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Abstract

As the size and complexity of modern software systems grows, it becomes increas-
ingly difficult to determine whether they operate as specified. Presently, the process
is excessively dependent on human observation, limiting its scalability and accuracy.
Accurate and reliable detection of software failures would aid in the management
and improvement of software reliability. An automated approach to detection of

software failures is needed.

This thesis addresses software supervision, an approach to specification-based,
automated detection of software failures. The work is focused on real-time reactive
systems specified in a formalism based on communicating finite state machines. The
supervisor, a separate unit, observes the inputs and outputs of a target software
system. It makes use of the target systems’ requirements specification. Discrep-
ancies between specified and observed behaviors are reported as failures by the

Supervisor.

Supervision involves a number of difficult issues. A prominent one is the han-
dling of specification nondeterminism. Specification nondeterminism permits the
target system to generate several legal output behavioral alternatives for a single
input behavior. The supervisor must be able to consider all behavioral alternatives
so that unwarranted failure reports are not generated. In some cases, the exhaus-
tive consideration of all behavioral alternatives results in an excessive supervisor

time and space cost.

This thesis presents a novel approach to supervision, called hierarchal supervi-
sion, that reduces the time and space cost of supervising systems whose specifica-
tions contain large amounts of nondeterminism. In a hierarchal supervisor, failure
detection is carried out at two levels of abstraction: the path detection level and the

base level. The path detection level determines the path or trajectory through the

v



specification that corresponds with observed target system behavior. Effectively, at
the path detection level, the behavioral alternative chosen by the target system is
identified. At the base level, a detailed check of observed behavior along the path

identified is made.

This thesis presents the underlying concepts of hierarchal supervision, the ar-
chitecture of a hierarchal supervisor, the derivation of the supervisor model from
the requirements specification, the definition of the interpreters for both the path
detection and base supervisor levels and describes the derivation of the time and
space complexities for both. The major research contributions of the thesis include
splitting of supervision into two sub-problems (path detection and detailed behavior
checking), making use of both target system input and output signals to track tar-
get system behavior, discussion of tradeoffs between the latency of failure detection
vs the computational cost of supervision, development of an approach to prune
behavioral alternatives from consideration and development of a base supervisor

aimed at detailed behavior checking.

To evaluate hierarchical supervision, a demonstration supervisor was imple-
mented. It supervised the control program of a small telephone exchange. Two key

aspects, failure detection and time/space complexity, were evaluated.

The failure detection evaluation included both optimistic and pessimistic report-
ing. Pessimistic reporting refers to unwarranted generation of failure reports, while
optimistic refers to not generating warranted failure reports. Experimental obser-
vations revealed that all failures were reported and no failures were missed. The
time and space cost was evaluated by measuring the number of behavioral alterna-
tives considered by the supervisor, which is indicative of its time and space cost.
Experimental measurements showed improvements of over two orders of magnitude

over the direct single-layer approach.
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Chapter 1

Introduction

1.1 Failure Detection

This thesis addresses automatic detection of software failures. It is well known that
state-of-the-art software development processes yield imperfect software. Thus it
is common for large systems such as telecommunication switches, avionics flight
systems etc. to contain several thousands of software faults. Automatic failure

detection is the first step to dealing with failures arising from software faults.

1.2 Software Supervision

Software supervision is an approach aimed at automatically detecting externally
observable software failures. A software supervisor monitors the inputs and outputs
of the target system (figure 1.1) and makes use of the target system’s requirements

specification.



CHAPTER 1. INTRODUCTION 2

Real-Time System

(or Subsystem) Outputs

Inputs

Supervisor

¢

Failure Report

Figure 1.1: Software Supervisor

Internally, the supervisor generates a set of ezpected behaviors from the require-
ments specification and target system input and/or output signals. The expected
behaviors are compared with actually observed behaviors. A failure is reported if

a match between the two cannot be made.

The supervisor may be attached to either the entire system or a sub-system,
provided that the inputs and outputs of the sub-system are observable. In the latter
case, a supervisor could be used to detect errors before they manifest themselves

as externally observable failures.

A number of challenges exist in the development of a software supervisor. One
major challenge is dealing with specification non-determinism. Specification non-
determinism permits several legitimate output behaviors for a single input behavior.
A supervisor that uses a specification containing non-determinism must be able to
consider all legitimate behavioral alternatives so that false failure reports are not

generated.

For some specifications, the number of legitimate behavioral alternatives can be
large. Explicit consideration of each alternative can result in a very large supervisor

time and/or space complexity.
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1.3 Why Supervision

There are three principal categories of application areas for supervision: software
development, on-line supervision and software reliability instrumentation. This

section outlines several uses of a supervisor within each application area.

A. Software Development: During software development, a supervisor may be
used to report software failures prior to release. Two specific application areas

are:

1. Fault-localization tool. Large software systems can be partitioned
into several sub-systems. If a supervisor is attached to each sub-system,
a fault may be automatically localized to a sub-system. In this case,
supervision has the potential of reducing costs associated with software
debugging.

2. Test tool. Systems exhibiting non-determinism are difficult to test due
to a number of possible outcomes for a given test case. As a result.
testing, in most cases, is restricted to specific cases with few, known
outcomes.

A supervisor is able to report a relatively complete set of failures. It
would serve to improve the effectiveness of testing and indirectly improve

the reliability of developed software.

B. On-Line Supervision: The presence of faults in software systems during field-
operation makes supervision an attractive approach for detecting failures.

On-line supervision presents a number of advantages including:

¢ Early reporting of failures allows a company to repair underlying faults

before more serious consequences occur.
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e Minor failures are, in some cases, indicative of more serious future prob-
lems. Accurate reporting of failures often gives early warning of potential

future catastrophes.

e The supervisor maintains a more global perspective of the system than

any individual user. It is thus able to report failures not visible to

individual users.

e The supervisor is able to provide more accurate and detailed failure

reports than non-technically oriented users.

C. Software Reliability Instrumentation: A major impediment to the advance-
ment of the software reliability engineering discipline are the difficulties as-
sociated with collection of software failure data. At present, the process is
excessively dependent on human intervention both for the detection of fail-
ures and collection of relevant descriptors. The software supervisor may be

used to automate this process.

1.4 Objectives

The primary objective of this work is the research of an efficient approach to auto-
matic detection of software failures in the presence of specification non-determinism.
The intended application of the failure detection unit is real-time reactive telecom-

munications software.
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1.5 Summary of Research Contributions

e Partitioning supervision into two subproblems: target system tracking and

detailed behavior checking.

e Definition of a framework to track the target system operation. The tracking

unit consists of a model and an interpreter.

— Formalization of the semantics of the tracking-unit model.
— Research of a derivation procedure for the tracking unit model.
— Definition of algorithms for a suitable tracking system model interpreter.

— Development of a prototype implementation of the tracking unit inter-

preter.

o Definition of a framework for a detailed behavior checking. A detailed behav-

ior checking unit consists of a model and an interpreter.

— Formalization of the semantics of the detalled behavior checking unit.

— Development of algorithms for a suitable interpreter of the detailed be-

havior checking unit.

— Development of a prototype implementation of the detailed behavior

checking unit.

e Computational complexity assessment of the proposed approach.

1.6 Organization of Thesis

This thesis is organized as follows: Chapter 2 outlines the major issues related to

automated failure detection and overviews existing approaches.
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Chapter 3 presents an overview of hierarchical supervision. A hierarchical super-
visor consists of two layers: (1) the tracking layer (called the path-detection layer)
and (2) the detailed behavior checking layer (called the base supervisor layer). Each
layer makes use of a unique target system model and interpreter. Target system

models are derived from the target system requirements specification.

Chapter 4 describes the transformation of the model used by the path detec-
tion layer. The transformation accepts as input the target system’s requirements
specification and generates a suitable model to be used by the path detection layer.

Chapter 5 describes an interpreter for the aforementioned model.

Chapter 6 presents the model transformation and interpreter for the base su-
pervisor layer. Evaluations of the approach based on a prototype supervisor and a
small telephone exchange that served as a target system are presented in chapter 7.

Conclusions are drawn in chapter 8.



Chapter 2

Issues & Related Work

This chapter outlines six major issues that arise in software supervision. Existing
work that may be used for automatic detection of software failures is described
next. The chapter concludes with an overview of the focus of this thesis in light of

the issues and existing work.

2.1 Definition of Correct Behavior

The objective of supervision is to detect failures in the operation of a target system.
The supervisor requires a definition of legitimate target system behavior. The

definition is required to be complete and expressed using a formal notation.

One possibility is that the supervisor uses the target software system’s require-
ments specification, typically developed as part of the software life cycle [46]. The
requirements specification defines the externally observable behavior of the software
system. A multitude of formal specification languages exist with formally defined

semantics to minimize semantic ambiguities.

7
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This work is focused on communicating finite state machine (CFSM) based
formalisms. Many internationally standardized formalisms are based on a CFSM
model. Examples include the Specification and Description Language (SDL) [58],
Estelle [23], and Lotos [22].

2.1.1 Target System Response Time

Physical systems are typically specified as having finite response times. Thus an

event, E will be serviced by the target system after R units of time.

For actual systems, R may be different for different events. Furthermore, for a
single event, R may vary depending on several factors such as the target system
load and the availability of resources. The exact response time may be impossible

to determine analytically.

An approximation of the individual event response times can be made by con-

sidering the best and worst-case response times. The actual response time will fall

within this interval. T°*

rin 15 defined as the best case response-time of any event
under any specified condition of the target system. Similarly, 77, .. is defined as
the worst case response time. For the remainder of the thesis, each event will be

considered to have a response time that falls within the interval [T7,... 77 ..].

This thesis considers the case where the requirements specification consists of
two components. The behavioral specification appears in a CFSM-based formalism.
The behavioral specification is supplemented by a declarative specification of best

and worst-case response times.
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2.2 Specification Non-Determinism

Before non-determinism is defined, a definition of determinism is presented first.
The definition originally appeared in the encyclopedia of philosophy [18].
Determinism is the general philosophical thesis which states that for ev-
erything that ever happens there are conditions such that, given them,
nothing else could happen. (...) an event might be said to be deter-
mined in this sense if there is some other event or condition or group
of them, sometimes called its cause, that is a sufficient condition for its

occurrence, the sufficiency residing in the effects following the cause in
accordance with one or more laws of nature

From this definition, non-determinism may be defined as the theory or doctrine

that for each cause, there may be two or more legitimate effects.

Non-determinism is an important part of many specification formalisms. [t
allows the specification writer to omit portions of the specification that are not
relevant. This reduces the specification effort and gives the software designer more
design freedom to choose the behavioral alternative (or alternatives) that would

result in a less costly or otherwise desirable implementation.

Specifications having non-determinism allow systems to exhibit non-deterministic
behavior during field operation. Consider a telephone exchange and the scenario
where two parties, A and B simultaneously attempt to call a third party, Z. The
exchange will typically exhibit non-deterministic behavior in that either A or B

can connect to Z. The two behavioral alternatives arising are shown in figure 2.1.

A software supervisor must be able to consider all behavioral alternatives arising
out of the non-determinism in the requirements specification. A supervisor that
is not able to consider all behavioral alternatives may generate erroneous failure

reports. Specification non-determinism is one of the major challenges of supervision
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Phone A Exchange PhoneB  Phone Z Phone A Exchange PhoneB  PhoneZ
= = T = T = T T
digit(Y) | digi(Y) 1 digit(Y) | digit(Y) '
ring_tone | slow_busy | . slow_busy | ring_tone )
- - nng_phorg:= - - nng_phoncr
(@) (b)

Figure 2.1: Non-Deterministic Behaviors

as the number of behavioral alternatives required to be considered by the supervisor

may be large resulting in a large supervisor time and space complexity [47].

Specification non-determinism may refer to several categories of non-determinism.
Descriptions of many of these can be found in [44]. The principal ones dealt
with here are non-deterministically delayed communication paths and the non-
determinism associated with the precise time of a local clock. For our purposes,
the latter will refer to the difference between the values of the supervisor clock and

the target system clock.

2.2.1 An Execution Path Interpretation of Non-Determinism

Many specification formalisms support different types of non-determinism. A com-
mon framework can be used to represent most types of non-determinism. The

framework shall be referred to as the ezecution path (EP) interpretation.

An EP is defined as a series of state transitions through a finite state machine.
Essentially, non-determinism permits two or more legitimate EPs for a possibly

empty set of stimuli directed to a CFSM-based specification.

As an example, consider the single-FSM specification in figure 2.2a. On the
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arrival of stimulus a, either path Sy — S; or Sg — Ss could be taken. The choice
of EPs is non-deterministic despite both paths producing an identical observable

output, X.

Figure 2.2: Example Finite State Machines

2.2.2 Categories of Non-Determinism

Non-determinism refers to choices in the EP. Specification non-determinism may be
categorized into don’t care non-determinism and don’t know non-determinism. In
this section, an informal definition of the two types of non-determinism is presented.

A formal definition will appear later.

Don’t care nondeterminism refers to two or more alternate EPs that if followed
for a finite number of state transitions will leave the system in an identical global
state. For communicating extended finite machine (CEFSM)-based specifications,
global state refers to the collective state of all FSMs including the contents of

commuunication channels and input ports.

A trivial example of don’t care non-determinism is illustrated in figure 2.2b.
Assume that the FSM is initially in state So and stimulus a is consumed by the
FSM. Regardless of the EP chosen, the FSM will output signal X and terminate

in state, S;.
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Don’t know non-determinism refers to or more alternate EPs that if traced will
leave the system in a different global state. FSMs containing examples of don’t
know non-determinism are illustrated in figures 2.2a and 2.2c. The two paths
in figure 2.2a leave the FSM in two different symbolic states, while the paths in
figure 2.2c output different signals.

From the perspective of a software supervisor, all behavioral alternatives must
be considered so that erroneous failure reports are not generated, as described in
section 2.2. If the don’t care non-determinism could be separated from the don’t
know non-determinism, the supervisor would only have to consider don’'t know
non-determinism. This would have the desirable effect of reducing the time and/or

space complexity of the supervisor.

2.3 Supervisor Signal Processing Latency

Signals to and from the target system are directed to the supervisor. Signals may
be processed, by the supervisor, an arbitrary time after their occurrence. Two
general categories of supervisors are in-time and out-of-time. The supervisors differ
principally in the time at which signals are processed by the supervisor. In other
words, the relation between the clocks of the supervisor and target system. A
loosely bound definition of in and out-of-time supervision is presented below. This

definition will be refined later as more issues are presented.

Consider an event, E, generated by the environment to be processed by the
target system. Assume that E was generated at time 7. A supervisor will process
E at some time, T + A. An in-time supervisor must be able to process, event E
such that A = 0 while an out-of-time supervisor must be able to process event E

such that A > 0.
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The time at which events in a supervisor are processed is dependent on the
response time of the target system. Consider two events, E; and E,, representing
requests for service (e.g. two telephones going offhook). E; and E, are generated

at times, T and T5 respectively. If |1}, — T,| < T ., then the order in which the

events are serviced by a non-deterministically specified system may be arbitrary.
For example, if telephone A goes ofthook before telephone B, it may be possible

(and legitimate) for B to receive dialtone before A.

In general, a violation of causality may result if events are processed as they are
received by a supervisor. From the previous example, if event E, is processed before
E, arrives (figures 2.3a and 2.3b). On the arrival of E», the supervisor determines
that the order in which the events were processed does not correspond with the
order chosen by the target system (figure 2.3c). The supervisor must revert to a

previous state and reprocess the events in order E, — E; (figure 2.3d).

E E2 E|
¢ i '

E| Eo

(a) (b) (c) (d)

Figure 2.3: Causality Violation in Event Processing

Based on the issues in event processing latency, more precise definitions of in-time

and out-of-time supervision follow.
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2.3.1 In-time Supervision

An in-time supervisor is defined as one where events, generated at time T, are

processed on the interval, [T, T + T7...].

As outlined in section 2.3, causality violations may occur in an in-time supervi-
sor. This category of supervisors must make provision for un-consuming consumed
signals to un-do causality violations. Two approaches have been studied thus far.
The signal-in-transit approach [25] pre-creates an explicit behavioral alternative
for each possible signal that may arrive. The rollback-and-recovery approach [56]
moves the global state of the supervisor back and re-orders the processing of events

as required.

The principal advantage of in-time supervision is that failures are reported

within T _

of their occurrence. The disadvantage is that the supervisor must
be able to keep up with the target system (i.e. the supervisor cannot lag the target
system by more than T}, . units of time). In most cases, the supervisor is more
computationally intensive than the target system due to the need to consider all
behavioral alternatives. For systems with large amounts of non-determinism, the

computational complexity of the in-time approach has been found to be a severe

shortcoming [47].

2.3.2 Out-of-time Supervision

An out-of-time supervisor is defined as one where events generated at time, T' are

processed on the interval, [T + I}, 1" + oo].

az?

In an out-of-time supervisor, before an event is processed, the supervisor waits

at least T,,. units of time. The supervisor can thus guarantee that no further
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events will be generated that may precede the current one. Thus the out-of-time
supervisor does not need a mechanism to un-do causality violations like its in-time

counterpart.

The principal advantage of out-of-time supervision is that peaks in processing
requirements can be amortized over an arbitrary amount of time. Thus the out-
of-time supervisor requires a CPU that can process the average computational
requirements of the target system rather than the peak as required by the in-time

one. The disadvantage of the approach is the latency of failure reporting.

2.4 Tradeoffs Between Accuracy and Computa-

tional Cost

Specification non-determinism may result in large supervisor computational com-
plexities as mentioned in section 2.2. This is currently one of the major impediments
to the use of a supervisor. One possible approach of dealing with specification non-
determinism is to use partial supervisor models [47]. A partial model would reduce
the computational complexity of supervision at an expense of reduced failure de-

tection capability.

Partial models may be derived from the requirements specification. There are
two categories of approaches to devising partial models: pessimistic and optimistic.
A partial supervisor model may be derived using a combination of the two ap-

proaches.

Pessimistic models can cause the supervisor to report failures while the target
system is operating correctly. The failures reported by a pessimistic model are a

superset of the actual set of failures. Pessimistic models are derived by eliminating
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alternative EPs representing don’t know non-determinism from the requirements

specification [47].

Optimistic models can cause the supervisor to miss reporting some failures.
Failures reported by an optimistic model are a subset of the actual set of failures.
Optimistic models are derived by eliminating m EPs representing don’t know non-
determinism from the specification and replacing them with n new EPs such that

m > n [51].

The effects of reduced model supervision have been studied in [45, 47]. It was de-
termined that the savings are proportional to the number of encountered behavioral
alternatives. As system loads get larger, more non-determinism was encountered
and more savings in computational complexity were realized. For one particular
experiment, reductions in computational complexity of several orders of magnitude

were observed with approximately three quarters of failures reported [47].

2.5 Attachment of a Supervisor to a Target

System

To minimize the interference with the target system software, a supervisor typically
executes on a separate hardware platform. There are several ways a supervisor can
be attached to observe the input and output signals of a target system. This work
is targeted towards systems with a large number of input and/or output connec-
tions such as communication controllers, telephone exchanges etc. The physical
connection of the supervisor to each input/output wire of a large system is prac-
tically infeasible. Two commonly used approaches will be described here, namely:
(1) tapping of a data link and (2) polling of controlled hardware interface memory.
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Both are shown in figure 2.4.

Target
Software
System
Supervisor )
y
L Hardware ]
Interface = Abstractor Supervisor
Protocol Memory
Translator Iy
1 1
Controlled
S DATA LINK 5 Ttduaee
Tap Sybsystem
(a) (b)

Figure 2.4: Supervisor Connectivity Patterns

2.5.1 Tapping of a Data Link

Tapping of a data link refers to snooping traffic traveling across a communication
channel. Data is monitored in read-only mode. A protocol translator converts

physical-layer signals to events that can be processed by the supervisor.

The difficulty with this approach is the multiple interpretations of a lack of
information by the protocol translator. The absence of information is typically
handled by timeouts in many protocols. The protocol translator must deal with the
absence of an event (for example) in the same way as the target system. The precise
time that the timeout occurs is non-deterministic due to the lack of knowledge in the

supervisor about the local clock of the target system (as discussed in section 2.2).

In such cases, two behavioral alternatives need to be considered by the supervi-
sor: (1) that the timeout has expired before the event is received and by the target

system and (2) that the timeout expires after the event is received.
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2.5.2 Polling of Controlled Hardware Interface Memory

A software system’s input and output signals can be identified by polling the con-
trolled hardware interface memory. An abstractor (figure 2.4) is used to convert
bit changes into signals recognizable by the supervisor. Current hardware design-
for-testability trends such as boundary-scan [42] may facilitate polling hardware

interface memories.

Several issues arise when poling the hardware interface memory. Three common
ones are described here. First, signals of short duration may be missed. Second,
the order signals are reported may be permuted by the abstractor and finally, the
scanning of some signals may be dependent on the correct target system operation.

A brief overview of each of the issues follows.

Short Duration Signals

An abstractor samples the hardware interface memory at a fixed frequency, f,.
Consider a signal E, generated by the target system with duration, Tg such that
Tg is less than the sampling period (i.e. Tg < fl—') If E is generated between

sampling points, it will be missed by the abstractor.

Consider the example in figure 2.5a. Signal, F is generated between sampling
points 1 and 2. The abstractor will miss reporting the occurrence of signal E. The
missed event will be reported by the supervisor as an illegitimate failure of the

target system.
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Figure 2.5: Sampling of the Hardware Interface Memory



CHAPTER 2. ISSUES & RELATED WORK 20
Reversal of Signal Order

If two or more signals are generated between sampling intervals, the abstractor will
not be able to report the actual signal generation order. Rather, the order reported

will be based on some internal abstractor scanning order.

As an example consider the two events, A and B occurring between sampling
points 1 and 2 as shown in figure 2.5b. Both signals, A and B will be detected
by the abstractor at sampling point 2 and the actual order of occurrence is not

resolvable by the abstractor.

For some specifications, order of signal generation is critical. If the abstractor
reports signals out of order, the supervisor will report an erroneous failure of the

target system.

Dependence on Correct Target System Operation

The supervisor relies on the correct operation of the target system for some signals
to be reported by the abstractor. Consider the case shown in figure 2.5¢c. A common
signaling translator is used by both the supervisor and target system. Furthermore
assume that the signaling translator is turned off and on as needed by the target
system software. This could be representative of a power-critical application such
as a battery-operated device, or the case where the signaling translator is a shared

resource, allocated/deallocated as needed.

The difficulty arises in that the requirements specification only specifies the
externally observable behavior. Switching the signaling translator on and off is
typically not specified at the requirements specification since it is not an externally

observable event.
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If a software fault exists that omits turning on the signaling translator, the
events will be suppressed by the translator and neither the target system nor su-
pervisor will receive them. This type failure is not detectable by a supervisor as
the supervisor relies on the correct operation of the target system for the signal to

be generated.

2.6 Continuation of Supervision After Detection

of a Failure

A requirements specification typically does not specify the behavior of a target
system after the occurrence of a failure. From the requirements specification per-
spective, a failure causes the target system to traverse a state transition that does
not correspond with any transition in the requirements specification. This may
lead the target system into a state that does not correspond with any state in the

requirements specification.

If the supervisor remains attached to a system after a failure occurs with the
supervisor state different from the target system state, the supervisor would expect
one behavior and the target system would generate another. The result would be

a shower of failure reports generated by the supervisor.

Most systems exhibit some fault tolerance capability. For minor failures a sys-
tem may be able to recover its operation after a period of time, t; (figure 2.6).
Session oriented systems typically fall into this category. For example, if a failure
is observed during a telephone call in North America, a natural reaction would be
to place the telephone onhook and to re-attempt the call, effectively re-setting the
state of the local phone.
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Figure 2.6: Operation of a System After Occurrence of a Failure
2.6.1 Resynchronization

The post-failure state of the target system is not known by the supervisor, but is
needed to prevent generation of spurious failure reports. The post-failure state of
the target system may be determined once it resumes normal operation. Once the

state of the target system is known, supervision may resume.

A resynchronization mechanism is needed to determine the post-failure state
of a target system. The mechanism accepts as input both target system inputs
and outputs, just like the supervisor. It generates a state corresponding with the
current state of the target system based on the requirements specification. The
problem is complicated because distinguishing signal sequences must be determined
for all CEFSMs including internal ones that do not communicate directly with the

environment. This result is a very large possible search space [2, 16, 15].

In the context of supervision, resynchronization was studied in [30, 35]. The
central research issue in both cases was coping with the large number of possible
states that the target system could be in. Both used assumptions to limit the num-
ber of possible states, for example [30] made the assumption that the post-failure
state was closest to the pre-failure state while [35] proposed resynchronization based

on the pre-failure state and target system fault models.
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2.7 Related Work

Previous work on monitoring software systems for failures can be subdivided into
two broad categories: intrusive and non-intrusive. Intrusive approaches require
modifications to the target system software while non-intrusive approaches do not.
Existing work on several intrusive and non-intrusive approaches to software moni-

toring is described in the following section.

2.7.1 Intrusive
Software Audits

Software data errors are detected and possibly corrected by means of audit pro-
grams [1, 13, 41, 43| before they manifest themselves as failures. Audit programs
consist of additional software which has access to the main program’s data struc-
tures. An audit executes at a lower priority than the main program and periodically

checks data structures for errcrs.

Audits principally detect three types of errors [41]: (1) direct comparison er-
rors, comparison of data structures with a duplicate, (2) comparison by association
errors, detection of failures with the aid of data structure redundancy such as a
doubly-linked list and (3) format comparison errors, common sense checking of data

such as bounds checking.

The main advantage of audits is that they are able to detect software errors
before the errors manifest themselves as failures. However, audits detect only a
limited set of errors. In addition, audits themselves may contain faults, potentially

reducing the overall reliability of the software.
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Watchdog Timers

The watchdog timer is an approach for detecting severe system failures [38]. The
approach requires that the target system software be instrumented with code to
generate sanity pulses within an interval of time, T. Generally, generation of san-
ity pulses surrounds code such as procedure calls, resource requests or loops with
known worst case execution times. In the event that some portion of code does
not terminate before its maximum execution time, a sanity pulse is not generated

within the required time.

An external unit or watchdog timer, monitors the sanity pulses. The timer may
be implemented in hardware and/or software [29]. Hardware implementations are
able to report a broader range of failures than purely software approaches. If a
pulse is not received within T units of time, the unit reports that a failure of the

software has occurred.

The advantage of watchdog timers is that they are simple and easily imple-

mented. The disadvantage is the limited set of failures that can be detected.

Run-Time Result-Checking

Run-time result-checking refers to a collection of approaches to check the correctness
of results produced by program modules [8, 9, 12, 50]. Correctness checks are
performed on the outputs of modules/programs. As an example, if a procedure is
to compute a function, y = f(z), a checker could make use of the inverse function

to re-compute the actual inputs, z = f~!(y).

There are several difficulties vith this approach. Development of a checking rou-

tine may be more complex than the actual routine itself. Result-checking software
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that executes on the same processor as the target system may degrade the overall
system performance. In addition, the checking software may itself contain faults,
reducing the overall reliability of the system. Sankar and Mandel [50] have devel-
oped a distributed monitoring approach where the monitor resides on a separate

processor that alleviates these problems to some degree.

2.7.2 Non-Intrusive

N-Version Programming

N-version programming (NVP) refers to an approach for failure detection/fault
tolerance [3]. From a single requirements specification, N separate designs and

implementations are produced by N isolated teams of developers.

The N-versions of software are all executed concurrently. The outputs of all
N copies are fed into a voting algorithm that compares outputs. If all outputs are
not identical, a failure may be reported. Fault-tolerance is achieved by having the
voting algorithm choose a non-failed output and use it as the actual output of the

system. A majority-wins algorithm is one such common voting scheme.

The principal difficulty with NVP is its cost. N-versions of the software are
required. Studies have shown that the NN versions of software may contain iden-
tical faults despite being developed by isolated teams [21, 32]. Additionally, non-
determinism poses difficulty as each of the N versions may have different outputs
that are all legitimate. Recent research has focused on ways to reduce imple-
mentation non-determinism [44]. However this may have the undesirable effect of

increasing development costs.
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External Assertion Checking

External assertion checking refers to an approach that checks certain properties of
outputs generated by a specific target system. Two such systems, Elektra [31, 53]
and HMON (17] are described here.

Elektra is an electronic railway control system. It consists of two primary com-
ponents, the logic processor and the safety bag. The logic processor is the target
system. The safety bag checks and possibly rejects outputs produced by the logic
processor. The safety bag consists of a real-time rule-based expert system that
encodes various safety rules stated by the railway authority.

HMON is a distributed real-time monitoring and debugging environment. It
is able to monitor of several event types including system calls, context switches,
interrupts and shared variables. HMON attaches itself to the target system soft-
ware through shared libraries and a modified kernel. It allows the user to specify
attributes about each of the events. Discrepancies between the specified event

attributes and actually observed events are reported as failures.

Both approaches monitor properties of the target system. As a result, they are

only able to reported a limited set of failures.

The Observer

The observer [4, 5, 14] is an approach for formal on-line validation of distributed
systems. It is very similar to a software supervisor. The observer monitors the
inputs and outputs of the target system and makes use of a formal model of the
target system, derived from the requirements specification. Discrepancies between
observed behaviors and behaviors represented by its internal model are reported as

failures.
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The observer was applied to the monitoring of distributed systems. The major
difference between the observer and supervision is that the work reported on the

observer does not address the issue of specification non-determinism.

Software Oracles

An oracle is an external source of information about a program. Common examples
of oracles include proof axioms, another program or a formal specification {10, 40,
49]. Approaches to the automated development of oracles from specifications have

been described.

A principal use of oracles has been in software testing. Oracles categorize test
cases as either legitimate or illegitimate. As a result, they are typically only able
categorize the behaviors represented by the test cases due to their limited model of

the target system.

2.8 Research Focus

Category of Systems: This thesis addresses supervision of discrete, real-time, re-
active systems that service humans. The case where the system specifications
appear in a communicating extended finite state machine based formalism is
considered. Such systems typically have a simple interface and as a conse-

quence a simple specification.

Categories of Failures: The detection and reporting of behavioral and perfor-

mance failures is addressed.

Behavioral failures are defined as spurious, incorrect or missing events that are

generated and/or not-generated by the target system. Performance failures
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are defined as violations of the temporal requirements of a specification [11].
The category of performance failures considered are violations of worst case

response time, T .

Definition of Correct Behavior: This thesis addresses supervision of CEFSM-
based requirements specifications. For the sake of concreteness, discussion
is aimed at the Specification and Description Language (SDL) [58]. SDL
is standardized by the International Telecommunications Union (ITU) and
used internationally within the telecommunications industry. The reader is

referred to [7] for an introduction to the language.

Treatment of supervision with SDL-specifications is focused to a subset of
SDL-88. The subset is sufficient for many applications such as telecommuni-

cations call processing software. An outline of addressed constructs follows.

Structural Constructs: system, block, process
Communication Constructs: signal, signal route, channel

SDL Process Constructs: decision, signal input, signal output, save, task,

start, state, stop, any, none

Specification Non-Determinism: This work addresses non-determinism asso-
ciated with multiple event consumption orders. Three types of SDL non-
determinism that fall into this category are: non-deterministic channel delay,
spontaneous transitions and non-deterministic decisions. The latter two types

of non-determinism may be modeled with non-deterministic channel delay.

Supervisor Signal Processing Latency: This thesis focuses on out-of-time su-

pervision. Events generated by the target system’s environment or by the
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target system itself may be processed by the supervisor an arbitrary time

after their generation.

Tradeoffs Between Accuracy and Computational Cost: The case where a
complete set of failures is required is considered. Thus supervision with a

full model of the target system is treated in this work.

Observability of Target System Inputs: This work assumes complete observ-

ability of all target system input and output events.

Continuation of Supervision After Detection of a Failure: Addressed is su-
pervision of correct behavior from the point where the target system is ini-

tialized to the point where a failure is detected.



Chapter 3

Hierarchical Software Supervision

This chapter gives an overview of hierarchical software supervision, an approach to

supervision aimed at dealing with specification non-determinism.

The chapter beings with some definitions that will be used throughout the
remainder of the thesis. The internal organization of a hierarchical supervisor is
described next followed by a discussion of each function unit within the supervisor.

The chapter concludes with a description of the operation of the supervisor.

3.1 Definitions

Definition 3.1.1 (Process State) For an SDL process, P;, the process state is
defined as a 8-tuple, ¥ =< a,V,Q > where:

e o represents the current symbolic state of P;;

e V is the set of all variables and associated assignments;

30
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o () is the sequence representing the contents of P;’s input queue.

Definition 3.1.2 (Global State) For an SDL spectfication consisting of processes,
Py, Py, ..., P,, the global state of the specification, T is defined as a tuple of the all

n process states, ¥ =< Py,¢a,...,%n >.

Note that the definition of global state assumes that all communication channels
in the specification are empty. Thus it may be considered a guiescent global state.
This definition simplifies the discussion as the additional state space introduced by

channels is omitted.

3.2 Internal Organization of a Non-Hierarchical

Supervisor

The following description gives a conceptual overview to the components and oper-
ation of a software supervisor. Conceptually, a software supervisor consists of five
fundamental components: the supervisor model, interpreter, expected behavior
buffer, observed behavior buffer and a matcher. One possible variant of a software
supervisor, where inputs are used to generate expected behaviors or an input-driven

supervisor is shown in figure 3.1.

The supervisor model captures the legitimate behaviors of the target system.
As discussed in section 2.8, the case where the supervisor model is specified in
SDL is considered. The interpreter interprets the supervisor model. Behaviors
expected to be generated by the target system (expected behaviors) are buffered
in the expected behavior buffer. Correspondingly, observed behaviors are buffered
in the observed behavior buffer. This alleviates the need for both behaviors to be
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Figure 3.1: Anatomy of a Software Supervisor

generated at precisely the same time. A matcher compares the contents of the two

buffers and reports a failure if a match cannot be made.

3.2.1 Approaches to Dealing with Specification

Non-determinism

Specification non-determinism permits more than one legitimate expected behavior
for a given observed behavior. If the behavioral alternatives are visualized as alter-
nate EPs through the supervisor model, as outlined in section 2.2.1, the supervisor

must be able to consider all alternate EPs. Two approaches have been developed.

The belief method [26] explores all legitimate EPs in a breadth-first manner. A
separate thread of execution or belief is created for each encountered EP. A be-
lief represents one global state of the supervisor model and the contents of the
expected/observed behavior buffers. Beliefs are terminated as their externally ob-

servable behavior is invalidated by the actually observed target system behavior.

The belief method is a conceptually elegant approach for dealing with behavioral
alternatives. However, its most serious shortcoming is its worst case time/space

complexity. Consider the case where N signals are queued for consumption whose
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order cannot be determined. In this scenario, the worst case computational com-
plexity of the supervisor is given by (3.1) [26].
N N

2!

(3.1)

1=0

The optimaistic path prediction and rollback (OPPR) approach [56] was developed
to overcome the large time and space requirements of the belief method. OPPR
explores legitimate EPs in a depth-first fashion, according to a heuristic derived

from the target system’s operational profile.

Results indicate that the average case complexity of the OPPR approach is
significantly better than the belief based approach [55, 56]. However, upon occur-
rence of a failure, the OPPR must explore all behavioral alternatives, resulting in
a worst-case complexity similar to that of the belief-based method.

3.3 Tracking Target System Operation

The belief method considers all EPs concurrently while OPPR considers a heuris-
tically ordered sequence of EPs. In many cases, however the actual EP chosen by
the target system may be inferred dynamically from the observable signals to and

from the target system.

As an example, consider the SDL specification in figure 3.2. Assume that signals
a and b are generated by the environment within a short duration, € of each other®.
Due to the non-deterministic SDL channel delay, process A could consume the
signals in order: a — b or b — a. Specification non-determinism thus permits either

path 1 or path 2 to be legitimately traversed.

IThe actual bounds for € will be discussed later.
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Figure 3.2: Example SDL Specification
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By having the supervisor watch for key signals (either target system inputs or
target system outputs), the path chosen by the target system could be inferred.
For the specification in figure 3.2, a supervisor could infer that path 1/path 2 was
followed if signal, X /Y was generated by the target system. The reader should
note that signals X and Z would have been equally effective in detecting the two

state transitions.

3.3.1 The Tracking Model

In general, both target system input and output signals may be used to track
target system operation through the supervisor model. The observed signals are
used to detect the occurrence of state transitions corresponding with target system

behavior.

For each state transition in the requirements specification, a different signal
may be used to detect that the transition is taken place. A tracking model is one

representation of such signals.

The tracking model contains all symbolic states and state transitions of the
requirements specification. The principal difference between the two models is
their stimuli. Stimuli for the tracking model are chosen to detect state transitions
corresponding with target system behavior. For each state transition in the tracking
model, a stimulus is chosen from the set of signals consumed/generated during the

corresponding state transition in the requirements specification.

A primary criterion to select stimuli for the tracking model is signal uniqueness.
Uniqueness is a relative concept. In general, signal, S; is considered more unique
than S, if S; can be consumed/generated in fewer states than S,. The precision of

state detection is improved by choosing more unique stimuli. This reduces uncer-



CHAPTER 3. HIERARCHICAL SOFTWARE SUPERVISION 36

tainty within the supervisor as to the actual state transition that occurred and as

a consequence improves the supervisor time and/or space complexity.

For the example requirements specification in figure 3.2, a corresponding track-
ing model is shown in figure 3.3. The model is developed based on the choice that
signals X and Y are used to detect paths 1 and 2 through the requirements specifi-
cation. Note that the SDL system specification (figure 3.3a) has the output channel
reversed to introduce the supervisor perspective. Signals, a, b and Z are not used
to track the target system and are consumed without effect. Additional (non-SDL)

constructs are used to output path information once it has been determined.

process A_TM
ap
>3!>XLI >T|>bl>f}
system Example_TM ( SO ) EP 1 EP2 (SO} ( SO )
[a] (st) (s3)
[b] process yJ_’ Y‘—J
A b a
v '
W.X.Y.Z] (so) (Tso)
(a) (b)

Figure 3.3: Example Tracking Model
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3.4 Hierarchical Software Supervisor

Supervision may be decomposed into two smaller sub-problems: (1) tracking the
evolution of the target system state through the requirements specification and (2)
detailed behavior checking. Lessons learned from disciplines such as Al planning
indicate that a problem can be solved more efficiently if decomposed and each part
solved with a domain-specific problem solver {6, 34]. The resultant architecture is
hierarchical and consists of two functional units: the path detection module (PDM)

and the base supervisor (BSup) (figure 3.4).

Software Supervisor

| ndiadht et g [l

. PDM ' Failure
: 1 Report
: PDM ;
! Model ;
! PDM l
' Interpreter; :
: Execution :

Target System o Base . Target System
' TVISO| [

Inputs ; “Riodel Exp. Obs. : Outputs
T - -+ Beh. Beh. [« T
. Supl:arireisor Buffer Buffer| :
X [Interpreter] X

Figure 3.4: Hierarchical Software Supervisor

The PDM tracks the operation of the target system. It accepts both input
and output signals of the target system and generates EP information. The PDM
consists of a PDM-model, similar to the tracking model described in section 3.3.1

and an interpreter. The PDM-model is derived from the requirements specification.

The BSup is a detailed behavior checker. It accepts target system inputs, out-
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puts and EP information from the PDM. The BSup consists of the five components
described in section 3.2. The BSup-model very closely resembles the requirements
specification. The interpreter interprets the BSup-model, steering execution ac-

cording to EP information generated by the PDM.

3.4.1 Operation of the Hierarchical Supervisor

The hierarchical supervisor operates with one of its two functional units active
at any point in time. Figure 3.5 shows the operating states of the hierarchical

SUpervisor.

N

PDM
Execution

BSup
Execution

Failure
Detected

Figure 3.5: Operating States of a Hierarchical Supervisor

Execution begins at the PDM. The PDM executes until it determines the next
segment of the EP followed by the target system. The PDM communicates this
information to the BSup and passes control to the BSup. The BSup attempts to
follow the EP through the requirements specification and generates the expected
output(s) corresponding to the EP traversed. The matcher compares the expected

output(s) with the actually observed output(s).
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Failure Reporting

Failures may be reported by either the PDM or BSup. The PDM reports a failure
if *he signals generated by the target system could not have been generated along
any path emanating from the current symbolic state. The BSup reports a failure in
any one of three cases: (1) if the BSup cannot be steered along the path prescribed
by the PDM, (2) if the expected and observed behaviors do not match and (3) if a
timeout occurs while the BSup waits for path information to be generated by the

PDM

Failures described are sub-divided into four commonly-occurring types, cate-
gorized by two attributes: the failure category and the hindrance of the PDM’s
tracking ability. The two failure categories are: (1) spuriously-generated signals
and (2) missing or not-generated signals. The presence of a failure may or may not
cause the PDM to report an incorrect EP. Both cases are described. The failure

types are summarized in figure 3.6.

PDM Tracking Hindered
No Yes

72] w
e 33
= 'gg‘o TYPEI TYPE II
S 52
G
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& 2&%| TYPEI TYPE IV
S =@

Figure 3.6: Failure Types

As an example, consider a hierarchical supervisor that uses the PDM-model
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shown in figure 3.3 and BSup-model in figure 3.2. Both the PDM and BSup are

initially in state S0. Examples of the four different failure categories are shown in

figure 3.7.
Environment Target System Environment Target System
a ] ) a ]
w - Y
(a) TypeI (b) Type 1
Environment Target System Environment Target System
' b [ b
Y Z
(c) Type III (d) Type IV

Figure 3.7: Illegitimate Behaviors

The first failure type (figure 3.7a) is an example of an illegitimate output pro-
duced by the target system. The behavior does not correspond to any path em-
anating from the current symbolic state. This type of failurc is reported by the
PDM.

The second failure type (figure 3.7b) represents an incorrect output generated
that corresponds to an existing but incorrect EP (see figure 3.3). The PDM reports
that path 2 was traversed by the target system. The BSup attempts to steer
execution along path 2 but cannot due to the absence of signal 4. The BSup
reports the failure.

The third failure type (figure 3.7¢) represents a missing signal that does not
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interfere with the PDM’s ability to determine EP information. The PDM reports
that path 2 was traversed. The BSup generates an expected behavior consisting
of signals, Y and Z. The matcher discovers that the expected behavior does not
match the observed behavior. A failure is reported by the matcher.

The final failure type (figure 3.7d) represents a missing signal that interferes with
the PDM’s ability to detect the EP. In this example, signal Y was not generated
by the target system. The PDM cannot determine EP information since it waits
for Y, however the BSup has received signals b and Z. The BSup waits 777 __ from
the receipt of b for EP information from the PDM to account for signals b and Y.
If EP information from the PDM has not arrived after this time, the BSup reports

a failure.

3.4.2 Supervisor Signal Processing Latency

The PDM tracks target system behavior by waiting for key signals so that the next
segment of the EP traversed by the target system can be determined. The PDM
typically uses a combination of target system input and output signals. As outlined
in section 2.1.1, target system outputs may have a latency of up to T _ units of

time before they are generated by the target system.

The PDM cannot guarantee accurate path detection unless it lags the target

system in the processing of events by at least T __ units of time. Thus out-of-time

maz

is a natural mode of operation for the hierarchical supervisor.

In some cases, the PDM may not be able to resolve the EP chosen by the
target system. This is principally due to a lack of unique signals that may be
generated /consumed in more than one requirements specification state transition.

In such a case, the PDM must resort to an approach where several candidate EPs
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are considered concurrently. Two such approaches (belief method and OPPR) were
described in section 3.2.1. The belief method will be used in this thesis due to its

maturity over the OPPR. approach.

3.4.3 Computational Cost

The hierarchical supervisor makes use of two models and two interpreters. As a
first approximation, its time and space cost is twice that of a monolithic one. As
will be discussed in the latter parts of this thesis, the computational cost of a
hierarchical supervisor is proportional to the number of beliefs generated. Thus a
point of indifference between the choice of a hierarchical supervisor and a monolithic
occurs one when the hierarchical supervisor eliminates from consideration half of
the beliefs generated by a monolithic one. Once more than half of the beliefs can be
eliminated from consideration, a hierarchical supervisor becomes more cost effective

than a monolithic one.

The time and space cost of a hierarchical supervisor depends on: (1) the amount
of non-determinism in the requirements specification, (2) the implementation of
non-determinism in the target system and (3) the operational profile. An analyt-
ical model of the computational cost of a hierarchical supervisor is left as future
work. However, the time and space complexities of a monolithic and hierarchical

supervisor are evaluated experimentally for one target system in chapter 7.



Chapter 4

The PDM Model

This chapter describes the derivation of a tracking model from the requirements
specification. As mentioned previously, this model is referred to as a PDM-model.
Recall from section 3.3.1 that the PDM-model is used by the path detection module
(PDM) to track target system operation through the requirements specification.

The PDM-model derivation procedure is exemplified with the aid of a non-
trivial system; a fragment of a small telephone exchange. The example was chosen
to exemplify the main parts of the transformation process which are difficult to

illustrate with a trivial example.

The chapter begins with a description of the telephone exchange and its require-
ments specification. The prominent issues arising in the derivation of a PDM-model

are described next followed by the actual derivation procedure.

43
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4.1 Example Software System
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The example software system is the call processing software of a small telephone

exchange. Its complete specification appears in appendix A. For discussion pur-

poses, the SDL process interaction diagram of the exchange is duplicated in this

chapter. It appears in figure 4.1.
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Figure 4.1: Telephone Exchange SDL System Specification

The behavior seen by each telephone is defined by a Phone_Handler process.

Phone_Handlers communicate to connect and terminate telephone calls. A sepa-

rate, bidirectional communication path exists between each pair of Phone_Handler
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processes, represented by implicit SDL signal routes in figure 4.1.

All Phone_Handlers are identical. To simplify the discussion, only two fragments
of the Phone_Handler are shown (figure 4.2). They deal with an originating party
dialing the final digit of the telephone number and requesting connection with
the terminating party. For brevity, identification of the destination process for
signals reg_connect, remote_avail and remote_busy is omitted as are portions of the
specification dealing with exceptions such as timeouts and uncompleted dialing.

The numbers in brackets ([---]) appearing in figure 4.2a will be described later.

(a) Originating Fragment (b) Terminating Fragment

Figure 4.2: Fragments of the Phone Handler Specification
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4.1.1 IHNustration of Nondeterministic Behavior

Consider the A and B call Z scenario. A chart illustrating the signals exchanged
between Phone_Handlers A, B and Z and the environment is shown in figure 4.3.
If both A and B dial the final digit of Z within a brief interval of each other,
the indeterminate delay on the inter-process communication paths between the
environment and processes A and B permits either A or B to complete the call to
Z (the other will receive slow busy tone). Figure 4.3a shows the case where the
delay to process B is larger and 4.3b where it is smaller than the delay from the
environment to A. For this particular scenario, the specification permits two legal

behavioral alternatives. Both alternatives must be considered by a supervisor.

Phone_ Phone_ Phone_ Phone_ Phone_ Phone_
Handler A Handler B Handler Z Handler A Handler B Handler Z
— —_— | e—— } — — —
digj dio:
~&iuy) %, | CR_Con(A) Yo, —£M)| cr_con®)
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D CR_Con(B) o CR_Con(A)
ne Avail(Z) 1o0¥] Busy .
ack A0 - nn ’bus‘J = rin
sy o0 g Busy ‘\g\".’ﬁ""e o0 45\0\" - Avail(Z) '\f:fﬂ%c
dow O - aog DPe=—"1"
] L} R R L L]
(a) (b)

Figure 4.3: Behavioral Alternatives for the A and B Call Z Scenario

At the input port of a process, specification nondeterminism permits the two
CR_Consignals (figure 4.4) to be consumed in either order. Provision must be made
by the supervisor to consider all possible signal orderings if consumption order
uncertainty exists. The consequence of considering only a subset of all possible
signal permutations is that the supervisor may generate spurious failure reports.

For a process with n signals in its input port, the upper bound on the number
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of signal permutations is n!. This may lead to a potentially large computational

complexity if all possible signal permutations must be explored.

| cR.Con(a) | | cR_ConB) |

Phone
HandIr
Z

Figure 4.4: Permuteable Signals at the Input of a SDL Process

4.2 Issues in the Derivation of the PDM-Model

As mentioned in chapter 3, stimuli for the PDM-model are chosen based on their
uniqueness. A metric of uniqueness is described first. A discussion of maintaining
sequences of internal state transitions or causality pathways in the PDM-model is
described next. The section concludes with a description of data flows in the PDM-

model. Data flows appearing in the requirements specification must be maintained

in the PDM-model.

4.2.1 Identification of State Transitions

As discussed in section 3.3.1, the occurrence of a state transition is detected with
either target system input or output signals. The motivation for using signals
other than target system inputs to detect state transitions is to reduce the number
of required signal permutations and as a result the computational complexity of

the supervisor.

Signals in the PDM-model, used to detect state transitions, are chosen based
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on their uniqueness. In the requirements specification, signals that are either con-
sumed/generated during fewer state transitions are considered more unique than
signals consumed/generated during more transitions. The precision with which
state transitions can be detected improves as the uniqueness of signals used in-
creases.

The notion of a uniqueness metric or u-metric is used to quantify the idea of
signal uniqueness. The u-metric is defined for all signal-transition pairs in the

requirement specification.

Definition 4.2.1 (Uniqueness Metric (u-metric)) Let P be an SDL process
and s an SDL signal that initiates a state transition or is generated during a state

transition in P. The u-metric(s, P) is defined as:

e if s is an input signal, u-metric(s, P) s defined as the number of state tran-

sitions initiated by s in P

e if s is an output signal, u-metric(s, P) is defined as the number of state tran-

sitions in P where s is generated

The ability to map a signal to fewer state transitions reduces the number of
behavioral alternatives the supervisor must consider. The u-metric is used as a basis
to select stimuli for the PDM-model by the derivation procedure to be discussed

in section 4.3. Signals with lower u-metric values are preferred over signals with

higher u-metric values.

Dynamic Metrics

In general, metrics for PDM-model stimulus selection may be classified as either

static or dynamic. Static metrics take into consideration the specification but not
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the corresponding operational profile of the target system. However, dynamic met-

rics also take into consideration the operational profile.

This thesis describes only one static metric (u-metric). Other static or dynamic
metrics may be developed. The PDM-model transformation process to be described

remains the same regardless of the metric used.

Example

Consider the example in figure 4.2. The u-metrics are shown in square brackets
([---]) beside each signal in figure 4.2. The u-metrics are computed based on the

full requirements specification of the telephone exchange appearing in Appendix A.

Note that signal CR_Con causes state many transition (in Appendix A, the
star-state notation is used to capture this) and as a result it has a high u-metric

value.

4.2.2 Causality Pathways

A target system input signal may cause a sequence of n state transitions in one
or more processes of the requirements specification. The n state transitions may
produce zero or more externally observable outputs (target system outputs). This

series of state transitions shall be referred to as a causality pathway (CP).

As an example, consider the specification in figure 4.2. Assume that the pro-
cesses shown are in states Wait_D2 and Wazit_Call. If signal digit(Y') is con-
sumed, it would cause state transition Wait_D2 — Wait_Rsp which would cause
Wait_Call -+ Wait_Ans followed by Wait_Rsp — Wait Co. This collective set of
state transitions, initiated by signal, digit(Y) is referred to as a causality pathway.
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Figure 4.5a illustrates this CP. A compact notation is used. Stimuli are denoted
as incoming lines to the process. Generated outputs are denoted as outgoing lines.

Actual state transitions are abstracted.

Phone_ Phone_
Handler A Handler Z
digit req_connect ring_phone
> > ) -
- g ]
ring_back_toneu remote_avail
(a)
Phone_ Phone__
Handler A Handler Z
digit req_connect ring_phone
—— ( --- E— 5T
| -
ring_back_tone remote_avail
(b)
Phone_ Phone_
Handler A Handler Z
ring_phone

digit /—\ req_connect

> e - ¥—=-
1

—
ring_back_toneu remote_avail

(c)

Figure 4.5: Causality Pathway and Causality Pathway Tracing

The PDM, responsible for detecting state transitions that occur, effectively
traces each CP. CPs can be traced in a forward direction, backward direction or a
combination of the two. A CP is traced forward by using stimuli of the requirements

specification as stimuli in the PDM-model. Conversely, a CP is traced backwards



CHAPTER 4. THE PDM MODEL 51

by using outputs from the specification as stimuli in the PDM-model. Two issues

arise when CPs are traced backwards by the PDM.

The first issue deals with a possible violation of signal sequencing in the detec-
tion of state transitions. As an example, consider the specification in figure 4.2 and
the corresponding CP in figure 4.5a. If the entire CP is traced backwards while
process A is in state, Wazt_D2, the PDM would be required to report that tran-
sition Wait_Rsp — Wait_Co occurred before transition Wait_D2 — Wait_Rsp
(figure 4.5b).

The solution to this problem is to trace the CP only in the forward direction or
to use a combination of forward and backward tracing. For the previous example,
one possible forward/backward tracing that solves the described signal sequencing

problem is shown in figure 4.5¢.

The second issue deals with the consistency in the selection of stimuli for the
PDM-model between individual processes. Consider two state transitions, S0 — S1
and Sa — Sb occurring in two different processes such that the occurrence of S0 —
S1 triggers Sa — Sb (i.e. both transitions are part of a single CP} (figure 4.6a). If
in the PDM-model, the identical signal is used as a stimulus for both transitions,
deadlock will occur {figure 4.6b). Clearly, stimuli that are chosen in one process

constrain the choice of stimuli in other processcs.

4.2.3 Signal Parameters

Parameters tagged to signals constitute the data flow through the requirements
specification. The state of a process is dependent on the values of data. Relevant

data flows must be maintained in the PDM-model.
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Figure 4.6: Example: PDM-Model Deadlock

The two types of parameters are addressed: implicit and explicit. Explicit pa-
rameters are specified by a specification writer. As an example the signal, digit(Y)

in figure 4.2 uses an explicit parameter to carry a digit information.

Implicit parameters are appended to each signal by the the semantics of the
specification formalism. Examples of such parameters include the sender ID of a
signal, the signal type, destination ID, etc. For brevity, we restrict discussion of
implicit parameters to the sender ID and signal type. Other implicit parameters

may be treated in a similar manner.

In the PDM-model, all parameters used by a process must be communicated to
the process. In many cases implicit parameters are not actually used and can be

dropped to simplify the transformation and the resultant PDM-model.

4.3 PDM-Model Transformation Algorithm

This section presents the algorithm for transformation of the requirements specifica-
tion into the PDM-model. The section begins with an overview. The transformation

algorithm is presented next, followed by an example.
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The presentation of the PDM-model transformation algorithm assumes that
signals in the requirements specification have unique names. Formally, consider
two signal send constructs, s; and s; appearing in the requirements specification.
If a state transition, T does not exist such that both s; and s, could cause T under
any given scenario, signals s; and s, must have different symbolic names. The
above requirement can be enforced by simply relabeling the symbolic signal names

in the requirements specification.

4.3.1 Overview

The PDM-model differs from the specification primarily in its stimuli. All states

and state transitions in the original specification appear in the PDM-model.

Path information is communicated to the BSup on the occurrence of cach PDM
state transition. Path information consists of a sequence of stimuli that if consumed

by the BSup would steer execution along the same path as determined by the PDM.

The PDM-model transformation consists of two parts: (1) stimuli selection and
(2) model generation. Stimuli selection successively eliminates PDM-model stimuli
(initially, all signals generated and consumed during a state transition are candidate
stimuli for the PDM-model). Stimuli selection terminates when exactly one signal
signal remains for each state transition. At this point model generation is invoked.
Model generation constructs a communicating extended finite state machine with

the chosen stimuli. The result is the PDM-model.

Stimuli selection is the most challenging part of the PDM-model transformation
process. This is due to the fact that the selection of a stimulus for a particular state
transition may constrain the choice of stimuli for adjacent state transitions on one

or more CPs. These constraints are represented as a constraint graph so that as
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stimuli are chosen, other inconsistent stimuli can be removed from consideration.

The components and data flows of the transformation process are shown in
figure 4.7. The stimuli selection and model generation components of the transfor-
mation are described below in further detail.

Requirements Specification Constraint Graph
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Figure 4.7. PDM-Model Transformation Process
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Stimuli Selection

The stimulus selection algorithm considers the requirements specification at three

independent levels of abstraction.

The first level considers the data-flows through the specification. The stim-
uli selection algorithm ensures that data-flows remain in the PDM-model as they

influence the state of processes. All processes are considered at this level.

The second level deals with the consistent selection of stimuli. As discussed,
choosing a stimulus for a state transition in process X will influence the choices
of stimuli in adjacent processes (processes that communicate directly with process
X). Counsistency of stimulus selection requires consideration of stimuli for adjacent

processes.

Stimuli are actually chosen at the third level. At this level, each process is
considered independently of other processes. Stimuli are chosen based on their
uniqueness within the specification. A signal that causes or is generated in few
state transitions will give the PDM more precise information as to which state

transition occurred than would a signal that may be consumed/generated in many.

PDM-Model Generation

The PDM-model generator begins with a model that represents the requirements
specification in topology. All finite state machines, states and state transitions
remain the same. State transitions are unlabeled (i.e. no input or output signals

appear on the transition).

The PDM-model generation consists of three steps. First the selected stimuli

are added to the model. Signal output constructs are added to state transitions
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that are to cause internal state transitions based on the choice of stimuli. Finally,
state transitions are added that consume target system input or output signals not

chosen as stimuli. These signals are consumed without effect!.

4.3.2 Constraint-Based Stimulus Consistency

To ensure consistency beitween the selection of stimuli for the individual state tran-
sitions of the PDM-model, the problem is projected as a finite-domain constraint
satisfaction problem (CSP) [48]. The classic formulation of CSP problems consist of
three components: (1) variables, (2) variable domains and (3) constraints between
variables. A constraint satisfaction algorithm is used to ensure that all constraints
are satisfied by successively restricting elements or ranges of elements from a vari-
able’s domain. The CSP is said to be solvable if at least one variable assignment?

exists that satisfies all constraints.

For the model transformation problem, state transitions are mapped into vari-
ables, candidate PDM-model stimuli for a particular transition are mapped to vari-
able domains and inequality constraints are placed between adjacent state transi-
tions of a CP. The interpretation of the constraints is that adjacent state transitions
cannot be initiated by a single signal generated or consumed during both transi-
tions. The CSP can then be represented as a graph where nodes represent state
transitions, contents of nodes represent possible PDM-model stimuli and labeled

arcs represent constraints.

As an example, a constraint graph was derived for the specification fragments

1These transitions are equivalent in semantics to SDL implicit transitions. They are described

explicitly for completeness purposes only.
A variable assignment may be considered as an elimination of all domain values except one

for a given variable.
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in figure 4.2. The graph appears in figure 4.8. Note that due to space limitations,
the graph captures only the originating fragment for phones 4 and B and the
terminating fragment for phone Z. A complete constraint graph must capture all

interactions of all processes appearing in the communication topology (figure 4.1).

Wait_D2 > Wait_Call -» Wait_D2 ->
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Wait_Rsp -> Wait_Rsp -> Wait_Ans-> Wait_Rsp -» Wait_Rsp ->
Wait_Co Waii_02 Wait_Ans Wait_02 Wait_Co

CFSM A CFSM Z CFSM B
Figure 4.8: Segment of Constraint Graph

A constraint graph is said to be consistent if for each variable’s domain value, at
least one corresponding domain value exists in each variable linked by a constraint
that satisfies each corresponding constraint. The elimination of domain values from

variables may cause the graph to become inconsistent.

As an example, if signal digit(Y) is removed from transition. Wait_ D2 —
Wait_Rsp, signal CR_Con becomes the stimulus for the aforementioned transi-
tion. Thus the stimulus assignment in transition Wait. D2 — Wait_Rsp is no
longer consistent with the assignment of CR_Con as the stimulus for either of
Wait_Call - Wait_Ans or Wait_Ans - Wait_Ans.

Constraint propagation is a technique to eliminate inconsistent variable domain
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values. A constraint propagation algorithm accepts as input an inconsistent con-
straint graph and returns a consistent constraint graph, provided that a consistent
variable assignment exists. Constraint propagation algorithms operate by succes-
sively removing inconsistent domain values until the graph becomes consistent.
The algorithm is applied each time a value is removed from a variable’s domain. A

survey of such algorithms can be found in [37].

From the above example, if the described graph was an input into a constraint
propagation algorithm, the algorithm would eliminate signal CR_Con from the
domain values of transitions Wait_Call — Wait_Ans and Wait_Ans — Wait_Ans

and signal Busy from the two Wait_Rsp — Wait_O2 transitions.

4.3.3 PDM-Model Transformation Algorithm

The PDM-model transformation algorithm is presented in two parts. The first part
is the stimulus selection algorithm (SSA). It is used to choose stimuli for the PDM-
model. The second part, the PDM-model generation algorithm (PMGA), generates
the PDM-model based on the stimuli chosen by the SSA. Recall, the transformation

process was shown graphically in figure 4.7.

In the descriptions of the SSA and PMGA, the following notation will be used:
Tr* will be used to refer to transition ¢ in the requirements specification, T;? to

the corresponding node ¢ in the constraint graph and 77" to the corresponding

transition in the PDM-model.
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4.3.4 Stimulus Selection Algorithm

The SSA accepts as input the requirements specification (Spec} and the correspond-
ing constraint graph, derived from the requirements specification (Cons.Graph).
The SSA returns a stimulus for each state transition in the requirements specifica-

tion.

The SSA can be subdivided into three parts. The first part checks for causality
violations in the detection order of state tramsitions as described in section 4.2.2.
The second part of the algorithm ensures that data flows remain intact in the
PDM-model, as outlined in section 4.2.3. The final part of the algorithm actually
selects signals that will be used to identify state transitions in the PDM-model
(i.e. the stimuli for state transitions). The selection process is based on the u-

metric, described in section 4.2.1.

The SSA appears in figure 4.9. A textual summary of the algorithm follows.

Causality Violations Check [lines 1-7]

As described in section 4.2.2, a violation of causality occurs if an attempt is made
to determine that a transition occurs after the current one. The SSA statically
detects possible causality violations by tracing the CPs through the requirements
specification. If a CP is found that crosses a particular process more than once,
the algorithm forces the portion of the CP which is crossed more than once to be

traced forward.

As an example, the CP shown in figure 4.5a crosses process A twice. The SSA
enforces that the first transition be processed in a forward direction. This effec-

tively restricts the entire CP to be processed either entirely in a forward direction
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Algorithm SSA(Spec, Cons_Graph)

1. for all state transitions T!* € Spec

2. CP = the set of all forward causality pathways passing through at T7*

3. if (ezists a cp € C P such that cp initiates two or more state transitions
in the process where transition T[® appears)

4 stimulus(T;®) = stimulus(TT*)

5. apply constraint propagation algorithm to Cons_Graph

6 end if

7. end for

8. for all state transitions T7* € Spec

9. if (stimulus(TT*) carries an ezplicit, used parameter

10. stimulus(T7? ) = stimulus(T7*)

11. apply constraint propagation elgorithm to Cons_Graph

12. end if

13.  if (+f implicit parameter(s) of stimulus(T]*) cannot be statically determined

4. delete all signals from the domain of T:? that do not carry needed
implicit parameters

15. end if

16. end for

17. for all nodes, T;° € Cons_Graph
18.  while(number_of_elements_in_domain(T:?) > 1} do

19. compute collective u-metric for each element in T;?
20. delete element in T:7 with largest collective u-metric
21. apply constraint propagation algorithm to Cons_Graph
22. end while

23. end for

24.return (stimuli)
25.end Algorithm

Figure 4.9: Stimulus Selection Algorithm
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(figure 4.5a) or partially forward and partially backward. One example of the latter
is illustrated in figure 4.5¢.

Maintaining Data Flows [lines 8—16]

Data flows that appear in the requirements specification must be maintained in the
PDM-model where required. The SSA checks all data flows and determines if the
data i1s required. If so. it imposes constraints on stimuli to ensure that the data

flows will appear in the PDM-model.

The SSA checks both explicit (programmer specified) and implicit parameters.
As discussed, 1mplicit parameters consist of the ID of the sender process for each

signal only.

The precision of the PDM-model in detecting state transitions is reduced by
imposing constraints on stimuli to maintain dataflows. In some cases. some signal
parameters may be determined statically, which reduces the constraints on stimuli.
As an example, the sender ID of a signal can often be determined statically from the
communication structure if there is only one process that could actually generate

the signal.

For parameters that are used and cannot be determined statically, the CP is
constrained to be processed in a forward direction. This ensures that the direction

of the CP remains identical to that in the requirements specification.

Stimuli Selection [lines 17-23]

For the remaining transitions having two or more candidate stimuli, stimuli are

selected based on signal u-metric. Signals having lower u-metrics are preferred
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since they indicate which transition has occurred with greater certainty than a

signal with a higher u-metric.

Choosing a stimulus for a particular state transition constrains choices of other
stimuli along the CP as described in section 4.2.2. Stimuli are chosen to minimize
the restriction on the use of signals with small u-metrics in adjacent processes. A
signal, s chosen as a PDM-model stimulus eliminates other candidate stimuli from
being selected. The sum of all signals u-metrics that are eliminated as a result of
choosing s shall be referred to as the collective u-metric. Note that the collective

u-metric includes the u-metric of s.

The final part of the SSA operates by repeatedly removing candidate stimuli
from a particular state transition, 7. The stimulus with the highest collective u-
metric is removed. This means that if only one signal is left in a node that the signal
becomes the stimulus for the node (state transition). A constraint propagation
algorithm is applied after the removal of each stimulus to ensure consistency. This

process repeats until each node in the constraint graph contains exactly one signal.

The reader should note that in the worst case, the SSA will choose stimuli for
the PDM-model that are identical to those in the requirements specification. This
would occur, for example, in a specification that does not generate any outputs. As
aresult, a consistent selection of stimuli for the PDM-model always exists. However,
in some cases the stimuli selection algorithm may return an inconsistent set of
stimuli. In such a case the constraint propagation algorithm could be combined
with search to exhaustively consider the search space. From experience, such a

scenario has not been encountered in the target system specifications considered.
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4.3.5 PDM-Model Generation Algorithm

The PDM-model generation algorithm accepts as input the requirements specifi-
cation, a stimulus for each state transition selected by the SSA and the unaltered
constraint graph. The algorithm creates the PDM-model. The PDM-model appears
at two levels of abstractton, similar to the corresponding requirements specification:

(1) the system or process interaction level and (2) the process level.

At the system level, all processes appearing in the requirements specification
appear in the PDM-model. The channels and signal routes connecting processes
differ, principally due to the possibility of signal direction reversal based on the
choice of stimuli for the PDM-model.

The communication topology is generated based on the following rules. Consider
two signals, s; and s, traveling from processes P; to P, in the PDM-model. If the
two signals traveled on a single channel/signal route in the requirements specifica-
tion, a single channel/signal route is created between process P, and P,. If the two
signals traveled on different channels/signal routes, two separate channels/signal
routes are created between processes P1 and P2. Note that some internal signals
appearing in the requirements specification may not appear in the PDM-model and
as a consequence the PDM-model may contain fewer channels and/or signal routes

than the specification.

The process level PDM-model generation algorithm (Algorithm PGMA) is de-
scribed in three parts. The first part creates the transitions using the stimuli pre-
scribed by the SSA. The second part introduces constructs to communicate path
information from the PDM-model to the BSup. The final part adds implicit signal

consumption constructs for any signals from the environment not used as stimuli.

The PMGA is shown in figure 4.10. A textual summary of the algorithm follows.
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Algorithm PMGA (Spec, Stimuli, Cons_Graph)
1. create all process in PDM-Model having stimuli from Stimuli
2. for all state transitions, T7* € Spec
3. for all transitions, T;? having a constraint between T]*
and T;? € Cons_Graph
if (stimulus(T;?) € T7*)
add output signal stimulus(T;°) to transition, T{™
end if
end for
end for
for all state transitions, TF™ € PDM-Model
0.  add BSup-output construct to transition TF " to communicate signal
stimulus(T7*) to BSup
11. end for
12. for all state transitions, T7* € Spec
18.  for all signals, sige T7*

NS L

S

14. if (sig # stimulus(TF ")) and (sig originates from environment)

15. if (stg appears before stimulus(TF™ ) in Spec)

16. add implicit transition in state before TY" occurs
to consume sig without effect

17. else

18. add implicit transition in state after T occurs
to consume sig without effect

19. end tf

20. end if

21.  end for

22. end for

23.end Algorithm

Figure 4.10: PDM-Model Generation Algorithm

64



CHAPTER 4. THE PDM MODEL 65
Creation of PDM-Model State Transitions [lines 1-8]

This portion of the algorithm creates all state transitions with the stimuli specified
by the SSA. For state transitions triggered by internally generated signals. the
PMGA adds output comstructs to the state transitions responsible for triggering

these transitions.

Insertion of Path Information to the BSup [lines 9-11]

Constructs to communicate path information are added to each transition in the
PDM-model. The path information is used to steer the BSup along the path of
the PDM. Path information cousists of the triggering signal name, explicit and
implicit parameters. The reader should note that the path information consists of
the triggering signal that would have caused the state transition in the requirements

specification, not in the PDM-model.

Addition of Implicit Signal Consumption Constructs [lines 12-22]

All signals generated and consumed by the target system travel to the PDM. Not
all signals from the environment are used as stimuli in the PDM-model. Explicit
signal consumption constructs are added for all signals from the environment not

used as stimuli.
Signals may be consumed without effect before or after the corresponding state

transition occurs in the PDM. The main issue is to preserve the order of signal

consumption specified by the requirements specification.

For explanation purposes, the signal to be consumed without effect shall be

referred to as S. S is generated or consumed in the requirements specification
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during transition 7. Assume that the chosen stimulus for transition T in the

PDM-model is Stim. Note that Stim # S

If, during transition T in the requirement specification, signal S is consumed
or generated before Stim, then S in the PDM-model must be consumed before
transition T takes place. If during state transition T', signal S is generated after
Stim is consumed or generated, then in the PDM-model, Stim must be consumed
directly after transition, T takes place (i.e. in the terminating state of transition

T).

4.3.6 PDM-Model Transformation Example

As an application example the SSA and PMGA are applied to the specification
fragment illustrated in figure 4.2. The corresponding constraint graph for the spec-
ification is shown in figure 4.8. The description of each algorithm’s execution is

broken down into the three steps used during the description of the algorithm.

Stimulus Selection Algorithm

The outputs from intermediate stages in the execution of the SSA are illustrated

in figure 4.11.

Causality Violation Check

The algorithm begins by tracing each of the CPs through the specification. In doing
s0, it is determined that the CP, initiated by signal digit(y/ in process A crosses
process A twice. For this reason, the stimulus for transition, Wait_D2 — Wait_Rsp

is set to the stimulus of the requirements specification. A similar stimulus selection
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Wait_D2 -> Wait_Call -> Wait_D2 >
Wait_Rsp Wait_Ans Wait_Rsp

CR_Con()
Avail( )

Ring

digit( )

digit( )

7

Busy Avail( )

Slow_Busy

Busy

Slow_Busy Ring_Back

Wait_Rsp -> Wait_Rsp -» wait_answer_state -> Wait_Rsp -> Wait_Rsp ->
Wait_Co Wait_Q2 wait_answer_state Wait_02 Wait_Co
(a) step 1
Wait_D2 -> Wait_Ans -> Wait_D2 ->
Wait_Rsp Wait_Ans Wait_Rsp

[ digitO)

digit( )

W

CR_Con( )
Avail( )

Avail( )
Ring_Back

CR_Con()
Busy

Avail( )
Ring_Back

Wait_Rsp -> Wait_Rsp -> wait_answer_state ->» Wait_Rsp -> Wait_Rsp ->
Wait_Co Wait_Q2 wiit_answer_state Wair_02 Wait_Co
(b) step 2
Wait_D2 -> phone_idle_state -> Wait_D2 >
Wait_Rsp wait_answer_state Wait_Rsp

digit( )

digit( )

Wait_Rsp <> Wait_Rsp -> wajt_answer_state -> Wait_Rsp -» Wait_Rsp -»
Wait_Co Wait_02 wail_answer_state Wait_02 Wait_Co

(c) step 3

Figure 4.11: Application of the Stimulus Selection Algorithm
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is made for the corresponding transition in process B. The resulting constraint

graph is shown in figure 4.11a.

Maintaining Data Flows

The second step of the SSA examines the explicit and implicit parameters carried by
all signals remaining in the constraint graph. The parameter (Y} carried by signal,
digit(Y) is needed. However in the previous step. this signal was instantiated as
the stimulus in the PDM-model (if it was not instantiated as the stimulus in the
previous step, it would have been during this step). Signal Ring during state
transition Wazt Call - Wait_Ans does not carry the sender ID of the stimulus
CR_Con in the PDM-model. This information is needed teo communicate path
information to the BSup and cannot be determined statically since it depends on
parameters not locally known to the process. For this reason, Ring is eliminated

from the PDM-model as a candidate stimulus (figure 4.11b).

Stimulil Selection

During the final step, the remaining stimuli are chosen. Signal CR_Con is a candi-
date stimulus for transition Wait_Call — Wait_Ans. This signal is eliminated as a
candidate stimulus since signal Avail has a lower u-metric value of 2. Signal Availis
chosen and the constraint propagation algorithm invoked which in turn eliminates

signals, Avail from transition Wait_Rsp — Wait Co.

For transition Wait_Ans — Wait_Ans, signal Busy has a lower u-metric value.
Thus Cr_Con is eliminated. The constraint propagation algorithm is invoked. The

final constraint graph is shown in figure 4.11c.
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PDM-Model Generation Algorithm

The intermediate stages in the execution of the PMGA are illustrated in fig-
ures 4.12 - 4.14.

Figure 4.12: Application of the PDM-Model Generation Algorithm (1/3)

Creation of PDM-Model State Transitions

The algorithm begins by creating a PDM-model. The PDM-model contains all
state transitions of the original requirements specification. The stimuli generated
by the SSA are used as stimuli in the PDM-model (figure 4.12). State transitions,
Wait_Call - Wait_Ans and Wait_Ans — Wait_Ans are triggered by internally
generated signals. Output constructs are added to these transitions to generate

these signals.
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Wait_D2

Figure 4.13: Application of the PDM-Model Generation Algorithm (2/3)
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Figure 4.14: Application of the PDM-Model Generation Algorithm (3/3)
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Insertion of Path Information to the BSup

The second step of the PMGA adds output constructs to communicate path in-
formation to the BSup. Path information consists of the signal that would cause
the corresponding state transition in the requirements specification. Note that all

explicit and implicit parameters must be defined for this signal (figure 4.13).

Addition of Implicit Signal Consumption Constructs

The final step of the algorithm adds explicit signal consumption constructs for
all signals from the environment not used as stimuli. For this example, a signal
consumption construct is added for signal Ring. In the requirements specification,
it is generated after signal Avail and as a result it must be consumed after the

transition has taken place in the PDM-model (figure 4.14).



Chapter 5

The Path Detection Module

Interpreter

This chapter outlines the theory and operation of the PDM interpreter. The PDM
interpreter interprets a PDM-model, which is an SDL specification. For this reason

the PDM-interpreter closely resembles the SDL interpreter.

The chapter begins with an overview of the interpreter. The notion of time
within the interpreter is subsequently described. The two approaches used to deal
with behavioral alternatives arising from specification non-determinism: partial-
order signal consumption and belief-based supervision, are described next. Finally
the key algorithms of the interpreter are presented along with an analysis of their

time and space complexity.
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5.1 Overview

The PDM-interpreter interprets the PDM-model. The fundamental difference be-
tween the PDM-interpreter and the SDL abstract machine is their operation in
the presence of non-determinism. The SDL abstract machine may select any one
behavioral alternative arising from specification non-determinism. However, the
PDM-interpreter must identify and follow the behavioral alternative chosen by the

target system.

The most prominent SDL non-determinism is channel delay. As an example,
consider the SDL process and incoming channels shown in figure 5.1. Each of
the signals traveling on an SDL channel are first-in-first-out (FIFO) ordered. The
contents of the channels are merged into a single input queue associated with the
SDL process. Several potential total orders of signals typically exist due to the

non-deterministic channel delay.

The PDM-interpreter must determine the total order chosen by the correspond-
ing target system and sequence signal consumption accordingly. A supervisor that
arbitrarily sequences signals for consumption would illegally report failures of the

target system.

5.1.1 Components of the PDM

The PDM-interpreter is described in terms of its four fundamental components:
(1) temporal signal tags, (2) partial-model supervision, (3) belief-based handling
of non-determinism and (4) the core-interpreter. The components are described in

further detail.
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Figure 5.1: Signal Ordering

Temporal Signal Tags Each signal in the supervisor is tagged with its time of

generation and/or consumption to facilitate its processing after its occurrence.

Partial-Model Supervision Used to reduce the number of behavioral alterna-

tives needed to be considered by the PDM.

Belief Creation Algorithm Used when the PDM/partial-order signal consump-

tion cannot resolve the behavioral alternative chosen by the target system.

Core Interpreter An out-of-time, directed SDL interpreter.

The remainder of this chapter describes, in further detail, the four components of

the PDM-interpreter.
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5.2 Temporal Signal Tags

Signals within the supervisor are tagged with the time of generation and/or con-
sumption. This information facilitates their processing after their occurrence. The

interpreter is responsible for generating the tags.

Signal tags are analogous to timestamps. However, uncertainty exists as to
the actual signal generation/consumption time principally due to a lack of internal
target system observability. As a result, signals within the supervisor are tagged
with a timestamp ranging over an interval. The interval represents the time during
which signals were generated and/or consumed within the target system. Such an

interval is referred to as an occurrence interval (OI).

OIs are derived based on the time that inputs from ard outputs to the environ-
ment were generated. Consider the series of state transitions in (5.1). %g,--- X,

represent global states of the PDM-model, 7 a target system input signal, o a target

system output signal and int;, - - - int, internally generated and consumed signals.
x, 12y, MaRe g lw, (5.1)

OlIs for the state transitions in (5.1) can be derived from the observation times
of signals 7+ and o. Assume that signal : was observed at time, #; and o at time,
t.. t; and ¢, represent the lower and upper bounds of both signal generation and
consumption. Thus an OI, [¢;,¢,] represents the consumption time of signal, ¢,
generation and consumption time of signals, i¢nt, - - -int, and the generation time

of signal o.
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5.2.1 Interpretation of Occurrence Intervals

As previously stated, the actual time signals were generated and/or consumed
within the target system typically cannot be determined due to a lack of observ-
ability. An OI captures the range of time over which a signal was generated and/or

consumed.

Within the supervisor, Ols are used to order signals. Consider two signals, sl
and s2 both with unique Ols. An definite order of the two signals can be determined
from their OlIs if the Ols do not overlap. Conversely, the order of the two signals
cannot be determined solely based on OlIs if the Ols of the two signals overlap. The
formal definition of OI overlap is defined below. The dot (.) operator is used to
address the OI of a signal.

Definition 5.2.1 (Overlapping Occurrence Intervals) The occurrence inter-

vals of two signals, s1 and s2 overlap if:

3t such that [(t > s1.) A (E < sLt)] A[(E > s2.8) A (t < 52.4,)]

As an example, overlapping and non-overlapping Ols are illustrated graphically in

figures 5.2a and 5.2b respectively.

(a) Overlapping OIs (b) Non-Overlapping Ols
Figure 5.2: Overlapping and Non-Overlapping Occurrence Intervals

The PDM-interpreter orders signals for consumption based on (1) their oc-

currence intervals and (2) their sequence on the channel/signal route which they
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traversed. In some cases, the interpreter may not be able to deterministically deter-
mine the exact consumption order of signals. The set of signals whose consumption
order cannot be determined is referred to as the consumable signal set, defined

below.

Definition 5.2.2 (Consumable Signal Set (CSS)) At timet, let s represent a
signal from the set of signals appearing at the heads of the incoming signal routes
or channels' having the smallest occurrence interval lower bound. Let J be the set
of signals other than s that appear at the heads of the incoming channels/signal
routes whose occurrence intervals overlap with s. The consumable signal set (K (%))

is defined as: K(t) = JU s.

Theorem 5,2.1 (Consumable Signals) The signal to be subsequentally consumed

must be contained in the consumable signal set.

Proof: Let A be a signal such that A & K. From definition 5.2.2, A either: (1)
does not appear as a signal at the head of an incoming signal route/channel or (2)
the occurrence interval of A does not overlap with s. The two cases are treated

independently.

Case 1: ) does not appear at the head of a signal route channel. The signal at the
head must be consumed before A. Thus A cannot be a consumable signai in

the current state.

Case 2: There are two possible situations in which the occurrence intervals of s

and A do not overlap: (1) A.t, < s.t; and (2) s.ty < A.t;. The former is not

1In SDL, signal routes carry all signals to processes within a block. However, signals that travel

over a channel before reaching their destination shall be referred to as traveling over channels.
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posstble since s is defined to have the minimum t; of all signals at the heads
of the incoming channels/signal routes and (t; < t,). The latter case verifies

that s must be consumed before A and agrees with Theorem 5.2.1.

5.2.2 Singly Bound Occurrence Intervals

In some cases it may not be possible or desirable to obtain both upper and lower
bounds of a signal’s OI. For example, to obtain both upper and lower bounds on the
OI for input signal, ¢ requires that the time output o is generated be propagated
backwards before the input is processed’. The backward propagation of event

occurrence times adds a significant amount of complexity to the interpreter.

It is possible to determine an OI with only one bound, either the lower or upper.

The worst-case target system response time, T7, .. is required in such cases. T,,,,

may be considered an upper limit on the time at which input ¢ will be legitimately

serviced by the target system. An event that is serviced after T _ time units is

considered a hard real-time failure.

An OI for the case where the lower bound is not known can be approximatcd

as [t, — Ty,

maz?

t,]. Correspondingly, the OI for the case where the upper OI bound

is not known is [, + T __]°.

max

2QIs are used by the supervisor to order signals. A signal can not be processed by the supervisor

without an OI.
3Note that this is an approximation of the actual OI. It is possible that in some cases the

supervisor would miss reporting some failures as a result of this. In chapter 7 an empirical

evaluation of the number of missed failures based on approximated Ols is presented.
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5.2.3 Generation of Signal Tags

For target system input or output signals, the OI of the corresponding signal is
computed based on the signal observation time and the worst case target system

«z) as described above.

response time, (7

OIs for internally generated signals are derived from the stimulus that caused
the state transition in the PDM-model. Recall that an OI is a bound of the
generation/consumption times of all signals generated during a sequence of state
transitions. As an example, consider the state transition sequence in (5.1). The
occurrence interval for signal ¢ includes the time where 7 was consumed and o gen-
erated. Thus it must also include the generation/consumption times of signals,

inty,inta. .. .tnt,. Thus all generated signals inherit the OI of the stimulus causing

the state transition in the PDM-model.

5.2.4 Timers

Timers are used to implement delay and timeout facilities in CEFSM-based spec-
ifications. Conceptually, timers may be implemented with signal send and receive

facilities. As an example, SDL timer set and reset constructs are shown in figure 5.3.

Timers are supervised so that delay and timeout failures can be detected by
the supervisor. In an out-of-time supervisor, timers are handled with the aid of
the OlIs described. The semantics of SDL timers dictate that the setting of a timer
(figure 5.3a) creates a signal, which shall be referred to as a timer signal, and places
it in the input port of the corresponding process. Timer signals (representing an
expired timer) are consumed identically to other SDL signals (figure 5.3b). The
resetting of a timer (figure 5.3c) removes and discards an unconsumed timer signal

from the input port. The tags of each timer signal influence when it is consumed.
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X(thtu) :
; reset (T1)

t ( 0
+s'f'o u'tl.o'I‘Yl ) T:l !
(a) (b) (c)

Figure 5.3: SDL Timer Set/Reset Constructs

The occurrence interval of a timer signal is a function of three parameters: (1)
the OI of the stimulus that caused the state transition in which the timer was
set, (2) the timeout value of the timer and (3) a parameter, A, which represents
the tolerance of a timers in the target system. The latter of the three parameters
implies that within the target system, a timeout will expire after Tout £ A units of
time. For the general timer set operation in figure 5.3a, the OI of the timer signal
is set to [t; + Tout — A, t, + Tout + A]. # and ¢, represent the OI of the signal that

caused the state transition containing the timer set operation (X).

Any number of timers can be set by an SDL process. Each timer signal in the
supervisor is sent to the process input port via a separate, delayed channel. Timer
channels are not programmer specified but rather implicit, used to conceptualize

the ordering of timer signals within the supervisor.

As an example, consider a process, Pl that uses two timers, T'1 and 72. One
configuration of channels leading to P1 is shown in figure 5.4. Unexpired timers
are indicated by signals pending consumption. For the example shown, T'1 is an

unexpired timer, while timer T2 is not yet set.
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Figure 5.4: Channels Carrying Timer Signals

5.3 Partial-Order Signal Consumption

The objective of partial-order signal consumption [24, 61] is to reduce the number of
behavioral alternatives that need to be considered. Recall from section 2.2.2 that
behavioral alternatives arising from specification non-determinism can be parti-
tioned into two categories, don't know and don't care. Partial-order signal consump-
tion addresses don’t care non-determinism. Its goal is to eliminate consideration of

don’t care non-determinism by the supervisor.

5.3.1 Application of Partial Order Signal Consumption

Three common types of SDL non-determinism are addressed in this thesis as out-
lined in section 2.8. The three types of non-determinism can be sub-divided into

directly and indirectly specified.

Directly specified types of non-determinism addressed are spontaneous transi-



CHAPTER 5. THE PATH DETECTION MODULE INTERPRETER 83

tions and non-deterministic decisions. A specification writer must explicitly in-
troduce one of these ccnstructs. For this reason, directly specified types of non-
determinism typically fall into the don’t know category. In other words, the behav-
ioral alternatives generated rarely lead to identical behavioral alternatives (or the
non-deterministic constructs wouldn’t have been introduced by the specification

writer).

Non-deterministic channel delay is an indirectly specified non-determinism as
SDL semantics dictate delayed channel communication must be used in certain sit-
uations, beyond the control of the specification writer. In theory, a signal traveling
on an SDL channel can be delayed anywhere from [0, oo} units of time. However,
in practice there is typically at least an upper bound placed on communication.
From experience, many behavioral alternatives arising from channel delay fall into

the don’t care category as described in section 2.2.2.

Partial order supervision is thus targeted to reducing the number of don’t care

non-determinism arising from SDL channel delay for the context of this thesis.

5.3.2 Definitions

Behavioral alternatives arising from SDL channel delay shall be referred to as C-
behavioral alternatives. C-behavioral alternatives arise as a result of multiple possi-
ble signal consumption orders. The definition of a C-behavioral alternative appears

below.

Definition 5.3.1 (C-Behavioral Alternatives) Let Sp represent the partially-
ordered set of signals at the input queue of process P. Let Rg = {ry,72,...,Tn}
represent the set of N possible total orders of signals from set Sp based on the FIFO
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ordering of SDL channels/signal routes and individual signal OIs. Each member of

Rg shall be referred to as a C-behavioral alternative.

The notion of process behavior and process behavior equivalence is now defined.

This will be used to define behavioral alternatives that lead to identical and different

observable behavior.

Definition 5.3.2 (Process-Behavior) Let P' represent a process in the PDM
model, in process state ¥ with m outgoing channels and signal routes. Let r repre-

sent a sequence of signals such that r € Rs.

behp(1, ), the behavior of P’ after consumption of signal sequence r, is defined
P

as a 2-tuple: (9,C) where:
e i represents the process-state of P' after consumption of signal-sequence r

e C = {c1.cr...cn} Tepresents the set of signal sequences from the alphabet,
X" U{e} on the emanating channels and signal routes of P’, generated as the

signal-sequence r was consumed.

Two process-behaviors are considered identical if: (1) the generated sequences of
signals between the two behavioral alternatives are identical and the Ols of corre-

sponding signals overlap and (2) the final process-states are identical.

C-behavioral alternatives may arise from don’t know or don’t care non-determinism.
Don’t know/don’t care non-determinism is defined based on the equivalence of the

behavior arising from the two C-behavioral alternatives.

Definition 5.3.3 (Don’t Care Non-Determinism) Let ry,72 € Rs represent
two C-behavioral alternatives. T, and r; are said to be generated under don’t care

non-determinism if behp(ry,¥) = behp(rq, ) for a given process state ¥ of P.
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Definition 5.3.4 (Don’t Know Non-Determinism) Let r;,r» € Rs represent
two C-behavioral alternatives. v, and vy are said to be generated under don't know

non-determinism if behp(ry,¥) Z behp(rs, ¥) for a given process state i of P.

From experience, many of the behavioral alternatives arise from don’t care non-
determinism in a SDL supervisor {39]. The following claim, stated without proof
due to its obviousness, is the basis to a substantial reduction of time and/or space

complexity in a software supervisor.

Claim 5.3.1 (Partial-Order Signal Consumption) All legitimate, specified be-
haviors can be considered by simulating only c-behavioral alternatives generated un-

der don't know non-determinism.

Not all behavioral alternatives need be considered {36]. Behavioral alternatives
arising from don’t care non-determinism can be pruned from the search space. One
approach for pruning such behavioral alternatives in a supervisor is described in

the subsequent section.

5.3.3 An Implementation of Partial-Order Signal

Consumption

This section describes an implementation of partial-order signal consumption. There
are two principal categories of existing work on this subject, both differing in their
target application. The first is with application to verification [28]. However, it is
not immediately applicable to supervision since it does not address the real-time
aspects of supervision. The second category is focused on automatic generation

of test cases for SDL specifications [59]. However, the work does not address the
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non-determinism associated with SDL channel delay. In other words, it assumes
SDL specifications to have a constant SDL channel delay, an assumption not valid

for the context of this work.

A spectrum of algorithms to reduce consideration of don't care behavioral al-
ternatives can be envisioned. At one end is a time-intensive algorithm that uses
a generate-and-test approach to determine if behavioral alternatives were gener-
ated under don't care non-determinism. This is the approach used in belief-based
supervision for example. At the other end of the spectrum is a space-mtensive
approach that uses a look-up table, indexed by the behavioral alternative. The
table facilitates a O(1) determination if two behavioral alternatives were generated
under don’t care non-determinism. However. the approach has an enormous space
requirement. Neither of the two approaches are well suited to the problem at hand.

A hybrid approach is needed.

In general, there is a tradeoff between the time and/or space complexity of the
approach and the reduction in the number of don’t care behavioral alternatives

considered.

The partial-order approach described capitalizes on the observation that a given
signal s in the input port of a process in the PDM-model is permuteable with a
finite number of signals. This follows from the discussion of Ols in section 5.2. In
addition, many SDL specifications have only a few states in which a signal can be

consumed to result in a different behavior.

These two properties are combined into a redundant permutation distance (rp-
distance). The rp-distance represents the minimum distance, measured in state
transitions, before a transition is reached where an SDL signal can be consumed

differently than in the current state. The formal definition of rp-distance follows.
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Definition 5.3.5 (rp-distance) Let P’ be a process in the PDM model in process-
state Y and A’ the input and oulput alphabet of P'. A’™ thus represents the set of
all possible input signal sequences of P'. For signal s € A’, the rp-distance, rp-
dist(P', ¢, s) is defined as the minimum length of a signal sequence A € A’™ such
that:

behp: (1, sA) # behp: (Y, As)

where s\ denotes the concatenation of signal s with ¢ signal sequence A. If no such

sequence ezists, rp-dist(P’', ¢, s) = co.

Note that rp-distance is not defined for signal-process state pairs where the signal

is not consumable (i.e. where the SDL signal is saved).

The rp-distance is enumerated for each process-state and each stimulus in the
PDM model. Its significance is that it can be used to reduce redundant signal
permutation in the PDM. If the number of signals in a set whose order is not
known (i.e. the consumable signal set) is less than the rp-distance of any signal in

that set, permutation is redundant.

State/rp-distance pairs are tabulated for each process in the PDM-model. Such
a table is called a partial order distance table (POD-table) and constitutes the static

information used by the partial-order approach.

The rp-distances for all stimuli of the PDM-model fragment in figure 3.3 are

shown in table 5.1.

As an example of the derivation of the table consider process state SO and
signal X. In the PDM-model, the closest state (in state transitions) where can be
consumed with a different behavior than in state S0 is S1. The distance between

S0 and S1 is one state transition. Thus the rp-distance of signal X in state S0 is



CHAPTER 5. THE PATH DETECTION MODULE INTERPRETER 88

| Process State [ Signal | rp-distance |

S0 a 1
S0 b 1
SO X 1
S0 Y 1
So y/ o0
S1 a 2
S1 b 1
S1 X 1
S1 Y 1
S1 y/ o0
S3 a 1
S3 b 2
S3 X 1
S3 Y 1
53 Z 00

Table 5.1: Example: Partial Order Distance Table

one. Consider signal Z as a second example. The behavior of the PDM-model will
be identical irrespective of the state in which Z is consumed. Thus. a state that
results ic a different behavior does not exist and as a result the rp-distance of Z in

any state is oo.

5.4 Belief Method

Two approaches have been described to deal with some aspects of specification non-
determinism thus far. The PDM-model facilitates identification of the behavioral
alternative chosen by the target system while partial order signal consumption
prunes behavioral alternatives that do not lead to different external behavior. The
mechanisms facilitate efficient handling of specification non-determinism. However,

they are not able to resolve the behavioral alternative chosen by the target system
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in all circumstances. The supervisor resorts to the belief method if both of the

other approaches fail (i.e. more than one unresolved behavioral alternative exists).

The belief method was discussed in section 3.2.1. It is a conceptually elegant
approach for dealing with all types of non-determinism. Thus it is more general
than the PDM-model and partial-order signal consumption. However, it has a much

larger time and space complexity.

The PDM generates a belief for each unresolvable behavioral alternative. This
occurs in two cases. The first case is where the queuing order of two or more signals
cannot be determined (figure 5.1a). In this case, a belief is generated for each
possible signal queueing order (e.g. for the example shown, A,B and B.A). The
second case is where the PDM-model contains an ANY construct, as described in
chapter 4 (figure 5.1b). In this case, a separate belief is created for each emanating

path from the ANY construct.

(a) (b)
Figure 5.5: Generation of Beliefs

Beliefs are treated as separate threads of execution. They are terminated in
one of two cases: (1) if the behavior represented by the belief does not match the
externally observed behavior and (2) if n beliefs represent identical global states
of the hierarchical supervisor (i.e. PDM and BSup), n — 1 of these beliefs are
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terminated. Note that in the latter case, the supervisor may require processing of
the n beliefs for a finite period of time before it can determine that n — 1 of the

beliefs are redundant.

5.5 Core Interpreter

The PDM interpreter closely resembles the abstract machine of SDL [58]. This sec-
tion begins with an overview of the relevant portions of the SDL abstract machine.

It then describes the key aspects of the PDM abstract machine.

5.5.1 SDL Abstract Machine

The semantics of SDL are formally defined by means of an abstract machine. The
SDL abstract machine consists of six types of CSP [27] processes. executing concur-
rently and communicating synchronously. Figure 5.6 illustrates each of the process
types and the communication between them. An overview of the functionality of
each SDL process follows. Note that discussion focuses on the supported subset of

SDL as cutlined in section 2.8.

system: Responsible for creating all other process instances in the abstract ma-
chine. It also routes signals between SDL processes.
path: Handles the non-deterministic delay of channels.

timer: Keeps track of current time and handles time-outs.

sdl-process: An SDL interpreter. One instance of this process exists for each SDL

process in the specification.
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Create-Pid,
Release-Pid,

Pid-Created

Send-Signal

Signal-Delivered

Queue-Signal,

Discard-Signals Signal-Delivered

Signal-Delivered,
Stop-Queue

Create-Instance- Next-Signal,
Answer Set-Timer,

Reset-Timer,
Send-Signal Active-Request ln?u!—Signal
Create-Instance- Active-Answer
Request,
Process-Initiated,
Stop Timer-
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R Time-Request
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."' R Time-Answer
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Figure 5.6: SDL Abstract Machine
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input-port: Handles the queueing of signals for an SDL process. One instance of

input-port exists for each sdl-process instance.

view: Keeps track of all revealed variables. Implements communication between

sdl-processes by means of shared memory.

This process represents functionality of SDL not addressed in this work and

is not discussed further.

5.5.2 PDM Abstract Machine

The PDM abstract machine is similar to the SDL abstract machine described. The
difference between the two arises principally from the treatment of specification

non-determinism.

The SDL abstract machine may arbitrarily choose a single behavioral alternative
from the set of possible alternatives arising from specification non-determinism. The
PDM abstract machine is required to identify and choose the behavioral alternative

followed by the target system.

The PDM abstract machine differs in three respects from its SDL counterpart.
First, as described previously, most behavioral alternatives arise from a number of
possible signal permutations at the input port. As a result, the input port of the
PDM abstract machine significantly differs from its SDL counterpart. Second, in
some cases, the PDM will not be able to resolve the selected behavioral alternative.
Beliefs were proposed as a way of dealing with this. Thus the PDM abstract
machine must provide support for belief creation, management and termination.
Finally, to support out-of-time processing of signals, the PDM abstract machine
tags all signals with their Ols.
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The process interaction diagram of the PDM abstract machine appears in fig-

ure 5.7. A textual summary of each process type in the abstract machine follows.
The descriptions highlight the differences between the PDM and SDL abstract ma-

chines.

Create-Pid, Queue-Signal,
Rdu..sse-md' l Discard-Signals Signal-Delivered
Send-Signal

Signal-Delivered,
Stop-Queue

system

Pid-Created,

Failure Report N Terminate-InPort,

Dunli
‘ Terminate-Belief, Ne:r_lslic:;;", A
Execute-Belief, Sct-Timer.
Duplicate Reset-Timer.
Send-Signal) Active-Request Input-Signal,
Process-Initiated, Active-Answer,
Terminate-Belief, Regls'ter-Behe.f.
Register-Belief, Terminate-Belief
Set-Belief Set-Belief
Timer-
Timer- Request
Queue-Signal, Terminate-Belicf Answer
Duplicate,
Terminate-Belief Time-Request
Time-Answer
Time
To/From BSup { timer |-$——o

Figure 5.7: Path Detection Module Abstract Machine

system: Creates, manages and terminates beliefs. Timestamps all signals gen-
erated by the environment with an occurrence interval. Handles routing of
signals from the PDM to the BSup. Note that the PDM abstract machine

only supports static SDL process creation.

path: Communicates signals traveling over SDL channels to their appropriate des-
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tinations. Note, unlike its SDL counterpart, the path process does not output

signals to the environment.
timer: Keeps track of current time and handles time-outs.

PDM-process: An SDL interpreter. The only difference between the SDL-process
and PDM-process is that all paths are followed by the PDM-process when
executing an ANY construct by generating one belief for each emanating

path.

input-port: Orders signals for consumption according to a corresponding order
chosen by the target system when the order can be determined. Creates

beliefs when the exact order cannot be determined.

Belief Creation/Termination

As outlined in section 5.4, beliefs are generated in response to unresolvable behav-
ioral alternatives. In the hierarchical supervisor, the PDM is used to resolve the
behavioral alternative chosen by the target system. As a result only the PDM cre-
ates beliefs. Beliefs are terminated when the external behavior represented by the
belief doesn’t match the expected behavior from the target system. Thus beliefs
may be terminated either by the PDM or BSup.

Within the abstract machine, beliefs may be created by either the PDM-process
or the input port as described. The control signals exchanged by the processes when

creating beliefs in these two cases are shown in figures 5.8a and 5.8b respectively.

Beliefs may be terminated by either the BSup or input port. The control signals

exchanged under these scenarios are shown in figures 5.9a and 5.9b respectively.
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PDM AM PDM AM PDM AM PDM AM PDM AM PDM AM
BSupAM System PDM Process Input Port BSupAM System PDM Process Input Port

—= — [——] — [ ————— ] [——]

Register-Belief Register-Belief
) - Register-Belief
Duplicate Duplicate
-— Duplicate Duplicate Duplicate
Duplicate
—— ——— —— L
(a) PDM Process Initiated (b) Input Port Initiated

Figure 5.8: Belief Creation

Note that all SDL processes in a belief are terminated. Figures 5.9a and 5.9b show

only one process being terminated as others receive identical signals.

PDM AM PDM AM PDM AM PDM AM PDM AM PDM AM
BSupAM System PDM Process Input Port BSupAM System PDM Process Input Port
= — —_— —_ —_— _— [ e ]
Terminate-Belief] Terminate-Belief
Terminate-Belief| Terminate-Belief
Terminate-InPon Terminate-Belief
meh— L ] ——— ———
(a) BSupAM Initiated (b) Input Port Initiated

Figure 5.9: Belief Termination

The belief creation/termination facilities were originally described and formal-

ized in [39] to which the reader is referred for further information.

Time Within the PDM

The supervisor processes target system input and output signals out-of-time as
described in section 3.4.2. Signals generated at time ¢t may be potentially processed
by the PDM anywhere on the interval, {t + T __, 00]. Thus the clock of the PDM
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lags the clock of the target system by at least 77 _ units of time.

mazx

The actual time within the PDM or the value of the PDM'’s clock is defined
in this section. The clock of the PDM is advanced as signals are consumed. Thus
the PDM clock is derived from the timestamps of the signals in the input ports
of its SDL processes. Individual processes represent executions at different points
in time, depending on how the processes are scheduled. Thus the time within the
supervisor is defined at two levels: (1) a process level and (2) a global level. The

definitions appear below.

Definition 5.5.1 (PDM Process Time) Let P represent a PDM SDL process,
in process state o, and S the set of signals queued in its input port. K is the con-
sumable signal set and K’ a subset of K where all signals in set K' are consumable
in the current state (i.e. not in the save set) (K' C K C S). The process time of
P (Tp) is an interval: Tp = [Tp,, Tp,] where:

e Tp, = minimum occurrence interval lower bound of a signal, s; € K’

e Tp, = mazimum occurrence interval upper bound of a signal, s, € K'

For a process P if set K' is empty its process time is undefined.

The process time ranges over an interval due to the uncertainty of the actual gen-
eration/consumption time of signals in the target system. The process time is
undefined for processes with zero signals in their consumable unsaved signal sets

(CUSSs). Process times are consolidated into a PDM global time, defined below.

Definition 5.5.2 (PDM Global Time) For a set of SDL processes, G, the global

time of G (Tgpp,,) ts an intervael, T, ,,, = (T6,, Tc,] where:
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o Tg, = minimum occurrence interval lower bound of a process, P, € G having

a defined process time

¢ T, = mazimum occurrence interval upper bound of a process, P, € G having

a defined process time

If all processes, P € G have undefined process times, the global time is undefined

as well

5.5.3 PDM Input Port

The central part of the PDM abstract machine is the input port. The input port
orders signals for consumption. It takes into consideration the FIFO constraints
imposed by the channels and signal routes of the specification as well as the signal
occurrence intervals. Thus for n signals, only a subset of the n! signal orders

typically need be considered.

The core of the input port is a sorting algorithm that orders signals in the
consumable signal set (CSS), defined in section 5.2.1. Signals in the save set are
removed from the CSS to form the consumable unsaved signal set (CUSS). Signals

in the CUSS are candidate signals to be consumed in the current state.

The input port is described as two parts. The first part (Algorithm QueueSig-
nal()) deals with the queueing of signals and preservation of the FIFO signal orders
imposed by channels and signal routes. The second part (Algorithm ConsumeS-
tgnal(})) outputs signals to the corresponding SDL process for consumption. The
discussion begins with a description of the major type and datastructure definitions

followed by the actual algorithms.
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Type Definitions

signal_names symbolic signal names consumed/generated by SDL process P
OI the occurrence interval type as defined in section 5.2
signal represents an SDL signal. signal has the following sub-fields:

name symbolic signal name of type signal_name
sender pid of sender process

receiver pid of receiver process

origin source of the signal (i.e. PDM/BSup/environment)
OI occurrence interval

parameters associated signal parameters as defined in the PDM-model
PS the process states of P

time an interval ranging over a period of time

Datastructures

Datastructures principally store incoming signals to the signal routes/channels. It

is assumed that an SDL process has n incoming channels and/or signal routes.

¢ a sequence of elements of type signal. ¢; represents the sequence of signals on
an incoming channel or signal route z (1 < ¢ < n). As signals are consumed

they are removed from the head of ¢;. Note that ¢; may be empty.

C a set of sequences of type signal. C = {c;.¢2,...cn}
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J a sequence of signals. Contains a copy of the signals at the heads of the incoming
signal channels/signal routes. J is kept sorted based on the lower bound of

si oc nce interval.
each signal’s occurre terval

PODT(o)(s) partial order distance table, an array indexed by the current process
state (o) and signal (s), returning the partial-order distance.

Tepam Global time of the PDM

curr_belief a pointer to the current belief of the process

Operations

comm_path_id(s : signal) accepts as input a signal s and returns ¢;, the incoming

communication path traversed by s where ¢; € C.

z ~ y sequence concatenation. z and y represent sequences. The function returns

the concatenation of z and y.

Queue Signal Algorithm

The qucuc signal algorithm is responsible for queueing signals in a datastructure
that preserves the FIFO order of SDL channels/signal routes (¢;). It also updates
J. a copy of the signals at the heads of the incoming channels/signal routes.

Consume Signal Algorithm

The consume signal algorithm orders signals for consumption. It implements partial-
order signal consumption and creates beliefs when uncertainty exists as to the actual

ordering of signals.
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Algorithm QueueSignal(C : signal _sequence_set, J : signal _sequence, s : signal)

1. ¢ = comm_path_id(s)

2. if (c; == empty)

3. insert s, into J based on the lower bound of each signal’s OI
4. endif

5. append s to the tail of ¢;

6. return(C, J)

end Algorithm

Figure 5.10: Input Port Queue Signal Algorithm

Due to the complexity of the algorithm, a flowchart of the algorithm appears
in figure 5.11. The actual algorithm appears in figure 5.12. A textual summary of

the algorithm follows.

Consume Signal Algorithm Description

lines 1-2 Construct the consumable signal set (see definition 5.2.2)

lines 3-6 Check if the global time has advanced past the process time. If so. no
signal ever will arrive allowing the signals in the input port to be consumed.

The current belief i1s terminated.

line 7 The consumable unsaved signal set (CUSS)} is generated for the current

process state.

lines 8-16 A check is made if the partial-order distance of each unsaved consum-
able signal is greater than the total number of unsaved consumable signals If
so the order of signal consumption is arbitrary and flagis set false to indicate

this.
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(lines 1-2)

Determine signals set
that may be consumed in
current state based on Ols
and channel / signal route
ordering

(lines 3.5.6) *

PDM global
time greater than any upper
bound of any consumable
signals O[ ?

(lines 7-16) (line )
Eliminate all signals from
consumable signal set Terminate current
whose cosumption order Belicf
is arbritrary.

(line 18) * +
X

Number of signals
in consumeable signal
set>17

(lines 19-2%)

n = number of signals in

consumable signal set
Create (n-1) beliefs

Qutput (n-1) signals from
the consumned signal set
in the (n-1) beliefs.

(lines 25-26) *‘

Consume the remaining

signal in the current belief

i

Figure 5.11: Consume Signal Algorithm
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Algorithm ConsumeSignal(C : signal_sequence_set, J : signal sequence,
o : process_state, Tg,,,, - time)
a = head(J)
construct J; and Jy, such that J = J; ~ Jy. The OlIs of all signals in J; overlap
with a and the OlIs of all signals in J, do not overlap with the OI of a
if (Tepps, does not overlap with the OI of any signal in J;)
output (Terminate-Belief)
ezit Algorithm
end if
let J| represent the unsaved signals for process state, o in J; ordered as in J
let N = number of elements in J|
flag = false
10. for each v of type signal name
11.  if (a at least one signal (s) of type v ezists in J])

LS e b

12. if (PODT(o)(s) < N)
13. flag = true;

14. end if

15.  end if

16. end for

17. ¢b = curr_belief

18. if (flag == true)
19.  for (inder = 2 to N)

20. output (Register-Belief)

21. output (Send-Signal(J] (indez))

22. (C, J) = DeQueueSignal(C, J, J/(indez))
23. output (Set-Belief(cb) )

24. end for

24. end if

25. output (Send-Signal(J;(1))

26. (C, J) = DeQueueSignal(C, J, J{(1))
27. return(C, J)

end Algorithm

Algorithm DeQueueSignal(C : signal sequence_set, J : signal_sequence, s : signal)}

insert ¢, sorted into J based on the lower bound of each signal's OI
end if
return (C, J)
end Algorithm

1. remove signal s from J
2. ¢ = comm_path_id(s)
3. delete_head(c)

4. if (c # empty)

5. z = head(c)

6.

7.

8.

Figure 5.12: PDM Input Port Signal Consumption Algorithm
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lines 18-24 If flag is true, a separate belief is created for each possible signal

consumption order.

lines 25-26 The final signal is consumed in the current belief.

DeQueue Signal Algorithm Description

lines 1-3 the signal to be consumed is removed from the internal signal list (J)

and from the incoming channel/signal route

lines 4-7 if the channel/signal route carrying the signal to be consumed is not

empty, the subsequent signal is added to the consumable signal list.

5.5.4 Complexity Analysis

The analysis evaluates the asymptotic time and space complexity of the major
algorithms associated with the input port. A definition of the notation used in the
analysis is presented first. The analysis omits discussion of portions of algorithms

whose complexity is O(1).

c: the maximum number of incoming channels and signal routes to a SDL process

(1-e. fan-in)

t: the number of signal types consumed/generated by the SDL process (i.e. the
cardinality of signal_name)

B: the number of beliefs generated. An analytical expression will not be presented
for B as it 1s highly application-specific. However, B is a function of the
specification, the PDM-model and the operational profile.
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N': maximum number of signals queued within the PDM. N is principally a function
of the load on the target system and the SDL specification.

Queue Signal Algorithm

The essential function of the queue signal algorithm is to insert signals into a sorted
list (J). The list contains at most one signal from each channel/signal route (c).
The algorithm is called for each signal queued (N) and is executed once per belief
(B). As a result. the worst case running time complexity of the algorithm is given

by 5.2.

TPDM_[P_QucucSig(B-, N, C) = O(B <N log c) (5.2)

DeQueue Signal Algorithm

The running-time complexity of all lines in the DeQueue Signal algorithm are O(1)
except for line 6 which performs an insert into a sorted list. Thus the algorithm’s

running-time complexity is given by 5.3.

TPDMJP_DcQucueSig(B~N9 C) = O(B -N - log C) (53)

Consume Signal Algorithm

line 2 a linear search and copy examines each element in J. The worst case size

of J is ¢ elements resulting in a running time complexity of O(c)

lines 3,7 linear search of all elements in J;. The maximum size of J; is identical

to J, resulting in a running-time complexity of O(c).
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lines 10-16 a search of J; is performed ¢ times. Thus the running time complexity
of the outer loop is O(t - log ¢)

lines 19-26 For each belief generated, a call is made to the DeQueue algorithm.
A maximum one belief per element in J; is created. Thus the running time

complexity becomes O(c - loge)

The running time complexity of the consume signal algorithm is dominated by
lines 10-16 and 19-26. The algorithm is repeated for each signal consumed (N) and
for each belief generated (B). Thus, the overall running-time complexity is given

by 5.4.

TPDM _IP _Conssig(B. N.t.¢) = O({B - N - (t + c) - log c) (5.4)

5.5.5 Computational Complexity of the Input Port

The computational complexity of the input port is dominated by the consume
signal algorithm. This makes intuitive sense since this is the most sophisticated of

all algorithms. Thus the complexity of the input port is given by 5.5.

Tppmsp(B,N,t.c) =O((B-N-(t+c)-logc) (5.5)

5.5.6 Scheduling Process Execution within the PDM

SDL processes in an SDL specification execute concurrently [62]. For a given spec-

ification, many execution interleavings exist. Two or more execution interleavings
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may result in different observable behavior. The supervisor, as described. considers

the execution of SDL processes sequentially.

Scheduling of SDL processes within the supervisor must therefore take into
consideration that alternate scheduling orders may result in different externally ob-
servable behaviors. Behavioral alternatives arising from different process execution
orders may be classified and dealt with similarly to behavioral alternatives arising
from signal consumption orders. Don’t know alternatives result in different ex-
ternally observable behavior while don't care alternatives do not. Beliefs need be

created to consider don’t know process scheduling orders.

From experience. the majority of SDL process scheduling alternatives do not
result in different externally observable behavior. The intuitive explanation behind
this is that the consideration of alternate scheduling orders adds to the complex-
ity of the specification. This makes the specification more difficult to understand
and impedes its central purpose: unambiguity and understandability to all par-
ties involved with the software development effort, from the customer to software

developers and testers.

The implication of incorrectly scheduling the execution of processes within the
PDM is that the hierarchical supervisor will generate false failure reports. An
analysis was done on the class of systems described. It was determined that the
scheduling order can be approximated by scheduling processes based on their pro-
cess times. A total scheduling order can be imposed if the process times do not

overlap. Processes with overlapping process times are ordered heuristically.

Processes that are about to consume signals from the environment are exe-
cuted before processes that are about to consume internally generated signals, such

that all internally generated signals are generated before processing begins. The
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scheduling algorithm appears in the subsequent section.

PDM Process Scheduling Algorithm

Scheduling of processes within the PDM is done by the system process in the PDM
abstract machine. The scheduling algorithm maintains a list of SDL processes
ready to execute (i.e. SDL processes having at least one unsaved signal in their
consumable signal set). The first process P on the scheduling list is removed and
executed provided that the upper bound of P’s process time (¢,) is greater than

the current time (i.e. t, < T) (see section 3.4.2).

The scheduling algorithm accepts the parameters defined below as input. It
returns an updated scheduling list, L. The algorithm appears in figure 5.13.

P : process to be scheduled

L : ordered process scheduling list

Algorithm ScheduleProcess(P : process, L : Scheduling List)

1. let X represent a 3-tuple: < P, P.t;, P.t, >

2. insert X into L sorted in ascending order based on t;

3. re-sort L such that 3-tuples with overlapping OIs having signals from their environment
in their input queuve appear before processes having internal signals in their input que

4. return(L)

end Algorithm

Figure 5.13: PDM Process Scheduling Algorithm

Running-Time Complexity

Let Np represent the number of SDL processes in the PDM-model. N the number of
queued signals within the PDM and B the number of maximum beliefs generated.
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The maximum size of L is Np. A sorted insertion into L has a running-time
complexity of O(log Np). The scheduling algorithm is executed after each signal
consumption. Scheduling is re-computed for each belief independently. Thus the

overall running-time complexity of the algorithm is given by 5.6.

Tpom_schea(B, N, Np) = O(B - N -log Np) (5.6)

5.6 Time and Space Complexity of the PDM

The complexity analyzed based on the dominant algorithms described (i.e. Con-
sume Signal and Schedule Process). The time and space complexities are presented

individually.

5.6.1 Running-Time Complexity

For each signal within the PDM, internalally or externally generated, the Consume
Signal and Schedule Processes are invoked. The algorithms are invoked once per
belief. Based on equations 5.5 and 5.6, the overall running time complexity of the

PDM is given by 5.7.
Tppm(B,N,t,e, Np) = O(B-N - ((t + c) - log c + log Np)) (5.7)

5.6.2 Space Complexity

The space complexity of the supervisor is largely dependent upon the number of

beliefs generated (B). Each belief makes a duplicate of each signal(NV), the state of
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each process P, and the scheduling list Np. Thus for a specification of size S. the
space complexity of the PDM is given by 5.8.

Rppm(B,N,Np.S) =O(B-(N + P,-Np + Np) + 5) (5.8)



Chapter 6

The Base Supervisor

This chapter describes the base supervisor (BSup). Like the PDM, the base su-
pervisor consists of a BSup-model, obtained from the requirements specification by
transformation, and a BSup-interpreter.

The section begins with a discussion of the BSup-model transformation process.
A high-level overview of the BSup interpreter is presented next, followed by a
discussion of time within the BSup. The BSup interpreter is then described in

detail. Major algorithms and their time/space complexities are presented.

6.1 The Base Supervisor Model

As described in chapters 4 and 5, the objective of the PDM is to steer the execu-
tion of the BSup. Unlike the PDM, the BSup makes use of an almost-unaltered

requirements specification.
The PDM steers BSup execution by specifying the signal consumption order that

would lead the BSup along the determined path. In two cases, the path chosen by

110
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the BSup does not depend on the signal consumed. Execution of the SDL ANY or
NONE constructs directs a SDL specification along a non-deterministically chosen

path.

Two transformations are used to allow the PDM to steer the BSup in both
of these cases. The transformations appear in figure 6.1. The ANY construct is
replaced by a state transition for each emanating path (figure 6.1a). Signals causing
the state traunsitions (ANY_PI1, ANY_P2 ... ANY_Pn) are generated solely by the
PDM and are not matched with a signal generated within the BSup. Similarly,
spontaneous transitions are replaced with signal transitions initiated by the PDM

(figure 6.1b).

Directives that are not matched shall be referred to as non-matchable directives.

yw_m >ANY_P?, .o ->ANY_?n]

(a) ANY Transformation

1 EEEE— r

S noncJ 2 none | *° '; nane Enone_Pl >none_P’.’. L 'Znone_l’ﬁ

{b) none Transformation

Figure 6.1: Base Supervisor Model Transformations
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6.2 Base Supervisor Interpreter Overview

The BSup abstract machine is similar to the SDL abstract machine. However,
differences arise from the difference in purpose of the BSup abstract machine. that
is detailed behavior checking. The major differences between the SDL and BSup

abstract machines are outlined below.

Time: The BSup abstract machine is an out-of-time SDL interpreter. All sig-
nals are tagged with Ols as in the PDM. OIs are used to order signals for

consumption.

Belief Processing: The BSup includes facilities for belief generation. manage-
ment and termination. Beliefs are created under the direction of the PDM.

however they may be terminated from within the BSup (as well as within the
PDM).

Comparator: With reference to figure 3.4, the comparator implements the ex-
pected/observed behavior buffers and the matcher functionality. Its function
is to compare expected and observed signals generated by the BSup and target
system respectively and terminate the currently executing belief if a match

cannot be made.

Path-Direction: Signals to be consumed by a BSup process must match with
path-directives generated by the PDM. The BSup interpreter includes facil-
ities for matching path directives from the PDM with signals in the BSup

queued for consumption.

The remainder of this chapter describes the BSup abstract machine. The discus-

sion begins with a description of time in the supervisor. A process-level description
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of the BSup abstract machine is presented next. The major algorithms of the ab-
stract machine are subsequentally presented along with their associated time and

space complexities.

6.3 Time within the Base Supervisor

The BSup makes use of signal occurrence intervals, similar to the PDM. Each signal
is tagged with an OI, ranging over an interval, that represents when the signal was
generated and/or consumed. OlIs within the BSup are derived in identically as in
the PDM (discussed in section 5.2). SDL timers are implemented with the aid of

OIs and operate as described in section 5.2.4.

The notions of process and global time are defined for the BSup as done for the

PDM. The BSup-specific versions of the definitions follow.

Definition 6.3.1 (BSup Process Time) Let P represent a BSup SDL process
in process state o, and § the set of signals queued in the input port of P. K is
the consumable signal set and K' a subset of K where all signals in set K' are
consumable in the current state (i.e. not in the SDL save set) (K' C K C S). The

process time of P (Tp) is an interval: Tp = [Tp,Tp,| where:
e Tp, = minimum occurrence interval lower bound of a signal, s, € K’
e Tp, = mazimum occurrence interval upper bound of a signal, s, € K'

For a process P if set K' is empty its process time is undefined.

Unlike the PDM, a BSup input port must process signals generated within the BSup
(or from the environment) in addition to signals generated by the PDM. Note that
process time is not influenced by the path-directives generated by the PDM.
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Definition 6.3.2 (BSup Global Time) For aset of SDL processes, G, the global
time of G (Tggs,,) is defined over a range Tg = [Tg,, T, | where:

o Tg, = minimum occurrence interval lower bound of a process, Py € G having

a defined process time

o T¢, = maztmum occurrence intervel upper bound of a process, P, € G having

a defined process time

If all processes, P € G have undefined process times, the global time is undefined

as well.

6.4 Behavior Supervisor Interpreter

The BSup interpreter is specified as an abstract machine, based on the SDL ab-
stract machine (figure 5.6). The BSup interpreter, as described, does not implement
the functionality associated with the view process. The comparator process is in-
troduced to match expected and observed signals (figure 3.4). The BSup abstract
machine process interaction diagram is shown in figure 6.2. A brief description of

the functionality of each process follows.

system: Creates manages and terminates beliefs. Tags all signals generated by the
environment with an OI. Note that the BSup abstract machine only supports

static SDL process creation.

path: Stamps all signals with the traversed channel ID. Does not delay signals like

its SDL abstract machine counterpart.

timer: Keeps track of current time and handles time-outs.
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Figure 6.2: Base Supervisor Abstract Machine
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BSup-process: An SDL interpreter. Identical to the SDL abstract machine with
one exception: no support is provided for execution of ANY or none constructs

(see section 6.1).

input-port: Maintains two groups of signals: (1) signals generated by the environ-
ment and internally within the BSup and (2) signals generated by the PDM.
Orders signals for consumption according to order prescribed by the PDM.

comparator: Queues signals for matching. Terminates the current belief if a

match between expected and observed signals cannot be made.

6.4.1 Belief Creation/Termination

As indicated previously, belief creation is initiated only by the PDM. A belief
created by the PDM requires the BSup to create a matching belief. Both the
PDM and BSup process the same belief at all times. Beliefs may be terminated by
either the PDM or BSup. If, for example, a belief is terminated by the BSup, the

corresponding belief must be terminated within the PDM and vice-versa.

Within the BSup, beliefs are terminated by either the input-port or comparator.
The input-port terminates beliefs in one of two cases. First, if the path prescribed
by the PDM cannot be followed due to missing signals (i.e. a path directive cannot
be matched with any signal in the BSup). Second, if spurious signals have been
generated by the environment that do not correspond with the path prescribed by
the PDM (i.e. a signal in the BSup cannot be matched with any path directive).
The comparator terminates beliefs if a match cannot be made between the contents

of the expected/observed behavior queues.

The belief generation/termination protocol used in the BSup is identical to that
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used in the PDM. As an example, the reader is referred to figures 5.8 and 5.9.

The following sections describe the novel aspects of the BSup interpreter. The
discussion begins with the comparator followed by the BSup input port. The dis-

cussion concludes with a commentary on BSup process scheduling.

6.5 Comparator

The functions of the comparator are: (1) to store signals in a pair of observed /
expected behavior queues and (2) to compare the contents of the two queues. If a
match of the contents of the two queues can be made, the contents are annihilated.

If a match cannot be made, the current belief is terminated.

The comparator is presented as two algorithms. The QueueSignal algorithm
determines the source of signals and queues them in either the expected or observed
behavior queue. The ProcessContents algorithm matches signal contents of the two
queues. The two algorithms appear in figures 6.3 and 6.4. A description of the

major datastructures used by the algorithms follows.

OBQ: Observed behavior queue. A queue of elements of type signal.
EBQ: Expected behavior queue. A queue of elements of type signal.

Tssup: global time of the BSup.

6.5.1 Queue Signal Algorithm

The QueueSignal algorithm accepts as input the EBQ, OBQ and a signal to be
queued. It returns the new EBQ and OBQ after the signal has been queued. The
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algorithm appears in figure 6.3.

Algorithm QueuveSignal(EBQ : signal queue, OBQ : signal_queue, s : signal)

1. if (source(s) == environment)
append s to OBQ

3. else

4. append s to EBQ

5. endif

6. return (EBQ, OBQ)
end Algorithm

Figure 6.3: Comparator Queue Signal Algorithm

6.5.2 Process Contents Algorithm

The process contents algorithm compares the contents of the expected/observed
behavior queues. It accepts the EBQ, OBQ and the global time of the BSup as
input. It returns the new EBQ and OBQ. The algorithm appears in figure 6.4. A
textual summary of the algorithm follows.

line 1 the algorithm attempts to match the entire contents of the EBQ/OBQ
lines 4-6 matching signals in the EBQ/OBQ are annihilated
lines 7-9 if a match cannot be made the current belief is terminated

lines 12-16 if the EBQ) is not empty and the global time of the BSup has advanced
past the OI of the signal at the head of the EBQ, the current signal will never

be matched. The current belief is terminated.

lines 17-23 if the OBQ is not empty and the global time of the BSup has advanced
past the OI of the signal at the head of the OBQ, the current signal will never

be matched. The current belief is terminated.
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Algorithm ProcessContents(EBQ : signal_queue, OBQ : signal_queue, Tgy,,, - time)

1. while( (EBQ # empty) and (OBQ # empty) )
2. z = head(EBQ)

3. y = head(OBQ)

4 if ( (z.name = y.name) and (z.0I overlaps with y.0OI} )
5. delete( head(EBQ) )

6. delete( head(OBQ) )

7. else

8. output (Terminate-Belief)

9. ezit Algorithm

10 end if

11. end while

12. if { EBQ # empty )

13.  if ( head(EBQ).OLt, < TGy, ti )
14. output (Terminate-Belief)

15. ezit Algorithm

16. end if

17. end if

18. if ( OBQ # empty )

19. i ( head(OBQ).Olt, < Tggs,,tt )
20. output (Terminate-Belief)

21. erit Algorithm

22. endif

23. end if

24. return(EBQ, OBQ)
end Algorithm

Figure 6.4: Comparator Signal Matching Algorithm
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6.5.3 Complexity Analysis

The asymptotic running-time complexity is presented for the algorithms compris-
ing the comparator. The notation used is be consistent with that introduced in

chapter 5.

Queue Signal Algorithm

The queue signal algorithm simply appends a signal to the appropriate queue. Its
running time complexity is O(1). It is invoked once for each signal to be queued.
Signals are re-queued individually in each belief. For a worst case of N signals
queued, and a maximum of B beliefs, the running-time complexity of the algorithm

is given by 6.1.

TBSup-Comp-QueucSig(B9 N) = O(B ° N) (61)

Process Contents Algorithm

The ProcessContents algorithm compares the contents of the two queues. For a
worst-case queue length of N, its running time complexity is O(N). Queues are
duplicated in each belief and thus the running-time complexity of the algorithm is

given by 6.2.

TBSup_Comp_ProcCont(Bv N) = O(B " N) (62)
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6.6 Input Port

The input port is specified as a collection of three algorithms: QueueSignal, An-
nihilate and ConsumeSignal. The QueueSignal algorithm queues both BSup sig-
nals and PDM path directives in the input port. Annthilate deletes a matching
BSup signal and PDM path directive from the input port and ConsumeSignal per-
forms the matching between path directives and BSup signals, keeping track of the
PDM/BSup global times.

The majority of type and datastructure definitions used by the algorithms are
consistent with those used to specify the PDM input port and appear in sec-
tion 5.5.3. In addition, the BSup input port must queue path directives from

the PDM and thus it requires an appropriate datastructure, defined below.

PDMQ a queue of path directives of type signal from the PDM

6.6.1 Queue Signal Algorithm

The QueueSignal algorithm accepts as input the set of signal sequences correspond-
ing to the incoming channels/signal routes (C), the PDMQ, a sorted list of signals
at the heads of the incoming channels/signal routes (J) and the signal to be queued
(s). It returns the updated datastructures C, PDMQ@ and J.

6.6.2 Consume Signal Algorithm

The BSup ConsumeSignal algorithm has a similar function to the PDM ConsumeS-
ignal algorithm described in section 5.5.3. Unlike its PDM counterpart, the BSup
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Algorithm QueueSignal(C : signal_sequence_set, PDMQ : signal_queue,
J : signal_sequence, s : signal)
if ( s.origin = PDM )
insert s at the tail of PDMQ
else
¢ = comm_path_id(s)
if (c; = empty)
insert s, sorted into J based on the lower bound of each signal’s OI
end if
append s to the tail of ¢;
end if
10. return(C, PDMQ, J)
end Algorithm

BN Moo~

Figure 6.5: Input Port Queue Signal Algorithm

algorithm matches signals in the input port with the directives from the PDM. The
effect is that execution is steered along the PDM-specified path.

The algorithm accepts as input queued signals on the incoming channels/signal
routes (C'), the sequence of signals at the heads of the channels/signal routes (J).
the PDMQ, the current process state of the associated BSup-process (¢) and the
global times of both the PDM and BSup (Tppar and Tssyp)- It returns the updated
datastructures C, J and PDMQ@Q and outputs a signal to the corresponding process

for consumption.

The algorithm appears in figure 6.6. A textual summary of the algorithm fol-
lows.

Consume Signal Algorithm

line 1 the algorithm attempts to match all unsaved path directives from the PDM
with signals within the BSup
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Algorithm ConsumeSignal(C : signal sequence_set, J : signal_sequence,
PDMQ : signal_queue, o : process_state, Tppar : time, Tgs,p - time)

1. while( (PDMQ # empty) and (J # empty)

2. z = head(PDMQ)

3. if ( = is a non-matching path directive )

4. output( Send-Signal(z) }

5. else if ( fields of ¢ match with fields of a signal, s € J
and Ols of ¢ and s overlap)

6. output( Send-Signal(z) )

7. (C, J, PDMQ@) = Annihilate(C, J, PDMQ)

8. else

9. output (Terminate-Belief)

10. ezit Algorithm

11. end if

12.  if ( PDMQ # empty )

13. z = head(PDMQ)

14. if (z.0Lty < Tggg,, -t )

15. output (I‘erminate—]gelief )

16. exit Algorithm

17. end if

18. if (J # empty )

19. z = head(J)

20. if (2.0Lt, < Tgpp,,-ti )

21. output (Terminate-Belief)

22. ezit Algorithm

23. endif

24. end while
25. return (C,J, PDMQ)
end Algorithm

Algorithm Annihilate(C : signal sequence_set, J : signal_sequence,
PDMQ : signal_queue)
¢ = head(PDMQ)
delete_head(PDMQ)
remove signal z having identical fields as z and
overlapping Ols from J
¢ = comm_path_id(z)
delete_head(c)
if (c # empty)
z = head(c)
insert z, sorted into J based on the lower bound of each signal’s OI
. endif
10. return (C, J, PDMQ)
end Algorithm

DRI oo~

Figure 6.6: BSup Input Port Signal Consumption Algorithm
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line 2 z represents the path directive for the current path from the PDM. Note
that that path directives are identical to signals but are generated by the
PDM rather than internally within the BSup

line 3-4 if the current path directive is a non-matchable directive (see section 6.1)

then it is consumed directly

lines 5-7 if the path directive matches with a signal in J’, the signal is consumed.
The matching path directive and signal are deleted.

lines 8-11 if the path does not match with any signal in the BSup, the current

belief is terminated.

lines 12-17 if a path directive from the PDM exists but no signals exist to be
matched and the BSup global time has advanced past the OI of the path
directive a signal will never be generated to match the directive. Thus the

current belief is terminated.

lines 18-24 if signals exist but no path directive has been generated and the PDM
time has advanced past the smallest OI of the signals, a matching path direc-
tive will never be generated. The current belief is terminated.

Annihilate Algorithm

lines 1-2 the path directive corresponding to the followed path is deleted

lines 3-5 the consumed signal is deleted

lines 6-9 the consumable signal set is updated
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6.6.3 Complexity Analysis

Queue Signal Algorithm

The complexity of the QueueSignal algorithm is dominated by line 6 which does an
insertion into a sorted list (J). As outlined in section 5.5.4, the maximum size of
J is the worst-case fan-in of the corresponding SDL process (¢). The algorithm is
repeated for each signal queued (V) and each active belief (B). Thus the worst-case

running-time complexity of the algorithm is given by 6.3.

TSup_1P _Queuesig(B, N,c) = O(B - N -log c) (6.3)

Annihilate Algorithm

The complexity analysis of the Annihilate algorithm is dominated by line 8 which
does an insertion into a sorted list (). Thus the running-time complexity of this
algorithm is identical to the complexity of QueueSignal algorithm and is given
by 6.4.

TBSup_1P_annin(B.N,c) = O(B - N -log c) (6.4)

Consume Signal Algorithm

Due to the size of the ConsumeSignal algorithm, the running-time complexity is
presented on a line-by-line basis. Lines with O(1) running-time complexity are

omitted from the analysis.
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line 1 the outer loop iterates once per signal-pair in the input port, its complexity

is O(N)

line 3 a binary search of J’ whose worst case size is ¢. The resultant complexity

is O(log ¢).

line 5 from above, the Annihilate algorithm has a running time complexity of

O(log c).

The resultant complexity of the consume signal algorithm per belief is O(NV -
log ¢). The algorithm is re-executed for each belief. Thus the overall complexity is
given by 6.5.

TBSup_IP_CansSig(Ba N-, C) = O(B -N- lOg C) (65)

6.7 Scheduling Process Execution within the BSup

Recall from the discussion in section 5.5.6 that the PDM determines the scheduling
order corresponding to target system execution. Given that the PDM-model and
BSup-model both contain identical SDL processes, the BSup must execute SDL

processes in the BSup model according to the scheduling order prescribed by the
PDM.

Scheduling order is prescribed by the PDM indirectly. Path directives are gener-
ated. For a path directive to be generated a corresponding process must be executed
within the PDM. If processes within the BSup are executed in the same order as
path-directives are generated, the BSup will follow the scheduling order prescribed
by the PDM.
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As in the PDM, scheduling is done by the system process in the BSup abstract
machine. Processes are executed in the order that path-directives are received from
the PDM. Recall that the system routes signals (and path directives) between SDL
processes. A SDL process within the BSup is queued for execution as path-directives

from the PDM are observed.

6.7.1 Complexity Analysis

The complexity of the BSup scheduling algorithm is a function of the number of
processes scheduled. In the worst case, each process is scheduled for each signal con-
sumed. A scheduling/de-scheduling operation consists of an addition/deletion from
a scheduling queue. Both are O(1) operations. Thus the running-time complexity

of the scheduling algorithm for N signals and B beliefs is given by 6.6.

TBSup_Sched(B,N) = O(B - N) (6.6)

6.8 Time and Space Complexity of the BSup

The complexity analyzed based on the dominant algorithms described (i.e. Con-
sume Signal and Process Contents). The time and space complexities are presented

individually.

6.8.1 Time Complexity

The running-time complexity of the PDM is dominated by the input port. Thus

for B beliefs, a maximum of N signals queued within the BSup and a worst-case
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fan-in of ¢, from 6.5, the running-time complexity of the BSup is given by 6.7.
Tesu(B,N,c) = O(B- N -log c) (6.7)

6.8.2 Space Complexity

The space complexity of the supervisor is largely dependent upon the number of
beliefs generated (B). Each belief makes a duplicate of each signal (N), the state
of each process P, and the scheduling list of worst-case size Np. Thus for a speci-

fication of size S, the space complexity of the BSup is given by 6.8.

RBSup(BthNP')S)=O(B'(N+P3'NP+NP)+S) (68)

6.9 Time and Space Complexity of the

Hierarchical Supervisor

6.9.1 Time Complexity

From equations 5.7 and 6.7, it is clear that the running-time complexity of the hier-
archical supervisor is dominated by the PDM. Conceptually this makes sense since
the PDM must identify the chosen behavioral alternative, a much more complex
task than merely detailed behavior checking. The running-time complexity of the

hierarchical supervisor is thus given by 6.9.

Tgs(B,N,t,c,Np) = O(B - N -+({t + c) -log c + log Np)) (6.9)
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6.9.2 Space Complexity

The space complexity of the PDM and BSup is largely dominated by the number
of beliefs generated as indicated by equations 5.8 and 6.8. The asymptotic space
complexity of the PDM and BSup is identical. Thus the overall space complexity
of the hierarchical supervisor is given by 6.10.

Rys(B.N,Np,S) = O(B -(N + P, - Np + Np) + §) (6.10)



Chapter 7

Evaluation

This chapter is organized into three parts. The first part provides an overview of the
structure and operation of a demonstration supervisor. The second part describes
the testbed (including target system) that was used to evaluate the supervisor. The

third part describes the experiments conducted to evaluate the supervisor.

7.1 Demonstration System

A demonstration supervisor was developed based on the supervisor abstract ma-
chines outlined in chapters 5 and 6. The top-level design of the supervisor, in the

object model notation [20] appears in figure 7.1.

The following two sub-sections describe the static function of each top-level
class appearing in figure 7.1 and the dynamic communication between classes under

common operational scenarios.

130
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7.1.1 Class Description

The principal difference between the specification of the PDM/BSup abstract ma-
chines (appearing in figures 5.7 and 6.2 respectively) and the design of the supervisor
is that the system process is refined into several classes. The PDM system process
is refined into objects: EnvRouter, MainSched, PDMRouter and PDMSched. Sim-
ilarly, the BSup system process is refined into objects: EnvRouter, MainSched,
BSupRouter and BSupSched. Note that the EnvRouter and MainSched are shared
between the PDM and BSup.

The PDM/BSup path process functionalities are implemented by the PDM-
Router and BSupRouter classes respectively. The PDM/BSup input port and SDL
processes are implemented by the PDMInputPort, PDMProcess, BSupInputPort
and BSupProcess respectively. The BSup comparator process is implemented by
the Comparator class. A HandleFailure class, shared by both the PDM and BSup,
implements failure reporting once a failure has been detected. A detailed descrip-

tion of the function of each class follows.

EnvRouter: Collects target system input and output signals. Tags all signals with
Ols.

MainSched: Specific functions of this class include:

e creates/terminates and manages the list of beliefs

e compacts beliefs representing identical global states (i.e. beliefs created

under don’t care non-determinism)

e schedules for execution the PDM, BSup, and EnvRouter

PDMRouter/BSupRouter: Routes signals between processes within the PDM
/ BSup. Uses the system specification of the PDM/BSup models as the
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communication topology. The PDMRouter includes additional functionality
for routing signals from the PDM to the BSup.

PDMSched/BSupSched: Scheduleindividual PDMProcess/ BSup Process objects
for execution. Scheduling is implemented as described in chapters 5 and 6.
For scheduling purposes, comparators are treated as SDL processes. Thus the
BSupSched class includes additional functionality to schedule the execution

of Comparator objects.

PDMInputPort/BSuplInputPort: Queue and order signals for consumption by
the corresponding process. The PDMInputPort uses a partial-order distance
table to reduce redundant signal permutation. It creates beliefs when a unique
total order of signals cannot be determined. The BSupInputPort queues sig-
nals into two groups: (1) signals generated by the environment and signals
generated internally within the BSup and (2) path directives generated by
the PDM.

PDMProcess/BSupProcess: Implement an SDL interpreter for each process.
The PDMProcess and BSupProcess are almost identical in functionality except
that the BSupProcess does not include support for ANY and none constructs
as described in section 6.1. The PDMProcess generates a separate belief for
each emanating path from an ANY construct and for multiple none constructs

emanating from a single state.

Comparator: Each process implements one expected and one observed behavior
queue per channel. Each Comparator process is responsible for queuning sig-
nals in the appropriate queue, comparing the contents of queues, annihilating
identical queue contents and signaling for the current belief to be terminated

if 2 match between contents cannot be made.
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Component | Commented Non-Commented
Lines of Source | Lines of Source

PDM 15,200 7,000

BSup 16,400 7,800

Common 6,400 3,600

Total 38,000 18,400

Table 7.1: Hierarchical Supervisor - Lines of Source

HandleFailure: Reports a failure of the target system, terminates operation of

the hierarchical supervisor.

The supervisor was implemented in C++. It consists of approximately 110 different
classes, 1000 methods and 38,000 commented lines of source. The line counts of

the PDM, BSup and common components of the supervisor appear in table 7.1.

7.1.2 Supervisor Operation

The operation of the hierarchical supervisor is described in several sections. Each of
the sections describes one particular aspect of functionality within the supervisor.
A textual overview of the functionality is presented, followed by an example of the

methods invoked by each class under one particular scenario.

Signal Routing

Observed signals (i.e. inputs and outputs of the target system) are tagged with
Ols by the EnvRouter and transmitted to MainSched. For each belief in existence,
MainSched duplicates each signal and routes it to the belief. For the currently
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executing belief, signals are routed to their appropriate destinations by the PDM-
Router and BSupRouter. As an example, the flow of control during routing of a

target system input signal in the PDM and BSup is shown in figures 7.2a and 7.2b.

EnvRouter MainSched  PDMRouter PDMSched PDMInputPort PDMProcess HandleFailure
o fo—— [———3 [—] [—]
GclS!ig‘nv::l(srmm
RouteSignal( )
QueueSignal( )
ScheduleMe( )

(a) PDM Signal Routing

EnvRouter MainSched  BSupRouter BSupSched BSuplnputPort BSupProcess Comparator HandleFailure

= =
L L} L 1 1 t
RouteSignal( }
QueueSignal( )
ScheduleMe( )
————— .

(b) BSup Signal Routing

Figure 7.2: Signal Routing within the Hierarchical Supervisor

Scheduling SDL Processes and Comparators

The two objectives of scheduling within the PDM are: (1) to order execution of
SDL processes and comparators such that expected signals match with the observed
signals’ and (2) to reduce the computational complexity of the supervisor by listing
objects ready-to-run and thus eliminating the need to exhaustively search all objects

to determine if they are ready-to-run. Processes are scheduled to execute when a

!Assuming that the target system is operating as specified.



CHAPTER 7. EVALUATION 136

signal is queued in their input port. Comparators are scheduled to execute when

both their expected and observed input queues are non-empty.

Iz respeoase to the second motivation for scheduling, there are three types of
scheduling within the hierarchical supervisor: (1) ready-to-run and (2) not-ready-
to-run and (3) not scheduleable. SDL processes with unsaved signals in their input
port, or comparators with signals in both their expected/observed behavior queue,
are classified as ready-to-run. SDL processes where every signal in the consumable
signal set is in the save set and comparators with either the observed or expected
behavior queue empty and the other non-empty are classified as not-ready-to-run.
If the PDM/BSup global time advances past the OI of the signal with the smallest
OI lower bound in the input port/comparator, the process/comparator will never
be ready to run and as a result the currently executing belief is terminated. SDL
processes with no signals in their input ports are classified as not scheduleable since

they cannot execute.

An example of ready-to-run scheduling is shown in figure 7.2a. After a signal
is queued in the PDMInputPort, the PDMInputPort schedules itself to execute.
A PDMInputPort is re-scheduled only if the scheduling parameters of the process
change. Note that the PDMProcess is not scheduled Lowever, it is executed by the
PDMInputPort. Thus it executes after the PDMInputPort executes. BSupInput-
Port/ BSupProcess and Comparator ready-to-run scheduling operates similarly.

An example of not-ready-to-run scheduling is shown in figure 7.3. A signal is
queued in a comparator with an empty observed and expected behavior queue. The
flow of control within the supervisor for not-ready-to-run scheduling of a PDMPro-

cess and a BSupProcess process is similar.
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EnvRouter  MainSched  BSupRouter  BSupSched BSupinputPort BSupProcess Comparator HandleFailure
[——] — [———1 —] [——

==

GetSignatsFrom
Envi( )

RouteSignal( )

QueveSignal( )

AddToNoSchedule
Lisi( )

- - - —_ — - - -

Figure 7.3: Scheduling a not-ready-to-run Comparator
PDMProcess, BSupProcess and Comparator Execution

Execution of a PDMProcess, BSupProcess or Comparator is initiated by the Main-
Sched. Initially, all ready-to-run processes in the PDM are executed followed by
ready-to-run processes/comparators in the BSup. Both processes and comparators
after executing must re-schedule themselves based on the remaining signals in their
input ports or expected/observed queues. After execution, processes/comparators
may be in a ready-to-run, not-ready-to-run or not scheduleable state (if no sig-
nals remain in their input port/queues). Objects in either the ready-to-run or

not-ready-to-run state must be scheduled as described in the previous section.

As an example, figure 7.4a shows the flow of control in the hierarchical super-
visor when executing a PDM process that becomes ready-to-run after execution.
Figure 7.4b illustrates the case where a comparator is executed and after execution
only the observed behavior queue (for example) is non-empty (i.e. the comparator

is not-ready-to-run).

Belief Creation

As discussed, beliefs are created only by the PDM. Within the PDM, beliefs may be
created by either the PDMProcess upon the execution of an ANY construct, by the
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EnvRouter ~ MainSched PDMRouter PDMSched PDMInputPort PDMProcess HandleFailure
— [—} [——] —] === =1
Execute( )
Execute( }
interpret_exec( )
ScheduleMe( )
—— L) ——— L]

(a) PDM Process Execution

EnvRouter  MainSched  BSupRouter  BSupSched BSuplnputPort BSupProcess Comparator HandleFailure
— [—] [——] —— [ ——]

[——2 == —_—

Execute( )

Execute(}

AddToNo
SeheduleList( )

(b) BSup Comparator Execution
Figure 7.4: Execution of a PDMProcess and Comparator

PDMInputPort if ambiguity exists with regards to the actual signal consumption
order or the PDMSched if uncertainty exists as to the actual process execution

order.

As an example, the flow of control during the creation of a belief by a PDM-
Process executing an ANY construct is shown in figure 7.5a. The other two cases
are handled in a similar fashion. Note that the thread of control remains with the
current belief. The new belief is subsequentally scheduled by MainSched.

Behief Termination

The currently executing belief may be terminated within either the PDM or BSup.
Within the PDM/BSup, beliefs may be terminated by the PDMSched/ BSupSched
if the PDM/BSup time advances past the OI of any signal in a PDMInputPort /
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EavRouter

EnvRouter

=]

MainSched

Execute( )

PDMRouter
=

Execute( )

PDMSched PDMInputPort PDMProcess

interpret_exec( }

Clone AndSchedule
CurremtCBS( )

(a) Belief Creation

MainSched BSupRouter BSupSched BSuplnputPort BSupProcess Comparator
[—] [———1 — ] _— — [——]
Execute( )
Annihilate( )
KillCurrentCBS( }
KillCurrentCBS( )
e — —— — — ——

(b) Belief Termination

Figure 7.5: Belief Creation/Termination

139

HandleFailure

HandleFailure

—

BSupInputPort that is not-ready-to-run®. Additionally, a belief may be terminated

by the Comparator in one of two cases: (1) if only one of the expected or observed

queue is non-empty and the BSup time advances past the OI of the signal at the

head of the non-empty queue or (2) if a match cannot be made between the heads

of the expected/observed signal queues.

As an example, the case where the contents of the observed/expected behavior

queues do not match is illustrated in figure 7.5b.

2Recall that PDM and BSup times are based on process times of processes that are ready-to-

run.
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Redundant Belief Compaction

Beliefs are generated in response to uncertainty as to the behavioral alternative
chosen by the target system. In some cases, typically resulting from the tradeoffs
made in partial-order signal consumption (described in section 5.3), n > 1 beliefs
may be generated that represent identical observable behavior. The redundant belief

compaction mechanism (RBCM) is used to terminate n — 1 of these beliefs.

Recall that a belief represents the global state of both the PDM and BSup.
Essentially the RBCM compares the global states represented by two beliefs and
if identical, terminates one of the two beliefs. To reduce the computational cost of
the RBCM, two-level hashing is used during the comparison. Two hash functions,
h1(), h2() were developed such that for two beliefs, A and B, if the hash values of
either functions are different then the two beliefs represent different global states
(ie. if huy() # hup() or hay() # hag() then A # B).

The first level hash simply takes into consideration the symbolic state of each
process and the number of signals in each input port/comparator queue. The second
level hash takes into consideration symbolic signal names and Ols of signals. If both
the first and second level hash functions are equal for the two beliefs, the global
state of the two beliefs is exhaustively compared before one of the two beliefs is

terminated.

From empirical measurements, the first-level hash is able to identify approxi-
mately 70% of different beliefs and the second level 100% for a sample size of several
hundred beliefs.

The RBCM is invoked by the MainSched in one of two cases. First, if the
number of beliefs, exceeds a threshold (Apg) and second if the age of a belief,
exceeds a threshold (Ar).
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Failure Reporting

Failures are reported by the hierarchical supervisor after all beliefs are terminated.
MainSched manages and schedules beliefs for execution. If the belief scheduling list
becomes empty, MainSched signals HandleFailure to report a failure of the target
system. The flow of control within the supervisor is illustrated in figure 7.6.

EnvRouter MainSched PDMRouter PDMSched PDMInputPort PDMProcess HandleFailure
[—] [——=1 —-— —] (=) [——]

[—]

HandleFailure( )

Failure Report

Figure 7.6: Generating a Failure Report

7.2 Evaluation Testbed

The control program of a small telephone exchange was used as a target system
based on which the hierarchical supervisor was evaluated. The exchange serviced

60 telephones.

The exchange hardware was simulated and exchange software executed on a
UNIX workstation. A random telephone traffic generator served as a generator of
inputs. Several tools were used to analyze the traffic data generated. The various
components of the test bed and their interconnections are shown in figure 7.7. A

detailed description of each component follows.

Telephone Traffic Generator: The telephone traffic generator simulated typi-

cal, random plain old telephone service (POTS) usage patterns. Several pa-
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Figure 7.7: Evaluation Testbed
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rameters such as the origination rate and connect time were programmable
allowing modeling of various load profiles. It executed as a single UNIX pro-

cess. The generator used in this work is described further in [47].

Hardware Emulator: This unit emulated the exchange hardware. It supported

up to 60 telephones. The emulator executed as a single UNIX process.

Hardware Interface Memory: The hardware interface memory represented the
memory map of the exchange hardware. It was implemented as a contiguous

block of UNIX shared memory.

Call Processing Software: Provides functionality for all telephones serviced by
the exchange and manages shared hardware resources. The SDL requirements
specification and an overview of the call processing software can be found in

Appendix A.

Interface: Served two purposes: first, it provided a visual display of the state of
each telephone and second, allowed manual telephone calls to be placed. Note
that use of the user interface in the latter case excludes use of the telephone

traffic generator.

Abstractor: Translated bit sequences appearing in the hardware interface memory

into signals as appearing in the SDL requirements specification.

Hierarchical Software Supervisor: Consists of the PDM-model, BSup-model

and interpreters as described in section 7.1.

Trace Manipulation Tools: Permitting seeding random failures at random points

in the trace file.
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Trace Analysis Tools: A collection of utilities for analysis of telephone traffic
statistics. Parameters such as the number of originations, number of calls
routed to slow busy, number of calls routed to fast busy etc. are generated

from the contents of a trace file.

Behavioral Alternative Counter: A tool used to measure the total number of
behavioral alternatives (i.e. don’t know and don’t care) that arise under a

given requirements specification and traffic load over time.

The components of the testbed are written in five programming languages as some
languages are more suitable for certain applications than others. The majority of
the testbed is written in C and C++, the Interface which is largely graphical is
written in Tcl/Tk, the Trace Manipulation/Analysis Tools are written in Perl and

csh. The entire testbed consists of approximately 70,000 lines of commented source.

7.3 Evaluation

The hierarchical supervisor presented in this thesis was evaluated along two lines:

(1) its failure detection capability and (2) its time/space complexity.

The section begins with an experimental evaluation of the supervisor’s ability
to detect failures and to simultaneously limit generation of false-failure reports.
An analysis of the size of the problem space (i.e. the total number of behavioral
alternatives) is presented next. This is followed by experimental evaluations of the
supervisor time and space complexity. The section concludes with a commentary
on the scalability of the hierarchical supervision to industrial systems based on the

evaluations presented.
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7.3.1 Failure Detection Capability

The failure detection capability of hierarchical supervision was evaluated with the
aid of the target system described. The supervisor was used to monitor the exchange
for extended periods of time. The failure detection capability of the supervisor was
evaluated based on two attributes: (1) the supervisor’s spurious failure reporting
and (2) the supervisor’s failure detection capability. Both sets of evaluations are

presented in the following two sub-sections.

Spurious Failure Reporting

Spurious failure reporting refers to the number of unwarranted failure reports gen-
erated by the supervisor. It was evaluated by having the supervisor monitor the
operation of the target system for several thousands of call originations. Typical
reliability requirements for North American telephone switching systems are that
up two calls out of ten thousand may be mishandled. These requirements were used

as a guideline in setting the interval during which the supervisor was executed.

The supervisor was used to supervise several traces consisting of over twenty
thousand call originations ranging in origination rates from 2-6 calls/phone/hour.
The loads were chosen to range from heavy residential to heavy commercial traf-
fic levels. The target system call processing software was a third-generation de-
bugged version. The supervisor detected several failures in the output of the ex-
change. Detected failures were subsequentally traced back to either (1) faults in
the PDM/BSup model or (2) residual faults in the target system control program.
The faults in the PDM/BSup models were introduced during the transformation
of the models from the requirements specification and resulted from human error.

The results are summarized in table 7.2.
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Fault Category Number of Fault Types | Number of Instances

Supervisor Model | 1 1

Implementation 2 6

Table 7.2: Supervisor Failure Detection Capability

One supervisor model fault type was detected by the supervisor. The supervisor
was able to detect and subsequentally report the discrepancy. The supervisor model
fault was due to resources being incorrectly deallocated. When a call was placed and
the terminating party was busy, resources were not deallocated upon the originating
party going onhook. The supervisor reported a failure after all resources within
the supervisor model were depleted (i.e. after the effect of resources not being

deallocated became externally visible).

Two types of residual target system faults manifested themselves as externally
observable failures. The first related to the scanning of digits dialed by the user.
When waiting for the first digit, the control program disconnected and re-connected
the touch-tone receiver hardware as part of the process of removing dial-tone. The
connection/disconnection of the touch-tone receiver is not an externally observable
event. However, it was interpreted by the supervisor (or more precisely by the
abstractor) as two separate digits dialed. The second failure type was due to a
difference between a specified and implemented timeout duration. The supervisor
reported the external signal generated after the timeout as a failure, because it was

not expecting it at that time.

All failures detected by the supervisor were either traced back to faults in the
supervisor model or residual faults in the target software system. Based on the

experiment conducted, no unwarranted failure reports were generated by the hier-



CHAPTER 7. EVALUATION 147

archical supervisor.

Failure Detection Capability

The evaluation of the supervisor failure detection capability is difficult due to the
large sizes of the trace files. Manual verification that a given trace represents a

behavior corresponding to the specification is almost impossible.

For this reason, the failure detection capability of the supervisor was evaluated
by seeding known failures into a trace representing the execution of the exchange.
The failure model consisted of altering the signals emitted during state transi-
tions [54]. Three types of failures were seeded: (1) signal removal, (2) signal inser-
tion and (3) signal replacement. Note that the final failure type is a combination

of the first two.

Two different types of evaluations were carried out: exhaustive and random.
They differed principally in how failures were seeded. Exhaustive evaluation is
better suited for use with small trace files due to its computational cost. Ran-
dom evaluation is better suited for use with large trace files. Evaluations of the

supervisor based on these two types of evaluations are described below.

Exhaustive evaluation refers to seeding all three types of failures at each line of
the trace file. Ten small trace files representing loads from 2-20 calls/phone/hour
were used. Each line of the trace was seeded with all three failure types, represent-
ing a total of approximately 30 failures per line. The traces contained a total of
approximately 10 calls or 200 lines each. Thus a total of 10 -30 -200 = 60, 000 fail-
ures were seeded in separate traces. The supervisor was executed on each individual

trace. The presence of all seeded failures were reported by the supervisor.

Random evaluation refers to seeding randomly chosen failures at random loca-
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tions in a given trace file. Fifteen trace files representing approximately 20,000 calls
at loads ranging between 2-20 calls/phone/hour were seeded with the three failure
types described. A total of approximately 60,000 failures were seeded into separate
traces. The supervisor was executed on each trace individually. The presence of all

seeded failures were reported by the supervisor.

7.3.2 Number of Legitimate Behavioral Alternatives

The size of the supervisor problem space was estimated by measuring the number
of legal behavioral alternatives (BAs). Internally, BAs arise from specification non-
determinism under a particular input scenario. Within the supervisor, they are
represented as beliefs. A subset of the BAs generated by the supervisor actually

lead to different externally observable behavior.

The number of generated BAs is a function of the requirements specification
and the target system load. The small telephone exchange was run under several
different traffic loads. The maximum number of BAs generated by the supervisor

(1.e. beliefs) for each load is plotted in figure 7.8.

Further analysis on the number of generated BAs was done to determine the
proportion of don’t care and don’t know BAs. BAs were grouped into n sets:
81,82,++,8,. All BAs in set s; result in identical observable behavior (i.e. don’t
care BAs). While any two BAs in sets s; and s; ¢ # j represent different observable
behavior (i.e. don’t know BAs). Thus the total number of don’t know BAs is n and
total number of don’t care BAs is equal to (#s; + #32 + - -+ + #5n. — n) where #
represents a set cardinality operator. For the experiment described, the results are

plotted in figure 7.8.

As expected, the total number of behavioral alternatives is very large. This is
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due to the worst case factorial number of possible signal interleavings at the input
ports of SDL processes, each leading to a legitimate BA. Few of these BAs actually

lead to different observable behavior, making the motivation for pruning such BAs

from consideration strong.

7.3.3 Number of Behavioral Alternatives Generated

The number of behavioral alternatives generated is a key parameter in both the time
and space complexity of the hierarchical supervisor. The supervisor was executed on

the load described in section 7.3.2. The number of behavioral alternatives generated

is plotted in figure 7.9.

Maximum Number of Unresolveable Behavioral Alternatives

10

Total Behavioral Alternatives

Total Behavioral Alternatives Generated
by Hierarchical Supervisor -

Don’t Know Behavioral Alternatives
Generated by Hierarchical Supervisor

600 800 1000 1200
Call Traffic (calts/hour)

Figure 7.9: Number of Behavioral Alternatives Generated

As shown, the hierarchical supervisor significantly reduces the number of be-
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havioral alternatives considered. The majority of the BAs generated are don’t care
BAs due to the tradeoffs made with partial-order signal consumption. As the load
on the exchange is increased, the number of don’t know BAs increases. This is
principally due to resource starvation; the PDM is not able to determine which
of the two resources in the target system have been depleted based on the signals
observed (i.e. which path was followed). For the example system described, a PDM
would be able to accurately track the don’t know BAs for an exchange with properly

provisioned resources.

The actual number of beliefs generated is highly application specific. It depends
on the requirements specification, the algorithm used to derive the PDM-model,
the load and the detailed implementation of algorithms in the PDM interpreter.
Empirical curve fitting revealed that for an exchange subject to a traffic load L,
the number of beliefs generated by the hierarchical supervisor is of order O(L-log L)
as shown in figure 7.9. This is a substantial reduction from the factorial-number of

total legitimate BAs.

7.3.4 Running-Time Complexity

This section presents empirical validation of the running time complexity of the
hierarchical supervisor as given by equation 6.9. For the experiment described, the
worst case fan-in of each process (c), the number of signal types (¢) and the worst-
case number of SDL processes Np are defined by the specification topology and are
treated as constants since the evaluation deals only with one target system. Thus

equation 6.9 reduces to Tys/(B,N) = O(B - N).

From the empirical analysis presented in section 7.3.3, B can be estimated as

B = O(L -log L) where L represents the load on the exchange. N, representing
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the number of signals in the supervisor, increases linearly with the load on the
exchange. Thus N can be approximated as N = O(L). The resultant running-time

complexity of our example is thus given by 7.1.

Ths = O(B - N) =~ O(L? -log L) (7.1)

The hierarchical supervisor was used to monitor the operation of the target
system at several different operational loads. As the load increased, the number of
beliefs generated increased (as described in section 7.3.3), increasing the CPU time

required by the supervisor per telephone call.

The supervisor CPU time per call was measured by running several hundred
calls and averaging the total supervisor running time by the number of originations.
The number of originations was made large to reduce the effect of the supervisor
initialization on the total running time. Supervisor running time was measured

using the UNIX getrusage system call.

The CPU time per call is plotted in figure 7.10 for various operational loads.
Results were obtained on a machine having a SPECint95 and SPEC{p95 of 1.0.
A O(L? -log L) curve is plotted as a reference. As shown, good correspondence

between the predicted and measured running-time complexity was observed.

7.3.5 Space Complexity

The predicted space complexity of the supervisor (given by equation 6.10) was
compared with the measured space complexity of the supervisor developed. For the
particular experiment described, only one specification was considered. Thus the

specification size S and the number of processes in the specification Np is constant.
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The number of signals within the supervisor, NV is approximated as N = O(L) (as
outlined in section 7.3.4). Thus the resultant space complexity of our example is

given by 7.2.

Rys = O(B - N) ~ O(L? - log ) (7.2)

The exchange was executed over several different traffic loads. The maximum
memory usage of the supervisor was determined with the aid of the UNIX top
command®. The measured supervisor memory usage is plotted in figure 7.11 for
various loads. The constant size of the supervisor executable was subtracted from

the results plotted.

7.3.6 Scalability

This section attempts to extrapolate the time complexity results presented to larger
systems. The results are meant only to serve as a general indicator of the scala-
bility of the approach. An actual system would introduce factors not taken into

consideration in the presentation below such as a larger requirements specification.

Most telephone exchanges have modular organization to facilitate module reuse
and to allow ease of expandability. For example, the line interface module (LIM)
that interfaces subscribers telephones with the central exchange controller services
approximately 1000 lines in both the Northern Telecom DMS-100 [57] as well as
the Lucent 5ESS [19]. It would be difficult to observe the inputs and outputs of the

3The supervisor contains an internal memory manager. Memory, when deallocated is returned
to the supervisor memory pool rather than the operating system memory pool. Thus the maximum

memory usage of the supervisor results just before the supervisor completes its execution.
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entire exchange. However, a supervisor would be suitable for monitoring a single

module such as the LIM.

The CPU requirements of the supervisor were estimated based on maximum
business traffic (i.e. 6 calls/phone/hour). The supervisor is assumed to monitor
a LIM servicing 1000 telephones at the standard business origination rate of 6
calls/hour/phone. Extrapolating from figure 7.10, the supervisor running on a
machine having a SPECint95 and SPECfp95 of 1.0 requires approximately 3 cpu
seconds/call at this load. The LIM is required to process 6 x 1000 calls/hour or
1.67 calls/second. Thus a CPU having a SPECint95 and SPEC{p95 greater than
3 x1.67 =5 (e.g. any modern Intel Pentium processor) would be sufficient for this

application.



Chapter 8

Conclusions

This thesis addressed the automatic detection of software failures or software su-
pervision. The software supervisor is a unit that monitors the inputs and outputs
of a given target software system. It makes use of the target system’s requirements
specification as a definition of correct behavior. Discrepancies between specified

and observed behaviors are reported as failures by the supervisor.

The complexity and sophistication of modern software systems makes automatic
detection of failures an industrially important area of research. Three potential ap-
plications of supervision include on-line detection of failures, evaluation of testcase
results during software development and the collection of accurate failure data to

identify problem areas and improve the reliability of software.

This thesis focuses on the supervision of real-time reactive software systems.
This class of systems represents some of the largest and most complex software
ever developed. The case where the requirements specification of the target system

external behavior appears in a finite state machine based formalism is considered.

Software supervision is a highly complex activity. Several open research issues

157



CHAPTER 8. CONCLUSIONS 158

related to supervision exist. The principal issue addressed by this work is the com-
putationally efficient handling of specification non-determinism. Non-determinism
is an important component of a specification formalism. It permits the specifica-
tion writer to avoid stating unpertinent aspects of behavior. This leaves freedom
to the software designer to choose the least costly or otherwise desirable alterna-
tive. However, the supervisor must be able to consider all legitimate behavioral
alternatives such that unwarranted failure reports are not generated. A potentially
large number of alternatives exist even for moderate size systems and exhaustive
consideration of all alternatives is prohibitive. Hierarchical supervision addresses

this issue.

8.1 Hierarchical Supervision

A novel approach to supervision, called hierarchical supervision, was proposed. The

objective of the approach is the efficient handling of specification non-determinism.

Hierarchical supervision improves the efficiency of non-determinism handling
by a divide-and-conquer approach. Supervision is split into two sub-problems: (1)
determination of the path through the specification chosen by the target system and
(2) detailed behavior checking. The corresponding architecture of the hierarchical
supervisor has two layers. The path detection module (PDM) determines the path
through the specification chosen by the target system while the base supervisor
(BSup) checks that the followed path was actually the legitimate one.

The functionality underlying the BSup has been studied extensively and is rela-
tively well understood. However, the PDM has not been addressed previously. The
major focus of the thesis is on the PDM.
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The PDM relies on signals, generated by the target system, that uniquely iden-
tify the followed path through the target system. The precision of tracking the
target system improves with the availability of signals that uniquely identify the
path followed.

Hierarchical supervision is best suited for target systems where the average
uniqueness of signals used by the PDM to track the target system (i.e. PDM-model
stimuli)! is greater than the average uniqueness of the requirements specification
stimuli. The chosen behavioral alternative is identified by the PDM based on
a subset of the signals directed to/from the target system. Unique signals may
be mapped to fewer state transitions than less unique ones. As a result, fewer
behavioral alternatives need be considered by the supervisor. The average number
of behavioral alternatives explored by a hierarchical supervisor decreases as the

average uniqueness of signals chosen to track the target system increases.

8.2 Major Research Contributions

This thesis presented five major research contributions to cost-effective automatic
detection of software failures in the presence of specification non-determinism: (1)
the notion of splitting supervision into two sub-problems: path determination and
detailed behavior checking, (2) improvement of the accuracy of path determina-
tion by the use of both target system input and output signals, (3) exploration of
the tradeoffs in having the supervisor lag the target system, (4) development of
a method for pruning alternatives arising from specification non-determinism not

leading to different observable behaviors and (5) development of a base supervisor,

! An underlying assumption is that a suitable metric of uniqueness exists. The reader is referred

to section 4.2.1 for a definition of one such metric.
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a directed simulator for detailed behavior checking. A further description of each

contribution follows.

Splitting supervision into two sub-problems separates the two fundamental func-
tionalities of the supervisor. It may be considered a divide-and-conquer approach
to reducing the computational cost of supervision. The two components of the
hierarchical supervisor which implement these functionalities differ substantially
in their purpose, design and implementation. The result is that each component
implements a more specialized function than a monolithic supervisor allowing for

improved efficiency and a conceptually simpler implementation.

Hierarchical supervision makes use of both target system input and output
signals to determine the path chosen by the target system. Thus the occurrence of
a state transition in the requirements specification may be determined to have taken
place by either an input or output signal. This improves the use of the information
provided about the path traversed by the target system. From the perspective
of the supervisor, it reduces the number of behavioral alternatives that need to
be considered. However, it complicates the derivation process of the PDM-model
which must ensure that sequences of state transitions in the PDM-mod:"! follow a

similar causal path as in the requirements specification.

A supervisor that has the capability to lag the target system by a sufficiently
long period A (or an out-of-time supervisor) needs only consider what happened
rather than what may happen. The advantage of the approach is that only a subset
of the behaviors need to be considered by such a supervisor. In addition, signals
generated by the target system may be stored, allowing the supervisor to process
peak target system activity over a longer period of time. The tradeoff with out-
of-time supervision is the increased space requirement required to store signals

generated by the target system during the interval A in addition to the latency of
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failure reporting by a worst-case period, A.

In many requirements specifications and operational scenarios, a number of be-
havioral alternatives arise from specification non-determinism that do not lead to
different externally observable behaviors. Partial-order techniques were proposed
to prune such alternatives from consideration. The approach makes use of static in-
formation compiled from the requirements specification. Static information is used
to dynamically discard alternatives arising from specification non-determinism not
leading to unique externally observable behavior. A spectrum of such algorithms
can be envisioned, each suited for different applications. However, in general. a
tradeoff exists between the time/space resource requirements of the approach and

its capability to prune behavioral alternatives.

At the core, a software supervisor must have a simulator to generate expected
behaviors of the target system. Expected behaviors are compared with observed
behaviors to determine and failures reported if a match cannot be made. A typical
simulator chooses a behavioral alternatives in the presence of non-determinism.
However, the proposed simulator (i.e. the BSup) is directed by the PDM along the

behavioral alternative chosen by the target system.

8.3 Future Work

The fundamental contributions described may have further applications than those
described in this thesis. Future work is sub-divided into three categories: (1) further
reductions in computational complexity arising from specification non-determinism,
(2) continuation of supervision after detection of a failure and (3) alternate appli-

cations of the described work. A discussion of each follows.
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This thesis described a hierarchical approach to software supervision consisting
of two layers. Experience gained in domains such as artificial intelligence plan-
ning indicate that N-layer problem solving is a principal means of dealing with

computational complexity [33].

The two-layer approach to supervision could be extended into an N layer ap-
proach by abstracting paths and successively resolving paths at lower layers in the
supervisor. Several state transitions could be abstracted into a single, aggregate
state transition. Upon determination that the aggregate state transition has taken
place, the supervisor effectively knows the destination state. Subsequently lower
layers could then resolve the actual path from the previous composite state to the
current composite state. It is believed that such an approach would yield further
reductions in computational complexity provided that sufficiently unique signals
exist to track the target system. The tradeoff with the apprcach is the increased

delay in failure reporting.

Supervision requires that the state of the target system and the specification
state of the supervisor be in-sync. However, few assumptions can be made about the
the post-failure specification state of a target system. For supervision to continue,
an approach to determining the state of the target system after the occurrence of

a failure is needed.

The notion of path detection is similar to the notion of state detection. Path
detection attempts to identify the state transition that took place from the em-
anating state. State detection requires that the state transition that took place
and consequentially the final state be identified without a notion of the current
state. Thus the research contributions developed for path detection such as track-
ing the execution path by means of unique signals and delaying the reporting of

the execution path may be applied to state detection. One obvious difficulty is the
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enormous potential state space. Research results indicate a tradeoff between the
amount of time spent determining the state and the computational complexity of
the approach [35, 52]. A unit to determine the post failure state will probably have
to lag the target system by an interval greater than the PDM.

The work on path detection as described may have several other applications
other than supervision. For example, a PDM with a properly instrumented model
may be used as a quality of service (QoS) monitor. For systems that have large
amounts of internal state, simple assertion checking is typically not suitable. The
out-of-time orientation of the described PDM is naturally suitable for monitoring
QoS. Other applications include resource utilization monitoring and specification

coverage metering for applications such as software testing.
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Appendix A

Target System Specification

This appendix contains a full specification for a private branch telephone exchange
(PBX). The PBX consists of 60 telephones as shown in figure A.1. Each telephone
is allocated a two digit telephone number. To simplify the system, inter-PBX calls
are not allowed. A description of the PBX hardware can be found in [60].

The specifications that follow are for the control program of the PBX and are
given in SDL/GR. Figure A.2 illustrates the system specification of the PBX as
consisting of two types of processes, the Phone_Handler and Resource_Manager.
The finite state machine specification of the Phone_Handler appears in figures A.3
and A.4. The Net_Path_Manager appears in figure A.5 and the TTRX Manager in
figure A.6.

The Phone_Handler is responsible for the behavior associated with both orig-
inating and terminating telephones. The Resource_Manager controls access to
shared resources which are required for the duration of a call. Each of the 60

telephones in the PBX is allocated an individual Phone_Handler process.

Tables A.1 and A.2 supplement the SDL specifications by giving a textual de-
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Private
Branch
Exchange

Figure A.1: Private Branch Exchange (PBX)

scription of all signals used. A brief, textual summary of each type of process

follows.

A.1 Phone_Handler

The Phone_Handler process (figures A.3 and A.4) specifies all observable signal
sequences of an originating telephone. Phone_Handler is responsible for obtaining
all resources required for the duration of a telephone call in addition to establishing

a voice path between the originator and terminator.

Signal, CR_Con(z) is assumed to be routed to the Phone_Handler process which
has been assigned to the telephone whose directory number matches the dialed
number. This is omitted from the SDL specification to limit specification size

and complexity. Pairs of Phone_Handler processes corresponding to the origina-
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tor and terminator of a telephone conversation communicate via implicit SDL sig-
nal routes. Conceptually, a bi-directional signal route exists between each pair of

Phone_Handler process.

A.2 TTRX Manager

The TTRX Manager process (figure A.5) arbitrates allocation of touch tone re-
ceivers (TTRXs) which are required during dialing. Resources are requested and re-
leased by signals Get.ttrz and Rel_ttrz respectively. Similarly, resources are granted
and indicated as not being available by signals Grant_tirz and NG_ttrz respectively.

A.3 Network Path Manager (Net_Path_Manager)

The Net_Path_Manager process (figure A.6) arbitrates allocation of network paths
though the exchange which are required for the duration of the call. Resources
are requested and released by signals Get_path and Rel_path respectively. Similarly.
resources are granted and indicated as not being available by signals Grant_path

and NG_path respectively.
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system Private_Branch_Exchange

signalist LI = Dial_Tone, No_DT. Fast_Busy.

No_FB. Slow_Busy, No_SB. Ring_Back,
block Phone_Hdlr No_RB. Conn_CE, Disc_CE. Ring,
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Figure A.2: System Specification of PBX
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process Phone_Handler
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Figure A.3: SDL Specification of Phone Handler Process (1/2)
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process Phone_Handler
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Figure A.4: SDL Specification of Phone Handler Process (2/2)
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process Net_Path_Manager
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Figure A.5: SDL Specification of Net_Path_Manager Process

process TTRX_Manager
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Figure A.6: SDL Specification of TTRX Manager Process



| Signal | Source Destination | Description
Digit(z) | environment Phone_Handler | User dialed digit number
OFHK environment Phone_Handler | User has taken originating telephone offhook
ONHK environment Phone_Handler | User has placed originating telephone onhook
TD timer Phone_Handler | Digit dialing timer
TS timer Phone_Handler | Slow Busy tone timer
TRB timer Phone_Handler | Ring Back tone timer
Dial Tone | Phone Handler | environment PBX provides user with dial tone
No DT Phone_Handler | environment PBX removes dial tone
Fast_Busy | Phone_Handler | environment PBX provides user with fast busy tone
No FB Phone_Handler | environment PBX removes fast busy tone
Slow_Busy | Phone_Handler | environment PBX provides user with slow busy tone
No_SB Phone_Handler | environment PBX removes slow busy tone
Ring Back | Phone_Handler | environment PBX provides user with ring-back tone
NoRB Phone_Handler | environment PBX removes ring-back tone
Conn_CE | Phone_Handler | environment Assign voice connection from caller to callee
Disc.CE Phone_Handler | environment Deallocate voice connection from caller to callee
Disc.CE Phone_Handler | environment Deallocate voice connection from caller to callee

Table A.1: SDL Requirements Dictionary (1/2)
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