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A NOVEL IN SITU PHYSIOLOGICAL MODEL TO MEASURE OPTICAL AND 
BIOPHYSICAL CHANGES DURING AVIAN ACCOMMODATION 

ABSTRACT 

A mode1 was developed to directly rneasure optical and biophysical changes to the 

intact crystalline lens during ciliaiy nerve-induced accommodation. Lenticular optics during 

accommodation was analysed as a function of chicken age and in arnetropic chicken eyes. 

Biophysical changes to the anterior segment of accommodiiting arnetropic chicken eyes were 

assessed using the ultrasound biornicroscope. Resting state lenticular focal lengths increased 

as a hnction of age. presumably in association with growth of the eye. The amount of 

lenticular accommodation decreased as a function of age. The optical quality in lenses from 

hatchlings was poor, regardless of accommodative state, suggesting that the lens was not 

fully developed. In general. sphericd aberration was greater with accommodation for al1 age 

groups. Lenticular focal lengths were shorter and accommodation-associated changes in 

focal length were smaller for form-deprived myopic eyes compared to their controls. 

Induction of hyperopia with +lS D spectacle lenses resulted in attenuated, but opposite 

effects, with lenticular focal lengths longer and accommodative changes slightly greater for 

treated eyes than for their controls. Lenticular spherical aberration increased with 

accommodation in both form-depnved and lem-ûeated birds, but induction of ametropia had 

no effect on lenticular sphericd aberration in generai. Accommodation was associated with 

a decrease in anterior chamber depth and a bulging of the lens. Changes related to induction 

of myopia were subtle, while changes to hyperopic eyes were often undetectable, limited by 

the level of resolution of the biomicroscope. 
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1. INTRODUCTION 

1.1 A physiological mode1 to rneasure optical changes during accommodation 

The avian eye differs both anatomically and physiologically from human and other 

mammalian eyes. For example, in birds, the iris and ciliary muscles are striated. However, 

like mammals, ciliary muscles are innervated by postganglionic ciliary nerves, which. 

themselves. receive input fiom the parasympathetic oculomotor (III) nerve at the ciliary 

ganglion (Martin and Pilar. 1963). Most avian eyes undergo accommodation through direct 

manipulation o f  the lens, due, in part, to various evolutionary stmctunl differences. The 

ciliary processes are much larger and the diameter of the lens is augmented by the presence 

of a ring of colurnnar epithelial cells at the equatorial periphery, called the annular pad. 

Lenses are soft and malleable, and the comeo-sclerd sulcus, which exists as a consequence 

of the scleral ossicles, permits a greater range of movement. Together, these structures make 

it possible for contraction of the ciliary muscle to directly squeeze the lens, resulting in 

changes to lenticular surface curvatures and an increase in rehctive power. 

Although it  has k e n  well-established that the crystalline lens plays a major role in 

vertebrate accommodation, imparting sorne, if not dl of the accommodative power to the eye 

depending on species, its optical properties during accommodation have k e n  dificult to 

assess, partly because the lem is located within the eye. Some investigators have exarnined 

the lens during accommodation using whole-field elecüical stimulation (Glasser et al., 1995; 

S ivak et al., 1 985; Sivak et al., 1 986b), phatmacological agents (Glasser and Howland, 1 995) 

and a zonule-stretching apparatus (Glasser and Campbell, 1998). But, as these artificial in 

vitro techniques involved detachment of the ciliary nerve. accomrnodation was elicited by 

means of a mechanism other than that which occurs in vivo. Moreover, recent evidence 
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shows that the chicken lens contains actin and myosin in addition to other contractile 

proteins, indicating that the crystalline lem may not play the passive role during accommoda- 

tion to which it has been ascribed (Bassnett et al., 1999). In addition, evidence exists 

showing that receptors for acetylchoiine. a neurotransmitter that elicits contraction of skeletal 

muscle at newomuscular junctions. are present in the lens (Thomas et ul., 1998). Although 

it is probable that acetylcholine is not involved in an active contraction of the lens, the 

potential for pharmacological or whole-field electrical stimulation to directly affect the lens 

in an unknown manner rendes these methods inappropriate. In a study by Glasser et al. 

(Glasser et al., 1995), optical properties of the iens in vivo were examined during electrical 

stimulation of the Edinger-Westphal nucleus, the part of the brain that signals accommoda- 

tion. Retinoscopy and keratometry were used to measure changes to the total power of the 

eye and to comeal curvatures. respectively, and therefore, lenticuiar optics was not directly 

measured but was instead, inferreci. Moreover, because the lens was enclosed by the rest of 

the eye. changes to optical quality of the lens during accommodation could not be measured. 

This study was therefore undertaken to develop a physiological accommodation 

model with which optical changes to the intact chicken crystalline lens c m  be measured 

directly and concomitantly with accommodation that has been induced via a natural in vivo 

pathway, i-e., by elecüical stimulation of the ciliary nerve. Controversy exists over the 

aetiology of presbyopia, the decline in accommodation that is associated with age, with a 

body of evidence showing that compromise to one, some or ail of the individual accommoda- 

tive components may play a role. The in situ accommodation model, described herein, was 

therefore used to assess the effect of age on the functional optics and spherical aberration of 

the crystalline lens. 



Chickens are the ideal animal mode1 with which to test optical properties of the lens 

during accommodation since they possess a direct accommodation mechanism, as mentioned 

above. They mature rapidly and are precocial animals, using their eyes the day of hatching. 

In addition, although they are the predominant animal with which to test the effects of 

induced ametropia on growth and refractive developrnent of the eye, accommodation- 

associated characteristics of the lens, and to a lesser extent, of the rest of the eye, is lacking 

(see below). 

1.2 Experimentally-induced ametropia 

In normal young animals, growth of the eye is modulated to ensure that the image 

focal plane coincides with the retina. This process, called emmetropisation, is the underlying 

basis of an extensive body of work which shows that the development of refractive erroe 

may be influenced by specific environmental visual cues. Ametropias (myopia and 

hyperopia) have been expenmentally induced in a variety of animals. including? but not 

limited to, chickens (Irving et al., 1992; Schaeffel et al., 1988), tree shrews (Norton et al., 

1999; Siegwart and Norton, 1993) and monkeys (Hung et al., 1995). Evidence exists which 

shows that regulation of growth of the eye is at the level of the retina (Troilo et al., 1987), 

and Mermore, that the retina is able to discriminate between the different, specific visual 

cues. Thus, myopia, unially manifested as an increased axial length of the globe, is induced 

by form-deprivation of the eye or by imposition of a hyperopic defocus using negative 

(convex) spectacle lenses, while hyperopia, manifested by shorter axial lengths and choroidal 

thickening, is induced by exposure to constant light or to a myopic defocus by application 



of positive (concave) lenses (Lrving et al., 1992; Schaeffel et al., 1988; Wildsoet and 

Wallman, 1995). 

Controversy exists over the role that accommodarion may play in mediating 

emmetropisation. Studies showing that optic nerve-sectioned eyes elongate to become more 

myopic in response to form-deprivation (Troilo et al., 1987) and positive lenses (Wildsoet 

and Wallman, 1995) indicate that control of emmetropisation is at the level of the retina and 

that connection to the brain is not necessary for ernmetropisation to occur. in contrast, sever- 

al studies support the idea that accommodation may be a dnving force for growth of the eye 

to a rnyopic rehctive state. In humans, near-work, which includes reading, writing or any 

other task requiring accommodation, has been associated with the development of myopia, 

and population studies indicate a high prevalence of myopia in students from some Asian 

countries, which are known to have exacting educational standards (Lin et al.. 1999; Saw et 

al., 2000; Wu et al., 2001). While there is  support for the idea that myopia may be 

genetically inheritable, the Barrow, Alaska study showed that school-attending grandchildm 

of nomadic Inuits tended to be more myopic than their ancestors, who tended to be hyperopic 

(Young et ai., 1969), suggesting that environmental visual factors can influence growth of 

the eye. Moreover, it has been suggested that in chicks, accommodation may be the 

mechanism by which the retina detects the type of defocus and mediates rehctive 

development, where eyes imposed with a diverging negative lens accommodate more and 

become rnyopic, while those imposed with a positive lens accommodate less and become 

hyperopic (Schaeffel et al., 1988). Observations that chicks imposed with different spectacle 

lenses accomrnodated to become functionally emmetropic lend support to this idea (Irving 

et al., 1992; Schaeffel et ai., 1988; Wildsoet and Wallman, 1995). Furthemore, finduigs by 
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Wildsoet and Wallman (Wildsoet and Wallman, 1995) that optic nene-sectioned eyes did 

not fuily compensate for negative spectacle lenses (hyperopic defocus) suggest that the brain, 

of which the accommodative apparatus is part, rnay be required to detect, and therefore 

regulate, hyperopic blur. 

As mentioned above, the crystalline lem is a primary contributor to accommodation, 

but its role in experimentally-induced ametropias remains unclear. In fact, the effect on the 

lens itself remains somewhat controvenial, with most investigations showing little or no 

effect in lenticular weight, focal length, or axial thickness. However, recent work by Priolo 

and colleagues (Priolo et ai., 2000) indicates that the optics of lenses from fom-deprived 

eyes and eyes treated with +IO D spectacle lenses are degraded, showing that the crystalline 

lens. too, is an intraocular structure which may be affected by experirnentally-induced 

ametropias. Given the potential importance of accommodation in experimentally-induced 

ametropias and of the lens in accommodation, this study was undertaken to determine 

whether experimentally-induced ametropias have an effect on lenticular accommodative 

Function or on lenticular sphencal aberration. 

1.3 Ultrasound biomicroscopy 

While the mode1 described herein was developed to assess optical properties of the 

crystalline lem during accommodation. it should be noted that the biophysical characteristics 

of the lem and of other intraocular structures in the chicken eye during accommodation have 

dso been continually dificult to assess. Either measurements are indirect in nature, and 

there fore can include known and unknown confounding effects, or measurements are made 

directiy, but at the cost of altering other stnictures within the eye. 
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Ultrasound biornicroscopy is a relatively recent technolog that has been developed 

to measure anatomical structures in a non-invasive manner. Like (B-scan) ultrasonography, 

two-dimensional images of the structure under investigation are displayed, but the remlution 

of the ultrasound biomicroscope (UBM) is much higher. In addition to the advantage of 

being able to directly measure structures within the eye without having to disrupt any 

surroundhg tissues, collection of data using the UBM is based on sound wave echoes rather 

than on optics, which in the latter case, cm give rise to confounding effects because of 

optically rehctive components in the eye. For example, studies on the optics of the ageing 

human lens using Scheirnpflug photography oflen involves correction for distortions fiom 

the camera and/or both comeal surfaces (Dubbelman et al., 2001; Koretz and Cook, 2001). 

Although use of the ultrasound biomicroscope may also require corrections to account for 

the densities of the various ocular structures, adjustments are sirnpler and less mathematically 

taxing. Moreover, the UBM is capable of collecting data in real-time, a distinct advantage 

when attempting to measwe changes during accommodation. Given these advantages, this 

study was undertaken to determine the biophysical characteristics of lemes h m  myopic and 

hyperopic eyes, and to quanti@ changes to these lenses during accommodation using the 

ul trasound biomicroscope. 



II. METHODS 

2.1 Electro physiological apparatus 

Silver wires (AM Systems Inc. 7825) were sanded with fine sand paper to remove 

oxidised silver coating, then immersed in fresh 100% bleach. After 15 minutes, the wires 

were removed from the chloride-plating solution and rinsed in deionised water ( 1  0 minutes). 

Silver wire was placed in the lumen of Tygona tubing (S-50-HL Class VI) that was attached 

at the distal end to a plastic syringe (3cc Becton-Dickinson 9585). The distal end of the 

silver wire was passed through a hole in the wall of the tubing, just proximal to the syringe 

and soldered to the positive pole of a stimulating wire. The hole was sealed using epoxy. 

A second silver wire was wrapped around the outside of the Tygon tubing and electrode tip, 

with the end proximal to the syringe soldered to the ground or negative pole of stimulating 

wire. 

Suction electrode tips were made by gently heating some Tygon tubing (AAQ02 133) 

and slowly pulling the ends so that the middle, heated portion of the tubing was attenuated. 

Tubing was allowed to cool, then cut at the srnailest diameter. As ciliary ganglia Vary in size, 

depending on the age of the chicken, several plastic tips were made and each was trirnmed 

until ciliary ganglia From chickens of various ages could be suctioned snugly into the tips. 

Plastic tips were comected to the suction electrode tubing via a mail plastic connecter 

(Cole-Parmer Insrniment Co. 06359-07). 

Positive and negative poles of the stimulation wires were attached to their respective 

posts of a Photo-Optic Stimulation Isolation Unit (Grass PSN6), itself attached to an S43 

Grass stimulator. 



2.2 Experimental Procedum 

2.2.1 Birds 

White leghom chickrns (Gallus domesticilr) were obtained the day of hatching and 

were sacrificed the sarne day (day O), after 7 days, 14 days or 6 weeks. Chicks not 

immediately used were reared in stainless steel chicken brooden for a maximum of 14 days. 

After 2 weeks. birds to be kept for 6 weeks were moved to a room with wood shavings 

flooring. AI1 chicks were fed chick starter and water ad libitum. Fluorescent lighting in the 

room was set to an artificial diurnal (14 h ligWl0 h dark) schedule. One- and two-year old 

chickens were obtained from the Poultry Research Centre at the University of Guelph. 

Refractive errors in both eyes of hatchling chicks to be used for studying the effects 

of experimentally-induced ametropias on accommodation were measured using streak 

retinoscopy. These chicks were then unilaterally fitted with a velcro ring and translucent 

goggles or +15 D goggles, to induce form-deprived myopia and hyperopia, respectively. 

Ungoggled, contralateral eyes served as controls for the goggling procedure. Both eyes were 

again refiacted 7 days later. prîor to sacrifice. 

2.2.2 Dissection 

Chickens were sacrificed by decapitation and heads were bissected sagitally. 

Dissections were canied out with eyes submerged in oxygenated (95% O$% CO3 Tyrode's 

solution (TS: 134 mM NaCl, 3 rnM KCI, NaHCO,, 1 m M  MgCl?, 3 mM CaC13. For each 

eye, the optic nerve was cut to expose the underlying ciliary nerve and ganglion, and the 

ciliary nerve and ganglion carefully extricated from surmunding tissue before enucleation 

of the eye. Incisions were made at the posterior of the globe to ensure easy access of 

oxygetlitted solution (TS) to the lem. Eyes to be measured ushg the ultrasound biomicros- 
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crope were left intact. AI1 eyes were left in oxygenated Tyrode's solution until they were to 

be scanned. 

2.2 3 Optical me asurements of the lens during accommodation 

Pnor to scanning, the posterior portion of each globe was removed except for a 

wedge containing the ciliary nerves and ganglion. Eyes were pimed to a SylgardO (Dow 

Corning 184) washer using minutiae pins or fine needles. The Sylgard washer, with pinned 

eye. was placed into a silicon base mould which formed the bonom of a chamber. The 

chamber was completed by fitting the base mould with a rectangululy-shaped glas  tube, 

with a second, smaller open-ended tube attached to one of th; glas piece walls. The suction 

electrode with various diameters of Tygon tubing tips to allow for a tight fit with the ciliaiy 

ganglion, was passed through the open-ended tube and the ciliary ganglion was suctioned 

into the pipette tip. The rest of the open-ended tube was filled with petroleum jelly to act as 

a temporary plug. The chamber was filled with 8% (vh)  fetal bovine serum in Tyrode's 

solution in order to visudise the refiacted bearns and to neutralise the optical effects of the 

cornea. 

Lenses were scanned using a redesigned scanning laser monitor (Sivak et ai., l986a). 

In brief, a low power heliurn-neon laser beam was passed up through a small circular window 

at the bottom of the scanner, at various motor-controlled x,y coordinates fiom the centre. 

The chamber, consisting of the mould and rectangular glass piece, and containing the eye, 

was placed in a dot above the laser and beams were captureci by digital cameras. Prior to 

scanning, the optical axis of the lens (slope of beam vertical, or equal to 0) was determined 

by ScanTox@ (v. 1.4.48), a cornputer program also responsible for controlling the position 

of the laser and for caiculations of back vertex focal lengths. Eyes were scanned at various 
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eccentricities fiom the optical axis and back vertex focal lengths were recorded and stored 

on the computer. The back vertex for each lens was pre-determined fiom a camera image. 

eccentricities From the optical axis, the line that passes through the centre of the lens. 

For each eye, lenses were scanned before stimulation, with stimulation, then finally 

in a post-stimulation relaved state, and the data collected represented, respectively, the 

resting, acconunodating and recovering states of the eye. Stimulus pulses were typically 0.3 

ms at 30 Hz. with current held between 0.1 to 0.15 mA for eyes fiorn young chickens. or 1 Ox 

this current for one and two year-old chickens. Measurements were made for maximal 

irideal contractions, as assessed by eye prior to scanning. For scans during accommodation, 

the eye was stimulaied pnor to toggling the computer program to capture the bearn image at 

each eccentricity while for scans in a non-accommodating state, images were captured 

without stopping the step-motor. Step sizes were selected to ensure that the number of 

beams passing through the eye was relatively consistent, regardless of age (or size) of the 

chicken. Step sizes were 0.1 O mm, 0.13 mm, 0.15 mm, 0.24 mm for O day, 7 day, 14 day and 

6 week old chickens respectively, and 0.29 mm for both one and two year old chickens 

(Table 1). Step sizes for lenses fiom 7 day old ametropic eyes and their controls were kept 

at 0.13 mm. During collection of the data, the three most central rays were omitted to avoid 

spurious variability associated with sutures, areas of disruption where the lem fibres meet 

at the anterior and posterior poles (Bantseev et al., 1999; Kuszak et al., 1994; Sivak et al., 

1994). 

2 - 2 4  Biophysical rneasurements of the anterior segment during accommodation 

Intact eyes were placed into the bevel of a cube-like Sylgarda washer with the comea 

facing up. The eye and washer were placed into chamber coosisting of a dicone mould base 
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fitted with a rectangularly-shaped glas  tube that had a small, openended tube attached to 

one of the walls. The handmade suction electrode was passed through the smaller tube of 

the glass piece and through a hole Iocated at the side of the Sygard washer that opened up 

into the space evacuated by the bevel. The rest of the small tube was filled with petroleum 

jeily to act as a temporas, plug. The ciliary nerve was suctioned into the electrode tip and 

the eye was submersed in Tyrode's solution. 

A transducer (50 MHz) of the biomicroscope was lowered fiorn above the chamber 

until it was in the Tyrode's solution above the cornea. Ultrasound biomicrographs of the 

anterior segment of the eye, fiom the front surface of the comea to the posterior pole of the 

lens were collected at a medium resolution (5 x 5 mm of visible ocular tissue) for eyes at rest 

and during stimulation (30 Hz, O. 1 - 1.5 mA). images were collected at high resolution (2.5 

x 3.5 mm) for front lenticular surfaces. 

2.3 Analysis of the data 

2.3.1 Buck vertex focal lengths 

Data consisting of beam position, back vertex focal length and beam intensity were 

transferred to a spreaâsheet program for analysis. For al1 eyes, the paraxial bearns on either 

side of the optical axis and along the optical axis were omitted since the central regions of 

the al1 lenses are optically compromised by the presence of sutures, areas of dimption where 

the lens fibres meet at the anterior and posterior poles. Optical sans  at the sutures result in 

focal lengths that are either unpredictably too short or too long, and are therefore inappropi- 

ate for inciusion. Given that accommodation is ofien associated with constriction of the 



pupil and may therefore result in a lower nurnber of points scanned across the lem, means 

were adjusted to match aperture sizes obsewed during accommodation. 

2.3.2 Ultrasoirnd biomicrographs 

Ultrasound biomicrographs were exported as 256 x 256 pixel .pcx files or grabbed 

from a video tape recording, then transferred to a cornputer for analysis. Medium resolution 

images were used to measure lenticular thickness and anterior chamber depth. Comeal 

thicknesses were also assessed as a measure of the amount of user-error. Al1 three 

measurements were made dong the same ais. Front lenticular surface cwatures were 

traced 5 x  on high resolution images. The resulting x.y coordinates were used to determine 

the best-fitting parabolic function y=~x'+Bx+C, from which the Atoefficient, which 

determines steepness of a panbola was used to represent fiont lenticular surface cwatures. 

2.4 Statisticai tests 

To examine the effects of age and accommodation, two-way repeated measures 

ANOVA (analysis of variance) tests at two-tailed a levels of 0.05 were used, with age as the 

independent, between-subjects factor and accommodative state as the repeated, dependent, 

wvithin-subjects factor. Greenhouse-Geisser and Huynh-Feldt epsilon estimates were used to 

detect within-subjects âifferences and interaction (Levine, 199 1). Cornparisons of the means 

as a function of age were analysed ushg one-way analysis of variance (ANOVA), followed 

by the honestly-signifiant difference (HSD-)Tukey test. Changes associated with 

accommodation were assessed using one-way repeated meanires ANOVA, followed by 

paired t-tests with a Bonhoni  correction to account for multiple testing. 



To examine the efTects of induced ametropias and accommodation, two-way repeated 

measures ANOVA (analysis of variance) tests at two-tailed a levels of were used, with 

rehctive enor as the independent. between subjects factor and accommodative state as the 

repeated, dependent within-subjects factor. Greenhouse-Geisser or Huyhn-Feldt epsilon 

values were again used for detection of within-subjects differences or interaction, where 

appropriate (Levine, 199 1). Cornparisons between refiactive errors and their respective 

controls were analysed using t-tests. while changes associated with accommodation were 

assessed using one-way repeated measures ANOVA, followed by paired t-tests with a 

Bonferroni correction to account for multiple testing. For al1 tests, if the data was not 

nomaily distributed, the tests on ranks (nonparametnc) were used. 



1. REISULTS 

3.1 Effects of age 

3.1. I Lenticular nccornrnodation 

Aithough eyes were scanned at consistent step sizes (See Methods; also Table 1), 

within each age group. eyes showed a range of irideal aperture sizes, inherently, as well as 

associated with accommodation, which made variations in the number of eccentric points 

scanned across the lens difficult to control for (Table 1). Cornparison of bearn number 

ranges shows that the range differences for younger chickens were at least double those of 

the 1- and 2-year old chickens (Table 1, compare range of 12 to 18 for hatchiings to range 

of 12 to 14 for one- and two-year olds). Nevertheless, the mean nurnber of eccentric points 

scanned across the lens was more or less consistent with age, although this was not tested for. 

For relaxed eyes. both prior to and afier stimulation. the mean number of beams passing 

through the pupil ranged from 13 to 16, with slightly lower means (1 3 and 14) for eyes fiom 

Table 1 - Step sizes fiom the optical centre of the lens, and the number (mean: range) of 
beams entering the pupil for each state of accommodation as a function of age 

Step size 
Mean and range of the number of beams entering the 

pupil for each state of accommodation 
mm 1 i 1 



chickens 6 weeks and older (Table 1). During accommodation, the mean number of 

eccentric points were closer, ranging fiom 11 to 13. No trend was observed. since the 

smallest means (1 1 and 12) occurred for eyes from hatchlings and 6 week old chickens, 

respectively. 

Without corrections for pupil size. the back vertex focal lengths (BVFLs) for lenses 

fiom hatchling chicks prior to stimulation averaged to 19.76 * 0.47 (s.e.m.) mm (Table 2). 

The mean BVFL decreased with accommodation. averaging to 15.05 * 0.5 1 mm. then 

increased to 19.43 0.47 mm in the post-stimulated state. For 7 day old chickens, the 

average BVFL for lenses were slightly longer, beg i~ ing  at 20.28 * 0.29 mm in the pre- 

stimulus state, decreasing to 17.02 0.37 mm during accommodation, then increasing up to 

Table 2 - Mean back vertex focal length and focal length range for each accornrnodative 
state as a function of age. 

1 Mean focal lengths s.e.m. (mm) for each state of accommodation 1 
1 and focal length ranges (mm) in parenthesis 1 



20.09 & 0.28 mm during the pst-stimulus state. For 14 day old chickens, mean B V n s  were 

23.27 * 0.35 mm, 19.35 * 0.35 mm and 22.84 0.33 mm, for eyes in the pre-stimulus, 

stimulated, and pst-stimulus states respectively. BVFLs for 6 week old chickens were much 

longer, with averages of 29.15 * 0.37 mm, 25.55 * 0.44 mm and 28.94 i 0.36 mm for pre- 

stimulus, stimulated and post-stimulus states. respectively. For eyes from one year old 

chickens, mean BVFLs were 30.22 k 0.29 for eyes prior to stimulation. 28.89 * 0.39 mm 

during accommodation, and 29.93 * 0.27 mm pst-stimulus. For two year old chickens. the 

BVFLs were slightly shorter, with means of 29.96 k 0.5 1 mm, 28.58 + 0.47 mm and 29.72 

* 0.50 mm, for pre-stimulus. stimulated and post-stimulus states, respectively. 

All mean lenticular back vertex focal lengths were adjusted for a constant aperture 

size prior to comparison (Fig. 1). A two-way repeated measures ANOVA revealed 

differences in the mean back vertex focal length as a function of both age (p=0.000), and 

accommodation @-0.000). Significant interaction was also detected between the two factors 

(p=0.000) suggesting that lenticular focal lengths at the different accommodative states 

varied depending on the age of the chicken. Use of a one-way ANOVA revealed differences 

in mean pre-stimulus back vertex focal lengths as a function of chicken age (p=0.000). 

Specifically, there was an increase in the mean focal length at 14 days, with each of the 

meam at O and 7 days significantly shorter than that at 14 days (Fig. 1). A second increase 

in mean focal length occurred at 6 weeks, with means for 6 week-, one year- and two year 

old chickens al1 significantly greater than those for chickens at 0, 7 and 14 days @<0.05; 

HSD-Tukey test). No differences were detected between means for O and 7 day old chickens, 

or between means for 6 week, one- and two year old chickens. Although focal lengths for 

two year old chickens were slightly shorter than those for one year old chickens (Fig. 1; 
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stim post 
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Figure 1 - Mean back vertex focal lengths (* s.e.m.), adjusted for constant aperture size, for 
lenses from chickens aged O days (filled circle), 7 days (filled square), 14 days (filled 
triangle), 6 weeks (open circle), I year (open square), and 2 years (open triangle) old. for 
each accomrnodative state. Some error bars are covered by points on the gnph. Within each 
age group, means denoted by asterisks were significantly shorter than those not marked 
@<O.OS; one-way repeated measures ANOVA with Bonferroni multiple cornparison test). 
Note age-associated increases in mean back vertex focal lengths. For other comparisons, 
please see text. 

compare values 29.96 î 0.5 1 mm versus 30.22 0.29 mm, respective1 y ), this difference was 

not significant. Together the results vetiQ the assurnption that the resting state focal length 

of the lens increases with age, presumably in association with normal axial growth or 

elongation of the eye (Priolo er al., 1999). 

For al1 age groups, mean Ienticdar focal lengths varied as a huiction of accommoda- 

tion (p=0.000 for al1 groups except at one- and two years which were at p0.00 1 ; one-way 

repeated measures ANOVA) (Fig. l), with focal lengths during stimulation significantly 

shorter than those during the pre-stimulus and pst-stimulus States (pcO.05; Bonferroni 



multiple cornparison test), indicating that stimulation of the ciliary nerve was able to induce 

a lenticular accomrnodative response. Although a hysteresis effect, shown by a difference 

between mean pre- and pst-stimulus focal lengths, was observed in al1 age groups this 

lagging effect was only significant (p<0.008) in 2 year old chickens (Fig. 1). 

Prior to assessrnent of lenticular accommodative function. al1 lenticular back vertex 

focal lengths were converted to dioptres (assurning thin Iens in water. 113.33). Changes 

during accommodation were quantified by subtracting dioptric values for the pre-stimulated 

state from those for the stimulated state. Analysis of the accommodative amplitudes as a 

fûnction of chicken age revealed an age-associated reduction in the mean amount of 

accommodation (Fig. 2), an indication that chickens becorne presbyopic. Specifically, 

O days 7 days 14 days 6 weeks 1 year 2 years 
Age of chlcken 

Figure 2 - Mean change in accommodation (* s.e.m.), fiom pre-stimulus to stimulated state, 
as a function of age. Means denoted by the same letten (a,b,c,d) are statistically similar 
(p0.05; one-way ANOVA with HSD-Tukey test). Note reduction in the amount of 
accommodation concomitant with increasing age, with significant reductions o c c ~ g  at 7 
days, and agaùi at 1 year. 



lenticular accomodation in hatchlings was significantly greater than for al1 other age 

groups, and means for 7 and 14 day old chickens were sigiificantly greater than for 1 and 2 

year old chickens @=0.000; one-way ANOVA with HSD-Tukey test). The mean lenticular 

accomodative amplitude for 6 week old chickens, at an intermediate level between that for 

14 day old chickens and those for 1 and 2 year old chickens. was not significantly different 

from either group. Accommodative amplitudes observed during recovery, calculated by 

subtraction of dioptric values for the post-stimulated state from those for stimulated state, 

showed exactly the sarne trend (pO.000; one-way ANOVA with HSD-Tukey test; data not 

shown). 

3.1.2 Lenticu&ur spherical aberration 

In lenses fiom hatchling chicks, sphencal aberration (SA) varied non-monotonically 

between positive and negative (underîorrected and over-corrected. respectively), with an 

overall negative sphencal aberration predominating (Fig. 3A). This pattern of spherical 

aberration was similar for ail physiological states, with differences at each eccentricity 

between non-stimulus and stimulus focal length powers relatively consistent (Fig. 3A), 

suggesting that poor optical quality was inherent to the lem. These results were taken to 

indicate that the lem is not Mly developed at this age. in contrast, lenses fiom al1 other age 

groups showed clearly negative, monotonic spherical aberrations for ail physiologicai states 

(Figs. 3B.C, 4A-C), indicating improvement of lenticular optical quality fiom the hatchling 

stage (compare Fig. 3A to rest of Fig. 3B,C and al1 of 4). 

To account for differences in aperture size (See Table 1), varying degrees of 

monotonic behaviour of some but not ail lenses (Figs. 3 and 4), and the omission of the back 

vertex focal length at the opticai centre (See Figs. 3 and 4; also Methods), the A-coefficient 
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Back vertex focal length (mm) 

Figure 3 - Mean back vertex focal Iengths (* s.e.m.) of lenses fiom young chickens aged (A) 
O days, (B) 7 days, and (C) 14 days, plotted as a function of eccentricity. Each data point 
represents a mean of a minimum of 3 values measured at that eccentricity. Lenses were 
optically scanned pnor to stimuiatioh (square), during stimulation (triangle) and afler 
stimulation (circle). Note that for al1 accommodative states, hatchling lenses show non- 
rnonotonic spherical aberrations (A) while spherical aberrations are rnonotonic and clearly 
negative in lenses of 7 and 14 day old chickens (B and C, respectively). 



Back vertex focal length (mm) 

Figure 4 - Mean back vertex focal lengths (* s.e.m.) of lenses fiom older chickens aged (A) 
6 weeks, (B) 1 year, and (C) 2 years, plotted as a function of eccentricity. Each data point 
represents a mean of a minimum of 3 values measured at that eccentncity. Lenses were 
optically scanned prior to stimulation (square), during stimulation (triangle) and aiter 
stimulation (circle). Note reduced accommodative responses in 1 - and 2-year old chickens 
(B and C, respectively). 



of the parabolic function y = ~ x 2 + ~ x + ~  best-fitting each scan in dioptres (thin lens in water, 

nw=l -33) was used to quantifi lenticular sphericd aberration (SA). Steeper parabolas, 

representing scans with greater sphencal aberration. show higher A-coefficient values (Fig. 

5). Use of a hvo-way repeated measures ANOVA on mean lenticular SA amounts revealed 

effects of both age @=0.000) and accommodation (p=0.024), as well as interaction between 

the two effects @=0.001) indicating that SA amounts at the various accommodative levels 

were dependent on the age of the chicken. Mean spherical aberration in lenses fiom eyes at 

rest decreased (or improved) as a fùnction of age, with SA for lenses fiom one- and two-year 

O '  1 1 

Pre stim post 

Accommodative strte 
Figure 5 - Mean parabolic A-coeffient value (+ s.e.m.) representing spherical aberrations for 
lenses fiom chickens aged O days (filled circle), 7 days (filled square), 14 days (filled 
triangle), 6 weeks (open circle), 1 year (open square), and 2 years (open triangle) old. Some 
error bars are covered by points on the graph. Means denoted by asterisks were significantly 
greater than those of the sarne accomrnodative state h m  1 - and 2-year old chic kens w0.05; 
one-way ANOVA with HSD-Tukey). Within each age group, means denoted by dots were 
significantly greater than those for the pre-nimulus state @<O.OS; one-way repeated measures 
ANOVA with Bonferroni t-tests). For other comparisons, please see text. 



old chickens lower than for those From hatclding, 7 day and 14 day old chicks (pc0.05; one- 

way ANOVA with HSD-Tukey test). No difierences were detected between means for 7 &y 

and 6 week old chickens, or between means for 6 week, one- and two-year old chickens. SA 

amounts in recovering (post-stimulus) lenses showed the same age-associated changes and 

similarities (p<0.05; one-way ANOVA with HSD-Tukey test). SA for stimulated lenses 

from hatchling eyes were significantly greater than those for al1 other age groups (p~0.05; 

one-way ANOVA with HSD-Tukey test). 

Lenticular SA amounts for lenses fiom stimulated eyes were higher than those from 

pre-stimulus eyes in al1 age groups, but only signficantly so in lenses from hatchling, 14 day 

and 6 week old chickens. in addition, differences were detected between stimulated and 

post-stimulus lenses in hatchling and 6 week old chickens. No trend was detectable for 

accommodation-associated differences in SA. 

Given that a highly non-monotonie sphericai aberration can be an indication of poor 

optical quality, the degree of non-monotonicity for each scan, defined herein as the variation 

from the expected back vertex focal Iength defined by the bat-fitting parabla, was 

calculated as the deviation, or mean sum of squares, from its best-fitting parabola. To 

account for disparity in aperture size, non-monotonicity was calcdated for the same number 

of points (6), representing about 61% of the pupil diarneter of a stimulated eye for al1 age 

groups (Fig. 6). Use of a two-way repeated measures ANOVA mvealed that non-monotonie 

deviation was affecteci by both age (p4.000) and accommodation @=O.OOT), with signifiant 

interaction between the two factors @=0.000), indicating that the amounts of non-monotonie 

deviation at the different accommodative Ievels were dependent on the age of the chicken. 

Specifically, for ail accommodative States, non-monotonie deviations in hatchling lenses 
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Figure 6 - Mean deviation or non-monotonicity (* s.e.rn.) for lenses from chickens aged O 
days (filled circle), 7 days (tilled square), 14 days (filled triangle), 6 weeks (open circle), 1 
year (open square), and 2 years (white triangle) old. Some enor bars are covered by points 
on the graph. Asterisks denote significantly greater deviations compared to a11 other age 
groups w0.05; one-way ANOVAs with HSD-Tukey tests). W i thin eac h age group, means 
denoted by dots were significantly greater than those for the pre-stimulus state (p<O.OS; one- 
way repeated measures ANOVA with Bonferroni t-tests). For other cornp~sons, please see 
text. 

were signficantly greater than for al1 other age groups (p-4I.05; one-way ANOVAs with 

HSD-Tukey tests), an indication that lenticular opticai quality in these hatchlings was 

inherentiy poor. Analysis of the degree of non-monotonicity as a fûnction of accommodation 

revealed an increase in hatchlings and 6 week old chickens @<O.Os; one-way repeated 

measures ANOVA with Bonferroni multiple cornparison tests), an indication that 

accommodation was associated with woaening optical quaiity in only some age groups. 

Again, no trend was observed for accommodation-associated changes in deviation. 



3.2 Effects of experimentally-induced ametropias 

3.2.1 Lenticulur accommodation 

Form-deprivation resulted in induction of myopia, an observation that is in keeping 

with other reports. Refractive enon in form-deprived eyes (n=31) ranged from -4.75 to 

-24.50 D and averaged -1 3.7 1 * 0.97 D (s.e.rn.), while the contralateral (control) ungoggled 

eyes (n=3 1) were hyperopic, with refractive erron ranging fiom +1.75 to +6.75 D and 

averaging +3.87 i 0.22 D. As expected, axial lengths. as measured by A-scan ultrasonop- 

phy, for formdeprived eyes were longer, at a mean length of 8.96 * 0.1 1 mm, compared to 

those for control eyes, which averaged 8.28 k 0.06 mm. Eyes imposed with + 15 D lenses 

became hyperopic, ranging fiom +6.25 to + 19.00 D and averaging to + 14.36 * 0.40 D, while 

refractive enors for their contralateral, ungoggled eyes ranged from +1.75 to +6.00 D and 

averaged to +3.48 k 0.15 D. Axial lengths of defocus-imposed eyes were shorter, at 7.97 i 

0.05 mm, compared to their controls, at 8.48 k 0.04 mm. 

Although al1 eyes were optically scanned at 0.13 mm intervals, the number of 

eccentric points across the lens varied as a result of differences in pupil aperture sizes (Table 

3). Changes in pupil size arose due to natural or inherent pupil size variation, or due to 

accommodation-associated pupillary constriction. For both eyes of fonn-àepnved birds, the 

range of the number of beams passing through the pupil were slightly smaller for pre- 

stimulus eyes than for pst-stimulus eyes (compare pre-stimulus ranges of 14 to 19 for 

control and 14 to 17 for treated eyes to 12 to 19 and 12 to 17 for poastimulus eyes, 

respectively). Not surprisingiy, the mean number of beams passing through lenses fiom 

control and treated stirnulated eyes was smailer than for their respective unaccornmodating 

counterparts. The range of beam numben across myopic lenses were also slightiy smaller 
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Table 3 - The number of beams (mean: range) entenng the pupil for fom-deprived myopic 
(translucent goggle-imposed) and hyperopic (+15 D goggle-imposed) chickens for each state 
of accommodation. 

i Transluceni goggle + 1 5 D goggle 

1 control l treated control treated 

I 1 
- -  - 

! 1 past 15: lZto 19 1 15: 12 to 17 / 15: 1310 17 1 15: 1310 17 1 

for al1 accommodative States ( 10 to 1 5 )  compared to their controls ( 10 to 1 7), although means 

were still relatively consistent (Table 3). For lens-imposed birds, the range of eccentric beam 

numbers were more consistent, with ranges of 13 to 17 beams passing through al1 non- 

accommodating eyes. except for pre-stimulus control eyes at a range of 1 3 to 18. For both 

eyes. the mean number of beams passing through pre-stimulus lenses were slightly higher 

than those for pst-stimulus lenses, with means of 16 compared to 15 beams, respectively. 

For lenses fiom stimulated treated a d  control eyes, the range and mean nurnber of eccentric 

points were consistent, and again, mialler cornpared to Ienses h m  non-accommodating eyes 

(Table 3). Overall, means and ranges for the nurnber of beams passing through the lem were 

relatively consistent regardless of rehctive error, aithough this was not tested for. 

Without corrections for aperture size, mean back vertex focal Iengths (BVFLs) for 

lenses fiom rnyopic eyes were 19.95 I 0.21 mm (s.e.m.) pnor to stimulation, 16.1 1 * 0.24 

mm during stimulation and 19.45 * 0.18 mm in the post-stimulated state (Table 4). Mean 

BVFLs for lenses fiom the form-deprived control eyes were longer, at 2 1 .O7 0.1 8 mm, 



' modative . 

1 state controi treated control 

Table 4 - Mean back vertex focal lengths s.e.m. (mm) and focal length range (mm) in 
parenthesis for fonn-deprived myopic (transiucent goggle-imposed) and hyperopic (+ 15 D 
goggle-imposed) chickens for each state of accommodation. 

1 

I 1 stim / 16.37 k 0.25 16.11 k0.24 15.71 k0.17 
(11.60to25.03) (8.35to21.27) (11.06to21.18) 

I 

/ Accorn- 1 Translucent goggle 

16.37 i 0.25 mm and 20.59 k 0.19 mm, for pre-stimulus, stimulated and pst-stimulus states, 

respective1 y. 

Prior to comparisons, mean back vertex focal lengths were adjusted to a constant 

irideai aperture size (Fig. 7). For form-deprived birds, use of a two-way repeated ANOVA 

revealed diflerences as a huiction of accommodative state (j~0.000) and rehctive error 

(p=0.008). Significant interaction was also detected w 0 . 0  1 7) indicating that the back 

vertex focal lengths at the various accommodative states were dependent on the rehctive 

error of the eye. For both eye types, mean lenticular focal lengths for stimulated eyes were 

shorter than for those not stimulated, an indication that, as expected, stimulation of the ciliary 

nerve was able to induce a lenticular accomrnodative response w0.000 1 for both eyes; one- 

way repeated measures ANOVA on ranks with Dunn's method for multiple comparison). 

The hysteresis effects observed for pst-stimulus scans compared to badine scans were also 

significant for both groups ( ~ ~ 0 . 0 5  for both eyes; D m ' s  method for multiple comparison). 

7 

+ 1 5 D goggle 
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Figure 7 - Mean back vertex focal lengths (ks.e.m.) adjusted for constant aperture size for 
lenses from fom-depnved eyes ( filled squares) and fiom their controls (open circles) at each 
accommodative state. For both eye types, focal lengths denoted by astensks were shorter 
than for those not marked (px0.05; D m ' s  multiple comparison test on ranks). Means 
denoted by double asterisks were significantly shorter than those for control eyes at the sarne 
accornrnodative state (p4I.05; HSD-Tukey test). 

Mean resting or baseline focal lengths for myopic eyes were significantly shorter than 

for their controls @=0.0008), with differences in mean length at about 1 mm (Fig. 7), or in 

power at about 3 D ( d g  thin lem in water, k=1.33; data not shown). Mean lenticular 

focal lengths for pst-stimulus rnyopic eyes were also shorter than for their controls 

(p=0.0009), again showing differences in mean length and power of about 1 mm and 3 D, 

respectively. Together the results demonstrate that the crystalline lem is affected by visual 

or environmental cues and grows independently of a predefmed genetic program. 



The observation that mean lenticular focal lengths for stimulated treated eyes were 

sirnilar to those for their controls @=0.5722), together with the f~11ding that focal lengths for 

lenses from myopic eyes are inherently shorter (Fig. 7), suggests that the accommodative 

apparatus was also affected by induction of rnyopia. For myopic eyes, both the mean 

accommodative amplitude, calculated as the difference between focal lengths for pre- 

stimulus and stimulus states. and mean amount of recovery from accommodation. calculated 

as the difference between focal lengths for the stimulated and pst-stimulus states, were 

significantly reduced compared to their controls (Fig 8; p=0.019 and p=0.018, respectively). 

Conversion of accommodative and recovery amplitudes to dioptres resulted in dilution of the 

sensitivity of the statistical test, and myopia-associated differences in accommodative 

accommodation 

. treated 
a CO ntrol 

recovery 
Figure 8 - Mean accomrnodative and recovery amplitudes (*s.e.m.) for lenses fiom myopic 
eyes (filled bars) and their controls (open bars). For each accommodative change in 
amplitude, means denoted by double asterisks were significantly reduced cornpared to those 
not marked ( j~0.05;  paired 1-test). 



amplitudes became attenuated @=O. 141 and p=0.128, respectively; data not shown). 

Prior to adjustments for aperture size, BVFLs for lenses fiom +15 D lem-treated eyes 

were 20.32 i 0.20 mm, 15.80 * 0.18 mm and 19.97 * 0.20 mm for the pre-stimulus, 

stimulated and pst-stimulated states, respectively (Table 4). Mean BVFLs for lenses fiom 

hyperopic control eyes were slightly shoncr, an opposite trend to that observed for form- 

deprived chickens, with focal lengths at 19.77 1 0.1 7 mm, 1 5.6 1 0.1 7 mm and 19.43 * 0.1 7 

mm for the pre-stimulus. stimulated and post-stimulus states, respectively. 

Mean BVFLs were also adjusted for a constant aperture size pnor to cornparisons 

(Fig. 9). Use of a two-way repeated measures ANOVA on lenticular focal lengths revealed 

a very strong accommodation effect (p=0.000) but more modest efEects of rehctive state 

e0.077)  and interaction (~~0 .065 ) .  in keeping with results for form-deprived chicks, mean 

BVFLs for stimulated lenses from both treated and control eyes were significantly shorter 

than for those during the pre- and post-stimulus states, and again, the hysteresis effects 

observed in both eye types. between lenses in the pre- and pst-stimulus states, were also 

significant @<0.0001 for both eye types; one-way repeated measUres ANOVA on ranks with 

D m ' s  multiple cornparison tests). 

Induction of hyperopia had opposite and more moderate effects than those for 

induction of myopia, with differences in mean lenticular focal lengths between treated and 

control eyes at rest, both prior to and following stimulation, at about 0.5 mm, or 1.75 D in 

power. However, use of the sign test clearly indicated that for these eyes, lenticular focal 

lengths for treated eyes were longer than for their controls Q~0.0046 and p=0.0039, 

respectively), which indicates that hyperopia is associated with specitic changes to the lens. 

The findings that no differences were detected in lenticular focal lengths ôetween m e d  and 
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Figure 9 - Mean back vertex focal lengths (*s.e.m.) adjusted for constant aperture size for 
lenses From + 1 5 D lens-treated eyes (filled squares) and Erom their controls (open circles) at 
each accommodative state. For both eye types, focal lengths denoted by asterisks were 
longer than for those not marked (pc0.05; D m ' s  multiple cornparison test on ranks). For 
the resting accommodative States, focal lengths for treated eyes were longer than those for 
control eyes ( ~ ~ 0 . 0 5 :  sign test). 

control eyes (jM.7488; sign test) but that means for treated eyes were inherently longer 

suggests that induction of hyperopic refiactive error also affects the accornmodative 

apparatus. In contrast to results for fom-deprived chickens, accomrnodative and recovery 

amplitudes were greater for treated eyes than for their controls (Fig. IO), although these 

associations were not very strong ( ~ 4 . 0 9 0  and m. 1 00, respectively). 

3.22 Lenticular spherical aberration 

An advantage to use of the physiologicai accommodation mode1 presented here is the 

ability to directly mess  the optical quality of the lem. Al1 optical scans showed negative, 
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accommodation 

m t reated 
Q control 

recovery 

Figure 10 - Mean accornrnodative and recovery amplitudes (*s.e.m.) for lenses from +15 D 
lens-treated eyes (filled bars) and their controls (open bars). Means for treated eyes were 
slightly greater than for their controls. Please see text for details. 

monotonic spherical aberration (SA), regardless of refractive error or accommodative state 

(Fig. 1 1). Sphencal aberration was quantified as the A-coefficient of the parabolic fùnction 

y=Ax2+Bx+C that best-fit each scan in dioptres (assuming thin lens in water, 4 4 . 3 3 ) .  

Steeper parabolas, representing scans with greater spherical aberration, show higher A- 

coefficient values (Figs. 12 and 13). Two-way repeated measures ANOVAs revealed that 

for both form-deprived and hyperopic chickens, rehctive error had no eflect on the amount 

of lenticular sphencal aberration e 0 . 9 2 2  and p=0.856, respectively) (Figs. 12 and 13). In 

myopic birds, lenticular spherical aberration (SA) were similar in pre- and post-stimulus 

eyes, but increased with stimulation, regardless of rehctive error QH.000 and p4.0018 

for control and treated eyes, respectively; one-way repeated measures ANOVAs on ranks 

with Dunn's multiple cornparison tests) (Fig. 12). Eyes for hyperopic birds were similar; 
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16 18 20 22 24 26 28 

Back vertex focal length (mm) 
Figure I l  - Mem back vertex focal lengths (*s.e.m.) of lenses fiom (A) fom deprived 
myopic and (B) +15 D lem-treated hyperopic chickens, plotted as a function of eccentrïcity. 
Each data point represents a mean of a minimum of 3 values measure at that eccentrïcity. 
Lenses from treated (filled) and control (empty) eyes were optically scanned prior to 
stimulation (squares), during stimulation (~angles) and d e r  stimulation (cûcle). Note that 
for ail accomrnodative States, sphencal aberrations are monotonic and clearly negative. 



Pre sti m post 

Accommodative state 

Fipre 12 - Mean parabolic A-coefficient value (*s.e.m.) representing spherical aberrations 
for lenses from form-deprived eyes (filled squares) and their controls (empty circles). For 
both eye types, means denoted by asterisks were significantly greater than those not marked 
@<0.05; Dunn's multiple cornparison test). 

spherical aberration was the same for pre- and pst-stimulus eyes, but significantly increased 

as a fiinction of accommodation regardless of treatment (@.O00 for both eye types; one-way 

repeated measures ANOVAs on ranks with Dunn's multiple cornparison tests) (Fig. 13). 

Analysis of the amount of non-monotonicity, measured as the deviation fiom the best fitthg- 

paraboia for each scan, ais0 revealed no effect of rehctive error (data not show). 



Pre stim post 

Accommodative state 
Figure 13 - Mean parabolic A-coefficient value (*s.e.m.) representing sphencal aberrations 
for lenses from +15 D lens-treated eyes (filled squares) and their controls (empty circles). 
For both eye types, means denoted by asterisks were significantly greater than those not 
marked @<O.OS; Dunn's multiple cornparison test). 

3 3  Anterior segment measurements during accommodation 

In keeping with other reports, fom-deprivation resulted in induction of myopia. 

Rehctive errors for fom-deprived eyes (n= 12) ranged fiom -9.25 to -2 1.50 D and averaged 

- 13.46 1.13 D (s.e.m.), while the contralateral (control) ungoggled eyes (n=12) were 

hyperopic, with refraftive erron ranging fiom +2.25 to +4.50 D and averaging +3.44 0.17 

D. As expected, axial lengths, as measured by A-scan ultrasonography, for fom-ûeprived 

eyes were longer, ai a mean length of 9.38 I 0.1 1 mm, compared to those for control eyes, 

which averaged 8.64 k O. I O  mm. Eyes treated with +15 D defocus lenses becarne hyperopic 

(n=13), by amounts ranging fiom +8.50 to +19.OO D and averaging to + 14.15 0.79 D, while 
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rehctive errors for their contralateral, ungoggled eyes (n=13) ranged fiom +3.00 to +5.75. 

D and averaged to +4.02 * 0.23 D. Axial lengths of defocus-imposed eyes were shorter. at 

8.10 * 0.08 mm. compared to their controls, at 8.61 * 0.09 mm. 

Use of the ultrasound biomicroscope resulted in images for which intraocular 

structures were clearly distinguishable, including, at medium resolution. both corneal 

surfaces, the iris, and both lenticular surfaces, although postenor lenticular cwatures were 

harder to detect (Fig. 14). For al1 eyes, regardless of rehctive error, stimulation of the 

ciliary nerve resulted in constriction of the pupil apertures and fonvard and backward 

movement of the front and back lenticular surfaces respectively (Fig. 1 5 A,B). For 1 8 of 44 

eyes andysed, stimulation was associated with a backward movement of the central regions 

of the comea, which was taken to indicate the occurrence of comeal accommodation (Fig. 

15B). 

Figure 14 - Representative ultrasound biomicrograph of a chicken eye for which ocular 
structures such as comeal surfaces (C), iris (I) and both anterior (AL) and postenor (PL) 
surfaces of the Iens are clear dehed.  Bar = 0.5 mm. 



Figure 15 - (A) Cut-away superimposed ultrasound biomicrographs of chick eyes at rea 
(lefi) and undergohg accommodation (right). Note that both fiont and back lenticular 
surfaces move during accommodation (arrows) while the comea does not. (B) A subset of 
eyes dso showed comeal accommodation (arrowhead) which involved backward movement 
of the cornea. Bar = 0.5 min. 



Mean anterior chamber depths decreased concomitantly with accommodation in both 

treated and control eyes of form-deprived birds (p=0.000; two-way repeated measures 

ANOVA), averaging to about a 2 to 3 pixel, or 0.05 to 0.06 mm, difference respectively 

(Table 5). These changes were usualiy related to forward movernent of the antenor surface 

of the lens, and in cases when comeal accommodation was present, to backward movement 

of the comea (Figs. 15A,B). Although its effect was smaller, refiactive error was dso 

associated with changes in anterior chamber deptb (p=0.056; two-way repeated measures 

ANOVA), with the average depth for myopic eyes at rest deeper than for their controls (Fig. 

16A, Table 5) by about 8 pixels, or 0.16 mm. in addition, in 8 of 9 pairs of eyes, anterior 

Table 5 - Means * s.e.m. in mm for measurements of various ocular components for form- 
deprived eyes and their controls at rest and during accommodation. Means s.e.m. in pixels 
are in parenthesis. 

cornPonent I at rest 

1 

front 1 

anterior 

depth (n=9) 

accommodating 1 at rest 1 accommodating 

0.81 * 0.02 
(4 1.3 0.9) 

Ocular conîrol treated 

-- 

3- 

- 

- 

- 

- 

- 



Figure 16 - Micrographs of treated (right) and control (lefi) eyes fiom (A) fonndeprived and 
(B) +15 D lens-treated chickens. Micrographs are aligned at the posterior poles of the lem. 
Note differences in anterior chamber depth of bctween treated and control eyes for both 
fotm-deprived and +15 D lem-treated chickens. Bar = 0.5 mm. 

chambers were deeper for fomdeprived eyes compared to their controls, in both the resting 

and accommodative States w0.039 1 for both accommodative States; sign test) (Fig. 17). 



resting date ACD 
O 

6 

stimutated state AC0 
- qua1 O O 

32 34 36 38 40 42 44 46 48 
contrd eyes (pixels) 

Figure 17 - Resting state (filled circles) and stimulated state (empty squares) anterior 
charnber depths for treated eyes plotted against their controls for formdeprived chickens. 
Note the majority of plots are to the lefi of, or above the "equal" line (8 or 9 pain), indicating 
that in general, chambers for treated eyes were longer than their controls ( ~ ~ 0 . 0 3 9  1 ; sign 
test). 

Taken together, the results suggest that anterior charnber depths were greater for form- 

deprived eyes. 

Analysis of the mean lenticular thickness revealed an efEect of accommodation 

@==.000), but not of rehctive error w0.252; two-way repeated measures ANOVA). 

Accommodation was associated with a robust increase in lenticular thickness, with 

differences of about 4 and 6 pixels, or 0.09 and O. 11 mm, for treated and control eyes 

respectively (Table 5). Although rehctive e m r  effects were not very strong (see above), 

for al1 pairs of eyes analysed (n=12), lenticular thicknesses for resting form-deprived eyes 



were greater than those for their controls @=0.0005; sign test) (Fig. 18). However, it should 

be noted that the mean difference between the control and treated eyes was about 2 pixels, 

or 0.04 mm, which is just above the minimum detectable level of resolution. 

Analysis of the hont surface cwatures revealed no effect of refraftive error 

e 0 . 9 4 9 )  but an increased steepening with accommodation @=0.000; two-way repeated 

measures ANOVA). Unlike measurements for lenticular thicknesses and anterior chamber 

deplhs. no other trends were observed. 

Differences in mean comed thicknesses were ail less chan 1 pixel, both as a function 

of refractive error and accommodation (Table 5). indicating that while there was slight user- 

lenticular thickness ./, 

I 

i 
I 

I i I I I I 
1 

86 88 90 92 94 % 98 
contrd eyes (pixels) 

Figure 18 - Resting Ienticular thicknesses (füled circles) for treated eyes plotted against their 
controls for fom-deprived chickens. Note that al1 plots are to the lefl of, or above the 
"equal" line (n=12), indicatuig that lenses from treated eyes were thicker than their controls 
for d l  pairs @=0.0005; sign test). 



error variability, their amounts were below the resolution detectable and were therefore 

considered negligible. 

Hv~ero~iq 

Anaiysis of mean anterior chamber depths in +15D lens-treated chicks revealed an 

effect of accommodation (p=0.000) but no effect of rehctive error (~4 .502 ) .  As for 

myopic birds, anterior chamber depths decreased with stimulation, showing similar 

difierences, of about 3 pixels, or 0.05 mm. between accornmodative States for both control 

and treated eyes. However, in contrast to measurements for eyes from form-deprived birds, 

anterior chamber depths in resting +15 D lens-treated eyes were smaller than for their 

controls (Fig. 16B) in 1 O of 13 pairs (~~0.0386; sign test) (Fig. 19), by a mean difference of 

close to 2 pixels, or 0.04 mm (Table 6). These differences, much smaller in magnitude to 

those exhibited by form-deprived eyes, are just above the resolvable limit of the UBM (see 

above; Table 5). 

Use of a two-way repeated meanrres ANOVA on mean lenticular thickness showed 

that there was an effect of accommodation @=0.000) and a more modest efFect of refractive 

error @=O. 160). Changes in lenticular thickness increased with accommodation for both 

treated and control eyes, with differences of about 5 pixels, or 0.10 mm for both eyes, which 

was simi lar in magnitude to the accommodation-associated increase O bserved in myopic 

birds. Induction of hyperopia had more varîed effects on lenticular thickness than those for 

formdeprivation (Fig. 20). For eyes at rest, lenses h m  treated eyes were thinner for 6 pairs, 

the same for 4 pairs, and thicker for 3 pairs @=.5078; sign test). The group comprising the 

greatest nurnber of eyes was that which showed treated lenses were thinner. Differences in 

lenticular thickness were greater in general for this group (compare dserences, or distances 
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contrd eyes (pixels) 
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Figure 19 - Resting state (filled circles) and stimulated state (empty squares) anterior 
chamber depths for treated eyes plotted against their controls for +15 D lens-treated chickens. 
Note the majority of plots are to the right of, or below the "equal" line (10 or 13 pairs). 
indicating that in general, chambers for treated eyes were shorter than their controls 
e0.0386; sign test). 

5 - 
53 - 

fiom equal or trend line, in Fig. 20 for groups above and below the line), however, the 

O resting state ACD 
O stimulated state ACD 

combination of differences with the other two groups led to an attenuation of lenticular 

, 51 i -equal a 
V) i 
5 491 
.K 47 j a - 45 1 /" 

thickness differences, resulting in a mean change of slightly less than 1 pixel, which is below 

the minimum detectable change resolvable by the CTBM (Table 6). 

As with rnyopic birds, analysis of mean fiont lenticular surfaces reveaied no change 

in steepness with refiactive error 6~0.884)  but increasing steepness with accommodation 

(p=0.000). No other trends were observed. 



Table 6 - Means i s.e.m. in mm for measurements of various ocular components for +15 
D lens-treated eyes and their controls at rest and during accommodation. Means * s.e.m. 
in pixels are in parenthesis. 

1 component l 1 at rest 1 accommodating 1 at rest accomrnodating 
1 

I 1 ocuiar j control 
1 

treated 
1 

For + L 5 D lens-treated chickens, differences in the mean corneal thicknesses were 

also less than 1 pixel, both as a fùnction of rehctive error and accommodation, and were 

therefore considered to be negligible or non-existent. 

I antzrior 
i chamber 

depth (n= 13) 

0.79 * 0.02 l 0.72i 0.02 
(40.3 k 1.3) 

0.75 * 0.04 i 0.70 * 0.04 
(37.1 * 1.0) (38.6 * 2.0) (35.7 I 2.0) 



control eyes (pixels) 
Figure 20 - Resting lenticular lhicknesses (tilled circles) for treated eyes plotted against their 
controls for + 15 D lem-treated chickens. Location of plots were more varied Q~û.5078: sign 
test). Note that more plots lie to the right of, or below the "equd" line (n=6) than to the left, 
and of these plots, differences were greater (farther fiom the "equd" line). 



- 
4.1 Effects of age on lenticular accommodation and spberical aberration 

This is the first physiological study to directly examine optical properties of the lens 

during accommodation that has been induced in a m m e r  approximating the in vivo 

condition. Given that a11 intraocular structures remained in their natural anatomical 

configurations and that accommodation was induced for dl age groups, i-e.. stimulation of 

the ciliary nerve resulted in shorter focal lengths (Fig. 2), using a method that results in 

accommodation in vivo, the results presented herein were taken to represent fùnctional optics 

as they would be in the intact eye. 

This is the fm study to show an adverse effect of age on lenticular accommodative 

function in chickens, with reduction in lenticular accommodation associated concornitantly 

with increasing age, a characteristic of presbyopia. Although age-matching of chickens to 

humans has not been analysed, it must be noted that chickens are precocial birds, opening 

and using their eyes the day of hatching. Hens usually begin laying eggs by the end of 5 

months, an indication that one- and two year old chickens may be comparable to middle-aged 

humans. As chickens older than 2 years were not available, whether even older chickens 

would show m e r  reduction in lenticular accommodation ability or a lack of accommoda- 

tive response altogether, remains unknown. 

As with humans, it is also difficult to determine the aetiology of presbyopia in 

chickens. Changes in the accommodative amplitude may be due to biophysical changes to 

the lens, or weakening of the ciliary muscle or both. It must be noted that hardening of the 

lens, whether due to changes in thickness or an increase in lenticdar protein concentrations, 

would have an effect on the ciliary muscle, with requirements of greater ciliary muscle 
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huiction. As reported here, lenticular focal lengths for two year old chickens were slightly 

shorter, although not significantly, than those for one year old chickens, which raises an 

intriguine possibility that with more sarnples or with even older chickens, lenticular focal 

lengths would shorten with increasing age. Physiologicaily, this is possible if growth of the 

lem is accompanied by an increased protein accumulation, causing an increase in refractive 

index andlor thickening of the lens. If this were to occur, it would be an indication that the 

refractive index of the lens had increased, and that the ciliary muscle could have been 

affected because of the increased effort required to squeeze a less flexible or thicker lens. 

The changes in accornmodative amplitude, presented here, correlate well with results 

of Glasser et al. (Glasser et ai., 1 995) which showed lenticular accommodative changes of 

about 10 D for 4 week old birds. Estimates of the change in accommodation for 4 week old 

chickens in the work presented here would fa11 somewhere between about 6 to 10 D (estimate 

from Fig. 2). Differences in dioptric values may be accounted for by variations in chicken 

strain and environrnents in which the chickens were raised. in their study, Glasser and 

colleagues (Glasser et al., 1995) suggested that the 10 D change in accommodation they 

observed was probably not the true extent of lenticular accommodation in the chick, because 

of backward movement of the lens, mediated by loss of intraocular pressure (IOP) and 

removal of the vitreous, and because they had previously measured p a t e r  accommodative 

amplitudes using 0.01 1% nicotine stimulation. It remains unknown whether the arguments 

expressed by Glasser and colleagues hold tme for the work reported here. The degree of 

backward movement of the lem, ifany, was not assessed. Thus, it is possible that backward 

movernent of the lens occurred in the experiments descnbed here, caused by removd of the 

back of the globe. On the other hancl, there were several differences in the study reported 
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here that may have helped to alleviate loss of IOP. Vitreous was not removed, and the eye 

was placed near the bottom of the chamber. Hence, some intraocular pressure rnay have been 

recovered by the volume of Tyrode's saline weighing down upon the vitreous and through 

it, the lens. In addition, eyes fiom hatchlings underwent corneal accommodation (data not 

shown), which is an IOP-dependent process that requires 15-20 mmHg in the eye (Glasser 

et al.. 1994). Together, these observations suggest that for hatchling eyes at least, the 

minimum IOP criterion was met, and that intraucular pressure loss was attenuated. Finally, 

it should br noted that back vertex focal lengths were measured for the maximum indeal 

contraction inducible by a physiological paradigm, and that the great arnount of accommoda- 

tion observed phamacologically may be an extremely artificial circumstance; although the 

lens is capable of generating the amount of accommodation observed, this accornmodative 

amplitude would not be observed naturally, or in vivo. 

As expected, resting lenticulv focal lengths of young chickens increased as a fùnction 

of chicken age (Fig. l), presurnably in association with axial elongation of the eye. However, 

these focal lengths, as reported here, are slightly longer than those reported by Priolo and 

colleagues (Pnolo et al ., 1 9959, who examuieci optical properties of excised chic kens lenses 

in vitro as a function of age. ï h i s  difference is probably attributable to the isolation of the 

lens in the previous study, where disruption of the anatomical structures supporting the lem 

in vivo caapes changes to the shape of the lem. "Rounding up" of the lens once it has been 

fîze of its supporting anatomy ha, been previousiy shown by Glasser and colleagws (Glasser 

et al., 1995). In addition. a more recent and sensitive version of the scanning laser monitor 

was used in the study reported here, which may have contributed to the differences obsewed 



between the two studies. However, regardless of the differences, the pattern for lenticular 

focal length distribution as a function of age between the two studies are similar. 

The finding that the hysteresis etTect was significant ody in 2 year old chickens must 

be interpreted cautiously. It couid be an indication that the lenticular huiction is 

detrimentally affected in older chickens. However, as pst-stimulus focal lengths were 

collected to ensure that stimulation of the ciliary had no optical or physiologically deleterious 

effects. the recovery time between the end of collecting data for stimulated eyes to the 

beginning of collection of post-stimulus focal lengths was not controlled for. Presumably, 

longer recovery times would result in smaller differences between pre- and pst-stimulus 

focal lengths. 

An advantage to the use of the physiological in vivo accommodation mode1 described 

herein. is its usefulness in directly measuring the effects of age and accommodation on 

lenticular sphencal aberration. As reporteci here, der  7 days, lenticular spherical aberration 

becarne monotonic (Figs. 3,4 and 6) and negative, an observation that is in keeping with 

other reports. It should be noted that high amounts of negative sphericai aberration may not 

necessarily result in poor vision, since the arnount and type of sphencal aberrations at the 

comea currently remain unknown. However, while it is possible that the effects of the 

comea may act to counter the negative sphencal aberration observed in the lem, it is less 

likely that the erratic nature and clearly high amount of non-monotonicity exhibited by 

hatchling lenses? regarâiess of accommodative state (Figs. 3 and 6), can be compensated for 

by the cornea. Taken together, the results indicate that the lem was not fully developed at 

this age. 



It remains unclear whether the high degree of spherical aberration observed in some 

stimulated lenses arose because of changes to the shape of the lens or because of changes to 

the refnctive index of the lens. Given that focal lengths were measured for "distant" objects 

(collimated light), it might be expected that accommodation would be associated with 

degradation of optical quality. That the greatest increase in SA and degree of non- 

monotonicity was observed in hatchlings might be related to the observation that hatchlings 

also showed the greatest accommodative ability. M i l e  it must be noted that an age- 

associated trend was not observed for SA and non-monotonicity, for dl age groups, SA in 

stimulated lenses were greater than for their unstimulated counterparts, although not 

significantly so, in al1 age groups. 

Accommodation in some birds also includes a comeal component. In chickens and 

pigeons. changes to the comea cm account for up to half of the total arnount of 

accommodation (Schaeffel and Howland, 1987), whereas, in hooded mergansers, lenticdar 

accommodation plays a dominant role (Sivak et al., 1985), especially when these diving 

ducks are in water, and power fiom the comea is neutralised. It must be noted that aithough 

the comeal contribution was not measured in this study, the comea may play a significant 

role in chicken vision during accommodation. Whether its effect on spherical aberration, if 

it exists, is synergistic with the lens during accommodation, working to irnprove optical 

quality, or deleterious is not known. 



4.2 Effect of experimentally-induced ametropias on lenticular accommodation and 
spberical aberration 

This is the first study to examine the effects of expenmentally-induced ametropias 

on lenticular accornrnodative hinction and on lenticular optical quality in chickens for which 

accommodation has been induced in a mechanism similar to that which exists in nature, i.e., 

via electrical signais at the ciliary nerve. As for studies exarnining age effects, intraocular 

structures remained in their natunl anatomical codgurations and stimulation of the ciliary 

nerve resulted in accommodation, as measured by shoner focal lengths (Figs. 7 and 9), 

indicating that the results measured were representative of the functional optics of intact 

eyes. 

This is the first study to show that in chickens. lenticular back vertex focal lengths 

are shorter for rnyopic eyes thm for their controls, suggesiing that the crystalline lens, too, 

is affected by experimentaily-induced myopia, and is in fact, a contributor to the resuiting 

myopia (Fig. 7). Presumably. the increase in power of the lens reported here reflects a 

change either in the lenticular refractive index or in the shape the lens, or both. It rnay be 

speculated that changes to the shape of the lem could aise h m  an increased growth of fibre 

cells, or altematively, fiom an increased basal ciliary muscle. It remains unclear which of 

these mechanisms are applicable to the work presented here. 

The work presented here is also the first to show that myopia has an adverse effkct 

on lenticular accommodation in chickens (Fig. 8). The results clearly indicate that rnuch of 

the loss of lenticular accommod;ttion rnay be attributed to the inherently shorter lenticular 

focal lengths exhibited by myopie lenses and the similar lenticular focal lengths for 

stirnulated rnyopic and control eyes (Fig. 7). Together, these findings suggest that the 



accommodative apparatus in rnyopic eyes is weaker, incapable of producing the same 

accommodative amplitudes as for control eyes. Although the weakened myopic accommoda- 

tive response may be due to changes in the responses of one, some or al1 portions of the 

accommodative pathway, beginning at the ciliary ganglion and ending at the ciliary muscles, 

it is dso possible that the amount of accommodation was lirnited by biophysicd constraints, 

specifically. by thicker or harder lenses which, because they were Iess flexible. could not be 

squeezed fiirther. 

Conclusive associations for hyperopic birds were clearly harder to demonstrate, 

despite the increased number of birds sampled. However, the fmdings that longer lenticular 

focal lengths were associated with experimentally-induced hyperopia at a 92% confidence 

Ievel@=0.077) and that focal lengths for treated eyes were longer in 30 of 39 pain (Fig. 1 O), 

strongly argue that experimentally-induced hyperopia should have a significant effect on the 

lens with M e r  sarnpling. Moreover, hyperopic birds exhibit opposite trends to those for 

rnyopic birds. such as longer lenticular back vertex focal lengths (p=0.0046) and greater 

lenticular accommodative amplitudes for defocus-treated eyes compared to their controls 

(Fig. 9 and IO), niggesting that the lens and accommodative apparatus are not ody affected 

by induction of hyperopia, but also, that they respond in a m m e r  that is distinct fiom that 

for form-deprivation. Thus, overall, the results suggest that the lens is affected by, and 

responds distinctly to, specific visual cues. 

While the trends for myopic and hyperopic birds were generally reciprocal, there were 

differences between the two groups which may account for the diminished responses 

observed in hyperopic birds. Refractive enors for both control groups were hyperopic, 

resulting in similar rehctive error signs for, and smaller differences between, treated and 
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control eyes in hyperopic birds. Thus, the effect of refractive error may have been 

augmented in rnyopic birds but diminished in hyperopic birds, and these differences may 

have k e n  sufficient to cause a diminished association between lenticular focal lengths and 

refractive error in hyperopic birds. The refractive errors for the control eyes reported here 

are in keeping with those of a study by Irving and colleagues, which showed that control eyes 

of chickens treated for 7 days with negative or positive lenses of various powers were 

hyperopic, regardless of sign or power of the spectacle lens (Irving et al.. 1992). However, 

in contrast, studies by Picken-Seltner et ai. (Pickett-Seltner et al., 1988), Wildsoet and 

Wallman (Wildsoet and Wailman, 1995) and Priolo et of. (Priolo et al., 2000), show that 

their control groups tended to be ernrnetropic, the same refractive error as the treated eye, or 

myopic, respectively. Presumably, the hyperopic refractive errors for both controi groups 

reported here reflect the young age of the chicks and differences between studies may be 

related to variability in chickens. It is also possible errors were made during rehctive enor 

measurements, but, as the sarne method was used for al1 eyes and the mean refractive error 

for defocus-treated eyes were slightly less hyperopic than expected (+14.36 * 0.40 D) this 

seems less likely. 

While it temains unknown whether lenses fiom treated eyes of hyperopic birds 

exhibited longer focal lengths because their refiactive indices were reduced or because they 

were flatter or thinner, or buth, it must be noted that there are inherent limitations with either 

of these mechanism. Uniike the rest of the eye, the lens grows throughout life, with "shells" 

or concentric layers of fibre cells continuously added to pre-existing layers of the lem. 

Under normal circumstances, fibre cells do not die or become phagocytosed; the lens 

contains al1 of its original cells, with the oldest cells cornpacted toward the centre of the lem. 
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Together, these cellular growth mechanisms present barrien for the lens to become 

hyperopic; as there is no additional mechanism to alleviate growth changes, unlike the eye 

itself which c m  rely on thickening of the choroid to fùrther reduce retinal distance from the 

anterior of the eye, the lens can only becorne thinner by a decrease or cessation in the growth. 

Moreover, thiming of the lens cannot rely on compaction of fibre cells towards the centre 

of the lens since the lens would become more powerfui and the eye more rnyopic by the 

subsequent increase in refractive index. 

If changes to the crystalline lens are indeed cellular and not due to changes in resting 

ciliary muscle tone, it remains to be determined how changes to the crystalline lens are 

mediated. Given that the lens is enclosed within the eye, it is constantly exposed to. and 

c m o t  avoid any factors that may be released or upregulated by the retina in response to the 

imposed blurs. Changes to the lens may therefore be an epiphenomenon of the changes that 

are occurring globally in the eye. That the lens responds in a specific manner to distinct 

v i d  cues, contributing to the final refractive error of the eye nther than reducing its effect, 

rnay imply that the crystalline lens is genetically pre-programmed to respond to specific 

putative reti.mil factors, or that the lens itself is capable of distinguishing and u p  or dom- 

regulating its own growth changes. It currently remains unknown what these putative signals 

are, if they exist, and whether regulation involves u p  or down-regulation of receptoa in the 

lens or not. 

Given that spectacle lenses were able to induce lenticular responses, and moreover, 

that these responses were diametrical to those for rnyopic birds, it may be speculated that 

imposition of a hyperopic defocus, by a negative or convex lens, would result in similar 

effects as for fom-deprivation myopia. Although studies exist which show that the eye is 
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capable of discriminating between, and responds differently to, forrn-deprivation and lens- 

induced myopia (Bartrnann et al., 1994; Schaeffel et al., 1995; Schaeffel et al.. 1 994), the 

rnajority of studies indicate that the effects of the two treatments are similar (Irving et al., 

1992; Norton et al., 1999; Troilo and Wallman, 199 1 ; Wildsoet and Wallman, 1995). 

However, as this paradigm was untested. the effects of hyperopic defocus on lenticular 

accommodation remain unknown. 

In a previous repoit. Pnolo and colleagues (Priolo et al., 2000) found that lenticular 

optical quaiity was degraded for myopic eyes but could not find any differences in lenticular 

focal length between myopic eyes and their controls, or between hyperopic eyes and their 

controls. In contrat, the results presented here clearly show that lenticular focal lengths are 

affected by form-deprivation and, albeit less strongly, by imposition of a myopic blur. It 

should be noted that in addition to the greater number of chickens tested here, there are 

several other differences between the study here and the one reported by Priolo et ai. (Pnolo 

et al., 2000). Ln the previous study, focal lengths at the sutural regions were included in 

calculations of mean focal length and focal length variability. As briefly mentioned above 

(see Methods) sutural regions are associated with unpredictably variable focal lengths 

(Bantseev et al., 1 999; Kuszak et al., 1 994; S ivak et al.. 1 994) which can result in masking 

of smaller effects. Focal lengths at these regions were omitted for the study here. in 

addition, a more recent and sensitive version of the scanning laser monitor was used in the 

study here, which may have allowed for detection of smaller differences in focal length 

compared to the origuial scanning laser monitor used in the previous study. Finally, Priolo 

and colleagws (Priolo et al., 2000) excised l ems  from the eye, whereas lenses remained in 

situ for the study reported here. It has been previously shown that excision of lenses causes 
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them to "round up" (Glasser et al., 1995). Given the possibility that treatment-associated 

differences in focal length reported here may be attributable to a difference in accommoda- 

tive tone of the eye, isolation of the lens from the zonules and the rest of the accornmodative 

apparatus may have inadvertently caused neutralising effects. The combination of these 

experimental and analytical modifications may have acted together to cause the different 

results observed for this study and for those previously reported (Priolo et al.. 2000). 

It must be noted that an unresolved issue conceming the accommodation mode1 

reported here involves the potential loss of power associated with loss of intraocular pressure 

(IOP) and backward movement of the lem during accommodation (Glasser et al.. 1995). As 

was the case for the age study, the degree of backward movement of the lens, if any, was not 

assessed. However, the same arguments hold; the vitreous was not removed, and eyes were 

placed at the bonom of the scanning chamber, which together may have helped alleviate IOP 

loss by combining the weights of vitreous and volume of the Tyrode's solution to push down 

on the lens. Again, it should be noted that great amounts of accommodation elicited by 

phamacological agents (Glasser and Howland, 1995) do not necessarily reflect the 

accommodative amplitudes that would be achieved nahirally or in vivo. Finaily, in the study 

reported here, accommodation was clearly associated with very significant and obvious 

changes in back vertex focal length and spherical aberration, which may render the question 

of whether accommodation-associated changes were even greater, a moot point. 

In a previous report, it was shown that induction of myopia was associated with 

degradation of optical quality (Priolo et al., 2000), while in the study reported here, no 

differences in lenticular spherical aberrations were detected between rnyopic eyes and their 

controls (Figs. 12 and 13), wr in the degree of non-monotonicity between the two eye types 
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(data not shown). However, Pnolo and colleagws (Priolo et al., 2000) used focal length 

variability as a measure of optical quality, where high variability indicated poor optical 

quality. while the report here uses the steepness of the best-fitting parabola (see Fig. 1 1) to 

indicate high sphericd aberration, and deviation fiom the best-fitting parabola to indicate 

non-monotonicity. The advantage to using parabola-based calculations lies in the ability to 

account for aberrations at the comea. Severai studies report that aberrations of the crystalline 

lens are eliminated by equal and opposite aberrations of the comea, resulting in zero 

aberrations for the whole eye (Arta1 et al., 200 1 ; Sivak, 1982). 

It remains unclear whether the comea plays a role in neutralising or augmenting the 

spherical aberration observed for the lens both at rest and during accommodation in the study 

here. It must be noted that chickens also undergo comeal accommodation, which may have 

implications in the amount of aberrations of the whole eye. In order to eliminate the 

accommodation-associated increase in lenticular spherical aberration, comeal aberrations 

would also need to increase, assurning equal and opposite aberrations. It also remains 

unknown what effects ametropias have on comeal spheiical aberration. In fact, it remains 

contentious whether comeal cwatures are even afFkcted by induction of ametropia. Various 

fom-deprivation studies indicate that the comea steepens, tlattens or curvatures stay the 

same, while Irving and colleagues obsewed comeal flattening with imposition of high 

positive ienses, and no changes for negative lenses (Iwing et al., 1992). Presurnably 

steepening or flattening of the comea, if it occurs, would have different effects on the 

magnitudes of spherical aberration, but whether these changes in the amount of putative 

positive spherical aberrations work in concert with the lens to eliminate sphencal aberration 

of the whole eye is not known. 
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4.3 Ultrasonnd biomicroscopy of the anterior segment 

This is the first study to examine the biophysical characteristics of the anterior 

segment of myopic and hyperopic eyes undergoing accommodation. As expected, 

accommodation in the chick eye was associated with thickening of the lens, a reduction in 

anterior chamber and a steepening of front lenticular surface curvature. The results showing 

that thickening of the lens was associated with movement of both lenticular surfaces during 

accommodation, with the anterior surface moving into the anterior chamber. and the 

posterior surface rnoving into the vitreous chamber, are consistent with the observations of 

Glasser and colleagues (Glasser et al., 1995) who used slit-lamp illumination to observe 

changes to the lem during accommodation elicited by stimulation of the Edinger-Westphal 

nucleus. While it was not possible to measure the cwatures for posterior lenticular surfaces 

using the UBM (Figs. 14. 15 and 16). given that accommodation was associated with both 

steepening of the front lenticular surface and bulging of the lem into both anterior and 

vitreous chambers, it may be speculated that accommodation was also associated with an 

steepening of the posterior lenticular surface, as was previously reported (Glasser et al., 

1995). 

ui their study, Glasser et al. (Glasser et al., 1995) reported that lenticular thickness 

increased by 0.2 mm with accommodation and that movement of the two lenticular surfaces 

were equal, with the arnount of bulging into the anterior chamber equal to that into the 

vitreous chamber. Measurernents for some of the eyes in the study here indicated a varied 

response arnongst the eyes, with some showing equal amounts of change in anterior and 

posterior surface movement (n=16), and with others showing more anterior d a c e  

movement (n=7), and still others more posterior surface movement (1147). While some of 
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these accommodation-associated changes were obviously greater at one surface than the 

other, the majority of changes were within 1 pixel of each other (30 of 40 eyes) and therefore 

these differences should be interpreted cautiously. However, it should be noted that for the 

1 O eyes that did show a clear difference in the arnount of movement between front and back 

surfaces, for al1 10, bulging at the posterior pole was greater than at the anterior pole (by 

differences ranging fiom 2 to 4 pixels). It remains enigmatic what factors were responsible 

for the increased rnovement of the posterior pole, whether, for example, the apparent increase 

in posterior surface movement represents a shifl of the lem backwards. It has been 

previously reported that backward shifting of the lem is possible if there is loss of intraocular 

pressure (Glasser el al., 1994), but given that these eyes were whole, a loss of intraocular 

pressure should not have occurred, although this was not tested for. Another possibility is 

that the iniraocular pressure in these eyes were lower to begin with, although how such a 

mechmism would have occurred, dso remains unclear. 

The results of the study here indicate that the accommodation-associated increase in 

lenticular thichess was half the magnitude of that previously reported (Glasser et al., 1995). 

While the method of induction of accommodation dieered between the two studies, the 

resultant amounts of lenticular accommodation were similar; in the previous study, 

stimulation of the Edinger-Westphal nucleus elicited about 15 D of lenticular accommoda- 

tion, while the method used here, via electrical stimulation of ciliary nerve, has ben 

previously shown to generate approximately 15 to 19 D of lenticular accommodation 

(converted from BVns for ametropic eyes, section 3.2.1, assuming %=1.33; data not 

shown), suggesting that differences in lenticular thickness are not related to the method of 

induction, nor to the amount, of accommodation. Given that eyes in the study here were 
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from younger chickens, and that there is an age-related decrease in resting state lenticular 

power in chickens (Fig. 2), it may be speculated that the 0.01 mm change in thickness for the 

smaller, more powemil lenses of the study here is equivalent to the 0.02 mm change in 

thickness for the older, less powefil lenses of the previous study. Further diflerences may 

lie in breed of the chickens, or in the use of an A-scan ultrasound, rather than the UBM as 

reported here. 

It remains unclear why comeal accommodation in the study here was associated with 

a backward shift, or translation, of the whole comea into the anterior chamber and toward 

the crystalline lens (Fig. 1 5 B). Because comeal translation was observed in 1 7 of 44 eyes, 

it was considered that chis movement may be an artefact of the experimental procedure. 

However, observations of the sclerai region and side of the eye clearly indicate that 

movernent of the comea was relative to the rest of the eye. nor was corneal rnovement 

associated with the pater movement of the posterior pole of the lens, observed in some of 

the eyes. Preliminary analysis reveals that there is a slight steepening in curvature for the 

central region of the comea for the study here, but that this change is very slight and well 

below the differences observed between the inner and outer comeal d a c e s  themselves (data 

not shown). Observations of the ciliary region for the eyes here suggest that comeal 

accommodation originates near the lirnbus, with inward pulling or negative pressure radially, 

or centripetally, conducted dong the plane of the comea, much like the mechanism for 

comeal accommodation proposed by Glasser and colleagues (Glasser et d, 1994). As data 

were primarily coilected for the crystalline lens, clearer details describing the comeal 

mechanism are needed and M e r  analysis of the ciliary region is required in order to 

elucidate the mechanism observed in the study here. 
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Changes as a function of rehctive enor were clearly more difficult to assess, partly 

because of the subtle changes associated with myopia and hyperopia. Like the previous study 

showing that a myopic refractive state had greater effects on lenticular focal length than a 

hyperopic rehctive state (See section 3.2. l) ,  the study here shows that form-deprivation had 

greater effects on anterior chamber depth and lenticular thickness. while changes to 

hyperopic lenses were less consistent (compare both proportion and spread of points for Figs. 

18 and 19 for anterior chamber depths, and Figs. 18 and 12 for lenticular thicknesses). 

However, despite the Iack of clear findings, results showing that anterior chamben tended 

to be deeper and lenses thicker in myopic birds compared to their controls, and that chambers 

were shallower and more lenses thimer for lens-treated hyperopic eyes compared to their 

controls, indicates that induction of myopia and hyperopia generally resulted in opposite 

effects. 

The üBM is set for certain sound wave speeds that have k e n  empirically derived for 

humans. It remains unclear whether the density of chicken structures are equivalent to 

humans but given that measurements were compared relative to each other, the actual 

velocity used for the llBM is largely irrelevent. It must be considered, too, that the effects 

of experimentally-induced ametropias on the rehctive index of the lens remain unknown, 

which couid affect any measurements or cornparisons made on the UBM. An increase in 

refractive index would result in a greater density and therefore greater sound velocity; 

without lens velocity corrections, measurements for the myopic lenses would be underesti- 

mated (shorter) because echoes would be reflected back faster. In contrast, a decrease in 

refractive index of the lens would result in slower sound velocities, and measurements for 

hyperopic eyes wodd be over-estimated (longer) suice echoes would be reflected back 
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slower. Given that differences were detectable between ametropic and control eyes without 

lem velocity corrections, refhctive enordependent velocity corrections rnay also be largely 

unnecessary. In addition, it must be noted that biochemical changes associated with 

experimentally-induced ametropias have been difiicult to quanti@ (Pickett-Seltner et al., 

1988; Zaidi, 2001) which rnay suggest that if they exist, the changes are subtle and that 

changes to lens velocity values would also be nominal. It has been recently reported that lens 

velocity does not change with age (Dubbelman et al.. 2001). further suggesting that even if 

a refractive index change exists, it may noi be detectable. 

In summary, it was found that the IIBM was a good tool for measunng changes 

during accommodation and moreovoer, that it may be advantageous over other techniques 

due to its ability to capture real-tirne images in a non-invasive rnanner. However, it should 

be recognised that there are limits to the remlution of the structures in question. Thus, while 

measurement changes to various parameters were robust during accommodation, the more 

subtle changes associated with experimentally-induced ametropias were less clear. 

Measurements at a higher resolution may help to elucidate some of these uncertainties. 

4.4 General conclusion 

A mode1 utilising ciliary nerve stimulation to mesure accommodation-associated 

changes was developed; optical changes to the lens in ageing and ametropic chickens were 

examined in addition to biophysical changes to the anterior segment of the eye. It should be 

noted that because the protocol used in this study was established to mode1 accomrnodative 

changes in the eye in vivo, its use is limited only by accessibiiity or visualisation of the 

intraocular smicture(s) in question. While accommodation-associated optical and 
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biophysical changes were exarnined in the study here, it should be noted that morphological 

and (neuro)phannacologicai changes to the lem during accommodation rernain untested. In 

addition, other structures related to accommodation, such as the ciliary muscle and comea, 

have been neglected. Moreover, synapses at the iris are functional in embryonic chicks by 

Stage 35 (Landmesser and Pilar, 1974; Pilar et ai., 1987), suggesting that synapses at the 

ciliary muscles are also functional at this time and that the accomrnodative apparatus is 

functional while the chick is still in ovo. This model rnay therefore be used to test optical, 

biophysical and/or morphological changes to the accomrnodative apparatus during 

development of the chick. Finally, while the model was developed here to test 

accommodation-associated changes in chickens, it should be noted the in situ model 

described here may be poned to test accommodative changes in other birds which show 

different accommodative behaviours, such as the kestrel or diving mergansers, or indeed in 

other animais in which acccommodation is stimulated by ciliary neme stimulation. 
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