizing the 

wavelength of the laser to specific atmospheric and water conditions, and multiple 

LlDAR systems can image simultaneously. chlorophyll fluorescence may more easily be 

detected than it would with a passive sensor. Phytoplankton pigments in the water 

column. which display similar fluorescence spectra to the pigments in the coral polyp, are 

potential sources of interference. Hardy et al. (1  992) believe that the high pigment 

densities of corals would produce a stronger fluorescence signal than the overlying 

phytoplankton, especially for surface water less than 10 meters. Regardless, a 

nanosecond pulsed LIDAR system will detect two signals: one from the water surface, 

and one from the bottom. so the instrument can be time or depth gated to detect 

Fluorescence only from the coral substrate. and to ignore the water column's 

phytoplankton response. Without the necessity of considering pigment fluorescence from 

phytoplankton in the water column. LIDAR offers a potentially useful method of 

determining the chlorophyll fluorescence o r  the con1 alone. Therefore. it is beneficial to 

study the laser-induced chlorophyll iluorescencc characteristics of individual coral heads 

for future application of LI DAR remotc sensing of coral reefs. 



3.5 SOURCES OF ERROR AND LIMITATIONS OF REMOTE SENSING 

The capability of marine remote sensing technology may have been oversold in 

the past, so potential users have suffered disillusionment (Green et al.. 1996). This 

phenomenon may result from failure to understand and communicate the fundamental 

limitations of remote sensing such as wavelength-specific penetration of light through 

water. spectral mixing within a pixel. and atmospheric attenuation. 

Of course. the importance of each source of error or limitation depends on the 

objective of the remote sensing application. and varies from sensor to sensor. In fact, 

some limitations may be viewed as desirable in some applications. For example, data 

from sun-synchronous orbital satellites. such as SPOT, are collected at the same time 

each day. If the objective of the study is to document diurnal changes. then this type of 

orbit is a limitation. but if the objective is to monitor changes over a period of time, then 

this type of orbital consistency might be desirable. 

Two broad categories of sources of error within marine remote sensing are (1) 

technical and (2) user limitations. Technological limitations are expected to be overcome 

with the development of new sensors. while user and management problems could be 

minimized by clearly defined objectives and requirements on the part of the manager. and 

full communication of possible errors and limitations from the scientist. Potential 

constraints to the technical and practical use of remote sensing for applications in the 

tropical coastal zone are presented in Table 3.4 with some possible solutions to the 

problems. 



Table 3.4. Technical and practical constraints to marine remote sensing. 
LIMITATION 

Coarse spatial resolution 

Coarse spectral 
resolution 
Inappropriate spectral 
band location 
Infrequent temporal 
resolution 
Variable water 
attenuation 
Variable atmospheric 
conditions 
Cloud cover 
Ground control 

EFFECT SOLUTION 

dark substrate 
Restricts comparison of multi- 

unavailable 
High cost of imagery. 
hardware. software and 

The most problematic technical limitation of remote sensing in the tropics is 

likely cloud corer. as it significantly reduces the number of suitable images available. 

The problem of cloud cover depends on both the season and the location of interest. 

Other major technological limitations include atmospheric attenuation. as well as spectral 

and spatial resolution of available sensors. Although atmospheric attenuation can never 

be eliminated. radiative transfer algorithms are available to remove these effects if the 

required atmospheric variables are known. 

The spectral resolution is important due to the limited penetration of light in water 

of some wavelengths. Since visible light penetrates to greatest depths in the clear waters 

of coral reefs, these wavelengths are ideal. Additionally, the width of the wavelength 

bands contributes to the overall accuracy of submerged feature detection. A waveband 

Unable to detect spatial features 
within pixel: mixels 
Unable to detect small spectral 
characteristics 
Spectral characteristics lost within 
broad- band 
Difficult to perform temporal 
change analysis 
Confusion between deep water and 

correction 
Radiometric 

temporal images 
Obscures area of interest 
Poor geopositional accuracy 

expertise 
Inadequate user training 

Spectral unmixing 

Analytic techniques 

Hyperspectral 
sensors 
Airborne imagery 

Radiative transfer , 

correction 
Airborne imagery 
Differential GPS 

Remote sensing not used to 
potential. change analysis not 

International 
cooperation 

common I 
Inaccurate analysis. incorrect 
techniques 

Communication 
between expert and 
user 



might be so wide that it obscures a spectral response that would have been detectable had 

the waveband been narrower. The spatial resolution of the sensor controls the amount of 

mixing within a pixel. Every pixel is actually a mixel since areas of heterogeneous 

substrate within a pixel are given an average brightness value. The smaller the pixel, the 

better the sensor for coral reef remote sensing. as there is great variability of bottom 

cover. 

User limitations complicate the practical use of remote sensing to manage a coral 

reef ecosystem. The largest source of error in the use of remote sensing as a management 

tool, for example. is the failure to clearly define project objectives. Also included in the 

user limitations category are: the high cost of obtaining digitally recorded remotely 

sensed imagery: the problems involved in standardizing multiple images to account for 

different atmospheric. sea surface and water column conditions; and the difficulty in 

making rigorous accuracy assessments. Few studies have made comparisons of the 

capabilities of different sensors for particular objectives (Green et al., 1996). A study 

comparing the technical capabilities of various sensors based on cost effectiveness would 

allow scientists. plmers and policy makers to produce an informed decision regarding 

the appropriate sensor and approach for their particular research objective. Additionally, 

the inclusion of an accuracy assessment of inventory and mapping projects using 

remotely sensed data would aid in the management decision making process. 



3.6 SUMMARY 

The complexities of remote detection of coral reef features have not been solved. 

although it is clear that progress has been made in the fields of water optics and algorithm 

development. Both empirical and analytical approaches are contributing to the 

understanding of how visible light interacts with the water surface, the water column and 

the shallow sea bottom. 

The optical similarities of coral reef components present significant challenges for 

remote identification. Optically bright subsurface features, such as sand and bleached 

coral. are easily confused. while optically dark features such as seagrass. healthy coral, 

deep water and macro-algae are also inextricable. Experimental laboratory results 

involving active sensors have reported promising findings regarding spectral separation 

of bleached and healthy corals (Hardy et al.. 1992). Furthermore, in situ experiments 

using passive technology to discriminate subsurface features have provided encouraging 

results (Holden and LrDrew. 1998a&c). Readily available images using passive remote 

sensing may therefore be an adequace tool for identifying subsurface features. 



CHAPTER 4 

STUDY AREAS, DATA AVAILABLE AND ANALYSIS TOOLS 

4.1 INTRODUCTION 

Data collection was performed in three consecutive years ( 1996, 1997 and 1 998) 

in distinct geographic locations. In August 1996, spectral data were collected in Beqa 

Lagoon. Fiji: in July and August 1997. data collection took place in Manado, Indonesia; 

and in July and August 1998. fieldwork was camed out in Savusavu Bay, Fiji. Because 

this is the first known data set of in sirlr underwater spectra, and due to the complex 

nature of the sampling environment. it will be necessary to explain the challenges of field 

data collecrion and to describe the methods used to measure underwater spectra. The first 

purpose of this chapter is to describe the three study sites used for data collection. Further 

objectives of this chapter are to summarize the data available; to outline the data 

processing steps: to define the data analysis techniques empioyed; and. finally. to present 

some errors associated with spectral data measurements. 

First. the sampling methodology designed to overcome the specific problems of 

undenvarer spectral measurements will be described. Next, the data collection 

techniques. instruments. and processing steps common to the three study sites are 

presented. Each study site is described separately with a complete presentation of data 

available at each site. Following the description of study sites and data available for each 



year, a summary of objectives and data analysis techniques are presented. Possible 

sources of error in collection of spectral reflectance in the field are also discussed. 

4.2 DESCRIPTION OF UNDERWATER SAMPLING METHODS 

The minimum number of assistants required for the sampling methods designed 

for in situ spectral measurement is four. One person remains on the boat as the 

spectrometer computer operator. while three scuba divers are underwater. One scuba 

diver holds the sensor and coils the unused optical cable, one takes a photograph of the 

measured feature and the third diver takes notes on an underwater template. Extra field 

assistants can dole out the cable from the boat to provide the optimum amount of cable, 

or an extra scuba diver can coil cable underwater to avoid tangles with branching corals 

and other features. 

The computer operator on the boat is responsible for setting up the instrument; 

tithing an above water rcfcrence rncasurmcnt: sciting the integration time of the 

instrument before each reference and tnryct i coral. sand. etc.) measurement; and taking 

notes on sky and water surface conditic~ns. The computer operator must be able to 

communicate with the undenvater instrument operator. To accomplish this. a 

communication system is used whereby the scuba diver can talk with and hear the above 

water computer operator. An acoustic syslrm designed for the US Navy is now 

commercially available which allows divers to talk to and hear an above-water person. 

The below water apparatus is attached to the diver's breathing regulator with a mouth- 



and earpiece. A push-to-talk system is located on the mouthpiece of the underwater 

apparatus. The above water apparatus consists of a headset with a push-to-talk 

mechanism to allow two-way communication through a sensor that is dropped over the 

side of the boat to transmit the remote signals. 

All three scuba divers descend at the same time. The scuba diver holding the 

instrument finds an appropriate target (coral, sand. etc.), orients the sun away from the 

body. and holds the sensor ready for a downwelling irradiance reference measurement. 

The reference measurement is taken by inverting the cosine receptor to measure the 

downwelling irradiance. The underwater operator indicates to the above water operator 

that a reference measurement can be taken. Once a downwelling reference measurement 

has been taken. an upwelling measurement is immediately captured of the target of 

interest. 

A downwelling reference measurement is taken prior to each target measurement. 

Furthermore. multiple measurements are taken at each site to examine the variability 

within a given feature. The sensor is then inverted to take a target measurement. When 

the sensor the underwater operator communicates with the above 

water computer operator. who captures the upwelling radiance scan of the target. Once 

the measurement procedure is complete for one site. the underwater sensor operator 

signals to the other 2 scuba divers. swims aside and waits. 

The underwater photographer takes a nadir shot of the target of interest at 

multiple levels to document the surface type as well as the surrounding substrate. The 

note taker records information regarding the target type, size, morphology, surrounding 

substrate. water depth, water quality. percent cover of branches, percent cover of algae, 



and any other pertinent information. When the notes and photographs are complete, the 

team moves together to the next sample site and repeats the procedure. 

4.3 DATA COLLECTION AND PROCESSING COMMON TO THE THREE 

YEARS 

The purpose of collecting three years of data was to create the first spectral 

database of the passive reflectance characteristics of c o d  reef features in situ. This 

database is important, as it allows for the fundamental study of the optical properties of 

features in a coral reef environment. This hndamental stage of spectral characterization 

allows for more accurate remote identification of coral reef features in the future. The 

common objective of taking spectral measurements of the reef substrate in all three years 

was to characterize spectral features of various reef components such as healthy coral, 

macro algae. bleached coral. sand and debris. 

Essentially. the same instrumentation and sampling design were used and 

followed each year, with only minor differences as a result of external funding available. 

Each year a hyperspectral handheld radiometer (Analytical Spectral Devices. Personal 

Spectrometer 11) was used to measure in siru reflectance of as many coral reef features as 

possible. This portable spectrometer can detect radiation in the range of 350 to lO5Onm 

at a spectral resolution o f  1.423~1.  Only the visible wavelengths are of interest in this 

study. for only they are able to penetrate the water column with minimal attenuation and 

therefore prove usefid for future passive remote sensing applications. Each year, a cosine 



receptor, which has a hemispherical field of view (FOV), was used to collect spectral data 

with the radiometer. The cosine receptor was held at a nadir angle approximately jcm 

above each feature of interest. Although the cosine receptor has a hemispherical field of 

view. the primary response from the cosine receptor is expected from a field of view of 

approximately 60 degrees. so an area of 2 6 m '  is the expected area of measurement. A 

global positioning system (GPS) was available each year. as well as a camera for 
' 

documenting the feature that was measured with the radiometer. 

The sampling strategies in 1996. 1997 and 1998 were the same: collect the 

greatest amount of spectra possible with the highest degree of quality control. For the 

most precise spectral reflectance measurements, sampling should occur when the sun is 

highest in the sky. so data collection was limited to between 1 Oam and 2pm local time. 

The level of generality in the sampling methodology was chosen to suit the use to be 

made of the data. For example, broad groupings of corals were used based on similarity 

of form and health (branching vs. massive corals and healthy vs. bleached corals). 

The determination of reflectance is based on two measurements taken sequentially 

from the same instrument. First. a reference downwelling irradiance measurement is 

collected with the cosine receptor by leveling the sensor facing the sky. Immediately 

following the irradiance reference is an upwelling radiance measurement of the feature of 

interest. The time lapse between the reference and target measurements was considered 

negligible. as effort was made to minimize the interval. Furthermore, there was little 

chance that environmental conditions changed during the interval between the reference 

and feature measurement since data were collected under clear skies and calm surface 

water conditions. 



The spectrometer automatically references the upwelling radiance to the total 

downwelling irradiance. giving a measure of spectral reflectance for the feature of 

interest. The spectrometer was programmed to average three measurements of both 

downwelling irradiance and upwelling radiance, so the spectra used in this study are 

actually three averaged spectra of the same target. 

No radiometric calibration of the spectral data was necessary, as the values used 

in the analysis are reflectance values and not radiance measures. However. a dark current 

measurement was collected for each spectral measurement. This dark current is 

subtracted from all subsequent spectral measurements to correct for the light signal when 

the detector array is closed to light. Since the dark signal varies over time, a dark current 

measurement accompanied each target measurement. 

4.4 STUDY SITE DESCRIPTION AND DATA AVAILABLE 

4.4. I -4 lreltsr I 996 Stttdv Site, Begcr Lwoonl Fiji 

The 1996 field data were collected in Beqa Lagoon. Fiji under clear skies between 

1 030 AM and 1 : 15 PM local time on August 8- 10. 1996. Using a high spectral 

resolution hand held spectrometer. in situ spectral data of various submerged coral reef 

features were collected at close range. This was possible by using a ten-meter fibre optic 

cable. which enabled a scuba diving operator to measure substrate reflectance just above 



the target. Measurements are therefore representative of the feature without the 

attenuating effects of the water column. 

A hand-held sonar echo-sounding device recorded water depths for each spectral 

measurement that ranged between 2.7 and 2.9m. This is a small depth range (0.2m), so 

no correction was performed to account for differences in water attenuation between 

spectral measurements. The water column between the sensor and the target is assumed 

negligible since the remote cosine receptor was held at approximately 5cm above the 

target. so no correction for attenuation was performed. 

A Global Positioning System provided geographic coordinates of 18 19.45S, 

178" 06.48E for the vicinity of the study site. and an undenvater photographer identified 

and took a picture of each target measured for hture reference. The dataset includes 40 

spectra representing bleached corals (n=9). healthy corals (n=21) and algae-covered 

surfaces (n= 10). For visual esarnination. the spectra were separated into these three 

broad categories and plotted separately below in Figure 4.1. 4.2 and 4.3. 

* -- - -. - - 

Bleached Branching Coral (n=9) 

Wavelength (nm) 

- -  

Figure 4.1 . Nine bleached coral spectra were measured in 1 996. 



Healtty Ranching Coral (n=21) 
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Figure 4.2. Twenty-one healthy branching coral spectra were collected in 1996. 

Algae-covered Surfaces (n=10) 

Wavelength (rm) 

Figure 4.3. Ten algae-covered surface spectra were measured in 1996. 

The second field season of this study took place outside the city of Manado on the 

. island of Sulawesi in Indonesia. A suitable healthy coral reef flat 20-km south of the city 

of Manado was chosen as the study site with exposed reef features at low tide to allow 

sampling. The particular reef flat was chosen based on accessibility from land, variety of 

coral reef components, the presence of macro algae and bleached coral, and degree of 



exposure at low tide. There was a fairly sparse distribution of small coral heads, which 

allowed easy sampling on foot between coral heads separated by light coloured sand. 

No underwater optical cable or underwater cosine receptor was available in 1997, 

so all sampling was performed with an above water cosine receptor attached to the 

radiometer. The nature of the non-water proof instnunentation demanded a sampling 

procedure whereby coral reef flats were sampled at low tide when features were exposed 

or nearly exposed (under less than one meter of water). 

The geographic location of the coral reef flat on which measurements were taken 

in Indonesia was recorded with a GPS as I O 24.82 north and 124" 42.44 east. A 

photograph was taken of each feature measured for compilation of a corresponding 

photographic and spectral database. In total. 80 spectra were measured on the coral reef 

flat in Manado. Indonesia in 1997. These spectra were separated into broad categories 

based on inspection of the photographs and notes accompanying each measurement. Five 

categories of spectra were created: healthy massive coral (n=6); healthy branching coral 

(n= 1 9): sand surfaces (n=34): bleached unhealthy coral ( 16); and algae-covered surfaces 

(n=5). These categories of spectra were plotted separately in Figures 4.4 - 4.8. 
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Healthy Masshe Coral (n=6) 
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healthy massive coral spectra were measured in 1997. 

-- . . - - - - 
Healthy Branching Coral (n= 19) 
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I- lgurc 4.5. Nincteen healthy branching coral spectra were collected in 1997. 



Sand and RubtJe (n=34) 

Figure 4.6. Thirty-four sand and rubble spectra were collected in 1997. 

Bleached Coral (n=16) I 
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. Figure 4.7. Sixteen bleached coral spectra were collected in 1997. 

Algae-cwered Surfaces (n=5) 
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Figure 4.8. Five algaetovered surface spectra were measured in 1997. 



4.4.3 Jzilv and Auaust I998 Studv Site. Suvtrsavu Bav, Fiji 

Field data were collected in July 16 and August 20, 1998 in Sawsaw Bay, Fiji. 

The same radiometer was used for the 1998 field season as for the 1996 and 1997 

seasons. A 20-meter underwater optical cable and an underwater cosine receptor was 

purchased for the 1998 season, which allowed measurements to be collected underwater 

while the operator was scuba diving. The same sampling procedure was used as in the 

previous two years such that the maximum number and variety of coral reef features were 

sampled with the greatest degree of control possible. 

In total 2 1 5 spectra were collected with the cosine receptor at three different 

locations within Savusavu Bay. The GPS coordinates of the first site are 16" 49.05 1 7 9 O  

1 6.76: of the second site are 16" 46.38 1 79" 1 9.72: and of the third site are 16" 50.0 1 

1 79" 16.84. Algae-covered surfaces. bleached coral. healthy coral (both branching and 

massive). soft coral. and rubble surfaces were measured in Savusavu Bay. 

A sonar depth sounder was used along with a standard scuba diving computer 
. . 

depth gauge to record the depth of each measurement. The depth range was from 4.2- 4.5 

meters. An underwater photographer took at least two pictures of each target measured. 

The first picture was a close-up view of the surface and the second was one from a 

greater distance to record the surrounding substrate. A scuba diver recorded information 

on an undenvater note-taking slate regarding the feature type. size, and depth, state-of- 

health. surrounding substrate, water quality and other pertinent information. 



The 2 14 measured spectra were categorized into broad groups as in 1996 and 

1997. Six categories were created based on inspection of the underwater photographs 

and the notes accompanying each measurement. Nineteen healthy branching corals; 

twenty-seven healthy massive corals; forty-six healthy soft corals; fifteen bleached 

corals: twenty-eight rubble surfaces: and seventy-nine algae-covered surfaces are 

included in the 1998 dataset. The broad categories of spectra are plotted for comparison 

in Figures 4.9 - 4 . 1 4  

Algae-covered Surfaces (n=79) 
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Figure p 4.9. Seventy-nine algae-covered surface spectra were collected. 

Rubble and Sand Surfaces (n=28) 
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Figure 4.10. Twenty-eight rubble and sand surface spectra were collected. 
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Figure 4. I 1 . Fifteen bleached coral spectra were collected. 

Healthy Soft Corals (1747) 
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Figure 4.12. Forty-seven healthy soft coral spectra were collected. 

Healthy MZSS\R Caal (n=27) 
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Figure 4-13. Twenty-seven healthy massive cords were sampled. 
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Healthy Branching Coral (n= 19) 
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Figure 4.14. Nineteen healthy branching corals were sampled. 

4.5 POTENTIAL ERRORS IN SPECTRAL REFLECTANCE 

MEASUREMENTS 

There are several potential sources of error in the collection of spectral reflectance 

information with the cosine receptor attached to the ASD spectrometer (Table 4.1). Since 

reflectance is a relative measurement of reflected radiance to incident irradiance, stable 

solar irradiance conditions are extremely important. It is possible that the irradiance 

ccnditions could change between the reference measurement of downwelling irradiance 

and the target upwelling radiance measurement. However, great care was taken in all 

field seasons to coIlect measurements under clear and stable sky conditions and to 

minimize the time interval between the reference and the target measurements. 

Depending on the direction of change. an underestimation or overestimation of 

reflectance could result. 



Table 4.1. The precision and accuracy in spectroscopy can be affected by numerous 
factors in a complicated manner (modified from Sommer. 1989). 

reference card level 
Measurement during 
unstable irradiance 

Arising from the Target 
Geomorphologic variation 
between substrates 
Deviation from optimal 

Arising from the Operator 
Failure to hold the sensor 
level 
Failure to hold the 

conditions 
Failure to minimize 

I I causing false signals I 

Arising from the Instrument 
Incorrect signal amplification 
and processing 
Fluctuations in electrical 
circuitry within system 
Low signal to noise ratio; 
high electronic noise level 

shadow 

If two radiometers were available and perfectly calibrated to one another. the 

reference and target measurements could be measured simultaneously. In this study, one 

downwelling irradiance reference measurement was taken immediately prior to the 

upwelling radiance target measurement. and effort was made to minimize the time lag 

between measurements. Furthermore, reflectance measurements were restricted to solar 

noon and to times when the sky conditions were stable. Since the radiometer provides 

real lime displays of spectra. changing irradiance conditions are readily viewed during 

downwelling irradiance collection. so measurements can be delayed until the response 

appears stable. In addition. care was taken to ensure that the sensor head was normal to 

the target surface since the radiometer is sensitive to leveling errors under clear sky 

conditions. 

Another potential source of error during spectral reflectance measurement with 

the remote cosine receptor is contamination of the incoming and reflected radiation due 

to nearby objects such as the operator (Kimes et al., 1 983). This interference can enhance 

conditions of purity 
Presence of interfering 
species (imperceptible 

Incorrect or inaccurate 
algae) or substrates (debris) 
Multiple scattering, 

calibration by manufacturer 
Stray sight generation 

inelastic scattering 



the measured signal through reflection or reduce the signal through shadowing (De 

Abreu. 1996). Instnunent and operator position was therefore kept constant throughout 

data collection. For example, the remote cosine receptor was held overhead to collect the 

downwelling irradiance reference signal and held at a constant height above the feature 

for all measurements. Reflectance is calculated by inverting the cosine receptor facing 

and level to the sky for a measure of incoming irradiance. The target measurement is 

compared to a reference measurement of incoming irradiance to calculate a relative value 

of reflectance. If the cosine receptor is not held perfectly level when inverted, then there 

may be errors associated with the reference measurement. Similarly, if the cosine 

receptor is not held level to the feature of interest. then the target measurement may 

contain errors. 

Another source of error when taking measurements in the field relates to the 

specific morphology of the feature of interest. For example, the surface texture of 

features in a coral reef environment varies. which will affect the relative reflectance of 

illumination. .4 branching coral's spectral reflectance will be affected by multiple 

scattering from its branches. as well as by the contribution of the underlying substrate. 

Conversely. a hard. massive coral's smooth. solid surface will not allow contribution 

from the substrate below. However. the slope and geometry of a massive coral's rounded 

surface results in a complex mixture of directly and multiply-reflected light returned to 

the sensor. 



4.6 DATA ANALYSIS 

The use of a high spectral resolution radiometer allows for detection of subtle 

optical characteristics of coral reef feature reflectance, which in turn may permit more 

precise and accurate identification. For example, the spectral reflectance characteristics 

of a healthy coral are expected to be optically different than that of a non-healthy coral 

based on the difference in colour resulting from the loss of pigmentation. It would also 

be expected that a bleached coral would have not only a much higher reflectance in 

general. but also lack some spectral characteristics of a healthy coral. 

4.6.1 Cornpcrrison o f  Spectra Collected Senaratelv b y  Field Season 

The analysis for this study begins with separate investigations of the spectral 

measurements by field season. In chronological order. the spectral datasets are 

investigated for the degree of within and between population variability, where a 

population is defined as a particular feature type. such as healthy branching coral. It is 

hypothesized that the within population spectral variability will be low, and the between 

population spectral variability will be high such that broad categories of coral reef 

features will be separable based on spectral reflectance. 

After initial investigation of the spectra within categories, cluster analysis is used 

to examine spectral similarities. Following the cluster analysis, Pearson correlation 

coefficients are calculated to determine the degree of similarity between measured 



spectra within a given population or category. Cluster analysis and correlation analysis 

are discussed further later in this chapter. 

4 6 . 2  Comparison of  Three Years o f  Spectral Data 

The next stage of analysis involves comparing the spectra collected in 1996 

through 1998 to determine the degree of variability resulting from geographic location. It 

is hypothesized that measured spectra of similar features will be similar regardless of 

geographic location. 

After visually comparing the spectra collected in geographically distinct areas, 

cluster analysis is used to esplore the within-population variability. Correlation 

coefficients are then calculated to examine the relationships between and within 

populations. 

4.6 3 Dcwrmintrtion of  Represc.nrurir*c) .%cctru 

The dataset consisting of 334 spectra can be reduced to representative spectra 

using principal components analysis. The purpose of determining representative spectra 

is to enable the general spectral reflectance characteristics of the populations considered 

in this study. Reducing the dataset to representative spectra allows for easier 

interpretation of differences in spectral reflectance than if the entire data set was 

considered. 



6 4 Establish a Means of Discrimination 

Inspection of the representative spectra suggests that the slope of the reflectance 

curves in specific wavelength regions may enable discrimination between populations. 

Therefore. spectral derivative analysis is used to determine the ideal wavelengths in the 

visible region to allow for accurate discrimination of coral reef features. First 

derivatives. or slopes, are determined by calculating the change in reflectance with 

respect to wavelength. The representative spectra identified by principal components 

analysis are used in this stage of analysis to identify specific wavelength regions for 

discrimination. 

46 .5  A ccrrracv Assessment 

The accuracy of the procedure established in the previous step using spectral 

derivative analysis is assessed in this tinal analysis step. The first derivatives calculated 

for the representative spectra are also calculated for the remainder of the dataset. A 

classification of spectra into populations is performed and the erron analyzed by 

counting the correctly identified spectra wrsus the incorrectly identified spectra. An 

error matrix is used to display the crrors of commission and omission as a means of 

assessing the accuracy of the classilicotion procedure. 



4.7 STATISTICAL TECHNIQUES USED FOR DISCRIMINATION 

Cluster analysis is the generic name for a multivariate procedure of clumping 

similar objects into categories enabling identification of ( 1 )  outliers. and (2) the basic 

structure of the dataset (Wilkinson et al.. 1996). No training or prior knowledge of the 

distribution of the data is required. so clustering can be used as a subjective, exploratory 

procedure. Despite the obvious benefits of cluster analysis with respect to identifying 

structure and outliers. there are two related problems: (1) deciding on the number of 

clusters. and (2) deciding whether a solution is significant. The cluster analysis in this 

study is performed in Systat. version 7. for Windows. 

No satisfactory general method has been developed for deciding how many 

clusters exist in a dataset of unknown structure (Wilkinson et al.. 1996). Nor is there a 

goodness-of-fit index to determine the optimal number of clusters. Therefore. the 

number of clusters is a subjective decision based on knowledge of the dataset 

characteristics. With respect to the significance of a solution, Wilkinson et al. ( 1  996) 

believe that there is no universally acceptable test statistic. According to Wilkinson et al. 

, ( 1 996) the main indicator of randomness in clustering is the length of the branches, where 

long branches indicate random clustering. 

The objective of cluster analysis is to determine which objects are similar and 

dissimilar and categorize them accordingly. The method of achieving the categorization 

in this study is the hierarchical method which produces families of clusters which 

themselves contain other clusters. The purpose of the cluster analysis in this study is to 



determine if there is a spectral distinction between and within populations based on 

spectral response over the observed wavelengths. 

Hierarchical cluster analysis produces families of clusters, which contain other 

clusters. which contain other clusters. and so forth. Objects, spectra in the case of this 

study. are joined sequentially according to similarity. The first step is to join the two 

most similar spectra and call this a cluster. Then the next two closest spectra are joined 

to that first cluster. The tree diagram generated from hierarchical cluster analysis has a 

unique ordering in which every branch is lined up so that the most similar objects are 

closest to each other. 

4.7 .2  C~'orre1ation Analvsis 

In an effort to describe the similarity of reflectance spectra within a population. 

correlation analysis is used. A correlation coefficient, r, is calculated from the data. 

which measures the degree to which the relationship between two measured spectra is 

linear When r=O. there is no degree of linear relationship. but where r=l or r=-I. a 

perfect linear relationship exists. The correlation analysis in this study is performed in 

Systat. version 7. for Windows. 

The Pearson Correlation coefficient is used in this study to compare the strength 

of association between reflectance at a given wavelength of features within one 

population. For example, the similarity of measured reflectance spectra for all healthy 

corals measured in Fiji in 1996 can be examined by calculating correlation coefficients. 



Since large volumes of data are explored in the correlation analyses, entire 

matrices are not included in the results. Instead. a sample of correlations is displayed in a 

matrix and graphically with a matrix of scatterplots with one plot for each entry in the 

correlation matrix. The graphical display shows histograms for each variable on the 

diagonal and scatterplots of each variable against the other. To characterize the 

relationship within each scatterplot, a 75% ellipse is used such that the center of the 

ellipse is the sample mean of the x and y variables in the plot and the axes are determined 

by the standard deviations of x and y. 

4 - 7 3  Principal Components A nalvsis 

Principal components analysis (PCA) has been used effectively in many studies as 

a data reduction technique. as it preserves the total variance while minimizing the mean 

square approximate errors. and is also used as a method to identify dominant modes of 

data (Fung and LeDrew. 1987). Furthermore. PCA is a technique that transforms the 

original dataset into a substantially smaller and easier to interpret set of uncorrelated 

variables that represents most of the information in the original dataset (Dunternan, 

1981). Principal components are derived from the original data such that the first 

principal component accounts for the maximum proportion of the variance of the original 

dataset. and subsequent orthogonal components account for the maximum proportion of 

the remaining variance, and so forth (Fung and LeDrew, 1987, SAS Institute Inc., 1990). 

The purpose of the PCA. performed in SAS. a statistical analysis package (SAS 

Institute Inc., 1990), is to reduce the amount of data to representative spectra. A loading 

is calculated in PCA to describe how closely a particular spectrum resembles or loads to 



the principal component spectra. Therefore, a separate PCA is performed for each 

population to reduce the data set to one representative spectral reflectance curve with the 

highest loading to the principal component reflectance curve. The result of the series of 

PCAs is a set of spectra. which are representative of each population. This provides a 

smaller and more manageable data set on which spectral derivative analysis can 

performed to determine the optimal wavelengths for discrimination based upon the 

representative spectra. 

4 .7  4 Spectral Derivutive Analvsis 

Derivative spectroscopy uses changes in spectral reflectance or radiance with 

respect to wavelength to isolate or identify spectral features. Derivatives allow 

components of the spectrum to be more clearly separated. Furthermore, the use of 

derivatives solves many problems of quantitative analysis in a more effective way than 

ratios and differences (Demetriades-Shah et al.. 1990). It is assumed in derivative 

spectroscopy that the variations are spectrally independent (Chen et al.. 1 992). 

The simplest method of finding derivatives is by dividing the difference between 

successive spectral values by the wavelength interval separating them (Demetriades-Shah 

et al.. 1990). This method gives the approximation of the first derivative at the midpoint 

between the spectral values used. which provides information on the rate of change in 

reflectance. which is the slope. with respect to wavelength. This technique is used to test 

the hypothesis that differences in the slope of the reflectance curve in specific wavelength 

regions will allow discrimination of population types. 



3.8 SUMMARY 

The data available were collected in three geographic locations in three successive 

years. The first dataset was collected in Beqa Lagoon, Fiji in August 1996: the second in 

Manado. Indonesia in July and August 1997: and the third in Savusavu Bay, Fiji in July 

and August 1998. The spectral data were measured with the same radiometer with a 

cosine receptor and with the same sampling strategy. In total, 334 spectra in 172 

wavebands are available for this study. 

In Beqa Lagoon. Fiji in 1996. an underwater remote cosine receptor and 10 meter 

optical cable made underwater measurements possible. However, in Manado, Indonesia 

in 1997. only above water instrumentation was available, so measurements were limited 

to exposed coral reef flats. A 20-meter underwater optical cable and undenvater cosine 

receptor was available in 1998. so undenvater measurements were possible in Savusavu 

Bay. Fiji. A summary of the data used in this thesis can be found in Table 4.2 and maps 

of the study areas are provided in Figures 4.15 and 4.16. 



Table 4.2. A surnmar 

I 
I 

GPS Location 

Number of 
I Categories of 

Measurement a 

of the data used in the 
1996, Beqa Lagoon, 
Fiji 
18' 19.45 S 
178 Q 06.48 E 

Underwater 

xesent studv. 
1997, Manado, 
Indonesia 

Above water 

All exposed 

1998, Savusavu 
Bay, Fiji 
a) 16" 49.05 S 

179" 16.76 E 
b) 16" 46.38 S 

179" 19.72 E 
c) 16O 50.01 S 

179" 16.84 E 
214 

Underwater 

Manado Indonesia 

Figure 4.15. Data collection took place in Manado. Indonesia in 1997. 



1- 
Figure 4.16. Data collection took place in Beqa Lagoon, Fiji in 1996 and Savusavu Bay, 
Fiji in 1998. 

The main objective of this study is to determine a means of remotely identifying 

features in a coral reef environment. The purpose of the spectral reflectance 

measurements collected in the 3 field seasons was to allow geographic comparisons of 

thr'vuiation in response. Clustrr analysis. correlation analysis, and principal 

components analysis are techniques to be used to determine the spectral separability of 

various broad categories of coral reef features. Representative spectra are determined 

based on the full dataset consisting of three yeus of field data, and spectral derivative 

analysis is used in an attempt to determine the specific spectral regions that would enable 

accurate identification. Finally. an accuracy assessment is conducted by performing the 

procedure based on spectral derivative analysis on the entire dataset and examining the 

proportion of correctly identified to incorrectly identified spectra. 



CHAPTER 5 

WITHIN AND BETWEEN POPULATION VARIATION OF SPECTRAL 

MEASUREMENTS COLLECTED IN 1996,1997 AND 1998 

5.1 INTRODUCTION 

The purpose of this chapter is to separately examine the field data collected in 

Beqa Lagoon. Fiji in 1996. Manado. Indonesia in 1997 and Savusavu Bay, Fiji in 1998. 

An additional purpose is to describe the degree of variation within- and between- 

populations. The populations are defined broadly based on examination of photographs 

and field notes. There are three populations defined for the 1996 field data: bleached 

massive coral. healthy massive coral and algae-covered surfaces. Five populations were 

defined for the 1997 field season: healthy massive coral. healthy branching coral. 

bleached r n s i ~ ~ e  coral. sand surfaces and finally. algae-covered surfaces. Finally. six 

populations were defined for the 1 998 field season: healthy branching coral, healthy 

massive coral. healthy soft cord. bleached branching coral, rubble surfaces and finally, 

algae-covered surfaces. 

The spectra collected at thc three study areas are considered separately for this 

stage of analysis. Initially the avenge and standard deviation spectra are calculated for 

each of the predefined populations. The average spectra for each population are 

compared to one another and the degree of separability examined. Following this initial 



comparison. cluster analysis is used as a tool to visualize the degree to which each field 

season's data set can be clustered into groups according to population. Cluster analysis is 

then used to examine the variation within populations by analyzing each population on its 

own. Finally. correlations are examined within the populations to detennine the degree 

of similarity. 

5.2 EXAMINATION OF 1996 SPECTRAL DATA SET 

The 1996 field data collected in Beqa Lagoon, Fiji consist of 40 reflectance 

spectra in 172 wavebands measured underwater. The hyperspectral radiometer used 

allowed for a remote cosine receptor to be attached to the end of an underwater optical 

cable to faci t itate underwater measurements. The features measured include bleached 

massive corals. healthy massive corals. and algae-covered surfaces. In the following 

sections. these 40 spectra are analyzed to determine the degree to which the features 

measured in the same geographic location are separable based on reflectance. 



5.2.1 Initid Examination of  1996 Specrra 

As a first step in examining the variability within populations in the 1996 data set. 

average and standard deviation spectra were found, as illustrated in Figure 5.2.1 (average 

bleached coral. n=9). Figure 5 . 2 2  (average healthy coral, n=21); and Figure 5.2.3 

(average algae-covered surfaces. n= 1 0). 

Aterage 6 leached Coral (n=9) 

Figure 5.2.1. The average spectral reflectance was calculated based on 9 measurements 
of bleached corals collected in 1996 (gray lines represent plus and minus one standard 
deviation). 



I Awage Healthy Coral (n=21) 

Figure 5.3.2. The average spectrum was calculated based on 2 1 measurements of healthy 
corals collected in 1 996 (gray lines represent plus and minus one standard deviation). 

Awage  Algae (n= 10) 

. Figure 5.2.3. The average spectrum was calculated based on 10 measurements of algae- 
covered surfaces in 1996 (gray lines represent plus and minus one standard deviation). 

Upon initial inspection. there appear to be spectral differences in terms of the 

magnitude and shape of the reflectance curves of the three populations. The reflectance 

curve of average bleached massive coral has the highest overall magnitude, with a 

maximum reflectance of 0.2 1 at 590.6nrn. The average algae reflectance curve reveals 

slightly lower overall reflectance than bleached massive coral, with a maximum of 0.15 

at 596nm. Average healthy massive coral has the lowest overdl reflectance of the three 



c w e s .  with a maximum of 0. I0 at 603.4nm. The average reflectance curves for the 

three categories in the 1996 data set are compared in one plot in Figure 5.2.4. 

The differences in magnitude are expected, as bleached massive corals have either 

lost their zooxanthellae or lost pigments within their zooxanthellae. In either case, the 

resultant effect is the same: the coral turns white in its stressed state. This change in 

colour is apparent in the reflectance spectra. Algae are known to colonize bleached 

massive coral in its vulnerable state. Therefore, it is not surprising that algae-covered 

surfaces have greater magnitude of reflectance than healthy massive coral since the algae 

is spread out over bleached massive coral. which has high average spectral reflectance. 

- -  --  

Aerage Spectra, 1996 

0.25 , 1 
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Figure 5.2.4. The average reflectance curves for the three broad categories are compared. 

The differences in spectral shape between these three broad classes of coral reef 

features are subtle. For example, there is a gradual shift in the location of the reflectance 



maxima toward shorter wavelengths as the coral becomes stressed. The healthy massive 

coral reflectance maximum is at 603nm. while that of bleached and algae-covered coral is 

at less than 596nrn. Additionally, the algae-covered surface average reflectance curve 

reveals a slight dip in reflectance at 570m. which may indicate absorption by an 

accessory pigment not present in healthy massive coral. 

Finally. and perhaps most importantly for discrimination, the slope of the 

reflectance curves between 555  and 575nrn differs slightly between the three average 

spectra. The slope of the curve in this spectral region is steeper for the bleached massive 

coral spectra than the healthy massive coral. and the algae-covered surface spectra lies 

between the two. This spectral difference will be funher investigated later in this thesis 

as a means of discrimination. 

The objective of using hierarchical cluster analysis is to determine if the measured 

spectra can be grouped into classes based on reflectance characteristics. This technique 

was chosen because of its relative simplicity in terms of visualization of data analysis 

results. Output from hierarchical methods can be represented as a tree, or dendrogram. 

The linkage of each object. or spectra in this case. is shown as a joining of branches in a 

tree. The "root" of the tree is the linkage of all clusters into one group, and the ends of 

each branch lead to individual spectra. The cluster tree diagrams generated provide a 

means of visualizing the degree to which the spectra can be placed into similar classes. 

The ciuster analysis begins with a data matrix of columns (40 reflectance spectra) 



and rows (1 72 wavelengths). The separability of the measured spectra is based on both 

magnitude of reflectance and shape of the spectral response. Included in the cluster 

analysis are spectral measurements of healthy massive coral. bleached massive coral and 

macro algae. The cluster tree diagram in Figure 5.2.5 shows the order in which spectra 

were joined from left to right. 

Cluster Tree 

0.0 0.1 0.2 0.3 
Distances 

Figure 5 2 . 5 .  At a Euclidean distance of approximately 0.075, this cluster analysis tree 
diagram reveals four groups of spectra separable on the basis of spectral shape and 
magnitude of reflectance. 



The distance scale at the bottom of the tree diagram is a normalized Euclidean 

distance that is the root mean square discrepancy between objects (spectra) across 

attributes (reflectance). On the left there are as many clusters as spectra, while on the 

right there is only one cluster. Therefore. moving from left to right represents an 

increasing degree of difference between spectra where a small Euclidean distance 

suggests that the spectra are most similar. Arbitrarily, a vertical line is drawn through the 

clusters at a specific Euclidean distance to deter:. . . i x  the number of clusters present at 

that point. 

The process of finding clusters is therefore somewhat subjective, but at a 

Euclidean distance of 0.075. there are four distinct clusters present, which can be related 

to substrate type. Cluster one, at the top. contains 5 spectra; 4 of these spectra are 

identified as bleached massive coral measurements. This result indicates that these 4 

spectra are similar with respect to magnitude and shape. Five other bleached massive 

coral spectra were also included in this cluster analysis. but they are found scattered 

among the other spectra in the cluster tree. This indicates that within the dataset collected 

in 1996. there appears to be a certain degree of variability in spectral response within the 

population of bleached massive corals. 

Cluster two. which is second from the top. contains 6 spectra. Spectra identified 

as 3 algae-covered surfaces. 2 healthy massive corals and 1 bleached massive coral are 

found within this cluster. which suggests that there is a high degree of similarity between 

the three populations o f  coral reef features. This cluster therefore cannot be identified 

with any of the three populations defined for this field season. 



The third cluster contains 16 spectra. Nine of these are identified as healthy 

massive coral spectra. 5 as algae-covered surfaces and 2 as bleached massive corals. 

While 56% of this third cluster are healthy massive coral spectra, there is still a high 

degree of confusion between populations of coral reef features in the 1996 data set. 

Finally. the fourth cluster. at the bottom of the cluster tree. contains 13 spectra in 

total. Ten of these spectra are healthy massive coral spectra, 2 are bleached massive 

coral spectra and 1 is an algae-covered surface measurement. Therefore, 73% of the 

bottom cluster is accounted for by healthy massive coral measurements. This indicates 

that there is a relatively high degree of similarity in the shape and magnitudes of the 

spectral curves of these healthy massive corals. 

The percent cover of algae on the surface measured was not quantified during the 

field season. The relative abundance of algae compared to the underlying substrate is 

therefore not known. This limitation is addressed in future years, but may contribute to 

the spectral confusion in classification of the 19% field data. 

To examine the degree to which spectra within a population are considered 

simi lsr according to hicmrchicd cluster and ysis. three separate malpses were performed 

for each category. First. the nine bleached massive coral spectra were subjected to cluster 

analysis. as seen in the cluster tree in Figure 5.2.6. At a Euclidean distance of 0.1. there 

are 2 clusters present indicating two sub-populations of bleached massive coral spectra 

within the category. The spectral differences could be due to differing stages of 

bleaching. where some bleached samples may only have been partially bleached, while 

others completely bleached and possibly even partially colonized by algae. 
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Figure 5.2.6. The category of bleached massive corals (n=9) was subjected to cluster 
analysis to determine the within population variation. 

Secondly. the healthy massive coral spectra were clustered to determine the 

degree of similarity within the category. The cluster tree in Figure 5.2.7 reveals that at a 

Euclidean distance of 0.07. there are three clusrers. All healthy massive coral spectra join 

together as one cluster at a Euclidean distance of equaling less than 0.15. which indicates 

that the spectra can be considered the same at this point. Comparing this to the bleached 

massive coral cluster tree diagram in Figure 5.2.6 indicates that there is less variability 

within the healthy massive con1 population than the bleached massive coral population. 

In fact. the bleached massive coral do not join together as one cluster until a Euclidean 

distance of 0.3. This may be a result of fewer spectral measurements of bleached 

massive coral than healthy massive coral. 



Cluster Tree 

HEALTH1 0 

HEALTH1 
HEALTH 1 7p 
HEALTH2 1 

r I 1 1 

0.0 0.05 0.10 0.15 
Distances 

Figure 5.2.7. The population of 2 1 healthy massive coral spectral measurements was 
subjected to cluster analysis to examine the within population variability. 

Finally. the ten spectra corresponding to algae-covered surfaces were included in 

a cluster analysis. as illustrated in Figure 5.2.8. At a Euclidean distance of 0.05, there are 
. * 

two clusters present. These clusters may be present due to varying degrees of algal cover 

on the surface. Varying amounts of algal cover will result in different spectral 

reflectance responses depending on the nature of the underlying surface It should also 

be noted that. like the healthy massive coral spectra, the algae-covered surface spectra 

join into one cluster at a Euclidean distance of 0.1 5. This indicates that the algae-covered 

surface spectra, while they can be broken up into two clusters, contain less within 

population variability than the bleached massive coral spectra. 
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Figure 5.3.8. A cluster tree diagram illustrates the degree of within-population variability 
for ten algae spectral measurements. 

A correlation analysis can be used to examine the relationship between variables. 

In this case. correlation analysis is used to examine the relationship between each of the 

measured spectra within a given category of features. The wavelength-specific 

reflectance values of one sample are therefore compared to the wavelength-specific 

reflectance values of another sample. The degree of spectral variability within a given 

population and between populations is of interest. Pearson correlation coefficients were 



calculated in Systat within each category to examine the similarity of spectra within the 

population. 

All 9 bleached massive corals have a high degree of similarity to each other. as 

seen in the correlation coefficient matrix in Table 5.2.1. A strong positive linear 

relationship exists between all bleached massive coral spectral reflectance measurements. 

The minimum value of the correlation coefficients calculated for the matrix of bleached 

massive con1 spectra was 0.83. which is still considered a strong correlation. Of the 36 

correlation coefficients calculated. 88.8% were greater than 0.90. which suggests spectral 

similarity within the bleached massive coral population. 

Secondly. the 2 1 healthy n~nssivc coral spectral measurements collected in 1996 

Table 5.2.1 . Correlation coefficients for bleached massive coral spectra. 

were compared to dererminc rhc dcgrcc ul'spcctral similarity. As can be seen in the 

correlation coefficient matris in Tahlc 5.2.2. there is a positive linear relationship. Only 

the first 10 spectra were included in this matris. although the entire data set of 21 spectra 
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correlation coefficients were greater than 0.80. Therefore. it can be concluded that the 

within-population variability of the healthy massive coral population is relatively small. 

Table 5.2.2. There is a positive linear relationship between healthy massive coral 
measurements. as seen in the correlation coefficient matrix. 

Finally. all 10 spectra measured in 1996 over algae-covered surfaces are 

examined for the degree of similarity within the population. There is a positive linear 

relationship between all spectral measurements of algae-covered surfaces. The strength 

of the linear relationship is displayed in matrix form in Table 5.2.3. The minimum 
L 

correlation coefficient calculated in the matris for algae-covered surfaces was 0.65. Only 

2 correlation coefficients are less than 0.80 thus 94.4% are considered strong correlations. 

This is considered a relatively moderate correlation. which indicates that the spectra 

measured within this population are spectrally variable. This is consistent with previous 

investigations within this study, which have suggested that the algaetovered spectra 

measured in Fiji in 1996 are variable. possibly due to different amounts of algal cover on 

the surfaces. 



Table 5.2.3. There is a positive linear relationship between the spectra measured over 

In an attempt to examine the between-population variability of spectral 

algae-covered surfaces. as seen in the correlation coefficient matrix. 

reflectance. correlation coefficients were calculated based on the average spectra for each 

population. Therefore. 3 average spectra were included in the following correlation 

1 A l  
A1 1 I 

analysis: average bleached massive coral. average healthy massive coral and algae- 

A3 A2 

covered surfaces. The results of the correlation analysis can be found in the Pearson 

correlation matrix in Table 5.2.4. The correlation coefficients in all cases are strongly 

A4 

positive. which indicates that the avenge spectra for the 3 populations are all very 

similar. This result has significant implications for attempting to discriminate between 

AS 

these populations remotely. Since the populations are highly correlated. or spectrally 

similar. it will be very difficult to develop an accurate means of differentiation based 

A6 

upon the reflectance spectra across the entire visible spectrum. 

Table 5.2.4. The Pearson correlation matrix reveals strong positive relationships between 

A7 A8 I A9 
1 1 
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the three average spectra. 
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5 . 2 .  Strrnrnarv of 1996 Spectral Compurison 

The spectral data set collected in Beqa Lagoon, Fiji in 1996 consists of 40 

measurements of bleached massive coral. healthy massive cord and algae-covered 

surfaces. These spectra were measured underwater while scuba diving with a lorn ' 

optical cable and a remote cosine receptor. It was hypothesized that the within- 

population variability will be small such that all bleached massive coral spectra will be 

similar. Additionally, it was hypothesized that the between-population variability will be 

large as a result of wavelength-specific differences in reflectance. 

Initial inspection revealed that there are subtle differences in the shape and 

magnitude of the reflectance curves. which may enable discrimination between broad 

classes or populations. The cluster analysis performed to investigate the difference 

between populations produced variable results. Cluster analysis was able to discriminate 

between different spectra although there was a certain degree of misclassification. The 

primar). source of variability is most likely the differing amounts of algae present on the 

sample as well as the small sample sel. The main value of the cluster analysis in this 

study may be its ability to reveal low variability within populations. 

The correlation coefficients were calculated to examine the within-population 

variability of spectral reflectance measurements. This analysis revealed that, in all cases, 

a positive linear relationship exists between spectra within a given population. The 

relationship was strongest for the bleached massive coral group and weakest for the 

algae-covered cord group. 



While the visual examination of the measured spectra revealed subtle differences 

in spectral reflectance characteristics. the correlation coefficients calculated for the 

average spectra for each of the 3 populations reveal strong positive relationships. The 

strong positive correlations indicate that it will be difficult to differentiate these 

populations spectrally. 

5.3 EXAMINATION OF 1997 SPECTRAL DATA SET 

Field data were collected in 1997 in Manado, Indonesia to augment the relatively 

small database initiated by the 1996 data set collected in Beqa Lagoon, Fiji. The 1997 

dataset consists of 80 spectra measured with the remote cosine receptor. The features 

measured were exposed. so there was no contribution of the water column to spectral 

reflectance. The features measured were grouped into 5 broad categories: healthy 

massive coral (n=6): healthy branching coral (n= 1 9); sand surfaces (n=34); bleached 

massive coral (n= 16) and algae-covered surfaces (n=5). 

The average and standard deviation spectra were computed and compared 

separately by category in Figures 5.3.1 through 5.3.5. There appears to be little variation 

in the spectral shape and magnitude between the categories defined above according to 



feature type. The spectral curve with the greatest maximum reflectance is sand. This is 

not surprising. as the sand surfaces in this coastal area were very bright white. As a 

summery. Table 5.3.1 provides the spectral locations of the peaks in the reflectance 

curves as well as the actual magnitude of those peaks. 

Aerage Healthy Massi* Coral ( ~ 6 )  

Figure 5.3.1, The average spectrum for healthy massive coral collected in Manado. 
Indonesia in 1997 (gray lines represent plus and minus one standard deviation). 

Awage Healthy Branchmg Coral (n= 19) 

Figure 5.3 2. The average spectrum of healthy branching coral measured in Manado, 
Indonesia in 1997 (pray lines represent plus and minus one standard deviation). 



Amage Sand (n=34) 

Figure 5.3.3. The average spectrum of sand surface spectra measured in Manado, 
Indonesia in 1997 (gray lines represent plus and minus one standard deviation). 

Amage 6 leached Coral (n= 16) 

J 

Figure 5.3.4. The average spectrum for bleached massive coral spectra measured in 
Manado. indonesia in 1997 (gray lines represent plus and minus one standard deviation). 



Awage Algae (n=5) 

Figure 5.3.5. The average spectrum of algae-covered surface spectra measured in 
Manado. Indonesia in 1997 (gray lines represent plus and minus one standard deviation). 

Table 5.3.1. The magnitude and spectral location of the peak in reflectance is compared. 
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Reflectance 
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The order of columns in Table 5.3.1 from left to right is according to decreasing 

magnitude of reflectance. Sand surfaces and bleached corals have very similar 

magnitudes of maximum reflectance. which will cause confusion in classification based 
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on magnitude alone. The spectral locations of the reflectance maxima are different: 

645m versus 609nm. which result in a slightly different slope of the spectral curve in 

this wavelength region. This issue will be examined later in this thesis. Healthy massive 

coral. healthy branching coral and algae-covered surfaces display similar magnitudes and 

similar spectral locations of maximum reflectance, which is a iimiting factor for 

discrimination of these populations in the 1997 data set. 
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For comparison. the average spectra are plotted in Figure 5.3.6. There appear to 

be 2 distinct populations based on-spectral magnitude and shape. Bleached coral and 

sand have high overall reflectance and do not display a dip in the reflectance curve at 

approximately 595nm. Alternatively. healthy massive and branching corals as well as 

algae-covered surfaces have lower overall reflectance and display a dip in reflectance at 

595nm. This dip in the reflectance curve could be a result of pigments present in the 

zooxanthellae of healthy coral and the algae that are not present in the bleached coral and 

sand surfaces. The slope of the spectral curve between approximately 590-6 15nm is 

therefore different for these two groups. 

The algae-covered surface average spectral curve has characteristics that are quite 

similar to healthy massive and branching corals. The small number of spectra measured 

in the 1997 data set (n=5) may limit the degree to which algae-covered surfaces can be 

characterized. This weakness was recognized after the 1997 field season and addressed 

in the 1998 field season. as will be discussed later. 
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Figure 5.3.6. The average spectra for the 5 populations defined for the 1997 dataset are 
compared in one plot. 

5.3.2 Cfuster Analvsis of /99? Spectra 

As in the earlier analysis of the 1995 spectral data set, the objective of using 

cluster analysis is to determine if the measured spectra can be grouped into classes based 

on reflectance characteristics. First. the full data set of 80 spectra measured in Manado, 

Indonesia was analyzed using cluster analysis. The cluster tree diagram in Figure 5.3.7 

illustrates the results of the cluster analysis. 

Ifa vertical line is drawn at a Euclidean distance of 0.0025, there are 5 clusters 

present. Starting at the bottom. there is a cluster of 2 1 spectra, of which 48% are healthy 

branching corals: 29% are sand surfaces: 14% are algae-covered surfaces; and less than 

5% each are massive corals and bleached corals. Healthy branching corals account for 

the largest number of spectra present in this cluster. It is interesting that healthy massive 

corals are not similar enough to healthy branching corals to be placed in the same cluster. 



This indicates that morphology influences the spectral measurements, which would be 

expected due to shadows. underlying substrate and texture. 

Moving from the bottom towards the top, the next cluster contains 25 spectra. 

The majority of the spectra in this cluster are measurements of sand surfaces (52%). 

while branching corals (24%), massive corals (12%) and bleached corals (12%) are also 

present. The spectral similarity between these different features is enough that they can 

be placed in the same cluster. which emphasizes the complexity in differentiating 

between populations. The next cluster up from the bottom contains 19 spectra in total, 

with no population claiming the majority. As with the first cluster, all 5 populations are 

represented in this cluster. which emphasizes the degree of spectral similarity between 

populations. 

Finally. the cluster closest to the top of the tree does not actually form a complete 

cluster until a Euclidean distance of 0.13. This large Euclidean distance indicates that the 

spectra are relatively dissimilar. Sand surfaces (73%); bleached coral (20%); and 

branching coral (7%) are included in this cluster. Since this cluster did not join until late 

in the process. the component spectra are considered unlike each other. but since most 

(73%) of the spectra are sand surface measurements. these spectra are also considered 

dissimilar to the other spectra in the 1997 data set. 
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Figure 5.3.7. The entire data set collected in 1997 in Manado, Indonesia was subjected to 
cluster analysis in an effon to separate populations on the basis of spectral reflectance. 

The results of tive more cluster analyses are now presented. Each of the five 

cluster analyses considers only one population at a time in an effon to explore the 

variability within each population. The first cluster analysis is performed on the category 

containing 6 massive coral spectra. as in Figure 5.3.8. At a Euclidean distance of 0.015, 

two clusters are present. but this is a very small a Euciidean distance of indicating the 

spectra are actually all quite similar. 
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Figure 5.3.8. A separate cluster analysis reveals little within-population variability for 
the population of massive healthy corals. 

The second of 5 cluster analyses focuses on the healthy branching coral 

population. as displayed in Figure 5.3.9. The spectra identified as Branch13 may be 

considered an outlier. Tor it does nor join the remainder of the spectra until a Euclidean 

distance of 0.1. The othcr 18 spcctra in this population join into one cluster at a 

Euclidean distance of 0.0). which is a rclativcly small distance indicating that the spectra 

are quite similar. 

If a vertical line is drawn at ;l Euclidcm distance of 0.02, three clusters are 

present. The similarity of spectra within these three clusters may be related to the density 

of the branches of the coral target. A branching coral allows the underlying substrate to 

be seen through the branches in some cases. If this is the situation, then the underlying 



substrate will contribute to the measured reflectance to varying degrees depending on the 

density of branching. Alternatively. a coral with very dense branching structure may 

have a spectral reflectance curve similar to that of a massive coral. as little or no 

contribution to the reflectance characteristics is a result of the underlying substrate. 
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Figure 5.3.9. A cluster analysis of the population of branching corals indicates that there 
is little within-population variability. 

The population consisting of 34 sand surface spectra was considered in the third 

cluster analysis. The cluster tree is illustrated in Figure 5.3.10. At a Euclidean distance 

of 0.06. three clusters are present. and the entire data set is joined into one cluster at a 



distance of less than 0.2. Within each of the clusters joined at 0.06. the spectra can be 

considered quite similar. Each of !hese three clusters may be similar based on the relative 

wetness of the sand sampled. Since the measurements were taken at low tide, the sand 

surfaces had varying states of wetness depending on the amount of time exposed to 

sunlight. 
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Figure 5.3.10. Thirty-four sand surface spectra were included in the above cluster 
analysis. 



In the fonh cluster analysis. 16 bleached massive cord spectra were included in 

order to examine the spectral similarity within this population. The results of the cluster 

analysis can be viewed in the cluster tree in Figure 5.3.1 1. At a Euclidean distance of 

0.03. two clusters are present. and at a Euclidean distance of 0.7. all spectra join into one 

cluster. This indicates that there is little within population variability and the bleached 

massive coral spectra can be considered similar. The differences in spectral reflectance 

that are seen within these measurements may be a result of varying states of bleaching. 

For example. if a coral has been bleached for a week, it will have a greater number of 

zooxanthellae present than a coral that has been bleached for 3 weeks. The spectral 

reflectance curves for corals in different stages of bleaching may therefore show spectral 

differences. Overall. however. there is little within-population variability indicated by 

the cluster analysis of 1 6 bleached massive coral spectra. 
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Figure 5.3.1 1. Sixteen bleached coral spectra were included in the cluster analysis above. 

Finally. five algae-covered surface spectra were analyzed for within population 

variability using cluster analysis. The results are presented in the cluster tree in Figure 

3 . 1  At a Euclidean distance of less than 0.025. there are two clusters present, and at 

0.04. all five spectra join together as one cluster. The low values of the Euclidean 

distances indicate low variability within the population. such that the five spectra can be 

considered similar. 



Cluster Tree 
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Figure 53.12. Five algae-covered surface spectra were included in the above cluster 

The Euclidean distance at which the spectra in a population join to form one 

cluster is indicative of the similarity of the spectra within that population, where a small 

Euclidean distance suggests similar spectra and a large Euclidean distance suggests 

dissimilar spectra. As a summary. the Euclidean distances at which spectra within a 

$pen population joined to create one cluster is provided in Table 5.3.2. 

Table 5.2.2. A summary of the unitless Eucl 
population were considered similar in order 

Population 
Healthy Massive Coral 

Healthy Branching Coral 
Algae-covered Surfaces 

Bleached Coral 
Sand Surfaces 

idem distances at which. the spectra within a 
~f increasing distance. 

Euclidean distance 
0.023 



The population with the lowest Euclidean distance has the least variability in 

spectral reflectance among its component spectra, while the population with the greatest 

Euclidean distance has the most variability in spectral reflectance among its component 

spectra. Healthy massive corals display the least variability within its population. 

followed by healthy branching coral and algae-covered surfaces. Sand surfaces have the 

greatest within-population variability. possibly due to varying degrees of water content 

(these measurements were taken on exposed reef flats) or sand crystal size. 

In the following. correlation analysis is used to examine the relationship among 

each of the measured spectra. within a given category of features. It is hypothesized here 

that the spectra within a given population will display strong positive linear relationships 

to each other. suggesting that the spectra within the population are similar. A separate 

correlation analysis is performed on each of the five populations defined for the 1997 

data set. The five populations include healthy massive corals (n= 6); healthy branching 

corals (n= 19): sand surfaces ( n =  14): and algae-covered surfaces (n= 5). A correlation 

analysis can be easily interpreted h? v i u u  ing thc correlation coefficient matrix. as with 

the 1996 data analysis. 

The data set containing 6 healthy massive corals is included in the correlation 

analysis illustrated in the matrix in Table 5.3.;. As can be seen in the matrix, there is a 

high correlation among the healthy massive coral spectra. The correlations among 



healthy massive spectra are all greater than 0.94. which indicates low variability within 

the population. This reinforces the results of the cluster analysis of the healthy massive 

coral population. 

T a b  5 . 3  A correlation coefficient matrix illustrates the correlation between spectra 
within the population of healthy massive corals. 

The second correlation analysis was performed on 19 healthy branching corals, 

but only the first I0 spectra are included in the matrix below. The results of the 

correlations of ten spectra are illustrated in the correlation matrix in Table 5.3.4. The 

correlations among the healthy branching coral spectra are strongly positive, and the 

lowest correlation coefficient calculated was 0.84. Furthermore, 97. I% of the correlation 

coefficients are greater than 0.90. As with the healthy massive coral spectra. the results 

of the correiarion analysis reinforce the results of the cluster analysis. 

Massive? 
Massive3 
Massive4 
Massive5 
Massive6 

Table 5.3.4. Nineteen healthy branching coral spectra are included in the above 
correlation analysis. 

Massive6 
Massive I 

0.979 
0.989 
0.986 
0.995 
0.98 1 

Massive:! Massive I 
I 

I 

Massive5 Massive3 Massive4 

1 
0.970 

1 
0.975 
0.999 

I 
0.942 
0.999 
0.968 
0.999 1 

1 
0.953 
0.994 
0.944 



The third correlation analysis was performed on 34 sand surface spectra. While 

all spectra were included in the analysis, the correlation coefficients of the first 10 spectra 

can be viewed in Table 5.3.5. Some of the correlations among the spectra in the sand 

surface population are weak, suggesting that the spectra are dissimilar. The lowest 

calculated correlation coefficient is 0.32, however, 87.5% of the coefficients are greater 

than 0.6. The within-population variability may be a result of the varying degrees of 

wetness of the sand. as discussed previously. The high variability also indicates that it 

would be difficult to identify one representative spectral reflectance curve that would 

allow remote identification of sand surfaces. Even though there is great within- 

population variability. there is a chance that the spectral reflectance response of sand 

surfaces is so different than other features that accurate remote identification may be 

possible. 

Table 5.3.5 .  Thirty-four sand surface spectra were included in this correlation analysis. 
. . Sand9 

, 
I Sand10 Sand5 Sand l 1 Sand2 I Sand3 I Sand4 

Sand l 1 Sand2 

Sand6 
I j 

0.619 I 1 

Sand7 
I 

I 

Sand8 



The within-population variability of the bleached massive coral population was 

also examined using correlation analysis, as seen in the correlation matrix in Table 5.3.6. 

The correlations among bleached massive spectra were very strong, which indicates small 

within-population variability. In fact. all correlation coefficients are greater than 0.90. It 

would appear that. due to the low variability within this data set. a reliable representative 

spectral curve could identified to characterize the expected response bleached 

massive corals. 

Table 5.3.6. Correlations among sixteen bleached massive coral spectra were examined 
for the within-population variability. 

Finally. all five algae-covered corals are examined for the within-population 

variability. as illustrated in the correlation matrix and scatterplots in Table 5.3.7. 

Correlation coefficients calculated for the algae-covered spectra were strongly positive 

indicating low variability within the population. This reinforces the cluster analysis 

results. and suggests that. even with a small number of spectra, a reliable data set appears 

to exist from which a representative spectrum could be selected. 



In an effort to examine the variability between spectral populations, a correlation 

analysis was performed comparing the average spectra from each population. Therefore, 

5 spectra were included in this correlation analysis: average massive healthy coral. 

average healthy branching coral. average sand surface, average massive bleached coral 

and average algae-covered surface spectra. 

The results of the correlation analysis can be seen in the Pearson correlation 

matris in Table 5.5.8. The average spectra all display very strong positive correlations 

with each other. which suggests thar the spectra are very similar. The results of this 

correlation analysis reveal that discriminating between spectral populations is complex, 

even if it is assumed that the \r-ithin-population variability is low. 

Table 5.3.7. Five algae-covered surfaces were examined for the correlations among 
spectra. 

A lgae5 

1 

1 

A lgae3 

1 
0.998 

Algae2 

1 
0.954 
0.967 

Algae 1 
Algae 1 I 1 

A Igae4 

I 

Algae2 
Algae3 
A lgae4 

0.968 

1 .OOO 
0.950 
0.964 

0.989 1 0.955 Algae5 0.989 



Table 5.3.8. A Pearson correlation matrix compares the correlation coefficients for the 
five average spectra included in the analysis. 

1 Healthy I Healthy I Sand I Bleached I Algae- I 
1 ~ a s s i v e  

Branching I 
Sand f 0.942 

/ covered I I 1 

Branching 

t 

Heal thy 
Massive 
Healthy 

Bleached 
Massive 
Algae- 

5.3. -1 Strmrnarv of I 99 7 Spectral Comparison 

1 

0.962 

0.9 16 

Average and standard deviation spectra were examined at the beginning of this 

chapter to visualize the within-population variability of the 5 populations defined for the 

1997 data set. Furthermore. the avenge spectra for each of the populations were 

compared to visually examine and compare the spectral reflectance characteristics of the 

different populations. Cluster and correlation analyses were then performed to examine 

the within- and between-population variability. Spectra were separated into populations 

for separate analysis to examine within-population variability. With the exception of the 

. high variability among sand surface spectra. there was little within-population variability 

found. Correlation coefficients of average spectra were then examined to explore the 

between-population variability. The correlation coefficients were very strongly positive 

for all spectral comparisons, which suggests that the average specna are all similar. 

These results emphasize difficulty in remotely identifying these spectrally similar 

features. 

Massive 

1 
0.979 

0.99 1 

covered 

0.977 

0.96 1 

0.978 

0.977 

I 

1 

0.994 1 



5.4 EXAMINATION OF 1998 SPECTRAL DATA SET 

The 1998 field data collected in Sawsavu Bay. Fiji consist of 2 14 reflectance 

spectra in 172 wavebands measured underwater. The spectra were separated into broad 

categories defined according to feature type. as was done in the 1996 and 1997 field 

seasons. Underwater photographs and a detailed description of each feature measured 

enabled separation into 6 categories. or populations. 

4 . 1  Initial Examination of 1 9 98 Spectra 

As in the initial examinations of the field data collected in 1996 and 1997. 

overage and standard deviation spectra were found for each of the 6 categories defined. 

These spectra are plotted separately in Figure 5.4.1 (healthy branching coral, n=19); 

Figure 5.4.2 (healthy massive coral. n=27): Figure 5.4.3 (healthy soft coral. n=47): Figure 

5.4.4 (bleached branching coral. n= 15): Figure 5.4.5 (rubble surfaces, n=28): and Figure 

5 -4.6 ( algae-covered surfaces. n=79). Additionally, the average spectra for each of these 

6 populations are compared in one plot in Figure 5.4.7. 
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Figure 5.4.1 . Average and standard deviation (gray lines) healthy branching corals. 

-- -- 

Aerage Healthy Massie Coral (n=27) 

- .  . 

Figure 5 A.2. Average and standard deviation (gray lines) healthy massive corals. 

Aerage Healthy Soft Coral(n=47) 

--- 

Figure 5.4.3. Average and standard deviation (gray lines) healthy soft corals. 
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Figure 5.4.4. Average and standard deviation (gray lines) spectra for bleached corals. 

Figure 5.4.5. Average and standard deviation (gray lines) spectra for rubble surfaces. 

Aerage Algae (n=79) 

- 

Figure 5.4.6. Avenge and standard deviation (gray lines) spectra for algae-covered 
surfaces. 
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Figure 5.47. A plot of average spectra of the 6 populations allows comparison. 

Inspection of Figure 5 -4.7 reveals that rubble surfaces have the highest average 

retlectance. Coral sand and dead coral debris dominate rubble surfaces, which are 

typically bright white. It is therefore not surprising that the overall magnitude of 

reflectance is high. The spectral shape of the reflectance curve may be influenced by 

variable amounts of macroalgae that is commonly present on a rubble surface. The 

~ n r k b l e  presence of macroalgae will contribute to within-population variability in 

spectral retkctancc. 

Inspection of Figure 5-47 also reveals that algae-covered surfaces display 

relatively high spectral retlectance as well. The high magnitude of reflectance may be a 

result of the particular pigment present in the colonizing algae as a function of the species 

olalgar. which is unidentified. Additionally. algae will colonize dead corals, so the 

white calcium carbonate surface of a dead coral may contribute to the magnitude of 

reflectance measured. In other words. if the alga has colonized a dead cord, the white 



calcium carbonate of the dead coral (which has lost its photosynthetic zooxanthellae) will 

show through and result in a high magnitude of reflectance. 

The three populations of healthy corals identified in the 1998 data set (branching, 

massive and soft healthy coral) have very similar average spectra. Both the spectral 

magnitude and shape of the reflectance curves are similar. This is intuitive since all 

healthy corals contain photosynthetic zooxanthellae in their polyps, which would result in 

similar spectral characteristics. The spectral similarity of these average reflectance 

curves is encouraging with respect to identifying spectral characteristics common to 

healthy corals. 

Surprisingly. the average spectral reflectance curve for the bleached branching 

coral population has the lowest overall magnitude of reflectance. Although it is expected 

that a bleached white coral will have high reflectance, there may be an explanation for the 

low reflectance in this case. The blcachcd corals sampled were all branching corals with 

fairly sparsely located branches. I f the branches are sparse then the underlying substrate 

may contribute to the measured rcflectancr in proportion to the percent cover. The 

estimated percent cover ofhranchcs ran~rd  from 40% to 85%. and in all cases a dark 

surface was the underlying substmtc. In the case where the bleached branching coral 

contributed only 40% to thc overall rcllcctance. the underlying dark substrate contributed 

60%. which would have the net ef't'cct ot'a iou overall reflectance. 

The spectral confusion within the blcachrd coral population may not be a major 

issue. This is because. while i t  is important to identify areas of bleached coral, it may be 

even more important to identify areas d d c a d  coral that has already been colonized by 

algae. Since a bleached coral can recover. identification of a bleached coral serves to 



alert us to a vulnerable region. Algae will quickly colonize a bleached coral in a 

vulnerable state. and this may be a more important ecological change to identify. 

There appears to be some variation in the average spectral reflectance curves 

measured for the 6 different populations. One feature that may enable differentiation 

between populations is the spectral peak at approximately 5 7 5 m .  For comparison. the 

magnitude and location of the spectral peak of each of the 6 average reflectance curves is 

provided in Table 5.4.1. The populations are listed from left to right in order of 

decreasing magnitude of reflectance. 

Table 54.1. A comparison of the magnitude and spectral location of peak reflectance. 

The entire data set of 2 15 reflectance spectra were compared using cluster 

analysis to determine the degree of dissimilarity among and between populations. Due to 

sorted according to decreasing magnitude of reflectance. 
Bleached 
Branching 

Coral 
I 
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the large number of spectra included in the analysis. a cluster tree diagram is not useful 

for visual interpretation. At a Euclidean distance of 0.05. there are 5 clusters present. 

The first cluster contains 100% rubble, but only 6 spectra are included in this cluster. 

The second cluster (n=45) contains 58% algae, but 24% rubble. I 1% massive healthy 

coral and 7% branching coral. suggesting great spectral confusion between these 

populations. The third cluster (n=44) contains 43% algae, 30% soft coral. 14% rubble, 

I 1 % branching coral and 2% massive coral, which indicates spectral confusion within 

this cluster. Furthermore. this indicates spectral confusion between clusters since algae- 

covered surfaces are present in large proportion in both cluster 2 and cluster 3. Of the 97 

spectra placed in cluster 4.36% are algae spectra, 26% are soft coral spectra 15% 

massive coral spectra. 12% bleached coral spectra. 6% branching coral spectra and 5% 

rubble spectra. There is no clear dominance of any one population in cluster 4. Finally. 

cluster 5 contains 13 spectra. 39% of which are soft corals, 26% are massive corals. 22% 

are branching corals and 13% are bleached corals. which suggests that there is great 

spectral confusion between these populations. 

In conclusion. it is not possible to differentiate populations based on the entire 

spectrum of visible reflectance using cluster analysis. This emphasizes the complex and 

confusing issues surrounding identification of visually similar coral reef features. These 

results indicate that spectral classification based on traditional end-member selection 

whereby the entire visible reflectance spectrum is used since this will likely lead to 

significant misclassification and misidentification. Cluster analysis will be used further 

as a tool to investigate within-population variability of each of the 6 populations defined 

for the 1998 data set. 



The cluster analyses performed in this section begin with an inspection of the 

algae-covered surfaces (n=79). The cluster analysis results can be viewed in the cluster 

tree diagram in Figure 5.4.8. At a Euclidean distance of approximately 0.05, there are 4 

clusters present. and at 0.15. all spectra join as one cluster. Inspection of the photographs 

indicates no apparent differences in algae-covered surfaces that could account for the 

spectral differences. One explanation is that the clusters represent surfaces with vaj ing 

percent cover of algae or varying densities of pigments within the algae. Alternatively, 

different species or strands of algae may have been sampled that we were unable to 

identify. Since there was high spectral confbsion within the algae-covered surface 

populations collected in 1996 and 1997. attempts were made to create a much larger 

database in an effort to identify characteristic spectral features of algae. Even with 79 

spectra in the 1998 data set. there still appears to be a certain degree of variability within 

the algae-covered surface population. 



Cluster Tree 
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Figure 5.4.8. A cluster analysis was performed on all algae-covered surfaces (n=79). 

The second cluster malysis was performed on the rubble surface spectral 

population. as seen in figure 5.4.9. At a Euclidean distance of 0.05, there are 6 clusters 

present in the rubble population. while the spectra do not join as one cluster until a 

Euclidean distance of 0.23. The cluster results indicate that the spectra of the rubble 

surface population are not particularly similar. The variability within the rubble surface 

population may be a result o f  varying proportions of dead coral debris to sand present in 

the sample. Inspection of the photographs indicates that there are no obvious differences 

in composition of the rubble surfaces. Alternatively. there may have been variable 



amounts of algae that had colonized the dead coral debris on the rubble surface. which 

was not readily observable. Varying amounts of algae would contribute to different 

spectral reflectance characteristics within the rubble surface data set. 

Cluster Tree 

0.0 0.1 0.2 0.3 
Distances 

Figure 5.4.9. .4 cluster analysis was performed on rubble surface spectra (n=28). 

A third cluster analysis examined the within-population variability of bleached 

branching corals (n= 15). as in Figure 5.410. At a Euclidean distance of just greater than 

0.05. the spectra within this population of bleached branching corals join as one cluster, 

indicating strong similarity. Therefore. at a relatively small Euclidean distance, all 15 of 



the bleached branching coraI spectra in the 1998 data set are considered similar in 

spectral magnitude and shape. This is a promising result with respect to identifying one 

spectral reflectance curve characteristic of bleached branching corals with confidence 

since the within-population variability appears to be low. 

In the inspection of the average spectril in the previous section, attention was 

brought to the bleached branching coral spectra due to its curiously low spectral 

reflectance. Although it would be expected that bleached coral would have high spectral 

reflectance magnitude since it has lost its photosynthetic zooxanthellae, the indication 

that the within-population variability is low lends confidence to the possibility of 

iden ti f j h g  a characteristic spectral reflectance curve based on this bleached branching 

coral population. 
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Figure 5.4.10. The bleached branching corals were analyzed with cluster analysis. 

The following is based on s cluster analysis performed on the population of 

healthy soft corals (n=17). as in Figure 5 . 4 1  1 .  At a Euclidean distmce of 0.05. there are 

only 2 clusters present. and all spectm join as one cluster at a Euclidean distance of less 

than 0.09. It can therefore be interpreted that the within-population variability of the 

healthy sofi corals sampled is relatively low. Differences in measured spectral 

reflectance curves within the healthy sofi con1 population may be a result of differing 

morphologies of sofi corals. Soft corals are continuous structures such that there is no 

contribution to the measured reflectance from the underlying substrate. The small 



branches or .-fingers" that protrude from the surface of a sofi coral are of varying shape, 

size and density. These differing features of soh corals may contribute to variable 

spectral reflectance curves. Therefore. the within-population variability that does exist 

within the healthy soft coral population is explainable. 

Cluster Tree 

0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 
Distances 

Figure 5.4.1 1 .  The healthy soft coral population was examined for within-population 
variabi l it? using cluster analysis. 

The following interpretation is based on the cluster analysis performed on the 

healthy massive coral population (n=27). as in Figure 5.4.12. At a Euclidean distance of 

0.05. there are 3 clusters present, but at a Euclidean distance of less than 0.09. all spectra 



join together as one cluster. The majority of the clusters are created at small Euclidean 

distances, which indicates that the spectra within the healthy massive coral population are 

similar to each other. 

Cluster Tree 

Figure 5 A. 1 2. The within-population variability of healthy massive corals was examined 
using cluster analysis. 

Finally. a cluster analysis was performed on the population of healthy branching 

corals (n=19) to examine within-population variability, as in Figure 5.4.13. There are 2 

clusters present at a Euclidean distance of 0.05. and all spectra join as one cluster at a 

Euclidean distance of 0.09. Variability within this population of healthy branching corals 



could be related to the relative proportion of branches to underlying substrate in the 

sensor's field-of-view. In other words. the density of the branches may be related to the 

measured reflectance in terms of the relative contribution of coral to underlying substrate. 

If the underlying substrate is bright. the sensed reflectance spectra may display a higher 

magnitude. but if the underlying substrate is dark, the magnitude of reflectance may be 

low. Regardless. the within-population variability is no greater for healthy branching 

corals than for healthy massive corals. lending confidence to representative spectral 

characteristics defined by these populations. 

Cluster Tree 
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Figure 5.4.1 3. Cluster analysis is used to examine the within-population variability of 
healthy branching corals. 



As a comparison. Table 5.4.2 contains the Euclidean distance at which the spectra 

of a given population were joined as one cluster. The populations are listed in order of 

increasing Euclidean distance. The bleached branching coral population is listed first 

with a joining Euclidean distance of 0.054. indicating that the within-population 

variability is lowest for this population. The spectra of the rubble surface population do 

not join as one cluster until a Euclidean distance of 0.23, indicating that the within- 

population variability is highest for this population. A comparison of the Euclidean 

distances at which all spectra of a population are joined as one cluster is a revealing 

means of comparing the within-population variability of the 6 populations included in the 

1998 data set. 

Table 5 .-C .4 summary of the unitless Euclidean distances at which the spectra within a 
population were joined as one cluster compares within-population variability, in order of 
increasing distance. 
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0.14 



5.4.3 Correfarion Anahis o f  I998 Spectra 

Pearson correlation coefficients were calculated for each spectral pair within each 

population. but for clarity of illustration. only the first 5 coefficients and scatterplots are 

shown in the following results. Secondly. correlation coefficients are calculated for the 

average spectra of each population. The purpose of this analysis is to examine the 

between population variability. with the hypothesis that there will be weak correlations 

between populations. From the initial inspection of the average spectra for each 

population. it is expected that there will be a relatively strong correlation between the 

average spectra because of the overall spectral similarity of reflectance curves. 

The correlation analysis begins with an examination of the algae-covered surface 

population. The Pearson correlation matris in Table 5.4.3 reveals the relationship among 

ten spectra in the algae-covered surface population. although the entire data set of 79 

spectra was included in the analysis. Kith a few exceptions, the 79 spectra included in 

the algae-covered surface population ore highly correlated to each other. which reinforces 

the results of the cluster ;tnalysis and ; ~ l l ~ w s  for a confidant statement that there is 

relatively little within-population vxiahil it! among the algae-covered surfaces. The 

lowest correlation coefficient calculated is 0.35. but 96.6% of the coefficients are greater 

than 0.70. which suggests the spcctm ithin the algae-covered surface population are 

relatively similar. 



Table 5.4.3. The Pearson correlation coefficient matrix indicates the relationship among 

The next correlation analysis is performed on the rubble surface population 

consisting of 28 spectra. as can be seen the reduced matrix in Table 5.4.4. The 

correlation coefficients calculated for the spectra within the data set all show positive 

relationships among spectra. but there is a high degree of variability among the strengths 

of the relationships. The lowest correlation coefficient is 0.46 (not shown in matrix), but 

94% of the correlation coefficients are greater than 0.70, which suggests that the majority 

of the spectra are highly correlated. Thc results of the correlation analysis are consistent 

with the results of the cluster analysis. indicating some degree of variability among 

rubble surface spectra. but an overall strong positive linear relationship. 

Table 5-44. The correlation coefficient matrix reveals the relationships among rubble 
- surface spectra. 



The correlation coefficient,rnatrix in Table 5.4.5 reveals a strong positive 

relationship among bleached branching coral spectra. The fifteen bleached branching 

coral spectra included in this correlation analysis are strongly correlated to one another 

indicating low variability within the population. Although the lowest correlation 

coefficient is 0.54. the large majority (87.6%) of coefficients are greater than 0.80. This 

is consistent with the conclusions of the cluster analysis above. 

Table 5.43. The correlation coefficient matrix indicates the relationships among 
bleached branching coral spectra. 

Fony-seven healthy soft corals were compared and correlation coefficients 

calculated as seen in the reduced matrix in Tabie 5.4.6. The results of the correlation 

analysis reveal relatively strong positive relationships among the soft healthy corals. 

While the lowest calculated correlation coefficient is 0.44 (not shown in the reduced 

matris). 87.5% of the coefficients are greater than 0.70. The within-population 

variability. as concluded in the cluster analysis, can therefore be considered low. Low 

within-population variability lends confidence to representative spectra selected from the 

population to characterize the spectral reflectance curves of healthy soft corals. 



Table 5.4.6. The correlation coefficient matrix reveals the relationships among the 
healthy soft coral spectra. 

The measured reflectance spectra of 27 healthy massive corals were examined for 

the within-population variability by calculating correlation coefficients, as in the reduced 

matrix in Table 5.4.7. Strong positive correlations were found to exist among the healthy 

massive coral spectra indicating low within-population variability. The lowest 

correlation coefficient calculated is 0:63. but 75.8% of the coefficients are greater than 

0.90. which suggests a strong correlation among healthy massive coral spectra. The 

results of the correlation analysis reinforce the results of the cluster analysis, and suggest 

that a confident representative reflectance curve could be selected from this population. 

Tabie 5.4.7. The correlation coefficient matrix reveals the relationship among the healthy 
massive coral spectra. 

L I I 

HM6 0.860 0.898 0.878 0.782 0.803 1 
HM7 0.979 0.967 0.972 0.980 0.982 0.802 1 
HM8 0.986 0.981 0.984 0.974 0.980 0.853 0.991 1 
HM9 0.966 0.947 0.957 0.980 0.980 0.741 0.990 0.979 1 1 

H M l 0  0.977 0.984 0.980 0.947 0.957 0.916 0.968 0.987 0.943 1 1 



Finally. a correlation analysis was performed for the population of 19 healthy 

branching corals in an effort to examine the within-population variability. A reduced 

matrix of the correlation coefficients for 10 of the healthy branching coral spectra can be 

found in Table 5.4.8. The results indicate positive relationships among the healthy 

branching conls. The correlation coefficients range from 0.478 to 0.998. with 93.0% 

greater than 0.70 and 79.5% greater than 0.80. The within-population variability that 

exists among the branching conls may be a result of varying densities of branches, as 

discussed previously. 

Table 5.4.8. The correlation coefficient matrix indicates the relationships among the 
healthy branching con1 spectra. 

HI36 0.855 1 0.749 0.587 0.478 0.777 1 
HB7 0,905 0.871 0.744 0.658 0.848 0.975 

, 
I 

HB8 10 .867  0,957 0.881 0.842 0.845 0.852 0.943 
I 

1 
i HB9 i 0.721 10 .943  10.946 0.964 0.744 0.585 0.746 0.920 I 
1 HBIO ] 0.758 1 0.954 j 0.938 1 0.944 1 0.774 j 0.651 1 0.798 0.951 0.994 I I 

. . 

The second objective of using correlation analysis is to explore the between- 

population variability of the 1998 data set. Average spectra were determined for each 

population and correlation coefficients were calculated. The results of the correlation 

analysis can be found in Table 5.4.9. There is a strong positive correlation between each 

of the average spectra compared in this analysis, which indicates low variability between 



the populations. This result reveals that the spectral differences between populations 

commonly found in a coral reef ecosystem are subtle and therefore difficult to identify. 

Table 5.4.9. A Pearson correlation matrix compares the correlation coefficients for the six 
avenge spectra included in the analysis. 
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The spectral data set collected in Savusavu Bay. Fiji in 1998 consisted of 214 

reflectance curves separated into 6 populations: healthy branching corals, healthy 

Rubble 
Branching 
Massive 

0.95 1 1 0.937 

massive corals. healthy soft corals. bleached branching corals. rubble surfaces and algae- 

Algae Soft 

I 

covered surfaces. Initially. the average and standard deviation spectra were determined 
1 

Branching 
I 

0.985 

Bleached 

1 
0.982 
0.983 

0.98 1 
0.949 
0.963 

and rsarnined in an effort to identify spectral differences in reflectance that might enable 

Massive 

1 I 

0.955 
0.928 
0.945 

1 0.972 

remote discrimination. Subtle differences in spectral shape and magnitude were 

identified. 

Cluster analysis was used to esplore the within-population variability among 

1 
0.995 

spectra of a given population. Therefore. six separate cluster analyses were performed 

1 
0.993 

and sumrndzed. In general. it was concluded that there is low within-population 

0.997 

variability among spectra of the same population. Pearson correlation coefficients were 

also calculated to examine the relationships among spectra within a population. Overall, 



the relationships among spectra of a given population were strongly correlated, which 

reinforced the results of the cluster analysis. 

Finally. the average spectra determined for each of the 6 populations were 

compared. Pearson correlation coefficients were calculated to explore the relationships 

between average spectra. The results indicate that there is a strong positive correlation 

between all of the average spectra. which reveals that there is low variability between 

spectra of different populations. This result suggests that it will be difficult to distinguish 

between populations of a coral reef ecosystem. Visual analysis of the measured 

reflectance spectra. however. indicates that subtle spectral differences do in fact exist 

between populations. which is encouraging for further analysis. 



CHAPTER 6 

COMPARISON OF SPECTRAL REFLECTANCE DATA SETS 

COLLECTED IN 1996,1997 AND 1998 

6.1 INTRODUCTION 

The objective of this chapter is to compare the spectral data sets collected in 1996, 

1997 and 1998. Spectra were collected in three consecutive years in three different 

geographic locations. although the broad populations defined for the spectra were similar 

for each of the three data sets. The hypotheses tested are that within-population 

variability will be low regardless of the geographic location of data coliection, and that 

between-population variability is high. which will allow discrimination of broad 

populations of coral reef ecosystem features. 

Seven1 techniques are used to investigate the within-population variation of 

spectra measured in different years and in different geographic locations. First. average 

spectra are compared and spectral differences interpreted. Secondly, cluster analysis is 

used to examine the within-population variation of spectra measured in 1996. 1997 and 

1998. And finally. Pearson correlation coefficients are calculated to explore the 

similarity among spectra within a given population. 



6.2 INITIAL COMPARISON OF 1996,1997 AND 1998 SPECTRA 

In summary. the data set used in this study consists of in situ spectral 

measurements coilected with an identical radiometer in Beqa Lagoon, Fiji in August 

1996, Manado. Indonesia in July and August 1997 and Savusavu Bay. Fiji in July and 

August 1998. A large spectral reflectance data set now exists for the first time consisting 

of 3 34 high spectral resolution measurements of typical coral reef features including 

healthy branching coral. healthy massive coral. bleached branching coral. bleached 

massive coral. algae-covered surfaces, rubble and sand substrates. The objective is to 

demonstrate that there is a detectable spectral difference between these populations, 

regardless of the geographic location in which the spectra were collected. 

The sampling strategies in all three years of data collection were essentially the 

same: measure the spectral reflectivity of as many features as possible given the 

restrictions of air availability while scuba diving and the narrow window of opportunity 

surrounding solar noon when spectral reflectance sampling is ideal. The objective of 

taking spectral measurements of the reef substrate was to characterize spectral features of 

various reef components such as healthy coral. macro algae. bleached coral, sand and 

debris. Therefore. tmnsects were not necessary since the goal was not to map a 

predefined area. but to determine representative spectral characteristics of coral reef 

features. The data collected in 1 996. 1 997 and 1998 are summarized below in Table 6.1. 

The spectra were divided into populations defined by the measured feature. Initially, and 

for visual interpretation only, average spectra are compared, as in Figure 6.1 through 6.5. 



Table 6.1. A summary of the data collected in Fiji in 1996. in Indonesia in 1997 and in 
Fiji in 1998. 
Location 
Beqa 
Lagoon, 
Fiji, South 
Pacific 

Manado 
Beach. 
Sulawesi, 
Indonesia 

CPS Time 
8 & 9  
August, 
1996, 
1030-1:15 
local time 

19-22 July, 
1997, 
10:OO-200 

I 

18' 19.45 
South 
178" 06.48 
East 

l o  24.82 
North 
124' 42.44 
East 

16" 46.38 
South 
179" 19.72 
East 

Savusavu 
Bay, Fiji 

Environment 
Underwater 
while SCUBA 
diving at an 
average depth of 
2.9 meters, calm 
water, clear skies 

I6 July - 
20 August, 
1998, 
1o:oo-200 

Above water 
while walking on 
reef flat at low 
tide. clear skies 

Underwater 
while SCUBA 
diving at an 
avenge depth of 
4.3 meters, calm 
water. clear skies 

Strategy 
Measure 
large 
number of 
coral reef 
features to 
create data 
base 
Measure 
I arge 
number of 
coral reef 
features to 
add to data 
base 
Measure 
large 
nurn ber of 
coral reef 
features to 
create data 
base 

Sensor 
ASD radiometer 
with underwater 
remote cosine 
receptor attached 
to 10 meter 
underwater optical 
cable 
ASD radiometer 
with above water 
remote cosine 
receptor 

ASD radiometer 
with underwater 
remote cosine 
receptor attached 
to 20 meter 
underwater optical 
cable 

Beginning with Figure 6.1. average spectra of sand surfaces (1 997) and of rubble 

surfaces ( 1998) are compared. The reflectance curve corresponding to average rubble 

surface reveals more spectral variation than the sand surface. which is a relatively straight 

cunre gradually increasing toward larger wavelengths. The differences in spectral 

reflectance are most likely because rubble surfaces contain organic matter in the form of 

algae-covered dead coral debris. This discrepancy leads to the conclusion that sand and 

rubble surfaces could be considered two separate populations. 



- Sand97 (n=3h) , ~ubble98 (n=28) 
- 

- - - -  - 
- - - 

. . - - - -- - - 

Figure 6. I .  Average spectra of sand ( 1997) and rubble (1 998) surfaces are compared. 

Algae-covered surfaces measured in 1996, 1997 and 1998 are compared in Figure 

6.2. There are differences in spectral shape between the three average reflectance curves. 

This difference may be a result of varying amounts of algal cover on the surfaces 

measured. The average spectral curve for algae-covered surfaces measured in 1997 

reveals less spectral variation than the average spectra measured underwater in 1996 and 

1998. This difference may be due to the possibility that algal growth on reef flats that are 

periodically exposed to the air is different than algal growth on surfaces continuously 

underwater. These differences will be further examined. 
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Figure 6.2. Average algae-covered surface spectra are compared. 

Average bleached coral spectra are compared in Figure 6.3. Massive bleached 

corals were measured to determine the average spectral reflectance curves in 1996 and 

1997. but branching bleached corals were measured in 1998. The differences in spectral 

reflectance between massive bleached coral and branching bleached coral will be further 

investigated to determine if there are 2 populations present based on morphology. 
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Figure 6.3. Average bleached coral spectra are compared. 

Healthy cord spectra are divided into two distinct populations based on 

morphology. Figure 6.4 compares the average healthy branching coral spectra measured 



in 1996, 1997 and 1998. The three average spectra display similar spectral shapes with 

slight variation in the location of the peak reflectance. The average spectral reflectance 

curve for 1998 has a spectral reflectance peak in a shorter wavelength range than the 

other 2 average spectra. This difference will be further investigated. 

Wavelength (nm) 

Figure 6.4. Average branching coral spectra are compared. 

Finally. healthy massive corals are compared in Figure 6.5. The average soft 

heal thy coral re tlec tance curve measured in 1 998 is included in this comparison because 

altiiough soft corals have finger-like cxtmsions. they have a consistent surface such that 

the underlying substrate does not contribute to the reflectance characteristics. It is 

there t h e  assumed that soft corals will be most similar to massive corals in terms of 

spectral reflectance. 
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Figure 6.5. Average massive coral spectra are compared. 

The comparisons of similar populations of coral reef features reveal that there is 

spectral similarity within populations regardless of geographic location. This will be 

further investigated using cluster analysis in the following section. 

6.3 CLUSTER ANALYSIS 

Clusler analysis is used in an effort to compare the spectra measured in 1996. 

1997 and 1998. After combining thc spectn collected in the three field seasons. and 

esamining them in the previous section. 8 populations were defined. These populations 

were considered separately in the following cluster analyses to determine the within- 

population variability when spectra arc: from different geographic locations. Therefore, 8 

separate cluster analyses are performed and interpreted in Figures 6.6 through 6.13. 

The first cluster analysis is performed on the data set consisting of bleached 

branching corals. as in the cluster tree diagram in Figure 6.6. The spectra within the 



bleached branching coral population are all very similar according to the cluster analysis 

since the spectra are joined into one cluster at a Euclidean distance of 0.05 1. 

Furthermore, at Euclidean distance 0.03, there are only 2 clusters present which is 

probably indicative of either varying degrees of bleaching or varying densities of 

branches. 

I Average Spect ra, 199 

Branching 

0 i 

437 465 494 522 551 579 608 636 665 

Wavelength (nrr 

Figure 6.6. A cluster analysis was performed on all bleached branching corals. 

The second cluster analysis w s  performed on all bleached massive corals. as seen 

in the cluster tree diagram in Figure 6.7. All but four of the bleached massive corals join 

into one cluster at Euclidean distance 0.1. which indicates moderate spectral similarity 

within the population. At Euclidean distance 0.05. there are 4 clusters present. which 

appear to be related to the field season of data collection. These discrepancies may be a 

result of the fact that the 1997 data set was collected on a coral reef flat without water 

cover. and the 1998 data set was collected while scuba diving underwater. These 

differences will be further examined using correlation analysis in the next section. 
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Figure 6.7. A cluster analysis was performed on all bleached massive corals. 

To esamine the difference benveen spectra measured of bleached massive coral 

and bleached branching coral. the 2 data sets were merged and considered in one cluster 

analysis. Forty bleached coral spectra are included in the cluster analysis described in the 

cluster tree diagram in Figure 6.8. The cluster tree reveals distinct clustering apparently 

based on the morphology of the bleached coral. Except for 4 bleached massive corals, 

the spectral data set joins as one similar cluster at Euclidean distance 0.1 1. This 

variability is greater than when the bleached massive corals are considered on their own, 

but similar to when the bleached branching cords are considered on their own. 
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Figure 6.8. All bleached coral spectra. both massive and branching, are included in this 
cluster analysis. 

All healthy massive corals collected in the 3 field seasons were compared in the 

cluster analysis shown in Figure 6.9. At Euclidean distance 0.05. there are 3 clusters 

present. There are only 6 spectra included in this population that were not collected in 

1 998. and these spectra are joined as one cluster at Euclidean distance 0.03. These 6 

spectra. however. are considered similar enough to the 1998 spectra to be joined by 

Euclidean distance of less than 0.03. which suggests that there is no significant difference 

between healthy massive corals measured in 1997 and those measured in 1998. Of the 33 

spectra included in this population. all but 5 join as one cluster by Euclidean distance of 

less than 0.06. which indicates spectral similarity within the population. 
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Figure 6.9. A cluster analysis was performed on all healthy massive corals. 

All healthy branching corals were compared in a cluster analysis presented in 

Figure 6.10. At Euclidean distance 0.05. there are 3 clusters identified. and by Euclidean 

distance 0.07. all but 4 spectra have joined to create one cluster. The four spectra at the 

top of the cluster tree. which do not join the remainder of the spectra until Euclidean 

distance 0.13. were measured in both 1996 and 1997. This suggests that the spectral 

differences are not a function of the yeadlocation of measurement. 



All healthy branching corals were compared in a cluster analysis presented in 

Figure 6.1 0. At Euclidean distance 0.05. there are 3 clusters identified, and by Euclidean 

distance 0.07, all but 4 spectra have joined to create one cluster. The four spectra at the 

top of the cluster tree. which do not join the remainder of the spectra until Euclidean 

distance 0.13. were measured in both 1996 and 1997. This suggests that the spectral 

differences are not a h c t i o n  of the yeadlocation of measurement. 
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Figure 6.1 0. A cluster analysis was performed on d l  healthy branching corals. 



A cluster analysis was performed on all healthy soft corals, as in Figure 6.1 1. At 

a small Euclidean distance of 0.035, there are only 2 clusters present. and the spectra are 

all joined together as one cluster by 0.07. This indicates a high degree of similarity 

within the healthy soft coral population consisting of 46 spectra. The variation in spectral 

reflectance that does exist within this population could be a function of the variable 

surfaces found on a soft coral. Differences in density, shape and length of the 

protrusions. or "fingers". could result in seif-shading, which would affect the spectral 

reflectance characteristics. 

Cluster Tree 
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Distances 

Figure 6.1 1. All healthy soft corals were compared in the cluster analysis above. 



All healthy corals were amalgamated to form one population of healthy coral 

spectra. A duster analysis is performed on this merged data set to examine the within- 

population variability if no distinction is made based on morphology. The results of the 

cluster analysis of all healthy corals are illustrated in Figure 6.12. In total, 139 healthy 

coral spectra are included in the new amalgamated population. The large number of 

spectra makes the cluster analysis tree difficult to read, but it is clear that 2 distinct 

populations exist. which do not join as one similar population until Euclidean distance 

0.15. At Euclidean distance 0.05. two large clusters can be identified and 3 small 

clusters. While some clustering is apparent for spectra of the same morphology, the 3 

sub-populations are irregularly dispersed amongst the clusters. The variability among 

healthy corals is greater when all morphologies are considered than if the 3 sub- 

populations are considered separate1 y. 
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Figure 6.12. All healthy corals (massive. branching and soft) are amalgamated and 
considered in one cluster analysis. 

The next cluster analysis is based on all algae-covered surface spectra collected in 

the 2 field seasons. as in Figure 6.13. The spectral reflectance measurements of algae- 

covered surfaces appear to contain a moderate degree of within-population variability. 

The 94 spectra do not join as one cluster until Euclidean distance 0.1 7. In comparison to 

the cluster analyses of the other populations in this study, the variability within this 

population is great. At Euclidean distance 0.05, there are 6 clusters present. There are 

only 2 spectra contained in the cluster at the very top of the cluster tree, and these were 

measured in different years (1 996 and 1998). These 2 spectra are last to join the other 



spectra in the final cluster at Euclidean distance 0.01 7. This suggests that the variability 

within this population may be less a function of geographic location than differences in 

sample surfaces. For example, there may have been different amounts or densities of 

algae covering the surfaces measured, which would result in variable spectral reflectance 

characteristics within the population. 
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Figure 6.13. All algae-covered surfaces were compared using cluster analysis. 

All sand surface spectra were compared in the following cluster analysis as shown 

in the cluster tree diagram in Figure 6.14. At Euclidean distance 0.05, there are 5 clusters 



present, and furthermore, the spectra do not join as one cluster until Euclidean distance 

0.19. This suggests significant variability within the population. Fine sand 

measurements were only possible in Manado in 1997. so these measurements were taken 

on the exposed reef flat. As discussed earlier, the sand displayed varying degrees of 

wetness depending on the tidal cycle, whereby sand measured closer to shore that had 

had more time exposed to the sun was drier. The varying degree of sand wetness was not 

quantified in this study. and is cited as a possible source of spectral variability. 

Cluster Tree 

Distances 

Figure 6.14. A cluster analysis was performed on all sand surface spectra. 



Finally. a cluster analysis was performed on all rubble surface spectra, as in 

Figure 6.15. The 28 spectra in the rubble data set form 3 clusters at Euclidean distance 

0.1, but do not join as one cluster until Euclidean distance 0.22. This high within- 

population variability may be a result of differing amounts of organic debris present in on 

the rubble surface. A rubble surface typically consists of broken branches of dead coral 

mixed with other fine coral debris. so the variable proportions of these components will 

result in a variable spectral reflectance response. 
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Figure 6.1 5. A cluster analysis was performed on all rubble surface spectra. 



In summary, the within-population variability is low for the 5 healthy and 

bleached coral populations. but higher for rubble. sand and algae-covered surfaces. The 

differences in spectral reflectance identified by the cluster analysis can be explained by 

differences in features and are not assumed to be a function of geographic location. The 

differences in spectral reflectance are further investigated in the correlation analysis in 

the following section. 

6.3 CORRELATION ANALYSIS 

Pearson correlation matrices were calculated to W e r  examine the spectral 

differences of the 8 populations defined for this study. The objective here is to determine 

the degree to which spectra of a given population are similar, even if measured in 

different geographic locations. Thc pc~pulat ions include bleached branching corals. 

bleached massive corals. healthy branching corals. healthy massive corals. as well as 

sand. rubble and algac-covcrcd surfaces. 

The first Pemson correlation matrix compares algae-covered surfaces measured in 

1996. 1997 and 1998 (Table 6.2). l'hcrc is a strong correlation between spectra measured 

in 1996 and 1997; a moderate correlatiim het\veen those measured in 1996 and 1998; and 

a weak correlation between those measured in 1997 and 1998. The average algae- 

covered surface spectra vary as a result of differing amounts of algae present and 

differing surfaces underneath the algae. Another explanation for the low correlation 

among algae-covered surfaces could be that the spectra measured in 1997 were exposed 



while the spectra measured in 1996 and 1998 were submerged. Perhaps the macroalgae 

that colonizes surfaces on a coral reef flat that is frequently exposed is of a different 

strain than the macroalgae that colonizes consistently submerged cord reefs thus 

resulting in different spectral reflectance characteristics. These results agree with the 

high within- and between population variability results of the cluster analysis considering 

all 94 algae-covered surface spectra available from 1996-1998. Since both the cluster 

and correlation analyses conclude that there is high within-and between-population 

variability. confidence in the ability to identify spectral reflectance characteristics 

specific to algae will be limited. 

The Pearson correlation matrix for the bleached massive coral data sets for 1996 

and 1997 reveals a very strong pcsitive correlation between the 2 years (Table 6.3). 

There were no bleached massive corals to be measured in the 1998 field season. 

Table 6.2. The average correlation coefficients are compared for algae-covered surfaces. 

Furthermore. there were no bleached branching corals available for measurement in the 

. 1996 and 1997 field seasons. so the data set consists entirely of spectra measured in 1998. 

r 
I 

Algae96 
Algae97 

" 

I Algae98 

I I 

1 Bleached Massive97 1 0.977 t 

Algae96 
1 

0.905 
0.688 

Table 6.3. There is a strong correlation between the bleached massive coral data sets for 
1996 and 1997. 
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Healthy massive corals measured in 1997 are compared to those measured in 

1998 in Table 6.4. There were no healthy massive corals available for measurement in 

1996. The healthy branching corals measured in 1996, 1997 and 1998 are compared in 

Table 6.5. There is a strong correlation between healthy branching corals measured in 

1996 and 1997; a moderate correlation between those measured in 1997 and 1998; and a 

moderate correlation between those measured in 1996 and 1998. Rubble surface spectra 

were only collected in the 1998 field season: sand surface spectra were only collected in 

1997; and soft coral spectra were only collected in 1998. Therefore, it is not possible to 

compare spectral measurements from different geographic locations for these 

populations. 

Table 6.4. There is a moderately strong relationship between healthy massive corals 
measured in I997 and 1998. 

198 are compared. 
Healthy Branching 
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Table 6.5. Healthy branching corals measured in 1996. 1997 and 1 
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The following Pearson correlation coefficients describe the relationship between 

the populations defined for this study. A correlation coefficient matrix is provided in 

Table 6.6. The spectra contained in these populations were collected in 1996, 1997 and 

1998. There is a range of strong to weak correlations between the populations considered 

in this correlation analysis, as discussed below. 

Bleach- branch I 0.657 0.5 15 1 

Table 6.6. The correlation coefficients describe the relationship between populations. 

massive 
Healthy- 
branch 

Healthy- 
massive 
Healthy- 

soft 
Rubble 
Sand 

Algae 
Bleach- 

There is a strong correlation (0.98) between algae and bleached branching coral 

Algae Bleach- Bleach- Healthy- Healthy- Healthy- Rubble Sand 
branch massive branch massive soft 

I 
0.980 1 

. populations. This strong correlation is not surprising since it is probable that algae had 

already colonized the bleached coral surface. but it was not visibly apparent to the 

observer. The strong correlation may lead to confusion in classification of the separate 

populations. but since both bleached coral and algae-covered surfaces indicate vulnerable 

coral reef ecosystems. or ecosystems under stress. then this spectral confusion is not a 

major concern. 

In fact, there are strong correlations between bleached branching coral and several 

other populations. Namely. bleached branching coral has a correlation coefficient of 

0.995 with rubble, 0.983 with healthy soft coral, 0.854 with healthy massive coral and 



0.676 with healthy branching coral. These strong correlations will undoubtedly lead to 

low classification accuracy and low confidence levels when identifying bleached 

branching coral and will cause confusion in classification of other populations. 

Curiously. while bleached branching coral spectra correlate strongly with the various 

populations above. they correlate only moderately with bleached massive corals. The 

uncertainty in the spectral reflectance characteristics of bleached branching corals may be 

a result of the small data set (n=15) or the specific qualities of the branches allowing the 

underlying substrate to influence measurements. 

There are moderate correlations between bleached massive corals and both algae- 

covered surfaces (0.657) and bleached branching coral (0.5 15). The moderate correlation 

between bleached massive corals and algae-covered surfaces indicates, as above, that 

there may be confusion in classifying these separate populations. The spectral confusion 

is not as great between these two populations as with the two above possibly as a result of 

less algal colonization on the massive bleached corals. Massive corals are known to be 

more resilient. yet slower growing. than branching corals. so it is possible that algae does 

not colonize the surface of a bleached massive coral as readily as i t  does a bleached 

branching coral. It is surprising that bleached massive corals are not more strongly 

correlated with bleached branching corals. but this may be a result of the different 

morphologies and contribution from under1 y ing substrates. 

Healthy branching corals correlate highly with bleached massive corals (0.962), 

but only moderately with algae-covered surfaces (0.777) and bleached branching corals 

(0.676). The high correlation between healthy branching corals and bleached massive 

corals may result in classification errors. Branching corals, whether healthy or bleached, 



present complex problems with respect to spectral reflectance measurements due to 

varying densities of branches and variable reflectance properties of underlying substrates. 

For this reason. it is likely that a degree of uncertainty will be associated with the 

classification of branching corals. both healthy and bleached, for it is difficult to measure 

the pure spectral response of a branching coral. 

Healthy massive corals are strongly correlated with algae (0.924), bleached 

branching corals (0.854). bleached massive corals (0.876) and healthy branching coral 

(0.948). It is not surprising that healthy massive corals are highly correlated with healthy 

branching corals. but it is worrisome that this population is also highly correlated with 

both forms of bleached corals. The results of this correlation analysis emphasize the 

complexity in discriminating between populations of a coral reef ecosystem, and 

underscore the need for a robust means of differentiation beyond basic spectral 

recognition. 

Healthy soft corals are highly correlated with algae (0.973), bleached branching 

corals (0.983). and heal thy massive corals (0.894). Healthy soft corals, however. are only 

mockratel>- correlated with health) branching corals (0.756), and weakly correlated to 

bleached massive corals (0.591 ). These correlation coefficients are encouraging with 

respect to the ability to differentiate between populations. Although there appear to be 

spectral similarities between healthy soft corals. algae and bleached branching corals, 

there are apparently differences between soft corals and healthy branching corals as well 

as bleached massive corals. 

Rubble surfaces are highly correlated with algae (0.991), bleached branching 

corals (0.995). healthy massive corals (0.88) and healthy soft corals (0.984). Rubble 



surfaces. however. are only moderately correlated with bleached massive corals (0.569) 

and healthy branching corals (0.71 1 ). The spectral confusion between rubble and 

branching corals may be explained by the possibility that rubble substrate was underneath 

the branching corals, thus contributing to the reflectance signal. In other words. since 

rubble is an expected underlying substrate. branching coral reflectance curves may be 

influenced by the reflectance characteristics of rubble surfaces. Furthermore. it is not 

surprising that rubble surfiices and algae-covered surfaces are highly correlated since it is 

expected that rubble surfaces might be colonized by a certain amount of algae. If a 

rubble surface contained a high enough proportion of algal cover, then the algae would 

contribute to the spectral reflectance characteristics of the rubble surface. 

Finally. sand surfaces are high1 y correlated to bleached massive corals (0.958) 

and healthy branching corals (0.85 7). Sand is moderately correlated with healthy 

massive corals (0.72 1 ). and weakly correlated with the remainder of the populations 

(~0.165). The w e d  correlation coetlkients indicate that there may be higher confidence 

levels associated with discriminating sand from algae. bleached branching corals. healthy 

soft cords and rubble surfaces. Thcrc appears to be spectral confusion between sand and 

bleached massive corals as t v d l  as hcd t h> branching corals. The confusion with 

branching corals may be rclated to thc csplanation for the confusion between rubble and 

branching corals: if sand is the underlying substrate. then it will contribute to the overall 

reflectance of a branching coral thus icading to spectral similarities. 

In summary. several of thc populations defined in this study appear to be highly 

correlated with one another. which may lead to classification errors. Some populations 

are not highly correlated. such as sand. algae. and rubble, which indicates that these 



populations should be accurately discriminated. There are several other populations with 

moderate correlations. which may result in variable confidence in classification 

procedure. Because of the strong correlations, healthy branching, massive and soft corals 

will be considered one population. Further analysis will be performed on representative 

spectra identified using principal components analysis determined in the following 

chapter. 

6.6 SUMMARY 

The spectra measured in Beqa Lagoon, Fiji in 1996, Manado, Indonesia in 1997 

and Savusavu Bay. Fiji in 1998 were compared in order to examine the spectral 

differences of reflectance curves measured in different geographic locations. The 334 

spectra considered were categorized into 8 broad populations and visually examined for 

within-population variabi lily. Cluster and correlation analyses were used to further 

examine the within- and between-population variability. The within-population 

variability was found to be low. which indicates that spectral reflectance curves within a 

given population defined on the basis of feature type are spectrally similar regardless of 

geographic location. The between-population variability, however, was also found to be 
b 

low. which suggests that the spectral differences in reflectance are subtle for the 

populations considered. On this basis. all healthy coral spectra in the 3 sub-populations 

of branching. massive and soft varieties will be amalgamated into one population in 

subsequent analysis. 



CHAPTER 7 

DEFINITION OF REPRESENTATIVE SPECTRA AND 

SPECTRAL DISCRIMINATION OF CORAL REEF FEATURES 

7.1 INTRODUCTION 

The first objective of this chapter is to identify spectra that are representative of 

populations or features commonly found in a coral reef ecosystem. Principal components 

analysis (PCA) will be used as a data reduction tool in an effort to identify the measured 

reflectance spectra that are most representative of the variance o f  each population. PCA 

is used to test the hypothesis that various visually similar coral reef features have distinct 

reflectance characteristics. This approach will have more rigour than the cluster analysis 

used as a data exploration tool in previous chapters. Six populations are investigated 

here. All healthy corals were amalgamated into one population due to the strong 

correlations between soft branching and massive corals. Bleached massive corals. 

however. are considered a separate population from bleached branching corals for the 

purposes of this study. The remaining populations are rubble, sand and algae-covered 

surfaces. 

The second objective of this chapter is to develop and test a procedure that would 

enable remote identification of coral reef ecosystem features. Since the reflectance 

values themselves do not appear to allow discrimination between populations, another 



method is needed. Inspection of the measured spectral reflectance curves reveals that 

within certain wavelength regions there are differences in the slope of the curves. 

Therefore, first derivatives can be calculated to examine the change in reflectance with 

respect to wavelength in an effort to differentiate between populations. Furthermore, 

second derivatives can be used to examine the change in slope with respect to wavelength 

to isolate more subtle differences. 

Spectral derivative analysis is used to identify specific wavelength regions that 

would be ideal for discrimination. If the spectral distinction is present in the visible 

wavebands. which have the ability to penetrate water, then passive optical remote sensors 

with filters for these specific wavebands have potential to be used to identify populations 

present. It may therefore be possible to estimate the health or stress of a coral reef 

ecosystem in terms of the proportion of healthy cords, bleached corals and algae present. 

7.2 PRINCIPAL COMPONENTS ANALYSIS 

The purpose of the following principal components analysis (PCA) is to identify 

representative spectra of specific pre-identified populations. The data set has been 

divided into six populations representing substrate type based upon field identification: 

bleached branching coral (n= 1 5). bleached massive coral (n=25), hedthy cord (n= 1 3 a), 

algae (n=94), rubble (n=28) and sand (n=34). Separate PCAs are performed on each of 

the populations in order to determine a representative spectral reflectance curve for each 

population based upon the variance distribution within the population. 



Theoretically, the majority of the variance should be retained in the first 

component if the variance of d l  of'the spectra within the dataset correspond to the same 

feature. This may be a more robust means of determining the most representative spectra 

corresponding to particular features than averaging or subjectively selecting 

representative spectra. No rotation techniques were applied to the data sets as proposed 

by Riclunan (1986) due to the likelihood of extracting the maximal variance From each 

data set without rotation. Richman ( 1986) aiso states that unrotated PCA solutions are 

ideal for situations where pure data reduction is sought, as in this case. This is indicative 

of the integrity of the population definition. The results of the 6 principal components 

analyses performed are summarized in Table 7.1. No less than 94% of the variance is 

explained by the first 2 components in all 6 cases, and the majority of the variance is 

explained by the first principal component (PC I )  in all cases. 

Table 7.1. The results of the 6 separate PCAs are summarized below. 
I Population 
! 

Explained by xplained by PC2 

1 massive coral 
I I I I I I 

n 

I I I I I 
. . 1 Healthy coral 1 138 1 I 

Bleached 
i 

78.1 0% 
I 

I 

Variance 

25 i 94.96% 

Bleached 

18.16% 

1 branching coral 

Sand 

Rubble 

AIgae 

Variance 

96.26% 

3.82% 

I5 

Total Variance 

98.78% 

34 

28 

94 

93 .09% 

84.94% 

89.68% 

84.66% 

6.20% 99.29% 

9.83% 

8.60% 

13 -92% 

94.77% 
, 

98.28% 
, 

98.58% 



A component loading. which ranges from -1 .O to 1 .O, is calculated for each of the 

spectra included in the PCAs. A high positive loading indicates that the measured 

spectral reflectance curve is similar to the computed principal component spectrum. For 

each population, the 2 measured spectra with the highest loadings to the first 2 principal 

components were selected for comparison. The 2 measured spectra for each population 

are compared separately in Figures 7.1 through 7.6 with the loading indicated in brackets 

in the legends. Since the large majority of the variance is explained by the first principal 

component in all cases (ranging from 81.86% to 94.96%), the spectra with the highest 

loadings to the first component were selected as representative of each population. 

Waelength (nm) 

-Bleach mass pcl(0.998) .Bleach.rnass.pc2(0.267) 
. 

Figure 7.1. A comparison of the 2 measured spectra with the highest loadings for PC1 
and 2. 



Wadength (nm) 

- .  
- - - - - - - - - - - - ---A 

Figure 7.2. A comparison of the 2 measured spectra with the highest loadings for PC 1 
and 2. 
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Figure 7.3. A comparison of the 2 measured spectra with the highest loadings for PC1 
and 2. 
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Figure 7.4. A comparison of the 2 measured spectra with the highest loadings for PC1 
and 2. 
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Figure 7.5. A comparison of the 2 measured spectra with the highest loadings for PC 1 
and 2. 

Wa\~length (nm) 
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Figure 7.6. A comparison of the 1 measured spectra with the highest loadings for PC 1 
and 2. 

The 6 measured spectra identified by the principal components analyses are 

considered to be representative of their respective populations. The loadings calculated 

for each of the 6 measured spectra identified with the PCA are all larger than 0.99, where 

a perfect match is 1 .O. which indicates that the measured spectra are very similar to the 

computed first principal components. 

It appears as though the representative spectra identified for rubble surfaces and 

algae-covered surfaces are very similar. so it is not expected that these two populations 

will be accurately discriminated. This is not a surprising similarity since varying degrees 



of macroalgae and dead coral debris commonly colonize rubble surfaces on the floor of a 

coral reef. If a coral reef ecosystem is under environmental stress to the extent that it 

becomes dominated by macroalgae, then it is not necessary to be able to differentiate 

between algae-covered dead coral and algae-covered rubble; therefore this spectral 

similarity may not be a limiting factor in classification. The actual measured spectra with 

the highest loading to the tint principal component for each of the 6 populations are . 

compared in Figure 7.7. Photographs of the features associated with these representative 

spectra are provided in Figure 7.8a through 7.8~. 

The remaining spectra identified as representative of their populations appear to 

be spectrally different. The slope of the spectral reflectance curves appears to be a 

feasible characteristic to enable differentiation between populations. Therefore. in the 

nest section. using the representative spectra identified here. first and second derivatives 

will be calculated in specific wavelength ranges in an attempt to discriminate between 

populations. 

- 

Figure 7.8a. An example of a healthy coral. 



Figure 7.8b. An example of partially bleache d (lower left) 
covered surface (upper right). 

Figure 7 . 8 ~ .  An example of a debrishbble  surface. 

and partially algae- 
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Figure 7.7. A comparison of the spectra with the highest loadings to PC1 for each population. 
(note: these are obsewed measured spectra, not PCA eigenvector count measures) 



7.3 DERIVATIVE ANALYSIS OF REPRESENTATIVE SPECTRA 

The slopes of the spectral reflectance curves are used as a means of discriminating 

between populations. The representative spectra identified with PCA are used in an 

effort to develop a procedure of discrimination and classification of populations based on 

slope of the reflectance curves. First derivatives are calculated by finding the difference 

in reflectance with respect to difference in wavelength. The second derivatives are 

calculated by finding the difference in slope with respect to difference in wavelength. 

The representative spectra were inspected for wavelength regions that displayed 

different slopes or changes in slope. Small wavelength intervals are preferable in order to 

maintain the greatest amount of spectral information. Therefore. changes in reflectance 

and slope of the spectra that occurred over small wavelength ranges were investigated 

first. Through inspection. wavelength regions were identified as having potential to 

allow discrimination of the 6 representative spectra as illustrated in Figure 7.9. The 

proccss of finding thc wawlength regions was iterative and subjective. 

Two wavelength regions were identified as possibly enabling differentiation 

between populations based on change in reflectance (first derivative). Furthennore, one 

wavelength region was identified as possibly enabling differentiation based on change in 

slope (second derivative). The final stage of the classification involves calculation of the 

maximum magnitude of reflectance as a means of discrimination. The procedure 

identified involves 4 steps as described in the decision flow chart in Figure 7.10. 



Wavelength (nm) 

0 l e a c h . r n a s s i v e  -0leach.branch H e a l t h y  A l g a e  -Rubble S a n d  I 
1 

Figure 7.9. Spectral regions on the principal component spectra identified through 
inspection that enable discrimination. 
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First. the slope between 605 and 62511x11 is found. and the spectra with positive 

slopes are identified as sand substrates based upon inspection of differences in slope. 

Secondly, the slope between 585 and 605nm is found, and the spectra with positive 

slopes are identified as bleached massive corals. Thirdly. the change in slope (second 

derivative) between 506 and 566nm is found. and spectra with positive changes in slope 

are identified as healthy coral. regardless of morphology. The remaining spectra are 

identified as bleached branching coral, algae or rubble substrates. To differentiate 

between these three final populations, the maximum magnitude of reflectance is 

determined for the entire spectrum. If the maximum magnitude of reflectance is greater 

than or equal to 0.1. then those spectra are identified as algae or rubble surfaces and the 

remaining are considered bleached branching coral spectra. The results of the derivative 

analysis based on the representative spectra are presented in Table 7.2. For interest, the 

first and second derivatives were calculated for all sub-populations of healthy coral. 



I I I 

I IF POSITIVE, I IF POSITIVE, THEN I IF POSITIVE, THEN 

Table 7.2. First and second derivatives are calculated on the representative spectra. 
Slope between 

605-625nm 

Bleached 
mass 

Bleached 
branch 

Slope between 
585-605nm 

1 I 

Change in Slope 
between 506 and 566nm 

THEN ID AS 
SAND 

-0.00029 

-0.00053 

Healthy I -0.00030 
mass 

Healthy 
branch 

I I I - r 

The 3 healthy coral populations (massive. branching and soft corals) were 

considered as one popuiation for the final classification scheme. as few spectral 

reflectance differences were discemabie and the sub-populations correlate strongly with 

one another. There are distinct differences between the reflectance spectra of bleached 

branching coral spectra and bleached massive coral spectra, which may be a function of 

ID AS BLEACHED 
MASSIVE CORAL 

0.00020 
(ID as bleach mass) 

-0.00090 

-0.00085 

-0.0003 8 

Healthy 1 -0.000077 
soft 

Algae 
Rubble 
Sand 

the small number of bleached branching corals available for sampling in the field. The 

fact that bleached branching coral spectra are (a) different than bleached massive coral 

spectra and (b) similar to healthy coral spectra results in great difficulty in identifying 

bleached branching coral. 

ID AS HEALTHY 
CORAL 

-0.0000 1 

0.00003 

-0.00040 

-0.00092 
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-0.00027 
0.00006 
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0.0000 1 

(ID as healthy) 
0.00002 

-0.00 125 
-0.00 1 10 

(ID as healthy) 
-0.0000 1 
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Additionally, algae covered surfaces and rubble appear to have similar spectral 

reflectance curves. This is likely because the dead coral debris that constitutes a large 

portion of rubble surfaces is commonly colonized by algae thus contributing to spectral 

reflectance characteristics similar to algae-covered boulders. These two populations are 

considered to be one classification category in the following procedure as a result of the 

lack of unique spectral features enabling differentiation. 

7.4 ACCURACY ASSESSMENT 

To test the validity of this identification technique, the calculations proposed by 

the 4 step procedure (first and second derivatives. as well as maximum magnitude of 

reflectance) were performed on the remainder of the data. The spectra were identified 

based on the guidelines presented in Table 7.2 above. and thus classified as one of six 

populations. Therefore. the first derivative between 605 and 6 2 5 m  of all spectra in the 

data set was calculated and all spectra with positive slopes were identified as sand 

substrates. These spectra were then removed from the data set, leaving 297 spectra and 

the first derivative between 585 and 540nm was calculated. All spectra with positive 

slopes in this wavelength range were identified as bleached massive coral, and 

subsequently removed from the data set. 

Next. the second derivative between 506 and 566nm was calculated on the 

remaining 232 spectra, and those with positive change in slope in this wavelength range 



were identified as healthy coral (either branching. massive or soft), and removed from the 

data set. Finally, the maximum magnitude of reflectance was determined for the 

remaining 1 18 spectra and identified as either algae-covered or rubble surfaces if the 

magnitude was greater than or equal to 0.1. The remaining spectra were identified as 

bleached branching coral. 

To determine the accuracy of this 4 step classification procedure using first and 

second derivatives and magnitude of reflectance, the number of spectra correctly and 

incorrectly identified was counted. At each step, the number of spectra correctly 

identified as well as the number of spectra incorrectly identified are counted. Regardless 

of whether the spectra were correctly or incorrectly identified. if the spectra met the 

criterion for the particular step. they were removed from the data set if it fit the 

hypothesis. Therefore, the total number of spectra in the data set is reduced at each step 

in the procedure. 

Error matrices allow investigation of the relationship between what is known and 

what is classified in an effort to assess how well the classification procedure has 

categorized the spectra. An error matrix allows examination of the errors of omission 

(exclusion) and commission (inclusion) (Lillesand and Kiefer, 1 994). The overall 

accuracy is computed by dividing the total number of correctly classified spectra by the 

total number of spectra in the entire data set. Similarly, the classification accuracies for 

each of the populations can be determined by dividing the number of correctly classified 

spectra in each population by the total number of spectra in the population (the column 

total). This is commonly called 'producer's accuracy'. 



A third accuracy can be calculated by dividing the total number of correctly 

classified spectra for a population by the total number of spectra that were classified into 

that population (the row total). This figure is commonly called 'user's accuracy', and is a 

measurement of commission error. which indicates the probability that a spectra 

classified into a given population actually represents that population in reality. 

An error matrix for the classification performed in this study is provided in Table 

7.5. An overall accuracy of 80.1 % was determined by dividing the total number of 

correctly classified spectra (the sum of the counts along the major diagonal) by the total 

number of spectra considered in this study [( I 1  7+ l6+5+l OO+3 1 )/334=269/334=0.8054]. 

The producer's accuracy for each population can be found along the bottom of the 

matrix. and the user's accuracy can be found along the right side of the matrix. 

Table 7.3. An error matrix for the classification procedure introduced here enables 
warnination of errors of omission and commission. 
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The producer's accuracy for healthy coral is 84.8%. In other words, 1 17 of the 

138 healthy coral spectra that were considered in this shdy were classified correctly. 

Eight of the healthy coral spectra were erroneously classified as sand, 4 as algae or 

rubble. 2 as bleached branching cmal and 7 as bleached massive coral. Therefore. there 

is still a small degree of spectral confusion between the populations. The user's accuracy 

for healthy coral is 87.3% since 1 17 healthy corals were correctly classified of the 134 

spectra classified as healthy coral in total. This means that 1 7 (1 34- 1 1 7) spectra in the 

data set were erroneously classified as healthy corals, which makes these errors of 

commission. This can be interpreted as an 87.3% chance that a spectral reflectance curve 

in the healthy coral category actually represents healthy coral measured spectra. 

The producer's accuracy of bleached massive coral is 64.0% since 16 of the 25 

bleached massive coral spectra considered in this study were correctly identified as 

bleached coral. Similarly. the producer's accuracy of bleached branching coral is 33.3%, 

since only 5 of the 1 I bleached branching cord spectra were correctly classified. This is 

the lowest accuracy of all populations considcrud in this study. Both data sets are 

relatively small. so the spectral rdlccctlncc curves may not actually be representative of 

bleached coral. Alternatively. thc bleachad conls sampled were most likely in varying 

stages of bleaching, which is difficult to discern. A coral in the beginning stages of 

bleaching may have a larger proponion ofhealthy coral polyps present, which would 

confuse the spectral signature. Anothcr contributing factor to the low accuracy of the 

bleached branching coral category is the variable effect of the underlying substrate on the 



measured reflectance. These factors may all contribute to the variability of bleached 

coral reflectance spectra. and the poor classification results. 

The user's accuracy of the bleached massive coral category is 59.3%. This means 

that there is a 59.3% chance that a bleached massive coral will be correctly classified into 

the proper category. The user's accuracy for the bleached branching coral category is the 

lowest of all categories. The user's accuracy indicates that the probability of a spechum 

in this category actually being a measured bleached coral spectrum is only 29.4%. This 

is a very low probability and will result in low confidence in classification results 

involving bleached coral. 

The 82.00/0 producer's accuracy of the algae and rubble category is a result of 100 

of the 127 algae and rubble spectra included in this study being correctly classified. 

Similarly. the user's accuracy of the algae and rubble category indicates that there is a 

90.1 % chance that a spectrum in this category actually is an algae or rubble reflectance 

spectrum. The high accuracies may be a result of combining the 2 populations into one. 

Had this not been done. there would have been great spectral confusion between the 2 

resul ring in an inability to discriminate. Inspection of' the representative spectra reveals 

that algae and rubble spectra are nearly identical. This is most likely because the same 

algae that colonizes a dead coral massive will colonize a pile of dead coral branches that 

have broken off and gathered on the sea floor. for instance. 

The producer's accuracy of the sand surface category is highest of all populations 

at 9 1.2% since 3 1 of the 34 sand spectra included in this study were correctly identified. 

The user's accuracy of the sand category is only 68.9% such that there is this amount of 

chance that a given spectrum of this category actually is a measured sand reflectance 



curve. The low user's accuracy is an indication that there is a relatively high probability 

that other features will be erroneously classified as sand. 

The overall accuracy for the 4 step classification scheme proposed here is high 

compared to the results of the cluster analyses, and it may be acceptable for certain 

regional applications of coral reef ecosystem mapping and monitoring. Despite the 

inaccuracies due primarily to an inability to identify bleached branching corals. the , 

overall accuracy is satisfactory, and it can be concluded that the procedure introduced 

here is an appropriate means of classifying populations commonly found in a coral reef 

ecosystem. 

7.5 SUMMARY 

The first objective of the chapter was to define representative spectra for the 

populations by using principal components analysis as a data reduction tool. Six separate 

principal components analyses were performed in order to identify one representative 

spectral reflectance curve for each population. This objective was met, and 6 

represen tat ive spectra were defined. 

Comparing the spectra revealed between-population differences in the slope and 

change in slope of the spectral reflectance curves. so spectral derivative analysis was 

investigated for its utility in discriminating populations. First derivatives (change in 

reflectance with respect to wavelength) and second derivatives (change in slope with 

respect to wavelength) were calculated for the 6 representative spectra to develop 

hypotheses for spectral discrimination of the populations. The fmt  derivatives between 

605 and 625nm as well as between 585 and 605nm enabled identification of sand 



substrates and bleached massive corals. respectively. The second derivative between 506 

and 566nm enabled discrimination of healthy corals. Finally. the maximum magnitude of 

reflectance was used as a means of discriminating algae or rubble surfaces from bleached 

branching coral. 

This 4 step procedure using first and'second derivatives and magnitude of 

reflectance was tested on the remainder of the data set in order to test its accuracy. me 

overall accuracy of the classification was 80.1 %, which is appropriate for many 

applications. such as coral reef ecosystem management on a regional scale. Furthermore, 

errors of omission (exclusion) and commission (inclusion) were investigated to determine 

which categories were contributing most to the overall accuracy results. 



CHAPTER 8 

SUMMARY AND CONCLUSIONS 

8.1 SUMMARY 

It is difficult to determine the exact cause of coral reef ecosystem decline, but it is 

probably due to the interaction of a combination of humaminduced factors leaving coral 

communities less resistant to periodic natural disturbances. Although disease, 

temperature extremes. pest outbreaks. tropical cyclones, and other natural events 

periodically devastate coral reefs with widespread repercussions, healthy reefs are more 

resilient and will recover with time (Brown et al.. 1997; Glynn, 1996). 

There is thus a critical need for detailed monitoring and assessment of reef 

habitats in order to document how and where coral reefs are threatened and to understand 

what measures are needed to safeguard them. Scientists and managers have only a 

rudimentary. incomplete database on the status and health of coral reef ecosystems 

(Bryant et al.. 1998). For instance. there is still a lack of an objective global map 

depicting reef location although subjective. survey-based maps covering non-continuous 

and small geographic areas are available from the International Center for Living Aquatic 

Resources Management (ICLARM) (Bryant et al.. 1998). Qualitative, spatial information 

is essential for informed decision making by resource managers and agencies, fishers, 

tourism, and local industry. Moreover. the public, non-governmental organizations and 



scientists need such baseline data to better understand and advocate for protection of 

reefs. 

A range of tools exist for assessing and monitoring reefs, each with advantages 

and limitations. as there is usually a trade-off between cost and detail (Green et al., 1996). 

For example, satellite imagery can be acquired at relatively low cost, but the spatial and 

spectral detail available is low. and conversely, underwater transects by ecologists are 

expensive. but provide great detail of ecosystem structure for small areas. The optimal 

approach might be multi-level sampling whereby information is extracted from limited, 

high-resolution sampling and extrapolated to a large area based on low-resolution data 

with regional coverage (Bryant et al.. 1998). 

Toward this end. the in siru spectral reflectance database used in this study is the 

first of its kind. The field data are difficult to collect and study areas are remote resulting 

in expensive and short field seasons. The sky conditions are often poor for radiometric 

measurements. as there is typically cloud cover in tropical coastal areas where coral reefs 

are commonly found. The water surface can be rough, also resulting in arduous 

circumstances for data collection based out of a small boat that is shallow enough t o  float 

over a coral reef. Furthermore. the environment is complex, so variables are difficult to 

control. These factors combine to crcatc a challenging environment in which to develop 

a sampling strategy and methodology. Through trial and error and innovation, many of 

these fundamental data collection obstacles have been overcome and a methodology is 

now available for other researches to test. optimize and improve. 

Murnby et al. (1 998) present two basic advantages of the quantification of reef 

spectra such as in this study. The first is that prior knowledge of spectral responses 



allows users of hyperspectral imagery to make an informed selection of wavelength 

bands with which to operate. Secondly. spectral classification of hypenpectral imagery 

may become an automated procedure with access to spectral libraries. As a result. the 

use of a spectral library, such as collected for this thesis, could conceivably be used to the 

exclusion or reduction of fieldwork. 

The work in this thesis is an important fundamental step in establishing consistent 

and quantitative international databases of accurate and replicable imagery delineating 

the extent of coral reef ecosystems. and spectral indexes or catalogues indicating the 

health of ecosystem components. Such a database could be augmented regularly to 

identify changes in coral health over time. and could serve as an integral source of 

information when relating coral bleaching to climatic anomalies or environmental 

changes. for example. 

8.2 INTELLECTUAL CONTHIBI~TIONS 

The ultimate god of this stud) \\-as to use a unique data set of hyperspectral in 

sim reflectance measurements to determine the degree to which optically similar coral 

reef features could be discriminated. Meeting this goal required collection of the first in 

siilr database of passive reflectance spcctra in a submerged coral reef environment. Three 

field programs in Beqa Lagoon. Fiji: Manado. Indonesia; and Savusavu Bay, Fiji were 



designed to collect in situ reflectance measurements of a variety of features commonly 

found in a coral reef environment. 

Field data collection was a significant challenge, and took many hours in the field 

to collect a relatively small amount of data. Limited resources necessitated small data 

collection teams. which resulted in physically demanding and challenging research. In 

addition. environmental limitations restricted the amount of data collected. For example, 

reflectance data should be collected when the sun is highest in the sky for greatest 

accuracy. so data collection times were limited to a few hours surrounding solar noon. 

Unfortunately. near the equator. this is a physically taxing time of day to be under the 
. 

sun. especially on an exposed coral reef flat with no shade whatsoever. Additionally, 

overheating of the computer equipment was commonly an issue at this time of day. 

Additional challenges to this field data collection are the physiological restrictions 

of scuba diving for extended periods of time. For safety reasons, measurements 

underwater while scuba diving were rarely taken for over an hour, and normally only 

twice per day. Furthermore. scuba diving tanks contain limited amounts of air. and the 

harder a scuba diver is working. the more quickly air is consumed. 

The design of the field seasons changed slightly each yeas depending on the 

specific instrumentation. field assistants and time available. Furthermore, variable 

surface water conditions. coral reef structure. and boat characteristics demanded 

modification of field sampling designs. The establishment and documentation of 

sampling procedures in multiple environments with varying instrumentation and other 

resources is therefore a significant contribution that may aid scientists conducting similar 

field data collection in the future. 



Additionally, similar features were measured in the three geographic locales to 

determine the degree to which reef location influences reflectance. While it is intuitive 

that similar coral reef ecosystem features would have similar spectral reflectance 

characteristics regardless of the geographic location of the reef, this had never before 

been investigated. Another contribution of this study, therefore, is the establishment of 

baseline information that geographic location does not appear to affect the spectral 

reflectance characteristics of the coral reef features. 

Moreover, measurements of corals with different morphological characteristics 

and corals suffering from varying degrees of bleaching were collected to determine the 

spectral reflectance differences. Algae covered surfaces were also measured to examine 

the difference between pigments in macroalgae and those in zooxanthellae. The unique 

data set used in this thesis comprises a large array of features commonly found in a coral 

reef environment, and therefore allows comprehensive comparison of in situ spectra. 

Such baseline data is a necessity in accurate remote monitoring of coral reef 

environments, and may enable automated digital image analysis through reference to 

spectral libraries resulting in a reduction of expcnsivc, time consuming m d  difficult field 

work (Mumby et al., 1998). 

Since the data set used in this thesis was the first of its kind, the subsequent 

analysis was therefore also the first of its kind. The field data were first examined 

separately to investigate the between- and within-population variability. Average and 

standard deviation spectra were examined, and cluster and correlation analysis used to 

determine the spectral differences and similarities among spectra in a population and 

between spectra of different populations. After the three data sets were separately 



investigated, they were amalgamated and treated as one large spectral data set. Eight 

spectral populations were created and the between and within-population variability 

examined using cluster and correlation analysis. The purpose of comparing the 

amalgamated spectral data set was to examine the within-population variability that may 

be a result of geographic location of the spectral measurements. 

Principal components analysis was then used to reduce the large amalgamated 

data set to representative spectra for each population. These representative spectra were 

used to develop a means of discriminating between populations based on the slopes and 

the changes in slope of the spectral curves. First and second derivatives were calculated 

in narrow wavelength ranges to retain the maximum value of the hyperspectral data. A 4 

step procedure using first and second derivatives and magnitude of reflectance to 

eliminate identified spectra was developed based on the representative spectra and tested 

for accuracy on the remainder of the spectral data set. An accuracy assessment was 

performed to interpret the results of the spectral classification using the 4 step derivative 

procedure. 

8.3 MAJOR FINDINGS 

The spectral data set collected in Beqa Lagoon, Fiji in 1996 consists of 40 

measurements of bleached massive coral, healthy massive coral and algae-covered 

surfaces. It was hypo thesized that the within-population variability would be small such 



that all bleached massive coral spectra will be similar, for instance. Additionally, it was 

hypothesized that the between-population variability would be large as a result of 

wavelength-speci fic differences in reflectance. t nitial inspec tion revealed that there are 

subtle differences in the shape and magnitude of the reflectance curves, which may 

enable discrimination between broad populations. Cluster analysis performed was able to 

discriminate between different spectra although there was a certain degree of 

misclassification. Additionally, correlation coefficients were calculated to examine the 

within-population variability of spectral reflectance measurements. This analysis 

revealed that, in all cases, a positive linear relationship exists between spectra within a 

given population. The relationship was strongest for the bleached massive coral group 

and weakest for the algae-covered coral group. The strong positive correlations between 

populations indicate that it will be difficult to differentiate these populations spectrally. 

Secondly, average and standard deviation spectra were examined to visualize the 

within-population variability of the 5 populations defined for the data set collected in 

Manado, Indonesia in 1997. Cluster and correlation analyses were then performed to 

examine the within- and be tween-population variability. With the exception of the hgh  

variability among sand surface spectra, there was little within-population variability 

found. Correlation coefficients of average spectra were then examined to explore the 

between-population variability. The correlation coefficients were strongly positive for all 

spectral comparisons, which suggests that the average spectra are all similar. These 

results emphasize the difficulty in remotely identifying these spectrally similar features. 

Third, the spectral data set collected in Savusavu Bay, Fiji in 1998 consisted of 

2 15 reflectance curves separated into 6 populations: healthy branching corals, healthy 



massive corals, healthy soft corals, bleached branching corals, rubble surfaces and algae- 

covered surfaces. Initial 1 y. the avenge and standard deviation spectra were determined 

and examined in an effort to identify spectral differences in reflectance that might enable 

remote discrimination. Subtle differences in spectral shape and magnitude were 

identified. Cluster analysis was used to explore the within-population variability among 

spectra of  a given population. In general, it was concluded that there is low within- 

population variability among spectra of the same population. Pearson correlation 

coefficients were also calculated to examine the relationships among spectra within a 

population. Overall, the relationships among spectra of a given population were strongly 

correlated, which reinforced the results of the cluster analysis. Finally, Pearson 

correlation coefficients were calculated to explore the relationships between average 

spectra for each predefined population. The results indicate that there is a strong positive 

correlation between populations, which reveals that there is low variability between 

spectra OF different populations. This result suggests that it will be difficult tc distinguish 

between populations of a coral reef ecosystem. Visual analysis of the measured 

reflsctancr spectra, however, indicates hat subtle spectral differences do in fact exist 

between populations, which is encouraging for further analysis. 

In the next stage of analysis, the spectra measured in Beqa Lagoon, Fiji in 1996, 

Manado, Indonesia in 1997 and Savusavu Bay, Fiji in 1998 were compared in order to 

examine the spectral differences of reflectance curves measured in different geographic 

locations. The 334 spectra considered were categorized into 8 broad populations based 

on photographs and notes taken in the field, and visually examined for within-population 

variability. Cluster and correlation analyses were used to W e r  examine the within- and 



between-population variability. The within-population variability was found to be low, 

which indicates that spectral reflectance curves within a given population defined based 

on feature type are spectrally similar regardless of geographic location. The between- 

population variability was also found to be low, which suggests that the spectral 

differences in reflectance are subtle for the populations considered. A11 healthy coral 

spectra in the 3 sub-populations of branching, massive and soft varieties yere 

amalgamated into one population for further analysis since the high correlation 

coefficients revealed that there is little spectral difference attributable to coral 

morphology. 

The first objective in the next stage of analysis was to define representative 

spectra for the populations by using principal components analysis as a data reduction 

tool. Six separate principal components analyses were performed in order to identify one 

representative spectral reflectance curve for each population: healthy coral, bleached 

massive coral, bleached branching coral, algae and rubble surfaces or sand surfaces. 

Comparing the spectra revealed between-population differences in the slope and change 

in slope of the spectral reflectance curves, so spectral derivative analysis was investigated 

for its utility in discriminating populations. First derivatives (change in reflectance with 

respect to wavelength) and second derivatives (change in slope with respect to 

wavelength) were calculated for the 6 representative spectra to develop hypotheses for 

spectral discrimination of the populations. The maximum magnitude of reflectance was 

used as the fmal discriminating factor. Through trial and error, it was discovered that the 

first derivatives between 605 and 625n.m as well as between 585 and 605nm enabled 

identification of sand substrates and bleached massive cords, respectively. The second 



derivative between 506 and 566nm enabled discrimination of healthy corals. Finally, the 

maximum magnitude of reflectance was used as a means of discriminating algae or 

rubble surfaces. The remaining spectra were assumed to belong to the bleached 

branching coral population. 

This 1 step procedure using first and second derivatives and magnitude of 

reflectance was tested on the remainder of the data set in order to test its accuracy. The 

overall accuracy of the classification was 80.1%, which is appropriate for many 

applications, such as conl reef ecosystem management on a regional scale. Furthermore, 

errors of omission (exclusion) and commission (inclusion) were investigated to determine 

which categories were contributing most to the overall accuracy results. 

Bleached corals were the main source of error in this study. Since the 

classification of healthy corals and algae-covered dead corals appears to be accurate 

using this procedure, the inaccuracies in classifying bleached coral is less of a concern. 

Since bleaching is a temporary state of vulnerability, a bleached conl  may not remain 

bleached for very long. The coral may die and be colonized by algae, or recover to 

healthy coral status in a very short time period, depending on the intensity and duration of 

the environmental stress. Therefore, it may be of greater utility to devise an accurate 

means of classifying algae-covered surfaces, so areas of change from healthy coral to 

algae-covered coral can be identified. 



8.3 FUTURE RESEARCH 

Most data collection is focused on biological and physical dimensions of coral 

reef ecosystems such as the species found, location of habitats, and degree of degradation 

(Bryant r t  a[., 1998). Socioeconomic and political information can help policy makers, 

managers, scientists and others better understand the direct and underlying factors that 

result in changes in reef condition such as subsidies and laws that result in over fishing. 

Information enabling the quantification of direct and indirect values resulting from coral 

reef ecosystems is important input for weighing development and management options. 

Coliection of such policy-relevant data should be a priority in future monitoring and 

assessment efforts. 

Pressure on coral reefs will grow as economies develop and coastal populations 

swell, so careful planning and management can assure healthy reefs while meeting the 

needs of local people. Increased concern and interest wiIl hopefully lead to action at 

local, national and international levels in an effort to protect and conserve reef resources. 

Therefore, both physical and socioeconomic information must be considered in order to 

understand the workings of the system and successfully implement management and 

conservation schemes. 



The next stage OF research following the development of this procedure for 

spectral identification should be to collect remotely sensed hyperspectral measurements 

of a coral reef ecosystem. The remotely sensed imagery should tirst be collected over a 

coral reef flat with little or no water cover to perform an analysis of the effects of mixing 

within one pixel. Secondly, remotely sensed imagery should be collected over a 

submerged coral reef to analyze the effect of the water column over the substrate. Energy 

is attenuated logarithmically through a water column of infinite depth or with a dark 

substrate. The bright and highly reflective substrates of a coral reef environment, 

however, present a complex radiative transfer problem due to multiple reflectance and/or 

solar-stimulated fluorescence off these substrate types. Considerable study is required to 

develop a means of correcting for the attenuating and augmenting effects of water 

columns of variable depth and quality over substrates of variable reflectance. 

Airborne remote sensing, such as with the casi (Compact Airborne 

Spectrographic Irnagrrj sensor, is presently the best source of high spatial and spectral 

resolution imagery. Additionally, future satellite missions, such as the Australian ARIES 

satellite or the American NEMO satellite, will offer high spectral resolution imagery with 

moderated spatial resolution within the next five years. Utitization of such hyperspectral 

imagery will allow identification of features that are spectrally similar, and will allow 

repetitive coverage over large geographic areas. The ability to perform change detection 

studies will improve with the use of hyperspectral imagery because subtle changes in 

spectral reflectance will be detectable. 



8.4 .3  Encom~ass Brotlil Comtcil Zone 

Finally, this field of study needs to be extended into the complicated yet highly 

related coastal environments of mangrove forests, seagrass beds and mudflats. Unique 

spectral reflectance properties are expected for components of these, and other, coastal 

ecosystems, which should allow for accurate identification on remotely sensed imagery. 

Submerged seagrass, however, has great potential to present an additional source of error 

due to the suspected spectral confusion between seqrass, coral and algae. If considering 

the broader coastal zone is a goal, then additional in sirtr measurements characterizing the 

spectral reflectance of seagrass, mangroves and mudflats, for instance, is a necessity. 

Such an approach to quantitatively mapping coastal ecosystems could be considered an 

essential component o fa  management plan, as it allows for consistent, repetitive and 

accurate monitoring of degradation and recovery of ecosystems. 

Furthermore, even if not directly affected, coml reefs may be threatened by 

degradation of nearby mangroves, seagrass beds and associated habitats that serve as 

nurseries for many reef species. Mangroves play an important role in filtering out 

sediments washed into coastal areas fiom upstream runoff, and are unfortunately often 

cleared for wood hel, creation of aquaculture ponds and for coastal development. Left 

unrnonitored, unassessed and unplanned, the coastal zone, with increased economic 

development may face a devastating future. 
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