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Abstract 

As the size and complexity of modern software systems grows, it becomes increas- 

ingly difficult to determine whether they operate as specified. Presently, the process 

is excessively dependent on human observation, limiting its scalability and accuracy. 

Accurate and reliable detection of software failmes would aid in the management 

and improvement of software reliability. An automated approach to detection of 

software failures is needed. 

This thesis addresses software supervision, an approach to specification-based, 

automated detection of software failures. The work is focused on real-time reactive 

systems specified in a formalism based on communicating finite state machines. The 

supervisor: a separate unit, observes the inputs and outputs of a target software 

system. It makes use of the target systems' reqùements specification. Discrep- 

ancies between specified and observed behaviors are reported as failures by the 

supervisor. 

Supervision involves a number of difficult issues. A prominent one is the han- 

dling of specification nondeterminism. Specification nondeterminism permits the 

target system to generate several legal output behavioral alternatives for a single 

input behavior. The supervisor must be able to consider all behavioral alternatives 

so tliat unwarranted failure reports are not generated. In some cases, the exhaus- 

tive consideration of all behavioral alternatives results in an excessive supervisor 

timc and space cost. 

This thesis presents a novel approach to supervision, called hierarchal supervi- 

sion, that reduces the time and space cost of supervising systems whose specifica- 

tions contain large amounts of nondeterminism. In a hierarchal supervisor, failure 

detection is carried out at two levels of abstraction: the path detection level and the 

base level. The path detection level determines the path or trajectory through the 



specification that corresponds with observed target system behavior. Effectively, at 

the path detection level, the behavioral alternative chosen by the target system is 

identified. At the base level, a detailed check of observed behavior dong the path 

identified is made. 

This t hesis present s the underlying concepts of hierarchal supervision, the ar- 

chitecture of a hierarchal supervisor, the derivation of the supervisor mode1 from 

the requirements specification, the definition of the interpreters for both the path 

detection and base supervisor levels and describes the derivation of the time and 

space complelaties for both. The major research contributions of the thesis include 

split ting of supervision into two sub-problems ( path detection and detailed behavior 

checking). making use of both target system input and output signals to track tar- 

get system behavior, discussion of tradeoffs between the latency of failme detection 

vs the computational cost of supervision, development of an approach to prune 

behavioral alternatives from consideration and development of a base supervisor 

aimed at detailed behavior checking. 

To evaluate liierarchical supervision, a demonstration supervisor was imple- 

mented. It supervised the control program of a s m d  telephone exchange. Two key 

aspects, failure detection and timefspace complexity, were evaluated. 

The failure detection evaluation included bot h op timis tic and pessimistic report- 

ing. Pessimistic reporting refers to unwarranted generation of failure reports, while 

optimis tic refers to not generating warranted failme reports. Experimental obser- 

vations revealed that all failures were reported and no failures were missed. The 

time and space cost was evaluated by measuring the number of behavioral alterna- 

tives considered by the supervisor, which is indicative of its time and space cost. 

Experimental measurements showed improvements of over two orders of magnitude 

over the direct single-layer approach. 
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Chapter 1 

Introduction 

1.1 Failure Detection 

This thesis addresses automatic detection of software failures. I t  is well known that 

s tate-of-the-art software development processes yield imperfect software. Thus it 

is common for large systems such as telecommunication switches, avionics Aight 

systems etc. to cont ain several thousands of software fault S. Automatic failure 

detection is the f i s t  step to dealing with failures arising fiom software faults. 

1.2 Software Supervision 

Software supervision is an approach aimed at automaticaily detecting externally 

observable software failures. A software supervisor monitors the inputs and outputs 

of the target system (figure 1.1) and makes use of the target system's requirements 

specification. 



CHAPTER 1. INTRODUCTION 

Inputs Real-Tirne System 
(or Subsystem) 1 y Outputs 

n 

t 
Failure Report 

Figure 1.1: Software Supervisor 

Internally, the supervisor generates a set of expected behaviors from the require- 

ments specification and target system input andior output signals. The expected 

behaviors are compared with a c t u d y  observed behaviors. A failure is reported if 

a match between the two cannot be made. 

The supervisor may be attached to either the entire system or a sub-system, 

provided that the inputs and outputs of the sub-system are observable. In the latter 

case, a supervisor could be used to detect errors before they manifest tliemselves 

as externally observable failures. 

A number of challenges exist in the development of a software supervisor. One 

major challenge is dealing with specification non-determinism. Specification non- 

deterrninism permits several legitimate output beliaviors for a single input behavior. 

A supervisor that uses a specification containing non-determinism must be able to 

consider all legitimate behavioral alternatives so that false failure reports are not 

generated. 

For some specifications, the number of legitimate behavioral alternatives can be 

large. Explicit consideration of each alternative can result in a very large supervisor 

time and/or space complexity. 
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1.3 Why Supervision 

There are three principal categories of application areas for supervision: software 

development, on-line supervision and software reliability instrumentation. This 

section outlines several uses of a supervisor within each application area. 

A. Software Development: During software development, a supervisor may be 

used to report software failures prior to release. Two specific application areas 

are: 

1. Fault-localization tool. Large software systems can be partitioned 

into several sub-systems. If a supervisor is attached to each sub-system? 

a fault may be automaticdy localized to a sub-system. In this case. 

supervision has the potential of reducing cos ts associated wit h software 

de bugging . 

2. Test tool. Systems exhibiting non-determinism are difficult to test due 

to a number of possible outcomes for a given test case. As a result. 

testing, in most cases, is restricted to specific cases with few, known 

outcomes. 

A supervisor is able to report a relatively complete set of failures. It 

wodd serve to improve the effectiveness of testing and indirectly improve 

the reliability of developed software. 

B. On-Line Supervision: The presence of faults in software systems during field- 

operation makes supervision an attractive approach for detecting failures. 

On-line supervision presents a number of advantages including: 

O Early reporting of failmes d o w s  a Company to repair underlying faults 

before more serious consequences occur. 
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Minor failures are, in some cases, indicative of more serious future prob- 

lems. Accurate reporting of failures often gives early warning of potential 

future catastrophes. 

The supervisor maintains a more global perspective of the system than 

any individual user. It is thus able to report failures not visible to 

individual users. 

The supervisor is able to provide more accurate and detailed failure 

reports t han non-technically oriented users. 

C. Software Reliability Instrumentation: A major impediment to the advance- 

ment of the software reliability engineering discipline are the difficulties as- 

sociated with collection of software f d m e  data. At present. the process is 

excessively dependent on human intervention both for the detection of fail- 

ures and collection of relevant descriptors. The software supervisor may be 

used to automate tkis process. 

1.4 Objectives 

The primary objective of this work is the research of an efficient approach to auto- 

matic detection of software failures in the presence of specification non-determinism. 

The intended application of the failure detection unit is real-time reactive telecom- 

munications software. 
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1.5 Summary of Research Contributions 

Partitioning supervision into two subproblems: target system tracking and 

detailed behavior checking. 

Definition of a framework to track the target system operation. The tracking 

unit consists of a mode1 and an interpreter. 

- Formalization of the semantics of the tracking-unit model. 

- Research of a derivation procedure for the tracking unit model. 

- Definition of algorithms for a suitable tracking system mode1 interpreter. 

- Development of a prototype implementation of the tracking unit inter- 

preter. 

Definition of a framework for a detailed behavior checking. A detailed beiiav- 

ior checking unit consists of a model and an interpreter. 

- Formalization of the semantics of the detailed behavior checking unit. 

- Development of algorithms for a suitable interpreter of the detailed be- 

havior checking unit. 

- Development of a prototype implementation of the detailed behavior 

checking unit. 

0 Computational complexity assessrnent of the proposed approach. 

1.6 Organizationof Thesis 

This thesis is organized as follows: Chapter 2 outlines the major issues related to 

automated failure detection and overviews existing approaches. 
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Chapter 3 presents an overview of hierarchical superwision. A hierarchical super- 

visor consists of two layers: (1) the tracking layer (called the path-detection layer) 

and (2) the detailed behavior checking layer (called the base supervisor layer). Each 

layer makes use of a unique target system model and interpreter. Target system 

models are derived fiom the t arget sys tem requirement s specification. 

Chapter 4 describes the transformatioii of the model used by the path detec- 

tion layer. The transformation accepts as input the target system's requirements 

specification and generates a suitable rnodel to be used by the path detection layer. 

Cliap ter 5 describes an interpreter for the aforementioned model. 

Chapter 6 presents the model transformation and interpreter for the base su- 

pervisor layer. Evaluations of the approach based on a prototype supervisor and a 

srnall telephone exchange that served as a target system are presented in chapter 7. 

Conclusions are drawn in chapter 8. 



Chapter 2 

Issues & Related Work 

This chapter outlines six major issues that arise in software supervision. Existing 

work that may be used for automatic detection of software failures is described 

next. The chapter concludes with an overview of the focus of this thesis in light of 

the issues and existing work. 

2.1 Definition of Correct Behavior 

The objective of supervision is to detect failures in the operation of a target system. 

The supervisor requires a definition of legitimate target system behavior. The 

definition is required to be complete and expressed using a formal notation. 

One possibility is that the supervisor uses the target software system's require- 

ments specification, typicdy developed as part of the software Me cycle [46]. The 

requirements specification defines the externally observable behavior of the software 

system. A multitude of formal specification languages exist with formally defined 

semantics to minimize semantic ambiguities. 



CHAPTER 2. ISSUES & RELATED WORK 8 

This work is focused on communicating finite state machine (CFSM) based 

fomalisms. Many internationally standardized formalisms are based on a CFSM 

model. Examples include the Specification and Description Language (SDL) [58]? 

Estelle [23], and Lotos (221. 

2.1.1 Target System Response Time 

Physical systems are typically specified as having finite response times. Thus an 

event, E will be serviced by the target system after R units of time. 

For actual systems, R may be different for Merent  events. Furthermore, for a 

single event, R rnay vary depending on several factors such as the target system 

load and the adab i l i t y  of resources. The exact response time may be impossible 

to determine analyticdy. 

An approximation of the individual event response times can be made by con- 

sidering the best and worst-case response times. The actual response time will fall 

within this interval. TGi, is defined as the best case response-time of any event 

under any specified condition of the target system. Similarly, TA,, is defined as 

the worst case response time. For the remainder of the thesis, each event will be 

considered to have a response time that f d s  within the interval [TL,, TG,,]. 

This t hesis considers the case where the requirement s specification consis ts of 

two components. The behavioral specification appears in a CFSM-based formalism. 

The behavioral specification is supplemented by a declarative specification of best 

and worst-case response times. 
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2.2 Specification Non-Determinism 

Before non-determinism is dehed ,  a definition of determinkm is presented first. 

The definition originally appeared in the encyclopedia of philosophy [lS]. 

Determinisrn is the general philosophical thesis which states that for ev- 
erything that ever happens there are conditions such that, given them, 
nothing else could happen. (. . .) an event might be said to be deter- 
mined in this sense if there is some other event or condition or group 
of them, sometimes called its cause, that is a sufficient condition for its 
occurrence. the sufficiency residing in the eEects following the cause in 
accordance with one or more laws of nature 

From this definition, non-determinism may be defined as the theory or doctrine 

that for each cause, there may be two or more legitimate effects. 

Non-determinism is an important part of many specification formalisms. It  

allows the specification writer to omit portions of the specification that are not 

relevant. This reduces the specification effort and gives the software designer more 

design freedom to choose the behavioral alternative (or alternatives) that ~ ~ o u l d  

result in a less costly or otherwise desirable implementation. 

Specifications having non-determinism d o w  sys tems to exhibit non-determinis tic 

behavior during field operation. Consider a telephone exchange and the scenario 

where two parties, A and B simultaneously attempt to c d  a tlllrd party, 2. The 

exchange will typicdy exhibit non-deterministic behavior in that either A or B 

can connect to 2. The two behavioral alternatives arising are shown in figure 2.1. 

A software supervisor must be able to consider all behavioral alternatives arising 

out of the non-determinism in the requirements specification. A supervisor that 

is not able to consider all behavioral alternatives may generate erroneous failrue 

reports. Specification non-determinism is one of the major challenges of supervision 
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Figure 2.1: Non-Determinis tic Behaviors 

as the number of behavioral alternatives required to be considered by the supervisor 

may be large resulting in a large supervisor time and space complexity [47]. 

S pecification non-determinism may refer to several categories of non-determinism. 

Descriptions of many of these can be found in (441. The principal ones dealt 

with here are non-deternùnistically delayed communication paths and the non- 

determinism a~oc ia ted  with the precise time of a local clock. For our purposes, 

the latter will refer to the clifference between the values of the supervisor clock and 

the target system clock. 

2.2.1 An Execution Pat h Interpretation of Non-Determinism 

Many specification formalisms support different types of non-determinism. A corn- 

mon framework can be used to represent most types of non-determinism. The 

framework shall be referred to as the ezecution path (EP) interpretation. 

An EP is defined as a series of state transitions through a finite state machine. 

Essentially, non-determinism pexmits two or more legitimate EPs for a possibly 

empty set of stimuli directed to a CFSM-based specification. 

As an example, consider the single-FSM specification in figure 2.2a. On the 
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arrival of stimulus a,  either path So + Si or So + S2 codd be taken. The choice 

of EPs is non-deterministic despite both paths producing an identical observable 

output, X. 

Figure 2.2: Example Finite State Machines 

2.2.2 Categories of Non-Determinism 

Non-determinkm refers to choices in the EP. Specification non-determinism may be 

categorized into don't care non-determinism and don't k n o r  non-determinzsm. In 

tliis section, an informal definition of the two types of non-determinism is presented. 

A formal definition will appear later. 

Don't care nondeterrninism refers to two or more alternate EPs that if followed 

for a finite number of state transitions will leave the system in an identical global 

state. For communicating extended finite machine (CEFSM)-based specifications, 

global state refers to the collective state of ail FSMs including the contents of 

communication channels and input ports. 

A trivial example of don't care non-determinism is Uustrated in figure 2.2b. 

Assume that the FSM is initially in state So and stimulus a is consumed by the 

FSM. Regardless of the EP chosen, the FSM will output signal X and terminate 

in state, SI. 



CHAPTER 2. ISSUES St RELATED WORK 12 

Don't know non-determinkm refers to or more alternate EPs that if traced wilt 

leave the system in a different global state. FSMs containing examples of don't 

know non-determinism are illustrated in figures 2.2a and 2 . 2 ~ .  The two paths 

in figure 2.2a leave the FSM in two different symbolic states, while the paths in 

figure 2 . 2 ~  output different signals. 

From the perspective of a software supervisor, all  behavioral alternatives must 

be considered so that erroneous failure reports are not generated, as described in 

section 2.2. If the don't care non-determinism could be separated from the don% 

know non-determinism, the supervisor would only have to consider donk know 

non-determinism. This would have the desirable effect of reducing the time and/or 

space complexity of the supervisor. 

2.3 Supervisor Signal Processing Latency 

Signals to and fiom the target system are directed to the supervisor. Signals may 

be processed, by the supervisor, an arbitrary time after their occurrence. Two 

general categories of supervisors are in-time and out-of-time. The supervisors cliffer 

principdy in the time at which signals are processed by the supervisor. In other 

words, the relation between the clocks of the supervisor and target system. A 

loosely bound definition of in and out-of-time supervision is presented below. This 

definition will be refined later as more issues are presented. 

Consider an event, E, generated by the environment to be processed by the 

target system. Assume that E was generated at time T. A supervisor WU process 

E at some time, T + A. An in-time supervisor must be able to process, event E 

such that A = O while an out-of-time supervisor must be able to process event E 

such that A > 0. 
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The time at which events in a supervisor are processed is dependent on the 

response time of the target system. Consider two events, El and Ez, representing 

requests for service (e.g. two telephones going ofiook). El and E2 are generated 

at times, Tl and T2 respectively. If ITl - T2 1 < TA,,, then the order in which the 

events are serviced by a non-deterministicdy specified system may be arbitrary. 

For example, if telephone A goes offhook before telephone B, it may be possible 

(and legitimate) for B to receive dialtone before A. 

In general, a violation of causality may result if events are processed as they are 

received by a supervisor. From the previous example, if event El is processed before 

E2 arrives (figures 2.3a and 2.3b). On the arrivai of E2, the supervisor determines 

that the order in which the events were processed does not correspond with the 

order chosen by the target system (figure 2 . 3 ~ ) .  The supervisor must revert to a 

previous state and reprocess the events in order E2 - El (figure 2.3d). 

(4 (b ( c )  (dl 

Figure 2.3: Causality Violation in Event Processing 

Based on the issues in event processing latency, more precise definitions of in-time 

and ou t-of- time supervision follow. 
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2.3.1 In-time Supervision 

An in-time supervisor is defmed as one where events, generated at time T, are 

processed on the interval, [T, T + TA]. 
As outlined in section 2.3, causality violations may occur in an in-time supervi- 

sor. This category of supervisors must make provision for un-consuming consumed 

signals to un-do causality violations. Two approaches have been studied thus far. 

The signal-in-transit approach 1251 pre-creates an explicit behavioral alternative 

for each possible signal that may arrive. The rollback-and-recovery approach 1561 

moves the global state of the supervisor back and ce-orders the processing of events 

as required. 

The principal advantage of in-time supervision is that failures are reported 

within TL,, of thek occurrence. The disadvantage is that the supervisor must 

be able to keep up with the target system (i.e. the supervisor cannot lag the target 

system by more than Tm,, units of time). In most cases? the supervisor is more 

computationally intensive than the target system due to the need to consider all 

behavioral alternatives. For systems with large amounts of non-determinism, the 

computational complexity of the in-time approach has been found to be a severe 

short coming [47]. 

2.3.2 Out-of-time Supervision 

An out-of-time supervisor is defined as one where events generated at tirne, T are 

processed on the intervai, [T + Ga,, Y '  + oo]. 
In an out-of-tirne supervisor, before an event is processed, the supervisor waits 

at least Tm,, units of time. The supervisor can thus guarantee that no further 
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events wiU be generated that may precede the current one. Thus the out-of-time 

supervisor does not need a mechanism to un-do causality violations like its in-time 

counterpart. 

The principal advantage of out-of-time supervision is that peaks in processing 

requirements can be amortized over an arbitrary amount of time. Thus the out- 

of-time supervisor requires a CPU that can process the average computational 

requirements of the target system rather than the peak as required by the in-time 

one. The disadvantage of the approach is the latency of failure reporting. 

2.4 Tradeoffs Between Accuracy and Cornputa- 

Cost 

Specification non-determinism rnay result in large supervisor computational corn- 

plexities as mentioned in section 2.2. This is currently one of the major impediments 

to the use of a supervisor. One possible approach of dealing with specification non- 

determinism is to use partial supervisor models [47]. A partial model would reduce 

the computational complexity of supervision at an expense of reduced failure de- 

tection capability. 

Partial models may be derived from the requirements specification. There are 

two categories of approaches to devising partial models: pessimistic and optimistic. 

A partial supervisor model may be derived using a combination of the two ap- 

proaches. 

Pessimistic models can cause the supervisor to report failures while the target 

system is operating correctly. The failures reported by a pessimistic model are a 

superset of the actual set of failures. Pessimistic models are derived by eliminating 
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alternative EPs representing don't know non-determinism from the requirements 

specification [47]. 

Optimistic models can cause the supervisor to miss reporting some failures. 

Failures reported by an optimistic model are a subset of the actual set of failures. 

Optimistic models are derived by eliminating n EPs representing don't know non- 

determinism fiom the specification and replacing them with n new EPs such that 

m > n [51]. 

The effects of reduced model supervision have been studied in [45,47]. It was de- 

terrnined that the savings are proportional to the number of encountered behavioral 

alternatives. As system loads get Iarger, more non-determinism was encountered 

and more savings in computational complexity were realized. For one particular 

experiment, reductions in computational complexity of several orders of magnitude 

were observed with approximately three quarters of fdures  reported [47]. 

2.5 Attachment of a Supervisor to a Target 

System 

To minimize the interference with the target system software: a supervisor typically 

executes on a separate hardware platform. There are several ways a supervisor can 

be attached to observe the input and output signals of a target system. This work 

is targeted towards systems with a large number of input and/or output connec- 

tions such as communication controllers, telephone exchanges etc. The physical 

connection of the supervisor to each inputfoutput wke of a large system is prac- 

t i c d y  infeasible. Two commonly used approaches WU be described here, namely: 

(1) tapping of a data link and (2) polling of controlled hardware interface memory. 



CHAPTER 2. ISSUES St RELATED WORK 

Both are shown in figure 

Supervisor El 
Software 
Systern 

Hardware 
Interface - Abstractor - Supervisor 
Memory 1 

5 DATA LINK 1 1 ControIled / Hardware 1 
Sybsystem 

Figure 2.4: Supervisor Connectivity Patterns 

2.5.1 Tapping ofaDataLink 

Tapping of a data link refers to snooping traffic traveling across a communication 

channel. Data is monitored in read-only mode. A protocol translator converts 

physical-layer signals to events that can be processed by the supervisor. 

The difficulty with this approach is the multiple interpretations of a lack of 

information by the protocol translator. The absence of information is typicdy 

handled by timeouts in many protocols. The protocol translator must deal with the 

absence of an event (for example) in the same way as the target system. The precise 

time that the timeout occurs is non-deterministic due to the lack of knowledge in the 

supervisor about the local dock of the target system (as discussed in section 2.2). 

In such cases, two behavioral alternatives need to be considered by the supervi- 

sor: (1) that the timeout has expired before the event is received and by the target 

system and (2) that the timeout expires after the event is received. 
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2.5.2 Polling of ControIled Hardware Interface Memory 

A software system's input and output signals can be identified by polling the con- 

trolled hardware interface memory. An abstractor (figure 2.4) is used to convert 

bit changes into signais recognizable by the supervisor. Current hardware design- 

for-testability trends such as boundary-scan [42] may facilitate polling hardware 

interface mernories. 

Several issues arise when poling the hardware interface memory. Three common 

ones are described here. First, signals of short duration rnay be missed. Second, 

the order signals are reported may be permuted by the abstractor and finally. the 

scanning of some signals may be dependent on the correct target system operation. 

A brief overview of each of the issues follows. 

Short Duration Signals 

An abstractor samples the hardware interface memory at a fixed frequency, f,. 

Consider a signal E, generated by the target system with duration, TE such that 

TE is less than the sampling period (Le. TE < k). If E is generated between 

sampling points. it will be missed by the abstractor. 

Consider the example in iigure 2.5a. Signal, E is generated between sampling 

points 1 and 2. The abstractor will miss reporting the occurrence of signal E. The 

missed event will be reported by the supervisor as an illegitimate failure of the 

target system. 
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Figure 2.5: Sampling of the Hardware Interface Memory 
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Reversal of Signal Order 

If two or more signals are generated between sampling intervals, the abstractor d 

not be able to report the actual signal generation order. Rather, the order reported 

will be based on some intemal abstractor scanning order. 

As an example consider the two events, A and B occurring between sampling 

points 1 and 2 as shown in figure 2.5b. Both signals, A and B will be detected 

by the abstractor at sampling point 2 and the actual order of occurrence is not 

resolvable by the abstractor. 

For some specifications, order of signal generation is critical. If the abstractor 

reports signals out of order, the supervisor will report an erroneous failure of the 

t arge t sys tem. 

Dependence on Correct Target System Operation 

The supervisor relies on the correct operation of the target system for some signals 

to be reported by the abstractor. Consider the case shown in figure 2 .5~.  A common 

signaling translator is used by both the supervisor and target system. Furthermore 

assume that the signaling translator is turned off and on as needed by the target 

system software. This could be representative of a power-critical application such 

as a battery-operated device, or the case where the signaling translator is a shared 

resource, allocated/deaUocated as needed. 

The difficulty arises in that the requirements specification only specifies the 

externally observable behavior. Switching the signaling translator on and off is 

typically not specified at the requirements specification since it is not an externally 

observable event. 
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If a software fault exists that omits turning on the signaling translator, the 

events will be suppressed by the translator and neither the target system nor su- 

pervisor will receive them. This type failure is not detectable by a supervisor as 

the supervisor relies on the correct operation of the target system for the signal to 

be generated. 

2.6 Continuation of Supervision After Detection 

of a Failure 

A requirements specification typically does nof specify the behavior of a target 

system after the occurrence of a failure. From the requirements specification per- 

spective, a failure causes the target system to traverse a state transition that does 

not correspond with any transition in the requirements specification. This may 

lead the target system into a state that does not correspond with any state in the 

requirements specification. 

If the supervisor remains attached to a system after a failure occurs with the 

supervisor state different from the target system state, the supervisor would expect 

one behavior and the target system would generate another. The result would be 

a shower of failure reports generated by the supervisor. 

Most systems exhibit some fault tolerance capability. For minor failures a sys- 

tem may be able to recover its operation after a period of time, tr (figure 2.6). 

Session oriented systems typically fd into this category. For example, if a failure 

is observed during a telephone c d  in North America, a natural reaction would be 

to place the telephone onhook and to re-attempt the c d ,  effectively re-setting the 

state of the local phone. 
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Figure 2.6: Operation of a System After Occurrence of a Failure 

2.6.1 Resynchronization 

The post-failure state of the target system is not known by the supervisor. but is 

needed to prevent generation of spurious failure reports. The post-failure state of 

the target system may be determined once it resumes normal operation. Once the 

state of the target system is known, supervision may resume. 

A resynchronization mechanism is needed to determine the post-fdure state 

of a target system. The mechanism accepts as input both target system inputs 

and outputs, just Like the supervisor. It generates a state corresponding with the 

current state of the target system based on the requirements specification. The 

problem is complicated because distingvishing signal sequences must be determined 

for all CEFSMs including interna1 ones that do not communicate directly with the 

environment. This result is a very large possible search space [2: 16: 151. 

In the context of supervision, resynchronization was studied in [30, 351. The 

central research issue in both cases was coping with the large number of possible 

states that the target system could be in. Both used assumptions to limit the num- 

ber of possible states, for example [30] made the assumption that the post-failure 

state was closest to the pre-failure state while [35] proyosed resynchronization based 

on the pre-failure state and target system fault models. 
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2.7 Related Work 

Previous work on monitoring software systems for failures can be subdivided into 

two broad categories: intrusive and non-intrusive. Intrusive approaches require 

modifications to the target system software while non-intrusive approaches do not. 

Existing work on several intrusive and non-intrusive approaches to software moni- 

t oring is described in the following section. 

2.7.1 Intrusive 

Software Audits 

Software data errors are detected and possibly corrected by means of audit pro- 

grams [l, 13, 41, 431 before they mariifest themselves as failures. Audit programs 

consist of additional software wliich has access to the main programk data struc- 

tures. An audit executes at a lower priority than the main program and periodically 

checks data structures for errcrs. 

Audits principally detect three types of errors [41]: (1) direct comparison er- 

rors. comparison of data structures with a duplkate: (2) comparison b y  association 

errors, detection of failures with the aid of data structure redundancy such as a 

doubly-linked list and (3) format comparison errors, common sense checking of data 

such as bounds checking. 

The main advantage of audits is that they are able to detect software errors 

before the errors manifest themselves as failures. However, audits detect only a 

limited set of errors. In addition, audits themselves may contain faults, potentially 

reducing the overd  reliability of the software. 
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Wat chdog Timers 

The watchdog timer is an approach for detecting severe system failures [38]. The 

approach requires that the target system software be instrumented with code to 

generate sanity pulses within an interval of time, T. Generally, generation of s a -  

ity pulses surrounds code such as procedure c d s ,  resource requests or loops with 

known worst case execution times. In the event that some portion of code does 

not terminate before its maximum execution time, a sanity puise is not generated 

wit liin the required time. 

An external unit or watchdog timer, monitors the sanity puises. The timer may 

be implemented in hardware and/or software [29]. Hardware implementations are 

able to report a broader range of failures than purely software approaches. If a 

pulse is not received within T units of tirne, the unit reports that a failure of the 

software has occurred. 

The advantage of watchdog timers is that they are simple and easily imple- 

mented. The disadvantage is the limited set of failures that can be detected. 

Run-Time Result-Checking 

Run-time result-checking refers to a collection of approaches to check the correctness 

of results produced by progam modules [8, 9, 12, 501. Correctness checks are 

performed on the outputs of modules/programs. As an example, if a procedure is 

to compute a function, y = f (x), a checker could make use of the inverse function 

to re-compute the actual inputs, x = f-'(y). 

There are several difficulties vith this approach. Development of a checking rou- 

tine may be more complex than the actual routine itself. Result-checking software 
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that executes on the same processor as the target system may degrade the overall 

system performance. In addition, the checking software may itself contain faults. 

reducing the overall reliability of the system. Sankar and Mandel [50] have devel- 

oped a distnbuted monitoring approach where the monitor resides on a separate 

processor that deviates these problerns to some degree. 

2.7.2 Non-Intrusive 

N-Version Programming 

N-version programming (NVP) refers to an approach for failure detectionlfault 

tolerance [3]. From a single requirements specification, N separate designs and 

implementations are produced by N isolated teams of developers. 

The N-versions of software are all executed concurrently. The outputs of all 

N copies are fed into a voting algonthm that compares outputs. If' all outputs are 

not identical, a failure may be reported. Fault-tolerance is achieved by having the 

voting algorithm choose a non-failed output and use it as the actual output of the 

system. A majority-wins algorithm is one such common voting scheme. 

The principal difficulty with NVP is its cost. N-versions of the software are 

required. Studies have shown that the N versions of software may contain iden- 

tical faults despite being developed by isolated teams [21, 321. Additionally. non- 

determinism poses difficulty as each of the N versions may have different outputs 

that are all legitimate. Recent research has focused on ways to reduce imple- 

mentation non-deterrninism [44]. However this may have the undesirable effect of 

increasing development cos t S. 
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External Assertion Checking 

External assertion checking refers to an approach that checks certain properties of 

outputs generated by a specific target system. Two such systems, Elektra [31. 531 

and HMON (171 are described here. 

Elektra is an electronic railway control system. It consists of two primary corn- 

ponents, the logic processor and the safety bug. The logic processor is the target 

system. The safety bag checks and possibly rejects outputs produced by the logic 

processor. The safety bag consists of a real-time rde-based expert system that 

encodes various safety rules stated by the railway authority. 

HMON is a dis tributed real-time monitoring and debugging environment. I t  

is able to monitor of several event types induding system c d s ,  context switches, 

interrupts and shared variables. HMON attaches itself to the target system soft- 

ware through shared libraries and a modified kernel. I t  allows the user to specify 

attributes about each of the events. Discrepancies between the specified evçnt 

at tributes and actually observed events are reported as failures. 

Both approaches monitor properties of the target system. As a result, they are 

only able to reported a limited set of failures. 

The Observer 

The observer [4, 5, 141 is an approach for formal on-line validation of distributed 

systems. It is very sirnilar to a software supervisor. The observer monitors the 

inputs and outputs of the target system and makes use of a formal model of the 

target system, derived from the requirements specification. Discrepancies between 

observed behaviors and behaviors ïepresented by its interna1 model are reported as 
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The observer was applied to the monitoring of distributed systems. The major 

ciifference between the observer and supervision is that the work reported on the 

observer does not address the issue of specification non-determinism. 

Software Oracles 

An oracle is an extemal source of information about a program. Common examples 

of oracles include proof axioms, another progran; or a formal specification [IO: 40: 

491. Approaches to the automated development of oracles from specifications have 

been described. 

A principal use of oracles has been in software testing. Oracles categorize test 

cases as either legitimate or illegitimate. As a result, they are typically only able 

categorize the behaviors represented by the test cases due to their limited mode1 of 

the target system. 

2.8 Research Focus 

Category of Systems: This thesis addresses supervision of discrete, real-time. re- 

active systems t hat service humans. The case where the sys tem specifications 

appear in a communicating extended finite state machine based formalism is 

considered. Such systems typicdy have a simple interface and as a conse- 

quence a simple specification. 

Categories of Failures: The detection and reporting of behavioral and perfor- 

mance failures is addressed. 

Behavioral failures are defined as spuiious, incorrect or missing events that are 

generated and/or not-generated by the target system. Performance failures 
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are defined as violations of the temporal requirements of a specification [Il]. 

The category of performance failures considered are violations of worst case 

response time, Tm,,. 

Definition of Correct Behavior: This t hesis addresses supervision of CEFSM- 

based requirements specifications. For the sake of concreteness, discussion 

is aimed at the Specification and Description Language (SDL) [58]. SDL 

is standardized by the International Telecommunications Union (ITU) and 

used internationally within the telecommunications industry. The reader is 

referred to (71 for an introduction to the language. 

Treatment of supervision with SDL-specifications is focused to a subset of 

SDL-88. The subset is sufficient for many applications such as telecornmuni- 

cations c d  processing software. An outline of addressed constructs follows. 

Structural Constructs: system, block, process 

Communication Constructs: signal, signal route, channel 

SDL Process Constructs: decision, signal input, signal output, save, task. 

start, state, stop, any, none 

Specification Non-Determinism: This work addresses non-determinism asso- 

ciated with multiple event consumption orders. Three types of SDL non- 

determinism t hat fall into this category are: non-deterministic ckannel delay, 

spont aneous transitions and non-determinis tic decisions. The latter two types 

of non-de terminism may be modeled wit h non-deterministic channel delay. 

Supervisor Signal Processing Latency: This thesis focuses on out-of-time su- 

pervision. Events generated by the target system's environment or by the 
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target system itself may be processed by the supervisor an arbitrary time 

aft er t heir generation. 

Tradeoffs Between Accuracy and Computational Cost: The case where a 

complete set of failures is required is considered. Thus supervision with a 

full mode1 of the target system is treated in this work. 

Observability of Target System Inputs: This work assumes complete observ- 

ability of all target system input and output events. 

Continuation of Supervision After Detection of a Failure: Addressed is su- 

pervision of correct behavior from the point where the target system is ini- 

tialized to the point where a failure is detected. 



Chapter 3 

Hierarchical Software Supervision 

This chapter gives an overview of hierarchical software superuision, an approach to 

supervision aimed at dealing with specification non-determinism. 

The chapter beings with some definitions that WU be used throughout the 

remainder of the thesis. The interna1 organization of a hierarchical supervisor is 

described next followed by a discussion of each function unit within the supervisor. 

The chapter concludes with a description of the operation of the supervisor. 

3.1 Definitions 

Definition 3.1.1 (Process State) For a n  SDL process, Pi, the process state is 

defined as a P t q l e ,  $ =< a, V, Q > where: 

o represents the carrent symbolic state of Pi; 

a V is the set of al1 variables and associated assignments; 
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a Q is t h e  sequence representizg the  contents  o f  Pi's i n p u t  queue. 

Definition 3.1.2 (Global State) For a n  SDL speczfication consist ing of processes, 

Pt, Pz:. . . , Pn, the global state o f  the  specification, C is defined as a tuple  of the al1 

n process states,  C = < $1: $9, . . . > 1/>, > . 

Note that the definition of global state assumes t hat all communication channels 

in the specification are empty. Thus it may be considered a quiescent global state. 

This definition simplifies the discussion as the additional state space introduced by 

channels is omit ted. 

3.2 Interna1 Organization of a Non-Hierarchical 

Supervisor 

The following description gives a conceptual overview to the components and opes- 

ation of a software supervisor. Conceptually, a software supervisor consists of five 

fundament al components: the supervisor model, int erpret er, expected behavior 

bufir, observed behavior bufFer and a matcher. One possible variant of a software 

supervisor, where inputs are used to generate expected behaviors or an input-driven 

supervisor is shown in figure 3.1. 

The supervisor model captures the legitimate behaviors of the target system. 

As discussed in section 2.8, the case where the supervisor model is specified in 

SDL is considered. The interpreter icterpret s the supervisor model. Behaviors 

expected to be generated by the target system (expected behaviors) are bdered  

in the expected behavior b d e r .  Correspondingly, observed behaviors are buffered 

in the observed behavior buffer. This deviates the need for both behaviors to be 
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Target 
Inputs 

System 

- - - - -  Expected 
: Behaviour 

Target System 
Outputs 

i 
FaiIure Report 

Figure 3.1: Anatomy of a Software Supervisor 

generated at precisely the same time. A matcher compares the contents of the two 

bufFers and reports a failure if a match cannot be made. 

3.2.1 Approaches to Dealing wit h Specification 

Non-determinism 

Specification non-determinism permits more than one legitimate expect ed behavior 

for a given observed behavior. If the behavioral alternatives are visualized as alter- 

nate EPs tlirough the supervisor model, as outlined in section 2.2.1, the supervisor 

must be able to consider all alternate EPs. Two approaches have been developed. 

The belief method [26] explores all legitimate EPs in a breadth-iîrst manner. A 

separate thread of execution or belief is created for each encountered EP. A be- 

lief represents one global state of the supervisor model and the contents of the 

expectedfobserved behavior bders .  Beliefs are terminated as their externally ob- 

servable behavior is invalidated by the actually observed target system behavior. 

The belief method is a conceptually elegant approach for dealing with behavioral 

alternatives. However, its most serious shortcoming is its worst case timelspace 

complexity. Consider the case where N signals are queued for consumption whose 
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order cannot be determined. In this scenario, the worst case computational com- 

plexity of the supervisor is given by (3.1) [26]. 

The optimistic path prediction and rollback ( O P P R )  approach [56] was developed 

to overcome the large time and space requirements of the belief method. OPPR 

explores legitimate EPs in a depth-first fashion, according to a heuristic derived 

from the target system's operational profile. 

Results indicate that the average case complexity of the OPPR approach is 

significantly better than the belief based approach [55, 561. However. upon occur- 

rence of a failure, the OPPR must explore all behavioral alternatives, resulting in 

a worst-case complexity similar to that of the belief-based method. 

3.3 Tracking Target System Operation 

The belief method considers all EPs concurrently while OPPR considers a heuris- 

t i cdy  ordered sequence of EPs. In many cases, however the actual EP chosen by 

the target system may be inferred dynamicdy from the observable signals to and 

from the target system. 

As an example, consider the SDL s~ecification in figure 3.2. Assume that signals 

a and b are generated by the environment within a short duration, E of each other'. 

Due to the non-deterministic SDL channel delay, process A could consume the 

signals in order: a - b or b - a. Specification non-determinkm thus permits either 

path 1 or path 2 to be legitimately traversed. 

l ~ h e  actual bounds for IE will be discussed later. 
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process A 

Q 

Figure 3.2: Example SDL Specification 
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By having the supervisor watch for key signals (either target system inputs or 

target system outputs), the path chosen by the target system could be inferred. 

For the specification in figure 3.2, a supervisor could infer that path l fpa th  2 was 

followed if signal, X / Y  was generated by the target system. The reader should 

note that signals X and Z would have been e q u d y  effective in detecting the two 

state transitions. 

3.3.1 The Tkacking Mode1 

In general, both target system input and output signals may be used to track 

target system operation tlirough the supervisor model. The observed signds are 

used to detect the occurrence of state transitions corresponding wit h t arget system 

behavior. 

For each state transition in the requirements specification, a M e r e n t  signal 

may be used to detect that the transition is taken place. A tracking model is one 

representation of such signals. 

The tracking model contains all symbolic states and state transitions of the 

requirements specification. The principal difference between the two models is 

their stimuli. Stimuli for the tracking model are chosen to detect state transitions 

corresponding with target system behavior. For each state transition in the tracking 

model, a stimulus is chosen from the set of signals consumed/ge~~erated during the 

corresponding s tate transition in the requirements specification. 

A primary criterion to select stimuli for the tracking model is signal uniqueness. 

Uniqueness is a relative concept. In general, signal, SI is considered more unique 

than S2 if SI can be consumed/generated in fewer states than S2. The precision of 

state detection is improved by choosing more unique stimuli. This reduces uncer- 
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tainty within the supervisor as to the actiial state transition that occurred and as 

a consequence improves the supervisor time andior space complexity. 

For the example requirements specification in figure 3.2, a corresponding track- 

ing model is shown in figure 3.3. The model is developed based on the choice that 

signals X and Y are used to detect paths 1 and 2 through the requirements specifi- 

cation. Note that the SDL system specification (figure 3.3a) has the output channel 

reversed to introduce the supervisor perspective. Signals, a, b and Z are not used 

to track the target system and are consumed without effect. Additional (non-SDL) 

constructs are used to output path information once it has been determined. 

systern Example-TM 

process A-TM 

X 
(*) @ IvJ (%) (so) 

-- - -- 

(a) (b) 

Figure 3.3 : Example Tracking Mode1 



CHAPTER 3. HIERARCHICAL SOFTWARE SUPERVISION 

3.4 Hierarchical Software Supervisor 

Supervision may be decomposed into two smaller sub-problems: (1) tracking the 

evolution of the target system state throiigh the requirements specification and (2) 

detailed behavior checking. Lessons learned fiom disciplines such as AI planning 

indicate that a problem can be solved more efficiently if decomposed and each part 

solved with a domain-specific problem solver [6, 341. The resultant architecture is 

hierarchical and consists of two functional units: the path detection module (PDM) 

Target System : 
Inputs 

I 
I 
I 
L 

PDM 

. . . -* . . - . . . .*  

Execution 

BSup Patb (EP) 
1 .  i 

- - 1  
I 

I 
@ Fai lure 
1 
I Report 

: Target System 
I 
I Outputs 
I 

Figure 3.4: Hierarchical Software Supervisor 

The PDM tracks the operation of the target system. It accepts both input 

and output signals of the target system and generates EP information. The PDM 

consists of a PDM-model, similar to the tracking mode1 described in section 3.3.1 

and an interpreter. The PDM-mode1 is derived fiom the requirements specification. 

The BSup is a detailed behavior checker. It accepts target system inputs, out- 
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puts and EP information fiom the PDM. The BSup consists of the five components 

described in section 3.2. The B Sup-mode1 very closely resembles the requirements 

specification. The interpreter interprets the BSup-model, s teering execution ac- 

cording to EP information generated by the PDM. 

3.4.1 Operation of the Hierarchical Supervisor 

The hierarchical supervisor operates with one of its two functional units active 

at  any point in time. Figure 3.5 shows the operating states of the lierarchical 

supervisor. 

Detected u 
Figure 3.5: Operating States of a Hierarchical Supervisor 

Execution begins at the PDM. The PDM executes until it determines the next 

segment of the EP followed by the target system. The PDM communicates this 

information to the BSup and passes control to the BSup. The BSup attempts to 

follow the EP through the requirements specification and generates the expected 

output(s) correspondhg to the EP traversed. The matcher compares the expected 

output(s) with the actually observed output(s). 
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Failure Reporting 

Failwes may be reported by either the PDM or BSup. The PDM reports a failure 

if ehe signals generated by the target system could not have been generated dong 

any path emanating fiom the current symbolic state. The BSup reports a failure in 

any one of three cases: (1) if the BSup cannot be steered dong the path prescribed 

by the PDM, (2) if the expected and observed behaviors do not match and (3) if a 

timeout occurs while the BSup waits for path information to be generated by the 

PDM 

Failures described are sub-divided into four commonly-occurring types, cate- 

gorized by two attributes: the failure category and the hindrance of the PDM7s 

tracking ability. The two failure categories are: (1) spuriously-generated signals 

and (2) missing or not-generated signds. The presence of a failure may or may not 

cause the PDM to report an incorrect EP. Both cases are 

types are summarized in figure 3.6. 

PDM Tracking Hindered 

No Yes 

b'igure 3.6: Failure Types 

TYPE 1 

described. The f a i h e  

TYPE LI 

As an example, consider a hierarchical supervisor that uses the PDM-mode1 
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shown in figure 3.3 and BSup-mode1 in figure 3.2. Both the PDM and BSup are 

in i t idy  in state SO. Examples of the four different failme categories are shown in 

figure 3.7. 

Environment Target System Environment Target System 
T v v -?==' 

Environment Target System Environment Target System 
T v 7 v 

1 1 
œ - 

(c) Type III 

Figure 3.7: Illegitimate Behaviors 

The fust failure type (figure 3.7a) is an example of an illegitimate output pro- 

duced by the target system. The behavior does not correspond to any path em- 

anating fkom the curent  symbolic state. This type of failurc is reported by the 

PDM. 

The second failure type (figure 3.7b) represents an incorrect output generated 

that corresponds to an existing but incorrect EP (see figure 3.3). The PDM reports 

that pzth 2 was traversed by the target system. The BSup attempts to steer 

execution dong path 2 but cannot due to the absence of signal b. The BSup 

reports the failure. 

The third failure type (figure 3.7~) represents a missing signal that does not 



CHAPTER 3. HIERARCHICAL SOFTWARE SUPERVISION 41 

interfere with the PDM's ability to determine EP information. The PDM reports 

that path 2 was traversed. The BSup generates an expected behavior consisting 

of signals, Y and 2. The matcher discovers that the expected behavior does not 

match the observed behavior. A failure is reported by the matcher. 

The final failure type (figure 3.7d) represent s a missing signal that interferes wit h 

the PDM's ability to detect the EP. In this example, signal Y was not generated 

by the target system. The PDM cannot determine EP information since it waits 

for Y, however the BSup has received signals b and 2. The BSup waits TL, from 

the receipt of b for EP information from the PDM to account for signals b and Y. 

If EP information from the PDM has not arrived after this time, the BSup reports 

a failure. 

3.4.2 Supervisor Signal Processing Latency 

The PDM tracks target system behavior by waiting for key signals so that the next 

segment of the EP traversed by the target system can be determined. The PDM 

typically uses a combination of target system input and output signals. As outlined 

in section 2.1.1, target system outputs rnay have a latency of up to TA,, units of 

time before they are generated by the target system. 

The PDM cannot guarantee acciuate path detection unless it lags the target 

system in the processing of events by at least T'A,, units of time. Thus out-of-time 

is a na turd  mode of operation for the hierarchical supervisor. 

In some cases, the PDM may not be able to resolve the EP chosen by the 

target system. This is principdy due to a lack of unique signals that may be 

generated/consumed in more than one requirements specification state transiti~n. 

In such a case, the PDM must resort to an approach where several candidate EPs 
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are considered concurrently. Two such approaches (belief method and OPPR) were 

described in section 3.2.1. The belief method will be used in this thesis due to its 

maturity over the OPPR approach. 

3.4.3 Computational Cost 

The hierarchical supervisor makes use of two models and two interpreters. As a 

first approximation, its time and space cost is twice that of a monolithic one. As 

w d  be discussed in the latter parts of this thesis, the computational cost of a 

1lierarcliica.l supervisor is proportional to the number of beliefs generated. Thus a 

point of inclifference between the choice of a liierarchical supervisor and a monolithic 

occurs one when the hierarchical supervisor eliminates fiom consideration Iialf of 

the beliefs generated by a monolithic one. Once more than half of the beliefs can be 

eliminated from consideration, a hierarchical supervisor becomes more cost effective 

than a monolithic one. 

The time and space cost of a hierarchical supervisor depends on: (1) the amount 

cf non-determinism in the requirernents specification, (2) the implementation of 

non-determinism in the target system and (3) the operational profle. An analyt- 

ical mode1 of the computational cost of a hierarchical supervisor is left as future 

work. However, the time and space complexities of a monolithic and hierarchical 

supervisor are evaluated experimentally for one target system in chapter 7. 



Chapter 4 

The PDM Mode1 

This chapter describes the derivation of a tracking model fkom the requirements 

specification. As rnentioned previously, this model is referred to as a PDM-model. 

R e c d  from section 3.3.1 that the PDM-model is used by the path detection module 

(PDM) to track target system operation though the requirements specification. 

The PDM-mode1 derivation procedure is exemplified with the aid of a non- 

trivial system; a fragment of a s m d  telephone exchange. The example was chosen 

to exemplify the main parts of the transformation process which are difficdt t o  

illustrate with a trivial example. 

The chapter begins with a description of the telephone exchange and its require- 

nents specification. The prominent issues arising in the derivation of a PDM-mode1 

are described next followed by the actual derivation procedure. 
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4.1 Example Software System 

The example software system is the c d  processing software of a small telephone 

exchange. Its complete specification appears in appendix A. For discussion pur- 

poses, the SDL process interaction diagram of the exchange is duplicated in this 

chapter. It appears in figure 4.1. 

system Private-BranchExchange 

1 block Phone-Hdlr 
signakt L 1 = DiaiTonne. No-DT. Fasr-Busy . 

No-FB. Slow-Busy. No-SB. Ring-Back. 
No-RB. ConnÇE. Disc-CE. Ring. 
No-Ring. Conn-CR. Dise-CR 

signalist E = ONHK. OMK. Digit(x) 

Manager 

block NecPath-Mgr 1 
1 

Figure 4.1: Telephone Exchange SDL System Specification 

The behavior seen by each telephone is defined by a PhoneHandler process. 

Phone-Handlers communicate to connect and terminate telephone c d s .  A sepa- 

rate, bidirectional communication path exists between each pair of PhoneHandler 
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processes, represented by implicit SDL signal routes in figure 4.1. 

AU PhoneHandlers are identical. To simplify the discussion, only two fragments 

of the Phone-Handler are shown (figure 4.2). They deal with an originating party 

dialing the final digit of the telephone number and requesting connection with 

the terminating party. For brevity, identification of the destination process for 

signals req-connect, rernote-auail and remote-busy is omitted as are portions of the 

specification dealing with exceptions such as timeouts and uncompleted dialuig. 

The numbers in brackets ([= -1) appearing in figure 4.2a wiU be described Iater. 

Ring I)"' 

(a) Originating Fragment (b) Terminating Fragment 

Figure 4.2: Fragments of the Phone Handler Specification 
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4.1.1 Illustration of Nondeterministic Behavior 

Consider the A and B c d  Z scenario. A chart illustrating the signals exchanged 

between PhoneHandlers A, B and Z and the environment is shown in figure 4.3. 

If both A and B dial the final digit of Z within a brief interval of each other. 

the indeterminate delay on the inter-process communication paths between the 

environment and processes A and B permits either A or B to complete the c d  to 

Z (the other will receive slow busy tone). Figure 4.3a shows the case where the 

delay to process B is larger and 4.3b where it is smaller than the delay from the 

environment to A. For this particdar scenario, the specification permits two legal 

behavioral alternatives. Both alternatives must be considered by a supervisor. 

Figure 4.3: Behavioral Alternatives for the A and B C d  Z Scenario 

Phone- Phone- Phone- Phone- Phone- Phone- 
Handler A Handler B Handler Z Handler A Handler B Handler Z 

At the input port of 3 pmcess, specification nondeterminism permits the two 

CR-Con signals (figure 4.4) to be consumed in either order. Provision must be made 

by the supervisor to consider al l  possible signal orderings if consumption order 

uncertainty exists. The consequence of considering only a subset of all possible 

signal permutations is that the supervisor may generate spurious failure reports. 

For a process with n signals in its input port, the upper bound on the number 

j 
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of signal permutations is n!. This may lead to a potentidy large computational 

complexity if all possible signal permutations must be explored. 

Handlr 

Figure 4.4: Permuteable Signals at the Input of a SDL Process 

4.2 Issues in the Derivation of the PDM-Mode1 

As mentioned in chapter 3, stimuli for the PDM-mode1 are chosen based on their 

uniqueness. A metric of uniqueness is described first. A discussion of maintaining 

sequences of internal state transitions or causality pathways in the PDM-mode1 is 

described next. The section concludes with a description of data flows in the PDM- 

model. Data flows appearing in the requirements specification m u t  be rnaintained 

in the PDM-model. 

4.2.1 Identification of State Transitions 

As discussed in section 3.3.1, the occurrence of a state transition is detected with 

either target system input os output signals. The motivation for using signals 

other than target system inputs to detect state transitions is to reduce the number 

of required signal permutations and as a result the computational complexity of 

the supervisor. 

Signals in the PDM-model, used to detect state transitions, are chosen based 
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on their uniqueness. In the requirements specification, signals that are either con- 

sumedlgenerated during fewer state transitions are considered more unique than 

signals consumed/generated during more transitions. The precision with which 

state transitions can be detected improves as the uniqueness of signals used in- 

creases. 

The notion of a uniqueness  r n e t n c  or u-metric is used to quantify the idea of 

signal uniqueness. The u-metric is defined for all signal-transition pairs in the 

requirement specification. 

Definition 4.2.1 (Uniqueness Metric (u-metric)) Let  P be a n  SDL process 

and s a n  SDL signal t h a t  ini t iates a state t rans i t ion  o r  is gcnerated dur ing  a s ta te  

t rans i t ion  in P.  T h e  u -me t r i c ( s ,  P )  is defirred as: 

O i f  s is an inpu t  signal, u -me t r i c ( s ,  P )  is d e f i e d  as t h e  nurnber o f  s ta te  tran- 

s i t ions  ini t iated b y  s in P 

i f s  is an  output  signal, u-metn 'c(s ,  P )  is defined a s  t h e  n u m b e r  o f  d a t e  t ran-  

s i t ions  in P where s is generated 

The ability to map a signal to fewer state transitions reduces the number of 

behavioral alternatives the supervisor must consider. The u-metric is used as a basis 

to select stimuli for the PDM-mode1 by the derivation procedure to be discussed 

in section 4.3. Signals with lower u-metric values are preferred over signals with 

higher u-metric values. 

Dynarcic Metrics 

In general, metrics for PDM-mode1 stimulus selection may be classified as either 

s ta t ic  or dynamzc.  Static metrics take into consideration the specification but not 



CHAPTER 4. THE PDM MODEL 49 

the corresponding operationai profde of the target system. However, dynamic met- 

rics also take into consideration the operational profile. 

This thesis describes only one static metric (u-metric). Other static or dynamic 

metrics may be developed. The PDM-mode1 transformation process to be described 

remains the same regardless of the metric used. 

Example 

Consider the example in figure 4.2. The u-metrics are shown in square brackets 

( [ O  -1) beside eacli signal in figure 4.2. The u-metrics are computed based on the 

full requirements specification of the telephone exchange appearing in Appendix A. 

Note that signal CR-Con causes state many transition (in Appendix A, the 

star-state notation is used to capture this) and as a result it has a high u-metric 

value. 

4.2.2 CausaIity Pathways 

A target system input signal may cause a sequence of n state transitions in one 

or more processes of the requirements specification. The n state transitions may 

produce zero or more externally observable outputs (target system outputs). This 

series of state transitions s h d  be referred to as a causality pathway (CP). 

As an example, consider the specification in figure 4.2. Assume that the pro- 

cesses shown are in states Wai tD2  and Wait-Call. If' signal digit(Y) is con- 

sumed, it would cause state transition Wai tD2  + WaitRsp which would cause 

Wait-Gall+ WaitAns followed by Wai tRsp + Wait-Co. This collective set of 

state transitions, initiated by signal, digit(Y) is referred to as a causality pathway. 
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Figure 4.5a illustrates this CP. A compact notation is used. StimuZi are denoted 

as inconring lines to the process. Generated outputs are denoted as outgoing lines. 

Actual state transitions are abstracted. 

Phone- Phone- 
Handler A Handler Z 

digit reqconnect \ ringphone 

Phone- Phone, 
Handler A Handler Z 

digit req-connect -., ring-phone b-x- - -L - 4 - - - - ),+--- 

Figure 4.5: Causality Pathway and Causality Pathway Tracing 

* C 

m 

Phone- Phone- 
Handler A Handler Z 

digit / req-connect r ingjhone 

The PDM, responsible for detecting state transitions t hat occur, effectively 

traces each CP. CPs can be traced in a forward direction, backward direction or a 
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combination of the two. A CP is traced forward by using stimuli of the requirements 

ring-back-[one\ / remote-avail 
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by using outputs fkom the specification as stimuli in the PDM-model. Two issues 

arise when CPs are traced backwards by the PDM. 

The first issue deals with a possible violation of signal sequencing in the detec- 

tion of state transitions. As an example, consider the specification in fibwe 4.2 and 

the corresponding CP in figure 4.5a. If the entire CP is traced backwards while 

process A is in state, WaitD2, the PDM would be required to report that tran- 

sition Wait-Rsp + Wait-Co occurred before transition WaitJ2  + W a i t X s p  

(figure 4.5b). 

The solution to this problem is to trace the CP only in the forward direction or 

to use a combination of forward and backward tracing. For the previous example, 

one possible forwardlbackward tracing that solves the described signal sequencing 

problem is shown in figure 4 .5~ .  

The second issue deals with the consistency in the selection of stimuli for the 

PDIvI-mode1 between individual processes. Consider two state transitions, SO + SI 

and Sa + S b  occurring in two different processes such that the occurrence of SO + 
SI triggers Sa -+ S b  (Le. both transitions are part of a single CP) (figure 4.6a). If 

in the PDM-model, the identical signal is used as a stimulus for both transitions. 

deadlock will occur (figure 4.6b). Clearly, stimuli that are chosen in one process 

constrairi the choice of stimuli in othcr proccsscs. 

4.2.3 Signal Parameters 

Parameters tagged to signals constitute the data flow through the requiremcnts 

specification. The state of a process is dependent on the values of data. Relevant 

data flows must be rnaintained in the PDM-model. 
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CFSM A CFSM B 

(a) Requirements Specifîcation 

CFSM A CFSM B 

(b) PDM-Mode1 

Figure 4.6: Example: PDM-Mode1 Deadlock 

The two types of parameters are addressed: implicit and explicit. Explicit pa- 

rameters are specified by a specification writer. As an example the signal, digit(Y) 

in figure 4.2 uses an explicit parameter to carry a digit information. 

Implicit parameters are appended to each signal by the the semantics of the 

specification formalism. Examples of such parameters include the sender ID of a 

signal, the signal type, destination ID, etc. For brevity, wc restrict discussion of 

irnplicit parameters to the sender ID and signal type. Other implicit parameters 

may be treated in a sirnilar manner. 

In the PDM-model, all parameters used by a process must be communicated to 

the process. In many cases implicit parameters are not actuaUy used and can be 

dropped to simplify the transformation and the resultant PDM-model. 

PDM-Mode1 Transformation Algorit hm 

This section presents the algorithm for transformation of the requirements specifica- 

tion into the PDM-model. The section begins wit h an overview. The transformation 

algorithm is presented next, followed by an  example. 
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The presentation of the PDM-mode1 transformation algorithm assumes that 

signals in the requirements specification have unique names. Formdyt consider 

two signal send constructs, sl and s2 appearing in the requirements specification. 

If a state transition, T does not exist such that both sl and s2 could cause T under 

any given scenario, signals sr and s2 must have different symbolic names. The 

above requirement can be enforced by simply relabeling the symbolic signal names 

in the requirements specification. 

4.3.1 Overview 

The PUM-mode1 difFers from the specification primarily in its stimuli. AU states 

and state transitions in the original specification appear iu the PDM-model. 

Path information is communicated to the BSup on the occurrence of each PDM 

state transition. Path information consists of a sequence of stimuli that if consumed 

by the BSup would steer execution dong the same path as determined by the PDM. 

The PDM-mode1 transformation consists of two parts: (1) stimuli selection and 

(2) model generation. Stimuli selection successively eliminates PDM-mode1 s timuh 

(initidy, all signais generated and consumed during a state transition are candidate 

s ~ i m d i  for the PDM-model). Stimuli selection terminates when exactly one signal 

signal remains for each state transition. At this point model generation is invoked. 

Mode1 generation constructs a communicating extended finite st ate machine with 

the chosen stimuli. The result is the PDM-model. 

Stimuli selection is the most challenging part of the PDM-mode1 transformation 

process. This is due to the fact that the selection of a stimulus for a particular state 

ixansition may constrain the choice of stimuli for adjacent state transitions on one 

or more CPs. These constrain'is are represented as a constraint graph so that as 
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stimuli are chosen, other inconsistent stimuli can be removed fiom consideration. 

The components and data flows of the transformation process are shown in 

figure 4.7. The stimuli selection and mode1 generation components of the transfor- 

mation are described below in further detail. 

Requirements Specification Constraint Graph 
I I 1 

t t t  
PDM-Mode1 

Genention Algorithm 
(PMGA) 

PDM-Mode1 

t 

Figure 4.7: PDM-Mode1 Transformation Process 

M 
M 

I 

Stimulus Selection 
Algorithm 

( S W  

1 ,- 
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Stimuli Selection 

The stimulus select ion algorit hm considers the requirement s specification a t  t hree 

independent levels of abstraction. 

The f i s t  level considers the data-flows through the specification. The  stim- 

di selection algorithm ensures that data-flows remain in the PDM-mode1 as they 

influence the state of processes. AU processes are considered a t  this level. 

The second Ievel deals with the consistent selection of stimuli. As &scussedt 

choosing a stimulus for a state transition in process X will influence the choices 

of stimuli in adjacent processes ( processes that communicate directly with process 

X), Consistency of stimulus selection requises consideration of stimuli for adjacent 

processes. 

Stimuli are actually chosen at the third level. At this level, each process is 

considered independently of other processes. Stimuli are chosen based on their 

uniqucness within the specification. A signai that causes or is generated in few 

state transitions wilI give the PDM more precise information as to which state 

transition occurred than would a signal that may be consumed/generated in many. 

PDM-Model Generation 

Tlie PDM-mode1 generator begins with a model that represents the requirements 

specification in topology. Al1 finite state machines, states and state transitions 

remain the same. State transitions are unlabeled (i.e. no input or output signais 

appear on the transition). 

The PDM-mode1 generation consists of three steps. First the selected stimuli 

are added t o  the model. Signal output constructs are added to state transitions 
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that are to cause interna1 state transitions based on the choice of stimuli. Finally, 

state transitions are added that consume target system input or output signais not 

chosen as stimuli. These signals are consumed without effectl. 

4.3.2 Constraint-Based Stimulus Consistency 

To ensure consistency between the selection of stimuli for the individual state tran- 

sitions of the PDM-model, the problem is pr~jected as a finite-domain constraint 

satisfaction problem (CSP) [48]. The classic formulation of CSP problems consist of 

three components: (1) variables, (2) variable domains and (3) constraints between 

variables. A constraint satisfaction algorithm is used to ensure that all constraints 

are satisfied by successively restricting elements or ranges of elements from a vari- 

able's domain. The CSP is said to be solvable if at least one variable assignment2 

exists that satisfies all constraints. 

For the mode1 transformation problem, state transitions are mapped into vari- 

ables, candidate PDM-mode1 stimuli for a particular transition are mapped to vari- 

able domains and inequali ty cons traints are placed between adjacent s tate transi- 

tions of a CP. The interpretation of the constraints is that adjacent state transitions 

cannot be initiated by a single signal generated or consumed during both transi- 

tions. The CSP can then be represented as a grapb where nodes represent state 

transitions, contents of nodes represent possible PDM-mode1 stimuli and labeled 

arcs represent constraints. 

As an example, a constraint graph was derived for the specification fragments 

'These transitions are equivalent in semantics to SDL implicit transitions. They are described 

explicitly for completeness purposes only. 
?A variable assignment may be considered as an elimination of al1 domain values except one 

for a given variable. 
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in figure 4.2. The graph appears in figure 4.8. Note that due to space limitations, 

the graph captures only the originating fragment for phones A and B and the 

terminating &agment for phone 2. A complete constraint graph must capture al i  

interactions of all processes appearing in the communication topology (figure 4.1 ) . 

Wait-Co Wai1-O2 wai t-02 

CFSM A CFSM Z CFSM B 

Figure 4.8: Segment of Constraint Graph 

A constraint graph is said to be comGtent if for each variable's domain value. at 

least one corresponding domain value exists in each variable linked by a constraint 

that satisfies each corresponding constraint. The elimination of domain values from 

variables may cause the graph to become inconsistent. 

As an example, if signal digit( Y)  is removed from transition. Wuit 4 2  + 
Wait &pl signal C R - C a  becomes the stimulus for the aforementioned transi- 

tion. Thus the stimulus assignment in transition WaitD2 + W a i t h p  is no 

longer consistent with the assignment of CR-Con as the stimulus for either of 

Wait-Gall-, Wait Ans or Wait Ans + Wait Ans.  

Constraint propagation is a technique to eliminate inconsistent variable domain 
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values. A constraint propagation algorithm accepts as input an inconsistent con- 

straint graph and retunis a consistent constraint graph, proyided that a consistent 

variable assignment exists. Constraint propagation algorithms operate by succes- 

sively removing inconsistent domain values until the graph becomes consistent. 

The algorithm is applied each time a value is removed from a variable's domain. A 

survey of such algorithms can be found in [37]. 

From the above example, if the described graph was an input into a constraint 

propagation algorithm, the algorithm would eliminate signal CR-Con fïom the 

domain valiies of transitions Wait-Cal1 + Wait A7z.s and Wait Arzs i W a i t i l n s  

and signal Busy from the two Wai tRsp  i. Waz't-02 transitions. 

4.3.3 PDM-Mode1 Transformation Algorit hm 

The PDM-model transformation algorithm is presented in two parts. The first part 

is the stimdus selection algorithm (SSA). It is used to choose stimuli for the PDM- 

model. The second part, the PDM-mode1 generation algorithm (PMGA)? generates 

the PDM-mode1 based on the stimuli chosen by the SSA. Recall, the transformation 

process was shown graphically in figure 4.7. 

In the descriptions of the SSA and PMGA, the following riotatioli will be used: 

Tl" wiU be used to rcfer to transition i in the requirements specification, Ty to 

the corresponding node i in the constraint graph and T'F to the corresponding 

transition in the PDM-model. 
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4.3.4 Stimulus Selection Algorithm 

The SS A accepts as input the requirements specification (Spec) and the correspond- 

ing cons traint graph, derived from the requirements specification ( Cons-Graph ). 

The SSA returns a stimulus for each state transition in the requirernents specifica- 

tion. 

The SSA can be subdivided into three parts. The first part checks for causality 

violations in the detection order of state transitions as described in section 4.2.2. 

The second part of the algorithm ensures that data flows remain intact in the 

PDM-model, as outlined in section 4.2.3. The final part of the algorithm actually 

selects signals tlrat will be used to identify state transitions in the PDM-mode1 

(i.e. the stimuli for state transitions). The seIection process is based on the u- 

metricl described in section 4.2.1. 

The SS A appears in figure 4.9. A textual surnmary of the algorithm follows. 

Causdity Violations Check [lines 1-71 

As described in section 4.2.2, a violation of causality occurs if an attempt is made 

to determine that a transition occurs after the curent  one. The SSA statically 

detects possible causality vioIations by tracing the CPs though the requirements 

specification. If a CP is found that crosses a particular process more than once, 

the algorithm forces the portion of the CP which is crossed more than once to be 

traced forward. 

As an example, the CP shown in figure 4.5a crosses process A twice. The SSA 

enforces that the first transition be processed in a forward direction. This effec- 

tively restricts the entire CP to be processed either entirely in a forward direction 
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Algorithm S S A  (Spec, Cons- Graph) 
1. for al1 state transitions T;+' E Spec 
2. C P  = the set of al1 forruard causality pathways passing through at T:" 
3. if (ezists a cp E C P  such that cp initiates two or more d a t e  transitions 

in the process where transition T;" appears) 

4 - stimulus ( T i g )  = stimnlus (T.' ) 
5. applg comtraint propagation algorithm to Cons-Graph 
6. end if 
7. end for 
8. for al1 state transitions T;'" E Spec 
9. i f  ( s t i m u l ~ s ( T ~ ~ )  carries an eq l i c i t ,  used parameter 
1 O. stimulus ( T f g )  = stimulus(T;'") 
11. apply constraint propagation algorithm to Cons-Graph 
12. end if 
13. if (if implicit parameter(s) of stimulus(T;'') cannot be stafically determined 

14. delete al1 signals f ~ u m  the domain of Tig thaf do nof carry needed 
implicit paramet ers 

15. end if 
16. end for 
1% for al1 nodes, Tig E Cons-Graph 
18. while (number-of-elements-in-d~main(T;'~) > 1) do 
19. compute collective u-metric for each element in T;" 
20. delete element in T;'g with largest collective u-rnetric 
21. apply constraint propagation algorifhm to  Cons-Graph 
22. end while 
23. end for 
24. return (stimuli) 
25. end Algorithm 

Figure 4.9: Stimulus SeIection Algorit hm 
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(figue 4.5a) or partially forward and par t idy  backward. One example of the latter 

is illustrated in figure 4 .5~.  

Maintaining Data Flows [lines 8-16] 

Data flows that appear in the requirements specification must be maintained in the 

PDM-mode1 where required. The SSA checks ail data flows and determines if the 

data is required. If so, it imposes constraints on stimuli to ensure that the data 

0ows will appear in the PDM-rnodel. 

The SSA checks both explicit (programmer specified) and implicit parclmeters. 

As discussed, implicit paramchers consist of the ID of the sender process for each 

signal only. 

The precision of the PDM-mode1 in detecting state transitions is reduced by 

imposing constraints on stimuli to maintain dataflows. In some cases. some signal 

parameters may be determined statically, which reduces the constraints on stimuli. 

As an example, the sender ID of a signal c a n  ofken be determined statically from the 

communication structure if there is only one process that could actually generate 

the signal. 

For parameters that are used and cannot bc determined statically, the CP is 

constrained to be processed in a forward direction. This ensures that the direction 

of the CP remains identical to that in the requirements specification. 

Stimuli Selection [lines 17-23] 

For the rernaining transitions having two or more candidate stimuli, stimuli are 

selected based on signal u-metric. Signals having lower u-metrics are preferred 
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since they indicate which transition has occurred with greater ce r t a i~ ty  than a 

signal with a higher u-metric. 

Choosing a stimulus for a particular state transition constrains choices of other 

stimuli dong the CP as described in section 4.2.2. Stimuli <are chosen to minimize 

the restriction on the use of signals with s m d  u-metrics in adjacent processes. A 

signal, s chosen as a PDM-mode1 stimulus eliminates other candidate stimuli from 

being selected. The sum of all signals u-metrics that are eliminated as a result of 

choosing s shall be referred to as the collective u-metric. Note that the collective 

u-metric includes the u-metric of S.  

The final part of the SSA operates by repeatedly removing candidate stimuli 

from a particular state transition, T. The stimulus with the highest collective u- 

metric is removed. This means that if only one signal is left in a node that the signal 

becomes the stimulus for the node (state transition). A constraint propagation 

algorithm is applied after the removal of each stimulus to  ensure consistency. This 

process repeats until each node in the constraint graph contains exactly one signal. 

The reader should note that in the worst case, the SSA will choose stimuli for 

the PDM-mode1 that are identical to those in the requirements specification. This 

would occur, for example, in a specification that does not generate any outputs. As 

a result, a consistent selection of stimuli for the PDM-mode1 always exists. However. 

in some cases the stimuli selection algorithm may return an inconsistent set of 

stimuli. In such a case the constraint propagation algorithm could be combined 

with search to exhaustively consider the search space. From experience, such a 

scenario has not been encountered in the target system specifications considered. 
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4.3.5 PDM-Mode1 Generation Algorit hm 

The PDM-mode1 generation algorithm accepts input the requirements specifi- 

cation, a stimulus for each state transition selected by the SSA and the unaltered 

constraint graph. The algorithm creates the PDM-model. The PDM-mode1 appears 

at two levels of abstraction, similar to the corresponding requirements specification: 

(1) the systern or process interaction level and (2) the process level. 

At the system level, all processes appearing in the requirements specification 

appear in the PDM-model. The channels and signal routes connecting processes 

difFer, principally due to  the possibility of signal direction reversal based on the 

choice of stimuli for the PDM-model. 

The communication topology is generated based on the foilowing rules. Consider 

two signals, sl and sz traveling from processes Pl to P2 in the PDM-model. If the 

two signals traveled on a single channel/signal route in the requirements specifica- 

tion, a single channel/signal route is created between process Pl and P2. I f  the two 

signals traveled on dXerent channels/signal routes, two separate channels/signal 

routes are created between processes P l  and P2. Note that some interna1 signals 

appearing in the requirements specification may not appear in the PDM-mode1 and 

as a consequence the PDM-mode1 may contain fewer channels and/or signal routes 

than the specification. 

The process level PDM-mode1 generation algorithm (Algorithm PGMA) is de- 

scribed in three parts. The first part creates the transitions using the stimuli pre- 

scribed by the SSA. The  second part introduces constructs to communicate path 

information from the PDM-mode1 to the BSup. The final part adds implicit signal 

consumption constructs for any signals fi-om the environment not used as stimuli. 

The PMGA is shown in figure 4.10. A textual summary of the algorithm follows. 



CHAPTER 4. THE PDM MODEL 

Algo rithm PMGA (Spec, Stimuli, Cons- Graph) 
1. create al1 process in  PDM-Mode1 having stimuli from Stimuli 
2. for al1 da te  transitions, T,'" E Spec 
3. for al1 transitions, T? having a constraint between Tira 

and TF f Cons-Graph 
4.  if (stimulus(Tj") E T;'") 
5. add output signal s t i m u l w ( T ~ )  to transition, Tim 
6. end i f  
Y. end for 
8. end for 
9. for al1 state transitions, T;P" E PDM-Mode1 
f O. add BSup-output construct to transition TiPm to communicate signal 

st imulus(T~") to BSup 
I l .  end for 
12. for ail state transitions, T;'" E Spec 
13. for all signctls, sig E TTa 
14- i f  {sig # stimulw(T;P")) and (sig originates from environment) 
15. i f  (sig appears before stimulus(TiF) in Spec) 
16. add implicit transition i n  date before Tip O C C U ~ S  

to consume sig without effect 
17. else 
18. add implicit transition i n  state after T T  O C C U ~ S  

to consume sig without effect 
19. end if 
20. e n d  i f  
21. end  for 
22. end for 
23. end Algorithm 

Figure 4.10: PDM-Mode1 Generation Algorit hm 
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Creation of PDM-Mode1 S t ate Transitions [lines 1-81 

This portion of the algorithm creates ail state transitions with the stimuli specified 

by the SSA. For state transitions triggered by internally generated signals. the 

PMGA adds output constructs to the state transitions responsible for triggering 

these transitions. 

Insertion of Path Information to the BSup [lines 9-11] 

Constructs to communicate path information are added to each transition in the 

PDM-model. The path information is used to steer the BSup dong the path of 

the PDM. Path information consists of the triggering signal name, explicit and 

implicit parameters. The reader should note t hat the path information consists of 

the triggering signal that would have caused the state transition in the requirements 

specification, not in the PDM-model. 

Addition of Implicit Signa1 Consumption Constructs [lines 12-22] 

All signals generated and consumed by the target system travel to the PDM. Not 

all signals from the environment are used as stimuli in the PDM-model. Explicit 

signal consumption constructs are added for all signals from the environment riot 

used as stimuli. 

Signals may be consumed wit hout effect before or after the corresponding state 

transition occurs in the PDM. The main issue is to preserve the order of signal 

consump tion specified by the requirement s specification. 

For explanation purposes, the signal to be consumed without effect shall be 

referred to as S. S is generated or consumed in the requirernents specification 
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during transition T. Assume that the chosen stimulus for transition T in the 

PDM-mode1 is Stim. Note that Stim # S 

If, during transition T in the requirement specification, signal S is consumed 

or generated before Stim, then S in the PDM-mode1 must be consumed before 

transition T takes place. If during state transition T ,  signal S is generated after 

Stim is consumed or generated, then in the PDM-model? Stim must be consumed 

directly after transition, T takes place (i.e. in the terrninating state of transition 

T). 

4.3.6 PDM-Mode1 Transformation Example 

As an application example the SSA and PIvIGA are applied to the specification 

fragment illustrated in figure 4.2. The corresponding constraint graph for the spec- 

ification is shown in figure 4.8. The description of each aIgorithm7s execution is 

broken down into the three steps used during the description of the algorithm. 

Stimulus Selection Algorit hm 

The outputs fiom intermecliate stages in the execution of the SSA are illustrated 

in figure 4.11. 

Causality Violation Check 

The dgorithm begins by tracing each of the CPs through the specification. In doing 

so, it is determined that the CP, initiated by signal digit(yl  in process A crosses 

process A twice. For this reason, the stimulus for transition, WaitD2 -+ WaitRsp  

is set to the stimulus of the requirements ~~ecification. A similar stimulus selection 
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WSI-DZ -> 
Wait-Rsp 

(a) step 1 

(b) step 2 

(c) step 3 

Figure 4.11: Application of the Stimulus Selection Algorithm 
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is made for the corresponding transition in process B. The resulting constraint 

graph is s h o w  in figure 4.11a. 

Maintainhg Data Flows 

The second step of the SS A examines the explicit and implicit parameters carried by 

all signais remaining in the constraint graph. The parameter (Y} carried by signal, 

digid(Y) is needed. However in the previous step. this signal was instantiated as 

the stimulus in the PDM-mode1 (if it was not instantiated as the stimulus in the 

previous step, it would have been during t h  step). Signal Ring during state 

transition Wait-Ce21 + Wait A n s  does not c a r y  tlie sender ID of the stimulus 

CR-Con in the PDM-model. This information is needed to commrinicate path 

information to tlie BSup and cannot be determined s tat icdy since it depends on 

parameters noc locally known to the process. For this reason, Ring is eliminated 

from tlie PDM-mode1 as a candidate stimulus (figure 4.11b). 

Stimuli Selection 

During the final step, the remaining stimuli are chosen. Signal CR-Con is a candi- 

date stimulus for transition Wait-Cal1 + WaitAns. This signal is eliminated as a 

candidate stimulus since signai Avail has a lower u-metric value of 2. Signal Avail is 

chosen and the constraint propagation algorithm invoked whicli in turn elirninates 

signals, Aerail &om transition Wait R s p  + Wait-Co. 

For transition Wai tAns  <t WaitAns ,  signal Busy has a Iower u-metric value. 

Thus Cr-Con is eliminated. The constraint propagation algorithm is invoked. The 

final constraint graph is shown in figure 4.11~. 
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PDM-Mode1 Generation Algorithm 

The intermediate stages in the execution of the PMGA are illustrated in fig- 

ures 4.12 - 4.14. 

Figure 4.12: Application of the PDM-Mode1 Generation Algorithm (1/3) 

Creation of PDM-Mode1 State Transitions 

The algorithm begins by creating a PDM-model. The PDM-mode1 contains all 

state transitions of the original requirements specification. The stimuli generated 

by the SSA are used as stimuli in the PDM-mode1 (figure 4.12). State transitions, 

Wait-Call + W a i t A n s  and Wai tAns  + Wai tAns  are triggered by interndy 

genercrted signals. Output constructs are added to these transitions to generate 

t hese signals. 
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Slow- FI 
CR-ON Q 

Figure 4.13: Application of the PDM-Mode1 Generation Algorithm (2/3) 
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Wait-Ans a 

Figure 4.14: Application of the PDM-Mode1 Generation Algorithm ( 313 )  
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Insertion of Path Information to the BSup 

The second step of the PMGA adds output constructs to communicate path in- 

formation to the 3Sup. Path information consists of the signal that would cause 

the coiresponding state transition in the requirements specification. Note that all 

explicit and implicit parameters must be defined for this signal (figure 4.13). 

Addition of Implicit Signai Consumption Constructs 

The final step of the algorithm adds explicit signal consumption constructs for 

cd signals from the environment not used as stimuli. For this example, a signal 

consumption construct is added for signal Ring. In the requirements specification. 

it is generated after signal Auail and as a result it must be consumed after the 

transition has taken place in the PDM-mode1 (figure 4.14). 



Chapter 5 

The Path Detection Module 

Interpreter 

Tliis chapter outlines the theory and operation of the PDM interpreter. The PDM 

interpreter interprets a PDM-model, which is an SDL specification. For this reason 

the PDM-interpreter closely resembles the SDL interpreter. 

The chapter begins with an overview of the interpreter. The notion of time 

within the interpreter is subsequently described. The two approaches used to deal 

with behaviord alternatives arising from specification non-det erminism: partial- 

order signal consumption and belief-based supervision, are described next. Findy 

the key algorithms of the interpreter are presented dong with an analysis of th& 

time and space complexity. 
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Overview 

The PDM-interpreter interprets the PDM-model. The fundamental clifference be- 

tween the PDM-interpreter and the SDL abstract machine is their operation in 

the presence of non-determinism. The SDL abstract machine may select any one 

behavioral alternative arising from specification non-determinisrn. However, the 

PDM-interpreter mus t identifj and follow the behavioral alternative chosen by the 

target system. 

The most prominent SDL non-determinkm is channel delay. As an example, 

consider the SDL process and incoming channeIs shown in figue 5.1. Each of 

the signds traveling on an SDL cliannel are firçt-in-first-out (FIFO) ordered. The 

contents of the channels are merged into a single input queue associated with the 

SDL process. Several potential total orders of signais typicdy exist due to the 

non-deterministic channel delay. 

The PDM-interprcter must determine the total order chosen by the correspond- 

ing target system and sequence signal consumption accordingly. A supervisor that 

arbitrarily sequences signals for consumption would illegdy report failures of the 

target system. 

5.1.1 ComponentsofthePDM 

The PDM-interpreter is described in t erms of its four fundamental components: 

(1) temporal signal tags, (2) partial-mode1 supervision, (3)  belief-based handling 

of non-det erminism and (4) the core-interpre ter. The components are described in 

further detail. 
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Figure 5.1: Signal Ordering 

Temporal Signal Tags Each signal in the supervisor is tagged with its time of 

generation and/or consumption to facilitate its processing after its occurrence. 

Partial-Mode1 Supervision Used to reduce the number of behaviord dterna- 

tives needed to be considered by the PDM. 

BeIief Creation Algorithm Used when the PDM/partial-order signal consiimp- 

tion cannot resolve the behavioral alternative chosen by the target system. 

Core Interpreter An out-of-time, directed SDL interpreter. 

The remainder of this chapter describes, in further detail, the four components of 

the PDM-interpreter. 
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5.2 Temporal Signal Tags 

Signals within the supervisor are tagged with the time of generation and/or con- 

sumption. This information facilitates their processing after their occurrence. The 

interpreter is responsible for generating the tags. 

Signal tags are analogous to timestamps. However, uncertainty exists as to 

the actual signal generation/consumption time principdy due to a lack of interna1 

target system observability. As a result, signais within the supervisor are tagged 

with a timestamp ranging over an interval. The interval represents the time during 

which signais were generated and/or consumed within the target system. Such an 

interval is referred to as an occurrence interval (01). 

OIS are derived based on the time that inputs from and outputs to the environ- 

ment were generated. Consider the series of statc transitions in (5.1). &:. -. C ,  

represent global states of the PDM-model, i  a target system input signal, O a target 

system output signal and inf l, - - int, internally generated and consumed signds. 

OIS for the state tra~isitions in (5.1) can be derived from the observation times 

of signais i and o. Assume that signal i  was observed at time, t l  and O at time. 

tu .  ti  and tu represent the lower and upper bounds of both signal generation and 

consumption. Thus an 01, [ tr ,  tu]  represents the consumption time of signal, z', 

generation and consumption time of signals, intl . int, and the generation time 

of signal o. 
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5.2.1 Interpretation of Occurrence Intervals 

As previously stated, the actual time signals were generated and/or consumed 

within the target system typically cannot be determined due to  a lack of observ- 

ability. An O1 captures the range of time over which a signal was generated and/or 

consumed. 

Within the supervisor, OIS are used to order signais. Consider two signals, s l  

and s2 both with unique OIS. An definite order of the two signais can be determined 

from their OIS if the OIS do not overlap. Conversely, the order of the two signals 

cannot be determined solely based on OIS if the OIS of the two signals overlap. The 

formal definition of O1 overlap is defined below. The dot (.) operator is used to 

address the O1 of a signal. 

Definition 5.2.1 (Overlapping Occurrence Intervals) The occurrence inter- 

uak of two signals, s l  and s3 overlap if: 

3t such that [(t  >_ ~ 1 . t ~ )  A ( t  5 si . tU)] [(t >_ s2.tl) A ( t  5 çS.t,,)] 

As an example, overlapping and non-overlapping 01s are iliustrated graphically in 

figures 5.2a and 5.2b respectively. 

(a) Overlapping OIS (b) Non-Overlapping OIS 

Figure 5.2: Overlapping and Non-Overlapping Occurrence Intervals 

The PDM-interpreter orders signals for consumption based on (1) their oc- 

currence intervals and ( 2 )  their sequence on the channel/signal route which they 



CHAPTER 5. THE PATH DETECTION MODULE INTERPRETER 

traversed. In some cases. the interpreter may not be able to deterministicalIy deter- 

mine the exact consumption order of signds. The set of signals whose consumption 

order cannot be determined is referred to as the consumable signal set, defined 

below. 

Definition 5.2.2 (Consumable Signal Set (CSS)) A t  time t ,  let s represent a 

signal from the set of signak appearing ut the heads of the incoming signal routes 

or channek;' having the smallest occurrence interval lower bound. Let J be the set 

of s ignab other t h a n  s that appear ut the Iteads of the .incomzng channels/signal 

routes vrhose occurrence intemals overlap with S .  The consumable signal set ( K ( t ) )  

is defined as: K ( t )  = J U  S .  

Theorem 5.2.1 (Consumable Signals) The signal to  be subsequentally consumed 

rnust be contained in the consumable signal set. 

Proof: Let X be a szgnal such that X @ K .  From definition 5.2.2, X either: ( 1 )  

does not  appear as a signal at  the head of a n  incoming signal route/channel or  (2) 

the occurrence interual of X does not overlap zuith S .  The two cases are treated 

independently. 

Case 1: X does not  appear ut the head of a signal route channel. The signal at  the 

head must be consumed before A. Thus  X cannot be a consumable signai in 

the current state. 

Case 2: There are two possible situations in which the occurrence intervals of s 

and X do  no t  overlap: ( 1 )  k t ,  < s.tl and (2)  s.t, < k t L .  The former is not  

'In SDL, signal routes carry al1 signals to processes within a block. However, signals that travel 

over a channel before rcaching their destination shall be referred to as tmveling over channels. 
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possible since s is defined to have the minimum. tl of al1 signais ut the heads 

of the incoming channel.s/signal routes and (tl 5 tu) .  The latter case verifies 

that s must be consumed before A and ngrees with Theorem 5.2.1. 

5.2.2 Singly Bound Occurrence Intervals 

In some cases it may not be possible or desirable to  obtain both upper and lower 

bounds of a signal's 01. For example, to obtain both upper and lower bounds on the 

O1 for input signal, i requires that the time output O is generated be propagated 

backwards before the input is processed2. The backward propagation of event 

occurrence times adds a significant amount of complexity to the interpreter. 

It is possible to determine an O1 with only one bound, either the lower or upper. 

The worst-case target system response time. TA,, is required in such cases. Th,, 

may be considered an upper limit on the time at which input i will be legitimately 

serviced by the target system. An event that is serviced after TA,, time units is 

considered a hard real-time failure. 

An O1 for the case where the lower bound is not known can be approximat~d 

as [tu - TA,,, tu].  Correspondingly, the O1 for the case where the upper O1 bound 

is not known is [tl, tl + T;,,l3. 

'OIS are used by the supervisor to order signals. A signal can not be processed by the supervisor 

without an 01. 
3Note that this is an approximation of the actuai 01. I t  is possible that in some cases the 

supervisor would miss reporting some failures as a result of this. In chapter 7 an empiricai 

evaluation of the number of missed failures based on approximated OIS is presented. 
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5.2.3 Generation of Signal Tags 

For target system input or output signals, the O1 of the corresponding signai is 

cornputed based on the signal observation time and the worst case target system 

response time, (TA,,) as described above. 

OIS for interndy generated signals are derived from the stimulus that caused 

the state transition in the PDM-model. Recall that an O1 is a bound of the 

generation/consumption times of all signals generated during a sequence of state 

transitions. As an example, consider the state transition sequence in (5,l) .  The 

occurrence interval for signal i includes the time where i was consumed and O gen- 

erated. Thus it must also include the generation/consumption times of signals, 

intl inta. . . . int,. Thus al l  generated signals inlierit the O1 of the stimulus causing 

the state transition in the PDM-model. 

5.2.4 Timers 

Timers arc used to implement delay and timeout facilities in CEFSM-based spec- 

ifications. Conceptuaily, iimers may be implemented with signal send and receivc 

facilities. As an example, SDL timer set and reset constructs are shown in figure 5.3. 

Timers are supervised so that delay and timeout failures can be detected by 

the supervisor. In an out-of-time supervisor, timers are handled with the aid of 

the OIS described. The semantics of SDL timers dictate that the setting of a timer 

(figure 5.3a) creates a signal, which shail be referred to as a timer signal, and places 

it in the input port of the corresponding process. Timer signals (representing an 

expired timer) are consumed identicdy to other SDL signals (figure 5.3b). The 

resetting of a timer (figure 5.3~) removes and discards an unconsumed timer signal 

from the input port. The tags of each timer signal influence when it is consumed. 
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Figure 5.3: SDL Timer Set/Reset Constructs 

The occurrence interval of a timer signal is a function of three parameters: ( 1 )  

the O1 of the stimulus that caused the state transition in which the timer was 

set. (2) the timeout value of the timer and (3) a parameter, A, which represents 

the tolerance of a timers in the target system. The latter of the tliree parameters 

implies that within thc target system, a timeout will expire after Tout f A units of 

time. For the general timer set operation in figure 5.3a, the O1 of the t i~ner  signal 

is set to [tr + Tout - A, tu + Tout + A]. tl and tu represent the O1 of the signal that 

caused the state transition containing the timer set operation (X). 

Any number of timers can be set by an SDL process. Each timer signal in the 

supervisor is sent to the process input port via a separate, delayed channel. Timer 

channels are no t programmer specified but rat her implici t , used to concep tualize 

the ordering of timer signals within the supervisor. 

As an example, consider a process, Pl that uses two timers, T l  and T2. One 

confi,.;uration of channels leading to Pl is shown in figure 5.4. Unexpired timers 

are indicated by signals pending consumption. For the example shown, T 1 is an 

unexpired timer, while timer T2 is not yet set. 
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CHANNEL N 

: CHANNEL2 

5 r m m n ~ ~ ~  
CHANNEL 1 

5 

CHANNEL T l  

Ezs3 2 
CHANNEL T2 

Figure 5.4: C hannels Carrying Timer Signals 

5.3 Partial-Order Signal Consumpt ion 

The objective of partial-order signal consumption [24,61] is to reduce the nurnber of 

behavioral alternatives that need to be considered. Recd  from section 2.2.2 that 

behavioral alternatives arising from specification non-determinism can be pca.rti- 

tioned into two categories, don? knour and don't care. Partial-order signal consump- 

tion adclresses don't care non-determinism. Its goal is to eliminate consideration of 

don't care non-determinism by the supervisor. 

5.3.1 Application of Partial Order Signal Consumption 

Three common types of SDL non-determinism are addressed in this thesis as out- 

lined in section 2.8. The three types of non-determinism can be sub-divided into 

directly and indirectly specified. 

Directly specified types of non-determinism addressed are spont aneous transi- 
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tions and non-deterministic decisions. -4 specification writer mus t explicitly in- 

troduce one of these ccnstructs. For this reason, directly specified types of non- 

determinism typically fall into the don't know category. In other words, the behav- 

ioral alternatives generated rarely lead to identical behavioral alternatives (or the 

non-deterministic constructs wouldn't have been introduced by the specification 

writer). 

Non-deterministic channel delay is an indirectly specified non-determinisrn as 

SDL semantics dictate delayed channel communication must be used in certain sit- 

uations, beyond the control of the specification writer. In theory, a signal traveling 

on an SDL channel can be delayed anywhere from [O, oo] units of time. However, 

in practice there is typically at least an upper bouud placed on communication. 

From experience, many behavioral alternatives arising from channel delay fall into 

the don't care category as described in section 2.2.2. 

Partial order supervision is thus targeted to reducing the number of don't care 

non-deterrninism arising from SDL channel delay for the context of this thesis. 

5.3.2 Definitions 

Behavioral alternatives arising from SDL channei delay shall be referred to as C- 

behavioral alternatives. C-behavioral alternatives arise as a result of multiple possi- 

ble signal consumption orders. The definition of a C-behavioral alternative appears 

below. 

Definition 5.3.1 (C-Behavioral Alternatives) Let Sp represent  the  partially- 

ordered se t  of  signais u t  the  inpu t  queue of process P. Let Rs = { r l , r z , .  . . , T N )  

represent  t h e  se t  of  N possible total  orders of signals from set Sp b a e d  o n  the FIFO 
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ordering of SDL channels/signal routes and individual signal 01s.  Each member of 

Rs shall be referred to as a C-behavioral alternative. 

The notion of process behavior and process behavior equivalence is now defined. 

This will be used to define behavioral alternatives that lead to identical and different 

observable behavior. 

Definition 5.3.2 (Process-Behavior) Let P' represent a process in the  PDM 

model. in process state + with m outgoing channels and signal routes. Let T repre- 

sent a sequence of signals such that T E Rs. 

b e h p f ( $ ,  T ) ,  the behavz'or of Pt after consumption of signal sequence T ,  is defined 

as  a 2 - h p k :  ($, C )  where: 

?CI represents the process-state of Pt after consurnption of signal-sepuence r 

C = {cl c 2 .  . . k) represents the set of signal sepuences from the alphabet. 

X' U {E) on the emanating channels and signal routes of P f t  generated as the 

signal-sequence T vlas consumed. 

Two process-behaviors are considered identical if: (1) the generated sequerices of 

signals between the two behavioral alternatives are identical and the OIS of corre- 

sponcting signals overlap and (2) the final process-states are identical. 

C-behavioral dternatives may arise fiom don't know or don't care non-determinism. 

Don't know/don't care non-determinkm is defined based on the equivalence of the 

behavior arising fkom the two C-behavioral alternatives. 

Definition 5.3.3 (Don't Care Non-Determinism) Let T I ,  T Z  E Rs represent 

two C-behavioral alternatives. r l  and r2 are said to be generated under don't care 

non-determinisrn if behp(r l ,  $) = behp(r2 ,  $) for a given process state .rl> of P. 
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Definition 5.3.4 (Don't Know Non-Determinism) Let  r l ,  r2 E Rs represent 

two C-behavioral alternatives. T I  and r2 are said to be generated under don? Xnow 

non-de tennin i sm i f  b e h p ( r l ,  $) $ behp(rz, $) for a giuen procew state $ of P.  

From experience, many of the behavioral alternatives arise from don't care non- 

determinism in a SDL supervisor [39]. The foilowing claim, stated without proof 

due to its obviousness, is the b a i s  to a substantial reduction of time and/or space 

complexity in a software supervisor. 

Claim 5.3.1 (Partial-Order Signal Consumption) AII legitimate, speczfied be- 

haviors can be considered by s imulaf ing only c-behavioral alternatives generated .un- 

der don? Xxow non-determiniSm. 

Not ail behavioral alternatives need be considered [36]. Behavioral alternatives 

arising from don't care non-determinism can be pruned fkom the search space. One 

approach for pruning such behavioral alternatives in a supervisor is described in 

the subsequent section. 

5.3.3 An Implementation of Partial-Order Signal 

Consumption 

This section describes an irnplernentation of partial-order signal consumption. There 

are two principai categories of existing work on this subject, both differing in tlieir 

target application. The e s t  is with application to verification [28]. However, it is 

not immediately applicable to supervision since it does not address the reai-time 

aspects of supervision. The second category is focused on automatic generation 

of test cases for SDL specifications [59]. However, the work does not address the 
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non-determinism associated with SDL channel delay. In other words, it assumes 

SDL specifications to have a constant SDL channel delay, an assumption not valid 

for the context of t his work. 

A spectrum of algorithms to reduce consideration of dun't care behavioral al- 

ternatives can be envisioned. At one end is a time-intensive algorithm that uses 

a generate-and-tes t approach to determine if behavioral alternatives were gener- 

ated under don't care non-determinism. This is the approach used in belief-based 

supervision for example. At the other end of the spectrum is a space-intensive 

approach that uses a look-up tabIe, indexed by the behavioral alternative. The 

table facilitates a 0(1) determination if two behavioral alternatives were generated 

under don't care non-determiaism. However. the approach has an enormous space 

requirement. Neither of the two approaches are well suited to the problem at hand. 

A liybrid approach is needed. 

In general, there is a tradeoff between the time and/or space complexity of the 

approacli and the reduction in the number of don't care behavioral alternatives 

considered. 

TIie partial-ordcr approach described capitalizes on the observation that a given 

signal s in the input port of a process in the PDM-mode1 is permuteable with a 

finite number of signais. This follows from the discussion of OIS in section 5.2. In 

addition, many SDL specifications have only a few States in which a signal can be 

consumed to result in a different behavior. 

These two properties are combined into a redundant permutation distance (rp- 

distance). The rp-distance represents the minimum distance, measured in state 

transitions, before a transition is reached where an SDL signal can be consumed 

dxerently than in the curent state. The formal definition of rp-distance follows. 
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Definition 5.3.5 (rp-distance) Let P' be a process in the PDM model in process- 

state and A' the input and output alphabet of P'. A" thus represents the set of 

ail possible input signal sequences of  P'. For signal s f A'! the rp-distance. r p -  

dis t (P ' ,+,s )  iç defined m the m i n i m u m  length of a signal sequence X E A'' such 

that: 

where sX  denotes the concatenation of signal s with a signal sepence  A. If no such 

sequence exists, rp-dist(  P t ,  .JI, s )  = m. 

Note that rp-distance is rzot defined for signal-process state pairs where the signal 

is not consumable (i.e. where the SDL signal is saued). 

The rp-distance is enumerated for each process-state and each stimulus in the 

PDM model. Its significance is that it can be used to reduce redundant signal 

permutation in the PDM. If the niimber of signals in a set whose order is not 

known (i.e. the consumable signal set) is less than the rp-distance of any signal in 

that set, permutation is redundant. 

State/rp-distance pairs are tabulated for each process in the PDM-model. Such 

a table is called a partial OT&T distance table (POD-table) and constitutes the static 

information used by the partial-order approach. 

The rp-distances for all stimuli of the PDM-mode1 fragment in figure 3.3 are 

shown in table 5.1. 

As an example of the derivation of the table consider process state SO and 

signa1 X. In the PDM-model, the closest state (in state transitions) where can be 

consumed with a different behavior than in state SO is SI. The distance between 

SO and SI is one state transition. Thus the rp-distance of signd X in state SO is 
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one. Consider signal Z as a second example. The behavior of the PDM-mode1 will 

be identical irrespective of the state in wliich Z is consumed. Tlius, a state tliat 

Process S tate 

S O 
SO 
S O 
S O 
S O 
S 1 
Si 
S1 
S1 
sr 
S 3 
S 3 
S 3 
S3 
S3 

resiilts i~ a diferent beliavior does not exist and as a result the rp-distance of Z in 

any state is m. 

5.4 Belief Method 

Table 5.1: Example: Partial Order Distance Table 

Signal 
a 
b 
X 
Y 
z 
a 
b 
X 
Y 
z 
a 
b 
X 
Y 
z 

Two approaches have been described to deal with some aspects of specification non- 

determinisrn thus far. The PDM-mode1 facilitates identification of the behavioral 

alternative chosen by the target system while partial order signal consumption 

prunes behavioral alternatives that do not lead to different external behavior. The 

mechanisms facilitate efficient handling of specification non-determinism. However, 

they are not able to resolve the behavioral alternative chosen by the target systern 

rpdistance 
1 
1 
1 
I 
00 

2 
1 
L 
1 
00 

1 
2 
1 
1 

00 
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in all circumstances. The supervisor resorts to the belief method if both of the 

ot her approaches fail (i.e. more t han one unresolved behavioral alternative exists) . 

The belief method was discussed in section 3.2.1. It is a conceptually elegant 

approach for deaIing with all types of non-determinism. Thus it is more generd 

than the PDM-mode1 and partial-order signal consumption. However, it has a much 

larger time and space complexity. 

The PDM generates a belief for each unresolvable behavioral alternative. This 

occurs in two cases. The first case is where the queuing order of two or more signals 

cannot be determined (figure 5.la). In this case. a belief is generated for each 

possible signal queueing order (cg.  for the example shown, A.B and B.A) .  The 

second case is where the PDM-mode1 contains an ANY construct. as described in 

chapter 4 (figure 5.lb). In this case? a separate belief is created for each emanating 

path from the ANY construct. 

Figure 5.5: Generation of Beliefs 

Beliefs are treated as separate threads of execution. They are terminated in 

one of two cases: (1) if the behavior represented by the beiief does not match the 

externally observed behavior and (2) if n beliefs represent identicd global states 

of the hierarchicd supervisor (Le. PDM and BSup), n - 1 of these beliefs are 
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terminated. Note that in the latter case, the supervisor may require processing of 

the n beliefs for a fiaite period of time before it can determine that n - 1 of the 

beliefs are redundant . 

5.5 Core Interpreter 

The PDM interpreter closely resembles the abstract machine of SDL [58 ] .  This sec- 

tion begins with an overview of the relevant portions of the SDL abstract machine. 

It then describes the key aspects of the PDM abstract machine. 

5.5.1 SDL Abstract Machine 

The semantics of SDL are formally defined by means of an abstract machine. The 

SDL abstract machme consists of six types of CSP [27] processes. executing concur- 

rent Iy and communicating synchronously. Figure 5.6 iliustrates eacli of the process 

types and the communication between them. An overview of the functionality of 

each SDL process foilows. Note that discussion focuses on the supported subset of 

SDL as outlined in section 2.8. 

system: Responsible for creating other process instances in the abstract ma- 

chine. It also routes signals between SDL processes. 

paéh: Handles the non-deterministic delay of channels. 

timer: Keeps track of curent  time and handles time-outs. 

sdl-process: An SDL interpreter. One iostance of this process exists for each SDL 

process in the specification. 
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t Signal-Deliverd 

Timer- 
Timer- Request 
A N W ~ ~  

Figure 5.6: SDL Abstract Machine 
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input-port: Handles the queueing of signais for an SDL process. One instance of 

input-port exists for each sdl-process instance. 

view: Keeps track of all revealed variables. Implements communication between 

sdl-processes by means of shared memory. 

This process represents functionality of SDL not addressed in this work and 

is not discussed further. 

5.5.2 PDM Abstract Machine 

The PDM abstract machine is s i d a  to the SDL abstract machine described. The 

difference between the two arises principally from the treatment of spccification 

non-determinism. 

The SDL abstract machine may arbitrarily choose a single behavioral alternative 

from the set of possible alternatives arising from specification non-determinism. The 

PDM abstract maclfine is required to identify and choose the behavioral alternative 

followed by the target systcm. 

The PDM abstract maclune drffers in three respects from its SDL counterpart. 

Firs t , as dcscribcd prcviouslg., mos t bchavioral altcrnativcs arisc from a numbcr of 

possibIe signal permutations a t  tlie input port. As a result, the input port of the 

PDM abstract machine significantly dXers from its SDL counterpart. Second, in 

some cases, the PDM will not be able to resolve the selected behavioral alternative. 

Beliefs were proposed as a way of dealing with this. Thus the PDM abstract 

machine must provide support for belief creation, management and termination. 

Finallÿ, to support out-of-time processing of signals, the PDM abstract machine 

tags all signals with their OIS. 
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The process interaction diagram of the PDM abstract machine appears in fig- 

ure 5.7. A textual summary of each process type in the abstract machine follows. 

The descriptions highlight the difierences between the PDM and SDL abstract ma- 

chines . 

Pid-Cmtrd. \ 
Failure Report ' 

QueueSignaI. 
Duplicate, 

Terminate-Belief 

Terminate-InPort. 

Rqister-Belicf. 
Rqkîer-Belicf, Terminale-Belief 

Set-Belid Set-Belief 
PDM- 

Tomrom BSup 

Figure 5.7: Path Detection Module Abstract Machine 

system: Creates, manages and terminates beliefs. Timestamps ail signals gen- 

erated by the environment with an occurrence interval. Handles routing of 

signals fiom the PDM to the BSup. Note that the PDM abstract machine 

only supports static SDL process creation. 

path: Communicates signals traveling over SDL channels to their appropriate des- 
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tinations. Note, unlike its SDL counterpart, the path process does not output 

signals t O the environment. 

timer: Keeps track of curent  time and handles time-outs. 

PDM-process:  An SDL interpreter. The only clifFerence between the SDEprocess 

and PDM-process is that all paths are foilowed by the PDM-process when 

executing an ANY construct by generating one belief for each emanating 

path. 

input-port: Orders signals for consumption according to a corresponding order 

chosen by the target system when the order can be determined. Creates 

beliefs when the exact order cannot be determined. 

Belief Creation/Termination 

As outlined in section 5.4, beliefs are generated in response to unresolvable behav- 

ioral dternatives. In the hierarchical supervisor, the PDM is used to resolve the 

behaviord alternative chosen by the target system. As a result only the PDM cre- 

ates beliefs. Beliefs are terminated when the extcrnal behavior represented by the 

bclief doesn't match the expected behavior from the target system. Thus bclicfs 

may be terminated either by the PDM or BSup. 

Within the abstract machine, beliefs may be created by either the PDM-process 

or the input port as described. The control s ipals  exchanged by the processes when 

creating beliefs in these two cases are shown in figures 5.8a and 5.8b respectively. 

Beliefs may be terminated by either the BSup or input port. The control signals 

exchanged under these scenarios are shown in figures 5.9a and 5.9b respectively. 
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(a) PDM Process Initiated (b) Input Port Initiated 

P D M A M  PDhl AM P D M A M  PDM AM PDM AM PDM AM 
BSupAM System PDhl Process Input Port BSupAM System PDM Procm Input Pon 

Figure 5.8: Belief Creation 

- 

Note that all SDL processes in a belief are terminated. Figures 5.9a aud 5.9b show 

only one process being terminated as others receive identical signals. 

- 1 1 1 - - 

(a) BSupAM Iniiiated (b) Input Port Iniriated 

PDhI AM PDM Ab1 PDM Ah1 PDhf AAM PDM AM PDhI AXI 
BSupAM Sysrcm PDM Process Input Pon BSup.4Xl System PDhI Process Input Port 

Figure 5.9: Belief Termination 
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The belief creation/termination facilities were originally described and formal- 

ized in [39] to which the reader is refeired for further information. 
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The supervisor processes target systern input and output signals out-of-time as 

described in section 3.4.2. Signals generated at time t may be potentially processed 
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lags the dock of the target system by at least Tm,, units of time. 

The actual time within the PDM or the vatue of the PDM's clock is defined 

in this section. The clock of the PDM is advanced as signals are consumed. Thus 

the PDM clock is derived from the timestamps of the signals in the input ports 

of its SDL processes. Individual processes represent executions at different points 

in tirne, depending on how the processes are scheduled. Thus the time witliin the 

supervisor is defined at twn levelç: (1) a process leveI and (2) a global level. The 

definitions appear below. 

Definition 5.5.1 (PDM Process Time) Let P represent a PDM S D L  process. 

in process d a t e  a: and S the set  of signals queved i n  i t s  i npu t  port. K W the con- 

sumable signal set and Kt  a subset of K where al1 signals in se t  K' are consumable 

in the curent state ( i e .  n o t  in the Save set)  (K' Ç K C S ) .  T h e  process t i m e  of 

P (Tp) is an interual: Tp = [TF,, Th] where: 

Tp, = minimum occut'rence interual lower bovnd of a signal, sl E K' 

Th = m a x i m u m  occurrence interual upper bound of a signal, sz E K t  

For n, proceas P if set  K' i s  empty  its process time i s  undefitzed. 

The process time ranges over an interval due to the uncertainty of the actual gen- 

eration/consumption time of signais in the target system. The process time is 

undefined for processes with zero signals in their consumable unsaved signal sets 

(CUSSs). Process tirnes are consolidated into a PDM global time, defined below. 

Definition 5.5.2 (PDM Global Time) For a set of SDL processes, G,  the global 

t ime  of G (Tc,,,,) is a n  interval, TG,D,~f = [TGi,TC,] where: 
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a TGt = minimum occurrence interval lower bound of a process, Pl E G having 

n defined process time 

TGh = maz in~um occurrence interual vpper bound of a process, Pz E G having 

a defined process time 

If al1 processes, P E G have undefined process times, the global time is undefined 

as well. 

5.5.3 PDM Input Port 

The central part of the PDM abstract machine is the input port. The input port 

orders signds for consumption. It takes into consideration the FIFO constraints 

imposed by the channels and signal routes of the specification as weii as the signal 

occurrence intervals. Thus for n signals, only a subset of the n! signal orders 

typicdy need be considered. 

The core of the input port is a sorting algorithm that orders signals in the 

consumable signal set (CSS), defined in section 5.2.1. Signals in the Save set are 

removed from the CSS to form the consumabIe unsaved signal set (CUSS). Signals 

in the CUSS are candidate signals to be consumed in the current state. 

The input port is described as two parts. The first part (Algorithm QueueSig- 

nul()) deals with the queueing of signals and preservation of the FIFO signal orders 

imposed by chalinels and signal routes. The second part (Aigorithm Consumes- 

ignal()) output s signals to the corresponding SDL process for consump tion. The 

discussion tegins with a description of the major type and datastructure definitions 

followed by the actual algorithms. 
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Type Definitions 

signal-names symbolic signal names consumed/generated by SDL process P 

O1 the occurrence interval type as defmed in section 5.2 

signal represents an SDL signal. signal has the foilowing sub-fields: 

name symbolic signal name of type signal-name 

sender pid of sender process 

receiver pid of receiver process 

origin source of the signal (i.e. PDM/BSup/environrnent ) 

O1 occurrence interval 

parameters associated signal parameters as defined in the PDM-mode1 

PS the process states of P 

time an interval ranging over a period of time 

Datastructures 

Datastructures principdy store incoming signais to the signal routes/ channeis. It 

is assurned that an SDL process has n incoming chônnels and/or signal routes. 

q a sequence of elements of type signal. c; represents the sequence of signals on 

an incoming channel or signal route i (1 5 i 5 n). As signals are consumed 

they are removed from the head of c;. Note that ci may be empty. 

C a set of sequences of type signal. C = {CI, cz, . . . cm) 
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J a sequence of signals- Contains a copy of the signais at the heads of the incoming 

signal channels/signal routes. J is kept sorted based on the lower bound of 

each signal's occurrence interval. 

P O  D T ( a )  (s) partial order distance table, an array indexed by the cu ren t  process 

state ( a )  and signal (s), returning the partial-order distance. 

TPDM Global time of the PDM 

WTT-belief a pointer to the current beiief of the process 

Opera t ions  

comm-path id ( s  : signal) accepts as input a signal s 'and rcturns c;. the incoming 

communication path traversed by s where c; E C. 

x f i  y sequence concatenation. x and y represent sequences. The function returns 

the concatenation of x and y. 

Queue Signal Algorit hm 

Thc qucuc signal algorithm is responsible for queueiltg sigrials iri a datastructure 

that preserves the FIFO order of SDL channels/signal routes (ci). It also updates 

J. a copy of the signals at  the heads of the incoming channefs/signd routes. 

Consume  Signal Algori thm 

The consume signal algorit hm orders signals for consump tion. 1 t implement s partial- 

order signal consumption and creates beliefs when uncertainty exists as to the actual 

ordering of signals. 
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Algon'thm QueueSignal(C : sigdsequenceset,  J : sigddequence, s : signal) 
1. c; = comm-path-id(s) 
2. if (c; == empty) 
3. insert s, into J based on the lower bound of each signal's OZ 
4. end if 
5. append s tu the tail of c; 
6. return(C, J) 
end Algorithm 

Figure 5.10: Input Port Queue Signal Algorithm 

Due to the complexity of the algorithm, a flowchart of the algorithm appears 

in figure 5.11. The actual algorithm appears in figure 5.12. A textual summary of 

t he algori t hm follows . 

Consume Signal Algorit hm Description 

lines 1-2 Construct the consumable signal set (see definition 5.2.2) 

lines 3-6 Check if the global time has advanced past the process time. If so. no 

signal ever will arrive aiiowing the signds in the input port to be consumed. 

The current belief is terminated. 

line 7 The consumable unsaved signal set (CUSS) is generated for the current 

process state. 

lines 8-16 A check is made if the partial-order distance of each unsaved consum- 

able signal is p a t e r  than the total number of unsaved consumable signals If 

so the order of signal consumption is arbitrary and flag is set false to indicate 

this. 
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i ina 1-2) 

that m y  be consurned in 
current sute based on 01s 
and channe11 signal mure 

ordering 

signals O1 ? v 
Elirninate al1 signals frorn 

consurnable signai set 
whose cosumption order 

is arbritruy. LJ 
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in consurneable signal 
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consurnable signal scr 
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signai in the current belief 
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END 

Figure 5.11: Consume Signal Algorithm 
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Algorithm ConsumeSignal(C : s i g n a l s e q u e n c e s e t ,  J : s igna l sequence ,  
a : p r o c e s s s t a t e ,  Tc,,,, : t irne) 

1. a = head(J) 
2. construct J1 and Jh such that J = J1 - Jh.  The OIS of al1 signals in JI overlap 

with a and the O h  of al1 signals in .Th do not overlap with the 01 of a 
3. i f  (TGp,,, does not overlap with the OI of any signal in J l )  
4. o u t p u t  (Terminate-Belief) 
5. exit Algorithm 
6. end i f  
7. let Ji represent the unsaved signals for process state, a in Ji ordered as in Jr 
8. let N = number of elements in  Ji 
9. flag = false 
10. for each v of type s i g n a l n a m e  
11. i f  (a at least one signal ( s )  of type v exïsts in  JI) 
12. i f  ( P O D T ( c ) ( s )  < N )  
13. flag = true; 
14. end if 
15. end i f  
16. end for 
17. cb = curr-bel ief  
18. if (ftag == t r u e )  
19. for (index = 2 to N )  
20. o u t p u t  (Register-Belief) 
21. o u t p u t  (Send-Signal(Jf ( index) )  
22. (C l  J )  = DeQueueSignal(C, J ,  J; ( index) )  
23. o u t p u t  (Set-Belief(cb)) 
24. end for 
24. end i f  
25. o u t p u t  (Send-Signal(Jf(1)) 
26. (Cl J )  = DeQueueSignal(C, J, J i (1 ) )  
27. return(C, J )  
end Algorithm 

Algorithm DeQueueSignal(C : s i g n a l s e q u e n c e s e t ,  J : s igna l sequence ,  s : signal) 
1. remove signal s from J 
2. c = comm-path-id(s) 
3. delete-head(c) 
4. if (c # empty) 
5. x = head(c) 
6. insert x, sorted into J based on the lower bound of each signal's 01 
7. end i f  
8. return (C, J )  
end Algorithm 

Fi,o;ure 5.12: PDM Input Port Signal Consumption Algorithm 
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lines 18-24 If Jag is true, a separate belief is created for each possible signal 

consumption order. 

lines 25-26 The final signal is consumed in the current belief. 

DeQueue Signal Algorithm Description 

lines 1-3 the signal to be consumed is removed fiom the interna1 signal list (J) 

and from the incoming channel/signal route 

lines 4-7 if the cliannel/signal route carrying the signal to be consumed is not 

empty, the subsequent signal is added to the consumable signal List. 

5.5.4 Cornplexity Analysis 

The analysis e d u a t e s  the asymptotic time and space complexity of the major 

algorithms associated with the input port. A definition of the notation used in the 

analysis is presented first. The analysis omits discussion of portions of algorithms 

wliose complexity is O( 1). 

c: the maximum number of incoming channels and signal routes to a SDL process 

(Le. fan-in) 

t:  the number of signal types consumed/generated by the SDL process (Le. the 

cardinality of signal-name) 

B: the number of beliefs generated. An analytical expression will not be presented 

for B as it is highly application-specific. However, B is a function of the 

specification, the PDM-mode1 and the operational proHe. 
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N: maximum number of signals queued within the PDM. IV is principally a function 

of the load on the target system and the SDL çpecification. 

Queue Signal Algorithm 

The essential function of the queue signal algorithm is to insert signals into a sorted 

list (J). The list contains at most one signal from each channel/signal route ( c ) .  

The algorithm is calied for each signal queued (N)  and is executed once per belief 

( B ) .  As a resdt. the wcrst case running time complexity of the algorithm is given 

by 5.2. 

DeQueue Signal Algorithm 

The running-time complexity of ai l  lines in the DeQueue Signal algorithm are O(1) 

except f ~ r  line G wliich performs an insert into a sorted list. Thus the algorithmts 

running-time complexity is given by 5.3. 

T P D M - I P D ~ ~ ~ ~ ~ S ; ~  (B. N ,  C) = O(B N log c) 

Consume Signai Algarithm 

line 2 a linear search and copy exaniines each element in J .  The worst case size 

of J is c elements resulting in a running time complexity of O(c) 

lines 3,7 linear search of a l l  elements in ,Tl. The maximum size of Ji is identical 

to J, resulting in a running-time complexity of O(c).  
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Iines 10-16 a search of JI is performed t  times. Thus the running time compIexity 

of the outer loop is O(t log c )  

Iines 19-26 For each belief generated, a c d  is made to the DeQueue algorithm. 

A maximum one belief per element in JL is created. Thus the ïunning time 

complexity becomes O(c - logc) 

The running time complexity of the consume signal algorithm is dominated by 

Lines 10-16 and 19-26. The algorithm is repeated for each signal consumed (N)  and 

for eacli belief generated ( B ) .  Tlius. the overall running-time complexity is given 

by 5.4. 

5.5.5 Computational Complexity of the Input Port 

The computational complexity of the input port is dominated by the consume 

signal aigorithm. This makes intuitive sense since tliis is the most sophisticated of 

all algorithms. Tlius the complexity of the input port is given by 5.5. 

5.5.6 Scheduling Process Execution within the PDM 

SDL processes in an SDL specification execute concurrently [62]. For a given spec- 

ification, many execution interleavings exist. Two or more execution interleavings 
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may result in different observable behavior. The supervisor, as described. considers 

the execution of SDL processes sequentially. 

Scheduling of SDL processes within the supervisor must t herefore take into 

consideration that alternate scheduling orders may result in different externally ob- 

servable behaviors. Behaviord alternatives arising from different process execution 

orders may be classified and dealt with similarly to behavioral alternatives arising 

from signal consumption orders. Don't know alternatives result in different ex- 

ternally observable behavior wMe don't care alternatives do not. Beliefs need be 

created to consider don't know process scheduling orders. 

From experience. the majority of SDL process scheduling alternatives do not 

rcsult in different ex terndy observable behavior. The intuitive explanation beliind 

this is that the consideration of dternate scheduling orders adds to the cornpIex- 

ity of the specification. This makes the specification more difficult to understand 

and impedes its central purpose: unambiguity and understandability to aU par- 

ties involved with the software development effort, from the customer to software 

developers and testers. 

The implication of incorrectIy scheduling the execution of processes within the 

PDM is that the hierarchical supervisor will generate false failure reports. An 

analysis was done on the class of systenis described. It was determined that the 

scheduling order c m  be approximated by scheduling processes based on their pr* 

cess times. A total scheduling order can be imposed if the process times do not 

overlap. Processes with overlapping process times are ordered heuristically. 

Processes that are about to consume signals from the environment are exe- 

cuted before processes that are about to consume internally generated signals, such 

that all internally generated signals are generated before processing begins. The 
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scheduhg algorithm appears in the subsequent section. 

PDM Process Scheduling Algorithm 

Scheduling of processes within the PDM is done by the system process in the PDM 

abstract machine. The scheduling algorithm maintains a list of SDL processes 

ready to execute (i.e. SDL processes having at least one unsaved signal in their 

consumable signal set). The fust process P on the scheduling list is removed and 

executed provided that the upper bound of P's process time ( tu)  is greater than 

the current time (Le. t, < Tc) (see section 3.4.2). 

The scheduling algorithm accepts the parameters defined below as input. It 

returns an updated scheduling list, L. The algorithm appears in figure 5.13. 

P : process to be scheduled 

L : ordered process scheduling list 

Algorithm SchedulePmcess(P : process, L : Scheduling List) 
1. let X represent a 3-tuple: < P, P.tl, P.&, > 
2. insert X znto L sorted in ascending onier based on tr 
3. r e - s d  L such that Ptuples with ouerlapping 01s having signals from their environment 

in the+ znput queue appear before processes having intemal signais in their input que 
4. retur?l(L) 
end A l g h t h m  

Figure 5.13: PDM Process Scheduling Algorithm 

Running-Time Complexity 

Let Np represent the numba of SDL processes in the PDM-model. N the number of 

queued signals within the PDM and B the number of maximum beliefs generated. 
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The maximum size of L is Np.  A sorted insertion into L has a running-time 

complexity of O(1og N p ) .  The scheduling algorithm is executed after each signal 

consumption. Scheduling is re-computed for each belief independently. Thus the 

overall running-time complexity of the algorithm is given by 5.6. 

5.6 Time and Space Complexity of the PDM 

The complexity analyzed based on the dominant algorithrns described (i.e. Con- 

sume Signal and Schedule Process). The time and space complexities are presented 

individually. 

5.6.1 Running-Time Complexity 

For each signal within the PDM, internalally or externally generated. the Consume 

Signal and Schedule Processes are invoked. The algorithrns are invoked once per 

belief. Based on equations 5.5 and 5.6, the overall running time complexity of the 

PDM is given by 5.7. 

5.6.2 Space Complexity 

The space complexity of the supervisor is largely dependent upon the number of 

beliefs generated (B). Each belief makes a duplicate of each signal(N), the state of 
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each process P, and the scheduling list Np.  Thus for a specification of size S1 the 

space complexity of the PDM is given by 5.8. 



Chapter 6 

The Base Supervisor 

This chapter describes the base supervisor (BSup). Like the PDM, the base su- 

pervisor consists of a BSup-model, obtained from the requirements specification by 

transformation, and a BSup-interpreter. 

The section begins with a discussion of the BSup-mode1 transformation process. 

A high-level overview of the BSup interpreter is presented next. followed by a 

discussion of time within the BSup. The BSup interpreter is then described in 

detail. Major algorithms and their time/space complexities are presented. 

6.1 The Base Supervisor Mode1 

As described in chapters 4 and 5, the objective of the PDM is to steer the execu- 

tion of the BSup. Unlike the PDM, the BSup makes use of an almost-unaltered 

requirements specification. 

The PDM steers BSup execution by specifying the signal consumption order that 

would lead the BSup dong the determined path. In two cases, the path chosen by 
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the BSup does noi: depend on the signal consurned. Execution of the SDL AlVY or 

NONE constructs directs a SD L specification dong a non-deterministicdy chosen 

path. 

Two transformations are used to allow the PDM to steer the BSup in both 

of these cases. The transformations appear in figure 6.1. The ANY construct is 

replaced by a state transition for each emanating path (figure 6. la). Signals causing 

the state transitions (ANY-Pi ,  ANY-PZ ANY-Pnj are generated solely by the 

PDM and are not matched with a signal generated within the BSup. Simiiarly. 

spontaneous transitions are replaced with signal transitions initiated by the PDM 

Directives that are not matched s h d  be referred to as non-matchable directives. 

(a) ANY Transformation 

'2 - - 
-j * *FI I none-pl " none-Pni TI i= 

I I 

(b) none Transformation 

Figure 6.1: Base Supervisor Mode1 Transformations 
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6.2 Base Supervisor Interpreter Overview 

The BSup abstract machine is similar to the SDL abstract machine. However. 

differences arise kom the ditference in purpose of the BSup abstract machine. that 

is detailed behavior checking. The major ciifferences between the SDL and BSup 

abstract machines are outlined below. 

Time: The BSup abstract machine is an out-of-time SDL interpreter. All sig- 

n a l ~  are tagged with OIS as in the PDM. OIS are used to order signals for 

consump tion. 

Belief Processing: The BSup indudes facilities for belief generation. manage- 

ment and termination. Beliefs are created under the direction of the PDM. 

however they may be terminated kom within the BSup (as well as within the 

PDM). 

Comparat or: Wit h reference to figure 3.4, the comparator implements the ex- 

pected/observed behavior buffers and the matcher functionality. Its function 

is to compare expected and observed sipals  generated by the BSup and target 

system respectively and terminate the currently executing belief if a match 

cannot be made. 

Path-Direction: Signals to be consumed by a BSup process must match with 

path-directives generated by the PDM. The BSup interpreter includes facil- 

ities for matching path directives £rom the PDM with signais in the BSup 

queued for consump tion. 

The remainder of this chapter describes the BSup abstract machine. The discus- 

sion begins with a description of time in the supervisor. A process-Ievel description 
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of the BSup abstract machine is presented next. The  major algorithms of the ab- 

s tract machine are subsequent d y  presented dong wit h their associated time and 

space complexities. 

6.3 Time within the Base Supervisor 

The BSup makes use of signal occurrence intervals, simiIar to the PDM. Each signal 

is tagged with an 01: rug ing  over an interval, that represents when the signal was 

generated and/or consumed. OIS within the BSup are derived in identically as in 

tlie PDM (discussed in section 5.2). SDL timers are implemented with the aid of 

OIS and operate as described in section 5.2.4. 

The notions of process and global time are dcfined for tlie BSup as done for the 

PDM. The BSup-specific versions of the definitions follow. 

Definition 6.3.1 (BSup Process Time) Let P represent a BSup SDL process 

in process d a t e  u, and S the set of s i p a l s  queued i n  the input port of P .  K is 

the consurnable signal set and K' a subset of K where al1 signais in set K' are 

consurnable in the c.i~rrent state (i.e. no t  in the SDL Save set) (Kt  Ç K C S ) .  The 

process t ime  of P ( T p )  is a n  interval: Tp = [Tp,, Tp,] where: 

Te = m i n i m u m  occurrence interual lower bound of a signal, sl E K' 

Tp,, = m a s i m u m  occurrence interual upper bound of a s i p a l !  sa f K' 

For a process P if set Kr is empty ifs process t ime is undefined. 

Unlike the PDM, a BSup input port must process signals generated within the BSup 

(or from the environment) in addition to signals generated by the PDM. Note that 

process time is not infiuenced by the path-directives generated by the PDM. 
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Definition 6.3.2 (BSup Global Time) For a set of SDL processes, G ,  the global 

t ime of G (TGBSup) i.9 defined over a range TG = [TG*, TG,] where: 

Tc, = m i n i m u m  occurrence .interval lower bound of a process, Pl E G having 

a defiraed process time 

0 Tc, = maximum occurrence interna1 upper bound of a process, Pz E G having 

a defined process time 

If al1 processes, P E G have unde f i ed  process times, the global t ime is nndefcned 

as .well. 

6.4 Behavior Supervisor Interpreter 

The BSup interpreter is specified as an abstract machine, based on the SDL ab- 

stract machine (figure 5.6). The BSup interpreter, as described, does not implement 

the functionality associated witli the view process. The comparator process is in- 

troduced to match expected and observed signals (figure 3.4). The BSup abstract 

machine process interaction diagram is shown in figure 6.2. A brief description of 

the functionality of each process follows. 

system: Creates manages and terminates beiiefs. Tags all signals generated by the 

environment with an 01. Note that the BSup abstract machine only supports 

static SDL process creation. 

path: Stamps ail signals with the traversed channel ID. Does not delay signals iike 

its SDL abstract machine counterpart. 

timer: Keeps track of curent  time and handles time-outs. 
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Tomrom BSup 

Q.c..~,,. 4 
Dupliaie, Terminate-Beiid 

Terminale-Beliet 

Terminatc- Signal-Detivered 

From Env. 

Terminate-InPort, 

Terminate-Beiief 

Tirner- 
Answer 

timer ii 
Figure 6.2: Base Supervisor Abstract Machine 
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BSup-process: An SDL interpreter. Identical to the SDL abstract machine with 

one exception: no support is provided for execution of ANY or none constructs 

(see section 6.1). 

inpüt-port : Maintains two groups of signals: (1) signals generated by the environ- 

ment and internally within the BSup and (2) signals generated by the PDM. 

Orders signals for consumption according to order prescribed by the PDM. 

comparator: Queues signals for matching. Terminates the current belief if a 

match between expected and observed signals cannot be made. 

6.4.1 Belief Creation/Termination 

As indicated previously, belief creation is initiated only by the PDM. A belief 

created by the PDM requires the BSup to create a matching belief. Both the 

PDM and BSup process the same belief at all times. Beliefs may be terminated by 

either the PDM or BSup. If, for example, a belief is terminated by the BSup, the 

corresponding belief must be terminated witllln the PDM and vice-versa. 

Within the BSup, beliefs are terminated by eitlier the input-port or comparator. 

The input-port terminates beliefs in one of two cases. First, if the path prescribed 

by the PDM cannot be followed due to missing signals (i-e. a path directive cannot 

be matched with any signal in the BSup). Second, if spurious signals have been 

generated by the environment that do not correspond with the path prescribed by 

the PDM (i.e. a signal in the BSup cannot be matched with any path directive). 

The comparator terminates beliefs if a match cannot be made between the contents 

of the expected/observed behavior queues. 

The belief generation/termination protocol used in the BSup is identical to that 
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used in the PDM. As an example, the reader is referred to figures 5.8 and 5.9. 

The following sections descnbe the novel aspects of the BSup interpreter. The 

discussion begins with the comparator foilowed by the BSup input port. The dis- 

cussion concludes with a commentary on BSup process scheduling. 

6.5 Comparator 

The functions of the comparator are: (1) to store signals in a pair of observed / 
expected behavior queues and (2) to compare the contents of the two queues. If a 

match of the contents of the two queues can be made, the contents are annihdated. 

If a match cannot be made, the current belief is terminated. 

The comparator is presented as two algorithms. The Queuesignal algorithm 

determines the source of signals and queues them in either the expected or observed 

behavior queue. The ProcessContents algorithm matches signal contents of the two 

queues. Tlie two algonthms appear in figures 6.3 and 6.4. A description of the 

major datastructures used by the algoritlims follows. 

OBQ: Observed behavior queue. A queue of elements of type signal. 

EBQ: Expected behavior queue. A queue of elements of type signal. 

TesUp: global time of the BSup. 

6.5.1 Queue Signal Algorit hm 

Tlie QueueSigna2 algorithm accepts as input the EBQ, OBQ and a signal to be 

queued. It returns the new EBQ and OBQ after the signal has been queued. The 
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algorit hm appears in figure 6.3. 

Algorithm QueueSignal(EBQ : signal-queue, OBQ : signal-queue, s : signal) 
1. if (source(s) == environment) 
2. append s to OBQ 
3. else 
4. append s to EBQ 
5. end if 
6. return (E BQ, O BQ) 
end Algorithm 

Figure 6.3: Comparator Queue Signal Algori t hm 

6.5.2 Process Contents Algorit hm 

The process contents algonthm compares the contents of the expected/observed 

behavior queues. It accepts the EBQ, OBQ and the global time of the BSup as 

input. It returns the new EBQ and OBQ. The algorithm appears in figure 6.4. A 

textual summary of the algorithm follows. 

line 1 the algorithm attempts to match the entirc contents of the EBQIOBQ 

lines 4-6 matching signals in the EBQ/OBQ are uiniliilated 

lines 7-9 if a match cannot be made the current belief is terminated 

lines 12-16 if the EBQ is not empty and the global time of the BSup lias advanced 

past the O1 of the signal at  the head of the EBQ, the current signal wiU never 

be matched. The current belief is terminated. 

lines 17-23 if the OBQ is not empty and the global time of the BSup has advanced 

past the O1 of the signal at the head of the OBQ, the current signal will never 

be matched. The current belief is terminated. 
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Algorithm PmcessCon tents(E BQ : signal-queue, OBQ : signal-queue, TG,,", : t ime) 
1. while( (EBQ # e m p t y )  and (OBQ # e m p t y )  ) 
2. x = head(EBQ) 
3. y=head(OBQ) 
4. if ( (x.name = y.name) and (x. OI overlaps with y. OI) ) 
5. delete( head(EBQ) ) 
6. delete( head(0BQ) ) 
7. else 
8. o u t p u t  (Terminate-BeIief) 
9. exit Algorithm 
10. end if 
11. end while 
12. i f  ( EBQ # e m p t y  ) 
13. if ( head(EBQ).OI.t, < TGBSup .tl ) 
14. o u t p u t  (TerminateBelief) 
15. exit Algonthm 
16. end if 
17. end if 
18. if ( OBQ # e m p t y  ) 
19. if ( head(0BQ). OI.t, < TGBSu,, .ti ) 
20. o u t p u t  Ferminate-Belief) 
21. exit A Egorithm 
22. end if 
23. end if 
24. return(EBQ , O B Q )  
end Algom'thm 

Figure 6 -4: Comparator Signal Mat ching Algorit hm 
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6.5.3 Complexity Analysis 

The asymp to tic running-time complexity is presented for the algorit hms compris- 

ing the comparator. The notation used is be consistent with that introduced in 

chap ter 5. 

Queue Signal Algorit hm 

The queue signal algorithm sirnply appends a signal to the appropriate queue. Its 

running time complexity is O(1). It is invoked once for each signal to be queued. 

Signals are re-queued individually in each beiief. For a worst case of N signals 

queued, and a maximum of B beliefs. the running-time complexity of the algorithm 

is given by 6.1. 

Process Contents Algorithm 

The ProcessContents algorithm compares the contents of the two queues. For a 

worst-case queue lengtli of N, its running time complexity is O ( N ) .  Queues are 

dupiicated in each belief and thus the running-time complexity of the algorithm is 

given by 6.2. 
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6.6 Input Port 

The input port is specified as a collection of three algorithms: QueueSignal, An- 

nihilate and ConsumeSignal. The QueueSignal algori t h  queues bot h BSup sig- 

nais and PDM path directives in the input port. Annihilate deletes a matching 

BSup signal and PDM path directive fiom the input port and ConsumeSignal per- 

forms the matching between path directives and BSup signals, keeping track of the 

PDM/BSup global times. 

The majority of type and datastructure definitions used by the algorithms are 

consistent with those used to speczy the PDM input port and appear in sec- 

tion 5.5.3. In addition, the BSup input port must queue path directives from 

tlie PDM and thus it requires an appropriate datastructure, defined below. 

PDMQ a queue of path directives of type signal from the PDM 

6.6.1 Queue Signal Algorit hm 

The QueueSignal algorithm accepts as input the set of signal sequences correspond- 

ing to the incoming channels/signal routes ( C ) ,  the P D  M Q ,  a sorted List of signals 

at the heads of the incoming channels/signal routes (J) and the signal to be queued 

(s). I t  returns the updated datastructures C, PDMQ and J .  

6.6.2 Consume Signal Algorit hm 

The BSup ConsurneSigna1 algorithm has a similar function to the PDM ConsumeS- 

zgnal algorithm described in section 5.5.3. Unlike its PDM counterpart, tlie BSup 
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Algon'thm QueueSignal(C : signal-sequenceset , PD MQ : signal-queue, 
J : signal-sequence, s : signal) 

1.  if (s-origin = P D M )  
2. insert s at the tail of PDMQ 
3. else 
4 c; = comm-path-id(s) 
5. i f ( c ; = e m p t y )  
6. insert s, sorted into J based on the lower bound of each signal's 01 
7. end if 
8. append s to the tail of ci 
9. end if 
10. return(C, PDMQ, J )  
end Algorithm 

Figure 6.5: Input Port Queue Signal Algorithm 

algorithm matches signals in the input port with the directives from the PDM. The 

effect is that execution is steered along the PDM-specified path. 

The algorithm accepts as input queued signals on the incoming channels/signd 

routes (C), the sequence of signals at the heads of the cliannels/signal routes (J). 

the PDMQ, the curent  process state of the associated BSup-process ( c r )  and the 

global times of both the PDM and BSup (TPDM and Tss,). It returns the updated 

datastructures C, J and P D  MQ and outputs a signal to the corresponding process 

for consumption. 

The algorithm appears in figure 6.6. A textuai summary of the algorithm fol- 

lows. 

Consume Signal Algorithm 

line 1 the algorithm attempts to match all unsaved path directives from the PDM 

with signals within the BSup 
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Algorithm ConsumeSignal(C : s igna l sequencese t ,  J : s ignalsequence ,  
PDMQ : signal-queue, a : processs ta te ,  T P ~ ~  : tirne, T B S ~ ~  : t i m e )  

1.  while( (PDMQ # e m p t y )  and (J # e m p t y )  
2. x = head(PDMQ) 
3. i f  ( x is a non-matching path directive ) 
4- o u t p u t  ( Send-Signal(x) j 
5. else i f  (fields of x match with fields of a signal, s E J 

and OIS of x and s overlap) 
6. o u t p u t  ( Send-Signal(x) ) 
7. (C, J ,  PDMQ) = Annihilate(C, J ,  PDMQ) 
8. else 
9. out put (Terminate-Belief) 
10. exit Algorithm 
11. end if 
12. i f  ( PDMQ # empty ) 
13. z = head(PDMQ) 
14 i f  ( x. OI.t, < T G ~ ~ ~  .tl ) 
15. output (~errninate-Belief) 
16. exit Algorithm 
17. end if 
18. i f ( J # e m p t y )  
19. z = head(J) 
20. i f  ( x.OI.t, < T ~ ~ ~ ~ . t l  ) 
21 - o u t p u t  (Terminate-Belief) 
22. exit X g o d h m  
23. end i f  
24. end while 
25. return (C, J ,  P D M Q )  
end Algorithm 

Algorithm Annihilate@ : signalsequenceset, J : signalsequence, 
PD MQ : signal-queue) 

1. x = head(PDMQ) 
2. delete-head(PDMQ) 
3. remove signal x having identical fields as x and 

overlapping OIS fiom J 
4 .  c = comrn-puth-id(z) 
5. delete-head(c) 
6. if (c # empty) 
7. z = head(c) 
8. insert x, sorted into J based on the lower bound of each signal's OI 
9. end i f  
10. return (C, J ,  PDMQ) 
end Algorîthm 

Figure 6.6: BSup Input Port Signal Consumption Algorit hm 
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Iine 2 x represents the path directive for the current path from the PDM. Note 

that that path directives are identical to signals but are generated by the 

PDM rather than internally within the BSup 

line 3-4 if the current path directive is a non-matchable directive (see section 6.1) 

then it is consumed directly 

lines 5-7 if the path directive matches with a signal in Y, the signal is consumed. 

The matching path directive and signal are deleted. 

lines 8-11 if the path does not match with any signal in the BSup. tlie current 

belief is terminated. 

lines 12-17 if a path directive from the PDM exists but no signals exist to be 

matched and the BSup global time has advanced past tlie O1 of the path 

directive a signal will never be generated to match the directive. Thus the 

current belief is terminated. 

lines 18-24 if signals exist but no path directive has been generated and the PDM 

time lias advanced past the smallest O1 of the signals, a matching patli direc- 

tive wiU never be generated. The current belief is terrninated. 

Annihilate Algorithm 

lines 1-2 the path directive corresponding to the followed path is deleted 

lines 3-5 the consumed signal is deleted 

lines 6-9 the consumable signal set is updated 
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6.6.3 Complexity Analysis 

Queue Signal Algorit hm 

The complexity of the Queuesignal algorithm is dominated by line 6 which does an 

insertion into a sorted list (J). As outlined in section 5.5.4, the maximum size of 

J is the worst-case fan-in of the corresponding SDL process ( c ) .  The algorithm is 

repeated for each signal queued (N) and each active belief (B). Thus the worst-case 

running-time complexity of the algorithm is given by 6.3. 

Annihilat e Algorit hm 

The complexity analysis of the Annihilate algorithm is dominated by line 8 which 

does an insertion into a sorted list ( J ) .  Thus the running-time complexity of this 

algoritlim is identical to the complexity of QueueSigna! algorithm and is given 

by 6.4. 

Consume Signal Algorit hm 

Due to the size of the ConsumeSignaI algorithm, the running-time complexity is 

presented on a line-by-line basis. Lines with O(1) running-time complexity are 

omit ted from the analysis. 
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line 1 the outer loop iterates once per signal-pair in the input port, its complexity 

is O ( N )  

line 3 a binary search of J' whose worst case size is c. The resultant complexity 

is O(1og c ) .  

line 5 fiom above, the Annihilate algorithm lias a running time complexity of 

O (log c) . 

The resultant complexity of the consume signal algorithm per belief is O ( N  

log c ) .  The algorithm is re-executed for each belief. Thus the overall complexity is 

given by 6.5. 

6.7 SchedulingProcessExecutionwithintheBSup 

Recall from the discussion in section 5.5.6 that the PDM determines the sclieduling 

order corresponding to target system execution. Given that the PDM-mode1 and 

BSup-model both contain identical SDL processes, the BSup must execute SDL 

processes in the BSup mode1 according to the scheduhng order prescribed by the 

PDM. 

Scheduling order is prescribed by the PDM indirectly. Pat h directives are gener- 

ated. For a path directive to be generated a corresponding process must be executed 

within the PDM. If processes within the BSup are executed in the same order as 

path-directives are generated, the BSup will foUow the scheduling order prescribed 

by the PDM. 
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As in the PDM, scheduling is done by the system process in the BSup abstract 

machine. Processes are executed in the order that path-directives are received from 

the PDM. Recall that the system routes signals (and path directives) between SDL 

processes. A SDL process within the BSup is queued for execution as path-directives 

f?om the PDM are observed. 

6.7.1 Complexity Analysis 

The complexity of the BSup scheduling algorithm is a function of the number of 

processes scheduled. In the worst case, each process is scheduled for each signal con- 

sumed. A scheduling/de-scheduling operation consists of an adcLition/deletion from 

a scheduling queue. Both are 0(1) operations. Thus the running-time complexity 

of the scheduling algorithm for N signals and B beliefs is given by 6.6. 

6.8 Time and Space Complexity of the BSup 

The complexity analyzed based on the dominant algorit hms described (i-e. Con- 

sume Signal and Process Contents). The time and space complexities are presented 

individually. 

6.8.1 Time Complexity 

The running-time complexity of the PDM is dominated by the input port. Thus 

for B beliefs, a maximum of N signals queued within the BSup and a worst-case 
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fan-in of c, fiom 6.5, the running-time complexity of the BSup is given by 6.7. 

6.8.2 Space Complexity 

The space complexity of the supervisor is largely dependent upon the number of 

beliefs generated (B). Each belief makes a duplicate of each signal (N): the state 

of each process P. and the sckeduling list of worst-case size N p .  Thus for a speci- 

fication of size SI the space complexity of the BSup is given by 6.8. 

Time and Space Complexity of the 

Hierarchical Supervisor 

Time Complexity 

From equations 5.7 and 6.7, it is clear that the running- time complexity of the hier- 

archical supervisor is dominated by the PDM. Conceptually this makes sense since 

the PDM must identify the chosen behavioral alternative, a much more cornplex 

task than merely detailed behavior checking. The running-time complexity of the 

hierarchical supervisor is t hus given by 6.9. 

THs(B, N ,  t ,  C,  N p )  = O(B N ( ( t  + c )  log c + log N p ) )  
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6.9.2 Space Complexity 

The space complexity of the PDM and BSup is largely dominated by the number 

of beliefs generated as indicated by equations 5.8 and 6.8. The asymptotic space 

complexity of the PDM and BSup is identical. Thus the o v e r d  space complexity 

of the hierarchical supervisor is given by 6.10. 

Rss(Bo N ,  N p ,  S) = O(B (N + Pa - NP + Np) i S )  



Chapter 7 

Evaluat ion 

This chapter is organized into three parts. The k s t  part provides an overview of the 

structure and operation of a demonstration supervisor. The second part describes 

the testbed (including target system) that was used to evduate the supervisor. The 

third part describes the experiments conducted to evaluate the supervisor. 

7.1 Demonstration System 

A demonstration supervisor was developed based on the supervisor abstract ma- 

chines outlined in chapters 5 and 6. The top-level design of the supervisor, in the 

object model notation [20] appears in figure 7.1. 

The following two sub-sections describe the s tatic function of eacli top-level 

class appearing in figure 7.1 and the dynarnic communication between classes under 

cornmon operational scenarios. 
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7.1.1 Class Description 

The principal clifference between the specification of the PDM/BSup abstract ma- 

chines (appearing in figures 5.7 and 6.2 respectively) and the design of the supervisor 

is that the system process is refined into several classes. The PDM system process 

is refined into objects: EnvRouter, MainSched, PDMRouter and PDMSched. Sim- 

ilarly. the BSup system process is refined into objects: EnvRouter, MaznSched. 

BSapRouter and BSupSched. Note that the EnuRouter and MainSched are shared 

between the PDM and BSup. 

The PDM/BSup path process functionalities are implemented by the PDM- 

Router and BSupRouter classes respectively. The PDM/BSup input port and SDL 

processcs are irnplemented by the PDMInputPort, PDMProcess. BSuplnputPort 

and BSupProcess respectively. The BSup comparator process is implemented by 

the Comparator class. A HandleFailure class, shared by both the PDM and BSup, 

implements failure reporting once a failure has been detected. A detailed descrip- 

tion of the function of each class follows. 

EnvRouter: Collects target system input and output signals. Tags all signals witli 

OIS. 

MainSched: Specific functions of this class include: 

a creates/terminates and manages the List of beliefs 

a compacts beliefs representing identical global states (i-e. beliefs created 

under don't care non-determinism) 

0 schedules for execution the PDM, BSup, and EnvRouter 

PDMRouter/BSupRouter: Routes signals between processes within the PDM 

/ BSup. Uses the system specification of the PDM/BSup models as the 
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communication topology. The PDMRoutet includes addi tional functionality 

for routing signals from the PDM to the BSup. 

PDMSched/BSupSched: Schedule individual PDMPTocess/ BSupProcess objects 

for execution. Scheduling is implemented as described in chapters 5 and 6. 

For scheduling purposes, comparators are treated as SDL processes. T h s  the 

BSupSched class includes additional functionality to schedule the execution 

of Comparator objects. 

PDMInputPort/BSupInputPort: Queue and order signals for consumption by 

the corresponding process. The PDMInputPort uses a partial-order distance 

table to reduce redundant signal permutation. It creates beliefs when a unique 

total order of signals cannot be determined. The BSvpInputPort queues sig- 

nals into two groups: (1) signals generated by the environment and signals 

generated internally within the BSup and (2) path directives generated by 

the PDM. 

PDMProcess/BSupProcess: Implement an SDL interpreter for each process. 

The PDMProcess and BSup Process are almos t identical in func t ionali ty excep t 

that the BSupP~ocess does not include support for ANY and none constructs 

as described in section 6.1. The PDMProcess generates a separate belief for 

each emanating path from an ANYconstruct and for multiple none constructs 

emanating from a single state. 

Comparator: Each process implements one expected and one observed behavior 

queue per channel. Each Comparator process is responsible for queuing sig- 

nais in the appropriate queue, comparing the contents of queues, annihilating 

identical queue contents and signaling for the curent  belief to be terminated 

if a match between contents cannot be made. 
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Table 7.1: Hierarchical Supervisor - Lines of Source 

Component 

PDM 
BSup 
Common 
Total 

HandleFailure: Reports a failure of the target system, terminates operation of 

the hierarchical supervisor. 

The  supervisor was implemented in Cf+. I t  consists of approximately 110 different 

classes, 1000 methods and 38,000 commented lines of source. The line counts of 

the PDM, BSup and common components of the supervisor appear in table 7.1. 

Commented 
Lines of Source 

15,200 
16,400 
6,400 
38,000 

7.1.2 Supervisor Operation 

Non-Comented 
Lines of Source 

7,000 
7,800 
3,600 
18,400 

The operation of the hierarchical supervisor is described in several sections. Each of 

the sections describes one particular aspect of functionality within the supervisor. 

A textual overview of the functionality is presented, followed by an example of the 

methods invoked by each class under one particular scenario. 

Signal Routing 

Observed signals (i.e. inputs and outputs of the target system) are tagged with 

OIS by the EnvRouter and transmitted to MainSched. For each belief in existence, 

MainSched duplicates each signal and routes i t  to the belief. For the currently 
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executing belief, signals are routed to their appropriate destinations by the PDM- 

Router and BSupRouter. As an example, the flow of control during routing of a 

target system input signal in the PDM and BSup is shown in figures 7.2a and 7.2b. 

- 

EnvRouter 
v 

EnvRouter MainSched PDMRouter PDMSched PDMInputPott PDMProcess 

Schdulch!e( ) 

(a) PDM Signal Routing 

HandleFailure 

T 

MainSched BSupRoutcr BSupSched BSupInputPort BSupProcess Compmtor HandleFailure 
v v v v - 

(b) BSup Signa1 Routing 

Figure 7.2: Signal Rout ing wit hin the Hierarchical Supervisor 

Scheduling SDL Processes and Comparators 

The two objectives of scheduling within the PDM are: (1) to order execution of 

SDL processes and comparators such that expected signals match with the observed 

signals' and (2) to reduce the computational complexity of the supervisor by listing 

objects ready-t O-run and thus eliminating the need to exhaustively search all objects 

to determine if they are ready-to-run. Processes are scheduled to execute when a 
- -  - - 

'Assuming that the target system is operating as specified. 
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signal is queued in their input port. Comparators are scheduled to execute when 

both t heir expected and observed input queues are non-empty. 

In recpnst: to the second motivation for scheduling, there are three types of 

scheduling within the hierarchical supervisor: (1) ready-to-run and (2) not-ready- 

to-run and (3)  not scheduleable. SDL processes with unsaved signals in their input 

port, or comparators with signais in both their expected/observed behavior queue, 

are classified as ready-to-run. SDL processes where every signal in the consumable 

signal set is in the Save set and comparators with either the observed or expected 

beliavior queue empty and the other non-empty are classified as not-ready-to-run. 

If the PDM/BSup global time advances past the O1 of the signal with the smallest 

O1 lower bound in the input port/comparator, the process/comparator will never 

be ready to run and as a result the currently executing belief is terminated. SDL 

processes with no signals in their input ports are classified as not scheduleable since 

t hey cannot execute. 

An example of ready-brun scheduling is shown in figure 7.2a. After a signal 

is queued in the PDMInputPort, the PDMInputPort schedules itself to execute. 

A PDMInputPort is re-scheduled o d y  if the scheduling parameters of the process 

change. Note that the PDMProcess is not scheduled liowever, it is executed by the 

PDMInputPort. Thus it executes after the PDMInputPort executes. BSup Input- 

Port/ BSup Process and Comparutor ready-brun scheduling operates similady. 

An example of not-ready-terun scheduling is shown in figure 7.3. A signal is 

queued in a cornparator with an empty observed and expected behavior queue. The 

flow of control within the supervisor for not-ready-to-run scheduling of a PDMPro- 

cess and a BSupProcess process is similar. 
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Figure 7.3: Scheduling a no t-ready-t O-run Comparator 

EnvRouter MainSched BSupRouter BSupSched BSupInputPort BSupProcess Cornpmtor HandleFailure 

PDMProcess, BSupProcess and Comparator Execution 

1 - 
GctSigri~tsFrom 

RouteSigmi( ) 

- 

Execution of a PDMProcess, BSupProcess or Cornparator is initiated by the Main- 

Sched. Initially. all ready-terun processes in the PDM are executed followed by 

ready-to-run processes/comparators in the BSup. Both processes and comparators 

after executing must re-schedule themselves based on the remaining signals in their 

input ports or expected/observed queues. After execution, processes/comparators 

may be in a ready-to-run, not-ready-terun or not scheduleable state (if no sig- 

nais remain in tlieir input port/queues). Objects in either the ready-tsrun or 

not-ready-to-run state must be scliedded as described in tlie previous section. 

As an example, figure 7.4a shows the flow of control in the ltierarchical super- 

visor when executing a PDM process that becomes ready-to-run after execution. 

Figure 7.4b illustrates tlie case where a comparator is executed and after execution 

only the observed behavior queue (for example) is non-empty (i.e. the comparator 

is not-ready- to-run). 

- 
QucueSipd( 1 

Belief Creation 

As discussed, beliefs are created only by the PDM. Within the PDM, beliefs may be 

created by either the PDMProcess upon the execution of an ANY construct , by the 

- 

- 

4 

- 

AddToNoScMulc 
Lis<( 
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EnvRouter 

1 
EnvRouter 

(a) PDM Process Execution 

MainSched PDMRouter PDMSched PDMInputPort PDMProcess - 

- 

(b) BSup Comparator Execution 

MriinSched BSupRouter BSupSched BSupInputPort BSupProcess Compantor HandieFailure 

Figure 7.4: Execution of a PDMProcess and Comparator 

. 
Elecuic( 

- 

- 

PDMInputPort if ambiguity exists with regards to the actual signal consumption 

order or the PDMSched if uncertainty exists as to the actual process execution 

order. 

As an example, the flow of control during the creation of a belief by a PDM- 

Process executing an ANY construct is shown in figure 7.5a. The otlier two cases 

are handled in a similar fashion. Note tliat the t h e a d  of control remains with the 

curent  belief. The new belief is subsequentally scheduled by MainSched. 

. - 1 

- 
bmtd 1 
P 

Belief Termination 

- 

- 

The currently executing belief may be terminated within either the PDM or BSup. 

Wit hin the PDM/BSup, beliefs may be terminated by the PDMSchedl BSupSched 

if the PDM/BSup time advances past the O1 of any signal in a PDMInputPort / 

- - 
Exmid ) 

- - - 

f iautcf  ) 

l= 
AddToNo 

SchdulcList( ) 
4 

- - 

SchnluIe.Mc( 

inirrpfec-excc( ) 
4 

I - T - 
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Env Router 

T 
EnvRouter 

I 
(a) Belief Creation 

MainSched PDMRouter PDMSched PDMInputPon PDMProcess 

(b) Belief Termination 

- 

- 

MainSched BSupRouter BSupSched BSupInputPart BSupProccss Compararor HandleFailure 

Figure 7.5: Belief Creation/Termination 

- 
Etccuid ) 

C 

- 

- 
EXe~ult?( ) 

4 

- 

- 
Ex=w(  ) 

- 

BSupInputPort that is not-ready-t O-run2. Additionally: a belief may be t erminated 

by the Cornpurator in one of two cases: (1) if only one of the expected or observed 

Clone AnûScfitdulc 
CunmrCBS( ) 

- 

queue is non-empty and the BSup time advances past the O1 of the signal at the 

head of the non-empty queue or (2) if a match cannot be made between the heads 

of the expected/observed signal queues. 

- - 

As an example, the case where the contents of the observedfexpected behavior 

- 
KillCurrcniCBS( ) 

- 

queues do not match is illustrated in figure 7.5b. 

ffilICurruiiCBS( 

- 

Annihiiud ) - 
- 

'Recall that PDM and BSup times are based on process times of processes that are ready-to- 

run. 
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Redundant Belief Compaction 

Beliefs are generated in response to uncertainty as to the behavioral alternative 

chosen by the target system. In some cases: tmically resulting from the tradeoffs 

made in partial-order signal consumption (described in section 5.3), n > 1 beliefs 

may be generated that represent identical observable behavior. The redundant belzef 

compaction mechanism (RBCM) is used to terminate n - 1 of these beliefs. 

Recall that a belief represents the global state of both the PDM and BSup. 

Essentially the RBCM compares the global states represented by two beliefs and 

if identical, terminates one of the two beliefs. To reduce the computational cost of 

the RBCM, two-level hashing is used during the cornparison. T w o  hash functions, 

hl() ,  h Z ( )  were developed such that for two beliefs, A and B, if the hash values of 

either functions are different then the two beliefs represent different global states 

6.e. if hl,()  # hl,() or &,() f h,,() fhen A + B). 

The f i s t  level hash simply takes into consideration the symbolic state of each 

process and the number of signals in each input port/comparator queue. The second 

lever hash takes into consideration symbolic signal names and OIS of signals. If botli 

the h s t  and second level hash functions are equal for the two beliefs, the global 

state of the two beliefs is exhaustively compared before one of the two beliefs is 

terminated. 

From empirical measurements, the first-level hash is able to identify approxi- 

mately 70% of different beliefs and the second level100% for a sample size of several 

hundred beliefs. 

The RBCM is invoked by the MainSched in one of two cases. First, if the 

number of beliefs, exceeds a threshold (AB) and second if the age of a belief, 

exceeds a threshold (AT). 
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Failure Reporting 

Failures are reported by the hierarchical supervisor after all beliefs are terminated. 

MainSched manages and schedules beliefs for execution. If the belief scheduling list 

becomes empty, MainSched signais HandleFaiZure to report a failure of the target 

system. The flow of control within the supervisor is illustrated in fiorne 7.6. 

Figure 7.6: Generating a Failure Report 

EnvRouter MainSched PDMRouter PDhlSched PDMInputPon PDMProcess HandleFailure 

7.2 Evaluation Testbed 

T - 

The control program of a s m d  telephone exchange was used as a target system 

based on which the hierarchical supervisor was evaluated. The exchange serviced 

60 telephones. 

The exchange hardware was simulated and exchange software executed on a 

UNIX workstation. A random telephone traffic generator served as a generator of 

inputs. Several tools were used to analyze the traffic data generated. The various 

components of the test bed and their interconnections are shown in figure 7.7. A 

detailed description of each component follows. 

" 

HandlcFailurd ) 

Telephone Traffic Generator: The telephone trafFic generator simulated typi- 

cal, random plain old telephone senn'ce (POTS)  usage patterns. Several pa- 

- - - 

" 

T - 
Failun Rcpon 
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rameters such as the origination rate and comect t h e  were programmable 

allowing modeling of various load profiles. I t  executed as a single UNIX pro- 

cess. The generator used in this work is described fwther in [47]. 

Hardware Emulator: This unit emulated the exchange hardware. It supported 

up to 60 telephones. The emulator executed as a single UNIX process. 

Hardware Interface Memory: The hardware interface memory represented the 

memory map of the exchange hardware. It was implemented as a contiguous 

block of UNIX shared memory. 

Cal1 Processing Software: Provides functionality for all telephones serviced by 

the excliange and manages shared hardware resources. The SDL requirements 

specification and an overview of the c d  processing software can be found in 

Appendix A. 

Interface: Served two purposes: fist, it provided a visual display of the state of 

each telephone and second, dowed rnanual telephone c d s  to be placed. Note 

that use of the user interface in the latter case excludes use of the teleplione 

traffic generator. 

Abstractor: Translated bit sequences appearing in the hardware interface nieniory 

into signals as appearing in the SDL requirements specification. 

Hierarchical Software Supervisor: Consists of the PDM-model, BSup-mode1 

and interpreters as described in section 7.1. 

Trace Manipulation Tools: Permitting seeding random fadures at random points 

in the trace file. 
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Trace Analysis Tools: A collection of utilities for analysis of telephone traffic 

statistics. Parameters such as the number of originations, number of calls 

routed to slow busy, number of c d s  routed to fast busy etc. are generated 

fkom the contents of a trace file. 

Behavioral Alternative Counter: A tool used to measure the total number of 

behavioral alternatives (Le. don't know and don% care) that arise under a 

given requirements specification and trafic load over time. 

The components of the testbed are written in five programming languages as some 

languages are more suitable for certain applications than others. The majority of 

the testbed is written in C and C++, the Interface which is largely grapliical is 

written in Tci/Tk. the Trace Manipulation/Analysis Tools are written in Perl and 

csh. The entire testbed consists of approximately 70,000 lines of commented source. 

7.3 Evaluat ion 

The Iiierarchical supervisor presented in this tliesis was evaluated dong two lines: 

(1) its failure detection capability and (2) its time/space complexity. 

The section begins with an experimental evaluation of the supervisor's ability 

t O de t ect failures and t O simult aneously limi t generat ion of false-failure report S. 

An analysis of the size of the problem space (i.e. the total number of behavioral 

alternatives) is presented next. This is followed by experimental evaluations of the 

supervisor time and space complexity. The section concludes with a commentary 

on the scdability of the hieradical supervision to industrial systems based on the 

evaluations presented. 
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7.3.1 Failure Detection Capability 

The failwe detection capability of hierarchical supervision was evaluated with the 

aid of the target system described. The supervisor was used to monitor the exchange 

for extended periods of time. The failure detection capability of the supervisor was 

evaluated based on two attributes: (1) the supervisor's spurious failure reporting 

and (2)  the supervisor's failure detection capability. Both sets of evaluations are 

presented in the following two sub-sections. 

Spurious Failure Reporting 

Spurious failure reporting refers to the number of unwarranted failure reports gen- 

erated by the supervisor. It was evaluated by having the supervisor monitor the 

operation of the target system for several thousands of c d  originations. Typical 

reliabili ty requirements for North American t elephone swit ching sys tems are t hat 

up two calls out of ten t housand may be mishandled. These requirements were used 

as a guideline in setting the interval during wlùch the supervisor was executed. 

The supervisor was used to supervise several traces consisting of over twenty 

thoiisand c d  originations ranging in origination rates from 2-6 calls/phone/liorir. 

The loads were chosen to range from heavy residential to heavy commercial traf- 

fic levels. The target system ca l l  processing software was a third-generation de- 

bugged version. The supervisor detected several failures in the output of the ex- 

change. Detected failures were subsequentally traced back to either (1) faults in 

the PDM/BSup mode1 or (2) residual faults in the target system control program. 

The faults in the PDM/BSup models were introduced during the transformation 

of the models from the requirements specification and resulted from human error. 

The results are summarized in table 7.2. 
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1 Implementation 1 2 1 6  I 

Fault Category 

Supervisor Mode1 

Table 7.2: Supervisor Failure Detection Capability 

One supervisor model fault type was detected by the supervisor. The supervisor 

was able to detect and subsequentally report the discrepancy. The supervisor model 

fault was due to resources being incorrectly deallocated. When a c d  was placed and 

tlie terminating party was busy, resources were not dedocated upon the originating 

party going onhook. The supervisor reported a failure after all resources within 

the supervisor model were depleted (i.e. after the effect of resources not being 

dedocated became externally visible). 

Number of Fault Types 

1 

Two types of residual target sys tem faults manifes ted t hemselves as externally 

observable failures. The f i s t  related to the scanning of digits dialed by the user. 

Number of Instances 

1 

Wlien waiting for tlie first digit, the control program disconnected and re-connected 

the touch-tone receiver liardware as part of the process of removing dial-tone. The 

connection/disconnection of the touch-tone receiver is not an externally observable 

event. However, it was interpreted by the supervisor (or more precisely by tlie 

abstractor) as two separate digits dialed. The second failure type was due to a 

clifference between a specified and implemented timeout duration. The supervisor 

reported the external signal generated after the timeout as a failure, because it was 

not expecting it at that time. 

AU failures detected by the supervisor were either traced back to faults in the 

supervisor model or residual faults in the target software system. Based on the 

experiment conducted, no unwarranted failure reports were generated by the her- 
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archical supervisor. 

Failure Det ection Capability 

The evaluation of the supervisor failure detection capability is difficult due to the 

large sizes of the trace fles. Manual verification that a given trace represents a 

behavior corresponding to the specification is almost impossible. 

For tliis reason, the failure detection capability of the supervisor was evaluated 

by seeding known failures into a trace representing the execution of the exchange. 

The failure model consisted of altering the signals emitted during state transi- 

tions [54]. T h e e  types of failures were seeded: (1) signal removal, (2) signal inser- 

tion and ( 3 )  signal replacement. Note that the final failure type is a combination 

of the f k t  two. 

Two diEerent types of evaluations were carried out: exhaustive and random. 

Tkey differed principally in how failures were seeded. Exhaustive evaluation is 

better suited for use with s m d  trace files due to its computational cost. Ran- 

dom evaluation is bctter suited for use with large trace files. Evaluations of the 

supervisor based on these two types of evaluations are described below. 

Exhaustive evaluation refers to seeding all three types of failures at each line of 

the trace file. Ten s m d  trace files representing loads from 2-20 calls/phone/hour 

were used. Each line of the trace was seeded with all three failure types, represent- 

ing a total of approximately 30 fadures per line. The traces contained a total of 

approximately 10 caUs or 200 lines each. Thus a total of 10 30 200 = 60,000 fail- 

ures were seeded in separate traces. The supervisor was executed on each individual 

trace. The presence of all seeded failures were reported by the supervisor. 

Random evaluation refers to seeding randomly chosen failures at random loca- 
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tions in a given trace file. Fifteen trace files representing approximately 20,000 c d s  

at loads ranging between 2-20 caIls/phone/hour were seeded with the three failure 

types described. A total of approximately 60,000 failures were seeded into separate 

traces. The supervisor was executed on each trace individually. The presence of all 

seeded failures were reported by the supervisor. 

7.3.2 Number of Legitimate Behavioral Alternatives 

The size of the supervisor problem space was estimated by measuring the number 

of Iegal behavioral alternatives (BAS). Internally, BAS arise from specification non- 

determinism under a particular input scenario. Within the supervisor, t hey are 

represented as beliefs. A subset of the BAS generated by the supervisor a c t u d y  

lead to different externally observable behavior. 

The number of generated BAS is a function of the requirements specification 

and the target system load. The small telephone exchange was run under several 

different traffic loads. The maximum number of BAS generated by the supervisor 

(Le. beliefs) for each Ioad is plotted in figure 7.8. 

Further analysis on the number of generated BAS was done to determine the 

proportion of don't care and don't know BAS. BAS were grouped into n sets: 

S I ,  s ? ,  - , s,. All BAS in set si result in identical observable behavior (i.e. don't 

care BAS). While any two BAS in sets si and s j  i # j represent dif'Ferent observable 

behavior (Le. don't know BAS). Thus the total number of don% know BAS is n and 

total number of don't care BAS is equal to (#sl + #s2 + --• + #s, - n) where # 
represents a set cardinality operator. For the experiment described, the results are 

plotted in figure 7.8. 

As expected, the total number of behavioral alternatives is very large. This is 
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Figure 7.8: Measurcd Number of Beliefs 
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due to the worst case f a c t o d  number of possible signal interleavings at the input 

ports of SDL processes, each Ieading to a legitimate BA. Few of these BAS actually 

lead to different observable behavior, making the motivation for pruning such BAS 

from consideration strong. 

7.3.3 Number of Behavioral Alternatives Generated 

The number of behavioral alternatives generated is a key parameter in bo th t lie time 

and space complexity of the hierarchical supervisor. The supervisor was executed on 

the load described in section 7.3.2. The number of behavioral alternatives generated 

is plot t ed in figure 7.9. 
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Figure 7.9: Number of Behavioral Alternatives Generated 

As shown, the hierarchical supervisor significantly reduces the number of be- 



CHAPTER 7. EVALUATION 151 

liavioral alternatives considered. The majority of the BAS generated are don't care 

BAS due to the tradeoffs made with partial-order signal consumption. As the load 

on the exchange is increased, the number of don't know BAS increases. TLs  is 

principdy due to resource starvation; the PDM is not able to determine which 

of the two resources in the target system have been depleted based on the signals 

observed (i.e. which path was followed). For the example system describedo a PDM 

would be able to accurately track the don't know BAS for an exchange with properly 

provisioned resources. 

The act ual number of beliefs generated is highly application specific. It depends 

on the requirements specification, the algorithm used to derive the PDM-model, 

the load and the detailed implementation of algorithrns in the PDM interpreter. 

Empirical curve fitting revealed that for an exchange subject to a traffic load L. 

the number of beliefs generated by the hierarchical supervisor is of order O(L-log L)  

as shown in figure 7.9. This is a subst antial reduction fiom the factorial-number of 

total legitimate BAS. 

7.3.4 Running-Time Complexity 

This section presents empirical validation of the running time complexity of the 

hierarchical supervisor as given by equation 6.9. For the experiment described, t be 

worst case fan-in of each process ( c ) ,  the number of signal types (t)  and the worst- 

case number of SDL processes N p  are defined by the specification topology and are 

treated as constants since the evaluation deals only with one target system. Thus 

equation 6.9 reduces to THs(B, N) = O(B N ) .  

From the empirical analysis presented in section 7.3.3. B can be estimated as 

B = O( L log L) where L represents the load on the exchange. N, representing 



the number of signals in the supervisor, increases linearly with the load on the 

exchange. Thus N can be approximated as N = O ( L ) .  The resultant running-time 

complexity of our example is thus given by 7.1. 

The hierarchical supervisor was used to monitor the operation of the target 

system at several different operationai loads. As the load increased, the number of 

beliefs generated increased (as described in section 7.3.3), increasing the CPU time 

required by the supervisor per telephone c d .  

The supervisor CPU time per c d  was measured by running several hundred 

c d s  and averaging the total supervisor running time by the number of originations. 

The number of originations was made large to reduce the effect of the supervisor 

initialization on the total running tirne. Supervisor running time was rneasured 

using the UNIX getrusage system c d .  

The CPU time per c d  is plotted in figure 7.10 for various operational loads. 

Resdts were obtained on a machine having a SPECint95 and SPECfp95 of 1.0. 

A 0(L2 log L) curve is plotted as a reference. As shown, good correspondence 

between the predicted and measured running-time complexity was observed. 

7.3.5 Space Complexity 

The predicted space complexity of the supervisor (given by equation 6.10) was 

compared with the measured space complexity of the supervisor developed. For the 

particular experiment described, only one specification was considered. Thus the 

specification size S and the number of processes in the specification Np is constant. 
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Figure 7.10: CPU Time Per C d  



The number of signds within the supervisor, N is approximated as N = O ( L )  (as 

outfined in section 7.3.4). Thus the resultant space complexity of our example is 

given by 7.2. 

The exchange was executed over several different t r a c  loads. The maximum 

memory usage of the supervisor was deterrnined with the aid of the UNIX top 

command3. The measured supervisor memory usage is plotted in figure 7.11 for 

various loads. The constant size of the supervisor executable was subtracted from 

the results plotted. 

7.3.6 Scalability 

This section at  tempts to extrapolat e the time cornplexity results presented to larger 

systems. The results are meant only to serve as a general indicator of the scala- 

bility of the approach. An  actual system would introduce factors not taken into 

consideration in the presentation below such as a larger requirements specification. 

Most telephone exchanges have modular organization to facilit ate module reuse 

and to allow ease of expandability. For example, the line interface module (LIM) 

that interfaces subscribers telephones with the central exchange controller services 

approximately 1000 lines in both the Northern Telecom DMS-100 [57] as well as 

the Lucent 5ESS [19]. It would be difficult to observe the inputs and outputs of the 

3The supervisor contains an interna1 memory manager. Memory, wben dealiocated is returned 

to the supervisor memory pool rather than the operating system memory pool. Tbus the maximum 

memory usage of the supervisor results just before the supervisor completes its execution. 
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Figure 7.11: Maximum Memory Usage 



CHAPTER 7. EVALUATION 156 

entire exchange. However, a supervisor would be suitable for monitoring a single 

module such as the LIM. 

The CPU requirements of the supervisor were estimated based on maximum 

business trafic (i.e. 6 cds/phone/hour). The supervisor is assumed to monitor 

a LIM servicing 1000 telephones at the standard business origination rate of 6 

cds/hour/phone. Extrapolating fiom figure 7.10, the supervisor running on a 

machine having a SPECint95 and SPECfp95 of 1.0 reqiùres approximately 3 cpu 

seconds/call at this load. The LM is required to process 6 x 1000 calls/hour or 

1.67 calls/second. Thus a CPU having a SPECint95 and SPECfp95 greater than 

3 x 1-67 = 5 (e .g .  any modern Intel Pentium processor) would be sufficient for this 

application. 



Chapter 8 

Conclusions 

This thesis addressed the automatic detection of software fadures or software su- 

pervision. The software supervisor is a unit that monitors the inputs and outputs 

of a given target software system. It makes use of the target system's requirements 

specification as a definition of correct behavior. Discrepancies between specified 

and observed behaviors are reported as fdures by the supervisor. 

The complexity and sophistication of modern software systems makes automatic 

detection of fadures an industrially important area of research. Thee  potential ap- 

plications of supervision include on-line detection of fadures, evaluation of testcase 

results during software development and the collection of accurate failure data to 

identify problem areas and improve the reliability of software. 

This thesis focuses on the supervision of real-time reactive software sys tems. 

This class of systems represents some of the largest and most complex software 

ever developed. The case where the requirements specification of the target system 

external behavior appears in a finite state machine based formalism is considered. 

Software supervision is a highly complex activity. Several open research issues 
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related to supervision exist. The principal issue addressed by this work is the com- 

putationally efficient handling of specification non-determinism. Non-determinism 

is an important component of a specification formalism. It permits the specifica- 

tion writer to avoid stating unpertinent aspects of behavior. This leaves freedom 

to the software designer to choose the least costly or otherwise desirable alterna- 

tive. However, the supervisor must be able to consider all legitimate behavioral 

alternatives such that unwarranted failure reports are not generated. A potentidy 

large number 

consideration 

tlis issue. 

alternatives exist even for moderate size systems and exhaustive 

all alternatives is prohibitive. Hierarchical supervision addresses 

8.1 Hierarchical Supervision 

A novel approach to supervision, called hierarchical supervision, was proposed. The 

objective of the approach is the efficient handling of specification non-determinism. 

Hierarchical supervision improves the efficiency of non-determinisrn handling 

by a divide-and-conquer approach. Supervision is split into two sub-problems: (1) 

determination of the path through the specification chosen by the target system and 

(2 )  detailed behavior cliecking. The corresponding architecture of the hierarchical 

supervisor has two layers. The path detection module ( P D M )  determines the path 

through the specification chosen by the target system while the base supeniisor 

(BSup) checks that the followed path was ac tudy the legitimate one. 

The functionality underlying the BSup lias been studied extensively and is rela- 

tively well understood. However, the PDM has not been addressed previously. The 

major focus of the thesis is on the PDM. 
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The PDM relies on signals, generated by the target system, that uniquely iden- 

tify the foIlowed path through the target system. The precision of tracking the 

target system improves with the availability of signals that uniquely identify the 

path followed. 

Hierarchicd supervision is best suited for target systems where the average 

uniqueness of signals used by the PDM to track the target system (i.e. PDM-mode1 

stimuli)' is greater than the average uniqueness of the requkements specification 

stimuli. The chosen behavioral alternative is identified by the PDM based on 

a subset of the signals directed to/fiom the target system. Unique signals may 

be mapped to fewer state transitions than less unique ones. As a result, fewer 

behavioral alternatives need be considered by the supervisor. The average number 

of behavioral alternatives explored by a hierarchical supervisor decreases as the 

average uniqueness of signals chosen to track the target system increases. 

8.2 Major Research Contributions 

This thesis presented five major researcli contributions to cost-effective automatic 

detection of software failures in the presence of specification non-determinism: (1) 

the notion of splitting supervision into two sub-problems: path determination and 

detailed behavior checking, (2) improvement of the accuracy of path determina- 

tion by the use of both target system input and output signals, (3) exploration of 

the tradeoffs in having the supervisor lag the target system, (4) development of 

a method for pruning alternatives arising from specification non-determinism not 

leading to different observable behaviors and (5) development of a base supervisor, 

I A ~  underlying assumption is t hat a sui tabIe metric of uniqueness exists. The reader is referred 

to section 4.2.1 for a definition of one such metric. 
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a directed simulator for detailed behavior checking. A further description of each 

contribution follows- 

Split ting supervision into two sub-problems separat es the two fundament al func- 

tionalities of the supervisor. It may be considered a divide-and-conquer approach 

to reducing the computational cost of supervision. The two components of the 

hierarchical supervisor which implement these functionalities differ substantidy 

in their purpose, design and implementation. The result is that each component 

implements a more specialized function than a monolithic supervisor allowing for 

improved efficiency and a conceptudy simpler implementation. 

Hierarchical supervision makes use of both target system input and output 

signals to determine the path chosen by the target system. Thus the occurrence of 

a state transition in the requirements specification may be determined to have taken 

place by either an input or output signal. This improves the use of the information 

provided about the path traversed by the target system. From the perspective 

of the supervisor, it reduces the number of behavioral alternatives that need to 

be considered. However, it complicates the derivation process of the PDM-mode1 

which must ensure that sequences of state transitions in the PDM-rnod:.! follow a 

similar causal path as in the requirements specification. 

A supervisor that has the capability to lag the target system by a sufficiently 

long period A (or an out-of-time supervisor) needs only consider what happened 

rather than what may happen. The advantage of the approach is that only a subset 

of the behaviors need to be considered by such a supervisor. In addition, signals 

generated by the target system may be stored, dowing the supervisor to process 

peak target system activity over a longer period of time. The tradeoff with out- 

of- time supervision is the increased space requirement required to store signals 

generated by the target system during the interval A in addition to the latency of 
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failure reporting by a worst-case period, A. 

In many requirements specifications and operational scenarios, a number of be- 

havioral alternatives arise fiom specification non-deterrninism that do not lead to 

different externally observable behaviors. Partial-order techniques were proposed 

to prune such alternatives from consideration. The approach makes use of static in- 

formation compiled from the requirements specification. Static information is used 

to dynamicdy discard alternatives arising from specification non-determinisrn not 

leading to unique externally observable behavior. A spectrum of such algorithms 

can be envisioned, each suited for different applications. However. in general. a 

tradeoff exists between the timefspace resource requirernents of the approach and 

its capability to prune behavioral alternatives. 

At the core, a software supervisor must have a simulator to generate expected 

behaviors of the target system. Expected behaviors are cornpared with observed 

behaviors to determine and failures reported if a match cannot be made. A typical 

simulator chooses a behavioral alternatives in the presence of non-determinism. 

However, the proposed simulator (i.e. the BSup) is directed by the PDM dong the 

beliavioral alternative chosen by the target system. 

8.3 Future Work 

The fundamental contributions described may have further applications than those 

described in this thesis. Future work is sub-divided into t h e e  categories: (1) further 

reductions in computational complexity arising from specification non-determinism, 

(2) continuation of supervision after detection of a failure and (3)  alternate appli- 

cations of the described work. A discussion of each follows. 



CHAPTER 8. CONCL USIONS 

This thesis described a berarchical approach to software supervision consisting 

of two layers. Experience gained in domains such as artificial intelligence plan- 

ning indicate that N-iayer problem solving is a principal means of dealing with 

cornputational complexity [33]. 

The two-layer approach to supervision could be extended into an N layer ap- 

proach by abstracting paths and successively resolving paths at  lower layers in the 

supervisor. Several state transitions could be abstracted into a single, aggregate 

s t a te  transition. Upon determination that the aggregate state transition has taken 

place: the supervisor effectively knows the destination state. Subsequently lower 

layers could then resolve the actual path from the previous composite state to the 

current composite state. It is believed that such an approach would yield further 

reductions in computational complexity provided that sufficiently unique signals 

exist to track the target system. The tradeoff with the approach is the increased 

delay in failure reporting. 

Supervision requires that the state of the target system and the specification 

state of the supervisor be in-sync. However, few assumptions can be made about the 

the post-failure specification s tate of a target system. For supervision to continue, 

an approach to determining the state of the target system after the occurrence of 

a failure is needed. 

The notion of path detection is simila to the notion of state detection. Pa th  

detection attempts to identify the state transition that took place from the em- 

anating state. State detection requires that the state transition that took place 

and consequentidy the final state be identified without a notion of the current 

state. Thus the research contributions developed for path detection such as track- 

ing the execution path by means of unique signals and delaying the reporting of 

the execution path may be applied to state detection. One obvious difficulty is the 
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enormous potential state space. Research results indicate a tradeoff between the 

amount af time spent determinhg the state and the computational complexity of 

the approach [35, 521. A unit to determine the post failure state will probably have 

to lag the target system by an interval greater than the PDM. 

The work on path detection as described may have several other applications 

other than supervision. For example, a PDM with a properly instrumented mode1 

rnay be used as a quality of service (QoS) monitor. For systems that have large 

amounts of internal state, simple assertion checking is typicdy not suitable. The 

out-of-time orientation of the descnbed PDM is naturally suitable for monitoring 

QoS. Other applications include resource utilization monitoring and specification 

coverage metering for applications such as software testing. 
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Appendix A 

Target System Specificat ion 

TlGs appendix contains a full specification for a private branck telephone exchange 

(PBX). The PBX consists of 60 telephones as shown in figure A.1. Each telephone 

is allocated a two digit telephone nurnber. To sirnplify the system, inter-PBX c d s  

are not dowed.  A description of the PBX hardware can be found in [60]. 

The specifications that follow are for the control program of the PBX and are 

given in SDL/GR. Figure A.2 illustrates the systern specification of the PBX as 

consisting of two types of processes, the Phone-Handler and ResourceMunager.  

The finite state machine specification of the PhoneHandler  appears in figures A.3 

and A.4. The N e t P a t h M a n a g e r  appears in figure A.5 and the TTRX-Munager in 

figure A.6. 

The PhoneHandler  is responsible for the behavior associated with both orig- 

inating and terminating telephones. The ResourceManager controls access to 

shared resources which are required for the duration of a c d .  Each of the 60 

telephones in the PBX is docated an individual PhoneHandler  process. 

Tables A. 1 and A.2 supplement the SDL specifications by giving a textual de- 
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- Branch 
\ Exchange / 

Figure A. 1: Private Branch Zxchange (PBX) 

scription of all signals used. A brief, textual summary of each type of process 

foilows. 

A. 1 PhoneHandler 

The PhoneHandler process (figures A.3 and A.4) specifies all observable signal 

sequences of an originating telephone. PhoncHandler is responsible for obtaining 

all resources required for the duration of a telephone c d  in addition to establishing 

a voice path between the originator and terminator. 

Signal, CR-Con(x) is assumed to be routed to the Phone-Handler process which 

lias been assigned to the telephone whose directory number matches the dialed 

number. This is omitted from the SDL specification to limit specification size 

and complexity. Pairs of PhoneHandler processes corresponding to the origina- 
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tor and terminator of a telephone conversation communicate via impliczt SDL sig- 

nal routes. Conceptudy, a bi-directional signal route exists between each pair of 

Phone-Handler process. 

The TTRXMunager process (figure A.5) arbitrates allocation of touch tone re- 

ceivers (TTRXs) which are required during dialing. Resources are requested and re- 

leased by signals Get-ttn and Rel-ttrz respectively. Similarly, resources are granted 

and indicated as not being available by signals Grant-ttn and NG-ttn respectively. 

A.3 Network Pat h Manager (Net P a t  hxanager) 

The Net-Path-Manager process (figure A.6) arbitrates allocation of network paths 

though the exchange which are required for the duration of the c d .  Resources 

are requested and released by signals Getpath and Rel-path respectively. Similarly. 

resources are granted and indicated as not being available by signals Grant-path 

and NG-path respec tively. 
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system Private-Branch-Exchruige 

block Phone-Hdlr 

Phone- 
Handler 

signalist L 1 = Diai-Tone. No-DT. Fiut-B usy. 
No-FB. Slow-Busy. No-SB. R i n g B x k .  
No-RB. Conn-CE, Dise-CE. Ring. 
No-Ring. Conn-CR. Dise-CR 

/ signdlrt L2 = ONHK. OMK. Digittr)  I 
1 block T N - M g r  

block Net-Path-Mgr 

Net-Path- 
Manager / 

Figure A.2: System Specification of PBX 
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process Phone-Handler 1/2 

Ring i 
V i t - R e s  0 

io smder 9 
Fast-Busy v 

CR-ON 9 

Figure A.3: SDL Specification of PhoneHander Process (112) 
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process Phone-Handler 2/2 

I 

NHK 

~~) il") 

Slow-Bus I 

CE-ON P 
CR-ON v 

Figure A.4: SDL S pecification of P honeHander Process ( 2 1  2) 
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process Ne t-Path-Manager 

Figure A.5: SDL Specification of NetPathManager Process 

process ïTRX-Manager 

Figure A.6: SDL Specification of TTRX-Manager Process 



Disc-CE 1 PhoneHandler 1 environment 1 Deallocate voice connection from caller to  callee 1 

Signal 

Digit(x) 
OFHK 
ONHK 
TD 
TS 
TRB 
DiaLTone 
N o D T  
FastBusy 
N o T B  
SlowBusy 
NoSB 
RingBack 
NoRB 
Conn-CE 

I 

DiscCE 1 PhoneHandler 1 environment ( Deallocate voice connection from caller to  callee 

Des tiriation 

Phone-Handler 
Phone-Handler 
Phone-Handler 
Phone-Handler 
Phone-Handler 
Phone-Handler 
environment 
environment 
environment 
environment 
environment 
environment 

Source 

environment 
environment 
environment 
tirner 
timer 
timer 
PhoneHandler 
PhoneHandler 
PhoneHandler 
PhoneHandler 
Phone-Handler 
Phone-Handler 

Table A. 1: SDL Rcqiiireiiiciit s Dictioiiary ( 112) 

Description 

User dialed digit number x 
User has taken originating telephone oflhook 
User has placed originating telephone onhook 

, 
Digit dialing timer 
Slow Busy tone timer 
Ring Back tone timer 
PBX provides user with dia1 tone 
PBX removes dial tone 
PBX provides user with fast busy tone 
PBX removes fast busy tone 
PBX provides user with slow busy tone 
PBX removes slow busy tone 
PBX provides user with ring-back tone 
PBX removes ring-back tone 
Assign voice connection from caller to  callee 

PhoneHandler 
PhoneHandler 
PhoneHandler 

environment 
environment 
environment 
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