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A bstract 

A high or very high consequence dam is a large dam whose failure would have large 

consequences to life a d o r  property downstream. Knowledge of the magnitudes of extreme 

floads and their associated annual exceedence probabilities (AEP) are needed to determine 

the risk that such a dam might fail. 

Traditionally, the largest "physically possible" precipitation event (the Probable 

Maximum Precipitation, PMP) and its associated flood event (the Probable Maximum ~lood; 

PMF) have been calculated with a combination of statistical and meteorological techniques 

developed by the World Meteorological Organization (WMO). These techniques work 

reasonably well in flatter terrain, but may occasionally produce unredistic results in 

mountainous terrain. This research focuses on improving safety studies for hydrologic 

structures such as dams, by using physically-based techniques to estimate the PMP and PMF 

and to catculate the associated AEP. This research contributes in three areas. The first area 

is in using an atmospheric model to estimate maximum precipitation. Secondly, the research 

demonstrated that simulated streamflow may be used to generate fiequency curves and their 

associated confidence limits. The final contribution was in demonstratiag that the fiequency 

statistics indicated that the traditional PMP overestimates the PMF, while the atmospheric 

model estimates were more in line with accepted AEPs for a PMF. 

This research was performed on the upper Columbia River Basin in southwestern 

British Columbia. The basin is an alpine basin, with annual precipitation varying fiom 2500 

mm on the West to 500 mm on the east. Severe precipitation events generally begin over the 

Pacific Ocean, but are somewhat moderated by the intemenhg mountain ranges. There are 

several hydroelectric and flood-control dams operated by BCHydro on the Canadian portion 

of the river. One of these, Mica Dam, was used as the focus of this research. 

The Mesoscale Compressible Commwiity (MC2) mode1 (Recherche en Prévision 

Numérique) is an atmosphenc model designed to forecast weather at a fuie resolution. The 
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MC2 model was used to calculate a physically-based estimate of the maximum. 

atmospherically possible, precipitation (referred to as the Probable Maximum Storm. PMS). 

The numencal experiments with this model suggested that an atmospheric maximum 

precipitation does in fact exist, and it can be calculated with the model. The method is less 

subjective than the traditional WMO method and not subject to the sarne issues of data 

quality. Also, the model accounts implicitly for topography in its cdculation of precipitation 

The model determined a maximum 24-hou precipitation of 73.4 mm as an average over the - 

Mica Dam basin (bis nurnber is preliminary, M e r  research into the atmospheric model 

rnay result in a larger number). This PMS produced by the atmospheric mode1 was larger 

than any previously observed precipitation event, but iower than the PMP produced witb the 

WMO method. indicating that the Wh40 method may overestimate the PMP in mountainous 

terrain. The MC2 model is recommended for developing the maximum atmospherically 

possible precipitation, but funher meteoroiogical research is recommended to ensure thai d l  

of the assurnptions used in MC2 and the PMS module are suitable for this purpose. The PMS 

and the PMP were both used as input to the physically-based hydrologicd model 

WATFLOOD/SPL. 

A flood hequency cuve was developed to assess the AEP to the floods generated by 

the PMS and the PMP. The AEP were used to compare the relative magnitudes of the floods 

caused by the PMS and PMP? and determine if they were within the presurned probability 

range of the PMF (104 to 1 0 ~ ) .  

The denvation of a frequency curve is dependent upon the time series length of the 

data, which is oflen too short for meaningful extrapolation to the retum intervals for a PMF. 

In this research, historical meteorological data were available and used in a hydrological 

model to develop a long, deterministically simulated streamflow time series of 95 years. The 

use of tbe simulated daia decreased the sampling uncertainty due to a short time series. The 



simulated data generated fkquency curves that were similar to frequency c w e s  derived with 

observed data. 

Howevet, the simuiated streamflow data are based on uncertain atmospheric variables 

that are transfonned by an atmospheric mode1 and by WATFLOODISPL. This thesis 

addresses the consequence of the parameter uncertainty in WATFLOODISPL. The 95% 

confidence limits for the fiequency curves were derived through a Monte-Carlo analysis of 

the parameter variation. An investigation into the behavior of the mode1 showed that the - 

parameter set wi thin WATFLOOD/SPL was robust and there was on1 y one optimum 

parameter set within the limits of the parameter space. Due to time consuaints, a method to 

use the variation in a five-year time series as an analogue for the variation in the full time 

series was developed. The confidence limits grew wider as  the r e m  period increased, 

although furthet research into the behavior of the parameters may help reduce the width of 

the confidence limits. 

The frequency c w e  and its cofidence limits were used to estimate the range of 

retum interval of the floods produced by the PMS and the PMP. These retum intervals of the 

floods were used to detennine if the floods were consistent with the PMF. The 100-year 

snowpack, the 100-year melting temperature xquence and the PMP together generated ii 

flood with an AEP that was much smaller than the probability range for a PMF («10"). 

The 1 00-year snowpack, the 100-year melting temperature sequence and the PMS together 

generated a flood with an AEP that was also smaller than the probability range for a PMF 

(<IO"), however, it was cloxr to the presumed probability range than the combination with 

the PMP. This suggests that the PMS may be a more realistic estimate of maximum 

precipitation for PMF estimation, and is still somewhat conservative. 

This research has improved the cumnt methods for safety analysis of hydrological 

structures, and recommends the use of physicdly-based methods to derive PMPs and PMFs. 



Comparing the PMF estimates with frequency c w e s  should help validate results and provide 

a higher level of confidence in extreme rain produced flooding. 
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1 Introduction 

A hi&-consequence dam is a large dam whose failure would have large 

consequences to life ancilor property downstrearn. The magnitudes of extreme floods and 

their associated annual exceedance probabilities (AEP) are necessary to ensure that such a 

dam is safe. Traditionally, the largest "physically possible" precipitation event (the Probable 

Maximum Precipitation, PMP) and its associated flood event (the Probable Maximum Flood, 

PMF) have been calculated with a combination of statistical and meteorological techniques. 

These techniques have occasionally produced unrealistic results (Jarrett and Tomlinson, 

2000). Recently, however, numerical weather prediction (NWP) models and hydrological 

models have become more robust and can now be used together to compute these events in a 

physically-based manner. The probability of exceedance of this flood, which can be 

estimated by various means, can be used to help evaluate the assurnptions and the magnitude 

of the PMP and PMF. The length of the time series of the observed data limits these 

methods. NWP and hydrological models can be used in conjunction to increase the time 

senes, and so improve the fiequency curve. This research fofuses on improving safety 

analysis for hydrologic structures by using physically-based techniques to estimate the PMP 

and PMF and calculate the associated AEP. 

Many dams are built for flood control purposes, and they must be able to store 

extraordinary flmds (usually the PMF). For instance, should a dam fail above a large city, 

the= would be extreme damage to property, and potentially substantial loss of life. Such 

hi&-nsk dams are designed to withstand the Probable Maximum Flood (PMF). The PMF, as 

defmed by the US. Federal Energy Regdatory Commission (1 993), is "the flood that may be 



expected fiom the most severe combination of critical meteorological and hydrologie 

conditions that are reasonably possible in the drainage basin under study." 

The largest theoretical flood varies with season, watershed size and location, and 

watershed topography. Typically, the PMF has not included climate change factors, although 

these may become significant in the h u e .  In Canada, a spring flood is often associated with 

snowmelt. A thunderstom or a frontal passage may cause a summer or fa11 flood. In the 

Canadian Rocky Mountains, snow remains well into the summer and the largest flood may 

result From a combination of snowmelt and a summer stom occurring together. When 

multiple flood scenarios exist, they al1 must be simulated. The PMF is defined as the largest 

of al1 of these flood events. The dam is tested to ensure that the PMF may be passed safely 

in al1 seasons. 

The estimation of the probable maximum flood involves several tasks. The first task 

involves identifying the possible risk scenarios for the dam. For instance, one risk scenario 

may include a large amount of snowmelt runoff and a large precipitation event occurring as 

the reservoir fills. Therefore, a "maximum" snow accumulation, a "fastest" melting 

temperature sequence, and a "maximum" precipitation are al1 required for this dam. The 

second task involves estimation of each of these quantities. The maximum precipitation, 

referred to as the Probable Maximum Precipitation (PMP), is the most dificult of these three 

quantities to estimate. The eaimation techniques are p d y  statistical and partly 

meteorological. It is dificult to ensure that the estimated PMP is physicaily possible (Le. 

that the true atmospheric limit has been found, but not surpassed). The third task invoives 

hydrologicai simulation of each risk scenario. The hydrologicai conditions that generate the 



largest possible flood are used. Finally, simulations are used to pass the floods through the 

dam to test the safety of the dam. 

The estimation of the PMF uses histoncal data. Therefore, it is re-estimated 

penodically, as more data are collecteci. Occasionally, the revised PMF will be significantly 

higher. For example, Jarren and Tomlinson (2000) described a situation where the revised 

PMF for Olympus Dam in Colorado was almost four times larger than the original estimate. 

When this occurs, the dams may fail the safety check, leading to expensive spillway re- 

design and re-construction. There is, therefore, a considerable amount of concem about the 

techniques for PMF estimation. According to the National Research Council (NRC, 1988), 

there is continuing interest in extreme or rare floods (probability of exceedance of 10" to 

10") in the hydrologie and engineering communities for the purposes of planning and design 

of structures such as dam. The concems are ofien focused on the uncertainty of the PMP 

(Jarrett and Tomlinson, 2000). 

A World Meteorological Organization manual (WMO, 1986) describes the techniques 

to estimate the PMP. The manual explains that the method for estimating the PMP cannot be 

standardized and may need to be modified for a particular region (WMO, 1986, p. 4). The 

techniques depend on the size and location of the basin of interest, the amount and quality of 

data available at the site, and meteorological conditions that produce severe precipitation 

events. These problems are particularly severe in orographie regions, such as the Rocky 

Mountains. As such, the manual States that the PMP m u t  be considered an estimate and that 

its accuracy cannot be assessed in an objective manner (WMO, 1986, p. 3). 

Due to these concerns, BCHydm invited the University of Waterloo and several other 

p u p s  to work in a collaborative project to develop physically-based estimation techniques 



for the PMF. The use of phy sically-based estimation techniques alleviates these problems by 

using realistic atmospheric and hydrologic models to estimate severe stonns and floods. The 

Columbia River basin was used as the research basin. ïhere are four large dams operated by 

BCHydro on this river. This research focused on Mica Dam in particular, which has a 

drainage area of approximately 20,000 km2. It is the most upstream dam, and the river is 

unregulated above Mica. The basin is described in greater detail in Chapter 2. 

The Meso-scale Compressible Community (MC2) model (Benoit, et al., 1997a) was 

used in conjunction with the Probable Maximum Storm (PMS) module (Benoit, et cil., 1997b) 

to develop a physically-based estimate of the largest physically possible storm. îhe  models 

were developed at Recherche en Prévision Numérique (RPN) in Montreal, Quebec. The 

PMS module was developed for the Columbia River basin as part of the collaborative 

agreement with BCHydro. (Herein, the MCZ-PMS estimate of the largest possible storm is 

terrned the Probable Maximum Storm, PMS, to avoid confusion with the f MP estimate 

calculated with the WMO ( 1986) method.) The stoms are calculated by creating a 

theoretical perturbation (pressure and temperature waves in the atmosphere) in the Pacific 

Ocean. The perturbations are controiled by parameten that can assume a range of realistic 

values. To derive the largest atmospherically possible storm, the panuneters were varied to 

change the characteristics of the pressure and temperature waves. The atmosphenc physics 

as calculated by the MC2 model require that the stonn be physically possible. This analysis 

was a preliminary investigation of the PMS module, and so the analysis was Iimited to the 

characteristics of the pressure and temperature waves. Further analysis is required to 

determine the effect of changes in other parametea. 



The WATFLOOD/SPL distributed, physically-based hydrological model (Kouwen, et 

al., 2000a) was used to generate the flood that resulted fiom the PMS. WATFLOODISPL 

computes streamflow on a catchment basis but calculates runoff on a grid basis, allowing it to 

use NWP model data as input. The model simulates the hydrological budget, and so reduces 

the uncertainty associated with storm to flood transformation. The flood that resulted from 

the PMS was compared to the flood that resulted fiom the PMP (at Mica Dam). In this way, 

a physically-based estimate of the PMF was derived. 

Risk analysis also requires an estimate of the fiequency of a flood. Smith (1998) 

argued that the PMF has a frequency, which can be used to make infomed policy decisions. 

The estimation of flood frequency cwes. especialiy where measurements are limited. has 

been a subject of extensive research. The accuracy of flood fiequency curves is generaily 

low when time series are short and observation networks are spane. Regionalization 

methods (e.g. Hosking and Wallis, 1997) have been developed to improve the estimation of 

fiequency curves when time series are short. These methods are of limited use when the 

observation network is sparse, and therefore regional fiequency analysis is not a solution for 

many regions in Canada and the world. The problem of sparse observation networks can be 

solved with the use of simulated streamflow data. Data fiom atmosphenc models and 

distributed hydrological models could be used to augment a d o r  replace the observed data. 

The data may be replaced when there is reason to doubt the accuracy of the observed data. 

This is the approach taken in this thesis. This concept is not a new concept (see, for 

example, Lamb, 1999), however, this application uses an atmospheric model applied for an 

unusually long pend, longer than the observed streamflow record. When a long time senes 

of simulated seeamflow &ta are used in regional frequency anaiysis the result is a 



potentially more accurate frequency c w e  in spite of uncertainty in the modeling steps. This 

research explored this possibility. 

There are 32 Water S w e y  of Canada (WSC) streamflow observation stations in the 

Columbia River basin and four dams operated by BCHydro, with an average observed tirne 

series of 34 years (with a range fiom 5 to 91 years). In contrast, background meteorological 

data were available for a penod of 96 years. The High-Resolution Boundary Layer (HRBL) 

model (Danard. 1996b) used this meteorological data to calculate gridded temperature and 

precipitation data over the Columbia River basin for the years 1899 to 1994, inclusive (96 

years). These data were used in the WATFLOODtSPL model to calculate a 96-year 

simulated streamflow time series. These data were used to improve the estimate of the 

regional fiequency curve for the Mica Dam. First, however, the use of the simulated data to 

estimate frequency curves was validated. Secondly, the regional flood fmluency analysis 

method (Hosking and Wallis, 1997, as modified by Schaefer, 1990) was used to generate a 

flood frequency cuve. Thirdly, a method was developed to detemine the confidence limits 

for the fiequency c w e  developed fiom simulated streamflow. For the second and third 

steps, the regional analysis was performed for the Mica Dam reservoir, so that the PMF flows 

for the PMS and PMP precipitation could be compared. In this way, the use of a long time 

senes of simulated stremflow to derive frequency curves was investigated. 

To validate the use of simulated streamflow data to estimate fiequency cwes,  

individuai frequency curves for each WSC station and BCHydro dam were calculated for 

each data set. Therefore, obsnved and simulated streamflow frequency c w e s  were 

available for cornparison at 36 locations within the domain. Frequency curves derived fiom 

the simulated streamfiow were sllnilar to the fkquency curves derived fiom observed 



strearnflow, and the longer time series improved the fiequency curve estimation for high- 

flow, low-probability floods. 

The flood fiequency curve was generated with the regional flood fkquency analysis 

method (Hosking and Wallis, 1997). The method increases accuracy of fiequency curves by 

"trading space for time." That is, data are pooled fiom a nurnber of locations and used to 

calculate the frequency cwes.  Therefore, the effective time series length increases. The 

method involves establishing a set of homogeneous regions, finding a suitable frequency 

distribution, and then fitting the frequency distribution and calculating the frequency c w e  at 

the site of interest. This method results in discontinuity between regions, leading to 

dificulties with establishing the fiequency curves at an ungauged location. Schaefer (1990) 

developed a method to remove the discontinuity between regions and improve the L-moment 

estimates for precipitation data. Daviau, et al. (2000) used a similar method for streamflow: 

relationships between geo-statistical data and the L-moment estimates to derive smooth 

spatially varying L-moments estimates. This research also developed relationships to 

describe the spatial variation in L-moments: physiographic data were used to describe the 

spatial variation in L-moment statistics for strearnflow. The use of the Schaefer (1990) 

method improved the estimate of the simulated frequency curve, as it matched the observed 

frequency curve more closely than the Hosking and Wallis simulated frequency curve. 

Simulated streamflow data contain modeling uncertainty, and are therefore less 

certain than observed streamfiow data The Hosking and Wallis (1997) method includes a 

method to develop confidence llmits for the frequency curve, however, the method assumes 

that the data contain only statistical uncertainty (e.g. due to sample size), and it was therefore 

unusable for modeling uneertainty. A method to develop the confidence limits for simulated 



streamflow fiom the WATFLOODfSPL model was developed. A Monte Carlo analysis was 

performed on the WATFLOODISPL model to develop the modeling uncertainty due to the 

model parameters. The Monte Carlo allowed the parameters to Vary within their physically- 

possible ranges, and the resulting range of the peak flow was developed. The range of peak 

flow for each station was used to develop confidence limits for each station, which were then 

merged to create regional confidence lirnits. The regional confidence limits were applied to 

the regional fiequency curve for Mica Dam. 

The regional flood kquency curve based on the simulated s t readow was used to 

assign annual exceedance probabilities to the flwds generated by the PMS and the PMP. 

The confidence limits for the frequency curve were used to compare the relative magnitudes 

of the PMS and PMP, and determine their suitability for use in calculating the PMF. 

In this way, the techniques for estimating the PMP and PMF were improved through 

the use of physically-based atmospheric and hydrologic models, and the flood fiequency 

c w e s  were improved through the use of a long simulated streamflow time series. These 

tools allow for improved risk analysis for dams. 

1. f Objectives 

In summary, the main objective of this research was to develop physically-based 

techniques for estimating the PMP and the PMF, and to improve the flood frequency curves 

so that annual exceedance probabilities for the PMF could be defined. The contributions of 

this research are: 

Investigated the use of an atmospheric model (MC2-PMS) to derive an exverne 

precipitation estimate, and denved the Probable Maximum Storm (subject to verification 

by meteorologists). 



Used the Probable Maximum Storm in a distributed hydrological model 

(WATFLOODISPL) to calculate the corresponding flood. 

Improved the flood frequency curve through the use of a long simulated time series of 

strearnflow, and through the application of the Schaefer (1 990) method. 

Examined the effect of model parameten on the range of output for extreme events fiom 

a hydrological model (WATFLOOD/SPL), and developed a rnethod to derive confidence 

limits for flood fiequency curves calculated €rom simulated s~amf low data. 

The remainder of this thesis is organized as foliows: the study area is described in 

Chapter 2, the background infornation is presented in the lite-e review in Chapter 3, the 

Probable Maximum Storm and Probable Maximum Flood are derived in Chapter 4. and the 

improvements to the flood fiequency curve are described in Chapter 5. Chapter 6 uses the 

flood fiequency curve to compare the relative magnitudes of the PMS and the PMP and their 

effect on the PMF. Finally, Chapters 7 and 8 present the Conclusions and Recommendations 

fiom this research. 



2 Study Area 

This research was perfomed for the Columbia River Basin within southeastern 

British Columbia. This location was chosen for several rasons. There were suffxient data 

to ailow the atmospheric and hydrologic models to be developed and calibrated for this basin. 

The HRBL model (Danard, et al.. 1996b) was available to caiculate precipitation and 

temperature for a 96-year time period over the entire basin. The MC2-PMS (Benoit, et al., 

1997a and 1997b) model was developed and calibrated for this basin so that extreme stoms 

could be calculated. Finally. there were suficient observed streamfiow data in and near the 

basin to allow the hydrological model WATFLOOD/SPL to be calibrated. 

The basin is located in the Rocky Mountain Range, and has a drainage area of 

approximately 50,000 km2. The river begins at Columbia Lake and flows north-west for 

approximately 330 km through the Rocky Mountain trench before veering south to go 

through the States of Washington and Oregon, as can be seen in the 30-arcsecond digital 

elevation model (DEM) of the basin (shown in Figure 2-1). The locations of Golden, Mica 

Dam. Revelstoke Dam. and Castlegar are shown on the image. The nvers are also 

superimposed on the DEM. The lighter shades indicate higher elevations; the highest peaks 

in the basin are approximately 3000 m above sea level, while the lowest elevations are 

approximately 400 m. The large elevation range of this basin complicates the normal PMP 

estimation procedures. 



Figure 2-f - Digital Elevatioii Model for the Columbia River Basin (GTOP030) 

Most of the storms that affect British Columbia develop in the Pacific Ocean. 

However, the Columbia River Basin is sheltered frorn the ocean by several mountain ranges, 

and is therefore comparatively dner than the coastal areas of British Columbia. The PMP is 

the maximum summer or fall storm (which would occur when the dam reservoin are at or 

near full). A winter storm would fall as snow (and therefore affect the PMF through the 

depth of the snowpack). A spring storm would occur before snowmelt has filled the dam 

reservoirs, and could be controlled operationally. S u m e r  storms that begin in the Pacific 



tend to travel northward (dong the mountain ranges) as opposed to eastward (across the 

mountain ranges). Stoms can only travel eastward if a high pressure system already exists in 

the north (Pellerin, 2000, persona1 communication). These storms can be very severe in the 

Columbia River Basin. One such storm occuned on July 1 1-1 3, 1983. 'This storm began in 

the Pacific Ocean, and affected mainly the northem portion of the basin. 

The mean annual precipitation in the basin ranges from 500 to 2500 mm. There is 

more precipitation in the western half of the basin, and lower precipitation in the eastem 

ponion. This variation is due mainly to the orographie effects of the mountains. The July 

mean temperature for the area is 10 to 20 OC, while the January mean temperature is -20 to 

-1 0 O C  (The Cartographie Department of the Clarendon Press, 1977). Approximately half of 

the precipitation falls during the winter as snow. 

There are 32 strearnflow stations operated by Water Survey of Canada on the 

Canadian portion of this nver. Figure 2-2 shows a map of the stations, where the streamflow 

stations are indicated by black dots. The map also shows the locations of the four major 

BCHydro dams. The Mica Dam has a drainage area of approximately 20,000 km2 and is 

farthest upstream. Above this point, the nver is unregulated. The Mica Dam is situated just 

south of where the nver exits the Rocky Mountain Trench. Revelstoke Dam is 

approximately 130 km south of Mica Dam and has a local drainage area of approximately 

4000 km2. Keenleyside Dam is located approximately 200 km M e r  south, with a local 

drainage area of approximately 8000 km2. Keenleyside Dam controls most of the nver 

discharge that entes the United States. Duncan Dam is located on a tributary of the 

Columbia River (Kootenay River, which joins the Columbia River south of Keenieyside 

Dam), and has a drainage area of approximately 2000 km2. 
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Figure 2-2 - Location of Streamflow Stations and Major Dams in the Columbia 
basin (Fisberies and Environment Canada, British Columbia Active Hydrometric 
Slprions, December 1977) 
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Table 2-1 lists the 32 strearnflow stations with their WSC number, name, and years of 

operation, and the four BCHydro dams with the nurnbers of years of reservoir inflow data 

used in this research. The time series length of each station varied considerably, fiom 5 years 

to 91 years, with an average of 34 years. A portion of these data were used to calibrate the 

distri buted h y drological mode1 WATFLOOD/SPL in the separate collaborative researc h 



project with BCHydro (Kouwen, et al., 2000a). The largest streamflows ever recorded at 

severai of the streamflow gauging stations were due to the July 1 1 - 1 3. 1983 stonn. This 

storm also caused the largest recorded stom inflow (inflow that was caused by a stom) into 

Kinbasket Lake fomed by the Mica Dam. Mica Dam is used as the exarnple basin for the 

PMS develobd in this research. 

Table 2-1 - List of Stnamflow Stations and B.C. Hydro Dams with Number of Yean of 
Record 

Name of Station WSC # Yrs 
Columbia River at OSNA002 9 1 

Nicholson 
Kicking Horse River at OSNA006 32 

Golden 
Spillimacheen R. near 08NA011 47 

Spillimacheen 
Incomapplew River near O8NEOO 1 46 

Beaton 
Kuskanax Creek near OSNE006 33 

Nakusp 
Kas10 River befow Kemp 08NH005 38 

Creek 
Lardeau River at 08NH007 53 

Marblehead 
Columbia R. near Faimont OSNA045 50 

Hot Springs 
Columbia River at Donald 08NB005 5 1 

St. Mary River near O8NG046 48 
Mary sville 

Barnes Creek near Needle 08NE077 45 

Beaton Creek near Beaton 08NEOO8 43 

Goldstrearn R. below Old O8NDO 12 33 
Camp Cr. 

Duncan River below B.B. O8NH119 33 
Creek 

lllecillewaet River at O8NDOl3 32 
Greeley 

Jordan River above Kirkup 08NDû14 25 
Creek 

Name of Station WSC # Yrs 
Mather Creek below Houle O8NG076 23 

Creek 
Gold %ver above Palmer 08NB0 14 23 

Creek 
Stitt Creek at the Mouth 08ND018 23 

Kirbyville Creek near the O8NDO 19 23 
Mouth 

Kuskanax Creek at 1 O48m 08NE t 17 22 
Contour 

St. Mary River below 08NG077 23 
Moms Cr. 

Fry Creek below Camey O8NHl3O 23 
Creek 

Cranberry Cr. Above B.C. OSNE1 23 5 
Hydro lntake 

Keen Creek below Kyawats O8NH 132 22 
Creek 

Lemon Cr. Above South 08NJ 160 23 
Lemon Cr. 

Gold River above Bachelor O8NB0 1 3 2 1 
Creek 

Blaeberry River below 08NB0 1 5 22 
Ensign Cr. 

Split Creek at the Mouth 08NB0 16 22 

Camey C m k  below O8NH 13 1 23 
Parnbrun Cr. 
Arrow Dam 13 

Duncan Dam 13 



Blaeberry R. above 08NB0 1 2 26 
Willowbank Cr. 

Canoe River below Kimmel 08NC004 23 
Creek 

Mica Dam 

Revelstoke Dam 

Figure 2-3 is an image of the basin generated from Landsat MSS WuIti-Spctral 

Scanner) imagery, taken in 1982. The lighter shades correspond to barren areas and glaciers. - 
while the darker shades correspond to agriculnual land uses such as crops and forests. The 

predominant landcover in the region is sub-alpine forest (particulariy in the Rocky Mountain 

Trench, above Mica Dam). There is relatively little f d n g  or commercial development in 

the region; the development is rnainly in the low areas near the Columbia River and the 

Kootenay River. However, the forests are commercially exploited. 



Figure 2-3 - Landsat MSS image for the Columbia River Basin 



3 Background and Literature Review 

This Chapter introduces the background and relevant literature for this research. The 

Chapter is organized into four sections, which introduce the method to estimate Probable 

Maximum Precipitation, Numerical Weather Models, Hydrological Models, and Regional 

Frequency Analysis, respectively. The relevant literature is cited within each section. In 

addition, the methods and models used in this research are presented, and any preliminary 

work (such as mode1 calibration and validation) is described. 

3.1 Probable Maximum Precipitation (PMP) Estimation 

3.1.1 World Meteorological Organization (\IIIMO) Method 

The Probable Maximum Precipitation (PMP) is defined as "the greatest depth of 

precipitation for a given duration meteorologically possible for a given size storm area at a 

particular location at a particular time of year, with no allowance made for long-term climatic 

trends" (WMO, 1986). The World Meteorological Organization (WMO) has established a 

manual of estimation techniques for the Probable Maximum Precipitation (PMP). This 

section gives a very bief description of the method; M e r  detail can be found in the WMO 

manual (WMO, 1986). 

Often, a PMP analysis is performed for a large area, and the spatial variation in PMP 

estimates is necessary. For instance, Miller (1993) prepared PMP estimates for the entire 

Columbia River Basin above the Lower Border Dam site (an area of 155,700 km2). To 

caiculate the PMP estimate for a particular subwatershed, it is necessary to know the spatial 

variation in PMP estimates. One cornmon method is to choose an area that represents point 

precipitation and thereby to subdivide the watershed into a number of points or grids (e.g. 

Miller, 1993, used 10 km by 10 km Mds). The PMP d y s i s  is then carried out for each 
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gridpoint, and an index map of the PMP estimates is prepared for a particular duration. It is 

fiequently necessary to smooth the PMP estimates prior to drawing the isohyets on the index 

maps. These index maps are difficult to make; generally only one index map is prepared. 

Cumes are prepared to adjust the index map values for different sized areas and stom 

durations. Therefore, the steps to calculate the PMP for a particular subwatershed are: create 

an index map from the PMP analyses for each gridpoint; calculate the average PMP estimate 

for the subwatenhed fiom the index map; adjust the PMP estimates for the desired duration 

fiom the dephduration c w e ;  and adjust the PMP estimates for the desired area from the 

depth-area curve (the subwatershed has a different area than the area of each gridpoint). 

The following describes the PMP method for one point. However, as described 

above, it is often applied over the entire area of interest, and an index map is prepared to 

show spatial variation. The method for flat terrain will be presented first, and the 

adjustments for mountainous terrain will follow. 

The analysis of precipitation data to determine the PMP for flat terrain involves 

severai tasks. The first task involves establishing the stonn database, and determining which 

storms can be transposed into the area. The storms are evaluated to determine their depth- 

area-duration characteristics, and the storms are maximized using the precipitable water. 

Finally, enveiope curves are drawn around the maximized stoms to develop the PMP 

estimates. These tasks will be explained in greater detail below. 

The reliability of PMP analyses depends on the adequacy of the stom samples. A 

small number of stoms are not likely to yield an accurate estimate of maximum 

precipitaiion. However, the histokal data may show that only a few, or even no, storms 

have passed directiy over the basin (only storms of a sufficient size are included in the 



analysis). Therefore. WMO recommends transposing stoms to the area. When this is done, 

it is necessary to determine transposition limits, based on the meteorology and topography of 

the surrounding area In essence. the transposition limits define the limits of storms that 

"could have" occurred over the area They can be transposed using oniy rninor modifications 

to their rainfall amounts. The storm database consists of al1 stoms that either occurred over 

the area or occurred within the transposition limits. 

A depth-area-duration analysis must be perfonned for each storm in the storm 

database. Depth-area-duration anaiysis is described in another WMO manual (WMO No. 

237. TP 129). The anal ysis generates a table for each storm, detailing the depth of 

precipitation for each combination of area and duration. 

The stoms are maximized according to the maximum precipitable water available in 

the area. The precipitable water in the atmosphere is calculated ftom the dew point and the 

elevation. The first step is to find the xasonal variation in the maximum penisting 12-hour 

1000-mb dew point for the area. The historical database is examined to fhd the maximum 

penisting 12-hour 1000-mb dew point data for each day of the year. The maximum dew 

point data are plotted, and an envelope c w e  showing a smwth annual variation is drawn. 

For a particular stom, the maximum dew point is read fiom the envelope curve according to 

the date the storm occurred. The method also requires the 12-hour 1000-rnb dew point for 

the aom.  These two dew points are used to calculate the precipitable water at the time of 

the stom and the maximum precipitable water available for that date. The storm 

precipitation is scaled up according to the ratio of the precipitable water observed during the 

stonn and the maximum precipitable water. For a storm that requires transposition, the storm 

precipitation is scaled up according to the ratio of the precipitable water available at the tirne 



and original location of the stom, and the maximum precipitable water available at the 

transposed location. 

Envelope curves of the maximized storms are used for the PMP. The storms are 

plotted as depth vs. dwation and depth vs. area, and a smooth line that comects al1 of the 

maximum d u e s  is drawn. It is not necessary that one stom provides the maximum depth at 

al1 durations and areas, and in fact, it is very unlikely. A maximum may be "undercut" if 

there is sufficient reason to be suspicious of the value (such as, it is close to the transposition 

limits and may not be fully transposable). These curves become the PMP estimate, for each 

combination of area and duration. 

The PMP estimates in mountainous regions are complicated by orographic influence 

on precipitation. There are a large nurnber of methods to deal with orographic precipitation, 

and each region requires a different approach. The moa common method to estimate the 

PMP is to remove the orographic influence from the storm data, perform the PMP analysis on 

the non-orographie (or convergence) precipitation, maximize the orographic influence, and 

then add the maximized convergence precipitation and the maximized orographic influence 

to form the PMP. The orographic influence may be removed in several ways. The 

recommended method is to model the storm in an atmosphenc model with topography, and 

then to re-mode! the stom without the topography. This method can only be w d  if the 

atmosphenc model has k e n  validated with several storms. For instance, Miller (1 993) tried 

to use a boundary layer model to calculate the orographic precipitation, but was unsuccessful 

in validation. This method, despite its problems, is recommended by the WMO because it 

holds the greatest promise for diable orographic precipitation estimates. Another method is 

to evaluate the noms meteorologically and to separate the convergence and orographic 



components of the storms. For instance. the valley precipitation can be used to estimate the 

convergence precipitation. If there is no valley precipitation available, the fke-atmospheric 

forced precipitation must be calculated (the precipitation that would have occurred if there 

were no mountains). The PMP analysis is then performed on the convergence precipitation 

from each stonn. The maximum orographic precipitation may be caiculated by an 

orographic model, but this model may only be applied in certain "simple" mountain areas 

(e.g. a single continuous ridge). Another method for calculating the orographic precipitation 

is to calculate an orographic intensification factor. This factor combines the storm 

intensification effects and the orographic effects. The total PMP precipitation is then the 

convergence precipitation multiplied by the orographic intensification factor (e.g. Miller, 

1993, used this method). The addition of topography makes the estimation procedure very 

complicated. 

3.1.2 Ph ysically-based Estimation Techniques 

This mearch exarnined a method to detemine the PMF using physicaily-based 

atmospheric and hydrologic models. The emphasis in the research was to ensure that the 

atmospheric and hydrologic processes were modeled accurately and that the estirnated PMF 

was physically possible. 

The WMO method for calculating the PMP for a wateahed is based partly on 

meteorological processes, and partly on statinics. However, there are some problems with 

the method, such as: differences in availability and quality of data; site specific issues such as 

topography; and the simplifjhg assurnptions about atmosphenc processes. For instance, the 

method assumes linearity in the storm maximization and transposition procedure (Le. that 

precipitation increases as moisture increaxs) and that topographie and convergence 



precipitation can be separated. Abbs (1999) used a numerical weather model to test these 

(and other) assumptions, and found that they are generally not valid. Jarrett and Costa (1 988) 

showed thai stom transposition from a low elevation to a higher elevation in Colorado is 

unfounded by meteorological, hydrological and paleoflood information. The w of envelope 

cuves to define the maximum curves assumes that the data set contains at least some of the 

me maximum points. There have ken  instances where a PMP estimate was exceeded, with 

the result that the PMP was revised upwards (e.g. KlemeS, 2000). However, there have also 

ken  instances where the PMP magnitude depended on data that were later detennined to be 

erroneously hi& (e.g. Jarrett and Crow, 1988) or the magnitude was unsupported by 

paieohydrologic research (e-g. Pruess, et af., 1998). The most important assumption is that 

the PMP involves a type of precipitation system that has been observed in the part. It is not 

known whether a stom systern will behave similarly to observed syaems at the levels of 

precipitation that mut  be predicted. These problems may reduce the accuracy of the PMP 

estimates and so the WMO recommended using caution when applying its PMP calculation 

method (WMO, 1986). It is recommended (and fkquently necessary) to examine altemate 

methods for a particular site. In the particular w e  of mountainous regions, the Wh40 

recommended using atmospheric models to calculate orographie effects (WMO, 1986). It 

was therefore reasonable to investigate the use of an atmospheric mode1 to derive the PMP. 

This research exarnined the possibility of estimating the PMP with an atmosphenc 

rnodel, and using it to calculate the PMF. Many atmosphenc models are available in the 

literature. For this research, two atmospheric models were used. The fint model, called the 

High-Resolution Boundary Layer model, estimated a 96-year historical time series of 

precipitation and temperature (Danard and Galbraith, 1 9%b) (see Section 3.2.3), in addition 



to the 100-year melting temperature sequence and the lOO-year snowpack depth (Danard and 

Galbraith. 1995). These data were used to calibrate the hydrological model and as antecedent 

conditions for the PMP, respectively. The second model, called MC2-PMS (Benoit, et ai.. 

1997a and 1997b), is a forecast model used in simulation mode to develop a large storm. An 

atmospheric perturbation was used as the initial conditions for the model. The model 

controlled the development of the storm and calculated the precipitation. The model physics 

ensured that the storm was physically possible. These two models are described in Section 

3.2. 

This research also required a hydrological model to develop the PMF from the PMP 

and the antecedent conditions. Since the hydrological model wodd be accepting input fiom 

the atmospheric modeis, a gnd-based hydrological model was advantageous. In addition, it 

was required that the hydrological model be physically based or at least behaviorally correct. 

This model is described in Section 3.3. 

Thirdly, this research required flood frequency curves, to estimate the severity of the 

PMF estimates. However, the observed streamflow database was very short, and therefore 

the 96-year simulated streamtlow time series fiom the hydmiogical model was used. The 

regional frequency analysis method by Hosking and Wallis (1 997) was used, and is described 

in Section 3.4. 

3.2 Numerical Weafher Modeling 

The knowledge of atmospheric processes has improved over time and computen have 

become more powefil and it has become possible to numerically model the atmosphere at a 

usehl resolution (e.g. 10 km or better). This section introduces numerical weather modeling, 



and in particular, the two atmosphetic models used in this research. Atmospheric modeling 

is placed in context, and then the two models are described in nim. 

3.2.1 Use of atmospheric models in the literature 

There are two main categones of atmospheric models. which have arisen 

simultaneously to cover different needs. Clirnate models are in the first category. They are 

used mainly for long-terni clirnate change predictions. These are often calculated with - 

General Circulation Models (GCMs) using low resolution grids over a large portion of the 

globe (see, for example, Mimikou, et al., 2000). The emphasis is usually on modeling the 

atmospheric physics. These models are not used in this research and will not be discussed 

furthet. 

Various weather models make up the second category of atmospheric models. These 

models operate on a high-resolution grid to be able to model local weather phenomena. The 

emphasis in these models is on the atmospheric dynamics and data assimilation. Sorne 

weather models are used for short-term weather modeling, and othea are used to fill-in 

historicd data. 

There are several Canadian atmospheric models produced by the Canadian 

Meteorological Center that cm be used for short-term weather modeling. The models 

include: the Regional Finite Element (RFE) model (J. Mailhot, et al., 1997), the Global 

Environmental Multiscale (GEM) model (Côté, et al., 1 WB), and the Mesoscale 

Compressible Comrnunity (MC2) model (Benoit, et al., 1997a). These models generally 

operate in a forecast mode, where the initial atmosphenc conditions are specified and the 

model physics are used to predict fiiture weather conditions (currentiy, the GEM model is 

used for operational weather forecasting in Canada). 



Another application for weather models is the simulation of past histoncal events. 

Ofien the atmospheric models are linked with hydrological models; the atmospheric models 

are used to re-mate histoncal weather scenarios and the hydrological models estimate the 

strearnflows. Several authors have used simulated historical weather data in hydrological 

models (for instance, Kouwen, et al. (2000). Lamb (1999), 2. Yu, et d. (1999), Kite, et al. 

(1995)). Some atmospheric models are limited by their need for extensive initial conditions 

and boundary conditions, and so only bief periods of time may be generated (e.g. 2. Yu, et 

al., 1999, used a model to generate data during three stoms. the earliest of which was in 

1984). Other simpler atmospheric models (e-g. Kouwen, et al.. 2000 used data frorn a simple 

atmospheric model by Danard and Galbraith, 1996b) can generate data for longer periods of 

time. 

3.2.2 Mesoscale Compressible Community - Probable Maximum S t o n  

(MCZ-PMS) Model 

Two different atmospheric models were used in this research. The fint model was 

the Mesoscale Compressible Cornmunity (MC2) model, developed by Recherche en 

Prévision Numérique (RPN) (Benoit, et al., 1997a), which was used to develop extreme 

rainfall estimates. The model requires initial atmospheric conditions, and calculates the 

forecasted atmospheric conditions. RPN has developed a module called the Probable 

Maximum Storm (PMS) module (Benoit, et al., 1997b), which was added to the MC2 model. 

The PMS module calculates the initial conditions for an extreme storm, and the MC2 rnodel 

(in forecast mode) develops the nom. The MC2 mode1 physics ensure that the storm 

complies with the physical laws goveming atmospheric processes. This section describes the 

MC2 model, and then the PMS module is described. 



The Meso-Scale Compressible Cornmunity Mode1 (MCZ) developed by Recherche en 

Prévision Numérique (RPN) is an atmosphenc model that can nui at multiple resolutions and 

is suitable for fine-resolution weather forecasting and simulation. The model is described by 

Benoit, et aï. (1997a). MC2 is a non-hydrostatic. finite difference, semi-Lagrangian, limited 

area model. The horizontal variables are distnbuted in a polar stereographic map projection. 

and the vertical variables are distributed according to a modified Gd-Chen height coordinate 

(Gd-Chen and Sommerville. 1975). The semi-implicit, semi-Lagrangian integration method 

for time was found to be more stable than other integration methods for mountainous terrain 

(Pinty, et al., 1995). This research used version 4.7 of the MC2 model. 

The phy sics package (descri bed in J. Mai lhot, et al.. 1 998) was prograrnmed using a 

modular philosophy. Depending on the resolution of the simulation, the modules used for 

each physical process cm be changed. For instance. a low resolution simulation may use one 

module for a panicular process. A higher resolution simulation would use a different module 

for the same process (one that models the process better at a fine scale). The user may 

speciS the modules to be used for each simulation. In this way. the physics package can be 

used at multiple resolutions. The atmospheric physics package includes modules for the 

following atmospheric processes: 

Turbulent Vertical Diffusion 
Gravity Wave Drag 
C t oud Processes 
Condensation Processes 
Deep and Shailow Convective Processes 
Land Surface Processes 
Water Surface Processes 
Iafiared Radiation 
Solar Radiation 



The MC2 model has been validated by a number of authors in a number of regions. 

A few examples are listed here. W. Yu, et al. (1998) compared the MC2 precipitation 

estimates to Doppler Radar precipitation in Quebec, and found reasonable agreement. 

Lackman, et al. (1 998) validated MC2 in the Mackenzie River Basin; the model was found to 

be able to reproduce precipitation events. Desjardins, et al. (1 998) validated the sea surface 

temperatures near Nova Scotia. Kouwen and Imes (2000,2001) compared the ability of 

MC2 data and radar data to produce accurate flood forecasts for the RAPHAEL (Runoff a>id 

Atmospheric Processes for Flood Hazard Forecasting and Connol Program in Italy) and 

MAP (Mesoscale Alphe Project in Switzerland and Germany) projects. The MC2 data was 

found to produce plausible strearnflow forecasts. Benoit, et al. (1997b), as part of a 

collaborative research project for BCHydro, validated the model for the Columbia River 

Basin. In dl of these papers, it was found that MC2 tended to have a timing problern: 

predicted storms were offset in time from when they were actdly observed. However, apari 

from the time offset, the precipitation distributions in time and space were reasonable and 

sometimes very good. In this research, the time offset did not afkct the results, since the 

goal was to generate a large storm for insertion into WATFLOOD/SPL - the start and end 

times were not important. 

3.2.2.2 PMS module description 

The Probable Maximum Storm module was developed as part of a collaborative 

research project for BCHydro, and is described in a report by Benoit, et al. (1997b). The 

Probable Maximum Storm (PMS) module creates an atmosphenc perturbation, and embeds 

the perturbation in a real &y. The MC2 mode1 develops the perturbation and calculates the 



precipitation distribution. When the PMS module is used, the model is referred to as MC2- 

PMS. 

The PMS module calculates an atmospheric perturbation that consists of a 

temperature wave and a pressure wave. The atmospheric perturbation tends to develop into a 

cyclonic storm when it is superimposed on an unstable mnal cunent (such as the jet strearn) 

(Benoit, et al., 1997b). The jet stream is located at different latitudes during the surnmer and 

winter seasons, and conditions for developing extreme storms are therefore diffetent for these 

two seasons. The PMS module w d  the equations from Nuss and Anthes (1987) to calculate 

the atrnospheric perturbation. These equations combine meteorological constraints with 

sinusoicial equations to describe the waves. The temperature and pressure waves are out of 

phase with one another to allow cyclogenesis to occur. The waves dope with height to 

account for wind effects at higher altitudes. Various parameters modi& the equations, and 

manipulate the perturbation. Benoit, et al. (199%) developed the PMS module but did not 

determine the appropriate settings for the development of an extreme storm. This research 

continued the work of Benoit, et al. (1997b) and determined appropriate settings for an 

extrerne stom occurring in the warm season. The PMS module settings are described below. 

The perturbation is embedded into data for a real day. When the MC2 model is in 

forecast mode, it nuis as a hemispheric model for the first simulation (approximately 18.000 

km by 18,000 km). The atmospheric perturbation derived by the PMS module was only 

9000 km (east-west) by 5000 km (north-south). (The size of the pemirbation may be 

adjusted in the PMS module.) Therefore, the perturbation was embedded in a real day so that 

initial atmospheric d u e s  would exist at ail the points within the hemispheric domain. The 

RPN database contains several years of data that can be used to initialize the model. This 



research used the generai circulation for July 13, 1983 as the initial and boundary conditions 

for the model. This date was used because a large historical storm occurred on this date (July 

1 1 - 13, 1983); it caused the largest recorded rcservoir infiows at Mica Dam (due to a storm); 

and affected the northem part of the Columbia River Basin. 

The July 1 1 - 1 3, 1983 storm developed in the Pacific Ocean. Therefore, the 

perturbation was originally placed in the Pacific Ocean in the location of the historical storm. 

The location of the perturbation was modified to find the optimal location for the storm. 

The atmosphenc perturbation is calculated as a 5-step procedure (Nuss and Anthes, 

1987). Each step will be described below. 

The fint step is to calculate a pressure wave for a pariicular reference height. The 

pressure wave is initialized at the 5 km level, and is calculated as the total OF: a reference 

pressure, an east-west variation, and a north-south variation: 

P = Po + AP' + AP'............................................................*. ............................. (3- 1 ) 

where: Po is the reference pressure, and AP, and AP, represent the est-west and no&-south 

variations respectively. 

The east-west variation consists of an asyrnrnetric sinusoicial pressure perturbation 

that is forced to zero on the northem and southern boundaries: 

AP' = a,cp ( x ) ~ ~  (y)sin - + (y) LILT. 1 



where a,, L, @(y), di, d2, and L, are constants. The funftion c,(x) controls the asymrnetry 

in the wave, and the G&y) hinction forces the equation to zero at the northem and southern 

boundaries. The variable a, refen to the amplitude of the est-west pressure wave. Lx and 

L, are the lengths of the wave in the east-west and north-south directions respectively. %(y) 

is a phase relation in the north-south direction (assumed constant). Finally, di and di control 

the amplitude of the asyrnmetry in the east-west wave. 

The north-south variation creates a pressure differential across the perturbation, and 

includes a streak caused by the jet stream dong the flow: 

where a,,, q r ,  y,, pl, m, dy, b, and @,(y) are constants. The F,(x) fûnction creates the jet 

streak by v=ying the pressure differential dong the east-west direction. The variables ayi 

and a,2 are amplitude coefficients for the pressure differential. The variable y, is the center 

of the domain in the no&-south direction. The coefficients pl and pz affect the density of the 

pressure differential, and dy is the grid spacing. The variable b affects the amplitude of the 

jet streak, and Qi(y) is a phase relation in the north south direction (assumed constant). 

The second step is to calculate the temperature wave for al1 levels. The temperature 

wave is similar to the pressure wave, except that a vertical variation is inciuded. The vertical 

variation allows the temperature wave to be calculated on al1 levels. The temperature wave, 

therefore, is a total oE the surface temperature, an east-west variation, a north-south 



The east West variation is caiculated as an asyrnrnetric sinusoidal fûnction that is 

forced to zero at the northem and southem boundaries. However. it also includes vertical 

variation in the wave amplitude and phase. 

cr (x) = dtl dt2 + sin [ (31 

where bx, L, dz, di,, du, L,, ZR, and @(y) are constants, and z, is the maximum phase 

difierence. The functions cT(x) and M y )  are analogous to c&x) and G&) for the pressure 

wave, and their constants have analogous meanings. D(z) and @r(y,z) introduce vertical 

variation in the amplitude of the wave and in the phase of the wave, respectively. The 

variable bx refers to the amplitude of the temperature wave in the east-west direction 

(analogous to ax), dtl and du are analogous to di and dl, and Lx and L, are identical to L, and 

L, for the pressure wave. The variable dz is the vertical grid spacing. ZR is the reference 

pressure level(5 km). *(y) is the phase relation in the north-south direction (assumed 

constant). 

The north-south variation in temperature is similar to the north-south variation in 

pressure!, but includes a term to introduce an intense low-level temperature front near the 

surface: 



1[ (:' + .) + 
.in ' (e) sin [$] . . . . . . . . . . . . . + . (3-6) FR (x, y, z )  = f (z  sin - 

for the pressure wave (there is no jet streak term for the temperature wave). The FR(x,Y,z) 

function produces the low-level temperature front near the surface, and it decreases as height 

increases. The variable af is a constant to describe the rate of decrease with height. 

The vertical variation in lapse rate is calculated as a parabolic fùnction: 

where s and AT are constants to indicate the lapse rate at the surface and the temperature 

difference between the surface and 10 km. 

The third step is to speciS, the three-dimensional moisture structure for the relative 

humidity. The moisture field is arbitrary since there are no atmospheric constraints for a 

particular wave. The humidity fields used in this research are described in Section 4.1.1. 

The last two steps are to calculate the pressure on al1 levels and to calculate the winds 

on al1 levels. The hydrostatic equation describes the relationship between pressure and 

temperature in the atmosphere, and so it is used to integrate pressure on ail levels. Finally, 

the winds are caicdated h m  the temperature and pressure, using the noniinear balance 

equation. 
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Table 3-1 summarizes the parameters for the pressure and temperature waves, dong 

with typical values for those parametea. These may all be adjusted to develop different 

storms. Preliminary research at RPN (Pellerin, 2000, personal communication) indicated that 

the perturbation was most sensitive to a,, b,, and S. In this research, these parameters were 

varied within the ranges given to generate extreme stoms, as descnbed in Section 4.1. 

Table 3-1 - Parameten for the Atmospheric Perturbation 

r Pressure Wave Variables 1 Temperature Wave Variables 1 
Po (reference 

pressure) 
Lx (length in x) 
Ly (length in y) 

The following figures show the atmosphenc perturbation created with the above 

parametea. The atmospheric variables (temperature, wind speed, etc) are available at a 

number of pressure levels, here they are shown at surface level. The pressure and 

temperature waves in Figure 3-1 and Figure 3-2 are orthogonal to each other. The pressure 

wave is low (-1 8 mb), high (+26 mb), low (-23 mb). The temperature wave is high, low, 
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high. Figure 3-3 shows the wind speed and direction. Note that the waves have created two 

circular wind patterns. MC2 will develop the cyclone. 

Figure 3-1 - Atmosphenc Perturbation: Pressure Wave (Domain: 18,ûûû by 18,000 km) 



Figure 3-2 - Atmospheric Perturbation: Temperature Wave (Domain: 18,000 by 18,000 
km) 



Figure 3 3  - Atmospberic Perturbation: Wind Speed and Direction (Domaia: 18,000 by 
18,ûûO km) 

3.2.3 Hig h-Resolution Boundary Layer Model 

The second atrnospheric model used in this research was the High-Resolution 

Boundary Layer (HRBL) Model by Atmospheric Dynamics Corporation. It was used to 

model temperature and precipitation for the years 1899- 1994 (inclusive). Danard and 

Galbraith also used this model to determine the 100-year snowpack and 100-year melting 

temperature sequence. The model is described in a series of reports by Danard and Galbraith 

(1994, 1995, 1996a (with Davies), 1996b, and 1997), and is described briefly in this Section. 



The model calculations were performed on a 2' (latitude) by 4' (longitude) grid 

(approximately 3.7 km by 4.7 km). The outermost latitudes and longitudes were 48'4'N. 

52'2'N, 1 lS08'W, and 1 19'4'W (1 20 rows by 60 columns). A border region of five grid 

squares was added on al1 sides to account for boundary efTects, so the calculation grid was 

130 rows by 70 columns. The modei was used to calculate gridded temperature and 

precipitation for the time pend fiom 1899 to 1994. 

There were two steps in the model: a trial field was calculated fiom the methods 

described below. and then objective analysis was used to fit the triai field to the observed 

meteorological station values. The physical equations used in the triai field calculations and 

the objective analysis method are presented in the following sections. 

The input data for the trial field were generated fiom the 190 km LFM grid aimited 

are% Finite Mesh grid by US. National Centen for Environmental Prediction). The LFM 

data were interpolated to the 2' by 4' grid with bi-cubic splines. However, the LFM data 

were only available fkom 197 1 to 1994. Prior to this time, other data sources were 

interpolated to the 190 km grid. When no other data were available, an analog method was 

used to fiIl in missing data. 

3.2.3.1 Maximum and Minimum Temperature Calculalion 

This Section describes the calculation of the tnal field for the daily maximum and 

minimum temperature. 

The LFM data at ûûOO UTC were used to calculate the maximum temperatutes, and 

the data at 1200 UTC were used for minimum temperatwes. The following data were used 

to calculate temperatures: 850 mb temperature, 700 mb temperature, 850 mb height, grid 

point height, and d a c e  pressure. 



If the surface pressure was below 850 mb (i.e. the ground was above the 850 mb 

level), the temperature was found using the 700 mb and 850 mb temperatures. The 700 mb 

and 850 mb temperatures (from the LFM data) were interpolated to the grid points using bi- 

cubic spline interpolation. The temperature was then interpolated vertically at each grid 

point by ass&ning a linear variation of temperature with height. 

If the surface pressure was above the 850 mb level, a sea-level temperature was 

calculated by assuming the hydrostatic equation applies: 

where g is the acceleration of gravity, R is the gas constant for 1 kg of dry air. Zts is the 850 

mb height. p and p85 are the sea-level and 850 mb pressures, and Tt5 is the 850 mb 

temperature. (The value of 546.4 (2~273.2) is used to convert "K to OC.) Bi-cubic spline 

interpolation was used to interpolate the sea-level and 850 mb temperatures to the grid 

points, and then the temperature was interpolated vertically, as before. 

After the temperatures were calculated at ail the grid points and meteorological 

stations as described above, the average bias was calculated. The average difference between 

the model estimates and the observations at the meteorological stations was calculated, and 

subtracted fiom the model estimates for the entire grid. The bias was generally negative for 

minimum temperatures (the model underestimated minimum temperature), and positive for 

maximum temperatures (the model overestimated maximum temperature). The model 

estimates with the bias removed constituted the trial field. 

The triai field was then modified with the objective analysis descnbed in Section 

3.2.3 3. 



The model also caiculated daily precipitation using the horizontal moisture 

convergence as a predictor. Danard (1 97 1) found that this was a usefùl predictor for 

precipitation in a mountainous terrain. The horizontal moisture convergence was found with: 

- 
C = -Azv . qpv ................................................................................................. (3-9) 

where Az = lOOOm (the assumed thickness of the layer), and q, p, and V are the specific - 

humidity, density, and wind velocity respectively. The calculations were perfonned on the 

surface ç=I SOOm (ç=Z-2,) where Z is the height above sea-level and 5 is smoothed terrain 

elevation. This sdace  follows the terrain. The q, p, and V were dl smoothed to avoid 

noise. Downwind displacement of precipitation was accounted for by advecting C with the 

700 mb wind. 

Since the LFM data were available at 1200 UTC and 0000 UTC, an average was used 

for the climate day. The climate day was calculated by combining C at 1200 UTC, at 0000 

UTC, and 1200 UTC the following &y with weights of O.25,OS. and 0.25 respectively. 

Once the climate day C was calculated, the precipitation was found using the 

following equation: 

where Pm is the model precipitation, to a5 are coefficients detennined for the day by 

minimizing L(P~&-P,,,)~ for al1 stations, C is the climate day horizontal moisture convergence 

interpolated to the grid point, x and y are distances to the east and north in grid units, X and 

Y are the coordinates of the center of the domain, and h is the grid point height This 

regression was performed for each day. The coefficients were modified if the equation gave 

negative precipitation. The equation was prone to error, as it depended on the amount and 
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quality of observed precipitation on each historical day. However, the overall pattern was 

considered to be appropriate for the topography. and corrections based on strearnflow volume 

were used to M e r  improve the results. 

Various corrections were perfonned when observed precipitation was sparse. For 

instance, the calculated precipitation was restrained to be within 10 mm of the maximum 

observed precipitation. If less than 14 stations were available, a simpler equation or the 

average precipitation was used instead. For details, see Danard and Galbraith (1 996b). 

The values of Pm were then cornbined with observed precipitation in the objective 

analy sis. 

3.2.3.3 Objective Analysis 

The objective analysis method used in the HRBL mode1 is described in Danard, et al. 

(1993). Objective analysis was used to make the gridded values match the observed values at 

the observation stations. but yet retain the shape and structure of the gridded data. This 

method was used to modify both the precipitation and the temperature trial fields. 

The first step in objective anaiysis was to make the trial field match the observations 

at the stations. The ternis used in calculating the weights to make the trial field match the 

observation stations are illustrated in Figure 3-4. 

Figure 3-4 - Weight calculation to make the gridpoints match a i  observation station 
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Weights were calculated according to the distance of the station (i) to the four 

surrounding grid points (m): 

where r is the distance from the station to the grid point. The differences between an 

observation (Oi) and the trial field value (Ti), interpolated to the station location, were 

weighted by the above Wmi factors. These weighted differences were used to adjust the trial 

field in the following equation: 

where G* is the modified field. G is the trial field. the summation is performed for al1 the 

stations i within the four squares surrounding the grid point. and m takes on the value 1,2,3,4 

according to the location of the station with respect to the grid point. Only grid points that 

had an observation station in one (or more) squares around hem were modified, but the other 

grid points were not yet modified. The second step of objective analysis was to adjust the 

unafTected grid points to reduce discontinuities caused by the fiat step. The unafTected grid 

points were adjusted so that the second derivative of the new field matched the second 

derivative of the trial field at al1 points: 

V*G" = V'G ................................................................................................... (3-1 3) 

where Ge+ is the new field, and G is the trial field. 

The new tield, G** matched the observed data at station locations, and retained the 

shape of the trial field, as indicated in Figure 3-5. 
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Figure 3-5 - Matching tbe second derivative in objective analysis 

The G** field was the %est guess" for the temperature and precipitation. However, there 

were two large sources of error in the G** field. The first error was caused by erron in the 

observed temperature and precipitation. The second error was due to the shape of the trial 

field. For precipitation, the triai field was caiculated by a regression equation (Equation 3- 

10) that was prone to error. The erron were minimized during hydrologic modeling with the 

use of a Precipitation Adjusment Factor (PAF) field (Section 3.3.3). 

3.3 Hydrologie Modelhg 

There are many hydrological models currently in use. Refsgaard and Knudsen (1996) 

have listed three general groupings of hydrological models: empirical, lurnped conceptual, 

and distributed physically-based models. An empirical model is one that is based on 

empirically denved equations, which have linle or no physical basis. A lumped conceptual 

model is one that "lumps" the watershed into a single element, and uses representative 

descriptions of hydrologic processes. These models use parameterizations of hydrologic 

processes that are conceptuaily sound but do not model the detail of the processes in a 

waienhed. A distributed physically-based model is one that subdivides a domain 

(watershed) into hydrologically significant subgroups and uses detailed physicaily-based 

descriptions of the hydrologic processes. There are, of course, models which fa11 between 



these categones, as some hydrologic processes are not understood very well, and cannot be 

modeled in a physicaily-based manner at a suitable grid scale (Beven, 1989). 

Of these three categories of hydrological models, the most sophisticated and 

philosophically attractive model is the distributed physically-based model. It is not, 

however, the'ideal model for al1 purposes. Refsgaard and ffiudsen (1996) found that lurnped 

conceptual models and distnbuted phy sicdl y -based models worked equall y well, if there 

were suficient data for calibration. The parameters for lurnped concepnial rnodels are 

wateahed-specific, while the parameters for physically-based models are based on landcover 

or soi1 information, and can be transferred with little or no modification to another watershed. 

Therefore, the physicaily-based rnodels were superior for cases when there were insuficient 

data, or there were changes in the basin (de forestation, urbanization, etc.). 

This application used a hydrological model to calculate the floods produced by large 

theoretical storms. These storms have never occurred, and there are therefore no observed 

streamflow data available for caiibration and validation of a lumped conceptual model. In 

addition, the large amounts of precipitation would render invalid any calibration based on 

average streamflows. Therefore, this application required a distributed physicaily-based 

model. 

This research used the distributed hydrological model WATFLOOD/SPL (Kouwen, 

2000). This model is an integrated data management and largely physicdly based 

streamflow simulation and forecasting model package. The model accepts min and 

temperature as input, and simulates hydrologic processes to determine streamflow. The 

model works on a grid basis enabling it to use distributed meteorological data as input, but 

integrates ninoff to calculate streamflow on a catchment basis. 



The rernainder of this section will describe the WATFLOOD/SPL model, the 

calibration and validation of this type of hydrological model, and the approaches for 

deterrnining the level of model uncertainty. 

3.3.1 WATFLOOO/SPL subroutines 

The WATFLOODISPL modeling system consists of two parts. WATFLOOD is the 

data management system that includes a nurnber of data pre-processing prognims, and SPL is 

the hydrological simulation model. 

To account for the spatial variability of the hydrological variables, WATFLOOD/SPL 

uses the Grouped Response Unit (GRU) method to group h y drologicall y similar response 

unis (Tao and Kouwen, 1989; Kouwen, et al., 1990; Kouwen, et al., 1993). A GRU is a 

hydrologic computational unit that consists of a grouping of areas that can be expected to 

react similarly to meteorological conditions. The Columbia River Basin has k e n  set up with 

eight different landcover types: barren a m ,  high elevation dense forest, low elevation dense 

forest, high elevation light forest, low elevation light forest, glaciers, water, and impervious. 

LANDSAT MSS imagery from 1989 to 1991 was used to determine the iandcover types. In 

the GRU method, ail similarly vegetated areas (not necessarily contiguous) within a grid 

element are grouped into one aggregate response unit and cailed a GRU. Experience to date 

has show that five to eight classes are usually suficient to represent the variability of land 

cover. The hydrologic response of each class is computed according to the geometry of the 

grid, and the response (e.g. streamflow) is weighted according to its percent cover of that grid 

element or subwatershed. 

The meteorological forcing data are assumed to be uniform over the grid cell, and it is 

assumed that al1 pixels belonging to a land cover group respond in a similar way with respect 



to infiltration, surface runoff, intefflow, evaporation, snowmelt and drainage to ground water. 

Therefore, model parameters are associated with land cover class and are invariant over the 

modeled domain. In this way, there are very few "watershed specific parameters." only 

parameters pertaining to land cover, which are readily transferred to or from other 

watersheds. There are four parameten that are associated with the type of rivers in the 

modeled area and the underlying geology. These are channel roughness (for ôoth channel 

and floodplain) and two groundwater fiow parameters. These panuneten are watershed 

specific, although related to the physiography of the area, and do not vaxy greatly. 

The vertical water balance component of the WATFLOOD/SPL model is a 

conventional hydrological model. Where it differs is in the method that watersheds and 

regions are subdivided to preserve the hydrological responses of greatly differing suiface 

areas, namely by employing the GRU or pixel grouping approach. Details of the 

hydrological abstractions in WATFLOODISPL are available in previous publications 

(Kouwen, et al., 2000, Donald et al., 1995; Kouwen, et cil., 1993; Tao and Kouwen. 1989). 

Bnef descriptions of the aigorithms for snowmelt, surface storage, infiltration, soi1 moisture, 

evaporation, interception, overland flow and base flow are given below. 

The snowmelt algorithm is based on the Anderson method (1976). It diffen by using 

hourly time steps instead of days and using separate calculations for each land cover in each 

grid instead of basin-wide caiculations. Snowcover depletion curves (SDC) are used to 

surnmarim the relationship between snowcover distribution and an average snowcover 

property, such as depth of water equivalent, for a given area (Donald, et al., 1995). More 

specifically, these curves provide the amount of snow covered m a  for a given depth of water 

equivalent for each land cover class. 



Surface storage is modeled according to the ASCE Manual of Engineering Practice 

No. 37 for the design of sanitary and storm sewen (ASCE. 1969), which gives typical values 

of retention for various surface types. It is assumed chat the limiting value of depression 

storage (Sd) is reached exponentially (Linsley. et al., 1949) 

The Philip formula (Philip. 1954) was chosen to represent the important physical 

aspects of the infiltration process. A three-zone scheme is used to manage soil moisture and 

therefore control infiltration. The zones are: 

UZ Upper zone storage (saturated) 

IZ Intermediate zone storage (unsaturated) 

LZ Lower zone storage (saturated) 

Infiltrated water initially is accumulated in the Upper Zone Storage (UZS). Water 

within this layer percolates downward or is exfiltrated to nearby streams as interflow. A 

simple storage-discharge relation represents intertlow. Upper zone to lower zone drainage is 

the same simple linear function as for interflow. Intedow and drainage occur 

simultaneously and are prorated if the amount calculated c m o t  be supplied from LES. The 

moisture content of the intemediate zone (IZ), through the Philip formula, affects the 

infiltration rate of rain and melt water. It is used only as an index to provide a method of 

calculating the progress of the wetting front. When the temperature is less than O O C  the soil 

moimire is not changed. 

The specific retention of the soil in the upper zone is an analogue for the field 

capacity and is used to limit the arnount of water that can become intefflow or drain to the 

saturated zone. Retained water cm be evaporated but not drained. 



In WATFLOOD/SPL, the Priestley-Taylor method (1 972). Hargreaves and Samani 

method (1982), and pan evaporation data can be used to calculate potential evaporation. 

Cornparisons between these methods within the WATFLOOD/SPL system have show that 

one method is not greatly supenot to any other in long terni simulation. The choice of the 

method is mostly based on the availability of the data. For the Columbia River Basin, 

radiation data were not available and therefore the Hargreaves equation (Hargreaves and 

Samani, 1982) was w d  to estimate the potential evapotranspiration (PET). The PET is 

reduced to the acnial evapotranspiration (MT) with the use of three coefficients, which are 

functions of soi1 moisture availability, degree-days and vegetation type respectively . 

Evaporation of intercepted water is assumed to occur preferentially to mil water evaporation. 

The procedw used for tracking interception storage and interception evaporation 

follows the mode1 developed by Linsley , et ai. (1 949). 

When the infiltration capacity is exceeded by the water supply, and the depression 

storage has been satisfied water is discharged to the chme1 drainage system. The 

relationship employed is based on Manning's formula. The intemal dopes (Le., the dope of 

the local relief, not the average slope) of the GRUs are explicitly incorporated in this 

calculation while the roughness value is a parameter for each GRU (land cover class). 

An exponential ground water depletion fùnction is used to gradually deplete the lower 

zone storage. Ground water is replenished by recharge fiom the UZS. GRUs fiom dl land 

covers within one grid element contribute to a single lower zone resemoir for the grid. 

The total inflow to the river system is found by adding the surface ninoff 

components, the interfiow, and the base flow. These flows, dong with flows pduced by 



upstream grids, are al1 added to the upstream end of the channel travening the runoff 

producing grid. 

SPL is a storage model and as such, al1 water storage quantities need to be initialized. 

The storages are surface (snow d o r  water), upper zone, lower zone. and channel storage. 

The water storage on the surface is always assumed to be zero when a modeling nui is 

initiated. This is a reasonable startup condition when a run is initiated during a dry period. 

Snow storage is usually initiated using snowcourse data although it is preferable to start a run 

when no snow is present in the wateahed. Upper zone storage is initialized using the 

Antecedent Precipitation Index. Channel and lower zone storages are initialized using 

measured streamflow at a downstrearn gauging station. Prorated flows, based on drainage 

area, are used to determine the initial channel storage using the storage-discharge functions in 

reverse. 

The WATFLOOD/SPL model was calibrated and vaiidated for the Columbia River 

basin as part of the collaborative research project for B.C. Hydro (Kouwen, et al., 2000). A 

gnd size of 10 km by 10 km was chosen for this basin. This resolution was suscient CO 

represent the topography of the basin. The HRBL model data were available at a resolution 

of 3.7 km by 4.7 km for the time period of 1899 to 1994, and these were aggregated to form 

10 km by 10 km estimates. The observed streamflow were obtained fiom Water S w e y  

Canada and B.C. Hydro (36 stations in total). Moa of these stations recorded observed 

streamflow during the years 1972 to 1994. Therefore, calibration was performed for the 

years 198 1 to 1985, and validation was performed for other years. To avoid possible enors 

in the stamip conditions for the WATFLOOD/SPL model, however, it was recornmended 

that a two-year spin-up pend be used. The simulated data fiom these two years were 



discarded. The parameters were calibrated for five of the landciasses (barren, high elevation 

dense forest, low elevation dense forest, high elevation light forest. low elevation light 

forest). The parameten for glaciers, water, and impervious were set to textbook values. The 

variation in river type for this basin was represented by three river classes: valley, high 

elevation mountain, and low elevation mountain. The model required approximately 3-4 

hours to simulate the streamflow for the entire 96-year time period for the Columbia River 

basin (using one CPU on an Origin 200 180 MHz computer). 

The HRBL model gave daily estimates of maximum and minimum temperatws, and 

daily precipitation totals. When used in WATFLOOD/SPL, the maximum and minimum 

temperatures were assumed to occur at noon and midnight, respectively. This resulted in a 

slight offset fiom the tme maximum and minimum times (which often occur in the early 

aftemoon hours and pre-dam hours, respectively), but this did not greatly affect daily 

streamflow estimates. Temperature was assumed to follow a sinusoidal function between 

thex two time periods, and 3-hourly temperature was calculated for input into the 

WATFLOOD/SPL model. The precipitation was assumed to occur evedy throughout the 

day (the precipitation was divided by 24 and an equal amount of precipitation was applied in 

eac h hour ). 

3.3.2 Approaches to Calibration and Validation 

Physically based hydrological models are supenor to lumped models in their ability to 

model hydrological processes because they can be transferred between watersheds without 

extensive re-calibration. However, the initial calibration is more dificuit for physically 

based models shce they have a larger aumber of parameters. The literature reveals three 

approac hes to this problem. 



The fim acknowledges that multiple "local optima" exist in the parameter space of 

physically-based hydrological models. The models are calibrated so that an error function is 

minimized (e.g. root mean squared, RMS, error). Two or more parameter sets may give 

similar values of the enor function. Several authon contend that, while the models may 

produce good results with a particular set of parameters. there are hidden errors in the model 

(e.g. Beven, 1 989, Gray son, et al., 1992, and Beven, 1 993). The erron in one physical 

process can be cancelled by enon in other physical processes. They contend that it is 

dificult to determine the "best" set of parameters, if it exists. They recommend either using 

simple models whenever possible or using multiple sets of parameters. For instance, during 

caiibration Vertessy and Elsenbeer (1 999) used a distributed, physically based model and 

found that the "best" parameters varied depending on the event used for calibration, and 

therefore they used multiple sets of parameten in their analysis. These authon recommend 

great caution with physically-baxd hydrological models. However, this approach does not 

solve the problem of modeling non-gauged watersheds or changing conditions. 

The second approach is more optimistic. Several authors have developed algorithms 

to search for the "global optimum" panuneters, and not simply a local optimum (e.g. Thyer, 

et al.. 1999, Gupta, et al., 1999). The models are calibrated to minimize an error iùnction, 

but the algorithms are able to jump between different local minima of the error function. 

These are essentially automatic caiibration algorithms, which are prograrnmed to search for 

several optima. 

The third approach takes advantage of the physical modelling in the hydrological 

model. The use of physically-bas& parameters (i.e. parameters that can be measured in the 

field) and the w of multi-response data (i.e. calibration using outputs other than streamflow) 



are recornmended in this approach. This approach solves the problem of modelling non- 

gauged watersheds and changing conditions. 

The arnount of calibration required by a model may be reduced with measurable 

parametea. Refsgaard (1997) recommends selecting parameterization schemes that dlow 

the user to measure the parameter values in the field. Refsgaard (1 997) also recornmends 

that physically-realistic intervals be detemined for each parameter. Some very simple 

models do not require any calibration (e.g. Lange. et ai., 1999), as ail of their parameters may 

be measured in the field. However. these simple models are limited in the hydrological 

conditions they can simulate and can only be applied to certain smail wateaheds. More 

complex models will require sorne calibration, as not al1 of the parameten can be rneasured 

in the field. 

In ternis of calibration, distributed physically-based hydrological models have an 

advantage over lurnped conceptual models as they are more suited to model domains that 

encompass widely varying hydrological conditions and processes. Therefore, multiple-site 

data and multiple-response data, where they exist, can be used to help calibrate and validate a 

model. KlemeS (1986) proposed a series of hierarchicai validation tests, which include 

multi-site validation. The model mut be vaiidated at each hierarchicai level in order to be 

considered valid. Therefore, the model must pass a split-sarnple test (single location), 

followed by a proxy-basin test (multiple locations), followed by other tests when the end- 

purpose of the mode1 requires further validation. Mroczkowski, et al. ( 1 997) extended the 

hierarchical tests to include intenor data such as soi1 rnoisture, snowdepth, evaporation, 

intemal streadows, etc. This will allow the user to test the intemal physics of the model to 

ensure that the model simulates the hydrological processes in a reasonable manner. 



Refsgaard (1997) recommended that a model be validated on ail of the outputs that are 

required for the research. He stated that "comprehensive validation piocedum specifically 

adapted for each particular application of a distnbuted model should be used" (pg. 95, 

Refsgaard, 1997). Therefore, it would seem that a model may be considered validated if each 

of the major hydrologie processes modelled have k e n  validated. 

The calibration and validation of WATFLOODISPL has followed this third approach. 

The parameterization schemes in WATFLOOD/SPL have ken  chosen so that al1 the 

parameten have physicai meanings. Although not dl of the parameters may be measured in 

the field, ail of the parameten have physicaily definable limits. These limits have been 

established using textbook values and through experience with the model. The parameten 

with their limits are listed in Table 3-2. When parameters remain within thex limits. the 

hydrological processes within WATFLOOD/SPL operate correctly. 

A calibration of WATFLOODISPL proceeds in the following manner: 

the mode1 is calibrated by hand until the intemal variables (such as evaporation, 

snowmelt, etc.) show that the model physics are operating reaiisticdly in al1 grids; 

the parameters are "fine-tuned" with an automatic caiibration procedure, to match the 

caiculated strearnflow to the measured strearnflow (dl internai and extemal sneamflow 

observations are used); and 

the intemal variables are checked again to ensure that the model physics are redistic. 

In the fint two of these steps, the parameter limits fiom Table 3-2 are used as a guideline for 

calibration. The method cannot be automated, as it is necessary to verify the intemal 

parame ters. 



Table 3-2 - Parameter Values and Limits for WATFLOOD/SPL (Columbia River 
Domain) 

1 Parameter 1 Name 1 Numberof 1 Lower 1 Upper 

Unsatwated Zone Mois- 

lnterflow storage-discharge 1 REC 1 5 1 O 0.1 

Coefficient 
Surface Permeability 
Surface Permeability under 
snow 

AS 

1 I 1 1 

Overland flow conveyance 1 R3fs [ 5 1 5 1 90 

AK 
AKfs 

coefficient 
Overland flow conveyance 

Classes 
1 

5 
5 

R3 

parameter under snow 
Soi1 retention coefficient 
Upper to lower zone 

Bound 
0.98 

drainage coefficient 
Upper to lower zone 

( Lower zone drainage 1 PWR 1 3 river classes 1 0.3 1 3 

Bound 
0.999 

1 
1 

5 

RETN 
AK2 

drainage coefficient under 
snow 
Lower zone drainage 
function 

1 O0 
1 O0 

AK2 fs 

5 

5 
5 

LZF 

fiction exponent 
River roughness coefficient 

, Melt factor 
Base temperature 
Potential 

The initial manual calibration is accomplished by adjusting parameters to match 

various components of observed hydrographs. For instance, the base temperature for 

snowmelt is adjusted so the initial rise of the computed spring melt hydrograph occurs at the 

proper tirne. If computed peaks are consistently late and low throughout the domain, the 

river roughness is reduced. If the peaks are late and low ody in the smaller watersheds, it is 

90 

5 

Evapotranspiration Factor 
Evapotranspiration Factor 
f ~ r  Ta11 Vegetation 

Nurnber of parameters: 70 

O 
0.0 1 

3 river classes 

R2 
MF 

BASE 
FPET 

50 
1 

0.0 1 

FTALL 

1 

1 0'' 

3 river classes 
5 
5 
5 

1 o.5 

5 

O. 1 
0.05 

-5 
I 

4 
0.25 

5 
3 

0.5 1.2 



likely that the intefflow discharge coefficient is set tw low. Recession c w e s  can be 

matched using the lower zone huiction parameters and the parameter goveming recharge, 

using log plots of flow venus time. Evaporation rates are adjusted to ensure annual volumes 

of runoff are comctly computed. Boyle, et al. (2000) reported on a similar approach to 

match the various segments of the hydrogiaph that they labelled as "driven", "nondriven 

quick", and 'hondriven slow*' (corresponding to flow dnven by rainfdl, the "fast" portion of 

the recession c w e ,  and the "slow" portion of the recession cuve respectively). 

Once the parameters are given these initial values, an automatic scherne can be used. 

For the "fine-tuning" step, the model employs the Hooke and Jeeves (1 96 1 ) automatic pattern 

search optimization algorithm taken fiom Mom (1 97 1). The parameten for optirnization 

are recharge and interflow coefficients, soil pemeability, overland flow roughness, channel 

roughness, melt factors. base temperatures. soil retention, lower zone drainage coefficients, 

and an unsaturated zone soil moisture coefficient. The optimization is based on minimizing 

the root-mean-square error of streamflow estimates for al1 of the streamflow stations. 

Finally, the interna1 variables are checked again to ensure that the model physics are 

redistic. The main twl for checking the intemal model physics is show in F i g w  36.  This 

figure plots the time variation of various state variables for the high elevation dense forest 

class in one grid cell. The major storage locations (lower zone storage, upper zone storage 

and depression storage, with and without smw cover) are plotted in the upper portion of the 

figure. The middle portion shows the fraction of the area covered with snow, the snow water 

equivalent and heat deficit. Finally, the lower portion shows the cumulative precipitation, 

runoff and evaporation for the high dense forest class. In figures such as Figure 3-6, al1 state 

variables can be tracked for al1 land cover classes on any grid. Snowrnelt and snow 



accumulation, infiltration, evaporation and other processes may al1 be exarnined in this 

figure. The intemal parameters of WATFLOOD/SPL can also be viewed with a prograrn 

cailed EnSim Hydrologic (Calder, 1999). EnSim Hydrologic is capable of displaying 

watershed data in 2-D format, or as a time variation plot for a single grid square. An 

examination of several such figures can be used to diagnose any parameter problems in 

WATFLOOD/SPL, and plots can be compared to field data when available. 

The calibration of the WATFLOODISPL mode1 for the Columbia River basin is 

described in Kouwen, et al. (2000). 



Lower Zone Storage 

Upper Zone Storage 

Upper Zone Storage (snow) . 

Depression Storage 

Depression Storage (snow) . 

Figure 3-6 - Calibration tool for WATFLOOD/SPL 

In addition to the implicit calibration and validation of intemal streamflow and 

intemal state variables in the model, a series of studies of multi-site and multi-response 

calibration and validation has k e n  performed with WATFLOOD/SPL (Bingeman, et al.. 



200 1). The validations included comparisons of measured and computed soi1 moisture, 

evaporation, snowmelt and accumulation, groundwater flow, and peak flows. A set of 

parameters has k e n  found that generates physically-realistic streamflow for multiple basins: 

familand in Southem Ontario (Kouwen, et al.. 1993), the Rocky Mountains in British 

Columbia (Kouwen, et al., 2000, the BOREAS study areas in Northem Saskatchewan and 

Manitoba (Neff, 1996) and the Mackenzie river basin in north-western Canada (Seglenieks. 

et al., 1998). These parameters are called the "global parameter set." 

3.3.3 Uncertainty in Model Estirnates 

Although e u h  of the major hydrological processes within WATFLOODISPL have 

been calibrated and validated, the output data are still subject to modeling uncertainty 

because of the site-specific nature of these tests. Tluee types of emn lead to uncertainty in 

the estimates of the model. They are caused by model formulation erroa, input data e m n ,  

and calibration errors (Lei and Schilling, 1996). Each of these enors will be discussed in 

m. 

The fint type of error, model formulation enor, refers to an error in the model itself, 

and is dificult to evaluate. Two exarnples of this kind of error are: an important hydrologie 

process may be missing from the model; or the process is included but modeled inaccurately. 

Lei and Schilling (1996) recommended that the model structure and equations be examined 

pnor to calibration. The hydrological model WATFLOODISPL has been extensively 

examined with multiple validation studies (Bingeman, et al., 2001). In addition, the mode1 

has been successfÙlly applied on many watersheds in Canada, as described in Section 3.3.2, 

indicating a great degree of model stability. These tests indicate that the WATFLOOD/SPL 



hydrological model has low model formulation enor, although it is acknowledged that this 

applies oniy at the sa le  that it is usually applied, namely a grid size of 1 to 25 km. 

The second error, input &ta error, refers to inaccurate model forcing data. This 

research used the HRBL model estimates of precipitation and temperature data as input for 

the hydrological model WATFLOODISPL. Therefore, the precipitation and temperature data 

are also subject to modeling unceminty, and were exarnined. Typically, precipitation data 

are more dificult to both mesure and predict than temperature data. There are several 

reasons for this, including problems with the observation network and problems with 

interpolation schemes. Most observation stations are located in vaileys, and very few data 

exist for higher elevations. Observation stations may not record a rain event if the 

observation network is too sparse. The gauge may undercatch becaw of wind effects, 

causing the rneasurements to be inaccurate. The interpolation scheme used in the HRBL 

model was a regression equation based on the horizontal moisture convergence, and the 

regression equation could not modei the precipitation perfectly. Therefore, the examination 

focused rnainly on the precipitation data 

To test the precipitation data, the data were used to calculate sbeamflow, and a 

cornparison of streamflow volume was perfonned (Kouwen, et al., 2000). One stnamflow 

station, Columbia River at Nicholson, had 9 1 years of observed streamflow, and could be 

used to validate almost al1 of the 96 available years of data. The streamflow estimates 

closely matched the observed streamflow for al1 9 1 years (Figure 3-7). 
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Figure 3-7 - Cornparison of 96-Yean of Streamfiow - observed vs simulated by 
WATFLOODISPL with Meteorological Forcing Data (Da@ Precipitation and 
Temperature) from HRBL for the Columbia River at Nicholson location 



The strearnflow estimates also matched closely for the inflow to Mica Dam (Figure 3- 

8). There were 23 years of obxrved infiow available for cornparison (1 972 to 1994). For 

both of these locations, the observed and simulated hydrographs matched very well. The 

timing of the snowmelt was accurate for both locations, and the volume of snowrnelt also 

matched. The summer precipitation peak flows were generally well represented. Finally. the 

recession curves and low winter flows were also in agreement between the observed and 

simulated hydrographs. Therefore, it was reasonable to state that the tempera- and 

precipitation data h m  the HRBL mode1 were suitable for the prediction of long-term 

streamflow. 



3000 
Observed Mica Inflow 

- Simulated Mica lnflow 

Figure 3-8 - Cornparison of 23-Yean of Reservoir lnflow - obsewed vs simulateâ by 
WATFLOODISPL with Meteorological Forcing Data (Daily Precipitation and 
Temperature) fmm HRBL for the Mica Dam location 



The hydrographs shown above indicated good agreement between the observed and 

simulated streamflow data, indicating that the temperatures for predicting fkezing and 

thawing were acceptable. Similady, the hydrographs indicated that the timing of the 

precipitation was suitable for predicting s t r e d o w .  However, some stations were 

consistently over- or under-estimated. This consistent over- or under-estimation indicated an 

error in the precipitation estimates fiom the HRBL model. The average emrs for the 32 

streamflow stations for the period 1972 to 1994 were calculated for each streamflow station, 

and a contour plot of error was created (Figure 3-9). These years were chosen because LFM 

data were available to create the precipitation data during this period (and therefore the 

precipitation data were most accurate), and because most of the streamflow stations were 

active during this period. This error plot indicates the amount of error in the most accurate 

portion of the time period modeled (1 972 to 1994). This figure shows that the streamfiow 

volume differences at a station can be very significant, up to 80% emr. In general, the 

model underestimates strearnflow in the nonhwest corner, and overestimates in the southeast 

corner. This pattern M e r  indicated consistent enors in the precipitation data. Therefore, a 

precipitation adjutment factor (PAF) field was created based on this error field. The PAF 

field was used to adjust the precipitation estimates. The streamflow estimates improved, as 

stations that were generally under-estimated received a greater amount of precipitation (and 

vice versa). In this way, the input data errors were minimized. 



Figure 3-9 - Contour Plot of  Annual Streamflow Volume Differences in % (Rmoder 
RmemUd)* 1971-194 

The temperature data were verified briefly by comparing the timing of the simulated 

snowmelt and snow accumulation to observed snow measurements. Wong (2000) compared 

the simulated snow water equivdent (SWE) to observed snowcoune measurements and 

observed snow pillow data in the Columbia River basin. There were some significant 

differences in the simulated S WE and the snowcoune data, but these were attributed mainly 

63 



to differences in the elevation of the snowcoune and the 100 km2 grid. That is, the 

snowcourse was above or below the grid elevation (an average over 100 km2), and would 

therefore record more or less snow, respectively. The snow pillow data provided a time 

series of snow water equivalent, and these data indicated that the timing of the snowrnelt and 

snow accumulation was correct. These resuits indicated that the temperature data derived by 

Danard, et al. (1 996b) were adequate for long-term hydrological modeling. 

The third type of error in a hydrologicai model is uncertainty in the parameter 

calibration. In cornpuison to the nurnber of hydrological models available, there has ken  

relatively little focus on this type of error. In general, hydrological models are highly non- 

linear and analytical techniques to convert parameter uncertainty into output uncertainty are 

difficult to derive. Monte Carlo analysis c m  be used, but many hydrological models require 

a large amount of computer time for a single simulation. A Monte Car10 analysis allows a 

distribution to be defined for each parameter. These distributions are randomly sarnpled, and 

a mode1 simulation is performed for each sample to derive the output distribution. Therefore, 

a Monte Carlo analysis can be very time consurning for a hydrological model. However, the 

confidence of model predictions is improved through the estimation of parameter uncertainty. 

Where the uncertainty due to erron in the parameters have been estimated, most 

authors recornmend a Monte Car10 analysis. A variation such as importance sampling may 

also be used. Importance sampling can be used when there is suficient information about 

the behaviour of the model and parameters to be able to confine the Monte Carlo to a small 

range in the parameten. However, these authoa accept the "equifinality" concept (Beven, 

1993), where multiple sets of parameters can deliver similar or identical quality of 

hydrological predictions. The parameter distributions for the Monte Carlo are chosen 



according to this assumption. For instance, several authors (e.g. Binley , et al., 1 99 1 ) 

recommend that the model be caiibrated for numerous calibration events. Each calibration 

event will have different optimal parameters, and so the mean and standard deviation of each 

parameter can be defined fiom the diflerent caiibration events. A normal distribution is used 

to describe the parameter uncertainty, using the calculated mean and standard deviation. 

Once the distribution has been chosen, the Monte Car10 analysis is perfonned (a variation, 

such as importance sampling, may also be used instead), and confidence lirnits are derived. 

There were two problems with performing this type of Monte Carlo analysis for 

WATFLOOD/SPL. First, the unceriainty analyses perfonned in the literature use the 

"equifinality" approach to parameter calibration, which implies multiple sets of parameten 

are equally valid. However, the calibration process of WATFLOODISPL ensures that the 

"'me" optimum parameter values are found. The calibration pmcess checks al1 of the 

intemal variables within the WATFLOODISPL model, and therefore ensures that the 

hydrological processes are operating in a reaiistic manner. There is still error in the 

parameter values (due to possible input enors), but the calibrated parameter values represent 

a most likely set of parameten, or a "mode." The parameter distributions were chosen based 

on the mode and the boundaries of the parameters. Secondly, a single 96-year simulation 

takes approximately 4 hours on a single processor of the SGI Origin 200 computer, and 

therefore computer time was a limitation for the analysis. These two issues were adàressed 

in this research. 

The calibration philosophy of WATFLOOD/SPL assumes that the "optimum" 

parameter values can be determined through the calibration process. The parameter set can 

be used for multiple basins, and the intemal variables of the mode1 have k e n  validated (as 



described in Section 3.3.2). Therefore, if the calibrated parameters are not truly the optimum 

parameter values (due to uncontrollable uncertainties in input data), then they are "close" to 

optimum; that is, they are on the same "hiil" of the objective function. The physically 

possible boundaries for the parameten were checked to ensure that they remain on a single 

hi11 of the objective fùnction. (In this research, the term "objective fùnction" is a genenc 

term to represent the degree of fit between the observed streamflow and the calculated 

streamflow. A "hill" on the objective function denotes an area of parameter space where the 

function rises to a "good" fit and then falls away again.) There are multiple hills in the 

objective function, as other combinations of parameten may lead to reasonable streamflow 

estimates. However, these other hills would result from two (or more) e m n  in modeling the 

hydrologicd processes that cancel each other. Should this condition occur, a check on each 

of the process plots (Figure 3-6) would reveal some sort of non-plausible condition. 

Furthemore. unredistic parameten affecting river routing would become evident using the 

hierarchical validation approach with a large number of streamflow stations simuitaneously. 

A set of parameters fiom another "hill" of the objective function would therefore be rejected 

during the validation process of WATFLOOD/SPL. Therefore, in keeping with the 

calibration philosophy of WATFLOOD/SPL, it was also necessary to choose the parameter 

distributions so that the Monte Car10 simulations remained on the same "hill" of the objective 

function. 

The second dificulty with the Monte Carlo analysis was simulation time. Since al1 

parameters were allowed to Vary sirnultaneously in the Monte Carlo analysis, approximately 

100 simulations per variable (on average) were necessary to achieve realistic 95% confidence 

limits (Crosetto, et al., 2000). For 70 variables, this was a minimum of 7000 simulations! 



Therefore, it was not feasible to perform the Monte Car10 analysis for the entire 95-year 

simulation. Instead, the full 95-year simulation was represented by a five-year sequence that 

included a variety of wet and dry years. It was assumed that the confidence limits fiom the 

five-year analysis could be used in the 95-year analysis. This assurnption was checked as 

part of the anaiysis and shown to be accurate. 

The detailed methodology to resolve these conflicts is described in detail in Chapter 

S. 

3.4 Regional Frequency Analysis and the Method of L-Moments 

The atmospheric model and the hydrological model were used to derive a physically- 

based PMF in this research. One method to check the magnitude of the PMF is to calculate 

the probability of the PMF on a frequency c w e  (Smith, 1998). The r e m  period of the 

PMF may range fiom 10,000 years to 1,000,000 years (Smith, 1998). In addition. a 

fiequency curve would allow risk-based analysis to be performed for the dam. This research 

investigated the use of a simulated streamflow time series to derive flood fmluency cwes. 

The simulated streamflow were obtained by using the 96-year HRBL meteorological data as 

forcing data for the WATFLOODISPL model. The regional fiequency anaiysis method 

using L-moments (Hosking and Wallis. 1997) was chosen for this research because it 

estimates extreme fiood quantiles with less uncertainty than conventional methods (Pilon and 

Adamowski, 1992, Hosking and Wallis, 1987). This section describes the regional frequency 

anal y sis method. 

Frequency analysis is a standard stdstical method (see, for rxample, Yevjevich, 

1972) used to estimate extreme events. A probability distribution is fitted to the observed 



data, and then the extreme values are estimated using the probability distribution. Two 

problems with this method are: 

Frequency analysis is ofien limited by a short t h e  series. 

It is dificult to move from a gauged site to a nearby ungauged site, since the probability 

distribution depends on the statistics of the gauged site, which are not available for the 

ungauged site. 

Regional frequency analysis is a method to deai with these issues. 

Regional frequency d y s i s  has been in use for many years; an early example is 

Dalrymple (1 960). Regional fiequency analysis "trades space for time". Gauges that are 

similar are grouped together, thus increasing the effective amount of data and reducing the 

uncertainty in the fiequency distribution parameters. The frequency distribution at ungauged 

locations may then be estimated by using the probability distribution of the group. 

Two concepts must be presented before regional fiequency analysis can be discussed. 

Accordingly, the next two sections present the index flood procedure and L-moments, both 

of which are included in regional fiequency analysis. The following section describes the 

regional fiequency analysis method of Hosking and Wallis (1 997). 

3.4.1 Index-Flood Procedure 

The index-flood procedure is a simple way to pool data h m  different locations. The 

name cornes fiom its original application to flood data in hydrology (e.g. Dairymple, 1960). 

The index-flood procedure assumes that the probability distributions for the sites are simply a 

scale factor multiplied by the regional probability distribution, such as: 

Q,(F) = p,q(F) i = l... N ........................................ ...... ............................. (3-14) 



where Qi(F) is the quantile function of the fiequency distribution of each site, C<i is the index- 

flood of each site, and q(F) is the quantile function of the frequency distribution of the group 

of sites. This method assumes that each site has the same underlying probability distribution. 

The index-flood (pi) is ofien chosen as the at-site mean, but a median, trimrned mean, or 

another percentile may also be used. 

The index-flood procedure makes the following assumptions about the data. 

Observations at a site are identically distributed. 

Obsentations at a site are temporally independent. 

Observations at different sites are spatially independent. 

Frequency distributions are identical at al1 sites. and follow a regional frequency 

distribution, except for a scale factor. 

0 The regional frequency distribution is correctly specified. 

These assumptions are never fully met with environmental data. There may be some 

serial dependence in any environmental data and correlation between sites is comrnon, since 

neighbouring sites have similar weather patterns. The fourth assumption can only be 

approximately satisfied, by careful grouping of the sites. The fiequency distribution is 

chosen as the best fit of the data in the region, and so the last assumption is also only 

approximately satisfied. However, research (e.g. Pilon and Adarnowski, 1992) has show 

that it is possible to use the index-flood procedure to yield suitable extreme quantile 

estimates. 



3.4.2.7 Introduction 

Frequency distributions have traditionally ken  described by their moments. The 

moments are: 

p = E ( X )  (meun) 
......................m....... (3- 15) 

.. p, = E (X - p)r r = 2,3,. (htgher central moments) 

where X is any random variable (such as precipitation or streamflow). 

The mean describes the location of the center of the distribution. The second moment 

describes the dispersion of the distribution. Dimensionless versions of the higher moments 

are usually used, such as: 

These moments can be estimated with a data sample. However, these estimates are 

known to be biased and bounded by the sample size. Skewness and kunosis are also 

sensitive to outliea in the data, since they use the difference between the value and the mean 

to the third or fourth power. Therefore, they are unreliable as measures of distribution shape. 

L-moments are alternative measures of distribution shape. They are modifications of 

the "probability weighted moments" of Greenwood, et al. (1979). The two most usehl 

probability weighted moments are 



where x(u) is the inverse of the cumulative density function, and the integration is performed 

over the range of u, the probability of non-exceedance (Figure 3-1 0). 

4 

Aobdblbty 1 
of non- 
exceedence 

u 

O 

Figure 3-10 - Definition of terms in calculation of Probability Weighted Moments 

Probability weighted moments involve powen of the Functions u and 1  ou, while conventional 

moments involve powers of the data, x(u). Various authors have related a, and Br to the 

conventional measures of distribution shape (e-g. Hosking and Wallis, 1985). and these 

relationships are termed the L-moments. The term "L-moments" is used because the L- 

moments are calculated as linear combinations of probability weighted moments. 

To estimate the L-moments for a data sarnple, first arrange the data values in 

ascending order: xi:, s xz:, S.. . Sn:,. The first four sample Pi's can be found with the 

following fornulas, 

n 

b,, = n*' C x,, 
1'' 

(i - 1 )  b, = n - ' C -  
1.2 ( n  - 1) X1n ....................................*.*.*......................... (3- 1  8) 

( j - 1 ~ ~ - 2 )  4 = A' C 
1=3 (n - i ~ n  - 2) X ~ n  

The sample L-moments are then found using, 
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The first L-moment, I l ,  is analogous (and equal) to the conventional mean. The 

second L-moment, 12, is analogous to the conventional standard deviation. The conventional 

coefficient of variation (CV) is calculated as the standard deviation divided by the mean. 

Therefore, the L-moment equivalent, the L-CV, is found as t=l2Ai (no subscript is used with t 

by convention). The conventional skewness and kurtosis are dimensionless, and so the L- 

moment equivalents are also dimensionless. The L-skewness is found as t3=13//12. Similady, 

the L-kurtosis is found as tj=W2. 

L-moments have been found to be better estimates of distribution shape than 

conventional moments. The estimates of L-skewness and L-kurtosis have k e n  found to be 

much less biased than conventional estimates. The L-moments are not bounded algebraically 

by the sample site. L-moments have a natural bound B,ll I (where r, represents the 

population statistic), making interpretation of the magnitude of the moment easier. L- 

moments are less affected by outlien in the distribution, since they give less weight to the tail 

of the distribution (ut is used instead of (x(u)-p)', and in the tail ur+ 1, whereas (x(u)- 

p .  L-moments have also ken  shown to discnminate between di fferent distributions 

better. Therefore, L-moments are more diable than ordinary moments for estimating the 

distribution shape. 

Figure 3- 1 1 shows the ranges of several comrnon distributions in terms of L-skewness 

and L-kurtosis. This figure can be used to visually fit distributions, or the equations supplied 

by Hosking and Wallis (1997) can aiso be used to fit distributions. The parameters for each 



distribution can be calculated fiom the L-moments in a similar manner that parameten can be 

calculated fiom regular moments. For example. the parameters for a normal distribution are 

the mean and the standard deviation. Using L-moments. the parameters become the mean 

(hi) and x*.'~Q (AZ is the L-standard deviation). 

Figure 3-11 - L-moment ratio diagram (from Hosking and Wallis, 1997). Two and 
t h m  parameter distributions are shown as points and lines, respectively. 
E=Erponential, G=Gumbel, L=Logistic, N=Normal, U=Uniform, GLO=Ceneralued 
Logistic, G E V X  enerrlizeâ Ertreme Value, GPA=GeneralPed Pareto, 
LN3=Lognormal, PE3tPeanon Type III, OLB = Overall Lower Bound 

3.4.2.2 Regional L-moments 

This section discusses the link between L-moments and regional fkquency anaiy sis. 



In regional fiequency anaiysis, several locations are grouped together into a region, 

and a distribution is found for the region. It is necessary to develop a regional estimate of the 

L-moments in order to fit a distribution to the region. Hosking and Wallis (1997) 

recommend the use of a weighted average of the at-site estimates, 

where N is the nwnber of stations, ek is the L-moment of interest, and ni is the nurnber of 

data values at each station. Therefore, the at-site L-moments are found fiom the equations in 

Section 3.4.2.1, and the weighted average is found according to the length of record at each 

site. This method results in discontinuities in t5e fiequency domain between regions. 

A second method for calculating the regional estimate of the L-moments is to denve a 

relationship between the L-moments and other wateahed variables. Runoff varies smoothly 

between regions in a similar way that precipitation varies smoothly, although there may be 

local differences due to topography and/or soils. These can be accounted for by using 

topopphical andlor soils data in the relationship to allow the regional L-moments to Vary 

smoothly between regions). This method was described by Schaefer (1 990), and later used in 

Canada by Adamowski, et al. (1 996). These authors used precipitation data, and derived 

relationships across a super-region between the L-moments for homogeneous sub-regions, 

mean annual precipitation for the sub-regions, and other sub-region variables. This research 

also w d  this concept: a relationship between the L-moments and basin-averaged 

topographie and physiographic characteristics was found and used to estimate the regionai L- 

moments. However, the relationships were fomed fiom the network of individual stations, 

not nom homogeneous sub-regions. A shilar method has been used for streamflow data; an 

example is the work of Daviau et al. (ZOO), who used a GIS system to develop relationships 
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between L-moments and geostatistical data for streamflow gauges in Eastern Canada. This 

method will be referred to as the Schaefer (1990) method although it has been modified (e.g. 

Daviau, et al.. 2000) to be perfonned for the network of stations. 

The Schaefer (1 990) method has some advantages over the Hosking and Wallis 

(1997) method. One advantage is that it does not assume that the at-site L-moments are 

perfect. By allowing the L-moments to be represented by regressions over ail sites available, 

anomalous data (high or low) may be smoothed over. The Hosking and Wallis (1997) 

method uses the average of al1 of the L-moments within the region, and one anomalous 

station could strongly affect the results. A second advantage is that the regionalized L- 

moments are formed from a larger data pool (ail sites available instead of the sites within the 

region) and can therefore be expected to be more accurate. Therefore, the Schaefer (1 990) 

method lowers data uncertainty . 

When the index-flood procedure is used with pi equal to the at-site mean for each 

station, the L-location (the first L-moment) will always be equal to 1. Therefore, 

R R R distributions are fined to the following regional L-moments: l,t , t ~  ,t . 

Since the ngional estimates of L-moments are found from at-site estimates, the 

necessity of using L-moments is clear. L-moments are more diable than ordinary moments 

for short data records. It is important that the at-site estimates are as accuraie as possible, so 

that the regional estimate will also be acclme. 

3.4.3 Steps l nvolved in Reg ional Frequency Analysis 

There are four main steps to the Hosking and Wallis (1997) regiond fiequency 

anaiysis method. These are: 1) Data screening, 2) Identification of regions, 3) Choice of a 



fiequency distribution, and 4) Estimation of the at-site fiequency distribution parameters. 

These steps will be discussed below. 

3.4.3.1 Data scmening 

Due to errors in recording or transcribing of data (e.g. incorrect logger seiup, or 

changes in the rating c w e  due to vegetation growth), the data mut be screened to remove 

invalid data. For instance, occasionally negative streamflow data are recorded, or an 

incorrect rating curve causes errors in the streamflow estimation procedwe. 

Hosking and Wallis (1 997) presented a discordancy measure to help identify 

discordant data. The discordanc y measure is 

where u is the vector of L-moments, and N is the number of stations. The discordancy 

measure is essentially the Mahalanobis distance (e.g. Pao, 1989) of the station in the 5-space 

of the L-moments fiom the mean of the stations. For "large" values of Di, the data in that 

station should be exarnined for erron. (For N215, Di should be less than or e q d  to 3.) It is 

possible, however, that the data are correct, even for large Di. 

Regionai frequency analysis was performed with streamflow station data. These data 

(obtained fiom Water S w e y  Canada and B.C. Hydro) are generally valid. The analysis was 

aiso performed with the output of a hydrological model, and the calibration process ensured 

that the output was redistic. Therefore, these data were screened before this research. 

3.4.3.2 Identitication of mgions 

This step is perhaps the key step in regional f'requency analysis. Hosking and Wallis 

(1997) assumeci that al1 stations within the ngion have identical frequency distributions. 
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This research incorporated the variation in L-moments across the region by forming 

regressions between L-moments and watershed characteristics (Schaefer, 1990). This 

method relaxed the requirement for completely homogeneous regions; however, 

homogeneous regions were still required for identification of a suitable frequency 

distribution. This section describes the general method for forming homogeneous regions 

according to Hosking and Wdlis (1997). and a specific clustering aigorithm &y Burn, et al. 

(1 997). 

Hosking and Wallis (1 997) called their regions homogeneous, since the fiequency 

distribution was assumed identical at al1 stations. They recomrnend that the stations be 

assigned to regions according to non-statistical parameten. This will allow an ungauged 

location to be classifieci into a region, although it is not possible to calculate statistical 

parameten for the location. In addition, the criterion to test for region homogeneity is based 

on the L-moments of the stations, so it would be inappropriate to use the L-moments for 

calculating both region definition and region homogeneity. Thetefore, climatic and 

physiographic variables may be used to define a region, but the L-CV may not be used. 

Hosking and Wallis (1997) presented a criterion for homogeneity based on the L- 

moments of the stations. The criterion for homogeneity of a region is based on 

where V is the weighted standard deviation of the at-site sample L-CVs (t), and pv 

and ov are the mean and standard deviation of V, found through simulation. The simulation 

is performed by fitîing a Kappa distribution to the regional average L-moment ratios, 1, tR, 

t3R, tR. A Kappa distribution is used because it is a four-parameter distribution and therefore 



rnakes fewer assumptions about the shape of the distribution than the more common three- 

parameter distributions. The region is assumed homogeneous (since a single Kappa 

distribution is used), and data are simulated for each station, according to the number of 

years of record at each station. For each set of data simulated, V is calculated, and the mean 

and standard deviation of V are calculated at the end of the simulation. If H is sufficiently 

large, the region is declared heterogeneous. Hosking and Wallis (1997) suggest that the 

region is "acceptably homogeneous" if H<1 and "possibly homogeneous" if HG. Schaefer 

(1997), however, points out that, due to variability in meteorological data from local site 

changes through time (station location, growth of trees, etc.), these limits should be changed 

to 2 and 3 respectively. 

There are two other methods of calculating the heterogeneity measure, V. The first 

measure, V2, measures the at-site dispersion of sample L-moments based on L-CV and L- 

skewness. The second rneasure, V3, measures the at-site dispersion of sample L-moments 

based on L-skewness and L-kurtosis. 

The identification of homogeneous regions is therefore an iterative process: 

Identify regions h m  non-statistical parameters 

Calculate H for each region 

If H is too large for sorne regions, go back and redefine the regions 



One clustenng aigorithm that follows the above recommendations is the clustering 

algorithm developed by Bum, et al. (1997). This algorithm used a combination of 

geographic position and other hydrologic data to form regions. Geographically contiguou 

regions can be identified. 

Many clustering aigorithms operate by detennining a "distance" between each set of 

two watenheds. The two watersheds with the shortest distance between them are clustered 

together, and then the distances are re-caiculated between the new cluster and ail of the other 

watersheds. Again, the two watersheds with the shortest distance between them are 

clustered, and the process repeats until the desired nurnber of clusten are obtained. 

The Burn, et al. (1 997) algorithm used the foliowing distance measure: 

where: Di is the dissimilarity between two watenheds (i and j) in terms of one or more 

hydrologic data (defined below), di is the geographic distance between two watersheds (i and 

j), d, is the largest geographic distance between any two watersheds, and w is a weighting 

coefficient. A low weighting coeficient implies that the geographic location has limited 

effect on the formation of clusters. As the weighting coefficient increases, a greater 

emphasis is placed on distance, to preserve geographic continuity in the clustea. Bum, et al. 

(1 997) used a weighting coefficient of 0.3 with a set of streamflow stations in the 

Saskatchewan-Nelson River basin, covering Saskatchewan, Manitoba, and western Ontario. 

The appropriate value of w was determined by visual inspection of the clusters formed by the 

al go rithm. 



The dissimilarity between two watersheds in terms of the hydrologic data was found 

with the following: 

where: p is the nurnber of hydrologic properties, and Xik is the value of the kh hydrologic 

response property for catchent i. This measure, called the Canberra dissimilarity metric, 

was developed by Lance and Williams (1 966). 

These distance mesures were used in the standard clustering algorithm, to develop 

the desired number of clusters. The clusters were first tested for homogeneity, using the 

Hosking and Wallis (1997) homogeneity test. If the clusters were homogeneous, they were 

accepted. If they were not, the clustenng algorithm was re-applied (using only the 

watersheds not already in clusters) and the nurnber of desired clusters increased by one to 

develop different clusten. After several b e l s  of this, a number of homogeneous, or 

possibly homogeneous, clusters would be formed, and several "residue" watersheds 

(watersheds that could not be placed in a cluster) may have been lefi behind. Since the 

clustenng algorithm was applied several times, it was termed "multi-level clustenng." 

After the desired number of clusters was fonned, the Bum, et al. (1997) algorithm 

entered a second stage, temed the enhancement stage. The residue watersheds were tested to 

determine if they could be added to the existing clusters. Discordant stations within a cluster 

were tested to determine if they should be moved to another cluster, and thereby improve 

both clusters. In this way, the '%est" clusters were formed. 



3.4.3.3 Choice of a hquency distribution 

There are several fiequency distributions that can be used to describe a particular set 

of data. The distributions have different upper and lower bounds, and different tail weights. 

It is important to ensure that the best fit to a fiequency distribution is made, ohenvise the 

extreme estimates may be in considerable error. 

A goodness-ocfit statistic was developed by Hosking and Wallis (1997) to help 

determine which three-parameter distributions can be used to describe the data. The statistic 

calculates how well the candidate distribution simulates the fowth L-moment, since this L- 

moment is not used to fit the distribution. The first step is to assemble a series of candidate 

three-parameter distributions. Next, data are simulated at each station (according to the 

nwnber of years of record) by assuming a Kappa distribution for the region. For the mm 

simulation. the regional average L-kurtosis must be calculated (4'*?. AAer ail the 

simulations, the bias (B4) and standard deviation (a4) of tR are found: 

Then, for each distribution, the goodness-of-fit measure is found as: 

where is the L-kurtosis for the distribution. A reasonable criterion for an 

acceptable fit is 1 ~ ~ ~ ~ ~ 1 ~ 1 . 6 4 .  If no distributions are found to be acceptable, a four (or more) 

parameter distribution such as the Kappa or the Wakeby distributions should be used. If 

several distributions are acceptable, the moa robust distribution to misspecification in 

parameten shouid be used. 
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The Schaefer (1990) algorithm required that one distribution be chosen for dl 

regions, to avoid the problem of discontinuity at the edges of the regions. M e r  the 

distribution was chosen, the regions were discarded, as they were no longer necessary. 

3.4.3.4 Estimation of the at-site frequency distribution palalmeters 

The final step to regionai fiequency analysis is the estimation of the fiequency 

distribution parameten. The at-site mean was used as the index-flood, to scale the regiona 

fiequency distribution up or down. The panuneters of the regional fiequency distribution 

were estimated according to the method of regionalization. In the Hosking and Wallis (1997) 

method, the weighted averages of the L-moments for al1 stations within a region were used as 

the regional average L-moments. In the Schaefer (1990) rnethod, the interpolation functions 

based on basin characteristics were used to estimate the regional average L-moments. The 

regional L-moments were used to calculate the distribution parameten. AAer the distribution 

parameters and the index-flood were calculated, the distribution was used to calculate the 

flood fiequency curves. 

3.4.4 Description of Data used for Frequency Analysis 

As described in Section 3.4.3, non-statistical hydrologic data are required for regional 

frequency analysis. This research used two types of data: climatologicai data and 

physiographic parameters (Solomon, et al., 1 968). These data were used to form 

homogeneous regions with the Bum, et al. (1 997) algorithm (Section 3.4.3.2). In addition, 

the Schaefer (1990) algorithm required relationships to describe the variation in L-moments, 

and the non-statisticai hydrologic data were used to determine these relationships. This 

section describes these &ta. 



Two climatological values were derived from the streamflow data. The first value 

was the average Julian date of the largest flood. The second value was the average of the 

ratio of the peak flood to the mean streamflow. These two values, while derived hom the 

streamflow data, are still independent fiom the L-moments of the data and can therefore be 

used for clustenng. 

The physiographic parameten were derived as defined by Solomon, et al. ( 1968). 

The parameten were calculated hom a digital elevation model (DEM), called GTOP030 

(U.S. Geological S w e y  National Mapping Division). that is composed of 30 arc-second grid 

squares for al1 of Canada. The following parameten were calculated fiom the DTM: 

elevation, slope, azimuth, distance to ocean (8 compass directions), shield effect (8 compass 

directions), and barrier height (8 compass directions). These parameters are defined in Table 

3-3. Solomon, et ai. (1968) found these physiographic parameten to be useful for estimating 

monthly precipitation, temperature and nuioff. The watersheds for each of the 36 streamflow 

gauges and dams were delineated in the digital terrain model. and the average value of each 

parameter over each of the basins was found. The drainage area was also found and used as 

a parameter. 

Tabk 3-3 - Definitions of Physiographic Parameten 

Elevat ion 

Distance to 
ûcean (DTO) 
Shield Effect 
( S W  

Average elevation in the gnd square 
Local slope of the grid square 
Direction of slope (in de~rees with North defined as zero) 
The distance to the ocean in the given compass direction (Figure 3- 12a) 

The surn of the elevation differential of al1 ascending stretches of terrain 
encountereà when travelling from the ocean shore in the given compass 
direction to the conesponding point (Figure 3- 12b) 
The difference between the elevation of the square and the highest 
elevation encountereà in the given compass direction between the 
square and the wean (Figure 3-12c) 



Distance bOuein to the west 

Point 

- 

W E  - 

Figure 3-12 - Definition of Physiographic Parameters 

The shield effect, which is the surn of al1 differential elevation increases, was 

calculated using a signed 2-byte integer (which has a maximum value of 32767). (Due to 

disk space considerations, the 2-byte integer was used.) The mountainous terrain in British 



Columbia cause the maximum value to be reached for the majority of the pixels in the 

watenhed in three of the eight compass directions (northwest, south. and southeast). 

nierefore, these three directions could not be used, as there was little or no variation in these 

parameters between watersheds and therefore they could not be used for foming regressions. 

Due to significant cross-conelation, not dl of the remaining physiographic 

parameters were used. To lower cross-correlation, only four of the eight compass directions 

were used. There were two choices for compass directions: no*, east, south and West, or 

northeast, southeast, southwest, and northwest. Either set of compass directions would retain 

the majority of the information in the parameters. When linear regressions were calculated 

between the parameters and the L-moments, the regressions were better with the northeast, 

southeast, southwest, and northwest directions than with the north, eut, south and West 

directions. Most summer storm systems in British Columbia travei in the northeast and 

southeast directions, because they are controlled by the jet stream. The jet Stream is an 

unstable wind cunent located just below the tropopause that blows From West to east across 

North America. The jet stream, due to the locations of the polar and tropical air masses, the 

Coriolis effect of the rotation of the eanh. the intluence of the mountain ranges, and other 

factors, ofien blows northeastwards or southeastwards over British Columbia instead of 

directly east (Benoit, et al., 1997b). In addition, variations in topography affect precipitation 

(e.g. less precipitation falls on the lee side of a mountain range, while more precipitation falls 

on the facing side of a mountain range). Many of the watersheds for the strramflow 

observation stations used in this research are oriented in a northwest, nottheast, southwest, or 

southeast direction. Therefore, it was appropnate that these directions should give better 



regressions. Therefore, the northeast, southeast, southwest, and northwest directions for 

distance to ocean, shield effect. and barrier height were used to help defuie the regions. 

The following fifieen variables were used in the analysis: drainage area, slope, 

azimuth, average Julian date of peak flow. ratio of peak flow to mean flow. distance to ocean 

(northeast, northwest, southeast, southwest). barrier height (northeast, northwest, southeast. 

southwest), and shield effect (northeast, southwest). The cross-correlation table is included 

in Table 3 4 .  There is still some high cross-correlation, most notably in the distance to ocean 

variables, but these variables were kept since they do contain distinct and potentially 

important information. 

Table 3-4 - Cross Comlation Table for Hydrologically Significant Variabies 

- Drainage area of the bs in  
- Ratio of average peak fluw to m m  flow 
- Average julian date o f  peak flow 

. - Azimuth angle of  the basin 
pc - Slope of the basin 

H-ne - Average barricr height of the bûsin in the nortfiast direction 
H-nw - Average barrier height o f  the basin in the northwest diwtion 
H-se - Average bmicr height of the basin in the southat direction 
H-sw - Average bamer height of the basin in the southwesî direction 
Tû-ne - Average distance to the o c m  of the basin in thc: northeast direction 
TO-nw - Average distance to the ocean of the basin in the nonhwest direction 

b~O-se - ~veragë distance to the ocean o f  the basin in the southwrst direction 
DTO-sw - ~ v e & e  distance to the o c m  of the basin in the sauthwest direction 
SHE-ne - Average shield effect o f  the basin in the north- direction 
PHE-sw - Average shicld effect of the basin in the southwest direction 



These fifteen variables were used to generate relationships to describe the variation in 

the statistical parameters. 

3.5 Chapter Summary 

This chapter has been used to describe the relevant literature and background 

information for this research. In the following chapten, the MC2-PMS model will be used to 

develop a maximum precipitation event and it will be converteci to a flood with the 

WATFLOOD/SPL model. The re tm intervals of the two floods will be used to compare the 

flood calculated fiom the PMS and the traditional PMF. The retun intervals will be 

calculated fiom a frequency curve developed with the regional fiequency analysis method. 



4 Calculating the Probable Maximum Flood with the 
Probable Maximum Storm Model 

The Probable Maximum Flood (PMF) is the theoretically largest possible flood in a 

particular area. For the Columbia River Basin, this may involve a combination of events. 

such as a large snowpack, a quick melting temperature sequence, and a large storm occurring 

together. One aim of this research was to improve the estimation of the PMF through 

improved estimation of the large storm, termed the Probable Maximum Precipitation (PMP). 

Previously. these estimates were based on a combination of meteomlogical and statistical 

methods. In this research. a physically-based atmospheric model was used as a possible 

alternative. 

The MC2-PMS model was used to generate a "Probable Maximum Storm" (PMS). 

This was the largest storm that the model could generate, and was therefore the iargest storm 

theoretically possible, given the model setup. The PMS was used in place of the Probable 

Maximum Precipitation to generate a flood. This section will describe the process used to 

develop the PMS and calculate the "new" PMF. The first section will describe the procedure 

to develop the PMS with the MC2-PMS model, and the second section will describe the 

conversion of the stoxm into a flood with the WATFLOODISPL model. 

4. f Calculating the Probable Maximum Storm 

This section describes the derivation of the Probable Maximum Storm (PMS). First, 

the setup information for the MC2-PMS model is presented. The modifications of the 

perturbation to derive the PMS are described: the stom location and the wave parameters 

were moditied. Finally, the PMS is compared to other significant precipitation events. 



4.1.1 Setup Information for the MC2-PMS Model 

The fvst step of this research was setting up the MC2-PMS model so that the 

calculated storm would affect the basin of interest, the Columbia River Basin. This includes 

date and location choices, and nesting information. Various historical stoms that have 

occurred over the Columbia River basin were exarnined to detennine cornmon 

meteorological characteristics. Large winter stoms tend to begin in the middle of the Pacific 

Ocean as a small perturbation. If conditions are appropriate, the perturbation in the Ocean 

develops and collects humidity fiom the ocean as it travels to the coast. Thetefore, the model 

was setup to create a perturbation in the Pacific Ocean. The perturbation was described in 

detail in the literature review in Section 3.2.3. 

The perturbation was placed in the mid-Pacific, in the approximate location of the 

winter stoms. The perturbation had a two-day travel time to the coast (during which the 

stem could collect humidity fiom the ocean). It was necessary to embed the perturbation 

inside the general circulation (meteorological conditions) for a particular day, in order to 

establish initial and boundary conditions for the model. Since a summer storm that would 

occur when the resewoirs were at or near full was desired, the perturbation was embedded 

into the general circulation data for September 20, 1983 (the nservoia are filled by 

snowmelt in the spiing and early summer, and are full by late summer). However, it was 

found that the stom traveled north towards Alaska, and very littie min fell on southeastem 

British Columbia. Figure 4-1 shows the 6-day precipitation from one of these stoms at the 

150-km grid sire. Most of the min fell in the North Pacific and very little fell over the 

Columbia River Basin (red box). 



Figure 4-1 - Precipitation accumulation (mm) fmm a storm that traveled through 
Alaska 

Pierre Pellerin at RPN (personal communication. 2000) examined two large historical 

summer storms for the Columbia River Basin (July 1 1 - 13, 1983 and August 25-27, 1984). 

He found that, unlike winter storms, large summer storms for the Columbia River Basin do 

not originate in the mid-Pacific. The storms begin near the coast and will tend to travel 

northwards unless a high-pressure system already exists in the north to force the storm 

inland. Therefore, it was decided to move the perturbation closer to the coast, and to embed 

the perturbation inside the July 13, 1983 general circulation data. This date was chosen 

because a large historical stom occurred on this date, and a high-pressure system existed in 

90 



the north. Figure 4-2 shows the geopotential height plot of the perturbation embedded in the 

July 1 3, 1 983 general circulation. Geopotential height approximates the actual height (in this 

Figure, in decarneters) of a pressure surface (in this Figure, 1000 mb) above mean sea-level. 

The pressure wave is visible in this Figure as a low-hi&-low pattern just West of the 

continental United States. Note the existence of the high-pressure system to the north-east of 

the perturbation in northem British Columbia and Alberta. With these changes, the stonn 

affected the Columbia River Basin. 

Figure 4-2 - The perturbation emboddcd in the July 13,1983 geneml circulation 



However, the new location for the storm was less than a one-day travel time to the 

coast. Therefore the storms would not have enough time to collect humidity fiom the ocean 

More reaching the coast. Wet and dry humidity profiles were created to address this 

problem. The c w e s  in Figure 4-3 were used (Pellerin, personal communication. 2000). 

These curvei were based on observed surnmer storms. They have not yet k e n  validated to 

determine if they produce the largest possible storm. 

Once the model was setup so that storms were occumng over the Columbia River 

Basin, it was necessary to "cascade" the model down to a resolution appropriate for the 

hydrological model. In this research, data at a resolution of 10 km were required for the 

WATFLOOD/SPL model. A three-part simulation was perfomed: 150 km, 50 km, and 10 

km. The simulation domain for the 150 km resolution is show in Figure 4-4, where the 

I 

highiighted section is the location of the theoretical perturbation for the Probable Maximum 

I 

Figure 4-3 - Relative Humidity Profile in tbe a) Warm Front and b) Cold Front 
(Vertical axis is Pressure in mb, Horizontal axis is Relative Humidity in %) 



Storm. The 150 km simulation was a hemispheric model, to allow for simulation of global 

atmospheric phenornena. The highlighted section in Figure 4-5 shows the portion of the 

hemispheric simulation that was simulated in the 50 km resolution. The highlighted section 

in Figure 4-6 shows the portion of the 50 km simulation that was modeled in the 10 km 

resolution. Note that the Columbia River Basin is included as part of the domain. The lower 

mainland watersheds are also included, but are not examined as part of this research. 

perturbation 





Figut 

4.1.2 Adjusting the location of the stom 

The location that Pellerin (personal communication, 2000) used for the perturbation 

generated a short, intense storm over the Columbia River Basin. After 12 hours of 

simulation, a cyclone with a depression of 32 mb was visible just to the West of Vancouver 

Island. For the rest of the simulation, the low pressure point remained West of Vancouver 

Island, but an "arm" of the cyclone passed from south to north over the basin between hours 

6 and 30. (Note that at the IO-km resolution, the "'am'' passed over the basin between hours 



O and 24, since three hours are lost with each cascade.) M e r  48 hours, the cyclone had 

dissipated, and a new storm was developing in northwestem U.S.A. A series of figures 

showing the development of the stom every three hours is available in Appendix A (Figures 

A-1 to A-1 7). For the Columbia River Basin, the precipitation occurred as a result of the 

"ann" passing over the basin (between hours O and 24). Therefore, the 24-hour precipitation 

was used in this research, so that the precipitation fkom the passage of the arm was obtained. 

The perturbation location was based on the tnie location of the storm in July 1983. 

However, it was thought that another location might increase the storm's htensity a d o r  

duration. Probable Maximum Flood analysis is ofien performed with a 3-&y Probable 

Maximum Precipitation, so a longer stom would be desired. 

The stonn could not be moved to the east. since the storm mut begin over the ocean. 

Therefore, various locations to the west of the original location were used to generate stoms. 

As the stom moved West, it had more time to develop before it reached the Coast. The stom 

was moved by degrees west and then north or south, as shown in Table 4-1. The 

precipitation was calculated at the 150-km, 50-km, and 1 O-km resolutions, as shown in 

Figure 4-4 to Figure 4-6. The average precipitation for the 24 hours over al1 of the Columbia 

River Basin grid squares was calculated and shown in Table 4-1. The Table also shows the 

average precipitation over the Mica Dam basin, because the July 1983 stom afTected mainly 

the northem part of the basin near Mica Dam. For the entire Columbia River Basin, the 

larges precipitation occumd during the storm that was 2 degrees West and 2 degrees north of 

the original location. For the Mica Dam Basin, the largest precipitation occumd during the 

stom that was 2 degrees West and 1 degree north of the original location. 



Table 4-1 - Cornparison of  the 10-km precipitation 4 t h  the center of the perturbation 
placed in various locations 

1 Location 1 Avg. Columbia River 1 Avg. Mica Dam Basin 1 

I stocm location I I I 
Original. historical July 1983 

It should be noted that the higher average precipitation for the Columbia River Basin 

is due to the location of the precipitation event with relation to the Mica Dam basin. A large 

Basin Precip. 
52.3 mm 

arnount of precipitation occurred in the valley below Mica Dam, and these data were not 

- 

Precip. 
55.2 mm 

included in the average for Mica Dam. For instance, the Illecillewaet River at Greeley 

station (WSC #O8NDO 13. drainage area of 1 170 km') is located in the valley below Mica 

Dam, and received an average of 106.5 mm for the storm that was 2 degrees West and 1 

degree north of the original location. 

Figure 4-7 shows the calculated 24-hour precipitation for the two storms highlighted 

above. The approximate limits of the Columbia River basin are shown with red rectangles. 

The stonn that was 2 degrees West and 1 degree north consisted of one intense band of 

precipitation near Mica Dam. The storm that was 2 degrees West and 2 degrees north was a 

broder, less intense band of precipitation that was not focused on Mica Dam. This visual 

cornparison shows that the storm two degrees West and 1 degree north of the original location 

had a better &al1 distribution over Mica Dam. Therefore this stonn location was used for 

M e r  analysis, since the PMS estirnate for Mica Dam was desired. 



Figure 4-7 - Precipitation (mm) fmm Perturbation lacated at: a) 2 degrees west and 1 
degree north, b) 2 degrees west and 2 degrees north 



It was found that the location of the perturbation did not affect the duration of the 

stom. Each location generated a storm that lasted approximately 24 hours. In addition. the 

location of the perturbation did not greatly affect the direction of the storm. The central 

pressure low for the storms stayed just to the West of Vancouver Island. As the location of the 

perturbation moved West, the strength of the precipitation band near Mica Dam varied. The 

strongest precipitation band near Mica Dam occurred for the stonn that was 2 degrees West 

and 1 degree north of the original location. 

The majority of the precipitation (that fell over the Columbia River Basin) fell in a 

precipitation band near Mica Dam. The topographic effect of the mountains caused the 

precipitation band to be n m w  and confined to the mountain pas. Figure 4-8 illustrates that 

the majority of precipitation fell over the lower elevations of the domain. The figure was 

made fiom the storm that was 2 degrees West and I degree north of the original location, and 

the elevation was the average elevation for the 10 km2 grid. The use of the average values 

for a 10 km2 grid i s  not as accurate as point precipitation and point elevation data, but it 

suffices for illustrating the topographic effect. Above approximately 1600 m, the 24-hour 

precipitation decreased. These results are in agreement with J a n  (1 990a), who found no 

meteorological, hydrological, or paleohydrological evidence of significant precipitation at 

high elevations in the American Rocky Mountains (2300 m in Colorado, but ody 1600 m in 

Montana - Jarrett, 1990b). The WMO method for PMP calculation does not ensure that 

precipitation occurs mainly in the valleys and mountain passes. Therefon, the MCZPMS 

method is superior to the WMO method in its calculation of the topographic effect on 

precipitation. 



10 km2 grid elevation (m) 
Figure 1-8 - Cornparison of Precipitation venus Elevation using l o b 2  grids 

4.1.3 Parameter Variation to determine the Probable Maximum Stom 

Once the storm location was chosen. the pressure and temperature wave parameters 

were varied to detemine the maximum storm. The MC2-PMS model is a combination of the 

MC2 model and an added PMS module. The PMS module creates an atmospheric 

perturbation, and the MC2 model develops the perturbation. In this research, the search for a 

maximum storm consisted of rnodifying the PMS module parametea only. The intemal 

meteorologicai parametea of MC2 were not altered becaw this was outside the scope of 

this preliminary hydrologicai investigation. This section develops the relationships between 



the wave characteristics and the storm magnitudes and directions. First, the methodology for 

the parameter variation is presented. Next, the results of the pararneter variation are 

exarnined to detemine the effect of the parameten on the storm location and the effect of the 

parameters on the stom magnitude. 

4.1.3.1 Parameter Variation for MC2-PMS perfuhations 

Several PMS module parameters controlled the characteristics of the pressure and 

temperature waves (described in Section 3.2.2.2). Preliminary studies at RPN showed that 

t h e  parameten in particular, the amplitude of the temperature wave, the amplitude of the 

pressure wave, and the lapse rate were the most important parameters (Pellerin. personal 

communication, 2000). These parameters were varied to determine how they would affect 

the characteristics of the storm. In particular. two relationships were desired: between the 

pararneter values and the direction of the storms; and between the parameter values and the 

magnitude of the storm. 

Accordingly, the three variables were allowed to Vary across their "normal" range. 

The normal range for the amplitude of the temperature wave is SOC to IS OC. For the 

amplitude of the pressure wave, the normal range is 3 mb to 15 mb. The normal range for 

the lapse rate is 6.5 to 10 OCIkm. A high, medium, and low value of each variable was 

chosen, and every combination was used to generate a stom (27 storms). Al1 storms were 

generated with the perturbation located two degrees West and one degree north of the original 

location, as determined kom Table 4-1. The variables are listed in the table below. 

Table 4-2 - Values of parameter variables for each storm 

i 

Storm 
# 
1 
2 

, 3 2  

Pressure wave 
, amplitude-ax(mb) 

15 
7 
3 

Temperature wave 1 Lap:;E - s  
amplitude-bx("C) ( 1 

15 6.5 
15 I 6.5 I 

15 6.5 



These 27 stoms were generated, and then cascaded from 150 km grid squares to 50 

km grid squares, and finally down to 10 km grid squares (Figure 4 4  to Figure 4-6). Each 

cascade refined the precipitation estimate. as the mountain topography improved. 

4.7.3.2 The relalionship beîween the parameters and stom direction 

The rnovement of the low pressure system was used to determine the travel direction 

of the stonn. However, the 27 stonns al1 behaved in the same way. In each case, the central 

low formed and deepened, and traveled north to Vancouver Island. The low pressure system 

stayed wea of Vancouver Island for the entire length of the storm. A low pressure ''ami'of 

the 

the 

storm, which passed fiom south to north over the basin between hours 6 and 1 8, caused 

precipitation over the Columbia River Basin. Each stom proâuced similar pressure plots 



at each time step (the time variation in pressure was similar to that of the series of figures 

(Figures A- 1 to A 4  7) show in Appendix A for the stonn described earlier). The stoms 

differed rnainly in the depth of the low pressure system. These data showed that the storm 

travel direction was not sensitive to characteristics of the perturbation. 

Simitarly, the travel direction for the stom was also not affected by changing the 

location of the perturbation (Section 4.1.2). In each case, the low traveled north to 

Vancouver Island, and a low pressure "m" passed over the Columbia River Basin. 

Further experiments were perfomed with the perturbation embedded inside 

September 20, 1995. These storms traveled in a different direction fiom storms that were 

embedded inside July 13, 1983. However, varying the parameten showed that al1 stoms 

embedded in September 20, 1995, traveled in the sarne direction. 

Generally, the storm travel direction seemed insensitive to the characteristics of the 

perturbation; however, it was sensitive to the conditions surrounding the perturbation. 

Therefore, it was assurned that the travel direction is dependent only upon the atmosphenc 

characteristics of the day chosen for embedding the storm. If a storm over another basin 

were desired, a different day would have to be chosen as the embedding day. The historical 

record would need to be examined to find a day with appropriate conditions (such as the day 

a significant historical stom occurred). 

4.1.3.3 The relationship between the parameters and stom magnitude 

The magnitude of the stonns varied widely. For instance, Figure 4-9 shows a small 

stonn with very little precipitation, and a large storm with significant precipitation. The red 

rectangles show the approximate lirnits of the Columbia River Basin. 



Figure w Precipitation Storm (#25), b) Hi& Precipitation S t o m  (#1) 

Due to this wide variation. an examination of the relationship between the parameters 

and the storm magnitude required a def~tion of storm magnitude. There were many 

possible indicators, such as: intensity, total depth, and areal coverage. This research was 



concemed with calculating the Probable Maximum Flood. As such, a statistic that could be 

used to evaluate the effect of the storm on runoff was used. 

The runoff is related to the total depth of precipitation that fal!s over a particular 

watershed. Therefore an appropnate statistic would be the average (over al1 grid squares in a 

particular basin) of the total depth of precipitation. Since the precipitation for al1 27 of the 

storms occurred during the first 24 hours of the 1 O-km simulation, the total depth of 

precipitation was taken as the precipitation after 24 hours. The averaging was performed for 

the basin upstream of Mica Dam, since the stom was focused on the area near Mica Dam. 

This statistic was calculated for al1 27 storms, and displayed in Table 4-3. The 

highest precipitation (55.0 mm) occuned in storm 1. and the lowest precipitation (8.4 mm) 

occurred in storm 25. The table has been ananged so that the effect of the lapse rate (s) may 

be clearly seen. In al1 cases, when the wave amplitudes were kept constant, the effect of the 

lapse rate on precipitation was small. The average precipitation varied by less than 7% when 

the lapse rate ckas changed. For instance, storms 1, 10 and 19 had constant values for the 

wave amplitudes (ax=15, bx=lS), and three different lapse rates. However, the precipitation 

was not greatly afliected (5 1.1 mm to 55.0 mm). nie lapse rate was therefore considered a 

minor variable. The storms with the lapse rate set equal to 10 OC/km generally had the 

highest precipitation. 

Table 4-3 - Cornparbon of Storm Magnitudes for 27 simultions (based on 10-km 
precipitation estimates) 

Avg. Mica 
Precip. (mm) , 

54.9 
42.3 
26.2 
43.0 
38.7 
30.0 

Stom 
(s= 1 O) 

19 
20 
21 
22 
23 

Avg. Mica 
Precip. (mm) 

.- 51.1 
39.9 

,. 26.2 
42 .O 
38.3 

Ax, Bx 

15,15 
7.15 
3, 15 
15,tO 
7,lO 

29.5 1 24 

Avg. Mica 
Precip. (mm) 

55.0 
39.9 
25.5 
42.0 
36.1 

Stom 
( 6 . 5 )  

. 1 
2 
3 
4 
5 

Storm 
(s=8) 

10 
11 
12 
13 
14 

, 3,lO 29.5 6 15 



The table shows that the two wave amplitudes had a significant effect on 

precipitation. In addition. the data showed a high degree of interaction between the 

variables. Therefore, the plot in Figure 4- 10 was created to show the relationship between 

the wave amplitudes and the average precipitation. When one variable was high and the 

other was low, very little precipitation resulted: the conditions were insufficient to generate 

signiticant precipitation. If both amplitudes were low. a small storm developed. However, 

significant precipitation resulted when both amplitudes are large. The maximum storm 

occurred in the vicinity of ax= 1 5 and bx= 1 5. 

@ *O 
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Figure 4-10 - Average Mica Precipitation venus Ar and Bx, using tbe nine original 
simulations 



These data showed that large precipitation occurred when the temperature and 

pressure wave amplitudes were both large. Therefore, several simulations in the vicinity near 

ax= 15 and bx= 1 5 were performed in order to refine the estimation of the maximum stom. 

Al1 of the storms were caiculated with the lapse rate, s, equal to 10 ' C h .  The extra storms, 

dong with the values of the two wave amplitudes, are listed in Table 4-4. 

Table 4 4  - Extra simulations to refine the maximum stom 

These storms were generated with MC2-PMS. The average for Mica Dam of the 24- 

Storm 
# 
28 
29 
30 
31 
32  
33 
34 
35 

hout precipitation estimates was calculated for each storm. These data were used to generate 

another surface plot of precipitation versus the two amplitudes (Figure 4-1 1). This Figure 

Ax 

13 
11 
12 
13 
15 
11 
13 
11 

shows that a maximum in precipitation was found (at ax equal to 10 mb and bx equal to 13 

Bx 

13 
11 
12 
15 
13 
13 
11 
12 

OC) .  This storm was the Probable Maximum Storm. 



Legend 
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Figure 4-1 1 - Average Mica Precipitation versus Ax and Bx, including the extra 
simulations and showing tbe maximum precipitation 

4.1.4 Cornparhg the PMS to Other Significant Precipitation Events 

The Probable Maximum Storm is shown in Figure 4-1 2. This was the largest 

precipitation that could be generated by MC2 with this particular perturbation embedded in 

this particular day. Figure 4-12a shows the 24-hour precipitation for the entire domain of the 

1 O-km simulation. while Figure 4-1 2b shows the 24-hour precipitation over the Columbia 

River modeling area only. The vertical lines in Figure 4-1 2b indicate the area above Mica 

Dam. The total precipitation ranged from approxirnately 19 mm to 1 1 I mm, with an average 

of 73.4 mm over the Mica Dam basin. The topographie effect of the mountains on the 

precipitation is visible in Figure 4-12. The use of new amplitude parameters caused the 

precipitation to move slightly; it occurred mainly in two areas: in the valley above Mica 

Dam, and in the valley below Mica Dam. The Illecillewaet River at Greeley station (WSC 

#08NDO 13) is located near Rogers Pass (the horizontal lines in Figure 4- 12b correspond to 



the Illecillewaet River basin). The average basin precipitation over the Illecillewaet River 

basin for the 1983 storm was 89 mm. and corresponded to a 500-year return interval flow. 

The average basin precipitation for the PMS storm was 96 mm. the decrease from 106 mm 

caused by the precipitation moving out of the Rogers Pass and into the valley. (It should be 

noted that this storrn was created in order to maximize precipitation for the Mica Dam basin, 

and it therefore does not necessarily contain the maximum precipitation for any other basin.) 

The topographie effect of the mountains was well represented in the precipitation plots from 

the MCZ-PMS model. The WMO method does not tend to concentrate the precipitation in 

valleys and mountain passes. and therefore this method was an improvement to the 

calculation of maximum precipitation. 

Figure 4-12 - 24-hour Precipitation from the Probable Maximum Storm derived by 
MC2-PMS 

The Probable Maximum Storm precipitation was compared to the precipitation fiom 

the July 1 1-13, 1983 storm. The data for the 1983 storm were taken h m  the HRBL model 



precipitation estimates by Danard ( 1  996b). In the the-day perd from July 1 1 to 13, 1983, 

the largest amounts of precipitation fell on July 1 1, 1983. Figure 4-1 3a shows a contour plot 

of the histoncal precipitation for this date (adjusted with the precipitation adjustment factor 

field described in Section 3.3.3). An average of 32.4 mm of precipitation fell over the Mica 

Dam basin on this date (range: O to 76 mm). The difference between the PMS and the July 

1 1 ,  1983 data was calculated and plotted on a contour plot in Figure 4-1 3b. For most of the 

Columbia River Basin domain. there was a greater amount of precipitation for the PMS 

storm. There were small sections where the PMS storm was O to 20 mm less than the 1983 

storm, but these were mainly outside of the Mica Dam basin. Therefore, the Mica Dam basin 

experienced greater precipitation during the PMS than it experienced during the 1983 storm. 

Easting (thouunds of m) 

Figure 4-13 - a) Precipitation (in mm) from July l l . l9W b) Difference (in mm) 
between the precipitation for the Probable Maximum Storm and July 11,1983 



Miller (1993) estimated the Probable Maximum Precipitation (PMP) for the 

Columbia River Basin. The PMP estimate has not been oficialiy adopted by BCHydro and 

is therefore confildentid at this tirne, so a full cornparison between the PMP and the PMS 

cannot be made. However, an average 24-hour precipitation of 73.4 mm over the Mica Dam 

basin for the PMS was on the order of 50% of Miller's PMP estirnate for the Mica Dam 

basin. 

These comparisons show that the MC2-PMS estimate of the Probable Maximum 

Storm is larger than the 1983 historical storm (and hence, is larger chan dl observed 

historical stoms), but lower than the PMP estimate. 

4.1.5 Summary of the MCZ-PMS method to develop precipitation events 

The PMS was calculated with the MC2-PMS mode1 using physically-plausible 

techniques, and was therefore a physically-based maximum storm within the range of 

pemirbations allowed in this study. The mountain topography was evident in the 

precipitation of the PMS: the majority of the precipitation occurred within the valleys and in 

the mountain passes (e.g. Figure 4-8). This result matched with research by Jarren (1 990a), 

who found that significant precipitation events do not occur at high elevation (in Colorado, 

no significant precipitation occurred above 2300 m, but this decreases at latitude increases to 

become 16ûûm in Montana - Jarrett, 1990b). Other research by Jarrett and Costa (1 988) 

showed that stom transposition fiom a region of low elevation to a region of higher 

elevation is not supponed by hydrological, rneteorological, or paleohydrologic data. The 

mountain topography was not as easily discemed in the PMP precipitation plots (Miller, 

1993), and significant precipitation occuned at high elevation. The PMP estimate for the 

Columbia River Basin depends on stom transposition, and may be inaccurate. The WMO 



method camot recommend a standard method for topographic regions because of the great 

variation in the effects of topography upon precipitation (WMO, 1986, p. 139) and site- 

specific analyses are often approximations of the topographic effect. In this research, the 

magnitude of the PMS suggested that the WMO method may overestimate the m e  

atmospheric maximum stom. These results are very important for determining safety at 

hydrologie structures (e.g. dams) in mountainous terrain. 

These data suggest that the MC2-PMS model is suitable for estimating severe 

precipitation events. However, the intemal parameter settings within MC2 have not yet ken  

verified. A meteorological analysis should be performed to determine the appropriate 

settings for severe precipitation events. The PMS estimate is subject to change, but the 

preliminary results presented in this research indicate that the model is suitable for this use. 

4.2 Generafing the Floods caused by the Probable Maximum 
stom? 

Once the Probable Maximum Storm was found, it was necessary to convert the 

precipitation into strearnflow. In order to calculate the flood caused by the PMS, the stom 

must be entered into a hydrological model. There were several rasons for using a 

distributeci, physically-based hydroiogical model, such as WATFLOODISPL. Fintly, 

WATFLOODISPL was designed to accept the gridded output of an atmospheric model (such 

as MCZ), and the gridded precipitation could be used directly in the hydrological model. 

Secondly, the PMS and PMP represent larger magnitude stoms than any historical nom. 

Physically based models are required when estimating flows that have not k e n  observed in 

the past (Refsgaard and Knudsen, 1996). Thirdly, the hydrological processes behave non- 

linearly. and simple prediction techniques do not ailow for accurate forecasting of runoff, as 

shown in the research below. Finally, the PMS m u t  be combined with a large mowpack and 



a fast melting temperature sequence to form one scenario of the PMF. The snowpack and the 

temperatlue sequence have not been historically observed. The combination must be 

simulated together in a physically based manner, due to the interactions between the 

antecedent conditions and the runoff fiom the storm. Therefore, the WATFLOOD/SPL 

model was ùsed to convert the PMS into a flood. 

The flood derived from the PMS is compared to a histoncal flood and to the 

theoretical PMF. 

4.2.1 Comparison of the PMS flood to the historical 1983 stom 

The first comparison was between the historical 1983 stom and the flood fiom the 

PMS. In Figure 4-14, there are k e  hydrographs. The grey trace shows the observed infiow 

hydrograph for Mica Dam during the July 1 1 - 13 stom. The solid black trace is a calculated 

hydrograph, based on using the 1983 data (Danard, 1996b) as forcing data for 

WATFLOODISPL. There are some difierences between these traces; in particular, the 

WATFLOODISPL model overestimates the streamflow before the storm. However, during 

the July 1 1 - 13 storm event, the traces were very similar and the WATFLOOD/SPL model 

accurately predicted the volume of runofX The dashed black trace used the HRBL model 

data for 1983 as forcing data for WATFLOODISPL, except that the data for July 1 1 were 

replaced by the PMS precipitation (the data for July 12 and July 13 were unchanged). A 

comparison of the solid black and dashed black traces shows the volume of streamflow was 

approximately doubled with the PMS on July 1 1 compared to the historical 1983 storm. 
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Figure 4-14 - Cornparison of Mica Dam inflow with the Historieal Storm and the PMS 

4.2.2 Cornpanson of the PMS flood to the traditional PMF estimate 

The flood from the PMS was also compared to the PMF estimates. However, the 

cornparison was qualitative instead of quantitative because the PMF estimate has mt k e n  

oficially adopted by BCHydro and is therefore confidential at this time. 

One particular scenario for the PMF consists of a maximized snowpack and a 

maximized melting temperature sequence, followed by the 3day Probable Maximum 

Precipitation (PMP). The 100-year snowpack for Apnl I was w d  as the maximized 

snowpack. The 100-year melting temperature sequence was derived for May 15 to June 4, 



and used in place of the maximized melting temperature sequence. Danard (1995) caiculated 

these variables. In addition, Danard (1 995) aiso derived a distributed PMP, centered on the 

Mica Dam basin, based on the Miller (1 993) PMP estimates. The PMP was placed on one of 

three different dates: May 15, June 1, and June 15. In addition, a "pre-storm" was also 

calculated to ensure that the watershed would be wet prior to the PMP (Le. soi1 moisture 

equal to the porosity). The pre-stom was to begin two &ys before the PMP. The worst 

possible date of these three dates was chosen for use in calculating the PMF. 

In order to simulate the PMF from the Danard (1995) data, the WATFLOOD/SPL 

model required continuous meteorological forcing data fiom April 1 (the date of the 

maximized snowpack) until after the PMP ended. Therefore. the data were embedded inside 

data for another year (available fiom the Danard, 1996b. model). The year 1972 was chosen 

because it was the wettest year since the Mica Dam was constructed, and suficient data 

existed to be able to create 6-hour estimates of precipitation and temperature. 

Figure 4-15 shows four inflow hydrographs for Mica Dam. The solid black line is the 

unaltered 1972 data fiom the HRBL model, while the dashed black hydrograph is the 1972 

&ta with the PMS storm on June 1. The dashed grey line is the PMF calculation with the 

100-year snowpack on April 1, the 100-year melting temperature sequence h m  May I 5 to 

June 4, and the 1-day PMP on June 1 (the PMP was shortened to match with the length of the 

PMS). The solid grey hyârograph is the same snowpack and melting temperature sequence, 

but with the PMS storm on June 1 instead of the PMP. The efTect of the maximized 

snowpack and melting temperature sequences can be observed as the difference between the 

two black lines (regular 1972) and the two grey lines (with snowpack and melting 

tempetatures). A cornparison of the grey lines shows that the volume of nuioff fiom the 



PMP (after subtracting base flow) was approximately eight times the volume of nuioff From 

the PMS (after subtracting base flow), while the peak flow for the PMP was hKice the peak 

flow of the PMS. These differences between the PMP and PMS are very large. which could 

have significant implications for many dams. 

l 

I Normal 1972 
l 

1 
I - - - 1972 with PMS on June 1 

I 

I PMF Snow and Temp, PMS on June 1 
I 

, \ - - -  PMF Snow and Temp, PMP on June 1 

1 3-May 27-May 10-Jun 2 4 u n  8-Jul 
Figure 4-15 - Cornparison of Mica Dam inflow with various PMF scenarios 

Therefore, the flood caused by the PMS was larger than observed flood events, but 

smaller than the PMF. Thex results were expected since the PMS was larger than the 1983 

historical Storm, and smaller than the PMP. 



4.3 Summary of the MC2-PMSlWATFL000 method to develop 
stoms and floods 

The combined use of the MC2-PMS and WATFLOODISPL models appears to be a 

viable method to calculate the PMF. 

The flood that was calculated fiom the PMS was larger than observed flood events, 

but smaller than the PMF (calculated with the PMP). The WM0 (1986) method does not 

ensw that the PMP is physically possible, and the use of an overestimated PMP would causé 

an overestimated PMF. In contrast, the PMS was developed in a physically-based manner, 

and the use of the WATFLOOD/SPL model ensured that the resulting flood was also 

ph y sicall y - based. These results indicated that the PMF may have been overestimated. 

However, before the MC2-PMS rnethod can be w d  in practice, meteorologists must 

carry out an in-depth analysis of the physical constiaints set on the intemal workings of the 

numerical weather model MC2. For example, the following variables and processes will 

need to be assessed with regard to the impact on the PMS (Pellerin, 2000): 

. Atmospheric energy 
Sea surface temperature 
Precipitation scheme 
Grid resolution 

The effects of these and other variables and processes should be examined to determine the 

effect on the maximum precipitation. Nevertheless, the MC2-PMS approach promises to 

account directly for geographical features that can not be accounted for by the traditional 

approach of transposing aoms. 



5 Generating lmproved Flood Frequency Cumes 

The flood fiequency curve for the Mica Dam basin was estimated in order to allow 

the r e m  intervals of the flwds h m  the PMS and PMP to be compared. The regional 

fiequency analysis using L-moments (Hosking and Wallis, 1997) method was used to 

calculate the frequency curves due to its robustness. This research used two sources of 

streamflow data: observed streamflow and calculated streamflow fiom a hydrological model, 

Al1 of the analysis was performed with the annuai maximum daily flows. The use of a long 

continuous time series of deterministically simulated strearnflow for flood frequency curve 

estimation is a relatively new concept that is not yet fully established (e.g. Lamb, 1999, and 

Cameron, el al., 1999). This application of the concept is unique in that the deterministically 

simulated streamflow time series was longer than the observed streamflow time series, and 

therefore it was less prone to sampling errors. The time series for simulated streamflow was 

96 years long (1 899- 1994), whereas the time series for the observed streamflow was an 

average of 34 years long (with a range of 5 years to 9 1 years). Therefore, it was possible to 

compare the frequency curves generated by each source, and so validate the concept. After 

the concept was validated for this hydrological model and data set, the flood frequency curve 

and its confidence limits were derived From the simulated streamflow. This chapter will 

describe the validation of the use of simulated streamflow data, the derivation of the Mica 

Dam basin flood frequency c w e  and the denvation of the confidence limits for the flood 

frequency c w e .  Chapter 6 will compare the peak flows calculated in Chapter 4 to the flood 

frequency curve computed in this chapter. 



5.1 Validation of the use of simulated sfreamflow data 

The use of hydrological models to deterministically generate continuous streamflow 

for a long time series is relatively new. Relatively few authors have been able to generate a 

long time senes of streamflow for flood fiequency analysis, because of short observed 

meteorological records. Lamb (1 999) was able to generate continuous streamflow for 10 

years. while Carneron, et al. (1999) were able to generate continuous streamflow for 2 1 

years. 

In this research, a 96-year continuous time series of distributed meteorological 

forcing data were available. There were, however, several differences between the Lamb 

(1 999) and Carneron, et al. (1 999) studies and this study. The other studies compared the 

fiequency curves derived fiom observed and simulated data and found that the calculated 

data produced reasonable flood frequency curves. However, both used multiple parameter 

sets, and parameter sets were accepted or rejected based on their ability to reproduce peak 

streamfiow estimates for a particular basin (in addition to a suitable hydrograph). In contrast. 

the WATFLOODISPL model is a distributed physically-based hydrological model with a 

single optimal parameter set that applies to al1 sub-basins, and the calibration process focuses 

on the generation of correct hydrological processes (not solely on the hydrograph andor peak 

flows). The High Resolution Boundary Layer (HRBL) rnodel data (Danard, 1996b) was 

available for the time p e n d  1899 to 1994 (96 years), which is longer than the average of 34 

years for the streamfîow observation stations on the Columbia River (range fiom 5 to 91 

years). A longer time record is beneficial for flood fnquency analysis purposes and this was 

one of the reasons for sûnuiating the 96-year record. Although the modeled meteorological 

data were subject to modeling error, the model was based on observations, and there is 



evidence that the synthesized streamflow was close to reality. However, the use of simulated 

streamflow to generate a frequency c w e  must be validated with this data set and with this 

model. In addition, although the WATFLOOD/SPL has been validated for many of its 

hydrological processes (e.g. Bingeman, et al., 2001. Carlaw, 2000. Cranmer, et al.. 2001, 

Mousavi and Kouwen, 2000, Wong, 2000, and othea), it has not been validated for the 

purpose of fiequency curve estimation. 

Hydrographs of the observed and simulated streamflow were presented in Figure 3-7 

(Columbia River at Nicholson station) and Figure 3-8 (Mica Dam infiow). These showed 

that the meteorological data could be used to generate reasonable streamflow time series. 

However, the fiequency curves were based on the annual maxima for each year. Therefore. 

to further test the simulated streamflow data, the residuais of the peak flows for the station 

with the longest time series (Columbia River at Nicholson. 90 years) were examined to 

determine their characteristics. Figure 5-1 shows the observed and simulated peak flows 

plotted against one another. There is a slight bias in this Figure; the lower peak flows tended 

to be overestimated, while the higher pak  flows tended to be underestimated. However, the 

peak flows were generally close to the 45' line. Figure 5-2 shows the histograrn of the 

differences between the simulated streamflow and observed streamflow peak flows. The 

mean of the residuais was slightly negative (-3 m31s), and they had a slight negative skew. 

However, the plot shows that the ~siduais were distributed around zero, indicating that there 

was very little systematic error. The residuals were not conelated in time (the correlation 

coefficient for a 1-year lag was 0.08), which also indicated that there was very little 

systematic emr. 



Figure 5-1 - Cornparison plot of simulated and observed peak flows for Columbia River 
at Nicholson station 
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Figure 5-2 - Histogram of Residuals of Peak Flows for Columbia River at Nicholson (90 
data poiots) 

Due to model spin-up erron in WATFLOOD/SPL, it was not possible to use the 

entire 96-year simulated streamflow time series. The model spin-up errors are caused by 

starting the model with incorrect storage values (e.g. depression storage equds zero, soi1 

moisme equals the antecedent precipitation index (Viessrnan, et al.. I989), etc.). To 

detemine the length of t h e  that spin-up emrs affect the streamflow, the model is started in 
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two different years, and the results compared to determine when the streamflow estimates 

match. For the Columbia River domain, the spin-up period is approximately two years. 

However, the following method rnay be w d  to decrease the model spin-up time. A typical 

year may be used as a lead-in year (the year 1971 was used). The lead-in year was used to 

begin the 96-year simulation (1 899-1 994), and the first year (1 899) of output was discarded. 

In this way, instead of starting with zero stotage on January 1, 1899, the model starts witb a 

typical watershed condition. Only one year of data was discarded, so 95 years of simulation 

were availabie for analysis ( 1900- 1994). A brief sensitivity study was performed to 

determine the effect of using a lead-in year on the streamflow. When the strearnflow data 

calculated with a lead-in year were compared to streamflow data calculated without a lead-in 

year, the simulated annual peak streamflow was only slightly affected for the yean 1900 and 

190 1 (1 899 was discarded). Mer  these years. the peak streamflow with and without the 

lead-in year were identical. Consequently, the Frequency c w e s  were not significantly 

afTected by the use of the lead-in year; however, the extra year of data would tend to increase 

the accuracy of the curves. 

In the HRBL model, there were non-random erroa in the regressions between 

precipitation and horizontal convergence (see Section 3.3.3). The= were very few 

precipitation stations located at high elevation, and therefure the regressions did not represent 

the precipitation at high elevation very well. Also, the use of horizontal convergence to 

predict precipitation may also cause non-random error in the precipitation estimate. 

Therefore, two simulations were canied out with the WATFLOOD/SPL model. The first 

pas  used the unrnodified HRBL model data, while the second pars used a precipitation 

adjustment factor (PAF) field based on the enors fiom the fim simulation (Kouwen, et al.. 



2000). The PAF field was generated fiom the enors in streamflow volume to correct 

precipitation erron in the HRBL model, and it had a greater effect on flow volumes than on 

flow peaks. This analysis compared the output fiom both runs to the observed fiequency 

curves. In this analysis, the PAF field was generated with a single-pass correction of the 

strearnflow qolume (see Section 3.3.3). In this way, the bias was removed but the dispersion 

was lefi unchanged. It is likely that additional passes to correct the strearnflow volume 

would improve the fiequency curves. 

In order to perform the validation of the rnodel's ability to reproduce frequency 

cwes ,  frequency c w e s  were generated nom the observed data and fiom the simulated data 

for each station. The observed streamflow database included 32 streamflow stations fkom 

Water Survey of Canada, and four B.C. Hydro dams, as described in Chapter 2. The 95-year 

simulated strearnflow series were "shortened" to match with the observed streamflow 

database. The shortened data series wete used to eliminate the possibility of introducing a 

bias due to the longer hisioricd time series. The 19 10's and 1920's were a fairly dry period, 

while the 1960's and 1970's were wetter. The cornparison of a short time series (which may 

oniy include wetter (or drier) periods) to the full time series (which would include al1 

periods) would be inappropriate. For instance, the Incomappleux River near Beaton had 

O bserved data in the years 19 1 4-1 9 1 5 and 1 952- 1 995 (46 years) and so the data for these 

same years (1 9 14- 19 15, 1952- 1994) were extracted fiom the 95-year simulated streamflow 

data. The shortened data series are referred to as the "short senes" in this research. Two 

short series were extracted: the first series was the simulation that used the unmodified 

HRBL model data, and the second series was the simulation that used a PAF field. 



The L-moments (Hosking and Wallis. 1997) were used to generate the fiequency 

curves for the observed and simulated streamflow series. Individual fiequency curves were 

created for each station (regional analysis was not used at this point). The L-moments for 

each station were caiculated for the observed data, the short series without PAF field, and 

short series with PAF field. 

Finally, a Wakeby distribution was fitted to each set of L-moments. The Wakeby 

distribution was chosen because it is a five-parameter distribution and is therefore very 

the 

flexible and fits most &ta. Higher-order L-moments are much more robust than highersrder 

conventional moments (Hosking and Wallis. 1997), and therefore it is possible to use a 

greater number of the moments for distribution fitting than would typically be used in a 

conventional analysis with central moments. In addition, it is easier to compare fiequency 

curves if they are generated with the same probability distribution, and a typical three- 

parameter distribution may not fit dl three sets of L-moments. 

There was considerable variation in the fkquency curves. For brevity, only five of 

the larger sub-basins are discussed in detail. However, the fiequenc y c w e s  for al1 36 

stations are included in Appendix B. 

The Columbia River near Faimont Hot Springs station is an 891 km2 basin in the 

northwest ami of the Columbia River. The curves are plocted in Figure 5-3. The 

WATFLOODfSPL model consistently ovemtimated the streadow at this station; the 

suspicion of bias in the HRBL model data was partly biwd on the results of this station. The 

fkquency c w e s  supprted these results. The simulated curve overeaimated the observed 

fkquency c w e  by a factor of about two at al1 probabilities. The simuiated-with-PAF field 

curve showed that the PAF field has over-corrected for this error somewhat. The PAF field 



improved the results; the simulated-with-PAF field fiequency c w e  corresponded to the 

observed fiequency curve for high probabilities of exceedance. The average peak flows were 

modeled correctly, but the shape of the peak flows was incorrect, and therefore the use of 

simulated data to create a fiequency c w e  was partially valid at this station. 

/- Columbia River near Fainnont Hot Springs 

Probability of Exceedance 
Figure 5-3 - Frequency Curves for Columbia River near Fairmont Hot Springs 

The Illecillewaet River at Greeley station is an 1 170 km2 basin in the western part of 

the basin, below Mica. Its headwaten are located near Rogers Pass. The curves are plotted 

in Figure 5-4. The sirnulated-with-PAF field curve followed the observed curve closely; they 

were coincident at most probabilities. This station experienced its 500-year flow h m  the 

1983 storm. The simulated streamflow data were able to match this value. The PAF field 

improved the estimate of the frequency c w e ,  and the use of simulated data to create the 

kquency curve was reasonable. 
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Figure 5 4  - Frequenq Curves for illecillewaet River at C m l e y  

The St. Mary River near Marysville station is a 1480 km2 basin that is not in the 

Columbia River Basin, but is modeled due to its proximity to the Columbia River. The basin 

is south of the headwaters of the Columbia River. The curves are plotted in Figure 5-5. The 

cuves showed that the observed and simulated frequency curves were similar in shape. 

however the simulated curves underestimated the observed flood fiequency c w e .  At this 

station, the PAF field lowered the streamflow values, which increased the difference between 

the observed and simulated flood kquency cwes. There was a 20-25% e m r  for the 

simulated-with-PAF field frequency curve, and a 10- 15% error for the simulated-without- 

PAF field frequency curve. At this station, the PAF field did not appear reasonable, and 

since the peaks were underestimated, the simulated strearnflow data could not be used to 

estimate the frequency curve. The r ewn  for this discrepancy is the nearness of the St. Mary 

River to watersheds above the Faimont Hot Springs gauge, where the flows were greatly 

overestimated (Figure 5-4). The overestimation at the nearby gauges caused an over- 
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correction at the St. Mary gauge. This problem can be traced back to the single pars HRBL 

model, where possibly too much emphasis was placed on "rubbersheeting" to al1 the tainfa11 

observations. This problem may be improved with the use of a two- or three-pass PAF field. 
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Figure 5-5 - Frequrmy Curve for St. Ma y ' s  near Marysville 

The Columbia River at Nicholson station is a 6660 km2 basin in the northwest arm of 

the Columbia River, below Faimont Hot Springs. Since this station is downstream of the 

Fairmont Hot Springs station, it was also consistently overestimated, in part due to the 

overestimation at Fairmont Hot Springs. This station is the oldest Columbia River Basin 

station (9 1 years), and these data have ben relied upon to vei@ the earlier years of the 

HRBL model data. The curves are plotted in Figure 5-6. As expected, the simulated- 

without-PAF field curve showed that the streamflow was overestimated. However, the PAF 

field corrected the error, and the sirnulated-with-PAF field curve was almost coincident with 

the observed fkquency curve. ï h i s  result was very important, as it showed that the 

WATFLOODBPL model was well calibrated, and dculated the streamflow accurately for a 
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penod of 90 years. The simulated streamflow data could be used to develop the frequency 

curve at this station. 
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Figure 5-6 - Frequeney Curves for Columbia River at Nicholson 

Finally, the Mica Dam has a drainage area of approximately 20,000 km' and is 

located at the northem end of the nortfi-south arm of the Columbia River. The reservoir 

inflow data for Mica Dam were calculated by B.C. Hydro. The curves are plotted in Figure 

5-7. The three curves were coincident for most probabilities, and at high probabilities, the 

simulated c w e s  overestimated the observed curve. There was very little difference between 

the simulated with and without PAF field curves, mainly because the Mica Dam drainage 

area contained areas where precipitation was ovemtimated and other areas where it was 

undeiestimated. The use of simulated streamflow to caiculate the frequency cuve was vaiid 

at this station. 



O - -  7 -- * - .- - - - -- - ---- 

0.0 0.2 0.4 0.6 0.8 1 .O 
Probability of Exceedance 

Figure 5-7 - Frequency Curva for Mica Dam 

In geneial, approximately two-thirds of the stations showed good agreement between 

the observed curve and at least one of the simulated curves, where "good agreement" referred 

to coincidence for some or al1 of the main part of the fiequency curve. The enors ranged 

fiom -50% to +100%, with the larger enors o c c k n g  at the stations with low streamflow. 

This suggested that the frequency c w e s  derived fiom simulated streamflow data were able 

to mode1 the observed frequency curves. 

The simulated-without-PAF field and simulated-with-PAF field fiequency c w e s  

were compared to detemine which cuve was more accurate. The results are listed in Table 

5-1. It was found that the simulated-with-PAF field curve was closer to the observed 

fiequency curve for 16 stations (six stations showed only marginal improvement). The 

simulated-without-PAF field was closer for eight stations (two stations showed only marginal 

differences). Twelve stations showed no improvement when the PAF field was w d  (it is 

likely that these drainage basins contained areas that were overestimated and areas that were 
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underestimated, and these cancelled). These data suggested that the PAF field was an 

important adjustrnent, but M e r  refinements could be made to improve the eight stations 

where the PAF field worsened the results. A second or third pass to calculate the PAF field 

may improve the results, or a topographical correction could be applied. In general, the PAF 

field improved the estimation of peak flows, and consequently the PAF field adjustment was 

adopted. 

Table 5-1 - List of Which Simolated Curve Best Approximated the Obseived Curve 

Simulated with PAF field 
was better 
Columbia River near 

Fainnont Hot Springs 
Split Creek at the Mouth 
Mather Creek below Houle 

Creek 
Kuskanax Creek at 1 MO M 

Contour 
Lardeau River at Marblehead 
Jordan River above Kirkup 

Creek 
Columbia River at Nicholson 
Columbia River at Donald 
Arrow Dam 
Revelstoke Dam 
Count: 10 

Marginally better: 
Blaeberry River below 

Ensign Creek 
Illecillewaet River at Greeley 
[ncomapplew River near 

Beaton 
Kuskanax Creek near Nakusp 
Duncan River below BB 

Creek 
Spillimac heen River near 

Spillirnacheen 
Count: 6 

Sirnulated without PAF field 
was bener 
Kicking Horse River at 

Golden 
Stitt Creek at the Mouth 
Beaton Creek near Beaton 
St. Mary River near 

Marysville 
Carney Creek below 

Pambrun Creek 
Fry Creek below Carney 

Creek 
Count: 6 

Marg inal1 y better : 
Kirbyville Creek near the 

Mouth 
St. Mary River below Morris 

Creek 
Count: 2 

Both were about equal in 
accuracy 
Blaeberry River above 

Willowbank Creek 
Gold River above Palmer 

Creek 
Canoe River below Kimmel 

Creek 
Goldstrearn River below Old 

Camp Creek 
Barnes Creek near Needles 
Kaslo River below Kemp 

Creek 
Keen Creek below Kyawats 

Creek 
Gold River above Bachelor 

Cree k 
Lemon Creek above South 

Lemon Creek 
Cranberry Creek above 

BCHydro Intake 
Duncan Dam 
Mica Dam 
Count: 12 



It was also necessary to evaluate the ability of the hydrological mode1 to reproduce 

the high-flow end of the fiequency curves. Frequency c w e s  are ofien used to predict the 

magnitude of large flood events, and the large flows were of interest to this research. In 

generai, the high-flow tails of the obsewed fiequency Cumes were poorly estimated by the 

simulated cwes,  but this was related to the length of observed record. Figure 5-8 shows the 

simuiated 100-year return interval flow divided by the observed 100-year retum interval 

flow, versus the nwnber of years of record for each station. The ratios of the 100-year r e m  

interval flow for the simulated without PAF data were ploned with biack diarnonds, while the 

ratios of the simulated with PAF data were plotteâ with grey squares. In general, the 

simulated with PAF data were closer to the ideal ratio ( 1  .O) than the simulated without PAF. 

The average enor for the sirnulated without PAF data was 0.29, while the average enor for 

the simulated with PAF was 0.23. This indicated that the PAF field improved the estimation 

of extreme peak flows. For the simulated with PAF data, stations with short records (less 

than 30 years) had ratios that varied from 0.4 to 1.4. Stations with 40 or more years of data 

showed improvement, with most stations between 0.6 and 1.2. Frequency c w e s  derived 

from short data records may be inaccurate. but the accuracy improves as the record length 

increases. In this case, as the data record became longer, the simulated with PAF Frequency 

curve estimated the observed c w e  more accurately. When stations with short data records 

were not included in the analysis, the data showed that the simulated with PAF data fiom 

WATFLOOD/SPL were accurate for calculating frequency curves, even at the high-flow tail. 



. 
Simulated Short data 

Simulated Short data, with PAF 

O 20 40 60 80 1 O0 
Number of years 

Figure 5-8 - Cornparison of  100-year return interval flows venus the number of years 
of record 

The n a t d  variation within the observed data was used to determine whether the 

erron in the Q 1 O0 ratios were reasonable. The cornparison was only performed for the 

simulated with PAF data (the simulated without PAF data were not compared because the 

previous analysis indicated that the simulated with PAF data were superior for estimating 

extreme peak flows). Figure 5-9 shows the results. The open grey boxes depict the natural 

variation within the observed data. The data points were calculated by performing the 

fiequency analysis on continuous subsets of the data for each station. First, IO-year 

sequences were removed fiom the observed time series, starting with the fint data point, then 

the second data point, and so on. Then. 1 1 -year sequences were removed fiom the observed 

time series, and so on until al1 data points for each observed time series were used. AAer 

each frequency curve was calculated, the 100-year r e m  interval flow was compared to the 

100-year return interval flow using ail of the observed data. The ratios for the simulated 
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short data with PAF were superimposed upon the nanual variation. It was found that most of 

the stations could be classified as within the n a d  variation. Three stations were 

significantly below the area of naturai variation in 4100 estimation: Kuskanax Creek near 

Nakusp (OSNEOO6). Incomapplew River near Beaton (08NE00 l) ,  and Columbia River near 

Fairmont Hot Springs (08NA045). The fint two of these stations are located in an area 

where the HRBL model underestimated precipitation, and the PAF was used to increase 

precipitation. However, the other stations nearby prevented the PAF from fûlly conecting 

the flows at these two stations. The shape of the simulated fiequency c w e  for the Columbia 

River at Fairmont Hot Springs station did not match the observed fiequency c w e .  This 

station was over-corrected by the PAF, which lowered the streamflows too much. The PAF 

field could be improved to decrease the underestimation at these locations. These results 

have dernonstrated that the error in estimation of the high-flow end of the fiequency c w e  is 

within the natural variation of the observed data. Therefore, the model was able to estimate 

the extreme flows on the fiequency curves. 



Observeci data, 10 or more years 

Sirnulated short data. with PAF 

20 40 60 80 1 O0 
Number of Years 

Figure 5 3  - Ratio of Qlûû for simulateà series corn pared to variability in observed 
Q l O O  ratio: the grey boxes are the variability in observed data (QI00 for a sbort data 
series/Q100 for al1 yean), the black boxes are the QI00 for the simulated short data 
compared to the QlOO observecl atimate. 

Finally. the data were examined to detennine if they were stationary in time. The 

Columbia River at Nicholson station had 9 1 years of observed data available for analysis. 

Ten-year consecutive sequences of annual maxima of both the observed data and the 

simulated with PAF data were used to create frequency curves. The 100-year retum interval 

flow of each fiequency curve was compared to the 100-year retum interval flow of the 

frequency curve calculated with the full time series of observed data. There is a slight 

downward trend in 100-year r e m  interval flow estimates (a linear trendline goes down 0.3 

over 90 years). However, the slight downward trend is mainly due to the large 

overestimation in the 1920's and 1930's. A 10-year moving average of the observed data 

reveals that the remainder of the variation is due to local high and low variations that 



conespond to the wetness or dryness of each ten-year sequence, with no downward trend. 

The local high and low variations in the two data series corresponded very well. They 

compare pariicularly well for the p e n d  when the LFM data were available for calculating 

the meteorological data ( 197 1 - 1994). Therefore, these data showed that the fiequency curves 

calculated with sirnulated data compared very well with the observed Frequency curves, and 

also that the data were mainly stationary over time. 

Analogue method for 190 km 
meteorological data LFM data 

- -  - 

Obsenred data 

0.2 -1- 10-year moving averago for observeci data 

- Simulated data 
0.0 -j - -  - 

1900 1920 1940 1960 1980 2000 
Year of Start of 10 years 

Figure 5-10 - Cornparison of Stationarity: QI00 estimatcs from 10-year sequeaces of 
observed and simulated data, divided by QI00 observed 

In general, the use of simulated data to calculate fiequency curves resulted in good 

agreement between the simulated and observed cwes.  However, there was some 

disagreement between obseived and simulated fiequency curves for high flow - low 

probability events. The estimation of the probability of the PMF involves the high-flow - 

low probability region of the fiequency curve, and so the disagreement in this region was 



examined. Frequency curves made from short time series may be inaccurate, and so the 

stations with longer records were exarnined. There was better agreement for stations with 

longer time series; in particular, there was excellent agreement for the station with 9 1 years 

of data. It appean that frequency curves derived fiom the long simulated time series (95 

years) would improve the frequency curves derived fiom the observed data senes for al1 

stations. 

This comparison showed that the use of simulated data to calculate flood fiequency 

curves is valid. The emphasis durhg calibration of WATFLOODISPL was on ensuring that 

the hydrological processes were ceasonable and on obtaining the correct volume of nanoff. 

However, the model was also accurate for the peak flows, as evidenced by the agreement of 

the fiequency curves, although little effort was made to fit the peak flows. 

The remainder of this resewh to derive improved flood frequency curves uses the 

95-year simulated data, generated with the PAF field, except where noted. The curves are 

compared to the observed Fnquency curves. 

5.2 Decivation of the flood frequency curve 

This section presents the derivation of the estimate of the frequency curve for Mica 

Dam. The regionai frequency analysis methoâ was described in some detail in the literature 

review in Section 3.4. The method contains four main steps: data screening, identification of 

regions, choice of a frequency distribution, and estimation of the at-site frequency 

distribution parameters. The first of these steps was performed during model calibration and 

validation. 

The Wuency curves were derived for two &ta sets: the observed streamflow data, 

and the simulated streanflow data. The shdated streamflow was the 95-year thne series of 



streamflow calculated by using the HRBL meteorological data (adjusted with the PAF field) 

as forcing data for WATFLOODISPL. For the 32 streamflow stations and 4 B.C. Hydro 

dams, there were a total of 1073 years of observed streamflow, and 3420 years of simulated 

streamflow , 

5.2.1 Identification of Regions and Choosing Appropriate Distributions 

The identification of homogeneous regions is an important step in regional analysis. * 

The ability to fit a frequency distribution depends on having homogeneous regions. There 

were two sets of data (observed streamflow and simulated-with-PAF streamflow) used in this 

analysis, and it was decided to use the sarne regions for both sets of streamflow, so that 

cornparisons between the frequency c w e s  could be made. This placed a greater restriction 

on the choice of regions: they must be homogeneous (or possibly homogeneous) for two 

different data sets. The 36 strearnflow stations and dams were grouped with the Burn, et al. 

( 1997) clustering algorithm. 

This algorithm (descnbed in Section 3.4.3.2) uses the Canberra dissimilarity metric to 

calculate the distance between any two stations and form clusten. The Canberra 

dissimilarity metric was calculated with al1 fifteen physiographic and climatic variables 

(described in Section 3.4.4). Several trids with various values of the weighting coefficient 

between 0.1 and 0.9 were peifonned. Visual inspection of the clustea was used to select a 

satisfactory distance weighting coefficient. 

The algorithm generated four clusters with a weighting coefficient of 0.3 (observed 

&ta) or 0.4 (simuiated data). The variation occurred because of the use of different data sets. 

These results cornpared well with the weighting coefficient of 0.3 used by Burn, et al. 

(1997). The boundaries of the clustea remained relatively constant for the two data sets. 



Some stations near the boundaries shified between regions for di Rerent data sets. ïhe  nearl y 

constant division between the regions showed that the data sets were similar, M e r  

validating the use of simulated data to derive fiequency curves. Where differences between 

the data sets existed, the two sets of clusters were modified until both data sets had identical 

homogeneous (or possibly homogeneous) clusters. 

The four clusters obtained fiom the algorithm are shown in Figure 5-1 1. Two stations 

were not placed into a cluster (they are marked with a star). Ellipses were placed around the 

clusters for illustrative purposes (the program does not calculate ellipsoidal regions). The 

two stations that were not placed in a region were originally placed into regions by the 

program; however, to allow the clusters to be identical for both data sets, the stations were 

removed from their regions. One of these stations was outside the Columbia River basin (but 

is modeled due to its proximity), and the second station was Revelstoke Dam. The clusten 

showed a high degree of geographic continuity. and they generally corresponded to West and 

east basins. for high and low elevations. niese four regions were significantly different 

meteorologically (due to the locations of the mountains). Since streadow is dected by 

meteorology, it follows that streamfiow clusters also show these meteorological regions. 

Streamflow stations within each region were not independent, since a given storm could 

occur over several watersheds. A lack of independence does not affect the clustering 

process, but it lowers the effectiveness of the regional frequency analysis method by reducing 

the effective amount of data. This is a common problem in regional fiequency analysis; 

however, Hosking and Wallis (1 988) found that intersite dependence had little effect on the 

estirnateci quantiles of the fiequency curves, but the variance of the estimates increased. 
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Figure 5-1 1 - Final Clustering of Streamflow Stations 

The four clusters were tested for homogeneity . Hosking and Wallis (1 997) provided 

three tests of homogeneity (Equations 3-22.3-23. and 3-24). They recomrnended that al1 

three homogeneity criteria should be less han one, in order for the cluster to qualify as 

homogeneous. It was found that if the limit of the homogeneity criteria was set to one, then 

the clustering algorithm was unable to find suitable clusten. However, if values up to two 

were allowed, then clusten were formed. Schaefer (1997) offen a possible solution to this 

problem: since variability exists in meteorological data due to local site changes through time 

(e-g. land use changes), the homogeneity limit should be increased to two. Therefore, the 



limit for the homogeneity criteria was increased to two, and the clusters were assumed 

homogeneous for distribution fitting. Table 5-2 shows the results of the homogeneity test. 

Mica Dam is located in the fvst cluster. The clusters for both data sets were homogeneous 

according to the Schaefer (1 997) definition, and possibly heterogeneous according to the 

Hosking and Wallis (1997) definition. These clusters were accepted for the regional 

fkquency analy sis. 

Table 5-2 - Results of Homogeneity Test 

t 4 

1 * 6 Northwest 0.81 1 -1.35 / -0.8 0.54 1 -0.09 1 -0.74 
2 8 Northeast 3 4  1 0.73 10.68 / 0.3 0.59 / -1 -62 1 -1.51 
3 9 Southeasq 276 0.46 1-1-06 / -1.7 -1.44 10.13 / -0.24 
4 1 I southwestl 32C t .68 1 -0.52 / -0.5 1.83 / -0.4 1 1 -0.8s 

This region contains Mica 

Hosking and Wallis (1997) also provided a test to determine which frequency 

Simulated (with PAF field: 
Strearnflow: Homogeneity 

Criterion 

distributions fit the data (Equation 3-28). This test assumes that the clusters are 

Cluster 

homogeneous. The results of the test for acceptable distributions for each region and data set 

Total 
Years of' 
Record 

Number of Location 
Stations 

are listed in Table 5-3. The distributions are listed in the order of moa acceptable to least 

Observed Streamfiow 
Homogeneity Criterio 

acceptable. This table shows some differences between the two data sets. To allow 

cornparisons between the fiequency curves, the same Frequency distribution was used for 

both &ta sets. For Region 2, it was not possible to use a simple three parameter distribution 

for the data (no distributions fit both data sets). For each of the other regions, one or more 

distributions were acceptable for both data sets. The choice of distribution thetefore 

depended upon the region. 



Table 5-3 - Acceptable Distributions for Each Region 

Cluster 

1 

-- --- -- 

a Cluster 1 contai"~ the inflow to Mica Dam 
0 GLO = Generalized Logistic, GEV = Generalized Extreme Value, GNO = 

Generalized Normal, P3 = Pearson Type 3 

2 
3 
4 

5.2.2 Calculating the Frequency Distributions for Mica Dam 

This research used two methods to develop the fiequency curves. The first method 

(Hosking and Wallis, 1997) calculates the weighted average of the L-moments for a region 

and uses it to fit the regional fiequency curve. This method results in discontinuities in the 

frequency domain between regions. Runoff varies smoothly between regions in the sarne 

way that precipitation varies smoothly. The second method (Schaefer, 1990) denves 

regression relationships between the L-moments and other non-statistical variables. Schaefer 

( 1990) derived regrpssion relationships for homogeneous sub-regions. In this research, the 

regression relationships were perfonned for the network of 36 stations and dams. The 

network could be used becaw the entire network (with L-moments calculated from the 

simulated stfeamflow &ta) was only possibly heterogeneous according to the Schaefer 

(1 997) definition (Table 5 4 ,  and therefore, the use of a single region was possible. The 

regressions were used to calculate regional L-moments that were then used to fit the 

freguency distribution. The regreuions varied smoothly across dl regions, avoiding the 

discontinuity problem however a single fkquency distribution that can fit al1 of the regions 

is requited. This research used the Wakeby distribution, since there were no three-parameter 

Locatiod Observed Strearnflow : Simulated (with PAF fiel 

GLC 
GNO 

Northeasd P3, GNO. GEV' 
Northwes\ 

Southwesli GEV. GNO. GLûî GNO. GEV. P3 
Southeast 

Valid Distributionq Streamflow: Vaiid Distribution 
GLO, GEV, G N ~  P3, GEV, GNC 

GEV, GNO, P3 



distributions that fit al1 four regions for both data sets. The estimated L-moments fiom the 

regressions were used to fit the frequency distributions. 

Table 5-4 - Heterogeneity statistics for the entire network of 36 stations and dams for 
the simulated streamflow (95 yean) data. 

/ Heterogeneity Statistic Hosking and Wallis 
measure / 1 ( 1997) Conciusion 

The first method, Hosking and Wallis (1997), used the data fiom the six stations in 

Schaefer (1  997) 
Conclusion 

L 1 

Region 1 to create the frequency cwes,  a total of 136 yean for the observed data and 570 

H l  (Eq. 3-22) 
H2 (Eq. 3-23) 
H3 (Eq. 3-24) 

years for the simulated data. Table 5-3 shows that both the Gcneralized Extreme Value and 

the Generalized Normal distributions were acceptable for both data sets for this region. 

2.78 
-0.30 
-0.95 

However, the Wakeby distribution was used to calculate the frequency cwes ,  in order that 

the frequency curves could be compared with the curves calculated by the second rnethod. 

Heterogeneous 
Homogeneous 
Homogeneous 

The observed and simulated regional fiequency curves are show in Figure 5-1 2. 

Possibly Heterogeneous 
Homogeneous . 
Hornogeneous 

Generally, the simulated frequency c w e s  underestimated the observed frequency curves, but 

there was reasonable agreement for the probabilities of exceedance of 0.2 to 0.6. However, 

there were significant differences outside of this region. This research was rnainly interested 

in high-flow, low-probability events (such as the PMF). At a probability of exceedance of 

0.001, the simulated curve underestimated the observed curve by more than 2000 m3fs, or 

approximately 30% (see Figure 5- 12). One possible reason for this result was that the six 

stations that were included with Mica Dam in region I al1 had short time series (2 1-23 years), 

and therefore the accuracy of the observed frequency cuve was questionable. The single 

station andysis indicated that the simulated smamflow data estimated the high-flow, low- 



probability strearnflow poorly when the time series was short (see Section 5.1). The large 

discrepancy between the observed and simulated frequency curves was likely due to a 

combination of errors in the obsewed cuve and errors in the simulated curve. The amount 

of error in the simulated frequency c w e  was therefore unknown. 

l 

l! =Oo0 1 9 

4000 , 
v I Obs., Regubr 

3000 t 3 4 Sim., Reguhr 
q * m  ! = 2000 * g q q T .  

1000 1 i I 

Figure 5-12 - Cornparison of  Frequency Curves for Mica Dam calcuhted using 
Regional Frequency Analysis (regular Hosking and Wallis 1997 method): the observed 
curve used the obsewed data records, the simulated curve used the 95-year simulated 
streamflow data. 

The second method (Schaefer, 1990) was also used to estimate the regional L- 

moments. This method used the data from al1 36 stations by calculating the relationships 

between the L-moments and physiographic parameters. The regressions were created from a 

total of 1073 years of observed data. or 3420 years of simuiated data. Therefore, since this 

method used a larger data set, it was not as susceptible as the regular Hosking and Wallis 

(1997) method to errors in the individual station L-moments. 

The relationships between the L-moments and the physiographic and climatic 

variables were examined with linear regressions. It was found that a large nurnber of 

parameters were required to obtain a suitable fit. However, there were only 36 stations 

available for the regression, and 15 variables. A subset of these variables, 1 1 variables, was 



required to obtain regressions with an R' p a t e r  than 50%. An R~ coefficient of 50% 

implied that the regression explained 50% of the variation in the dependent variable (the L- 

moment). The regressions for the observed L-moments, L-CV (t), L-skew (t3), L-kurtosis 

(t), and the f i f i  L-moment (ts), are presented in Table 5-5. Similarly, the regressions for the 

simulated L-moments are presented in Table 5-6. These two tables list the best regressions 

with a set of 1 1 variables. A comparison of these tables shows that the parameter sets that 

gave the best regressions for the four L-moments and the two data sets were slightly 

different. 

Table 5-5 - Regression Parameten for Observed L-moments 

I L-moment 1 Parameters I R~ ] 

Table 5-6 - Regression Parameters for Simulated L-moments 

L-CV (t) 

L-skew (t3) 

L-kurtosis (b) 

15 

Constant, area, Julian date of peak, azimuth, slope, DTO-SE, 
DTO-SW, SHE-NE, SHE-SW, BH-NE, BH-NW, BH-SW 
Constant, azimuth, slope, DTO-NE. DTO-SE. DTO-S W. SHE- 
NE, SHE-SW, BH-NE, BH-SE, BH-SW 
Constant, Julian date of peak, slope, DTO-NE, DTO-SE, DTO- 
SW, SHE-NE, SHE-SW, BH-NE, BH-NW, BH-SE, BH-SW 
Constant, ratio of peak flow to mean flow, azimuth, dope, 
DTO-NE, DTO-SE, DTO-SW, SHE-NE, SHE-SW, BH-NE, 
BH-SE. BH-SW 

Parame ters 
Constant, Julian date of peak, ratio of peak to mean flow, 
azimuth, dope, DTO-NE, DTO-NW, DTO-SE, SHE-NE, 
SHE-SW, BH-SE, BH-SW 
Constant, area, Julian date of peak, ratio of peak to mean flow, 
DTO-NE, DTO-NW, DTO-SW, SHE-NE, BH-NE, BH-NW, 
BH-SE, BH-SW 
Constant, ma,  Julian date of peak, ratio of peak to mean flow, 
dope, DTO-NE, DTO-NW, DTO-SE, DTO-SW, SHE-SW, 
BH-NW, BH-SE 
Constant, area, ratio of peak to mean flow, azimuth, siope, 
DTO-NE, DTO-NW, DTO-SE, SHEISW, BH-NE, BH-NW, 
BH-S W 

0.584 

0.6 15 

0.57 1 

0.643 

Rd 
0.582 

0.604 

0.642 

0.608 



The results of the regressions for the observed and simulated L-CV regressions are 

show in Figure 5-13 and Figure 5-14. These Figures show that the regressions captwd the 

variation in observed and simulated L-CV very well. 

Figure 5-13 - Preâicted L-CV venus Observed L-CV, showing resiilts of regresaion 

Figure 5-14 - Predicteà LCV venus Simulited L-CV, showing results of regression 

In general, the regressions for the simulated L-moments had similar regression 

coefficients to the regressions for the observed L-moments. The Schaefer (1 990) algorithm 

depends on suitable relationships between the L-moments and the other non-statistical 

variables. The algorithm allows for the at-site L-moments to contain emr, and the e m r  may 

be different for each data set. Therefore, the best regressions for each parameter were used, 



even though they were different for both sets of data. In this way, the regressions that were 

most indicative of the regional pattern of L-moments in the data were found. The use of 

regression allows the regional estimate of the L-moment to be set according to regional 

variations in the at-site L-moments. The regional estimates will be "close" to the at-site L- 

moments, bm "corrected" with the regional variation. 

The observed and simulated flood fiequency curves were calculated and compared in 

Figure 5-1 5. The difference between the fiequency c w e s  was significantly smaller with the 

Schaefer (1990) method. As before, the simulated frequency cuve underestirnated the 

observed frequency curve slightly. In the normai range of probabilities (approximately 0.4 to 

0.8), the two fiequency curves agreed well with each other and with the Hosking and Wallis 

(1 997) curves (compare Figure 5-1 2 and Figure 5-1 5). The main difference between the 

Figures occuned for high-flow. low probability events. For a probability of exceedance of 

0.001, the simulated kquency curve underestimated the observed frequency c w e  by 

approximately 100 m3/s (compared to a 2000 m3/s difference for the Hosking and Wallis, 

1997, method). The use of the regressions allowed the estimation of the regionai L-moments 

to take advantage of longer time series stations. Errors in the observed L-moments for the 

six stations in Region 1 were minimized when a regression was perfonned with other stations 

that had longer time series, and there was less overestimation. Similarly, the underestimation 

in the simulated data was minimized when regressions were fonned with stations that were 

not underestimated. Thus the simulated streamflow &ta may be w d  with the Schaefer 

(1990) method to generate flood fkquency curves. 



Figure 5-15 - Cornparison of Frequency Curves for Mica Dam calculated using 
Regional Frequency Analysis (Scbaefer 1990 method): the observed curve used the 
observed data records, the simulated curve used the 9!5-year simulated streamflow data. 

f 4000 

5.2.3 Discussion of Flood Frequency Curves 

b 

This section derived an improved regional flood fiequency curve. The regional 

fiequency curve was based on the 95-year simulated swarnflow time series calculated by the 

3000 ? 1 Obs., Schaefer 

WATFLOODISPL model. The Hosking and Wallis (1 997) regiondization method generated 

I 
V 2000 

1 O00 

a frequency curve that underestimated the observed fiequency curve; however, this problem 

q q !  9 t Sim., Schaefer 
? 

was alleviated with the use of the Schaefer (1990) algorithm. The 95-year simulated regional 

O 
O 0.2 0.4 0.6 0.8 1 

Probrbility of Ercaedrnco 

fiequency curve was compared to the observed regional fiequency curve, and reasonable 

agreement was found. 

The final issue in the use of simulated data to derive fiequency curves was the 

derivation of confidence limits. A regional flood fiequency curve based on observed data 

contains uncertainty due to observationai error and due to the regionalization process. 

Hosking and Wallis (1997) presented a Monte Carlo rnethod to derive confidence limits for 

fiequency curves. The Monte Car10 simulation calculated multiple realizations of 

streamfiow data for each station fiom a distribution fined to the original data Using the 

same regions, the regional fiequency curves were re-calculated for each realization, and the 



95% confidence b i t s  were found. However, this method was unsuitable for use with 

simulated data, since simulated data also contain uncertainty due to the model(s). The model 

uncertainty was likely to be greater than the uncertainty due to observationai error and 

regionalization. Model uncertainty would not be included in the Monte Carlo simulation 

described above. The next section describes the analysis to calculate confidence limits for 

the fiequency cuve derived fiom simulated data. 

5.3 Derivation of the confidence limits for the flood frequency 
cuwe 

One goal of this research was to determine accurate flood frequency curves. In 

general, the accuracy of a flood fkquency curve improves with the use of a longer time 

senes. This research used a 95-year simulated time series of streamflow to derive the 

fkquency c w e .  However, although thex data increased the accuracy of the frequency 

curve, they aiso caused the confidence limits to grow wider because of mode1 uncertainty in 

the simulated &ta. This section focws on defining the confidence limits for the flood 

frequency c w e .  

The Hosking and Wallis (1997) method to develop confidence limits for regionai 

flood frequency curves was inappropriate due to the parameter uncertainty in the model. 

This method accounts ody for uncertainty due to measurement enor or erroa in region 

definition. However, simulated streamflow data contain parameter uncertainty, and 

therefore, a Monte Carlo analysis was perfonned to develop the confidence limits. 

There were two problems with performing a classical Monte Carlo analysis. First, the 

calibration philosophy of WATFLOODISPL diffea h m  that of other authon who have 

performed Monte Carlo analyses. M e r  authoa (e.g. Binley, et al., 199 1) have used multiple 



pararneter sets to develop a mean and standard deviation for each parameter, which are then 

used to describe the pararneter distribution. This method of developing the parameter 

distributions would not represent the WATFLOODISPL parameter space appropriately, since 

WATFLOODISPL does not use multiple parameter sets. The calibration philosophy of 

WATFLOOD/SPL (Kouwen, et al., 2000) assumes that the cdibrated parameter values are 

close to optimum (i.e. at or near the peak of the optimum multi-dimensional hi11 on the 

objective hction). The limits of the panuneters should be set small enough that ail of the 

simulations occur on a single multi-dimensional hi11 and do not "jump" ont0 another hill, 

since this would represent an invalid parameter set for WATFLOODISPL. Thus, the 

parameter distributions were set according to the calibration philosophy of 

WATFLOOD/SPL, and not according to the methods established in the litetanire. Secondly. 

a Monte Carlo based on the full 95-year time series of simulated strearnfiow would require 

too much computer simulation time. Therefore, the Monte Carlo was based on a five-year 

time series (1981-1985), and variation in the five-year time series was used as an analogue 

for the 95-year time xries variation. This assurnption was tested after the analysis was 

complete; the 95% confidence limits h m  the five-year nuis and the 95-year runs were 

compared. 

Therefore, this analysis presents a method for developing confidence limits for the 

flood fkquency curves that agrees with the caiibration philosophy of WATFLOOD/SPL. 

The following subsections present: the examination of the shape of the objective function, the 

parameter distributions for the Monte Carlo analysis, the conversion of the five-year Monte 

Carlo confidence limits to 95-year confidence limits, and the regional estimates of the 

confidence lirnits. 



5.3.1 Investigation of the Objective Function 

The multi-dimensional "hill" of the objective function of WATFLOODfSPL near the 

optimum parameten was dif'fïcult to define. However, the limits of the "hill" were required 

to help define the parameter distributions. There were 70 different pararneters involved in 

the Monte Car10 analysis (Table 3-2). Very little was known about the physically possible 

panuneter space of WATFLOOD/SPL, except for the calibrated pararneters and the 

physically possible ranges for the pararneters (Table 3-2). It was known that there were 

inter-relationships between certain parameters (for instance. the melt factor and base 

temperature parameters are b t h  used in the snowmelt algorithm), however, these inter- 

relationships were complex and poorly defined. In addition. the limits that are used represent 

the limits that are physically possible for each pararneter. It is possible that the "physically 

probable" limits (likely parameter values) are smailer than the "physicaily possible" limits 

(detennined from textbook values). 

To help determine the limits of the "hill," the pararneters were varied one at a time. 

This would give an approximate description of the "smoothness" of the objective function, 

and the approximate extent of the multi-dimensional "hill" of the objective function. 

Secondly, when the one-at-a-time analysis indicated that the objective function was not 

smooth, two parameters were varied simultaneously to define interactions between variables. 

The first step of investigating the objective function was to modim one parameter at a 

time. The physically possible range was available for each pararneter. Each variable varied 

between its minimum and maximum, in eleven steps: the fim used the minimum value, the 

eleventh used the maximum value, and the other simulations w d  values ranging between the 

minimum and maximum. 



The results of the analysis were compared in two different ways. Firstly, the one 

variable anaiysis was used to calculate the relative sensitivity of the model to each parameter, 

to determine which parameters affect peak flows. Secondly. the anaiysis was used to 

evaiuate the smoothness of the objective function. 

The automatic "fuie tuning" step of the calibration process minimized the root-mean- 

square enor between observed and simulated streamflow. However, this statistic was not the 

ideai statistic for analyzing the objective function shape for two reasons: 

Flood frequency analysis is based on the peak flows each year. The peak flows should 

also be used in evaluating the objective fùnction shape. 

The root-meamsquare statistic is always positive, and information regarding over- or 

under-estimation is lost. This information is usehl for developing confidence limits. 

The statistic was therefore based on the average difference between the peak flows 

for the simulation and the peak flows for the calibrated parametee (reference). This statistic 

was positive when the model overestimated the peak flows, and was negative when the 

model underestimated the peak flows. The 5-y ear time period of 1 98 1 - 1 98 5 (with the y ears 

of 1979 and 1980 used as a spin-up time) was used. The statistic was therefore: 

statistic = Average Peak,imu~~tio,, - Average Peak,eierenCe ............................ (5 -  1) 

The reference peak flows were calculated using the calibrated parameter values. The 

caiibrated parameter values were accepted as the best possible parameters, and therefore the 

flows resulting h m  these parameters were accepted as "perfect." Some authon use a Monte 

Car10 analysis to assia with calibration by using the observed flows as the reference (e.g. A. 

Mailhot, et al., 1 997). However, this analysis was not used to alter the caiibrated parameter 

values, because doing so would alter the calculation of the water baiance inside the 



hydrological model. Therefore, it was acceptable to use the simulated peak flows as the 

reference (instead of the observed peak flows). 

The statistic in Equation 5-1 was used to caiculate the relative sensitivity of the model 

to each parameter, according to the equation (Filho, 1995): 

statistic 
Sensitbity = x 

PQra*efe*refirence 
..S..... *...*.*.*......................... 

Apurameter average peakr,f,,,e 
(5-2) 

The relative sensitivity is dimensioniess, and invariant to the magnitude of the 

average peak flow or to the pararneter value. Therefore, it was used to evaluate the relative 

importance of the various parameters to the generation of peak flows. Table 5-7 presents the 

range of relative sensitivity for each pararneter. 

Table 5-7 - Summa y of Relative Sensitivities for each parameter 

The most important parameters for peak flow generation were the baseflow 

m e t e a  (LZF, Pm), the snowmelt parameters (MF, BASE), river mughness (R2). the 

karameter 

A5 
AK 

. A K f s  
REC 

, R3 
, R3fs 
RETN 
AK2 

W f s  

Relative 
Sensitivity Range 

-0.01 to 0.05 
-0.08 to 0.00 
-0.14 to 0.00 
-0.04 to 0.32 

0.00 
0.00 

-0.03 to 0.02 
-0. t 2 to 0.01 
-0.68 to 0.30 

Parameter Name 

Unsaturated Zone Moisture Coefficient 
Surface Permeability 

Surfâce Penneability under snow 
Interfiow storage-discharge coefficient 
Overland flow conveyance parameter 

. Overland fiow conveyance parameter under snow 
Soi1 retention coefficient 

Uppcr to lower zone ddnage coefficient 
Upper to lower zone drainage coefficient under 

snow 

Rank of 
importance 

13 
11  
9 
7 
15 
15 
14 

10 I 

3 

5 
. 1 

4 
2 
6 
12 
8 

LZF Lower zone drainage fùnction 1 -0.13 to 0.39 
' -0.19to3.64 

-0.10 to 0.50 
-0.55 to 1.10 
-0.38 to O. 15 
-0.05 to 0.05 
-0.23 to 0.20 

P W R  Lower zone drainage function exponent 
R2 River roughness coefficient 
MF 

BASE 
FPET 

a FTALL 

Meh factor 
Base temperature 

Potentiai Evapotranspiration Factor 
Evapotranspitation Factor for Ta11 Vegetation 



intefflow coefficients (REC), and the drainage from upper to lower zone under snow 

(AK2fs). These parametea are hydrologically signf~cant for peak flows. Base flow can be a 

large portion of a hydrograph, and as the baseflow rate increases, the peak flow will tend to 

decrease. The Columbia River basin is an alpine river basin, and therefore the peak flows are 

often associated with snowmelt events. Increasing the nver roughness will tend to decrease 

peak flows. Increasing intefflow will tend to increase peak flows since the flow can reach 

the nver more quickly, while increasing the drainage from interfiow to baseflow will lower 

peak flows since the flow will take longer to reach the nver. 

Some parameten were not important for the generation of peak flows. In forested 

areas, the overland flow parametea (R3, R3fs) have iinle effect because overland flow rarely 

occurs. These parameten describe the roughness of the ground and afTect rnainly the rate of 

nuioff. However, a large precipitation event generates enough runoff to overcome 

depression storage. The unsaturated zone moishm coefficient (A5), the soi1 retention 

coefficient (RERI), and the potential evaporation (FPET) generally apply during dry weather 

processes (periods of low flow) and affect only the initial rise of the hydrograph. Therefore, 

they only moderately affect the peak flows. Therefore, the lack of sensitivity of the 

simulated peak flows to these parameten made hydrological sense. 

The relative sensitivity could not be used to examine the shape of the objective 

hinction, since it ws in relation to the amount of change in the parameter value. Therefore, 

it would tend to remain constant as distance fiom the calibrated value increases, since the 

greater change in average peak flow would be matched by a greater change in the parameter. 

Therefore, the difference between the averages of the peak flows for the simulation and the 



refemnce was used directly to examine the shape of the objective function. The statistic was 

converted to a percent by calculating: 

statistic 
% statistic = x 100 ............................................................. 

average peok flow 
(5-3) 

The percent statistic was plotted against the parameter value for each panuneter. A 

monotonicaily increasing (or decreasing) curve indicated that the objective function shifled 

smwthly From under- to over-estimation (or vice-versa). A convex or concave curve 

indicated that the objective fûnction came to a maximum or minimum near the optimized 

parameter value. In b t h  cases, the absolute value of the statistic would be small near the 

calibrated value of the parameter, and larger on both sides of the calibrated value. Therefore, 

the objective fiction would be optimal near the pararneter value, and error would increase 

away from the calibrated value. Acceptable objective function shapes are show in Figure 5- 

16. An acceptable objective function shape indicates two important characteristics of the 

variable: 

The variable can be optimized, as only one optimum exists in the physically possible 

range. (A second optimal pararneter value does not exist within the range.) 

The entire physically possible range is located on a single "Mi" of the objective function. 

(The objective bc t ion  does not approach a second optimal parameter value within the 

raw!e*) 

Any other shaped curve was examined closely to determine how far it deviated h m  an ideai 

curve. Such deviation may affect the parameter distributions. Smail deviations were 

ailowed, where the deviations were less than 1% of the average streamflow. 



Figure 5-16 - Acceptable Sbapes for the Objective function (error increases as distance 
from the calibrated value increases) 

The variation in the statistic around the calibrated values of each variable is included 

in Table 5-8. The table also includes the range in the objective function statistic. The plots 

of the objective function statistics at Mica Dam for each of the 70 variables are included in 

Appendix C. A more detailed description of the objective function shape for each parameter 

is also included in Appendix C. 

Table 5-8 - Summa y of Objective Function Investigation 

Classes 
Range of Flow 
(% of average) 
-0.0 1 % - 0.06% 

-0.26% - 1 0% 
-0.0 I % - 14% 
-54% - 34% 

I l flows I 

Shape 

-0.1696 - 0.14% 

0% 1 l ~ o t  a significant parameter for peak 1 

Conclusion 

Not a significant parameter for peak 
flows 

Monotonie 
Monotonic 
Monotonic 

Smwth objective function 
Smooth objective function 
Smwth objective function 

(deviations < 1 %) 

~ 1 (deviations c 1 %) 1 and stations. Smooth objective fùnctionl 

Not a significant panvneter for peak 

L 

-3.1 % - 5.5% 

1 1 (deviations < 1 %) 1 1 

Monotonic 

-19??0 - 19% 

flows 
Not significant for most land classes 

Monotonic 
for the rest. I 

Smwth objective function 



lAK2fs 15 1.39% - 107% 1 ~onotonic l~enerally smooth objective function. / 
1 1 1 I(deviations up to l~ariatiok fiom desired curves in land 1 
LZF 

P W R  

3 

R2 

3 

Concave/Convex 
(deviations up to 

1 1 1 I(most deviations 1 results. 

-53% - 87% 

3 
Some variations from desired cuves 
(al1 river classes). 

MF 

-78% - 177% 

3%) 
Monotonie 

-40% - 12% 

5 

BASE 

class #5. 
Smooth objective function 

(deviations < 1 %) 
Monotonic 

Concave/Convex 
(large deviations) 

Smooth objective hinction 
(deviations < 1 %) 
Monotonie or 

- 1 00% - 54% 

5 
Several large variations fiom desired 
curves (land classes # 1, #3, #5 in 

FPET 

The range of several parameters (AS, R3, R3fs. and FPET) was very small, between 

Generall y smooth objective function. 

FTALL 

-1 % and 1% of the average flow for al1 basins. These parameten also ranked low in relative 

5 % )  
Monotonic or 
Concave/Convex 

-56% - 57% 

5 

sensitivity. Therefore, these parameters did not affect the generation of the peak flows. 

Mainly smooth objective huiction. 
Some large variations fiom desired 

5 

For each of the remaining parameters, some combinations of land classes and 

40%) 
Monotonic or 

-0.60% - 0.62% 

strearnflow stations were not significantly affected by the variation. The range of flow for 

Second mode visible on some traces. 

particular). 
Not a significant parameter for peak 

-2% - 3% 

these land class and strearnflow station combinations remained between -1% and 1% over 

the entire physically possible range of the variable. ïhese combinations of land class and 

Monotonie 
(deviations < 1 9%) 

streamflow station were not included in the description of the shape of the objective fiinction. 

flows 
Smooth objective function 

The simulations showed that the objective hc t ion  was mainly smooth near the 

calibrated values of the parameters. Most of the remaining parameters in Table 5-8 had 

traces where the absolute value of the sîatistic increased as the distance h m  the cdibrated 



value of the panuneter increased (an ideal objective function shape). Deviations fiom the 

ideal objective function shapes that were less than 1% of the average peak flow for the 

particular station were assumed insignificant. For instance, occasionally a cuve trended 

generally monotonically upwards from negative to positive, yet at one parameter value the 

statistic went down by 0.5% before continuing the upwards trend. Such a deviation (less 

than 1 %) was considered insignificant. A deviation larger than 1 % was recorded in the table. 

Several parameten showed a region of sensitivity to the pararneter, followed by a 

region where the effect of the parameter change was insignificant. This would indicate chat 

the peak flows were no longer affected by the value of the pararneter above or below a 

certain value (Le. the hydrological process no longer affected peak flows). It indicated that 

there was a "ridge" on the objective fwiction. From a physical perspective, these ridges may 

be cawd  by pararneters such as saturated conductivity that reafh values beyond which water 

either d l  infiltrates or ponds. This behaviour was considered acceptable, since this analysis 

was perfomd to detennine if there was another 'Bill" on the objective function within the 

physicail y possible range of the pararneters. 

Two parameters had deviations fiom the ideal curves of mon than 1% and less than 

5%: AK2fs and R2. The AK2fs pararneter (upper to lower zone drainage coefficient under 

snow) had some deviations fiom the ideal curves. The deviations were up to 3% of the 

average peak flow for a station. These large deviations occuned at two streamflow stations 

for the low elevation, light forest class. The R2 parameter (nver roughness coefficient) also 

had significant deviations h m  the ideal curves; the deviations were up to 5% of the average 

peak flow for a station. Again, however, the number of stations with large deviations was 

relatively small(1 station for river class 1,s stations for nver class 2, and 4 stations for river 



class 3). Therefore, for these two variables, the objective fûnction was assumed to be mainiy 

smooth, and it was assumed that the "hill" extended over the physicall y possible range for the 

parameters. 

Two other parameters had large deviations fiom the ideal curves: MF and BASE. 

The MF parameter (melt factor) had one deviation of 16% from the ideal curve, and the rest 

of the deviations were less than 10% from the ideal curve. The BASE parameter (base 

temperature) was the most erratic parameter. The BASE pararneter sets the temperature at 

which the snow in WATFLOOD/SPL begins to melt. For the high elevation forests and for 

the barren areas, there were large deviations fiom normal in the objective function (up to 

30% of the average peak flow). In many cases, a second "ideal" BASE parameter value was 

visible, where the peak flows would not change if the base temperature were set to this value. 

Although a second optimal parameter value for peak flow generation may exist, using this 

value would significantly alter the hydrograph, as the timing of the snowmelt would change. 

The peak flows remained the same because the melt began sooner, and the same peak flow 

resulted. Because of the large deviations in the MF and BASE parameten, it was decided to 

perfom a two-parameter analysis for the MF and BASE pararneters. In addition, the effect 

on the hydrograph was also examined during the two-parameter analysis for MF and BASE. 

Therefore, the investigation of the objective function showed that, for most 

parameters, the objective function was smooth, and the "hill" extended over the entire 

physicaily possible range. For most pararneters, the response statistic was small near the 

calibrated value of the pararneter, and larger as the distance fiom the calibrated value 

increased (or the response statistic remained constant as distance increased). However, the 

snowmelt pararneters (MF and BASE) did not follow this pattern. The peak flows were 



highly affected by the snowmelt parameten, particularly by the BASE parameter. For these 

parameten, the objective function investigation indicated that there may be additional bbhiils" 

within the phy sicall y possible range for the parameters. 

A two-parameter analysis was performed to determine the types of interaction 

between the two snowmelt parametea. For each landcover combination of MF and BASE, a 

set of 36 five-year simulations were perfomed. Since there were five landcovers, there were 

25 combinations of MF and BASE. A grid pattern with six values of the BASE parameter on 

the vertical axis and six values of the MF pararneter on the horizontal axis was w d  to 

describe the effect of the two parameters. The six values for each parameter ranged fiom the 

lower end to the upper end of the physically possible range. An example of the variation in 

average difference between the five-year peak flows for Mica Dam is shown in Figure 5-1 7. 

This Figure uxd the Barren landclasses for both the MF parameter and the BASE parameter 

(Appendix D contains similar Figures for d l  combinations of landclasses for the MF and 

BASE parameten for Mica Dam). The Figure shows that there was a line where the average 

difference was equal to zero, and the difference was negative on one side of the line and 

positive on the other. The line indicated that several combinations of MF and BASE were 

optimum for peak flow generation. The Figure was similar for other streamflow stations, 

indicating a general pattern in the parameters. This indicated that the objective function 

contained a single optimal "ridge," and only a single "hill." The calibrated parameter values 

(indicated with a diamond symbol) are the optimum parameters (in hydrological terms) for 

snowmelt and accumulation. Therefore, the two pararneter variation of the snowmelt 

parameters indicated that a single hill existed in the physically possible range for both 



parameters, however, there was a ridge on the hi11 where the two parameters interacted with 

one another to produce equal peak flows. 

MF: Barren Ctass 
3 BASE: Baren.Ctass 

Figure 5-17 - Average difference between 5-year peaks (as percent of  peak) for Mica 
Dam for the Barren classes of the Melt Factor and Base Temperature parameten 

Figure 5- 17 shows that an optimal "ridge" of combinations for the snowmelt 

parameters exists in the objective function. where the peak flows are unaffected by changes 

in the snowmelt parameten. Although the peak flows were unaffected, the shape of the 

hydrograph was significantly altered by changes in the snowmelt parameters. Severai 

combinations of snowmelt parameters along the optimal ridge were chosen, and the root- 

mean-square (RMS) enor for the Mica Dam basin was calculateci. The average difference 

between the peak flows h m  the simulation and the peak flows nom the calibration was also 



calculated. The average difference was close to zero for al1 of the simulations (they were not 

exactly zero becaw the ridge in Figure 5-1 7 was calculated by interpolation and was not in 

the exact location). The RMS error shows that, although the peak flows were very similar 

with each simulation, the hydrograph was incorrect. The RMS was increased by changes in 

the snowmelt parameters, indicating that the simulated hydrograph was a poorer fit (than the 

hydrograph calculated with the calibrated parameter values). For the last simulation (BASE 

= 4'C, MF = 0.219 d C ) ,  the RMS error decreased slightly (approx. 5 cms). The 

hydrograph for this simulation was compared to the hydrograph calculated with the 

calibtated parameters. The hydrographs were very similar to each other. and each simulation 

was a better match for the observed hydrograph for different parts of the hydrograph. The 

RMS errors for other streamflow stations showed that these two simulations were similar. 

with some stations having larger RMS error for the calibrated parameters and some stations 

having larger RMS error for the last simulation (BASE = 4OC, MF = 0.219 rnmfC). 

Therefore, in generai, the RMS erroa indicated that, although various combinations of 

snowmelt parameters can be used to generate the peak flows, the calibrated parameter values 

(or nearby) lead to the best hydrographs in tems of RMS enor. 

Table 5-9 - Calculation of RMS Error witb several combinations of MF and BASE 
locateà on the optimal ndge (value for Mica Dam) 

BASE 1 MF 1 Average difference 1 RMS error 198 1 - 1985 (compared 1 
in peaks (%) to observed streamflow) (m31s) 

-3 10.158 - -0.0 1 255.7 . 

1 
2 
3 
4 

2.73 
3.46 

O (calibrated value) 
2.78 

0.1 17 
0.142 
0.165 
0.2 19 

206.9 
202.6 
191.2 l 

186.4 



The objective function analysis indicated that the objective function contained a 

single "hill" for ail of the parameters, with the exception of the snowmelt parameten. There 

was a single "ridge" of optimum parameter combinations for the snowmelt parameten. This 

analysis also indicated that the use of a single indicator of model caiibration can be very 

misleading. It is stated in Section 3.3.2 that to consider a model calibrated, every possible 

indicator of model performance should be evaluated. 

5.3.2 Choice of the Parameter Distributions 

The parameter distributions were chosen based on the available information, the 

calibration philosophy of WATFLOOD/SPL and the results of the examination of the 

objective function. This section prexnts the parameter distributions. 

Very little information was available regarding the distributions of the parameten. 

The results of the objective function analysis and the optimized value of each parameter were 

available, but inter-relationships between variables were not available. The parameten were 

therefore assumed independent for the purpose of this anal y sis. This assumption was known 

to be incorrect (e.g. the values of the snowmelt parameten depend on each other), however, 

the dependencies between variables were not clearly defined and therefore this assumption 

was used. It is likely that this assurnption increased the variation in the model. Dependent 

variables would Vary together in a pattern, whereas independent variables would Vary across 

the entire range of physical possibility. This assurnption, therefore, overestimated the 

parameter uncertainty. The information available for each parameter consisted of the resuits 

of the objective furction investigation and the optimum parameter value. 



The objective function analysis was used to detetmine how much of the physically 

possible range should be used in the distribution, to ensure that the Monte Car10 pararneter 

sets remained on one "hill" of the objective hinction. The resuits showed that, with the 

exception of the snowrnelt parameters. only one optimum pararneter value existed within the 

physical limitS of each parameter in ternis of generating peak flows. In general, the objective 

function was smooth near the calibrated value, and either the absolute error increased as 

distance fiom the calibration point increased, or the absolute error remained constant as 

distance fiorn the calibration point increased. For the snowmelt parameters, a "ridge" of 

optimum combinations of MF and BASE parameters existed, and as distance fiom the 

"ridge" increased the abso lute error increased. There fore, the anal y sis indicated that a single 

multi-dimensional "hill" existed around the calibrated parameter values. Therefore, the 

entire physically possible range of each pararneter was used in the distributions, since al1 

combinations of the parameters were valid. 

The calibrated pararneter values are good estimates of the optimum pararneter values. 

assuming that the full calibration and validation process of WATFLOODISPL has been 

performed. The calibrated parameters may Vary somewhat fiom the optimum values due to 

uncontrollable uncertainties in the input data, such as variations in the quality of temperature 

and precipitation data, and therefore do contain some uncertainty. However, the optimum 

panuneter values are the most likely values to be obtained from the calibration process. 

Therefore, the calibrated parameter values may be used as an estimate of the most likely 

parameter values, or the mode. 

Lei and Schilling (1 994) compared several parent distributions for parameters, and 

found that the parent distribution had little intluence on the output of the Monte Car10 



analysis. Therefore, it was decided to use a simple distribution that only required the user to 

define the lirnits and the mode. The beta-1 distribution (e.g. Yevjevich, 1972) was w d .  The 

probability density function 

is a beta-1 distribution with boundaries zero and one. (The distribution was shifted and 

expanded to match the physical limits of each parameter.) The parameters a and P are used 

to define the shape of the distribution. To obtain a distribution with a mode and a probability 

of zero at both boundaries, a and P m u t  both be greater than or equal to two. One of a and 

B mut be defined, and the second can then be calculated from the mode. Since there was no 

other information to define the distribution. the values of a or P were chosen so that the 

largest possible standard deviation resulted. The probability density function requires that if 

the mode is between the lower limit and the midpoint, then a must be equal to 2.0 and B m u t  

be solved with the equation 

a 4  mode = ............................................................................................... 
a+B-2 

(5-5) 

Similarly, if the mode is between the midpoint and the upper limit, then P must be equal to 

2.0, and a is calculated h m  the above equation. With these values of a and B, the 

fkquency distribution gave the widest possible distribution that had a detined mode at the 

calibrateà value. This may resdt in an overestimation of the confidence limits, since some of 

the parameten are suspected to have a lower variance than the variance that is calculated 

with this equation. However, the probability distribution for each panuneter has not ken 

quantifid and therefore the widest possible distribution was used. 



Some examples of the beta-1 distribution are shown for the BASE parameter in 

Figure 5-18. Three landclasses with different modes were selected. The calibrated value of 

the BASE parameter for the barren class was 3.0 O C ;  for the High Elevation Dense Forest 

class it was 1 .O O C ;  and for the Low Elevation Dense Forest class it was -2.0 OC. The 

distributions showed a mode at the calibrated value of the pararneter, and the fkquency 

dropped to zero at the physically possible limits. This distribution used al1 of the available 

information regarding the parameter distribution, but it did not add extra information. This 

pararneter is an example of overestimation of the cofidence limits due to a lower variance in 

the parameter than was used in the Monte Carlo. The BASE parameter values are not based 

on calibration but simply on the fact that (within one grid) the banen elevation is greater than 

the high elevation forest, which is greater than the low elevation forest. However, a single 

temperature value is used for the entire grid, and the base temperature represents the lapse 

rate to differentiate between the elevation bands within one grid. Therefore, the use of the 

entire range in the BASE temperature is an overestimation, but a more appropriate 

distribution has not yet been established. 



Figure 5-18 - Examples of histograms of the 10,000 values for BASE temperature, 
generated from the Beta-1 di3tribution (the mode is indicated with a r d  square). The 
tbree parameten are: a) BASE, Barren Class (mode = 3); b) BASE, High Ekvation 
Dense Forest Class (mode = 1); BASE, Lon Elevation Dense Forest CIass (mode = -2) 

5.3.3 Calculating the 95-year Confidence Limits 

The Monte Car10 analysis was based on a five-year time series of streamflow. 

However, 96 years of meteorological input for WATFLOOD/SPL were available (one year 



of data was discarded, yielding 95 years of simulated streamflow data The large amount of 

computer simulation tirne (approximately three to four hours for one 95-year simulation on 

one CPU of an Origin 200 computer) forced the use of the smaller, five-year time series. The 

variation in the five-year tirne series was used as an analogue for the variation in the full tirne 

series. This section presents the method to convert the five-year confidence limits into 95- 

year confidence limits. 

The Monte Carlo analysis was based on 10.000 runs of the hydrological model. 

According to Crosetto, et al. (2000), 100 rus per input factor are sufficient (as a mle of 

thurnb) for a Monte Carlo. Since there were 70 parameten, a minimum of 7,000 simulations 

was required. Therefore, 10,000 sets of parameten were randomly chosen fiom the k a - l  

distributions. 

The hydrological model WATFLOOD/SPL was run for each of the 10,000 parameter 

sets. The meteorological data was the sarne for each run: the seven-year period fiom 1979- 

1985. These years were chosen because they represent a range of hydrological conditions 

from wet to dry. In addition, the largest observed stom occurnd in 1983. The fint two 

years (1 979-1 980) were discarded fiom the analysis, due to possible model spin-up errors. 

Therefore, the five years fiom 1 98 1 to 1 985 were used in the anal y sis. The maximum 

streamflow in each year of the five-year simulations was stored, so that the variation in peak 

flows was found. Therefore, for each streamflow ration and B.C. Hydro dam inside the 

Columbia River Basin, a set of five peak flows for each of the 10,000 nins was available for 

anal ysis. 

The 10,000 simulations were used to create 10,000 flood frequency curves (each 

made h m  five points). Figure 5- 19 shows the results of the Monte Carlo for Mica Dam, 



where the five peak flows of each simulation were ordered, and histograms were calculated 

for each ranking (plotted as scaled-down histograms at each probability level on Figure 5- 

19). The histograms for al1 of the probability levels were positively skewed. The skewness 

suggests that hydrologicai processes limit the lower boundary of the flood frequency curve, 

while the upper boundary is more dificult to define. The range for extremely low peak 

flows was smaller than the range for extremely high peak flows. This result was expected, 

since predictions of extremely high peak flows contain more uncertainty than predictions of 

low peak flows (Beven, 1993). In addition, the 2.5%, 50%, and 97.5% flow values of the 

histograrns for each ranking were found (plotted as flood frequency curves on Figure 5-19). 

The behaviour of the hiaograms for each of the other 35 streamflow stations and B.C. Hydro 

dams was similar to the behaviour for Mica Dam. 

O 1000 2000 3000 4000 5000 6000 7000 

Peak Fkw (cm) 
- - - A - - - - - - - - --- 

Figure 5-19 - Histograms of the 10,000 flood frequency euives for Mica Dam 

Some parameter sets generated low peak flows, while others generated high peak 

flows. A particular simulation did not generate both extremely low peak flows and 

extremely high peak flows for a particular station. This indicated that a particular set of 

168 



parameters (one simulation) would only generate peak flows in a smail range. The consistent 

behaviour of the hydrological mode1 made it plausible to use the variation in the five-year 

kquency c w e s  as  an analogue for the 95-year kquency curves. The upper and lower 

kquency c w e s  plotted on Figure 5-19 represent the values at 2.5% and 97.5% of the 

histogram fur each peak flow (not a single simulation). Most simulations were entirely 

above or below these Iines, but several simulations crossed these lines (Le. some of the five 

peak flows were below the line, while othen were above the line). The nurnber of 

simulations that crossed a particular line formed fiom the histogram varied with the line 

chosen on the histograms (e.g. the 2.5% line versus the 97.5% line). The number of 

simulations that crossed the histogram lines varying fiom 1% to 99% was calculated and 

ploned in Figure 5-20 for Mica Dm. Relatively few simulations crossed a particular 

histogram line at the extreme flows, while a larger nwnber crossed at medium flows. There 

were two possible rewns for this curve shape. First, there are many valid hydrological ways 

to calculate medium flows, but relatively few ways to calculate extreme flows (since several 

hydrological processes must al1 be at extreme values and CO-operate together). Second, the 

parameter distributions specified that most of the simulations would occur near the calibrated 

parameter values. At Mica Dam, 203 of the 10,000 simulations cmssed the 2.5% histogram 

line. while 362 crossed the 97.5% histogram line. Most of the other streamflow stations and 

B.C. Hydro dams also had more simulations crossing their 97.5% histognun line than their 

2.5% histogram line. The shape of the curve for al1 36 streamflow stations and B.C. Hydro 

dams was similar to the curve in Figure 5-20. Very few simulations crossed the histogram 

lines at the upper and lower pmbabilities, and a larger number of simulations crossed the 

histogram lines at the middle probabilities. 



Figure 5-20 - Percent of 10,ûûû simulations whose flood frequency curves cross ünes of 
the biatogram for Mica Dam 

The simulations that crossed the 2.5% or the 97.5% lines represented a set of 

parameters that generated extreme flows (either low or high) for the five-year time penod 

from 1981 to 1985. For instance, each of the 203 simulations that crossed the 2.5% line 

represented a set of parameters that generated extremely low peak flow estimates. Likewise, 

each of the 362 simulations that crossed the 97.5% line represented a set of parameten that 

generated extremely high peak flow estimates. It was assumed that these same parameter 

sets could be used to generate extreme flows for the full 95-year time series. Therefore, the 

simulations that crossed the 2.5% or 97.5% histogiam lines were found for al1 36 stramflow 

stations and B.C. Hydro dams. Frequently, a simulation would cross the 2.5% line (or the 

97.5% line) for several stations, further indicating that a particular set of parameters 

generated consistently low flows (or high flows). In total, 3464 simulations crossed either 

the 2.5% line or the 97.5% line at one or more of the 36 streamflow stations and B.C. Hydro 

dams. Comparatively few simulations (14 out of 3464) generated high flows at one station 

and low flows at another station. The 95-year simulated streamfiow time series were 



generated with the WATFLOOD/SPL model for each of the 3464 sets of parameters. There 

were 96 years of meteorological data available. however, the hydrological model has spin-up 

issues for the first two years. To allow 95 years of data to be used, the model was fmt run 

for a normal year (1 97 1) so that the model would begin the 96-years with a nomal watershed 

condition. Then the first year (1 899) was discarded, leaving 95-years for analysis (1 900 to 

1994). 

Since severai simulations were performed for each station, there were several 

simulations available to represent the limits for each station. Therefore, it was necessary to 

develop "overall" confidence limits foi each station. The 95-year simulated streamflow time 

series were used to generate frequency curves for each simulation for each station. The 

Wakeby distribution was used because it was also used to develop the regional flood 

fkquency cwe .  Therefore, for each station, the 95-year frequency curves that corresponded 

to each of the simulations that crossed the 2.5% (or the 97.5%) histogram line were 

calculated. These fkquency curves were aggregated to form an overall estimate of the upper 

and lower confidence limits. 

The lower confidence limit was found as the average of al1 of the fiequency curves 

for the station. This rnerhod was chosen becaw al1 of the simulations represent a set of 

parameters that generate peak flows near the 2.5% line of the histogram for that station, and 

therefore, they are dl valid estimates of the lower confidence limits. For instance, 203 

simulations crossed the 2.5% histograrn line for Mica Dam. The 203 fkquency curves 

generated from the 95-year simulation were averaged to obtain the lower confidence limit for 

Mica Dam. Figure 5-2 1 shows a cornparison of the two estimates for the lower confidence 

limit for Mica Dam. The five points nom the 2.5% histograrn line of the Monte Car10 



anal ysis are compared with the average of the fiequency curves calculated fiom the 203 95- 

year simulations. The two estimates nearly overlapped one another, and therefore the 

average of the frequency curves was able to extend the 2.5% histogram line. 

2000 

. . 10,000 yean histognm lins 
Average of 95-year sims for 2.5% 

O .  

0.0 0.2 0.4 0.6 0.8 1 .O 
Probabilify of Exceedance 

Figure 5-2 1 - Cornparison of Lower Confidence Limits for Mica Dam cakulated with 
the Monte Carlo and as tbe average of the 95-year simulations 

For the upper confidence limit, the average of the fiequency curves did not match the 

97.5% histogram line from the Monte Carlo analysis (Figure 5-22). The average of the 

fiequency curves was approximately 700 m3/s too low (1 7% error at a probability of 0.5). 

However, the maximum of the fiequency curves matched the 97.5% histograrn line (Figure 

5-22). There were two possible reasons why it was necessary to use the maximum of the 

fiequency curves instead of the average of the frequency curves. The mean of the five-year 

peak flows was (on average) slightly higher than the mean of the 95-year peak flows. The 



mean peak flow for 198 1 - 1985 for Mica Dam was 10% larger than the mean peak flow for 

1990- 1994. A second reason is due to the fact that predictions of extremely high peak flows 

contain more uncertainty than predictions of low peak flows (Beven, 1993). The histograrns 

created fiom the 10,000 simulations of the Monte Carlo analysis were positively skewed, and 

more simulations crossed the 97.5% line as opposed to the 2.5% line. Some of these 

simulations may have crossed the 97.5% line due to the larger variation, although they did 

not truly represent parameter sets that generated peak flows in the 97.5% range. These two 

factors together may have caused the average of the fiequency curves «, be lower than the 

97.5% line of the histograrn. 

12000 

10,000 yran hiriogram lino '; ' 
Average of 95-year simr for 97.5% 
Maximum of 95-year rims for 97.5% 

Probability of Exceedance 

Figure 5-22 - Cornparison of Upper Confidence Limits for Mica Dam calculated with 
the Monte Carlo and as the average and maximum of the 95-year simulations 



The cornparisons between the 2.5% and 97.5% histogram lines and the overall 

confidence limits for al1 of the stations are included in Appendix E. In most cases, the 

fieqwncy c w e s  derived from the 95-year simulations were coincident with the histogram 

lines. The 95-year simulations were able to "fiil-in" the parts of the frequency cuve not 

cdculated by the Monte Carlo. This M e r  indicated that the variation in the five-year 

simulations was a suitable analogue to determine the variation in the 95-year simulations. 

5.3.4 Calculating the Regional Confidence Limits 

The previous sections have descnbed the development of 95% confidence limits for 

each individual streamflow station and B.C. Hydro reservoir. However, since the flood 

fiequency curve (fiom simulated streamflow data, Section 52.2)  was calculated with a 

regional flood fiequency method (Hosking and Wallis, 1997), it was appropriate to dso 

calculate a regional estimate of the confidence limits. The regionalization was based on 

regressions between the physiographic data (Solomon, 1968) and the individual frequency 

curves. using a method similar to that of Schaefer (1990). 

The L-moments of the aggregated frequency curve, if they were calculated, would be 

fictitious L-moments, since they would not represent a single set of data. Therefore, the 

regionalization was based on the frequency curves for each station. The flow value for a 

probability of 0.5 was w d  to nomaiize the frequency c w e s  for each station. The 

regressions were formed between the nomalized confidence limit curves and the basin 

characteristics. The physiographic variables from Solomon (1 968) were used for this 

purPo== 

There were 36 upper confidence limit curves and 36 lower confidence limit c w e s  

(one for each streamflow station or B.C. Hydro dam). Each cume was cdculated at discrete 



probabilities of exceedance. Therefore, for each confidence limit, regression was required 

for each probability level. However, to reduce the possibility of regional confidence limits 

that appeared "jagged," a single regression was chosen for al1 probabilities of exceedance. 

nierefore, the best regression was the regression t h  had the best fit at al1 of the probability 

levels. Note that regression for the probability level of 0.5 was not required since this 

probability was used for normalizing, and the frequency was equal to one by definition. 

The regressions were calculated, and 11 variables were required in order to obtain 

suitable regressions. They explained 50% or more of the variation in the normalized 

frequency curves across al1 36 strearnflow stations and B.C. Hydro dams (Table 5- 10 and 

Table 5-1 1). Two regressions were not able to explain 50% or more of the variation in the 

normalized fiequency curves; they were both regressions for low flows of the upper 

confidence limit and were of less interest than the regressions for high flows. The 

regionalization altered the flow values for extreme drought and flood probabilities. In both 

cases. the confidence limits were not significantly changed in the mid-probability range, but 

there were small changes at the extreme tails of the confidence limits. The low flows were 

decreased and the high flows were increased for the lower confidence limit. For the upper 

confidence limit, the low flows were decreased, whiie the high flows remained unchanged. 

For instance, at a retum interval of 1 in 1000, the lower confidence limit increased fiom 1832 

m3/s to 1947 m3/s (Table 5-1 O), while the upper confidence limit decreased From 104 13 m3/s 

to 10355 m3/s (Table 5-1 1). These changes in the extreme tails of both confidence limits 

caused the 95% confidence limits to become 2% nmwer  at a retum interval of 1 in 1000. 



Table 5-10 - Regrasion Results for Lower Confidence Limit a< Mica Dam 

Variables 1 Pmbability of / R 
exceedance 

Average Julian Date of Peak 
Ratio of Peak to Mean 
Azimuth 
DTO-N W 
DTO-SE 
DTO-S W 
SE-NE 
SHE-SW 
BH-NE 
BH-NW 
BH-S W 

1 ndividual 
m3/s 1 Normaiized 

The mgionalized confidence limits (Table 5-1 0 and Table 5- 1 1) wen combined with 

Reg ional 
Normalized 1 m'h 

- - - -- -- 

Table 5-1 1 - Regression Results for Upper Confidence Limit at Mica Dam 

the fiequency c w e s  show in Figure 5-15 to create Figure 5-23. In gened, the confidence 

Probability of 
exceedance 

0.00 1 
0.0 1 
0.1 
0.2 
0.3 
0.4 
O S  
0.6 
0.7 
0.8 

1 

0.9 
0.99 
0.999 

interval widened as the return interval increased. This was expected, because the Monte 

Carlo histograms were positively skewed and the range of high peak fiows was much larger 

than the range of low peak flows. This indicated that the mode1 parameterkation contained 

Variables 

Area 
Average Julian Date of Peak 
Ratio of Peak to Mean 
U m u t h  
~'I'o-NE 
IX'o-Sw 
SHE-NE 
SHE-SW 
BH-NW 

BH-SW 

R 

0.81 
0.69 
0.67 
0.69 
0.7 
0.67 
N/A 
0.7 
0.74 
0.77 
0.76 
0.59 
0.53 

Individual 
M ~ / S  

,10413 
831 1 
5931 
5152 
4687 

Regional 
Normalized 

2.55 
2.04 
1.45 
1.26 
1.15 

4347 
4077 
3855 
3651 
3433 
3120 
2657 
2630 

Normalized 
2.54 
1.86 
1.43 
1.26 
1 .16 

mJ/s 
10355 
7572 
58 1 1 
5153 , 

4724 
4377 ' 
4077 
3772 
3444 
3093 ' 

2622 
2283 
2286 

1 .O7 
1 

0.95 
0.9 
0.84 
0.77 
0.65 
0.64 

1 .O7 
1 

0.93 
0.84 
0.76 
0.64 
0.56 
0.56 



greater uncertainty for higher peak flows. This agreed with the flndings of Beven (1993). 

who found that uncertainty Uicreased for peak flows. 

Figure 5-23 - Regional Frequency Curve (Schaefer, 1990, metbod) for Mica Dam 
Combined with the Regional Confidence Limits Determined from the Monte Carlo 
Analysb 

The confidence limits compared well with other parameter uncertainty studies. 

Relative to the simulated kquency cume, the flows of the lower confidence limit were one- 

third to one-half of the magnitudes of the frequency c w e .  The upper confidence limit 

varied fiom approximately 1.5 to three times the magnitude of the frequency curve. One 

parameter uncertainty study by Beven (1993) calculated 5% and 95% confidence limits for 

TOPMODEL on a small watershed (3.5 km2). Beven (1993) found that the upper confidence 

limit was approximately twice the observed Peak streamflow, while the lower confidence 

limit was appmximately 8û% of the obsmed peak streamflow. Similarly, Binley, et al. 

(1991) calculated 5% and 95% confidence lvnits for IHDM on a 3.9 km2 watershed and 



found that the upper confidence limit was approximately 1.5 times the observed peak 

streadow, while the lower confidence limit overestimated the observed peak streamflow. 

In both of these studies, the probability of exceedance of the peak streamflow in the 

simulated time series was not reported, and therefore cannot be compared to the present 

study. Therefore, the upper confidence lirnit derived for the frequency curve calculated with 

simulated strearnflow data fiom WATFLOODtSPL was similar in magnitude to other studies 

by other authoa. The lower confidence limit, however, was lower than those presented in 

literature. 

The simulated data were derived from a hydrological model that was subject to 

parameter uncertainty . The confidence limits are wider than those that would be cakulated 

for frequency curves derived frorn observed data, and indicate large uncertainty (particularly 

for exmmely large flows). Although the model was properly calibrated to ensure good 

strearnflow prediction, the parameter uncertainty remained significant. The confidence limits 

may in fact overestimate the panuneter uncertainty of WATFLOODISPL, due to the use of 

the widest-possible distribution for each parameter. However, A. Mailhot, et al. ( 1  997), also 

found that panuneter uncertainty remained large even afler calibration. Some of this 

uncertainty may be due to the model parameterization, and not the parameten. For instance, 

the equation for modeling snowmelt has uncertainty, and at some point, greater accuracy in 

the parametea will no longer decrease the model uncertainty. The model parameterization is 

an important factor to remember during anal ysis to decrease parameter uncertainty . The 

parameter uncertainty for this model may be lowered maidy through reducing the width of 

the physical limits of each parameten. Therefore, the physicaily-based limits for the 

parametea should be examined to determine if they might be altered to lower the parameter 



uncertainty. One landcover may have different parameter limits from another, for instance. 

One method for this would be to use the "physically probable" parameter limits (the limits 

for the parameten that are likely to occur), instead of the 'bphysically possible" limits. 

Alternately, when the cenainty of the calibrated value of the parameter warrants it. the beta-1 

distribution could be altered so that the dispersion decreases. Sorne effort should be 

perfomed to lower the parameter uncertainty of WATFLOOD/SPL. 

1 t was known that certain pararneters have narrower distributions than those used in 

the Monte Carlo. For instance, the BASE parameter should have a nanow distribution. since 

the base temperature accounts for the within-grid elevation range between the different 

landcover elevations. This, in turn, sets the value of the MF parameter. The establishment of 

more nanow distributions for these parameten would lower the parameter uncertainty by up 

to 25%, as determined from a separate Monte Cario analysis. A 1000-nui Monte Carlo 

analysis that varied only these 10 parameten (5 landcovers for each of MF and BASE) was 

perfomed. The same 5-year analysis was perfomed, and the 2.5% and 97.5% histogram 

lines were determined. The 2.5% and 97.5% histogram lines were added to Figure 5-23 to 

create Figure 5-24. The snowmelt pararneters accounted for appioximately 25% of the 

variation around the calibrated value. This represented a significant arnount of the overall 

width of the confidence interval, and suggested that the distributions of these two pararneters 

should be the first to quanti@ to reduce the parameter uncertainty. 
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Figure 5-24 - Regional Frequeacy Curve for Mica Dam, showing Confidence Limits 
and amount of variation due to snowmelt parameten (MF and BASE) 

5.4 Chapter Summaty 

This chapter has explored the use of a long continuous historical series of simulated 

streamflow data to develop frequency curves. This application was the first to use a 

simulated streamflow time series that was longer than the observed record of streamflow. 

Meteorological data over the Columbia River basin was available for a 96-year period fiom 

1899 to 1994. The distributed physically-based hydrological model WATFLOOD/SPL was 

used to develop simulated strearnflow data. 

The output fiom the WATFLOODISPL model was validated for the production of 

fiequency curves. It was found that the model produced reasonable estimates for mid-range 

probabilities, but relatively poor estimates for the high-flow, low-probability range. 



However, there was better agreement for sfreamflow stations with longer time series, which 

indicated that the observed frequency curves may be in emr  for short time series stations. 

Therefore, the output fiom the WATFLOOD/SPL was suitable for use in predicting flood 

ûequency curves. In addition, the longer time senes data could potentially improve the 

accuracy of fiequency cwes, especially for shon time series stations. 

The simulated streamflow data were used with regional frequency analysis to 

generate a fiequency curve for the Mica Dam basin. The Schaefer (1990) method for 

modifying the Hosking and Wallis (1997) method generated the best fkequency curves. 

Finally, the 95% confidence limits for the Frequency curve due to the parameter 

uncertainty of WATFLOOD/SPL were calculated with a Monte Carlo method. The method 

was developed speci fically for the WATFLOOD/SPL model. The parameten within 

WATFLOOD/SPL are robust and are known to be hydrologically correct. Most Monte Carlo 

methods use a nomal distribution for the parameters, which would be inappropriate for the 

WATFLOOD/SPL model. Therefore, the parameter distributions were set up so that only 

combinations of parameters that were hydrologically possible were used. The method also 

allowed a shorter time series to be used instead of the hiIl time series. The parameter 

uncertainty was quite large, but within the range of other hydrological models. Establishing 

tighter boundaries on the parameter distributions would decrease the uncertainty. Several of 

the parameters are known to have a narrower dispersion than what was used in the Monte 

Carlo. 

Chapter 6 will use the fiequency curve developed in this chapter to compare the 

floods fiom Chapter 4. 



6 Comparing the Probabilities of the Floods 

This research has been used to develop a physically-based flood (Chapter 4) and an 

improved fiequency curve using simulated swarnflow data (Chapter 5). These two pieces of 

information are important twls for safety anaiysis and risk-based analysis of dams. 

However, in this section, the fiequency curve is used to compare the floods generated by the 

two estimates of maximum precipitation. The retum intervals of the floods were used as a , 

vaiidity check to determine if the floods were in the presumed size range of a PMF. 

The Probable Maximum Precipitation (PMP) was calculated with the World 

Meteorological Organization method (WMO, 1986). The Probable Maximum Storm (PMS) 

was calculated with the MC2-PMS model. The two storms were used with various 

antecedent conditions to produce floods (Figure 4-1 5). In al1 cases, the PMS flood was 

significantly less than the flood from the PMP. Instead of comparing the magnitudes of the 

floods, however, the r e m  intervals of the floods were used to compare the floods. 

According to Smith (1998), the r e m  period of the Probable Maximum Flood (PMF) 

may range fiom 10,000 to 1,000,000 years (Annual Exceedance Probability, AEP. of 1 o4 to 

10"). The large range of presurned AEP for the PMF is due to widespread disagreement over 

correct methods of caiculating the PMF, and possible errors in fiequency cwve extrapolation. 

The frequency curve in Figure 5-23 was used to calculate the Annual Exceedance 

Probability (AEP) of the peak flow fiom the different floods in Figure 4- 15. The AEP are 

compared in Table 6-1. The fiequency ciwe and its confidence limits were extrapolated out 

to a probability of IO-'. This value was chosen because the desired PMF range was 1 0 ~  to 

lo4, and extrapolation to IO-' would allow evaluation of flood peaks in the PMF range. 

Further extrapolation was considered unreasonable. 



Table 6-1 - Comparing the Probabilities of the Different Floods (Streamflow on Juae 1 
for eacb simulation) 

-. - -  - 

Simulation # 
1 

The AEP of the floods for the two simulations that used the regular 1972 rneteorology 

AEP 
0.72 

Flood 
1972 - -  - 

4 ' 
b 

(simulations 1 and 2) could be calculated with no extrapolation of the frequency curves. The 

95%Range 
0.001 to >0.99 

0.02 
CC 10" 

2 
3 

AEP of the fîow on June 1,1972 was slightly below the mean (72% chance of exceedance). 

1 0 - ~ . ~  to 0.56 
cc1 O-' to 105,' 

1972 with PMS 
PMF scenario(with PMP): 100-yr snowpack, 
1 00-yr melt temperatures, and PMP 
PMF scenario(with PMS): 100-yr snowpack, 
1 00-yr melt temperatwes, and PMS 

The range of AEP for the June 1, 1972 streamflow indicated that 1972 was weil within the 

"normal" range (simulation 1). Afler the PMS storm was added to June 1, 1972 (simulation 

4 0" 

2), the probability of the streamflow dropped to a 2% chance of exceedance (but it may be as 

J 

« 1 v7 to 0.005 
. 

hi& as a 56% chance of exceedance). The 1972 data with the PMS was not within the 

desired range of the PMF, however, the data indicated that the flood was close to the desired 

range. Although the hydrograph was not shown in Figure 4-1 5, the PMP storm was aiso 

added to June 1,1972. The PMP caused a streamflow on June 1, 1972 that had a probability 

of exceedance of less than 10.' (with a range up to 1 059. These data indicated that the PMP 

storm rnay be overestimated, since "wet" antecedent conditions were not required to generate 

streamflow that was higher than floods in the PMF range. The PMS, however, was in a size 

range that required slightly "wetter" antecedent conditions (than the conditions that occumd 

in 1972) andlor some snowmelt to generated a flood in the probability range of the PMF. In 

addition, the PMS presented in Chapter 4 is preliminary, and M e r  study into the 

assumptions of the PMS module and the MC2 mode1 is recornmended. Therefore, the PMS 

may increase, and result in a flood in the size range of a PMF. 



The AEP of the floods for the two simulations that used the 100-year snowpack and 

the 100-year melt temperatures (simulations 3 and 4) could not be calcuiated even after 

extrapolation of the kquency curves. The use of the 100-year snowpack and 100-year 

temperature sequence alone resulted in a streamflow on May 3 1 that had a probability of 

exceedance of 1 O-'.' (may be as high as a 9% chance of exceedance). When the PMP was 

added to the antecedent conditions (simulation 3), the probability was much less chan 10'' (up 

to 10*'-~ chance of exceedance), whereas when the PMS was added to the antecedent 

conditions (simulation 4). the probability was somewhat less than lu7 (up to 0.5% chance of 

exceedance). The addition of the PMP to the antecedent conditions resulted in streamflow 

that had a very low probabiliiy (the 95% confidence limits were just above the desired range 

for a PMF). Since the confidence limits presented in Chapter 5 may represent an 

overestimation of the parameter variation within WATFLOOD/SPL (due to the assurnptions 

regarding the variance in the parameters), these results indicate that the combination of PMP 

and antecedent conditions may fa11 entirely outside the desired range of probability for a 

PMF. However, the addition of the PMS resulted in a more suitable flood hyârograph: the 

probability was still very low (<IO"), but not as low as the flood calcuiated with the PMP. 

The combination of the PMS and the 100-year snowpack and 100-year melting temperatures 

may al= be an overestimate of the PMF, but its upper confidence limit may fa11 withln the 

PMF range afier the overestimation in the confidence limits was corrected. 

The relative probabilities of the floods indicated that the PMS was able to generate 

floods that were somewhat larger than a reasonable size range for a PMF, but which may be 

appropriate given the modeling uncenainty. However, the PMP generated floods that were 



much larger than a reasonable size range for a PMF (even when the modeling uncertainty 

was taken into account). 



7 Conclusions 

The method presented in this research for developing the Probable Maximum 

Precipitation (PMP) was to use the MC2-PMS rnodei to develop a physically-based PMP 

(called the PMS). This research detemined that an atmospheric maximum precipitation does 

in fact exist, and that it can be calculated with the model. The method is less subjective than 

the World Meteorological Organization (WMO) method, and accounts implicitly for 

topopphy . The precipitation occurred rnainly in valley s and moutain passes, and very 

little precipitation occurred at higher elevations. The maximum precipitation event was 

lower than the PMP, and therefore the WMO method rnay overestimate the PMP in 

mountainous terrain. In addition, the flood produced by the PMS was significantly lower 

than the flood produced by the PMP. This difference in magnitude may affect the design of 

safety structures for dams. 

The WATFLOODISPL model calculated a long simulated streamflow time series that 

was able to generate reasonable frrquency curves. The increased time series length 

decreased the sampling uncertainty associateci with the frequency c w e .  However, the 

frequency c w e  became subject to modeling uncertainty. 

An investigation into the behavior of the hydrologie model showed that there was 

only one multi-dimensionai hiIl within the limits of the parameter space, with the calibrated 

parameters near the peak of the Ml. Therefore, the parameters within WATFLOODISPL are 

robust and the calibration procas leads to the tnie o p h u m  parameter values. The 

pararneter distributions used the physically possible boundaries for limits, and the calibrated 

pararneter values as the mode. A Monte Car10 analysis was perfonned to determine the 

parameter uncertainty withh the model. 



The confidence limits for the flood fiequency c w e  grew wiâer as the return period 

increased. Although the width of the confidence limits was large and consequently an 

analysis of the r e m  intervals of the floods was difficult, the width was within the range of 

published values for confidence limits. Approximately 25% of the variation was due to the 

snowmelt patameten, indicating that these parameters may be most signifiant for reduction 

of the variation within the model. 

The Annual Exceedance Probability of the different floods indicated that the 

antecedent conditions (1 00-year snowpack and 100-year melt temperature sequence) may 

overestimate the PMF. In addition, the addition of the PMP to the antecedent conditions 

resulted in very large estimates of the PMF. with a very low probability of exceedance. The 

addition of the PMS resulted in a more reasonable estimate of the PMF, and the flood 

produced by the PMS was closer to the desired range for a PMF. 

7.1 Contributions 

This research has contributed in two major areas. The first area was in the 

development of a physically-based maximum precipitation. The second a m  was in the 

development of fiequency curves and their associated confidence limits with simulated 

strearntlow data. To summarize, the contributions are: 

Procedures for use of the MC2-PMS model for the development of extreme precipitation 

events and determining that a maximum precipitation event does exist. This approach is 

an improvement over the traditional method of estimation of the PMP. 

Demonstration that the maximum storm and flood ( h m  physically-based techniques) 

were smaller than the PMP and PMF, supporting the view that the traditional techniques 

for PMP and PMF estimation are flawed in mountainous regions. 



Validating the use of a long simulated streamflow time senes fiom WATFLOODISPL 

model for the development of frequency cwes  and using these data to develop a regional 

frequency curve. 

Development of an efficient method to derive confidence limits for flood frequency 

curves that are based on strearnflow data generated by a hydrologic model with a large 

number of parameters. 

Application of the methods to assess the effect of parameter uncertainty on the range of 

output for extreme events for WATFLOODISPL. 



8 Recommendations for Further Research 

The MC2 model has been shown capable of developing a maximum atmospherically 

possible precipitation. However, further research to check the atmospheric assumptions 

within MC2 is needed to ensure that they are suitably conservative for calculation of 

maximum precipitation. In addition, the characteristics of the stom should be examined 

further, the storm type, the date that the storm is embedded into, and other variables such as 

sea temperature should dl be examined to ensure the m e  maximum precipitation is king 

developed. 

The use of a long continuous simulated streamflow tirne series improved the estimate 

of the frequency curve by decreasing the sarnpling uncertainty. Meteorological data can be 

denved with atmospheric models over much of the world, which can be converted into 

streamflow. This would lengthen the time xries for both gauged and ungauged areas, and 

increase the accuracy of the frequency curves. Further research is needed to develop the 

meteorological data with atmosphenc models, and convert it to strrarnflow using physically- 

based hydrological models that require only minimal calibration. 

However, simulated streamflow data contain uncertainty due to the hydrological 

model (ancilor the meteorological model). Therefore, the parameters within the hydrological 

models should be examined to determine their behavior, and to minimize the width of the 

confidence internai wherever possible. For the WATFLOODlSPL model, more accurate 

descriptions of the parameters' behavior should be developed to better represent the 

information that is known about them. 



This research should be expanded by cornparhg the fiequency characteristics of the 

volume of inflow at Mica Dam. The traditional PMF should be compared to the new method 

of developing the PMF, in terms of the probability of exceedance for the inflow volume. 

Finally, other methods to test andfor validate the findings in this research should be 

performed. For instance, paleo hy drolog y would he 1 p detemine the largest historic flood. 
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Appendix A 

This appendix contains a time senes of geopotential height plots, obtained fiom 

MC2-PMS. (This stom was calculated at the original location, with parameters ax=15, 

bx= 1 5, s= 10.) The plots were obtained every three hours for the first 48 hours of the stom 

simulation. The first plot, at O hours, shows the pressure wave of the perturbation. The fifth 

plot, at 12 hours, shows a developd cyclone wàth a depression of 32 mb, just to the West of 

Vancouver Island. The stom dissipates over the next 18-24 hours. The low pressure "am" 

of the stom passes over the Columbia River Basin between houn 6 and 30. This 

corresponds to the time pend where the most rainfall occuned. (Note: since three hours at 

the b e g i ~ i n g  of the simulation are lost with each "cascade", the 24 hours of precipitation 

referred to in the text corresponds to hours 6 to 30 in this tirne series of plots.) 



Figure A 4  - Geopotential Heigbt (m) at Hour O 



Figure A-2 - Geopotential Height (m) at Hour 3 



Figure A-3 - Ceopotential Height (m) at Hour 6 



Figure A 4  - Geopotential Height (m) at Hour 9 



Figure A-5 - Ceopoteotial Heigbt (m) at Hour 12 



Figure A-6 - Ceopoteatial Height (m) at Hour IS 



Figure A-7 - Geopotential Height (m) at Hour 18 



Figure A-8 - Ceopoteotial Heigbt (m) at Hour 21 



Figure A-9 - Geopotential Height (m) at Hour 24 



Figure A-10 - Geopotential Height (m) at Hour 27 



Figure A-1 l -  Ceopotential Height (m) at Hour 30 



Figure A-12 - Geopotential Height (m) at Hour 33 



Figure A-13 - Geopotential Height (m) at Hour 36 



Figure A-14 - Geopotential Height (m) at Hour 39 



Figure A45 - Ceopotential Height (m) at Hour 12 



Figure A-16 - Geopotential Height (m) at Hour 45 



Figure A-17 - Ceopotential Height (m) at Hour 48 



Appendix B 

This appendix contains a series of Figures that compare the frequency curves 

calculated from observed data and frequency curves calculated fiom simulated data 

(shortened to match the observed time series). Each figure is labeled with the station name 

and number. and the number of years of data for the curves. A frequency c w e  was 

calculated for each individual station, using the L-moments for that station, and the Wakeby 

distribution. The line marked "Observe&' refers to the frequency curve caiculated from the 

observed streamflow time series (fiom WSC or B.C. Hydro). ïhe lines marked "Simulated, 

short series" and "Simulated with paf, shon series" refer to the simulated streamflow time 

series cdculated by WATFLOODISPL (with the HRBL data as forcing data), without and 

with the Precipitation Adjusunent Factor (PAF) field correction, respectively . The simulated 

streamflow time series was shortened to match with the observed time series, so that the 

same years were used in both analyses. 



River at Golden , Cdurnbia River near Fairmont Hot Springs 

' Gold River above Palmer Creek 
08NB014 t River above W~llowbank Creek 
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Figure 5 2  - Cornparison of Obscrveâ and Simulateà (with and without PAF) 
Frequency Cumes, Part 2 



and Simulitcd (with and without PAF) Figure &3 - Cornparbon of Observeci 
Frequeney Cumes, Part 3 



Figure E 4  - Cornparison of Observeà and Simulitcd (with and without PAF) 
Frquency Cumes, Part 4 



Figure E S  - Cornparbon of Obsewed and Simulated (with and without PAF) 
Frequenq Curvts, Part 5 
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Figure Ba - Cornparison of Observeà and Simulateà (with and without PAF) 
Frequcnq Cumes, Part 6 



Figure B-7 - Cornparicon of Observed and Simulitcd (with and without PAF) 
Frequeicy Cumes, Part 7 



Figure B-û - Compatison of Obsewed and Simulated (witb and without PAF') 
Frequency Curvcs, Part 8 



Figure B-9 - Cornparison of Observeci and Simulitcd (with and without PAF) 
Frequency Cuncr, Part 9 



Appendix C 

This appendix contains a series of 16 Figures, which show the response surface 

curves for each parameter for the Mica Dam Basin. Brief descriptions of each Figure are 

included above the Figure. If the percent response remained below 1% for the entire range of 

the parameter, the value of the parameter was assurned to be insignificani in the generation of 

the peak flows. The meaning of each parameter can be found in the following table. 

1 MF 1 Melt factor 1 Snowmelt 1 
1 BASE IBase temberature 1 Snowmelt 1 

Algorithm it is used in 
Infiltration 
Infiltration l 

Infiltration I 

Interflow 
Surfixe Runoff 

L Surface Runoff 
= 

- code - 
AS 
AK 

M s  
REC 
R3 

IUfs 

Full Name 
Unsatwated Zone Moisture Coefficient 
Surface Pemeability 
Surface Permeability under snow 
Intedow storapedischarge coefficient 
Overland flow conveyance parameter 
Overland flow conveyance parameter under snow 

ïhe  order of the landcovers and river classes can be seen in the following table. 

RETN 
AK2 

M f s  
LZF 
PWR 
R2 

1 

1 
1 

FPET Potentiai Evapotranspiration Factor 
FTALL Evapotranspiration Factor for Ta11 Vepetation 

Soi1 retention coeficient 
Upper to lower zone drainage coefficient 
Upper to lower zone drainage coeficient under snow 
Lower zone drainage function 
Lower zone drainage fûnction exponent 
River roughness coefficient 

Evaporat ion 
Evaporation 

Landcover 
1 
2 
3 

Evaporation 
Groundwater recharge 
Groundwater recharge 

Groundwater flow 
Groundwater flow 

River Routing 

Name 
Barren 
High Elevation, Dense Forest 
Low Elevation, Dense Forest 

4 
5 

River Clriss 
1 
2 
3 

' ~ i g h  Elevation, Li& Forest 
Low Elevation, Light Forest 

Name 
Valley a 

Hifi Elevation Mountain 
Low Elevation Mountain 



The A5 and AK parameters were both insignificant for peak flow generation at Mica 

Dam. The A5 parameter was insignificant for al1 of the streamflow stations, while the AK 

parameter was significant for some stations. Where the AK parameter was significant, the 

response surface curves had similar shapes to the ones below (with different magnitudes). A 

value of AK greater than 10 d o u r  does not change the flow because the precipitation 

would only rarely be larger than 10 mmlhour. 
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Figure C-1 - Response Curve Shape for AS and AK 



The AKfs parameter was significant for the barren landcover, but not significant for 

the others. The barren areas are at higher elevations where snow cover lasts longer, and 

therefore, infiltration can control peak flows. Beyond a certain value, however, the peak 

flows are unaffecied. because the precipitation would only rarely be larger than 10 mmhour. 

Similar results were found for other strearnflow stations. The REC parameter was significant 

for al1 landcoven. A monotonically increasing curve was found, indicating that a single 

correct value of the parameters may be found. Other strearnflow stations were similar. 
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Figure C-2 - Response Curve Sbape for M s  and REC 



The R3 and R3fs parameten were both insignificant for generation of peak flows at 

Mica Dam. and the other streamflow stations. The roughness of the ground did not affect 

peak flows, since the roughness affects mainly very large amounts of surface runoff. 
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Figure C-3 - Response Curve Shape for R3 and R3fs 



The RETN parameter was significant for two of the landcovers (low elevation dense 

and light forests), and insignificant for the others. When the parameter was significant (for a 

combination of landcover and streamflow station), the response surface was generally 

monotonically decreasing. The AK2 parameter was significant in generating the peak flows 

for al1 landcovers. and most streamflow stations. The parameter was generally 

monotonically decreasing, showing that as greater drainage to the lower zone occurred, there 

was less peak flow. 
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Figure C-4 - Response Curve Shape for RETN andAK2 



The AKZfs parameter was significant for most combinations of landcover and 

streamflow. The curve monotonically decreased for three of the landcovers, but increased 

for the other two (low elevation forests). The hydrological behaviour changes between high 

and low elevation drainage to the lower zone. The LZF parameter was most significant for 

the high elevation mountain river class. and mildly significant for the other two classes: the 

LZF valley parameter was insignificant for most of the stations in the valley class. The 

surface was monotonically increasing for al1 three river classes. 
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Figure C-5 - Response Curve Sbape for AK2fs and LZF 



The PWR pararneter was most significant for the high elevation mountain river class, 

and somewhat significant for the other two. The PWR pararneter for the valley river class 

was insignificant for most stations. The PWR parameter was monotonicaily increasing. The 

R2 parameter for the valley river class was also insignificant for most stations (but mt Mica 

Dam Basin), indicating that most stations have very little valley river, which is accunite. The 

R2 pararneter was monotonically decreasing for some stations, and convex for others, when 

signi ficant. 
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Figure C-6 - Response Curve Shape for PWR and R2 



The MF pararneter. like the AKîfs parameter, shows a change in hydrological 

behaviour between high and low elevation. For high elevations. the peak flow increases as 

the parameter increases. but the opposite is true for low elevations. Curves vary in shape 

(concave, convex. and monotonic), and there are some large deviations from "ideal" curves. 

The BASE pararneter had various shapes of response curves. Generally. the high-elevation 

landcovers had non-ideal response curves, while most of the low-elevation response c w e s  

were acceptable. 
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Figure C-7 - Response Curve Sbape for MF and BASE 



The FPET parameter was insignificant for generation of peak flows for al1 

combinations of streamflow stations and landcovers. The FTALL parameter was 

insignificant for many combinations of streamflow stations and landcovers. and was 

monotonically decreasing for combinations that were significant. 
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Figure C-8 - Response Curve Shape for FPET and FTALL 



Appendix D 

This appendix contains a series of 25 figures. which show the two variable interaction 

between the MF and BASE parameters for the Mica Dam. Each figure was generated from 

36 simulations that were performed with different combinations of the MF and BASE 

parameters. The parameten were varied in a grid with six values of the BASE parameter on 

the vertical axis and six values of the MF parameter on the horizontal axis. The average 

difference between the five peak flows for each simulation and the reference peak flows was 

calculated and w d  to create the figure. One figure was generated for each cornbidon of 

landcovea for the MF and BASE parameter (five landcovea for each parameter). Each 

figure shows a smooth variation in the objective function with a single line where the average 

difierence equaled zero. The line indicated that several combinations of MF and BASE were 

optimum for peak flow generation. Only one such line existed, foming a ''ridge" on the 

mufti-dimensional hi11 of the objective function. The figures indicated that ody one "hiIl" 

existed within the physically possible range. The calibrated pararneter values are indicated 

on each figure with a diarnond symbol. As expected, the calibrated parameter values were on 

the zero line for each figure (interpolation effects caused the diamond to be slightly off the 

line in some figures). 
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Figure D-1- Two-parameter variation plots for MF and BASE, Part 1 
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Figure D-2 - Two-parameter variation plots for MF and BASE, Part 2 
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Figure D-3 - Two-parameter variation plots for MF and BASE, Pad 3 
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Figure D-4 - Two-parameter variation plots for MF and BASE, Part 4 
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Fi yre D-5 - Two-parameter variation plots for MF and BASE, Part S 
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Figure D-6 - Two-pammeter variation plots for MF and BASE, Part 6 
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Figure D-7 - Two-parameter variation plots for MF and BASE, Part 7 



Appendix E 

This appendix contains a series of figures that compare the confidence limits 

calculated by the two rnethods in this research. The first method was to use the Monte Car10 

analysis. The Monte Carlo analysis allowed al1 of the parameters to Vary simultaneously in 

10,000 simulations. The five-year peaks for each simulation were ordered and five 

histograms were calculated (one for each peak). The 2.5% and 97.5% points of each 

histogram were found and connected to form an estimate of the 95% confidence limits. The 

second method was to refine the estimate of the confidence limits by calculating the full 95- 

year time series in WATFLOOD/SPL for the simulations that crossed the 2.5% and 97.5% 

histogram lines. The average of the frequency curves calculated by the 95-year simulations 

is plotted in the figures (scaled by the average peak flow for the 2.5% c w e .  and scaled by 

the maximum peak flow for the 97.5% curve). The figures show that the two estimates for 

the confidence limits were very shilar. 



Figure E-1 - Cornparison of Confidence Limits - Part 1 



Figure E-2 - Cornparbon of CoaZidcnce Limits - Part 2 



Figure E-3 - Cornparison of Confidence Limits - Part 3 



Finure E-4 - Com~arison of Confidence Limits - Pari 4 



Figure E-5 - Cornparison of Confidence Limits - Part 5 



Figure E-6 - Conparison of Confidence Limits - Part 6 



Figure E-7 - Cornparbon of Confidence Limits - Part 7 



Figure E-8 - Cornparisoi of Confidence Limits - Part 8 



Figure E-9 - Cornparison of Confidence Limits - Part 9 




