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Public key cryptography based on elliptic m e s  over finite fields was proposed 

by Miller and Koblitz in 1985. Elliptic m e s  over finite fields have been used to 

implement the Dinie-Heltnan key passing scheme and the ElGamal, Schnorr and 

NIST signature schemes. Elliptic m e s  have &O been used over the ring Zn to 

implement an RS A type scheme. In the fmt part of this thesis however, we propose 

using elliptic c w e s  over the ring Zn in a new way. In this system the information 

is carried in the exponent space and not in the goup itself. Also security depends 

on the difIiculty of factoring a 150 digit number in order to trapdoor the discrete 

logari t hm pro blem. 

The continued fraction expansion and infkastxucture for quadratic congruence 

function fields of odd Jiaract&stic have been well studied. Recently, these ideas 

have even been used to produce cryptosystems. Much less is known concerning the 

continued fiaction expansion and infrastructure for quadratic function fields of even 

characteristic. In the second part of this thesis we will explore these ideas, and show 

that the situation is very similar to the odd characteristic case. This exploration 

will result in a method for computing the regulator for quadratic h c t i o n  fields 

of characteristic 2. We WU also be able to show that cryptosystems proposed for 

the idkastructure of function fields of odd characteristic can be implemented in 

even characteristic and give a possible attacl. Most importantly we will be able to 

show that the elliptic curve discrete logarithm problem is eqnivalent to a discrete 

logadhm problem in the i.diastructure of certain qnadratic fanction fields. This 

is a modification of a result by Stein for fields of odd characteristic. 
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Chapter 1 

Introduction 

1.1 Motivation 

Public-key cryptography based on elliptic curves over finite fields was proposed by 

Miller [3 11 and Koblitz [20] in 1985. Elliptic curves over finite fields have been used 

to implement the Di.e-Hellman key passing scheme [13] and the ElGamai 1141, 

Schnorr [43] and NIST (361 signature schemes. Elliptic curves have also been used 

over the ring Zn to implement an RS A [38] type system [12, 211. One of the topics 

considered in this thesis is the use of elliptic c m e s  over the ring 8, in a new way. 

In this system the plaint& is carried in the exponent space and not in the goup 

element itself. Also, security depends on the difnculty of factoring a 150 decimal 

digit number in order to trapdoor the discrete logarithm problem. 

Shanks [45] introduced the concept of the infrastructure of a quadratic nnmber 

field. This was an exploration of the inner structure of an equivalence class in the 

ideal class group. These ideas were used by Scheidler, Buchmann and Williams [40] 

to implement a key exchange scheme in such an infkasmicture. Recently, St& and 



Williams [47,49] extended Shanks' infrastructure ideas to real quadratic congruence 

fnnction fields and applied these techniques to computing the regulator of these 

fields. In [41] a key exchange scheme was introduced using real quadratic congruence 

hindion fields that improved upon the one using number fields. Only fields of odd 

characteristic were considered. It is of much practical interest to consider the case 

of h c t i o n  fields of even characteristic. This thesis will develop the theory of the 

infrastructure of a quadratic h c t i o n  field of characteristic 2. 

The main tool used in the stndy of the infrastructure for both number and 

function fields is the continued fiaction algorithm. Little is known concerning the 

continued fraction algorithm for fnnction fields of even characteristic. It was fmst 

discussed by Baum and Sweet in [6] and also in [7, 301. Their discussions are 

incomplete however, and so do not extend the complete continued fraction theory. 

Thus, we will first explore the continued fraction algorithm in characteristic 2. 

This thesis wiU &O show that the key exchange protocol proposed for odd char- 

acteristic quadratic h c t i o n  fields also works in even characteristic. For the first 

time an ElGamal-based digital signature scheme [14] in this non-group structure is 

also introduced, as well as a Pohlig-Hellman attack [37] on these schemes. 

To accomplish these goals, we wdl k s t  examine the infiastructure of quadratic 

h c t i o n  fields. This wiJl provide us with the two basic opaations in the inkastruc- 

tue: the Baby-Step and the Giant-Step. A Baby-Step corresponds to one iteration 

of the continued fraction algorithm and a Giant-Step conesponds to ideal multi- 

plication and redaction. We wil l  also encounter the concept of distance, which is 

similar to a discrete logarithm in a f i t e  cyclic group. We will then be able to 

develop algorithms for computing ideals with distance "closest to the lefk of" a 

given value. It is these algorithms that we wil l  use to produce the key exchange 

and digit al signature schemes. 



Stein [48] has been able to show, using results of Adams and Razar [l], that if we 

are working in odd characteristic, bteaking elliptic m e  systems is polynomial time 

equident to breaking systems based on the infrastructure of certain h c t i o n  fields. 

This provides W h e r  evidence of the security of elliptic cnrve systems as there is no 

known feasible way to break systems based on the infkastrnctate. His result does 

not apply to characteristic 2. This thesis will show that breakhg elliptic cuve 

cryptosystems of even characteristic is &O equivalent to breaking infiastructure 

cryptosystems of a certain type. This is accomplished by showing that the problems 

on which these systems are based, the elliptic and infkastructure discrete logarithm 

problems, are polynomial time equivalent. Our explanation closely follows that 

of [l]. 

1.2 A Brief Overview 

The remainder of this thesis is orgmized as f o l h s .  In Chapter 2, we give a brief 

introduction to elliptic curves and discuss some results concerning the generation 

of these c w e s  with smooth orders. In Chapter 3, a cryptosystem is introduced 

that uses c w e s  over the ring Z, by storing the message in the exponent space of 

the group. Chapter 4 inhoduces the quadratic fundion fields of even charactezistic 

that we will be using and describes the regulator of these fields. In Chapter 5, 

the infrastructure is introduced and used to develop dgorithms for computing the 

regulator. In Chapter 6, the infrastructure is used to develop key exchange and 

digital signature schemes and a possible attack on these schemes is given. In Chap- 

ter 7, it is shown that solving the diserete logarithm problem for elliptic c w e s  is 

eqaivaent to solving the disaete logarithm problem for the infrastructure of certain 

quadratic fùnction fields. Finally, Chapter 8 discnsses implementation issues and 
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practical results and Chapter 9 presents some suggested topics for fiuther research. 



Chapter 2 

Elliptic Curves and Their Orders 

The material in Sections 2.2, 2.3, 2.5-2.7, 3.2-3.5 and 8.1 are 

01997 IEEE. Reprinted with permission fiom (IEEE lfansuctions on Information 

Theoty; Vol. 43, No. 4; Jdy/1997). 

2.1 Number Theory Background 

This section win give a brief overview of some results in algebraic number theory. 

For a more detailed description, the reader is referred to (521. 

An algebraic number is a cornplex number C that satisfies an equation 

where ao, al,  --,a, E 4, not all zero. The degree of C is the lowest degree of 

any such monic polynomial that < satisfies (called the minimal polynomial). A 

number which is not algebraic is called transcendental. If the minunal polynomial 

has a0 = 1 and E Z for i = 1,. . . , n then C is cded an algebruic integer. 
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An algebraic number field Q (6) is the set of al1 the numbers of the form R(C) = 

P((.)/S((), where C is a given algebraic integer of degree n, P(C) and S(c) are 

polynomials in C over Q of degree at most n - 1, and S((') # O. It c m  easily be 

shown that these numbers form a field. Also, the set of algebraic integers in &(<) 

fom a subring known as the ring of integers. 

Let i be the complex nnmber that sati&es P = -1. Then the ring of integers of 

Q (i) is Z[i] . Similarly, if w = ((-1 + -112, so w3 = 1, then the ring of integers 

of & ( w )  is B [ w ]  . 

Let @ (0 be a nnmjer field of degree n and let f be the minimal polynomial of 

(. Let 4 1 , . .  . , Un be the monomorphisms that take ( to each of the n not necessarily 

distinct roots of f in the complex numbers. For any a E @ (C) we define the n o m  

Now N ( a )  E Q, and if a is an algebraic integer, then N ( a )  E 8. 

We caU an integer 1-smooth for 1 E 8 ,  if all of its prime factors have less than 

or equal to 1 decimal digits. 

2.2 Elliptic Curves over Prime Fields 

W e  give a brief introduction to elliptic curves over finite fields of prime order ex- 

ceeding 3. For more detailed infornation see [9, pp. 360-411], [28, pp. 15-48), [46, 

p p  130-1441. 

Let k = F, be a finite field of characteristic p # 2,3, and let a, b E k s a t i e  the 

inequality 4a3 + 27b2 # O. An elliptic curve, EJa, b), is dehed  as the set of points 

(2, y) E k x k which satisfjr the equation 
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together with a special point, oo, called the point ut infinity. These points form an 

abelian group under a ad-defined addition operation which we now describe. 

Let Ep(a, b) be an elliptic cnrve and let P and Q be two points on E,(a, b) .  If 

P = oo, then-P = oo,and P+Q =Q+P =Q.  Let P =(zl,yl)andQ = (z2,y2). 

Then -P =(xl,-YI) and P + ( - P )  =m. HQ # -P then P+Q = (z3,y3) where 

and 

Let Np be the number of points on the cnrve E,(a, b). There is a well-known 

theorem of Hasse which states that Np = p + 1 - t where It 1 5 2fi. 

Let K be a field such that k K and let Ep(a,&) : y2 = x3 + az + b and 

EP(ar, b') : Y* = x3 + a'z + bf be elliptic cnrves. Then EP(a, b) and EP(af7 b') are said 

t o  be iiomorphic ouer K or K-isorno7phic if there exits a nonzero c E K su& that 

a = c4a' and b = c6b'. 

A twist of EJa, b)  is an elliptic carve that is isomorphic to Ep(o, &) over k7 the 

algebraic dosure of k. We identify two twists if they are isomorphic over k. The 

set of twists of Ep(a, b) , modulo 15-isomorphism, is denoted Twist(E,(a, b) /  k). Let 

the characteristic of k be greater than 3 and a, b # O. Then the two elliptic curves 

Ep(a,  &) and Ep(ac2, b 2 )  are the representative elements of Twist(E,(a, b)/k) where 

c E k u \  (bu)'. 
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DefInition 1 Let Ep(a, b) be an elliptic curve 

defined over the finite field k = Fp und let P = (zl, yi) be u point of order n on 

the curve. Then the elliptic discrete logarithm problem is, given a point Q ,  also on 

the curve, to find the integer 1, O 5 1 5 n - 1 such that Q = IP if svch an 1 exists: 

otherurise return "No solution". 

2.3 Elliptic Curves over Zn 

Let n = pq for distinct primes p and q each greater than 3. Let  a and b be positive 

integers with gcd(n, 4a3+27b2) = 1- We will non generalize otu definition of elliptic 

curves over F, to curves over Zn- An elliptic eume over Zn, E,(a, b)  , is defined to 

be the set of points (x,y) E Zn x Z, such that y2 = x3 + az + b, together with a 

point at infinity, oo - An addition operation can be defined on the points of E,(a, b) 

in the same way addition on Ep(o, b) is d e h e d  by simply replacing all operations 

in Fp with operations in Zn. Since division is not ahays possible moddo n, the 

elliptic carve addition operation wilI not always be defined moddo t. Hence, an 

elliptic curve over ZG, does not form a group. 

By the Chinese Remainder Theorem, any c E Zn can be uniquely represented 

by a pair of elements [cpi where e, E iZ, and e, E Z,. Thus, every point 

P = (2, y) E En(a, 6) c m  be uniquely represented by a pair of points [P,, P,] = 

[(zpl yp) , (xq, y*)] such that Pp E Ep(a, b) and Pq E EJa, b), with the convention 

that oo is represented by [bop, oo,], where 00, and oo, are the points at infinity 

on EJa, b) and E,(a, b) respectively. Lt is now easy to see that when it is dehed, 

the addition operation on &(a, b)  is equivalent to the component-wise addition 
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operation on E,(a, b) x EQ(aY a). Note that the addition on E,(a, 6) is undehed 

when the r d t i n g  point, interpreted as an dement of E,(a, b) x EQ(a, b)  , has exactly 

one of its components being a point at infioity- 

For large p and q we would expect the addition operation to be undefined for 

only a negligible numba of possibilities. Notice that if the operation is undefined, 

then trying to pdorm the reqnired inversion would give a non-hivial factor of n 

in polynomial tirne, and this would be an aective factoring algorithm. 

Also note that if Q = hP is defined where P E En(aY b)  then Q, = kPp; therefore 

it is reasonable to define the order of E,(a, b) to be the least common multiple of 

the orders of EJa, b) and E,(a, b). 

2.4 Elliptic Curves over F& 

This material is well known and can be found in [28] and [46]. 

Let k = F, be a finite field with q = 2M. We define a non-stlpersingular elliptic 

cume over k by the equation 

for az, as E k and a6 # O. The set of solutions in k x k to this equation dong with 

the point at infinity, oo, prodace a group under a wd-defined addition operation, 

similar to the odd characteristic case, which we d now give. 

The identity of the group operation is the point m. For P = (zi, yi) a point on 

the curve, we defme -P to be (xl, y1 + zl), so 
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Now suppose P and Q are not oo, and P # -8. Let P be as above and Q = (x2, y2), 

then P + Q = (z3,y3), where 

and 

If N, is the n u b e r  of points on a non-supersingnlar elliptic c w e ,  then there is 

a version of Hasse's Theorem for even characteristic. It states that N, = q + 1 - t 
where Itl 5 2 4  and t is odd. 

Definition 2 Let E be a non-supersimjular elliptic curue 

E : + zy = 2 + azz2 + as 
d e h e d  over the fmiite field k = F*M and let P = (zl, yl) be a point on the m e  of 

order n. Then the elliptic discsete logarithm ptoblem is, given a point Q ,  also on 

the curve, to find the integer 1, O 5 1 5 n - 1 such that Q = IP if such an 1 e&ts; 

othenuise return "No solution". 

2.5 Producing Primes and Cuves of Smooth Or- 

der Modulo These Primes 

In [23] a method is presented that, given an integer rn > 3 d find a prime p and 

an elliptic cwve E over the finite field F, of order # E(Fp) = m. The met hod seems 
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to be very efficient in that it produces groaps with order having 51 decimd digits 

in just over 6 minutes on a SPARC 2. It is &O quite sirnilar to the method we 

describe in Section 2.6 for producing smooth ctvves moddo a given prime. This 

section describes a method to generate primes p and elliptic curves of smooth order 

over Fp that is soxnewhat simp1e.r but not qnite as &cient. 

2.5.1 Background 

These results fkom [18, pp. 203-207, 297-3171 are necessary for what foilows. Let 

m be a positive integer, and 0, be the ring of integers of @(cm) where C, is a 

primitive m'th root of unïty. For a prime ideal P in Om let the n o m  of P be the 

size of the quotient ring %, so N ( P )  = I*(- 

Definition 3 For a E 0, and P a prime ideul not containing m, define the m 'th 

power residue symbol, (F) as follozas: 
m 

1. I f a ~  P then ( f )  = O .  
m 

2. If a 4 P then (g) is the unique m'th root of unity that is congruent to 
m 

a ( N ( p ) - l ) / m  rnod p. 

Definition 4 Suppose A c O, LP an ideal prime to m. Let A = PiP2 - -P. ,  be 

the prime decomposition of A. For a E Om define (5) = rkl ( )  - If P E O,,, 
m m 

and p is ppime to rn d e f i e  (F) = (8) . m m 

Theorem 1 Let D be a nonzem integer. Suppose p # 2 and p does not divide 

D. Consider the elliptic curwe y* = z3 - Dz over Fp. If p r 3 (mod 4) then 
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Theorem 2 Let D be a nonzero integer, Let w = (-1 + -112. Suppose p # 2 

o r  3, and p does not divide LI. Gorisider the elliptic curve y2 = z3 + D over Fp. If 

p = 2 (mod 3) then Np = p + 1. I f p  E 1 (mod 3) let p = XF with r E Z [ w ]  and 

r 2 (mod 3). Then 

2.5.2 The General Idea 

Using Theorems 1 and 2 we can produce carves with smooth order by computing 

the order as a product of s m d  algebraic integers. There are two types of c w e s  

that can be produced; c w e s  of the form = z3 - Dz and cu~cves of the form 

y2 = x3 + D. We will describe the general idea for the case y* = x3 - Dx. The 

other case is very similar and both cases are described in detail for 75-digit primes 

in the next section. 

We wish to produce a k digit prime p and an elliptic curve modulo p whose order 

is not divisible by any prime factor greater than 1 digits. First obtain an dgebraic 

number u + v i  E Z[i] whose n o m  is 1-smooth. This can be done by building it 

up fiom numbers of smder nom. We also require u to be an integer of about k/4 

digits and v to be an integer of less than k/4 digits su& that gcd(u, v )  = 1. 

Solve cv + du = 1 for integers c and d. Notice that a solution can be chosen so 

that c is about k / 4 digits and d is less than k/4 digits. Let a = CU - du, which is a 

kl2-digit number. Ifa $ 3  (mod 4) repeat the process. Now a+i = (u+vi)(c+di), 
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and a2 + 1 = N(u + v i )  N(c + di). The number u + v i  was chosen to have smooth 

norm but N(c  + di)  may not be smooth, so repeat antil it is. The probability of a 

k/2-digit number N(c+di) being limiooth is approxïmately e-(k12f)"(k12i) (this is an 

approximation to the d u e  given in [8]). Note that we wil l  have to repeat the process 

an exponentid numba of t he s ,  but for nnmbers we d consider, the number of 

repetitions is teasonable (see Section 2.5.3). Elliptic m e  factorization [24] can 

determine if N(c + di) is smooth. 

Having determined a suitable a, let p = a2 +4 = (a + 2 4  (a - 24 and again repeat 

mtiI p is prime. Notice that p is k digits, p = 1 (mod 4) and that (a + 2i) = 1 

(mod 2 + 2 9 .  It is now a simple niatter to find an integer D snch that (&)4 = i. 

The curve y2 = x3 - Dz WU have p - 3 = a* + 1 points over Fp, with the group 

order 2-smooth. 

Since the probability of a random integer x being prime is &, we would expect 

to have to choose about 4 (ln l o k )  (e(k/2f)h(k/2')) algebraic nombers u + vi mtil 

getting a k-digit prime and an elliptic curve whose order is 1-smooth. Thus, we 

would expect to perform about (ln 10') (e(k/21)h(k/2f)) primality tests and about 

e(k/21) 1n(k/2') srnoothness tests. 

2.5.3 Specific Cases 

Consider the particdar case where p is 75 digits. We will describe in detail how 

to produce primes of this size and elliptic cwes  of 16-smooth order moddo these 

primes. 

To find a 75-digit prime and an integer D such that the curve y2 = x3 - Dz 
over Fp has order that factors into primes of no more than 15-16 digits, choose 

XI and to be positive integers of about 9 digits, and y, and y2 to be positive 
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integers of about 5 digits. Let u = zlz2 - yly2 and v = z~y2 + z2yl so that 

IL + ui = (zl + yli)(x2 + y$). NOW u is 18 or 19 digits and v is 14 or 15 digits. 

If gcd(u, u )  = 1 solve cv + du = 1 for integers c and d; otherwise, choose new 

values 21, 2 2 ,  y,, y2 mtiI gcd(u, v )  = 1. Note that c and d can be chosen so that c 

is about 18 or 19 digits and d is 14 or 15 digits. Let a = CU - du so that a is 37 or 

38 digits. Now (c + di) (zl + y (z2 + yzi) = a + i. Repeat this process until a 3 

(mod 4) (about 4 times). 

a2+1  = (a+i)(a- i )  

= N(a + i )  

= N(c + d i )  N ( ~ I +  yli) N(z2 + yzi) 

= (c2 + &)(z: + Y:)(x: + Y;)* 

Notice that z: + y: and 2: +y: are 18 or 19 digits and 2 + dl is 37 or 38 digits. 

With probability at least 0.74, z: + y: and xi + have largest prime factors with 

at most 15 or 16 digits. Also, 2 +dl has probability of about 0.13 of having largest 

prime factor with at most 15 or 16 digits [19]. This process is repeated until a2 + 1 

has all factors with at most 15 or 16 digits (about 10 times). 

Let p = a2 + 4. Note that p is about 75 digits, p 1 (mod 4) and p = 

(a + 2i)(a - 2i) with a 3 (mod 4) so (a + 2 i )  1 (mod 2 + 2i). Again 

repeat until p is prime (in total about 2000 times). By [16] it seems reasonable 

that the expected number of prime factors of p - 1 for p a prime is the same 

as the expected number of prime factors of a random integer. Thus, it seems 

reasonable that the expected number of prime factors of p - 3 for p a prime is 

the same as the expected nuxnber of prime factors of a random integer and that 
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Pr@ is prime and p - 3 is smooth) = Pr(p is prime) Pr(p - 3 is smooth). Under 

this assumption, the probability that p niIl be prime &en that p - 3 is smooth 

is the same as the probability that p is prime given that p is a random positive 

integer. To see this note that Pr(p prime 1 p-3 is smooth) = Pr@ is prime and p- 

3 is smooth)/ Pr@ - 3 is -00th). 

Find D with = i (Le. LI@-')/* i (mod a + 2i)). The c m  y2 = 

x3 - Dx has 

points, which was chosen to have at most 15 or 16 digits. 

Theorem 2 also can be used to constmct a 75-digit prime and an integer D 

such that the curve y2 = x3 + D over Fp has order that factors into primes of no 

more than 15-16 digits. Let w = (-1 + -112 and note that 1 + w + w2 = O and 

= w2. Again choose zl and x2 to be positive integers of about 9 digits, and yl 

and y, to be about 5 digits. Let u = xlz2 - yly2 and v = xly2 + xzyi - yly2 so that 

u + vw = (xl + ylw)(z2 + y2w) where u is 18 or 19 digits and v is 14 or 15 digits. 

If gcd(u, v)14 solve d v  + d'u = 4 for integets d and 6. O t h d s e ,  choose new 

d u e s  z l ,  xt, y1 and y2 antil gcd(u,v)l4. Let d = d' and c = d + d'. Then c is 18 

or 19 digits and d is 14 or 15 digits. Let a = cu - dv so that a is 37 or 38 digits. 

Now note that (c + dw)(xl + ylw)(z2 + y2w) = a + 4w. Repeat this process until 

a G 2 (mod 3). 

Now, a2 - 4a + 16 = N(a  + 40) = N(c + &)N(xl + ylw)N(z2 + y2w). Notice 

that N ( z l +  ylw)  and N(z2 + YZW) are 18 or 19 digits and N(c  + dw) is 37 or 38 

digits. Repeat this process until a2 - 4a + 16 is smooth. 
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Let p = a2 - 3a + 9 = (a + 3w)(a + 3w2). Note that p is about 75 digits, p E 1 

(mod 3) and p = (a  + 3w)(a + 3w2) with a 2 (mod 3) so a + 3w E 2 (mod 3). 

Again repeat until p is prime. 

Find D with (,)6 = w (Le. (4D)@-')B w (mod a + 3 4 ) .  The c w e  

= x 3 +  D has N p = p + 1 + ( a + 3 w ) w 2 + ( a + 3 w 2 ) w  =a2-4a+16  whichwas 

chosen to be smooth. 

These procedures may be feasible for primes p up to about 117 digits (z 2390) 

at which point the probability that N(c + &) or N(c + di) has at most 15 or 16 

digit prime factors is about 0.009. 

2.6 Producing Curves of Smooth Order Modulo 

a Given Prime 

In this section we will k t  review some results dealing with Hilbert dass polynomi- 

als and elliptic curves, and then give a method for producing m e s  of smooth order 

modulo a given prime p. We will use these c w e s  in the cryptosystem described in 

Chapter 3. 

2.6.1 Review 

Varions properties of elliptic c w e s  and the Hilbert dass polynomid are required 

for the sequel. These results are welt known (see for example [9, pp. 369-3791, [Il, 

p p  285-2981, (22, pp. 39-411123-143], [46, pp. 338-3511). 

Let E,(a, b) be an elIiptic cume over the field k = F,. The j-invariant of EP(a, b)  

is a function from the set of elliptic m e s  modulo p to k such that: 
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Tao elliptic m e s  are isomorphic over if and only if they have the same 

j-invariant . 

For any element jo E k, there &ts an elliptic curve defined over k with 

j-invariant eqnd to jo. If j0 # O, 1728 and k has characteristic greater 

than 3, then j(E,(a, b)) eqnals jo for a = 3jo/(1728 - j o )  (mod p) and 

b = 230/(1728 - j ~ )  (mod p). 

Given elliptic m e s  Ep(a, b) and Ep(af, b') an isogeny fkom EJa, b)  to Ep(ar, br) 

is a rational map fiom Ep(a, b) to E,(u', b') (here we assume that the curves are 

defined over x)- An isogeny is &O a group homomorphism. The groap of isogenies 

fkom E,(a, b) back to E,(<I, b)  is called the endomorphism ring of Ep(a, b) and is 

denoted by Endd E,(a, b)). 

Theorem 3 If Ep(a, b) Ls an elliptic curve with p # 2,3, then the endomorphism 

ring En$(E,(a, b) ) is either an order in an imaginury quadratic field (in which case 

the cvme is called ordinary) or an order in a quaternion algebra (in which case it 

is called supersingulur). 

Let D < -4 be an integer and D E 0 , l  (mod 4). Also let 4p = x2 - Dy2 for 

integers x and y. Then there exists a polynomial HD(X) called the Hilbert class 

polynomial with the following properties. 

HD(X) is a monic polynomial with integer coefficients. 

The degree of HD(X) e q d s  h(D) where h(D)  is the class number of the 

order of an irnaginary quadratic field of discriminant D. 

HD(X) splïts completely modulo p. If jo is a root of HD(X) modulo p then 

jo gives the j-invariant of an elliptic curve with p + 1 I z points. 



a HD (X) = n ( X  - j(E,(a, b) )) where the prodact is over all isomorphism classes 

of elliptic m e s  wïth endomorphism ring the order in an imaginary quadratic 

field of discriminant D. 

There is an algorithm due to Cornacchia that given prime p and D < 0, D r 0 , l  

(mod 4) will determine integers z and y such that 4p = xZ - Dy2 or determine that 

no such x and y exist (see [9, pp. 34-36]). Computing the Hilbert dass polynomial 

can be accomplished by means of an algorithm given in [9, pp. 407-4091 or by 

an algorithm given in [Il, pp. 286-2983. The Hilbert class polynomial, however, 

has very large coefficients and the cdcalations reqaired to produce it are red val- 

ued and must be computed to a high degree of precision. In order to avoid these 

comput ational difficdties the Weber polynomials , which are polynomials closely 

related to the +invariant, are better suited to the task at hand. These polynomials 

have coefficients which are much smaller than the Hilbert dass polynomial and pro- 

vide the same desired result. For more information on the Weber class polynomial 

see [4, 231. 

2.6.2 The Algorithm 

This algorithm is based on a portion of Atkids primalify proving algorithm (see [4]). 

It is &O very similar to the method presented in [23] for producing primes and 

curves with specific orders and to the method presented in [32] for producing curves 

over Fp with p elements. 

Given a prime p our objective is to determine a, b E F' such that EP(a, b)  has 

order that factors into primes less than or equd to some bound 61. To do this, 

h s t  choose an integer D < -4, D 0 , l  (mod 4). Using Cornacchia's algorithm 

determine z and y sach that 4p = z2 - Dy2 if such an x and y exist. If no such z 
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and y &st choose a new D and repeat. Catdate  p + 1 f z and determine if either 

of these d u e s  is smooth with respect to 61. This can be done nsing elliptic eiirve 

factorkation [24]. If neither is smooth choose a new D and repeat. Otherwise, 

compute HD(X) mod p. Let j o  be a root of HD(X) mod p and compute the curve 

= z3 + a= + b with j-invariant jo. If the m e  has a smooth number of points, 

output a and b. Othernise, compnte and output its twist. 

In the above dgorithm, the nnmbenr D should be chosen in increasing cornplex- 

ity. This means they shodd be chosen in terms of increasing dass numbers h(D) .  

This will help to decrease the computation that must be performed when comput- 

ing the Hilbert polynomials since the degree of the polynomial increases with h(D)  

and the degree of precision increases with D and h(D) .  Detamining which of the 

twists has a srnooth number of points can be accomplished as follows. Let Np be 

either p + 1 - x or p + 1 + 2, whichever is smooth. Then to determine whether or not 

E,(a, b) has Np points fmd P E Ep(a, b )  such that gcd@ + 1 - z , p  + 1 + x ) P  # W. 

If Np P = m then E,(a, b) has Np points. 

Also note that since we must choose different D's until p + 1 f x is smooth 

with respect to H, this algorithm d l  run in exponentid tirne. For a 75-digit 

prime however, the probability that Np is lbsmooth is about .O004 [19] so one 

would expect to have to choose about 1250 different D's that can be written as 

4p = x2 - Dy2 before getting a curve whose order is lbsmooth. This computation 

may be feasible as a one time cost. 
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2.7 OntheEquivalenceoftheDiscreteLog Prob- 

lem and the Diffie-Hellman Problem 

Let G be a group and a an element of G. The Difie-Hellman Problem [13] is 

to determine a* given au and ab. The f i m e t e  Log Problem is to determine o 

given am. Clearly, a solution to the Discrete Log Problem implies a solution to the 

Diffie-Hellman Problem. The converse is not known. 

The following r e d t  is due to Matmer [25]. 

Assume #G = p. Let Ep(a, b) be an elliptic cuve over Fp such that diserete 

logarithms are easily computed in Ep(a, b).  Suppose that we have an orade which 

when given au, ab returns aab. Then the orade and the group operation allow us 

to cornpute af(=) for any polynomial fnnction f ( x )  with integer coefficients. Since 

r-' G ZP-* (mod p) we can compute d(=) for any rational fùnction g(z). 

Suppose that P = a2 and the oracle are @en. Can one determine s, the discrete 

logarithm of P? Suppose I is the z-coordinate of some point Q = (z, y) on EP(a, b). 

Compute 

a P+-+b = $* 

Using a square root algorithm determine au. Now let P = (u, v )  generate a sub- 

group of E,(a, b)  that contains (2, y) and then (x, y) = 7 P. 

Using (a", a Y )  for (2, y) and (au, aV) for P, the orade and group operation will 

d o w  us to perform the Baby-Step Giant-Step algorithm with P on Ep(a, b) and 

determine 7. Note that given (aU1, aY),  (aU2,@) where (ul,vi), (u2,v2) E &(a, 1) 

we can h d  (sus , aV3) where (us, us) = (ul, vl) + (u*, v2) on Ep(a, b). Having found 

7 we can then compute z, i.e. (z, y) = yP. 

Now, using the methods of Sections 2.5 and 2.6 as well as a recent generalization 
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of these schemes by Ma- and Wolf [26], ne c m  compute a curve over F, such 

that solving the discrete logaritbm problem is relatively easy using the Pohlig- 

Hellman and Baby-S tep Giant-S tep Algorithms (see Section 3.1). Unfortnnately, 

for a given prime p, this computation P not polynomid time and thus we do not 

have a polynomial tirne reduction from the DiffieHeIlman problem to the Discrete 

Log problem. It remains an open question as to whether these algorithms for 

producing cuves can be modiiied to work in polynomial tirne. 



Chapter 3 

A New Cryptosystem 

3.1 Required Algorithms 

In this section we d examine some algorïthms that will be needed to construct a 

new cryptosystem asing elliptic cuves over Zn. 

3.1.1 Discret e Logarit hm Algorit hms 

In Sections 2.2 and 2.4 we enconntered the elliptic m e  discrete logarithm problem. 

The best known attack on this problem is an algorithm which works in any general 

group. For this teason we will fist consider the discrete logarithm problem defined 

over a general group. 

Let G be a finite cydic group generated by the element a and let /3 E G. Given 

G, a, and p the dîpcrete logarithm problern is to find an integer z, 1 5 z IGI 
such that p = a=. We c d  z the dàscrete logarithm of /3 to the base a and write 

2 = 10g,p. 
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The best algorithm knom for solving the disuete logarithm problem over a 

generd group G is the Pohlig-Helhan algorithm [37] combined with the Baby- 

Step Giant-Step algorithm. 

Baby-Step Gant-Step Algorithm 

Let G be a group of order n and let m = r d .  Notice that z can be written 

uniquely as x = jm + i where O i ,  j < m. In order to compute i and j ,  a 

list of pairs (a$) is computed and sorted. Then /?(hm)i is computed for each 

1 5 j < m. This value is then compared with the values in the table to determine 

if there &sts an i with ~ ( a - " ) i  = ai. If SO, then z = irn + j .  
This algorithm reqnites O(m log m) group operatiom. 

Pohlig-Hellman Algorit hm 

Let G be a group of order n = rklpT in whïch the factorization of n is known. 

This algorithm determines z mod p y  for each i. The Chinese Remainder Theorem 

is then used to determine x .  Let s r x (mod p;l )  with 1 5 z < p;'. 

Suppose that z = z:&i1 z id ,  where O 5 q < pl for i = O,. . . , el - 1. The WU 

be determined one at a tirne. Let 7 = anla. Then p n f ~  = QI"/- = ̂ /t = rzo. The 

Baby-Step Giant-Step algorithm can then be used to determine zo = log,pn/pt. 

Then similady ( ~ a - ~ ) " / g  = 7", and zl can be determined. The process can be 

repeated to determine all of the G. IR a similar fahion z mod p? can be computed 

for dl pi. 

This algorithm has a &g t h e  of O(& ~ ( l o g n  + fi)). 
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3.1.2 Elliptic Curve Factorization 

h Section 2.3 we encountaed elliptic i c e s  defined over the ring Zn. These 

elliptic e w e s  can be nsed to produce a factoring algorithm that works well when 

the number to be factored ha9 a relatively s m d  prime divisor. This algorithm, 

known as the Elliptic Cuve Factorization Method is due to Lenstra [24]. 

Let n be the integer ne wïsh to factor and let p and q be two primes that divide 

n. Let En@, b) be an elliptic c w e  and P be a point on this cwe.  If we had some 

integer m such that mP, = mp but mPq # oo, then mP would not be defined. 

If we then tried to compute mP, at some point while trying to take an inverse 

which is required for the addition formala, we wodd get a non-trivial factorization 

of n. Thus, we would like m to divide the order of EJa, b) but not the order of 

E, (a, b), which would happen if the order of E,(a, 15) was smooth with respect to 

some bound, but Eq(a, b)  was not and m was chosen as a product of s m d  primes. 

This is the idea behind the factoring algorithm. 

Eiliptic Curve Factorization Method 

1. Choose a , z , y  E Zn. 

2. Let b y2 - z3 - ax (mod n). 

3. I f  gcd(4a3 + 27b2, n) = n, then return to Step 1. 

4. Otherwise if gcd(4a3 + 27b2, n) > 1, then n has been factored. 

5. Choose a bonnd L and let 

where the product is over primes q. 
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6. Set P = (z,y) and compute mP in E,,(a, b). If at  some point in trying to 

invert an element of Z, a nontrivial factor is obtained, n has been factored. 

Else, tetarn to Step 1. 

In this algorithrn, elliptic m e s  over Z,, are chosen at random and it is hoped 

that mP is not dehed. For this reapon, the algorithm works best when n has 

a small prime factor. The expected rnnning time to remove a factor p from n is 

(making some heuristic assumptions) O(=-). 

3.2 The Cryptosystem 

The idea is to trapdoor the discrete log problem in such a way that messages can 

be encoded in the exponent space of the group. Suppose we have an elliptic curve 

defined over the integeis modulo n = pq for primes p and q. Shen the points on the 

eIliptic curve form a "pseudo-groupn in the sense that when the addition is deiined, 

it corresponds to elliptic carve addition modulo p and modulo q. Now, let p and 

q be large enough so that factoring n is infeasible. As a lower boud consider, for 

example, p and q to be 75 decimal digits e d .  

Then let y2 = x3 + az + b be an elliptic carve modulo n such that when it is 

taken modulo p and modulo q the orders are known to the user and are smooth 

(e-g. each prime factor has fewa than 15 or 16 decimal digits). These can be 

computed using the methods in Sections 2.5 and 2.6. Computing discrete logs on 

the curve modulo p and the cuve  modulo q is feasible asing the Pohlig-Hellman 

method and the Baby-Step Giant-Step method. In order to use the Pohlig-Hellman 

method the group orders mast be known. Thas, if the fadorization of n is known, 

the group orders can be fonnd in polynornial time asing Schoof's [44], Atkin's [3] 



and Elkies' (151 methods, and compnting discrete logs on the m e  modulo n is 

feasible. However, ushg the elliptic m e  factoring method, or any other method 

to factor n, is still infeasible. (See Section 8.1.) 

Let n, the m e  E,(a, b), and a point P on the cuve be the user's public key. 

To send a message, M, to this user, ahere M E Z, O < M < #P (here #P is the 

orda of the point P) simply compute MF. Now, in order to read the message, 

the discrete logarithm problem must be solved. Since p and q are 75 digit primes 

with E,(a, b )  and EJa, b) smooth, the Pohlig-Hellman method is the only known 

method to compute the discrete logarithm. If we try to use Pohlig-Hellman directly 

on E,(a, b) we mnst know its order. However, Schoof's and Atkin's methods do not 

seem to generalize to Zn, so determining the order of E,(a, b) is intractable unless 

p and q are known. An eavesdroppa cannot solve these problems as she cannot 

factor n to obtain p and q and thus get the order of the curves. Our user however 

knows p and q and can solve the discrete log problem relatively easily. 

3.3 The Signature Scheme 

This system can be used to cceate digital signatures as wd. Again let n, the curve 

and a point, P, on the cuve be a usas public key. Also here assume that the elliptic 

curve group being used is cyclic and that P is a point of maximal order. Then let 

M be a ([log,(n)l - C - 2pog21n(n)l)-bit message that our user wishes to sign, 

where C is an appropriately defined integer constant. We wish to determine a point 

Q = (z, y) such that the f i s t  Pog, (n)l - C - 2 pog2 ln(n)l bits of the z-coordinate 

are the message M or a hash of the message M. To do this, C + 2[10g, ln(n)l zeros 

can be appended to M resulting in M .  Define z to be the smallest integer greater 

than M such that x3 + as + b is a quadratic residue modulo a and let y be one of 
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its square roots modnlo n. Note that since the factorization of n is known to the 

signer, taking square roots is feaible. Then let Q = (2, y). 

It seems reasonable that the fkst [10g2(n)1 - C - 2 [log, ln(n)l bits will be M 

since assnming the Generalized Riemann Hypothesis, the smallest quadratic non- 

residue occnrs in the i n t d  [l , t]  where t = O(ln(n)') (see [5]). Thus, it seems 

reasonable that z3 + az + b wodd be a quadratic residue after at most Cr ln(n)* 

attempts for some constant Cr and this wodd not affect our message M. 

In order to sign the message, compte the disaete log of Q to the base P on 

the elliptic cuve. If Q = hP then the signature is k. To check the signature the 

receiva of the message simply cornputes kP and checks that this equah Q. The 

point Q can be identified since the first t bits of the x-coordinate are M. 

This scheme can be modified for non-cyclie cuwes  by appending more zeros to 

M and requiring as w d  that z and y satisfy Q = (z, y) E ( P ) .  

3.4 Prespecifying Some of the Bits 

Vanstone and Zuccherato [54] showed how to prespew some of the bits of an RSA 

public-key rnoddus so that the number of bits that had to be transmitted and 

stored could be reduced. For example, the key length for a 1024-bit RS A scheme 

could be shortened by about 512 bits. A similar operation can be pedormed here 

so that the public key length gets reduced. 

In order to specSy t < pog2 (n ) lœ C - 2 p0g2 h(n)l bits of the public key point 

P the following procedure could be followed. Let a be a t-bit number that we want 

to be contained in P. Then a is appended with snfncient redandancy, for example 

by appending zems, to give a pogz(n)l bit integer a'. Now d e h e  x to be an integer 
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greater than a' such that a is the ikst  t bits of z and z3 + az + b is a quadratic 

residue modulo n. Let y be one of the square roots of this nnmba moddo n. As 

in the previous section, tmder reasonable assamptions, such an z and y ex&. Note 

that the person setting up this system is the only one that can do this computation, 

since he is the only person that knows the factorization of n. NOK P = (2, y) and 

the first t bits of x are a. If P ha9 large order then we accept it as the public key 

point, otherwise we choose a new x and repeat. 

This could be used on a large network where everyone has to use the same t 

bits in their public key point. Thus, storage space would be reduced as these t bits 

need only be stored once as a system-mide parameter. It codd also be used if a 

person wanted some of their publidy known identification information to be used 

as part of th& public key. This gives nse to a possible use of this system as an 

ID-based key exchange system [l?, 271. 

In such a system a trnsted central authority chooses primes p and q, an elliptic 

curve y2 = x3 + +a + b whose order is smooth moddo p and q, and a point P 

on the curve. The central authority and only the central authority can compute 

discrete logarithms on the c u v e  moddo n = pq. The curve and n are made 

public. To register a public key, Albert presents himself to this central authority. 

The central authority can then compute a point on the curve PID(A) containing 

his identification information ID(A) as the first t bits of the z-coordinate. The 

central authority computes aA such that sAP = on the curve and gives 

to Albert. (Remember that the central authority is the only entity that can do all 

these calcdations. ) 

To exdiange keys, Albert obtains Betty's identification point PID(B) and com- 

putes the key K = s ~ P ~ ~ ( ~ )  = sAsBP. Betty computes the same key as K = 

ss = sgsAP.  The key can now be used in a conventional private key ci- 



p h a  system. Exchanging keys in this way provides key authentication since the 

only person (besides the misted authority) that knows the discrete logarithm of an 

identification point is the person to which it belongs. 

3.5 On The Koyama-Maurer-Okamot O-Vanstone 

Signature Scheme 

Koyama et al [21] describe a digital signature scheme using elliptic curves modulo 

n that caanot be used to encrypt messages. The scheme is set up as follows: 

The signer A chooses two primes p and q and pnrameters a and b such that 

gcd(4a3 + 27b2, n)  = 1 where n = pq. 

A cornputes the orders of EP(a, b)  and E,(a, b). 

0 A chooses a public encryption multiple e relatively prime to Np and N, (the 

orders of EJa, b) and E,(a, b)  respectively). 

A compntes d e-' (mod lcm(N,, N,)). 

A makes public n, a, b, and e. 

To sign a message M, A associates a point P = (2, y) E E,(a, b) with M in a 

publidy-known way and compntes Q = dP. The signature for M is Q. Vdca t ion  

of the signature is done by compating eQ P. 

Since finding points on the curve E,,(a, b) is infeasible without the knowledge 

of p and q, it was claimed [21) that encryption is not possible. Notice however, 

that after any one message is signed both parties non have the point Q. If the 
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c w e  has been chosen so that the discrete logarithm problem is easy (for example 

in Sections 2.5 and 2.6), this point can now be nsed, dong with the curve E,(a, b)  

to encrypt and send messages as described in Section 3.2. Thus using this digital 

signature scheme codd provide a covert Channel to convey secret information. The 

question still remains, given a, b and n = pq, whether one can detect a trapdoor 

on the discrete log problem for y' = z3 + uz + b over Z, and thus on the digital 

signature scheme. It appears that p and q must be recovered and the orders of 

Ep (a, b)  and E, (a, b)  caldated, which is infeasible. 



Chapter 4 

Function Fields of Characteristic 2 

The material in Sections 4.1-4.5, 5-1-5.4 and 8.2 are 

01997 Academic Press. Reprinted with permission fkom (Journal of Algeb~a; in 

press). 

For an introduction to function field theory and to valuation theory see [IO, 531. 

Valuations are &O defined in Section 7.1. 

4.1 Introduction 

Let k be a field with q = 2M elements, X a transcendental element over k, and K 

a field of degree 2 over k ( X )  which is not an algebraic extension of k .  The field 

K can be obtained by adjoining to k ( X )  an element Y which satisfies the equation 

Y2 + BY = C where B, C E k[X] with C monic. W e  require the polynomials B and 

C to have the propaty that y' + By + C r O (mod R2) does not have a solution 

with y E k[X] for each non-constant poIynomial D that divides B. If P E k[X] 



satisfies P2 + BP + C = C'D2 for some such D, then let Y' = y and B' = 5. 
Then notice that Y2 + BY + C = O pives us Y"D2 + P2 + BDY' + BP + C = O, so 

Yr2 + B'Y' + Cr = O. Now, deg(B') < deg(B), and n e  can repeat until we have a B, 

C and correspondhg Y with the desired properties. This condition is equivalent to 

Y* + BY + C = O having no singnlar points (X, Y) = (u, v )  E k x k. (See Appendix 

A*) 

The valuation at the place at infinity in k ( X )  is the negative of the degree 

fnnction in k ( X )  and the completion of k ( X )  with respect to the place at infinity 

is k(())). We need k(X)(Y) C_ k((+)), so we need Y E k(($)) \ k ( X ) .  This 

is equivalent to saying that the place at infinity, Pp, splits completely as Pm = 

Pl Pz in K. Thus we are in the "real" case [Xi]. It is t h d o r e  necessary that 

deg(B) > 1. For the remainder we wïU assume that this is the case. Since there 

are two embeddings of K C k(($)), we must choose one. If Y is one solution to 

Y2 + BY + C = O then Y + B is the otha. Thus, if Y = EL-, ciXi and b E k 

is the leading coefiicient of B, then + bqedBI  = 7' for some 7' E k. So, the 

two embeddings correspond to the two solutions in k of r2 + z = 7 for 7 = & E k. 

We will consider k as being represented by the polynomid basis whose defining 

polynomial has smallest Gray Code rank. We will then choose as the solution to 

x2 + x = 7, the one whose binary vectot representation has smallest Gray Code 

rank. This fixes our embedding. 

For example, consider the eqaation 

We wish to obtain the Laurent expansion for Y. It is eaoy to see that q = O for 

i > 3. Now, if we substitute Y = EL-, yXi  and equate coefhients we get 
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This report follows very much the explanation given in [47, 491. Many of the 

resuits are characteristic 2 fnnction field analogues of well known theorems given 

in [2,39,47,49,50,51,56]. The purpose of includjng this chap ter here is to provide 

much of the machinery needed for snbsequent chapters. 

4.2 Continued Fractions in k ( X ) ( Y )  

Cet the ring of integers of K be the set of al1 elements in K that sati* a monic 

polynomial over k[X]. Denote this ring by OK. Let O be the order k[X][Yl C OK. 

For o! = u + vY E K, (u,v E k ( X ) ) ,  define its conjugate by ai = u + v(Y + B). 

Then N(a) = a= = u2 + uvB + v2C. 

Let a = x:=-, GX' E k((%)) with ei E k and ct # O. Then define 

with 101 = O and deg(0) = -00. These definitions will be important for what 

follows. 
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We now present the continued fiaction aigorithm over fields of even characteris- 

tic. Let a E k ( X ) ( Y ) .  Also let = a and = Lm]. We calcalate the continned 

fraction expansion of a by 

for all i 2 1. 

Now define 

for d i 3 -1. 

The value 

is called the k-th convergent to a and is denoted [ao; ai, a2, . . . , ut]. We also use the 

notation [ao; al, ar, . . .] for the d u e  

It can be shown that a = [ao; al, a?, . . .]. 

As is the case with continued taction expansions of real numbus, we can show 

by induction that [ao; al, al,. . . , ai] = E. 
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Lemma 1 Let a E k(())) then a = 0 for P, Q E &[XI if and only if the eontinued 

fraction ezpam-on of a is finite. 

Proof: The proof is similar to the proof for the continued fraction expansion of 

real numbers. See [39]. O 

This theory was fmt discussed by Banm and Sweet in [6] and also in [7, 301. 

Their discussions were incomplete however, and so we non present a more complete 

description of the theory of continued fiactions over fields of even characteristic. 

If a = Q where Q, P E k[X], Q # O and Y E k ( ( f r ) )  satisfies Y2 + BY = C 

for B, C E k[X] with the property that y2 + By + C O (mod D2) does not have 

a solution with y E k[X] for each DIB, D k and QIP2 + PB + C then we c d  a 

a quadrutic irrotional. 

Let Q o  = Q, PO = P, ao = a  and Q-l = 0 Define the recwsions 

for all i 2 0. Again by induction it is easy to see that 

and QiIP: + P'B + C for all i 2 O. Let d = LY], the polynomial port of Y. Now, 

Define ri E k[X] to be the remainder when P;. + d is divided by Qi, or in other 

words Pi + d = aiQi + ri where O 5 de&.) < deg(Qi). We then get the simpler 

recursions 
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Qi+l = Q i 4 +  *(ri + pi-1) 

a; = (Pi + d )  div Qi 

ri = (Pi + d )  mod Qi 

for i > 1. 
R e d  fÎom the continned fiaction expansion that n = zz::" so we get 

Pi-i +a9i-t 
a;+1 = Pi+aqi 

for i 2 -1. Combining this with = and comparing 

rational and irrational parts we get that 

for i 2 0. 

For a complete example of the continned &action expansion of a quadratic irra- 

tional, the reader is referred to Section 5.5.1. 

4.3 Reduced Quadrat ic Irrat ion& 

A quadratic irrational a is called redvced if la1 < 1 < IQI. Since a = 7, we 

get that a is reduced if 

IP+Y+BI -C (QI c IP+YI. 

Thus, if a is reduced, 1 P + YI = IBI and sgn(P + Y) = sgn(B). Also, the 

second highest coefficient of P + Y must equal the second highest coefficient of B. 

So, either 



lBl < [Y[ = [Pl and sgn(Y) =sgn(P) 

and IQI < IBI. Notice that in al1 cases IB[ > [PI or [YI = IPI. Now, let a = 

(P + d )  divQ. Then laQ[ = [ P + d l  = IP+YI = [BI, so laQ[ = [BI. Hence, 

1 5 [QI < [BI and 1 < [al 5 1B1. SO, i f a  is reduced then we have bounds on [PI 

and I Q I -  

Lemma 2 Let CQ = be redvced for some i 2 O. Then CQ+I = Q;+r 
where 

Pi+l = d + r i  + B = aiQi + Pi + B 
PL1 +Pi+t B+C Qi+i = - 1  + ( + - 1 )  = Q i  

ai = ( P i + d )  div Qi = Lail 

T i  = (Pi + d )  mod Qi 

i.s reduced. 

Notice IPi+Y +aàQil = IPi+d+eQil  = [Fil < [Q i l  SO IPi+l +Y + BI = 

IPi + Y + *Qi[ < [Qil. Thus, fiom above, IQitl[ < [Pi+l + YI. SO we get that 
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Eence, if is rednced then so is IJ 

By induction it is easy to see that qipi-i+ piqi-1 = 1 for all i 2 -1. From this 
Piai i+i-i we get that a + = ,,;t+qï-i + W = 

1 
~i(~i~i+i +qi-i 1 - l a + ~ l =  &- 

The following results show that, as in the odd characteristic case, the continued 

fraction expansion will produce reduced quadratic irrationals. We get a bound on 

when the reduced quadratic irrationals wïll appear and an easy way to t d  which 

irrationals are reduced- 

Theorem 4 Let cro = y be a quadratic imational. Then is reduced for al1 

i > max {O, f dep(Q0) - deg(B) + 1). 

Proof: Let i > max(0, $ deg(Qo) - deg(B) + 1) be as above. Then i - 1 > 

! deg (g) and so < Q2i-2. It is also easy to see by induction that lqil 2 q'. 

Now assume that is not reduced. Since i 2 1, we can see that deg( + 
ai-1) < O, so 1-1 > 1. Also, 1 ~ 1  1 1 since ai is not reduced. So, 

This contradiction proves the resdt. O 

Theorem 5 Let a be a quadratic irrationd and i 2 O .  Then is reduced i f  and 

only if lQil < IBI- 
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(+) Let i 2 O aith (Qil < (BI. We need only show that 1-1 < 1, or in other 

words, IPi+l+ Y + BI < [Qi+ll. 

Lemma 3 Let = be a puadriztic irrational. If theie exists a minimal ia 2 1 

such that IQ, 1 < IBI, then a, Ls not reduced. 

Proof: N o w  [KI = Fi > ei'- If is redoced then IPk + Y/ = IBI. But 

then 1 ~ 1  2 1 contradicting the fact that a, is reduced. CI 

4.4 Period and Symmetry in the Continued Frac- 

t ion Expansion 

This section examines the periodic and symmetric aspects of the continaed fraction 

expansion. These results will aid us in produchg an algorithm to compute the 

regulator of K. 

We say the continued fraction expansion of a is quasi-periodic if there e x i s t  

integers u > vo 2 O and c E k* such that 



The smallest integer rn = v - uo for which this holds is called the quasi-period. The 

expansion is cded p e d c  if it holds with c = 1 and then n = v - vo is called the 

peMd. 

If a hag a paiodic continued fiaction expansion starting at vo with period n 

then notice that 

W e  therefore write a = [ao; ai, a*, . . . , a,-i,a,, a,+l,. . - , am+,,-& 

Let cro be a quadratic kational. Since is reduced for i > mado, $ deg(Qo) - 

deg(B) + 1) we ~ O W  that either [Pi! 2 [BI or IP;I = !YI and also that lQil < IBI. 2 

Thus the continued fraction expansion of a = a0 is ulthately periodic when k is a 

finite field. 

Lemma 4 Let a be a quadratic imational. Let the continued fraction expansion of 

a be quasi-periodic, so that 

C a ,  = a,+, 

for some c E kW. Thm ~(-')'a,+~ = a,,+i for al1 1 E ZO. 

Proof: We know that a,+,,, = Pq+m+Y and a, = 
Qm+m 

So Pm+, = P- and 
Quo 

Qh = ~Qlohn* 

Since 
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we get that a,+, = Ca, and T ,  = T,+,. 

Thus, p,+1 = P,+m+l and 

So, c-'a,+l = a,w+i and inductively we get ~(-')'a,+~ = a,,+l for d 1 E 

Proposition 1 Let a be a quadratic iwational. If the continued fiaction expansion 

of a is periodic with period n, then it *9 q u d p e r i o d i c  with quasi-period m, and m 

divides n. 

Proof: Let 2 O be such that a, = a,+, = a,+t, = - O. 

Since the continued fraction expansion is periodic, by definition it must also 

be quasi-perïodic. Let its quasi-period be m 5 n. Let ua 2 u be such that 

ca ,  = a,+, for some c E k'. 

By Lemma 4 we get c(-')"-" = a,+, = a, ,  the last equality following 

by periodicity. Now, since rn is the quasi-period, either m = n or m 5 n - m. 

Assume m # n, then c(-~)"Q,+,,, = %+2m T so c(-')"+'a, = a,+zm. Since 
n-lm 2m - < n, (c(-')"+')(-') ~ ~ + ( ~ - l ~ )  = ara+,, = aup. Again, since m is the quasi- 

periud, either n = 2m or m 5 n - 2m. 

Contiming in this fashion ne  get that m must divide n. O 

It is easy to see that for a quadratic irrational a, the period n and quasi-period 

m start at the same index vo. W e  therefore define the non-negative integer vo to 



be minimal such that a,+, = Ca, and a,+, = a, wïth c E k'. H vo = O then we 

Say the expansion is purely periodic. 

Lemma 5 Let a be a quadrutic iwutional. If the continued jkct ion ezpansion of 

a is quasi-periodic so that Ca,, = avbhn, we have 

= Ci'+(-l)m+-.+(-l)c*-')m 
*+A, cri 

Proof: This proof wiU be by induction on A. Let i 2 uo. 

O NOW, %- = q+h = ci*. 

- &-I)~-* Also, cli- = a(co+m)+(i-m ) - %+(i-m 1 = qa;, by Lemma 4. 

SO the resdt holds for X = 0 , l .  Let A 2 1 and assume that 

l+(-l)m+-+(-l)Am = ai* 

With the second equality following firom the case when A = 1 and Lemma 4. 

So, by the Principle of Mathematical Induction, the lemma holds. 0 

CoroUary 1 Let a be a qwdratic irrational. 



1. If the continued fiaction ezpansion of a is  quosi-periodic with odd quosi-period 

m, then it i s  pePiodiC with period n and n = nt o r  n = 2m. 

2. If the continued fraction eapansion of a is  periodic with odd petiod, then it is 

quasi-peràodic with quasi-period rn - - n. 

Let the expansion be quasi-periodic with quasi-period m, where m is odd. 

Then ay+zm = cl+(-l)"a,, = a,. Thus, the expansion has period n or 2m. 

Let the expansion be periodic with odd period n. Then it is quasi-periodic 

with quasi-ptxiod m and m divides n. So m is odd. Thus, n = rn or n = 2m. 

- m. Since n is odd, n - 

O 

For future reference and to summarize, we state the following theorem. 

Theorem 6 If a is a quadmtic irrotional over k (recall Ikl = 2M) then the contin- 

ued fraction ezpansion of a Ls both periodic and quasi-periodic. 

Proofi The periodîcity follows fiom the limits placed on reduced quadratic irra- 

tionak and the fact that ai is reduced for all i > ma* {O, $ deg(Qo) - f deg(B) + 1). 

The quasi-periodicity follows since if an expansion is periodic, then it is quasi- 

periodic, with c = 1 for example. O 

Theorem 7 Let a be a quadratic imational, then the continued fmction ezpansion 

of a is purely periodic if  and only i f  a is reduced. 



Proof: (e) Let a be reduced. Then we know that q is reduced for i 2 O. 

- < 1. Now, it fobws Since a* is redaced, ne h o n  that 1 ~ 1  < 1, thns la, + &l 
from the definition of a* that a i  E k [ z ] ,  so a e  get that ai = &]. 

Since a is a quadratic irrational, its continued fkaction expansion is periodic, so 

1 1 there exist il j E Z>o, - i < i mch that ai = a j ,  so g = F. Therefore, w-1 = aj-1 

and w-1 = aj-1. Continuing in this way we get a0 = rri_i and the continued 

fraction expansion is purely periodic with period less than or equal to j - i. 

(+) Let a have a purely periodic continued fkaction expansion. We can assume 

without loss of generality that a is monic since if c = sgn(a) then 

Now , c-l a is monic and is s till purely periodic, &O a is reduced if and only if c-'a 

Let a have period k + I so that a = = a k + 1 .  Notice 
Thus, a = a P k + ~ k - l  

a q k + q k - ~  and so q k a 2  + (qk-1 f pk)a + pk-1 = 0. 

Now let p = 

and 

[ak; a&-1,. . . , al, ao]. Then it is easy to see that 

where 5 and P* are the convergents to p. 
Qk-1 



Also, since is periodic with period k + 1, 

2 
SO, qk (i) + (qk-1 +pk) ($) +PM = 0- 

Now, a and $ both satisb the same quadratic, so a = g. Since [ar 1 > 1, we pet 

1/31 > 1, and so la[ = 1$1 < 1. Thus, a is redaced. O 

Proposition 2 If the continued fraction ezpansion of a quad~atic iwational a is 

quasi-periodic with quasi-period m and v, 3 O ,  c E k*, then 

Proof: Follows immediately fiom Lemma 5 and the fact that q = 'zY. CI 
Recall that Y satisfies Y2+ BY = C where B, C E k[X], C is monic, Y E k(( ))) 

and it has the additional property that yZ + By + C O (mod Da) does not have 
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a solution with y k[X] for each DIB, D e k. So Y is a quadratic irrational with 

P = O and Q = 1. We would Use to consider the continued fiaction expansion of 

a = Y. First notice that if B = LYJ th- Y is reduced and o t h d s e  it is not. 

If B # LYJ then by Theorem-4 we h o w  that is reduced for dl i 2 1. Thns, 

the period starts at uo = 1. Let n be the paiod and m be the quasi-period and let 

c E k* be such that al+, = cal and al+, = al. 

Consider p = (B + LYJ) + Y. NOW P is reduced, so it ha9 a p d y  periodic 

continued fraction expansion with period n'. Let its continued fraction expansion be 

[a; a . - . 1 .  Notice that a0 = J = B, so that P = [B; al, . . . , a,+l]. Thus 

Y = [LYJ ;al,a2,. . -,a,+l,B]. So n = n'. Now LYj + Y  = [O;al,a2,. . . ,G-I, BI. 

From our proof of Theorem 7 we can show that 

From above we get that 

1 

LYJ + y 
= [a1; a*, . . - , a-1, BI. 

Thus, al = %,l, a2 = G-2, etc. 

being' [d; al, a2,. . . , al, al, BI. 

It is now easy to deduce that 

that P;+l = Pm-; for i = O,. . . , n 

So we have the continued fraction expansion of Y 

- i = a i + l f ~ r i = ~ , . . . , n - l .  Fkomthis weget 
an-r 

- 1 and Qi = Qn-; for i = 1,. . . , n. 

On the other hand if B = LYJ then Y is reduced. Thus it is periodic with 

period n starting at vo = O and a0 = B. So Y = [B; al,. . . and -L- Y+B - - 

[ U , + ~ ; U , + ~ ~  ..., al, BI. But Y + B  = [O;al, ..., h-l ,B]  so & = [al; ..., a,-iy BI 
and thus al = a,+ a2 = 6-2, etc. 

As above we get that Y = [d; al, az, . . . , al, al, BI. Similarly we get & = ai,l 
an-l 
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From now on, if m is the quasi-period of a = Y, then c E 6' is such that 

cal = G+l- 

Theorem 8 If the continued jkaction ezpansion of Y is periodic with period n and 

quasi-period rn, then Q. E k* if and only i f  s = Am with A 2 0. 

Proof: (+) Let Q. = b E k*. If s = O then the assertion is hue. So, let s 2 1 be 

the least sueh S. It suffices to show that s = m. In Proposition 2 let i = rn and 

l+(-l)m+--+(-l)(A-l)m E k-, so 3 (A + l)m = n, then Q, = cm 

W e  know that Pl = d f B and QI = h + dB + C. Furthermore, as = = 

%(P. + Y) is reduced, so 1 P. + Y + BI < 1 and thus P. = d + B. Hence, a, = f. 

This gives = B + d = Pl and Q,+l - - 6 = %QI. But this says that 

a.+i = bal .  Since m is the quasi-period, we must have m 5 S. Thus, s = m. 

(+) Let s = Am. If s = O or n = rn, there is nothing to show. Thus, let n = lm 

where 1 2 2 and define c, = c(-')"-' where c is defined as previoosly. 

Nom, again fiom Proposition 2 we know that for all A 2 1, 

Coroilary 2 If the continued fr<rction ezpufzszfZSZon of Y is periodic with period n and 

q u a s i - p e d  rn, then 

for X 2 o. 



Proof: We know that N(9A,+1) = N(BAm+l) = % E k*- W e  alsa know 8A,+1 = 

p ~ ~ - i +  YqA,-1 and the r e d t  follo~s. a 

Lemma 6 Let the continued f i c t i o n  ezpa-on of a = Y be periodic with period 

n and quasi-pe&od m. Then, for each A 2 1 there e t s  a constant é(X) E k' such 

that 

9~m+1 = ~ ( x )  ( k + 1  )A- 

Proof: We know that for all i 2 l, 

Recalling that = %=, $, it follows that 

-l-(-l)" -.*.- (-1)P-"" 
where C = cj . The assertion now follows by a simple 

induction. O 

Theorem 9 Let the continued fiaction ezpatlsion of a = Y be periodic with period 

n.  

1. If there ezîPts a 1 5 v n - 1 with P, = P'+l then n = 2v. Conversely, if 

n = 2v, then P, = P,+l. 

2. If there e&ts a O 5 p 5 n - 1 with Q, = Q,+l then n = 2p + 1. Conversely, 

i fn = 2p + 1, then Q ,  = Q,+l. 

Pro of: 
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1. Let 1 5 v 5 n - 1 with P, = PV+,. Then P, = Pu+, = Pm-,. We also know 

2. L e t O < p ~ n - l w i t h Q , = Q , + l  . Then Q,+l = Q, = Q,,. W e  also know 

Corollary 3 Let tire continued fraction ezpansion of a = Y be periodic with period 

n and quasi-periud m. Then either 

1. n = rn odd 

3. n = 2m euen, m odd. 

Proof: If the period is odd then we know that n  = m and both are odd. Now, let 

n be even and assume that n # m. Then we h o w  that n = lm with 1 2 2. So 

P,+i = P m + l + ( ~ - ~ ) m  = P(t-l)rnf = Pn-(l-l)m = Pm so h m  Theorem 9, n = 2m. 

Assume also that m is even, so m = 2s- Then, = = P,-(,+.) = P., so 

again n = 2s = m contradicting the fact that n # m. Thus m must be odd. 0 

Theorem 10 If the continued fraction ezpansion of a = Y is periodic with penod 

n and quasi-periud rn,  then we have the folloraing s ymmetric properties with respect 

to the quasi-period 

= Pm-i i=O, ..., m- 1 

Qi = c i  , , ,  i  = O, . . . , rn 
1 - = c(-')'acel i  =O, ..., m -  1. 

am-i 



Proof: If n = m there is nothing to prove since the symmetric properties can be 

deduced from the symmetric properties for the period. Therefore, let n = 27n with 

m odd. We ~ O W  Pi+1 = and Q; = d-l)i-'~i+nr. A h ,  = P,-(i+m, 
and Qi+ni = Q=++rn). The first two symmetries follow since n = 2m. FinaIly, 

- c(-l)i (P;+1+Y) = Pm-;+Y = c(-l)i*+l - 1 
Qi+l 

- 0 
Qm-i-i am-i 

Theorem 11 Let the continued fraction ezpamion of a = Y be peiiodic un-th penod 

n and quasi-pend m. 

1. If there &ts o 1 < v 5 m - 1 &th P' = then rn = 2v = n. Conversehj, 

if m = 2 4  then P, = Pu+1 and n = m. 

2. If there ezfsts o O < p < m - 1 Gmth Q,+l = dQp for some c' E k', then 

m = 2p + 1. Ijd = 1 then n = m. If d # 1 then n = 2n. Conversely, i f  

m = 2p + 1, then then LP u CI E km such that Qp+l = dQP- 

1. If Pu = PV+l then we know that n = 21. Since v 5 rn - 1 we get that 

m = 2v = n. Conversely, if m = 2v we know that n = m and the assertion 

follows fkom the similar result for the period. 

2. If  Q,+l = dQ, then we can derive that 

Thus rn - p = p + 1 or m = 2p + 1. Conversely, if rn = 2p + 1, Theorem 10 

&es that Q,+l = C(-').Q,. The remainder of the proof is trivial. 
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sRn(Qr+i 1 Notice that & can be cddated as sgn(c),) . 

Let e(p)  = c(-l)' E k* where c is defined as before. 

2. If p is even then c(p) = t!, othe&e C(P) = 1. 

Theorem 12 Let the continued fraction ezparision of a = Y Ce peliodic &th penod 

n and quasi-period m. 

2. If then ezists o 1 5 p 5 m - 1 tmth Qp+l = dQ, for some d E k', then &th 

c ( p )  as defined above 

1. W e  know that n = m = 2v which allows us to do the following 

- 
The last two equalities foilow since Bu+lûu+l = e. 
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2. Let c and c(p) be defined as always. We know that m = 2p + 1 which dows  

us to do the foIloning 

The last two equalities follow since c ~ , + ~ a , + l =  &. 

W e  can now dehe = zzl deg(ai) for i 1 O. Since = ni=, $, we - 
sec that Ai+t = - deg(Bi+l). Also, since Bi+lBi+l = Qi (recall we are looking at 

the continued fraction expansion of a = Y, so Q0 = l ) ,  n e  pet A-+i = deg(&+l) - 

dedQi)- 

Corollary 4 Let the continued fraction ezpansion of a = Y be periodic with petiod 

n and quasi-period m. 

2. r f  there ezists a 0 5 p 5 rn - 1 with Q,+i = dQ, for some c' E k*, then 
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- - 
1. The result follows since = *. 

Corollary 5 Let the continued fraction ezpansion of a = Y be periodic urith period 

n and quasi-period m. 

2. If there exists a O 5 p 5 m - 1 w th  QP+l = dQ,, where c' E k* then with 

c(p)  as defined before, we have 

and 

Proofi 

- - 2 1. Comparing rational and irrational parts of = B,+I we get that 

2 2 2 
Qupm-1 = Quqm-iB + PE-1 + c e - 1  + B qv-1 

and 



We kmw that N(&+I) = PZ,, + Bpu-lq,,-l + C L ,  = Qv and pvqu-l + 
pu-lq, = 1. Also since P, = Pu+, we can dedace that auQu = B. Using these 

redts  and the formula for q,, the assertion can be proven. 

- 
2. Comparing rational and kational parts of Q,18m+i = c(p)19,+~8,+~ we pet 

that 

4.5 The Fundamentai Unit and Regulator 

W e  are now in a position to examine the fundamental unit of 0' and define the 

regulator. We will first state some r d t s  which WU be u s a  in finding the form 

of the fiuidarnental unit, 

Recall that the continued haction algorithm gives 

p-2 = O q-2 = 1 

p-1 = 1 - 1  = O 

Pi = aipi-1 +pi-2 q; = aiq;-1 +q;-2 

for a l l  i 2 0. 



CHAPTER 4- FUNCTION FIELDS OF CHARACTERISTIC 2 55 

Theorem 13 Let a be a quadrutic iwational. If the two polynomiuk d ,  q' E k[X], 

qf # O satisfy IQ + f 1 < &, then acre ezikts I E Z>o - such that 5 = E. 

Proof: We can easily see that 1 = lqol < IqlI < - * -  < Inil < [qi+il < --• for all 

i 2 0. Since O # q' E k[X] we know lq'l 2 1. Thns there exists an 1 2 O such that 

lel 5 lbl < lqt+il- 

t Rom this it foUows that la + $1 < 5 To'iio;i- [Q 1 

On the other hand ae knoa that la + ~1 = - < -. 

Altogether, we get 

Thus, Ip' ql + piq'l < 1 and since they are all polynomials, we know p' ql +plq' = 0 .  

The result follows. O 

CoroIIary 6 Let a be a quadrutic iwational. I f  the two polynomials p', q' E h[X] ,  

q' # O sat* la + $1 < & then there ezbt 1 2 O and r E k[X] such that p' = rpl 

and q' = rqd. ALPo if gcd(p', q f )  = 1, then p' = cpi and q' = cql for some c E k'. 

ProoE By the above theorem we know that pfql = <pl. Thus, ql lq'pf and pl [p'g. 

Since gcd(pl, qi) = 1 we get ql lq' and pilp'. 

Therefore, there exist +, s E k[X] snch that q' = s q  and p' = rpc. But = 5 = z, so we must have r = 8.  



If gcd(p', 6) = 1 then it must be the case that r E k'. û 

Remark 2 Let 7 = U + W E O, when U and V are polynomials in  k[X]. Then 

TJ " a unit in0 i fand only i f N ( 9 )  E kœ- 

The hindamental unit can be found, as in the odd characteristic case by the 

continued Baction expansion of Y. 

Theorem 14 Let Y sot* Y 2  + BY = C, for B, C E k[X], C is monic, Y E 

b ( ( + ) )  and it h a  the additional property that y2 + By + C r O (mod D 2 )  does 

not have a solution with y E k[X] for each DIB, D $ k. If the quasi-period of the 

continued fiaction expumion of Y Is m and r = + q,-i(Y + B )  then 
- 

0' = k' x (a) = k' x (8,+i). 

ProoE We dready hiow that the continued &action expansion of Y is periodic 
- 

and quasi-periodic and that E = O,,,. 

- - 
We also know that N(B,,,+l) E k' so is a unit in O. 

Let r )  = U + V(Y + B) E O' be a unit, where U and V are polynomials in 

k[X]. If 1 ~ 1  = 1 we are done. So, let [q( > 1. Since q is a unit, N(q)  E k* and so 

lm7)l = 1 = 1771 lvl- 
NOW IU+YVI = liil= fi < 1 < (VB1,since IV1 2 1 and IBI > 1. Also, 



Suice IBI > 1. 

This tells us that 

Since r )  is a unit we must have gcd(U, V) = 1, so there exists a q E km, and a 
- 

j 3 1 snch that U = w-1 and V = coq+i or equivalently T =  co8j+l. Therefore, 
- 

N ( q )  = C$V(B~+,) = gQj E ka. Hencej = Am for some A 2 0. 

This tells us that 

If Iql < 1 we can use 9 and get the same resdt. Thus the assertion is proved. 

We are now in a position to define the regulator, R, of k ( X ) ( Y ) .  It is the 

degree of the fundamental unit of O*. From the last theorem we can see that - 
R = deg(Om+l) where m is the quasi-period in the continued kaction expansion of 

a = Y. Since deg(Q,) = O we get R = &+l. 



Chapter 5 

Finding the Regulator 

This chapter nill examine the infrastructure of quadratic fanetion fields and use it 

to compnte the regulator. The lifiastrncture is the inner structure of the set of all 

reduced ide& in the ideal class group of O with the property that given one ideal in 

a class, the continued &action algorithm wil l  produce the remaining reduced ideals 

in that dass. First we must examine ide& in O and th& relationship with the 

mataïal in the previous chaptec. We wil l  then defme a distance hinction which 

will allow us to compute the regulator. We will &O define an operation called a 

Giant-Step. This corresponds to ideal mdtiplication, which may give an ideal not 

in the sas trncture, followed by reduction asing the continued &action algorithm, 

which will bring us bads to an ideal in the infirastructute. 

We are still in the same situation as the previons chapter. So k is a fidd with 

q = 2M elements and X is transcendentai over h. Now K = k(X)(Y) where 

Y2 + BY = C for some B, C E k[X] with C monic. Also y* + By + C r O 

(mod D2) does not have a solution with y E k[X] for each non-constant polynomial 

D that divides B and K 2 k((%)). 
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5.1 Ideals in O 

Let O = k[X][Yj C OK where K = k(X)(Y) .  We call a subset A # {O) of K an 

O-ideal if A possesses the properties: 

1. If Al, X2 E O and al, al E A then Alal + Ara* E A. 

2. There exists a A E O, X # O such that A d  E O. 

If Property 2 holds with X = 1, we say that A is an integral O-ideal. 

For elements al, a2 , . .. , % E K the set 

is dearly an O-ideal. This is the ideal generated by ai, a*, . . . , 4. If A is generated 

by jnst a E K then we Say that A is a principal O-ided. 

For wi, w* , .  . . , W+ E O we let 

If this set is an integral O-ideal and w l ,  y,. . . , w, are linearly independent over 

k[X] then {wi, wz, . . . , w,) is called a k[X]-basis of the O-ideal. It is easy to see 

that every k[X]-basis of an O-ideal, A, has exactly two elements. (See Appendix 

B.) 

Theorem 15 A nonzero subset A of O is an integral ideal if and only if there ezist 

S, P,Q E k[X] with Q1P2+ P B  + C such that A= [SQ ,SP+SY] .  

Proof: (+) Let A be an integral ideal. Then A = [Q', P' +SY] for some Pr,  Q', S E 

L[X]. Then Q'Y E A, so SI&' or Q' = SQ. Clearly N(Pr  + S Y )  E A, so QtIN(P'+ 



SY) and since N(Pf + SY) = Pa + P'SB + S2C we get SIP". Rom this we can 

deduce SI Pl so P' = SP. Hence, A = S[Q, P + Y] for some P, Q, S E h[X]  where 

QlP2 + P B  + C. 
(e) Let S, P,Q E k[X] with Q(P2 +PB + C and A = [SQ,SP + SY]. Let 

Ul, U2, V;, V; E k[X] so that Ul +KY,U2 +GY E O- Also let a l , a2 ,P l ,P~  E k[X]- 

Notice 

Notice &O that A Ç O. Thus A is an integral ideal. O 

We Say that A is primitive if S can be chosen to be 1. 

A k[X]-basis of an integral O-ideal can be chosen in adapted fonn, which means 

that A = [SQ, SP+SY] where deg(P) < deg(Q) and Q is monic. The polynomials 

P and Q are unique and S is unique up to a constant factor. 

Let A be an integral O-ideal with k[X]-bais {w1,w2). Then A = [wl,w2]. We 

define the n o m  of A, N(A) by 

where c E h' is chosen to make sgn(N(d)) = 1. The n o m  doesn't depend on the 

given k[X]-basis {wl, w2). If A = [SQ, SP + SY] then N(d) = -&&jj E k[X]. 

W e  define the product of two O-ideals A = [al, a2] and 8 = h, P a ]  by 

k 1 a 2 1  pl, &] = ( d l ,  4 2 ,  a2A9 4 2 ) -  f i 0 3  (P)[QI, a21  = va11 Pa210 
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Let A be any O-ideal, then 

is called the conjugate ideal of A. If A = [ai, or2] then notice that A = [K, x]. 

2. If A and B are integral O-ideais then N( AB) = Ai( A) N(B)  . 

3. If A = (a) where a E O, then there exists c  E O' such that N(d) = c N ( a ) .  

Proof: 

1. Let A= [SQ,SP + SY]. Then 

PZ BP+C Let 8 = gcd(Q,B, ) Then cf(& and since 619 and dlP2+tPiC, 

b 1 Pz + BP + C. W e  know hom our restrictions on B and C in the in- 

troduction to this chapter that this is only possible if b E 6. 

Thas, gcd(Q, B, P2fy+C) = 1 and 
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2. From Part 1 we get 

Thus, N ( A B )  = eN(d) N(B)  for some c E O*. Since noms are monic poly- 

nomials in X alone, E = 1. 

3. If A = (a) then A = (E). So (N(d)) = (a)@) = ( N ( a ) ) .  So N ( A )  = c N ( a )  

for some c E 0'. 

Two integral O-ideals A and B are said to be etpivalent if there exist nonzero 

n,p E O such that (a)A = (P)B.  In this situation we arite A .- S. 

Let di = [&il Pi + Y] for i = 1,2 where Q i ( e  + Pi B + C. Withont loss of 

generaiity assume sgn(Qi) = 1 and deg(Pi) < deg(Qi). Also let d1dI = (S)C where 

c = [Q, P + Y] and Q(P2 + PB + C, deg(P) < deg(Q) and sgn(S) = sgn(Q) = 1. 

Then N(A1) N(d2) = N((S ) )N(C) .  So, Q1Q2 = SZQ and 

Let S = gcd(Q1, Q2, f i  + f i  + B )  with sgn(St) = 1. 

Now SP + SY E dldz so there exist 2, U, W E k[X] such that 



Comparing irrational parts of the above equation we get S = UQl + VQ2 + W(& + 
Pz + B).  So S'IS. 

Also Q&+QlY E d1d2. So thereexist A1,A2 E k[X] such that QlP2+QlY = 

A1SQ + &(SP + SY). Camparing irrational parts gives QL = A2S so SIQ1. 

Similarly SIQ2. Also PIPZ + C + (& + P2 + B)Y E did2 so we likewise get 

SIS + P2 + B. 

Therefore Si gcd(Q1, QI, Pl + P2 + B) = S and hence 

New, there exist U, V,  W E k[X] such that S = UQl + VQ2 + W(Pl + P2 + B). 
So 

Thus, there exist Al, A2 E k[X] such that 

Comparing Ltational parts of the above equation gives that AIS = S so A2 = 1. 

Now comparing rational parts gives 



Thus, given dl = [QI, Pl + Y] and AI = [Q1, P2 + Y] we can easily compute 

C = [Q, P + Y] and S E k[X] such that did2 = (S)C. 

Lemma 8 If A and B are equivalent, integral O-ide&, there ezists some 7 E A 

such that (7)B = (N(B)) A and O < 171 5 IN(d) 1 .  

Proof: Since A and B are equivalent we have (a)A = ( P ) B  for some nonzero 

a, P E O. So taking norms we get claEN(d) = c2~pN(B), for some cl, c* E 0'. 

Let 7' = cl% N(d) = c2 @ N ( B ) .  Since N(B) E B we know that 7' E A- 

Also, (a)(rf)8 = (P )  (WB)) B = (4 (N(B)) A- So, (7W = ( N ( B ) )  A 

Let e be the fundamental unit of O', so [cl > 1. Let E - be such that 

3 < lww 
The resdt follows with 7 = ~"7'- O 

An integral O-ideal, A, is cded reduced if A is primitive and there exists a 

k[X]-basis {Q, P + Y) for A with Q, P E k[X], QlP2 + C + PB and 

It is easy to see that this is eqnivaent to a = 7 being a reduced quadratic 

irrational. 

Theorem 16 A primitive O-ideal d is reduced if and only if IN(d)I < (BI. 

Proof: (+) Let A be a reduced O-ideal. Then there exist P, Q E k[X] such that 

A = [Q, P +Y] and n = is a reduced quadratic irrational. W e  know then that Q 

IQI < le[. Since IN(d)I = IQI we are done. 

(-+) Let IN(A)[ < IB[ for a primitive O-ideal A = [Q, P+Y] with Q, P E k[X]. 



  et P'= P + [PtgJ Q. Clearly A= [Q, P f + Y ]  and 

So IP'+Y+BI< [QI. Thuswe&ohave,IP'+Y[=I(Pf+Y+B)+BI =[BI > 

1 Q 1. Hence, a reduced basis for A is {Q, P' + Y). 0 

Lemma 9 If A i s  a reduced O-ideal then U e r e  does not ezLPt any nonzero a E d 

such that [al < IN(d)I and 5 IN(d)I. 

Proof: We know A = [Q, P + Y ]  where P,Q E k[X] and IP +Y + BI < IQI = 

IN(4 -= IP + YI- 
Let a E A with a # O, then there exist U, V E k[X] such that a = UQ + V ( P  + 

Y) a n d a = U Q + V ( P + Y + B ) .  

Since a # O, if V = O then U # O or in other words IUI 2 1 and la1 = IE~. 
Hence la1 = lUQl 2 [QI = IN(d)I and the assertion is true. 

On the other hand if V # O then IV1 2 1. If in addition IUI 5 [VI then lUQl < 

IV1 IP + YI so la( = [VI IP + YI 2 IP +YI > IN(A)I- Similady, if IUI > IV1 then 

lUQl > [VI IP +Y + BI so la1 = IUQI > 181 = IN(d)(. Thns, the assertion holds. 

0 

5.2 Baby-Steps and Equivalent Reduced Ideals 

We can now examine the way in which the continued fraction aigorithm acts on the 

primitive reduced ideals of O. 
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Let A be a primitive O-ideal. Then there exist P, Q E k[X], Q 1 Pa + B P + C 
such that A = [Q, P + Yj- If a = y, then a is a qnadratic irrational and we can 

apply the continued fraction algorithm to a. 

Define Qi, Pi as in the contimed fiaction algorithm for a. Then let Al := A 

and Ai+l:= [Qi, Pi + Yj for i 1 O. W e  can now talk abut performing the continued 

fiaction algorithm on A in this way. 

We h o w  that ai = for i 2 O where Qi, Pi E k[X], Q; # O and QiIPf + 
PiB + C. We c d  each step of the continued fraction algorithm on A a Baby-Step. 

Obviously, is a primitive integrai O-ideal. Now 

since Pi = qQi + Pi-1 + B. Using this result we get that 

= (Pi + B + Y) [Q;, 
QiQi-i 

P i + B + Y  1 

Theorem 17 If A = dl = [Go, Po + Y] Ls any pn'mitiue O-ideal then each 4 is a 

primitive O-ideal and for i 2 1, 
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W e  know that 

( Q i )  ai = (pi + B + Y) 
from the statement before this theorem. Now multiplying through by (Q&) and 

using the above result we get 

From the Induction Hypothesis we deduce that 

After dividing through by (Qi-l)  we conclude by  the Principle of Mathematical 

Induction that the result holds. 0 

Since N ( 4 )  = - and A = Al, the above result is equivalent to 
S@(Qi-i 1 

So, A and di are equivalent for all i 2 1. 

Corollary 7 If A = dl = [Qo, Po + Y ]  is any primitive O-ided then we have that 

for i 2 1 

Ai = [Qoei, Qoei+i]* 
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Proof: Since Q;-I&+~ = (Pi + Y + B p i  and = [Qi+ Pi + B + Y] we see 

Using Theorem 17 the assertion immediately foUows. O 

We now examine the relationship between the reduction of a and the reduction 

of A. 

Remark 3 If in the continued fmction ezpa-on of a = a. = there is an 

i 2 O such that ai = qi is  reduced then obuiowly di+l is reduced because a basis 

for di+l is {Q;, Pi + Y )  which Ls reduced. 

Theorem 18 If A = dl = [Qo, Po + Y ]  is any primitive O-ideal then is 

reduced for al1 

Proof: The result follows from Theorem 4 and the above remark. a 

Notice however, that it may be possible for A<+l to be reduced but the basis 

given by the continued fraction expansion not to be reduced. Then would not 

be  reduced. W e  do have the following result though. 

Theorem 19 If A = dl = [Qo, Po + Y ]  is any primitive O-ideal and is 

reduced for some i 2 O then e+l is reduced. 



Proof: Let be reduced and then 1 N(&+l) 1 = IQ;[ < BI. By Theorem 5, w+l 

is then reduced. 0 

Proof: We have that [QiI = IN(A+l)[ < [BI- So A+t is reduced. 

If I = O, then QI = Qo and lKl = 1 = [el/. 

Let 1 2 1. If Iql < 1 for some j E (1,. . . , 1 - 1) then aj is reduced. This would 

say that l Q j [  < [BI which contradicts our assumption. Thus, 2 1. 

We also know fiom Lemma 3 that al is not reduced, so [FI 2 1. Hence, 

Not only will the continued fkaction expansion produce equivalent reduced ide- 

als, but it will produce d equident reduced ideals, as shown in the following 

result. This result shows that the idiastructure is the inner structure of a class in 

the ideal dass group. 

Theorem 21 Let A = di and B be two equiualent, reduced, integral O-ideah and 

7 E A &th 

(7) = U V ) )  4 
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wheie O < 171 5 [N(d)  1 .  Then there &ts some v 2 1 and c E k* such that B = A, 

and 7 = cN(A)Bu- 

Proof: We aheady know that such a 7 exists by Lemma 8. 

Since dl is reduced, so is for d i 2 1 and hence 1x1 c 1 < [a& Thus 
- 

lei+ll < l&l ,  le1 1 = 1 and l&+l[ > l&l- Since 1-1 2 q for al l  i 2 1, we see that 

1 ei 1 5 $. Thus {18i[}i>l - is stndly deaeasing and converges to O. Since 17 1 5 1 N(d) 1 
there must exist some v with < & 5 lû,l. Thus 

Since N(d) E A, we have N(d)Bv+l E d so 

Thus, N(d)Bu+lN(B) = 7p for some O # /3 E B. 

By above we can deduce that Ir[ lN(B) 1 > 171 [Pl, so 1 N ( B )  1 > IPI. Since B is 

reduced we must then have lpl > 1 N ( B )  1 by Lemma 9. But then using the definition 

Since 7 E d we can use Corollary 7 to deduce that there exist U, V E k[X]  such 

that 

If lUl 5 [VI then 171 = I v N ( A ) ( F ~ ; ; [  > IV1 171. So 1 > IV[ and thus U = V = 0. 

This is not possible since 7 is nonzero. 
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I f  1111 > (VI, then 171 = IUN(A)û,l 1 lU1171. SO 1 2 IV[. Thus U = c E kœ and 

V = O. Hence 

7 = cN(d)aV-  

Since (N(A)8 , )  du = (N(&)) A we can take noms to get that 

for some cl E k*. Rom above we can then deduce 

for some coi c3 E k*. 

Since (7) 8 = ( N ( B ) )  A we again take norms and get N ( 7 )  = q N ( B )  N ( A )  for 

some y E k'. Since sgn(N(B)) = sgn(N(AJ)  = 1 we deduce that N ( B )  = N(A,) . 

Thus (7) LI = ( N ( B ) )  A = ( N ( d v ) )  A. Since (N(A)Bv)  du = ( N ( d u ) )  A and 

7 = cN(A)BV we finally get 

(7) B = (7) Au 

fiom which the result follows. O 

This result says that the continued fiaction algorithm will produce all primitive, 

reduced ideals equivalent to the starting ideal. It is this set of equivalent reduced 

ideals that we c d  the infsastnicture. 

5.3 Distances and the Giant Step 

Let A = dl and B be two equivalent, rednced, integral O-ide&. By Theorem 21 

there exists v 2 1 such that B = A. We also know that (N(A)Bu) A, = ( N ( A u ) )  A, 



Define the distance fiom A to B by 

Also when d is understood by contact, we write 8, := 6 ( A ,  A). 

Definition 5 Let k = F*M and K = k ( X ) ( Y )  be a furaction field defined by the 

non-singular equation Y2  + BY = C for B,  C E k[X], C monic and the place 

at infinity splitting completely. Let O = [l, YJ and R be the regulator. Then the 

infiastructure disaete logarithm problem is, given a primitive reduced ideal A, to 

find b(A, O)  < R if it ezists; otherwise return, "No solution". 

We have dehed this logarithm problem in terms of the starting point O, of the 

continued fraction algorithm. It is &O possible to define it in terms of any other 
t 

s tarting point, Al, t hat is à reduced O-ideal. 

Notice that the distance h c t i o n  is ody defined between reduced, equivalent, 
- 

integral ide&. Since [&+Il > l&l we know that the distance fnnction strictly 

inmeases aith i. Also since 6.- E Z, we get tFtG 2 & + i -  Thus, if $ = Ji then 

A = d j a n d i f 6 i = 0  t h e n & = d .  

Conversely, if Ai = d-j then 

Hence we get that (N(d)Bi) = (N(d)Bj), and so Bi = dj  for some E E 0'. We 

know th& a = c(B,+# for some c E k' and 1 E Z so deg(Bi) = deg(Oj) + lR where 

R is the regulator of k ( X ) ( Y ) .  Thus, if R. = 4 then 
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for some I E Z. In partidar note that b,+l = R. 

for i 2 2. It is easy to see that = 0. 

For the remainder of this chapter let A = Al = (1) = O = [1, Y]. Then we 

have Po = P = O ,  Qo = Q = 1 and = a =  Y. 

Since IN(d)I = 1 < IBI, we have that A is reduced and thus is reduced for 

all i 2 1 and so 8; is dehed  for all i 3 1. AIso (Q&) = (Qi- l )  fitom *hi& 

we conclude 

Ai = (&) = [QG,, Pi-1 + y]. 
So A- is principal for all i 2 1. 

Now let B be any arbitrary primitive reduced aideal. Let the quantities asso- 

ciated with the continued fiaction expansion of B be P:, Q:, 8; and 6: := b(Bi, 8).  

For any s, t 2 1 we can h d  an S E k[X] and a primitive O-ideal C such that 

We can then apply the continued fraction expansion to C. We denote the quantities 

associated with this expansion by Pi', Qr and 8:. Notice that there is no distance 

defined since the ided C may or may not be reduced. 

We know that there exists a minimal 1 snch that IQ~-,I < [BI or in other words, 

such that Cr is reduced. Then notice that 

Hence G -- B. Since they are both reduced ide& there exists a u 2 1 sud, that 

Cr = Bu. 



Theorem 22 In the above situation we have 

where c E k'. hrther 

a: = 6: + a* + f 
where f := deg(q) - deg(S) E Z and 2 - 2 deg(B) 5 f 5 0. 

ProoE Rom Theorem 17 we know (O,)  A, = (N(A . ) ) ,  (N(B)0;)  Bt = ( N ( B t ) )  B 

and ( N ( C ) e i )  Ci = (N(Ci))  C. Since A,& = ( S )  C we can take noms to get 

for some ci E k' . Using dl of the above, we can deduce that 

Since le,l,lO:l. le;'l 5 1, we pet that O < 171 2 [N(B)I.  Thus, by Theorem 21, 

there must e x i s t  some v 2 1 and cz E b' snch that 7 = c2N(B)01 and Ci = B,. 

Therefore, 

for some CS E k', fiom which we get 

with f = deg($) - deg(S). 
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Notice that 
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Since A. and Bt are both reduced, 1 N(ds) 1 , 1 N(&) 1 < 1 BI and so f 2 -2(deg(B) - 

1)- 

Theorem 20 says that 1q1 < 1, so deg(v) 5 O, which gives f < 0. O 
Using the above notation, we define a Giant-Step by the operation 

So a Giant Step consists of taking the product of two primitive ideals and then 

reducing the primitive part of the product using the continned fraetion algorithm. 

Let rn be the quasi-period of the continned fraction expansion of a = Y. Since 

Qh = c E k*, we get that 

Am+,  = [c, P*, +I7 = [1?Y] =dl =O.  

So bA,+l = & + ZR where R is the regulator and 1 E Z>l. - In fact, 

- 
8*,,1 = deg(@~m+l) 

- 
= k ( @ m * r A )  

= AR. 
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for ail i 2 1 and A 2 1 by eramining the formula for &m+i+i. 

We have also that Ji = deg(B) + sz: deg(~) ,  so & 2 de@) + i - 2. 

5.4 Algorithms 

This section gives three algorithms to compnte the regulator of K. They are based 

on similar algorithms which originally appeared in [47, 491 in the context of odd 

characteristic fùnction fields. 

The first algorithm is the naive method of computing the regnlator. We simply 

start with the ideal A = [l, Y] and produce the continued fiaction expansion until 

Q, E k*. Then R = b,+l. We call this the Baby-Step algorithm. 

The second algorithm is a basic Giant-Step Baby-Step type of algorithm. It uses 

Baby-Steps to produce a table of eqnivaent teduced ideals. Then the Giant-Step 

algorithm is performed, which "jumps over" the sequence of equivalent reduced 

ideals quickly, until we obtain an ideal that is in the table. The regulator is then 

the différence in distances. 

Original Regulat or (Giant-Step Baby-Step) Algorithm 

input: q = 2M,B,C 

output: R 



2. By developing the continaed Qaction expansion for a = Y, compute R. 
and & for i = 1, ..., s starting with Al = (1) = O. Store them in the 

form 

(A-, 6;) = ( N ( A i ) ,  PLI, &) - 

If Qj E k' for a minimal 1 < - j 5 s - 1 then R = return(R). 

3. Bi := da; fi := 0; 6: := 6.; j := 0. 

4. do { 

Proof: If the algorithm terminates in step 2, then Q E k' and by Theorem 8, 

j = m, so the output is R. 

Otherwise, we must show that the algorithm wi l l  terminate in Step 5 with the 

correct output. Now, s = [)qkdedB)l, so J > deg(B) and 6, > 2 deg(B) - 2. Thus 

Ji+, = 6.+6;+ fj+i > 2deg(B) -2++2deg(B) + 2  =6; for all j 2 O. 

So 6; E Z>o - increases with j .  Thus, there must exist a least v with the property 

that 6; < R 5 6L+1. NOW, J;+, - 6; = 6. + fV+l 5 6,. So, 6;+, = 6,+1 + 1 for some 

r 5 6.. 
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Now consider and Bv+i = By Proposition 2, A=&+i so the algo- 

nthm will terminate and R = &+, -di. O 

We examine the conjugate of an ideal as follows. If A- = [Qi-l, Pi-t + Y] then 

the conjugate is 

Proposition 3 Let m Le the quasi-period of the continued fraction ezpansion of 

- 
2. ~f we set Ji:= &(&A) we get f o + i =  1,2, ..., m+1; 

Proof: 



1. By Theorem 10 we know that Pi+l = Pm-i for i = O,. . . ,m  - 1 and that 

Qi = C(-')'-'Q~-~ for i = O , .  . . , rn and some c E k*. SO 

for i = 1,. . . ,m. Also 

2. Notice that 

by Theorem 10 for some C E k*. Which after conjagation gives that 

fiom which the result immediately follows . 



The third algorithm ntüizes symmetry and conjugate ide& to effectively double 

the size of the stored table. This is the most efficient algorithm presented. 

O pt-ed Replat or (Giant-Step Baby-Step) Algorit hm 

input: q = 2 M , ~ ,  C 

output: R 

1. Put s := [ t q i d c g ( B ) ]  and T := [i deg(B) + 11. 
2. By developirig the continued fraction expansion for a = Y, compute 4. 

and Ji for i = 1, ..., s +T startiag with dl = (1) = O. Store them in 

the form 

(a,, Ji) = (N(Ai ) ,  Pi-1, Ji) - 
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If Bi = Ai E (dl,. . . ,da+=) then R := 6; - Ji; return(R). 
- 

E B j  = E {A;, . . . ,da+T) then R := Ji+& -deg(Qr-1); return(R). 

Proof: If the algorithm terminates in Step 2, then by Corollary 4, the output is 

the regulator. Otherwise we must show that the algorithm wil l  terminate with the 

correct answer in Step 5. 

For dl j 2 1, we know that Bi = A*, for some Aj 2 1. Ab0 - 6:. = 

8; + = 26. + fl + fj+1 1 26. - 4 deg(B) + 4. Since = [f & J , then 

s > deg(B) and 6. > 2 deg(B) - 2. So di+, > 6;. 

Now let v E 2 be minimal sich that 

- 
If 6;+, 5 R then 6:+, = di = for some i < s + T. Now 8v+i = &-i+Z = 

- 
A;. So 

Otherwise JL+l > R. Sime 
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we know that c+l < Sm+,+T and we are in the situation of the proof of the Origind 

Regulator algorithm. 

5.5 Some Examples 

We wiU now present some examples of qaadratic fûnction fields of even characteristic 

and explore th& ~astructnres. 

Let k = Fp = F2(b) where b satisfies 6 + 6 + 1 = 0. Then let Ki = k ( X ) ( Y )  be 

defined by the equation 

Notice that this equation has no singalar points and that letting Y = x:=-, î.X' 

and equating coefncients gives 

so we are in the situation as described in Section 4.1. 

We will e x d e  in detail the in6rasmieture for this field starting with the ideal 

Al = [l,Y]. We have that d = LYJ = X and that Qo = 1, Po = O and a0 = Y. 

The polynornials B and C are B = X2 + X + 6 and C = X3 + b- 

We wül first compute 

a0 = ( P o + d )  dkQo 

= (O + X) div 1 

= X 
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and 

1.0 = (Po + d)  mod Qo 

= (O + X) mod 1 

= O. 

Which allows us to compute 

Pl = d + p 0 + B  

= x + 0 + x 2 + x + s  
= x2 +6. 

Since we do not have a value for we must use the following f o r d a  for QI: 



The distance to this ideal is b2 = deg(l3) - deg(Qa) = 2. 

We can now continue with the next Baby-Step to get 

and 

From which we can compate 

and 



So a2 = and 

Thus we get the ideal 

which has distance & = 62  + deg(al) = 3. 

Continuing in this way we get 

and 
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So 

and 

This gives the ideal 

with distance 64 = cf3 + deg(az) = 4. Notice that since Q3 E k the regulator is 

R = & = 4. Also, consistent with Theorem 11 we have QI = 692. 



Let h = Far = Ft (7) where 7' + 7 + 1 = O and 7' = 7 + 1. Let Ka = k ( X )  (Y) 

where 

Y * + ( X ~ + X ~ + ~ + ~ ) Y = X = + ~ .  

Notice that this equation has no singular points and that Y E k((+)) so again we 

are in the situation of Section 4.1. 

We will examine the idkastructure for K2 starting with the ideal di = [l, Y]. 

Table 5.1 shows the results of the continued fraction expansion on dl giving Pi, Qi, 

deg(ai) and for all i 2 O until we can determine the regalator. For this field 

we have d = [Y] = X2. 

Notice that Pl0 = Pi1, so by Theorem 11, both the quasi-period and perïod 

of this expansion are 20. Now, by Theorem 12, we have R = 2Jli - deg(Q,.) = 

30 - 1 = 29. 

Of interest in this example is that when i = 6,9, and 10 we get deg(ai) > 1 

and so Ji+* - > 1. This shows how the distance fuaction can increase in steps 

greater than 1, and so, for example, there wiU be no ideal with distance 10. 



Table 5.1: The continued Baction algorithm for KI. 



Chapter 6 

A Cryptosystem in the 

Infrastructure 

This chapter will introduce key exchange and signature schemes that can be im- 

plemented in the infrastructure discussed in the previous chapter. We will first 

introduce the algonthms needed in the description of these schemes, then we will 

discuss the schemes and their seCUITityty 

We are still in the same situation as the previous two chapters. So k is a field 

with q = 2M elements and X is transcendental over k. Now K = k(X)(Y) where 

Y2 + BY = C for some B, C E k[X] with C monic. Also Y* + BY + C = O has no 

singular points (X, Y) = (u, v )  E k x k and K C k((j)) .  Let d = [Y]. 

6.1 Algorit hms 

In this section we wiU give detailed descriptions of all the dgorithms necessary to 

implement the key exchange and signature schemes to be described in Section 6.2. 
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Let 92 = {dl = O, As,. . . , A,,J be the sequence of reduced ideals prodnced by 

the continued fiaction expansion of a = Y+ A Bab y-Step consists of performing 

one step of the continued fraction algorithm on a primitive O-ideal. The following 

algorithm will apply a Baby-Step to an ideal in R and compute the distance of the 

resdting ideal. 

BABYSTEP 

- Precomputed: = [Qi-2, Pi-* + Y], di = [Qi-l, Pivl + Y] E , ri-a - 
(Pi-2 + d )  mod Qi-*, Ji = b ( A ,  dl)- 

1. Set 

so &+l= [Q;, Pi + Y] and = t5(A+l, dl) .  

Each application of BABYSTEP requires a fired nnmber of polynomial oper- 

ations. Each of these polynomials has degree bounded by max {deg(~) ,  deg(c)). 

Given two primitive ideals A and 8, we can multiply them together to obtain 

AL3 = (S)C where S E k[X] a d  C is a primitive ideal. The following algorithm 

wilI perform this operation. 
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MULT 

Input: A = [Q,, Pa + Y], B = [Qs, P b  + YI E 8- 

1- Solve Si := gcd(Qa, Q b )  f UIQo (mod Qb) for Si, Ui E k[X]. 

2. Solve S := gcd(Sl, Pa + Pb+ B) = U2Sl + W(Pa + Pb+ B) for S, U', W E 

kW1 - 

Theorem 23 The output C and S computed by MULT satisfies ( S )  C = AB. 

Fudhemore, deg(S) < deg(B) and deg(Pc) < deg(Q,) < 2 deg(B). Ako, MULT 

p e r f o m  O(deg(î3)) polynomial n r i t h e t i c  operatioras. 

Proof: The fkst daim was proved in Section 5.1. Since S divides both Q, and Qb 

and aIso A and B are both reduced we know that deg(S) deg(Q.), deg(Qs) < 

deg(B)- fia, de@'') < deg(Q,) 5 deg(Q,) + deg(Q6) < 2 de@). The algo- 

rithm performs a fixed number of polynomial operations and 2 Extended Euclidean 

Algorithms. The number of polynomial operations the Extended Euclidean Algo- 

rithm performs is linear in the degree of the polynomials. Here the degree of the 

polynomials is O(deg(B)) .  This is because IP, +YI = 1% + Y( = (BI, so we have 

IPa + P b  +BI 5 [BI- Thus, the hai daim has been shown. 0 

Let A, B E R. Then using the above aigorithm n e  can produce an S E k[X] 

and ideal C such that RB = (S)C. The ideal C rnay or may not be reduced. Rom 

Theorern 18 we know that by applying the continaed fraction dgorithm to C we can 
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prodnce a rednced ided 'R in a relatively small number of steps. In Chapter 5 we 

introdnced the notation R = A* 8 for this operation which we called a Giant-Step. 

Theorem 22 says that ïZ E R and that 6(R1 0) = J(d, O)  + 6(B, O) + e where 

2 - 2 deg(B) 5 E 5 O. The next dgonthm paforms a Giant-Step. 

GIANTSTEP 

Output: R = [ Q , P + Y ]  = A * B , a n d c ~ B < ~ s u c h t h a t  - c=6(7E)-b(A)-b(B).  

1. (C, S) := MULT(A,B), so (S)C = dB, C = [P,,Q, + Y], S € k[x]. 

2. If deg(Q,) < deg(B), then set 7Z := C, a := - deg(S) and return. 

3. Set 
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Theorem 24 The ideal 7Z computed in GMTSTEP ts reduced. Furthemore, 

2 - 2 deg(B) < E 5 O and ldjl < 2 deg(B) throughout steps 3 and 4 .  Al1 polynomials 

computed in steps 3 and 4 have degree bounded by max (2 deg(B), $ deg(c)) and 

the number of polynomial operations perfonned is O (deg(B)). 

Proof: Let j 2 1 be the f ist  index such that IQ;~ < IBI, then the loop in Step 4 

exits and 7Z is reduced. At this point di = - deg(Qk) + deg(a:) so 

- Q'. Notice that deg(a;) can be cdculated as deg(P +d) - deg(Q). Since 8:+18$+1 = $ 
and = $, we get that 

By Theorem 22 we obtain that r = 6(R) - &(A) - b(B) and 2 - 2 de@) 5 e 0. 

On the other hand, if the algorithm exits in Step 2, then IQ,I < lBl so R 

is reduced and a = - deg(S) = de&) - deg(S), so again by Theorem 22 c = 

6(R) -6(d) -d(B ) . By the proof of the MULT algorithm we know deg(S) < deg(B) 

so 2 - 2 deg(B) 5 - deg(S) 5 0. 
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It is easy to see also by the proof of MULT that for all i E {2,3, . . . , j )  

So, 141 < 2deg(B). 

P!+Y We also have that deg(Po) < deg(Qk) < 2 deg(B). If 1 < i < j then ai = bt 
- 

is not reduced, so 2 1 and 18:+11 5 1. Thns, we know that 5 p:+,l 5 l? so 

deg(Qi) 5 deg(Qb) < 2deg(B). Certainly [ri1 5 IQ:l so deg(r;) < 2deg(B). Also, 

P ; = d + r L , + B .  So 

so all polynomials computed in Steps 3 and 4 have degree bounded by 

Step 1 takes O(deg(B)) polynomial operations. Step 3 and the inside of the loop 

take a fixed number of polynomial operations. However, the loop is executed at 

most max(0, )de&&) - f deg(B) + 1) < ideg(B) times. So at most O(deg(B)) 

polynomial operations will be performed. O 
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Since a reduced ideal with a given distance fkom dl may not exist, we define 

the reduced ideal closest to the left of l E Z>* - to be the ideal R. snch that f - Si is 

minimal and positive. 

Given an ided ïZ E R the next algorithm udl find the ideal closest to the left 

of 6(R) + 1, for s m d  1 E Z, by perfonning Baby-Steps nntil the deskd ideal is 

found. 

CLOSESTINT 

Output: S E 32 and f E - such that 6(S) 5 6(R) + 1 and f = b(S) - 6(R) - 1 

is maximal, 

1. Set dz := deg(B) - deg(Q). If d2 > 1, then set S := 72, f := -1 and 

stop. 

2. Set 

j := + d )  mod Q j-l 
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Bdore pioving the correctness of this algorith, we first require the following 

lemma- 

Lemma 10 Cet dl = O , d I , .  . . k the sequence of reduced ideakr produced by the 

continued fiction algorithm. Then the follouring holds 

for al1 1 5 j 5 i. 

Pro of: If j = 1 then the result is tnvially true. Thus assume that 3 > 1. W e  know 

that 

Shce j > - 1, 4 is represented by a reduced bais, so Il3 [ = la j-lQ j-i 1 and 
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Theorem 25 The ideal S cornputed by CLOSESTINT is the ideal closest to the 

left of J(R) + 1. Furthemore, -1 5 f < O and O < di 5 1 for al1 j 2 2 except 

for the Zmt value which satisfies O < dj+1 5 1 + deg(B). The total number of 

polynomial o p e d o n s  perfonned is O(1). 

ProoE Let di = R, 4, . . . , A:, A:+, be the sequence of reduced ide& produced. 

Then since 
i-2 

J ( 4 7  A:) = deg(B) - deg(Q0) + C deg(ak) 
k l  

for i 2 2, 4 = 44, A:) for 2 < i 5 S. The algorithm obvionsly produces the ideal 

the ideal closest to the lefk of 6(R) + 1. 

Also, O 3 f = da - 1 2 -1, and O < d2 = deg(B) - deg(Q) 5 di 5 da 5 1 for all 

2 5 j < 3. For the last value d8+1 we get that O < da+, 5 d8 +deg(B) 5 l+deg(B)  

since deg(a,) 5 deg(B). 

Finally, since > 4 and da 5 1 the loop is executed at most I times and each 

i teration reqnires a h e d  number of polynomial operatiom. 

Perfo1PUng a Giant-Step operation on A and B di produce an ideal R such 

that 6(R) 5 S(d) + 6(B). Although &(A) + b(B) - 6(R) is small, it may not be 

minimal. The purpose of the next algorithm is to rnioimize this quantity. 

CLOSESTSUM 

Input: A, B E 32. 

Output: C E R, f E Z<O - such that b(C) 5 J(d)  +S(B) and f = 6(C) -6(A) 4 8 )  

is maximal. 
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Theorem 26 The ideal C computed by CLOSESTSUM is the redvced ideal clos- 

est to the Ieft of b(d) + 6(B) .  f i r t h e m o n ,  2 - 2deg(B) 5 c < f % O and the 

algorithm performs O(deg(B)) polynomial operatioris. 

Proof: By the previous theorems the ftst statement is trivial. By GIANTSTEP 

we know that 2 - 2deg(B) 5 a 5 O. By CLOSESTINT we know that c 5 

f 5 O. Also GIANTSTEP takes O(deg(B)) polynomid operations while CLOS- 

ESTINT takes O(-€) = O(deg(B)) polynomial operations giving us our ranning 

tirne. a 

We can now develop an algorithm for computing the ided closest to the left of 

n6(d) given A. First we wdl give a purely technical algorithm. 

BINARY 

Input: i E {l, O), d , B  E 92, f E - such that b(B) < s 4 A )  for some s E Z>l - 
and f = 6(B) - s 4 A )  is maximal. 

Output: C E R, 1 E Zco - such that 6(C) 5 (2s + i)6(d) and 1 = 6(C) - (25 + i)J(A) 

is maximal. 

1. ( M  ,g) := CLOSESTSUM(l3, B), so 6 ( M )  1 26(8) and g = 6 ( M )  - 
26(B) is mairllnal. 

2. (N, h) := CLOSESTINT(M, -(g + 2 f)), so d(N) < 6(M) - (g + 2 f )  

and h = 6(N) - b(M) + g + 2 f is m h a l .  

3. If i = 0, then set C := N, 1 = h and stop. 
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4. (Q, k) := cLosESTSUM(~, N ) ,  so S(Q)  &(A) + b(N) and k = 

QQ) - &(A) - b(N) i s  maximal- 

5. (C, 1) := CLOSESTINT(Q, -(k + h)), so b(C) < 6(Q) - (k + h) and 

1 = b(C) - &(Q) + k + h is maximal. 

Theorem 27 The ideal C computed in BINARY is the ideal closest to the left 

of (2s +i)6(A). Furthemore Igl,lhl,lkl,lll = O(max{Zdeg(B),[fl)) and the 

algorithm performs O(max {2 deg(B), 1 f 1)) polynomial operations. 

Proof: I f  i = O, then by substituting for g and f we get 

Also by substituting for g and f we have 

If i = 1, then by substituting for k, h, g and f we get 

Also by substituting for k, h, g and f we have 

Since in both cases 1 was produced to be maximal, the f is t  daim is true. 

Rom CLOSESTSUM, 2 - 2 deg(B) 5 g 5 O. Since f 5 O, we then get 

g + 2 f < O. Rom CLOSESTINT, g + 2 f 5 h < O so 



Also fiom CLOSESTSUM, 2 - 2deg(B) 5 k O so h + k 5 0. Again by 

CLOSESTINT, h + k 5 1 5 O so 

Thus1 Isl , [hl 9 lkl , Ill = O(ma*{2deg(B), If 1))- 
Steps 1 and 4 take O(deg(B)) polynomial operations by CLOSESTSUM. 

Steps 3 and 4 take O(1g + 2 f 1) and O(lh + kl) polynomial operations respectively. 

Both of these quantities are O(max{2deg(B), 1 f 1)). Thns BINARY takes 

polynomial operatioas. O 

POWER 

Input: A €  R, n 2 1. 

Output: 8 E 32 snch that 6 (8 )  5 nb(d) and f = 6 ( B )  - d(d) is maximal. 

1. Compute the binary representation of n = CL, bi2'-; where bo = 1 and 

bi E {0,1) for 1 si 5 t .  

2. Set Bo := A, so := 1, fo := 0. 

3. for i := 1 to t { 

[At this point Bi E 8, fi E Z c o  - are sueh that 6(Bi) sib(A) and 

fi = 6(&) - ai6(A) is maximal.] 

1 
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4. Set 8 := Bt and f := ft. 

Theorem 28 The ideal computed by POWER is the reduced ideal closest to the 

left ofncf(d). Furthemon, 1 < s 5 n, 1 fil = O(deg(l3)) for O i < t and the 

algorithm performs O(deg(B) log, n) polynomàal operations. 

Proof: By the proof of BINARY we know that 

and f = ft is maximal, so B is the ideal dosest to the lefi of nd(d). 

Obviously, 1 < si-1 < si 5 n for 1 5 i 5 t. Also, fo = O and again hm 

BINARY we get by induction that 

lfil = {2 deg(S), lfi-il)) 

= O(deg(B)). 

The loop is performed t = log, n times and each iteration of BINARY takes 

polynomial operations. So in total POWER requires 

polynomial operations. O 

If n is polynomidy bounded by IBI, then n e  can compute the ideal dosest 

to the left of nb(A) in O(deg(B)') polynomid operations. Hence, in order to get 

a polynomiaüy botmded nuining time both parties in our key exchange shodd 

bound their respective "exponentsn by a polynomial in 1 BI that is sufEciently large 
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to discourage brute face attacls. W e  will  choose our bound to be l ~ l f  which 

roughly corresponds to the choice made in [41]. (See Sections 6.2, 8.2 and 8.3.) 

The following tao algorithms are variations on POWER and can easily be seen 

to have the same ranning time. The î u s t  wil l  prodnce the ided dosest to the left 

of nb(d) given A dong with it 's distance. 

Input: A E 8, n 2 1, 6, 2 1 where 6. = 4d). 

Output: B E 32, di 2 1 such that bb = 6(B)  5 n&d) and & is maximal. 

1. (a, f) := POWER(d, n) so 6(B) 5 d ( d )  and f = 6 ( B )  - n6(d) is 

maximal. 

2. ab := n& + f. 

The next algorithm will produce reduced ideals closest to the left of I E Z>l - 

for large 2. 

CLOSESTLEFT 

Input: 1 E - 

Output: C E 92, 6, E Z>l - such that C is the ideal dosest to the leR of 1 and has 

s, = a(q .  

1- Set 



so A hm b(A) = 6,. 

2. Set 

(B, f )  := POWER(A, n) 

so B is dosest to the left of da = 6. LkJ and f = 6(B) - da. 

3. Set (C, e) := CLOSESTINT(B, r - f) and 6, := 1 + e. Now C is dosest 

to the left of 

and e = 6(C) - 6 ( 8 )  - r + f = b(C) - 1 is maximal. 

6.2 The Key Exchange and Signature Schemes 

We now describe a method of key exchange based on the Diffie-Hellman Key Agree- 

ment scheme [13], but using the non-group structure of the infrastructure of a 

quadratic h c t i o n  field of characteristic 2. 

DIFFIE-HELLMAN KEY EXCHANGE 

S y s t  em-wide Paramet ers: 

1. Choose M 2 1 and set q = 2M, k = F,. 

2. Generate B , C , E  k[X] su& that C is monic, IBI > 1, Y2 + BY + C  = O 

has no singular points and if Y2 + BY = C then Y E k ( ( X ) )  \ k ( X ) .  
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3. Cornpute d = LYJ where P + BY = C. 

4. Make (q, B, C, d )  public; these are the system parameters. 

Protocol: 

1. AIice does the following: 

(a) seaetiy generates ka 2 1, ka < 1 B 1 f . 
(b) computes (A, 6,) := CLOSESTLEFT($); here A = [Q,, Pa + q. 
(c) transmits (Q,, Pa) to Bob, keeps 6. secret. 

2. Bob does the following: 

(a) secretly generates kb 2 1, /Q, < ~ ~ l f .  
(b) cornputes (B, cfb) := CLOSESTLEFT(b); here LI = [Qb, 8 + Y ] .  

(c) transmits (Qb, Pb) to Alice, keeps Jb secret. 

3. Alice computes 7. := POWER(B, 6,). 

4. Bob computes := POWER(d, &). 

Shared Information: Alice has computed 7,, the ideal closest to the left of 

6(B)& = &6.. Similady, Bob computed the ideal 5, the ideal closest to 

the left of 6(d)bs = 6a6b. So 7, = 7i, = [Qr, Pt + Y ]  which Mce and Bob 

share. They can use this for a key to a symmetric-key ciyptosystem by de- 

terminhg the polynomial Q: = &. This polynomial is an invariant of 

the ideal. Also the polynomial P; Pt (mod Qi), deg(P:) < deg(Q:) is an 

invariant of the ideal and can be used as secret information. 

W e  will now describe a digital signature scheme similar to an ElGamal type 

system [14], which uses the inhastructure of quadratic function fields of charac- 

teristic 2. Mer suitable modifications, this signature scheme is also applicable to 



the infiasmidure of qnadratic number fields and qnadratic fanction fields of odd 

characteristic. An ElGamal type encryption scheme can also be developed in a 

similar way. 

ELGAMAL DIGITAL SIGNATURE SCHEME 

System-wide Parameters: - 

1. Choose M 2 1 and set q = ZM, k = F,. 

2. Generate B, C, E k[X] SU& that C is monic, IBI > 1, Y2 + BY + C = O 

has no singalar points and if Ya + BY = C then Y E k ( ( f r ) )  \ k ( X ) .  

3. Compute d = LYj where Y2 + BY = C. 

4. Make (q ,  B, C, d)  public; these are the system parameters. 

Private and Public Key: 

Alice does the following: 

1 
1. secretly generates ka 3 1, ka < 1 B 1'. 

2. computes (A, 6.) := CLOSESTLEFT(kJ; here A = [Oa, Pa + Y]. 

3. makes (Q,, P.) public (this is her public key) and keeps &, private ( h a  

private key). 

Signature Generation: 

To sign a message M, Alice does the following: 

1. secretly generates 1 E B with lBl < 1 < 1 ~ 1 ~ .  

2. computes ('R, 6,) := CLOSESTLEFT(1); here 7Z = [Q,, PT + Y]. 
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3. computes e := h(Ml[*ll~, mod &) where h is a cryptograph- 

ically secare hash fùnction ahich takes on values less than IBI). 

4. computes s := -6.e f 6, (notice that s > O) and releases (R, s) as her 

signature for M. 

Signature Verification: 

To vaify Alice's signature on the message M, Bob does the following: 

1. obtains Alice's public key (Q,, Pa). 

2. computes e := h(Mll&ll P* mod &). 

3. computes (8, f )  := POWER(d,e). 

4. computes (Cl g) := CLOSESTLEFT(s). 

5. computes (D, h) := CLOSESTSUM(B, C). 

6. computes (R', 1) := CLOSESTINT(D, f + g + h) .  

7. if R' = îZ then he accepts the signature; otherwise, he rejects the signa- 

ture. 

Bob has computed the ideal R' which is the ideal closest to the lefk of s + 6,e. 

Thus, R' is the ideal closest to the left of 6, and so must equd R if the signature 

is valid. 

6.3 Security Issues 

It is easy to see that solving the discrete log problem for quadratic hc t ion  fields 

allows one to break the Difie-Hellman Key Exchange or ElGamal Digital Signature 
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Schemes desdbed in Section 6.2. We now describe an attack based on the Pohlig- 

Hellman method [37] to solve the discrete log problern when the regulator and its 

factorization are known. 

Let A E R be a primitive reduced ideal and 6 be its discrete logarithm. We wiil 

deseribe how to determine x 6 (mod p) where the regulator is R = pq' and p is 

prime. 

P OHLIG-HELLMAN 

Input: A quadratic function field K defined by B, C E &[XI, the regulator R, p 

and q' such that R = pq' and p is prime, and A E 32. 

Output: x r 6(d) (mod p) .  

1. Set (B, f )  := POWER (A, q') 

So 6(B) = q'b(A) + f ,  B is closest to the left of q'b(d). 

2. Set 

3. {Make table} 

for i := i to  [ f i l  - 1 { 
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if (Di = 0) and fi E O rnod R then z -i (mod p). 

Since iq' + J(A)q' + fi O (mod R) . 

1 
4. 

(El, el) := CLOSESTLEFT([fi q') 

i := 1 

wbile (& # Dj for j = O, 1,. . . , [fi] - 1) { 

1 
5. if f j z e i  ( m ~ d  R) thenz:~i[@l - j (modp). 

o t h e d s e  return to Step 4. 

mer Step 4 has completed we have Vj = &, so 6 ( q )  6(&) (mod R). Thus, 

jq' + d(A)q' + fi i 9' + 6 (mod R). 

 et z=s[&l - r w h e r e ~  < r  5 [,/fil ands 2 1. ~hens[&'=~(d)q'+rq'  

(mod R). When s = i and r = j then Dj Di closest to the left of rq' + 6(A)qf and 
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& is closest to the left of s [fi] q' and so the algorithm wil l  stop. Since these two 

values are congrnent mod R, so Win be fi and ei and the algorithm will terminate. 

Steps 3 and 4 take at most Ifil itetations, each reqnuing O(deg(B)) polyno- 

mial operations. Also, the POWER computations wiIl require O(deg(B) logz R) 

polynomial operations, thns the algorithm runs in 

polynomial operations. It is therefore only feasible when R factors as the product 

of s m d  primes. 

If R = q"p' for i 2 2 then the following algorithm wiU determine 6(A) mod pi. 

It is easy to see that it has the same running time as POHLIG-HELLMAN. We 

will assume inductively that we dready have z 6(d) (mod 

Input: A quadratic h c t i o n  field K defined by B, C E k[X], the regulator R, p, q" 

and i such that R = q"pi and p is prime, A E 8, and z r b(A) (mod pi-'), 

Output: X ' E  b(d) (modpà). 

1. Set (8, f )  := CLOSESTINT(A,~'-~ - x). 
So if 6(d) = spi-' + 2, then B is closest to the lefi of (s +  JI'-' and 
a(s) = (S + i ) ~ ~ - =  - f .  

2. Set (C, g )  := POWER(B, q"). 

So C is dosest to the left of q"J(l3) = q"(s + l)pi-' - q"f and 6(C) - 
q"(s + I)~'-' + (f = g. 
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3. Set (D, &) := CLOSEST&EFT(tf f - g). 

Let 6 := Sd -ff +g. 

4. Set (E, h) := CLOSESTSUM(C, V). 

So E is dosest to the left of 

5. Set (3, c) := CLOSESTINT(£, 6 + h). 

Now 7 is dosest to the lefk of gpi-' (s + 1). 
6. S t d i n g  POHLIG-HELLMAN at Step 2 with q' := q ' ' g F L ,  B := 3 

and f := E gives 

jqt'$-' + (S + l)qlfpi-l + fi i [ f l q " p i - '  +c (mod R).  

So, ~ + 1  = i l f i ]  -i (modp).   et y :riIfil - j - 1  (modp), 

then 2' :I ypi-' + z (mod pi) .  

At this tirne, the best known algorithm to find R runs in time 

(See Section 8.2.) Thus, finding R is ideasible when B and C are chosen so that 

is large. Since the Pohlig-Hhan algorithm reqnires the knowledge of R, 

it does not appear to pose a serious threat. 

We remark that this Pohiig-Hellman attack is also valid on the cryptosystems 

proposed for the idkastructure of quadratic fimction fields of odd characteristic. 

In (331 a probabilistic subexponential algorithm is given for computing discrete 

logarithms in the infiastructare of quadratic fimction fields of odd characteristic. 

It would appear natural that this algorithm codd be modified to work in even 
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characteristic. However, it only works for hindion fields of SUfficiently large genus. 

At this point, it does not appear to be a serious threat to cryptosystems of practical 

size. 

As shown in Section 8.2, 

m = 0 (*de@)) 

In order to prevent against bmte force attacks on the discrete log problem, we 

would suggest that q, B and C be chosen so that 

This wodd also make finding R and using the subexponential at tack infeasible. 



Chapter 7 

Equivalent Discret e Logarit hm 

Problerns 

This chapter wil l  show how non-supersingular elliptic curves over fields of charoc- 

teristic 2 are related to the h c t i o n  fields we have been studying in the previous 

three chapters. This analysis is similar to that of [l] for underlying fields of odd 

characteristic, 

7.1 The Divisors of an Elliptic Curve 

In this section we will state some well known resdts concerning divisors of elliptic 

curves (see [IO, 28, 291). 

Let E be a non-supersingular elliptic c w e  defined over k = F, where q = 2M. 

If E is defined by the equation 
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then let K = k(x, y) be the fundion field assocîated with E. In Section 7.3 we will 

see the connection between this fandion field and those discussed in the previous 

chapters. At this point, the connection shodd not be obvioas. 

Definition 6 A divisor D is a fomal sum of points in E 

where only u finite number of the m p  are non-zero. Define the degree of D to be 

C P ~ E  mP- 

The set of all divisors associated with E forms a free abelian group over Z 

generated by the points of E. 

Let R E K, and let P = (zo,yo) E E, P # oo. Then R is said to be defined 

at P if there exist polynornial functions a(x) + yb(x), c ( x )  + yd(z )  E k [ x ,  y] where 
a = + & =  a(.), b ( ~ ) ,  c(z), d ( z )  E k [ z ]  such that R = and c ( z ~ )  + yod(zo) # O; if no 

s u c h  a ( x )  + yb(x) and c(z) + yd(z)  eitist, then R(P)  is not defined. If R is defined 
., a =O +mb =O at P, the value of R ut P is dehed to be R(P)  .- ; ~ ~ o ~ - F y o d ~ ~ o f .  

Defin. deg(a(z) + y@)) = max(2 deg,(a(z)), 3 + 2 deg,(b(z))). 

Let R = E K foi some a(z), b(z), c(z), d(x) E k[z]. 

2. If deg(a(z) + yb(x)) > deg(c(z) + yd(z ) )  then R(m) is not def ied .  

3. If deg(a(x) + yb(x) )  = deg(c(z) + yd(z)) then R(oo) is dehed to be the 

ratio of the leading coefficients (with respect to deg) of the numerator and 

denominat or. 
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Let R E K and P E E. If R(P) = O then R has a zero at P. If R ( P )  is not 

defined then R has a pole at P and we &te R(P) = m. 

Notice that if P = (20, yo) E E then z ( P )  = 20 and y(P) = yo. 

Theorem 29 Let P E E .  Then there &ts a fvnction U E K with U(P) = O such 

that for each fùnction G E K ,  there ezists an integer e and function S E K such 

that S(P) # O ,  oo and G = UeS. Furthemore, the number e does not depend on 

the choice of U. 

C d  this integer e, the order of G ut P and mite ordp(G) = e. The function U 

is called a uniformizing parameter for P.  

1. If P = (xo, yo) E E with P, 2P # m then x + zo is a uaifonnizing parameter 

for P .  

2. If P = ( x o ,  yo) E E with P # oo, 2P = oo then y + y0 is a uniformizing 

parameter for P. 

3. If P = oc E E then : is a dormizing parameter for P. 

Let R E K. Define the divisor of R as 

div(R) = ordp(R) (P) . 
PEB 

It is well known (see [29]) that xpeB ordp(R) = O. Thus div (R) has degree O. 

A divisor D of degree O is called principal if D = d .  (R) for some R E K. Two 

divisors Dl and D1 of degree O are said to be equivalent if Dl - D2 is principal. If 

Dl and 4 are equivaent then we write Dl - DI .  The relation -- is an eqaivalence 

relation. 
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It is also known that if ne let Pi, P2 E E and P3 = Pi + Pa then Dl - Dz if 

Di = ( f i )+ (&) -2  (00) and D2 = (fi)-(-). h o ,  if (Pl)+(P2)-(P')-(00) .- (0) 

then Pr = P3. 

Let R E K. Define the divisor of poles of R to be 

where the snm is over all poles of R. Similady, the diwisor of zeros is 

div(R), = xordp(R)  (P) 
P 

where the sum is over all zaos of R. 

A valvation on K is a function val : K + Z U {OO) such that 

1- d ( R )  E Z if R #  0, and val(0) = oo. 

It is easy to see that ordp for P # ao is a valnation. We Say that it corresponds 

to the place at P .  Also, or& is the valuation at the place oc. 

We can similarly define valnations for the field k ( X )  where X is a transcendental 

element over k. If u E k then the valuation at the place corresponding to X + u 

is simply the usaal multiplicity of u as a zero or pole in a rational function. The 

valaation at the place at infini@ is the negative of the degree hinction in k ( X ) .  
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7.2 An Overview 

The remainder of this chapter wil l  describe the equivalence between the elliptic 

disuete logarithm problem and certain instances of the îdkasmictare disaete log- 

arïthrn problem. This section will give an outhe of the proof of this equivalence. 

Ln Section 2.4 ne defined what ne mean by a non-snpersingular elliptic c w e  

over a field, h, of characteristic 2. We &O stated the group law for this curve. 

Thus, given a point P = (a, b) on an elliptic m e ,  E, we can compute ail multiples 

of this point. Since an elliptic cuve of this type is a finite group, P has a finite 

In Section 7.3 we will show how to use the c w e  E and the point P to produce 

an equation Ep.  We will give a biiational transformation between E and Ep so 

that given a point on E, (2, y) # P, 00, we wiU be able to easily produce the 

corresponding point (X, Y) on Ep.  We wiU be interested in the multiples of P, as 

shown ia the followixtg diagram. 

multiples 



CHAPTER 7. EQUIVALEIVT DISCRETE LOGARITHM PROBLEMS 117 

The eqaation Ep will be of the form + BY = C with Y E k(())) and Ep 

will be non-singular, so we will be able to use the resdts of Chapters 4 and 5. In 

particular, we will be able to compute the continued Laction expansion of elements 

of K = k(X) (Y) .  Section 7.4 wil l  introdace a family of elements of K, fQ for all 

Q E E,  Q # P. We will examine the continued fraction expansion of fq and see 

that its quasi-period is related to the order of P. In fact, the quasi-period off, is 

m = p - i and the elements of K produced by the continued fraction expansion of 

fo. are (UP to scalar factors) f,,  fi^, f 3 ~ ,  - , f ( p 1 ) ~ -  

Since we can compute the continued fraction expansion off,, we can use the re- 

sults of Section 5.2 to produce O-ideals, A-, corrgponding to each of these quadratic 

irrationals. Section 7.5 wil l  show that the ideal A-, which corresponds to fip for 

2 5 i 5 m, has the form J& = [x+ Xi, F+Y] ahae  (Xi, x) is, as before, the point 

on Ep corresponding to i P  = (x;, Y i )  on E. It is this final correspondence that wil l  

show that the tao discrete logarithm problems are equivalent. This is outlined in 

the following diagram. 

fiom the 

continued 

fiaction 

expansion 

For completed examples of this see Section 7.6. 
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Correspondence 

Assume that we have a non-supersingular elliptic m e  defined over k = F' where 

q = P? Let the enrve be dehed by 

for a2 , a6 E k, a6 # O. In order to avoid confasion 6 t h  divisor addition, for the 

remainder of this chapter we will denote the usual addition on the cuve E by the 

symbol @. Let P = (a, b) be a point on the c w e  with a, b E k and 2P $ oo (Le. 

P is not a point of order 2). Then K = k ( E )  = k(x ,  y) is the fùnction field for E. 

Now let 

Notice that X and Y are bct ions  of x and y (i-e. X, Y E K). Substituting into 

E we get the following equation: 

which we will c d  the quadratic mode1 for E. It is the transformation between 

E and Ep that will give the connection between the elliptic c w e  group and the 

Also, we have the foUoaing formulae for x and y in terms of X and Y: 

Since this is a birational transformation between E and Ep we see that K can 

also be written as k ( E p )  = k ( X , Y ) .  Notice that Y E k ( ( f ) )  and that Ep is 

non-singular, so K is a quadratic fnnction field as described in Chapters 4 and 5. 
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We wodd now lilre to ftid the divisors of poles of X and Y. Since P is not a 

point of order 2, it is easy to see h m  the f o d a  for X that P is a pole of X of 

order 1. Also, since is a nniformizing parameter for oo thae is a pole of order 1 

at m. These are the only poles, so 

div(X), = (w) + ( P )  . 

Similady, it is easy to see that 

div (Y), = 2 (P) + (00). 

There is a k(X)-antomorphism of K that takes Y to Y + X2 + X + a + a*. 

That is, if f = g ( X )  + Y h ( X )  is in K with g ( X ) , h ( X )  E k ( X ) ,  write f' = 

g ( X )  + Y h ( X )  + (X2 + X + a + az)h(X) .  This is the conjugate automorphism 

described in Section 4.2 for general h c t i o n  fields. Notice that X* = X and 

Y' = Y + X2 + X +a +  0 2 .  Also 

and 

So 

and 

If Qo = (Xo, Yo) E k x k is a solution to the equation Ep,  then so is Q; = 

(Xo,& +Xt + Xo + a +  a,). For Q E E,  Q # P,oo, we can defme Q' = 

( x œ ( Q ) ,  y*(Q)). Also define oo* = P and P* = m. 
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If we s t a r t  with the m e  Ep then oo and P are the two points at ùIfinity. We 

d l  now distinguïsh between the h o .  Now zz' has double poles at oo and P. If z 

and z* both have simple poles at ao (and at P), then z + z* has at most a simple 

pole at oo (and at P). This contradicts the fact that z + z' han double poles at oo 

(and P). Thus z has a double pole at one of ao or P and x* has a double pole at 

the other. Using the d o r m i z i ~ g  parameter for oe ne can see that ao is a double 

pole of z and so P is a double pole of 2'. Thus 

div (z), = 2 (a) , div (x'), = 2 ( P )  . 

There are two possibilities for Y expressed as a Laurent series in ). We have 

chosen, as in Section 4.1, Y = X + O, and hence z = X2 + X + a2 + O. Also, 

Y' = X2 + (a + az) + and x' = a + =. Rom this we get d = LYJ = X. 

Notice that the place at infinity, Pm, of k ( X )  extends to the place at oo in K. 

This follows fkom ou. choice for Y. If we had made the other choice, then P,, 

would have extended to the place at P. 

Shce div (X + X(Q)) = (Q) + (Q*) - (m) - (P) for Q E E, Q # oo, P we get 

that Q @ Q* = P .  

7.4 Periodicity of the Continued Fraction Expan- 

sion and Orders of Points 

This section wil l  examine the continaed fiaction expansion of a specific function in 

K, fQ. Its periodicity will be related to the order of the point P and its special 



form wdl thedore give us the eqtrivalence we want. 

Definition 7 Let Q be any k-rational point on Er with Q # P. Define 

Lemma 11 Let Q Be uny k-rational point on E,  with Q # P. Then, up to multi- 

plication by a non-zen, constant, thete is one and only one function f on E such 

that diu (f), = (m) + (Q) and f (P) = O. It is given by f = fq . Fudhermore, 

Proof: If Q # m, then div (z + x ( Q m ) )  = (8') + (-0') - 2 (00). Since X ( Q )  = 

X ( Q S )  we have div (X  + X(Q) )  = (Q )  + (8') - (00) - (P). Hence 

If Q = oo then div (fq) = div (z + z(Qm) = (Q') + (-9') - 2 (O+ Since 

Q- = P, 

d W f d  = ( P l  + (-Q') - (Q) - (4 

Let div (f)  = (P) + (QI) - (00) - (Q) for any point 9'. Then div (f-' fq) = 

(-Q') - (QI) which says that -9' = Q' and that f0'fo is a constant. Thus, up 

to multiplication by a non-zero constant, fQ is unique. O 

Definition 8 Let 
1 

for any f E Km. This LP one step in the continued fraction algorithm perfomed on 

f, or  one Baby-Step. 
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Lemma 12 Let Q Ce a k-rational point on E, with Q # P. Let f be a fvnction 

such that div (f), = (a) + (9). Then 

where 

P @ Q  i f Q # -  

2P i fQ=ao .  

Thus, <p( f) is a constant multiple of f Q f .  

Proof: Let Q # m. Since P is not a pole of f ,  f is not a polynomial in X and so 

f + 1 f J # O has a zero at m. Thas, p(f) has a pole at cm. Now f has a simple 

pole at oo, so 1 f is a h e a r  polynomial in X, and hence has a simple pole at P. 

So p(f) has a zero at P. Also, f has a simple pole at Q and LfJ does not, so p(f) 

has a zero at Q. 

Since f has poles at oo and Q, and Lf J has poles at P and oo, we get that ip(f) 

has no other zeros. Thus, 

and then Q' = P $ Q. 

If Q = oo then again cp ( f )  has a pole at W. &O, f has a double pole at oo, so 

f] is a quadratic polynomial in x and ha9 a double pole at P. This tells us that 

y(f) has a double zero at P. There are no other poles off  or 1 f J, so 
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Let Q # a, P. k o m  the d a t i o n  of fQ, 

Since f q e  has a zero at P, f6. hasi a zero at P' = oo. Thus, deg(f6.) < O and 

1 f ~ J  = x + X(Q)  + 1. 
Using this fact, it follows that 

for some c E km, by the previons lemma. Thus c = if 48) # a and c = -& 
if z(Q) = a. (Note that if z(Q) = a then Q = -P since we are not dowing 

Q = P.) 
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Now let Q = oo, so that fQ = z + a .  We get 

( z + a ) ' = ( z + a ) + X 2 + X + a + a ~ .  

Since x + a has a zero at P, (z + a)' has a 2-0 at P* = oo. Thus, deg((z +a)') < O 

and so 1 f4 j = X2 + X + a  + a*. &O, as bdore 

1 for some c E 6'. Thus, c = 2. 

These results ailow us to state the following lemma. 

Lemma 13 Let Q be a k-~ational point on E with Q # P .  Then 

and 
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For Q # P, we define 

and 
Q Q P  i f Q # o o  

2P i f Q = a c  

As a consequence of the previous lemma 

We will use the notation < ~ i ,  5 and & for j E Z>ol - to mean the j-fold compo- 

sition of cp, X and + with themselves. It is easy to see that 

Let 

and we get the fonowing proposition. 

Proposition 4 Let Q # P be a k-rational point on E .  Then for v E &,, - 

and 
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Moreover, the fownulae for $"(Q) in temm of the group law on E are: 

Case 1: -Q is not a non-negatiue multiple of P and P has finite order p. Wtite 

v = q p + r  f o r q , r ~ Z ,  O < r < p .  Then 

Case 2: -Q = uoP and P has finite order p. We may assume that O < uo < p - 1 
(since Q = P isnot allowed). Wnteu-uo = q ( p - l ) + r  forq , r  E Z, 1 5 r 5 p-1. 

Then 

&(Q) = (t + 1)P. 

Proof: These follow directly fiom repeated applications of Lemma 13 and the above 

definitions. To see Case 2, notice that if l ( p  - 1)  3 v - vo > (1 - l)(p - 1) for some 

2 E Z 2 1 ,  then 



Corohry 8 Let u 2 1 Be an integet and P 6e a point of finite order p. Write 

v = q ( p - l ) + r  Unthq,r€Z a n d l s r s p - 1 .  Then 

Proof: This follows directly fkom Proposition 4 and the fact that oo = -vo P when 

v, = O .  

From CoroIIary 1 we know that if a is a quadratic irrational then the following 

hold- 

1. If the continued fraction expansion of a is quasi-periodic with odd quasi- 

period m, then it is periodic with period n and n = m or n = 2m. 

2. If the continued fraction expansion of a is periodic with odd period, then it 

is quasi-paiodic with quasi-period rn = n. 

Theorem 30 Let Q # P l e  any k-rational point on E .  Then the continued fraction 

expansion of fQ is puasi-penodic. Indeed, it LP pure quasi-periodic. Moreover, if P 

has order p and the continued fraction ezpansion of fQ has quasi-period m(Q) then 

Proof: Let P have finite order p. Then if -Q is not a non-negative multiple of P, 
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If-Q = voP for O 5 uo < p  - 1, then 

+p-i (Q) = (p - va) P = p P  - = Q - 

and fq has pure quasi-period m(Q) 5 p - 1. 

Now m(Q) < p (resp. p - 1). Since m(Q) is the quasi-period of fQ 

for some c E P. Then &(q)(Q) = Q by the uniqueness of fq. This is only possible 

when m(Q) = p (resp. p - 1). CI 

Theorem 31 Let P have order p, let vo $1 (mod p)  Le an integer, and let n be 

the period of the continued fraction ezpansion of fhp. Then 

where the second case can only occur i f p  's even. 

Proof: We can assume without loss of generality that 2 5 uo < p, and let Q = hP. 

Then the continued fiaction expansion of fo has p u e  quasi-period p - 1. Of course 

if P,-~(Q) = 1, then n = p - 1. I€ p is even, then p - 1 is odd and so the period of 

fQ must be either rr = p -  1 or n = 2(p - 1). 



W e  mnst show th& if p is odd, then p,-l(Q) = 1. Since we are in Case 2, 

since X(<P) = X((p - i) P) and A(- P) = A(=). 

Corollary 9 The continued fiaction ezpansion of Y is periodic. If the order of P 

L9 p and the period of Y is n, Wen 

8-1  i f p , - l ( o o ) = l  

n _ (  

f ( p  - 1) if p,-1(=) # 1 
where the second case can only occur when p is euen. 

Proof= Notice that 
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So the continued fraction expansion for Y diners fkom that of f, only in the 

fmt term. Thus for all v 2 1, 

The result now follows fkom Theorem 31. 0 

7.5 The Discrete Logarithm Problems 

This section shows an equivalence between two types of discrete logarithm prob- 

lems using underlying fields of characteristic 2 for which implementations of Diaie- 

Hellman [13] and ElGamal [14] type cryptosystems have been based. These are the 

elliptic discrete logadhm problem and the infiastructure discrete logarithm problem. 

The equivalence follows fiom the next h o  theorems. 

Theorem 32 Let E be a non-supersingular elliptic curue defined over k = F*M and 

let P be a point on the eunie. Let Ep be the quadratic mode2 for E which defines 

the quadratic fi«ction field K = k ( X ) ( Y ) .  If the elliptic dismete logarithm ptoblem 

for E can le solved in polynomial time, then the infrastructure dismete logarithm 

problem for Ep con also be solved in polynomial tirne. 

Proof: Let A be a primitive reduced ideal in O. If A = O, then the solution to 

the ùifi.astructure disaete logarithm problem is 6(d, 0) = 0. 
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We wil l  therefore assume that A = [X + Xo, K+ Y] is the ideal in adapted form 

forsomeXo,& k. Let & =Xi + X o + a + a t + z .  Then 

Since Ais an ideal, X+X~~K'+(X~+X+~+~ 2 ) K + ( X 3 + ~ s ~ + a 2 + b + a )  and 

thus, (X,, E) is a solution to the equation Ep . Notice that = Y,', so (Xo , Y, ) is 

also a solution to the equation Ep.  Let Q = (zo, yo) be the corresponding point on 

E using the formulae of Section 7.3. Notice that Q # P, oo. 

Let (Xi ,  Yi) be a solution to the equation Ep corresponding to iP E E, iP # 
oo, P -  We will assume that 2 5 i < p where p is the order of P. By Theorem 30 

we know that p - 1 is the quasi-period of Y. Now 

the continued fraction algorithm. Thus, 

This implies that 

So, we get the reduced ided in adapted form 

Thus, if Xi = Xa and Yi = & then Q = i P  and &O 4- = A, and if no such Xi and 
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since for 1 < j < p - 1, deg(ai) = 1. 

If we can solve the elliptic discrete logarithm problem on E, (e.g . find i 2 2 such 

that iP = Q or determine that no mch i exists) then we c m  solve the infi:astracture 

discrete logarithm problem. Since zo and y, can be computed in polynomial time, 

the infrastructure discrete logarithm problem can  be computed in polynomial tirne 

if the elliptic disuete logaxithm problem can be solved in polynomial tirne. O 

Theorem 33 Let E be a non-supersingufar elliptic curue def ied over k = &M and 

let P be a point on the eurue. Let Ep be the quadrutic mode1 for E which defines 

the quadratic jùnction field K = k ( X ) ( Y ) .  If the infiastructure dismete Zogarithm 

problem for Ep can Be solved in polynomial time, then the elliptic discrete logarithm 

pîoblem for E cura also be solved in polynomial time. 

ProoE Let Q be a point on E.  If Q = ao then the solution to the elliptic discrete 

logadhm problem is O. If Q = P then the solution to the ellip tic discrete logarithrn 

problem is 1. 

We will assume that Q = (xO, yo) is the point on E, and that (Xo, &) is the 

correspondhg solution to the equation Ep. Now let A = [X +Xo, Xt + Xo +a +az + 
& + Y] be a primitive reduced ideal. As was shown in the proof to Theorem 32, if 

we can find b ( d ,  O) or determine that it does not exist, then we have found i su& 

that Q = iP or detennined that sach an i does not d s t .  Again, we are able to 

compute Xo and & in polynomial tirne, so if the idkastructure discrete logarithm 

problem can be solved in polynomial time then so can the elliptic discrete logarithm 

problem. 0 
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We have just shown that solving the elliptic discrete logarithm problem on E 

is equivalent to solving the i&astrnctute discrete logarithm problem on Ep. A 

discussion of the dïfEculty of solving the infiastructure dismete logarithm problem 

appears in Section 6.3. None of the methods disnursed there combined with this 

correspondence give an improvement over known methods for solving the ellip tic 

logarithm problem. Since we know of no other way of solving the infrastructure 

discrete logarithm problem, this provides fiirther evidence of the intractability of 

the elliptic discrete logarithm problem. 

It is easy to see that the proofs of the above theorems give a bijection between 

the sets 

{ Q ~ E [ Q = i P , 2 ~ i ~ p - 1 )  

and 

{ A  c 6, A # 6 1 A can be obtained fkom the continued &action expansion of 6) 

and that p - 1 equals the quasi-period, m, of the continued fiaction expansion of 

Y. Now, since R = 6m+1 = m + 1, we get that R is also the order of P. 

Thus, computing the order of a point, P, on E is equident to finding the 

regulator of the function field dehed  by Ep.  Also, producing a point on a c w e  

with a given order is equivalent to producing a function field of the form given by Ep 

with a given regulator. The problem of hding curves and points with large prime 

order is of great intaest in elliptic curve cryptography. Thus, it would be of interest 

if we could efficiently compute regdators of such fields. Stein has observed that in 

the odd characteristic case there are certain classes of h c t i o n  fields that tend to 

have large order [48]. At the present time it is unclear if there is a characteristic 2 

analog of these classes. 
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7.6 Some Examples 

In this section we nin consider some examples of quadratic hct ion fields for which 

the infrastructure discrete logatithm problem is equident to the discrete logarit hm 

problem in an elliptic m e  gronp. 

Consider the function field presented in Section 5.5.1. We have k = FZ3 = F2(6) 

where d3 + 6 + 1 = O and KI = k(X) (Y)  defined by 

Also, d = [Y] = X. 

Using the formulae fiom Section 7.3 we see that a2 = O, a = 8 and b = d2. The 

elliptic c w e  is 

E : y 2 + z y = 2 + k  

and the point is P = (S,6). 

Rom Section 5.5.1 we have that dz = [X + 1,63 + Y], so we have X2 = 1 and 
- 
Y, = P .  ~ o w ~ = ~ ~ + ~ ~ + a + a ~ + & s o  & = 1 + 1 + 6 + 6 ~ = 1 .  Converking 

(XI, f i )  into a point on the elliptic cuve E, we get (0, 6*). Using the addition 

formula for elliptic curves we get 2P = (0, cf2), as we would expect. 
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We need the point on the elliptic carve corresponding to (XI, K); this point is 

(6,b4). When ne  compnte 2P @ P we &O get 3P = (6, if4). 

Since = [l, Y] = Ai, we have computed all of the multiples of P that can be 

computed asing the continued fiaction expansion. The point P satisfies 4P = ca 

as we would expect, since for this field R = 4. 

For this example, assume k = F23 = F2 (8)  where 6 + cf + 1 = 0. Let K3 = k ( X )  (Y )  

where X and Y satisfy 

Clearly a2 = 83, a = J2 and b = P. The elliptic curve is 

and the point on the curve is P = (d2, d6). 

Table 7.1 shows the correspondence between the infiastructure discrete loga- 

nthm and elliptic c w e  discrete logadhm for this field. It gives, for each 2 5 i < - 7, 
Pi-17 Qi-i9 Xi, F, x, and iP. 

Performing one more Baby-Step gives Q7 = kX = QG, so by Theorem 11, the 

quasi-period is m = 13. Now, R = rn + 1 = 14, and so we would expect that 

14P = oo. h fact, 2(7P) = oo. 
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Table 7.1: The ellip tic cuve equivalence for KI. 



Chapter 8 

Implement at ion And Pract ical 

Results 

8.1 Running Times and Security Considerations 

for the Cryptosystem Over Zn 

In [23] an algorithm similar to the one given in Section 2.6 is implemented to 

produce carves of a given order modulo a prime p. A c w e  with order twice a 51 

decimal digit prime is computed in just over 6 minutes using the cornputer algebra 

system SIMATH. It thaefore seems feasible to compute elliptic cnrves of a given 

order and to use similar techniques as described in Section 2.6 to compute curves 

of smooth order. 

In Section 2.5 a method to produce a prime and an &ptic curve modulo that 

prime with smooth order was given. Rom arguments in that section, the majority 

of the work to produce 75 digit primes and their associated c w e s  would be to 
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perform approxhately 10 elliptic m e  factozizations to determine smoothness 

of 38 digit integers and approximately 2000 primality tests for 75 digit integers. 

Assnming 1 minute on each factorization, this codd be completed in less than an 

ho=, which is a feasible one t h e  start up cost. 

Once tao elliptic m e s  with smooth order have been computed, Say Ep(.p, bP) 

and E,(aq, bq), one can prodace a m e  over Zn with the desired properties. Us- 

ing the Chinese Remainder Theorem one cornputes a, b e Zn snch that a = a, 
(mod p), a a, (mod q) ,  b 6, (mod p) and b bq (mod q). The curve is 

&(a, b)* 

Decryption is performed using the Pohlig-Hellman algorithm with the Baby- 

Step Giant-Step algorithm and the trapdoor information p and q. For a curve with 

order a 75-digit integer divisible by one 16 digit prime and the remaining prime 

factors less than 16 digits, this decryption will talte approxhately 10' elliptic c w e  

operations (additions and doublings). Assuming that a specid parpose device is 

used to decrypt at 100,000 elliptic c w e  operations in a second, decryption would 

t ake a few minutes to pdonn .  Although feasible, this is not u s a  for decryp ting 

large amounts of data. It may be suitable for certain key agreement schemes where 

one-time encryption is needed. 

It is easy to see that recovering a message M given Q = MP in any of the 

above schemes is equivaent to solving the discrete logarithm problem on the cnrve 

modulo n. The security of the system is dependent on the discrete log problem 

being difficdt. 

The integer n was chosen so that generai purpose factoring algorithms are not 

feasible. The elliptic c w e  factoring algorithm may however be used to factor 

n. Assume that the order of our public point P is divisible by 16 digit primes 
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modulo p and moddo q. Then by eompnting (&<,,i6p) P one prime at a time, 

the factorization of n can be obtained (see [24]). This would requize approximately 

&<1016 log2p - 1016 elliptic m e  operations. The work required to factor is 10' 

more operations than required by the signer. Assnming that one could decrypt in 

1  minute (which is optimistic with present technoIogy), factoring n by this method 

would take abont 190 years. As our ability to compute discrete logarithms improves, 

we will be able to use cuves divisible by larger primes. If the m e s  are smooth 

with respect to 10' then decryption will take on the order of 10'1' operations and 

factoring n d take about 10' operations. Thus, as k inmeases so wül the factor 

of extra work reqnired to break the system. 

A farther problem that could occur with this system is that if two messages 

and M2 are sent with Ml - M2 a small integer, then upon cornputhg Ml P - M2 P = 

(Ml - M') P an eavesdropper could determine M~ -Ma nsing exhaustive search and 

thus obtain information about the messages. For example, if & and M* consist 

of 8 bit fields with only one field differing, information could be obtained about 

the value of this field. In order to combat this attack, 56 bits of the public point 

codd be used as a DES [35] key K. Then to encrypt the message M let the 

ciphertext be D E S ~ ( M ) P  whae D E S ~ ( M )  is DES applied to M nsing the key K. 

Now,  DES^( M ~ )  P - D E S ~ ( M ~ )  P has no specid structure. In fact, any encryption 

algorithm E such that E( Ml) - E(M~) # E ( M ~  - MI) codd be used. 
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8.2 Running Time and Implementation of Regu- 

lat or Algor it hms 

We present details of the running times and implementation of the algorithms 

presented in Section 5.4 for computing the regulator. We are in the same situation 

as Chapter 5, so k is a field with q = 2"" elements and X is transcendental over k.  

N o w  K = k(X) (Y)  where Y* + BY = C for some B, C E k[X] with C monic. Also 

Y2 + BY + C = O has no singnlar points (X, Y) = (u, v )  E K x ki and K Ç k ( ( + ) ) .  

Recall O = [ l ,  Y ] .  Let hf be the ideal class number of O and let h be the divisor 

class number of K. Also let g be the genus of the m e  Y* + BY = C. Then it 

appears that a resdt of Schmidt [42] &O applies here: 

From [53, Proposition III.7.81 we can see that K is an Artin-Schreier extension 

and that 

g 5 deg(B) - 1. 

It is well known (see [53]) that the L-polynomial, L( t ) ,  of K satisfies 

2.  L ( t )  = nz,(i - ait) where al, . . . , al, are aIgebraic integers. 

3. ~ C Q  1 = ,f for i = 1, . . . , Zg . (This is the Hasse-Weil Theorem.) 

Thus, (Jq - 1)2g 5 h 5 (Jq + 1)2g and we conclude that h = ~ ( ~ ~ " d ~ ) ) .  Since 

h = Rh', we get 

R = O ( t p d B ) )  . 
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Now, notice that deg(B) + (i - 2) 5 6; 5 (i - l)deg(b) for all i 2 2. Since 

R = 6,+1, we then get dg(gj S m  5 R0deg(B)+1, so m =  O(R). Finally, we 

conclude 

n = O (ndedB)) . 

Thus, the optimal choice for the nnmber of Baby-Steps and Giant-S teps is 

Now, all operations in a Baby-Step and Giant-Step are polynomial operations 

performed in k. We know &O that all polynomiah involved in these operations 

are bounded by deg(B) or deg(C). Thus, the complexity of a Baby-Step and of 

a Giant-Step is bounded by a polynomid in log(q), deg(B) and de@). 

So the total complexity to find R is 

p olynomial operations . 

Tables 8.1 and 8.2 give the times to h d  the regulators of quadratic hinction 

fields defined by Y* + BY = C over F2ir for various values of M between 2 and 10. 

For all h c t i o n  fields, the degree of the polynomial C was 3 and the polynomial 

was constant for al l  trials with a given field size 2M. The routines were written in C 

on a SPARC 20 tnnning SnnOS 4.1.4. The colnmn M gives the degree of the field 

extension, deg(B) gives the degree of the polynomial B, Opt. G.B. gives the time 

t O perform the Op timized Giant-S tep Baby-S tep algorithm, Baby gives the time 

to find the regdator using just the Baby-Step algorithm and no information about 

symmetry, R gives the regulator and m gives the quasi-period of the continued 

fraction expansion. 
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Table 8.1: Times for computing regdators using Baby-Step and Optimized Giant- 

M 

2 

2 

Step Baby-Step algorithms. 

deg(B) 

3 

4 

Opt. G.B. 

.O1 s 

.O1 s 

Baby 

.O1 s 

.O1 s 

R 

24 

10 

m 

18 

7 



Table 8.2: Times for computing tegulators using Baby-Step and Optimized Giant- 

S tep B aby-S t ep algorithms (cont 'd) . 

R 

109 

163 

Baby 

.O3 s 

-06 s 

M 

4 

4 

rn 

100 

156 

deg(B) 

3 

4 

7 

Opt. G.B. 

-03 s 

.O4 s 
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8.3 Implementation of the F'unction Field Key 

Exchange 

We implemented the DiBe-Hellman Key Exchange algorithm asing the C pro- 

gramming language on a SPARC 20 ninning SunOS 4.1.4. All of our computations 

were done over finite fields with 2M elements that contained an optimal normal 

basis for Licreased aciency [34]. 

We attempted to choose M, B and C mch th& $.dB) = 101* as W ~ S  suggested 

in Section 6.3 to avoid brute force and subexponential attacks. Our restriction to 

finite fields that contained optimal normal bases meant that we chose our param- 

eters such that log' < qdeg(*) < 10120. The polynomial C was kept constant with 

degree 3 for all examples and the degree of B was varied as was the degree of the 

field extension. In this implementation, the private keys were chosen at random in 
dcglB)  

the range [1, p 2 ] , as was suggested in Section 6.1. 

Tables 8.3 and 8.4 give the results of this implementation. The fust column gives 

the degree of B and the second column gives the degree of the field extension. The 

approximate work required to obtain the regulator R is given in the next column. 

This is q-. Finally, the time for each party to compate the common key is 

displayed. While these times are not quite as impressive as those given in [41] for 

fields of odd characteristic, there appears to be much room for improvement by 

making use of more advanced coding techniques. 
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1 :9 1 11 1 4.7 x 1019 1 145.7 sec 

11 1.0 x 10" 137.9 sec 

12 3.7 x 10SO 130.3 sec 1- 
26 12 9.1 x 10'~ 106.4 sec 

- - 

[ 22 1 18 1 4.0 x 1oS9 1 148.6 sec 
21 18 7.8 x lOS6 135.3 sec 

20 18 1.5 x 10'' 122.9 sec 

19 18 2.9 x 105' 104.8 sec 

18 18 5.8 x 10" 79-6 sec 
- 

17 23 7-1 x lOS8 104.3 sec 
r 

16 23 2.5 x lo5' 81.1 sec 

Table 8.3: Times for DifRe-Hellman Key Exchange Implementation. 



CHAPTER 8. IMPLEMENTATION AND PRACTICAC RESULTS 

7.5 x 1oS0 1 49.5 sec 1 
3.7 x IOs0 38-4 sec 

4.7 x 35.5 sec -H 
6.8 x Ios2 1 43.8 sec 1 

- -  - 

1 8 1 41 ( 2.3 x IOdg 1 37.7 sec 1 

- - -  

1.1 x I O ~ ~ ~  25.5 sec 1 
6.0 x 10'' 1 14.6 sec 1 

Table 8.4: Times for Diaie-Hellman Key Exchange Implementation (cont'd). 



Chapter 9 

Suggestions for Furt her Research 

We will now present some suggestions for hirther research based on results contained 

in t his t hesis . 

1. In order to make the cryptosystem described in Chapter 3 that uses elliptic 

c w e s  over Zn more feasible, it is of great interest to be able to produce 

elliptic curves with a given group order more efficiently. A related problem 

which would serve the same goal is to improve methods for counting points on 

elliptic cnrves. These problems are interesthg also because all ayptosystems 

using elliptic c w e s  reqnire the knowledge of the n ~ l b e r  of points on the 

c w e  being used. 

2. The ayptosystem in Chapter 3 uses the fact that it is not possible to effi- 

ciently obtain the order of En(a, b) if the factorization of n is not knoan. This 

is becanse the present methods for counting points on elliptic curves (Schoofs, 

A t h ' s  and EIkies' algonthrns) do not work in Zn. It is not known however 

what d e c t  these algorithms have on the c w e  En(a, b) and what informa- 

tion can be obtained concerning these curves. For example, is it possible to 
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identify eIliptic ctuves over Z, for which the disaete logarithm problem has 

a trapdoor? 

3. The basic operations performed in the infkastrnctnre of quadratic function 

fields are the Baby-Step and the Giant-Step. At present, these operations 

are relatively costly to perform. Arithmetic in the idkastructure would be 

more feasible if more efficient algorithms for pdorming these operations were 

found. 

4. Chapter 5 presents a method to find the regulator of a quadratic function 

field that runs in time ~ ( ~ ) ~ ~ g ( ~ ) + ~ ) .  More efficient algorithms for finding 

the regulator of such fnnction fields would be u s d .  Because of the corre- 

spondence with elliptic curves presented in this thesis, this may also give a 

method for efficiently counting points on elliptic m e s .  

In [49] a method is given that determines the regulator of quadratic fimction 

fields of odd characteristic in ~ ( & ~ ' d ~ ) + ' )  operations where YZ = D ( X )  

defines the fnnction field. It is undear if this method generalizes to function 

fields of even characteristic. 

5. The cryptosystem introduced in Chapter 6 is based on the difTiculty of corn- 

puting infiastructure discrete logarithms. Does a subexponential algorithm 

exist for computing these discrete logarithms? If such an algorithm does ex- 

ist, then this would also give a subexponential algorithm for finding elliptic 

curve cüsaete logarithms. 

6. In Chapter 7 an equivalence is shown between the idkastructure discrete loga- 

rithm for function fields of a certain type and non-supersingular elliptic curve 

discrete logarithms. Does an eqnivalence of this type exist for hyperelliptic 
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m e s  of higher genus? If it does, then the infiastractare of a fanction field 

would be the " s d  as the jacobian of a hyperelliptic cuve. This wodd give 

a Werent way of stndying these m e s  of higher genus which have &O been 

proposed for cryptographie pnrposes. 

7. The equivalence presented in Chapter 7 was for non-supersingnkr elliptic 

c w e s  in characteristic 2 only. Does mch an equivalence &O exist for su- 

persingdar elliptic curves in even characteristic? One would suspect that it 

would, but what is the corresponding quadratic model? 

8. Do there exist certain dasses of fimction fields (and hence elliptic m e s )  

whose regulators tend to be of an "intaestingn type? Interesthg types could 

indude smooth with respect to a bound B or divisible by a large prime. There 

are results that certain classes of numba fields tend to have large regdators, 

but nothing has been proven for fnndion fields. Stein [48] has obtained some 

empirical results for odd characteristic fanction fields. 



Appendix A 

W e  d l  now give a proof that the conditions given for our quadratic fnnction fidds 

in Section 4.1 axe equivalent to the carve having no singular points. 

Theorem 34 Let B, C E k[X] where k is a field of charocteristic 2. Then y2 + 
By + C O (mod D2) does not have a solution with y E k[X] for each non- 

constant polynomial, D ,  that divides B i f  and only if Y2 + BY + C = O has no 

singdar points ( X ,  Y )  = Cu, v )  E k x k. 

Proof: (+) Let (u, v )  E k x k be a singular point on F ( X ,  Y) = Y2 + BY + C = 0. 

This means that 

and 

Let D(X) be the minimal polynomial for u over k. Then D ( X )  1 B ( X ) .  

Let y = B(X) + v E k[X]. Then 



Let f (X) = va+ B(X)v+C(X). Since (u, v )  is a point on p+ BY+C = O, we know 

v2 + B(u)v + C(u) = O and thes D(X)l f (X). Also note f(X) = Bf(X)v + C t ( X ) ,  

so f(u) = Bf(u)v + Cf(u) = O .  Hence D2(X)  1 f (X). 

Thus, 

f ( X )  zY2+ B ( X ) y + C ( X )  rO (modD2(X))  

where y E k[X] as defined. 

( +) Let D(X) 1 B ( X )  and y E k[X] be su& that 

Y' + B(X)y + C ( X )  G O (mod D2 (X)). 

Then 

g(X)  = y2 + B(X)y + C(X) + D2(X)Q(X) = O 

for some Q(X) E k[X]. 

Let u be any root of D(X)  in H and v = y(u). Then 

and so ( u , v )  is on the curve YZ + BY + C = O. In fact, since D(u) = O, we also 

know B(u) = 0. 

Now, since g(X) = O, it is &O true that g'(X) = O and thus 

h o ,  then gf(u) = O and so 

Hence (u, v )  is a point on the c w e  that satisiies both partial derivatives. It is 

therefore a singnlar point on Y2 + BY + C = 0. 



Appendix B 

Theorem 35 Let A k an integral O-ideal. Every k[X]-oasis of A has exactly two 

elements. 

ProoE Let A =  [w] for some w E O. Either w E k[X] or w E O \ k[X]. 

If w E k[X], then wY E A as well. It is not possible to write wY = w a  for any 

a E k[X] though, so w E O \ k[X]. Let w = a + b Y  for a, b E k[X], b # O. Then 

N ( w )  E k[X] is in A as w d .  Again, it is impossible to write N ( w )  = w a  for any 

a E k[X] . Thus, it is not possible for A = [w] . 

Let wi,wa,w3 E O be in the k[X]-bais for A. Then wi = + biY where 

ai, bi E k[X] for i = 1,2,3 and w l ,  ws, wa are linearly independent. Now let 

and notice that 

Aiwl + A2% + A3w3 = O. 

Thus, w l ,  w2, w3 cannot be linearly independent and so a k[X]-basis for A c-ot 

have any more that 2 elements. 
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