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Abstract 

Metnc theories of gravity offi the singular beauty of endoiPing spacetime with 

a symmetric, second-rank tensor field g, that couples aniversally to all non- 

gravitational fields. This mique operational geometry is embodied in the validity 

of the Einstein Equivalence Principle (EEP). 

Although the empirical evidence in support of EEP has reached an impressive 

Ievel of psecision, it has only probed effects that are sensitive to nuclear electromag- 

netic interactions (i. e., the baryon/photon sector of the standard model). In this 

thesis we provide the theoretical fkamework to confront EEP with the intaaction 

realm of quantum electrodynamics (QED). 

We reformulate QED within the context of non-metric theories of gravity and 

calculate the main radiative corrections aftiecting the atomic energy leveh (Lamb 

shift) and the gyromagnetic ratio of fermions (anomalons magnetic moment). 

We h d  that a non-metric spacetime structure induces quaütatively new dects 

in the behavior of radiative corrections that leave distinctive physical signatnres. 

Such efFects allow the possibility of setting new bounds on the validity of the EEP. 

In fact fkom present experiments, ne obtain the most stringent bound yet noted for 

the non-metric parameten, related to leptonic matter. 
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Chapter 1 

Introduction 

1.1 The Einstein Equivalence Principle (EEP) 

The postdate that the equivalence between uniform acceleration and a unifolpl 

gravitational field applies to aII physical phenornena BUowed Einstein to constrnct 

a theory of gravitation, general reiativity, which revolntionized oar conceptual un- 

derstanding of the universe. Lt dowed a description of physics in which the eEects 

of gravitation are manifest as the dynamics of the geometry of a cnrved space- 

the .  That this geometry is Miqne for all forms of mass-energy is a consequence 

of Einstein's equivalence postdate. 

Only decades later was it  realized that this postdate is the fotmdation for 

a rather broad class of theories of gravitation (which inchdes general relativity) 

known as metric theories. Any theory of gravity that describes spacetime via a sym- 

metric, second-rank tensor field g, that couples universally to al l  non-gravitational 

fields respects the dorementioned equivalence between d o r m  acceleration and 

d o r m  gravitational fields, and is by definition a memba of this class. 
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Metrïc theories t h d o r e  describe the interaction of matter (and any othe. non- 

gravitating field) with respect to an demal  gravitational field via an action 

where SN& represents the non-gravitational action (Le., it excludes self- 

gravitational systems) as &en for the m e n t  standard model of pazticle physics 

(where qbNG denotes the bosonic and fermionic fields). The diffaent fields 

feel the gravitational influence of the extemal world only through their cotlphg 

to one and the same metric tensor g,. Non-metrie theories of gravity break this 

universaiity by adding extra gravitationd fields (scaIar, tensor, etc.), which couple 

differently to different forms of matter. 

A number of physicdy distinct principles can be derived fkom the condition 

(1.1) [l]. The most basic of these is the Weak Equivalence Principle, or WEP, 

which states that all fkeely f&g bodies (i. e. bodies which are not acted upon by 

non-gravitational forces such as electromagnetism and which are s m d  enough so 

that tidal effects are negligible in a given gravitational field) move independently 

of their intemal structure or composition, and has as its one of this implications 

that bodies of d i f f ' g  intemal composition (or mass-en-) f d  with the same 

acceleration in a gravitational field. A naturd extension of this to include ail 

non-gravitational phenornena states that, in addition to WEP, the outcornes of 

non-gravitational test experiments (such as the measarement of an electromagnetic 

cnrrent in a aPe) pdormed within a local, &edy fdüng fiame are independent 

of the fkame's location (local position invariance, LPI) and velocity (local Lorentz 

invariance, LLI) in a background gravitational field. The combination of WEP, LLI 

and LPI embody what is now known as the Einstein Eqnivalence Principle, or EEP. 

Note that EEP does not refer to the structure and dynamics of the gravitational 
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field itself, but states only the dversaiity of the gravitational coupling with respect 

to matter. The fkther extension of this princip1e to indude seIf-gravitahg systems 

is hown as the Shwg Eqnivalence PrincipIe, or SEP. 

The assnmption (1.1) of a universal gravitational couphg is a very strong condi- 

tion, which fbrther implies that the oatcome of local non-gravitational experiments 

should be independent of the &ts of an externai (slowly varying) gravitational 

field. In this respect, direct tests of EEP may be carried out as follows. Con- 

sida an Earth-based labotatory in which local non-gravitational experiments are 

pediormed. External gravitational potentials generated by the Earth, the Sun, the 

planets, the Galaxy, etc. pavade this laboratory, and any non-mehic couplings 

of these potentials to matter can cause the ontcornes of e x p d e n t s  to depend on 

the laboratory's position, orientation or velocity relative to these sources. This is a 

direct violation of (respectively) CPI and LLI. The character of a violation rdects 

the form of the spedc  non-metic coupling responsible for it. It is only when LPI 

and LLI are valid that local non-gravitational dynamics is indistinguishable fkom 

special relativistic dynamics as predicted by metric theories of gravity. 

In snmmary, the idea that gravity can be nnderstood as a manifestation of 

spacetime enrvature is rooted in the validity of the EEP. Metric theories (such as 

general relativity and Brans-Dicke Theory) endow spacetime with a symmetric, 

second-rank tensor field that couples universally to all non-gravitational fields [2], 

so that in a local fieely falling h e  the tkee postdates of EEP are satisfied. By 

definition, non-metrie theories do not have t h  feature; by coupling auxiliary grav- 

itational fields directly to matter they violate univasality and so permit observers 

performing local experiments to detect efKects due to their position and/or vdocity 

in an extemal gravitational field. 



1.2 Enough Empvical Support for EEP? 

1.2 Enough Ernpirical Support for EEP? 

Spedc  empmcal conseqnences of the postdate (1.1) are given by the aaiversality 

of fkee-fall (or UFF, a necessary consequence of WEP), the universality of the 

gravitational redshift (LPI) , the constancy of the constants (another manifestation 

of LPI), and the isotropy of space (LLI). 

The UFF has been probed via torsion balance or Eotvos type experiments, 

which search for quantitative differences between the passive gravitational mass 

and the inettial mass of a given body. The forma is a dynamical quantity that 

determines the gravitational force acting on a body (Le. its weight), whaeas the 

la t ta  is a kinematical quantity that determines the response of a body to any 

applied force. There is no logicdy necessary reason why these quantities must be 

eqnal (in appropriate mits), and so we thaefore expect 

where EA is the interna1 enagy generated by interaction 

(1-2) 

A, and rlA is a dimension- 

less parameter that measares the strength of the WEP violation for body A. 

For two different bodies we can write the acceleration as 

A measmement on the relative difference in acceleration yields the so called "Eotvos 

ration given by 

In the gravitational field of the Sun, this ratio was constrained to be 
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where Dicke and collaborators [3] tested for difF'ences in acceieration between 

aluminum and gold, and Bragimkii and Panov [4] for alnminum and platinam. 

More recent experiments, which were sensitive to the gravitational field of the Earth 

achieved similar bounds for beryUium and copper, and aluminum and beryllitm [SI. 

The previons limit in tums constrains the violating parameter related to 

each A-type interaction. This is possible provided the various interactions do not 

conspire towards special types of cancebtions so that independent bounds cm be 

gathered in each case (see Ref.[G] for quotations of those limits when refated to in- 

teractions stexnming fkom the atomic nucleus: strong, electrostatic, magnetostatic, 

hyperhe, etc.). 

In a redshift expairnent the Iocd energies at emission w, and at teception 

w,, of a photon transmitted between observas at different points in an extemal 

gravitational field are compared in tams of 

The anomalous redshift parameter (S) measures the degree of LPI violation. It 

signals the breakdown of the universality of gravity, and so depends on the nature 

of the transition involved in the expaiment (e.g., fme, hyperfme, etc.). 

The most accurate test for the gravitational redshift corresponds to the gravity 

probe A experiment (71, which was able to constrain ISHfJ < 2 x IO-'. This 

expetiment employed hydrogen maser docks, where the governing energy transition 

is given by the hyperfine splitting due to the interaction between the magnetic 

moment (spin) of the nueleas (proton) and electron. 

One class of experiments probing variation of the fandamental constants cor- 

responds to those searching for a temporal variation of the fine structure constant 

a. These tests can be divided into two categories: cosmological and laboratory 
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measurements. The ftst ones look for variations within cosmological tirne scales 

and the others are based on dock cornparisons over t h e  durations of months or 

Yeats. 

Laboratory mezsurements rely on the ultra-high stabiiity of the atomic standard 

docks and set limits a few orders of magnitude less stringent than the cosmological 

measnrements. One of the most sensitive tests for a-variation cornes fkom the clock 

cornparison between Hgf and H hyperfine transitions [a]. This experiment set an 

upper bonnd of à/a 5 3.7 x 10-"/yr aRer a 140 day observation period. Note 

that any variation of a, whetha a cosmoIogical t h e  variation or a spatial variation 

via a dependence of a on the gravitational potential, will force a variation in the 

relative clock rates between any such pair of docks. 

Time dilation experiments look for violation of isotropy, or simüarly for a pre- 

ferred direction in space. If LLI were violated the energy levels of a bound sys- 

tem such as a nucleus cotdd be shifted in a way that correlates the motion of the 

bound partides in each state with the prefared direction, leading to an orientation- 

dependent binding energy. The most precise experiments of this sort [9, 101 search 

for a time dependent quadrupole splitting of Zeeman levels. They compare the 

nudear-spin- precession fiequenues between two gases with naclear spin 1 = 312 

and 1 = 112, the latter being insensitive to a quadrapole splitting. These results 

place the constraint (1 - cl/& < 6 x IO-*' on the relative gravitational coupling 

between electromagnetism and baryonic matta, given by the discrepancy between 

the speed of light (c ) and the limiting speed for baryons (cB). 

We see then that tests of the validity of the various faceks of EEP have been 

carried out to impressive levels of precision. Why, then, ought one to resist the 

temptation to condade that fùture experiments should ignore non-metric theories 

and focas only on winnowing out the correct metric theory of gravie? There are 
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four basic reasons. One is the anticipated improvements in precision of upcoming 

experiments by as much as six orders of magnitude [Il]. If snch experiments yidd 

improved bits on EEP-violation, this wil l  dord  as a much greater degree of 

confidence in ottr physical theories under the extreme conditions present in many 

astrophysical and cosmoIo~cal situations. Another is historicd: attemp ts to uni& 

gravity with the 0th- forces of nature have yielded a numba of logicdy possible, 

p hysically wd-mo tivated, alternatives to general relativity which do not natnrally 

respect the EEP [12]. A third reason is that tests of the EEP can provide us with a 

nnique way (perhaps the ody way) of testing modern physical theories that nnify 

gravity with the other forces of nature insofar as such thecnies typically genetate new 

interactions which violate the eqnivaence prinQple [13]. F i n a  EEP experiments 

to date have probed dects that are predominantly sensitive to nudear electrostatic 

energy. Althongh violations of WEP/EEP due to other forms of energy (virtnally 

ail of which are associated with baryonic matter) have &O been estimated [14], the 

bulk of our empincal knowkdge about the validity of the equivalence principle is 

in the baryon/photon sector of the standard model. 

Comparatively little is known about the empincal validity of the EEP for sys- 

tems dominated by other forms of maswnagy [15]. Such systems inchde photons 

of mering polarization [le], antirnatter systems [l?] , neutrinos [18], mesons [19], 

massive leptons [20], hypothesized da& mat ter (211, second and third genaation 

matta, aad quantum vacuum enagies [22]. There is no logically necessary reason 

why such systems should respect any or all of WEP, EEP or SEP. 

In order to establish the universal behavior of gravity, we are thadore compded 

to consider the validity of the EEEP over as diverse a range of non-gravitational 

interactions as is possible. It is the a i .  of this thesis to extend this regime to 

the quantum field domai. of radiative correction, namely vacuum fluctuations of 
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leptonic fields in the presence of an electromagnetic source. Also, in this way, we 

wil l  be gathering information about the lem explored non-baryonic sector of the 

standard model. 

1.3 Quantum Field Domain 

Potential violations of the EEP due to vacuum energy shûts, which are pecaliaily 

quantum-mechanical in origin (Le. do not have a classical or semi-classical descrip- 

tion) provide an interesthg empirical regime for gravitation and quantum mechan- 

ics. Effects of this type include Lamb-shifk transition energïes in Hydrogenic atoms 

and anomalons magnetic moments of massive leptons. Tests of the EEP in this 

sector dl provide us with qualitatively new empirical windows on the foudations 

of gravitational theory. 

Quantum electrodynamics (QED) is the theory of charged leptons with photons, 

in which aU observable dects  can be expressed in terms of measured charge and 

mass. It offizs more thau a mere m h g e  of quantum mechanics and relativity. The 

wave-particle duality of quantum mechanics is M y  iacorporated into the theory, 

and charged particles and photons are keated as qumtized fields. The tremendous 

success in predicting experimental facts ranges from v a y  refined details of the 

properties of electrons and muons and atomic spectra to interactions in the mu.& 

GeV range. It was the expaimental discoveries of the Lamb shitt in hydrogen and 

the anomalous moment of the electron in the 1940's, which s t i d a t e d  the evolution 

of QED to its present precise form. These tao low energy phenornena represent the 

most precise tests of QED and are the ones relevant in this thesis. 

The Lamb shift is the shift in energy levels of a Hydrogenic atom due to radiative 

corrections. Such energy shifts break the degeneracy between states with the same 
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principal quantum number and total an* momenhim, but d X i g  orbitai and 

spin angalar momenta. The best known example is the energy shat between the 

2SII2 and 2PIlz states in a Hydrogen-like atom, which &ses dne to interactions 

of the electron with the quantum-fii$d-theoretic fluctuations of the electromagnetic 

field. For metnc theoses, the lowest order contribution for the Lamb shift is 1052 

MHz for hydrogen atoms. There is s 5 MHz discrepancy with the experimental 

value of 1057.845(9) MHz [23] or 1057.851(2) MHz [24], that can be improved with 

the inelasion of higher orda terms and corrections coming fkom the structure and 

recoil of the nudeus. The main difficulty in comparing QED theory and experiment 

is the la& of an agreed upon d u e  for the radius of the proton. However there is 

no conflict np to the relative level of IO-'. 

The anomalous magnetic moment of an electron in a weak magnetic field, a(e)  

(onehalf the deviation of the g factor fiom the vaine of 2, as predicted by the 

Dirac theory) is the simplest quantity that can be calculated fiom quantum elec- 

fxodynamics. It accounts for the radiative corrections coming from the fkee scat- 

tering of an electron by a ne& , slowly vlrrying magnetic field. The most re- 

cent erperimental value of the magnetic moment anomaly of the electron is [25]; 

a(e)  = 1159652188.4(4.3) x 10-12. Agreement between theory and measmement of 

a(e) is at  the relative level of IOœ7 [26]. 

The success of QED as a quantized field theory sets the proper grounds to test 

gravity in this domain. Non metric dects will show distinctly in a modified QED, 

and so wiU be tightly constrained by the present nmow gap between the empirical 

and theoretical (metric) values. 



Any breakdown of LPI/LLI is determined entirely by the form of the couplings of the 

gravitational field to matter since local, non-gravitational test expefiments simply 

respond to their extemal gravitational environment. To explore snch &ects it is 

necessary to develop a formalism capable ofrepresenting mch couplings for as wide 

a clam of gravitationai theories as possible. We consider in this thesis Lagrangian- 

based theories in which the dynamical equations governing the evolution of the 

gravitational and matter fields can be derived fiom the action prinaple 

The gravitational part Lc of the Lagrangian density contains only gravitational 

fields; it determines the dynamics of the fiee gravitational field. The non- 

gravitational part LNG contains both gravitational and matter fields and defines 

the couplings between them. The dynamics of matter in an extemal gravitational 

field follow from the action prinuple 

by varying ail matter fields in an extemal gravitational environment. 

We work in the context of a wide dass of non-mehic theories of gravity as de- 

scribed by the THep  formalism [27]. Phenomenological models of ENG provide a 

general âamework for explorhg the range of possible couplings of the gravitational 

field to matter and, thus, the range of mechanisms that might conceivab1y break 

LPI or LLL The THep fomalism is one such modeL It deah with the dgPamcs of 

charged particles and electromagnetic fields in a static, sphaicdly symmetric grav- 

itational field. In addition to all me* theories of gravitation, the T H q  formalism 

encompasses a wide class of non-metric theories. 



A quôfltum-mechanid extension of the original dassical THep  formalism was 

developed by Will [28] to caldate the energy shifts (due to e.g. h y p d e  eEects) 

in Hydrogenic atoms at rest in a THep  gravitational field. Since the ticLing rate of 

a hydrogen-maser dock is govaned by the transition between a pair of these atomic 

states, this extension can be used to determine the &ect of the gravitational field 

on the ticking rate of such docks. This provides a basis for a quantitative interpre- 

tation of gravitational redshift experiments which employ hydrogen-maser docks, 

for example, the gravity probe A roclet-redshift experiment [7]. Such expaiments 

are a direct test of LPI. 

This fomalism was further extended by Gabriel and Haugan [29] who calcnlated 

the dects the motion of an atomic system thrmgh a gravitational field wodd have 

on the tieking rate of hydrogen-maser and 0th- atomic clocks. Their extension can 

be used to compte energies of hyperfine and 0th- energy shifts of hydrogen atoms 

in motion thrmgh a  THE^ field. Here the physical efEect under consideration is 

time dilation rather than the gravitational redshift. When LLI is broken, the rates 

of clocks of different types that move together through the gravitational field are 

slowed by different timedilation factors. This non-universal behavior is a charac- 

teristic symptom of the breakdown of CL1 [30], just as non-universal gravitational 

redshifk is the hallmark of LPI violation [28]. 

In this thesis, we will be concerned witb the stndy of &ects that codd violate 

LPI or LLI. Radiative corrections are too small to be relevant for torsion balance 

experiments, where the leading binding energies stem from the atomic nucleus. In 

these experiments the different atomic bindiag energies are attenuated by the total 

mass of the atom ( s e  Eq. (1.4)), whereas LPYLLI violating experiments are clean 

experiments that are sensitive to energy transition itself. 

We begin by considering a generai idealized composite body made up of smic- 



tureless test partides that interact by some non-gravitationd force to form a bomd 

system. The conserved energy fimction of the body E is assamed to have the quasi- 

Newtonian form [30] 

where 2 and are respectively the quasi-Newtonian coordinates and veiocity of 

the center of mass of the body, MR is the rest energy of the body and U is the 

extemal gravitational potential. Potential violations of the EEP arise when the 

rest energy MR has the form 

where Mo is the sum of the rest masses of the strnctureless constituent particles and 

EB is 

of EB 

V2 to 

where 

the binding energy of the body. It is the position and velocity dependence 

which signals the bteakdown of the EEP. Expanding EB in powers of U and 

an order consistent with (1.9) we have 

uij is the extanal gravitational potential tensor, satisfying CI" = Cf. The 

quantities 67ng and ~ r n y  are respectively c d e d  the anomalas passive gravitational 

and inertial mass tensors. They depend upon the detailed intenial structure of the 

composite body. In an atomic system they can be expected to consist of terms 

proportional to the electrostatic, hyperfine, Lamb shift , and othes conhibations to 

the binding energy of an atomic state. 

In a gravitational redshitt erperiment one compares the local enagies at emis- 

sion E- and at reception E,, of a photon transmitted between observers a t  dû- 

ferent points in an extemai gravitational field. The measured redshift is defined 



Using (1.9) (nith Y = O) to relate the transition energies at the two different points, 

this parameter can be expressed as [30] 

Cleady 2 depends (through h g )  upon the specific test system nsed in the experi- 

ment. An absence of LPI violations wi l l  mean = O, and so Z d l  be independent 

of the detailed physics underlying the energy transition . 
The LLI violations may be empiricdy probed t h g h  t h e  dilation ex@- 

ments. These expaiments compare atomic energy transitions as measared by the 

moving fiarne (A EB ) and preferred fiame (A E i  ) , which can be related via [29] 
4 

with the tirne dilation co5cient A defmed by 

Here dm? represents the difference between the anomalous inertial tensors re- 

lated to the atomic states involved in the transition. The coefficient A represents 

the dilation of the rate of a moving atomic dock whose fiequency is govenied by the 

hansition. Since the anomalous mass tensor is not isotropic, A depends upon the 

orientation of the atom's quantkation acis relative to its velocity through the pre- 

ferred fiame. Note that if LLI is valid the anomalons inertial mass tensor associated 

with every atomic state vanishes, so that A = 1. 

In the following we shall calculate the sadiative corrections of interest in a 

context of non-metric theories of gravity, such that we can derive the expressions 



analogoas to (1.11) for each case (Lamb shitt and anomalons magnetic moment), 

and thetefore be able to make the empiricai connection. 

1.5 Overview 

Although the empkical evidence in support of EEP has reached an impressive level 

of precision, it ha9 only probed efEects that are sensitive to nuclear electromag- 

netic interactions (i. e., the baryonfphoton sector of the standard model). To this 

end, the empirical validity of the EEP in physical regimes where radiative cor- 

rections cannot be neglected remains an open question. In this thesis we provide 

the theoretical fiamework to confkont EEP with the interaction r e a h  of quantum 

electrodynamics, which is the most snccessful quantum field theory describing the 

vacuum field interactions between fermions and photons. 

ki the next chapter, we reformulate QED within the context of non-metric 

theories of gravity as described by the THep formalism. The main radiative cor- 

rections Secting the atomic energy levels (Lamb shift) and the gyromagnetic ratio 

of fermions (anomalous moment) are caldated in chapters 3 and 4 respectively. 

The d y s i s  of the non-metric resdts is presented at the end of each chapter, dong 

with their possible implications for present data and fûtare experiments. Details 

of the computation so as M h e r  clarification in certain matters, are given in two 

main appendices, which complements chaptas 3 and 4. We conclude this thesis 

with chapter 5, which presents a general ovenriew and sMunary of this work. 



Chapter 2 

Gravit at ionally Modified Act ion 

2.1 T H e p  Action 

The THep  formalism was constnicted to study electromagneticdy intaacting 

charged strnctdess test partides in an extenial, static, spherically symmebic 

(SSS) gravitationai field, encompassing a wide class of non-metric (and all metric) 

gravitational theories. Originally employed as a compntational fiamework designed 

to test S c W s  conjecture [6], it parnits one to extract quantitative information 

about the implications of EEP-violation that can be compared to experiment. It 

assumes that the non-gravitational laws of physics can be dkved fkom an action: 

where m., ea, and z$(t) ate the rest mass, charge, and world line of particle a, 

z0 r t ,  v," r dxg/dt, Ë r  VA^ - 6Â/&, 3 9 x A. The parameters T, H, a, 

and p are arbitrary fnnctions of the Newtonian gravitational potenhial U = GMIr, 
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which approach unie as U + O. For an arbitrary non-metric theory, these fanctions 

will  depend npon the type of matter, Le. the species of partide or field couphg 

to gravity. The fnnetions E and p p a r a m e t h  the 'photon metne', whereas T 

and H parameterize the 'pasticle metric' in the static, spherically symmetric case. 

Although we s h d  generically employ the notation T and fi thronghoat this pa- 

per, it should be kept in mind that these hctions shall in general have one set of 

values for electrons, another set for muons, another for protons, etc.. Univasality 

of gravitational couphg in the particle sector implies that the T and H fnnetions 

are species independent. It is an empirical question as to whether or not such 

universality holds for dl particle species. The stringent b i t s  on Miversality v i e  

lation set by previons expennients [9] have only been with regards to the relative 

gravitational couplings in the baryon/photon sector of the standard model. For the 

lep tonic sector relevant to our considerations, relatively Little is hown [15]. 

A quantum mechanical extension of the action (2.1) which incorporates the 

Dirac Lagrangian was used by Will [28] to stndy the energy levels of hydrogen 

atoms. In that case a local approximation to the action is employed. The spacetime 

scale of atomic systems dows one to ignore the spatial variations of T, H, E ,  and p, 

and evaluate them at the center of mass position of the system, 2 = O. This work 

was fùrther extended by Gabriel and Haugan [29] who showed that after rescaling 

coordinates, charges, and electromagnetic potentials, the field theoretic extension 

of the action (2.1) can be written in the form 

where local naturd d s  are used, = 7 , A P ,  and 2 = & / T o ~ m  with the 

subindex "On denoking the functions evaluated at 2 = O. The parameter e is the 

ratio of the local speed of light to the Mting speed of the species of massive partide 
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under consideration. This action emerges npon replacing the point-particle part of 

the action in (2.1) with the Dirac Lagrangian, expanding the T Hep parameters 

about the origin, neglecting th& spatial variation over atomic distance scales, and 

resealiiig coordinates and fields. 

The action (2.1) (or (2.2)) has been widely used in the stady of LPYLLI vi- 

olating efFects su& as the &ect of non-metric gravitational fields on the clifferen- 

tial ticking rates of different types of atomic docks, a violation of LPI [28]. An 

analysis of the electrostatic structure of atoms and nuclei in motion throngh a 

 THE^ gravitational field nsing (2.1) shows that the non-mehic couplings encom- 

passed by the T H e p  formalism cm also break LLI [30]. This symmetry is broken 

when the local speed of light G (Cco~)-1'2 ciiffers from the limithg speed of a 

given speàes of massive partide Q = (T~/H~)"~,  the latter being nomalized to 

unie in (2.2). Furtber implications of the breakdown of L W  on various aspects 

of atomic and nndear structure have also been investigated. ShiRs in energy lev- 

els (inclnding the hyperfine splitting) of hydrogenic atoms in motion through a 

THep  gravitational field have been caldated [29] by tram601Tming the representa- 

tion of the action (2.2) to a local coordinate system in which the atom is initidy 

at rest and then analyzing the atom's structure in that hune. The local coordinate 

system in which the THep action is represented by Eq. (2.2), is called the prefmed 

fiame; moving *es are those systems of local cooldinates that move relative to 

the preferred frame (or to the rest fiame of the extanai gravitational field U). 

In this thesis we generalize this analysis by using the Gravitationally ModXed 

(GM) action (2.2) to study the radiative correction contributions to the bound state 

energy levels in hydrogenic atoms and to the elastic scattering of 6ee leptons by 

a magnetic field. To ded with the non-metric effects, we follow the scheme given 

in Ref. [29], and analyze the radiative corrections in the given rest h u e  of the 
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system (moving fiames). 

Consider an atom (or particle) that moves with velouty ü relative to the pre- 

fmed fiame. The moving fiame in which this atom (or partide) is at rest is defined 

by means of a standard Lorentz trdormation. A convenient representation [29] 

of the TKep action in this new coordinate system, if the non-gravitational fields 

$, A, Ë, aad G transform via the corresponding Lorentz trdormations laas for 

Dirac, vector, and electromagnetic fields, is 

where Jp is the electromagnetic Carrent associated with some extanal soarce 

(taken to be a pointIike spinless nucleus in the case of the Lamb ahift) and r2 = 

(1 - 2 )  . In our formulation, all non-metric efFects arise fkom the inequality 

between a and G in the electromagnetic sector of the action. The dimensionless 

parameta [ = 1 - ( ~ 1 % ) ~  = 1 - 2 measures the degree to which LPI/LLI is 

broken for a given species of particle. Comparatively little is known about sach 

empirical limits on EEP-violation relative to the baryonic sector [15], for which 

previous experiments have set the bit [9] [b 1 11 - 4 [ < 6 x IO-*' where 

cg is the ratio of the limiting speed of baryonic matta to the speed of light. We 

can therefore saMy neglect any putative ef fects  of ta in onr analysis. The n a t d  

scale for 6 in theories that break local Lorentz inMnance is set by the magnitude 

of the dimensionless Nedonian potential, which empirically is much smaller than 

unity in places we can imagine performing experiments [6]. We are thaefore able 

to compte efFects of the t e i m s  in Eq. (2.3) that break local Lorentz invariance via 

a perturbative analysis about the familiar and wd-behaved c + 1 or ( + O Mt. 
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2.2 (GM) Field Equat ions 

The fermion sector of the action (2.3) implies that the equation of motion for the 

tl> field is simply the Dirac equation conpled in the nsnal fashion to the potential 

A,, that is: 

(à a+eqI-rn)$ = O  (2-4) 

On the 0th- hand, the pure electromagnetic part of the action is modified with 

an extra term proportional to the small (species-dependent) parameter E. This 

will atfect the electromagnetic field equations, and the photon propagator. In both 

cases we can caldate effects of the additionai terms pertnrbatively. 

The field equations coming from the action (2.3) are np to O($) [29] 

where p and are the charge density and murent assoaated with the fermion field 

plas an extemal source (such as a nucleus.) Perturbatively solving these equations 

for electromagnetic potentiah produced by a pointlike nucleus of charge Z e  at rest 

in the moving fiame yields 

where îr = Z/121, 4 = Ze/4?rlq, and V À = O. Note that Eq. (2.6) agrees with 

the conespondhg sesult fkom Ref. [29]. 

The primed fields in Eq. (2.6) signal a breakdom of LLI. Conseqnently we ex- 

pect that this electromagnetic potential will modify the energy states of hydrogenic 
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atoms pnor to the inclusion of radiative corrections. 

Note that Eqs. (2.3) and (2.6) are the (GM) andogoos of the Maxwell equations 

and the "Coulomb* potential respectively. 

2.3 (GM) QED 

Radiative corrections arise fkom the vacuum fluctuations of the interaction between 

the fermion (Dirac Spinor) and the electromagnetic field. In the case of atomic en- 

ergy levels (Lamb shift), the fermion field is bonnded by the electromagnetic field 

of the nudeus, and thaefore needs to be oonsidered accordingly. This complication 

is not present for the anomalous magnetic moment of fermions, where we basically 

study the free scaterring of feMaiom by a slowly varying magnetic field. Both situ- 

ations are particular cases in the general firamework of Quant- Electrodynamics 

(QW. 
In the sequel, we proceed to reformulate QED within a non-metric context as 

introduced by the action (2.3). We expect the reader to be f W a r  with standard 

concepts in Quantum Field Theory, or to refer to e.g., [31] for fi.uther darification 

on basic matters. 

We need to generate an approach that leads to a consistent, regalarized, and 

renormaliaed quantum field theory. The procedure reduces to that of finding the 

correspondhg (GM) fermion and photon propagators, dong with the vertex rule 

describing the interaction between the fields. Despite the absence of LPIILLI sym- 

metries, the theory is still gauge invariant and therefore 3s consistency cam be 

checked via the validity of the Ward identities. 

We use the path integral approach to find the propagators. That is, we look 
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for the inverse of the operator appearing in the quadratic term (eitha for photon 

OF f d o n  field) of the Lagrangian [3l]. Given onr model (action (2.3)), we do 

not introduce changes into the fermion and interaction sector of the action, and 

so the famion propagator and vertex d e  remain unchanged with respect to the 

originai (metric) situation. The reformtrlation of QED up to this level reduces just 

to hding the (GM) photon propagator. 

To find the photon propagator, we go back to the action (2.2) and add a gaage 

fixing term of the form 

&a which the resdting dectromagnetic part can be nritten as 

where we have integrated by parts and neglected surface temu. 

This action is still given in preferred fiame coordinates. We can go to the moving 

frame by pedorming the Lorentz transformations 

where r2 = 1/(1- 9) and Pb = (1,4; hencefoah p2 m 1 - 3. 15:dorming Eq. 

(2.8) by using Eq. (2.9) gives 

where (in momentum space) 



where rl, is the Minkowski tensor with a signature (+ - - -) and Lw is the invase 

of the photon propagator G,. T h d o r e  af'ter solving 

where actnally k2 stands for ka + iq, with q being a small positive number which is 

set to zero after the relevant integrations are pdormed. 

The terms proportional to [ in Eq. (2.13) signal the breakdown of both LPI 

and LLI, since those tesms are still present even if Û = O. Conceming the Feynman 

d e s ,  Eq. (2.13) is the only change needed to obtain the andogous ones. Note that 

the computation of radiative corrections involves the calculation of loop integrals 

as given by the Feynman d e s  up to a given order. 

2.4 Renormalizat ion 

As with the metric case, we expect to find divergences, whieh after an adeqnate 

regularization process are removed via a parameter redefinition. In our case, the 

addition of more patameters to the theory &O entails new renormalizations beyond 

those of the wavef'unctions, charge and mass of the fermion. The T R e p  parameters 

appear as fnnctions of 4 To/& and < = 1/he, and must then be correspondly 

redehed. In the following, we just desaibe in general tams the type of conntert- 

erms needed to achieve this procedare. We leave for the next chapters more speafic 

det ails about the renormalization procedure, which are bet ter understood within 

the appropriate context (e. g., bound system or &ee scattering). 



In units whae 1 (c, = c), EEP-violating corrections only appear in the 

elechomagnetic sector of the action (as terms propostiond to 6).  However we codd 

choose more generdy Q # 1, for which the particle sector of the Lagranpian density 

is of the form 

CD = ?($- y - m)$ + b&h Ao)7O$ (2.14) 

with r 1 - 6'; or in the moving frame (fier using (2.9)) is 

up to a constant. 

Rom (2.15) we see that quantam corrections of the fom 

can still be expected. Note that gange invariance will guarantee 6&) = ~(0) = 

bt0. Hence, in order to renormake the THep parameters, we have to include 

countertenns of the form 

660 W - P - P  v) (2.17) 

where is chosen such that there are no radiative correction contnbntions as the 

source is turned off. Finally, given the form of the electromagnetic action (see Eq. 

(2.10)), we expect also quantum fluctuations of the f o m  

to occur, and so s i d m  counterterms need to be considered. 

In the next chapters, we will see how to use Eqs. (2.17) and (2.18) to get nd of 

the unwanted divergences. 



Chapter 3 

(GM) Lamb Shift 

3.1 Bound System 

Since the fist accurate measurement by Lamb and Retherford of the shiR between 

the the 2SlI2 and 2Pilz states in Hydrogen atoms [32] (sometimes known as the 

classicul Lamb shift), several Lamb shûts reiated to Hydrogen (1s [33], 2s - 2P3/z 

[34]) and Helium [35] have been measured. 

However, in most of this chapter, we wil l  refer to the classical Lamb shiR 

only. In this case, the Dirac equation for a Coulomb potential predicts those 

states to be degenerate, the clifference between them in mehic theories cornes only 

from radiative corrections. For non-metric theories which can be desaibed by the 

THep  formalism, these energy levels will be modified by the EEP-violating terms 

introduced in the source (Eq. (2.6)), removing this degeneracy before introduc- 

hg radiative corrections. Note that the fermion sector of the T H e p  action does 

not change and thedore neither does the Dirac equation. The prefkred b e  

dects appear only in the expression for the electromagnetic source produced by 
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the nftcleus. 

The caldation of radiative corrections to the atomic energy levels involves a 

boiind state formalism for QED, which deah with a bound dectron propagator. 

This maLes the compntation substantially more complicated than in the fiee case. 

There are several approaches for coping with the boundness of the propagator (see 

[36] and references themin), and we shall closdy follow one of them. 

3.2 (GM) Dirac States 

The Dirac eqnation in the presence of an externa1 electromagnetic field s t d l  reads 

like the metric case: 

where the various symbols have th& usual meaning. 

The (GM) energy levels of hydrogeaic atoms are found by solving (3.1) in the 

presence of the electromagnetic field (2.6) prodnced by the nucleus which entirely 

accounts for the prefkrred fiame aects. If we replace Eq. (2.6) in (3.1), the 

H d t o n i a n  can be written as 

whae Ho corresponds to the standard Hamiltonian (with Coulomb potential only), 

and the prkaed fields are defined as in Eq. (2.6). In terms of the hown solutions 

for Hola)* = E:ln)', ne can perturbatively solve Eq. (3.1) by writing 
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with 

where  EL(^) and E A ( ~  account for the contribntiom coming fkom the respective 

electrïc and magnetic potentials. 

We now proceed to cdcnlate the energy levels related to the Lamb shift states. 

To obtain these, we find it convenient to use the exact solution for the Dirac spinor 

In)', expanding the final answer in powers of Za to O((Za)'). The relationship 

between this approach and an alternate one in ahich the Hamiltonian is h s t  ex- 

panded in powers of Za using a Foldy-Wouthuysen t rdormation is discussed in 

appendix A.1. 

The unperturbed Dirac state In)' c m  be expressed as: 

where Il; jm) is the spinor harmonic eigenstate of J2, L2 and Jzl ,th respective 

quantum nnmbers j7 1 and m. The fanctions F and G can be written in t enns  of 

confinent hypageometric fûnctions that depend in a non-trivial way on Za for a 

given 1 and j. In the case of the Lamb states, they can be expressed by [37] 
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whae the various parameters for the 2s level taLe the form (taking m = 1) 

Inserting the fields from (2.6) and (3.6) in Ek, ne &te 

= (& +RF=) (jm;l(u2 + ( û o i i ) 2 [ ~ j m )  n (3-9) 

 EL(^ = --i&(jm;ll(Ùgir)(a-Z) +Q-î I IZ;  jm) + h-c. (3.10) 

where %.c." means Hermitian conjagate and where 

with RpF and RCp defined in an analogous manner. 

We now evaluate this energy for the 2S112 and 2 PIp states in this semiclassical 

approximation, prior to the inclusion of any radiative corrections. Since the angalar 

operator in (3.10) has odd parity (as given by ii), it is straightforwatd to show that 

the magnetic contribution E : ( ~ )  = 0, so Ei = E$*) foi any state. 

If we now substitute Eq. (3.7) in (3.11), ne obtain 
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where we have used 

to simplify the integrand in (3.11). 

Using the corresponding expressions for the harmonic spinors and the appropri- 

ate parameters in (3.12) for each Lamb state [37], we eventudy find 

whese we have expanded the exact solutions for kc and RF= in powers of (Za) l ,  

and kept the n s t  relativistic correction only. The anguiar integration and the I& 

term are the same for both states, and so the non-relativistic limit is still degenerate 

for them. However the ikst relativistic correction coming fkom the RFF factor (term 

proportional to 19/16 for the 2s state) breaks the degeneracy, yielding 

We obtain the result that the 2Si12-2Pi12 degeneracy is IiRed b e h e  radia- 

tive corrections are introduced. This 'semiclassical' non-metric contribution to the 

Lamb shift is isotropie in the 3-veloeity S of the moving fiame and Mnishes when 

Ü = O. Hence it violates LLI but not LPI. 

In order to proceed to a compntation of the relevant radiative corrections, we 

need to find the pertarbative corrections for the energies and spinor states given 

by (3.4) and (3.5) respectively. The radiative correction JE,, to the Dirac enagy 

En can be formally erptessed as 



3.3 (GM) Radiative Corrections 29 

where bH acconnts for the loop contEbutions as given by the gravitationdy mod- 

ified QED. Since EEP violating efKects appear in both the photon propagator and 

the classicd electromagnetic field, we expect 

In addition, the state In) may be analogously expanded. Up to first order in C, we 

can therefore nrite (3.18) in the form 

The contributions fiom the In)' states are of the same orda  of magnitude (in 

terms of powers of Za) as the 6H' terms and so cannot be neglected. This may 

be seen by noting that, apart from the Y dependence, Y - 9 and so O(nlHrls)O - 
E t  - e. Inserihg this in (3.5) proves the statement. Note that the dec t  of the In)' 

states was overlooked in Ref. [29]. If we identify 6 8  + H( y) ,where H(hf) represents 

the perturbation to the Dirac Hamiltonian due to the spin of the nucleus, then by 

the same arguments as before we can show that the term {o(nlH~hfloln)r + hoc.) 

was omitted in the conesponding expression for the hyperfine energy. 

3.3 (GM) Radiat ive Correct ions 

To lowest order in QED there are two types of radiative corrections to the energy 

levels of an electron bound in an extemal electromagnetic potential: the vacuum 

polarization (II) and self-energy (C), dong with a counterterm (6C) that snbtracts 

the analogous processes for a fiee electron. These contributions are illustrated in 

Fig. 3.1 
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Figure 3.1: Radiative corrections of order a : (a) seKenergy and (b) vacuum 

polarization. 

The energy shlft due to these contributions for the state ln) can then be written 

where 

JEs = (nlC - &?ln), 

which corresponds to the self-energy contribution in Fig. 3.l(a) minus the corre- 

sponding corntertenu, and 

~ E P  = ( q q n ) ,  (3.23) 

which is the vacuum polarization contribution illustrated in Fig. 3.l(b). 

In Fig. 3.1 the bold Ihe represents the bound electron propagator. This propa- 

gator can be written in operator form as (i- - mm)-', with 

where A p  is the extenial electromagnetic potential. Eere En is the total energy of 

the state In), which satisfies the Dirac eqnation (+- - m)ln) = O 
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Eq. (3.21) represents the one loop correction (one power of a) to the atomic en- 

ergy levels as given by En. We are intelested in obtaining the "lowest order" Lamb 

sha2, which is the a(Za)' contribution. (There are still more approximations that 

corne &a expanding the bound propagator, which introduce additional nonana- 

lytic terms in the expression for the Lamb shiR that behave Iüe a(Za)'ln(Za)). 

The GM radiative corrections are found by evaluating (3.21) whae the extemal 

electromagnetic potentid and the photon propagator are respectively gîven by Eqs. 

(2.6) and (2.13). All expressions aill be expanded in tenns of the LPIILLI violating 

parameter 6, and the velocity of the moving Bame Ü up to O([)  and O ( 3 )  as 

implied by (2.6) aad (2.13). EEP-violating dects are all contained in the terms 

proportional to these quantities. 

A variety of methodg are adab l e  for evaluating the corrections in (3.21), each 

differing pfimarily in the manner in which the bound electron propagator is treated. 

We shall follow the method of Baranger, Bethe and Feynman [38] (hereafter refmed 

to as BBF) , in which the corrections in (3.22) are separated into a term in which the 

external potentid acts ody once, and another term in which it acts at l e s t  *ce. 

This latter 'many-potential' term can be fùrther separated into a nonrelativistic 

part, and a relativistic part which can be cdculated by considering the intermediate 

states as f i e .  This approach is suffiCient for the lowest order caldation ne consider 

here. W e  non proceed to outline the main steps of this method. 

The selfenergy term in Eq. (3.21) can be written as 

ifEs = 5 1 c k iGw (k) (RIT,, 1 
4?r3 

1 )  ( n )  . (3.24) Ir- Y-  # - m  

This expression gives a complex result for the level shift, skice the denominators 

in the integral each have a small positive imaginary part. The resultiag imaginary 

part of JEs represents the decay rate of the state In) through photon emission. The 
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Lamb shiR refers to the real part of the shiR, and ody that part nül be retained 

in the compntation of Eq. (3.24). 

The diffidty in evahating Eq. (3.24) m i s e s  entirely fiom choosing a convenient 

expression for the boand propagatot. The integrand in (3.24) is rearranged in order 

to obtain one part which is of first order in the potentid (JEi), and another part 

(JEz) which contains the potentid at least hice. Using the identity[38] 

to reexpress 7, and r, in (3.24) and respectively identifying pb = p, p, = p - k, 

and = p - k, pa = p yields fier some manipulation 

where 

with 

and where 
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wit h 

The quantity K r  is defined as - i ~ r  m (j- J - m)-',where in momentum space 

KF = 6(E' - E) KF(E; P', f i .  

In Eqs.(3.2?) and (3.29) the pys have t h e  component En and the s's have tirne 

component O. Note that the above derivations are independent of the s p e s c  form 

of the photon propagator G,. 

Fnrther evaluation entails a lengthy compntation which in principle is analogous 

to that of BBF. ki practice thongh, the caldation is substantially more compli- 

cated than in the metnc case due to the additional non-metric terms present in 

the photon propagator and the electromagneüc source related to a charged point 

particle. Regularization and renormalization procedures have to be modified ac- 

cordingly. Det ails involving the subsequent compntation of the self energy (and 

vacuum polarization) term are given in appendir A.2. 

The final result for the loop corrections related to the Lamb shift is of the form 

where each tenn is obtained fiom Eq. (A.55) (and its relevant subsidiary eqnations) 

as calculated for the conesponding atomic state. By adding the "semidasical" 

correction coming fkom the Dirac level (labeled by ( D )  in Sec. III), the total Lamb 

shift reads 
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4 3 nhere we have introdaced the dimensionless parameter AGj ii ~ A E ; ~ / ( ( Z ~ )  m ) 

(see (A.56)), and used Eqs. (A.59) and (A.60) in the evaluation of (3.30) throngh 

Eq. (A.55). 

The forma result is the energy shift associated with the p a r t i c h  states in 

(3.30). Howeva in Eq. (A.55) we have derived a general expression for the one- 

loop radiative corrections related to any atomic state. These are 

for 1 = 0, and 

for 1 # O; where we have not explicitly written the terms proportional to the moving 

fiame velocity. Here 

Clj = 
for j = 1 - 112 

and E. is defmed by (A.57). Values for this reference energy can be obtained fUom 

Ref.[39] np to states with n = 4. 

Note that in addition to the explicit dependence on the Bame veloaty in Eq. 

(3.31), there exists a position dependence hidden by the rescding of the original 

action (Eq. (2.3)), which was considered locally constant thronghout the compu- 

tation. The fidl T H ~ A  parameter dependence in Eq. (3.31) can be recovered by 

replacing 

(3.35) 



3.4 Test for CPI/LLI Violations 

in the preceding equations. 

Note that 6 in Eq. (3.31) accounts for any EEP violation coming fiom a non- 

universal gravitational conpling betaeen photons and leptons. A fnrther distinction 

can still be made between leptons and antileptons. In principle a matter/antimatta 

violation of the EEP codd be measared in a Lamb shift transition, throngh the 

appearance of virhid positron/electron pairs in the vacuum polarization loop con- 

tribution [40]. This will add a non-metrie term to Eq. (3.31), of the f o m  (see 

appendix A.3 for more details): 

where &+ = 1 - G-1% accounts for the diffaence between the limiting speed of 

electrons (Q- = Q) and positrons (G,). 

We tum next to the question of relating the Lamb shiR to obsenrabIe qnantities 

in order to parameterize possible violations of the EEP. 

3.4 Test for LPI/LLI Violations 

Here we consider the possibility of employing the Lamb shift as the atomic transition 

governing the appropriate experiment. To do so we m u t  compute the relevant H 

and A coefkients respectively. 

ki order to calculate the corresponding 6mf related to the Lamb shiR, we must 

find the manner in which AE& varies as the location of the atom is changed. 

il = O in (3.3 1) and performing the rescaling given in (3.35), we obtain 

Set ting 

(3.37) 
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with Et = E(Za)'a/b, and 

where EL represents the metric value (nithin the given approximations) for the 

Lamb shift. Note that there is still a position dependence in (3.37) through the 

definition of 

W e  recall that the total energy of the system can be expressed in t a s  of 

where the &pis represents 0th- contributions for the binding energy of the sys- 

tem. 

The fimetions T, H, E and p, considered to be fonctions of U and evaluated at 

the instantaneous center of mass location 2 = O for purposes of the caldation of 

AEL, are now expanded in the form 

whae go =  VU^^,^, To = T 12,0, and = dT/dUIX,o. It is usehl to redefme the 

gravitational potential U by 

whose gradient yields the test-body accderation g. 

If the above is used to expand (3.39), ne get 
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where we have used (3.35); and neglected terme proportional to 6, since the main 

position dependence parametaization is given in terms of: 

If we now i d e n e  (3.42) with Eqs. (1.9) and (1.11), we can obtain the corne- 

sponding Lamb shift contributions to the binding energy and anomalous passive 

mass tensor as 

This result was first presented in Ref. [41], where in (3.44) we have comected the 

latter for a sign arot in the coefficient multiplying & and a missing factor b in the 

ro term. 

Inserting (3.44) in (1.12), we obtain 

as the LP1 vidating parameter associated with the Lamb shift transition. Note 

that if LPI is valid then ro = & = 0. 

In comparing the result (3.45) to anomalous redshift parameters computed for 

other systems, it is important b note that ne are working with units that are species 

dependent. RecaJl that the choice of Q = 1, and the redefinition of the gravitational 

potential (3.41) involves the T and Ii fnnctions associated with electrons (or more 

generally a given species of lepton). Note that we are working within a context 

where the universa& of gravity among all species of partides does not hold. That 

is, the T and H hc t ions  are speues dependent. 
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Consider, for example, hyperfine transitions (maser docks). h this case the 

leptonic and baryonic gravitational parameters appear simdtaneously. This atomic 

splitting cornes fiom the interaction between the magnetic moments of the electron 

and proton (nucleus). The proton metric appears only in the latta, and so it does 

not d e c t  the principal and fine structure atomic energy leveIs. It is simple to check 

that the hypedhe splitting scales as 

whese the label B is added to distinguish baryonic related functions fiom leptonic 

ones; and Ehf depends only on atomk parameters. 

In expanding (3.46) according to (3.40), we obtain 

whae UB , rB and 4 are the baryonic analogues of (3.41), and (3.43) respectively. 

In (3.47) we rescaled the atomic parametas to absorb the TRyr functions and 

chose units such that c~ = 1. The quantity A is given by 

and wodd vaniah under the assnmption that the leptonic and baryonic 

T Hep parameters were the same. 

Tnrning next to experiments ahich test LLI, ne need to obtain the tensor 67ny 

appropriate to the Lamb shiR. This tensor is obtained &er taking partial deriva- 

tives of AEL with respect to y. and uj (note Y G Z). Substituthg the resdt into 
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for the Lamb shift time dilation coefficient, whae fl is the angle between the atom's 

quantization aris and its velocity aith respect to the prefkred fiame. 

Note that the coefficient AL depends upon Ah, the evaluation of which involves 

the compntation of an infinite s u m  as given by (A.56). The dominant contribution 

in Eq. (3.50) cornes from the Dirac part of the energy (proportional to $ ), which 

produces an overail shift only. Non-isotropie dects arise solely fkom radiative 

corrections. 

In general, an experimental test of CL1 involves a search for the dects of motion 

relative to a preferred kame such as the rest fiame of the cosmic microwave back- 

gromd. A detailed analysis about the interpretation of LLI violating experiments 

is presented in Ref. [29], which analyzed experiments concerned with hyperfine 

transitions, ob t aining an expression for the time dilation parameter corresponding 

to that kind of transition1. This parameta is nepiigible in comparison with other 

sources of energy, such as nuclear electrostatic energy in the case of the 'Be+ clock 

experiment [IO]. 

In summary, we have been able to parameterize EEP violations arising fiom 

Lamb shift transitions associated with redshiR and time dilation experiments. In 

these types of EEP violatkig experiments one kypically looks for variations of the 

energy shifk due to changes in eitha the gravitational potential or the direction of 

the preferred fiame velocity. The feasibility of such experiments is hindered by the 

present level of precision of Lamb shift transitions (one part in 106) in comparison 

' ~ o t e  that the expression given there for ~~f is incompkte accordïng to àimwion presented 

in sec. III 
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where the first term cornes fkom the Dirac conhibutions (here + and - label the 

transition coming firom the 2P3/* state with [MI = 312 and IMI = 112 respectively) 

and the second one fkom radiative corrections. Note that the leading anisotropic 

efFects stem h m  the nonrektivistic contributions, and so their ratio with the mehic 

value, O(m(Za)*), is O ( C U ~ / ( Z ~ ) ~ )  , instead of O ( t d )  as for the classical Lamb 

shift. Time dilation expaiments wïll look for changes on the E2s,12 -Ba ,  splitting 

as the Earth rotates, which would single ont only the preférred & m e  contributions. 

Carrent experiments [34] measure a value of 9911.200(12) MHz for that transition, 

which gives a nominal bound (coming from the experimental enor) of i t  cos2 B < 
1 x IO-' for the prefmed kame part. This bound should improve once appropriate 

experiments are &ed out, since these wîll look for periodic behavior which can 

be isolated and measured with high precision. 

Note that an empirical value for the Lamb shift is obtained fiom Ref.[34] by 

subtracting the theoretical resdt of the fine splitting 2PIl2 - 2P312- Non by fol- 

lowing the previous formalism we can parameterize the LPI violation in the former 

experimental result tkough: 

where we have added the corresponding parameters reiated to the fme transition 

[6]: Er and ~ f .  Constrainhg the ratio of this quantity to a direct measmement 

of the Lamb shiR [23] to lie within experimental/theoreticd error, we obtain the 

bound 1 U(EL - Zf ) 1 = IU(0.576ro + 1.318120) 1 < This resdt is sensitive to the 

absolute value of the total local gravitational potential [15, 431, whose magnitude 

has recently been estimated to be as large as 3 x IO-' due to the local superclusta 

[19]. Hence measnrements of this type can provide as with empkicd information 
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to the magnitudes of sach changes. In the first case, any Earth based experïments 

wiU be limited by the small size of the Earth's gravitational potential (= 10-o), 

whieh is rd beyond any foseseeable improvement in Lamb shifk precision. Similar 

problems appeat in the second case, where the hown upper bound lu'/ < 1OW3 [6] 

for the prefemed frame velocity leaves no room for any improvement on the EEP 

violating parameter C, since anisotropic &ects go as tIY12. 

However us& information can still be extracted fiom Eq. (3.31) if we use the 

carrent level of discrepancy between the experimentd resdt [23] and the theoret- 

ical (metric) value [42] to boaad the non-metric contributions for the Lamb shift. 

This constrains C < l(1) x Similar bounds can be obtained by consider- 

ing empincal information about other atomic States. In this context, the indirect 

meastuement of the 1s Lamb shiR [33] gives a limit < 1.4(1) x 10-~, and the 

m e a s m e n t  of the 2SIlz - 2Ps12 fine structure interval [34]: 1 < OJ(1.4) x 

If we &op the assumption that positrons and electrons have equivalent couplings 

to the gravitational field [40], we find that thae  is an additional contribution to 

(3.31) due to te+ # te-. This contribution arises entirely fiom radiative corrections 

and is given by Eq. (3.36). Maki~g the same cornparisons as above, we fmd the 

most stringent bound on this quantity to be I&+ ,+I < 1 0 ~ ~ .  

The previms bounds were obtained by ushg (3.9) and (3.32) or (3.33) to cal- 

calate the corresponding non-metric Dkac and radiative corrections contributions 

respectively. The 1s Lamb shift experiment, actnally meastues the transition: 

(& - Els) - !(E2s - Els), and so we use this one to make the cornparison, where 

experimental and theoretical dues  are given in Ref.[33]. In the other experiment 

we need to use the non-metric part of E2%/, - Emi2 (= Ac), namely: 



sensitive to radiative corrections that constrains the dowed regions of (ro, & ) 

parameta space. Unfortunately the present level of preüsion in measuring the 

Lamb shifk aïlows only a rather weak constraint. 

3.5 Discussion 

We have compnted for the fist  tirne radiative corrections to a physical process, 

namely the enagy shat between taro hydrogenic energy levels that are serni- 

classically degenerate, within the context of the T H e p  formalism. The correspond- 

k g  (GM) QED was derived, and the (GM) expressions for the propagators were 

obtained. The non-metric aspects of a theory describable by the T H e p  f o d s m  

can be al l  included in the photon propagator, given an appropriate choice of coordi- 

nates, leaving the fermion propagator unchanged. The addition of more parameters 

to the theory (by the T H e p  fanctions) entail new renmalizations, where not only 

charge and mass need to be redefined but also the T H e p  parameters. 

The approach we took to solve for the semi-classical Dirac energies (Sec. III) dif- 

fas fiom the one given in Ref. [29], in which the Dirac Hamiltonian was expanded 

using Foldy-Wont huysen transformations yielding the h s t  relativis tic correction 

to the SchrOdinger Hamiltonian (as introduced for example, for the Danrin and 

spin-orbit terms), and subsequently the energies. h t e a d  we began fiom the fnny 

relativistic expression, whae the perturbations corne only fiom the prefkrred fiame 

terms of the electromagnetic potentid Our approach involved evaluating expec- 

tation d u e s  with respect to the relativistic spinors instead of th& nonrelativistic 

extensions (or Pa& states). The dects of relativistic corrections such as spin-orbit 

coupling are therefore induded exactly in this approach. Once this is done, the fi- 

nal resdt is expanded to keep it within the desired order. The semi-relativistic 
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approach is not suitable when preferred fiame effects are studied. 

Qualitatively new information on the validie of the EEP wil l  be obtained by 

setting new empincal bounds on the parameters 6, At and EL which are associated 

with purely leptonic matter. ReIativeIy Iittle is known about empiricd limits on 

EEP-violation in this sector (151. PreMous erperiments have set the limits [9] 

Ib 1 E Il - 41 < 6 x 10-~' where cg is the ratio of the limiting speed of baryonic 

matter to the speed of üght. In our case we obtain an analogous bound on ( for 

electrons fitom the ciifference between m e n t  experimental and theoretical values, 

giwig ICI < IO-'. Although much weaka than the bonnds on b, it is comparable 

to that noted in a daterent context by Greene et. al. [44]. They considered 

a similar formalism (THECI with u' = O) for analyzing the measmement of the 

photon wavelength emitted in a transition where a mass Am is converted into 

electromagnetic radiation, thaeby providing an empirical relationship between the 

limiting speed of massive particles (electrons) and light. 

The breakdown of LPI f9r the Lamb shift in the context of a non-met& theory 

of gravity describable by the T H y  formalsm is embodied in the the a n o m h s  

gravitational redshift parameta (3.45). Recall that S depends on the nature of 

the atomic transition t h g h  the evahation of the anomalous passive tensor. This 

tensor wïü have diBFkring expressions for differing types of atomic transitions [6]. 

An atomic dock based on the Lamb shift transition dl, in a non-metrie th-, 

exhibit a ticking rate that is dependent upon the location of the spacetime fiame 

of refaence and that Mers fiom fkequencies of docks of differing composition. 

For example, the gravity probe A expairnent [?] employed hydrogen-masa docks, 

and was able to constrain the comesponding LPI violating parameter related to 

h y p h e  transitions (c.f. (3.48)): 
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whae A measarar the relative gravitational conpling between leptons and baryons 

(cf. (3.49)). This experhent involves interactions between nudei and electrons 

and so does not (at least to the leading order to which ne work) probe the leptonic 

sector in the mamer that Lamb-shût experiments wodd. In generd Eq. (1.12) WU 

describe the gravitational redshift of a photon emitted due to a given transition in a 

hydrogenic atom; for a hyperfme transition the redshifk parameter is (3.53), whereas 

it is (3.45) for the Lamb shift transition. 

An analogous experiment to test for LPI violations based on Lamb shift tran- 

sition enagies poses a formidable experimentd challenge becanse of the intrinsic 

uncertainties of excited states of Hydrogenic atoms. Setting empirical bounds on 

Zr. by precisely comparing two identical Lamb shat transitions at dament points 

in a gravitationd potential would appear deasible since the anticipated redshitt 

in the background potential of the earth (e IOe9) is much smaller than any foresee- 

able improvement in the preusion of Lamb-shift transition measurements [42]. One 

would at l e s t  need to perform the qeriment  in a stronger gravitational field (such 

as on a satellite in dose solar orbit) with 1-2 orders-of-magnitude improvement in 

precision. A 'dock-cornparison' type of experiment between a 'Lamb-shifk dock' 

and some other atomic keqaency standard [6] is, in principle, sensitive to the abso- 

lute value of the total local gravitationd potential [15, 431, as noted earlier. With 

t his interpretation, comparative transition measurements of the type discussed in 

the previons section can more aectively constrain the dowed regions of (ro, 4) 

parameta space than can measurements which depend upon changes in the grav- 

itationd potential. Of course exploiting anticipated improvements in precision of 

measurements of atomic vacuum energy shifts [42] nill yield better bonnds on &- 

and &+ via (3.31). 

Violations of LLI single out a preferred frame of refaenee. In fact, the search 
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for a preferred direction motivated the most precise tests of LLI performed so fat 

[IO, 4. We have extended the analysis of the dects of motion relative to a preferred 

frame to acconnt for the radiative correction for the atomic energies associated wïth 

the Lamb shift, as embodied in the expression (3.50). This non-universality reflects 

the breakdom of spatial isotropy for quantum-mechanical vacuum energies. The 

coefncient AL depends npon AGjii> the evaluation of which involves the numerid 

computation of the snm in (A.56). Unfortunately, the intrinsic linewidths of the 

relevant states rendes direct measurement of such effects deasible. More precise 

empineal information on the value of [ caa be obtained by precisely measuring 

changes in the Ezq,, - EZPS,  splittîng as ninctions of terrestrial or solar motions. 

Howevet t hese aec t s  are insensitive to radiative corrections, depending ins tead 

upon the semklassical non-metric efFects discussed in section III. 

Findy, ne note that our formalism codd be applied to muonic atoms. For a 

muon-proton bonnd system, we nill obtain an expression similar to that of (A.55), 

but where all parameters refer to muons. For an anti-muon electron bonnd system 

(a muonic atom) a similar analysis would apply. Howeva in both cases the mass 

and spin of the muon could not be neglected. 



Chapter 4 

(GM) Anomalous Magnetic 

Moment 

4.1 (GM) Free Scattering 

W e  s h d  consider the lowest order radiative correction to the elastic scatterhg 

of electrons by a static extanal field Ap. These one loop contributions can be 

summarized in t e rms  of the Feynman diagrams ïllustrated in Fig. 4.1. 

The Feynman amplitudes for the diagrams f o h  ftom the Feynman rules giMng 

the result [45] : 

A"@', p)  = a@') {F + PP + L") u(p3 (4.1) 

where 
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Figure 4.1: One loop corrections to the elastic scattering of an electron by an 

e x t d  electromagnetic source 

with 

and q = p f  - p .  

We refer to Eqs. (4.2), (4.3), and (4.4) as the Vertex, Polarîzation, and Leg 

contributions, which respectively correspond to diagrams (a), (b) and (c) plus (d). 

We also note that expressions (4.2), (4.5), (4.6) represent the one lwp corrections 

to the vertex, f&on and photon self energy parts respectively. 
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Given the form of the photon propagator it is convenient to inhoduce: 

where the sabscript "On denotes the (known) r e d t  comïng tiom the standard part 

of the photon propagator, and for the part proportional to y2 in (2.13) 

In the remainder of this section ne consida this part of the propagator only, omit- 

ting the "{" label in the corresponding expressions. 

The procedure for evaluating the loop integrab is equivalent to that of standard 

(or mehic) QED. We need to regularize t h  fist and then renormalize the pa- 

rameters, which inclade the T H r p  parameters dong with the fennion charge and 

mass. The regularization of the photon propagator is carried out d g  

with the assumed iimits p + O and A + ml and the parameta renormalization 

by the inclusion of the corresponding counterterms to each loop integral. Details 

about this procedure and the corresponding calculotions are &en in the appendix 

B.1. We quote the final resdt for the loop integrab: 
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whae we have implicit1y assnmed that (4.11) is acting on fiee spinors. 

The Ward identib 

is a consequence of gauge invariance, and therefore it holds even in the absence 

of Lorentz invariance. It is straightfornard to check that (4.10) and (4.11) satisfjr 

The evaluation of (4.1) is &O straightfomard once the loop integrals have been 

cdculated. We jnst comment on the compatation of the Leg correction, which is 

ambiguous since it contains terms like "O/On,  which are indeterminate. To obtai.  

an unambiguous result, we must explicitly introduce a damping factor, which is 

necessary for the correct definition of the initial and final states. Details of 

this adiabatic approach are presented in appendix B.2. The final result for the Leg 

correction is 

Note that this part gives a contribution to the total amplitude that cannot be 

removed afta renormalization. Fnrthermore, the gauge invariance of the Feynman 



amplitude which is manifest as 

q d = O  

requires the presence of such terms, a condition that is not satisfied by the vertex 

contribution only. 

The h a 1  r e d t  for the scattering amplitude is 

with 

The various terms in (4.16) distinguish the d.i.&ent contributions to the scat- 

tering amplitude. In (4.17) we group terms of order Pa or higher. Gp accotmts for 

terms of order q at least, and P for the gaage tgms or those who give no contri- 

bution to the amplitude. Note that the remahhg b&ared divergence in F'' can be 

understood in terms of soft photon radiation, analogous to the metric case. 

In the next section we will  use the above resdts to compnte the g - 2 anomaly. 
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4.2 (GM) g-2 Experiments 

To lowet order the Feynman amplitude associated with the elastic scattering of an 

electron by a static external field is 

The radiative correction of orda a to this pmcess is given by 

where & represents the (hown) metric tesult and Ac represents the contribution 

from (4.16). 

In the nonrelativistic limit of slowly moving particles (14 -t 0) and a static 

magnetic fidd , it is shaightforward to show that 

with GP given by (4.18), which is the dominant term as q + 0. 

ki order to simpiify this contribution, ne  consider a constant magnetic fidd fi, 
that is 2 = $t x i, in which case 

where we have neglected the terms that mix the large and small spinor components. 

Sdarly,  ne can show 
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and in the nonrelativistic limit 

and 

$fi+-a-0 . 

If we put everything togetha in (4.18): 

As a cross-check on the above resdt, we take the limit Quj + -6, obtaining 

G - A + - 2 4  A, which is the required limit consistent with the structure of Eq. 

(4.8) in that case. The previous resdt is the contribution of (4.24) to (4.21), which 

added to (4.20), give as the relevant part of the HamiItonian as 

with 

where n e  have identdied $ = f ,  and Ir = Ù/lÜl. The I' parameters acconnt for the 

conpling strength between the magnetic field and spin. We see that fi j  generalizes 

the gyromagnetic ratio of a fermion analogous to the manner in which the amma- 

lous mass tensor generalizes the mass of a partide [30]. We thaefore identify the 

parametas r" r r6G+r*uiuj with the components of the anomalous gyromagnetic 

ratio tensor of the fermion in the class of T H e p  theories. 

Note that the presence of preferred frame efEects induces a qualitatively new 

form of interaction between the spin and magnetic field which is qaantified by J?.. 
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Here, instead of coupling with each other, they both couple independently to the 

fermion veIocity relative to the prefened fiame. This interaction stems p d y  fiom 

radiative corrections, and wodd be absent in any tree-level andysis of (GM)QED. 

Hence, Eq. (4.30) describes the interaction (as seen fkom the partide rest h e )  

between the particle spin and an extemal homogeneous magnetic field. Fkom this 

we can extract the energy difference between electrons with opposite spin projection 

in the direction of the magnetic field as: 

where 8 is the angle between the magnetic field and the preferred fkame velocity. 

The influence of the radiative co~ections (coming fiom g - 2 and g,) in (4.33) is 

negligible in cornparison to the dominant factor of 2 in g. Since ne want to single 

out the efKects of the non-metric corrections, it is more interesting to stndy the 

precession of the spin or, more specifically, the oscillation of the longitudinal spin 

polarization. In the metrie case, this tkequency is proportional to the factor g - 2, 

and so it is a distinctive signature of radiative corrections. 

The observable quantity in the g - 2 expaiments is actudy the electron p+ 

larization, which is proportional to the quantum mechanical expectation value of 

$, that is, (3). Using Ehrenfest's theorem, a quantam mechanical solution for the 

motion of (3) is obtained fiom the eqnation 

whae the primed variables are referred explicitly to the particle rest &une (R.F.). 

Note that the prefared fiame d e c t  wi l l  show distinctly as a temporal variation of 

the spin component parallel to the magnetic field. 

In general we want to know the spin precession relative to some speafic lab- 

oratory system, with respect to which the particle is moving with some velocity 



p. This fiame need not a-prio~i be the previously defined prdened frame, and so 

,8 # ü- 

Since the THep  formalism does not change (locally) the fermion electromag- 

netic fieid interaction, we expect that a charged particle in the presence of an 

homogeneons magnetic field u d l  satisfy the equation 

with the cyclotron fiequeney fi, = &Ë and 7 = (1 - B2)-'la. Relating (4.34) to 

the laboratory system yields 

due to Thomas precession, with & = &($ x 6)- This fkeqnency is kinematic in 

origin and it is a conseqnence of the non-commutativity of the Lorentz transfoma- 

tions . 

Relating the primed variables in (4.34) to the laboratory ones by a Lorentz 

transformation gives 

where we have set Ë = O and considered (for simplicity) the case of orbital motion 

papendicular to the magnetic field (Bo = O) in the above. Note that the spin 

precession about fis is no longa pardel to the magnetic field (axial di~ection), bat 

has a component pardel to Ü that cornes fiom radiative and non-metric effects. 

At this point it becomes necessary to define the preferred coordinate system. 

There are several candidates (such as the rest fkame of the cosmic microwave back- 

ground) for this fiame [6]. To study this issue it is suffiCient to assume that the 



laboratory system (Earth) moves with a non-relativistic velocity (Y)  with respect 

to the preferred h e ,  and so ne can identify 

In order to single out the dects of radiative corrections, ne stady the spin 

precession relative to the rotational motion of the electron, that is: 

with nD = d. - $ and 3 = (s!, Si, Si]), where the first h o  components are per- 

pendicular to Ë (lower index) bat pardel and perpendiahr to P (upper index), 

and the last one parallel to B. In the following n e  refei to the difference fiequency 

(aD) as the anomalous fkequency (given its connection with the anomalous mag- 

netic moment in the metric case). It is convenient to rewrite: 

with 

and 0: = &g*BV; whae 8 represents the angle between V and the magnetic 

field, and VL the component of the veiocity perpendicular to B. In fia n e  grmp all 

the terms parallel to the magnetic field that contribute to the anomalous frequency 

(induding non-metric dects) .  The remaiaing terms perpendidar to B arise from 

non-metric efEects ody, and produce a temporal vaxiation of the spin component 

pardel to the magnetic field. This &ect is absent in the metric case, and so 

represents a qnalitatively new manifestion of possible EEP violation. 

In general we are interested in solving (4.39) for the cases P >> V or P << V 

so that 7(u) ~ ( p )  or r (V) ,  but is otheraise constant. Since is proportional to 
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[, we ean pertarbatively solve for each component in (4.39). Taking, for exampIe, 

the initial condition S(O) = S@ we find 

S! = S cos &t Si = S sin Qat (4.42) 

where ne  have chosen a coordinate system where B = i so that 

and assumed that any rotation related to 8 is negligible in comparison to other 

fkequencies involved in the problem (4 or 51,). 

The fact that 4 was (in the metric case) proportional to g - 2, motived the 

very precise g - 2 experiments which were designed to specifidy measure that 

anomalous kequency. We see that this fiequency is modoied h m  its metric d u e  

by the additional terms present in (4.41). If we assume that the EEP-violating 

contributions to 0, are bounded by the m e n t  level of prechion for anomalons 

magnetic moments [26], then the discrepancy behreen the best empirical and the- 

oretical values for the electron yields the boands 

the latter following fiom a comparison of positron and electron magnetic moments. 

For muons, a similar analysis yields 

Even though the accuracy of the muon anomaly is lower than the electron one, 

the slightly stronger boaad in (4.45) arises because the expetiments are carried 

out for high-velocity muons [46]. To our howledge these bounds on violation 



of gravitational Miversa& are the most stringent yet noted for leptonic matter. 

Torsion balance aptlriments and laser experiments yield the weaker bound ce- c 
when these tests are analyzed in a similar context [47]. 

Newman et. al. analyzed the g - 2 experiments [48] in order to find new bounds 

for the validity of special relativity. They aawmed that the parameter 7 involved in 

the electron motion had a different value (r) from thak which arises kinematically 

(in Thomas precession and Lorentz transformations). The equivalent equation for 

(4.41) is in that case 

and by comparing with h o  electron g - 2 experiments, one at electron relativistic 

energy (p = 0.57) and the other nearly at rest (P = 5 x IO-=), they obtained the 

constraint 6y/7 < 5.3 x IO-' . Our approaeh is qnalitatively different &om theirs, 

in that we assume 7 = bat indude preferred frame efZects in the evaluation of 

the anornabus magnetic moment. A similar analysis in our case yields the weaker 

bounds of I& ( < 7 x for electrons, and 1tJ < 2 x for muons. In the 

latter ne used the g - 2 muon experiments earried at p = 0.9994 (7 = 29) [46], and 

B = 0.92 (7 = 12)[49]. 

Preferred efFects not only modify the anomdous fkequency according to (4.41), 

but also induce oscillations in the spin component pardel to B. As stated above, 

this is a qnalitatively new consequence of EEP violations due solely to radiative 

corrections in (GM)QED. Searching for snch oscillations therefore provides a new 

null test of the EEP. W e  can estimate the magnitude of such efFects by taking the 

temporal average of SI, over the main oscillation given by na, which gives 

&=- -  (sd tV@ cos QT2 
S 

This dect  is enhanced in highly relativistic situations, and can be estimated by 
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considering a h i c a l  experiment with V - 10? For dectrons fl  - 0.5, and so 

6. - IO-"; for muom ,O = 0.9994, yielding 6' - IO-'. In both cases we used the 

corresponding present constraints for ( piven above. 

The novelty of the SII oscillation snggests the possibility of pntting tighter con- 

straints on the non-metric parameter, once appropriate experiments are catried out. 

The same goes for the analysis of Ci,, at diffaent values of 8 (the angle between 

the magnetic field and the velocity of the laboratory system with respect to the 

preferred fiame). The rotation of the Earth wdl tarn this orientation dependence 

into a time-dependence of the anomalous magnetic moment, with a period related 

to that of the sidaeal day. 

The previous analysis was concaned with dects rdated to spatial anisotropy. 

We tum now to a consideration of possible violations of local position invari- 

ance. The position dependence in the former section was implicit in the redefi- 

nitions of charge, mass and fields. These qnantities were rescaled in terms of the 

 THE^ hct ions,  which were considaed constant thronghout the compntation. LPI 

violating experiments are of h o  types. One of these entails the measmement of a 

given fiequency at tao diff'ent points in a gravitational field (where clifferences in 

the gravitational potential codd be significant) within the same reférence system. 

The 0th- type involves a cornparison of fiequencies arising from h o  different forms 

of energy (ie. h o  Merent docks) at the same point in a gravitational potential. 

We parameterize the gravitational dependence on a given frequency as: 

where UG represents the external gravitational tensor, satisfying Uii = U, and the 

ellipsis represents higher order terms (going as either or velocity times U) in the 

gravitational potential or terms independent of it . 
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The measured redshifl, parameta rehted to this fkequency may be tisritten as 

- AU, z=au(l-q, ;=p- 
AU 

where Li wil l  depend npon the specific fiequency measnred in the expeiiments. 

Note that this tensor is eqnident to the anornaIous passive gravitational mass 

tensor htrodnced for the stndy of atomic transitions. 

In g - 2 experiments the relevant iiequency i s  4, which describes the precession 

of the longitudinal polarization in the presence of a constant magnetic field. Using 

the T HEP formalism ( s e  Eq.(4.41)) we obtain 

where ne have omitted terms proportional to velocities, which eventudy will con- 

hibute as 0(v2U) terms at most. 

In order to carry ont the loop caldation, the THep dependence was absorbed 

into the definition of the parameters ander the rescaling 

with Q = (TOI as the limiting speed of the massive partides, the subscript 

'0' denoting the T Hep fanctions evaluated locally at 9 = O. Although the ptoduct 

eB remains invariant under th& rescaling, the expression for the constant magnetic 

field stiU depends on the T H r p  parameters once it is n i t t en  solely in terms of 

atomic parametas. This can be seen dearly by considering the magnetic field 

prodaced by a long solenoid 

The gravitationally modified 

of length L, with N tums and canying a m e n t  I .  

Maxwell equation to solve is: 
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and so we find the non-vanishing magnetic field inside the solenoid to be B = 

4rmINIL. Again ne assume that the THep hctions are constant thmughoat 

the size of the experimental device. In tems of fandamentd atomic parameters, L 

is proportional to an integer times the Bohr radins (the interatomic spacing), which 

is known to rescale as 00 + %rat$m [6]. If we non write I = 1 f- dg,  nhere J 

can be expressed in terms of a density charge p in motion (v )  thrmgh a volume V, 

and then relate the Bohr radius to each spatial dimension dong with the limiting 

particle velocity to the velocity distribution v ,  ne can show 1 -t Ifilroco, and 

so B -, BmTo/&. Along with (4.51), this gives the position dependence of (4.50) 

to be 

with 52: = e B a / 2 m ~  (recall f = 1 - l / p 0 ~ ~ ) .  

Note that the THep  hct ions are evahated at  some representative point of the 

system, which we have chosen to be the origin 3 = O. h order to determine ho* 

0, changes as the position of the system varies, we expand the THep  hct ions  in 

(4.53) according to (UO), which in tums yields 

where we have rescaled again according to (4.51), and omitted terms proportional 

to 6, since the main position dependence parameterkation is given in terms of the 

LPI-violating parameters ro and &, introduced by Eq. (3.43). 

B y  comparing Eq. (4.54) with (4.48), ne can identify 

as the LPI-violating parameter. Note that this depends on the anomalous frequency 

related to the longitudinal polarkation of the bearn. It is also species-dependent, 



with the vahe of Lg and & for the electron difFeriog ftom that of the muon. A 

search for possible position dependence of anomdous spin precession fiequenues 

provides another qualitatively new test of LPI sensitive to radiative corrections. 

Actually the most precise g - 2 experiments for electron measuxe the ratio 

a = 41% at nonrelativistic electron enagies (fl - IO-*), and so Q, cz eBlm. 

This is interesthg becanse by following the former parameterbation we can write: 

or by taking the ratio of (4.54) to (4.56), we obtain the anomaloas magnetic me 

ment: 

a = ao(l + USa), 1 7 ~ = - r ~ + + ,  
6 

(4.57) 

and then by identifying a with the most precise experimental value [25] and ao 

with the theoretical one [26], n e  can constrain tkough the resulting theoreti- 

cal/experimental mors 1 USa[ < 3 x IO-? This result E sensitive to the absolute 

value of the total local gravitational potential [15], whose magnitude hos recently 

been estimated to be as large as 3 x due to the local superdustei [19]. Eence 

measuxements of this type can provide us with empirical information sensitive to ra- 

diative cotrections that constrains the dowed regions of (ro, b) parameter space, 

m g  in tbis case: 

For muons the d o g o u s  constraint is IU"uCI < IO-', and so a mach weaka bound 

is obtained. 

We note that a similar experiment to that employing hydrogen-maser clocks 

codd be carrkd out for the energy shift defined in (4.33), which can be used 

as a fkequency test to look for position or fiame dependence. This can be done 
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by following the same procedure as for atomic energy shifts, where the anomalons 

passive and inertial gravitational tensor are introduced in o r d a  to relate non-metric 

efEects to redshiR and time dilation parameters. Since radiative corrections are 

irrelevant in that energy shitt, we omit that procedure hae. 

4.3 Discussion 

R.efined measnrements of a n o m h s  magnetic moments can provide an intaesthg 

new arena for investigating the validity of the EEP in physical systems where radia- 

tive corrections are important. We have considered this possibility explicitly for the 

dass of non-metric theories described by the T H e p  formalism. The non-universal 

character of the gravitational couphgs in sach theories affects the one loop correc- 

tions to the scattering amplitude of a fkee fermion in an external electromagnetic 

field in a rather complicated way, giving rise to several novel effects. 

AR evaluation of the one-loop diagrams reveals that the leg corrections, which 

in the metric case give no contribution to the total amplitude after a propa renor- 

malization of mass and spinor field, provide contributions which cannot be removed 

&er renormalization. Moreover they are essential in ensaring the gaage invariance 

of the scattering amplitude, which is not W e d  by the vertex correction alone. 

The consistency of the caldation is verified explicitly t b g h  the Ward identity, 

which fnrnishes a cross-check beheen the f e o n  self enagy and the vertex correc- 

tion. The non-metric corrections to the scattering amplitude also have an infrared 

divergence, which codd be undezstood in terms of inelastic soft photon radiation, 

as in the metric case. This does not decf the term associated with the anomalous 

magnetic moment. 

The presence of prefared fiame effects induces a new type of coupling between 
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the magnetic field and the spin as decribed by (4.30). This interaction stems pnrely 

fkom radiative corrections, and generalizes the gyromagnetic ratio of a f d o n  

to a tensorid coupling described by rgi. We emphasize that qualitatively new 

information on the validity of the EEP wdl be obtained by setting new empincal 

bounds on this coupling, as it is associated with p d y  leptonic matter. 

Consequent1y, discnssion of a g - 2 contribution to the magnetic moment no 

longer makes sense, and we instead rd' to the anomalous fiequency as the main 

connection with experiment. Note that this frequency, defined as the relative elec- 

tron spin precession with respect to its velocity, cornes fiom radiative corrections 

and it becomes proportional to g - 2 in the metric case. This fiequency shows an 

explicit dependence on both the prefmed h e  velocity and its relative direction 

with respect to the extemal magnetic field. There is also a dependence on the elec- 

tron velocity, which makes the other contributions negligible at relativistic electron 

energies. Tao g - 2 experirnents on the electron (one at relativistic energies and 

the other almost at rest) may then be used to limit the prefmed hune parameter 

to be no larger than IO-', andogons to the work of Newman e t  al.. Constraining 

any possible EEP violation to be no larger than the present discrepancy between 

theory and e x p d e n t  we found the most stringent b o d  for E yet obtained for 

leptonic matter, as given in (4.44) and (4.45). 

We expect that new experiments which probe the anisotropic cbaracter (or 

angnlar dependence) of the fkequency could be used to impose stronger limits in 

dinetent physical regimes. For example, as the Earth rotates, the spatial orientation 

of the magnetic field changes - this should in tum dLninish the experimental mors 

involved in the cornparison between two energeticdy Waent  g - 2 experiments. 

The relativistic generhation of the spin pal-ation equation (4.37), foUowed 

the same procedure as for the metric case, where non-metric &ects where induded 
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in the interaction only (Eq. (4.30)). This yields an equation of motion for the spin 

(as seen from the rest kame) which is qnalitatively diffaent from that expected 

fiom its dassical counterpart, where the an& momentum rate is related to the 

torque applied on the system. This approach for dealing with violations of Lorentz 

invariance is dynamica& from a bernatical viewpoint we assume that standard 

Lorentz transformations relate coordinates and fields 6rom one system to another. 

Perhaps the most remarkable feature of the non-metnc ef5ects is that of the 

oscillations of the component of spin polarization parallel to the magnetic field. 

Since this component remaùis constant in the metric case, an experhent which 

searches for such oscillations is a new ndl test of the equivalence prin9ple that is 

uniquely sensitive to radiative corrections in the leptonic sector. Hence an empirical 

investigation of its behavior aill provide quelitatively new infornation about the 

d d i t y  of EEP, and codd constrain even fmther the Iimits on the prefared frame 

parameters. 

Finally, we analyzed the behavior of the anomalous frequency in the context 

of redshift experiments, which can put constraints on the LPI-violating parame- 

ters (ro, 4) once the correspondhg experiments are catned out. This region of 

parameta space is qnalitatively difF'ent fiom that probed by either Lamb-shift 

or hyperfine effects. Li the electron sector a bound on the magnitude of WEa can 

be obtained by demanding that it be no larger than the enor bonnds in the dis- 

crepancy between the experimental and theoretical values of the ratio a = 62,/&. 

Assuming the local potential to be as large as that estimated from the local saper- 

cluster, we obtain a bound on l ta l  that is comparable to the lMit on an analogous 

quantity in the baryonic sector obtained &om redshift experiments (71. However 

this latter experhent is proportional to changes in the local potential, which are - 10-Io. More direct limits on 121 mnst be set by performing a simüar sort of 
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redshift qeriment on anomalom magnetic moments [50]. The logistics and higher 

preusion demanded by sach an expairnent will be a major challenge to undertate. 



Chapter 5 

Concluding Remarks 

In summary, we stndied for the fnst tirne the validity of the EEP in the realm 

of quantum field fluctuations. We reformulated Quantum Eleetrodynamics in the 

context of nonometic theories of gravity, wbich involved the development of an a p  

proach that led to a consistent, regnlarized and renomalized quantum field theory. 

We used pertnrbation methods (loop counting) to calculate the relevant radiative 

corrections, and derived the corresponding Feynman d e s  for bond systems and 

&ee scattering. Finally we made the empirical connections via the interpretation 

of present data aiid the design and assessrnent of htnre experiments. 

We find that a non-metric spacetime structure induces qualitatively new aects 

in the behavior of radiative corrections that leave distinctive physical signatures. 

Such effects allow the possibility of setting new bounds on the validity of the EEP. 

In fact from present expaiments, we obtain the most stringent bond yet noted 

for the non-metric parameters related to leptonic matter. A siimmary of those 

constraints is presented in table 5.1. Recall that the relative gravitational conpling 

between massive particles and photons is measnred by = 1 - cl/& where Q and 



c are the limïting speed and speed of light respectively. The remaining parameters 

(cf. (3.43) and (3.49)) acconnt for the Merences between the local variations of the 

metric between nucleons and/or electrons, and photons. Note that the stringent 

b i t s  on aniversality violation set by previous experiments have only been with 

regards to the relative gravitationai couphg in the baryonfphoton sector of the 

standard modd. For the leptonic sector relevant to our consideration, rehtively 

little was known. 

In addition, we set the proper grounds to perform hture experiments which 

codd greatly improve our empirical knowledge of EEP or else refote its validity. In 

this regard, it is important to note that almost all the attempts at nnifying gravity 

with the other interactions predict the esistence of a new long-range, macroscopi- 

d y  coapled interactions appearing as an3aljary fields of gravitation [12]. Indeed 

this is the case in string theory where gravity always appears accompanied by a 

scalar field (the dilaton) (131. 

Up to now, the main observable consequences of the EEP have been verified 

with high precision by ail existing experiments. However, as stated already by 

Damou [12], the fact that present tests are at the 10-12 level does not diminish 

the possibility of small violations of the equivalence principle because there exist 

string-inspired models in which one gets, in a non fine-tuned way, violations of the 

universality of the free fd a& the level of r) .- 10-"s, where a is a dimensionless 

quantity which codd be of order uni@ (511 

The condition of 'metricity" , or *un.iversality of the gravitational coupliog" is 

an ad hoc assnmption of the theory, and not a naturd consepence of an extended 

fomdhm. In fact , nearly all the new interactions that n a t d y  appear in exten- 

sions of the present framework of physics violate the equivalence principle (121. In 

view of this, it is important to continue improving the precision of the experiments 



probing the EEP. Indeed the project of a Satellite Test of the Eqnivalence Principle 

(STEP) aims at probing the Miversality of the fkee f d  of pairs of test masses or- 

biting the Earth at the imptessive level of ptecision q - IO-", and there are plans 

for flying very stable docks near the Sun to improve the testing of the gravitational 

redshiR dom to the IO-' fiactional level (see [52] and references therein). Follow- 

ing that direction, we expect that the intrinsically quantum-mechanical character 

of the radiative corrections wiU motivate the devdopment of new LPI/LLI expai- 

ments based on the Lamb shift transition and anomaloas magnetic moments. In so 

doing we will extend our anderstanding of the validity of the equidence prkiaple 

into the regime of quantum-field theory. 



Lep tons Non-metric 

parameters 

Table 5.1: Cornparison of the constraints (upper limits) for the T H r p  parameters 

obtained fÎom this thesis (radiative corrections) and fÎom other experiments as 

indicated. 



Appendix A 

Lamb Shift Energy 

A. 1 Semi-Relativist ic Calculat ion of Hydrogenic 

Energy Levels 

Consider a hydrogenic atom immersed in an extemal gravitational field, moving 

with vdocity 3 relative to the prdmed fkme. In Sec. III we follow a M y  rela- 

tivistic approach to solve for the atomic energy levels. That is ne patnrbatively 

solve the Dirac equation in the presence of the electromagnetic field of the nucleus, 

where the unperturbed states correspond to the Dirac solution in the presence of a 

Coulomb potential only (the metrie case). 

We consider here the use of the Foldy-Wouthuysen transformation in solving 

(3.1). In this approach, we write 

with 



where A, is given by Eq. (2.6). 

As shown in section III, ne can take HmQ -+ O, since the magnetic field does 

not contribute to the atomic energy leveis. We cm then groap the t e rms  in the 

Hamiltonian as 

where we have defined the fine contribution to the Hamiltonian ( H f ) ,  in order to 

accomt for the first relativistic correction O((Zu)') to the atomic energy levels. 

We start writing a formal solution for Hln) = EJn), in terms of its non- 

relativis tic limit : 

Hcln)c = EE,In)c, (A.4) 

whae  the index " fn accounts for the fimt relativistic correction to the states and 

energies. 

Since A. = 4 + @#', and so Re = @ + CH:, we do not h o w  the exact solution 

for (A.4), but only the perturbative expansion: 



where 

We see then that ander this semi-relativistic approach, we must address the 

problem of hding the states In):, whose contribution to (A.8) is between the brace 

brackets. This is equivalent to including the fmst relativistic correction which cornes 

&er solving 

@In)' = (e + + *--)ln)' (A-9) 

(A. 10) 

since, we can show 

This relation allows us to rewrite part of (A.8) as 

It is clear then that if we s t a r t  with the exact solution for the Dirac equation 

in the presence of a Coulomb potentid, we can avoid working with the states In):. 

Note that since we are intaested only in the first relativistic correction, the result 

(A.12) must be expanded to O((Za)'). 
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Unfortunately for hyperfine or Lamb shiff energies, the &t of the primed 

states cannot be removed, since they both corne fkom perturbations to the (known) 

relativistic solution of the Dirac equation h the presence of a Coulomb potential 

only. 

A semi-relativistic expression for the Hamiltonian of a hydrogenic system was 

worked out in Ref. [29], where the dec ts  of nuclear spin (hyperfine deet)  were 

&O induded within the context of LLI violations. The resdt presented there for 

the atomic enagy levels is incomplete though, since the contribution of the prime 

states was overlooked, as discnssed at  the end of Sec. III. 

A.2 Loop calculations 

Given the form of the photon propagator (2.13), it is convenient to divide the 

calculation into h o  parts 
(4 &B) 6Es =JEs  + (A.13) 

where J E ~ )  groups the contributions of the terms proportional to rl, in G,, 

whereas JE:*) contains those proportional to 7' = 1/(1 - g) and 6. W e  are 
interested in solving for the shift in energy levels np to first order in C, so it is 

enough to consider a Coulomb potential as the soaree for part B, while for part A 

the fidl source as defined in Eq. (2.6) needs to be induded. 

We mention again that we are interested in cdda t ing  the GM Lamb shift to 

Iowest nontrivial orda in a, Le. up to O(a(Za)'). To this order, we cm use the 

nonrelativistic expressions for both the large and small component of the electron 

spinor $. So for example, if we make the substitution 

(A. 14) 
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whae  w ( 6  is a dimensionless spinor whose fust two components are of order Mity, 

and the last h o  are of O& Za, we can assign orders to the various temu according 

to 

These approximations will be used in the sequel to simpiify the expressions we 

obtain. 

A.2.1 Type A Contributions to the Self-energy 

Here we will consider 

dA) cw = -E(l+ [) (A.16) 

and J = -eA,rp, with A, given by Eq.(2.6). This part of the caldation is almost 

identical to that of BBF [38]; the only diffaence is that now we have to consider a 

source that contains a magnetic part in addition to the electric one. 

We begin by computing JE1. Relating 

tion of the electron mass and regdarizhg 

I A2 -+/, k2 

we find that 4 and 4 in (3.27) become 

the counterterm 6C to the renormaliza- 

the photon propagator via 

(A. 18) 



A.2 Loop c d d t i o n s  

On the other hand, we obtain for Il 

where pz = zp' + (1  - +)p. 

We can simplify this expression by letting the momentum operators $' and 

respectively act on the spinors &?) and 9@3, using the Dirac eqnation and (A.15) 

to keep terms np to the desired order. 

Adding togethet Il, 12, and I3 we obtaia a resdt correct to order o(Za)': 

with q = p' - p, and o* = $[7577. Note that the term proportional to q2 in 

Eq. (A.20) needs to be evaluated with only the large component of J, and J 

(70 - 1)- 
W e  point ont that the initial ultraviolet divergence in (A.18) is cancelled af- 

ter the addition of the I's in (A.20). The remaining idared divergence d be 

cancelled by a similar term which cornes fkom the many-potential part of the level 

shift. A similar cancelation occurs in the non-gauge invariant term present in Eq. 

(A.20). These cancelations are non-trivial, and provide usefd cross checks to our 

calculation. 

Consider next the evalaation of JE2. Since the operator M, satisfies the 

tr ansver sality condition 

K . M = ~ . M + = o  (A.21) 



A.2 Loop cdculations 

a e  ean write Mo = & M/k. 

Using 

Y Pir, = 2 V m h p v 2 V ,  P+ h p  K (A.22) 

in the fist t a m  of Eq.(3.30) the opaator Mjcan be decomposed into 

with 

q =  

+ 
M," = 

each of which stiU satisfis 

Li terms of these operators we now have 

where each term represents a contribution to Eq. (3.29) involving the pmducts 

of only MI or Mu or cross tams operators. The simplification of these tenns is 

quite dogons to that shown in BBF [38]. The decomposition of the M opaator 

in (A.23) dlows one to use simpler expressions for the bound propagator K:. In 

appendix A.2.5 it is shown that only in the part ( M ~ K ~ M ' )  wiU it be necessary to 

use the bound electron propagator; in allother contributions it is sufEcient to re- 

place KF by the propagator for free electrons, P+. Moreover the main contribution 

to (M'Kr MI) arises from intermediate states of the electron with noarelativistic 
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energy so that both KI and M' can be replaced by theh sïmpler nonndativistic 

approximations. It is also shorn that the cross term in Eq. (A.27) gives a contri- 

bution of orda a(&)' and is therdore not relevant in our caldation. Accoràing 

to the above considerations we can then approximate Eq. (A.27) by 

We start evaluating the first tam of Eq. (A.28). The nonrelativistic prescription 

for Kr is given by 

or in momentum space 

where y+ represents the large component of the Dirac spinor. 

IR the same nonrelativistic approach M' reduces to 

where we have approximated JJ E &, because dthoagh the magnetic and elec- 

tric potential have the same order of magnitude (as powers of Za), the ma& 

mixes large components of the intermediate states with small ones and thedore 

introduces corrections one order higher in Za. 

Thedore, after replacing Eq. (A.30) and (A.31) in Eq. (3.29) we obtah 
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whae ne have neglected the contribution of the photon momentum k to the 

momentum of the intermediate electron states. This is equïdent to leaving 

ont the factor exp(& 2) in the spatial integcation. This can be done because 

k - E, - E, - m(Za)2, which is small compared nith the dectron momentnm 

f -  mZa for nonreiativistic states. 

Inserting (A.16) into (A.32), and using Eq. (A.26) to relate the temporal corn- 

ponent of R with its spatiai components, which satisfy 

we k d ,  aRer integration 

whae all the states and energies represent the non relativistic ümit of the Dirac 

solution. 

Eq.(A.34) can be simplXed by using 

which finally gives 

with 

where E. is a refisence energy to be dehed, and & has been introduced for l a t a  

convenience. To obtain this result we have neglected the imaginary part of ( M I )  

retaining only the leading terms of (MI) in the limit p + O. 
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In cornputhg (M"), we can take Kr to be the fiee dectron propagator, which 

npon which (MI*)  becomes 

with 

In the nonrelativistic domain j @ p V ,  = ( ( Z ~ ) ~ r n  and so the constant d u e  of 

NB (independent of the momentom and energy of the intermediate states) will 

aheady yield an overd contribution to Eq. (A.40) of the desired order ~(ZCY)'. 

Note that Nz can be expanded in powas of the momentum y, fior J., which are of 

order mZa, and therefore any contribution beyond the constant, Za-independent 

term aill be of higher order. The same argument can be nsed to neglect the 

bindùig energy of the intermediate states. We can therefore evalnate (A.41) by 

approximating p .- p. and p' - p. in the denominator of Mxt and M I  respectively, 

so that p, ( r n , O )  and S. 0. 

Evalnating N as in teference [38] we find that (A.40) becomes 

Note that this term will exactly cancel the non-gauge invariant term present in Eq. 

(A.20). 
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Fin* re add Eq.(A.36) to Eq.(A.42) to obtain 6 ~ 4 ~ ) ~  and then add it to Eq. 

(A.20) to give the final result for the type-A contribution to the self-energy: 

Apart fkom the constant (1 + 6)  factor, thae  is no fonnal clifference between 

the resdt (A.43) for this contribution to the level shift and the standard one [38]. 

However there are implicit diffaences which appear in the expression for V p  and 

the solution for the Dirac states In) (in the non-relativistic approach here) in the 

presence of that source. 

A.2.2 Type B Contributions to the Self-energy 

To solve the type-B contributions we have to consider the photon propagator 

and a source A# z q@#. 

The evaluation of 6 ~ : ~ )  is achieved by the same procedure as for part A, ahere 

noa ne use Eq. (A.44) in (3.27) and (3.29) to solve for b@*) and 6 ~ ( * )  respectively. 

This compntation is somewhat more laborious than that in part A, due to the /?fi,, 
tensorial dependence and the factor present in this part of the (GM) photon 

propagator. 

To evaluate Il ,  12, and I3 we need to m o d e  the BBF technique by using (A.17) 

along with 
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to reguiate (A.44). The expressions for the I's are somewhat more complicated 

than those for 6 ~ : ~ )  (as expected); bat th& manipulation and fkther algebra 

follow from BBF [Ml. The relevant details are in appendir A.2.6; the resdt for the 

one potential part is 

which is good up to order ~ ( Z Q ) ' ,  and we have retained only the leading terms as 

p -b o. 

The d a t i o n  of bEjB) is quite analogoas to that for 6 ~ 4 ~ ) .  The starting 

point is Eq. (A.%), where (MI) and (MI1) are s i d I  defmed by (A.32) and (A.40) 

respectively. We give caldational details in appendix A.2.6, and qnote hese only 

the final resdt : 

We now add (A.46) to (A.47) to obtain 
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where ne approxïmated 7' 2 1 + 3 in order to keep t e rms  only np to orda P. 

As a cross-check on the above resdt ne note that, befote expanding T ~ ,  the limit 

&PU + rklY , yields 6 ~ s ~ )  -t -2tT26@. This is as expected since according to 

(A&), Gg) -P -2&'@,, where GO, is the standard (metic) propagator. 

We dose this section with a comment on the renormalization procedure. For 

~ E L ~ ~ ,  the counterterm 6C was related to mass renormalization. However in 

this part of the cabdation we must alPo account for the renormalization of the 

TKep parameters, whïch show np as hctions of the limiting speed for massive 

partides (4 G To/ Ho), and the photon velocity (4 l /h~) .  Charge renormaliza- 

tion is not necessary here becanse the Ward Identity forces a cancelation between 

the divergences coming fkom the one potential part and many potential part of the 

sel f  energy in the same manner as in the metric case. 

A.2.3 Vacuum Polarkation 

W e  now need to obtain the vacuum pohrization contribution. To the desired ap- 

proximation, the electrons forming the loop in diagram 3.l(b) can be considered 

f i e .  This is because hrry's theorem implies that the next-order correction to this 

is a diagram which contains a bop with 4 vertices, which is expected to be of orda 

a(Za)%. In that case the result is known to be 

The evaluation of IIW is identical to the standard (metric) case, since it only involves 

the product of famion propagators, which are unchanged by the T Hep action. The 
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differences appear in the renormalization p~ocess, where both the charge and the 

T H q  parameters must be renomalized. This procedure follows fiom condition 

(2.18), which inhodaces the appropriate cotmterterm needed to renormaüze the 

l'Hep parameters. Subsequent andysis is simikr to the metrie case, and the renor- 

malized solution for the 

I f w e  snbstitute Eqs. (2.13) and (A.50) in (A.49), ne obtain &er some manipulation 

We next proceed to add together the self energy and vacuum pdarization con- 

tributions to the level shift. 

A.2.4 The total GM Radiative Correction 

Up to this point we have been able to solve the Ievel shift in terms of 

(A. 52) 

where each term ha9 been defined in Eqs. (A.43), (A.48) and (A.51). 

We note that in 6% there are terms proportional to 7, which mir large (p) and 

small component ( x )  of $. Within the accuracy reqnired we can relate them by 

x = -s- and so write everything in terms of the large component only. 

Replacing the expression for the extemal source (2.6) in (A.52), me obtain d e r  

some algebra 
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where c and 6, are defined by Eq. (A.37), and 

We have omitted operators with odd par ie  (such as Ü x f i - $ )  in (A.54), since th& 

expectation values vanish for states of definite parity. 

There is still an impliat dependence on and G i n  (A.53), which cornes fkom the 

Dirac states (as seen at the end of Sec. III). Note that np to this order al atomic 

states and energies refmed in Eqs. (A.53) and (A.37) are considered within a non 

relativistic approach. 

In terms of the forma1 solution for the Dirac equation (3.3), we can single ont 

the complete 6 dependence in (A.53), and &te 

where C' goups al1 the t a m s  in Eq. (A.37) depending on the perhirbative states 

(ln)') or enagies (En) as introduced in Eq. (3.3). These petturbative states are 

needed not ody for the In) state related to the level shifk, but for all the intamediate 

states introduced by (A.37)as well. Eq. (A.55) is d d  up to O ( ~ ) O ( ~ ) O ( a ( Z a ) ' ) .  
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W e  can defme the rderence energy E, as in the meQic case by [53] 

for 1 = O 

where the subscript O has been omitted in the enagies and states. This definition 

reduces 
for 1 = 0 

4 $ ( ~ a ) ' i n ( ! 5 ~ )  for l f0  

which provides an degant way to &te the "Bethesum". The presence of prefmed 

fiame efFects nill induce more "Bethe-mmn-like terms in &ij which, dong with the 

contribution fkom the perturbative states (both ones counted by JE,) wdl have to 

be evaluated n~f~lerically for any partidar state. 

For the Lamb shift states we can use [53] : 

and simplifg the last term in Eq. (A.55) as 

where 9 represents the angle between the atom's quantbation axis and the name 

velocity il. 



A.2.5 Many potential part approximations 

In this appendix we jnstify the following approximations: 

followhg arguments similar to those presented by BBF [38]. 

We first note that, as powers of Za, the orders of magnitude of the different 

terms involved in the expressions in (A.61) are equivalent to those for the metric 

case. For example, if we look at the source, we see that each component of eA, 

is of the order of - et$, where A, is given by Eq. (2.6) and q5 is the ordliary 

Coulomb potential, and so the relative order between the non-metric and metric 

case is the same. Fmthermore, as discussed at the end of Sec. III, the states ln) 

and In)O also have the same order of magnitude, as do the quantities E, and E:. 

Discrepancies that could be expected from the phot on propagator , particularly &om 

the part proportional to PpPu (in contrast to the rl, dependence for the standard 

case), are not important as long as the transversality condition is satisfied for the M 

operators, since this condition relates the dinering components with the appropriate 

orders of magnitude. Finally, nnlike the photon propagator, the bonnd propagator 

retains the same form as in the standard case, with Werences arising only Lom 

the expression for the extemal source. As a consequence its furthet simplification 

is analogous to the metnc (BBF) case. 

Let us look at  the many potentid part. Rom (3.29) we get 
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for the generk structure of the tenus on the left hand sides of (A.61)-(A.63), 

where the constant faetors and integrations over pi and si  have been omitted. The 

nonrelativistic and relativistic regions are defined accoxding to 1 &l - (Zt~)~)lm < < m 

and ~kl > nt, respectively. In considering the relevant orclers of magnitude in each of 

the expressions (A.61)-(A.63) that f o k  from (A.64), we note that, to lowest order 

in 20, the relevant contribntion from W cornes when - I&/, and that we can 

employ the nodativistic expressions for the 6, malshg use of the approximations 

given by (A.15). 

Turning now to the relation (A.61), we can prove it by shoaiag that the con- 

tribution of relativistic states for Mx is of a highes order of magnitude than for 

MIx. We can see from (A.24) and (A.25) that MI difFers from M" by a factor 

(leaving aside the temporal component) (p' - p3/b, which in the relativistic region 

(L - m) is of order Zo. Therefore the contribution of M' in that domain will be 

of at least one order higher than that of MI*. Since the latter is already of the 

desired order (assuming the validity of (A.62) ) ne can neglect the contribution of 

the relativistic states for Mx, and consida it, dong with the bound propagator, in 

i t s nonrelat ivis tic limi t . 
To prove the relation (A.62) we evaluate the error due to the neglect of the 

electromagnetic potentid in the intermediate states. We imagine that one extra 

potential ( y )  acts between M'I~ and M". This introdnces an entra factor of order 

which is negligible within the accuracy required. We have then shown that, in the 

evalnation of M", the intermediate states may indeed be regarded as &ee. 
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The relation (A.63) foilows nom arguments similar to those used to justify 

(A.61). Since in the relativistic region M' is one order higher than MI', the cross 

term in that region wiIl also be one order higha than (M"), and so is negligible. 

On the other hand in the nomelativistic region MI wi l l  be dominant (note the 

factor in its denominator) over MI'. That is 

and so the product of these tenns wi l l  be negligible 

Hence the cross terms yield results that are at least 

desired order, and so they do not need to be included. 

A.2.6 Calculational Details of Type B 

in cornparison with (MI) .  

one order higha than the 

Contributions 

We present here fnrfher details undedying the computation leading to Eqs. (A.46) 

and (A.47), which are referred as the type-B contributions to the self energy. In 

this part the photon propagator to be considered is given by (AM),  where the 

fist and second terms have respectively a tensor dependence like and qrw, 

and need to be regularized accordhg to (A.17) and (A.45). We show the relevant 

details invohing the first term of the propagator only, since the remainder can be 

computed in a simila way. 

We begin then with the one potentiai part by simplifying IL. After replacing 

(A.44) in (3.28), we get 

where from non on the ellipsis stands for the contributions coming fkom the second 

term of (A .44). 
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If we use 

we can rewrite Eq. (A.67) as 

where 

with 

ARer eduating (A.69)' we c m  express 

The evalaation of the remaining I's is analogous7 and so 

The counterterm 6C is chosen such that there is no radiative contribution when 

the source is tumed off, or equivalently, it accounts for the fke eiectron process. 
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That is, it forces Is equal to zero when acting on fkee spinors. R o m  Eq. (2.17), we 

h o w  6C = 6m + @(p p - P V), where in this case 

Since here Vfi = @'&, we can rewrite aftex some manipulation 

where 

(A. 75) 

We want a result good to a(Za)', and so we can simpiify the above expressions 

by using the assigned orda given by (A.15), from which we can relate 

and then reduce Ki to 

where antisymmetric terms under p' tt p vanish. 
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To simpiify Kz we follow BBF and use 

where ne have assumed the operator is acting on Dirac spinors of momentam p and 

omit ted the integration coming from 

Note that p 19 J? E v,  since the square of the potentid (&er factoring out 

the spinors and integration variables) is already of the desired order ( Z a r  (see 

(A.15)) and so @ z 70 1. 

The h a 1  result is 

Following a similar approach ne rednce 

W e  can make fkther simplifications by using 

provided yOBt(p',p)yO = -B(p,pt) ,  nhae B represents any operator as a fnnction 

of # and p, as for examp1e, /3 q p. Note that we are interested only in the real 

part of the level shiR. 

Putting everything together, n e  obtain &er some manipulation 
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Note again that this represents the caldation involving only the h s t  term of 

Eq. (A.44). 

Now to evalnate the many potential part contribution we need to solve Eq. 

(A.%), with (Ml) and (MIr) given by Eqs. (A.32) and (A.40) respectively. 

So, after snbstituting (A.44) in (A.32) 

with 

Using the transversality condition, we relate 

nhich rednces the integral on the angIes of & to 

(A. 84) 

W e  evaluate the remaining and ~kl integrations in (A.84), by using (A.33), 

(A.35) dong wit h the analogoas relations 
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where ne have kept only the leading terms as p -t O and neglected the imaginary 

part- 

The computation of (Mn) is straightforward. Here we need to replace (A.44) 

in (A.40), and use V, = WV? Fnrther simplifications folloa fiom BBF and the 

assigned order of magnitude given before. The final r e d t  is 

Adduig together (A.83), (A.86), and (A.87) aill give us then the final expression 

for the self energy contribution for this part of the caldation. Note that the above 

resnlts can be v d e d  by taking the limit + +, which rednces 

and therefore the former expressions shodd rednce np to a constant, to the metric 

case. 

A.3 Virtual non-metric anomaly 

ln the T H e p  fonnalism, gravity interacts with matter thrcmgh the T and H h c -  

tions, which are assumed locally constant within atomic scdes. A-p+iori they do 

not need to be the same for different types of matter (like baryons and leptons), or 

fnrthermore for matter and antirnatta. In this context for example, a non-metric 



A.3 Virtual non-metric anomaly 94 

anomaly related to dectron/ positron difference will modified the Lagrangian den- 

sity related to fezmions by 

where c+ 1 - c-/c+ and CF = (TF/HT)'lrl aith - and + labeling electrons and 

positrons respectively. Afta nsing (2.9), we can refer (A.88) to the moving name 

as 
- 2- Lb =$($- P-m)dr+€+7 $ ( P - P - P - V )  83+ (A.89) 

The imposed broken symmetry between particle and antiparticle changes the 

f d o n  propagator (in the positron case) to (up to O([+)): 

where the first term represents the unchanged electron propagator SF. 

The positron-electron pairs produced in the dectnc field of the atomic nucleus, 

are seen in the Lamb shift transition via the vacuum polarization contribution given 

by (A.49), where in this case: 

Mer using Eq. (A.90) dong with standard techniques [53], we obtain that the 

non-metric part of (A.91) is up to O ( 8 )  

where the ellipsis accounts for the gauge dependent terms which give no contribution 

to (A.49). Eq (A.92) also cornes &er proper regnlarkation and renormalization 

processes, which follow fkom previous sections. 
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h this EEP violating mntext , the radiative corrections related to atomic energy 

levels are moditied by (up to O(a(Za)' 0(u2)) 

whae we have replaced (A.92) in (A.49) and simplified afterwards. By taking the 

Lamb atomic states, we iindy obtain 



Appendix B 

(g-2) Anomaly 

B. 1 Loop integrations 

We show the main steps leading to Eqs. (4.11), (4.10), and (4.12). Details are 

given throughout the compntation by considering only the first te-rm of the photon 

propagator (4.8), that is 

with the remaining tenn in (4.8) contributhg in a similar manner. 

We solve for the fkrdon s e l f  enetgy b y replacing (B -1) in (4.5), and using (4.9) 

dong aith the Feynman parameters 
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with A = p2 - m2. We consida A/m2 C< 1, and -and the above to obtain a f k  

some manipulation 

where we have kept the lesding t-s as p -t O and A + oo, and 0 ( ( b  - m)') 

stands for the terms satisfying 

W e  renormalize C ( p )  by subtracting 

where the counterterms respectively acconnt for mass and T H e u  -parameter renor- 

malization. 

Choosing the counterterms so that 

and so 

the regolarized result is then 
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Note that the remaining ultraviolet divergence related to this term wuld be removed 

&er charge renomalization. We find it convenient to lave it in order to cross- 

check the caldation, since a similar term nom the vatex part should cancel it, 

thereby removing the divergence from the resdting scattering amplitude. 

The evalnation of the vertex hction follows a similar procedure, giving the 

with p, = xpf + (1 - ~ ) p .  Since (B.8) is acting on a fke spinor, we can use 

with q = p' - p, and so expand 

which aRa some algebra reduces (B.8) to 



B.2 Adiabatic hypotliesis 99 

where the vatex h t i o n  ha9 been renormalized by subtracting a term like 

with 650 is given by (B.6). We recall that gauge invariance forces this coefkient to 

be equal to the one participaking in the renormalization of the fermion self energy. 

B.2 Adiabatic hypothesis 

In order to describe how sel f  energy efZects convert the incident eiectron from a 

bare particle to a physical one, it is convenïent to introduce a damping fnnetion, 

g(t ) ,  which adiabatically switches off the coupling between fields, such that the 

interaction lagrangian is replaced by 

It is assumed that the t h e  T over which g(t) varies is very long compared to the 

duration of the scattering process. In momentum space 

(B. 12) 

with Q (a,, O), and g(0) = 1. It is supposed that G(Oo) is almost a delta 

hction, being large for 510 in a cange of about T-' 

In the presence of an extemal field A,, Eq. (4.4) wilI now read 

where represents the eqaivaent second term fiom (4.4). 

As T + oo, and no, Ci; -+ O, the fermion propagator reduces to 

(B. 14) 



where we used p2 = m2. This implies that we can expand X ap to order Cl only, since 

higher terms vanish afta talMg the previous Iimit. H a e  we employ the relation 

1 -- 1 1 1  - - + - B - + . . .  
A - B  A A A (B. 15) 

After renormalization, X takes the form 

where the constants A, B, and C can be obtained fÎom Eq. (4.10). 

Let us introduce + a', and symmettize SZ by !(a + N)  in (B.16), to write 

which d e r  nsing (B.17) can be written as 

(B. 19) 

where we have used that Z(p - a) is acting on a fkee spinor, and therefore terms 

of the form (j - m)u(p) d s h .  Now, the final evdnation of (4.4) f o b s  directly 

fiom (B.19). 
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