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Abstract 

Recently, AC distribution systems have experienced high harmonic pollution due to the 

wide use of power electronic loads. These non-linear loads generate harmonies which 

degrade the distribution systems and may affect the communication and control 

systems. Harmonic frlters, in general, are designed to reduce the effects of harmonic 

penetration in power systerns and they should be installed when it has been determined 

that the recommended hannonic content has been exceeded. 

Two approaches have been proposed to reduce the effect of the harmonic distortion, 

namely active filtenng approach and passive filtering approach. Passive filters have the 

dements of large size, resonance and fixed compensation. In the active filtering 

approach, the harmonic currents produced by the nonlinear loads are extracted, and their 

opposites are generated and injected into the power line using a power converter. 

Several active filtenng approaches based on different circuit topologies and control 

theories have been proposed. Most of these active filter systems consist mainly of a 

single PWM power converter with a high rating which takes care of al1 the harrnonic 

components in the distorted signal. The combination of high power and high switching 

frequency results in excessive amounts of power losses. Furthemore, the reliability of 

the existing active filters is a major concern, as the failure of converter resuIts in no 

compensation at dl.  

Active power line filtering can be performed in the time domain or in fiequency 

domain. A distinct advantage of the fiequency-domain techniques is the possibility of 



selective harmonic elimination, tfianks to the availability of information on individual 

harmonic components. 

The objective of this research is to develop an efficient and reliable modular active 

harmonic filter system to realize a cost-effective solution to the harmonic problem. The 

proposed filter system consists of a nurnber CSC modules, each dedicated to filter a 

specific harmonic of choice (Frequency-Splitting Approach). The power rating of the 

modules will decrease and their switching fiequency will increase as the order of the 

harmonic to be filtered is increased. The overall switching losses are minimized due to 

the selected harmonic elimination and balanced a "power ratingW-"switching frequency" 

product. 

Two ADALINES are proposed as a part of the filter controller for processing the 

signals obtained from the power-line. One ADALINE (the Current ADALINE) extracts 

the fundamental and harmonic components of the distorted cument. The other 

ADALENE (the Voltage ADALINE) estimates the line voltage. The outputs of both 

ADALINES are iised to constmct the modulating signals of the filter modules. The 

proposed controller decides which CSC filter module(s) is connected to the electnc 

grid. The automated connection of the corresponding filter module(s) is based on 

decision-making rules in such a way that the IEEE 519-1992 lirnits are not violated. The 

information available on the magnitude of each harmonic component allows us to select 

the active filter bandwidth (i.e., the highest harmonic to be suppressed). This will result 

in more efficiency and higher performance. The proposed controller adjusts the Idc in 

each CSC module according to the present magnitude of the corresponding harmonic 

current. This results in optimum dc-side current value and minimal converter losses. 

The comparison of the proposed modular active filter scheme and the conventional 

one converter scheme on practical use in industry is presented. This comparison shows 

that the proposed solution is more economical, reliable and flexible compared to 

conventional one. 



High speed and accuracy of ADALINE, self-synchronizing harmonic tracking, 

intelligence and robustness of the controller, optimum Id, value, minimal converter 

losses, and high speed and low dc energy requirement of the CSC, are the main features 

of the proposed active filter system. 

Simulation results using the EMTDC simulation package are presented to validate 

the effectiveness of the proposed modular active filter system. 

vii 
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Chapter I : introducrion 

Chapter 1 

Introduction 

1.1 Power Quality Concerns 

In an ideal ac power system, energy is supplied at a single constant frequency and 

specified voltage levels of constant magnitudes. However, this situation is diff~cult to 

achieve in practice. The undesirable deviation from a perfect sinusoidal waveform 

(variations in the magnitude andor the frequency) is generally expressed in ternis of 

power quality. The power quality is an umbrella concept for many individual types of 

power system disturbances such as harmonic distortion, transients, voltage variations, 

voltage flicker, etc. Of al1 power line disturbances, harmonics are probably the most 

degenerative condition to power quality because of being a steady state condition. The 

Power quality problems resulting from harmonics have been getting more and more 

attention by researchers [l - 151. 
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The Power quality problem, and the means of keeping it under control, is a growing 

concern. This is due pnmarily to the increase in the number and application of nonlinear 

power electronic equipment used in the control of power apparatus and the presence of 

sensitive electronic equipment. The non-linear characteristics of these power electronic 

loads cause harmonic currents, which result in additional Iosses in distribution system 

equipment, interference with communication systems, and misoperation of control. 

Moreover, many new loads contain microprocessor-based controls and power electronic 

systems that are sensitive to many types of disturbances. Failure of sensitive electronic 

loads such as data processing, process control and telecomrnunications equipment 

connected to the power systems has become a concem as they could result in series 

economic consequences. In addition, the increasing emphasis on overall distribution 

system efficiency has resulted in a continued growth in the application of devices such 

as shunt capacitors for power factor corrections. Harmonic contamination excites 

resonance in the tank circuit formed by line inductance and power factor correction 

shunt capacitors, which result in magnification of harmonic distortion levels. 

The control or mitigation of the power quality problems may be realized through the 

use of harmonic filters. Harmonic filters, in general, are designed to reduce the effects 

of harmonic penetration in power systems and should be installed when it has been 

detennined that the recornmended harrnonic content has been exceeded [l-31. Shunt 

passive filters have been widely used by electrïc utilities to rninimize the h m o n i c  
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distortion level [2] .  They consist of passive energy storage elements (inductors and . 
capacitors) arranged in such a way to provide a low impedance path to the ground just 

for the harmonic component(s) to be suppressed. However, harmonic passive filters 

cannot adjust to changing load conditions; they are unsuitable at distribution level as 

they can correct only specific load conditions or a particular state of the power system. 

Due to the power system dynamics and the random-like behavior of harmonics for a 

short term, consideration has been given to power electronic equipment h o w n  as an 

active power filter. An active power filter is simply a device that injects equal-but 

opposite distortion into the power line, thereby canceling the original power system 

harmonics and improving power quality in the connected power system. This waveform 

has to be injected at a carefully selected point in a power system to correct the distorted 

voltage or current waveform. The power converter used for this purpose has been 

known by different names such as: active power filter and active power line conditioner 

[19,20]. The rating of the power converter is based on the magnitude of the distortion 

current and operated at the switching frequency dedicated by the desired filter 

bandwidth. In addition to its filtering capability, this power converter can be used as a 

static var mmpensator (SVC) to compensate for other disturbances such as voltage 

flicker and imbalance [2 11. 

From a control system point of view, waveform correction on the systern bus can be 

implemented either in the time-domain or fiequency-domain. Both have advantages and 
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disadvantages. The main advantage of a time domain correction technique is its fast 

response to changes in the power systern. Ignoring the periodic characteristics of the 

distorted waveforrn and not Iearning from past experiences are its main drawbacks. The 

advantage of frequency domain correction lies in its fiexibility to select specific 

harmonic components needed to be suppressed and its main disadvantage lies in the 

rather burdensome computational requirements needed for a solution, which results in 

long response times [19]. 

The concept of active power filtenng was first introduced in 1971 by Sasaki and 

Machida [26] who proposed implementation based on Iinear amplifiers. In 1976, 

Gyngyi et.a1,[3q proposed a farnily of active power filter systerns based on PWM 

current source inverter (CSI) and PWM voltage source inverter (VSI). These desips 

remained either at the concept level or at the laboratory level due to the lack of suitable 

power semiconductor devices. 

Due to recent developments in the semiconductor industry, power switches such as 

the insulated gate bipolar transistor (IGBTs) with high power rating and the capability 

of switching at high frequency, are available on the market. This makes the application 

of active power filters at the industrial level feasible. Several active power filter design 

topologies have been proposed. They can be classified as: 

Series active power filter [19,20,25], 

Shunt active power filter [31-421, 
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Hybrid series and shunt active filter [43-471, 

Unified power quality conditioner [48-501 

Multi level and Multi converter active power filters [52-541 

Almost al1 of the existing proposed active power filters suffer from one or more of the 

foLlowing shortcornings: 

High Switching Losses: Almost al1 of the recently proposed active power filters 

utilize PWM switching control strategy due to its simplicity and harmonic 

suppression efficiency [23]. However, utility companies have been very 

reluctant in accepting the PWM switching strategy because of the high 

switching losses incurred in this approach. The power converter used for active 

filtenng is rated based on the magnitude of the distorted current and operated at 

the switching frequency dictated by the desired filter bandwidth. Fast switching 

at high power, even if technically possible, causes high switching losses and low 

efficiency. An important issue in active power filtering is to reduce the power 

rating and switching frequency. The combinations of active and passive filters as 

well as employing multi-converter and multi level techniques, have al1 been 

attempted to meet the above requîrements. 

Low Reliability: Most of the active filters connected to distribution systems are 

mainly a single unit with a high rating taking care of d l  the harmonic 
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components in the distorted signal. Any failure in any of the active filter devices 

will make the entire equipment ineffective. In addition, cascade multi-converter 

and multi level topology active power fdters suffer from low reliability. 

Control Methodology: Active power filtering can be performed in time domain 

or in frequency domain. The waveform correction in time domain is based on 

extraction of data from the power line. However, in the frequency domain 

techniq~e, information is extracted rather than data. The main advantage of tirne 

domain is fast control response, but, due to lack of information, it cannot control 

individual harmonics separately or apply various weightings for different 

harmonic components. Also, ignoring the periodic characteristics of the 

distorted waveforrn and not learning from past experiences are additional 
- 

drawbacks of time domain methods. Correction in frequency domain, which is 

mainly implemented by FFT, has the advantage of flexible control of individual 

harmonics (cancel selected harmonics). However, its main disadvantage lies in 

the rather burdensome computational requirements needed for a solution, which 

results in longer response tirnes [ZO]. 

Nevertheless, increasing needs for high filter performance and economic 

considerations cal1 for a new active power filter configuration for harmonic cancellation 

which is suitable for distribution level and can overcome the above limitations. 
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1.2 Objectives and Contributions 

The main objective of diis research is to develop and design a cost-effective active 

harmonic power filtenng solution capable of enhancing the power quality in distribution 

systems. The proposed device offers the potential of responding quickly to the changes 

in the system charactenstics and is suitable therefore for on-line applications. This 

research is motivated by the lack of suitable existing harmonic filtering technique and 

the demand for high filtenng performance and efftciency. The main topics can be 

outlined as follows: 

Choice of circuit topology based on a modular active filtering approach which is 

suitable for distribution systems. 

Development of a harmonic filtenng strategy which reduces the switching 

fiequency requirernents of the active filter system. 

Development of adaptive and active systern control by incorporating the 

adaptive linear neuron (ADALDIE), a version of an artificial neural network 

(ANN), as a part of the conaoller. 

Complete design of the active filter modules. 

Cornparison of the proposed filter with different topologies. 
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SeveraI aspects of this research work are novel and distinct from previous work done 

in related areas. Some of the advantages that the proposed modular active power 

filtering approach offers are as follows: 

Low switching losses: 

In the proposed filter, the filtering job is split arnong a number of active filter 

modules, each dedicated to eliminate a specific harmonic. The converters dedicated 

to Iower-order harmonics have higher ratings but are switched at lower rates, while 

those dedicated to higher-order harmonics are of lower ratings but are switched at 

higher fiequencies. The overall switching losses are rninirnized due to the balanced 

power rating-switching frequency product and seIected harmonic elirnination. 

High reliability: 

Since the power converter units of the proposed modular active power conditioner 

are acting as standalone devices, a continuous harmonic cancellation to a distorted 

waveform is still expected to be provided even if one or more power converters fail 

to operate. This will result in a better line current spectrum than in an 

uncompensated one. Note that, in the existing one converter scheme, if due to a 

fault, the converter is lost, harmonic elimination is not performed at dl .  
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High flexibility 

Since each converter is independently connected to the AC system, selected 

hannonic elirnination based on the dominant harmonic component is possible. In 

order to take advantage of the diversity principle, the proposed filter system can 

filter a group of harmonies using only one filter module or more by combining them 

and compensating them in groups. Also, simultaneous multi operation strategies to 

take care of other disturbances, such as voltage or current imbalance and voltage 

fluctuations are feasible. This will yield great flexibility and increase the overall 

performance of the proposed active filter. 

Enhanced ADALINE-Based Measurement Scheme 

Compared to previous active power filters, the harmonic extraction technique based 

on an ADALDE has been utilized for the first time in active power filtering. 

ADALINE is highly adaptive and capable of estimating the variations in the 

amplitude and phase angle of the harmonic components which will enhance the 

performance of the proposed active filter. The ADALINE-based measurement 

scheme has the ability to extract information rather than data fiom the power 

system. It has been improved by modifjmg the original algorithm to track the 

system frequency variations. This is important for successful charging of Idc of the 

CSCs and for successful harmonic filtering. 
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The controller of the proposed active filter has been improved by utilizing another 

ADALNE to track the system voltage and extract the fundamental component of 

the source voltage which is used as a synchronize signal for the Id= regulation loop. 

This improves the filtering capability of the proposed modular active filter even if 

the source voltage is harmonics polluted. Making the dc-side current I,of the 

converter modules adaptive to the changes in the magnitude of the harrnonics to be 

filtered results in optimum dc-side current value and minimal converter losses. 

The information on individual harmonic components allows us not only to 

reduce the THD but also suppress each harmonic component below the level set by 

the EEE 519 standard. Also, the information available on the magnitude of each 

harmonic component allows us to select the active filter bandwidth (i.e., the highest 

harmonic to be suppressed). This results in more efficiency and higher performance. 

1.3 Organization 

This thesis includes eight chapters, in addition to this introduction. Background and 

literature review are presented in Chapter 2. In this Chapter the harmonic problem is 

addressed and a literature survey of the'latest active filtering techniques is reviewed and 

discussed. Chapter 3 investigates and compares the most cornmon power system 



Chaprer 1: Introduction 11 

harmonic extraction techniques. The principle of active power conditioning is presented 

in Chapter 4. Chapter 5 descnbes and discusses in detail the proposed modular active 

power filtering technique. The principle and the control scheme of the power splitting 

approach to active power filtering are introduced in Chapter 6. Chapter 7 details the 

power and control design of the proposed filter. Comparative evaluation of the proposed 

active power filter is given in Chapter 8. The conclusions and future research are given 

in Chapter 9. At the end of the thesis, a list of relevant references, publications and five 

appendices are given. 
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Chapter 2 

Background and Literature 

Review 

2.1 Overview 

The purpose of this chapter is to farniliarize the reader with the harmonic problem in 

general and to identify its salient features. In this review, specid attention is given to 

harmonic mitigation using active power filters. 

Harmonies as a power quality problem is fust discussed in Section 2.2. This section 

highlights the causes and the impact of the harmonies problem as well as its measuring 

indices. Some background on harmonic mitigation techniques, with emphasis on the 

active power filtenng solution, is given in Section 2.3. The literanire review on active 

power filters, presented in section 2.4 is intended to summarize the main results of the 
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research work most relevant to the present study, Finally, concluding remarks on 

existing active filtering techniques are given at the end of the chapter. 

2.2 Harrnonics As A Power Quality Problem 

Harmonics are qualitatively defined as sinusoidal waveforms having fiequencies that 

are inteper multiples of the power line frequency (50 or 60 Hz); they may be voltages or 

currents. In power system engineering, the term hamionics is widely used to describe 

the distortions in the voltage or current waveforms, that is, a steady state deviation from 

an ideal sine wave of power frequency. 

The harmonic problem is not a new phenomenon in power systems. It was detected as 

early as the 1920s and 30s [6]. At that time, the primary sources of harmonies were the 

transfomers and the main problem was the inductive interference with open-wire 

telephone systems. Some early work on harmonic filtering in distribution feeders was 

perfomed around that time. 

Harmonic distortion can have detrimental effects on elecû-ical distribution systems. It 

c m  waste energy and lower the capacity of an electrical system; it can harrn both the 

electrical distribution system and devices operating on the system. Understanding the 

problems associated with harmonic distortion, Le., its causes and effects, as well as the 

rnethods of dealing with it, is of great importance in minimizing those effects and 

increasing the overall efficiency of the distribution system. 
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2.2.1 Harmonic Distortion Indices 

The presence of harmonics in the system is measured in terms of harmonic content 

(distortion), which is defined as the ratio of the amplitude of each harmonic to the 

amplitude of the fundarnental component of the supply system voltage or current. 

Harmonic distortion levels are described by the complete harmonic spectnim with 

magnitude and phase angle of each individual harmonic component. The most 

cornrnonly used measure of the effective value of harmonic distortion is total harmonic 

distortion (THD) or distortion factor. This factor is used to quanti@ the levels of the 

current flowing in the distribution system or the voltage level at the point of common 

coupling (PCC) where the utility c m  supply other customers. THD can be calculated for 

either voltage or current and c m  be defined as: 

where, Ml is the RMS value of the fundarnental component and Mz to MN are the RMS 

values of the harmonic cornponents of the quantity M. 

Another important distortion index is the individual harmonic distortion factor OIF) 

for a certain hannonic h. HF is defined as the ratio of the RMS hannonic to the 

fundamental RMS value of the waveform, i.e., HF = Mh x 100% . hl 
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IEEE 519-1992 Standard [3] specifies limits on voltage and current harrnonic 

distortion for 'Low Voltage, Primary and Secondary Distribution, Sub-transmission, 

and High Voltage transniission systems'. Table 2.1 lists the IEEE 519 recornmended 

harmonic voltage and voltage distortion limits for different system voltage Ievels. 

Bus Voltage at PCC CV) Voltage Distortion (%) Distortion - THD (%) 1 V S 6 9 k V  3.0 5.0 

IEEE 519 Standard also specifies limits on the harmonic currents fiom an individual 

customer which are evaiuated at the PCC. The limits are dependent on the customer 

load in relation to the system shoa circuit capacity at the PCC. Note that al l  current 

limits are expressed as a percentage of the customer's average maximum demand load 

current (fundamental frequency c~mponent) at PCC. The term the total demand 

distortion (TDD) is usudly used which is the same as THD except that the distortion is 

expressed as a bercentage of some rated load current rather than as a percentage of the 

fundamental current magnitude. TDD is defined as: 
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where, 1, is the RMS magnitude of an individual harmonic current component, 1, is the 

maximum RMS demand load current and h is the harmonic order. Note that the tenn 

distortion factor is more appropriate when the summations in (2.1) and (2.2) are taken 

over a selected number of harmonies. Table 2.2 provides lirnits on every individual 

harmonic current component as well as lirnits on total demand distortion (TDD) for 

different voltage levels. 

Table 2.2: Harmonic current distortion limits (1, ) in % of load current ( I r  ) 

TDD 
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2.2.2 Sources of Harmonies 

Harmonic distortion results kom the nonlinear characteristics of the devices and loads 

in the power system. The device or equipment is said to be nonlinear when the 

relationship between the instantaneous voltage and current is not linear. These nonlinear 

loads pnmarily generate harmonic currents, which upon passing through the system 

irnpedances produce voltage hamonics which distort the system voltage waveform. 

Nowadays, modern semiconductor switching devices are employed in a wide variety 

of domestic and industrial loads. They offer reliable and economical solutions to the 

control of electric power, from a few watts to many megawatts. However, they are 

considered as the main cause of an alarming amourit of harmonic distortion in electric 

power systems. The nonlinear charactenshc of serniconductor devices as weIl as the 

operational function of most power electronic circuits cause distorted current and 

voltage waveforms in the supply system. These loads are commonly referred to as 

"power electronics loads", "power system polluters" or "distorting sources" in the 

relevant literature. 

Harmonic sources can be classified into three categories: saturable devices, arcing 

devices, and power electronic devices. Al1 of the above categories present nonlinear 

voltage/current characteristics to the power system. S aturable devices, e.g. transformers, 

[2,7] and arcing devices such as arc fumaces [2,8,9], arc welders and discharge type 

lighting (fluorescent), are passive, and the nonlinearities are the result of physical 



Chapter 2: Background and Literature R e v h  18 

characteristics of the iron core and electric arc. In power electronic equipment, the 

switching of the semiconductor devices is responsible for the nonlinear characteristic. 

The power electronic equiprnent includes adjustable speed mo tor drives, DC power 

supplies, battery chargers, electronic ballasts, and many other rectifierlinverter 

applications [2,10-131. 

2,2.3 Effects of Harmonics 

Harmonics in power systems can result in a variety of unwelcome effects. Harmonics 

can cause signal interference, overvoltages, and circuit breaker failure, as well as 

equipment heating, mdfunction, and damage. 

The IEEE Working Group on Power System Harmonics lists the following areas of 

harmonic problems [6] : 

9 Failure of capacitor banks due to dielectric breakdown or reactive power 

overload; 

9 Interference with ripple control and power line carrier systems, causing 

misoperation of systems which accomplish remote switching , Ioad control and 

metering; 

Excessive losses resulting in heating of induction and synchrouns machines; 
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Ove~oltages and excessive currents on the system from resonance to harmonic 

voltages or currents in the network; 

Dielectric breakdown of insulated cables resulting from harrnonic overvoltages 

in the systern; 

Inductive interface with telecornmunication systems; 

Errors in rneter readings; 

Signal interference and relay malfunction, particularly in solid state and 

microprocessor-controI1ed systems; 

Interference with large motor controllers and power plant excitation systems; 

Mechanical oscillations of induction and synchrouns machines; 

Unstable operation of finng circuits based on zero crossing detecting or latching. 

2.2.4 Harrnonic Distribution in Distribution Systems 

In electric distribution systems, the magnitude of the harmonic current component is 

1 
often inversely proportional to its harmonic order, i,.,, .- - and fh - h , where il,,,, is 

h ' 

the peak value of the magnitude of the harmonic current, h is the harmonic order and 

f, is the harmonic frequency. Fig. 2.1 displays a real distorted waveform generated by 

a typical non-linear load and its harmonic spectrum [l]. 
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1 1 0  XLI 4 3 0  

Frsquancy  < U r )  

Fig 2.1 A typical distorted waveform and its harmonic content. 

2.3 Harmonic Mitigation Techniques 

As mentioned earlier, due to the increase in the use of nonlinear loads in the distribution 

systerns, large amounts of distorted current and voltage w a v e h s  exit. Therefore, the 

need to compensate for these distortions is essential in order to rninimize their effects on 

the distribution systern and improve its eficiency. 

Two approaches have been used to cut the harmonic-related problem and to enhance 

the performance of the distribution system, namely passive approach and active 

approach. The two harmonic filtering methods, passive and active are presented and 

bnefly discussed. 



Chapter 2: Background and Literature Reviav 

2.3.1 Passive Harmonic Filters 

Passive h m o n i c  filters are made of inductive, capacitive, and resistive elernents. They 

are employed either to shunt the hamionic currents off the line or to block their flow 

between parts of the system by tuning the elements to create a resonance at a selected 

harmonic frequency (frequencies). When passive filters are connected in series with the 

power line, they are designed to have a large impedance at a certain harmonic. This will 

isolate the harmonics produced by the Ioads from reaching the supply system. However, 

when they are connected in pardel  with the power line, they provide a Iow impedance 

path for selected harmonic currents to p a s  to ground, thus preventing them from 

entenng the supply system. Passive L-C tuned filters are the most common type of 

passive filters. 

Passive filters are reIatively inexpensive compared to other means for elirninating 

harmonic distortion. However, they are designed to filter specific harmonic 

components; they are not adaptable to successfully filter varying harmonics. 

Passive filters must be carefully sized. Undesirable large bus voltages cm result 

from using an oversized filter. An undersized filter can become overloaded. Filter size 

can be difficult to gauge, considering that harmonic currents c m  be drawn from other 

areas of a distribution system. 
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The capacitance in passive filters may interact with the system impedance, which, in 

fact, can result in a system resonance condition [S, 17,181. In this scenario, harmonic 

currents can be arnplified on the source side and cause significant distortion in the 

voltage. This resonance condition can persist even with the filter tuned slightly below 

the system resonant frequency 12,181. Also, changes in the distribution system c a .  

cause the resonant point itself to change. 

2.3.2 Active harmonic filters 

Active power harmonic filtering is a relatively new technology for eliminating 

harmonics which is based on sophisticated power electronics devices. An active power 

filter consists of one or more power electronic converters which utilize power 

semiconductor devices controlled by integrated circuits. 

The use of active power filters to elirninate the harmonics before they enter a supply 

system is the optimal method of dealing with the harmonics problem. While they do not 

have the shortcomings of the passive filter, active power filters have some interesting 

features oudined as follows: 

They c m  address more than one harmonic at a time and can compensate for 

other power quality problems such as load imbalance and flicker. They are 

particularly useful for large, distorting loads fed from relatively weak points on 

the iower systern. 
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They are capable of reducing the effect of distorted current/voltage waveforms 

as weII as compensating the fundamental displacement component of current 

drawn by nonlinear loads. 

Because of high controllability and quick response of semiconductor devices, 

they have faster response than the conventional SVC's. 

They primarily utilize power semiconductor devices rather than conventional 

reactive components. This results in reduced overall size of a compensator and 

expected Iower capital cost in future due to the continuously downward trend in 

the price of the solid state switches. 

However, the active power filter technology adds to complexity of circuitry (power 

circuit and control). There wilI also be some losses associated with the semiconductor 

switches 

The concept of the active power filter is to detect or extract the unwanted harmonic 

cornponents of a line current, and then to generate and inject a signal into the line in 

such a way to produce partial or total cancellation of the unwanted components. Active 

power filters could be connected either in series or in parallel to power systems; 

therefore, they can operate as either voltage sources or current sources. The shunt active 

filter is controlled to inject a compensating current into the utility system so that it 

cancels the harmonic currents produced by die nonlinear load. The principle of active 

filtering for current compensation is shown in Fig. 2.2. The load current is nonlinear 
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due to the nonlinear Load. In this figure, the active filter is controlled to draw (or inject) 

a current Iaf such that the source current I,  = IL + Iaf is sinusoidal. 

The series active filter is comected in senes with the utility system through a 

matching transformer so that it prevents harmonic currents from reaching the supply 

system or compensates the distortion in the load voltage. The series active filter is the 

"dual" of the shunt active filter. Fig. 2.3 shows the application of an active power filter 

in senes with a 

Point of Common 
Coupling (PCC) 1 I 1 

Power 
Filter 

Fig. 2.2: Basic configuration of a typical shunt active power filter 

non-linear load. The active power filter in this configuration is referred to in the 

literature as the series voltage injection type, and it is suitable for compensating the load 

voltage in a weak AC system. It is controlled to insert a distorted voltage such that the 

load voltage is sinusoidal and is maintained at a rated magnitude. 
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Point of Common 
Coupling (PCC) laad = Vpcc+Vinj ' inj - load 

Active 
Power 

Fig. 2.3: Harmonic voltage compensator. 

There are two fundamental approaches for active power filtering: one that uses a 

converter with an inductor to store up energy to be used to inject current of appropriate 

magnitude and frequency contents into the system, called a current source converter 

(CSC), and one that uses a capacitor as an energy storage element, called a voltage 

source converter (VSC). When the magnitude and the frequency of the AC output 

voltage or current is controlled by the pulse-width modulation ( P m )  of the inverter 

switches, such inverters are called PWM inverters. 

Active power line filtering can be perfomed in the time domain or in the frequency 

domain [19]- The correction in die time-domain is based on extracting the fûndarnental 

component of the distorted line current using a notch filter, finding the instantaneous 

error between the distorted waveform and its fundamental component, and 

cornpensating for the deviation from the sinusoidai waveform by injecting the computed 

error into the line. The correction in the fiequency-domain, on the other hand, is based 
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on the extraction of the harmonic components of the line current. A distinct advantage 

of the kequency-domain techniques is the possibility of selected harmonic elimination. 

2.4 Literature Review on Active Power Filters 

There are many new ideas proposed in the technical literature for harmonic active 

filtering applied to power systems. This has been motivated by the existing problems 

associated with the use of passive filters and recent break-throughs in power handling 

capabilities and speed of power semiconductor switches. Table 2.3 shows a partial 

summary of some of the latest active power line conditioning techniques. It represents 

the major trends in harmonic mitigation techniques using active filters. 

2.4.1 Magnetic Flux Compensation 

This method of harmonic elirnination is peIfonned using the pnnciple of magnetic flux 

compensation [26]. This is basically achieved by the use of current to produce a flux to 

counteract the flux produced by the harmonics. The main drawback of this scheme is its 

inability to remove the lower order harmonics (2nd ,3rd and 4h ) without the need for a 

very high power feedback amplifier. Also this work illustrates that the rather high cost 

of the high power amplifier and the circuitry necessary to protect it from high voltages 

are further drawbacks to this method. 
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Table Some 

- - -- - - - 

Magnetic Ftux compensation 

Injection of SpeciZic 
Harmooics 

S d  and Machida [26] 

Bir& et al. [27J 

A. Ametani [ZSJ9] 

Active Power Filtering Using 
PWM Inverters 

Gyugyi and Strycula [301 

Hayasbi, et d [32] 

Kim, et aL 1331 

Fisher and Hoft [34] 

Mo- Uogas, and Joos [37l 

Enjeti, Ziogas and Lindsay (381 

Choe, Wallace and Park [39] 

Williams and Hoft [do] 

Takeda, Ikeada and Tominaga [4q 

Combination of Active and 
Passive F i t e n  (Hybnd fiters) 

-- -- 

Peng, Akagi and Nabea [43] 

Fujita and Akagi [441 

Unified Power Quality 
Conditioner (UPQC) 

Muiti Level and Multi 
Converter Approach 

Tokoda et al id51 

Van Zyi, Enslin and Spee 146,471 

Akagi 1481 

Fujita (491 

Aredes, et.aL [SOI 

Meynard and Foch [Sl] 

Lai and Peng (521 

Ned rnohan [5q 

Peng 

ig techniques 
Features 

Produce a flux to counteract the flux produced by the 
harmonies. Computer simulation 

Injected a 3* harmonic current Computer shnlation 

Generalization of Bird's method Computer simulation 

Injection of PWM current using VSC and CSC, d t s  are 
verüïed experirnentaily 

Introduction of p-q iheo'y and development of a PWiM-VSC for 
reactive power compensation, results are verified 
experimentally 
Lqjecüon of PWM current using CSC, the fiter is controlIed in 
frequency domain, resuI'û are verified by simulations 
Iniection of PW;M c u m t .  resuis are venried bv simulations 

Three-Phase Power Line Conditioner. r e d i s  are verified by 
simulations 
Static VAR Cornpensator with GTOs, resuits are verified by 
simulations 

A Power Factor Cornpensator and Eiarmonic Suppression 
Using a PWM-VSC, results are  verifïed experimentally 

Prwrammed PWM Techniques, results are veriried 
exp&mentally on 1-phase i d  3-phase inverter configs 

+ Active Power Fiters, resuIts are verified by simulations 

Power line Conditionen: a GTO Bridge + PWM, results are 
verïfied by simulations 

Instailation of active power filter at Chubu Sted Co., in Epan  

PWM Active Filter + Passive LC Filter, results are verified 
experimentally 
P M  Active Filter + Passive Filter, results are verifïed 
expenmentally 
Active filter + LC filter, resulîs are vedïed expenmentaily 
Introduction of power quality manager (PWM-VSC +passive 
filters), results are verified experixnentally 

Integration of series and shunt active filters, results are verified 
expenmentall y 

Discussion of the control stra- of the UPQC, results are 
verified experimentdly 

UPQC for fundamental frequency compensation and active 
harmonic mitigation. 
hlulti level active power conditioner, resuits are verified by 
simulations 

Multi level SVC, resuits are verified by simulations 

PWM-VSC muiti converter, resuits are verified by simulations 
Modular Topology of Active Power Conditioner, d t s  are 
veriiïed experimentally 
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2.4.2 Injection of a Specific Harmonic Current 

Bird, et al. 1271 were among the first to attempt to reduce harmonic distortion, as 

opposed to the use of conventionai passive filters. They proposed that the harmonic 

currents produced by pulse converters could be eliminated or partially eliminated by 

injecting a third harmonic current to the rectangular waveform produced by the 

converter. Bird's experimental results proved that the method is effective in eliminating 

one harmonic of choice. However, Bird's work was costly and inefficient and its major 

drawback was that it was impossible to fully elirninate more than one harmonics. Later 

on, Bird's work was generaiized and improved [28,29] to elirninate multiple harmonics. 

Both of the above methods are predetermined methods, narnely, they inject fixed 

h m o n i c  frequency currents. They have the sarne disadvantage as passive filters in that 

the harmonics must be known in advance. 

2.4.3 Active Harrnonic Filtering Using PWM Converters 

In 1976 Gyugyi and Strycula presented the concept to compensate for harmonics by the 

applications of semiconductor switches in the form of PWM inverters. [30]. They 

presented a switching systern, which consisted of a simple bridge circuit of bansistors 

switched in pairs to produce a two-level current waveform using the PWM technique. 

Two topologies based on CSC and VSC were proposed which were controlled to 

counteract the flow of hannonic currents fiom the nonlinear load to the utility system. 
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The correction of the distorted signal occurs in the time domain which is based on the 

principle of holding the instantaneous voltage or current within sorne tolerance of a sine 

wave. The timing of the switching needed was determined by a control unit which 

monitored the instantaneous load voltage. The work done by Gyugyi and Strycula was 

one of pioneenng attempts to compensate for harmonic components using the PWM 

inverters. 

However, most of the proposals in active power conditioning presented during the 

1970s were in a Iaboratory stage because the circuit technology was too poor to 

practically implement the compensation. 

In the 1980s, the remarkable progress in power electronic technology (specifically, 

fast switching devices) encouraged the interest in the study of active power Iine 

conditioners for reactive power and harmonic compensations. Akagi and others 

introduced p-q theory and developed a PWM-voltage type converter topology for 

instantaneous reactive power compensation [3 11. In this work, the authors decomposed 

the instantaneous voltages and currents into orthogonal components yielding, in the 

time domain, a component termed the instantaneous reactive power. The active filter is 

controlled to eliminate this instantaneous reactive power thus resulting in reactive 

power compensation in the time domain. The notion of "the instantaneous reactive 

power" is only applicable to 3-phase systerns. Hayashi and others reported current- 

source active filters for harmonic compensation [32]. In this application, the current 
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compensation control was done in the frequency domain in terms of closed loop control. 

A research group in Korea presented an active power filter that reduced the magnitude 

of harmonics by means of the injection of PWM currents made up of sine and cosine 

tems of a compensating current [33]. Enjeti D8] provides an evaluation of several 

PWM techniques to eliminate harmonics for single phase and three phase inverters. 

Guidelines to choose the appropriate topology for each application are also presented. 

The main problem with the schemes, which utilized the PWM switching technique, 

is the high switching losses involved due to the fast switching rates. 

2.4.4 Hybrid Filters 

In order to reduce the ratings of active power filters, desigris that combine active filters 

and passive filters have been implemented by many researchers [36,43-471. Peng et-al. 

[43] proposed the use of a smdl capacity series active filter to operate in parallel with a 

traditional bank of passive filters. This technique is different from the previous method 

in that it does not use the active filter for harmonic current compensation, but rather to 

irnprove the filtering characteristics of the passive filters. 

The objective of this series filter is to exhibit zero impedance at the fundamental 

frequency and a high irnpedance at the harmonic frequencies created due to a parallel 

resonant situation between the passive filters and the source impedance. The 
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determination of the h m o n i c  currents to be injected by the active filter is based on p-q 

theory developed by Akagi[3 11. 

The main drawback of this topology, in addition to the switching iosses associated 

with the PWM control method, is the series transformer that would require a high basic 

insulation level to withstand the large switching transients and lightning surges. Another 

significant point is that the current canled by the active filter will also include the 

fundamental component of the load current and the fundamental leading power factor 

current of the shunt passive filter. 

In order to avoid the problems associated with the active filter in parallel with 

passive filters topology, another combined system of active filters and passive filters or 

LC circuits was proposed by Fujita and Akagi[44] and Tokuda et.al. [45]. Again, the 

aim is to reduce the required size of the active filter. In these schemes, the active filters 

are connected in series with either a shunt passive filter or an LC tuned filter. The 

difference between these topologies and the one presented in reference [43] is that the 

single-phase PWM inverters are replaced by one three-phase inverter and the DC-side 

voltage source is regulated by a feedback loop. In another work, VanZyle et al [46-471 

proposed a relocatable converter to be used in senes with a passive filter that is 

permanently installed on the line and is called the Power Quality Manager (PQM). The 

passive filter consists of tuned filters for fifih and seventh order harmonics. The PQM is 
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used to as SVC to improve the voltage regulation and has the capability to work as a 

harmonic isolator. 

The weakness of these schemes is that the active filter always carries the capacitive 

fundamental component of the current through the shunt passive filter or the LC tuned 

filter. 

2.4.5 Unified Power Quality Conditioner (UPQC) 

The unified power quality conditioners (UPQC) are a new famiiy of active power 

filters, which consist of two 3-phase VSC, connected back to back with a comrnon dc 

coupling capacitor [48]. One inverter is shunt connected with the power line and the 

other is connected in series through a transformer. The main objective of the series 

active filter in the UPQC is harmonic isolation between a sub-transmission system and a 

distribution system. In addition, the senes active filter has the capability of voltage- 

flickeriimbalance compensation as well as voltage regulation and harmonic 

compensation at the point of common coupling (PCC). The main purpose of the shunt 

filter is to absorb harmonic currents, compensate for reactive power and negative 

sequence current and regulate the dc-link between both active filters. 

Later, Fujita [49] provided experimental results obtained fiom the UPQC laboratory 

mode1 and discussed the control strategy of the UPQC with the focus on the flow of the 

instantaneous active and reactive powers inside the UPQC. 
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Recenùy, a generalized and improved work has been introduced by Aredes et.al. 

[50], in which a generic control concept based on the instantaneous and irnaginary 

power theory for UPFC (UPQC) is presented. They proposed a device, called Universal 

Active Power Line Conditioner (UPLC) that incorporates both a fundamental frequency 

compensation and active harmonic mitigation. 

The UPQC (UPLC) consists of two IGBT dc-ac power inverters and their switching 

strategies are based on a PWM control technique. The main limitation of the proposed 

UPQC (UPLC) besides the high switching losses and control complexity is the inability 

of the proposed device to perform simultaneous jobs. This is because of the limitations 

of the PWM to include al1 the functions within the sarne time window, which results in 

over modulation. 

2.4.6 Configuration for High Power Applications (Multi level 

converters) 

For low-power applications, such as industrial applications, the active power filter can 

be realized by one PWM converter [3 1,32,43,46]. The required voltage-withstand and 

curent-canying capabilities c m  be achieved by series and parallel connections of 

semiconductor switches. However, in high- power applications, the filtering job cannot 

be performed by one converter alone, due to the power rating and switching frequency 

limitations of semiconductor switches, as well as the problems associated with 
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connecting a large number of switches in series or in parallel to attain the necessary 

ratings. 

To overcome the above-mentioned restrictions, the concept of multi level and rnulti 

converter topologies has been introduced [5 1,56-601. The general structure of the 

multilevel converters is to synthesize a staircase voltage waveform (sinusoidal wave for 

an infinite number of levels) from different levels voltages, typically obtained from 

capacitor voltage sources. 

Menard and Foch [SI] propose a multi-level active current filter suitable for HV 

networks. They present a simulation of a case study for a 20 kV power system. In this 

study, the compensation of the current harmonies was up to 1 9 ~  order. The main 

limitations of the multi-level configuration are the switching frequency and neutral 

voltage fluctuation. 

Cascade multi-converter active power filters based on VSC topology have been 

proposed recently [56-601. They have neither the switching frequency and neutrd 

voltage fluctuation limitations of multi-level configuration [56] nor the problems 

associated with the parallel and series connection of switches of the single-converter 

scheme. The main drawbacks of cascade multi-converter active power filters are low 

reliability and control circuit complexity. 

Another multi-converter active fütering approach is proposed by Huang and WU 

[60]. This approach is an extension of the fundamental filtering concepts introduced by 
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the author of this thesis [59], but using 3-phase voltage source converters. In this work, 

a test result obtained from the laboratory prototype was provided. 

2.5 Concluding Remarks on Existing Active 

Power Filters 

Based on the Iiterature survey on the subject of active power filters and active filtenng 

techniques, one finds: 

Alrnost ail of the recently proposed active power filters utilize PWM switching 

control strategy. However, the conventional PWM inverter based active power 

filtenng schernes suffer from high-switching losses incurred in the PWM 

switching technique. 

Most of the recent existing active power filters are realized by one unit of singIe- 

phase or three-phase bridge converter of voltage- or current-source topology 

[20,21]. However, there are sorne other attempts, which are based on multi- 

converter and multi level topologies. The advantage of single-phase topology 

lies in its capability of capturing the unbalanced load conditions. The CSC 

based active power filtering receives more attention in power quality control 

applications due to the recent developments in semiconductor industry. 
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Therefore, it is expected to outperforrn VSC topology specifically in single- 

phase applications. 

Most of the existing active filter systems are suffenng from low reliability. They 

mainly consist of a single unit with a high power rating to take care of d l  the 

harmonic components in the distorted signal. Any failure in any of the active 

filter devices will make the entire equipment ineffective. 

The correction of the distorted waveform can be performed in the time domain 

or in the frequency domain. Correction in the time domain has the advantages of 

fast control response but it does not have dynarnic information on the harmonic 

specmim. Therefore, active power filters utilizing hme domain control will be 

switched at high switching rate to cover the whole bandwidth of the hamionic to 

be filtered. Various tirne domain control techniques are proposed in the 

literature, but instantaneous reactive power based on p-q theory is the most 

cornmon control method utilized in active power filters. However, it is only 

applicable to 3-phase systerns and its performance is degraded if the source 

voltage is distorted. On the other hand, correction in the frequency domain, 

which is mainly implemented by the FFT, has the advantage of flexible control 

of individual harmonics (canceI selected harmonics) due to the availability of 

the information on the harmonic components. However, its main disadvantage is 

its high computational requirement. 
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Chapter 3 

Harrnonic Estimation 

Techniques 

3.1 Overview 

One important issue that assesses and evaluates the quality of the delivered power is the 

estimation or extraction of harmonic components from distorted current or voltage 

waveforms. In order to provide high-quality electricity, it is essential to accurately 

estimate or extract time varying harmonic components, both the magnitude and the 

phase angle, to rnitigate them using active power filters. 

There are severd harmonic estimation techniques reported in the literature [62-781 

among which the discrete Fourier transform @FT), the Kalman filter (KF) and 
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Artificial Neural Networks (ANN) are the most popular. Fig. 3.1 displays some of these 

estimation technique references. 

A comprehensive simulation analysis will be conducted in this chapter to select the 

most suitable estimation technique for the proposed active power filter. The final 

conclusion will be based on a performance analysis under different operating condition. 

Harmonic 
Estimation Methods 

Fourier Transform Kalman Filter Neural Network 

Cool y et  al [62] 

Harris [63] 

Brigham f64] 

--+ Dash et al [67] Hartana et a/ [73] 

--, Girgis et a1 1681 Mori et al [74] 

-+ Haili Ma et ai [69] Pecharanin et al [75] 

-+ Moreno Saiz et a l  [70] Osowski [76] 

Dash et al [77] 

Fig. 3.1 : Some of harmonic estimation methods 

3.2 Discrete Fourier Transform (DFT) 

The DFT-based algorithm (fast Fourier transform (FFT)) for harmonic measurement 

and analysis is a well-known technique and is widely used due to its Iow computational 

requirement. In this approach [62-641, the coefficients of individual hannonics are 
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computed by implementing fast Fourier transform on digitized sarnples of a measured 

waveform in a time window. The description of the algorithm is well documented in 

many references [62-641 and the equations used for calculating the amplitude and phase 

angle of the harmonic using Dm are briefly described in Appendix (A). 

There are severai performance limitations inherent in the FFI' application. These 

limitations are [64]: 

the waveform is assumed to be of a constant magnitude during the window size 

considered (stationary), 

the sarnpling frequency must be greater than twice the highest frequency of the 

signal to be andyed ,  and 

the window length of data must be an exact integer multiple of power-fkequency 

cycles. 

It has been reported in [68] that failing to satisq these conditions will result in 

leakage and picket fence effects and hence inaccurate waveform frequency analysis. 

Moreover, the DFï-based algorithm c m  cause computational error and may lead to 

inaccurate results if the signal is contarninated by noise and/or the dc component is of a 

decaying nature [77]. 

As far as the active filters are concerned, and because the transformation process 

takes tirne, the harmonic compensation will be delayed by two cycles if the FFT is used 
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as an estimation tool [75]. This will influence the performance of active filtering in case 

that the load current is in fiuctuated state. 

3.3 Harmonic Estimation Using Kalman Filter 

In the Kaiman filter approach [67-701, a state variable mathematical model of the signal, 

including dl possible harmonic components, is used. Dash and Sharaf 1671 were among 

the first who utilized the Kalman filter technique to estirnate the stationary harmonic 

components of known frequency from unknown measurement noise. Girgis et.al [68] 

generalized the work in reference [67] to predict time-varying harmonics too. However, 

it was pointed out in reference [68] that the Kalman filter scheme requires more 

computational process to update the state vector when estimating the time varying 

harmonics compared to the stationary. 

Later, Haili Ma and Girgis [69] utilized the Kalman filter approach to identiQ and 

track the harmonic sources in power systems. A hardware irnplementation of the 

Kalman filter to track power system harmonics based on the work done by Girgis [68] 

was presented by Moreno Saize et. al [70]. 

In the following sub-sections a state space model of a time varying signal and a brief 

description of the Kalman filter algorithm will be explained. 
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3.3.1 State-Space Model of a Time Varying Signal 

Consider the following time-varying sinusoidal signal 

y( t )  = Z ( t )  sin(ot + cp(t)) 

or, 

y ( t )  = A(t) cos(ot) + B(t)sin(ot) 

where, 

1 Nt) Z ( r ) = d w  and <p(r)=tan-( /A(*)) 
Assume that we are interested in estimating the variables x, = A(t) and x, = B( t )  which 

represent the in-phase and quadrature-phase components of the signal given in equation 

(3.2). These variables represented by the vector X are ofien denoted by the term state 

variables and are governed by the state equations 

where, w, and w, allow the state 7 

subscripts on the vectors represent 

miables for random walk (time variation) and the 

the time step. The measurement equahon would 

include the signal and noise and can be represented as: 

where V' represents random measurement noise and r ,  = Kh sampling time 



Chapter 3: Hannonic Estimation Techniques 42 

The state space mathematicai mode1 can be expanded to a tirne-varying signal that 

includes N-harmonies. Consider the distorted signal f ( t )  with the Fourier series 

expansion: 

where, ZJt) and$, (t) are the amplitude and the phase angle of the 2" harmonic, 

respectively and N is the total number of hmonics .  

The discrete-time representation off ( t )  will be: 

Each frequency component requires two state variables. These state variables are 

defined by equation (3.7) and represent the components in phase and quadrature of each 

harmonic. 

The state variable equation (3.7) can be expressed as 

Xk,, = @kX, + W k  
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where, X,,, is the (2n x 1) state vector at tirne t,,, , X, is the (2n x 1) state vector at time 

r , ,  The(2n x2n) transition matrix mk in the equation (3.8) relates the state at time 

step t ,  to the state at step t,,, . The random variable W, is a (2n x 1)  vector assumed to 

be uncorrelated and of known covariance and represents the discrete variation of the 

state variables due to an input white noise sequence. 

In expanded form, equation (3.81, can be expressed as 

The Measurements of this process are made at discrete instants of time according to the 

Iinear relation given by the equation: 

where, z ,  is the measurement at time t , .  The ( l x 2 n )  vector H, in the measurement 

equation (3.10) relates the state vector X, to the measurement zk at time t ,  . The V, is 

the measurement noise assumed to be a white sequence and not correlated with the 

sequence Wk . 



Chapter 3: Harmonic Estimation Techniques 

3.3.2 Kalman Filter Algorithm 

The Kalrnan filter is a recursive data processing algorithm that combines dl available 

measurement data, plus priori knowledge about the system and measuring device, to 

produce an estimate of the desired variables in such a manner that the error is 

minimized statistically. 

In the implementation of a Kalman filter, a mathematical model of signals in state 

space form is used. Consider the state space model given by equation (3.8) and (3.10). 

Both of the equations are repeated here for convenience 

State variable equation: 

Xk+, = OkX, + Wk 

Measurement equation: - 

zk = H k X k  +V, (3.12) 

The variance of the measurement noise Vk is equal to Rk and the covariance matrix for 

the W, vector is mathematically given by: 

Q,, i = k  
E[W,W:]= { 

O, i # k  

where E [w, W: is the expected value of (w, WT ). 
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The design objective of Kaiman filter is to determine the optimal estimate X, based 

on the {&O 5 i l k ) such that Pk = ~[e,e: 1 is minimum. The estimation error e, is 

defined by the equation 

e, = X, -X, (3.14) 

where, {ri)is a sequence of samples of 2, and P, is the covariance matrix of the 

estimation emr .  

The Kalman filter estimation process is performed in two stages: time update stage 

and measurement update stage. In the first stage, the Kalman filter projects forward in 

time the current state and error covariance estimates to obtain the a priori estimates for 

the next tirne step. The measurernent update stage is responsible for incorporating a new 

measurement into a priori estimate to obtain an improved a postenori estimate. 

Starting from initial estimate of the system X; and associated covariance rnatrix P i ,  

we can use the rneasurements 2, to improve this f ~ s t  estimate. Therefore, using the 

state space mode1 given by equations (3.11) and (3.12) the measurement update stage 

can be mathematically represented by: 
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where X, is the estirnate updated at t ,  , K, is a Kalman filter gain at the instant t , ,  

P; = E[(x, -x;)(x, is an a priori error covariance matrix, 

P, = E ~ X ,  - x,)(X, - x , ) ~  is an a posteriori error covariance matrix, and I is a 

(2n x 2n) identi ty matrix . 

Making use of the state transition matrix, we can project the filter ahead and use the 

measurement at instant t,,, . Therefore, the estimate for the instant t,,, and the error 

covariance matrix associated with this estimate will be: 

3.4 Harmonic Estimation using Artificial Neural 

Networks 

There are many available algorithms for estimation of power system harmonic 

components based on learning principles. Some of ANN dgorithms are based on the 

backpropagation learning rule [73-751 while others utilized the LMS (Widrow-Hoff) 

learning rule [76-781. Hartana and Richardsc731 were arnong the first who used 

backpropagation ANN to track harmonies in large power systems, where it is difficult to 

locate the magnitude of the unknown harmonic sources. In their rnethod, an initial 

estimation of the harmonic source in a power system was made using neural networks. 
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They used a multiple two-layer feedfonvard neural network to estimate each harmonic 

amplitude and phase. The scheme was trained to identify the harmonic sources in a 14- 

bus system. Mori et. a1.[74] have provided a basic ANN mode1 to estimate the voltage 

harmonies from reai measured data. In their paper, a cornparison between the 

conventional estimation methods for predicting the 5h harmonic is given. Pecharanin 

et.al [75] presented an ANN topology, based on the backpropagation learning rule, for 

harmonic estimation to be used in active power filters. They taught the neural network 

to map the amplitude of the 3d as well as the 5h harmonic from a haIf cycle of a 

distorted curent waveform. This method has a Iimited applicability in active filtering 

since it does not consider the detection of the harmonic phase angles in which it may 

increase the distortion and make the case worse if the injected signal is of the wrong 

phase. 

The main drawback of the backpropagation ANN is the requirement of the huge data 

set required for training. Also, the backpropagation ANN rnay lead to inaccurate results 

because of the random-like behavior and the large variations in the amplitude and the 

phase of the harmonic components andor in the presence of random noise [78]. 

Osowski [76] provided an ANN that is based on the least mean square ( L M S )  

learning principle to estimate the harmonic components in a power system. He built 

electronic circuitry that minimizes the error between the desired (rneasured) samples of 
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the line voltage and the output of the neural network in an adaptive way. The Osowski 

method makes the hardware implementation of harmonic estimation using ANN visible. 

Later, Dash et.d 1771 utilized the ADALINE, a version of an ANN, as a new 

harmonic estimation technique. The leaming rule of the method is based on the LMS 

introduced by Widrow-Hoff. ADALINE is an adaptive technique. Its main advantages 

are speed and noise rejection 177-781. It proves to be superior to the Kaiman Filter 

technique in finding the magnitudes and phases of the harrnonics [77]. 

3.4.1 ADAptive Llnear NEuron (ADALINE) 

The ADALNE is a two layered feed-fonvard perceptron, (see Appendix B), having N 

input units and a single output unit. The ADALINE is described as a combinatonal 

circuit that accepts several inputs and produces one output. Its output is a linear 

combination of these inputs. An ADALINE in block diagram f o m  is depicted in Fig. 

3.2. 

r The input to the ADALINE is X = (x, , x, , x, ,- - -, x, ) , where xo, is called a bias term or 

bias input, is set to 1. The ADALINE has a weighted vector W = (w,, w,, w,,--, wJr , and 

its output is simply y = W* * X =  w0 + wlxl +w2xZ + .......... + wnxn. 

In a digital implementation, this element receives at time k an input signal vector or 

input pattern vector X(k)  = &q,, .Y,, n, x,]' and a desired response y, (k) , 
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a special input used to affect learning. The components of the input vector are weighted 

by a set of coefficients, the weight vector W ( k )  =[wm w, w, - - - wJr.  The 

sum of the weighted inputs, i.e., y(k) = W(k) 'X(k)  is then computed. The weights are 

essentidly continuous variable, and can take on negative as well as positive values. 

Weig h t 
Vector 

Input 
Vector 

X 

x 1 

2 
Output 

b 

Y k  

x n  

Desired 
Adaptation Errer Output 
Algorithm e t y, 

Fig. 3.2. Adaptive linear neuron ( ADALINE ) 

During the training process, input patterns and corresponding desired responses are 

presented to the ADALINE. An adaptation algorithm, usually the Widrow-Hoff LMS 

algorithm, is used to adjust the weights so that the output responses of the input patterns 

become as close as possible to their respective desired responses. This algorithm 

rninimizes the sum of squares of the linear errors over the training set. The linear error 

e (k )  is defined to be the difference between the desired response y,  ( k )  and the linear 

output y (k )  , at time or sarnple k. 
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3.4.1.1 Widrow-Hoff learning rule 

The Widrow-Hoff Ieaming delta rule caiculates the changes to weights of 

ADALZhT to minirnize the mean square error between the desired signal output y, (k) 

and the actud ADAIDE output y (k )  over al1 k. The weight adjustrnent, or adaptation, 

equation can be written as [79] 

where k = time index of iteration, W(k)  = weight vector at time k, X ( k )  = input vector 

at time k, e(k) = y ,  ( k )  - y(k) = error at time k, and a = reduction factor. 

3.4.2 ADALINE as Harmonic Estimator 

The ADALINE has been used to estimate the time-varying magnitudes and phases of 

the fundamental and harmonies in a distorted waveform 177-781, Fig 3.3. Consider a 

distorted signal f ( t )  with the Fourier series expansion: 

f ( t )  = ~,e-" + 2, sin(lot + q,) 
1=1 

where, A~$!-" is the decaying dc component, B =decaying coefficient, 2, and q, are the 

amplitude and the phase angle of the 1" harmonic, respectively, and N is the total 

number of hannonics. In the literature [77-781, w is assumed to be known in advance. 

The discrete-time representation of f ( t >  will be: 
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N N 

f ( r , )  = A,(l -PkT,) + A, sin lut, +x B, -cos lot, 
Ir1 f= l  

where, the term A , , ( I - ~ ~ T , ) ,  represents the first two terms of the Taylor series 

expansion of the decaying dc component, T, =zir /wiv, ,  N ,  is the sarnpbng 

rate, A, = Z, coq+,  B, = Z, sin <pl , and t ( k )  = ph sampling time. 

Weight 
Vector 

Fig. 3 

To 

sin or(k) r 

1 
T Adaptation e (k) 

A l n n v i t k m  
I niyui  i~iiiii 

8.3 ADALINE as harmonic cornponents estimator. 

Desired 
Output 

Y#) 

extract the findamentai and harmonic components from f (k), the 

input vector, X ( k )  , is chosen to be: 

X ( k )  = [sin o r ( k )  c o s o r ( k )  sin 2 o r ( k )  c o s 2 w r ( k )  , 

. . . . . . . . s i n N o r ( k )  c o s N o r ( k )  1 -kT,Ir  

and its desired output y,(k) is set to be equai to the actual signal, f (k). 

Perfect tracking is attained when the tracking error e(k) is brought to zero ( or below a 

pre-specified value). Then 



Chapter 3: Uarmonic Estimation Techniques 

y(k) = y,(k) = f (k) = WpW) 
where W, , the weight vector after fina1 convergence is attained, is: 

w, =[A,  B, .-.--- AN BN Adc &Cl (3  -25) 

The estimated magnitudes and phases of the harmonies (2, and p, , 1 =1,..,., N) c m  be 

readily calculztted fiom the elements of W, , Le., the Fourier coefficients. Therefore, 

3.5 Evaluation of The Estimation Techniques 

In this section, both of the harmonic estimation techniques (ADALINE and Kalman 

filter) are investigated and compared against each other fiom different points of view 

using computer simulations. FFT is used as a reference for this cornparison. The 

diag~nal elements of the process covariance matrix Q and the measurement noise 

variance R of the Kalman filter algorithm are chosen to be 0.01 and 0.001, respectively 

1771 - 

3.5.1 Speed and Convergence 

To test the speed and convergence of the estimation techniques (ADALINE and Kalman 

filter), a waveform of known harmonic contents is taken for estimation. The waveform 
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consisting of the fundarnental, third, fifth, seventh, eleventh, thirteenth and nineteenth 

harmonics is simulated using MATLAB. The waveform is described as 

f ( r )  = 1.0 sin(ot + LOO ) + 0.2 sin(3 ot + 20° ) + 0.08 sin(5 or + 30* ) + 0.05 sin(7ot + 40' ) 
(3 .Z8) 

+ 0.06 sin(l1 ot + 50' ) + 0.05 sin(l3 ot + 60° ) + 0.03 sin(l9 ot + 70O ) 

The sarnpling frequency was selected to be 64x60 Hz. 

Fig.3.4 shows the estimation of the magnitude and phase of the fundamental, frfth 

and seventh harmonics, respectively. Both of the estimation algonthms estimate the 

harmonic parameters correctly in the time interval corresponding to approximately one 

period (T) of the fundamentai frequency. 

lm lm 
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60 60 
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,O 40 8 40 
c 
P 20 = 20 

0 a. i 0 
a , 
E s 40 - 1: 
a0 do 

4 0  do 

-0 002 0.04 0.06 008 0.1 *lwo am om oaa oni  at 
r w  (SI l-ime (51 

(4 (b) 
Fig. 3.4: Estimated magnitude and phase angle of the fundarnental, fifth and seventh harmonics 

(a) using ADALDE O>) using Kalman filter 
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3.5.2 Harmonic Estimation in the Presence of Nuise and 

Decaying dc Components 

Further investigations have been made to check the ability of the above-mentioned 

algorithms in tracking the waveform hannonic components in the presence of random 

noise and decaying dc component. A random noise of variance 0.02 and an 

exponentially decaying dc component represented as (O.lexp(-5t) ) were added to the 

measured samples of the waveform given by equation (3.28). 

Fig 3.5(a), Fig. 3.S(b) and Fig. 3.S(c) display the results of estimation of the 

fundamental and the fifth harmonic using ADALINE, 12-state tuned Kalman filter and 

FFT, rcspec tivel y. 

On cornparison of Fig. 3.5(a), Fig. 3.5(b) and Fig. 3.5(c), one can observe that the 

ADALINE has a better performance in terms of convergence speed and noise rejection 

compared with the Kdrnan filter and FFT in the presence of random noise and decaying 

dc component. 

3.5.3 High Sampling Rate 

In order to investigate the performance of the estimation algorithm signals with high 

sarnpling rate, the sarnpling points of the signal given by equation (3.28) are increased. 

Fig. 3.6(a), Fig. 3.6(b) and Fig. 3.6(c) present the influence of increasing the sarnpling 
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Fig. 3.5: Estimation of fundamental and fifth harmonic 
noise and decaying dc components 

(a) using ADALINE 
(b) using Kaiman filter 
(c) using F IT  

cornponents in the presence of 
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rate on the results of the estimation of the magnitudes and phases given in Fig. 3.5(a), 

Fig. 3S(b) and Fig. 3.5(c). The figures show the performance of ADALDE is improved 

drarnatically compared with the Kalman filter and that the error e(k) between the 

measured waveform and the output of ADALINE is reduced by increasing the number 

of sarnples. 

3.5.4 Simplicity and Practical Applicability 

The algorithm for ADALINE is simple and computationally efficient compared to 

Kalman filter algorithms that require high amounts of computation due to 

transcendental function evaluation and matrices inversion in r e d  time. This makes 

ADALINE more suitable for on-line applications specifically when it is used for 

estimating time-varying signals. 

3.5.5 Frequency Tracking 

One of the common problems with FI' is the spectral leakage effect resulting frorn 

the deviation in the fundamentd frequency. A fundamental fiequency offset of 0.4 Hz 

produces an error of 101 in the amplitude of the fifth harmonic [go]. To overcorne this 

problem, a variety of numerical algorithms have been developed for frequency 

measurement, such as the zero crossing technique. This technique is simple and reliable 
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Fig. 3.6: The influence of high sampling rate on the estimation of fundamental and 5& 
harmonic amplitude 
(b) using ADALINE 
(c) using Kalman filter 
(d) using FFï 

but its performance has a cost: long measurement times (generally more than 3 cycles of 

the fundarnental). Both the Kalman fiiter and FFT may use zero crossing as an extemal 

algorithm to measure the fundarnental frequency. However, the ADALINE algorithm is 

modified by combining the fundamental fiequency tracking with ADALINE-based 

harmonic analyzer as proposed in Chapter 5. 
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The fundamental frequency tracking capability is an important feature for successful 

active hannonic filtenng. An unregulated dc-side of the CSC module is expected if the 

fundamental frequency drifts from its nominal value. 

From the above cornpaison, one can observe the following: 

1. Both of the estimation algonthrns (ADALINE, Kalrnan filter) have similar 

performance and the convergence achieved within one cycle of fundamental 

fiequency when the analyzed signal is not contaminated with noise and decaying 

dc component. 

2. The ADALINE produces faster convergence and noise rejection in the presence 

of noise and decaying dc components compared with the Kalman filter and FFï. 

3. As the number of samples of a measured waveform corrupted by a dc 

component, harrnonic and noise is increased, the ADALINE exhibits better 

performance compared with the KaIman filter. As the value of the decaying dc 

component increases, the performance of the Kalrnan filter and FFT got worse. 

Note that the results shown in Fig. 3.5 and Fig. 3.6 happen to be case dependent 

and the performance of the Kdman filter would be improved by the proper 

selection of the filter parameters Q and R. 

4. The Kalman filter technique estimates the harrnonic components by utilizing a 

smaller number of sarnples and in relatively shorter time as compared to FF'I' 
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[77]. But, its main problem is the high computational demand due to 

transcendentd function evaluations. This makes the Kalman filter approach unfit 

for on-line applications, specifically for extracting time-varying harmonies. 

3.6 Summary 

In this chapter, three different harmonic estimation approaches (ADALINE, Kalman 

filter and FET) were discussed. The h m o n i c  estimation rnethods presented throughout 

this work can be evaluated as follows: 

The ADALKNE and Kalman filter are recursive techniques, and they are faster 

than the FFT rnethod and they have a noise rejection capability. However, the 

Kalrnan filter is computationally burdensome because of the evaluation of the 

transcendental functions and the involved matrices inversion. 

The estimation algorithms exhibit similar performance when the analyzed signal 

is not corrupted with noise and decaying dc component. 

The ADALINE has better overall performance compared with the Kalman filter 

and K algorithms especially if the signal is corrupted by noise and a decaying 

dc component. However, the performance could be improved by proper tuning 

of the Kalman filter parameters. 
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The speed and accuracy in estimating the time-varying harmonic components in 

a noisy environment, automatic tuning to the system frequency, and the adaptive 

feature are the main advantages of ADALINE over the other estimation 

aigorithms. 

The andytical expectation h a .  been verified in this chapter by extensive simulation 

results using the MATLAB simulation package. 

Since ADALINE outperforrns the other harmonic estimation techniques in terms of 

simplicity and practical applicability as well as noise rejection capability, it is well 

suited as an estimation tool for the modular harmonic filtering approach presented in 

this proposal. 
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Chapter 4 

Active Power Filtering 

4.1 Overview 

The objective of this chapter is to study the base configuration of the active source used 

in active filters and how the active sources behave as a linear amplifier using PWM 

switching strategy. Emphasis is given to the Iosses due to the PWM technique. 

The configuration of the active source is first given in section 4.2 to highlight the 

basic power converter topologies used in active power filters. Section 4.3 details the 

PWM switching technique and how high-power amplifiers are formed using PWM 

technique. The calculation of the conduction and switching losses in the active power 
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filters are explained in details in section 4.4. Finally, the cornparison between single- 

phase CSC and VSC followed by the surnrnary are given at the end of the chapter. 

4.2 Configuration of the Active Source 

As seen in Chapter 2, active power filtering based on the injection method is basically 

performed by replacing the portion of the sine wave that is missing in the current drawn 

by a nodinear load. This can be accomplished in two stages. The first stage consists of 

detecting the amplitudes and phases of the AC harmonic currents (or any systern 

quantity associated with them) which are present in the AC line. The second stage is the 

injection of the appropriate harmonic currents (or insertion of appropriate harmonic 

voltages) at the appropnate frequency so as to supply the AC harmonic currents 

required by the nonlinear load. 

The active harmonic source within the filtering network is basically a static 

converter connected to a DC source. The converter must be controIled to provide the 

proper filtering harmonic currents or voltages. This is accomplished by shaping the DC 

input source into an output waveform of appropriate magnitude and frequency through 

modulation of semiconductor switches [20]. 

The harmonic converter can use either a DC voltage source or a DC current source. 

The DC source of a voltage converter consists of a capacitor that resists voltage 

changes, while that of a current converter consists of an inductor that resists current 
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changes. In both cases, the DC source receives its power from the AC power system. 

Converters are referred to as either voltage-fed or curent-fed according to the type of 

DC-side source. The basic voltage and current source converter topologies are displayed 

in Fig. 4.1. In the current-source converter, a diode is placed in series with every switch 

to avoid reverse breakdown of the switch when the voltage across the switch dunng the 

OFF-period is negative. In voltage-source converter, an inverted diode is placed across 

each switch to provide a path for the current when the current cannot p a s  through the 

switch. 

The power electronic circuits and devices used in both types of converter are quite 

similar. Most of the existing active power filters utilize switching devices such as gate 

turn-off thyristor (GTO), bipolar junction transistor (BIT) and insulated gate bipolar 

transistor (IGBT) for switching speeds up to 50 H z .  However the most attractive 

device is the IGBT. It has the ment of fast switching capability and requires very Little 

drive power at the gate. Recently, a new generation of the IGBTs farnily called Non- 

Punch-Through @PT) IGBT has emerged in the market. The distinct advantage of this 

device over its predecessor in IGBTs family is its ability to block the same voltage in 

both directions. 
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Fig. 4.1 : (a) Single-phase and three-phase curent-source converter (CSC) 
(b) Single-phase and three-phase voltage-source converter (VSC) 
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4.3 The Sinusoidal-Pulse-Width Modulation 

(SPWM) Switching Strategy 

PWM is a simple switching technique to control power converters. It employs switching 

at a constant frequency (a constant switching time) to control the output voltage or 

current. It generates control-switching signals to control the state (on or off) of the 

switch(s). This is achieved by comparing a control voltage signal (v,,) with a 

repetition waveform of a fiequency higher than the fundamental frequency. The output 

of the comparator controls the switches. The output voltage or current of the converter, 

Fig. 4.2, is in the form of pulse trains having the same frequency a s  the generated 

switching signals. The pulse train is modulated so that the local average value of each 

pulse is equal to the instantaneous value of the required signal at the time of its 

occurrence. If the control signal is a sinusoidal waveform, the rnethod is called the 

sinusoidai pulse width modulation (SPWM). 

In order to obtain a sinusoidal current waveform at a desired frequency, a sinusoidal 

control (modulating) signal at the desired frequency is compared with a repetitive 

switching frequency ûiangülar (carrier) waveform, as shown in Fig. 4.3. Whenever the 

value of the modularing signal (vcon,) is higher than that of the carrier signal (v,), the 

power switches pair (S3, S4) is tumed OFF and, irnmediately, the other pair (SI, S2) is 

nimed ON. Contrarily, whenever v C o n ,  is lower than v,, the pair of switches (Si, S2) 
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Fig. 4.2: The simplified version of CSC bridge 

t modulating signal 
carrier signal 

Fig. 4.3: Sinusoidal Pulse-Width Modulation 
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is switched on and hence the other pair is switched off. The converter output current 

( I 0 J  is a train of variable duration pulses that fluctuates between t 4,, which will 

reproduce the moduIated signal when averaged. 

The ratio of the peak of the amplitude of the modulating signal ( ~ c o m , . o l )  to the 

amplitude of the triangular waveform (Y,) is defined as the "amplitude modulation 

index" 

The amplitude of the desired fundamental component of the output current (FA,), , 

provided that m, 5 1 and that the frequency of the triangular waveform (f,) is much 

larger than the frequency of the modulated signal ( f, ), is given by 

Therefore, the PWM converter behaves like a linear amplifier, as long as the 

amplitude of the carrier signal is greater dian that of the modulating signal and its 

frequency is much greater than the of that modulating signal. 

It should be noted that the fiequency of the ûiangular waveform (f,) decides the 

frequency bandwidth of the converter and is generally kept constant dong with its 

amplitude. 
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PWM converter c m  be considered as a linear power amplifier because it has the 

ability to generate compensating harmonic currenis or voltages corresponding to a small 

control signal. Fig. 4.4 shows a block diagram of PWM converter operating as a linear 

amplifier. In this diagram, dl the properties of the signal c ( t )  are maintained in the 

hindamental component of the output waveform, except for the magnitude which is 

multiplied by the gain of the amplifier (k). This is always true as long as the switching 

frequency is sufficiently high such that c(t) can be considered constant dunng one 

switching period [54]. 

The performance of the pulse width modulation (PWM) technique is very promising 

when it is applied to active power filtering. It is capable of obtaining h m o n i c  

suppression to less than 1% of the fundamental [25]. Also this method c m  be 

programmed to elirninate specific harmonies. 

Fig. 4.4: PWM converter as a linear amplifier 
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4.4 Tri-Logic PWM Current Source Converter 

In this section, CSC confiopration under the tri-logic PWM switching techniqae which 

is used in the proposed modula active filter is presented. Fip. 4.5 shows the CSC bridge 

which consists of 6 IGBT switches, a dc-side reactor and a 3-phase ac-side capacitive 

filter for filtering the switching harrnonics. 

For the CSC to operate properly, one and only one of the upper switches and one and 

only one of the iower switches must operate at any moment of time. The dynamic tn- 

logic PWM technique [5S]  has been developed to satisQ the above requirement and to 

provide independent cont~ol on the ac-side currents of the CSC, based on three control 

signals s,. s,. and Sm, with the condition that Sm + S,, +Sm = O . The tri-logic 

P'WM control block, shown in Fig.4.5, produces 3-level signals to control the three legs 

of the CSC independenriy. 

For the case of 3-phase 3-wire ac systems, the sum of the three phase currents is 

equal to zero. Therefore, the sum of the compensating currents to be injected in the lines 

will be equal to zero and as a result, Sm + S, +Sm, = O .  It can be shown [55] that 
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j gating Signal Generatar i 

Tri-Logic PWM control I 

Fig. 4.5: Current Source converter with tri-Iogic PWM control 

where, k is a proportiondity constant. From the above relation, one can observe that the 

CSC under the Tri-Logic PWM operates as three independent linear amplifiers, one 

amplifier for each phase. 

4.5 The Losses in the Switching Devices 

Two distinct types of power losses can be attributed to the switching devices. 

4.5.1 On-state (conduction) fosses 

When the semiconductor switch is in the on-state, there is a finite voltage across the 

device. The current through the device (i,) and the on-state voltage drop across the 

device ( VON ), contribute to the conduction loss ( P,, ). 
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pcond = isw,ONvON 

4.5.2 Switching losses 

During the tum-ON and the tum-OFF process of the semiconductor switch, some power 

is dissipated due to the presence of finite current through the switch and finite voltage 

across it at the sarne time. The duration of the simultaneous presence of the current and 

the voltage, i.e. the length of cross-over penod, depends on the nature of the load being 

switched. The worst case happens when a pure inductive load is switched (Fig. 4.6). 

The tum-ON and tum-OFF processes of the switch in Fig. 4.6, cm be explained 

using Fig. 4.7. When the switch is OFF, the load current is freewheeling through the 

diode. The voltage drop across the switch can be approximated by 

Also, 

When the switch receives an ON- command, after a short delay, its resistance starts 

to drop providing a path for a part of I L ,  and i, start nse to I'during the t , ,  the 

switch current nse-time. But as long as the diode is conducting, the voltage across the 

switch will be equal to V, . When the load current is completely transferred to the 

switch, the voltage across the diode starts to rise until al1 V, is placed across the reverse 
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biased diode. The switch will conduct the load current IL and the voltage across the 

switch will be V,, . 

During ton , since there is a voltage across the switch and a current through it, some 

power will be lost. Assurning linear variations, the current through the switch i, is 

given by: 

I L ,  the load current, is assumed to be constant during one switching period. 

The power loss is shown as a hnction of time in Fig. 4.6. The energy loss during 

r,, will be: 

When the switch receives an OFF- cornrnand, after a short delay, its resistance starts 

to grow, increasing v,. But as long as v, has not reached Vd , the diode can not be 

fonvard biased and al1 the load current I L  passes through the switch. When v, = V,, 

the diode become forward biased, and the current is transferred gradually fiorn the 

switch to the diode, during t f  , the switch current fall time, till al1 the load current s tats  

freewheeling through the diode and i, = O. 

From the graph of power loss vs. time, the energy loss dunng f, can be found as: 
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Therefore, the total energy ioss due to switching can be given by: 

If the switch is tumed ON and OFF at a rate f,, E, will be the energy loss due to 

1 
switching in T, = - seconds. The average power lost due to the switching, P,, is 

fm 

given by: 

As seen, as the ton and t, (i.e, the switching times of the device) and f, (the 

switching frequency of the device) are increased, the switching losses are increased as 

well. 

In a converter unit with a number of switches, the total losses (conduction and 

switching) will be determined by the number of switches and the voltage and current 

levels that they are exposed to. 



Chapter 4: Active Power Filtering 

Fig. 4.6: Simplified inductive switching circuit 
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4.6 VSC Topology Versus CSC Topology 

For a long time, VSC topology was preferred to CSC topology due to the higher 

conduction losses in the latter. With the availability of (NPT) IGBT switches, capable 

of bi-directional blocking, the series diodes are no longer required in the CSC topology 

and high conduction losses and low efficiency will no longer be an issue [24]. In 

applications such as active power filtering, the CSC topology proves to be advantageous 

over the VSC topology on two counts: (1) In CSC, the output current is controlled 

directly, resulting in fast dynamic response, while in VSC, the control on the output 

current is indirect, resulting in a rather sluggish response. (2) In CSC, the DC-link 

current to be rnaintained depends on the output current demand, while in VSC, the DC- 

link voltage to be rnaintained, depends on the Iine voltage level. As a result, the CSC is 

more likely to perform a specific filtering job with lower DC energy storage 

requirement [24]. Due to the above favorite charactenstics, CSC topology is receiving 

more and more attention in power quality conuol applications. 

4.7 Summary 

In this chapter, the basic principles of active harmonic filtering have been presented. 

The device switching losses as well as the converter topologies used in active filtering 

were discussed. The advantages of using PWM control strategy for power converters 
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and how they work as a linear amplifier were presented. A cornparison between the 

single-phase CSCs and VSCs showed the advantages of using CSC in active filters over 

its counterpart, 
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Chapter 5 

The Proposed Modular Active 

Power Filter System 

5.1 Motivation 

As seen in Chapter 2, the need for a better overall system performance than that 

provided by AC passive filters prompted power electronics and power system engineers 

to develop a new dynamic solution to the harmonic problem, narnely, the active power 

filter. Almost al1 of the recently proposed active power filters utilize the PWM 

switching control strategy due to its simplicity and harmonic suppression efficiency. 

However, they suffer from one or more of the following shortcomings: 

Active power filters that are based on PWM switching strategy are not welcome 

by utility companies because of the high switching losses produced by the PWM 
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approach. The power converter used for this pupose is rated based on the 

magnitude of the distortion current and operated at the switching frequency 

dictated by the desired filter bandwidth. Fast switching at high power, even if 

technically possible, causes high switching losses and low efficiency. 

A senous shortcoming for proposing active power filters in electric power 

systems is the large converter size (rating). As seen in Chapter 2, the 

combinations of active and passive filters as well as employing multi-converter 

and multi level techniques are among the attempts in order to reduce the rating 

of converter. 

Most of the active filters connected to distribution systems are mainly a single 

unit with a high rating adequate for handling al1 hannonic components in the 

distorted waveform. Any failure in any of the active fiIter devices will make the 

whole equipment ineffective. 

From the above discussion, the need for new equipment that can overcome al1 or 

some of the above drawbacks is evident. This equipment should have minimum 

switching losses, be highly reliable and flexible and have a low rating power converter. 

The proposed equipment should have fast response, adapt to the load variations and be 

appropriate for on-line applications. 
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5.2 A New Approach to Modular Active Power 

Fiiters 

In low-voltage distribution system applications, almost all of the existing active power 

filters are realized by one unit of a single-phase or three-phase bridge converter [19-221. 

The required voltage-withstand and current-carrying capabilities can be achieved by 

senes and paralle1 connections of semiconductor switches. However, in high-power 

applications, the filtering job cannot be perfomed by one converter alone, due to the 

power rating and switching frequency limitations of semiconductor switches, as well as 

the problems associated with comecting a large number of switches in series or in 

paralle1 to attain the necessary ratings. 

To overcome the above-mentioned restrictions, different multi-converter (rnodular) 

topologies have been proposed [56-581. In these rnodular approaches, the filtenng job is 

split arnong a number of pulse width modulated (PWM) voltage source converters 

(VSC) or current source converters (CSC) connected in senes or in parallel. In the 

modular approach, the filtering load is disûibuted equally arnong active filter modules 

of identical power circuit and control circuit design. The power rating and switching 

frequency of each module is equal to the power rating and switching frequency required 

for the filtering task, divided by the number of modules. This makes it possible to use 
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the present gate-turn-off switch technology to realize high-power active filters of 

desirable performance. 

In this thesis, a novel active filtering technique, based on CSC modules, which is 

appropriate for harmonic mitigation in electric distribution systems, is proposed. This 

active filter system is composed of the extraction, computation and rnitigation stages. 

First, the information on the line current and the bus voltage are extracted very 

accurately by linear adaptive neurons (ADALINES) from the power-line signals. Then, 

the required corrective signds are calculated and finally, the information is passed to 

the controller which activates the CSC modules to produce the compensating currents 

and inject them into the power line. Fig. 5.1 shows the block diagam of the operating 

stages of the proposed system. The proposed filter consists of several filter modules, 

each dedicated to elirninate a specific harmonic of choice. Low conduction and 

switching losses, high reliability and flexibility, fast response, self-synchronization and 

accuracy of ADALINE and fast response and high efficiency of CSC are the main 

advantages of the proposed system. The performance of the proposed active power filter 

is found to be excellent in eliminating the line hamonics. 
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Fig. 5.1: The block diagram of the compensation principle of the proposed active filter 
system. 

Line 
current 

5.3 The Principle Of The Proposed Filtering 

Technique 

The basic principle of the proposed filtering method is based on: 

' Mitlgatlon 

Mitigation Stage 

and bus 
Extraction of 
information 

Calculation Stage 
Hinnonic currrnts 

and voltagia) 

1. the extraction of the fundamental and individual harmonic current components 

of interest using one ADALINE and estimating the fundamental component of 

the line voltage by another ADALINE and, 

Controller 

2. injecting equal-but-opposite of each harmonic component of each phase into the 

corresponding phase using a CSC module dedicated to that specific harmonic 

(for elirninating the harmonics). 

As seen in Chapter 2, in distribution systems, the magnitudes of the harmonic 

currents decrease and their fiequencies increase with harmonic order. Therefore, in this 

proposed filter, the power converters dedicated to lower-order harmonics have higher 

ratings but are switched at lower rates, while those dedicated to higher-order harmonics 
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are of lower ratings but are switched at higher rates. As a result, the overall switching 

losses are considerably reduced due to balanced "power ratingy'-"switching frequency" 

product and selected harmonic elirnination, The control system utilizes two 

(ADALINEs) to process the signals obtained from the power-line. The ADALINES' 

outputs are used to constmct the modulating signals of the filter modules. For each 

phase, the two ADALINES continuously track the line current harmonics and line bus 

voltage as well as the system frequency and turn over this information to the controller 

of the CSC modules. The ADALINES have the ability to predict accurately the 

fundamental and harmonics of the distorted signal in case of frequency drifting. In this 

method, a sophisticated software (the ADALIDE-based controller) is developed to 

reduce the operating cost and increase the flexibility of the proposed filter systern. The 

current and voltage ADALINEs are realized by calling a cornmon subroutine, the 

ADALINE algorithm which is explained in section 5.8. 

5.4 System Configuration 

The basic blocks of the proposed rnodular active filter system connected to the electnc 

distribution system are shown in Fig. 5.2. The system consists of a number of single- 

phase current-source converter (CSC) modules connected in parallel for each phase. 

Each filter module is dedicated to suppress a specific low-order harmonic of choice. 

The proposed active filter system uses nvo ADALINES to process the signals obtained 
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fiom the power line. The method is based on estimating the discrete Fourier coefficient 

of a distorted current by one module of ADALINE (the current ADALINE) and 

predicting the phase bus voltage by another module (the voltage ADALINE). The 

output of the current ADALINE is used to generate the modulating signds for the CSC 

modules. The power rating of the modules will decrease and their switching frequency 

(bandwidth) will increase as the order of the harrnonic to be filtered increases. As a 

result, the overall switching losses are reduced due to selected harmonic elirnination and 

balanced power rating-switching frequency product. The information made available by 

the current ADALINE allows for selected harmonic elimination. The output of the 

second ADALINE (the voltage ADALDE) is the fundamental component of the line 

voltage signal. It is used as the synchronizing signal for the regulation of the & of the 

CSC modules. 

5.5 Compensation Principle 

The basic hinction of the proposed active filter is to suppress selected low-order 

harmonies. The method is based on extracting individual harmonic components using 

the current ADALINE and injecting equal, but opposite of the surnmation of these 

harmonic currents into the power line using the corresponding filter modules. With 

i, =i, +xi, (h being the harmonic order), i, =xi, is injected by the active filter 

system so that i, = i l ,  ody (where i, = fundamental current). 
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As shown in Fig. 5.2, for each phase, the line current signal (i,) is obtained through 

a current transformer (CT) and fed to the current ADALINE which adaptively and 

continuously estimates the hndamental and harrnonic components of the line current 

signai. The phase voltage signal is obtained by a potential transformer (PT) and 

processed by another ADALINE (voltage ADALINE) to extract the fundamental 

component of the phase voltage waveform. The output of the current ADALINE is used 

to generate the PWM switching signals for the CSC units which inject the 

corresponding distortion in order to suppress the harmonic components in the line 

current (i,). The output of the second ADALINE is used as a synchronization signal in 

the control loop that maintains the dc-side average current (1, ) of each CSC module at 
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Fig.5.2: The proposed rnodular active power filter system. 
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a desired value. The output currents of al1 the CSCs are added at a junction point and 

injected into the power line. The total injected current, i,, is equal, but opposite to the 

sum of the harmonic components to be eliminated (zi, ). 

5.6 Control Scheme 

Fig. 5.3 shows the control scheme for the proposed active filter. In this controller, the 

1" - harmonic signal A[ sin(lwr+pl) is reconstnicted from the output of the current 

ADALINE and compared to a triangular waveform to create the PWM switching 

pattern for the switches of the CSC module dedicated to that particula. harmonic. Note 

that a CSC under the PWM strategy behaves as a linear amplifier. The gain of this 

amplifier is equal to 1, /v,, where rd, is the dc-side current of the CSC and V, is the 

peak value of the tnangular waveform. In order to achieve a linear amplifier, the id= of 

each CSC must be regulated to a constant value. 

The converter losses and system disturbances, such as sudden load fluctuations, 

affect the dc-side currents of the CSC modules. For successful operation of CSCs as 

linear power arnplifiers, rd= of each module must be regulated by means of a feedback 

control loop. The control loop adjusts the amplitude of a sinusoidal template, 

synchronized with the system voltage (v,) obtained from the voltage ADALINE. The 

above signal will be used as a pa~T of the modulating signal of the CSCs, as shown in 
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Fig.5.3. It results in drawing a small current component at fundamental frequency in 

phase with the system voltage (for charging up the L~~ or increasing 1,) or out of phase 

by 180' with respect to the system voltage (for discharging the L~~ or decreasing r ,  ). 

This action involves only real power transfer between the system and CSC modules in 

contrast with harmonic current injection that involves only reactive power transfer. 

NIter 

Filter 
Module 

Fig. 5.3: The Control Scherne of the modular active filter (The Controller in Fig. 5.2) 

In contrast to the other dc-regulation algorithms, the proposed filter controller 

regulates the value of the dc-side current based on the present peak value of the 

harmonic current available from the Current ADALNE. In other words, 4, of each 

CSC is set to be equal to the amplitude of the corresponding harmonic to be filtered by 
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the CSC module. This will reduce the conduction and switching losses, which are 

proportional to dc-side current, and enhance system performance thanks to the adaptive 

nature of the ADALINE. 

5.7 Master Controller Logic 

n i e  proposed active filter system suppresses selected low-order harmonics by 

connecting the corresponding CSC modules to the electnc grid. The master controller 

connects the filter module(s) based on an automated decision-making algorithm, which 

is shown in Fig. 5.4. In this algorithm, the current total harmonic distortion (THDi) and 

the harmonic current factors 0 are calculated frorn the magnitudes of the harmonic 

components obtained from the output of the current ADALINE. Then THDi and each 

HF are compared with reference values to create a switching signal for connecting the 

corresponding filter module to the grid. The intelligent controller activates the active 

filter module when both the THDi and the corresponding HF exceed the limits set by the 

IEEE 519-1992 standard. For harmonics of low magnitudes, a single CSC c m  be 

assigned to filter two or more harmonics. AIso, a CSC which is not being used to its full 

capacity, can be assigned the responsibility of reactive power control, Le., behaving as a 

static VAR compensator (SVC) while performing the filtering job. 
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Fig.5.4: The proposed decision-making logic circuit controller 

The information available on individual harmonic components allows us not only to 

reduce the THD but also to suppress each harmonic component below the level set by 

the IEEE 519 standard. Also, the information available on the magnitude of each 

harmonic component allows us to select the active filter bandwidth (i.e., the highest 

harmonic to be suppressed). This will result in more efficiency and higher performance. 

Finally, the output currents of al1 the CSCs are added at a junction point and injected 

into the power line. The total injected curent, ihj, is equal, but opposite to the sum of 

the harmonic components to be elirninated. The higher-order harmonies are taken care 

of by a passive low-pass filter. 

5.8 lmproved Adaline-Based Harrnonic Analyzer 

In the original ADALINE algorithm given in Chapter 3, it is assumed that the 

fundamental frequency of the distorted waveform is known in advance [77,78]. In this 

research, the ADALINE algorithm has been modified to track the system frequency 
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variations to take care of the above problem. The fiequency-tracking feature is essential 

specifically when ADALINE is used in conjunctior, with active power filtenng. If the 

fundamental frequency drifts fiom its nominal value, then dc-side of the active filter 

module cannot be rnaintained which will result in unsuccessful elirnination of 

harmonies. Let's assume that the instantaneous mean square error is given by 1761 

The derivative of mean square error with respect to the angu1a.r fiequency (O ), i.e. the 

change in w , can be found as [67] 

N 

h=-a, -e(k) - ç ( ~ - t ( k ) - 4  coslol(k)-ï.r(k)-B,cosZor(k)) 
[ 1 = 1  

where, or, is a reduction factor. 

To find the change in the angular fiequency, o is initially set to the nominal value. 

To guarantee the convergence of the algorithm, the reduction factor for updating the 

frequency should be several times iower than the reduction factor for the adaptation of 

A, and B, (the ratio a, :a was 1: 100). Fig.5.5 represents the A D A L m  with the 

modified adaptive algorithm for estimating A,, B, and CO. 
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Fig. 5.5: The modified ADALINE for estimating A, and B I ,  and o. 

Also, the algorithm given has been modified to estimate the 3-phase voltages or 

currents simultaneously using A D A L E  consisting of 3 neurons in total (one neuron 

per phase), as sbown in Fig. 5.6. The output frorn the neural estimator for phase-a is: 

where W, denotes the weight vector for the a-phase voltage or current and X is the input 

vector given by equation (3.23) . 

After final convergence is reached, the three phase Fourier coeEicients for the 

estimated signals are computed as: 
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for j =a,b,c 

'-4 Algorithm hp 

Fig. 5.6: Block diagram of the ADALINE for estimating 3-phase voltages or currents (3-Phase 
ADALINE) 

5.9 Application to 3-Phase 3-Wire Distri bution 

Systems 

The proposed active power filter system explained is introduced to improve the ebctnc 

power quality through harmonic mitigation in electric distribution systems. The 

proposed system is based on the per-phase treatment of the Iine current harmonies in 3- 
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phase 4-wire AC distribution systern. In such systerns, three single-phase CSC filter 

modules will be required for filtenng a specific harmonic in the three power Iines. 

However, in 3-phase 3-wire distribution systerns, instead of using three single-phase 

CSC modules, only one 3-phase module is required to suppress a specific harmonic of 

choice in the three lines. The proposed filter is based on 3-phase 6 switches PWM- 

controlled current-source converter (CSC) modules, where each filter module is 

dedicated to elirninate a specific harmonic and/or balance the line currents. Based on the 

information extracted from the line by the ADALME, each leg of every CSC module is 

independently controlled to perform the bdancing orland harmonic filtering in a 3- 

phase 3-wire distribution system. The power ratings of the modules will decrease and 

their switching frequencies (bandwidth) will increase as the order of the harmonic to be 

filtered increases. As a result, the overall switching losses are reduced due to selected 

harmonic elimination and balanced power rating-switching frequency product. 

5.9.1 Systern Configuration And Control Scheme 

Fig. 5.7, shows the block diagram of the proposed 3-phase modula active filter 

connected to the electric distribution system. It is composed of several parallel power 

converter modules, each dedicated to suppress a specific harmonic component of 

choice. One module is assigned to correct the curent imbalances. Each module is a 

standard 3-phase CSC bridge. The basic function of the proposed 3-phase active filter is 
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to suppress selected Iow-order harmonics in the unbalanced 3-phase 3-wire distribution 

system. Each phase is controlled independently. The method is based on extracting 

individual hmonics  and negative sequence components using the current ADALINE 

and injecting equal, but opposite of the surnmation of these hammnic and negative 

sequence currents into the power line using the corresponding filter moduIes. The 

controuer generates tri-Iogic PWM switching patterns for controlling the filter modules 

to eliminate selected harmonics and to balance the unbalanced currents. With the line 

current, i = i + i n  + i ,  (h being the harmonic order, hPwj and , ,  , the 

fundamental positive and negative sequence currents of phase j, and j = a, b, c ), 

- * + ihVj is injected by the active filter system so that the source current ' inj. j - ' ln .  j 

Fig. 5.7: The proposed 3-phase modular active power filter system 
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The 3-phase line current signals (iLnj, j=a,b.c) are obtained through three current 

 ansf for mers (CT) and are fed to the 3-phase current ADALINE which adaptively and 

continuously estimates the fundamental and harmonic components of the line current 

signals. The negative sequence components are constmcted from the fundamental 

current components obtained from the current ADALINE. The line voltage signals 

( v , ~ ,  j = a.6.c ) are obtained by three potential transformers (PT) and processed by 

another 3-phase ADALINE (voltage ADALINE) to extract the fundamentd 

components of the line voltage waveforms. The output of the current ADALINE is used 

to generate the tri-logic PWM switching signais for the CSC units which inject the 

corresponding distortion in order to suppress the harmonic components and correct the 

unbalanced current in the lines. The output of the second ADALINE is used as 

synchronization signal in the control loop that maintains the dc-side average current 

( r ,  ) of each CSC module at a desired value. The compensated currents of al1 the CSCs 

are added at a junction point and injected into the power line. The total injected current, 

Çiinjwj, j =a.b.c, is equal, but opposite to the sum of the harmonic components to be 

elirninated plus the negative sequence currents ( il,, + ih, ). 

Fig. 5.8 shows the control scheme for the proposed 3-phase modular active power 

filter. In this controller, the Z" hmon ic  signal A,. sin(1ot + q,, ) . j = a. b. c is 

reconstmcted from the output of the current ADALINE and is used as control signal for 
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tri-logic PWM block, to create the PWM switching pattern for the switches of the CSC 

module dedicated to the lth harmonic. The control scheme also includes the controi of 

one of the filter modules assigned for balancing the unbalanced currents. The 

instantaneous 3-phase negative sequence cornponents are constructed from the 

fundamental components of the line currents and are used to control the CSC module to 

inject the desired negative sequence currents. Note that the output current of each phase 

of each filter module is independently controlled to eliminate harmonic currents or to 

correct the current imbalances provided that the instantaneous fundamental currents as 

well as their multiples in the three phases add up to zero. As seen in Chapter 4, the CSC 

under the tri-logic PWM strategy behaves as s linear amplifier. The gain of this 

amplifier is equal to i, /flve, where I ,  is the dc-side current of the CSC and is 

the peak value of the triangular waveform. Note that in order to achieve a linear 

amplifier, the r ,  of each CSC must be constant. This c m  be accomplished by 

regulating the dc-side current of each CSC by means of a feedback control loop. The 

converter losses and system disturbances such as sudden fluctuation of the Load create a 

need for a dc current regulator that is always active. In this feedback loop, the 

modulating signal for charging the dc-side inductor is synchronized with the line 

voltages (",) obtained from the voltage ADALINE. The above signal will be used as a 

part of the modulating signal of the CSCs, as shown in Fig.5.8. It results in drawing a 

small current at fundamental frequency contributing only to active power required for 
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the regulation of 1,. The regulation of the dc-side current is based on the present peak 

value of the harmonic current which will result in low conduction and switching iosses. 

I l i  I 

I I I  I  

Fig. 5.8: The Control Scheme of the 3-phase modular active filter 
(The Controller in Fig. 5.7) 
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5.1 0Digital Simulation Results 

Since the ADALINE constitutes the main part of the proposed active filter controller, its 

performance in tracking the harmonic components and the hindamental frequency 

variation will be checked and evaluated first. The steady state and the transient 

performances of the whole active power filter system will be investigated next. 

5.1 0.1 Tracking of the Harmonic Components and the 

Fundamental Frequency Variations 

This section illustrates the ability, verifies the validity and checks the performance of 

the ADALINE in estimating the time-varying harmonic components and fundamental 

frequency variations. This will be demonsûated through a practical example. 

A time-varying distorted voltage waveform of known harmonic contents and frequency 

variations is considered. The distorted waveform consists of the fundarnental 

component and the 3rd h-onic with the fundamental frequency varying between 59.8 

and 60.2 Hz. Fig. 5.9 displays the distorted voltage wavefom, the fundamental 

frequency variations and the magnitudes of the fundarnental and the 3rd harmonic 

embedded in the distorted waveform as detected by the ADALINE. 
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Fig.: 5.9 Estimation of the frequency variations and the fundamental and the 3"1 
components using ADALINE. 

From the plots on Fig. 5.9, it appears that the ADALJNE output is accurately tracking 

the fundamental and the 3d harmonic magnitudes in an adaptive way. The ability of 

ADALNE to estimate accurately the new state of the fundamental frequency can also 

be seen. 
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5.1 0.2 Performance of single-phase modular active power filter 

5.10.2.1 Steady-State Performance 

Case 1: 

To test the performance of the proposed rnodular active filter in steady-state, the system 

of Fig. 5.2 was simulated using the EMTDC simulation package. The parameters of the 

system under study are given in Appendix (C). The nonlinear load is a single-phase full 

bridge diode rectifier. This is the worst-case scenario, as 3-phase nonlinear loads cause 

much less harrnonic distortion in the line current. The harmonics are extracted from the 

line current signal (i,) using the Current ADALNE. The A D A L W  module 

subroutine has been written and interfaced with the EMTDC simulation package 

(shown as ADALINE block in Fig. 5.2). The first 6 dominant hannonics are selected to 

be suppressed. The harmonics are extracted from the line current signal ( i , )  using the 

current ADAUNE. The distorted signal is composed of fundamental component 

(127A), 3rd, 5", 7", 9"- II", and 13" harmonics (33.3%, 201, 14.3%, 11.1%, 9% and 

7.7% of the fundamental, respectively). Control signals for the 3d, s", 7h, gh, l lh ,  and 

13" harmonics are obtained. Each is used to generate the PWM switching pattern for 

one CSC dedicated to suppress the corresponding hannonic. In this case, 6 CSCYs are 

used. 
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Fig.5.10 shows the waveforms of the phase-a distorted current, i,, the total injected 

cux~ent into the line by the active filter modules, iw, and the filtered current at the 

interface of the ac system, i,. The waveforms clearly demonstrate an excellent 

performance in elirninating the selected harmonics from the line current. The total 

harrnonic distortion (THD, up to 3 kHz) of the filtered current is 6.9%, down from 

44.5% in the distorted line current. 

Fig. 5.10 also shows how quickly the ADALINE estimates the magnitude and phase 

of one of the harmonics (5") embedded in the distorted waveform (i,). It appears that 

the proposed active filter system starts performing the filtering job within one cycle of 

the fundamental frequency in an adaptive way, compared to other systerns that utilize 

the FFI' technique and require almost two cycles to compensate for the harmonics [74]. 

This is the result of incorporating the ADALINE as a part of the control scheme. 

Case 2: 

In this section, the proposed modular active conditioner was tested with a realistic 

example of a three-phase distribution system, which is shown in Fig. 5.11 and its feeder 

section data are listed in Table 3. This system supplied a mixture of non-linear and 

linear loads and it is loaded until it reaches its rated capacity. The load sharing 

percentage will be equal to 1611: 
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Fig. 5.10: Steady state simulation results of the proposed modula active filter 
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Diode bridge rectifier (DBR)-?O%, 

Phase angle voltage controller (PAVC) = 20%, 

Compact fluorescent Iamp (CFL) =20%, 

Three-phase star-connected linear loads =20% (pf=0.9 lag) 

The supply impedance that is equal to the secondary distribution transformer 

impedance plus the impedance of the line connecting the transformer to the distribution 

panel was equal to 0.032+j0.1169 8, with the X R  ratio equal to 3.65. The THD of the 

distribution system load current was 30.18% and its dominant harmonic components are 

the 3rd and the sLh. 

Two filter modules of the proposed modular active conditioner were designed for 

the 3d and 5" harmonies. Inserting the modular active filter in parallel at the point of 

common coupling (PCC) and injecting the appropriate 3rd and 5" harrnonic components 

succeeded in reducing the current THD from 30.18% to 3.06%. The injected current 

(ihj ) from the proposed modular active filter as well as the filtered current (i, ) and the 

distorted load current (i,) are shown in Fig. 5.12. 
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Fig. 5.1 1 : Test secondary distribution system 

Table (5.1): Secondary distribution feeder data 
I 1 

Cross R X 

1-COR. 
PVC 

2-core, 
PVC 

2-core, 
PVC 

50.0 

30.0 

20.0 

50.0 

16.0 

16.0 

0.464 0.112 

1.38 

1.38 

0.08 

0.08 
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Fig. 5.12: Steady state simulation results of using two modules of the proposed modular 
active filter for the 3d and 5Ch harmonic modules. 

5.1 0.2.2 Transient Performance 

This section illustrates the ability and evaluates the performance of the proposed 

modular active filter system in response to step changes in the magnitude and phase of 

the harmonic currents. A simple example system consisting of one module of the 
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proposed filter dedicated to the 5~ harmonic with a non-linear load drawing 5'h 

harmonic current of variable magnitude and phase angle is simulated using the EMTDC 

simulation package. 

Fig. 5.13 displays the dc-side current ( r d , ) ,  the ADALLNE output (sh hamionic 

component), the distorted current (i,), and the filtered current (i,) for step changes of 

+66% at t = O sec., +33% at t = 0.16 sec. and -55% at t = 0.33 sec. in the magnitude of 

the nonlinear load current. Rom the plots on Fig. 5.13, it is obvious that the controller 

of the proposed active filter is responding quickIy and accurately to the sudden increase 

or decrease in the nonlinear load in an adaptive way. It dso shows that the filtered 

current waveform (i,) settles to the steady state value within one cycle, demonstrating 

the excellent transient response of the proposed active filter system. 

Moreover, it shows that the value of the dc-side current (1,  ) follows the present peak 

value of the 5Lh harmonic magnitude adaptiveIy and very quickly. This results in lower 

losses and higher efficiency since the conduction and switching losses are proportional 

to the dc-side current. For harmonics of low magnitudes, a single CSC can be assigned 

to filter 2 or more harmonics. Also, a CSC which is not being used to its full capacity, 

c m  be assigned the responsibility of reactive power control, Le., behaving as a static 

VAR compensator (SVC) while performing the filtering job. 
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Fig. 5.13: Transient simulation results of the proposed modula. active filter. 
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To test the transient response of the proposed active power filter system to large 

sudden changes, the filter was subjected to step load changes from no-load to full-load 

at t = O sec. and back to no-load at t = 0.4 sec. As illustrated in Fig. 5-15, the system 

shows an excellent transient performance under large and sudden Ioad changes. 

Distorted Current Waveform 

W . * - - - - - - - - - - - - - - - - -  

- - - - . - - - - * - - - - - - - - - -  

- - . . .. . . 

#- lnjected Current Waveform 

Filtered Current Waveform 

O O. 1 0.2 0.3 0.4 0.5 
Time (S) 

Fig. 5.15: Transient simulation results of the proposed modular active filter subjected to 
sudden full -1oad operation and full-load rejection 
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5.10.3 Performance of Three-Phase Modular Active Power Filter 

Case 1: 

The performance of the proposed 3-phase modular active filter was tested by simulating 

the distribution system of Fig. 5.7. The nonlinear load in the test system is an 

unbalanced 3-phase delta connected load. The 3-phase harmonic currents are estimated 

from the line currents using the 3-phase Current ADALINE. The objective here is to 

rnitigate the first 3 dominant harmonic currents (3*, 5" and 7" harmonics) and to 

balance the unbalanced currents. Therefore, 3 CSC filter modules are used, each one is 

dedicated to suppress one harmonic current, and one module is used to correct the 

current irnbalance. The negative sequence and 3rd, 5h and 7" harmonics control signals 

are obtained and used to generatc the tri-Logic PWM switching pattern for CSC 

modules. 

Fig.5.16 shows the waveforms of the 3-phase distorted currents, the total 3-phase 

injected currents into the line by the active filter modules, and the 3-phase compensated 

currents at the interface of the ac system. The waveforms illustrate the successful 

elimination of the selected harmonics from the line currents and the balancing of the 

line currents. The total harmonic distortion (THD, up to 3 kHz) of the 3-phase supply 

currents are reduced from 39.796, 16.7% and 42.3% to 11.6%, 8.3% and 10.9% for 

phase a, b and c, respectiveIy. 



Chapter 5: The Proposed Modular Active Power Filter Systern 

3-phase Distorted Current Waveforms 

3-phase lnjected Current Waveforms 

3-phase Compensated Current Waveforms 

-500 
0.0 0.02 0.04 0.06 0.08 O. 1 

Time (s) 

Fig. 5.16: Steady state simulation results of the proposed 3-phase modular active filter 

Case 2: 

In this section, a realistic example of a three-phase distribution system was used to 

demonstrate the effectiveness of the proposed 3-phase modular active conditioner. This 

example, shown in Fig. 5.17, is composed of a mixture of non-linear and linear 
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unbalanced loads and was loaded up to its rated capacity. The distribution of the 

nonlinear loads on the three phases is shown in Table 5.2. 

Three filter modules of the proposed 3-phase modular active conditioner were 

designed for the 3"' , 5" harmonies and current imbalance. Inserting the modular active 

filter in parallel at the point of cornrnon coupling (PCC) and injecting the appropriate 3d 

and 5" harmonic components succeeded in reducing the current THD from 9.15% to 

4.19% and successfully balancing the line unbalanced currents. The injected current 

( iW ) from the proposed 3-phase modular active filter as well as the filtered current (i, ) 

Table (5.2): The distribution of the nonlinear loads on the three phases 

and the distorted load current ( i, ) are shown in Fig. 5.18. 

Phases 

Phase (a) 
Phase (b) 
Phase (c) 

Note that since the 3rd filter module is switched at low fiequency, it could be used 

for both eliminating the third harmonic and balancing the Iine currents provided that its 

rating c m  accommodate the two jobs. 

Percentage of Non Linear Loads 
Compact fluorescent lamp 

(-1 
0% 
17% 

Diode bridge rectifier 
@BR) 
60 % 

50% 

Phase angle voltage controlIer 
(PAVC) 

40% 
33% 

40% 40% 20% 
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Fig. 5.17: 3-phase imbalance distribution system 

Again, a single CSC filter module c m  be assigned to filter 2 or more low masiinide 

harmonic currents. Nso, a CSC which is not being used to its full capacity, can be 

assigned the responsibility of reactive power control, i.e., behaving as a static VAR 

compensator (SVC) while performing the filtenng job. 
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Fig. 5.18: Steady state simulation results of the proposed 3-phase modular active filter 
with the distribution system shown in Fig. 5.17. 

5.1 1 Summary 

In this chapter, a novel modular single-phase active power filter system, based on 

current-source converter (CSC) modules is proposed which is capable of performing the 

harmonic filtering in 3-phase 4-wire distribution system. A topology which is suitable 

for balancing or/and harmonic rnitigation in 3-phase 3-wire distribution systems is also 
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introduced. The improved ADALINE is equipped with frequency tracking capabilities 

which have the ability to estimate simultaneously the time-varying fundamental 

frequency and h m o n i c  components within one cycle of the fundamental frequency. 

The proposed active filter system includes the extraction, computation and mitigation 

stages and offers the following advantageous features: 

High efficiency due to low conduction and switching losses. 

High reliability due to parallel connection of CSC modules and single harmonic 

treatrnent. 

Fast and accurate tracking of harmonic components and system frequency due to 

ADALINE-based control. 

Adaptation of dc-side current of the converter modules to the changes in the 

magnitude of the harmonies, resulting in optimum r, value and minimal 

converter losses. 

Additional savings in the running costs compared to the conventional one- 

converter approach 

Flexibility of selecting the harmonic order to be eliminated due to the 

availabili~ of information on the individual hamonic components. 
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The ability to extract the fundamental system voltage (the voltage at the 

cornmon point of coupling) in case the line voltage is harmonic polluted. 

The proposed active filter system has the ability to extract information rather than data 

fiom the power system. This information on individual harmonic components allows us 

not only to reduce the THD but also to suppress each harmonic component to meet the 

strike requirements of the IEEE 519 standard which emphasizes that each harmonic 

component be below a certain level. The information available on the magnitude of 

each harmonic component allows us to select the active filter bandwidth (Le., the 

highest harmonic to be suppressed). This increases the efficiency and improves the 

performance of the proposed active filter system. 

The analytical expectation has been verified by extensive simulation results using the 

EMTDC simulation package. 
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Chapter 6 

Power-Splitting Approach to 

Active Harrnonic Filtering 

6.1 Overview 

The proposed modular active filter explained in Chapter 5 is based on splitting the 

filtenng job among several active filter modules, each dedicated to take care of a 

specific harmonic. We will refer to this technique as Frequency Splitting. 

In this chapter, an zltemative approach to frequency splitting active harmonic 

filtenng which is based on splirting the filtering load equally among identical modules 

(Power-Splitting) is proposed. In this approach, the filtenng job is distributed equally 

among CSC filter modules of identical power circuit and control circuit design. The 

power rating and switching frequency of each CSC module is equal to the power rating 
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and switching fiequency required for the filtering task, divided by the number of 

modules. This makes it possible to use the present gate-tum-off switch technology to 

realize high-power active filters for the desired performance. The control system of the 

power splitting approach utilizes two ADALINES to process the signals obtained from 

the line. The first ADALINE (the Current ADALINE) extracts the harrnonic 

components of the distorted line current signal, whereas the second ADALINE (the 

Voltage ADALINE) estimates the fundamental component of the line voltage signal. 

The outputs of both ADALINES are used to constnict the modulating signals of the 

identical CSC filter modules. 

In the following sections, the system configuration is presented, followed by a 

description of the system performance and control scheme of the proposed power 

splitting modufar active filter. Some digital simulation results from EMTDC simulation 

package are presented at the end of this chapter to verify the theoretical expectations. 

6.2 System Configuration and Control Scheme 

The power splitting modular active power filter is illustrated in the block diagram of 

Fig. 6.1. The filtering job has been split arnong N identical active filter modules 

comected in parallel. Each filter module is a single-phase PWM- CSC comprised of a 

dc reactor (for dc-energy storage), a small capacitor (for filtering of switching 

harmonies) and four controllable (gate-turn-off) semiconductor switches. 
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If the total power rating of s (VA) and switching frequency of f, are required for 

successful performance, the power rating and switching frequency (bandwidth) of each 

module will be S M  and f, fM, respectively. 

Fig. 6.1: Block diagram of power splitting scheme 

For each phase, the line current signal (i,) is obtained through a current transformer 

(CT) and fed to the current ADALINE which adaptively and continuously estimates the 

fundamental and harmonic components of the line current signai. The phase voltage 

signal is obtained by a potential transformer (PT) and processed by another ADALINE 

(voltage ADALINE) to extract the fundamental component of the phase voltage 

waveform. The output of the current ADALINE is used to generate the PWM switching 
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signals for the CSC units which inject the corresponding distortion in order to suppress 

the harmonic components in the line current (i, ). The output of the second ADALINE 

is used as a synchronization signal in the control loop that maintains the dc-side current 

(1,) of each CSC module at a desired value. The output currents of al l  the CSCs are 

added at a junction point and injected into the power line. The total injected current, i,, 

is equal, but opposite to the surn of the harmonic components to be eliminated (çi, ). 

Fig. 6.2 shows the proposed control scheme for one CSC module of the proposed 

power splitting active filter. In this controller, the signal representing the sum of the 

current harmonics to be filtered (xi, ) is reconstructed from the output of the current 

ADALINE and divided first by the number of modules (M) and then by the gain of each 

CSC module. Note that a CSC under the PWM strategy behaves as a linear amplifier. 

The gain of this amplifier is equal to I,, I V * ,  where I,, is the dc-side current of the 

CSC and V, is the peak value of the ûiangular waveform to which the modulating 

signal of each CSC module is compared to generate the PWM switching signals. The 

carrier frequencies of the active fifter modules are the same and equal to the switching 

fiequency required for successful performance, f,, divided by the number of moduIes 

(M). The carrier signals of the modules are phase-shifted with respect to one another by 

I / M  multiplied by the switching period. This results in the elimination of switching 

fiequency harmonics in the total injected current. 
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Fig. 6.2 The Control Scheme of the proposed power splitting active filter (The 
Controuer in Fig. 6.1) 

To achieve a linear amplification, and to withstand the system disturbance and to 

compensate for the system losses, the dc-side current ( 1,) of each filter module should 

always be active and has a constant value. This can be accomplished by regulating 

the l,of each CSC by means of a feedback control loop. In this feedback loop, the 

modulating signal for charging the dc-side inductor is synchronized with the systern 

voltage ( v ,  ) obtained from the voltage ADALINE. This results in a small current at 

fundamental frequency contributing only to active power required for the regulation of 

1,. 
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6.3 Simulation Results 

6.3.1 Steady-State Performance 

The steady-state performance of the proposed power splitting modular active filter has 

been verified and tested using the same test system given in Chapter 5 Section 5.10.2.1. 

The test system with the filter configuration shown in Fig. 6.1 was simulated using 

EMTDC simulation package. In this case, the number of active filter modules is chosen 

to be 4 so that the power splitting scheme has almost the same installation cost as the 

single converter scheme for doing the same job [70]. In this exarnple, the active filter 

modules are used to elirninate up to the 13" current harmonic. From the summation of 

the harmonics (the 3'*, 5'- 7m, gh, Il', and 13"), a control signal is obtained which is 

used to generate the PWM switching pattern for each CSC module. Fig. 6.3 shows the 

waveforms of a distorted current, i, , the total injected current into the line by the active 

filter modules, i, , and the supply current, i, of the phase-a. 

The waveforms clearly illustrate the successful elimination of the selected 

harmonics from the line. The results prove the capabilities of the proposed power 

splitting active filter system in elirninating the selected harmonics from the line current. 

The total harmonic distortion (THD, up to 3 kHz) of the line current is reduced from 

44.5% to 6.9%. 
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Fig. 6.3: Steady state simulation results of the proposed power splitting modular active 
power filter. 

The proposed power splicting active power filter system is quite capable of dealing with 

unbalanced nonlinear load conditions, as it is based on the per-phase treatment of the 

line current harmonies. In a 3-phase 4-wire distribution system, three times as many 

CSC modules as necessary for each phase will be used. 
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6.3.2 Transient Performance 

The objective of this section is to test and evaluate the transient response of the power 

splitting modular active filter system to sudden variations in the magnitude and phase of 

the harmonic currents. A simple exarnple system consisting of two filter modules of the 

proposed filter with a non-linear load having variable magnitude and phase angle of the 

5" harmonic is simulated using the EMTDC simulation package. Again, the Current 

ADALINE input is (i,) and its output is the fundamental and the 5" harmonic. The 

modulating signal, zih (in this case the 5" harmonic signal), is used to control the CSC 

modules, and the peak value of xi, is used to produce the reference signal to regulate 

the dc-side current (b )  of each filter module. The input to the Voltage ADALINE is 

the system phase voltage. The output of the Voltage ADALINE is used to construct a 

sinusoidal control signal, which is in phase with the phase voltage. This signal will be 

used as a synchronization signal in the closed-loop control system for 1, regulation. 

Note that in order to keep 1, regulated, both the control signal and phase voltage shouId 

have the sarne frequency. This is taken care of by the voltage ADALINTE which is 

equipped with line frequency tracker. 

Fig. 6.4 displays the dc-side current (1,) of one of the CSC modules, the 

ADALNE output (5h harmonic magnitude and phase), the distorted current (i,), and 
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Fig. 6.4: Transient simulation results of the proposed power splitting modula active 
power filter. 
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the filtered current (i,) for suàden changes in the nonlinear load current. From Fig. 7.4, 

it is obvious that the controller of the proposed active filter is responding quickly and 

accurately to the sudden increase or decrease in the nonlinear load in an adapîive way. It 

also shows that the filtered current waveform (i,) settles to steady state within one 

cycle, and demonsaates the excellent response of the proposed active filter. The 

adaptation of I ,  to load changes is an outstanding feature of the controller used which 

resuits in optimum 1, value and minimal converter Iosses. 

6.4 Summary 

The proposed modular active filter offers the following advantage: 1) high efficiency 

due to low conduction and switching Iosses; 2) high reliability and 3) high 

serviceability. The proposed active power-line filter treats the ac system on a per-phase 

basis, has fast response and adapts to the load variations. Theoretical expectations are 

verified by digital simulation using EMTDC simulation package. 
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Chapter 7 

Power and Control Circuits 

Design 

The purpose of this chapter is to provide a detailed power and conaol circuits design of 

the proposed rnodular active power filter which is given in Chapter 5. Due to their 

similarity, the design and connol aspect of only one single-phase CSC filter module is 

considered. 

The design of the active filter module is given in Section 7.2. In this section, the 

design of the power circuit, the energy storage element and the output filter capacitor 

are discussed. Section 7.3 gives a design example of one of the CSC filter modules. The 
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control aspect of the proposed filter with a .  emphasis on a detail design of the closed 

loop control system of the single-phase CSC module is discussed in Section 7.4. 

7.2 Design of Active Fiiter Module 

7.2.1 Power Circuit 

The power circuit of each filter module is a standard single-phase PWM- CSC bridge. 

It consists of a dc reactor (for dc-energy storage), a small capacitor (for filtering of 

switching harmonies on the ac-side) and four controllable (gate-turn-off) semiconductor 

switches. The current which must be supported by each switch is the maximum dc-side 

current I ,  , that is the peak value of the corresponding harmonic current. The voltage, 

which must be supported by each switch, is the peak value of the system phase voltage. 

7.2.2 Energy Storage Element 

The energy element used in each CSC module is a dc reactor ( L ~ ~ ) .  The size of L~~ 

affects the peak-to-peak npple of the dc-side current of the CSC module. 

The dc-side inductor L,, of the CSC module is designed to limit the dc current ripple to 

a specified value, typically between 3% and 5%. The procedure to design the inductor is 

as fo~~ows: 
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The dc-side voltage of the CSC, which is placed across L,, is a pulse-width- 

rnodulated signal as shown in Fig. 7.la. To consider the worse case condition for the 

peak-to-peak npple in the dc-side current ), one can assume that the supply 

voltage (v,) is at the peak and the duty cycle is equal to 0.5. With the help of Fig. 7.lb, 

which shows the ripple component of the dc-side current, one c m  find 

Fig. 7.1: (a) The dc-side voltage of the CSC. (b) The dc-side current ripple. 

The minimum size of L, can be calculated from 

From the above equation, as the switching frequency increases, the size of the 

inductor that can limit the current ripple to a specified value decreases. But, increasing 

the switching frequency will increase the power loss in the switches. Therefore a 
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compromise between the switching frequency and the inductor size should be 

considered. 

7.2.3 Output Filter Capacitor 

The ac-side filter capacitor is required to filter out the switching harmonics of the 

compensating current generated by the active filter modules. The filter capacitor and the 

line inductance form a second order low p a s  filter which may amplie low-order 

harmonics. Therefore, the size of the output capacitor must be selected carefully to 

mzke sure that no low-order harmonics are close to the resonant frequency of the LC 

tank circuit. The higher the switching frequency, the larger the resonant frequency, and 

the smaller the filter capacitor. 

7.3 Design Example 

The design of the proposed active filter will be performed through a realistic numencal 

example. Assume a single-phase diode bridge rectifier is fed by a distribution feeder. It 

is intended to filter up to the 7" current harmonics. The magnitudes of the fundamentai, 

3d , sLh and '?" harmonic cumnts are as follows: 
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The switching frequency is chosen to be 2lxhighest harmonic order ta be 

filteredx f,. The number of the proposed active filter modules is chosen to be 3 each is 

dedicated to filter one harmonic. Each module consists of 4 switches and 1 dc reactor. 

Therefore, for 3d harmonic active filter module, 

the maximum value of the dc-side current I,  =0.33  p.^ ; 

the supply voltage peak value vs,ped = i pu. ; 

the switching frequency = f, = 21 x3 x 60 = 3780H, ; 

the dc-side reactor L~~ is designed to limit ripple cursent to 5%. 

From eqn. (7.3), one can easily find the dc-side reactor L ~ ~ , , ,  to be equal to 0.08 p.u. 

7.4 Modular Active Power Filter Control 

The control scheme for the Z" CSC module of the proposed modular active filter is 

shown in Fig.7.2. The controller of each CSC module consists of an open-loop control 
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and a closed-loop control. In the open loop system, the z"- harmonic signai 

A, sin(tmt +cp,) is reconstmcted from the output of the current ADALINE is divided by 

the gain r , / v ,  of the filter module (the amplifier) and then compared to a triangular 

waveform to create the PWM switching pattern for the switches of the CSC module 

dedicated to that particular harmonic. 

The converter Iosses and system disturbances, such as sudden load fluctuations, 

affect the dc-side currents of the CSC modules. For successful operation of CSCs as 

linear power amplifiers, rd= of each module must be regulated by means of closed-loop 

control. The control loop adjusts the amplitude of a sinusoidd template, synchronized 

with the system voltage ( v, ) obtained from the voltage ADALINE. The above signal 

will be used as a part of the modulating signal of the CSCs, as shown in Fig.7.2. It 

results in drawing a small current component at fundamental fiequency in phase with 

the system voltage (for charging up or increasing I , )  or out of phase by 180' 

with respect to the system voltage (for discharging the  or decreasing 1,). This 

action involves only real power transfer between the system and CSC modules whereas 

harmonic current injection involves only reactive power transfer. 

The energy stored in L~~ is given by: 



Chapter 7: Po wer and Control Circuits Design 13 1 

Charging L~~ h m  r,, to r ,  in a period of ~t is associated with a change in the stored 

energy: 

where pcSc and &are the real power drawn fiom the system by one of the CSC 

modules and the power losses in that module, respectively. P,, c m  be written as: 

where the positive and negative signs correspond to the cases where real power flow 

fiom the system to the CSC and from the CSC to the system, respectively. 

Substituting (7.6) in (7.5) yields 

or: 

The above relation clearly state that in order to increase r ,  , 

Le., icsc must be in phase with v,(i.e., positive sign in(7.8)) and the following must 

hold: 
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On the other hand, in order to decrease r ,  , 

40ss for i,-,,out of phase by 180° i.e., r, <&for iac in phase with ifs, or rcsc > -- 
v s  vs 

with respect to vs . 

A shown in Fig. 7.2, the control loop adjusts the magnitude and the phase of 

icsc based on the magnitude and the sign of the error between the I,,~. and r ,  . Each 

CSC has an independent control loop for r,regulation. This adds to the reliability of 

the system. Note that the value of the dc-side current is regulated based on the present 

peak value of the harmonic current available from the Current ADALINE. In other 

words, I , . ~  of each CSC is set to be equal to the amplitude of the corresponding 

harrnonic to be filtered by the CSC module. This will reduce the conduction and 

switching losses, which are proportional to the dc-side current, and enhance the system 

performance thanks to the adaptive nature of the ADALINE. 

For successful regdation of the CSC dc-side current, one should provide the 

appropnate compensation in the feedback loop for certain steady-state and transient 

response requirements using one of the conventional frequency-domain design methods 
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such as Bode plot. To design a proper controller, a Iinear mathematical model for each 

CSC, particularly the power stage, should be developed. The model is derived based on 

the state-space averaging technique. 

I l  I I 
PI I 

Controlter 1 

Id, regulation I 
! 

Fig. 7.2: Control Scheme of the 1" CSC module of the proposed active filter 

7.4.1 The System Equations 

A state space model is used to represent one of the CSC modules of the modula active 

power filter (the plant) which is shown in Fig. 7.3. The state variables have been chosen 

to be the voltage across the capacitor and the currents through inductors. According to 

the conventions of voltage polarities and current direction chosen in Fig. 7.3, the 

differential equations that govern the CSC operation c m  be found as: 
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Fig. 7.3 : Single-Phase Curent Source Converter 

di 
v, =e-Ri-L- (7.12-a) 

dt 

The input current i' and the output dc-voltage ",of the CSC in equation (7.12) are 

giving by 

i l  = Sidc 

VdC = Sv, 

where S represents the switching function that controls the converter switches in the 

CSC module, based on bipolar PWM. The CSC circuit, shown in Fig. 7.3, cm be 

represented by the equivdent circuit shown in Fig. 7.4. 
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To find the mathematical mode1 of the PWM-CSC module based on the state-space 

averaging technique, the switching function s has been replaced by its low-frequency 

content, i.e., the local average or instantaneous average which is the fundamental 

component. The high frequency components in the output current are eliminated 

because of the Iow-pass filter at the output of the converter. The switching function 

s can be replaced by the modulating signal ( m )  which is used to control the switches in 

the CSC module. 

Fig. 7.4: Equivalent circuit for CSC module given in Fig. 7.3 

Now, substitute equation (7.13) in (7.12) and use the moduiating signal (m), equation 

(7.12) can be written as: 
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Let's assume that: 

e=E,cosot, i=I,cos(ot+p), v, =V,cos(otty)and rn=Mcos(wt+8) 

Then, 

i = ( I , . v > ) ,  vC =(v,.Y) and idcare the state variables, m =(M.@ is the input and idc is the 

output. 

Substituting for e, i, vC and m in equation set (7.15), expanding and equating the 

coefficients of cosor and sinor terms on both sides of each equation, the following set 

of ls'order non-Iinear differential equations will be obtained: 

dVm - 1 -_- [ I ,  cos(r - y) - ~ i , ,  cos(8 -y )  1-o (7.16-a) 
dt C 
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dP 1 -=-[v,  in(^-^)-^,,, sing, ] 
dt LI, 

The equation set (7.16) c m  be written in the general form as: 

x = f(x, u) 

where 

The above system c m  be linearized around a certain steady-state operating point and the 

linearized system can be expressed as: 

a f aï where -1. and -1. are the Jacobian matrices, evaluated at the steady state operating ax au 

points. 



Chapter 7: Power and Contra1 Circuits Design 

Thus, the general linearized system c m  be represented by: 

X=Ax+Bu 

y =Cx+Du 

w here, 

In order to find the steady state operating point, the right hand sides in equation set 

(7.16) are equated to zero (dl the derivatives are equal to zero). Therefore, 
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Given the system parameters, 

solve for the I : , V ~  .r ' ,~'r ind 8' 

i.e., R, L.C. Rdc. Ldc and E,,, , as well as p>'and I:,  one c m  

h m  the above equations. Thus, 

- 1: sin y* - OCV; 0 = sin-' 
M * rdc 

The CSC closed loop control system for charging the dc-side current will be as shown 

in Fig. 7.5. 
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Synch. 
Signal 

O from e 

Controller Function d M cos( ot + O )  
(Compensator) Generator 

Fig. 7.5: Active power control loop for charging the dc-side current 

7.4.2 Controller Design 

The performance and stability of the feedback control system for regulating the dc-side 

current of the CSC, shown in Fig. 7.2, can be determined from the open-loop 

characteristics. Let us assume that the overall open loop transfer function is 

where G(S ) is the CSC transfer function between dl, and d~ obtained from state-space 

model, H( S )  is the transfer function of the low-pass filter ( see Appendix (C)). G,(s) is 

the transfer function of the compensator. 

The parameters of Gc( s ) should be designed such that Go& ) meets the following 

performance and desired characteristics: 
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1. The low frequency gain should be large so that the steady state error between the 

actual dc-current and the reference signal is smail. 

2. The gain at converter's switching frequency should be small. 

3. The cross over frequency (the frequency at which the open loop gain is unity) 

should be as high as possible but below the switching frequency for a fast 

transient response such as a sudden change of the load. 

4. The open loop phase at the cross over frequency (phase margin) should be at 

least 45'. 

Fig. 7.6 shows the Bode plot for the transfer function GH(s)using the numericai 

values given in the Appendix (C). It clearly shows that the transfer function has a fixed 

the gain and minimal phase at low kequency. Beyond the resonant frequency mo - , 
f i  

gain began to fa11 with slope of 4OdEVdecade and the phase tends toward -180'. 

The additional phase-lag should be considered in designing the compensation of 

such a system to provide enough gain and phase margins. To meet the above 

(l+rs) requirements simuItaneously, a phase-lag compensator of the form Gc(s) = K is 
( i tars)  

used. 
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Bode Diagrams 

Frequency W. radisec 

Fig. 7.6: Bode Diagrams of the open loop trhsfer function 

The parameters of the compensator GC(s)Can be determined using the Bode plot 

technique. The design critena and procedures are outlined in the Appendix (C).  The 

controller parameters are derived to be: 

K = 0.087 

The bode plots of the open loop transfer function including the controller are shown 

in Fig. 7.7. As seen, the gain margin of 55' has been achieved. 
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Frequemy (adlsec) 

Fig. 7.7: Bode Diagrams of the open loop transfer Eunction including the controller 

UNI Stap Flespwe of Campensated and Uncornpensated sy3tWW 
8 I I I I 1 I I I I 

Tirne (S) 

Fig. 7.8: Unit step response curves for the compensated and uncompensated systerns 
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The step response of the system is shown in Fig. 7.8 and shows that the steady- state 

enor of less than 5% has been achieved. 

7.5 Summary 

This chapter discussed the control system of the proposed modular active power filter 

and provided simplified design procedures of the CSC filter components. A design 

exarnple was introduced to illustrate the design procedures. The filter control scheme is 

clearly described. A detailed mathematical mode1 of the CSC filter module which is 

used in controller design is given. The design of the closed loop control system is also 

discussed. 
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Chapter 8 

Evaluation Of The Proposed 

Modular Approach 

8.1 Overview 

The objective of the chapter is to evaluate and compare the proposed modular active 

filtering approach (Frequency Splitting approach) against the conventional one- 

converter and power-splitting approaches frorn the installation and operating costs, as 

weU as performance points view. We will also draw some conclusions as to when and 

where each modular scheme should be used. 

Section 8.2 provides a cornparison between the proposed rnodular active (fiequency 

splitting) and the conventional 1-converter schemes. The comparative evaluation of the 
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two modular active filtering approaches from different points of view is discussed in 

Section 8.3. Finally, the summary of this chapter is given in Section 8.4. 

8.2 Frequency Splitting Versus Single Converter 

In this section, the proposed modular active filtering (frequency splitting) approach will 

be compared to the conventional 1-converter approach from the economicd, reliability, 

and flexibility points of view. Fig. 8.2 shows the block diagrams of the 2 schemes. 

1- Converter 
approach 

Frequency Splitting 
approach 

Fig. 8.2: Block diagram of the frequency splitting and 1-converter schemes. 

8.2.1 Economical Cornparison 

The installation cost of the modular scherne wiil be higher than that of the 1-converter 

approach, but the operating cost will be lower. Therefore, as the operating time 

increases, there will be a break-even point at which the total costs of the two schemes 
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become equal. Beyond the break-even point, the modula approach offers more savings. 

This is illustrated in Fig. 8.3, 

 total Cost ($) 1 - Converter approach 

Modular approach 
I 
I 
I 

I I 

o 
b 

break-even point Operating tirne (year) 

btal cost cornparison between the 1-converter scheme and fiequenc] 
converter scheme. 
Fig. 8.3: Tc 1 splitting 

The economic comparison will be performed through a realistic numencal example. 

Assume a single-phase diode bridge rectifier is fed by a 400 V feeder. It is intended to 

filter the 3'*, 5", and 7Lh current harmonics. The magnitudes of the fundamental, 3" , 5h 

and 7" harmonic currents, and the total distorted current (id,) are as follows: 

II = 247.5 A, rms (350 A, peak) 

1. = (Un) Il; I3 = 117 A, peak; I5 = 70 A, peak; 1, = 50 A, peak; bis = 205 A, peak. 

The switching frequency is chosen to be 21 x highest fiequency to be filtered. Each 

CSC has 4 switches and 1 dc reactor. The cost of electricity is calculated based on the 

Canadian rates (see Appendix D). 
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To simpliQ the problem, the installation cost includes 

148 

the cost of the components 

and the operating cost includes the cost of the conduction and switching losses. The 

costs are given in Canadian dollars. Table (8.1) and Table (8.2), sumrnarize the 

installation cost and the operating losses of both schemes, respectively. 

Table (8.2): Operating losses and cost per month of l-converter and frequency splitting 

Table (8.1): Installation costs of I -converter and frequency splitting schemes 

schemes 

1 Modular 
Converter Converter 

c 
O . - 
Y 
Cu s 
# - O 
Y U  
m 
t 
n 

Total Losses 
2324 kWWmonth 2082 kWh/month 

1 
Converter 

$897* 

$1705' 

~witches* 

~eactors*. 

* See Appendix D 

Modular 
Converter 

$897' 

$2O1SA 

$2915 Total Cost 

* B a s 4  on the Fuji dud NPT IGBT modules. 600 V 
** Based on the Hammond 5 mH dc reactors 
ASee Appendix E 

$2602 
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The yearly net saving in the operating losses using the modular scheme îs $ 226 

(based on the Canadian tariff, see Appendix D). This means that the difference between 

the installation costs of the 1-converter and the proposed fiequency splitting approaches 

($3 13) will be compensated in less than l+ years of operation. Since the dc-side current 

of each CSC module in the proposed rnodular filter is regulated at the present peak 

value of the corresponding harmonic, it is expected that the total losses will be less and 

hence the savings will be more. Also, on a larger scale, the savings will be greater. 

8.2.2 Reliability 

Since the power converter units of the proposed f'requency splitting active power filter 

are acting as standalone devices, a partial h m o n i c  cancellation of a distorted 

waveform is expected even if one or more power converters fail to operate. This will 

still result in a better line current spectrum than in the uncompensated case. Note that, in 

the one converter scheme, the converter failure means no harrnonic elimination at d l .  

8.2.3 Flexibility 

Since each converter is independently connected to the AC system, selective harmonic 

elimination based on the dominant harmonic component is possible. AIso, simultaneous 

rnulti-function strategies to take care of other disturbances, such as voltage or current 
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imbalance and voltage fluctuations are feasible. This will result in great flexibility and 

enhancement of the overail performance of the proposed active filter. 

8.3 Frequency-Splitting Approach Verses Power- 
Splitting Approach 

In this section, the two modular active filtering approaches are compared. 

8.3.1 Power rating 

The total power rating in power splitting approach is determined by the peak of the total 

distortion, i.e., Ei,),, , h being the harmonic order. In the frequency splitting scheme, 

the total power rating is determined by the sum of the peaks of the individual harmonics 

to be filtered, i.e., xi,,,, . Due to the diversity effect of harmonics, ai,),, < xi,,p, . 

This implies that for the sarne filtering job, the installed VA is higher in frequency 

splitting approach than in power splitting scheme. This naturally results in higher initial 

(installation) cost for frequency splitting technique. 

8.3.2 DC term: rd, 

In power splitting, the dc term ( t ,  ) of each converter is equal to /N , i.e., the 

peak of the sum of the harmonics to be filtered divided by the number of filter modules 
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in parallel. The information on ai,),, is necessary for sizing the individual converter 

modules and the regulation of I ,  of each module. The dc term (1, ) of each converter 

in frequency splitting is equal to i,.,, . This information is readily available in 

frequency splitting modular active filter. The information on the peak values of the 

individual harmonics allows for dynamic adjustment of I ,  of converter modules 

according to the present magnitude of the corresponding harrnonic components. This 

feature can result in a reduction of conduction and switching Iosses through avoiding 

unnecessary high I ,  values. 

8.3.3 Identical modules 

In the power splitting approach, the converter modules are identical. This offers an 

advantage in terms of maintenance and seniceability. The operator of the equipment 

has to keep only one type of module in stock. In frequency splitting, converter modules 

are different and can be replaced only by a sirnilar module. 

8.3.4 Conduction losses 

In the power splitting approach, the total conduction loss is proportional to the peak of 

the sum of harmonics to be filtered, Ei,),,, . The total conduction losses in the 

frequency splitting approach is proportional to the sum of the peaks of the harmonics to 
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be filtered, xi,,,, . Since & ih)ped <Zih,ped , the total conduction losses in the power 

splitting approach is less than those in the frequency splitting scheme. 

8.3.5 Switching losses 

In the power splitting approach, the switching losses in each converter module are 

proportional to [@ ~,&JN) ( f , ~ )  . The total switching loss of N converter modules will be 

proportional to [&h)prd~fn/~] . fSW is conventionally taken to be equd to 21 x highest 

order of harmonic to be fiiteredx fundamental frequency ( f i )  [4]. In the frequency 

splitting scheme, the switching frequency of a converter module is proportional to 

kh,peok )X Cf,,). Here, fm,, is assumed to be Zlx h x f, . As h increases, i,,,, decreases 

and f,.h increases. In typical non-linear loads such as diode rectifiers of a constant dc- 

1 side current, ih,,& = - , and fh = h . Since f ,., fh , therefore f,, = h . As a result, the 
h 

l switching loss of a converter module is proportional to -xhor is a constant for al1 
h 

converter modules. The total switching loss will be proportional to (hpe&fwh). AS 

seen, the total switching loss of the power splitting approach decreases as N (the 

number of modules) increases. For low N values, the total switching losses of the power 

splitting approach can be higher than those of the fiequency splitting scheme. As N is 

increased, at a break even point, the switching losses of both schemes become equal and 
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for larger N, the switching losses of the power splitting approach will be lower than 

those of the frequency splitting scheme. 

8.3.6 Economical Cornparison 

The economical cornparison will be perfonned through a realistic numerical example. 

Assume a single-phase diode bridge rectifier is fed by a 400 V feeder. It is intended to 

filter the 3d, 5h, and 7" current hannonics. Therefore, 3 modules of frequency splitting 

scheme will be used. The magnitudes of the fundamental, 3d, 5" and 7" harmonic 

currents, and the total distortion current (i, = xi, ) are as follows: 
h=35,7 

The switching frequency is chosen to be 2lxhighest order of harmonic to be 

filteredx f,. To simplify the problem, the installation cost includes the cost of 4 

switches and 1 dc reactor per CSC module and the operating cost is the sum of the costs 

of the conduction and switching losses. The cost of electricity is calculated based on the 

rates used by Waterloo North Hydro (see Appendix D) and is @en in Canadian dollars. 

The number of active filter modules of power splitting scheme is chosen to be 4 so that 

both schemes have alrnost the same installation cost. Table (8.3) gives the installation 
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costs of the two schemes and Table (8.4) lists the conduction and switching losses as 

well as the operating costs of both schemes. 

Table (8.3): Inst ng schemes 

I 
* Based on the Fuji dud NPT IGBT modules. 600 V 

0 ** Based on the Hammond 5 mH dc reactors 

Table (8.4): Operating losses per month of frequency-splitting power-splitting 
schemes 

Conduction 
Losses F Po wer-splitting 

approach 
Frequency- 

splitting approach 

From the data presented in Table (8.4), it can be concluded that in the power 

splitting approach, the operating costs are lower and thus, this scheme is more 

econornical than the fiequency splitting approach. 
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The results of the operating cost cornparison happen to be strongly case dependent. 

Under different loading conditions, the power splitting scheme might be more 

economicd than frequency splitting approach or vice versa. As the number of filter 

modules in power splitting approach ( N )  is increased, the conduction losses remain the 

same, but the switching losses will decrease. Generally speaking, if the initiai 

(installation) cost c m  be justified, the power splitting approach offers a more 

economical solution to modular active power filtering. 

8.3.7 Reliability 

The loss of one converter in the power splitting approach implies an increase of 

(LIN) ~ ~ 0 0 %  in the magnitude of each filtered harmonic component. The loss of a filter 

unit reduces the effective switching frequency and causes waveform distortion due to 

the incorrect phase shift between the carrier signds of the remaining filter modules. 

These effects are expected to cause an increase in the total harmonic distortion (TEID) 

beyond ( I I N )  ~ 1 0 0 % .  For the example given in the previous section, the 'MD (up to 3 

kHz) will increase fiom 5.9% to 48.7% if one active filter module is Iost. The 

considerable increase in the THD beyond expectation is due to additional distortion 

resulting from the drop in the effective switching frequency and the incorrect phase 

shift superimposed on it. 
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In the frequency splitting scheme, the loss of one filter module adds a percentage to 

the THD depending on which converter is lost. If the failed filter module is the one 

responsible for filtering the harmonic of the largest magnitude, the effect will be the 

most drarnatic. For the example given in the previous section, the THD (up to 3 Hz) 

will increase from 5.78% to 30.76% if the active filter module dedicated to the 3* 

harmonic current is lost and to 19.3% and 14.88% if the 5" active filter module and the 

7" active filter module are lost, respectively. From the above discussion, it can be 

concluded that in frequency splitting scheme, even if the converter responsible for 

filtenng the harmonic of the largest magnitude is lost, the resulting line current 

spectrum is better than that of losing a unit in power splitting approach. 

8.3.8 Flexibility 

In the power splitting approach, selective h m o n i c  elimination is not accornmodated. 

AIT the harmonics in the window defined by the bandwidth of the filter system wiH be 

filtered. The fiequency splitting scheme allows for selective harmonic elirnination 

thanks to the availability of information on individual harmonic corriponents. By 

implementing a cntenon in the control algonthm, the harmonics of magnitude higher 

than a specified value will be selected for elimination and the corresponding active filter 

modules will be activated and connected to the power line. This feature resuks in 

reduced overall Iosses. 
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8.3.9 Steady-State Performance 

To test the performance of the two modular active filter schemes in steady state, the 

example given in section 8.3.6 was simulated using the EMTDC simulation package. 

Fig. 8.4(a) shows the distorted current (i,) waveform. Fig. 8.4@) and Fig 8.4(c) display 

the filtered current (i, ) conditioned by frequency splitting and power splitting modular 

Fig 8.4: Steady state simulation results of the two modular active filter schemes 
(a) Distorted current ( i, ) waveform 
(b) The filtered current for fiequency splitting scheme 
(c) The filtered current for power splitting scheme 
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active filter schemes, respectively. The waveforms clearly demonstrate the effectiveness 

and validity of both schemes in eliminating the selected harmonics fkom the line 

current. The THD (up to 3 kHz) of the filtered current of Fig. 8.4(b) is 5.78%, and that 

of Fig 8.4(c) is 5.9%, down fkom 37.34% in the distorted Iine current. 

8.4 Summary 

The cornparison between the proposed modular active filter (frequency splitting 

approach) and the conventional 1-converter scheme shows that the proposed filter is 

more economical, d iable  and flexible. 

The comparative evaluation of the power splitting and fiequency splitting 

approaches for active power filtering shows that when the initial (installation) cost is 

not a limiting factor for the number of filter modules, the power splitting approach 

offers a more economical solution to modular active power filtering. In the power 

splitting scheme, the diversity effect of harmonics results in the reduction of the 

installed VA and operating costs. The frequency splitting approach, on the other hand, 

offers the following advantages thanks to the availability of full information on 

individual harmonic components: 1) reliability; 2) flexibility (selected harmonic 

elimination) and 3) dynamic adjustment of the dc-terms of the CSC fiiter modules 

according to the present magnitudes of the individual hamionics to be filtered (resulting 

in reduced losses). Moreover, for hannonic current components that have high ratings, 
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the concept of the power splitting can be used to compensate a particular harmonic 

using the frequency splining approach. 
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Chapter 9 

Conclusions and Future Work 

The main objective of this research is to develop an innovative harmonic rnitigating 

technique using a modular active power filter. In this thesis, an efficient and reliable 

modular active harmonic filtering approach has been taken. Rather than trying to 

provide active filtering for the entire spectrum of harmonic components, the proposed 

modular active power system targets the low-order harmonics individually. 

Different active power fütering schemes and concepts have been introduced for the 

purpose of power quality improvement. The power converter used as an active filter is 

rated based on the magnitude of the injected current and is operated at the switching 

frequency required to perform the filtering job successfully. Almost dl of the recently 

proposed active power filters are realized by one PWM voltage source or current source 

converter. If the converter's power rating and switching frequency are both high, 

excessive losses are expected 
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The proposed modula active filter system consists of a number of parallel single- 

phase CSC modules: each dedicated to suppress a specific low-order harmonic of 

choice (Frequency-Splitting Approach). The power rating of the modules will decrease 

and their switching frequency will increase as the order of the harmonic to be filtered is 

increased. As a result, the overall switching losses are considerably reduced due to a 

balanced "power ratingn-"switching frequency" product and selected harmonic 

elirnination. 

The reliability of the existing active filters is another major concem. Most of the 

existing active power filters connected to distribution systems consist mainly of a single 

power converter with a high rating which takes care of al1 the harmonic components in 

the distorted signal. A failure in any of the active filter devices will result in no 

compensation at dl .  Also, active power filters that are based on cascade rnulti-converter 

and multi level topologies suffer from low reliability. Since the power converter units of 

the proposed rnodular active power filter are acting as standalone devices, a partial 

compensation of harmonic distortion is expected even if one (or more) power converters 

fails to operate. This will still result in a better line current spectmm than in the 

uncompensated case. 

The proposed filter system exhibits great flexibility and supenor overall 

performance due to the independent connection of the filter modules to the AC system 

and the possibility of the selected harmonic elirnination based on the dominant 
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harmonic component. To take advantage of the diversity pnnciple, the proposed filter 

system can filter a group of harmonies using one filter module or more by combining 

them and cornpensating them in groups. Also, simultaneous multi operation strategies to 

take care of other disturbances, such as voltage or current imbalance and voltage 

fluctuations are feasible. 

The control methodology of the active power-line filter is the key element for 

enhancing its performance in rnitigating the harmonic current and voltage waveforms. 

Active power line filtering can be performed in the time domain or in the frequency 

domain. The control system processes the distorted line current and the voltage signals 

and forces the converter to inject the proper compensating current. At the sarne time it 

regdates the dc-side current or voltage of the converter. One important factor which 

influences the performance of the active power filters in the Erequency domain is the 

speed and accuracy of the detection tool for the power Line harmonic currents. In this 

thesis, the ADALINE-based harmonic analyzer has been improved by modifjhg the 

original ADALINE algorithm to track the system frequency varÏations. The proposed 

estimation scheme is tested on simulated data and compared with the Kalman filter and 

FFT algorithms. The improved ADALINE scheme provides excellent accuracy and 

convergence speed in tracking the fundamental frequency and the harmonic 

components. It is highly adaptive and is capable of estirnating the variations in the 
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fundamental fiequency, amplitude and phase angle of the harmonic cornponents. It 

exhibits better performance compared with the Kalman filter and FFT approaches. 

Another important factor, affecting the control of the active filters, is the derivation of 

the synchronizing signal, which is in phase with the bus voltage and is used to regulate 

the dc-side current or voltage of the power converter. In this thesis, a new ADALNE- 

based controiler scheme for the proposed modular active filter is introduced. The 

proposed controller utilizes another ADALiNE to track the system voltage and extract 

the fundamental component of the source voltage which is used as a synchronize signal 

for ther, regulation loop This improves the filtering capability of the proposed 

modular active filter even if the source voltage is harmonic polluted. The controller 

adjusts the dc-side current r ,  of the converter modules according to the magnitude of 

the harmonics to be filtered. This results in optimum dc-side current value and minimal 

converter losses. 

The proposed controller is also responsible for invoking specific CSC filter 

module(s) to start the filtering job by connecting it to the electric grid. The automated 

c o ~ e c t i o n  of the corresponding filter moduIe(s) is based on decision-making niles in 

such a way that the IEEE 519-1992 limits are not violated. The information available on 

the magnitude of each harmonic component allows us to select the active filter 

bandwidth (i.e., the highest harmonic to be suppressed). This will result in more 

efficiency and higher performance. 
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In this research, the comparative evaluation on practical use in industry shows that the 

proposed filter is more economical, reliabIe and flexible compared to the conventional 

approach of filtering al1 the harmonics using one converter. The cornparison between 

the power splitting and frequency splitting approaches presented in Chapter 8 shows 

that the power splitting scheme offers a more economical solution to modular active 

power filtenng when the installation cost is not a limiting factor. The fi-equency splitting 

approach, on the other hand, is more reliable, flexible and is capable of dynarnic 

adjustment of the dc-terms of the CSC filter modules according to the present 

magnitudes of the individual harmonics to be filtered. This results in reduced losses. 

Moreover, for harmonic current components that have high ratings, the concept of 

power splitting c m  be used to compensate a particular harmonic using the ffequency 

splitting approach. 

The proposed active power filter system is quite capable of dealing with unbalanced 

nonlinear ioad conditions, as it is based on the per-phase treatment of the line current 

harmonics. Iri a three-phase 4-wire distribution system, three single-phase CSCs will be 

required for filtenng a specific harmonic in the three lines. The frequency spiitting 

concept is also applicable to three-phase 3-wire distribution systems. In this case, 

instead of using three single-phase CSC modules, only one three-phase module is 

required to suppress a specific harmonic of choice in the three lines. 



Chapter 9: Conclusions and Future Work 165 

In light of the drawbacks presented in previously proposed schemes and concepts, 

the active filtenng topology and control scheme proposed in this thesis have been 

successfulIy demonstrated to be a valuable contribution to active power harmonic 

filtering. The concept and performance of the proposed filter system have been verified 

by extensive simulation experiments using the EMTDC and the MATLAB simulation 

packages. 

The followings are sorne specific conc~usions which refiect the bold features of the 

proposed modular active filter system: 

1. The proposed fiequency splitting modular design which is based on filtenng 

specific harmonies resuIts in high efficiency due to Iow conduction and 

switching Losses. This results in more savings in the running costs compared to 

the conventional approach. 

2. The proposed filter exhibits high reliability due to the parallel connection of 

CSC modules and single harmonic treatment. 

3. The ADALINE based-hannonic analyzer hm been utilized for the first time as a 

part of active power filtering. This enhances the performance response of the 

proposed filter due to the adaptability and the ADALINE's speed in tracking the 

hannonic components. 
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4. The ADALINE-based measurement scheme has been enhanced by modimng 

the original algorithm to track the fundarnental frequency variations. This is 

important for successful charging of the dc-side current of the CSCs and hence 

successful harmonic filtering. 

5. The controller of the proposed active filter has been improved by utilizing 

another ADALINE to track the system voltage to extract the fundarnental 

component of the source voltage which is used as a synchronize signal for 

the I ,  regulation loop. This irnproves the filtering capability of the proposed 

modula active filter even if the source voltage is harmonic polluted. 

6. The controller is further enhanced by dynamically adjusting the dc-side current 

r ,  of the CSC filter modules according to the present magnitudes of the 

individual harmonies to be filtered. This results in optimum dc-side current 

value and minimal converter losses. 

7. The CSC topology has been chosen for its superior performance compared with 

VSC topology, in terms of direct control of the injected current (resulting in 

faster response in time-varying load environment) and lower dc-energy storage 

requirement (resulting in lower reactive element rating and reduced losses). 

8. The proposed filter has the capability to select harmonic elimination due to the 

availability of information on the individual harmonic components. Also, a 
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single CSC filter module can be assigned to filter two or more harmonies that 

have low magnitudes. 

Suggestions for Future Work 

During the course of this research, the following issues have been detected and are 

listed here as possibly topics for future work in this area. 

1. The application of the proposed active filter system to mitigate other power 

quality problems such as sags and sweIls. 

2. This work can be extended to investigate the possibility of balancing the 

unbalanced currents in 3-phase 4-wire distribution systems. 

3. The focus of this research is on the fundamental theoretical problems rather than 

the hardware implementation. The proposed active filter could be 

experimentally verifed and compared to the theoretical work done in this thesis. 

4. Quantitive study on the savings due to dynamically adjusting the dc-side current 

I~~ of the CSC could be conducted. 

5. Similar topology with higher voltage and current ratings may be designed to be 

used for other application such as AC and DC active harmonic filtering of 

HVDC systems. 
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APPENDIX (A) 

Discrete Fourier Transform (DFT) 

The frequency content of a periodic stationary discrete time signal x(n) with M samples 

c m  be expressed using the discrete Fourier transform as: 

where R = 2vM 

the inverse Fourier transfonn is 

Both the time domain and the frequency domain are assurned penodic with a total of 

M samples per period. The direct and quadrature components of the n" harmonic of a 

distorted waveform V can be expressed as 
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where V, is the sample of the distorted wavefonn at time r, ; k = 1.2, ..., M . 

From equations (A.3 and A.4), one c m  calculate the amplitude and the phase angle 

of the n" harmonic using: 

vn =,/m (A-5) 
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APPENDIX (B) 

Artificial Neural Network 

An artificial neural network (ANN) is a connection of many neurons that mimic the 

biological system with the help of electronic computational circuits or cornputer 

software. It is d so  defined as neuro-computer or comectionist system in the literature- 

An aaificid neuron, called neuron or processing element (PE), is a concept of 

simulating the biological neuron. Fig. B.l shows the structure of an artificial neuron. 

The input signals XI, X2, X3, .. . .. .., X. are normdy continuos variables, but can also be 

discrete values. Each input signal flows through a gain cailed weight or connection 

strength. The summing node accumulates al1 the input weighted signals (activation 

signal) and then passes it to the output through the transfer function. The transfer 

function can be step or threshold function (passes logical 1 if the input exceeds a 

threshold, else O), signum function (output is +1 if the input exceeds a threshold, else - 

l), or linear threshold (with output clamped at +1). The transfer function can aIso be a 

nonlinear continuos type, such as sigmoid or hyperbolic tan. The most commonly used 

function is the sigrnoid function and is aven by 
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where a is the coefficient that determines the slope of the function that changes between 

the two asymptotic values (O and +1). These transfer functions are also known as 

squashing functions, because they squash or limit the output between the two 

asymptotes. 

Neural networks can be classified as feedfomard (or layered) and feedback (or 

recurrent) types, depending on the interconnections of neurons. A network can also be 

defined as static or dynaniic, depending on whether it is simulating static or dynarnicai 

systems. Fig. B.2 shows the structure of a feedforward multilayer network with n-input 

and n output signds (the number of input and output signals may be different). In this 

network, one layer of neurons forms the input layer and a second forms the output layer, 

with one intermediate or hidden layers existing between them. It is assumed that no 

connections exist between the neurons in a pârticular layer. 

weights 
x , 

w 
Fig. B. 1 Basic artificid neuron mode1 

pi(.) 
N e u r o n  

Inputs "' x, 
output  

Yi 

Sigrnoidal 
Summing function 

X" 
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The input and output layers have neurons equal to the respective number of signals. 

The input layer neurons do not have transfer functions, but there is a scale factor in each 

input to normalize the input signals. The number of hidden layers and the number of 

neurons in each hidden layer depend on the complexity of the problem being solved. 

The input layer transrnits the computed signals to the first hidden layer, and 

subsequently the outputs fiom the first hidden layer are fed, as weighted inputs, to the 

second hidden layer. This construction process continues until the output layer is 

reached. Network input and output signals may be logical (O, 1), discrete bi-directional 

(21) or continuos variables. The sigrnoid output signal can be clamped to convert to 

logical variables. It is obvious that such structure (parallel input parallel output) makes 

the neural network a rnultidimensional computing system where computation is done in 

a distributed manner. 

For a feedforward neural network descnbed earlier, weight learning is most 

commoniy camied out by the method of backpropagation. Backpropagation learning 

rule aiters the weight matrices between the output-hidden-input layers in a backward 

fashion. It camies out a rninimization of the mean square error between the network 

outputs and a set of desired values for those outputs narnely di (i = 1, - - , n) . 
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Fig. B.2 Structure of feedforward neural network 

An appropnate enor function is give by: 

and this error, on the output rnust first be minimized by a best selection of output layer 

weights. Once the output layer weights have been selected the weights in the hidden 

layer next to the output can be adjusted by employing a linear backpropagation of the 

error term fiom the output layer. This procedure is followed until the weights in the 

input layer are adjusted. 

Backpropagation rule uses out steepest descent corrections on the given weight 

matrices and its step-by-step procedure can be surnrnarized as [B. 11: 

Consider a network with M layers (m = 1, 2, . . ., M )  and use y v o r  the output of the i" 

unit in the mth layer. will be synonym for xi, the ith input. Let wt7 mean the 

connection from yIm-' to y; .  Then the backpropagation procedure is: 
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1) Initialize the weights to small random values. 

2) Choose an input pattern xi and apply it to the input layer (d) so that 

y9=xi foralln 

3) Propagate the signal forwards through the network using 

for each i and m until the final outputs y"ave been calculated. 

4) Compute the deltas for the output layer 

8; = g'(hiM )[di - 1 

by cornpanng the actual outputs with the desired ones di for the corresponding input 

pattern. 

5) Compute the deltas for the proceeding layers by propagating the errors backwards 

8M = g'(hy )[di - J 

for rn = M, M-1, . . ., 2 until a delta has been calculated for every unit. 

6) Use 

AwlT = $jY y"-L 
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(1 = leaming rate parameter) to update the connections according to wtym = w,? + Aw, 

7 )  Go back to step 2 and repeat for the next pattern. 
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APPENDIX (C) 

System Parameter and Controller Design Procedure 

Supply Voltage E, =170 V 
Line inductance =0.72 mH, 
Line resistance = 0.272 Q 
Output Capacitor = 2.65 p F. 
dc-side inductance=30 mH. 
dc-side resistancd.38 62 
Fundamental frequency = 60 liIz. 
dc-side current ( Id, ) = 15A, 

q3* = 0.0, 

Using the above system parameters and equation set (7.19), the matrices A, B, C and D can be 

detennined as: 

C = [O O O O !] and D = [O] 
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H (s) = 
1 

0.02s + 1 

The objective is to design a controller that satisfy the following specifications: 

S teady state error ( e, ) to a unit step should be l e s  than 5%. 

Phase margin of the compensated system should be more than 50". 

Procedure: 

1. Use the final value theorem to calcuIate the low frequency gain k 

required to achieve e,  specifications. For a type O system and a unit step 

k, = lim kGH (s) 
s 4  

and 

-. k = 0.087 

2. Make the Bode plot of k G H ( s )  
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Bade Oiagrams 

Fig. C. 1: Bode diagram of kGH(s)  transfer function 

3. find the frequency o; at which the uncompensated phase margin is 

Therefore, from Bode plot of kGH (s) , shown in Fig. C. 1, 

w, = 50 rad /sec and, 

4. The gain 

frequency) 

reduction 

is equal to 

required to make o;(the new zero crossover 

9 d B .  
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I l l  = -20 log,, (a) = -9 d~ 
Le. a, . 

.: a = 10% = 2.82 

5. place the zero one decade below 
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APPENDIX (D) 

Cost of electricity according to waterloo North Hydro: 

The first 250 kWmonth,  $O.l2l/kWh, 

The next 12,000 kWmonth,  $O.O78/kWh, 

The next 1,851,350 kWmonth,  $0.057/kWh7 

Above 1,863,600 kWmonth,  $O.O78/kWh. 

APPENDIX (E) 

Conduction Losses: 

Pcond, loss = 2 (switches) x l& x Vf 

Vf = Forward voltage drop of an IGBT. 

Switching Losses: 

VoFF = Half-cycle average of the voltage across IGBT during OFF-period 
= Half-Cycle average of line voltage 

bN = Current through IGBT during ON-penod 
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