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Abstract

Metric theories of gravity offer the singular beauty of endowing spacetime with
a symmetric, second-rank tensor field g, that couples auniversally to all non-
gravitational fields. This unique operational geometry is embodied in the validity
of the Einstein Equivalence Principle (EEP).

Although the empirical evidence in support of EEP has reached an impressive
level of precision, it has only probed effects that are sensitive to nuclear electromag-
netic interactions (z.e., the baryon/photon sector of the standard model). In this
thesis we provide the theoretical framework to confront EEP with the interaction
realm of quantum electrodynamics (QED).

We reformulate QED within the context of non-metric theories of gravity and
calculate the main radiative corrections affecting the atomic energy levels (Lamb

shift) and the gyromagnetic ratio of fermions (anomalous magnetic moment).

We find that a non-metric spacetime structure induces qualitatively new effects
in the behavior of radiative corrections that leave distinctive physical signatures.
Such effects allow the possibility of setting new bounds on the validity of the EEP.
In fact from present experiments, we obtain the most stringent bound yet noted for

the non-metric parameters related to leptonic matter.
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Chapter 1

Introduction

1.1 The Einstein Equivalence Principle (EEP)

The postulate that the equivalence between uniform acceleration and a uniform
gravitational field applies to all physical phenomena allowed Einstein to construct
a theory of gravitation, general relativity, which revolutionized our conceptual un-
derstanding of the universe. It allowed a description of physics in which the effects
of gravitation are manifest as the dynamics of the geometry of a curved space-
time. That this geometry is unique for all forms of mass-energy is a consequence

of Einstein’s equivalence postulate.

Only decades later was it realized that this postulate is the foundation for
a rather broad class of theories of gravitation (which includes general relativity)
known as metric theories. Any theory of gravity that describes spacetime via a sym-
metric, second-rank tensor field g,,, that couples universally to all non-gravitational
fields respects the aforementioned equivalence between uniform acceleration and

uniform gravitational fields, and is by definition a member of this class.

1
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Metric theories therefore describe the interaction of matter (and any other non-

gravitating field) with respect to an external gravitational field via an action

Sne = Sna(¥nG, Guv) (1.1)

where Syc represents the non-gravitational action (i.e., it excludes self-
gravitational systems) as given for the current standard model of particle physics
(where Y¥ne denotes the bosonic and fermionic fields). The different fields Yyg
feel the gravitational influence of the external world only through their coupling
to one and the same metric tensor g,,. Non-metric theories of gravity break this
universality by adding extra gravitational fields (scalar, tensor, etc.), which couple
differently to different forms of matter.

A number of physically distinct principles can be derived from the condition
(1.1) [1]. The most basic of these is the Weak Equivalence Principle, or WEP,
which states that all freely falling bodies (z.e. bodies which are not acted upon by
non-gravitational forces such as electromagnetism and which are small enough so
that tidal effects are negligible in a given gravitational field) move independently
of their internal structure or composition, and has as its one of this implications
that bodies of differing internal composition (or mass-energy) fall with the same
acceleration in a gravitational field. A natural extension of this to include all
non-gravitational phenomena states that, in addition to WEP, the outcomes of
non-gravitational test experiments (such as the measurement of an electromagnetic
current in a wire) performed within a local, freely falling frame are independent
of the frame’s location (local position invariance, LPI) and velocity (local Lorentz
invariance, LLI) in a background gravitational field. The combination of WEP, LLI
and LPI embody what is now known as the Einstein Equivalence Principle, or EEP.
Note that EEP does not refer to the structure and dynamics of the gravitational
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field itself, but states only the universality of the gravitational coupling with respect
to matter. The further extension of this principle to include self-gravitating systems
is known as the Strong Equivalence Principle, or SEP.

The assumption (1.1) of a universal gravitational coupling is a very strong condi-
tion, which further implies that the outcome of local non-gravitational experiments
should be independent of the effects of an external (slowly varying) gravitational
field. In this respect, direct tests of EEP may be carried out as follows. Con-
sider an Earth-based laboratory in which local non-gravitational experiments are
performed. External gravitational potentials generated by the Earth, the Sun, the
planets, the Galaxy, etc. pervade this laboratory, and any non-metric couplings
of these potentials to matter can cause the outcomes of experiments to depend on
the laboratory’s position, orientation or velocity relative to these sources. This is a
direct violation of (respectively) LPI and LLI. The character of a violation reflects
the form of the specific non-metric coupling responsible for it. It is only when LPI
and LLI are valid that local non-gravitational dynamics is indistinguishable from
special relativistic dynamics as predicted by metric theories of gravity.

In summary, the idea that gravity can be understood as a manifestation of
spacetime curvature is rooted in the validity of the EEP. Metric theories (such as
general relativity and Brans-Dicke Theory) endow spacetime with a symmetric,
second-rank tensor field that couples universally to all non-gravitational fields [2],
so that in a local freely falling frame the three postulates of EEP are satisfied. By
definition, non-metric theories do not have this feature; by coupling auxiliary grav-
itational fields directly to matter they violate universality and so permit observers
performing local experiments to detect effects due to their position and/or velocity
in an external gravitational field.
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1.2 Enough Empirical Support for EEP?

Specific empirical consequences of the postulate (1.1) are given by the universality
of free-fall (or UFF, a necessary consequence of WEP), the universality of the
gravitational redshift (LPI), the constancy of the constants (another manifestation
of LPI), and the isotropy of space (LLI).

The UFF has been probed via torsion balance or EGtvos type experiments,
which search for quantitative differences between the passive gravitational mass
and the inertial mass of a given body. The former is a dynamical quantity that
determines the gravitational force acting on a body (i.e. its weight), whereas the
latter is a kinematical quantity that determines the response of a body to any
applied force. There is no logically necessary reason why these quantities must be

equal (in appropriate units), and so we therefore expect
my, =myr + Y niE4/c (1.2)
A
where E4 is the internal energy generated by interaction A, and n* is a dimension-
less parameter that measures the strength of the WEP violation for body A.
For two different bodies we can write the acceleration as
a=+ Ty e+, . a9
A mlcz A mzcz

A measurement on the relative difference in acceleration yields the so called “Edtvos

ratio” given by
(1.4)

— (%1 ~ G2, 4 _Et _ E{
q_2|81+azl—§q (ﬂ'l.lc2 1‘".2(22

In the gravitational field of the Sun, this ratio was constrained to be

10~ [3]
lnl<{ 0 g (1.5)
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where Dicke and collaborators [3] tested for differences in acceleration between
aluminum and gold, and Braginskii and Panov [4] for aluminum and platinum.
More recent experiments, which were seusitive to the gravitational field of the Earth
achieved similar bounds for beryllium and copper, and aluminum and beryllium [5].

The previous limit in turns constrains the violating parameter n# related to
each A-type interaction. This is possible provided the various interactions do not
conspire towards special types of cancellations so that independent bounds can be
gathered in each case (see Ref.[6] for quotations of those limits when referred to in-
teractions stemming from the atomic nucleus: strong, electrostatic, magnetostatic,
hyperfine, etc.).

In a redshift experiment the local energies at emission w,., and at reception
Wyec Of a photon transmitted between observers at different points in an external

gravitational field are compared in terms of

g =" 2 AU(1-E) (1.6)

Wem
The anomalous redshift parameter (Z) measures the degree of LPI violation. It
signals the breakdown of the universality of gravity, and so depends on the nature
of the transition involved in the experiment (e.g., fine, hyperfine, etc.).

The most accurate test for the gravitational redshift corresponds to the gravity
probe A experiment [7], which was able to constrain |E¥f| < 2 x 10~%. This
experiment employed hydrogen maser clocks, where the governing energy transition
is given by the hyperfine splitting due to the interaction between the magnetic
moment (spin) of the nucleus (proton) and electron.

One class of experiments probing variation of the fundamental constants cor-

responds to those searching for a temporal variation of the fine structure constant

a. These tests can be divided into two categories: cosmological and laboratory
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measurements. The first ones look for variations within cosmological time scales
and the others are based on clock comparisons over time durations of months or

years.

Laboratory measurements rely on the ultra-high stability of the atomic standard
clocks and set limits a few orders of magnitude less stringent than the cosmological
measurements. One of the most sensitive tests for a—variation comes from the clock
comparison between Hg* and H hyperfine transitions [8]. This experiment set an
upper bound of &/a < 3.7 x 10~ /yr after a 140 day observation period. Note
that any variation of a, whether a cosmological time variation or a spatial variation
via a dependence of a on the gravitational potential, will force a variation in the

relative clock rates between any such pair of clocks.

Time dilation experiments look for violation of isotropy, or similarly for a pre-
ferred direction in space. If LLI were violated the energy levels of a bound sys-
tem such as a nucleus could be shifted in a way that correlates the motion of the
bound particles in each state with the preferred direction, leading to an orientation—
dependent binding energy. The most precise experiments of this sort [9, 10] search
for a time dependent quadrupole splitting of Zeeman levels. They compare the
nuclear-spin- precession frequencies between two gases with nuclear spin I = 3/2
and I = 1/2, the latter being insensitive to a quadrupole splitting. These results
place the constraint (1 —c?/c}) < 6 x 107! on the relative gravitational coupling
between electromagnetism and baryonic matter, given by the discrepancy between
the speed of light (c. ) and the limiting speed for baryons (cg).

We see then that tests of the validity of the various facets of EEP have been
carried out to impressive levels of precision. Why, then, ought one to resist the
temptation to conclude that future experiments should ignore non-metric theories

and focus only on winnowing out the correct metric theory of gravity? There are
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four basic reasons. One is the anticipated improvements in precision of upcoming
experiments by as much as six orders of magnitude [11]. If such experiments yield
improved limits on EEP-violation, this will afford us a much greater degree of
confidence in our physical theories under the extreme conditions present in many
astrophysical and cosmological situations. Another is historical: attempts to unify
gravity with the other forces of nature have yielded a number of logically possible,
physically well-motivated, alternatives to general relativity which do not naturally
respect the EEP [12]. A third reason is that tests of the EEP can provide us with a
unique way (perhaps the only way) of testing modern physical theories that unify
gravity with the other forces of nature insofar as such theories typically generate new
interactions which violate the equivalence principle [13]. Finally, EEP experiments
to date have probed effects that are predominantly sensitive to nuclear electrostatic
energy. Although violations of WEP/EEP due to other forms of energy (virtually
all of which are associated with baryonic matter) have also been estimated [14], the
bulk of our empirical knowledge about the validity of the equivalence principle is
in the baryon/photon sector of the standard model.

Comparatively little is known about the empirical validity of the EEP for sys-
tems dominated by other forms of mass-energy [15]. Such systems include photons
of differing polarization [16], antimatter systems [17], neutrinos [18], mesons [19],
massive leptons [20], hypothesized dark matter [21], second and third generation
matter, and quantam vacuum energies [22]. There is no logically necessary reason

why such systems should respect any or all of WEP, EEP or SEP.

In order to establish the universal behavior of gravity, we are therefore compelled
to consider the validity of the EEP over as diverse a range of non-gravitational
interactions as is possible. It is the aim of this thesis to extend this regime to

the quantum field domain of radiative correction, namely vacuum fluctuations of
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leptonic fields in the presence of an electromagnetic source. Also, in this way, we
will be gathering information about the less explored non-baryonic sector of the
standard model.

1.3 Quantum Field Domain

Potential violations of the EEP due to vacuum energy shifts, which are peculiarly
quantum-mechanical in origin (i.e. do not have a classical or semi-classical descrip-
tion) provide an interesting empirical regime for gravitation and quantum mechan-
ics. Effects of this type include Lamb-shift transition energies in Hydrogenic atoms
and anomalous magnetic moments of massive leptons. Tests of the EEP in this
sector will provide us with qualitatively new empirical windows on the foundations

of gravitational theory.

Quantum electrodynamics (QED) is the theory of charged leptons with photons,
in which all observable effects can be expressed in terms of measured charge and
mass. It offers more than a mere marriage of quantum mechanics and relativity. The
wave-particle duality of quantum mechanics is fully incorporated into the theory,
and charged particles and photons are treated as quantized fields. The tremendous
success in predicting experimental facts ranges from very refined details of the
properties of electrons and muons and atomic spectra to interactions in the multi-
GeV range. It was the experimental discoveries of the Lamb shift in hydrogen and
the anomalous moment of the electron in the 1940’°s, which stimulated the evolution
of QED to its present precise form. These two low energy phenomena represent the

most precise tests of QED and are the ones relevant in this thesis.

The Lamb shift is the shift in energy levels of a Hydrogenic atom due to radiative
corrections. Such energy shifts break the degeneracy between states with the same
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principal quantum number and total angular momentum, but differing orbital and
spin angular momenta. The best known example is the energy shift between the
25172 and 2Py, states in a Hydrogen-like atom, which arises due to interactions
of the electron with the quantum-field-theoretic fluctuations of the electromagnetic
field. For metric theories, the lowest order contribution for the Lamb shift is 1052
MHz for hydrogen atoms. There is a 5 MHz discrepancy with the experimental
value of 1057.845(9) MHz [23] or 1057.851(2) MHz [24], that can be improved with
the inclusion of higher order terms and corrections coming from the structure and
recoil of the nucleus. The main difficulty in comparing QED theory and experiment
is the lack of an agreed upon value for the radius of the proton. However there is
no conflict up to the relative level of 10~°.

The anomalous magnetic moment of an electron in a weak magnetic field, a(e)
(one-half the deviation of the g factor from the value of 2, as predicted by the
Dirac theory) is the simplest quantity that can be calculated from quantum elec-
trodynamics. It accounts for the radiative corrections coming from the free scat-
tering of an electron by a weak , slowly varying magnetic field. The most re-
cent experimental value of the magnetic moment anomaly of the electron is [25];
a(e) = 1159652188.4(4.3) x 10~!%. Agreement between theory and measurement of
a(e) is at the relative level of 10~7 [26].

The success of QED as a quantized field theory sets the proper grounds to test
gravity in this domain. Non metric effects will show distinctly in a modified QED,
and so will be tightly constrained by the present narrow gap between the empirical
and theoretical (metric) values.
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1.4 Non-metric Framework

Any breakdown of LPI/LLI is determined entirely by the form of the couplings of the
gravitational field to matter since local, non-gravitational test experiments simply
respond to their external gravitational environment. To explore such effects it is
necessary to develop a formalism capable of representing such couplings for as wide
a class of gravitational theories as possible. We consider in this thesis Lagrangian-
based theories in which the dynamical equations governing the evolution of the

gravitational and matter fields can be derived from the action principle
§ j drl=4 [ &*z(Le + Lnc) =0 . (1.7)

The gravitational part Lg of the Lagrangian density contains only gravitational
fields; it determines the dynamics of the free gravitational field. The non-
gravitational part Lyg contains both gravitational and matter fields and defines
the couplings between them. The dynamics of matter in an external gravitational
field follow from the action principle

J/d't:l:f.Nc =0 (1.8)

by varying all matter fields in an external gravitational environment.

We work in the context of a wide class of non-metric theories of gravity as de-
scribed by the T Hep formalism [27]. Phenomenological models of Lnxg provide a
general framework for exploring the range of possible couplings of the gravitational
field to matter and, thus, the range of mechanisms that might conceivably break
LPI or LLI. The T Hep formalism is one such model. It deals with the dynamics of
charged particles and electromagnetic fields in a static, spherically symmetric grav-
itational field. In addition to all metric theories of gravitation, the T Heu formalism

encompasses a wide class of non-metric theories.
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A quantum-mechanical extension of the original classical T Hepu formalism was
developed by Will [28] to calculate the energy shifts (due to e.g. hyperfine effects)
in Hydrogenic atoms at rest in a T Hep gravitational field. Since the ticking rate of
a hydrogen-maser clock is governed by the transition between a pair of these atomic
states, this extension can be used to determine the effect of the gravitational field
on the ticking rate of such clocks. This provides a basis for a quantitative interpre-
tation of gravitational redshift experiments which employ hydrogen-maser clocks,
for example, the gravity probe A rocket-redshift experiment [7]. Such experiments
are a direct test of LPI.

This formalism was further extended by Gabriel and Haugan [29] who calculated
the effects the motion of an atomic system through a gravitational field would have
on the ticking rate of hydrogen-maser and other atomic clocks. Their extension can
be used to compute energies of hyperfine and other energy shifts of hydrogen atoms
in motion through a THepu field. Here the physical effect under consideration is
time dilation rather than the gravitational redshift. When LLI is broken, the rates
of clocks of different types that move together through the gravitational field are
slowed by different time-dilation factors. This non-universal behavior is a charac-
teristic symptom of the breakdown of LLI [30], just as non-universal gravitational
redshift is the hallmark of LPI violation [28].

In this thesis, we will be concerned with the study of effects that could violate
LPI or LLI. Radiative corrections are too small to be relevant for torsion balance
experiments, where the leading binding energies stem from the atomic nucleus. In
these experiments the different atomic binding energies are attenuated by the total
mass of the atom (see Eq. (1.4)), whereas LPI/LLI violating experiments are clean

experiments that are sensitive to energy transition itself.

We begin by considering a general idealized composite body made up of struc-
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tureless test particles that interact by some non-gravitational force to form a bound
system. The conserved energy function of the body FE is assumed to have the quasi-

Newtonian form [30]
- 1 -3
E = Mgci — MpU(X) + -2-MR[V|2 +.. (1.9)

where X and V are respectively the quasi-Newtonian coordinates and velocity of
the center of mass of the body, Mg is the rest energy of the body and U is the
external gravitational potential. Potential violations of the EEP arise when the

rest energy Mp has the form
Mpc; = Mo} — Ep(X, V) (1.10)

where M, is the sum of the rest masses of the structureless constituent particles and
Ep is the binding energy of the body. It is the position and velocity dependence
of Ep which signals the breakdown of the EEP. Expanding Fp in powers of U and

V2 to an order consistent with (1.9) we have
Es(R,V) = B + smiU — -;-sm?'v"vf (1.11)

where U is the external gravitational potential tensor, satisfying U* = U. The
quantities Jm}? and dm}y are respectively called the anomalous passive gravitational
and inertial mass tensors. They depend upon the detailed internal structure of the
composite body. In an atomic system they can be expected to conmsist of terms
proportional to the electrostatic, hyperfine, Lamb shift, and other contributions to
the binding energy of an atomic state.

In a gravitational redshift experiment one compares the local energies at emis-

sion E.n and at reception E,.. of a photon transmitted between observers at dif-

ferent points in an external gravitational field. The measured redshift is defined
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ZzEem"’Erec

Eem
Using (1.9) (with V = 0) to relate the transition energies at the two different points,

this parameter can be expressed as [30]

~ _ omE AUY

Z = AU(I - E), == -A—EE'W (1.12)

Clearly Z depends (through §m}3) upon the specific test system used in the experi-
ment. An absence of LPI violations will mean Z = 0, and so Z will be independent
of the detailed physics underlying the energy transition .

The LLI violations may be empirically probed through time dilation experi-
ments. These experiments compare atomic energy transitions as measured by the

moving frame (AEg) and preferred frame (AE}), which can be related via [29]
AEs = AER(1-[A- 1]—';3) (1.13)

with the time dilation coefficient A defined by
Sk ViVE
AEY V?

A=1- (1.14)

Here dm¥ represents the difference between the anomalous inertial tensors re-
lated to the atomic states involved in the transition. The coefficient A represents
the dilation of the rate of a moving atomic clock whose frequency is governed by the
transition. Since the anomalous mass tensor is not isotropic, A depends upon the
orientation of the atom’s quantization axis relative to its velocity through the pre-
ferred frame. Note that if LLI is valid the anomalous inertial mass tensor associated

with every atomic state vanishes, so that A = 1.

In the following we shall calculate the radiative corrections of interest in a

context of non-metric theories of gravity, such that we can derive the expressions
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analogous to (1.11) for each case (Lamb shift and anomalous magnetic moment),

and therefore be able to make the empirical connection.

1.5 Overview

Although the empirical evidence in support of EEP has reached an impressive level
of precision, it has only probed effects that are sensitive to nuclear electromag-
netic interactions (i.e., the baryon/photon sector of the standard model). To this
end, the empirical validity of the EEP in physical regimes where radiative cor-
rections cannot be neglected remains an open question. In this thesis we provide
the theoretical framework to confront EEP with the interaction realm of quantum
electrodynamics, which is the most successful quantum field theory describing the

vacuum field interactions between fermions and photons.

In the next chapter, we reformulate QED within the context of non-metric
theories of gravity as described by the T Heu formalism. The main radiative cor-
rections affecting the atomic energy levels (Lamb shift) and the gyromagnetic ratio
of fermions (anomalous moment) are calculated in chapters 3 and 4 respectively.
The analysis of the non-metric results is presented at the end of each chapter, along
with their possible implications for present data and future experiments. Details
of the computation so as further clarification in certain matters, are given in two
main appendices, which complements chapters 3 and 4. We conclude this thesis

with chapter 5, which presents a general overview and summary of this work.



Chapter 2

Gravitationally Modified Action

2.1 THeu Action

The THep formalism was constructed to study electromagnetically interacting
charged structureless test particles in an external, static, spherically symmetric
(SSS) gravitational field, encompassing a wide class of non-metric (and all metric)
gravitational theories. Originally employed as a computational framework designed
to test Schiff’s conjecture [6], it permits one to extract quantitative information
about the implications of EEP-violation that can be compared to experiment. It

assumes that the non-gravitational laws of physics can be derived from an action:
Sne = -3 m, / dt(T — H)? +Y e, [ dtv* A, (z?)
1 2 2
+5 / &'z (¢B® — B?/p), (2.1)

where m,, €4, and z%(t) are the rest mass, charge, and world line of particle a,
20 = ¢, v¥ = dz#/dt, E = —V Ay — 8A/8t, B =V x A. The parameters T, H, e,
and p are arbitrary functions of the Newtonian gravitational potential U = GM/r,

15
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which approach unity as U — 0. For an arbitrary non-metric theory, these functions
will depend upon the type of matter, i.e. the species of particle or field coupling
to gravity. The functions € and yg parameterize the ‘photon metric’, whereas T'
and H parameterize the ‘particle metric’ in the static, spherically symmetric case.
Although we shall generically employ the notation T and H throughout this pa-
per, it should be kept in mind that these functions shall in general have one set of
values for electrons, another set for muons, another for protons, etc.. Universality
of gravitational coupling in the particle sector implies that the T and H functions
are species independent. It is an empirical question as to whether or not such
universality holds for all particle species. The stringent limits on universality vio-
lation set by previous experiments [9] have only been with regards to the relative
gravitational couplings in the baryon/photon sector of the standard model. For the

leptonic sector relevant to our considerations, relatively little is known [15].

A quantum mechanical extension of the action (2.1) which incorporates the
Dirac Lagrangian was used by Will [28] to study the energy levels of hydrogen
atoms. In that case a local approximation to the action is employed. The spacetime
scale of atomic systems allows one to ignore the spatial variations of T', H, ¢, and g,
and evaluate them at the center of mass position of the system, X = 0. This work
was further extended by Gabriel and Haugan [29] who showed that after rescaling
coordinates, charges, and electromagnetic potentials, the field theoretic extension

of the action (2.1) can be written in the form
5= [ a3 ﬂ+e.ﬂ—m)¢+% [ =82 - B2, 2.2)

where local natural units are used, A = q,4%, and ¢ = Ho/Toeopo with the
subindex “0” denoting the functions evaluated at X = 0. The parameter c is the
ratio of the local speed of light to the limiting speed of the species of massive particle
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under consideration. This action emerges upon replacing the point-particle part of
the action in (2.1) with the Dirac Lagrangian, expanding the THeu parameters
about the origin, neglecting their spatial variation over atomic distance scales, and

rescaling coordinates and fields.

The action (2.1) (or (2.2)) has been widely used in the study of LPI/LLI vi-
olating effects such as the effect of non-metric gravitational fields on the differen-
tial ticking rates of different types of atomic clocks, a violation of LPI [28]. An
analysis of the electrostatic structure of atoms and nuclei in motion through a
T Hep gravitational field using (2.1) shows that the non-metric couplings encom-
passed by the T'Hep formalism can also break LLI [30]. This symmetry is broken
when the local speed of light c. = (oeo) /2 differs from the limiting speed of a
given species of massive particle c; = (To/Ho)'/?, the latter being normalized to
unity in (2.2). Further implications of the breakdown of LLI on various aspects
of atomic and nuclear structure have also been investigated. Shifts in energy lev-
els (including the hyperfine splitting) of hydrogenic atoms in motion through a
T Hep gravitational field have been calculated [29] by transforming the representa-
tion of the action (2.2) to a local coordinate system in which the atom is initially
at rest and then analyzing the atom’s structure in that frame. The local coordinate
system in which the T Heu action is represented by Eq. (2.2), is called the preferred
frame; moving frames are those systems of local coordinates that move relative to

the preferred frame (or to the rest frame of the external gravitational field U).

In this thesis we generalize this analysis by using the Gravitationally Modified
(GM) action (2.2) to study the radiative correction contributions to the bound state
energy levels in hydrogenic atoms and to the elastic scattering of free leptons by
a magnetic field. To deal with the non-metric effects, we follow the scheme given

in Ref. [29], and analyze the radiative corrections in the given rest frame of the
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system (moving frames).

Consider an atom (or particle) that moves with velocity % relative to the pre-
ferred frame. The moving frame in which this atom (or particle) is at rest is defined
by means of a standard Lorentz transformation. A convenient representation [29]
of the T Hep action in this new coordinate system, if the non-gravitational fields
¥, A, E, and B transform via the corresponding Lorentz transformations laws for
Dirac, vector, and electromagnetic fields, is

S = /d‘zﬁ(i a+eﬂ—m)¢+/d‘zJ,,A“
+ % [z [ - ) (2.3)
+ & (PE*—(i-Ey+B*— (@B +2i-(E x B))].

where J* is the electromagnetic 4-current associated with some external source
(taken to be a pointlike spinless nucleus in the case of the Lamb shift) and v? =
(1 — #*)~! . In our formulation, all non-metric effects arise from the inequality
between ¢y and c, in the electromagnetic sector of the action. The dimensionless
parameter £ = 1 — (c./co)? = 1 — ¢ measures the degree to which LPI/LLI is
broken for a given species of particle. Comparatively little is known about such
empirical limits on EEP-violation relative to the baryonic sector {15], for which
previous experiments have set the limit [9] (3] = [1 — k| < 6 x 107%' where
cp is the ratio of the limiting speed of baryonic matter to the speed of light. We
can therefore safely neglect any putative effects of £ in our analysis. The natural
scale for £ in theories that break local Lorentz invariance is set by the magnitude
of the dimensionless Newtonian potential, which empirically is much smaller than
unity in places we can imagine performing experiments [6]. We are therefore able
to compute effects of the terms in Eq. (2.3) that break local Lorentz invariance via

a perturbative analysis about the familiar and well-behaved ¢ — 1 or § — 0 limit.
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2.2 (GM) Field Equations

The fermion sector of the action (2.3) implies that the equation of motion for the
¥ field is simply the Dirac equation coupled in the usual fashion to the potential
A, that is:

(i P+ed~mpp=0 (24)
On the other hand, the pure electromagnetic part of the action is modified with
an extra term proportional to the small (species-dependent) parameter £&. This
will affect the electromagnetic field equations, and the photon propagator. In both
cases we can calculate effects of the additional terms perturbatively.

The field equations coming from the action (2.3) are up to O(%2)[29]
V-E = p+{[a-V(@-E)-a-VxB-a*V. B, (2.5)
VxB-E = j+€6[Vx(@xEB)+ix V@ B)+(1+@)V x5
+ @B—a(i-B)—1ix 1"3‘]

where p and j are the charge density and current associated with the fermion field
plus an external source (such as a nucleus.) Perturbatively solving these equations
for electromagnetic potentials produced by a pointlike nucleus of charge Ze at rest
in the moving frame yields

Ay = [1—§(i’+(ﬁ-ﬁ)’)]¢s¢+€¢'

A= g[a +a(@-n)p=¢EA’ (2.6)

where # = £/|Z|, ¢ = Ze/4x|Z|, and V - A = 0. Note that Eq. (2.6) agrees with
the corresponding result from Ref. [29].

The primed fields in Eq. (2.6) signal a breakdown of LLI. Consequently we ex-
pect that this electromagnetic potential will modify the energy states of hydrogenic
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atoms prior to the inclusion of radiative corrections.

Note that Egs. (2.3) and (2.6) are the (GM) analogous of the Maxwell equations
and the “Coulomb” potential respectively.

2.3 (GM) QED

Radiative corrections arise from the vacuum fluctuations of the interaction between
the fermion (Dirac Spinor) and the electromagnetic field. In the case of atomic en-
ergy levels (Lamb shift), the fermion field is bounded by the electromagnetic field
of the nucleus, and therefore needs to be considered accordingly. This complication
is not present for the anomalous magnetic moment of fermions, where we basically
study the free scaterring of fermions by a slowly varying magnetic field. Both situ-

ations are particular cases in the general framework of Quantum Electrodynamics
(QED).

In the sequel, we proceed to reformulate QED within a non-metric context as
introduced by the action (2.3). We expect the reader to be familiar with standard
concepts in Quantum Field Theory, or to refer to e.g., [31] for further clarification

on basic matters.

We need to generate an approach that leads to a consistent, regularized, and
renormalized quantum field theory. The procedure reduces to that of finding the
corresponding (GM) fermion and photon propagators, along with the vertex rule
describing the interaction between the fields. Despite the absence of LPI/LLI sym-
metries, the theory is still gauge invariant and therefore its consistency can be

checked via the validity of the Ward identities.

We use the path integral approach to find the propagators. That is, we look
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for the inverse of the operator appearing in the quadratic term (either for photon
or fermion field) of the Lagrangian [31]. Given our model (action (2.3)), we do
not introduce changes into the fermion and interaction sector of the action, and
so the fermion propagator and vertex rule remain unchanged with respect to the
original (metric) situation. The reformulation of QED up to this level reduces just
to finding the (GM) photon propagator.

To find the photon propagator, we go back to the action (2.2) and add a gauge
fixing term of the form

Sor =3 [ #'2 [(1-£)@- A)? +28°400 - 4], (27)
after which the resulting electromagnetic part can be written as
SeEM = / d'z [-;-A,,@"@.,A“ + g(A,.Boa"A" + Ag8#8,A° — A,8" BVA")] (2.8)

where we have integrated by parts and neglected surface terms.

This action is still given in preferred frame coordinates. We can go to the moving

frame by performing the Lorentz transformations

Ao Ay = Y(Ao~E-A)=1B-A (2.9)
o8 = Yd—i-V)=18-0

where 42 = 1/(1 — 4?) and B* = (1, #); henceforth 82 = 1 — #2. Transforming Eq.
(2.8) by using Eq.(2.9) gives

Sgu = % f &'k A¥K,, A (2.10)
where (in momentum space)

Kuw = —0uwk*(1 — €) — €9 [mu (B - k) + BuB.K7] (2.11)
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where 7,,, is the Minkowski tensor with a signature (4 - - -) and K,,,, is the inverse
of the photon propagator G,,. Therefore after solving

KuG™ =4, (2.12)
we find up to first order in ¢
2 k)2
Gu =—(1+ E)"fzﬁ + fz—, [fhw%i‘)“ + Bubo| - (2.13)

where actually k? stands for k2 + i1}, with 1 being a small positive number which is

set to zero after the relevant integrations are performed.

The terms proportional to £ in Eq. (2.13) signal the breakdown of both LPI
and LLI, since those terms are still present even if @ = 0. Concerning the Feynman
rules, Eq. (2.13) is the only change needed to obtain the analogous ones. Note that
the computation of radiative corrections involves the calculation of loop integrals

as given by the Feynman rules up to a given order.

2.4 Renormalization

As with the metric case, we expect to find divergences, which after an adequate
regularization process are removed via a parameter redefinition. In our case, the
addition of more parameters to the theory also entails new renormalizations beyond
those of the wavefunctions, charge and mass of the fermion. The T Heu parameters
appear as functions of ¢2 = Ty/ Hy and ¢ = 1/uo€p, and must then be correspondly
redefined. In the following, we just describe in general terms the type of countert-
erms needed to achieve this procedure. We leave for the next chapters more specific
details about the renormalization procedure, which are better understood within

the appropriate context (e. g., bound system or free scattering).
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In units where ¢ = 1 (¢. = ¢), EEP-violating corrections only appear in the
electromagnetic sector of the action (as terms proportional to £). However we could
choose more generally ¢, # 1, for which the particle sector of the Lagrangian density

is of the form
Lp =9(p— ¥ —m)p + &v(po — Ao)1°% (2.14)

with & = 1 — ¢g?; or in the moving frame (after using (2.9)) is

Ly = Y(§-Y -—m)yp (2.15)
+ &Y (B-p~B-V) Py

up to a constant.

From (2.15) we see that quantum corrections of the form
SCn = P(oE5"8 - p~ 868 - V) P (2.16)

can still be expected. Note that gauge invariance will gnarantee 5{81) = 0 =
8ée. Hence, in order to renormalize the T Hepu parameters, we have to include

counterterms of the form
86 p(B-p—p-V) (2.17)

where 8§, is chosen such that there are no radiative correction contributions as the
source is turned off. Finally, given the form of the electromagnetic action (see Eq.

(2.10)), we expect also quantum fluctuations of the form
8Lanm = 0EA*{(K? — (B - k)*)n — BBk} A” (2.18)

to occur, and so similar counterterms need to be considered.

In the next chapters, we will see how to use Eqs. (2.17) and (2.18) to get rid of

the unwanted divergences.



Chapter 3

(GM) Lamb Shift

3.1 Bound System

Since the first accurate measurement by Lamb and Retherford of the shift between
the the 25/, and 2P, states in Hydrogen atoms [32] (sometimes known as the
classical Lamb shift), several Lamb shifts related to Hydrogen (1S (33], 25 — 2Py,
[34]) and Helium [35] have been measured.

However, in most of this chapter, we will refer to the classical Lamb shift
only. In this case, the Dirac equation for a Coulomb potential predicts those
states to be degenerate, the difference between them in metric theories comes only
from radiative corrections. For non-metric theories which can be described by the
T Hep formalism, these energy levels will be modified by the EEP-violating terms
introduced in the source (Eq. (2.6)), removing this degeneracy before introduc-
ing radiative corrections. Note that the fermion sector of the T Heu action does
not change and therefore neither does the Dirac equation. The preferred frame

effects appear only in the expression for the electromagnetic source produced by

24



3.2 (GM) Dirac States 25

the nucleus.

The calculation of radiative corrections to the atomic energy levels involves a
bound state formalism for QED, which deals with a bound electron propagator.
This makes the computation substantially more complicated than in the free case.
There are several approaches for coping with the boundness of the propagator (see
[36] and references therein), and we shall closely follow one of them.

3.2 (GM) Dirac States

The Dirac equation in the presence of an external electromagnetic field still reads

like the metric case:
Hin) = (@ -p+ Bm —eA’ + e - A)n) = E,|n) (3.1)

where the various symbols have their usual meaning.

The (GM) energy levels of hydrogenic atoms are found by solving (3.1) in the
presence of the electromagnetic field (2.6) produced by the nucleus which entirely
accounts for the preferred frame effects. If we replace Eq. (2.6) in (3.1), the

Hamiltonian can be written as
H=Ho+¢(H, H =-ed +ea-A (3.2)

where Hj corresponds to the standard Hamiltonian (with Coulomb potential only),
and the primed fields are defined as in Eq. (2.6). In terms of the known solutions
for Ho|n)® = EQ|n)°, we can perturbatively solve Eq. (3.1) by writing

E.=ES+€E, [n)=[n)°+¢&lny (3.3)
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with
E., = °@|H'a)°=E® + g™ (3.4)

, 0 r Hl n 0
W= 3 e (3.5)

where E/®) and E.™ account for the contributions coming from the respective
electric and magnetic potentials.

We now proceed to calculate the energy levels related to the Lamb shift states.
To obtain these, we find it convenient to use the exact solution for the Dirac spinor
[n)°, expanding the final answer in powers of Za to O((Za)*). The relationship
between this approach and an alternate one in which the Hamiltonian is first ex-

panded in powers of Za using a Foldy-Wouthuysen transformation is discussed in

appendix A.l.
The unperturbed Dirac state |r)° can be expressed as:
Gi;(r) Il; 7
In)° = y(r) I m) (3.6)
—iFy(r) & - & |I; jm)

where |I; jm) is the spinor harmonic eigenstate of J?,[? and J;, with respective
quantum numbers j,! and m. The functions F and G can be written in terms of
confluent hypergeometric functions that depend in a non-trivial way on Za for a
given [ and j. In the case of the Lamb states, they can be expressed by [37]

F = —N(1-W)Yp7"1e=* (g4 + ayr) (3.7
G = N1+ WY1 le (g + ¢17),
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where the various parameters for the 25 level take the form (taking m = 1)

7=~ (Zay W= ()"

x (2Za)7+1/2 [ 2441 ]1/2
A= f—w' N= 2(2W)" [F(21:1)T;W+1)]
(3.8)
ag =2(W+1) a = —'%’—%ﬁ
co =2W cL=a;
Inserting the fields from (2.6) and (3.6) in E;, we write
E\® = (Rec + Rer) (jm;llu? + (i - #)?[l; jm) (3.9)
EXM = _iRgp(jm;l|(G - #)(o - &) + @ - a|l; jm) + h.c. (3.10)
where “h.c.” means Hermitian conjugate and where
/G——-Grzdr (3.11)

with Rpr and Rgr defined in an analogous manner.

We now evaluate this energy for the 25;,, and 2P, states in this semiclassical
approximation, prior to the inclusion of any radiative corrections. Since the angular
operator in (3.10) has odd parity (as given by #), it is straightforward to show that
the magnetic contribution B/™) =0, so E! = E'®) for any state.

If we now substitute Eq. (3.7) in (3.11), we obtain

Ree = w2y +)5E) [—2‘%— (22) +200e. 22 +(27+1)c1] (3.12)

(1-w) gi(Za)’ Za
W1 |2y \W +2aoa1W+(27+1)a1 (3.13)

1
Rpr = IE(27+1)
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where we have used
r(z) = /; “ e Mz,  Re(z) >0 (3.14)
F(z+1) = 2I(2)
to simplify the integrand in (3.11).

Using the corresponding expressions for the harmonic spinors and the appropri-

ate parameters in (3.12) for each Lamb state [37], we eventually find

- Ll 2 [ r.n z]
p o= L 2 [ 7.3 2]
2P, = 6u m(Za)® (1+ (16 + 16)(Za) + (3.16)

where we have expanded the exact solutions for Rge and Rpy in powers of (Za)?,
and kept the first relativistic correction only. The angular integration and the Rge
term are the same for both states, and so the non-relativistic imit is still degenerate
for them. However the first relativistic correction coming from the Rrp factor (term

proportional to 19/16 for the 2S5 state) breaks the degeneracy, yielding

2
AEéo) = Eas,,, — Eﬂ’x/‘: = f%m(Za)‘ +0 ((Za)s) (3.17)

We obtain the result that the 25;/,-2P;/, degeneracy is lifted before radia-
tive corrections are introduced. This ‘semiclassical’ non-metric contribution to the
Lamb shift is isotropic in the 3-velocity @ of the moving frame and vanishes when

% = 0. Hence 1t violates LLI but not LPI.

In order to proceed to a computation of the relevant radiative corrections, we
need to find the perturbative corrections for the energies and spinor states given
by (3.4) and (3.5) respectively. The radiative correction §E, to the Dirac energy
E,, can be formally expressed as

§E, = (n|6H|n) (3.18)



3.3 (GM) Radiative Corrections 29

where dH accounts for the loop contributions as given by the gravitationally mod-
ified QED. Since EEP violating effects appear in both the photon propagator and
the classical electromagnetic field, we expect

§H = §H° + ¢5H' (3.19)

In addition, the state [n) may be analogously expanded. Up to first order in &, we

can therefore write (3.18) in the form

SEq =° (n|6H ) + € [*(nl6 H'|n)° + {*(nlSH°|n)’ + h.c.}] (3-20)

The contributions from the |n)’ states are of the same order of magnitude (in
terms of powers of Za) as the §H' terms and so cannot be neglected. This may
be seen by noting that, apart from the % dependence, ¢’ ~ ¢ and so *(n|H'|r)® ~
E® — E?. Inserting this in (3.5) proves the statement. Note that the effect of the [n)’
states was overlooked in Ref. {29]. If we identify 0 H — H(xy),where H{sy) represents
the perturbation to the Dirac Hamiltonian due to the spin of the nucleus, then by
the same arguments as before we can show that the term {°(n|Hus°|n)’ + h.c.}
was omitted in the corresponding expression for the hyperfine energy.

3.3 (GM) Radiative Corrections

To lowest order in QED there are two types of radiative corrections to the energy
levels of an electron bound in an external electromagnetic potential: the vacuum
polarization (II) and self-energy (X), along with a counterterm (4C) that subtracts

the analogous processes for a free electron. These contributions are illustrated in

Fig. 3.1
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(a) (b)

Figure 3.1: Radiative corrections of order a : (a) self-energy and (b) vacuum

polarization.

The energy shift due to these contributions for the state [r) can then be written

0E, =0Es+dEp (3.21)

where

dEs = (n|Z - §C|n), (3.22)

which corresponds to the self-energy contribution in Fig. 3.1(a) minus the corre-

sponding counterterm, and
SEp = (n|l|n), (3.23)

which is the vacuum polarization contribution illustrated in Fig. 3.1(b).

In Fig. 3.1 the bold line represents the bound electron propagator. This propa-

gator can be written in operator form as (p— ¥V — m)~!, with
VA(3) = —eA(3) and p* = (En.f)

where A# is the external electromagnetic potential. Here E, is the total energy of
the state |n), which satisfies the Dirac equation (— ¥V ~m)in) =0
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Eq. (3.21) represents the one loop correction (one power of a) to the atomic en-
ergy levels as given by E,,. We are interested in obtaining the “lowest order” Lamb
shift, which is the a(Za)* contribution. (There are still more approximations that
come after expanding the bound propagator, which introduce additional nonana-
lytic terms in the expression for the Lamb shift that behave like a(Za)*In(Za)).

The GM radiative corrections are found by evaluating (3.21) where the external
electromagnetic potential and the photon propagator are respectively given by Eqgs.
(2.6) and (2.13). All expressions will be expanded in terms of the LPI/LLI violating
parameter ¢, and the velocity of the moving frame # ap to O(f) and O(%?) as
implied by (2.6) and (2.13). EEP-violating effects are all contained in the terms

proportional to these quantities.

A variety of methods are available for evaluating the corrections in (3.21), each
differing primarily in the manner in which the bound electron propagator is treated.
We shall follow the method of Baranger, Bethe and Feynman [38] (hereafter referred
to as BBF), in which the corrections in (3.22) are separated into a term in which the
external potential acts only once, and another term in which it acts at least twice.
This latter ‘many-potential’ term can be further separated into a nonrelativistic
part, and a relativistic part which can be calculated by considering the intermediate
states as free. This approach is sufficient for the lowest order calculation we consider
here. We now proceed to outline the main steps of this method.

The self-energy term in Eq. (3.21) can be written as

5Bs = 5 [ akic=E)abm, - yj Fim) — (aldCln) . (3.24)

This expression gives a complex result for the level shift, since the denominators
in the integral each have a small positive imaginary part. The resulting imaginary
part of d Es represents the decay rate of the state [n) through photon emission. The
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Lamb shift refers to the real part of the shift, and only that part will be retained
in the computation of Eq. (3.24).

The difficulty in evaluating Eq. (3.24) arises entirely from choosing a convenient
expression for the bound propagator. The integrand in (3.24) is rearranged in order
to obtain one part which is of first order in the potential (4 E,), and another part
(6E2) which contains the potential at least twice. Using the identity[38]

to re-express v, and 7, in (3.24) and respectively identifying Pp=p pa=p—k,

(Ps —m), (3.25)

and pp = p — k, p. = p ylelds after some manipulation

0Es = 80FE, 4+ 0E,, (3.26)
where
§E, = .j‘; / Pp %, ()L + I + Is}oa(), (3:27)
with
K 2p1.—7u16 20— FYo o
h = 41:2 Tk ok G (k)d'k
_ 2Pu — Yu K 2P — h”rmv
L = 41:‘2 V[ —~2p-kk*—~2p-k (k)d'k (3-28)
_ i 2p, - ’6 2
ho= g [ @y O Bk~ sC
and where

1

B = o [F.0)M0. 0 - — k)
x KY(By—ko;p' —8" —k,5+5—k) (3.29)
x Mi(p+s—Fk,p)a(P)G*™ (k)d*k Lpdp'ds s

(MK M)
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with

! p’ 2P — 20, — T ~
Mg p~F) = VG ‘ﬂzf,.kZ"kf—zﬁ,.kfkf VG - 5)
M k) = VPR R T P

The quantity K is defined as —iKY = (§— ¥ —m)~!,where in momentum space
KY = §(E' - E)KY(E:§",5).

In Eqgs.(3.27) and (3.29) the p’s have time component E, and the s’s have time
component 0. Note that the above derivations are independent of the specific form

of the photon propagator G, .

Further evaluation entails a lengthy computation which in principle is analogous
to that of BBF. In practice though, the calculation is substantially more compli-
cated than in the metric case due to the additional non-metric terms present in
the photon propagator and the electromagnetic source related to a charged point
particle. Regularization and renormalization procedures have to be modified ac-
cordingly. Details involving the subsequent computation of the self energy (and

vacuum polarization) term are given in appendix A.2.

The final result for the loop corrections related to the Lamb shift is of the form
AE},Q) = lsEzsll2 - 6E2p”2 (3.30)

where each term is obtained from Eq. (A.55) (and its relevant subsidiary equations)
as calculated for the corresponding atomic state. By adding the “semiclasical”
correction coming from the Dirac level (labeled by (D) in Sec. III), the total Lamb

shift reads

AE, = AEP + AEQ®
_ m . 1 3
= - (%a) af ~2.084 +1n S+ ¢[-4534+

1
Sh— (331
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2
+ @ E —3486+31n % —0.011 cos? o] +uu;A85] }

where we have introduced the dimensionless parameter Aé;; = 2AE;;/((Za)*m3)
(see (A.56)), and used Eqs. (A.59) and (A.60) in the evaluation of (3.30) through
Eq. (A.55).

The former result is the energy shift associated with the particular states in

(3.30). However in Eq. (A.55) we have derived a general expression for the one-

loop radiative corrections related to any atomic state. These are

i = -2, [56 ~ 2+ OGS )+ O(uz)] (3.32)
for { = 0, and
z 7
s = o :) [(1 + ey R”") +3 mcf (14 5)+ 0(u=)] (3.33)

for | # 0; where we have not explicitly written the terms proportional to the moving

frame velocity. Here

G { 1/(I+1) forj=1+1/2 5.34

-1/1 forj=1-1/2
and E, is defined by (A.57). Values for this reference energy can be obtained from
Ref.[39] up to states with n = 4.
Note that in addition to the explicit dependence on the frame velocity in Eq.
(3.31), there exists a position dependence hidden by the rescaling of the original

action (Eq. (2.3)), which was considered locally constant throughout the compu-
tation. The full THeu parameter dependence in Eq. (3.31) can be recovered by

replacing
@ a%‘/%, momVE, AE — %AE;, (3.35)
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in the preceding equations.

Note that £ in Eq. (3.31) accounts for any EEP violation coming from a non-
universal gravitational coupling between photons and leptons. A further distinction
can still be made between leptons and antileptons. In principle a matter/antimatter
violation of the EEP could be measured in a Lamb shift transition, through the
appearance of virtual positron/electron pairs in the vacuum polarization loop con-
tribution [40]. This will add a non-metric term to Eq. (3.31), of the form (see
appendix A.3 for more details):

m

20w (Za)*a(l + 2}i]?) (3.36)

AEEH = —6e,

where £, = 1 — ce_/c., accounts for the difference between the limiting speed of
electrons (c._ = co) and positrons (c, ).

We turn next to the question of relating the Lamb shift to observable quantities

in order to parameterize possible violations of the EEP.

3.4 Test for LPI/LLI Violations

Here we consider the possibility of employing the Lamb shift as the atomic transition
governing the appropriate experiment. To do so we must compute the relevant =

and A coefficients respectively.
In order to calculate the corresponding §m related to the Lamb shift, we must

find the manner in which AEy, varies as the location of the atom is changed. Setting
% = 0 in (3.31) and performing the rescaling given in (3.35), we obtain

AEp = 8L%5-T (g)sl2 {1 +af +b(1+ ge) In (e’—g-)} (3.37)
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with & = 2(Za)*a/b, and

3

1 1
a=b-4534+ln=)  b=1/(-2.084 +In )

where £ represents the metric value (within the given approximations) for the
Lamb shift. Note that there is still a position dependence in (3.37) through the

definition of

We recall that the total energy of the system can be expressed in terms of
E=mVT +AEL+--- (3.39)

where the ellipsis represents other contributions for the binding energy of the sys-
tem.

The functions 7', H, € and u, considered to be functions of U and evaluated at
the instantaneous center of mass location X = 0 for purposes of the calculation of

AFE}p, are now expanded in the form
T(U) = Ty + Tigo - X + O(Gs - X)? (3.40)

where §o = VU|z_g» To = Tz, and Tj = dT/dU|_,. It is useful to redefine the
gravitational potential U by

173 =
- =9z .X 41
V=38 (3-41)
whose gradient yields the test-body acceleration §.

If the above is used to expand (3.39), we get

E =(m+£)(1 - U)+EU{(5 — a—2b)To — aho} (3.42)
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where we have used (3.35); and neglected terms proportional to £, since the main

position dependence parameterization is given in terms of:

_ 2T, e(, A _ 2T po L, Hy
Lo = ( ), A= 7 ( 21' ~3H, (3.43)
If we now identify (3.42) with Eqs. (1.9) and (1.11), we can obtain the corre-
sponding Lamb shift contributions to the binding energy and anomalous passive

mass tensor as

AERY = g (3.44)
smi") = AEF?{(5-a -2l —aho}

This result was first presented in Ref. [41], where in (3.44) we have corrected the
latter for a sign error in the coefficient multiplying Ag and a missing factor b in the

[y term.

Inserting (3.44) in (1.12), we obtain

=L =3.424T, — 1.318 A, (3.45)

as the LPI violating parameter associated with the Lamb shift transition. Note

that if LPI is valid then I'o = Ag = 0.

In comparing the result (3.45) to anomalous redshift parameters computed for
other systems, it is important to note that we are working with units that are species
dependent. Recall that the choice of ¢y = 1, and the redefinition of the gravitational
potential (3.41) involves the T' and H functions associated with electrons (or more
generally a given species of lepton). Note that we are working within a context
where the universality of gravity among all species of particles does not hold. That
is, the T' and H functions are species dependent.
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Consider, for example, hyperfine transitions (maser clocks). In this case the
leptonic and baryonic gravitational parameters appear simultaneously. This atomic
splitting comes from the interaction between the magnetic moments of the electron
and proton (nucleus). The proton metric appears only in the latter, and so it does
not affect the principal and fine structure atomic energy levels. It is simple to check
that the hyperfine splitting scales as
Ts'/? Hj po

Hg T)
where the label B is added to distinguish baryonic related functions from leptonic

(3.46)

AEns = &g

ones; and &5 depends only on atomic parameters.

In expanding (3.46) according to (3.40), we obtain
AEw; = Eng(1 — Ug) + EnsUpZHf (3.47)

with
=M =3rg-As+A (3.48)
where Ug, ['p and Ap are the baryonic analogues of (3.41), and (3.43) respectively.
In (3.47) we rescaled the atomic parameters to absorb the T'Heu functions and
chose units such that ¢g = 1. The quantity A is given by
Ts |, Hp f4 s . Ig
=2 A5~ =)—-=—~+5 49
A 2T,’, [2( i, + (3.49)
and would vanish under the assumption that the leptomic and baryonic

T Hep parameters were the same.

Turning next to experiments which test LLI, we need to obtain the tensor Jm‘;-j
appropriate to the Lamb shift. This tensor is obtained after taking partial deriva-
tives of AEy with respect to u; and u; (note V = ). Substituting the result into
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(1.14) yields

1- AL = ;[_%? {g +3.074 — 0.011 cos?8 + ‘g"Aé.-,-} (3.50)

for the Lamb shift time dilation coefficient, where 6 is the angle between the atom’s

quantization axis and its velocity with respect to the preferred frame.

Note that the coefficient Ay depends upon Ag;;, the evaluation of which involves
the computation of an infinite sum as given by (A.56). The dominant contribution
in Eq. (3.50) comes from the Dirac part of the energy (proportional to L ), which
produces an overall shift only. Non-isotropic effects arise solely from radiative

corrections.

In general, an experimental test of LLI involves a search for the effects of motion
relative to a preferred frame such as the rest frame of the cosmic microwave back-
ground. A detailed analysis about the interpretation of LLI violating experiments
is presented in Ref. [29], which analyzed experiments concerned with hyperfine
transitions, obtaining an expression for the time dilation parameter corresponding
to that kind of transition!. This parameter is negligible in comparison with other
sources of energy, such as nuclear electrostatic energy in the case of the Be* clock
experiment [10].

In summary, we have been able to parameterize EEP violations arising from
Lamb shift transitions associated with redshift and time dilation experiments. In
these types of EEP violating experiments one typically looks for variations of the
energy shift due to changes in either the gravitational potential or the direction of
the preferred frame velocity. The feasibility of such experiments is hindered by the

present level of precision of Lamb shift transitions (one part in 10°%) in comparison

INote that the expression given there for A%/ is incomplete according to discussion presented
in Sec. III



3.4 Test for LPI/LLI Violations 41

a(Za)?
6n

where the first term comes from the Dirac contributions (here + and - label the

+ (10.434 + O(?))

transition coming from the 2P;/; state with [M| = 3/2 and |[M| = 1/2 respectively)
and the second one from radiative corrections. Note that the leading anisotropic
effects stem from the nonrelativistic contributions, and so their ratio with the metric
value, O(m(Za)?), is O(éu?/(Za)?) , instead of O(Eu?) as for the classical Lamb
shift. Time dilation experiments will look for changes on the E;s, ,, — E2p,, splitting
as the Earth rotates, which would single out only the preferred frame contributions.
Current experiments [34] measure a value of 9911.200(12) MHz for that transition,
which gives a nominal bound (coming from the experimental error) of 3¢ cos? 8 <
1 x 10™* for the preferred frame part. This bound should improve once appropriate
experiments are carried out, since these will look for periodic behavior which can

be isolated and measured with high precision.

Note that an empirical value for the Lamb shift is obtained from Ref.[34] by
subtracting the theoretical result of the fine splitting 2P/, — 2Py/,. Now by fol-
lowing the previous formalism we can parameterize the LPI violation in the former

experimental result through:
B3 —2p,, = (Er + EL)(1 ~ U) + U(EE! + £.55) (3.52)

where we have added the corresponding parameters related to the fine transition
[6]: &£ and =f. Constraining the ratio of this quantity to a direct measurement
of the Lamb shift [23] to lie within experimental/theoretical error, we obtain the
bound |U(EX-Zf)| = |U(0.576T +1.318A)| < 10~5. This result is sensitive to the
absolute value of the total local gravitational potential [15, 43], whose magnitude
has recently been estimated to be as large as 3 x 10~° due to the local supercluster

[19]. Hence measurements of this type can provide us with empirical information
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to the magnitudes of such changes. In the first case, any Earth based experiments
will be limited by the small size of the Earth’s gravitational potential (=~ 10~°),
which is well beyond any foreseeable improvement in Lamb shift precision. Similar
problems appear in the second case, where the known upper bound [@] < 10~2 [6]
for the preferred frame velocity leaves no room for any improvement on the EEP

violating parameter £, since anisotropic effects go as £[i[%.

However useful information can still be extracted from Eq. (3.31) if we use the
current level of discrepancy between the experimental result [23] and the theoret-
ical (metric) value [42] to bound the non-metric contributions for the Lamb shift.
This constrains £ < 1(1) x 10~°. Similar bounds can be obtained by comsider-
ing empirical information about other atomic states. In this context, the indirect
measurement of the 1S Lamb shift [33] gives a limit ¢ < 1.4(1) x 10~%, and the
measurement of the 25;/, — 2Ps/, fine structure interval [34]: £ < 0.7(1.4) x 10~°.
If we drop the assumption that positrons and electrons have equivalent couplings
to the gravitational field [40], we find that there is an additional contribution to
(3.31) due to &+ # £.-. This contribution arises entirely from radiative corrections
and is given by Eq. (3.36). Making the same comparisons as above, we find the
most stringent bound on this quantity to be |£.+] < 1073.

The previous bounds were obtained by using (3.9) and (3.32) or (3.33) to cal-
culate the corresponding non-metric Dirac and radiative corrections contributions
respectively. The 1S Lamb shift experiment, actually measures the transition:
(Ess — Eas5) — i(E’gs — E,5), and so we use this one to make the comparison, where
experimental and theoretical values are given in Ref.[33]. In the other experiment
we need to use the non-metric part of Ejs,,, — Ezp,;, (= Q¢), namely:

As = €&(Za)’m [:!:-g;-(g-cosz 6 — 1) + O((Za)*u?) (3.51)
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sensitive to radiative corrections that constrains the allowed regions of (s, Ag)
parameter space. Unfortunately the present level of precision in measuring the
Lamb shift allows only a rather weak constraint.

3.5 Discussion

We have computed for the first time radiative corrections to a physical process,
namely the energy shift between two hydrogenic energy levels that are semi-
classically degenerate, within the context of the T'Hep formalism. The correspond-
ing (GM) QED was derived, and the (GM) expressions for the propagators were
obtained. The non-metric aspects of a theory describable by the T'Hep formalism
can be all included in the photon propagator, given an appropriate choice of coordi-
nates, leaving the fermion propagator unchanged. The addition of more parameters
to the theory (by the T'Heu functions) entail new renormalizations, where not only
charge and mass need to be redefined but also the T'Hep parameters.

The approach we took to solve for the semi-classical Dirac energies (Sec. III) dif-
fers from the one given in Ref. [29], in which the Dirac Hamiltonian was expanded
using Foldy-Wouthuysen transformations yielding the first relativistic correction
to the Schrodinger Hamiltonian (as introduced for example, for the Darwin and
spin-orbit terms), and subsequently the energies. Instead we began from the fully
relativistic expression, where the perturbations come only from the preferred frame
terms of the electromagnetic potential. Qur approach involved evaluating expec-
tation values with respect to the relativistic spinors instead of their nonrelativistic
extensions (or Pauli states). The effects of relativistic corrections such as spin-orbit
coupling are therefore included exactly in this approach. Once this is done, the fi-
nal result is expanded to keep it within the desired order. The semi-relativistic
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approach is not suitable when preferred frame effects are studied.

Qualitatively new information on the validity of the EEP will be obtained by
setting new empirical bounds on the parameters £, Az, and = which are associated
with purely leptonic matter. Relatively little is known about empirical limits on
EEP-violation in this sector [15]. Previous experiments have set the limits [9]
I€] = |1 —c}| < 6 x 1072 where cp is the ratio of the limiting speed of baryonic
matter to the speed of light. In our case we obtain an analogous bound on ¢ for
electrons from the difference between current experimental and theoretical values,
giving [¢] < 10~°. Although much weaker than the bounds on &g, it is comparable
to that noted in a different context by Greene et. al. [44]. They considered
a similar formalism (T'Heu with 4 = 0) for analyzing the measurement of the
photon wavelength emitted in a transition where a mass Am is converted into
electromagnetic radiation, thereby providing an empirical relationship between the
limiting speed of massive particles (electrons) and light.

The breakdown of LPI for the Lamb shift in the context of a non-metric theory
of gravity describable by the T Heu formalism is embodied in the the anomalous
gravitational redshift parameter (3.45). Recall that = depends on the nature of
the atomic transition through the evaluation of the anomalous passive tensor. This
tensor will have differing expressions for differing types of atomic transitions [6).
An atomic clock based on the Lamb shift transition will, in a non-metric theory,
exhibit a ticking rate that is dependent upon the location of the spacetime frame
of reference and that differs from frequencies of clocks of differing composition.
For example, the gravity probe A experiment [7] employed hydrogen-maser clocks,
and was able to constrain the corresponding LPI violating parameter related to

hyperfine transitions (c.f. (3.48)):

|8 = |35 —Ap+ Al <2 x 1074 (3.53)
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where A measures the relative gravitational coupling between leptons and baryons
(c.f. (3.49)). This experiment involves interactions between nuclei and electrons
and so does not (at least to the leading order to which we work) probe the leptonic
sector in the manner that Lamb-shift experiments would. In general Eq. (1.12) will
describe the gravitational redshift of a photon emitted due to a given transition in a
hydrogenic atom; for a hyperfine transition the redshift parameter is (3.53), whereas
it is (3.45) for the Lamb shift transition.

An analogous experiment to test for LPI violations based on Lamb shift tran-
sition energies poses a formidable experimental challenge because of the intrinsic
uncertainties of excited states of Hydrogenic atoms. Setting empirical bounds on
=1 by precisely comparing two identical Lamb shift transitions at different points
in a gravitational potential would appear unfeasible since the anticipated redshift
in the background potential of the earth (= 107®) is much smaller than any foresee-
able improvement in the precision of Lamb-shift transition measurements [42]. One
would at least need to perform the experiment in a stronger gravitational field (such
as on a satellite in close solar orbit) with 1-2 orders-of-magnitude improvement in
precision. A ‘clock-comparison’ type of experiment between a ‘Lamb-shift clock’
and some other atomic frequency standard [6] is, in principle, sensitive to the abso-
lute value of the total local gravitational potential [15, 43], as noted earlier. With
this interpretation, comparative transition measurements of the type discussed in
the previous section can more effectively constrain the allowed regions of (I, Ag)
parameter space than can measurements which depend upon changes in the grav-
itational potential. Of course exploiting anticipated improvements in precision of
measurements of atomic vacuum energy shifts [42] will yield better bounds on ¢.-

and £+ via (3.31).

Violations of LLI single out a preferred frame of reference. In fact, the search
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for a preferred direction motivated the most precise tests of LLI performed so far
[10, 9]. We have extended the analysis of the effects of motion relative to a preferred
frame to account for the radiative correction for the atomic energies associated with
the Lamb shift, as embodied in the expression (3.50). This non-universality reflects
the breakdown of spatial isotropy for quantum-mechanical vacuum energies. The
coeflicient Ay depends upon Aé;;, the evaluation of which involves the numerical
computation of the sum in (A.56). Unfortunately, the intrinsic linewidths of the
relevant states render direct measurement of such effects unfeasible. More precise
empirical information on the value of ¢ can be obtained by precisely measuring
changes in the Es,,, — Eap,, splitting as functions of terrestrial or solar motions.
However these effects are insensitive to radiative corrections, depending instead

upon the semi-classical non-metric effects discussed in section III.

Finally, we note that our formalism could be applied to muonic atoms. For a
muon-proton bound system, we will obtain an expression similar to that of (A.55),
but where all parameters refer to muons. For an anti-muon electron bound system
(a muonic atom) a similar analysis would apply. However in both cases the mass

and spin of the muon could not be neglected.



Chapter 4

(GM) Anomalous Magnetic

Moment

4.1 (GM) Free Scattering

We shall consider the lowest order radiative correction to the elastic scattering
of electrons by a static external field A*. These one loop contributions can be
summarized in terms of the Feynman diagrams illustrated in Fig. 4.1.

The Feynman amplitudes for the diagrams follow from the Feynman rules giving

the result [45]:
A (p',p) = a(p") {T* + P* + L*} u(p) (41)

where
P o i PP .
() = Gorye [ FRTSEE ~ RPiSe(p —ENPiGas(k)  (42)
P(p',p) = 7°iGap(q)ilIP*(q) (4.3)
") = iBE)Sr( " +1iSr(p)iZ(p) (44)

46
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g
A

Figure 4.1: One loop corrections to the elastic scattering of an electron by an

external electromagnetic source

with
) = (oo [ ARGaa (kY iSelp - Ky (4.5)
B — (ie)z B, 7%
M) = (o) / d*kvPiSp(k + g*iSe(k) (4.6)
andg=p —p.

We refer to Eqs. (4.2), (4.3), and (4.4) as the Vertex, Polarization, and Leg
contributions, which respectively correspond to diagrams (a), (b) and (c) plus (d).
We also note that expressions (4.2), (4.5), (4.6) represent the one loop corrections
to the vertex, fermion and photon self energy parts respectively.
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Given the form of the photon propagator it is convenient to introduce:

A" = (L+E)AL +7%€AY (4.7)

where the subscript “0” denotes the (known) result coming from the standard part
of the photon propagator, and “£” for the part proportional to 72 in (2.13)

In the remainder of this section we consider this part of the propagator only, omit-
ting the “£” label in the corresponding expressions.

The procedure for evaluating the loop integrals is equivalent to that of standard
(or metric) QED. We need to regularize them first and then renormalize the pa-
rameters, which include the T Heu parameters along with the fermion charge and
mass. The regularization of the photon propagator is carried out using

1 A? dL 1 A? dL

with the assumed limits ¢ — 0 and A — oo, and the parameter renormalization
by the inclusion of the corresponding counterterms to each loop integral. Details
about this procedure and the corresponding calculations are given in the appendix
B.1. We quote the final result for the loop integrals:

26) = 206-m {22 g [y + - 1uy]} @)

T 3 144

— 2B 2 (g m) pt p(#—m)} +O((5 - m)?)
vl p) = 2(8pf (D
F(p,P) - “{7 [3 ﬂz( ( )2+——Zln(—l:))

2 m m m
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1 .
[y (1ﬂ 2yl ﬂmQ) + (%i- %) Py (a11)

_ dﬂﬂ,, lﬂqﬂ“+2ﬂqﬂ,, (ﬂ’+ +lﬁpﬂq)d“

24 6 6m m/m
18-p_58-¢ AT s
+ (a m % m ):ﬂ”(ﬂ*&) m) t0&)
o) = -2 (¢ - ) 1z +0(e") (412)

where we have implicitly assumed that (4.11) is acting on free spinors.

The Ward identity
”@—W@) (4.13)

is a consequence of gauge invanance, and therefore it holds even in the absence
of Lorentz invariance. It is straightforward to check that (4.10) and (4.11) satisfy
(4.13).

The evaluation of (4.1) is also straightforward once the loop integrals have been
calculated. We just comment on the computation of the Leg correction, which is
ambiguous since it contains terms like “0/0”, which are indeterminate. To obtain
an unambiguous result, we must explicitly introduce a damping factor, which is
necessary for the correct definition of the initial and final “bare” states. Details of
this adiabatic approach are presented in appendix B.2. The final result for the Leg

correction is

= Xy [g ((ﬂ'P)’+ﬁ-pﬂ-q+1(ﬂ-q)’)
- 2

m m 2 m?

+ 8 (g + g - ey (414

1 . 1 " lﬂ
+ 3oL o 200 g

Note that this part gives a contribution to the total amplitude that cannot be

removed after renormalization. Furthermore, the gauge invariance of the Feynman
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amplitude which is manifest as
g-A=0 (4.15)

requires the presence of such terms, a condition that is not satisfied by the vertex

contribution only.

The final result for the scattering amplitude is

A* = FF 4G 4+ I* (4.16)
with

17 1 ) 58-p8-

" 3{”“[75(7 G- g) + 52
+ Bty (- nC ))] p "/allzﬂm" (a17)

8 & lﬂ pB-q4 ,
+ 45 ﬂﬂ +6 m mm. }

u..?.?.ﬂu lﬂp_37ﬂq_.-£2.-_

F=gs? +(6m 180m)mp (24+6)m} (4.19)

The various terms in (4.16) distinguish the different contributions to the scat-
tering amplitude. In (4.17) we group terms of order ¢ or higher. G* accounts for
terms of order q at least, and I* for the gauge terms or those who give no contri-
bution to the amplitude. Note that the remaining infrared divergence in F* can be

understood in terms of soft photon radiation, analogous to the metric case.

In the next section we will use the above results to compute the g — 2 anomaly.
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4.2 (GM) g-2 Experiments

To lowest order the Feynman amplitude associated with the elastic scattering of an
electron by a static external field is

iei(p’) Alg)u(p) - (4-20)
The radiative correction of order a to this process is given by
ie@(p'){(1 +€)Ao - A +7°€A¢ - A}u(p) (4.21)

where Ag represents the (known) metric result and A represents the contribution
from (4.16).

In the nonrelativistic limit of slowly moving particles (|g] — 0) and a static
magnetic field , it is straightforward to show that

€ = .
ehg-A — -2—'7!'-(% B¢ (4.23)
ehe-A — eG-A (4.24)

with G* given by (4.18), which is the dominant term as ¢ — 0.

In order to simplify this contribution, we consider a constant magnetic field B,

that is A = 3F X B, in which case
jﬂﬁ-A—»-%(ﬁ-ﬁ&'-i‘-ﬁ-&‘t’i’) (4.25)

where we have neglected the terms that mix the large and small spinor components.

Similarly, we can show

B-ap A~ —(B-dG-i-B-5) (4.26)
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and in the nonrelativistic limit

dApEPagpp B (4.27)
and
{§A—-B.¢ . (4.28)

If we put everything together in (4.18):

eG-A——-——{B 0—1—2-+Eu)—§B-ua’-u} (4.29)

As a cross-check on the above result, we take the limit uw;u; — —é;; obtaining
G - A = —2A, - A, which is the reqnired limit consistent with the structure of Eq.
(4.8) in that case. The previous result is the contribution of (4.24) to (4.21), which
added to (4.20), give us the relevant part of the Hamiltonian as

H,=—{T'S-B+I.5-@B-@}+0(6)0(a?) = -I' S;B; (4.30)
with
2
=_e_. = _i_ g 1— 72
P=o—g = {2+ —[1+£01+5(1+7P)]} (4.31)
— &, = _ i,
L.=309 = “omzt3! (4.32)

where we have identified § = £ and @ = @/|é|. The I' parameters account for the
coupling strength between the magnetic field and spin. We see that I';; generalizes
the gyromagnetic ratio of a fermion analogous to the manner in which the anoma-
lous mass tensor generalizes the mass of a particle [30]. We therefore identify the
parameters ' = '6*/ 4 I'.u*v’ with the components of the anomalous gyromagnetic

ratio tensor of the fermion in the class of T'Heu theories.

Note that the presence of preferred frame effects induces a qualitatively new
form of interaction between the spin and magnetic field which is quantified by I'..
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Here, instead of coupling with each other, they both couple independently to the
fermion velocity relative to the preferred frame. This interaction stems purely from

radiative corrections, and would be absent in any tree-level analysis of (GM)QED.

Hence, Eq. (4.30) describes the interaction (as seen from the particle rest frame)
between the particle spin and an external homogeneous magnetic field. From this
we can extract the energy difference between electrons with opposite spin projection

in the direction of the magnetic field as:

_eB 2 3
AE, = —-E;;[g + g.u® cos? O (4.33)

where © is the angle between the magnetic field and the preferred frame velocity.
The influence of the radiative corrections (coming from g — 2 and g.) in (4.33) is
negligible in comparison to the dominant factor of 2 in g. Since we want to single
out the effects of the non-metric corrections, it is more interesting to study the
precession of the spin or, more specifically, the oscillation of the longitudinal spin
polarization. In the metric case, this frequency is proportional to the factor g — 2,

and so it is a distinctive signature of radiative corrections.

The observable quantity in the g — 2 experiments is actually the electron po-
larization, which is proportional to the quantum mechanical expectation value of
S, that is, (.S" ). Using Ehrenfest'’s theorem, a quantum mechanical solution for the
motion of (S) is obtained from the equation

g‘;lu = ~i[5,H,] = § x [TB' +T.(B' - ¥)d (4.34)
where the primed variables are referred explicitly to the particle rest frame (R.F.).
Note that the preferred frame effect will show distinctly as a temporal variation of

the spin component parallel to the magnetic field.

In general we want to know the spin precession relative to some specific lab-

oratory system, with respect to which the particle is moving with some velocity
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. This frame need not a-priori be the previously defined preferred frame, and so
B#i

Since the T Hep formalism does not change (locally) the fermion electromag-
netic field interaction, we expect that a charged particle in the presence of an
homogeneous magnetic field will satisfy the equation

%t‘i =8 x8. (4.35)
with the cyclotron frequency Q. = ;‘;B' and v = (1 — §2)~1/2. Relating (4.34) to
the laboratory system yields

%‘-f-[w = %lu, +09rx8§ (4.36)
due to Thomas precession, with Q7 = 1—'_%(%? x ,5) This frequency is kinematic in
origin and it is a consequence of the non-commutativity of the Lorentz transforma-

tions.

Relating the primed variables in (4.34) to the laboratory ones by a Lorentz

transformation gives

%Im =§xQ, (4.37)
with
Q,=TB+(1-7)8.+T.(B )i (4.38)

where we have set E = 0 and considered (for simplicity) the case of orbital motion
perpendicular to the magnetic field (ﬂ-‘ - B =0) in the above. Note that the spin
precession about (, is no longer parallel to the magnetic field (axial direction), but

has a component parallel to @ that comes from radiative and non-metric effects.

At this point it becomes necessary to define the preferred coordinate system.
There are several candidates (such as the rest frame of the cosmic microwave back-

ground) for this frame [6]. To study this issue it is sufficient to assume that the



4.2 (GM) g-2 Experiments 55

laboratory system (Earth) moves with a non-relativistic velocity (V') with respect

to the preferred frame, and so we can identify
i=V+48

In order to single out the effects of radiative corrections, we study the spin
precession relative to the rotational motion of the electron, that is:

% e = x ip (4.39)
with @p =Q, —Q.and § = (SL'_,Sf, S}j), where the first two components are per-
pendicular to B (lower index) but parallel and perpendicular to 8 (upper index),
and the last one parallel to B. In the following we refer to the difference frequency
(p) as the anomalous frequency (given its connection with the anomalous mag-

netic moment in the metric case). It is convenient to rewrite:

Qp =0, + 2 cos O(V. + f) (4.40)
with
T _e_ 2 2 _ —
Q, = 5 (g +9.V*cos®*© 2) B (441)

and Q] = ;=g.BV; where © represents the angle between V and the magnetic
field, and V; the component of the velocity perpendicular to B. In £, we group all
the terms parallel to the magnetic field that contribute to the anomalous frequency
(including non-metric effects). The remaining terms perpendicular to B arise from
non-metric effects only, and produce a temporal variation of the spin component
parallel to the magnetic field. This effect is absent in the metric case, and so
represents a qualitatively new manifestion of possible EEP violation.

In general we are interested in solving (4.39) for the cases 3 >> V or 8 <<V
so that y(u) ~ v(B) or 4(V), but is otherwise constant. Since 2 is proportional to
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£, we can perturbatively solve for each component in (4.39). Taking, for example,
the initial condition § (0) = S3 we find

Sl = ScosQt St =SsinQt (4.42)

L yon20 s(Q + )t — 1]

ﬂa +ﬂc 2

S = S%ﬂcos O(L —cosQt)+ S
where we have chosen a coordinate system where B = % so that
V =Bcos®© + #sin O, ﬁ:g}cosﬂct—i'sinﬂct (4.43)

and assumed that any rotation related to © is negligible in comparison to other

frequencies involved in the problem (§2, or £.).

The fact that 2, was (in the metric case) proportional to g — 2, motived the
very precise g — 2 experiments which were designed to specifically measure that
anomalous frequency. We see that this frequency is modified from its metric value
by the additional terms present in (4.41). If we assume that the EEP-violating
contributions to {2, are bounded by the current level of precision for anomalous
magnetic moments [26], then the discrepancy between the best empirical and the-
oretical values for the electron yields the bounds

|é-] <3.5x107% and [€.- —&+] < 107° (4.44)

the latter following from a comparison of positron and electron magnetic moments.

For muons, a similar analysis yields
|€,-| <107® and [£,- —€,+] <1078 . (4.45)

Even though the accuracy of the muon anomaly is lower than the electron one,
the slightly stronger bound in (4.45) arises because the experiments are carried

out for high-velocity muons [46]. To our knowledge these bounds on violation
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of gravitational universality are the most stringent yet noted for leptonic matter.
Torsion balance experiments and laser experiments yield the weaker bound .- <
10-7 when these tests are analyzed in a similar context [47).

Newman et. al. analyzed the g — 2 experiments [48] in order to find new bounds
for the validity of special relativity. They assumed that the parameter v involved in
the electron motion had a different value (¥) from that which arises kinematically
(in Thomas precession and Lorentz transformations). The equivalent equation for

(4.41) is in that case

m\2 ¥
and by comparing with two electron g — 2 experiments, one at electron relativistic
energy (8 = 0.57) and the other nearly at rest (3 = 5 x 10~°), they obtained the
constraint §v/7 < 5.3 x 10~® . Our approach is qualitatively different from theirs,

ovres _ °B (9— - 1) (4.46)

in that we assume 4 = ¥ but include preferred frame effects in the evaluation of
the anomalous magnetic moment. A similar analysis in our case yields the weaker
bounds of |£.] < 7 x 107 for electrons, and |£,| < 2 x 107 for muons. In the
latter we used the g — 2 muon experiments carried at 8 = 0.9994 (y = 29)[46], and
B =0.92 (y = 12)[49].

Preferred effects not only modify the anomalous frequency according to (4.41),
but also induce oscillations in the spin component parallel to B. As stated above,
this is a qualitatively new consequence of EEP violations due solely to radiative
corrections in (GM)QED. Searching for such oscillations therefore provides a new
null test of the EEP. We can estimate the magnitude of such effects by taking the
temporal average of S| over the main oscillation given by 2,, which gives

§= (—5;'2 ~ £V B cos O4? (4.47)

This effect is enhanced in highly relativistic situations, and can be estimated by
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considering a typical experiment with V' ~ 10~3. For electrons 8 ~ 0.5, and so
8. ~ 10~1}; for muons B = 0.9994, yielding J, ~ 10~%. In both cases we used the

corresponding present constraints for £ given above.

The novelty of the Sjj oscillation suggests the possibility of putting tighter con-
straints on the non-metric parameter, once appropriate experiments are carried out.
The same goes for the analysis of {2, at different values of © (the angle between
the magnetic field and the velocity of the laboratory system with respect to the
preferred frame). The rotation of the Earth will turn this orientation dependence
into a time-dependence of the anomalous magnetic moment, with a period related

to that of the sidereal day.

The previous analysis was concerned with effects related to spatial anisotropy.
We turn now to a consideration of possible violations of local position invari-
ance. The position dependence in the former section was implicit in the redefi-
nitions of charge, mass and fields. These quantities were rescaled in terms of the
T Hep functions, which were considered constant throughout the computation. LPI
violating experiments are of two types. One of these entails the measurement of a
given frequency at two different points in a gravitational field (where differences in
the gravitational potential could be significant) within the same reference system.
The other type involves a comparison of frequencies arising from two different forms
of energy (i.e. two different clocks) at the same point in a gravitational potential.

We parameterize the gravitational dependence on a given frequency as:
Q=01-U+E90]+ - (4.48)

where U;; represents the external gravitational tensor, satisfying U;; = U, and the
ellipsis represents higher order terms (going as either U? or velocity times U) in the

gravitational potential or terms independent of it.
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The measured redshift parameter related to this frequency may be written as

z=AU(1-8), E=zi__Z (4.49)

where =% will depend upon the specific frequency measured in the experiments.
Note that this tensor is equivalent to the anomalous passive gravitational mass

tensor introduced for the study of atomic transitions.

In g—2 experiments the relevant frequency is ;, which describes the precession
of the longitudinal polarization in the presence of a constant magnetic field. Using
the T Hep formalism (see Eq.(4.41)) we obtain

eB eB a 7
= glg—24= g2 i) 4o (4.50)

where we have omitted terms proportional to velocities, which eventually will con-

tribute as O(v?U) terms at most.

In order to carry out the loop calculation, the T Heu dependence was absorbed
into the definition of the parameters under the rescaling

oy m— mﬁz/co a — af€ecy (4.51)

with ¢o = (To/Ho)'/? as the limiting speed of the massive particles, the subscript
‘0’ denoting the T'Heu functions evaluated locally at X =o0. Although the product
eB remains invariant under this rescaling, the expression for the constant magnetic
field still depends on the T'Hep parameters once it is written solely in terms of
atomic parameters. This can be seen clearly by considering the magnetic field
produced by a long solenoid of length L, with N turns and carrying a current [.
The gravitationally modified Maxwell equation to solve is:

V x (" B) = 4nxJ (4.52)



4.2 (GM) g-2 Experiments 60

and so we find the non-vanishing magnetic field inside the solenoid to be B =
4AnpoIN/L. Again we assume that the THeu functions are constant throughout
the size of the experimental device. In terms of fundamental atomic parameters, L
is proportional to an integer times the Bohr radius (the interatomic spacing), which
is known to rescale as ag ~ ageac2//Tp [6]. If we now write I = [ J - dS, where J
can be expressed in terms of a density charge p in motion (v) through a volume V,
and then relate the Bohr radius to each spatial dimension along with the limiting
particle velocity ¢o to the velocity distribution v, we can show I — I/To/€yco, and
so B = BuoTo/€kc3. Along with (4.51), this gives the position dependence of (4.50)
to be

7
Q= QT 222 (1 + €< 4.53
a 0 ( €0 Co )3 ( E 6 ) ( )
with Q2 = eBa/2mn (recall § =1 — 1/pgeoc?).
Note that the T Hep functions are evaluated at some representative point of the
system, which we have chosen to be the origin X =0. In order to determine how

§2, changes as the position of the system varies, we expand the T Heu functions in
(4.53) according to (3.40), which in turns yields

11 13
Q=01-U+ (4 To - —6-—A0)U] (4.54)

where we have rescaled again according to (4.51), and omitted terms proportional
to &, since the main position dependence parameterization is given in terms of the

LPI-violating parameters 'y and Ag, introduced by Eq. (3.43).
By comparing Eq. (4.54) with (4.48), we can identify

=g-2 _ 11

13

as the LPI-violating parameter. Note that this depends on the anomalous frequency
related to the longitudinal polarization of the beam. It is also species-dependent,
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with the value of ', and Aq for the electron differing from that of the muon. A
search for possible position dependence of anomalous spin precession frequencies

provides another qualitatively new test of LPI sensitive to radiative corrections.

Actually the most precise g — 2 experiments for electron measure the ratio
a = Q/Q. at nonrelativistic electron energies (3 ~ 10~°), and so Q. ~ eB/m.

This is interesting because by following the former parameterization we can write:
Q. = Q1 - U + (2T - Ao)U] (4.56)

or by taking the ratio of (4.54) to (4.56), we obtain the anomalous magnetic mo-

ment:
a=a®(l+U3%), =°= é—ro + GZA0 (4.57)

and then by identifying a with the most precise experimental value [25] and a°
with the theoretical one [26], we can conmstrain through the resulting theoreti-
cal/experimental errors |UZ?| < 3 x 1078, This result is sensitive to the absolute
value of the total local gravitational potential [15], whose magnitude has recently
been estimated to be as large as 3 x 10~ due to the local supercluster [19]. Hence
measurements of this type can provide us with empirical information sensitive to ra-
diative corrections that constrains the allowed regions of (o, A¢) parameter space,
giving in this case:

%ro + 63A0| <10~ (4.58)
For muons the analogous constraint is [UZ}| < 10~%, and so a much weaker bound

is obtained.

We note that a similar experiment to that employing hydrogen-maser clocks
could be carried out for the energy shift defined in (4.33), which can be used

as a frequency test to look for position or frame dependence. This can be done
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by following the same procedure as for atomic energy shifts, where the anomalous
passive and inertial gravitational tensor are introduced in order to relate non-metric
effects to redshift and time dilation parameters. Since radiative corrections are

irrelevant in that energy shift, we omit that procedure here.

4.3 Discussion

Refined measurements of anomalous magnetic moments can provide an interesting
new arena for investigating the validity of the EEP in physical systems where radia-
tive corrections are important. We have considered this possibility explicitly for the
class of non-metric theories described by the T Heu formalism. The non-universal
character of the gravitational couplings in such theories affects the one loop correc-
tions to the scattering amplitude of a free fermion in an external electromagnetic

field in a rather complicated way, giving rise to several novel effects.

An evaluation of the one-loop diagrams reveals that the leg corrections, which
in the metric case give no contribution to the total amplitude after a proper renor-
malization of mass and spinor field, provide contributions which cannot be removed
after renormalization. Moreover they are essential in ensuring the gange invariance
of the scattering amplitude, which is not fulfilled by the vertex correction alone.
The consistency of the calculation is verified explicitly through the Ward identity,
which furnishes a cross-check between the fermion self energy and the vertex correc-
tion. The non-metric corrections to the scattering amplitude also have an infrared
divergence, which could be understood in terms of inelastic soft photon radiation,
as in the metric case. This does not affect the term associated with the anomalous

magnetic moment.

The presence of preferred frame effects induces a new type of coupling between
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the magnetic field and the spin as described by (4.30). This interaction stems purely
from radiative corrections, and generalizes the gyromagnetic ratio of a fermion
to a tensorial coupling described by I;;. We emphasize that qualitatively new
information on the validity of the EEP will be obtained by setting new empirical
bounds on this coupling, as it is associated with purely leptonic matter.

Consequently, discussion of a ¢ — 2 contribution to the magnetic moment no
longer makes sense, and we instead refer to the anomalous frequency as the main
connection with experiment. Note that this frequency, defined as the relative elec-
tron spin precession with respect to its velocity, comes from radiative corrections
and it becomes proportional to ¢ — 2 in the metric case. This frequency shows an
explicit dependence on both the preferred frame velocity and its relative direction
with respect to the external magnetic field. There is also a dependence on the elec-
tron velocity, which makes the other contributions negligible at relativistic electron
energies. Two g — 2 experiments on the electron (one at relativistic energies and
the other almost at rest) may then be used to limit the preferred frame parameter
to be no larger than 105, analogous to the work of Newman et al.. Constraining
any possible EEP violation to be no larger than the present discrepancy between
theory and experiment we found the most stringent bounds for § yet obtained for
leptonic matter, as given in (4.44) and (4.45).

We expect that new experiments which probe the anisotropic character (or
angular dependence) of the frequency could be used to impose stronger limits in
different physical regimes. For example, as the Earth rotates, the spatial orientation
of the magnetic field changes - this should in turn diminish the experimental errors

involved in the comparison between two energetically different g — 2 experiments.

The relativistic generalization of the spin polarization equation (4.37), followed

the same procedure as for the metric case, where non-metric effects where included
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in the interaction only (Eq. (4.30)). This yields an equation of motion for the spin
(as seen from the rest frame) which is qualitatively different from that expected
from its classical counterpart, where the angular momentum rate is related to the
torque applied on the system. This approach for dealing with violations of Lorentz
invariance is dynamical; from a kinematical viewpoint we assume that standard

Lorentz transformations relate coordinates and fields from one system to another.

Perhaps the most remarkable feature of the non-metric effects is that of the
oscillations of the component of spin polarization parallel to the magnetic field.
Since this component remains constant in the metric case, an experiment which
searches for such oscillations is a new null test of the equivalence principle that is
uniquely sensitive to radiative corrections in the leptonic sector. Hence an empirical
investigation of its behavior will provide qualitatively new information about the
validity of EEP, and could constrain even further the limits on the preferred frame

parameters.

Finally, we analyzed the behavior of the anomalous frequency in the context
of redshift experiments, which can put constraints on the LPI-violating parame-
ters (Co, Ag) once the corresponding experiments are carried out. This region of
parameter space is qualitatively different from that probed by either Lamb-shift
or hyperfine effects. In the electron sector a bound on the magnitude of UZ? can
be obtained by demanding that it be no larger than the error bounds in the dis-
crepancy between the experimental and theoretical values of the ratio a = Q,/Q..
Assuming the local potential to be as large as that estimated from the local super-
cluster, we obtain a bound on [Z°| that is comparable to the limit on an analogous
quantity in the baryonic sector obtained from redshift experiments [7]. However
this latter experiment is proportional to changes in the local potential, which are
~ 10'°, More direct limits on [S2| must be set by performing a similar sort of
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redshift experiment on anomalous magnetic moments [50]. The logistics and higher
precision demanded by such an experiment will be a major challenge to undertake.



Chapter 5

Concluding Remarks

In summary, we studied for the first time the validity of the EEP in the realm
of quantum field fluctuations. We reformulated Quantum Electrodynamics in the
context of non-metric theories of gravity, which involved the development of an ap-
proach that led to a consistent, regularized and renormalized quantum field theory.
We used perturbation methods (loop counting) to calculate the relevant radiative
corrections, and derived the corresponding Feynman rules for bound systems and
free scattering. Finally we made the empirical connections via the interpretation

of present data and the design and assessment of future experiments.

We find that a non-metric spacetime structure induces qualitatively new effects
in the behavior of radiative corrections that leave distinctive physical signatures.
Such effects allow the possibility of setting new bounds on the validity of the EEP.
In fact from present experiments, we obtain the most stringent bound yet noted
for the non-metric parameters related to leptonic matter. A summary of those
constraints is presented in table 5.1. Recall that the relative gravitational coupling
between massive particles and photons is measured by £ = 1 — ¢?/c3, where ¢, and

66
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c. are the limiting speed and speed of light respectively. The remaining parameters
(c.f. (3.43) and (3.49)) account for the differences between the local variations of the
metric between nucleons and/or electrons, and photons. Note that the stringent
limits on universality violation set by previous experiments have only been with
regards to the relative gravitational coupling in the baryon/photon sector of the
standard model. For the leptonic sector relevant to our consideration, relatively

little was known.

In addition, we set the proper grounds to perform future experiments which
could greatly improve our empirical knowledge of EEP or else refute its validity. In
this regard, it is important to note that almost all the attempts at unifying gravity
with the other interactions predict the existence of a new long-range, macroscopi-
cally coupled interactions appearing as auxiliary fields of gravitation [12]. Indeed
this is the case in string theory where gravity always appears accompanied by a
scalar field (the dilaton) [13].

Up to now, the main observable consequences of the EEP have been verified
with high precision by all existing experiments. However, as stated already by
Damour [12], the fact that present tests are at the 10712 level does not diminish
the possibility of small violations of the equivalence principle because there exist
string-inspired models in which one gets, in a non fine-tuned way, violations of the
universality of the free fall at the level of n ~ 10~18¢, where ¢ is a dimensionless
quantity which could be of order unity [51]

The condition of “metricity”, or “universality of the gravitational coupling” is
an ad hoc assumption of the theory, and not a natural consequence of an ertended
formalism. In fact, nearly all the new interactions that naturally appear in exten-
sions of the present framework of physics violate the equivalence principle [12]. In

view of this, it is important to continue improving the precision of the experiments
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probing the EEP. Indeed the project of a Satellite Test of the Equivalence Principle
(STEP) aims at probing the universality of the free fall of pairs of test masses or-
biting the Earth at the impressive level of precision n ~ 10~!7, and there are plans
for flying very stable clocks near the Sun to improve the testing of the gravitational
redshift down to the 10~¢ fractional level (see [52] and references therein). Follow-
ing that direction, we expect that the intrinsically qunantum-mechanical character
of the radiative corrections will motivate the development of new LPI/LLI experi-
ments based on the Lamb shift transition and anomalous magnetic moments. In so
doing we will extend our understanding of the validity of the equivalence principle
into the regime of quantum-field theory.
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Non-metric | Baryons Leptons
parameters | Nucleons e~ e —et | pm [ —pt
¢ - 35x10%| 10 [10-%| 10-®

6 x 10~ [9] | 10~7 [47] - -

Nucleons Electrons
r 2 x 10719 [6] 1073 [47]
A 3 x 10~° [6] -
[3Ts —Ap + A < 2 x 107* [47] ITe + 7TA.| <6 x 1073

Table 5.1: Comparison of the constraints (upper limits) for the T Heu parameters
obtained from this thesis (radiative corrections) and from other experiments as

indicated.



Appendix A

Lamb Shift Energy

A.1 Semi-Relativistic Calculation of Hydrogenic
Energy Levels

Consider a hydrogenic atom immersed in an external gravitational field, moving
with velocity # relative to the preferred frame. In Sec. III we follow a fully rela-
tivistic approach to solve for the atomic energy levels. That is we perturbatively
solve the Dirac equation in the presence of the electromagnetic field of the nucleus,
where the unperturbed states correspond to the Dirac solution in the presence of a

Coulomb potential only (the metric case).

We consider here the use of the Foldy-Wouthuysen transformation in solving

(3.1). In this approach, we write

H= Hc + Hmag + Hmv + HSO + HD (Al)
with
P
H = m+E _ca,
2m
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e ., = - e , =
o

Hpo = -’8_1;3— (A.2)
e _, = — e _, = -

HSO = S—ZI_Z.U.VXE+I1;EU.EXP

HD = ‘s—ﬂTz'v'E

where A, is given by Eq. (2.6).

As shown in section III, we can take H,,,, — 0, since the magnetic field does
not contribute to the atomic energy levels. We can then group the terms in the

Hamiltonian as

Hf = Hmv + HSO + HD (A3)
where we have defined the fine contribution to the Hamiltonian (Hy), in order to
account for the first relativistic correction O((Za)?) to the atomic energy levels.

We start writing a formal solution for H|n) = E,|n), in terms of its non-
relativistic limit:
H.|n). = El|n)., (A-4)

In}) = In)e +In)s,  Eu = E; + (n|Hyln). (A.5)
where the index “f” accounts for the first relativistic correction to the states and
energies.

Since Ag = ¢ + €4, and so H. = H? + £H!, we do not know the exact solution

for (A.4), but only the perturbative expansion:

[n)e = In)e’ + €ln)e Bt = En"® 4+ (n|Hln)} (A.6)
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where

~2
H2n)? = (m + 2~ — eg)[n)? = BZOn)? (A7)

If we use (A.6) along with Hy = H} + {H; in (A.5), we can finally write up to
0(6),

E, = EJ+¢E, = n|(H +H}) In)? (A.8)
+ &[%nl (B + Hf) In)2 + { 2(n|Hf[n), + b.c.}] + O((Za)®)

We see then that under this semi-relativistic approach, we must address the
problem of finding the states |n)’, whose contribution to (A.8) is between the brace
brackets. This is equivalent to including the first relativistic correction which comes

after solving

Hln)° = (H? + H} + -+ -)In)° (A.9)
[n)° = [n)d + [n)} +---, (A.10)

since, we can show
{2niH)n), + h.c.} = {H(n|H.[n)Q +h.c.} (A.11)

This relation allows us to rewrite part of (A.8) as

B = (Unl+ Ynl+--) (H A Hp+-o) ()2 + [m)g + )
= *(n|H'ln)’. (A12)

It is clear then that if we start with the exact solution for the Dirac equation
in the presence of a Coulomb potential, we can avoid working with the states |n)..
Note that since we are interested only in the first relativistic correction, the result

(A.12) must be expanded to O((Za)*).
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Unfortunately for hyperfine or Lamb shift energies, the effect of the primed
states cannot be removed, since they both come from perturbations to the (known)
relativistic solution of the Dirac equation in the presence of a Coulomb potential
only.

A semi-relativistic expression for the Hamiltonian of a hydrogenic system was
worked out in Ref. [29], where the effects of nuclear spin (hyperfine effect) were
also included within the context of LLI violations. The result presented there for
the atomic energy levels is incomplete though, since the contribution of the prime

states was overlooked, as discussed at the end of Sec. III.

A.2 Loop calculations

Given the form of the photon propagator (2.13), it is convenient to divide the

calculation into two parts
8Es = 6E{" + 6B (A.13)

where JE_gA) groups the contributions of the terms proportional to 7, in G,
whereas §E?) contains those proportional to 42 = 1/(1 — @) and £. We are
interested in solving for the shift in energy levels up to first order in £, so it is
enough to consider a Coulomb potential as the source for part B, while for part A
the full source as defined in Eq. (2.6) needs to be included.

We mention again that we are interested in calculating the GM Lamb shift to
lowest nontrivial order in «, i.e. up to O(a(Za)*). To this order, we can use the
nonrelativistic expressions for both the large and small component of the electron

spinor . So for example, if we make the substitution

»(p) = (Zam) ™ *w(f), (A.14)
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where w(£) is a dimensionless spinor whose first two components are of order unity,
and the last two are of order Za, we can assign orders to the various terms according

to

pi~ Zam, Ey—-m~ (Za)’m
edod®p’ ~ eA; Ep ~ (Za)’m (A.15)
VY Pad’p ~ Zam.

These approximations will be used in the sequel to simplify the expressions we

obtain.

A.2.1 Type A Contributions to the Self-energy

Here we will consider
G = -2 (1+¢) (A.16)

and Y = —eA,y*, with A, given by Eq.(2.6). This part of the calculation is almost
identical to that of BBF [38); the only difference is that now we have to consider a
source that contains a magnetic part in addition to the electric one.

We begin by computing §E,. Relating the counterterm §C to the renormaliza-
tion of the electron mass and regularizing the photon propagator via

1 A?  dL
Ei—-) - ' m (A.17)

we find that I, and I3 in (3.27) become
L =(1+8 Vizh@"/w)-aA/p)} (A18)
L =(1+8) J{VAp) +3) +min(m?/5)}
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On the other hand, we obtain for I;
ho= @+ -5V -38-p¥ [ /i) + 7 ¥ [ dom(a?/sd)
+ [ O VAV (A19)
— W .P(l—2) -2V pz F +Vp. f:}},
where p, = zp’ + (1 — z)p.
We can simplify this expression by letting the momentum operators g’ and p

respectively act on the spinors ¥(5’) and ¥(p), using the Dirac equation and (A.15)

to keep terms up to the desired order.

Adding together I,, I, and I3 we obtain a result correct to order a(Za)*:

—_ 2 (1., m 1 1 v /
SER = 2a+¢ [36) [Y = [51“(",,‘)“51 Tm? V“] el al

a —3V2 +5V2
- ;(1 + f)(anln), (A.20)

with ¢ = p’ — p, and 6* = {[y*,7"]. Note that the term proportional to ¢* in
Eq. (A.20) needs to be evaluated with only the large component of  and Y ~ \,
(70 ~ 1).

We point out that the initial ultraviolet divergence in (A.18) is cancelled af-
ter the addition of the I'’s in (A.20). The remaining infrared divergence will be
cancelled by a similar term which comes from the many-potential part of the level
shift. A similar cancelation occurs in the non-gauge invariant term present in Eq.
(A.20). These cancelations are non-trivial, and provide useful cross checks to our
calculation.

Consider next the evaluation of dF,. Since the operator M, satisfies the

transversality condition
k-M=k-M =0 (A-21)
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we can write My = k M /ko.

Using
V Ktu =2V -k — 2V K+ B ¥, (A.22)

in the first term of Eq.(3.30) the operator M}can be decomposed into

Mt = M+ MMT (A.23)
with
2p 2p,
I _ (2 - ]
My = {kz—zp.k K —2p -k (4.24)
1 1
+ k?ﬂ(kz_2p,_k—kz_2p.k)}y
MY = 2V, E—V-ky)/(K ~2p-Fk), (A.25)
each of which still satisfies
M. =M. k=0 (A.26)

In terms of these operators we now have
6By = (M'KY M™) + (M KY MYy + (M'KY M™) + (MK MY), (A.27)

where each term represents a contribution to Eq. (3.29) involving the products
of only M! or M* or cross terms operators. The simplification of these terms is
quite analogous to that shown in BBF [38]. The decomposition of the M operator
in (A.23) allows one to use simpler expressions for the bound propagator KY. In
appendix A.2.5 it is shown that only in the part (M?KY M') will it be necessary to
use the bound electron propagator; in all other contributions it is sufficient to re-
place K by the propagator for free electrons, K2. Moreover the main contribution

to (MIKY M") arises from intermediate states of the electron with nonrelativistic
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energy so that both KY and M’ can be replaced by their simpler nonrelativistic
approximations. It is also shown that the cross term in Eq. (A.27) gives a contri-
bution of order a(Za)® and is therefore not relevant in our calculation. According

to the above considerations we can then approximate Eq. (A.27) by

8E; ~ (MypKypMyg) + (MUKIM™) = (M') + (M"). (A.28)

We start evaluating the first term of Eq. (A.28). The nonrelativistic prescription
for KV is given by

. (@) (E) exp(~iE (¢ —t)  for (¢ —) >0
Kip(z',z) = (A.29)
0 for (! —¢) <0

or in momentum space
KA‘;R(EVL - kOiﬁ'wl-’) = "iz:‘Pr(ﬁ’)?’:(ﬁ)(Er —-E, + kO)-l (A.30)

where @, represents the large component of the Dirac spinor.

In the same nonrelativistic approach M‘f reduces to

M1 » (5, — p) BE =D - p, (A3)

where we have approximated ¥ ~ V4, because although the magnetic and elec-
tric potential have the same order of magnitude (as powers of Za), the ¥ matrix
mixes large components of the intermediate states with small ones and therefore

introduces corrections one order higher in Za.

Therefore, after replacing Eq. (A.30) and (A.31) in Eq. (3.29) we obtain

(MY = 2 [dRe= (k) x (“ILORZI;;Y'_R:E"") (A.32)
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where we have neglected the contribution of the photon momentum k to the
momentum of the intermediate electron states. This is equivalent to leaving
out the factor exp(ilz ~Z) in the spatial integration. This can be done because
k ~ E, — E, ~ m(Za)?, which is small compared with the electron momentum

p ~ mZa for nonrelativistic states.

Inserting (A.16) into (A.32), and using Eq. (A.26) to relate the temporal com-
ponent of R with its spatial components, which satisfy

(nl Bir) = —(Bu — E)(nlflr), (A3)

we find, after integration

n) [ln(ﬁ—ﬁ—ﬁ:l') + ] (A.34)

(M') =
where all the states and energies represent the non relativistic limit of the Dirac
solution.

Eq.(A.34) can be simplified by using

3 (nlflr) P(B. — E) = 3{nl9*Voln) (4.35)
which finally gives
(M7y = [(1n(E) + 2) i v2¥eln) + €] (A.36)
with
C=Cs, Ci= 2Z(r[p,[n )n|p;|r)(Ee — Eo)In | o E ; (A.37)

where E. is a reference energy to be defined, and C;; has been introduced for later
convenience. To obtain this result we have neglected the imaginary part of (MY)
retaining only the leading terms of (M?) in the limit u — 0.
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In computing (M), we can take KV to be the free electron propagator, which

is
- - g .63(3,"5"*’5"'3)
KV (B —ko;f' — 3" ~ R g+5—F) =" :
( P P ) 7~ K—m

(A.38)

where
M= (m,5), G=p - =§+5 (A.39)
upon which (M?¥) becomes
(M) =2 [ @Y Lol s G WValf' ~ SING (e s )VAG = Dald),  (A40)

with

NE (D 5) = ‘?f (n°* (iz k;;“)(]:;:(fz+7;,).(ﬂz . ﬂ)ka'r )uw(k)d‘k (A1)
In the nonrelativistic domain [ &pV, ~ (Za)*m and so the constant value of
N? (independent of the momentum and energy of the intermediate states) will
already yield an overall contribution to Eq. (A.40) of the desired order a(Za)*.
Note that N? can be expanded in powers of the momentum p”’, p or 3., which are of
order mZa, and therefore any contribution beyond the constant, Za-independent
term will be of higher order. The same argument can be used to neglect the
binding energy of the intermediate states. We can therefore evaluate (A.41) by
approximating p ~ p. and p’ ~ p. in the denominator of Mt and M’ respectively,

so that p. = (m,0) and s, = 0.
Evaluating N as in reference [38] we find that (A.40) becomes

() = 2 4 (ol 2B (A.42)

4m

Note that this term will exactly cancel the non-gauge invariant term present in Eq.

(A.20).
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Finally we add Eq.(A.36) to Eq.(A.42) to obtain §E{*, and then add it to Eq.
(A.20) to give the final result for the type-A contribution to the self-energy:

SEY = 2o (1+9)[C+ () + 57) (aIV*Weln)
+ 3m [ B Non Vi s BEy ). (A.43)

Apart from the constant (1 + £) factor, there is no formal difference between
the result (A.43) for this contribution to the level shift and the standard one [38].
However there are implicit differences which appear in the expression for V* and
the solution for the Dirac states |r) (in the non-relativistic approach here) in the

presence of that source.

A.2.2 Type B Contributions to the Self-energy

To solve the type-B contributions we have to consider the photon propagator

2 . k)2
G = E%; [ﬂ,.ﬂ,, + s (6 E ) (A.44)

and a source A, = n,0¢.

The evaluation of JEéB ) is achieved by the same procedure as for part A, where
now we use Eq. (A.44) in (3.27) and (3.29) to solve for §E{®) and § E?) respectively.
This computation is somewhat more laborious than that in part A, due to the 8,06,
tensorial dependence and the factor L%—;,'fﬁ present in this part of the (GM) photon

propagator.

To evaluate I, I,, and I35 we need to modify the BBF technique by using (A.17)

along with
1 A? dL
F - -2 /”2 (k?—_—L-)—s (A.45)
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to regulate (A.44). The expressions for the I’s are somewhat more complicated
than those for SES‘) (as expected); but their manipulation and further algebra
follow from BBF [38]. The relevant details are in appendix A.2.6; the result for the
one potential part is
(8) _ 2 ) 5, B B
B = 2o [56 vet [ - 2+ G -]

+ V(ﬂ-q)’ 3+ (A46)

+ ( Ly - B-Vm)ic®iug; — mB - ¢ic*V, B,

+ m(—s— - 5)50”qu}¢(ﬁ)d°p’d°p

~ %y Iy X

27 €L+ 2B nl5 ~In)

which is good up to order a(Za)*, and we have retained only the leading terms as

p—0.

The evaluation of JE-E,B) is quite analogous to that for JEgA). The starting
point is Eq. (A.28), where (M') and (M*) are still defined by (A.32) and (A.40)
respectively. We give calculational details in appendix A.2.6, and quote here only
the final result:

B = el [ 57 - 35+ G+ Dinile)| wlveln
+ 2 +imGE)] n@- 9 + wensCi + G+ $IE}
+ S+ Il ) (A47)

We now add (A.46) to (A.47) to obtain

a 11
I = 37;,35{ [‘“ ¥ A w g

2VOI'"') +“t'“JCtJ + ( + 'Iz)C (A.48)
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+ [96) [(Ei"l1 Y — B - Vm)iocTug; +mi - qic* VB,
2
- m(% + -:—)ia"" V,,q.,]fﬁ(i")da p'd’ P}

where we approximated y? ~ 1 + #? in order to keep terms only up to order #>.
As a cross-check on the above result we note that, before expanding 42, the limit
BBy — N, yields SES? — —26426E2. This is as expected since according to
(A-44), GB) —» —2£4*GY,,, where GY, is the standard (metric) propagator.

We close this section with a comment on the renormalization procedure. For
§EYM . the counterterm §C was related to mass renormalization. However in
this part of the calculation we must also account for the renormalization of the
THeu parameters, which show up as functions of the limiting speed for massive
particles (c2 = To/Hp), and the photon velocity (¢2 = 1/po€o). Charge renormaliza-
tion is not necessary here because the Ward Identity forces a cancelation between
the divergences coming from the one potential part and many potential part of the

self energy in the same manner as in the metric case.

A.2.3 Vacuum Polarization

We now need to obtain the vacuum polarization contribution. To the desired ap-
proximation, the electrons forming the loop in diagram 3.1(b) can be considered
free. This is because Furry’s theorem implies that the next-order correction to this
is a diagram which contains a loop with 4 vertices, which is expected to be of order
a(Za)®. In that case the result is known to be

$Ep = [ B HI*(Q)iGoola VDD B P Ep, (A.49)

The evaluation of IT*" is identical to the standard (metric) case, since it only involves

the product of fermion propagators, which are unchanged by the T'Hepu action. The



A.2 Loop calculations 83

differences appear in the renormalization process, where both the charge and the
T Hep parameters must be renormalized. This procedure follows from condition
(2.18), which introduces the appropriate counterterm needed to renormalize the
T Hep parameters. Subsequent analysis is similar to the metric case, and the renor-

malized solution for the vacunm polarization turns to be

w(q) o 2L (o —
I(q)  ~ oL ~ ¢¢") (A50)
If we substitute Eqs. (2.13) and (A.50) in (A.49), we obtain after some manipulation
a 1 T ¢ I
8Ep = s—{(nlV*Valn) (- £ + €5) — £(nl(E - V) Wo)In)} (A.51)

We next proceed to add together the self energy and vacuum polarization con-

tributions to the level shift.

A.2.4 The total GM Radiative Correction

Up to this point we have been able to solve the level shift in terms of
8B, = 6EM + §EP + §Ep (A.52)

where each term has been defined in Egs. (A.43), (A.48) and (A.51).

We note that in § Eg there are terms proportional to 4, which mix large () and
small component (x) of ¥. Within the accuracy required we can relate them by
X = —i?—’y—tp, and so write everything in terms of the large component only.

Replacing the expression for the external source (2.6) in (A.52), we cbtain after

some algebra

6B = s [(1 + g(g +@))C + euu;Cis + (nlEIn)] (A.53)
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where C and C;; are defined by Eq. (A.37), and

E = 41rZa6'(:c)[ +ln( ) E[ ——-§§*’+( +—“’)1n( )]]
+ 3%’- [%+£[§-£:-—(ﬁ-ﬁ)2]]&‘-[, (A.54)
- 08P~ @ [ + 2o
+ g%‘-‘[iu A7 (ﬁxﬁ)—&-(ﬁxﬁ)i-ﬁ]

We have omitted operators with odd parity (such as @ x 7 - &) in (A.54), since their
expectation values vanish for states of definite parity.

There is still an implicit dependence on £ and % in (A.53), which comes from the
Dirac states (as seen at the end of Sec. III). Note that up to this order all atomic
states and energies referred in Eqs. (A.53) and (A.37) are considered within a non
relativistic approach.

In terms of the formal solution for the Dirac equation (3.3), we can single out

the complete ¢ dependence in (A.53), and write

§E, = {(1 + e( +1))C° + Eusu; By + (n| Eln)°} (A.55)
with
u;u.,—E;j = u;ujC";j <+ C" + (°(n|E¢=o[n)' + h.C.) (A.56)

where C' groups all the terms in Eq. (A.37) depending on the perturbative states
(I»)") or energies (E;) as introduced in Eq. (3.3). These perturbative states are
needed not only for the [n) state related to the level shift, but for all the intermediate
states introduced by (A.37)as well. Eq. (A.55) is valid up to O(£)O(@2)0(a(Za)*?).
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We can define the reference energy E. as in the metric case by [53]

3, (rl#An) P (Br~En) In | By —En| —
In(E%) = 2, rlAin) 2 (B-~En) forl=0

(A.57)
2%5(Ze)* In(5RE) = T, (ripln) (B, — Bn)ln |gig] for [#£0
where the subscript 0 has been omitted in the energies and states. This definition

reduces

n 0 forl=0
{ (A.58)

C° =
4% (Za) In(542) for 1 #0
which provides an elegant way to write the “Bethe-sum”. The presence of preferred
frame effects will induce more “Bethe-sum”-like terms in C;; which, along with the
contribution from the perturbative states (both ones counted by §£;;) will have to
be evaluated numerically for any particular state.

For the Lamb shift states we can use [53] :

E* =16.640Ryd E** =0.9704Ryd (A.59)

and simplify the last term in Eq. (A.55) as

~ (Za)* 19 m
(Bs, = gm' iz +In(gEs)
_ b8 (3 2a, ™
E[3+45u (2+3u)1n(2E33)]} (A.60)
0/ 0 — (Za)‘ 3 _,_:.3_._._5_. ?..
(Ehp, = 3 "‘{ 2 1212

107 1 1 1

2 2

- = - teos?O |~ ——
[30 610 ° (12 6\/10)”}

where 8 represents the angle between the atom’s quantization axis and the frame

velocity .
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A.2.5 Many potential part approximations

In this appendix we justify the following approximations:

(M'KIM') ~ (MypKYaMyg) (A.61)
(MUIKIM™Ty ~ (MTKOM™) (A.62)
(M'KY My ~ 0((Za)’e) (A.63)

following arguments similar to those presented by BBF [38].

We first note that, as powers of Za, the orders of magnitude of the different
terms involved in the expressions in (A.61) are equivalent to those for the metric
case. For example, if we look at the source, we see that each component of eA4,
is of the order of ~ ed, where A, is given by Eq. (2.6) and ¢ is the ordinary
Coulomb potential, and so the relative order between the non-metric and metric
case is the same. Furthermore, as discussed at the end of Sec. III, the states |n)
and |n)? also have the same order of magnitude, as do the quantities E, and EZ.
Discrepancies that could be expected from the photon propagator, particularly from
the part proportional to 8#3” (in contrast to the 7, dependence for the standard
case), are not important as long as the transversality condition is satisfied for the M
operators, since this condition relates the differing components with the appropriate
orders of magnitude. Finally, unlike the photon propagator, the bound propagator
retains the same form as in the standard case, with differences arising only from
the expression for the external source. As a consequence its further simplification

is analogous to the metric (BBF) case.
Let us look at the many potential part. From (3.29) we get

(MEYM) = [3.")Mu(e0 — & — F) (A.64)
x KY{(En—keip'—3" —k,f+5~F)
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x Mi(p -+ — k,plulF) G (k)

for the generic structure of the terms on the left hand sides of (A.61)-(A.63),
where the constant factors and integrations over p; and s; have been omitted. The
nonrelativistic and relativistic regions are defined according to |k| ~ (Za)?m << m
and |k| > m, respectively. In considering the relevant orders of magnitude in each of
the expressions (A.61)-(A.63) that follow from (A.64), we note that, to lowest order
in Za, the relevant contribution from G* comes when kg ~ ll—éi, and that we can
employ the nonrelativistic expressions for the ¥,, making use of the approximations

given by (A.15).

Turning now to the relation (A.61), we can prove it by showing that the con-
tribution of relativistic states for M7 is of a higher order of magnitude than for
M. We can see from (A.24) and (A.25) that M! differs from M*! by a factor
(leaving aside the temporal component) (3’ — p)/ko, which in the relativistic region
(ko ~ m) is of order Za. Therefore the contribution of M’ in that domain will be
of at least one order higher than that of M’!. Since the latter is already of the
desired order (assuming the validity of (A.62) ) we can neglect the contribution of
the relativistic states for M, and consider it, along with the bound propagator, in

its nonrelativistic limit.

To prove the relation (A.62) we evaluate the error due to the neglect of the
electromagnetic potential in the intermediate states. We imagine that one extra
potential (V) acts between M Tt and M*!. This introduces an extra factor of order

j £’ V (’ ") ]’ &fr 'V (’ ~ (Za)? (A.65)

which is negligible within the accuracy required. We have then shown that, in the

evaluation of ML, the intermediate states may indeed be regarded as free.
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The relation (A.63) follows from arguments similar to those used to justify
(A.61). Since in the relativistic region M7 is one order higher than M!!, the cross
term in that region will also be one order higher than (M), and so is negligible.
On the other hand in the nonrelativistic region M’ will be dominant (note the

factor kg in its denominator) over M*f. That is

MII ko

~ Za (A.66)

and so the product of these terms will be negligible in comparison with (M?).
Hence the cross terms yield results that are at least ome order higher than the

desired order, and so they do not need to be included.

A.2.6 Calculational Details of Type B Contributions

We present here further details underlying the computation leading to Eqs. (A.46)
and (A.47), which are referred as the type-B contributions to the self energy. In
this part the photon propagator to be considered is given by (A.44), where the
first and second terms have respectively a tensor dependence like 3,8, and 7,,,
and need to be regularized according to (A.17) and (A.45). We show the relevant
details involving the first term of the propagator only, since the remainder can be

computed in a similar way.

We begin then with the one potential part by simplifying I,. After replacing
(A.44) in (3.28), we get

i 2 -B—- P K 21’ -B— kP d'k
i oy -k —%p-k@-Lpoct (A60)

where from now on the ellipsis stands for the contributions coming from the second

term of (A.44).
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If we use

1 1 z(1 — z)dz
a5z =0 4= [(az + (1~ 2)(1 — 2) + c2] (4.68)

we can rewrite Eq. (A.67) as
L= — 4-Bp-BYVl+2-8B8 VI
+ 2B VY Bl B VA Pt

where
3 1 dLd*
Jomspy = “5}%’725/0 dz./ol z(1— z)dz[(k “p(l—2))7 — AL]4{1; ku; Kk }
(A.69)
with
p=zp+(1-z)p Ar=pi(1-2)>+Lz (A.70)
After evaluating (A.69), we can express
dz 1 v P2 B .3 A2
ho= 7¢[ S{v[36-8-#0a T -2+ TG -1n )]
~ BBV B+B-0BY)-(B-pV B+B-F BY)1-2)L
2
+ A(B-VE-p+8-9)-Tp. V) (A7)
2
+ B(gee eV -3V PR+ 5~ s
~ (1-2)B-pV-p—ap -V -p)}+--
The evaluation of the remaining I’s is analogous, and so
_ g Al B-p L En
I, = V‘y’E{T(In -p—z- -1)+ T(l + Eln p )} + (A.72)
2 A1
b o= ~gf-p PYEln T +3) — § O 5 — 3) -+ 5C (AT3)

The counterterm §C is chosen such that there is no radiative contribution when

the source is turned off, or equivalently, it accounts for the free electron process.
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That is, it forces I3 equal to zero when acting on free spinors. From Eq. (2.17), we
know 6C = dm + 86 P(B-p—B - V), where in this case

_ﬂz 2 A? 1 1 2 A’ 5
Jm__s_,yf(ln.”?_i).{.... Jfozzfyf(ln;-n—;-{'i)-i'"' (A.74)

Since here V* = n#°V},, we can rewrite after some manipulation

L+L+L=7K +K+K3)+- (A.75)
where
. p)2 2
K = Vfg [(1'1(‘5;)+1) (%‘i——ﬂ-pﬂ-p') +-;'.3'PA3'P'111(-§—’3-)]

m2

2 2
K = (4000 8) 160 -1) - 3 18-V Pia(E)|
K= 3 [S{eBF BV +0-28-0V B
+ V-p(%zﬁzﬂﬂ‘pzﬁ)—2ﬂ-V(ﬂ-p+ﬁ-P')zfz+zﬂ-pt"Vﬂ
2 .
+ a-ap-d 0¥ $-i2 |5 v-20-v o+ v 022}

We want a result good to a(Za)*, and so we can simplify the above expressions

by using the assigned order given by (A.15), from which we can relate

=p —p~2
q=p —p~Zam (A.76)
p? —p* ~ (B-p)? - p* ~ p2 —~m? ~ (Za)’*m?

and then reduce K to
s oo -Lud -G +mre-0p  @am

where antisymmetric terms under p’ ¢ p vanish.
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To simplify K, we follow BBF and use
(F-m)*B = V(g-m)p=28-pV-2m YV p-yV By
~ 2V-p-mY)p-4py-V* (A.78)

where we have assumed the operator is acting on Dirac spinors of momentum p and

omitted the integration coming from
) (B~ m) = () [ ) V(@)d¥ (A.79)

Note that ¥ B ¥ ~ V2, since the square of the potential (after factoring out
the spinors and integration variables) is already of the desired order (Za)* (see
(A.15)) and so B ~ vy =~ 1.

The final result is

Kox 2 &+ vr-mnE - L24py (s

4m?

Following a similar approach we reduce

K; ~ -—"’-(V.p-my)+-‘{2- B ﬂm" fm’;’ pV-p (A8
Bapy B VMH L av-Z &y

We can make further simplifications by using
[#6)BE sy P Ep =0, (A.82)

provided v°Bt(p’, p)¥° = —B(p,p'), where B represents any operator as a function
of p' and p, as for example, 3-g V. Note that we are interested only in the real
part of the level shift.

Putting everything together, we obtain after some manipulation
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B = v [30{ ¥ 02 [§+ gae)]| - v [+ 5+ ba)
~ (ﬂ Ly+s. V—)tv’mq,——ﬂ qio Vuﬂv (A.83)
+ m(— - -)w""mqy}nb@d“p'fp (1 +5 )(nl—ln) +-
Note again that this represents the calculation involving only the first term of
Eq. (A.44).

Now to evaluate the many potential part contribution we need to solve Eq.
(A.28), with (MT) and (M*!) given by Egs. (A.32) and (A.40) respectively.

So, after substituting (A.44) in (A.32)
B-MP__ %

n__ & 2
(M)“ngf B kB, E | (A-84)
with
M, = (n|R,[r),
Using the transversality condition, we relate
E-M k|, =
M —M
°= TR T M
which reduces the integral on the angles of & to
[ Qg - M|* = 4x (31:3 — M + |- Ml’) (A.85)

We evaluate the remaining ky and |I:| integrations in (A.84), by using (A.33),
(A.35) along with the analogous relations

-’

. -1 _
i-M = E(Er — E,)(n|i - pIr)

Zr: |(nl@ - 51r)[*(E, — En)

1 =
E(nlu - Vo n)



A.3 Virtual non-metric anomaly 93

to finally obtain
(M) = 2t {20+ umiC+ [3 4+ 3InGE)] (IV*Welm) (A86)
+ [5+ S| (1@ 9P Vol } + -

where we have kept only the leading terms as 4 — 0 and neglected the imaginary
part.

The computation of (M) is straightforward. Here we need to replace (A.44)
in (A.40), and use V, = 1,0V°. Further simplifications follow from BBF and the
assigned order of magnitude given before. The final result is

my _ % a8 173
(M) = 2y + )0l pm) + (A87)
Adding together (A.83), (A.86), and (A.87) will give us then the final expression

for the self energy contribution for this part of the calculation. Note that the above
results can be verified by taking the limit 8,8, — 7,., which reduces

Gg) — _.72€G0”u + .. R

and therefore the former expressions should reduce up to a constant, to the metric

case.

A.3 Virtual non-metric anomaly

In the T Hep formalism, gravity interacts with matter through the 7' and H func-
tions, which are assumed locally constant within atomic scales. A-priori they do
not need to be the same for different types of matter (like baryons and leptons), or

furthermore for matter and antimatter. In this context for example, a non-metric
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anomaly related to electron/ positron difference will modified the Lagrangian den-
sity related to fermions by

Lp =P(F— V —my + 63 (po— Ao)y°v* (A.88)

where £ =1 —c_/ey and cz = (Ty/Hy)"/?, with — and + labeling electrons and
positrons respectively. After using (2.9), we can refer (A.88) to the moving frame

as

D=~V —mpp+&7% (B-p—B-V) Byt (A.89)

The imposed broken symmetry between particle and antiparticle changes the
fermion propagator (in the positron case) to (up to O(£4)):

S¢=(F—m)" +&(F—m)7'y* BB -p(—m)™" (A.90)

where the first term represents the unchanged electron propagator Sg.

The positron-electron pairs produced in the electric field of the atomic nucleus,
are seen in the Lamb shift transition via the vacuum polarization contribution given

by (A.49), where in this case:

T(q) = GO(-VTr [ dipriSi(p+ i) (A91)

After using Eq. (A.90) along with standard techniques [53], we obtain that the
non-metric part of (A.91) is up to O(¢?)
2
w22 nu__‘l___{_l_ 292 _ 1.5 z}
il**(q) ol T mil3gl P —5(A-0 (A.92)
where the ellipsis accounts for the gauge dependent terms which give no contribution
to (A.49). Eq (A.92) also comes after proper regularization and renormalization

processes, which follow from previous sections.
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In this EEP violating context, the radiative corrections related to atomic energy
levels are modified by (up to O(a(Za)* O(u?))

«a
107m?

SEf = §E% = —¢, {%(nlvz%[n) + (nl(@ - 9)?o) )} (A.93)

where we have replaced (A.92) in (A.49) and simplified afterwards. By taking the

Lamb atomic states, we finally obtain

AE} = -g+§(;}-(za)4a(1 + 2i?) (A.94)



Appendix B

(g-2) Anomaly

B.1 Loop integrations

We show the main steps leading to Eqs. (4.11), (4.10), and (4.12). Details are
given throughout the computation by considering only the first term of the photon
propagator (4.8), that is
BuBy
Gf,,,z—i;—-i—"- (B.1)
with the remaining term in (4.8) contributing in a similar manner.
We solve for the fermion self energy by replacing (B.1) in (4.5), and using (4.9)

along with the Feynman parameters

1 1 dzz
a%h =2[o [z +b(1 - 2)]*

After integrating we obtain

_a m*(l — 2)2 + zA? — Az(1 - 2)
E(p) = G/ A(#z+m) fln (m’(l —z)2-Az(1-2) +zp’) teee (B2

96
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with A = p* —m?. We consider A/m? << 1, and expand the above to obtain after

some manipulation

50) = 2{8-p # (3 +1(2)?) - (F-mZ (n(2y+ ) ®3)
—m%z (3-1mCay)+ 288 5 (m(;‘"if - 3) L4+ O((B~mP?) +---

where we have kept the leading terms as 4 — 0 and A — oo, and 0((ﬁ - m)z)
stands for the terms satisfying

Sr(P)O((#—m)?)u(p) = 0.

We renormalize ¥(p) by subtracting
0 =dm + 46 BB -p (B.4)

where the counterterms respectively account for mass and T Heu -parameter renor-

malization.

Choosing the counterterms so that

() E(p)u(p) =0,

and so
a pB*/1 A
i = (3 +ln(%)’) (B.6)

the regularized result is then

S() = %(zf—m){ﬂ,;—?i [%h(%)’—g] -F [él““('ﬁ‘)”%]}

+ o((F-m)?) . (B.7)
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Note that the remaining ultraviolet divergence related to this term could be removed

after charge renormalization. We find it convenient to leave it in order to cross-

check the calculation, since a similar term from the vertex part should cancel it,

thereby removing the divergence from the resulting scattering amplitude.

The evaluation of the vertex function follows a similar procedure, giving the

result

I‘l‘

I

+

+

a/pz{‘y "ﬂ pB- p(lnp‘—2)+ (——m?]
”‘2‘(5'1’7" B+B-p )~ (ﬁ-m" P+B-¢ ﬂ'r“)(l—z)g(B,s)
P(gp=- v~ PRG ~n o)~ (1= )8 -pof — 22 - A1)

B
Ifz(ﬂ“(ﬂ-p+ﬁ.p')_z_pg)}+...

with p, = zp’ + (1 — z)p. Since (B.8) is acting on a free spinor, we can use

P: = m2 - 2(1 - z)q2,

with ¢ = p’ — p, and so expand

%‘2;’. =1tz z)-:%- +0(¢"),

which after some algebra reduces (B.8) to

r“(p',p)

x 16 ' 8 3\ T2
¢ (1, m, 1 p*\ B-pB-q
Z (7 ”’a‘ﬁ)ﬁz":{( In( )’")]

1 ﬂ(”’” 18- "\+""’2ﬂﬂ"———“-ﬁﬂ" (B.9)
lﬂ qﬂ!“+ﬁ gu 4 ﬂ 0 (lﬂ-p+1ﬂ-q);n‘:ﬁ

8m 4 m 3 m

?;;} +0(¢%)
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where the vertex function has been renormalized by subtracting a term like
or* = 8¢, pB* (B.10)

with 0§, is given by (B.6). We recall that gauge invariance forces this coefficient to
be equal to the one participating in the renormalization of the fermion self energy.

B.2 Adiabatic hypothesis

In order to describe how self energy effects convert the incident electron from a
bare particle to a physical one, it is convenient to introduce a damping function,
g(t), which adiabatically switches off the coupling between fields, such that the

interaction lagrangian is replaced by
Lr = eg(typ(z) A(z)¥(z) (B.11)

It is assumed that the time T' over which g(t) varies is very long compared to the

duration of the scattering process. In momentum space

9(t) = f G(R0) exp(iQ - 2)d (B.12)
with Q = (§0,0), and g(0) = 1. It is supposed that G({) is almost a delta
function, being large for o in a range of about 7!

In the presence of an external field A,,, Eq. (4.4) will now read
L-A— / G(R0)G(R)d0dY, A(p'-p—-Q2—Q')iSp(p—0—-Q')iB(p—Q)+- - (B.13)
where -- - represents the equivalent second term from (4.4).

As T — o0, and {2y, Qf — 0, the fermion propagator reduces to

1 g+m

SE A w0+ ) .

Sr
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where we used p? = m?. This implies that we can expand T up to order £ only, since
higher terms vanish after taking the previous limit. Here we employ the relation

1 1 11
A-p-ataBat (B-15)
to expand
~ 9%(p) 4

After renormalization, ¥ takes the form

Z(p) = (F—m)(A+B(B-p)*) +C(B-p){ BB~ m)+ (F—m) B} +--- (B.1Y)

where the constants A, B, and C can be obtained from Eq. (4.10).
Let us introduce & = 2+, and symmetrize Q by 3(2+ Q') in (B.16), to write

1 1 0Z(p) =u
B0 ~ 55 ) (B.18)

Sr(p—-Q-Q)E(P—-9Q) = 2 o
which after using (B.17) can be written as
S(A+B(8-p)") +CB-p (B.19)

where we have used that X(p — Q) is acting on a free spinor, and therefore terms
of the form (p — m)u(p) vanish. Now, the final evaluation of (4.4) follows directly
from (B.19).
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