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Abstract

Public key cryptography based on elliptic curves over finite fields was proposed
by Miller and Koblitz in 1985. Elliptic curves over finite fields have been used to
implement the Diffie-Hellman key passing scheme and the ElGamal, Schnorr and
NIST signature schemes. Elliptic curves have also been used over the ring Z,, to
implement an RSA type scheme. In the first part of this thesis however, we propose
using elliptic curves over the ring Z,, in a new way. In this system the information
is carried in the exponent space and not in the group itself. Also security depends
on the difficulty of factoring a 150 digit number in order to trapdoor the discrete
logarithm problem.

The continued fraction expansion and infrastructure for quadratic congruence
function fields of odd characteristic have been well studied. Recently, these ideas
have even been used to produce cryptosystems. Much less is known concerning the
continued fraction expansion and infrastructure for quadratic function fields of even
characteristic. In the second part of this thesis we will explore these ideas, and show
that the situation is very similar to the odd characteristic case. This exploration
will result in a method for computing the regulator for quadratic function fields
of characteristic 2. We will also be able to show that cryptosystems proposed for
the infrastructure of function fields of odd characteristic can be implemented in
even characteristic and give a possible attack. Most importantly we will be able to
show that the elliptic curve discrete logarithm problem is equivalent to a discrete
logarithm problem in the infrastructure of certain quadratic function fields. This
is a modification of a result by Stein for fields of odd characteristic.
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Chapter 1

Introduction

1.1 Motivation

Public-key cryptography based on elliptic curves over finite fields was proposed by
Miller [31] and Koblitz [20] in 1985. Elliptic curves over finite fields have been used
to implement the Diffie-Hellman key passing scheme [13] and the ElGamal [14],
Schnorr [43] and NIST [36] signature schemes. Elliptic curves have also been used
over the ring Z, to implement an RSA [38] type system [12, 21]. One of the topics
considered in this thesis is the use of elliptic curves over the ring Z,, in a new way.
In this system the plaintext is carried in the exponent space and not in the group
element itself. Also, security depends on the difficulty of factoring a 150 decimal
digit number in order to trapdoor the discrete logarithm problem.

Shanks [45] introduced the concept of the infrastructure of a quadratic number
field. This was an exploration of the inner structure of an equivalence class in the
ideal class group. These ideas were used by Scheidler, Buchmann and Williams [40]

to implement a key exchange scheme in such an infrastructure. Recently, Stcin and

1



CHAPTER 1. INTRODUCTION 2

Williams [47, 49] extended Shanks’ infrastructure ideas to real quadratic congruence
function fields and applied these techniques to computing the regulator of these
fields. In [41] a key exchange scheme was introduced using real quadratic congruence
function fields that improved upon the one using number fields. Only fields of odd
characteristic were considered. It is of much practical interest to consider the case
of function fields of even characteristic. This thesis will develop the theory of the
infrastructure of a quadratic function field of characteristic 2.

The main tool used in the study of the infrastructure for both number and
function fields is the continued fraction algorithm. Little is known concerning the
continued fraction algorithm for function fields of even characteristic. It was first
discussed by Baum and Sweet in [6] and also in [7, 30]. Their discussions are
incomplete however, and so do not extend the complete continued fraction theory.

Thus, we will first explore the continued fraction algorithm in characteristic 2.

This thesis will also show that the key exchange protocol proposed for odd char-
acteristic quadratic function fields also works in even characteristic. For the first
time an ElGamal-based digital signature scheme [14] in this non-group structure is
also introduced, as well as a Pohlig-Hellman attack [37] on these schemes.

To accomplish these goals, we will first examine the infrastructure of quadratic
function fields. This will provide us with the two basic operations in the infrastruc-
ture: the Baby-Step and the Giant-Step. A Baby-Step corresponds to one iteration
of the continued fraction algorithm and a Giant-Step corresponds to ideal multi-
plication and reduction. We will also encounter the concept of distance, which is
similar to a discrete logarithm in a finite cyclic group. We will then be able to
develop algorithms for computing ideals with distance “closest to the left of” a
given value. It is these algorithms that we will use to produce the key exchange
and digital signature schemes.
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Stein [48] has been able to show, using results of Adams and Razar [1], that if we
are working in odd characteristic, breaking elliptic curve systems is polynomial time
equivalent to breaking systems based on the infrastructure of certain function fields.
This provides further evidence of the security of elliptic curve systems as there is no
known feasible way to break systems based on the infrastructure. His result does
not apply to characteristic 2. This thesis will show that breaking elliptic curve
cryptosystems of even characteristic is also equivalent to breaking infrastructure
cryptosystems of a certain type. This is accomplished by showing that the problems
on which these systems are based, the elliptic and infrastructure discrete logarithm
problems, are polynomial time equivalent. Our explanation closely follows that
of [1].

1.2 A Brief Overview

The remainder of this thesis is organized as follows. In Chapter 2, we give a brief
introduction to elliptic curves and discuss some results concerning the generation
of these curves with smooth orders. In Chapter 3, a cryptosystem is introduced
that uses curves over the ring Z, by storing the message in the exponent space of
the group. Chapter 4 introduces the quadratic function fields of even characteristic
that we will be using and describes the regulator of these fields. In Chapter 5,
the infrastructure is introduced and used to develop algorithms for computing the
regulator. In Chapter 6, the infrastructure is used to develop key exchange and
digital signature schemes and a possible attack on these schemes is given. In Chap-
ter 7, it is shown that solving the discrete logarithm problem for elliptic curves is
equivalent to solving the discrete logarithm problem for the infrastructure of certain
quadratic function fields. Finally, Chapter 8 discusses implementation issues and



CHAPTER 1. INTRODUCTION 4

practical results and Chapter 9 presents some suggested topics for further research.



Chapter 2

Elliptic Curves and Their Orders

The material in Sections 2.2, 2.3, 2.5-2.7, 3.2-3.5 and 8.1 are

(©1997 IEEE. Reprinted with permission from (/EEE Transactions on Information
Theory; Vol. 43, No. 4; July/1997).

2.1 Number Theory Background

This section will give a brief overview of some results in algebraic number theory.

For a more detailed description, the reader is referred to [52].

An algebraic number is a complex number ( that satisfies an equation
aoC" _{_alcn-l +"’+an =0,

where ag,ay,:-+,a, € @, not all zero. The degree of  is the lowest degree of
any such monic polynomial that { satisfies (called the minimal polynomial). A
number which is not algebraic is called transcendental. If the minimal polynomial
hasay=1and a; € Z fori =1,...,n then ( is called an algebraic integer.

5



CHAPTER 2. ELLIPTIC CURVES AND THEIR ORDERS 6

An algebraic number field ® ({) is the set of all the numbers of the form R(({) =
P(¢)/S(¢), where ( is a given algebraic integer of degree n, P({) and S(() are
polynomials in  over @ of degree at most = — 1, and S({) # 0. It can easily be
shown that these numbers form a field. Also, the set of algebraic integers in @ (¢)

form a subring known as the ring of integers.

Let 7 be the complex number that satisfies i = —1. Then the ring of integers of
@ () is Z[i]. Similarly, if w = (=1 4+ v/=3)/2, so w® = 1, then the ring of integers
of @ (w) is Z[w).

Let @ ({) be a numoer field of degree n and let f be the minimal polynomial of
(. Let 04, ...,0, be the monomorphisms that take { to each of the n not necessarily

distinct roots of f in the complex numbers. For any a € @ ({) we define the norm

N(a) = f[ oi(a).

i=1

Now N(a) € @, and if a is an algebraic integer, then N(a) € Z.

We call an integer l-smooth for | € Z, if all of its prime factors have less than
or equal to ! decimal digits.

2.2 Elliptic Curves over Prime Fields

We give a brief introduction to elliptic curves over finite fields of prime order ex-
ceeding 3. For more detailed information see [9, pp. 360—411], [28, pp. 15-48], [46,
pp- 130-144].

Let k = F, be a finite field of characteristic p # 2,3, and let a,b € k satisfy the
inequality 4a® +27b% # 0. An elliptic curve, Ey(a, b), is defined as the set of points
(z,y) € k x k which satisfy the equation

y? =2z +az + b,
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together with a special point, co, called the point at infinity. These points form an
abelian group under a well-defined addition operation which we now describe.

Let E,(a,b) be an elliptic curve and let P and Q be two points on E,(a,b). If
P = oo, then —P = o0, and P+Q = Q+P = Q. Let P = (z1,y1) and Q = (z2,¥2)-
Then —P = (z;,~y1) and P+ (—~P) = co. f Q # —P then P+ Q = (z3,ys) where

T3 = AN —z,—2,
Yys = A(3?1.-’5133)—!/1,
and 2 —y
2 — Y1 .
P—— fP#Q
A=
3z2+a .
if P=0Q.
2y Q

Let N, be the number of points on the curve E,(a,b). There is a well-known
theorem of Hasse which states that N, = p + 1 — t where [t| < 2,/p.

Let K be a field such that K C K and let E,(a,b) : y* = z* + az + b and
Ep(a',b) : y* = 2° + a’z + b be elliptic curves. Then E,(a,b) and E,(a’, b') are said
to be isomorphic over K or K-isomorphic if there exits a nonzero ¢ € K such that

a = cta’ and b = V.

A twist of Ep(a,b) is an elliptic curve that is isomorphic to E,(a,b) over k, the
algebraic closure of k. We identify two twists if they are isomorphic over k. The
set of twists of Ep(a,b), modulo k-isomorphism, is denoted Twist(Ey(a,b)/k). Let
the characteristic of k be greater than 3 and a,b # 0. Then the two elliptic curves
E,(a,b) and Ep(ac?, bc®) are the representative elements of Twist(E,(a, b)/k) where
c€ k~\ (k).



CHAPTER 2. ELLIPTIC CURVES AND THEIR ORDERS 8

Definition 1 Let Ey(a,d) be an elliptic curve
Ey(a,b):y* =z’ +az+b

defined over the finite field k = F, and let P = (z,,y1) be a point of order n on
the curve. Then the elliptic discrete logarithm problem is, given a point Q, also on
the curve, to find the integer [, 0 <1 < n — 1 such that Q = P tf such an l ezists;

otherwise return “No solution”.

2.3 Elliptic Curves over Z,,

Let n = pq for distinct primes p and ¢ each greater than 3. Let a and b be positive
integers with gcd(n,4a®+27b%?) = 1. We will now generalize our definition of elliptic
curves over F, to curves over Z,,. An elliptic curve over Z,., E.(a,b), is defined to
be the set of points (z,y) € Z, x Z,, such that y> = z® + az + b, together with a
point at infinity, co. An addition operation can be defined on the points of E,(a, b)
in the same way addition on E,(a,b) is defined by simply replacing all operations
in F, with operations in Z,. Since division is not always possible modulo =, the
elliptic curve addition operation will not always be defined modulo n. Hence, an

elliptic curve over Z,, does not form a group.

By the Chinese Remainder Theorem, any ¢ € Z, can be uniquely represented
by a pair of elements [c,,c,] where ¢, € Z, and ¢, € Z,. Thus, every point
P = (z,y) € E,(a,b) can be uniquely represented by a pair of points [P,, P,] =
[(zp, ¥p), (24, Yq)] such that P, € E,(a,b) and P, € E,(a,b), with the convention
that oo is represented by [oo,, 00,], where 0o, and oo, are the points at infinity
on E,(a,b) and E,(a,bd) respectively. It is now easy to see that when it is defined,

the addition operation on E,(a,b) is equivalent to the component-wise addition
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operation on E,(a,d) x E,(a,b). Note that the addition on E.(a,b) is undefined
when the resulting point, interpreted as an element of E,(a, b) x E,(a, b), has exactly

one of its components being a point at infinity.

For large p and ¢ we would expect the addition operation to be undefined for
only a negligible number of possibilities. Notice that if the operation is undefined,
then trying to perform the required inversion would give a non-trivial factor of n
in polynomial time, and this would be an effective factoring algorithm.

Also note that if Q = kP is defined where P € E,(a,b) then Q, = kP,; therefore
it is reasonable to define the order of E,(a,b) to be the least common multiple of
the orders of E,(a,b) and E,(a,b).

2.4 Elliptic Curves over Fyu

This material is well known and can be found in [28] and [46].
Let k = F, be a finite field with ¢ = 2. We define a non-supersingular elliptic
curve over k by the equation

V¥ +zy=2z°+a2’ +ae

for a;,as € k and ag # 0. The set of solutions in k x k to this equation along with
the point at infinity, oo, produce a group under a well-defined addition operation,
similar to the odd characteristic case, which we will now give.

The identity of the group operation is the point co. For P = (z;,y,) a point on
the curve, we define —P to be (z;,41 + %;), so

P+(—P)=(=P)+ P = co.
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Now suppose P and @Q are not oo, and P # —Q. Let P be as above and Q = (z, 1),
then P + Q = (zs,ys), where

(yz+y1)z+ Y2+u1

+z+z2+a; ifP
Z+n 2+ 2 ' ? ? 7

z§+§‘1 if P=Q,

!I2+y1) .
(B38) @+aa)+oa+m EP#Q

Ys
£§+(31+¥l)$3+33 ifP-‘:Q.
1

If N, is the number of points on a non-supersingular elliptic curve, then there is
a version of Hasse’s Theorem for even characteristic. It states that Ny =¢q+ 1 ~¢
where [t| < 2,/7 and ¢ is odd.
Definition 2 Let E be a non-supersingular elliptic curve
E:y*+zy =7°+az* + a¢
defined over the finite field k = Fom and let P = (z4,y1) be a point on the curve of

order n. Then the elliptic discrete logarithm problem is, given a point @, also on
the curve, to find the integer I, 0 <1 < n —1 such that Q = P if such an l ezists;

otherwise return “No solution”.

2.5 Producing Primes and Curves of Smooth Or-

der Modulo These Primes

In [23] a method is presented that, given an integer m > 3 will find a prime p and
an elliptic curve E over the finite field F,, of order #E(F,) = m. The method seems
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to be very efficient in that it produces groups with order having 51 decimal digits
in just over 6 minutes on a SPARC 2. It is also quite similar to the method we
describe in Section 2.6 for producing smooth curves modulo a given prime. This
section describes a method to generate primes p and elliptic curves of smooth order

over F, that is somewhat simpler but not quite as efficient.

2.5.1 Background

These results from [18, pp. 203-207, 297-317] are necessary for what follows. Let
m be a positive integer, and O,, be the ring of integers of @ ((n) where (n is a
primitive m’th root of unity. For a prime ideal P in O,, let the norm of P be the

size of the quotient ring Sn, so N(P) = l%@-'.

Definition 3 For a € O,, and P a prime ideal not containing m, define the m 'th
power residue symbol, (%)m as follows:

1. If a € P then (%)m =0.

2. Ifa € P then (%)m i3 the unique m’th root of unity that is congruent to

a¥NP)-/m mod P,

Definition 4 Suppose A C Oy, is an ideal prime to m. Let A = PyPy---P, be
the prime decomposition of A. For a € O,, define (%)m =[x, (-10’_-')";' IfB € On
and 3 is prime to m define (‘E')m = ((—‘57)“

Theorem 1 Let D be a nonzero integer. Suppose p # 2 and p does not divide
D. Consider the elliptic curve y* = 23 — Dz over F,. Ifp =3 (mod 4) then
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N,=p+1. Ifp=1 (mod4)letp=nTwithn € Zfi]andxr =1 (mod 2+ 2i).
Then

D D\ _
N P

Theorem 2 Let D be a nonzero integer. Let w = (~1 + +/=3)/2. Suppose p # 2
or 3, and p does not divide D. Consider the elliptic curve y* = z3 + D over F,. If
p=2 (mod3)then Ny=p+1. Ifp=1 (mod 3) let p = n7 with = € Z[w] and
7 =2 (mod 3). Then
N,=p+1+ (12) T+ (32) 7.
6 T /e

T

2.5.2 The General Idea

Using Theorems 1 and 2 we can produce curves with smooth order by computing
the order as a product of small algebraic integers. There are two types of curves
that can be produced; curves of the form y? = z® — Dz and curves of the form
y? = z3 + D. We will describe the general idea for the case y? = z* — Dz. The
other case is very similar and both cases are described in detail for 75-digit primes

in the next section.

We wish to produce a k digit prime p and an elliptic curve modulo p whose order
is not divisible by any prime factor greater than [ digits. First obtain an algebraic
number u + vi € Z[i] whose norm is l-smooth. This can be done by building it
up from numbers of smaller norm. We also require u to be an integer of about k/4

digits and v to be an integer of less than k/4 digits such that gcd(u,v) = 1.

Solve cv + du = 1 for integers ¢ and d. Notice that a solution can be chosen so
that c is about k/4 digits and d is less than k/4 digits. Let a = cu — dv, which is a
k/2-digit number. Ifa #3 (mod 4) repeat the process. Now a+i = (u+vi)(c+di),
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and a® + 1 = N(u + vi)N(c + di). The number u + vi was chosen to have smooth
norm but N(c + d¢) may not be smooth, so repeat until it is. The probability of a
k/2-digit number N(c+di) being l-smooth is approximately e~(%/2)1n(k/2} (this js an
approximation to the value given in [8]). Note that we will have to repeat the process
an exponential number of times, but for numbers we will consider, the number of
repetitions is reasonable (see Section 2.5.3). Elliptic curve factorization [24] can

determine if N(c + d?) is smooth.

Having determined a suitable a, let p = a®*+4 = (a+2¢)(a—2i) and again repeat
until p is prime. Notice that p is k digits, p =1 (mod 4) and that (a +2:) =1

(mod 2+ 2i). It is now a simple matter to find an integer D such that (ufh.)4 =1.

The curve y?> = z® — Dz will have p — 3 = a? + 1 points over F,, with the group

order l-smooth.

Since the probability of a random integer z being prime is -, we would expect
to have to choose about 4 (ln 10") (e("/ 2)In(k/ 2‘)) algebraic numbers u + vi until
getting a k-digit prime and an elliptic curve whose order is I-smooth. Thus, we
would expect to perform about (ln 10") (e("/ 2)ln(k/ 21)) primality tests and about

e(k/2)In(k/2) oy gothness tests.

2.5.3 Specific Cases

Consider the particular case where p is 75 digits. We will describe in detail how
to produce primes of this size and elliptic curves of 16-smooth order modulo these
primes.

To find a 75-digit prime and an integer D such that the curve y*> = z® — Dz
over F, has order that factors into primes of no more than 15-16 digits, choose

z, and z; to be positive integers of about 9 digits, and y; and y, to be positive
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integers of about 5 digits. Let v = z122 — y1y2 and v = z1y2 + z2y; so that
u + vt = (21 + n1¢)(22 + y2t). Now u is 18 or 19 digits and v is 14 or 15 digits.

If ged(u,v) = 1 solve cv + du = 1 for integers c and d; otherwise, choose new
values z,, z2, y1, y2 until ged(w,v) = 1. Note that ¢ and d can be chosen so that ¢
is about 18 or 19 digits and d is 14 or 15 digits. Let @ = cu — dv so that a is 37 or
38 digits. Now (c + dz)(z; + y12)(z2 + y2¢) = a + 1. Repeat this process until a =3
(mod 4) (about 4 times).

Now,

a’+1 = (a+i)a—1)
= N(a+17)
= N(c+di)N(z, + i) N(z: + y2i)

= (¢ +d&)(z} +v})(=F +v3)-

Notice that z2 + y? and z2 + y2 are 18 or 19 digits and ¢ + d? is 37 or 38 digits.
With probability at least 0.74, z? + y? and z2 + y2 have largest prime factors with
at most 15 or 16 digits. Also, ¢ + d? has probability of about 0.13 of having largest
prime factor with at most 15 or 16 digits [19]. This process is repeated until a* + 1
has all factors with at most 15 or 16 digits (about 10 times).

Let p = a® + 4. Note that p is about 75 digits, p = 1 (mod 4) and p =
(a + 2t)(a — 2¢) with ¢ = 3 (mod4) so (a +2¢) =1 (mod 2 + 2:). Again
repeat until p is prime (in total about 2000 times). By [16] it seems reasonable
that the expected number of prime factors of p — 1 for p a prime is the same
as the expected number of prime factors of a random integer. Thus, it seems
reasonable that the expected number of prime factors of p — 3 for p a prime is

the same as the expected number of prime factors of a random integer and that
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Pr(p is prime and p — 3 is smooth) = Pr(p is prime) Pr(p — 3 is smooth). Under
this assumption, the probability that p will be prime given that p — 3 is smooth
is the same as the probability that p is prime given that p is a random positive
integer. To see this note that Pr(p prime | p—3 is smooth) = Pr(p is prime and p—
3 is smooth)/Pr(p — 3 is smooth).

Find D with (-2:) =i (ie. DPV/* ={ (mod a + 2i)). The curve y?> =
4

a+2i
z3 — Dz has
N, = p+1—(—i)(a+2i)—i(a—21)
= p-3
= a’+1
points, which was chosen to have at most 15 or 16 digits.

Theorem 2 also can be used to construct a 75-digit prime and an integer D
such that the curve y*> = z® + D over F, has order that factors into primes of no
more than 15-16 digits. Let w = (—1 4+ +/=3)/2 and note that 1 4+ w + w? =0 and
@w = w?. Again choose z, and z, to be positive integers of about 9 digits, and y,
and y, to be about 5 digits. Let v = z,z; — y1¥2 and v = z,y; + z2y; — ¥1¥2 so that
u + vw = (21 + h1w)(Z2 + yaw) where u is 18 or 19 digits and v is 14 or 15 digits.

If gcd(u, v)|4 solve v + d'u = 4 for integers ¢ and 4&'. Otherwise, choose new
values z,, z3, y; and y; until gcd(u,v){4. Let d =4 and ¢ = ¢ + d’. Then cis 18
or 19 digits and d is 14 or 15 digits. Let @ = cu — dv so that a is 37 or 38 digits.
Now note that (c + dw)(zy + y1w)(z2 + y2w) = a + 4w. Repeat this process until
a=2 (mod 3).

Now, a? — 4a + 16 = N(a + 4w) = N(c + dw)N(z, + y1w)N(z; + y2w). Notice
that N(z, + yyw) and N(z; + y.w) are 18 or 19 digits and N(c + dw) is 37 or 38
digits. Repeat this process until a? — 4a + 16 is smooth.
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Let p = a? - 3a +9 = (2 + 3w)(a + 3w?). Note that p is about 75 digits, p=1
(mod 3) and p = (e +3w)(a+3w?) witha=2 (mod 3)soa+3w =2 (mod 3).

Again repeat until p is prime.

a+3w
y> =2+ D has N, = p + 1 + (a + 3w)w? + (a + 3w?)w = a* — 4a + 16 which was

Find D with (;42;) = w (ie. (4D)*V/® = w (mod a + 3w)). The curve

chosen to be smooth.

These procedures may be feasible for primes p up to about 117 digits (=~ 23%9)
at which point the probability that N(c + dw) or N(c + di) has at most 15 or 16
digit prime factors is about 0.009.

2.6 Producing Curves of Smooth Order Modulo

a Given Prime

In this section we will first review some results dealing with Hilbert class polynomi-
als and elliptic curves, and then give a method for producing curves of smooth order
modulo a given prime p. We will use these curves in the cryptosystem described in

Chapter 3.

2.6.1 Review

Various properties of elliptic curves and the Hilbert class polynomial are required
for the sequel. These results are well known (see for example (9, pp. 369-379], [11,
pp- 285-298], (22, pp. 39-41,123-143], [46, pp. 338-351)).

Let E,(a,b) be an elliptic curve over the field k = F,. The j-invariant of E,(a, b)
is a function from the set of elliptic curves modulo p to k such that:
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o Two elliptic curves are isomorphic over k if and only if they have the same
j-invariant.

e For any element jo € k, there exists an elliptic curve defined over & with
j-invariant equal to jo. If jo # 0,1728 and k has characteristic greater
than 3, then j(E,(a,d)) equals jo for a = 3j,/(1728 - jo) (mod p) and
b= 2jo/(1728 — jo) (mod p).

Given elliptic curves E;(a,b) and E,(a’,b’) an tsogeny from E,(a,b) to E,(a’, V')
is a rational map from FE,(a,b) to E;(a’,b’) (here we assume that the curves are
defined over k). An isogeny is also a group homomorphism. The group of isogenies
from E,(a,b) back to E,(a,b) is called the endomorphism ring of Ep(a,b) and is
denoted by Endg(E,(a,b)).

Theorem 3 If Ey(a,b) is an elliptic curve with p # 2,3, then the endomorphism
ring Endp(E,(a, b)) is either an order in an imaginary quadratic field (in which case
the curve is called ordinary) or an order in a quaternion algebra (in which case it

is called supersingular).

Let D < —4 be an integer and D = 0,1 (mod 4). Also let 4p = z2 — Dy? for
integers z and y. Then there exists a polynomial Hp(X) called the Hilbert class
polynomial with the following properties.

e Hp(X) is a monic polynomial with integer coefficients.

o The degree of Hp(X) equals k(D) where h(D) is the class number of the
order of an imaginary quadratic field of discriminant D.

e Hp(X) splits completely modulo p. If j; is a root of Hp(X) modulo p then
Jo gives the j-invariant of an elliptic curve with p + 1 + z points.
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¢ Hp(X) = [I(X—j(Ep(a,b))) where the product is over all isomorphism classes
of elliptic curves with endomorphism ring the order in an imaginary quadratic

field of discriminant D.

There is an algorithm due to Cornacchia that given primepand D < 0, D = 0,1
(mod 4) will determine integers z and y such that 4p = z? — Dy? or determine that
no such z and y exist (see [9, pp. 34-36]). Computing the Hilbert class polynomial
can be accomplished by means of an algorithm given in [9, pp. 407—409] or by
an algorithm given in [11, pp. 286-298]. The Hilbert class polynomial, however,
has very large coefficients and the calculations required to produce it are real val-
ued and must be computed to a high degree of precision. In order to avoid these
computational difficulties the Weber polynomials, which are polynomials closely
related to the j-invariant, are better suited to the task at hand. These polynomials
have coefficients which are much smaller than the Hilbert class polynomial and pro-
vide the same desired result. For more information on the Weber class polynomial

see [4, 23].

2.6.2 The Algorithm

This algorithm is based on a portion of Atkin’s primality proving algorithm (see [4]).
It is also very similar to the method presented in [23] for producing primes and
curves with specific orders and to the method presented in [32] for producing curves

over F,, with p elements.

Given a prime p our objective is to determine a,b € F, such that E,(a,b) has
order that factors into primes less than or equal to some bound H. To do this,
first choose an integer D < —4, D =0,1 (mod 4). Using Cornacchia’s algorithm
determine z and y such that 4p = z? — Dy? if such an z and y exist. If no such z



CHAPTER 2. ELLIPTIC CURVES AND THEIR ORDERS 19

and y exist choose a new D and repeat. Calculate p+ 1+ z and determine if either
of these values is smooth with respect to H. This can be done using elliptic curve
factorization [24]. If neither is smooth choose a new D and repeat. Otherwise,
compute Hp(X) mod p. Let jo be a root of Hp(X) mod p and compute the curve
y? = z® + az + b with j-invariant jo. If the curve has a smooth number of points,

output a and b. Otherwise, compute and output its twist.

In the above algorithm, the numbers D should be chosen in increasing complex-
ity. This means they should be chosen in terms of increasing class numbers h(D).
This will help to decrease the computation that must be performed when comput-
ing the Hilbert polynomials since the degree of the polynomial increases with k(D)
and the degree of precision increases with D and h(D). Determining which of the
twists has a smooth number of points can be accomplished as follows. Let N, be
either p41—z or p+1+ =z, whichever is smooth. Then to determine whether or not
Ey(a,b) has N, points find P € E,(a,b) such that ged(p+1~z,p+ 1+ z)P # co.
If NP = oo then Ey(a,b) has N, points.

Also note that since we must choose different D’s until p + 1 + z is smooth
with respect to H, this algorithm will run in exponential time. For a 75-digit
prime however, the probability that N, is 15-smooth is about .0004 [19] so one
would expect to have to choose about 1250 different D’s that can be written as
4p = z? — Dy? before getting a curve whose order is 15-smooth. This computation

may be feasible as a one time cost.



CHAPTER 2. ELLIPTIC CURVES AND THEIR ORDERS 20

2.7 On the Equivalence of the Discrete Log Prob-
lem and the Diffie-Hellman Problem

Let G be a group and a an element of G. The Diffie-Hellman Problem [13] is
to determine a®® given a® and o®. The Discrete Log Problem is to determine a
given a®. Clearly, a solution to the Discrete Log Problem implies a solution to the

Diffie-Hellman Problem. The converse is not known.
The following result is due to Maurer [25].

Assume #G = p. Let Ey(a,b) be an elliptic curve over F, such that discrete
logarithms are easily computed in E,(a,b). Suppose that we have an oracle which
when given a?, o® returns a®®. Then the oracle and the group operation allow us
to compute af(® for any polynomial function f(z) with integer coefficients. Since

z-! = zP~? (mod p) we can compute a?® for any rational function g(z).

Suppose that 3 = a® and the oracle are given. Can one determine z, the discrete
logarithm of 37 Suppose z is the z-coordinate of some point Q = (z,y) on E,(a,b).

Compute
o= teEth = o

Using a square root algorithm determine a’. Now let P = (u,v) generate a sub-
group of E,(a,b) that contains (z,y) and then (z,y) =~P.

Using (a*, a¥) for (z,y) and (a*, ") for P, the oracle and group operation will
allow us to perform the Baby-Step Giant-Step algorithm with P on E,(a,b) and
determine . Note that given (a“,a™), (a*?, a*?) where (u1,v1), (42, v2) € Ep(a,b)
we can find (a™, a**) where (us, vs) = (u1,v1) + (u2,v2) on Ey(a,b). Having found

v we can then compute z, i.e. (z,y) = vP.

Now, using the methods of Sections 2.5 and 2.6 as well as a recent generalization
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of these schemes by Maurer and Wolf [26], we can compute a curve over Fp, such
that solving the discrete logarithm problem is relatively easy using the Pohlig-
Hellman and Baby-Step Giant-Step Algorithms (see Section 3.1). Unfortunately,
for a given prime p, this computation is not polynomial time and thus we do not
have a polynomial time reduction from the Diffie-Hellman problem to the Discrete
Log problem. It remains an open question as to whether these algorithms for

producing curves can be modified to work in polynomial time.



Chapter 3

A New Cryptosystem

3.1 Required Algorithms

In this section we will examine some algorithms that will be needed to construct a

new cryptosystem using elliptic curves over Z,.

3.1.1 Discrete Logarithm Algorithms

In Sections 2.2 and 2.4 we encountered the elliptic curve discrete logarithm problem.
The best known attack on this problem is an algorithm which works in any general
group. For this reason we will first consider the discrete logarithm problem defined

over a general group.

Let G be a finite cyclic group generated by the element @ and let 8 € G. Given
G, a, and B the discrete logarithm problem is to find an integer z, 1 < z < |G|
such that 8 = a®. We call z the discrete logarithm of B to the base a and write

z = log, B.

22



CHAPTER 3. A NEW CRYPTOSYSTEM 23

The best algorithm known for solving the discrete logarithm problem over a
general group G is the Pohlig-Hellman algorithm [37] combined with the Baby-
Step Giant-Step algorithm.

Baby-Step Giant-Step Algorithm

Let G be a group of order » and let m = [/n]. Notice that z can be written
uniquely as z = jm + ¢ where 0 < ¢,7 < m. In order to compute 7 and j, a
list of pairs (a',7) is computed and sorted. Then B(a™)? is computed for each
1 < j < m. This value is then compared with the values in the table to determine

if there exists an ¢ with 8(a™™)’ = o’. If so, then z = im + j.
This algorithm requires O(mlog m) group operations.
Pohlig-Hellman Algorithm

Let G be a group of order n = [I7_, p* in which the factorization of n is known.
This algorithm determines z mod p;* for each i. The Chinese Remainder Theorem
is then used to determine z. Let 2=z (mod pf') with 1 < = < p*.

e1—1

Suppose that z = Y75 z;pt, where 0 < z; < p, fori = 0,...,e; — 1. The z; will
be determined one at a time. Let ¥ = a™?!. Then "/Pt = a*™/P\ = 4* = 4% The
Baby-Step Giant-Step algorithm can then be used to determine z, = log, f™/7.
Then similarly (Ba~=)*?f = 4%, and z; can be determined. The process can be
repeated to determine all of the z;. In a similar fashion z mod pf* can be computed
for all p;.

This algorithm has a running time of O(XL, ei(logn + /P)).
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3.1.2 Elliptic Curve Factorization

In Section 2.3 we encountered elliptic curves defined over the ring Z,. These
elliptic curves can be used to produce a factoring algorithm that works well when
the number to be factored has a relatively small prime divisor. This algorithm,
known as the Elliptic Curve Factorization Method is due to Lenstra [24].

Let n be the integer we wish to factor and let p and q be two primes that divide
n. Let E.(a,b) be an elliptic curve and P be a point on this curve. If we had some
integer m such that mP, = oo, but mP, # oo, then mP would not be defined.
If we then tried to compute mP, at some point while trying to take an inverse
which is required for the addition formula, we would get a non-trivial factorization
of n. Thus, we would like m to divide the order of E,(a,b) but not the order of
FE4(a,b), which would happen if the order of E,(a,b) was smooth with respect to
some bound, but E,(a,b) was not and m was chosen as a product of small primes.

This is the idea behind the factoring algorithm.

Elliptic Curve Factorization Method

1. Choose a,z2,y € Z,.

2. Let b=y?* - z® —az (mod n).

3. If gcd(4a® + 27b%,n) = n, then return to Step 1.

4. Otherwise if gcd(4a® 4+ 27b%,n) > 1, then n has been factored.

5. Choose a bound L and let

m= II ql.log'nj’
e<L

where the product is over primes q.
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6. Set P = (z,y) and compute mP in E,(a,d). If at some point in trying to
invert an element of Z, a nontrivial factor is obtained, n has been factored.

Else, return to Step 1.

In this algorithm, elliptic curves over Z,, are chosen at random and it is hoped
that mP is not defined. For this reason, the algorithm works best when n has

a small prime factor. The expected running time to remove a factor p from = is

(making some heuristic assumptions) O(eV \°splosloer)

3.2 The Cryptosystem

The idea is to trapdoor the discrete log problem in such a way that messages can
be encoded in the exponent space of the group. Suppose we have an elliptic curve
defined over the integers modulo n = pq for primes p and g. Then the points on the
elliptic curve form a “pseudo-group” in the sense that when the addition is defined,
it corresponds to elliptic curve addition modulo p and modulo g. Now, let p and
q be large enough so that factoring n is infeasible. As a lower bound consider, for

example, p and g to be 75 decimal digits each.

Then let y2> = z® + az + b be an elliptic curve modulo n such that when it is
taken modulo p and modulo ¢ the orders are known to the user and are smooth
(e.g. each prime factor has fewer than 15 or 16 decimal digits). These can be
computed using the methods in Sections 2.5 and 2.6. Computing discrete logs on
the curve modulo p and the curve modulo q is feasible using the Pohlig-Hellman
method and the Baby-Step Giant-Step method. In order to use the Pohlig-Hellman
method the group orders must be known. Thus, if the factorization of n is known,
the group orders can be found in polynomial time using Schoof’s [44], Atkin’s [3]
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and Elkies’ [15] methods, and computing discrete logs on the curve modulo n is
feasible. However, using the elliptic curve factoring method, or any other method

to factor n, is still infeasible. (See Section 8.1.)

Let n, the curve E,(a,b), and a point P on the curve be the user’s public key.
To send a message, M, to this user, where M € Z,0 < M < #P (here #P is the
order of the point P) simply compute MP. Now, in order to read the message,
the discrete logarithm problem must be solved. Since p and q are 75 digit primes
with E,(e,b) and E,(a,b) smooth, the Pohlig-Hellman method is the only known
method to compute the discrete logarithm. If we try to use Pohlig-Hellman directly
on E,(a,b) we must know its order. However, Schoof’s and Atkin’s methods do not
seem to generalize to Z,, so determining the order of E,(a,b) is intractable unless
p and q are known. An eavesdropper cannot solve these problems as she cannot
factor n to obtain p and ¢ and thus get the order of the curves. Our user however

knows p and q and can solve the discrete log problem relatively easily.

3.3 The Signature Scheme

This system can be used to create digital signatures as well. Again let n, the curve
and a point, P, on the curve be a users public key. Also here assume that the elliptic
curve group being used is cyclic and that P is a point of maximal order. Then let
M be a ([log,(n)] — C — 2[log, In(n)])-bit message that our user wishes to sign,
where C is an appropriately defined integer constant. We wish to determine a point
Q = (z,y) such that the first [log,(r)] — C —2[log,In(r)] bits of the z-coordinate
are the message M or a hash of the message M. To do this, C + 2[log, In(n)] zeros
can be appended to M resulting in M'. Define z to be the smallest integer greater
than M’ such that z® + az + b is a quadratic residue modulo n and let y be one of
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its square roots modulo n. Note that since the factorization of n is known to the

signer, taking square roots is feasible. Then let Q = (z,y).

It seems reasonable that the first [log,(r)] — C — 2[log, In(n)] bits will be M
since assuming the Generalized Riemann Hypothesis, the smallest quadratic non-
residue occurs in the interval [1,¢] where ¢ = O(In(n)?) (see [5]). Thus, it seems
reasonable that z3 + az + b would be a quadratic residue after at most C’In(n)?

attempts for some constant C’ and this would not affect our message M.

In order to sign the message, compute the discrete log of @ to the base P on
the elliptic curve. If @ = kP then the signature is k. To check the signature the
receiver of the message simply computes kP and checks that this equals Q. The
point Q can be identified since the first ¢ bits of the z-coordinate are M.

This scheme can be modified for non-cyclic curves by appending more zeros to

M and requiring as well that z and y satisfy Q = (z,y) € (P).

3.4 Prespecifying Some of the Bits

Vanstone and Zuccherato [54] showed how to prespecify some of the bits of an RSA
public-key modulus so that the number of bits that had to be transmitted and
stored could be reduced. For example, the key length for a 1024-bit RSA scheme
could be shortened by about 512 bits. A similar operation can be performed here
so that the public key length gets reduced. |

In order to specify t < [log,(n)] — C —2[log, In(n)] bits of the public key point
P the following procedure could be followed. Let « be a ¢-bit number that we want

to be contained in P. Then a is appended with sufficient redundancy, for example

by appending zeros, to give a [log,(n)] bit integer a’. Now define z to be an integer
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greater than a’ such that a is the first ¢ bits of z and z® + az + b is a quadratic
residue modulo n. Let y be one of the square roots of this number modulo n. As
in the previous section, under reasonable assumptions, such an z and y exist. Note
that the person setting up this system is the only one that can do this computation,
since he is the only person that knows the factorization of n. Now P = (z,y) and
the first ¢ bits of z are a. If P has large order then we accept it as the public key

point, otherwise we choose a new z and repeat.

This could be used on a large network where everyone has to use the same ¢
bits in their public key point. Thus, storage space would be reduced as these ¢ bits
need only be stored once as a system-wide parameter. It could also be used if a
person wanted some of their publicly known identification information to be used
as part of their public key. This gives rise to a possible use of this system as an
ID-based key exchange system [17, 27].

In such a system a trusted central authority chooses primes p and ¢, an elliptic
curve y? = z? 4 az 4+ b whose order is smooth modulo p and ¢, and a point P
on the curve. The central authority and only the central authority can compute
discrete logarithms on the curve modulo n = pq. The curve and n are made
public. To register a public key, Albert presents himself to this central authority.
The central authority can then compute a point on the curve Prp(4) containing
his identification information ID(A) as the first ¢ bits of the z-coordinate. The
central authority computes s4 such that s,P = Prp(4) on the curve and gives s4
to Albert. (Remember that the central authority is the only entity that can do all
these calculations.)

To exchange keys, Albert obtains Betty’s identification point Prp(g) and com-
putes the key K = ssPrpip) = saspP. Betty computes the same key as K =

s8Prpa) = spsaP. The key can now be used in a conventional private key ci-



CHAPTER 3. A NEW CRYPTOSYSTEM 29

pher system. Exchanging keys in this way provides key authentication since the
only person (besides the trusted authority) that knows the discrete logarithm of an
identification point is the person to which it belongs.

3.5 On The Koyama-Maurer-Okamoto-Vanstone

Signature Scheme

Koyama et al [21] describe a digital signature scheme using elliptic curves modulo

n that cannot be used to encrypt messages. The scheme is set up as follows:
e The signer A chooses two primes p and ¢ and parameters a and b such that
ged(4a® + 27b%,n) = 1 where n = pq.
e A computes the orders of E,(a,b) and E,(a,b).

e A chooses a public encryption multiple e relatively prime to N, and N, (the
orders of Ey(a,b) and E,(a, b) respectively).

o A computes d =e! (mod lem(N,, Ny)).

e A makes public n, a, b, and e.

To sign a message M, A associates a point P = (z,y) € En(a,b) with M in a
publicly-known way and computes Q = dP. The signature for M is Q. Verification
of the signature is done by computing eQ Zp.

Since finding points on the curve E,(a,b) is infeasible without the knowledge
of p and g, it was claimed [21] that encryption is not possible. Notice however,
that after any one message is signed both parties now have the point Q. If the
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curve has been chosen so that the discrete logarithm problem is easy (for example
in Sections 2.5 and 2.6), this point can now be used, along with the curve E,.(a,b)
to encrypt and send messages as described in Section 3.2. Thus using this digital
signature scheme could provide a covert channel to convey secret information. The
question still remains, given a, b and n = pq, whether one can detect a trapdoor
on the discrete log problem for y?> = z® + az + b over Z,, and thus on the digital
signature scheme. It appears that p and ¢ must be recovered and the orders of
E,(a,b) and E,(a,b) calculated, which is infeasible.



Chapter 4

Function Fields of Characteristic 2

The material in Sections 4.1-4.5, 5.1-5.4 and 8.2 are

(©1997 Academic Press. Reprinted with permission from (Journal of Algebra; in

press).

For an introduction to function field theory and to valuation theory see [10, 53].
Valuations are also defined in Section 7.1.

4.1 Introduction

Let k be a field with g = 2™ elements, X a transcendental element over k, and K
a field of degree 2 over k(X) which is not an algebraic extension of k. The field
K can be obtained by adjoining to k(X) an element Y which satisfies the equation
Y2+ BY = C where B,C € k[X] with C monic. We require the polynomials B and
C to have the property that y*+ By+C =0 (mod D?) does not have a solution
with y € k[X] for each non-constant polynomial D that divides B. If P € k[X]

31
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satisfies P2 + BP + C = C'D? for some such D, then let Y’ = -P—Dﬂ and B’ = g—.
Then notice that Y2+ BY 4+ C = 0 gives us Y?D?*+ P?+ BDY'+ BP+C =0, so
Y2+ B'Y'+C' =0. Now, deg(B') < deg(B), and we can repeat until we have a B,
C and corresponding Y with the desired properties. This condition is equivalent to
Y?+ BY +C = 0 having no singular points (X,Y) = (u,v) € k x k. (See Appendix
A)

The valuation at the place at infinity in k(X) is the negative of the degree
function in k(X) and the completion of k(X)) with respect to the place at infinity
is k((§))- We need k(X)(Y) C k((%)), so we need Y € k((4)) \ k(X). This
is equivalent to saying that the place at infinity, P, splits completely as P, =
P, -P; in K. Thus we are in the “real” case [55]. It is therefore necessary that
deg(B) > 1. For the remainder we will assume that this is the case. Since there
are two embeddings of K C k((4)), we must choose one. If Y is one solution to
Y2+ BY +C = 0 then Y + B is the other. Thus, f Y = Y% __c X and bek
is the leading coefficient of B, then c}. gy + bcaeg(m) = 7' for some v’ € k. So, the
two embeddings correspond to the two solutions in k of 22+ z = 4 for v = g,i €k
We will consider k as being represented by the polynomial basis whose defining
polynomial has smallest Gray Code rank. We will then choose as the solution to
z2 + £ = «, the one whose binary vector representation has smallest Gray Code
rank. This fixes our embedding.

For example, consider the equation
Y4 (X+1)Y =X0+X*+X +1.
We wish to obtain the Laurent expansion for Y. It is easy to see that ¢; = 0 for

i > 3. Now, if we substitute Y = ¥°3____ ¢;X* and equate coefficients we get

=1 so a=1,
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C§+63=0 so Cg—-—"l,
c§+c1+cz=1 so ¢g=0orl,
co+e=1 so ¢g=1lor0,

c§+c.1+co=1 so c1=1,

This report follows very much the explanation given in [47, 49]. Many of the
results are characteristic 2 function field analogues of well known theorems given
in [2, 39, 47, 49, 50, 51, 56]. The purpose of including this chapter here is to provide
much of the machinery needed for subsequent chapters.

4.2 Continued Fractions in k(X)(Y)

Let the ring of integers of K be the set of all elements in K that satisfy a monic
polynomial over k{X]. Denote this ring by Og. Let O be the order k[X]|[Y] C Ok.
For a = u +vY € K, (u,v € k(X)), define its conjugate by @ = v + v(Y + B).
Then N(a) = a& = u? + wvB + v2C.

Let a = 3¢ Xt e k((%)) with ¢; € k and ¢, # 0. Then define

t==00

deg(a) = t
la| = ¢
sgn(a) = c

o] = Sax

=0
with [0 = 0 and deg(0) = —oo. These definitions will be important for what

follows.
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We now present the continued fraction algorithm over fields of even characteris-
tic. Let @ € k(X )(Y). Also let ag = a and ag = [ap]. We calculate the continued

fraction expansion of a by

_ 1
;) + a;
a = [af
for all + > 1.
Now define
p-2 = 0 g2 = 1
p-1 =1 g1 = 0

Pi = apiatpi2 ¢ = @G+t G-z
for all ¢ > 0. By induction, it is easy to see that

a= Pi%i41 + Pi-a1

¢%iy1 + @iy
for all = > —1.
The value
1
Qg + a + 1
1

st Ir—

"-+:.*,;

is called the k-th convergent to a and is denoted [ag; a1, a3, . . ., ar]. We also use the
notation [ag; ay, @y, - ..] for the value
1

a + ——
1 a:+——-_-1:¢3+

ao +

It can be shown that a = [a; ay,a3,.. ..

As is the case with continued fraction expansions of real numbers, we can show

by induction that [aq; a1, a3,...,ac] = g:».
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Lemma 1 Let a € k(%)) thena = Qg for P,Q € k[X] if and only if the continued

fraction ezpansion of a is finite.

Proof: The proof is similar to the proof for the continued fraction expansion of
real numbers. See [39]. O

This theory was first discussed by Baum and Sweet in [6] and also in [7, 30].
Their discussions were incomplete however, and so we now present a more complete

description of the theory of continued fractions over fields of even characteristic.
If a = B5Y where Q,P € k[X], Q # 0 and Y € k((%)) satisfies Y? + BY = C

for B,C € k[X] with the property that y>+ By+C =0 (mod D?) does not have
a solution with y € k[X] for each D|B, D & k and Q|P? + PB + C then we call

a quadratic trrational.

Let Qo=Q,Ph=P,ap=aand Q_, = f—’-i%’!ﬁ. Define the recursions

Pipr = aiQ:+FP:+B

Qi = P+ PinB+C
[t Qi
for all 2 > 0. Again by induction it is easy to see that
o BEY
Q:

and Q:|P? + P.B+C foralli > 0. Let d = Y|, the polynomial part of Y. Now,
a; = |aif = [B%KJ = (B +d) div Q; and Qi1 = Qi1 + ai(Piya + P).

Define r; € k[X] to be the remainder when P; + d is divided by Q;, or in other
words P; 4+ d = a;Q; + r; where 0 < deg(r:) < deg(Q:). We then get the simpler

recursions

Py = d+r+B
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Qi1 = Qi +ai(ri +1i1)
a; = (P:+d)divQ:
r = (Pi+d)modQ;
for i > 1.

Recall from the continued fraction expansion that a = z—:‘:—:*“_% so we get

Qi1 = ‘L‘;—“I—:—:—:i for i > —1. Combining this with o; = -I-"'(-:,__LY- and comparing

rational and irrational parts we get that

Cgi-1 = Qi(Qopi-2 + FPogi-2) + Pi(Qopi—1 + Pogi-1)
and
Qopi-1 = Qigi—2 + Pigi-1 + Pogi-1 + Bgi1
forz>0.

Let §, = 1 and 6y, = [T'_; * for i > 1. Then by induction 8;1; = p;_; + ag;—;

1=l a;
. Pi+Y 1 _ Pi+Y+B — _ @
for ¢ > 0. Now aj = &= so & = J5=*=. Thus N(0541) = bipabir = %
For a complete example of the continued fraction expansion of a quadratic irra-

tional, the reader is referred to Section 5.5.1.

4.3 Reduced Quadratic Irrationals

A quadratic irrational « is called reducedif |@ < 1 < |a|- Since @ = P—*’—gﬂ, we

get that a is reduced if
{P+Y +B|<|Q|<|P+Y].
Thus, if a is reduced, |P +Y| = |B| and sgn(P + Y) = sgn(B). Also, the

second highest coefficient of P + Y must equal the second highest coefficient of B.

So, either



CHAPTER 4. FUNCTION FIELDS OF CHARACTERISTIC 2 37

e |B| =|P| > [Y] and sgn(B) = sgn(P),

e |B| =|Y| > |P| and sgn(B) = sgn(Y)

e |B| =[Y|=|P|, sgn(B) = sgn(Y) + sgn(P) and sgn(Y) # sgn(P) or

@ |B| < [Y| = |P| and sgn(Y') = sgn(P)
and [Q| < |B|. Notice that in all cases [B| > [P| or |Y]| = |P|. Now, let a =
(P + d) div Q. Then |aQ| = [P +d| = |P+Y]| = |B|, so |aQ| = |B|. Hence,

1<|Q| < |Bland 1 < |a| < |B|. So, if a is reduced then we have bounds on |P|
and [Q).

Lemma 2 Let o; = BEY be reduced for some i > 0. Then agyy = _E-‘_}L::X_ where

¢ Q
Py = d+r+B = aQ:+P:+B
Qinn = Qiatailri+ria) = Pl +Puy l”c';j‘a*"c
a; = (Pi+d)divQ; = |

r = (Pi +d) mod Q;

s reduced.

Proof: Since o; is reduced, [P+ Y +B| < |@Q:] < |P:+Y|. So |Pips +Y]| =
|a:Q: + P: + B+ Y| = |a:Q;i] > |Q;:]- Thus,

(P41 +Y 4+ B)(Pip1 +Y)
Q:

|Qisr| = > |Piy1 +Y + B|.

Notice |P;+Y + a:iQ:i| = |Pi+d+a:iQi| = [ri} < |Qi|. So |Piyr +Y + B| =
|P: + Y + a:Q;| < |Q:|- Thus, from above, |Q:i41]| < [Piy1 + Y. So we get that

[Peipr + Y + B| < |Qi1| < [Pis1 + Y.
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Hence, if a; is reduced then so is a;4;. O

By induction it is easy to see that ¢;p;—; + pigi_y = 1 for all ¢ > —1. From this
we get that a+§:}=wﬂ+ﬁ————L——— So Ia+%|=ﬁs—ﬂ;:—+_['

Gaipitdi-r 0 @ a(gicipi+gion)
The following results show that, as in the odd characteristic case, the continued
fraction expansion will produce reduced quadratic irrationals. We get a bound on
when the reduced quadratic irrationals will appear and an easy way to tell which

irrationals are reduced.

Theorem 4 Let ay = 2“01011 be a quadratic irrational. Then a; is reduced for all
¢ > max {0, 3 deg(Qo) — } deg(B) + 1}.

Proof: Let ¢ > max{O,%deg(Qo) — 3 deg(B) +1} be as above. Theni -1 >
Ldeg (95"-) and so 1%’]1 < ¢¥#~% It is also easy to see by induction that |g| > ¢'.
From this we get |ao + @] = I%‘i + f"%ﬂ-"l = |2

Qo

1 1
> o= 2 =
q:h 2 [q-’-l I

Now assume that o; is not reduced. Since ¢ > 1, we can see that deg(|a;,| +

a;—1) <0, so |a;| > 1. Also, |[&;] > 1 since a; is not reduced. So,

1 1
ag+dg| = + —
| d lqi-x(tIe-1a; +gi-2) G- T + gi-2)
< max {l 1 , }_ }
Qi-1(Gi—106 + gi-2) | ' [gi-1(gi-105 + qi-2)

1 { 1 1 }
= ——max ) —
| g1l i1 |gi-1a5]
1

|gial*
This contradiction proves the result. O

IA

Theorem 5 Let a be a quadratic irrational and i > 0. Then a;y, is reduced if and
only if |Q:| < |BI.
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Proof: (=) Let a;;; be reduced. Then |[&F;| < 1 and [Py + Y| = |B|- Now

Pig1+Y+8B ) (P.:p +Y)
Qi1 Pa+Y

iy =

So |@:l = l@l] |Pia + Y| < | Bl

Pipr +Y

(<) Let ¢+ > 0 with |Q;:]| < |B|- We need only show that [a537]| < 1, or in other
words, [Piy1 +Y + B| < [Qina]-

We know that Py, = d+r;+ B where 0 < [r;| < |Q:] < |B|- Thus, [Py + Y| =
|Piv1 +d| = |r: + B| = |B|.

So, |Qi+1] = Jﬁl—"-%fﬂﬁl = [1% |Peipr +Y + B> |Pa +Y + B|. O
Lemma 3 Letay = f‘a—‘: be a quadratic irrational. If there ezists a minimalio > 1
such that |Q;,| < |B|, then a;, is not reduced.

Proof: Now |a;| = [ls";;,ll E li"f If a;, is reduced then |P, + Y| = |B|. But

then [a;| > 1 contradicting the fact that o, is reduced. O

4.4 Period and Symmetry in the Continued Frac-

tion Expansion

This section examines the periodic and symmetric aspects of the continued fraction
expansion. These results will aid us in producing an algorithm to compute the
regulator of K.

We say the continued fraction expansion of a is quasi-periodic if there exist

integers v > vy > 0 and ¢ € k* such that

a, = COl,.
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The smallest integer m = v — vy for which this holds is called the gquasi-period. The
expansion is called periodic if it holds with ¢ = 1 and then n = v — vy is called the
pertod.

If @ has a periodic continued fraction expansion starting at 1o with period =n

then notice that

Gy = Guin
Guy+1 = Guyinsl
We therefore write a = [ag; a1,a2, - - - , Guy—1,809 s Gogt1s -~ - Grotnll-

Let ag be a quadratic irrational. Since a; is reduced for ¢ > max{0, 1 deg(Qo) —
% deg(B) +1} we know that either |P;| < |B| or |P;| = {Y]| and also that |Q;| < |B|.
Thus the continued fraction expansion of a = aq is ultimately periodic when k is a

finite field.

Lemma 4 Let a be a quadratic irrational. Let the continued fraction ezpansion of
a be quasi-periodic, so that
Cyy = Cuy+m

for some ¢ € k*. Then Va4, = Aimt for alll € Z5e.

Proof: We know that auim = 23222 and a,, = 23*%. So Ppym = B, and

Qu = cQu+m-
Since
Pho+d=PFPoim+d = a,Q +71y
= ancQu+m + T

= GpimQutm + Twptm
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we get that a,,4m = ca,, and r,, =Ty 4m-

ThuS, PW+1 = Lyy4m+l and

Q =
PR ims1r + PatmnnB+C
cho-i-m

= ¢ 'Quim+-

So, ¢ 41 = Guyimss and inductively we get Va1t = @uyimqs for all I €

Zso. O

Proposition 1 Let a be a quadratic irrational. If the continued fraction ezpansion
of a is periodic with period n, then it is quasi-pertodic with gquasi-period m, and m

divides n.

Proof: Let v > 0 be such that a, = ayn = @pp2n =---

Since the continued fraction expansion is periodic, by definition it must also
be quasi-periodic. Let its quasi-period be m < n. Let vy > v be such that

CQyy = Qyy4m for some c € k*.

By Lemma 4 we get "1 " @y 4 (n-m) = Xy +n = Gy, the last equality following
by periodicity. Now, since m is the quasi-period, either m =norm <n —m.

Assume m # n, then ™V ay4m = @pizm, so V" Ha, = a, i2m. Since
2m < m, (TN g L 2y = Guy4n = Quy. Again, since m is the quasi-
period, either n = 2m or m < n — 2m.

Continuing in this fashion we get that m must divide n. O

It is easy to see that for a quadratic irrational a, the period » and quasi-period

m start at the same index v;. We therefore define the non-negative integer v, to
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be minimal such that a,,4+m = ca, and a,,1n = a,, with ¢ € k. If yp = 0 then we

say the expansion is purely periodic.

Lemma 5 Let a be a quadratic irrational. If the continued fraction ezpansion of

a is quasi-periodic so that ca,, = ayy4+m, we have

1+(=1)™4-+4(—-1)A-Nm
ipam = Cf (-1) (-1) o

where i > vy, A > 0 and ¢; ;= -V,

Proof: This proof will be by induction on A. Let i > vp.
Now, a; = aiyom = cjas.
Also, Gitm = pytmytii-w) = €V Ay i) = Gz, by Lemma 4.
So the result holds for A =0,1. Let A > 1 and assume that

14+(=1)"4--4(-1)A-U)m
ai+xm=c;( =) .

Then

Aip(A+1)m = Xifmiim

-1 Am
= cg ) Aipam

c‘{_l)»n c:+(_1)m+___+(_1)(.\-l)m a

c‘g+(-1)"-+--—+(-1)*ma‘_.

With the second equality following from the case when A = 1 and Lemma 4.

So, by the Principle of Mathematical Induction, the lemma holds. O

Corollary 1 Let a be a quadratic irrational.
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1. If the continued fraction ezpansion of a is quasi-periodic with odd quasi-period

m, then it is periodic with period n and n = m or n = 2m.

2. If the continued fraction ezpansion of a is periodic with odd period, then it is

quasi-periodic with quasi-period m = n.
Proof:

1. Let the expansion be quasi-periodic with quasi-period m, where m is odd.

Then ay42m = c'¥(-1"q,, = a,,. Thus, the expansion has period m or 2m.

2. Let the expansion be periodic with odd period n. Then it is quasi-periodic
with quasi-period m and m divides n. So m is odd. Thus, n = m or n = 2m.

Since n is odd, n = m.

For future reference and to summarize, we state the following theorem.

Theorem 6 If a is a quadratic irrational over k (recall |k| = 2M ) then the contin-

ued fraction ezpansion of a i3 both periodic and quasi-periodic.

Proof: The periodicity follows from the limits placed on reduced quadratic irra-
tionals and the fact that a; is reduced for all ¢ > max {0, 3 deg(Qo) — L deg(B) + 1}.
The quasi-periodicity follows since if an expansion is periodic, then it is quasi-

periodic, with ¢ = 1 for example. O

Theorem 7 Let a be a quadratic irrational, then the continued fraction ezpansion

of a is purely periodic if and only if a is reduced.
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Proof: (<) Let a be reduced. Then we know that «; is reduced for © > 0.

Let £ > 0. Then a4y = a.-ta.' Soagy =ar +

Crreg
Since ay is reduced, we know that |az| < 1, thus Ia;= + %l < 1. Now, it follows

from the definition of a; that a; € k[z], so we get that ax = [ﬁ

arprl’
Since a is a quadratic irrational, its continued fraction expansion is periodic, so
there exist ¢,5 € Z>o, t < j such that a; = a;, so aé. = % Therefore, ;-1 = aj-1

and a;—; = aj~;. Continuing in this way we get ap = a;-; and the continued

fraction expansion is purely periodic with period less than or equal to 7 —z.

(=) Let a have a purely periodic continued fraction expansion. We can assume

without loss of generality that a is monic since if ¢ = sgn(a) then

: 1
T .

e
‘sz ot
3

cla=clag +
Now, c"!a is monic and is still purely periodic, also a is reduced if and only if c"!a
is.

Let a have period k + 1 so that & = ag = ap4). Notice that |a| = |arq| > 1.

Thus, a = 22421 and so qea® + (qe—1 + pr)a + pe—1 = 0.

aqetqr—1
Now let 8 = [@z;@k—1, ..., a1, @0)- Then it is easy to see that
(4
k
L = [ak;ak—li --.y@1, aO] = BE
Pr-1 k
and
ke [ P;z-—l
— = |Gk; k-1 -~'1al] =
Q-1 ’ q;e-l

s p' -
where %,‘ and =t are the convergents to 3.
& k—1
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Since a is monic, so is ag and thus sgn(px) = sgn(gx) and sgn(pe—1) = sgn(ge-1)-
Also, since pf, = ajp_; + ph—z = GoPk_1 + Pi—s, sgn(Pk) = sgn(pi—,). Similarly,
sgn(q) = sgnlge—y)-

Since prge-1 + pr-1qx = 1 and pigi_; + pi_1qt = 1 we get ged(pi 1, qy) =

ged(ph, ai) = ged(pr, Pr-1) = ged(gr, 1) = L. Also, gy = by, Rt =

7 r s
q 2% Pr—1 and k-1 a1

— q —_— —_—
SgN(q;)’ SgN(qe) ~ SEL(r}_,) SEM(g—1) ~ SEN(g_;)”
Also, since B is periodic with period k + 1,
g = Bpi. + Py

B, + ¢y
SgN(p;) sgn(p;_,)
_ B 3%55”" + Sgiten
- SEN(ql) sgn(q,_,)
B P + SgRa %!
Bpr + ¢
Bpr-1 + Q-1 ’

2
So, ¢« (é) + (ge-1 +pr) (%) +pr—1 =0.
Now, a and % both satisfy the same quadratic, so @ = % Since |ag| > 1, we get

|B] > 1, and so |@| = I%l < 1. Thus, a is reduced. O

Proposition 2 If the continued fraction ezpansion of a quadratic irrational a is

quasi-periodic with quasi-period m and v, > 0, c € k*, then

'Pi = R-h\m
Q: = c‘!+(-1)"‘+»+(-1)(1-l)m
]

Ql'-h\m

for all i > vo and for all X > 0, where ¢; := =V,

Proof: Follows immediately from Lemma 5 and the fact that o; = 55:—" 0

Recall that Y satisfies Y2+ BY = C where B, C € k[X], C is monic, Y € k((%))
and it has the additional property that y> + By+C =0 (mod D?) does not have
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a solution with y € k[X] for each D|B, D € k. So Y is a quadratic irrational with
P =0 and Q = 1. We would like to consider the continued fraction expansion of
a =Y. First notice that if B = |Y| then Y is reduced and otherwise it is not.

If B # Y| then by Theorem 4 we know that «; is reduced for all : > 1. Thus,
the period starts at v = 1. Let » be the period and m be the quasi-period and let
¢ € k* be such that ay4,, = ca; and ay4,, = ;.

Consider 8 = (B + |Y|}) + Y. Now J is reduced, so it has a purely periodic
continued fraction expansion with period n'. Let its continued fraction expansion be
[@o7 @1, .- @w—1)- Notice that ap = (3] = B, so that 8 = [B;ay,...,@n-1). Thus
Y =[|Y];a1,a3,...,6n-1,B]. Son=n' Now |Y| +Y =[0;a4,a2,...,8n-1,B].

From our proof of Theorem 7 we can show that

1 1
ﬁ = [YJ_'F? = [an—l;an-zy-”aahB]'

From above we get that

1
Y]+Y

Thus, a; = ap-1, @2 = @n—2, etc. So we have the continued fraction expansion of Y’

= [01;02, ce-yQnoy, -B]-

being [d; ay,as,...,a2,a;, B].

It is now easy to deduce that z=== = a4, fori =0,...,n — 1. From this we get

that Piyy = Py fori=0,....n—1land Q; =Q,—;fori=1,...,n.

On the other hand if B = |Y| then Y is reduced. Thus it is periodic with

period n starting at vp = 0 and 6o = B. So Y = [Bjay,...,an1] and g1 =

[an—l;an-la'”aahB]’ But Y+B = [0;81,...,0."_1,31 so y_.:.a' = [al;---aan—laB]

and thus a; = a,-1, a2 = a,-3, etc.

As above we get that Y = [d; a;,a,, ..., a3, 6y, B]. Similarly we get % = aiyy

fori=0,...,n—1, Py =Pp_;fori=0,...,n-land Q; = Q,_;fori=1,...,n.
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From now on, if m is the quasi-period of @ = Y, then ¢ € k" is such that

cay = myl-

Theorem 8 If the continued fraction ezpansion of Y is periodic with period n and

quasi-period m, then Q, € k* if and only if s = Am with A > 0.

Proof: (=) Let Q, = b € k*. If s = 0 then the assertion is true. So, let s > 1 be
the least such s. It suffices to show that s = m. In Proposition 2 let ¢ = m and

(A +1)m =n, then Q,, = cIHU™++)*V™ o k= o > .

We know that P, =d + B and @, = &* + dB + C. Furthermore, a, = EQd:L =
+(P, +Y) is reduced, so [P, +Y + B| < 1 and thus P, = d + B. Hence, a, = 2
This gives P,y; = B+d = P, and Q,;; = ﬂ:ﬁg = %Ql. But this says that

@,41 = bay. Since m is the quasi-period, we must have m < s. Thus, s = m.

(<=) Let s = Am. If s = 0 or n = m, there is nothing to show. Thus, let n = Im

where [ > 2 and define ¢, = (™™ where c is defined as previously.
Now, again from Proposition 2 we know that for all A > 1,

1V b (—1)(A=2)m
Qm =crl;|.+( N7 4-4(=1) Q»\m'

We also have Qp = cAH-N™++0"0 and Qi = Qu =1, 50 Qe € k°, and
the result follows. O

Corollary 2 If the continued fraction ezpansion of Y is periodic with period n and

quasi-period m, then
N(brm+1) = pim-l + Pam-1Pm-1B + Q§m-1C €k

for A > 0.
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Proof: We know that N(Bmi1) = N(fams1) = L= € k*. We also know Oxmi1 =
Pam-1 + Y@am-1 and the result follows. O

Lemma 6 Let the continued fraction ezpansion of @ = Y be periodic with period
n and quasi-period m. Then, for each A > 1 there ezists a constant ¢()\) € k™ such
that

Orms1 = E(A)(Bmsr )™

Proof; We know that for all 7 > 1,

14+(—1)" 4 (~1 {(A=-1)m
ai+4\m=ci( ) =1 ag

where ¢; := (-1,

Recalling that 6;4, = [T}, f’_, it follows that

Am+m 1

m g
==&t
j=Am41 I j=1 Xm+j

m c‘__l"(“l)m-"'—(-l)(‘\")m '

where ¢ = [I., ¢; The assertion now follows by a simple

induction. O

Theorem 9 Let the continued fraction ezpansion of &« =Y be periodic with period

n.

1. If there ezists a1 <v <n —1 with P, = P,y; then n = 2v. Conversely, if

n=2v, then P,=P,,,.

2. Ifthere ezists a 0 < p < n —1 with Q, = Qu41 then n =2u + 1. Conversely,
ifn=2u+1, then Qu = Qu41-

Proof:
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l.Let 1<v<n-1with P, =P,;;. Then P, = P,;; = P,_,. We also know
Q. = Qn_. 50 @, = an_,. Thus, v =n —v or 2v = n. Conversely, if n = 2v

then Py = Pn_y = Ly41-

2. Let 0 < p <n—1with Q, = Qu¢1. Then Qupy = Q4 = Qn—p- We also know
Puit1 = Py, 50 apyy = ap—y,- Thus, p+1=n—porn =2u+1. Conversely,
ifn=2p+1then Q, = Qn—p = Qus1-

O

Corollary 3 Let the continued fraction ezpansion of a = Y be periodic with period

n and quasi-period m. Then either
1. n=m odd
2. n =m even or

3. n = 2m even, m odd.

Proof: If the period is odd then we know that n = m and both are odd. Now, let
n be even and assume that n # m. Then we know that n = Im with [ > 2. So
Prt1 = Pmii+(-2)m = Pu—tym+1 = Pa—(i-1)m = Pr so from Theorem 9, n = 2m.
Assume also that m is even, so m = 2s. Then, P4y = Pmiet1 = Pac(mis) = P, 50

again n = 2s = m contradicting the fact that n # m. Thus m must be odd. O

Theorem 10 If the continued fraction ezpansion of a =Y is periodic with period
n and quasi-period m, then we have the following symmetric properties with respect

to the quasi-period

P{.H = Pm_; 1= 0, y T — 1
Q" — c("l)‘-l Qm—i i = 0, ey m
L = [(Wayy, t1=0,....m—-1
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Proof: If n = m there is nothing to prove since the symmetric properties can be
deduced from the symmetric properties for the period. Therefore, let n = 2m with
m odd. We know Piy1 = Py and Q; = ¢V 7" Qiypn. Also, Piymir = Paiizm)
and Qiym = Qn-(i+m). The first two symmetries follow since n = 2m. Finally,
Vg, = -1 (.f:+n_+£) =Pmoit¥ _ 1

Qi1 Tm—i

Qm~i-i Am—s

Theorem 11 Let the continued fraction ezpansion of a = Y be periodic with period

n and quasi-period m.

1. Ifthereezists al <v <m~—~1with P, = P,,, thenm = 2v = n. Conversely,

ifm =2v, then P, = P,;; and n = m.

2. If there ezists a 0 < p < m — 1 with Q1 = <Q, for some ¢ € k=, then
m=2u+1l Ifd =1thenn=m. Ifd #1 then n = 2m. Conversely, if
m =2u+ 1, then there is a ¢ € k* such that Q.41 = Q..

Proof:

1. If P, = P, then we know that » = 2». Since v < m — 1 we get that
m = 2v = n. Conversely, if m = 2v we know that n = m and the assertion

follows from the similar result for the period.

2. If Qu41 = Q, then we can derive that

Pm_“ + Y (_l)p-l (P“+1 + Y) ’ (_ny-l
Qpepy = ———— =c¢ —— ) =Cc aupl-
15 Qm_“ Q" p+1
Thus m — p = p + 1 or m = 2p + 1. Conversely, if m = 2u + 1, Theorem 10
gives that Q41 = c("1"Q,,. The remainder of the proof is trivial.
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O

. S Q
Notice that ¢/ can be calculated as %Tgf)ll

Let c(p) = [Tj=o =1 ¢ k* where c is defined as before.

Remark 1 [. ¢ ="V

2. If p i3 even then c(u) = ¢, otherwise c(u) = 1.

Theorem 12 Let the continued fraction ezpansion of a =Y be periodic with period

n and quasi-period m.

1. If there ezists a1 <v <m —1 with P, = P,;, then

0 L= 0V+1 = 0V+1 — Ql’
™ 8 Q. 024

2. If there ezists e 1 < p < m — 1 with Q41 = IQ, for some ¢ € k™, then with

c(ps) as defined above

6,..0 2Q, 1 a,+1Q
0m = ¢ M—zb = ¢ 0 _lt. = Lo ”.
+1 =c(p) Tor (#)0ut1 Q. (1) .,

Proof:

1. We know that n = m = 2v which allows us to do the following

m 1 v—~1 1
—_— .=IIQJ~+1=

So, .
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2. Let c and ¢(u) be defined as always. We know that m = 2y + 1 which allows
us to do the following

H - = H = c(--1)"4-(-1)‘1» b (—1)# H ajp1 = ;(I‘) )

j=u+l aJ Jj=0 ] j=0 ut+2

So

=1 E1 =1 c(p)d 6,..6
Ha: Ha: H a:= (z) u+1=c(”) “51 ut2
=1 j=1 J=p+l 2 u+2 s+l

The last two equalities follow since a4 077 = b%f?

We can now define A;;; = Z_‘;-=1 deg(a;) for ¢ > 0. Since 8;4; = H,—l ;’—, we
see that Ay, = —deg(fiy1). Also, since 8;4,0;1; = Q; (recall we are looking at
the continued fraction expansion of @ =Y, so Qo = 1), we get A;;; = deg(fiyy) —

deg(Q:)-

Corollary 4 Let the continued fraction ezpansion of «a =Y be periodic with period

n and guasi-period m.
1. If there ezists a 1 <v <m — 1 with P, = P,;; then

deg(Brmrr) = 2deg(Borr) — deg(Qu)
= 2A,41 +deg(Q.)-

2. If there ezists a 0 < p < m — 1 with Qu1 = JQ, for some ¢’ € k™, then

deg(fm+1) = 2deg(fu41) — deg(Q,) + deg(auy1)
= 24,41 + deg(B).

Proof:
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. e T3
1. The result follows since mi1 = “F1-

—_— 2
2. The result follows since Om41 = c(p)‘l"-‘l’%’m and [a,41Qu+1] = |Bl.
Q

Corollary 5 Let the continued fraction ezpansion of a =Y be periodic with period

n and quasi-period m.
1. If there ezists a 1 <v <m —1 with P, = P, then

Pm-1 = DuGQu-1 + Pv—1Quv—2

and

Im-1 = Q@-19v + Q-1Gu-2.

2. If there ezists a 0 < p < m — 1 with Q41 = ¢Q,, where ¢ € k™ then with
¢(p) as defined before, we have

cfp)
Pm-1 = —c,—(Pu‘In + c"lu—lpu—l)

and

c
——(:,‘)(C’fzi-x +4.)-

dm-1 =
Proof:
1. Comparing rational and irrational parts of @,0,n41 = ,,.,,12 we get that

QuPm-1 = Quam1B+p}_, +Cq’_, + B¢,

and

Qum-1 = 393—1 .
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We know that N(8.+1) = p>_, + Bpo-14v-1 + Cg2_, = Q, and pq.; +
Pv~19» = 1. Also since P, = P,;, we can deduce that a,Q, = B. Using these
results and the formula for ¢, the assertion can be proven.

2. Comparing rational and irrational parts of Q,410m41 = c(p)0ut10,4+2 we get

that

Q,u+1Pm—1 = Qu+1‘1m—13+
c(p)(pupu-1 + Bpu-l‘ht + Bpuqu-1 + C‘b—l‘?u + BzQu—IQu)
and
Qu+1Pm-1 = C(I‘)(Pn-l‘ht + Puqu-1 + Bqu-19,)-

Using the formulas for Py, Cgi-1, Qopi-1, and g¢; given in Section 4.2 the

assertion can be deduced.

4.5 The Fundamental Unit and Regulator

We are now in a position to examine the fundamental unit of O and define the
regulator. We will first state some results which will be useful in finding the form
of the fundamental unit.

Recall that the continued fraction algorithm gives

P-2 = 0 q-2 = 1
pP-1 = 1 g1 = 0
Pi = @pia+pi-a ¢ = a8igi-1+ g2

for all 7 > 0.
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Theorem 13 Let a be a quadratic irrational. If the two polynomials p', q' € k{X],
q’ # 0 satisfy |a+ ;&:I < E}—Ig, then there ezists | € Z o such that g’; =&,

Proof: We can easily see that 1 = |go] < |@a| < -+ < |@] < [gi41| < --- for all
¢ > 0. Since 0 # ¢ € k[X] we know |¢’| > 1. Thus there exists an ! > 0 such that

lal < || < gl

.. 2 Lo 1
From this it follows that |a + q,l <WFE < Tl

On the other hand we know that Ia + Exll =

1 1
anllal < il

Altogether, we get

P'a + pid|
7' laul

Pf

I

(o5 (co2)
c el

lq’[ |

+p‘[

3l

Thus, [p’qt + pid’| < 1 and since they are all polynomials, we know p'qi+piq’ = 0.
The result follows. O

Corollary 6 Let a be ¢ quadratic irrational. If the two polynomials p',q' € k[X],
q’ #0 satisfy |a+ %I < iqul’. then there ezist I > 0 and r € k[X] such that p' = rp;
and ¢ = rq. Also ifged(p’,q’) =1, then p’ = cp and ¢’ = cqi for some c € k~.

Proof: By the above theorem we know that p’'qy = ¢’p;. Thus, q|¢'pr and pijp'q:.
Since ged(p, 1) = 1 we get qi|q’ and pi|p’.
Therefore, there exist r, s € k[X] such that ¢ = sq: and p’ = rp;. But & = ;L,' =

ZL, so we must haver = s.
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If gcd(p’, ¢') = 1 then it must be the case that r € k*. O

Remark 2 Let n =U +VY € O, where U and V are polynomials in k[X]. Then
7 is a ynit in O if and only if N(n) € k=.

The fundamental unit can be found, as in the odd characteristic case by the

continued fraction expansion of Y.

Theorem 14 Let Y satisfy Y? + BY = C, for B,C € k[X], C is monic, Y €
k((5)) and it has the additional property that y> + By +C =0 (mod D?) does
not have a solution with y € k[X] for each D|B, D ¢ k. If the quasi-period of the
continued fraction ezpansion of Y ism and € = pp—y + gm-1(Y + B) then

O =k x(e) =k X (Om41)-

Proof: We already know that the continued fraction expansion of Y is periodic
and quasi-periodic and that € = 8,,4,.
We also know that N(6,,+1) € k™ so 8,4, is a unit in O.

Let n = U+ V(Y + B) € O° be a unit, where U and V are polynomials in
k[X]. I |n| = 1 we are done. So, let [p| > 1. Since 5 is a unit, N(n) € k* and so

|N(n)| = 1= [n][7]-
Now U +YV| = [fjl = & < 1 < |VB|, since [V| > 1 and [B| > 1. Also,

Il = U+ V(Y + B)|
= [((U+YV)+VB|
= [7+VB|
= max{|7|,[VB[}
= |VB|
> |V].
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Since |B| > 1.
This tells us that

U
|Y+i7|

Since 7 is a unit we must have gcd(U, V) = 1, so there exists a ¢g € k%, and a
j > 1 such that U = cop;—; and V = cggj—1 or equivalently n = co8;4,. Therefore,
N(n) = AN (0;41) = c3Q; € k*. Hence 7 = Am for some A > 0.

This tells us that

n = Coa)\mﬂ

= co&(A)(Bms1)*.

If [n| < 1 we can use ,1-; and get the same result. Thus the assertion is proved.

O

We are now in a position to define the regulator, R, of k(X)(Y). It is the
degree of the fundamental unit of O*. From the last theorem we can see that
R = deg(@m+1) where m is the quasi-period in the continued fraction expansion of

a =Y. Since deg(Qn) =0 we get R = Amyq1.



Chapter 5

Finding the Regulator

This chapter will examine the infrastructure of quadratic function fields and use it
to compute the regulator. The infrastructure is the inner structure of the set of all
reduced ideals in the ideal class group of O with the property that given one ideal in
a class, the continued fraction algorithm will produce the remaining reduced ideals
in that class. First we must examine ideals in O and their relationship with the
material in the previous chapter. We will then define a distance function which
will allow us to compute the regulator. We will also define an operation called a
Giant-Step. This corresponds to ideal multiplication, which may give an ideal not
in the infrastructure, followed by reduction using the continued fraction algorithm,
which will bring us back to an ideal in the infrastructure.

We are still in the same situation as the previous chapter. So k is a field with
q = 2™ elements and X is transcendental over k. Now K = k(X)(Y) where
Y? + BY = C for some B,C € k[X] with C monic. Also y*+By+C =0
(mod D?) does not have a solution with y € k[X] for each non-constant polynomial
D that divides B and K C k((%)).

58
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5.1 Ideals in O

Let O = k[X][Y] C Ok where K = k(X)(Y). We call a subset A # {0} of K an
O-ideal if A possesses the properties:
1. If A\;, A2 € O and a3, az; € A then Aja; + Aa; € A

2. There exists a A € O, A # 0 such that A C O.

If Property 2 holds with A = 1, we say that A is an integral O-ideal.

For elements ay, ay, ..., a, € K the set
(a1’a27-'-7af) = {inail’\i € Ovi = 1,...,1‘}
i=1

is clearly an O-ideal. This is the ideal generated by a;, ay, . . ., a,. If Ais generated
by just a € K then we say that A is a principal O-ideal.

For wy,ws,...,w, € O we let
.
[wi,wa, ... ,wp] := {ZA,w‘IA‘ € k[X],i=1,.. .,r} c 0.
i=1

If this set is an integral O-ideal and w;,w,...,w, are linearly independent over
k{X] then {w),ws,...,w,} is called a k[X]-basis of the O-ideal. It is easy to see
that every k[X]-basis of an O-ideal, A, has exactly two elements. (See Appendix
B.)

Theorem 15 A nonzero subset A of O is an integral ideal if and only if there ezist

S, P,Q € k[X] with Q|P? + PB + C such that A= [SQ,SP + SY].

Proof: (=) Let A be an integral ideal. Then A = [@’, P'+SY] for some P',Q’,S €
k[X]. Then Q'Y € A, so S|Q' or Q' = SQ. Clearly N(P'+S5Y) € A, s0 Q' |N(P'+
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SY) and since N(P' + SY) = P? + P'SB + S?C we get S|P”. From this we can
deduce S|P, so P’ = SP. Hence, A = S[Q, P + Y] for some P,Q, S € k[X] where
Q|P*+PB+C.

(<) Let S,P,Q € k[X] with Q{P?* + PB + C and A = [SQ,SP + SY]. Let
Uy, Uz, V1, V3 € k[X] so that Uy + VY, U, + VoY € O. Also let ay, az, B, B2 € k[X].

Notice

(U1 + WY )1 SQ + B1SP + B1SY) +(Uz + VY ) (a2 5Q + B:SP + B,SY) =
(SP + SY) ((P + BY(ViB1 + VafB2) + Ur By + U2 + Q(Vien + Vaaz)) +
P*+PB+C
5Q (U1a1 + Uyaz + P(Viay + Vaas) + (ViBr + ViB2) 0 )
€A

Notice also that A C O. Thus A is an integral ideal. O
We say that A is primitive if S can be chosen to be 1.

A k[X]-basis of an integral O-ideal can be chosen in adapted form, which means
that A = [SQ, SP+SY] where deg(P) < deg(Q) and Q is monic. The polynomials

P and @ are unique and S is unique up to a constant factor.

Let A be an integral O-ideal with k[X]-basis {w;,w2}. Then A = [w;,w,]. We
define the norm of A, N(A) by

2

= c*(N(A)*)B?

W Wy

W, w3

where ¢ € k* is chosen to make sgn(N(A)) = 1. The norm doesn’t depend on the
given k[X]-basis {wy,w;}. If A =[SQ,SP + SY] then N(A) = sznday € k[X].

We define the product of two O-ideals A = [, ;] and B = [$,,0,] by
[a1, a2][B1, Ba] = (aufBr, a1 B2, @z, a2fs). Also, (B)[au, as] = [Bay, Bas).
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Let A be any O-ideal, then
A= {@la € A}

is called the conjugate ideal of A. If A = [a;, @] then notice that A = [a7, &3]

Lemma 7 1. If A is an integral O-ideal then AA = (N(A)).
2. If A and B are integral O-ideals then N(AB) = N(A)N(B).

3. If A= (a) where a € O, then there ezists ¢ € O such that N(A) = cN(a).
Proof:

1. Let A=[SQ,SP + SY]. Then

P*+BP+C
Q

,P+Y).

AA = (5°Q)(Q,P+Y,P+Y +B, )

P:+BP+C
Q

Let § = ged(Q, B, F4274C). Then §|B, and since 4|Q and §|Z+BE+C
42|P? + BP + C. We know from our restrictions on B and C in the in-

= (5°Q)(Q, B,

troduction to this chapter that this is only possible if § € k.
Thus, ged(Q, B, Z+884€) = 1 and
AAd = (5?Q)(1,Y)

= (5%Q)
= (N(A).
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2. From Part 1 we get

(N(AB)) = ABAB
= AABB
= (N(A))(N(B))
= (N(A)N(B))-

Thus, N(AB) = eN(A)N(B) for some ¢ € O*. Since norms are monic poly-

nomials in X alone, € = 1.

3. If A= (a) then A = (&). So (N(A)) = (a)(@) = (N(a)). So N(A) = cN(a)

for some c € O=.

Two integral (O-ideals A and B are said to be equivalent if there exist nonzero
a, B € O such that (a)A = (8)B. In this situation we write A ~ B.

Let A; = [Q:, Pi + Y] for i = 1,2 where Q;|P? + P;B + C. Without loss of
generality assume sgn(Q;) = 1 and deg(P;) < deg(Q:). Also let 4;.A4; = (S)C where
C={Q,P+Y]and Q|P?+ PB +C, deg(P) < deg(Q) and sgn(S) = sgn(Q) = 1.

Then N(A1)N(Az) = N((S))N(C). So, Q:Q: = 5?Q and

q=43]

Let S’ = ged(Qy, @2, Py + P; + B) with sgn(S5’) = 1.
Now SP + SY € A, A; so there exist Z,U,V, W € k[X] such that

SP+SY = ZQiQ:+U(@Q1P2+ Q1Y)+ V(Q:PL +Q:Y) +
W(P,P; +C + (P: + P; + B)Y).
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Comparing irrational parts of the above equation weget S = UQ, +V Q.+ W (P, +
P, + B). So §'|S.

Also @, P,+Q1Y € A, A;. So there exist A;, A; € k[X] such that @, P,+Q,Y =
A1 5Q + A(SP + SY). Comparing irrational parts gives @, = A;S so 5|Q;.
Similarly S|Q;. Also PP, + C + (P, + P, + B)Y € A, A; so we likewise get
S|P, + P, + B.

Therefore S| ged(Q,,Q2, P, + P; + B) = S’ and hence

S = ng(Q1, Qz, P1 +Pz +B) X

Now, there exist U, V,W € k[X] such that S =UQ, +V Q.+ W(P, + P, + B).
So

U(Q1P: + QYY)+ V(Q:PL + Q2Y) + W(P P + C + (P + P; + B)Y)
=UQ 1P, + VQ2P, + W(PP, + C)+ SY € A, A,.
Thus, there exist A,, A; € k[X] such that

Comparing irrational parts of the above equation gives that 4,5 = § so 4, = 1.

Now comparing rational parts gives
AISQ +SP = Uprz + VQ:P], + W(P]_Pz + C)
So
SP=UQ 1P, +VQ:PA+ W(P,P2+C) (mod SQ).

Using that VQ, = S+ UQ: + WP, + WP, + WB and dividing through by S we
finally get

P=P +% (UP +P)+ W (222%))  (mod Q)]
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Thus, given A; = [@Qy, P, +Y] and Az = [Q2, P + Y] we can easily compute
C =[Q,P+Y]and § € k[X] such that 4, 4; = (S)C.

Lemma 8 If A and B are equivalent, integral O-ideals, there ezists some v € A
such that (7)B = (N(B)) A and 0 < |y| < |[N(A)|.

Proof: Since A and B are equivalent we have (a)A = (8)B for some nonzero

a,B € O. So taking norms we get ¢;a@N(A) = c;86N(B), for some c;,¢c; € O~.
Let ¥/ = clgN(A) = ¢, N(B). Since N(B) € B we know that v’ € A.
Also, (a)(7")B = (B) (N(B)) B = (a) (N(B)) A. So, (v')B = (N(B)) A.

Let € be the fundamental unit of O, so |¢] > 1. Let no € Z o be such that
o <IN (A)].

The result follows with v = e™"4'. O
An integral O-ideal, A, is called reduced if A is primitive and there exists a
k[X]-basis {Q,P + Y} for A with Q, P € k[X], Q|P?*+ C + PB and
|IP+Y +B|<|Q|=|N(A)|<|P+Y].

It is easy to see that this is equivalent to a = —%ﬂ'— being a reduced quadratic

irrational.
Theorem 16 A primitive O-ideal A is reduced if and only if |N(A)| < |B]|.

Proof: (=) Let A be a reduced O-ideal. Then there exist P,Q@ € k[X] such that
A=[Q,P+Y]and a= 5‘5! is a reduced quadratic irrational. We know then that

|@| < |B]. Since |[N(.A)| = |@Q| we are done.
(<) Let |N(A)| < |B] for a primitive O-ideal A = [Q, P+Y] with Q, P € k[X].



CHAPTER 5. FINDING THE REGULATOR 65

Let P' = P + |B+5tE| Q. Cleatly A=[Q, P’ + Y] and

P’+Y+Bl__ )P+Y+B + lP+Y+BH <1
Q Q Q ]

So |P'+Y + B| < |Q|- Thus we also have, |[P'+Y|=|(P"+Y + B)+ B|=|B| >
|@Q|- Hence, a reduced basis for Ais {Q,P'+Y}. O

Lemma 9 If A is a reduced O-ideal then there does not ezist any nonzero aa € A

such that |a| < [N(A)| and |a} < |[N(A)|.

Proof: We know A = [Q,P + Y] where P,Q € k[X] and |[P+Y +B| < |Q| =
IN(A)| < |P +Y].

Let @ € A with a # 0, then there exist U,V € k[X] such that a =UQ + V(P +
Yyanda=UQ+V(P+Y + B).

Since a # 0, if V = 0 then U # 0 or in other words [U| > 1 and |a| = |a|.
Hence |a| = [UQ| > |@Q| = |N(A)| and the assertion is true.

On the other hand if V' # 0 then |V| > 1. If in addition [U]| < |V| then [UQ] <
[VIIP+Y|solal=|V||[P+Y|2>|P+Y]|>|N(A)|- Similarly, if [U| > |V]| then
lUQ| > |V||P+Y + B| so [@| = |[UQ]| > |Q| = |N(A)|. Thus, the assertion holds.
a

5.2 Baby-Steps and Equivalent Reduced Ideals

We can now examine the way in which the continued fraction algorithm acts on the

primitive reduced ideals of O.
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Let A be a primitive O-ideal. Then there exist P,Q € k[X], Q|P? + BP +C
such that A=[Q,P+Y]. fa= 5-'})’1, then « is a quadratic irrational and we can

apply the continued fraction algorithm to a.

Define @;, P; as in the continued fraction algorithm for a. Then let A; := A
and Aiyy := [Q;, P + Y] for i > 0. We can now talk abut performing the continued
fraction algorithm on A in this way.

We know that a; = ﬁé’f-t for i > 0 where Q;, P; € k[X], Q: # 0 and Q;|P? +
F;B + C. We call each step of the continued fraction algorithm on A a Baby-Step.

Obviously, A;4, is a primitive integral O-ideal. Now

A = [Qi1,Piny +Y]
= [Qi-1,Pi+ B +Y]

since P; = a;Q; + Pi—; + B. Using this result we get that

(@) A = [QiQi—1,Q:P: + Q:B + Q.Y]

= (Pi+3+y)[Q‘.,.1_’i_‘.‘?*-iQ§‘_'f_?]

= (R+B+Y)[Q, P +Y]
So

(Qi)Ai=(Pi+ B+Y) Ay

Theorem 17 If A= A, = [Qo, P, + Y] is any primitive O-ideal then each A; is o
primitive O-ideal and fort > 1,

(Qob;) A = (Qi-1) Ay

where Qob; € O.
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Proof: Since 8; = p;_; + fﬂg;—‘:q;.z, we get that Qof; = Qopi-2 + (FPo+Y)gi2 € O.

Since 6, = 1 we have trivially that (Qo¢8;) A; = (Qo) As-

Assume that (Qo6;) A; = (Q:i-1) A: for some i > 1.

. . — PitY P4Y+B __ Qi
Notice that a; = “F=53vip = mrvss- 50

Qi-16i41 = Qi—xaiij = (P; +Y + B)4..
We know that
(Q)Ai=(P+B+Y) A

from the statement before this theorem. Now multiplying through by (Qo#8;) and

using the above result we get

(Q:) (Qob;) Ai = (Qi~1) (Qobis1) Aisr-

From the Induction Hypothesis we deduce that
(Q:) (Qi1) AL = (Qi-1) (Qobis1) At

After dividing through by (Q;-,) we conclude by the Principle of Mathematical
Induction that the result holds. O

Since N(4;) = %g(—a_) and A = A,, the above result is equivalent to

(N(A)6;) A = (N(A)) Al

So, A and A; are equivalent for all : > 1.

Corollary 7 If A= A, =[Qo, Po + Y] is any primitive O-ideal then we have that
fori>1
A = [Qooi, Qooﬂ-x]-
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Proof: Since Q;_10;41 = (P:+Y + B)6; and A; = [Q;—_;, P, + B + Y] we see

(Qi-1) [Qob;, Qobiv1] = [QoQi-16i, QoQi-16i41]
= [QoQi-18:, (P: +Y + B)6:Qo)
= (Qob%)[Qi-1, Pi+Y + B]
= (Qob) A:.

Using Theorem 17 the assertion immediately follows. O

We now examine the relationship between the reduction of @ and the reduction

of A.

Remark 3 If in the continued fraction ezpansion of a = ag = -E“Qi;-z there is an

1 > 0 such that a; = -E"g"_!- is reduced then obviously A;,; is reduced because a basis

for Ay is {Q:, P; + Y} which is reduced.

Theorem 18 If A = A, = [Qo, Py + Y] is any primitive O-ideal then Ay, is
reduced for all
i > max {0, %deg(Qo) - ~;—deg(B) + 1} X

Proof: The result follows from Theorem 4 and the above remark. O

Notice however, that it may be possible for A;,; to be reduced but the basis
given by the continued fraction expansion not to be reduced. Then o; would not

be reduced. We do have the following result though.

Theorem 19 If 4 = A, = [Qo, Py + Y] is any primitive O-ideal and Ay, is

reduced for some i > 0 then a;yy 15 reduced.
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Proof: Let A;;; be reduced and then |[N{Ai4;)| = |Q:]| < |B|. By Theorem 5, a;4,

is then reduced. O

Theorem 20 Let a be a quadratic irrational. If in the continued fraction ezpansion
ona=aqa= 55‘;—" there ezists a minimal | > 0 such that |Qi| < |B| then Ay, is
reduced and ‘m| <1, |6ya] 2 fg-gjl-

Proof: We have that |Qi| = |[N(Ai41)| < |B]. So A4 is reduced.
If I = 0, then Qi = Qo and [fy| =1 =4y ].

Let { > 1. If |a;| < 1 for some j € {1,...,l{—1} then a; is reduced. This would
say that [@;| < |B| which contradicts our assumption. Thus, |a;] > 1.

We also know from Lemma 3 that a; is not reduced, so || > 1. Hence,
!
— 1
Oal=]]l —=<1L
o ,_11 (o531
Since |9;+1| i1 | = %% we get also that

19,

[Gr41] 2>

Not only will the continued fraction expansion produce equivalent reduced ide-
als, but it will produce all equivalent reduced ideals, as shown in the following
result. This result shows that the infrastructure is the inner structure of a class in

the ideal class group.

Theorem 21 Let A= A; and B be two equivalent, reduced, integral QO-ideals and
v € A with
(v) B = (N(B)) 4,
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where 0 < |y| < |N(A) | Then there ezists somev > 1 andc € k* suchthat B = A,
and v = cN(A)b,.

Proof: We already know that such a 4 exists by Lemma 8.

Since A; is reduced, so is a; for all ¢ > 1 and hence [&] < 1 < [a;|. Thus
Bia] < 16, 162] = 1 and [Fis] > [&
16:] < ql,. Thus {|6;[}:>1 is strictly decreasing and converges to 0. Since |y| < [N(A)|

. Since |a;| > q for all ¢ > 1, we see that

there must exist some v with [0,4,] < ITVI%lW < |6.|. Thus

Since N(A) € A, we have N(A)f,,, € A so
N(A)b,..1N(B) € (N(B)) A=(7)B.

Thus, N(A)8,+ 1 N(B) =« for some 0 # 3 € B.

By above we can deduce that |y||N(B)| > [v||8], so |[N(B)| > |B|. Since B is
reduced we must then have |Z'f| > |N(B)| by Lemma 9. But then using the definition

of 8 we conclude

M ()] > -

Since v € A we can use Corollary 7 to deduce that there exist U,V € k[X] such
that

4 = UN(A), + VN(A)b,4
¥ = UN(A)b, + VN(A)8.11.

If [U] < V] then [7] = |V N(A)Foa| > [VI[7l- So 1> V] and thus U = V = 0.

This is not possible since 4 is nonzero.
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If [U| > |V], then |y| = |UN(A)8,| > |U}|vl. So1 > [U|. Thus U =c € k™ and
V = 0. Hence
v =cN(A)b,.

Since (N(A)6,) A, = (N(A,)) A we can take norms to get that
N(A)N(8,) = a1 N(A,)
for some ¢; € k™. From above we can then deduce

N(y) = c2N(A)*N(8,)
= aN(AN(A)

for some cz,c3 € k.
Since (v) B = (N(B)) A we again take norms and get N(v) = csN(B)N(A) for
some c4 € k. Since sgn(N(B)) = sgn(N(A,)) = 1 we deduce that N(B) = N(A,).
Thus (v)B = (N(B)) A = (N(A4,)) A. Since (N(A)8,) A, = (N(A,)) A and
v = cN(A)G, we finally get
(MB=H)A
from which the result follows. O

This result says that the continued fraction algorithm will produce all primitive,
reduced ideals equivalent to the starting ideal. It is this set of equivalent reduced
ideals that we call the infrastructure.

5.3 Distances and the Giant Step

Let A = A; and B be two equivalent, reduced, integral O-ideals. By Theorem 21
there exists v > 1 such that B = A,. We also know that (N(A)4,) A, = (N(A))) A,
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sO

(N(A)4,)B = (N(B)) A.
Define the distance from A to B by
8B, A)=48(A,, A) = deg(d,)-

Also when A is understood by context, we write §, := §(A,, A).

Definition 5 Let k = Fou and K = k(X)(Y) be a function field defined by the
non-singular equation Y? + BY = C for B,C € k[X], C monic and the place
at infinity splitting completely. Let O = [1,Y] and R be the regulator. Then the
infrastructure discrete logarithm problem is, given a primitive reduced ideal A, to
find (A, O) < R if it ezists; otherwise return, “No solution”.

We have defined this logarithm problem in terms of the starting point O, of the
continued fraction algorithm. It is also possible to define it in terms of any other
starting point, A;, that is a reduced O-ideal.

Notice that the distance function is only defined between reduced, equivalent,
integral ideals. Since I‘G_,Zl > |6;| we know that the distance function strictly
increases with i. Also since d§; € Z, we get de4; > 8¢ + 1. Thus, if §; = §; then
A; = A;and if §; = 0 then A; = A.

Conversely, if A; = A; then
(N(A)8:) Ai = (N(A)) A= (N(A;)) A= (N(A)b;) A;.

Hence we get that (N(A)8:;) = (N(A)8;), and so 6; = €b; for some ¢ € O~. We
know that € = ¢(0pm41)' for some ¢ € k* and I € Z so deg(8;) = deg(6;) + IR where
R is the regulator of k(X)(Y'). Thus, if A; = A; then

§=8+IR
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for some [ € Z. In particular note that d,4+1 = R.

Using the facts that ;0; = -QE";—‘, 0; = [I'- L and |a;—1Q;—:| = | B| we conclude

=1 a;
-2
&; = deg(B) — deg(Qo) + Y_ deg(a;)

i=1
for ¢ > 2. It is easy to see that §; = 0.

For the remainder of this chapter let A = A4; = (1) = O = [1,Y]. Then we
have Php=P=0,@Qo=Q=1land ay=a =Y.

Since |[N(A)| = 1 < |B|, we have that A is reduced and thus A; is reduced for
all 2 > 1 and so 4; is defined for all i > 1. Also (Qof;) A; = (Qi-1) A1 from which
we conclude

A= (-9:) = [Qi-1, Pima + Y.
So A; is principal for all z > 1.

Now let B be any arbitrary primitive reduced O-ideal. Let the quantities asso-
ciated with the continued fraction expansion of B be P, Q:, 6; and §; := §(B;, B).

For any s,t > 1 we can find an S € k[X] and a primitive O-ideal C such that

A,B. = (S)C.

We can then apply the continued fraction expansion to C. We denote the quantities
associated with this expansion by P!, QY and 8;. Notice that there is no distance
defined since the ideal C may or may not be reduced.

We know that there exists a minimal ! such that IQ{’_,I < |B| or in other words,
such that C; is reduced. Then notice that

Ci~C~(S)C =AB.= (0,) B.~ B ~ B.

Hence C; ~ B. Since they are both reduced ideals there exists a ¥ > 1 such that
C: =B..
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Theorem 22 In the above situation we have

0”
6, = cb, ogg'

where c € k*. Further
5.', = 5: + 4, + f

where f := deg(8]) — deg(S) € Z and 2 —2deg(B) < f < 0.

Proof: From Theorem 17 we know (8,) A, = (N(A.)), (N(B)8;)B: = (N(B:))B
and (N(C)8])Ci = (N(Ci))C. Since A,B; = (S)C we can take norms to get

N(A,)N(B:) = c;S*N(C)
for some c; € k*. Using all of the above, we can deduce that

(N(B)8.8,87) Ci = (SN(C1)) B.

Let v = YO24 ¢ B and so (1) = (N(C)) B.

Since [6,|,163],10{'| <1, we get that 0 < |y| < [N(B)|. Thus, by Theorem 21,
there must exist some v > 1 and ¢; € k* such that v = ¢, N(B)4., and C; = B,.

Therefore,
0”
Lt

0:, = c30,0, S

for some c3 € k*, from which we get
=848 +f

with f = deg(87) — deg(S).
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Notice that
[ [orer]
£ I
|N(G)
ISTIN(C)
o sl
~  IN(A)N(Be)
> 1 .
~  IN(AJIN(B)I
Since A, and B, are both reduced, |N(A,)|, |N(B:)| < |B| and so f > —2(deg(B)—

1).

Theorem 20 says that I?;-" < 1, so deg(8]) <0, which gives f < 0. O
Using the above notation, we define a Giant-Step by the operation
A, * By := (B,, f) = (Ci, f)-

So a Giant Step consists of taking the product of two primitive ideals and then
reducing the primitive part of the product using the continued fraction algorithm.

Let m be the quasi-period of the continued fraction expansion of a =Y. Since
Qam = ¢ € k*, we get that

Aimnr =6, PAam+ Y] =[1,Y]=A, =0.

S0 dam+1 = 81 + IR where R is the regulator and I € Z5,;. In fact,

hmer = deg(frms1)
= deg(Bmer )
= AR.

Since P; = Piam and Q; = JHVTH 0D g grall A > 1 and all
t > 1 we know that

Aa\m+i+1 = Ai-i-l .
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So, Oyxmsit1 = Oip1 + IR forall A > 1,7 > 1 and for some | € Zy,. Since
deg(cisam) = deg(a;) for all i > 0 and A > 0, and since a,, = L2+ we also get
that

Om+it1 = 0y + AR

for all # > 1 and A > 1 by examining the formula for dm4it1-

We have also that é; = deg(B) + Z;;’l deg(a;), so &; > deg(B) +i—2.

5.4 Algorithms

This section gives three algorithms to compute the regulator of K. They are based
on similar algorithms which originally appeared in [47, 49] in the context of odd
characteristic function fields.

The first algorithm is the naive method of computing the regulator. We simply
start with the ideal A = [1,Y] and produce the continued fraction expansion until
Q@m € k™. Then R = é,,41. We call this the Baby-Step algorithm.

The second algorithm is a basic Giant-Step Baby-Step type of algorithm. It uses
Baby-Steps to produce a table of equivalent reduced ideals. Then the Giant-Step
algorithm is performed, which “jumps over” the sequence of equivalent reduced
ideals quickly, until we obtain an ideal that is in the table. The regulator is then

the difference in distances.

Original Regulator (Giant-Step Baby-Step) Algorithm
input: ¢=2M B,C

output: R
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1. Put ¢o := % and s := i_coq%‘“‘(ml.

2. By developing the continued fraction expansion for @ = Y, compute A;
and §; for : = 1,..., s starting with A, = (1) = O. Store them in the
form

(A, &) = (N(A), Piey, &) -
If @; € k™ for a minimal 1 < j < s —1 then R = §;4,; return(R).

3. Bi:=A,; i:=0; 6] :=4,; j:=0.

4. do {
3 =13+]
(Bjt1, fiw1) == A.*Bj;
5;'4.1 = 4, + 5;' + fi-!-l;

} While (B.‘H-l g {Ah Az, .. -1An})'
5. We have B;y; = A; € {A1,A;,...,A,} and then

R:= 6';-+1 — 4&;;

return(R).

Proof: If the algorithm terminates in step 2, then @Q; € k* and by Theorem 8,

j = m, so the output is R.

Otherwise, we must show that the algorithm will terminate in Step 5 with the
correct output. Now, s = [g‘-q%d"(B)J, so s > deg(B) and 4, > 2deg(B) — 2. Thus
8t =8, + 85+ fiy1 > 2deg(B) - 2+ 47 ~2deg(B) +2 =4} for all 5 > 0.

Sod} € Zyo increases with j. Thus, there must exist a least v with the property
that 6, <R < é&,,,. Now, o, — &, =8, + fo41 < 6,. So, 8., = 8myy + 1 for some
1< 4,.
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Now, &8/, = d),,, for some A4y and 6y < 0a,y < 01 +6,. Thus, by, =

dm4i for some 7 > 1.

But then
5m+i = 5m+(i-1)+1
= da-1n+a1+R
= §+ R
So, I =§; < 4,.

Now consider A; and B,;; = Am+i- By Proposition 2, A;=An4: so the algo-
rithm will terminate and R =4, —4;. O

We examine the conjugate of an ideal as follows. If A; = [Q:_;, Pi-; + Y] then

the conjugate is

zi [Qi——l: Pf—l + B + Y]
= [Qi-1, P+ a;-1Qi1 + Y]

= [Qi-l: Pi + Y]'

Proposition 3 Let m be the quasi-period of the continued fraction ezpansion of

a=Y.

1. ._A.,-‘=.A.m—.'+z fori=1,2,....,m+1.
2. If we set §; := 8(A;, A) = Opip2 we get fori=1,2,... m+1;

R =§; + &; — deg(Qi-1).

Proof:
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1. By Theorem 10 we know that Py = Pp_; for ¢ = 0,...,m — 1 and that

Q; = V' Qi for i =0,...,m and some c € k*. So

A = [Qi-, Pi+Y]
= [ Qmei-1)s Pm-gi-1) + Y]
= Am-is2

Am-f-l = [an Pm+1 + Y]
= [c(—l)m--l ) Pm+1 + Y]
= Al-

2. Notice that

-1 1™1
s = HTI >

j=1 % 5= U
m
= G;C II Am—j+1
=t
m—i+l

=9‘CH&;’

=1

= §;.C (om-i-}-z)-l

by Theorem 10 for some C € k*. Which after conjugation gives that

Ontr = B:C(Om—iv2)’
Oz
= 6;C
Qm—i—i—l

from which the result immediately follows.
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The third algorithm utilizes symmetry and conjugate ideals to effectively double
the size of the stored table. This is the most efficient algorithm presented.
Optimized Regulator (Giant-Step Baby-Step) Algorithm
input: ¢ =2 B,C
output: R

1. Put s := [g-q%deg(B)J and T := [-;— deg(B) + 1_’.

2. By developing the continued fraction expansion for a =Y, compute A;
and §; for 2 = 1,...,s + T starting with 4; = (1) = O. Store them in

the form

(A, 8;) = (N(A), Prer, 63) -

If P, = P4y for a minimal 1 < v < s+ T then R = 24,4, — deg(Q.):

return(R).
_ Q . . —
H_L—sglg(q,.) = sgnle.y for aminimal 1 < 4 < s+ T then R = 20,4, —~

deg(@,) + deg(ausn); return(R).
3. (Bi,fi) =A,x A5 61 :=20,+ f1;5 =1
4. While (Bj g {Ah Az: ey Al-{-T} U {I?Iz-y RN Aa-!-T}) {

(Bj+1, fi+1) = By *B;j
&+ 5; + fin1

!
6:'+1

j = j+1

}
5. We have B; = A; € {A1, As, ..., A1} U {A1, A3, ..., AT}
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IfB; = A € {A, ..., Aus7} then R := 4] — §;; return(R).
IfB; = A € {z—{, ceny A,+T} then R := &} + & — deg(Qi-1); return(R).

Proof: If the algorithm terminates in Step 2, then by Corollary 4, the output is
the regulator. Otherwise we must show that the algorithm will terminate with the
correct answer in Step 5.
For all j > 1, we know that B; = A, for some A; > 1. Also 87, —4; =
8 + fixn = 20, + f + fis1 > 20, — 4deg(B) + 4. Since s = l%q§d°5(B)J, then
s > deg(B) and 4, > 2deg(B) — 2. So 4%, > 4.
Now let v € Z be minimal such that
8! < 8urT = Omos-r2 < 841,
then
Oy =0,y =0Ty +1
for some ! < 24,.
If§,, <Rthend , = & = dpn_iys for somei < s+7T. Now Byyy = Apiyz =
A;. So
R = &+ 8 —deg(Q:i-1)
= 48, + 6 — deg(Q:i-1).

Otherwise 4!, +1 > R. Since

OmtatT — dasr R+ 4,47 — R+ dus1 — deg(Qusr-1)
20,41 — deg(Qat1-1)

26, + 2T — deg(Q,+7-1)

20, + deg(B) — deg(Q.+7-1)

20,

v vl

\%
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we know that 0], < dmi,.+7 and we are in the situation of the proof of the Original
Regulator algorithm. O

5.5 Some Examples

We will now present some examples of quadratic function fields of even characteristic

and explore their infrastructures.

5.5.1 Example 1

Let k = Fs = F5(d) where 4§ satisfies > + d + 1 = 0. Then let K; = k(X)(Y) be
defined by the equation

Y2+ (X2 +X +0)Y =X +4.

Notice that this equation has no singular points and that letting Y = 2. __ ¢ X*

and equating coefficients gives

5 &
Y=X+5tsgt-

so we are in the situation as described in Section 4.1.

We will examine in detail the infrastructure for this field starting with the ideal
A, =[1,Y]. Wehave that d = |Y| = X and that Qo =1, P, =0and ap = Y.
The polynomials B and C are B= X?+ X +4d and C = X3 + 4.

We will first compute
g = (Po+d)divQe
= 0+X)divl
= X
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and

ro = (P +d) mod Qo
(0+X)mod 1

]

0.

Which allows us to compute

P1 = d+To+B
= X+0+X2+X+4
= X*+34.

Since we do not have a value for r_; we must use the following formula for Q:

0, = P+ PB+C
' Qo
_ X P+ X+ P+ X+ X+ X+
- 1
= §X +4.
Thus, o = B4Y = AHY Also,
0, = 1
a
_ P+Y+B
Qo
_ X*4+5+Y + X2+ X446
B 1
= X+Y

SO

A, = [Q1,PA+Y]
X +6,X*+6+Y]

I
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= [X+1,8+Y]
= (%)
= (X*+d+Y).
The distance to this ideal is §; = deg(B) — deg(Qo) = 2.
We can now continue with the next Baby-Step to get
e = (PL+d)divy
= (X*+5+X)divéX +4
= X

and

Ty = (P1+d)m0dQ1
= (X*+6+X)modsX +4
= d.

From which we can compute

Pz = d+1‘1+B
= X+6+X2+X+46
= X?

and

Q2 = Qo+ ai(r,+10)
= 148°X(6+0)
= X+1.
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_ X3*4Y
So Ay = X+1 and

Thus we get the ideal

a3

X2+Y+X*+X+4

= (X+Y) X 19

X+6+Y
= (X+Y) X +46

= °X*+1+8°XY.

Ay = (@2, P +Y]

= [X+1,X*+Y]
= [X+1,1+4Y]

- @

- (56x3+x+1+55xy)

which has distance 3 = d; + deg(a,) = 3.

Continuing in this way we get

and

a = (Pz+d)diVQz
= (XP+X)divX+1
= X

ra = (Pz + d) mod Qz
= (X*+X)mod X +1
= 0.

85
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So

Pa = d+7'2+B
X+0+X2+X+46

]

= X*+4
and

Q: = QL+ azx(r2+1)
= X +&+X(049)
= 9.

2
Then a3 = X 6" Y and

6, = G
as
X+Y
— € 2 5
(X2 +1+ XY)X_H

= #X3+ (X +1)Y.

This gives the ideal

Ay = [Q31P3+Y]
= [6,X*+48+Y]
= [1,Y]

- @
(

FX + X + 68+ (X +1)Y)

with distance d, = 43 + deg(az) = 4. Notice that since Q3 € k the regulator is
R = §4 = 4. Also, consistent with Theorem 11 we have @, = §Q,.
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5.5.2 Example 2

Let k = Fj: = Fa(y) where 2 + v+ 1 =0and 9 = v+ 1. Let K, = k&(X)(Y)
where

VP4 (X*+ X+ X 4+7)Y = X5 +14.
Notice that this equation has no singular points and that Y € k{(§)) so again we

are in the situation of Section 4.1.

We will examine the infrastructure for K, starting with the ideal 4; = [1,Y]).
Table 5.1 shows the results of the continued fraction expansion on A, giving P;, Q;,
deg(a;) and &;4, for all ¢ > 0 until we can determine the regulator. For this field
we have d = [V ]| = X2

Notice that Pjo = Py, so by Theorem 11, both the quasi-period and period
of this expansion are 20. Now, by Theorem 12, we have R = 24;; — deg(Qy0) =
30—-1=29.

Of interest in this example is that when ¢ = 6,9, and 10 we get deg(a;) > 1
and so ;43 — d;41 > 1. This shows how the distance function can increase in steps

greater than 1, and so, for example, there will be no ideal with distance 10.
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. i P; Q: deg(a;) | di41
0 0 1 2 0
1 X+ X+9 X34+9X2+9 1 4
2 [ X449 X2+9X +4 X3+ 1 5
3| X*+94X2+X+1 TX3+ X+ 1 6
4| X*+X2+X+9 YX3+ X +4 1 7
5| X44++4X2+X+1 YX3 4+ X+ 1 8
6 X +4X +9 YX:+4X ++ 2 9
7 X4y YX3 4+ X2+ 4 1 11
8 Xt +9X2 +4 X34+ X2 +9X +4 1 12
9 Xt ++4 X2+ X+4 2 13
10 X4+ X+ X+ 3 15
11 X'+ X+9 X2+ X++ 2 18

Table 5.i: The continued fraction algorithm for K.
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Chapter 6

A Cryptosystem in the

Infrastructure

This chapter will introduce key exchange and signature schemes that can be im-
plemented in the infrastructure discussed in the previous chapter. We will first
introduce the algorithms needed in the description of these schemes, then we will

discuss the schemes and their security.

We are still in the same situation as the previous two chapters. So k is a field
with ¢ = 2™ elements and X is transcendental over k. Now K = k(X)(Y) where
Y2+ BY = C for some B,C € k[X] with C monic. Also Y?+ BY +C = 0 has no
singular points (X,Y) = (u,v) € k x k and K C k((%))- Let d= Y.

6.1 Algorithms

In this section we will give detailed descriptions of all the algorithms necessary to

implement the key exchange and signature schemes to be described in Section 6.2.

89
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Let R = {A4; = O, A,,..., An} be the sequence of reduced ideals produced by
the continued fraction expansion of @ = Y. A Baby-Step comsists of performing
one step of the continued fraction algorithm on a primitive O-ideal. The following
algorithm will apply a Baby-Step to an ideal in R and compute the distance of the
resulting ideal.

BABYSTEP

Precomputed: A;; = [Q;—2, P2 + Y, A = [Qi-1, ey + Y] € R, 1ip =
(Pi-2 + d) mod Q;_,, &; = §(A;, A;).

Input: (Q:i-2, Qi-1, Pie1,7i-2,6;)
Output: (Q:-,, @i, Py 7i1, di41)
1. Set

@iy = (Pioy +d} div Qi
ri1 = (Piey +d)mod Qi

P == d+ri1+8B

Q: = Qiz+ai(riy +1i3)
01 = 4; + deg(ai)

so Ay = [Qs, P + Y] and iy = 8(Aiy, Ar).

Each application of BABYSTEP requires a fixed number of polynomial oper-
ations. Each of these polynomials has degree bounded by max {deg(B), 7 deg(C )}.

Given two primitive ideals A and B, we can multiply them together to obtain
AB = (S)C where S € k[X] and C is a primitive ideal. The following algorithm
will perform this operation.
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MULT
Input: A=[Q,, P, +Y],B=[{Qs,P+Y] R
Output: C = [Q., P. + Y] and S € k[X] such that (S)C = AB.

1. Solve S := ged(Qa, @s) = U1Q. (mod Q) for Sy, Uy € k[X].

2. Solve S := gcd(Sy, Ps+ Py+B) = Us Sy + W(Pa+ P+ B) for S, U, W €
k[X].

3. Set Q. := -o'%?'»

4. Set P.:= P, + % (UiUx(P. + B) + W (B2524S))  (mod Q).

Theorem 23 The output C and S computed by MULT satisfies (S)C = AB.
Furthermore, deg(S) < deg(B) and deg(P.) < deg(Q.) < 2deg(B). Also, MULT

performs O(deg(B)) polynomial arithmetic operations.

Proof: The first claim was proved in Section 5.1. Since S divides both @, and Q,
and also A and B are both reduced we know that deg(S) < deg(Q.),deg(Qs) <
deg(B). Also, deg(P.) < deg(Q.) < deg(Q.) + deg(Qs) < 2deg(B). The algo-
rithm performs a fixed number of polynomial operations and 2 Extended Euclidean

Algorithms. The number of polynomial operations the Extended Euclidean Algo-
rithm performs is linear in the degree of the polynomials. Here the degree of the
polynomials is O(deg(B)). This is because [P, + Y| = |B, + Y| = |B|, so we have
|P. + P, + B| < |B|. Thus, the final claim has been shown. O

Let A,B € R. Then using the above algorithm we can produce an S € k[X]
and ideal C such that AB = (S)C. The ideal C may or may not be reduced. From
Theorem 18 we know that by applying the continued fraction algorithm to C we can
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produce a reduced ideal R in a relatively small number of steps. In Chapter 5 we
introduced the notation R = A=*B for this operation which we called a Giant-Step.
Theorem 22 says that R € R and that §(R,0) = §(A,O) + §(B,0) + € where
2 — 2deg(B) < € < 0. The next algorithm performs a Giant-Step.
GIANTSTEP
Illpllt: A= [QaaP¢+Y]1B = [Qb,Pb +Y] ER.
Output: R =[Q,P+Y] = A*B, and € € Z g such that e = §(R) — §(A) ~(B).
1. (C,S5):=MULT (A,B),so (S)C =AB,C=[P.,Q-+7Y], S € k[X].
2. If deg(Q.) < deg(B), then set R :=C, € := —deg(S) and return.

3. Set

jg =1

;'-1 = Qc

iy = P

riy = (P +d) mod @,

P := d+r;,+B
, P2+ PB+C

Q; =

7
i~1

d; = —deg(Qj_,)
4. while (deg(Q}) > deg(B)) do {

J = 341
a;_, = (P;_l + d) div Q;_,
rioy = (P +d) mod @,
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PJ{ = d+r;'_1 +B
Q; = Qi1+aj, ("}-1 + "9-2)

dj = dj_1 +deg(aj,)

}
5. Set Q :=Q%, P:= P},R:=[Q, P+Y] and ¢ := d; +deg(a}) — deg(S) +
deg(Q5)-

Theorem 24 The ideal R computed in GIANTSTEP is reduced. Furthermore,
2—~2deg(B) < € <0 and |d;| < 2deg(B) throughout steps 8 and {. All polynomials
computed in steps 3 and 4 have degree bounded by max {2 deg(B),%deg(C)} and
the number of polynomial operations performed is O (deg(B)).

Proof: Let j > 1 be the first index such that |Q}| < |B], then the loop in Step 4
exits and R is reduced. At this point d; = —deg(Q}) + %=1 deg(a?) so

e = d;+deg(a]) — deg(S) + deg(Q)

= deg(@)) — deg(@}) + 3. deg(al) — deg(S).

=1

Notice that deg(a’;) can be calculated as deg(P + d) — deg(Q). Since G}HH = g',"-

and 8},, = [[i.; L, we get that
e = deg(8}4,) + deg(S).
By Theorem 22 we obtain that e = §(R) — é(A) — 6(B) and 2 — 2deg(B) < e < 0.

On the other hand, if the algorithm exits in Step 2, then |Q.] < |B]| so R
is reduced and € = —deg(S) = deg(8}) — deg(S), so again by Theorem 22 € =
§(R)—48(.A)—4(B). By the proof of the MULT algorithm we know deg(S) < deg(B)

so 2 — 2deg(B) < —deg(S) <0.
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It is easy to see also by the proof of MULT that for all : € {2,3,...,5}
~2deg(B) < — deg(Q}) = dy < .
Also, since j > 1 we know |a}| > 1 and then
d; < dj + deg(a}) = € + deg(S) — deg(Q;) < deg(S) < deg(B).

So, |di| < 2deg(B).

P!+Y

We also have that deg(P;) < deg(Qg) < 2deg(B). f 1 <i < j then a} = -
Z*II < 1. Thus, we know that {-% <

0:-+1| <1,so
deg(Q:) < deg(Qq) < 2deg(B). Certainly |ri| < |Q;| so deg(r}) < 2deg(B). Also,
Pl=d+r;_ + B. So

is not reduced, so a > 1 and

deg(F;)

IN

max {deg(d), 2deg(B)}
max {% deg(C),2 deg(B)} .

IN

Finally,

deg(a;)

IN

max {deg(F;), deg(d)}
< ma.x{-;—deg(C),2deg(B)}

so all polynomials computed in Steps 3 and 4 have degree bounded by

max {% deg(C), 2deg(B) } .

Step 1 takes O(deg(B)) polynomial operations. Step 3 and the inside of the loop
take a fixed number of polynomial operations. However, the loop is executed at
most max {0, 3 deg(Qp) — L deg(B) + 1} < 3 deg(B) times. So at most O(deg(B))
polynomial operations will be performed. O



CHAPTER 6. A CRYPTOSYSTEM IN THE INFRASTRUCTURE 95

Since a reduced ideal with a given distance from A; may not exist, we define
the reduced ideal closest to the left of | € Z > to be the ideal A; such that | —4; is
minimal and positive.

Given an ideal R € R the next algorithm will find the ideal closest to the left
of §(R) + I, for small I € Z, by performing Baby-Steps until the desired ideal is
found.

CLOSESTINT

Input: R=[Q,P+Y]|eR,l€ Zx.

Output: S € R and f € Zo such that §(S) < d(R)+ ! and f =6(S)—-d(R) -1
is maximal.

1. Set d, := deg(B) —deg(Q). ¥ d, > I, then set S§ := R, f := —l and

stop.
2. Set
] =1
Qi1 = Q
Py, = P

rj-1 = (Pj1 +d) mod Q;y
P; == d+r;.1+B
P_,? +PB+C
QJ' = - .
Q:-l

3. while (dj+1 S l) {

jo= g
(Qj—l.’ Qja PJ" Ti-1, df-l"l) := BABYSTEP (Q:‘-z, Qj-—l ) PJ'—11 Tj-2, dJ)
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}
4. Set S = [Qj—ls Pj_l + n, f = d,‘ -1

Before proving the correctness of this algorithm, we first require the following

lemma.

Lemma 10 Let A; = O, A,,... be the sequence of reduced ideals produced by the
continued fraction algorithm. Then the following holds

J(Au Al) = J(A:i’ Al) + J(Ah Ai)

foralll <j <.

Proof: If j = 1 then the result is trivially true. Thus assume that 7 > 1. We know

that
-2
§(Ai, A1) = deg(B) — deg(Qo) + Y deg(ac)
k=1
-2 -2
= deg(B) — deg(Qo) + Y _ deg(ai) + deg(aj_1) + D _ deg(a).
k=1 k=j

Since j >1, A; is represented by a reduced basis, so |B| = |a;—1Q;-1| and
deg(a;—1) = deg(B) — deg(Q;-1)- Thus,

J(Ais Al)
i-2 -2
= deg(B) — deg(Qo) + Y_ deg(a) + deg(B) — deg(Q;-1) + Y _ deg(ar)
k=1 k=j

= §(A; A1) + (A Aj)

as required. O



CHAPTER 6. A CRYPTOSYSTEM IN THE INFRASTRUCTURE 97

Theorem 25 The ideal S computed by CLOSESTINT is the ideal closest to the
left of 8(R) + l. Furthermore, —l < f < 0and0 < d; < for all j > 2 ezcept
for the last value d;y, which satisfies 0 < dj4y < 1+ deg(B). The total number of

polynomial operations performed is O(l).

Proof: Let A} =R, A},..., A}, A, be the sequence of reduced ideals produced.

Then since
i~2

8(A;, A]) = deg(B) — deg(Qo) + ) _ deg(ax)
k=1
for i > 2, d; = §( A}, A}) for 2 < i < s. The algorithm obviously produces the ideal
with d, < I < d,41, so 8(A;, A}) <1 < §(A,,,,A]). Thus we get that 4, =S is
the ideal closest to the left of §(R) + L.

Also,0> f=d,— 1> —l,and 0 < d; = deg(B) —deg(Q) < d; < d, <! forall
2 < j < s. For the last value d,; we get that 0 < d,4y < d, +deg(B) < +deg(B)
since deg(a,) < deg(B).

Finally, since d;;, > d; and d, < [ the loop is executed at most [ times and each

iteration requires a fixed number of polynomial operations. O

Performing a Giant-Step operation on A and B will produce an ideal R such
that §(R) < §(A) + §(B). Although 6(A) + §(B) — §(R) is small, it may not be
minimal. The purpose of the next algorithm is to minimize this quantity.
CLOSESTSUM
Input: A, BeR.
Output: C € R, f € Z <o such that §(C) < §(A)+4(B) and f = §(C)—48(A)—d(B)

is maximal.

1. (R,€) :== GIANTSTEP(A, B) so € = §(R) — §(A) — §(B).
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2. (C, f) := CLOSESTINT(R, —¢) so f =(C)—d(R)+e=4d(C)-4(A)—
4(B) is maximal.

Theorem 26 The ideal C computed by CLOSESTSUM 1is the reduced ideal clos-
est to the left of §(A) + 8(B). Furthermore, 2 —2deg(B) < € < f < 0 and the
algorithm performs O(deg(B)) polynomial operations.

Proof: By the previous theorems the first statement is trivial. By GIANTSTEP
we know that 2 — 2deg(B) < ¢ < 0. By CLOSESTINT we know that ¢ <
f €0. Also GIANTSTEP takes O(deg(B)) polynomial operations while CLOS-
ESTINT takes O(—e¢) = O(deg(B)) polynomial operations giving us our running
time. O

We can now develop an algorithm for computing the ideal closest to the left of
nd(A) given A. First we will give a purely technical algorithm.

BINARY

Input: i € {1,0}, A,B € R, f € Z <o such that §(B) < s6(A) for some s € Z>,
and f = §(B) — sd(.A) is maximal.

Output: C € R,l € Z o such that §(C) < (2s+17)4(A) and | = §(C) —(2s+1)d(A)
is maximal.
1. (M,g) := CLOSESTSUM(B, B), so §(M) < 26(B) and g = §(M) —
26(B) is maximal.

2. (N, k) := CLOSESTINT(M, —(g + 2f)), so §(N) < §(M) - (g +2f)
and h = §(N) — 8(M) + g + 2f is maximal.

3. If i = 0, then set C := N, I = k and stop.
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4. (Q,k) := CLOSESTSUM(A,N), so §(Q) < 6(A) + 6(N) and k =
8(Q) — 6(A) — 6(N) is maximal.

5. (C,1) := CLOSESTINT(Q, —(k + h)), s0 §(C) < §(Q) — (k + k) and
1 =8(C) - §(Q) + k + h is maximal.

Theorem 27 The ideal C computed in BINARY is the ideal closest to the left
of (28 + 1)8(A). Furthermore [g],|k|,|k|,|!] = O(max {2deg(B),|f|}) and the
algorithm performs O(max {2 deg(B), |f|}) polynomial operations.

Proof: If ¢ = 0, then by substituting for g and f we get
3(C) = 8(N) <8§(M)—g—2f =2s6(A).
Also by substituting for g and f we have

I=h=5§(N)— 6(M)+g +2f = §(C) — 2s8(A).

If 7 = 1, then by substituting for k, h, g and f we get
0(C) < §(Q) —k — h = (2s+1)4(A).
Also by substituting for k, k, g and f we have
[=46(C)—8(Q)+k+h=260C)— (28 +1)§(A).

Since in both cases [ was produced to be maximal, the first claim is true.

From CLOSESTSUM, 2 — 2deg(B) < g < 0. Since f < 0, we then get
g+2f <0. From CLOSESTINT, g+2f <h<0s0

|h] < 2deg(B) - 2+2|f].
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Also from CLOSESTSUM, 2 — 2deg(B) < k < 0so h+k < 0. Again by
CLOSESTINT, h+k <1<0so0

] < 2(2deg(B) -2 + | £])-

Thus, |g], [h], [k, || = O(max {2 deg(B), |f[})-

Steps 1 and 4 take O(deg(B)) polynomial operations by CLOSESTSUM.
Steps 3 and 4 take O(|g + 2f]) and O(|h + k|) polynomial operations respectively.
Both of these quantities are O(max {2deg(B), |f|})- Thus BINARY takes

O(max {2 deg(B), |f|})
polynomial operations. O
POWER
Input: AcR,n>1.
Output: B € R such that §(B) < né(A) and f = §(B) — nd(A) is maximal.

1. Compute the binary representation of n = ¥}, b;2¢~* where bp = 1 and

b: € {0,1}for1 <i<¢t.

[
e

2. Set Bo = A, 8g = 1, fo :
J.fori:=1tot{
8 = 281+
(Bl'i ft') = BmARY(bia A’ Bi-l) fl'—l)
[At this point B; € R, f; € Z ¢ are such that §(B;) < s;6(.A) and
fi = §(B;) — 3:6(A) is maximal.]
}
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4. Set B: =B, and f:= f,.

Theorem 28 The ideal computed by POWER is the reduced ideal closest to the
left of n§(A). Furthermore, 1 < s; < n, |fi| = O(deg(B)) for 0 < i < t and the
algorithm performs O(deg(B)log, n) polynomial operations.

Proof: By the proof of BINARY we know that
0(B) = §(B) < s:6(A) =nd(A)

and f = f;, is maximal, so B is the ideal closest to the left of nd(.A).

Obviously, 1 < s;_;1 < 3; < nforl <i <t Also, fo = 0 and again from
BINARY we get by induction that

Ifil = O(max{2deg(B),|fi-1|})
= O(deg(B)).

The loop is performed ¢ = log, n times and each iteration of BINARY takes
O (max {2deg(B), |fi[}) = O (deg(B))
polynomial operations. So in total POWER requires
O (deg(B)log, n)

polynomial operations. 0O

If n is polynomially bounded by |B|, then we can compute the ideal closest
to the left of nd(A) in O(deg(B)?) polynomial operations. Hence, in order to get
a polynomially bounded running time both parties in our key exchange should
bound their respective “exponents” by a polynomial in |B| that is sufficiently large
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to discourage brute force attacks. We will choose our bound to be |B I;' which
roughly corresponds to the choice made in [41]. (See Sections 6.2, 8.2 and 8.3.)

The following two algorithms are variations on POWER and can easily be seen
to have the same running time. The first will produce the ideal closest to the left
of nd(A) given A along with it’s distance.

POWERDIST
Input: A€ R, n>1, d, > 1 where §, = §(A).
Output: B € R, & > 1 such that §, = §(B) < nd(A) and & is maximal.

1. (B, f) := POWER(A, ) so 6(B) < ns(A) and f = §(B) — nd(A) is
maximal.
2. & :=nd, + f.

The next algorithm will produce reduced ideals closest to the left of I € Z 5,
for large 1.

CLOSESTLEFT

Input: [ € Z>,;.

Output: C € R, §. € Z5, such that C is the ideal closest to the left of [ and has

6. = 6(C).
1. Set

ds = deg(B)
P = d+B
Q@ = £+dB+C
A = [Q,P+Y]
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so A has §(A) = 4,.

2. Set

n

l
5.
I mod 4,
(B,f) := POWER(A,n)

r

so B is closest to the left of nd, = 4, || and f = §(B) — nd..

3. Set (C,e) := CLOSESTINT(B,r — f) and 4. := [+ e. Now C is closest
to the left of

IB)+r—f=nd+r=14, [;—}-&-(lmod&a):l

and e = §(C) — 6(B) —r + f = 8(C) ~ | is maximal.

6.2 The Key Exchange and Signature Schemes

We now describe a method of key exchange based on the Diffie-Hellman Key Agree-
ment scheme [13], but using the non-group structure of the infrastructure of a
quadratic function field of characteristic 2.

DIFFIE-HELLMAN KEY EXCHANGE

System-wide Parameters:

1. Choose M > 1 and set ¢ =2M k= F,.

2. Generate B, C, € k[X] such that C is monic, |B| > 1, Y2+ BY +C =0
has no singular points and if Y? + BY =C then Y € k((§)) \ k(X).
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3. Compute d = |Y'| where Y2+ BY =C.

4. Make (q, B, C, d) public; these are the system parameters.
Protocol:

1. Alice does the following:
(a) secretly generates k, > 1, k, < |BJ?.
(b) computes (A, d,) := CLOSESTLEFT(k,); here A = [Q.. P, + Y]
(c) transmits (Qa, P,) to Bob, keeps 4, secret.

2. Bob does the following:
(a) secretly generates ky > 1, ky < |B]?.
(b) computes (B, d;) := CLOSESTLEFT(k;); here B = (@, P, + Y].
(c) transmits (Qs, P;) to Alice, keeps 8 secret.

3. Alice computes 7, := POWER(B, 4,).

4. Bob computes T; := POWER(A, &,).

Shared Information: Alice has computed 7;, the ideal closest to the left of
§(B)da = 8d,- Similarly, Bob computed the ideal 73, the ideal closest to
the left of §(A)& = 8,0. So 7o = Ty = [Qe, Pe + Y] which Alice and Bob
share. They can use this for a key to a symmetric-key cryptosystem by de-
termining the polynomial @Q; = @3{—03- This polynomial is an invariant of
the ideal. Also the polynomial P, = P, (mod Q3), deg(P;) < deg(Q;) is an

invariant of the ideal and can be used as secret information.

We will now describe a digital signature scheme similar to an ElGamal type
system [14], which uses the infrastructure of quadratic function fields of charac-
teristic 2. After suitable modifications, this signature scheme is also applicable to
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the infrastructure of quadratic number fields and quadratic function fields of odd
characteristicc. An ElGamal type encryption scheme can also be developed in a
similar way.

ELGAMAL DIGITAL SIGNATURE SCHEME

System-wide Parameters:

1. Choose M >1 and set ¢ =2M, k= F,.

2. Generate B, C, € k[X] such that C is monic, [B| >1,Y*+BY +C =0
has no singular points and if Y? + BY = C then Y € k((%)) \ k(X).

3. Compute d = |Y | where Y2+ BY =C.

4. Make (g, B, C,d) public; these are the system parameters.

Private and Public Key:

Alice does the following:

1. secretly generates k, > 1, k, < IBI%.
2. computes (A4, §,) := CLOSESTLEFT(k,); here A = [Q,, P, +Y].
3. makes (Q,, P,) public (this is her public key) and keeps 4, private (her
private key).
Signature Generation:

To sign a message M, Alice does the following:

1. secretly generates | € Z with |B| < I < |B[*.
2. computes (R, §,) := CLOSESTLEFT({); here R = [@., P, + Y].



CHAPTER 6. A CRYPTOSYSTEM IN THE INFRASTRUCTURE 106

3.

4.

computes e := h(M Ilﬁqz‘b—')lll’, mod Eg_an"QT)) where & is a cryptograph-

ically secure hash function which takes on values less than |B I';'.

computes s := —de + 4, (notice that s > 0) and releases (R, s) as her

signature for M.

Signature Verification:

To verify Alice’s signature on the message M, Bob does the following:

1.

obtains Alice’s public key (Q,, Ps)-
computes e := h(ﬁll-s?nq(%—rj-"P, mod §g_nq'('b—.)')
computes (B, f) := POWER(A,e).

computes (C, g) := CLOSESTLEFT(s).

. computes (D, k) := CLOSESTSUM(B,C).

computes (R',[) := CLOSESTINT(D, f + g + h).

. if R’ = R then he accepts the signature; otherwise, he rejects the signa-

ture.

Bob has computed the ideal R’ which is the ideal closest to the left of s + 4.e.
Thus, R’ is the ideal closest to the left of §, and so must equal R if the signature

is valid.

6.3 Security Issues

It is easy to see that solving the discrete log problem for quadratic function fields
allows one to break the Diffie-Hellman Key Exchange or ElIGamal Digital Signature
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Schemes described in Section 6.2. We now describe an attack based on the Pohlig-
Hellman method [37] to solve the discrete log problem when the regulator and its

factorization are known.

Let A € R be a primitive reduced ideal and § be its discrete logarithm. We will
describe how to determine £ =4 (mod p) where the regulator is R = pq’ and p is
prime:.

POHLIG-HELLMAN

Input: A quadratic function field K defined by B,C € k[X], the regulator R, p
and ¢’ such that R = pq’ and p is prime, and A € R.

Output: z = §(A) (mod p).

1. Set (B, f) = POWER (A, ¢)
So 8(B) = ¢8(A) + f. B is closest to the left of ¢'d(.A).

2. Set

(C,8.) = CLOSESTLEFT(¢)

€ = 0.—¢
3. {Make table}
t = 0
D; :=
i = F

fori:=1to [B| —1{
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(T.g) := CLOSESTSUM(C,D;_,)
(Di,f;) = CLOSESTINT(T,—(c+ fi1+9))

if (D; =0) and f; =0mod R then z = —¢ (mod p).
Since i’ + 6(A)¢’ + i =0 (mod R).

(€1,e1) = CLOSESTLEFT([/3])
i =1
while (& # Dj for j =0,1,...,[vp] ~ 1) {
i= i+l
(T.g) = CLOSESTSUM(&iy, &)
(& ) CLOSESTINT(T, —(ei-1 + &1 + g))

}
5.if f;=e; (mod R) thenz:=1 [\/5] —Jj (mod p).

otherwise return to Step 4.

After Step 4 has completed we have D; = &, so §(D;) =4(&) (mod R). Thus,
i¢' +8(A)d + fi=i[Vpld +e& (mod R).

Let z = s [/p| ~ r where 0 <r < [,/ and s > 1. Then s [B| ¢’ = §(A)¢ +rd
(mod R). When s = 1 and r = j then D; is closest to the left of rq¢’ + §(A)q’ and
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&; is closest to the left of s [ﬁ] ¢’ and so the algorithm will stop. Since these two
values are congruent mod R, so will be f; and e; and the algorithm will terminate.

Steps 3 and 4 take at most [‘/;7] iterations, each requiring O(deg(B)) polyno-
mial operations. Also, the POWER computations will require O(deg(B)log, R)
polynomial operations, thus the algorithm runs in

O (([vP] +log; R) deg(B))

polynomial operations. It is therefore only feasible when R factors as the product

of small primes.

If R = q"p* for i > 2 then the following algorithm will determine §(.4) mod p*.
It is easy to see that it has the same running time as POHLIG-HELLMAN. We
will assume inductively that we already have z = §(A) (mod p*~!).

POHLIG-HELLMAN-POWERS

Input: A quadratic function field K defined by B, C € k[X], the regulator R, p, q”
and i such that R = ¢"p* and p is prime, A € R, and z = 4(A) (mod p?),
0<z<pl ’

Output: z’ = §(A) (mod p’).

1. Set (B, f) := CLOSESTINT(A, p! — z).
So if §(A) = sp*! + z, then B is closest to the left of (s + 1)p*! and
§(B)=(s+1)p" ! - f.

2. Set (C,g) := POWER(B, ¢).
So C is closest to the left of ¢"§(B) = ¢"(s + 1)p*~! — ¢"f and é(C) —
(s +1)p ' +d"f=g.
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3. Set (D, d4) := CLOSESTLEFT(¢"f — g)-
Let §:=84—q"'f+g.

4. Set (€, h) :== CLOSESTSUM(C, D).
So £ is closest to the left of

§C)+8a=q"(s+ )P —q"f+g+q"F—g+4.
5. Set (F,¢) := CLOSESTINT(E,4d + h).
Now F is closest to the left of ¢'p*~1(s + 1).
6. Starting POHLIG-HELLMAN at Step 2 with ¢’ := ¢"p**, B := F
and f := e gives
J-qlrpi-l. + (3 + l)qnpi—l +fj =3 r\/ﬂ qnpi-l +e; (mod R)

So,s+1=i[yp|—j (modp). Lety:=i[\p| —j—1 (modp),
then z’' :=yp* ' + =z (mod p').

At this time, the best known algorithm to find R runs in time
0 (q%deg(B)ﬂ) .

(See Section 8.2.) Thus, finding R is infeasible when B and C are chosen so that
q7 9B is large. Since the Pohlig-Hellman algorithm requires the knowledge of R,

it does not appear to pose a serious threat.

We remark that this Pohlig-Hellman attack is also valid on the cryptosystems
proposed for the infrastructure of quadratic function fields of odd characteristic.

In [33] a probabilistic subexponential algorithm is given for computing discrete
logarithms in the infrastructure of quadratic function fields of odd characteristic.
It would appear natural that this algorithm could be modified to work in even
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characteristic. However, it only works for function fields of sufficiently large genus.
At this point, it does not appear to be a serious threat to cryptosystems of practical

size.

As shown in Section 8.2,
m=0 (qdeg(B))

and

R=0 (qdeg(B)) .

In order to prevent against brute force attacks on the discrete log problem, we

would suggest that ¢, B and C be chosen so that

qdcg(B) ~ 10100.

This would also make finding R and using the subexponential attack infeasible.



Chapter 7

Equivalent Discrete Logarithm

Problems

This chapter will show how non-supersingular elliptic curves over fields of charac-
teristic 2 are related to the function fields we have been studying in the previous
three chapters. This analysis is similar to that of [1] for underlying fields of odd

characteristic.

7.1 The Divisors of an Elliptic Curve

In this section we will state some well known results concerning divisors of elliptic

curves (see [10, 28, 29)).

Let E be a non-supersingular elliptic curve defined over k = F, where ¢ = 2¥.
If E is defined by the equation

Yy +zy =23 + a2’ + ag

112
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then let K = k(z,y) be the function field associated with E. In Section 7.3 we will
see the connection between this function field and those discussed in the previous

chapters. At this point, the connection should not be obvious.

Definition 6 A divisor D is a formal sum of points in E
D= zmp(P),mpez
PeE

where only a finite number of the mp are non-zero. Define the degree of D to be

EPGE mp.

The set of all divisors associated with E forms a free abelian group over Z
generated by the points of E.

Let R € K, and let P = (z9,y0) € E, P # oo. Then R is said to be defined
at P if there exist polynomial functions a(z) + yb(z), c(z) + yd(z) € k{z,y] where
a(z),b(z), o), d(z) € k[z] such that R = L and c(zq) + yod(2o) # 0; if no
such a(z) + yb(z) and ¢(z) + yd(z) exist, then R(P) is not defined. If R is defined

at P, the value of R at P is defined to be R(P) := :(::):::(::).
Define deg(a(z) + yb(z)) = max {2 deg.(a(z)),3 + 2deg.(b(z))}.

Let R = %ﬂﬁg € K for some a(z),b(z), c(z), d(z) € k(z].
1. If deg(a(z) + yb(z)) < deg(c(z) + yd(z)) then define R(o0) := 0.

2. If deg(a(z) + yb(z)) > deg(c(z) + yd(z)) then R(co) is not defined.

(2]

. If deg(a(z) + yb(z)) = deg(c(z) + yd(z)) then R(oo) is defined to be the
ratio of the leading coefficients (with respect to deg) of the numerator and

denominator.
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Let R € K and P € E. If R(P) = 0 then R has a zero at P. If R(P) is not
defined then R has a pole at P and we write R(P) = oo.

Notice that if P = (zo,y0) € F then z(P) = z¢ and y(P) = yo.

Theorem 29 Let P € E. Then there ezists a function U € K with U(P) = 0 such
that for each function G € K, there ezists an integer e and function S € K such
that S(P) # 0,00 and G = U°S. Furthermore, the number e does not depend on
the choice of U.

Call this integer e, the order of G at P and write ordp(G) = e. The function U

is called a uniformizing parameter for P.

1. f P = (z0,y0) € E with P,2P # oo then z + z, is a uniformizing parameter
for P.

2. If P = (z0,y) € E with P # o0, 2P = oo then y + yo is a uniformizing

parameter for P.

3. If P = oo € E then £ is a uniformizing parameter for P.

Let R € K. Define the divisor of R as
div(R) = )_ ordp(R) (P).
PcE
It is well known (see [29]) that Y pcgordp(R) = 0. Thus div(R) has degree 0.

A divisor D of degree 0 is called principal if D = div (R) for some R € K. Two
divisors D, and D, of degree 0 are said to be equivalent if D, — D, is principal. If
D, and D, are equivalent then we write D; ~ D,. The relation ~ is an equivalence

relation.
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It is also known that if we let P,,P, € E and P; = P, + P, then D; ~ D, if
D, = (P1)+(P;)—2(c0) and D; = (P3)—(o0). Also, if (P1)+(P;)—(P’)—(o0) ~ (0)
then P’ = Ps.

Let R € K. Define the divisor of poles of R to be
div(R)_ = — ; ordp(R) (P)
where the sum is over all poles of R. Similarly, the divisor of zeros is
div(R), = zP:ordp(R) (P)

where the sum is over all zeros of R.

A valuation on K is a function val : K — Z U {00} such that

1. val(R) € Z if R # 0, and val(0) = oo.
2. val(R + S) > min{val(R), val(S)}.

3. val(RS) = val(R) + val(S).

It is easy to see that ordp for P # oo is a valuation. We say that it corresponds

to the place et P. Also, ord is the valuation at the place co.

We can similarly define valuations for the field £(X) where X is a transcendental
element over k. If u € k then the valuation at the place corresponding to X + u
is simply the usual multiplicity of v as a zero or pole in a rational function. The

valuation at the place at infinity is the negative of the degree function in k(X).
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7.2 An Overview

The remainder of this chapter will describe the equivalence between the elliptic
discrete logarithm problem and certain instances of the infrastructure discrete log-
arithm problem. This section will give an outline of the proof of this equivalence.

In Section 2.4 we defined what we mean by a non-supersingular elliptic curve
over a field, k, of characteristic 2. We also stated the group law for this curve.
Thus, given a point P = (a, b) on an elliptic curve, E, we can compute all multiples
of this point. Since an elliptic curve of this type is a finite group, P has a finite

order, pu.

In Section 7.3 we will show how to use the curve E and the point P to produce
an equation Ep. We will give a birational transformation between F and Ep so
that given a point on E, (z,y) # P,o0, we will be able to easily produce the
corresponding point (X,Y) on Ep. We will be interested in the multiples of P, as

shown in the following diagram.

E,P Ep
( 0P = o0
_ o0
P = (a,b)
2P = (z2,y2) ~ (X3, Yz)
multiples { 3P = (z3,y3) —  (X;5,Y5)
of P : :
tP = (z,-, y.') —_— (Xc', Ya)
{ (u—1)P = (z#—la Yu-1) — (Xu-h Yu—l)
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The equation Ep will be of the form Y? + BY = C with Y € k((4)) and Ep
will be non-singular, so we will be able to use the results of Chapters 4 and 5. In
particular, we will be able to compute the continued fraction expansion of elements
of K = k(X)(Y). Section 7.4 will introduce a family of elements of K, fg for all
Q € E, @ # P. We will examine the continued fraction expansion of fg and see
that its quasi-period is related to the order of P. In fact, the quasi-period of f, is
m = g — 1 and the elements of K produced by the continued fraction expansion of

foo are (up to scalar factors) f., fop, fap, .- -, flu—1)P-

Since we can compute the continued fraction expansion of f.,, we can use the re-
sults of Section 5.2 to produce O-ideals, A;, corresponding to each of these quadratic
irrationals. Section 7.5 will show that the ideal .A;, which corresponds to f;p for
2 <1 < m, has the form A; = [X+X;,7:+Y] where (X;, Y;) is, as before, the point
on Ep corresponding to :P = (z;,y;:) on E. It is this final correspondence that will
show that the two discrete logarithm problems are equivalent. This is outlined in

the following diagram.

foe K O-ideals
f
oo — A = 1,
obtained | * 1=l Yi
hr — A =X+X;Y:+Y]
from the ___
. fhr — A=[X+X5Ys+Y]
continued . .
¢ :
fraction —
) firp, — A=X+X,Y:+Y]
expansion ) ;
of fo ] . L

For completed examples of this equivalence, see Section 7.6.
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7.3 The Correspondence

Assume that we have a non-supersingular elliptic curve defined over k = F; where
g = 2M_ Let the curve be defined by
E:y +zy=2>+az’ +as

for a3,ag € k, ag # 0. In order to avoid confusion with divisor addition, for the
remainder of this chapter we will denote the usual addition on the curve E by the
symbol @. Let P = (a,b) be a point on the curve with a,b € k and 2P # oo (i.e.
P is not a point of order 2). Then K = k(E) = k(z,y) is the function field for E.
Now let

x = ytbta
zT+a
2
Y = z.{,(y_t_b_tg) + a,.
z+a

Notice that X and Y are functions of z and y (i.e. X,Y € K). Substituting into
E we get the following equation:
Ep: YV +(X*+X+a+a)Y =X*+a;X+a®+b+a

which we will call the guadratic model for E. It is the transformation between
E and Ep that will give the connection between the elliptic curve group and the
infrastructure.

Also, we have the following formulae for z and y in terms of X and Y
z = Y+ X+ G2
y = X(z+ a)+b+a.

Since this is a birational transformation between E and Ep we see that K can
also be written as k(Ep) = k(X,Y). Notice that Y € k((§)) and that Ep is
non-singular, so K is a quadratic function field as described in Chapters 4 and 5.
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We would now like to find the divisors of poles of X and Y. Since P is not a
point of order 2, it is easy to see from the formula for X that P is a pole of X of
order 1. Also, since £ is a uniformizing parameter for oo there is a pole of order 1

at 0co. These are the only poles, so
div (X),, = (o0) +(P).
Similarly, it is easy to see that

div (Y)_ = 2(P) + (o).

There is a k(X)-automorphism of K that takes Y to Y + X?> + X + a + as.
That is, if f = g(X) + Yh(X) is in K with g(X),h(X) € k(X), write f~ =
g(X) + Yh(X) + (X? + X + a + a2)h(X). This is the conjugate automorphism
described in Section 4.2 for general function fields. Notice that X = X and
Y"=Y+X?2+X +a+a, Also

' =Y+ X +a

and
y=X(z"+a)+b+a.
So
z+z=X*+X+a+a
and

zz* = aX? + b+ a+ aap + a>.

If Qo = (Xo,Ys) € k x k is a solution to the equation Ep, then so is Q5 =
(Xo,Yo + X2+ Xo+a+a;z). For Q € E, Q # P,oo, we can define Q* =
(z*(Q),y*(Q))- Also define 00* = P and P* = oo.
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If we start with the curve Ep then co and P are the two points at infinity. We
will now distinguish between the two. Now zz* has double poles at oo and P. If z
and z* both have simple poles at co (and at P), then z + z* has at most a simple
pole at co (and at P). This contradicts the fact that z + z* has double poles at oo
(and P). Thus z has a double pole at one of oo or P and z* has a double pole at
the other. Using the uniformizing parameter for co we can see that oo is a double

pole of z and so P is a double pole of z*. Thus

div(z), =2(o0) , div(z"), =2(P).

There are two possibilities for Y expressed as a Laurent series in 5. We have
chosen, as in Section 4.1, Y = X + ---, and hence z = X2 + X + a; + ~--. Also,
Y*=X2+(a+az)+---and z° = a + ---. From this weget d = |Y'| = X.

Notice that the place at infinity, P, of k(X) extends to the place at oo in K.
This follows from our choice for Y. If we had made the other choice, then P
would have extended to the place at P.

Since div (X + X(Q)) =(Q) + (Q") ~ (o0) — (P) for Q € E, Q # o0, P we get
that @ ® Q™ = P.

If Q@ = (zo,y0) € E, then —Q = (zo, Yo+ Z0). So, if @ # oo, then z(~Q) = z(Q)
and y(-Q) = y(Q) + =(Q)-

7.4 Periodicity of the Continued Fraction Expan-

sion and Orders of Points

This section will examine the continued fraction expansion of a specific function in

K, fq. Its periodicity will be related to the order of the point P and its special
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form will therefore give us the equivalence we want.

Definition 7 Let Q be any k-rational point on E, with Q # P. Define
= 7Q#o
fo=
z+z(Q°)=z+a ifQ =oo.

Lemma 11 Let Q be any k-rational point on E, with Q # P. Then, up to multi-
plication by a non-zero constant, there is one and only one function f on E such

that div(f)_ = (o0} + (Q) and f(P) =0. It is given by f = fq. Furthermore,
div(fq) = (P) +(—Q7) — (00) — (Q)-

Proof: If Q # oo, then div(z + z(Q~)) = (Q~) + (—Q~) — 2(o0). Since X(Q) =
X(Q~) we have div(X + X(Q)) =(Q) + (@) — (c0) — (P). Hence

div (fq) = (P) +(-Q") — (Q) — (o0) .

If @ = oo then div(fp) = div(z+z(Q") = (@7) + (—Q") — 2(o0). Since
Q" =P,
div (fg) = (P) +(-Q") — (Q) — (o0) -

Let div (f) = (P) + (Q') — (o0) — (@) for any point Q'. Then div(f~"fq) =
(—Q~) — (Q') which says that —Q~ = Q' and that f~!fq is a constant. Thus, up

to multiplication by a non-zero constant, fg is unique. O

Definition 8 Let

1
w(f) == ;‘Tlf—J

for any f € K*. This is one step in the continued fraction algorithm performed on
f, or one Baby-Step.
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Lemma 12 Let Q be a k-rational point on E, with Q # P. Let f be a function
such that div(f),, = (00) +(Q). Then

(P)+(Q) —(0) - (@) #Q#oo
div(p(f)) =
2(P) — (o0) — (@) ifQ =00

where
PoQ fQ#o
Q =
2P if Q = oo.

Thus, ¢(f) is a constant multiple of fqr.

Proof: Let Q # oco. Since P is not a pole of f, f is not a polynomial in X and so
f+ |f] # 0 has a zero at oco. Thus, ¢(f) has a pole at co. Now f has a simple
pole at oo, so [ f| is a linear polynomial in X, and hence has a simple pole at P.
So ¢(f) has a zero at P. Also, f has a simple pole at ) and | f] does not, so ¢(f)

has a zero at Q.
Since f has poles at oo and @, and | f] has poles at P and oo, we get that ¢( f)
has no other zeros. Thus,

div (¢(f)) = (P) +(Q) — (o0) — (@)

and then Q' =P @ Q.

If Q@ = oo then again ¢(f) has a pole at co. Also, f has a double pole at oo, so
f] is a quadratic polynomial in z and has a double pole at P. This tells us that
©(f) has a double zero at P. There are no other poles of f or | f], so

div (p(f)) = 2(P) — (o0) - (@)
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and Q' =2P. O

Let @ # oo, P. From the definition of fg,

fa+(X+X(@Q)+1) =

z+z(Q7)+ X2+ X(Q) + X + X(Q)
X+ X(Q)

z" +a+a+ X(Q) +2(Q7) + X(Q)
X +X(Q)

_ =z +z@Q)

T X+ X(@Q)

= fa

since z =z~ + X2+ X +a+ a2, 27(Q) = z(Q") and X(Q) = X(Q")-

Since fq- has a zero at P, f3. has a zero at P* = co. Thus, deg(fg.) < 0 and

so,

[fel =X +X(Q) +1.

Using this fact, it follows that

o(fe) =

for some ¢ € k*, by the previous lemma. Thus c = 2~ if z(Q) #aand c =

1

(@)
X +X(Q")

z= + z(Q)

(X +X(Q7) (= +=(Q))

(z= +2(Q)) (z + 2(Q))

(X +X(Q")) (z+=(Q))
z*z + (z + z°)z(Q) + =z(Q)?
(X +X(Q%)) (z +=z(Q))

(e +z(Q))X? +z(Q)X + b+ a +aa; + a? + az(Q) + a22(Q) + z(Q)?

cfqer

) §
a+z(Q) z(Q)

if z(Q) = a. (Note that if 2(Q) = a then @ = —P since we are not allowing

Q=P)
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Now let Q@ = oo, so that fg =z + a. We get
(z+a) " =(z+a)+X*+X +a+a..

Since z + a has a zero at P, (z + a)" has a zero at P* = oo. Thus, deg((z+a)") <0
and so [fg] = X? + X + a + az. Also, as before

1
(z +a)
zT+a
(z= +c)(z +a)
z+a
zz* + a(z + z*) + a@®
z+a
aX+b+a+a?

= cfsp

v(fq)

for some c € k*. Thus, ¢ = 1.

These results allow us to state the following lemma.

Lemma 13 Let Q be a k-rational point on E with Q # P. Then

X+XQ)+1 ifQ#x

[fel =
X*+X+a+a ifQ=o00
and '
s@rafaer fQ# o0, —P
e(fa) =1 lfw FQ=-P

| i f Q = oo.
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For Q # P, we define

o fQ#,-P
AMQ) =

if @ =o00,—P

0 |-

QoP fQ#w
¥(Q) =
2P  ifQ=o0.

As a consequence of the previous lemma

o(fo) = MQ) fy@)-

We will use the notation ¢;, Aj and 9; for j € Z 5o, to mean the j-fold compo-
sition of ¢, A and ¥ with themselves. It is easy to see that

wulef) = C(_I)V‘PV(f)'

Let

v—1

po(@) = T Aws(Q)- ™~

7=0
and we get the following proposition.

Proposition 4 Let Q # P be a k-rational point on E. Then for v € Z>o,

vv(fq) = P (Q) fyu(@)

and

p(Q) (X + X(%,(Q)) +1) f %, (Q) #
L‘Pv(fQ)J =
P(Q)(X?+ X +a+a) ifth(Q)=oco.
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Moreover, the formulae for ¥,(Q) in terms of the group law on E are:

Case 1: —Q 1is not a non-negative multiple of P and P has finite order p. Write
v=qu+rforqreZ,0<r<u. Then

Y(@)=Q&rP.

Case 2: —Q = 1P and P has finite order u. We may assume that0 <vo < pu—1
(since @ = P is not allowed). Writev—vy = q(p—1)+r forq,r € Z,1 <r < p—1.
Then

¥(Q) = (r+1)P.

Proof: These follow directly from repeated applications of Lemma 13 and the above
definitions. To see Case 2, notice that if [(x—1) > v —wvo > (I — 1)(p — 1) for some
le Zy,, then

Y(Q) = br(Yu-ne-n(¥n(Q)))
= Ye(Pu-1)@u-1)(c0))
= ()
= (r+1)P.

Ifv—vys<0thenv <iypand r =v — vy + g —1, so we simply get

¢V(Q) QevP

= (v-w)P

= (v-w+p)P
= (r+1)P.
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Corollary 8 Let v > 1 be an integer and P be a point of finite order u. Write
v=q(p—-1)+rwithgqre€Z andl <r <pu—1. Then

Pv(feo) = pu(00) fir41)P-

Proof: This follows directly from Proposition 4 and the fact that co = —1 P when
Vo = 0. O

From Corollary 1 we know that if « is a quadratic irrational then the following
hold.

1. If the continued fraction expansion of a is quasi-periodic with odd quasi-

period m, then it is periodic with period n and » =m or n = 2m.

2. If the continued fraction expansion of « is periodic with odd period, then it

is quasi-periodic with quasi-period m = n.

Theorem 30 Let Q # P be any k-rational point on E. Then the continued fraction
ezpansion of fo is quasi-periodic. Indeed, it is pure quasi-periodic. Moreover, if P

has order p and the continued fraction ezpansion of fo has quasi-period m(Q) then

m(@Q)+1 if ~Q=wP, >0
m(Q) otherwise.
Proof: Let P have finite order y. Then if —@Q is not a non-negative multiple of P,

Y(Q) =Qe 0P =Q.

So vu(fe) = Pu(@)fy.@) = Pu(Q)fq- Thus, fq has pure quasi-period m(Q) < p.
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If ~Q = voP for 0 < vy < —1, then
Yu-1(Q) = (B —w) P = pP — 1P = Q.
So

Pu-1(fo) = Pu-1(Q)fs,i@
= Pu-I(Q)fQ

and fg has pure quasi-period m(Q) < p — 1.
Now m(Q) < p (resp. p — 1). Since m(Q) is the quasi-period of fg
em@)(fa) = Pm(@)(Q) forniq (@ = cfa
for some ¢ € k. Then 9n,q)(Q) = Q by the uniqueness of fg. This is only possible

when m(Q) = u (resp. p—~1). O

Theorem 31 Let P have order u, let vo 1 (mod p) be an integer, and let n be

the period of the continued fraction ezpansion of f,p. Then

k-1  ifpua(nP)=1

2(p—1) tf pur(nP) #1

where the second case can only occur if u is even.

Proof: We can assume without loss of generality that 2 < vy < u, and let @ = 1, P.
Then the continued fraction expansion of fg has pure quasi-period g —1. Of course
if pu1(Q) =1, then n = u — 1. If u is even, then x4 — 1 is odd and so the period of
fo must be either n =y —1orn=2(p—1).
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We must show that if u is odd, then p,_;(Q) = 1. Since we are in Case 2,

(7 +w)P f0<j<p-w
$i(Q) = ¥i((vo — p)P) =
G+w+1)P fp~rv<j<p-2.

So,
u—2 s
put(wP) = I M#s(soP)
Jj=0
T A6 (—tp-imi 7T ) .
= MG +w)P) I AG+w+1)P)
=0 j=u—m+1
= 1 A6 (-1)pm3=itt g (—1)p—t—i+m
= [] AGP) II A:P)
=n i=p+2
- S
= I[P I AP
i=wy ‘.=”+2
u—2 .
= [IAGP) T A(=P) T A (0o) I
=2
= 1,

since A(iP) = A((1 —i)P) and A(—P) = A(c0). O

Corollary 9 The continued fraction ezpansion of Y is periodic. If the order of P
is p and the pertod of Y is n, then

p—1 if pu-1(00) =1

2(p —1) if pu—1(o0) #1

where the second case can only occur when p is even.

Proof: Notice that

fo+Y = z4+a+Y
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X*+Y+ar+a+Y

X? +az+a.

So the continued fraction expansion for Y differs from that of f, only in the
first term. Thus for all v > 1,

(YY) = pu(foo)-

The result now follows from Theorem 31. O

7.5 The Discrete Logarithm Problems

This section shows an equivalence between two types of discrete logarithm prob-
lems using underlying fields of characteristic 2 for which implementations of Diffie-
Hellman [13] and ElGamal [14] type cryptosystems have been based. These are the
elliptic discrete logarithm problem and the infrastructure discrete logarithm problem.

The equivalence follows from the next two theorems.

Theorem 32 Let E be a non-supersingular elliptic curve defined over k = Fom and
let P be a point on the curve. Let Ep be the quadratic model for E which defines
the quadratic function field K = k(X)(Y). If the elliptic discrete logarithm problem
for E can be solved in polynomial time, then the infrastructure discrete logarithm

problem for Ep can also be solved in polynomial time.

Proof: Let A be a primitive reduced ideal in O. If 4 = O, then the solution to
the infrastructure discrete logarithm problem is 6(A4, Q) = 0.
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We will therefore assume that A = [X + X;, Yo + Y] is the ideal in adapted form
for some X,,Y, € k. Let Yo = X2 + Xo + a + a2 + Y. Then

A=[X+X0,X:+Xo+a+a,+Y +Y].

Since A is an ideal, X + Xo|¥o' + (X2 + X +a+a2)Yo + (X3 +8,X + a® + b+a) and
thus, (Xo, Yo) is a solution to the equation Ep. Notice that Y, = Y, so (Xo, Yo) is
also a solution to the equation Ep. Let @ = (20, yo) be the corresponding point on
E using the formulae of Section 7.3. Notice that Q # P, co.

Let (X;,Y:) be a solution to the equation Ep corresponding to i:P € E, iP #
oo, P. We will assume that 2 < 7 < g where u is the order of P. By Theorem 30
we know that g — 1 is the quasi-period of Y. Now

pi-1(Y) = pic1(fo) = pi-1(0) f;_y(c0) = Pi-1(0) fip-

Hay=Y = &li then ;_;1(Y) = ai—; = HQ'::Y since @ just performs one step in
the continued fraction algorithm. Thus,

PatY (o)X tXitata+VitV
Qi1 = Pt X+X; ’
This implies that
Py, = X+ X;i+a+a,+Y:
1
- X+X, .
Q 1 Pi-1(°°)( )

So, we get the reduced ideal in adapted form
A=[X+X, X2+ X:+a+a;+Y: +7Y)

Thus, if X; = X, and Y; = Y, then @ = iP and also A; = A, and if no such X; and
Y: exist, then §(A, O) does not exist. Now

-2

§(A;,0) = deg(B)— deg(Qo) + )_ deg(a;)

i=1
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2-0+(-2)

=13

since for 1 < j < p—1, deg(a;) = 1.

If we can solve the elliptic discrete logarithm problem on E, (e.g. find ¢ > 2 such
that :P = Q or determine that no such i exists) then we can solve the infrastructure
discrete logarithm problem. Since z, and y; can be computed in polynomial time,
the infrastructure discrete logarithm problem can be computed in polynomial time
if the elliptic discrete logarithm problem can be solved in polynomial time. O

Theorem 33 Let E be a non-supersingular elliptic curve defined over k = Fom and
let P be a point on the curve. Let Ep be the quadratic model for E which defines
the quadratic function field K = k(X)(Y'). If the infrastructure discrete logarithm
problem for Ep can be solved in polynomial time, then the elliptic discrete logarithm

problem for E can also be solved in polynomial time.

Proof: Let Q be a point on E. If Q = co then the solution to the elliptic discrete
logarithm problem is 0. If @ = P then the solution to the elliptic discrete logarithm

problem is 1.

We will assume that @ = (zg,yo) is the point on E, and that (X,,Yp) is the
corresponding solution to the equation Ep. Now let A = [X+ X, X3+ Xo+a+az+
Ys + Y] be a primitive reduced ideal. As was shown in the proof to Theorem 32, if
we can find §(A, O) or determine that it does not exist, then we have found i such
that @ = 1P or determined that such an z does not exist. Again, we are able to
compute X, and Y in polynomial time, so if the infrastructure discrete logarithm
problem can be solved in polynomial time then so can the elliptic discrete logarithm

problem. O
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We have just shown that solving the elliptic discrete logarithm problem on E
is equivalent to solving the infrastructure discrete logarithm problem on Ep. A
discussion of the difficulty of solving the infrastructure discrete logarithm problem
appears in Section 6.3. None of the methods discussed there combined with this
correspondence give an improvement over known methods for solving the elliptic
logarithm problem. Since we know of no other way of solving the infrastructure
discrete logarithm problem, this provides further evidence of the intractability of
the elliptic discrete logarithm problem.

It is easy to see that the proofs of the above theorems give a bijection between
the sets
{QeE[Q=iP2<i<p-1}

and
{AC O,A# 0| A can be obtained from the continued fraction expansion of O}

and that g — 1 equals the quasi-period, m, of the continued fraction expansion of
Y. Now, since R = 8,41 = m + 1, we get that R is also the order of P.

Thus, computing the order of a point, P, on F is equivalent to finding the
regulator of the function field defined by Ep. Also, producing a point on a curve
with a given order is equivalent to producing a function field of the form given by Ep
with a given regulator. The problem of finding curves and points with large prime
order is of great interest in elliptic curve cryptography. Thus, it would be of interest
if we could efficiently compute regulators of such fields. Stein has observed that in
the odd characteristic case there are certain classes of function fields that tend to
have large order [48]. At the present time it is unclear if there is a characteristic 2

analog of these classes.
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7.6 Some Examples

In this section we will consider some examples of quadratic function fields for which
the infrastructure discrete logarithm problem is equivalent to the discrete logarithm

problem in an elliptic curve group.

7.6.1 Example 1

Consider the function field presented in Section 5.5.1. We have k = Fys = F5(§)
where 6 + 8 + 1 =0 and K; = k(X)(Y) defined by

Ep:Y?+(X*+ X +48)Y = X% +34.

Also,d= Y| = X.

Using the formulae from Section 7.3 we see that a; =0, a = § and b = 2. The
elliptic curve is

E:y*+zy=2z3+4*

and the point is P = (4, §2).

From Section 5.5.1 we have that A4; = [X + 1,4 + Y], so we have X; = 1 and
Y: = 8. NOW?;:X;+X3+G+02+Y2, soY; =1+1+4d+ 6% =1. Converting
(X2,Y?) into a point on the elliptic curve E, we get (0,6%). Using the addition
formula for elliptic curves we get 2P = (0, %), as we would expect.

We also had As = [X + 1,1+ Y], 50 X3 =1 and Y3 = 1. We need Y3, so

; = X}+Xs+a+a,+Y;
= 14+1+4d+1
= §+1.
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We need the point on the elliptic curve corresponding to (X3, Ys); this point is
(6,5%). When we compute 2P & P we also get 3P = (4,4%).

Since A, = [1,Y] = A,, we have computed all of the multiples of P that can be
computed using the continued fraction expansion. The point P satisfies 4P = oo

as we would expect, since for this field R = 4.

7.6.2 Example 2

For this example, assume k = Fys = F3(8) where 8°+8+1 = 0. Let K3 = k(X)(Y)
where X and Y satisfy

Ep V2 +(X2+ X +8)Y =X3+8X + 65
Clearly a; = 83, a = §% and b = §%. The elliptic curve is
E:y*+zy=2>+8%2>+1

and the point on the curve is P = (42, 6°).

Table 7.1 shows the correspondence between the infrastructure discrete loga-
rithm and elliptic curve discrete logarithm for this field. It gives, for each 2 <: < 7,
Pi—h Qi-—la Xia ?ia },iw and P.

Performing one more Baby-Step gives Q7 = §*X = Qs, so by Theorem 11, the
quasi-period is m = 13. Now, R = m + 1 = 14, and so we would expect that
14P = oco. In fact, 2(7P) = oo.
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&N

fay

X465 | BX+85| 8] 6|6

Y:

iP

t P, Qi1 i

(6°,9)

X2+ 464

PX + 42

65

(64,84

X2+ 8¢

83X + 62

56

55

(8%,8%)

X2

62X + 63

66

(4,6%)

X2+1

32X + 8¢

52

')

(4%, 6%)

~N | DO | W

X2 +62

X

&

(0,1)

Table 7.1: The elliptic curve equivalence for Kj.
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Chapter 8

Implementation And Practical

Results

8.1 Running Times and Security Considerations

for the Cryptosystem Over Z,

In [23] an algorithm similar to the one given in Section 2.6 is implemented to
produce curves of a given order modulo a prime p. A curve with order twice a 51
decimal digit prime is computed in just over 6 minutes using the computer algebra
system SIMATH. It therefore seems feasible to compute elliptic curves of a given
order and to use similar techniques as described in Section 2.6 to compute curves

of smooth order.

In Section 2.5 a method to produce a prime and an elliptic curve modulo that
prime with smooth order was given. From arguments in that section, the majority

of the work to produce 75 digit primes and their associated curves would be to

137
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perform approximately 10 elliptic curve factorizations to determine smoothness
of 38 digit integers and approximately 2000 primality tests for 75 digit integers.
Assuming 1 minute on each factorization, this could be completed in less than an

hour, which is a feasible one time start up cost.

Once two elliptic curves with smooth order have been computed, say E,(ay, bp)
and E,(agq,by), one can produce a curve over Z, with the desired properties. Us-
ing the Chinese Remainder Theorem one computes a,b € Z, such that ¢ = g,
(mod p), @ =a; (mod g), b =05, (modp) and b =b, (mod q). The curve is
E.(a,b).

Decryption is performed using the Pohlig-Hellman algorithm with the Baby-
Step Giant-Step algorithm and the trapdoor information p and ¢. For a curve with
order a 75-digit integer divisible by one 16 digit prime and the remaining prime
factors less than 16 digits, this decryption will take approximately 10° elliptic curve
operations (additions and doublings). Assuming that a special purpose device is
used to decrypt at 100,000 elliptic curve operations in a second, decryption would
take a few minutes to perform. Although feasible, this is not useful for decrypting
large amounts of data. It may be suitable for certain key agreement schemes where

one-time encryption is needed.

It is easy to see that recovering a message M given Q = MP in any of the
above schemes is equivalent to solving the discrete logarithm problem on the curve
modulo n. The security of the system is dependent on the discrete log problem
being difficult.

The integer n was chosen so that general purpose factoring algorithms are not
feasible. The elliptic curve factoring algorithm may however be used to factor
n. Assume that the order of our public point P is divisible by 16 digit primes
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modulo p and modulo ¢g. Then by computing (Hp<mu p) P one prime at a time,
the factorization of n can be obtained (see [24]). This would require approximately
Y p<10ts logy p ~ 10'€ elliptic curve operations. The work required to factor is 10°
more operations than required by the signer. Assuming that one could decrypt in
1 minute (which is optimistic with present technology), factoring n by this method
would take about 190 years. As our ability to compute discrete logarithms improves,
we will be able to use curves divisible by larger primes. If the curves are smooth
with respect to 10¢ then decryption will take on the order of 10%/2 operations and
factoring n will take about 10* operations. Thus, as k increases so will the factor
of extra work required to break the system.

A further problem that could occur with this system is that if two messages M,
and M; are sent with M; — M; a small integer, then upon computing MP—-M,P =
(M, — M;) P an eavesdropper could determine M, — M, using exhaustive search and
thus obtain information about the messages. For example, if M; and M, consist
of 8 bit fields with only one field differing, information could be obtained about
the value of this field. In order to combat this attack, 56 bits of the public point
could be used as a DES [35] key K. Then to encrypt the message M let the
ciphertext be DESk (M)P where DESx (M) is DES applied to M using the key K.
Now, DESx(M;) P — DESk (M) P has no special structure. In fact, any encryption
algorithm E such that E(M,;) — E(M,) # E(M; ~ M;) could be used.
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8.2 Running Time and Implementation of Regu-
lator Algorithms

We present details of the running times and implementation of the algorithms
presented in Section 5.4 for computing the regulator. We are in the same situation
as Chapter 5, so k is a field with ¢ = 2™ elements and X is transcendental over k.
Now K = k(X)(Y) where Y2+ BY = C for some B, C € k[X] with C monic. Also
Y2+ BY + C =0 has no singular points (X,Y) = (v,v) € k x k and K C k((}))-

Recall O = [1,Y]. Let k' be the ideal class number of O and let k& be the divisor
class number of K. Also let g be the genus of the curve Y2 + BY = C. Then it
appears that a result of Schmidt [42] also applies here:

h =RRK.

From [53, Proposition II1.7.8] we can see that K is an Artin-Schreier extension
and that
g < deg(B) - 1.

It is well known (see [53]) that the L-polynomial, L(t), of K satisfies
1. L(1) =h.

2. L(t) = [1%%,(1 — a;t) where ay, ..., as, are algebraic integers.

3. || = g fori=1,...,2g. (This is the Hasse-Weil Theorem.)

Thus, (,/7—1)¥ < h < (/g +1)* and we conclude that h = O(g?(8)). Since
h = Rh', we get
R =0 (¢*=®).
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Now, notice that deg(B) + (i — 2) < & < (i — 1)deg(B) for all © > 2. Since
R = 6,41, wWe then get ﬁ <m < R—deg(B) +1, so m = O(R). Finally, we
conclude
m=0 qd“(m) .

Thus, the optimal choice for the number of Baby-Steps and Giant-Steps is

0 = 0 (g74==®)) .

Now, all operations in a Baby-Step and Giant-Step are polynomial operations
performed in k. We know also that all polynomials involved in these operations
are bounded by deg(B) or }deg(C). Thus, the complexity of a Baby-Step and of
a Giant-Step is bounded by a polynomial in log(g), deg(B) and deg(C).

So the total complexity to find R is

O(q% deg(B )+¢)

polynomial operations.

Tables 8.1 and 8.2 give the times to find the regulators of quadratic function
fields defined by Y2 + BY = C over Fyu for various values of M between 2 and 10.
For all function fields, the degree of the polynomial C was 3 and the polynomial
was constant for all trials with a given field size 2. The routines were written in C
on a SPARC 20 running SunOS 4.1.4. The column M gives the degree of the field
extension, deg(B) gives the degree of the polynomial B, Opt. G.B. gives the time
to perform the Optimized Giant-Step Baby-Step algorithm, Baby gives the time
to find the regulator using just the Baby-Step algorithm and no information about
symmetry, R gives the regulator and m gives the quasi-period of the continued

fraction expansion.
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M | deg(B) | Opt. G.B. Baby R m
2 3 Ols .Ols 24 18
2 4 Ols 01ls 10 7
2 5 Ols 01s 27 12
2 6 .0ls 02s 50 30
2 7 24 s 84 s 1622 1214
2 8 42s 3.84s 9078 6764
2 9 .88 s 18.36 s 36 111 27 150
2 10 2.15s 449 s 10 221 7 636
2 11 48s 1m6.05s 113 535 84 954
2 12 10.46 s 12 m 11.59 s 1193 199 894 728
2 14 1m 14.58 s | 12 h 30 m 57.85 s | 62 150 892 | 46 614 415
2 15 1m3907s| 9h26 m54.31s | 44 190 784 | 33 144 168
2 15 1m2583s| 2h7m3409s | 9914639 | 7441130
2 16 3m17.77s |12 h 54 m 46.49 s | 57 561 629 | 43 173 458
2 16 2m5737s| 6h23m0.46s |28 494 758 | 21 373 264
3 4 10s 16 s 341 296
3 6 d4's 24 s 591 514
3 8 725 s 2m12.7 s 225 214 196 672
3 10 1m1501s| 3h4mb5021s |15 088 794 | 13 203 808
3 10 1m2038s| 8h1lm14.01ls |39 603 476 | 34 655 407
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Table 8.1: Times for computing regulators using Baby-Step and Optimized Giant-
Step Baby-Step algorithms.
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M | deg(B) { Opt. G.B. Baby R m
4 3 .03s 03s 109 100
4 4 .04s .06 s 163 156
4 5 82s 98 s 2 236 2 088
4 6 6.73 s 1m9.73s 126 240 118 481
4 7 35.93 s 2h59m271s 16 964 951 | 15 904 783
4 7 32.03 s 56 m 5.76 s 5 576 825 5 228 167
4 8 2m4763s|(2d14h 38 m 54.88 s | 317 911 602 | 298 042 663
4 8 2m 18.03 s 6h0m3.49s 30 394 684 | 28 494 664
5 4 141s 441 s 8 424 8 154
5 6 59.54 s 41 m 33.38 s 4014 324 | 3 888 694
5 6 1m138s 34 m 2946 s 3 206 647 3 106 044
6 3 .36 s 40 s 1239 1211
6 4 6.23 s 1m9.63s 153 898 151 425
6 5 52.55 s 18m6.77 s 1927 877 | 1897 221
6 5 55.26_5 1h31lm48.29s 9 718 005 9 565 921
10 3 45.& 8m4.78s 1 027 173 1 026 169
10 3 48.37 s 3m335s 508 172 507 648

Table 8.2: Times for computing regulators using Baby-Step and Optimized Giant-
Step Baby-Step algorithms (cont’d).
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8.3 Implementation of the Function Field Key

Exchange

We implemented the Diffie-Hellman Key Exchange algorithm using the C pro-
gramming language on a SPARC 20 running SunOS 4.1.4. All of our computations
were done over finite fields with 2M elements that contained an optimal normal

basis for increased efficiency [34].

We attempted to choose M, B and C such that ¢4*5(3) = 10'%° as was suggested
in Section 6.3 to avoid brute force and subexponential attacks. Our restriction to
finite fields that contained optimal normal bases meant that we chose our param-
eters such that 10?2 < ¢°8(8) < 10'?°. The polynomial C was kept constant with
degree 3 for all examples and the degree of B was varied as was the degree of the
field extension. In this implementation, the private keys were chosen at random in

the range |1, qd_"i@l] , as was suggested in Section 6.1.

Tables 8.3 and 8.4 give the results of this implementation. The first column gives
the degree of B and the second column gives the degree of the field extension. The
approximate work required to obtain the regulator R is given in the next column.
This is qgﬂa@"'. Finally, the time for each party to compute the common key is
displayed. While these times are not quite as impressive as those given in [41] for
fields of odd characteristic, there appears to be much room for improvement by

making use of more advanced coding techniques.
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deg(B

deg(B) | M| q 3 Time
30 11 | 4.7 x 10*® | 145.7 sec
29 11 | 1.0 x 10*® | 137.9 sec
28 12 | 3.7 x 10°° | 130.3 sec
27 12 [ 5.8 x 10*® | 119.2 sec
26 12 | 9.1 x 10* | 106.4 sec
25 14 | 4.8 x 10°2 | 115.1 sec
24 14 | 3.7 x 10% | 94.7 sec
23 14 | 2.9 x 10*® | 101.1 sec
22 18 | 4.0 x 10° | 148.6 sec
21 18 | 7.8 x 10°¢ | 135.3 sec
20 18 | 1.5 x 10% | 122.9 sec
19 18 | 2.9 x 10°! | 104.8 sec
18 18 | 5.8 x 10 | 79.6 sec
17 23 | 7.1 x 10°® | 104.3 sec
16 23 | 2.5 x 10°® | 81.1 sec

Table 8.3: Times for Diffie-Hellman Key Exchange Implementation.
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deg(B)

deg(B) | M q 2 Time
15 23 | 8.5 x 10° | 74.3 sec
14 23 | 2.9 x 1048 | 56.7 sec
13 26 | 7.5 x 100 | 49.5 sec
12 28 | 3.7 x 10°° | 38.4 sec
11 30 | 4.7 x 10 | 35.5 sec
10 33 | 4.7 x 10%° | 49.9 sec
9 39 | 6.8 x 10°2 | 43.8 sec
8 41 | 2.3 x 10*° | 37.7 sec
7 50 | 4.8 x 10°% | 40.0 sec
6 58 | 2.4 x 10%2 | 25.3 sec
5 66 | 4.7 x 10*° | 35.6 sec
4 83 | 9.4 x 10 | 27.8 sec
3 113 | 1.1 x 10%* | 25.5 sec
2 172 | 6.0 x 10! | 14.6 sec
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Table 8.4: Times for Diffie-Hellman Key Exchange Implementation (cont’d).



Chapter 9

Suggestions for Further Research

We will now present some suggestions for further research based on results contained

in this thesis.

1. In order to make the cryptosystem described in Chapter 3 that uses elliptic
curves over Z, more feasible, it is of great interest to be able to produce
elliptic curves with a given group order more efficiently. A related problem
which would serve the same goal is to improve methods for counting points on
elliptic curves. These problems are interesting also because all cryptosystems
using elliptic curves require the knowledge of the number of points on the

curve being used.

2. The cryptosystem in Chapter 3 uses the fact that it is not possible to effi-
ciently obtain the order of E,(a,b) if the factorization of n is not known. This
is because the present methods for counting points on elliptic curves (Schoof’s,
Atkin’s and Elkies’ algorithms) do not work in Z,. It is not known however
what effect these algorithms have on the curve E,(a,b) and what informa-

tion can be obtained concerning these curves. For example, is it possible to
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identify elliptic curves over Z,, for which the discrete logarithm problem has

a trapdoor?

3. The basic operations performed in the infrastructure of quadratic function
fields are the Baby-Step and the Giant-Step. At present, these operations
are relatively costly to perform. Arithmetic in the infrastructure would be
more feasible if more efficient algorithms for performing these operations were

found.

4. Chapter 5 presents a method to find the regulator of a quadratic function
field that runs in time O(q7%8(®)¥¢). More efficient algorithms for finding
the regulator of such function fields would be useful. Because of the corre-
spondence with elliptic curves presented in this thesis, this may also give a

method for efficiently counting points on elliptic curves.

In [49] a method is given that determines the regulator of quadratic function
fields of odd characteristic in O(gs8(P)+<) operations where Y? = D(X)
defines the function field. It is unclear if this method generalizes to function

fields of even characteristic.

5. The cryptosystem introduced in Chapter 6 is based on the difficulty of com-
puting infrastructure discrete logarithms. Does a subexponential algorithm
exist for computing these discrete logarithms? If such an algorithm does ex-
ist, then this would also give a subexponential algorithm for finding elliptic
curve discrete logarithms.

6. In Chapter 7 an equivalence is shown between the infrastructure discrete loga-
rithm for function fields of a certain type and non-supersingular elliptic curve
discrete logarithms. Does an equivalence of this type exist for hyperelliptic
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curves of higher genus? If it does, then the infrastructure of a function field
would be the “same” as the jacobian of a hyperelliptic curve. This would give
a different way of studying these curves of higher genus which have also been
proposed for cryptographic purposes.

7. The equivalence presented in Chapter 7 was for non-supersingular elliptic
curves in characteristic 2 only. Does such an equivalence also exist for su-
persingular elliptic curves in even characteristic? One would suspect that it

would, but what is the corresponding quadratic model?

8. Do there exist certain classes of function fields (and hence elliptic curves)
whose regulators tend to be of an “interesting” type? Interesting types could
include smooth with respect to a bound B or divisible by a large prime. There
are results that certain classes of number fields tend to have large regulators,
but nothing has been proven for function fields. Stein [48] has obtained some
empirical results for odd characteristic function fields.



Appendix A

We will now give a proof that the conditions given for our quadratic function fields

in Section 4.1 are equivalent to the curve having no singular points.

Theorem 34 Let B,C € k[X] where k is a field of characteristic 2. Then y* +
By +C = 0 (mod D?) does not have a solution with y € k[X] for each non-
constant polynomial, D, that divides B if and only if Y2 + BY +C = 0 has no
singular points (X,Y) = (u,v) € k x k.

Proof: (=>) Let (u,v) € k x & be a singular point on F(X,Y)=Y?+BY +C =0.
This means that

oF
- = B'(u)v+C'(u) =0
0X (X, Y)=(uw)
and
g—f: = B(u) =0.
(X,Y)=(u,v)

Let D(X) be the minimal polynomial for v over k. Then D(X)|B(X).
Let y = B(X) + v € k[X]. Then

y> + B(X)y+ C(X) = B*X)+v*+ B¥}X)+ B(X)v + C(X)
= v+ B(X)v + C(X).
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Let f(X) = v2+B(X)v+C(X). Since (u,v) is a point on Y2+ BY +C = 0, we know
v? + B(u)v + C(x) = 0 and thus D(X)|f(X). Also note f'(X) = B'(X)v +C'(X),
so f'(u) = B'(u)v + C'(x) = 0. Hence D*(X)|f(X).

Thus,
f(X)=9v*+B(X)y+C(X)=0 (mod D*(X))

where y € k[X] as defined.

(<) Let D(X)|B(X) and y € k[X] be such that
¥’ + B(X)y+C(X) =0 (mod D*(X)).

Then
9(X) =y* + B(X)y+ C(X) + D*(X)Q(X) =0

for some Q(X) € k[X].

Let u be any root of D(X) in k and v = y(u). Then
g(u) =v*+ Bu)v+C(u)+0=0

and so (u,v) is on the curve Y? + BY + C = 0. In fact, since D(u) = 0, we also
know B(u) = 0.

Now, since g(X) = 0, it is also true that ¢’'(X) = 0 and thus
B'(X)y +y'B(X) + C'(X) + D(X)Q'(X) =0.
Also, then g'(u) = 0 and so

B'(ujp+0+C'(u)+0=0.

Hence (u,v) is a point on the curve that satisfies both partial derivatives. It is

therefore a singular point on Y? + BY +C =0. O



Appendix B

Theorem 35 Let A be an integral O-ideal. Every k[X]-basis of A has ezactly two

elements.

Proof: Let A = [w] for some w € O. Either w € k[X] or w € O \ k[X].
If w € k[X], then wY € A as well. It is not possible to write wY = wa for any
a € k[X] though, so w € O\ k[X]. Let w = a + bY for a,b € k[X], b # 0. Then
N(w) € k[X] is in A as well. Again, it is impossible to write N(w) = wa for any
a € k[X]. Thus, it is not possible for A = [w].
Let wy,we,w3 € O be in the k[X]-basis for A. Then w; = a; + b;Y where
a:, b; € k[X] for t =1,2,3 and w;,ws,ws are linearly independent. Now let
A = ab;+azashs #0
A2 = al3b +ajazbs #0
A3 = ajazby + azazhy #0

and notice that

Ay + Aqws + Azws = 0.

Thus, wy, w, w3 cannot be linearly independent and so a k[X]-basis for A cannot

have any more that 2 elements.
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