
Efficient Computations in Finite Fields
with Cryptographie Significance

Huapeng Wu

A thesis

presented to the University of Waterloo

in hifilment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Eiectricai Engineering

Waterloo, Ontario, Canada, 1998

National Libmry Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Sewices services bibliographiques

395 Wellington Street 395, rue Wellington
ûîîawaON K 1 A W OttawaON K1AON4
Canada canada

The author has granted a non-
exclusive Licence allowing the
National Library of Canada to
reproduce, loan, distriiute or sel1
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts fkom it
may be printed or othenvise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distriiuer ou
vendre des copies de cette thèse sous
la forme de microfiche/nlm, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de ceile-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

The University of Waterloo requires the signatures of al1 persons using or photocopy-

ing this thesis. Please sign below, and give address and date.

Abstract

The increasing use of cryptographie techniques in various communication and corn-

puter systerns has inspued many researchers to find ways to perform fast computations

over finite fields, especially over large finite fields of characteristic two. The central

theme of the thesis is an investigation of finite field computations and their architectures,

such as multiplication and exponentiation. The computation of point multiples on elliptic

curves is aiso discussed.

Three new types of finite field rnultipliers are given in the thesis. New bit-serial and

bit-parallel multipliers using redundant bases, which is a modification of certain normai

bases, are proposed. Paralle! weakly dual basis multipliers are presented in Fqm over Fq

for any prime power p. For the polynomiai basis, bit-parallel multiplication and squarîng

are discussed and their low-complexity constructions are investigated.

Exponentiation of a primitive element in finite fields is also considered. Structures

for exponentiations using different representations of the exponent are given for both the

polynomial basis and its weakly dual basis. A new signed-digit representation is pro-

posed aad used for the computation of mi Pi + m2 P2 + - * - + mkP, for elliptic curve

cryptosystems. The performance anaiysis for such computations on eiiiptic curves us-

ing the sliding window method is also given. Other related results include closed form

expressions for the average Hamrning weight and length of signed-digit representations,

which correspond to the numbers of multiplications and s q u a ~ g s in an exponentiation

operation.

Acknowledgements

I deeply appreciate my CO-supervisor Professor M. Anwar Hasan, for introducing

me to an extrernely rich and beautiful area of reseuch, for his competent and consistent

guidance throughout my work, for the considerable effort and time he has given me,

and for his financial support for my graduate studies at Waterloo. I am very grateful

to Professor Ian F. Blake, my CO-supervisor, for more than anything else providing me

with confidence in my work. 1 would aspire to one day be like him. 1 thank them for

introducing me so smoothly to the subject of Galois fields.

I would like to express my gratitude to the follwoing persons for their help and en-

couragement: Professor Gordon Agnew, who gives me a sense of the differece between

finite field architecture and its VLSI irnplementation; Professor Scott Vanstone, every

time I talk to him, 1 have a new future work topic; Professor Shuhong Gao, without his

help I could not finish the third chapter of the thesis; Professor Aifred Menezes, with both

his book and his comment I could work out Chapter 10 of this thesis; Dr. Minghua Qu,

who lets me know how a mathematician thinks about implementation of cryptosystems.

1 would like to thank ai l my friends who have provided me with the joy and warmth

needed to keep me going through out my PhD. program.

Fmally, my deepest gratitude goes to rny mother for her unconditional love and sup-

port.

I am gratefbl to my examiners, Professor Tho Le-Ngoc, Professor Scott Vaastone,

Professor Gordon Agnew, and Professor Amir. Khandani, for their comments and cor-

rections.

Contents

1 Introduction 1

. 1.1 Motivation 1

. 1 . 1 . I Finite fields and their applications 1

1.1.2 Cryptography and finite field cornputations 2

1.2 VLSI Architecture and Cornplexities 4

1.2.1 Parallel VLSI architecture . 4

1.3.2 Complexity measures . 5

. 1.3 Thesis Outline 6

1.4 Research Contributions . 7

2 Mathematical Preliminaries 8

2.1 FiniteFields . 8

2.1.1 Groups. rings and fields . 8

. 2.1.2 Extension fields 10

. 3.1.3 Polynomials over finite fields 1 1

. 2.1.4 Rwtsofunity 13

2.1.5 Finite field bases and arithmetic operations 14

. 2.1.6 Ellipticcurvesovernnitefields 17

3 Normal Basis Multipliers 20

3.1 Gauss Period and Normal Basis . 20

3.2 Bit-Serial NB Multipliers . 22

. 3.2.1 Revious implementations 22

3.2.2 Bases generated with Gauss period of type (m. 1) 24

. 3.2.3 Bases generated with Gauss period of type (m . k) 27

. 3.3 Bit ParaIlel NB Multipliers 29

. 3.3.1 Previous implementations 29

. 3.3.2 New bit-parailel multipliers 31

3.4 Discussions on Redundant Basis . 32

4 Parailel Dual Basis Multipliers 34

4.1 A Bnef Review of DuaI Basis Multiplien 34

4.3 Parallel Multipliers in Fqm over G . 35

4.2.1 WDB multiplication . 35

4.2.2 A complexity bound . 38

4.2.3 Algorithm and architecture . 40

. 4.2.4 Architecture with reduced time delay 42

4.3 ESP Based Bit-Parallel Multiplier in F2m 44

4.3.1 Algorithm . 44

4.3.3 Implementation . 46

4.4 Trinomial Based Bit-Parallei Multiplier in hm 51

4.4.1 Analysis of multiplier complexity 51

4.4.2 Construction with reduced propagation delay 53

. 4.5 Basis Conversion 58

4.6 Chapter S ummary and Discussions . 62

5 P d e l Polynomial Basis Multipliers 64

5.1 Polynornial Basis Multiplication in hm 64

5.1. L Polynornial multiplication . 65

. 5.1.2 Reduction modulo a polynomiai 66

. 5.2 Bit Pardiel PB Multipliers 70

. 5.2.1 Previous irnplementations 70

. 5.2.2 Implementation with new method of modulo reduction 71

5.3 Low Complexity PB Squarer in FZm 76

5.3.1 Complexity of PB squaring in F2m 76

. 5.3.2 Implementation 83

6 Analysîs of SD Form Exponents 84

6.1 Exponent Representations . 84

6.1.1 Using conventional number systems 81

. 6.1.2 Using redundant number systems 85

6.2 Average HYnming Weight and Length of Non-adjacent Form 87

. 6.2.1 Hamming weight of radix-r NAF 87

6.2.2 Length of radix-r NAF . 93

7 Realization of Finite Field Exponentiation 97

. 7.1 Brief Review 97

7.2 Efficient Representations of Exponent 99

7.2.1 Algorithm . 99

7.2.2 Features of minimal tadix-4 SD form 100

7.3 Exponentiation Aigorithms . 104

7.4 hplementation Using Polynomial Basis 105

7.5 Realization Using Weakly Dual Basis 115

7.6 Cornparisons . 120

7.7 Chapter Summary . 122

8 Cornputations for Eliiptic Curve Cryptosystems 125

8.1 Introduction . 125

8.2 Sliding Window Method for Non-SupersingularCurves 127

8.2.1 Modified Shamir's method . 127

8.2.2 General sliding window methods 129

. 8.2.3 Window method with efficient computation of 2'P 133

8.2.4 Results and features . 133

8.3 Algorithms using a New SD number Representation 136

8.3.1 A New SD representation with fewer zero runs 136

8.3.2 Window method with the FZR fonn 140

8.4 Window Method for Koblitz Cumes 140

8.5 Numericd Results . 143

85.1 Cornparison of computing mP 143

8.5.2 Cornparison of computing mfi i r& 144

8.6 Chaptersummary . 146

9 Sumrnary. Discussions and Future Work

List of Tables

T-ESP for m < 1000 .

Cornparison of bit-seriai muhipliers using type 1 ONB and RB
Cornparison of bit-serial multiplies using type II ONB and RB
Cornparison of bit-serial multiplien using NB and RB
Cornparison of bit-parailel multiplien using type 1 ONB and EU

(a) Cornparison of multiplien based on AOP . (6) Cornparison of multi-

piiea based on T-ESP (T > 1) .

Radix-4 SD number encoding using 2-bit Booth algorithm [8]
Table for bit-parallel fourth power complexity when f (z) is a primitive

trinomid or pentanomial (k 5 y) whose degree is a Mersenne exponent . 107

8.1 Cornparison of the various binary number representations 139

8.2 Cornparison of the algorithrns for computing mP 143

8.3 Cornparison of the algonthms for computing mP (P fixed) 144

8.4 Cornparison of the numben of 16 P . 8 P. 4P and 2 P operations required

to compute mP for non-supersingular c w e s 145

8.5 Cornparison of algorithms for computing m Pl + t P 2 146

8.6 Cornparison of the aigorithms for computing mPl + rP2 (Pl f k d) . . . 147

8.7 Cornparison of aigorithms for computing mP1 + rP2 (both Pl and Pa

fixed) . 148

8.8 Cornparison of the numbers of 16P. 8P. 4P and 2 P operations required

. to compute m Pl + T Pz for non-supersingular C U N ~ S 148

List of Figures

3.1 Bit senal multiplier using redundant bais when there is a type 1 ONB . . 26

3.2 Bit send multiplier using redundant basis 28

3.3 Parallelization of the bit-send multiplier using the redundant basis . . . 3 1

4.1 Architecture of a parailel multiplier in F75 over F7 when f (x) = x5 +
2 x 3 + 5 € F 7 [z] . 45

. 4.2 Architecture for a parallei multiplier when f (x) is an PESP 49

4.3 Multiplier structure when f (x) = x6 + z3 + 1 50

. 4.4 Multiplier structure when f (x) = zm + xk + 1.1 < k < y 55

4.5 Architecture of WDB multiplier when f (x) = xm + x + 1 58

5.1 Indication of the relation between terms in (5.9a) and (5.9b). 73

7.1 Bidirectional LFSR (BiLFSR) for mdtiplying a field element with a prim-

itive root a and its inverse a.' . 109

7.2 The Structure EXPl for cornputhg aH with H being converted to a min-

imal binary SD numbe r. 109
7.3 (a) Circuits for multiphg a field element with a2 and a-l; (b) Circuits

for multiphg a field element with a" and cf? 112

7.4 The Structure EXP? for crH with H represented as a minimai radix-4 SD

number . 113

7.5 EXPl with a converter that performs the canonicd recoding 113

7.6 (a) with a converter that perfoms the extended canonical recoding;

(6) Circuits for the extended canonicd recoding (Algorithm 7.1). . . . 114

7.7 (a) The BiLFSR: LFSR for rnultiplying by a* '; (b) The LFSR for multi-

plying by a"; (c) The XBiLFSR: LFSR for rnultiplying by a* 'and a'* . 123

7.8 System diagram for exponentiation when the weakly dual basis is used . 124

8.1 Window and block . 130

Chapter 1

Introduction

1.1 Motivation

1.1.1 Finite fields and their applications

A finite (or Galois) field is an algebraic structure with a finite number of elements where

we can perform addition, subtraction, multiplication and division. A finite field of q el-

ements is denoted by Fq or GF(q). Finite fields have been applied to finite geometries,

optimal designs, linear recurring sequences, linear modular systems, and other math-

ematical disciplines. Over recent decades, nnite fields have also gained wide spread

practical applications.

For example, the study and design of systems for secret communication is the subject

of cryptography, and nnite fields are involved in many modem cryptographie systems or

cryptosystems. More about the use of h i te fields in cryptography is discussed in 5 1.1.2.

The theory of finite fields and the theory of polynomials over finite fields have been

applied to the design of good codes and efficient decoding methods. For example, BCH

(Bose-Choudhuri-Hocquenghem) [37] codes and the reiated RS (Reed-Solomon) [66]

codes are widely used codes. A number of efficient algorithrns are available for encoding

and decoding these codes [1 1, 131, w here finite fields are involved.

Finite fields can also be used in digital signal processing that makes extensive use of

the discrete Fourier transform, convolution, md solution to Toeplitz systems of equa-

tions. The use of appropriate finite fields may simpliQ or speed-up these computa-

tions [14]. In certain digital testing schemes for integrated circuits, it is very important

to select a good primitive polynomial over a finite field to be used in the implementation

of the tester [3 Il.

1.1.2 Cryptography and finite field computations

Communication networking or information highway has been one of the greatest tech-

nicd achievements in this century, which has greatly promoted electronic information

exchange, electronic commerce, and emerging electronic banking. The security require-

rnents for these facilitations cm include privacy or conjdentiali~ user authentication.

data authentication or integriry, k q management, and non-repudianun. Researchers

have been developing tools for cryptosystems to meet these requinments, for instance,

encryptioddecryption system for privacy, hashing function for data integrity, and digital

signature scheme for authentication and non-repudiarion.

Cryptosystems can be categorized into public (or asymmemcal) key systems and

private (or symmenical) key systems. Public-key cryptosystems are such that they are

based on some "hard" computaîionai problems, for example, factoring the product of two

large primes (Le., integer factorkation cryptosystems) or the dimete logarithrn in a finite

cyclic group (i.e.. discrete logarïthm cryptosystems and eiiïp tic cume cryptosystems).

Many of them work in Zn or over iFq , where n and q are usudiy large enough to promise

adequate security of the system against possible cryptoanalytic attacks. For both a secure

and an efficient implementation of the latter cype of cryptosystems, the cyclic group G

should be chosen to satisQ the following two conditions:

r For efficiency, the group opention in G should be "easy" to apply;

r For security, the discrete logarithm problem in the cyclic group G should be "hard".

The group G = IFG is considered since operations in IFzrn are easy and more suit-

able for implementation. Besides the discrete logarithm cryptosystems over the

eîliptic curve cryptosysterns. which u d k e the group of points on an elliptic curve over

a field, can also be realized using finite fields of characteristic two. These groups are

generally used to take advantage of their efficiency over multiprecision arithmetic for

large prime fields. The elliptic curve cryptosystems also have the advantage of their high

cryptographic strength relative to the key size, and thus they are especially attractive in

applications such as the financial industry, smart cards and wireless areas where power

and bandwidth are limited.

The computations in F2n with applications to cryptography have the following re-

quirernents:

0 In logaxithm and elliptic cuve cryptosystems, the primary operation performed

is exponentiation or addition of two points on an eIiiptic cuve. Both operations

involve extensive finite field multiplications especiaily when high indices are re-

quired for security considerations. As a result, there is a need for high-speed mul-

tiplien.

0 Compared to software implementations, it is believed that a hardware implemen-

tation of a sectuity algorithm may bener resist attacken from tampering with the

system, besides its advantage on speed it has.

Network s e c m protocols require high computation speeé For example. corn-

putatioa time probably should be within a second for on-line identification on the

Interne t.

There have been several excellent books and dissertations on finite fields, for exam-

pie, [17.55,40,52,24]. Books on cryptography or number theory with special treatment

of algorithm and computations over finite fields include [57, 73, 54, 91. Some of the

dissertations on efficient finite field computations and their VLSI implementations are

[74,50,33,63, 391.

In this thesis. we focus on finite field operations which are commody used in cryp-

tosystems, such as multiplication. exponentiation and computation of point multiples on

elliptic cuves.

1.2 VLSI Architecture and Complexities

1.2.1 ParaiIel VLSI architecture

Hardware architectures performing finite field arithrnetic opentions cm be generally cat-

egorized into three classes: pnmilel, seriai, and hybrid architectures. Correspondingly,

architectures over the field 4 are usuaiiy classified as bit-parailel, bit-serial and hybrid

architectures [SOI. Generally speaking, bit-pardiel finite field architectures discussed in

this thesis may be charactenzed by the following features:

1. Consist of only combinational logic, and no mernories required:

3. Have p d e l input and output ports;

3. No sequential logic involved and thus no dock required.

In contrast, bit-serial architectures use sequential logic and have ciock inputs, while both

the input and output ports cm be either parailel or serial type. Hybrid architectures are

usuaily referred to those architectures that con& of a number of bit-paralle1 modules

which are senaDy comected using sequential logic, or a number of bit-serial modules

working in parailel. For instance, bit-parallel word-seriai architectures and bit-serial

word-parailel architectures.

1.2.2 Complexity measures

Two panmeters of a VLSI architecture are of vital importance, its size (or space) com-

plexity and tinte cornplexity.

In this thesis, the complexity of the algorithm for cornputations in finite fields are

usually evaluated by the number of operations in the ground field. If the characteristic

of the underlying field is 2, then the count of bit operations is given as a complexity

measure. An addition or multiplication in F2 can be realized with a two-input XOR

or a two-input AM) gate, respective1y.l Consequently, the space complexity of the

mapped VLSI architecture cm be expressed in terms of the numbers of AM) and XOR

gates. In the sequel, the numbers of AND and XOR gates needed in an architecture are

denoted by Ca and Cx, respectively. Paar and Lange have s h o w that this measure

for size cornplexity is a good estimate for the chip area if it is implemented in K S I

technologies [64]. If the exact number of the logic gates or elementary logic celis is not

available. we also use O (n) , 0 (n 2) , etc., to give the asymptotic size complexity, where

n can be a measure of the field size.

The tirne complexity of a bit-parailel architecture consisting of ody combinational

Logic is measured by the maximal propagation delay in the path from the input to the

output. If we denote the time delays caused by one AND gate or one XOR gate by TA or

T x , respectively, then the time complexity which is referred to as CT is given as a sum

of multiples of TA and Tx.

For bit-serid or other types of architectures with dock inputs, the time complexity

is decided by both the clock period and the number of clock cycles required to complete

'Io the s q u d , al1 XOR gates and AND gares arc assumal to bave only wo inputs.

the operation. Then it could be understood that a computation requires a time delay not

less than

of clock cycles x the dock penod.

1.3 Thesis Outline

The remainder of the thesis is organized as follows.

In Chapter 2, some mathematical preliminaries are reviewed. Definitions and funda-

mental theorems in finite fields which relate to the subsequent chapten are given.

Chapters 3, 4 and 5 discuss finite field multipliers and their implementations. Re-

dundant basis, a modification of certain nomai bases, is presented in Chapter 3. New

bit-serid and bit-parallel multipliers using this basis are also developed in this chapter.

Chapter 4 discusses paralie1 rnultipliers using weakly dual bases. New implementations

of these multipliers with reduced propagation delay are given over Fq and over &. In

Chapter 5, first complexity bounds on bit-parailel polynomial basis multiplication and

squaring are given. then new low-complexity bit-parallel multipliers and squaren over

F2m are presented.

Chapters 6.7, and 8 dixuss exponentiation over finite fields and point multiples on

eliiptic curves. Methods of efficiently representing an exponent is discussed in Chap-

ter 6. Efficient implementation of tinite field exponentiation is presented in Chapter 7,

where a novel linear feedback shift regîster is used to efficiently re&e multiplication

with multiple multiplicands. Two exponentiation architectures, using polynornial basis

and dual basis, are also proposed. In Chapter 8. a new signed-digit representation is

proposed and used in the general sliding-window algorithm to compute point multiples

on eilïptic curves. Vhrîous extensions of sliding-window method are discussed and their

performance anaiyses are given.

A sumrnary of Our work is presented in Chapter 9, where we also give some sugges-

tions on possible future work.

1.4 Research Contributions

The major contributions in this thesis are the formulation of algonthms and the develop-

ment of architectures for finite field multiplication, exponentiation. and computing point

multiples on an elliptic curve. Some specific contributions are as follows:

a new bit-senal and bit-pardlel multipliers using redundant basis,

O new pardlel rnultipliers using weakly duai basis in Fqn over IFq,

0 new bit-pardel multipliers and squaring using polynomial basis,

0 new bit-pardel squarings using polynomid basis,

a Closed fom expressions for average number of nonzeros and average length of the

NAF,

O New architectures of exponentiation using polynomid and dual bases,

a A minimal signed-digit representation with fewer zero u s .

Chapter 2

Mathematical Preliminaries

This chapter &es some preliminaries on finite fields to facilitate the discussions of the

chapters to foiiow. A bief introduction of elliptic curves over finite fields is also pro-

vided. For detailed ueaunent of finite fields and eîliptic curves, the readen are referred

to [47,52,54].

2.1 Finite Fields

2.1.1 Groups, rings and fields

Deônition 2.1 1.171 A group is a set G together with a binary operation * on G such that:

1. Binary operator * is associative; Le., for any a, b, c E G, a * (b * c) = (a b) * c.

2. There is an identity (or unity) eIement e in G such thai for al1 a E G, a*e = e*a = a.

3. For each a E G, there exists an inverse element a-' E G such that a 4 a-' =

a-' * a = e, Cl

The operation * may be denoted as either ordinary multiplication (-) or ordinary ad-

dition (+). If for ail a. b E G, a * b = b r a, then G is called abelim gmup. A group

containing a finite number of elements is called afinite gmup. The number of elements

in a finite group G is called its order and denoted as IGI.

A multiplicative group G is said to be cyclic if there is an element a E G such that for

any 6 E G there is some integer j with b = ai. Such an element o is called a genemtor of

G and we write G = (a). If (a) is finite, then its order is called the order of the element

a. A subset H of the group G is a subgmup of G if H is itself a group with respect to the

operation of G.

A rnapping f : Gl + G2 of the group G1 into the group G2 is called a homomor-

phism of G1 into Gz if f preserves the operation of GL . if f is a one-to-one and ont0

homomorphism of G1 ont0 G2, then f is called an isomorphisrn and we say that G1 and

G2 are isomorphic.

Definition 2.2 [47J A ring (Rt +. *) is a set R together with two binary operations de-

noted by + and - such that:

1. R is an abelian group with respect to +.

2. Binary operator. is associative. i.e., (a 6) c = a (6 e) for di a, b, c E R.

3. The distribution law holds; thaî is, for dl a, 6, c E R we have a (b + c) = a 6 + a c

m d (b + c) - a = b - U + C - a . a
The identity element of the abelian group R with respect to addition is cailed zero el-

ment, while the multiplicative identity (if it exists) is called identiry. A ring is cailed

commutative if the operator is commutative. A ring is cailed an integral d o h if it is

a commutative ring with identity e # O in which ab = O impiies either a = O or b = 0.

A subset S of a ring R is called a subring of R provided that S is closed under

+ and and forms a ring under these operations. A subring J of R is caîied un ideni

provided that for alI a E J and r E R we have a~ E J and ra E J. Lct R be a

commutative ring, then an ideal J of R is said to be principal if there is an a E R such

that J = (a) = { r a f n o : r E R . ~ E Z).

If n is the least positive integer such that nr = 0 for every r belonging to finite ring

R, then n is called the characteristic of R and R is said to have characteristic n.

Definiüon 2 3 1471 Afinitejiefd F is a set F together with two binary operations denoted

by + and such that

1. F is a commutative ring under + and -.

2. Nonzero elements of F form a group under O.

2.1.2 Extension fields

A subset K of a Beld F is called a subfeld of F provided K is a field under the op-

erations of F. In this context, F is called an extension fild of K . If F. considered as

a vector space over K. is of £hite-dimension, then F is called a b i t e extension of K.

The dimension of the vector space F over K is then called the degree of F over K, in

symbols [F : Ki. if L is a finite extension of F. then L is a finite extension of K with

[L : K] = [L : F] [F : KI. Cleuly, if there are q elements in F then L has qn elements,

wheren = [L : FI.

A field containing no proper subfield is cded a prime field. Let F be a finite field,

then F has q = pn elements, (denoted by Fq), where the prime p is the characteristic

of F and n is the degree of F over its prime field. Every subfield of F, has order pm.

where m is a positive divisor of n. Convenely, if m is a positive divisor of n, then there

is exactiy one subfield of iFq with pm elements. For example, the subfields of Fm can be

deterrnined by hding ail divison of 30. The containment relations between the subfields

are illustrated in Figure 2.1.

The number of elernents of a finite field F can only be equal to a prime power. Given

a prime power q, there exists one and only one finite field IFq, up to an isornorphism.

Figure 2.1 : Subfields of Fm.

2.1.3 Polynornials over finite fields

The ring formed by the polynomials over a field F is cded the polynomial ring over P

and denoted by F[x]. Let f (z) = EL'=, fi=' E F [x] . Poiynomiat f (x) is cailed a monic

po fynomial if f, = 1.

Definition 2.4 [47] A polynornid f (x) E F[x] is said to be irreducible over F (or ir-

reducible in F [x] , or prime in F [x]) if f (z) has positive degree and f (x) = g(z) e h(x)

with g(x), h(x) E F [x] implies chat either g(x) or h(x) is a constant polynomial. O

F [x] is a principal ideal domain. In fact, for every ideal J f (O) of F [x] there exists

a uniquely detemiined monic polynomiai g E F [x] with J = (g) . For f E F [XI, the

residue class ring F [x] / (f) is a field if and only if f is irreducible over F. Moreover,

if F = Il?, and f E Fq [z] is an irreducible polynomial of degree n, then Fq [XI/ (f) is
isomorphic to IFqm. And a i l the roots off are in Fqn and given by the n distinct elements

CR? a', d, . . . , &-' of $m.

For a nonzero polynomial f (x) E !?[XI, the Ieast positive integer e for which f (x)

divides xe - 1 is cdled the order of f and denoted by ord(f). The number of monic

îrreducible polynomials in Fq [XI of degree na and of order e is equal to d (e) / m if e) 2,

equal to 2 if m = e = 1, and equal to O in ail other cases. A monic irreducibie polynomial

f (x) E Fq of degree n is primitive if ord(f) = q" - 1. A rwt of a primitive poiynomial

of degree n is a primitive elment and generates the cyclic group G = il?;',.

Let K be a subfield of F. Then 0 E F is said to be algebraic over K if 8 satisfies a

nonuivia1 polynornial equation with coefficients in K. If 8 € F is algebraic over K. then

the uniquely detexmined monic polynomial g E K [z] generating the ideal J = { f E

K[z] : f (9) = O) of K is called the minimal polynornial of d over K. A field element is

a primitive element if and only if its minimal polynomid is primitive.

Let f E F [x] . The polynomid f is cdled a trinomial if it has three nonzero tenns and

it is called a pentanomial if it has five nonzero t e m [47]. Because of their low Harnming

weights, irreducible trinomials and pentanomials are often used in finite field arithrnetic

operations. Over iF2, if f (t) is of the f o n f (r) = g (x k) for g(y) = 1 + +
then al1 irreducible trinomiais of the form g(y) of degree up to 30,000 are known [15].

By a theorem of Cohen [19], the condition under which g(zk) is irreducible given g(x)

is irreducible is dso known. The same work in 1151 has also given al1 the irreducible

polynornials of the fom xm + rk + 1.1 < k < 5 for dl rn up to 10.000. Thus al1
d

irreducible trinomials are known for today's practical purposes. For rn < 10: 000, where

irreducible trinomials do not exist, the recent work of 1711 has shown that irreducible

pentanomials exist.

The polynomial f E iF2 [XI is an equally spaced polynomial (or ESP) if for some

integen t its degree n = (t + l) r and, fi = 1 if i = jr and j = O, 1,. . . . t , and

fi = O otherwise. A 1-ESP is often cded ail one polynomial (AOP) [38]. Let T-ESP
&ka

f (z) = h(xr), where h(x) = ,-&. It can be seen that such an f (z) is irreducible if

and only if t + 2 = p, r = pn, and h(x) an irreducible AOP over F2, where p is a prime

and n a non-negative integer [38]. This in tum exists if and ody if 2 is a generator of IF'.
and for n > O does not divide 2-1 - 1 [35]. Table 2.1 shows aU the imducible ESPs

for m < 1000 [38].

Examples of irreducibk ESPs: rn (t)

1 (1) % (l) lOO(25) l ? ? (l) 342t19) 460(1) 558(1) 700(1) 828i i)
2 (1) 36 (1) 106 (1) 178 (1) 3.16 (1) 466 (1) 562 (1) 'IO8 (1) 852 (1)
4 (1) 52 (1) 110 (11) 180 (1) 348 (1) 486 (343) 586 (1) 756 (1) 858 (1)
s (3) EA (27) 130 (1) iss (1) 372 (1) 490 (1) 612 (1) 772 (1) 876 (1)

10 (1) 58 (1) 138 (1) 310 (1) 378 (1) 500 (125) 618 (1) 786 (1) 882 (1)
12 (1) 60 (1) 148 (1) 226 (1) 388 (1) 508 (1) 652 (1) 796 (1) 306 (1)
18 (1) 66 (1) 156 (13) 268 (1) 418 (1) 522 (1) 658 (1) 812 (29) 940 (1)
la (9) sa (1) 162 (1) 292 (1) 420 (1) 540 (1) 660 (1) sao (1) 946 (1)
20 (5) roo (1) 162 (a i) 31s (1) 442 (1) ws (1) 676 ri) 82s (1)

Table 2.1: r-ESP for m 6 1000.

2.1.4 Roots of unity

Let K be a wbfield of F and 0 E F. Then the field K (0) is defined as the intersection

of al1 the subfields of F containing both K and 8. and is called the extension (field) of

K obtained by adjoining the element 8. And 0 is called a dejning element of L = K(0)

over K.

Let f E K[z] be of positive degree and F an extension field of K. Then f is said to

split in F if f can be written as a product of linear factors in F[z]-that is, if there exist

elements al, az, cr, E F such that

where a is the leading coefficient of f . The field F is a spliningfield of f over K if f

splits in F and if, moreover, F = K(al. a*:. . . , aJ. And it c m be proven that such a

spiitting field of f over K aiways exists and is unique.

Let n be a positive integer. The spliniag field of zn - 1 over an arbifrary field K is

c d e d the nh cycIotomicJield over K and denoted by K("). The roots of zn - 1 in Ken)

are caUed the n" mots of unily over K and the set of ali of these roots is denoted by ~ (" 1 .

Let the characteristic of K be p. Then there are two cases: (i) I f p does not divide n, then

Efn) is a cyclic group of order n with respect to multiplication in K("). In this case, a

generator of E(*) is called a primitive nh mot of mify over K . (Il) I f p divides n, write

n = mpe with positive integrrs nr and e. and m not divisible by p. Then K(") = K("),

Ecn) = E("), and the roots of xn - 1 in Ken) are the m elements of E("), each with

rnultiplicity pe .
The n" cydotornic polynomial over K is defined as

where K has characteristic p, n a positive integer not divisible by p, and 5 a primitive

nth root of unity over K. It is known that the degree of Q , (x) is +(n) and its coefficients

belong to the prime subfield of K [47]. If K = Fq with gcd(q, n) = 1. then we have

xn - 1 = ndln Qn (x) and Q, factors into +(n) /d distinct monic irreducible polynorniais

in K [z] of the same degree d, and funherrnore, Ktn) is the splitting field of any such

irreducible factor over K. md [K(") : KI = d, where d is the least positive integer such

that qd G 1 mod n.

2.1.5 Finite field bases and arithmetic operations

Let us consider the finite field K = Fq and its finite extension F = 5.. Then F can

be considered as an n-dimensionai vector space over K, and if {ao, cri, . . . is a

basis of F over K, each element A E F can be uniqueiy represented in the fom

Let B = bom + b i a i + - * + b n , i ~ , i be another element in F. Then addition or

subtraction of A with B is given by

where aj k bj are taken as modulo p and p is the characteristic of F. The multiplication

of A with B is given by

(k) (k) Define multiplication matrices Tk = (t i j),x,. t i j E F,, k = 0,1,. . . :n - 1, such that

a k a i = C ti:)aj for Ir = 0, l ,n - 1.

Then coefficients of the product C can be written as a bilinearform of the coefficients of

A and B:

Below we give a few specid types of bases of particular interest.

DeGnition 2 5 (471 A polynomial basis {II a, a2, . . . an-'), of F over K. is made up

of the powers of an element cr whose minimai polynomial f over K is of degree n. O

Shce eaj = dtj, the multiplication mavix can be reduced into T = (t i j) ,, and,
n-1

qaj = e+j Sifi + j < n - 1 and qaj = C ti+j-akok if i + j) n. Then from

the product C c m be obtained by

= C ti+j-n,kaibj + C e b k - i for k = O , n - 1.

Definition 2.6 [47] A set of n elements of F over K of the form (a, aq, aqm-' },

where a is a suitable element in F, is called a nomal basis of F over K. 0

a Since a: = a(j+,), where (j + 1) = j + 1 mod n, we raise by a power of q on both sides

of (2.1) and it follows

n-t n-t

Ck = C C t ~ ~ ! i l , k a i b j for k = O. 1.. . . . n - 1.

Now it can be seen €rom (2.2) that each c k , k = 0,1? . . . : m - 1 has the same number of

nonzero terms, and furthemore it is equal to the number of nonzeros in the ma& G.
Foliowing Mulh , Onyszchuk, Vanstone and Wilson 1621, we denote this number as CN.

Theorem 2.1 [62] If N is a normal basis in Fzm. then CN 2 2m - 1. N is cded an

optirni normal bais when CN = 2m - 1.

For ct E F = lFq. and K = Fq, the trace TrrlK(a) of a over K is given by
m-1 TwK(a) = a + a q + - - - + a 9 . I fK istheprimefieldofF. thenTrpIK(a) is

usuaUy denoted by TrF(a) or sirnply, Tr(a) if F is understood.

Definition 2.7 [47] Let K be a finite field and F a finite extension of K. Then two bases

{ao,. . . .h-l) and (P o o . . . of F over K are said to be dual to each other if for

1 < i , j < m, we have

O for i # j ,
TW,K~G& 1 = {

1 fori = j .

A basis that is its own dual is called a self-dual basis.

2.1.6 Elliptic curves over finite fields

An elliptic curve over the finite field F, is given as [54]

For an elliptic curve E / Fq defined over F,, the set F, -rational points of E / F,, denoted

by E(F,), is the set of points whose both coordinates lie in F,, together with the point

O. By a theorem of Hasse, we know the number of points in E(F,) is: # E(Fq) =

q + 1 - t . 1 t 1 5 2 J q . The eiiiptic curve E is said to be supersingulnr if p divides t.

otherwise it is calIed non-supersinguiar.

A non-supersingular elliptic curve E over F2= is of the form [54]

where az, as E IFzn. The sci of -rationai points E (Fan) on E together with O forms

an abelian group under a certain operation which is usually cded addition. Let P =

(xi? YI) E E, then -P = (XI? y1 + 21). If Q = (~ 2 ~ y*) E E and Q # -P. then

and

Let b E F2n be the square root of as, which always exists, then the point (O. b) is on

E and has order 2. Thus we know that the highest order p of a point on E cm not be

greater than half of #E(F2n). By the Hasse theorem, #E(F2n) = 2" + 0(24), then the

possible highest order of a point is not greater than 2"-l + 0(2:-').
Since the chanctenstic of the underlying field is 2, for non-supeningular curve the

cost of an elliptic addition is roughly the sarne as that of a point doubling, which is about

one field inversion and three or four field multiplications. Let P E E(Fp). If P = (x, y),

then it is worthy to note that - P = (x, - y) = (z. z + y) . Consequently, elliptic addition

P + Q has about the same difficulty as point subuaction P - Q, where Q E E(&) .
in [43], Koblitz has shown that doubling a point on sorne non-supersingular curves

over F, with complex multiplication (CM) can be done almost as easily as in the case of

supersingular curves. S uch curves defined over F2 are given by [43]

2 2 where c = O or 1. The Frobenius map r of E, over F2 is dehed by r(x, y) = (z , y)

that satisfies: 2 = -rZ + (-1)=r. Then given a multiple point mP one can wriie m as a

sum of T powers. Since squaring in !FZn is simply a circular shift of the coordinates in a

normal basis, rnP c m be computed with a few elliptic additions.

Chapter 3

Normal Basis Multipliers

In this chapter we propose a new basis - redundant basis, which is a modification of

certain normal bases. The redundant buis takes advantage of the elegant multiplicative

structure of the set of (ml; + l)Y roots of unity over IFq that includes a basis of F p . It is

shown that multiplication using redundant ba i s is simple.

The generation of a normal basis using the Gauss penod is fint reviewed ($3.1). Then

bit-serial multiplien using redundant basis are proposed ($3.2). Pardlelization of these

multiplien is also discussed (53.3). Discussions on redundant bases are aven in 93.4.

3.1 Gauss Period and Normal Basis

The Gauss period was discovered by Gauss and is defined as foIlows: Let m, k) 1 be

htegen such that T = mk + 1 is a prime, and let q be a prime power with gcd(q, T) = 1.

Let EC be the unique subgroup of order k of the multipiicative group of Zr = Z /TZ , then

c m 3. NORMAL BASIS MULTFI,IERS

for any primitive rth root ,O of unity in F p , the element

is cailed a Gauss period of type (m, k) over Fq. It cm be checked that a E Fqm.

The Gauss periods have been used to consuuct normal bases with low complexity [62,

71. A Gauss period of type (m, k) over !Fq is a normal element of F p over Fq if and oniy

if gcd(e, m) = 1, where e is the index of q modulo T . Furthemore. such a normal basis

has complexity at most mk' - 1 with kt = k if p(k and k + 1 otherwise. where p is

the characteristic of Fq [7, 78, 261. Clearly, for q = 2. Gauss periods of types (m: 1)

and (m. 2) generate optimal normal bases with cornplexity 2m - 1, which are usuaily

caiied type4 and type4 optimai normal bases (ONB), respectively [62]. For small values

of k > 2, the Gauss penods generate low complexity nomal bases [7]. Other classes

of low complexity normal bases cm be generated by an extension of the Gauss penod

where r = mk + 1 is not a prime [21].

Gauss periods are also used to develop fast arîthmetic in finite fields. Gao and Van-

stone have proposed an exponentiation algorithm in IFzrn using nonnai bases generated

with the Gauss period of type (m. 2) [26]. Subsequent work has shown that an efficient

realization of arithmetic operations cm be obtained using nomai bases generated with

the Gauss period of type (m. k). k > 2 [27. and with the general Gauss period [15l.

CHAPTER 3. NORMAL BASIS M ü L ï ï P m S

3.2 Bit-Serial NB Multiptiers

3.2.1 Previous implementations

The first efficient implementation of normal basis multiplication was described by Massey
m- l m-1 - -

and Omura in a US patent [49]. Let A = aka2' and B = bkaZk be two de-
&=O k=O

ments in F2.. represented with respect CO the normal basis (a, a', . . . 2"-') . Viewing

the coefficient c k of C = A B as a bilinear form of A = (ao? al, . . . , h-1) and
B = (bo. b l , bm-,), the f -fundon is defined as

Since squaring of an elemeni is just a cyclic shift of its coefficients, we have

Then it follows that

CO = f (~ h - 1 , ao; h. bm-l? bol
The f -func tion cm be solved from (3.2) as

na-1

where t!:) can be obtained from popi = t g)p j . Ciearly, realizing the f -functim
j=O

requires CN multipiication operations and CN - 1 addition operations, both in F2. Also,

two m-bit registers are required to supply the shifted coefficients of A and B.

An alternate structure with serial input and panllel output and its VLSI implemen-

tation has been proposed by Agnew. Mullin, Onyszchuk, and Vûnstone [3]. Their basic

idea is as follows [3]:

Let the function ~ j (~ ' (*) be defined by

m-1

where t$) is given in (2.2). Then ck = F ~ (~) (o) . The coefficients of A and B are
j=O

t t

stored in registers A and B. which are shifted cyclically. At time t , ~ , (' ' (i) , . . . , ~,'"-''(i)
i = O i=O

are computed from the previous contents in register C and current contents of A, and

the results are stored in C. Then after m dock cycles, the contents of register C are

C 0 , C l . . * . .c",-l.

Compared to the Massey-Omura multiplier, this multiplier offers advantages in the

Following aspects: fewer gates, potentially faster dock rate, highly regular structure and

simpler cell connection. It is thus more suitable for large fields.

Other normal bais multipliers hclude the one presented by Feng in [22]. It has the

same input and output style as Agnew et al's [3], but its complexity seems r,ot bener than

the one in [3] when implemented in VLSI iechnology.

Recently, Gao and Vanstone have proposed a novel multiplication algorithm for the

field generated with the Gauss period of type (m. 2) [2q. The resultant architecture is

very simple and has low complexities.

CHAPTER 3. NORMAL BASIS MuLTIPUERS

3.2.2 Bases generated with Gauss period of type (m, 1)

Algorithm Let P be a primitive (m + 1)st roor of unity in iFqm and q is a generator of
*m-i A

the group G = IF,&, , then (p. P q , /3) = Il is an optimal normal basis in IFqm

over F, generated with the Gauss period of type (m, 1). From

A
it cm be shown thet 1, = (&fi2, . . . Pm) is a set of m linearly independent elements

in lFqn and thus foms a basis of Fqm over FQ. It c m also be verified that h contains the

sarne elements as Il, since /3 is a primitive (m + 1)st root of unity in Fqm .
Consider the set of the foilowing m+ 1 ordered field elements of Fqm : (1. Pt PZ, a),

and denote it as 13. Clearly, every element A E FQ* can be represented with i3:

where Fq, i = 0.1, . . . , m. Then I3 can serve as a representation basis for F q m over

. Since the elements of I3 are not iineariy independent. the representation of a field

element with respect to I3 is not unique. In the sequel, we will refer to I3 as a redundant

busis,

Now let us look at multiplication operation under the reduadant basis 13. Let B E

Fqm be given as B = bo + blP + bzP2 + - - + bmPm. Then we have

C H . 3. NORMAL, BASIS MULTPLÏERS 25

Obviously, the coordinates of PB is a cyclic shift of those of B, with respect to 13. From

where (j - i) = (j - i) mod (m + 1) denotes that j - i is to be reduced modulo m + 1,

we have

If we define A B = C = cj/3j, then it follows

Architecture Figure 3.1 shows the multiplier structure to realize multiplication using

13. The coordinates of B with respect to 4 are loaded into a register of Iength rn + 1 bits

whose contents can be shifted cyclicaiiy. The binary tree of m adders in F, takes m + 1
&bk terms as its inputs and generates a cj term as output every clock cycle. Ail ci's,

j = 0,l.. . . , m. which are represented using 13, are computed and obtained in m + 1

dock cycles. When p = 2, it can be seen that rn + 1 AND gates, m XOR gates and m + 1

1-bit registers are required for constructing the multiplier. The clock period should not

be less than TA + pog2 rn + 11 Tx. Table 3.1 shows a cornparison of the multiplien

proposed in 149, 22, 31 and the presented here. It c m be seen from the table that the

new proposed architecture has a significantly lower complexity compared to the previous

CHAPTER 3. NORMAL BASIS MULTXPLmS

t c,, j=O,l, ..., m

@ : Binary Tree

Figure 3.1 : Bit serid multiplier using redundant basis when there is a type I ONB.

Mui tiplier II #AND 1 #XOR 1 #1-bit reg. 1 # clk cycles 1 Basis 1

- - - I l r 1 1 I

Agnew et al [3] 11 m I 2 m - 1 1 3m 1 m 1 normal

C

Massey-Omura [49]
Feng [S21

1 presented here II m + l 1 m 1 m + 1 1 m + 1 [redundant [

Table 3.1: Cornparison of bit-seriai muitiplien using type 1 ONB and RB.

irnplementations.

2rn - 1
2 r n - 1

Basis conversion The conversions between the normal bais I2 and the redundant basis

4 are simple: if A = (a;. a;, . . . ? a&) with respect to basis 12, then (O. a;: a;, . . . aA)
is a representation of A with respect to basis 13; If A = (ao, al, a2,. . . , h) with respect

to 13, then with basis I2 the representation of A is (al + ao, a2 + a*, n, + ao).

2m - 2
3 m - 2

, t

2m
3 m - 2

rn
m

normal
normal

3.2.3 Bases generated with Gauss period of type (m, k)

Algorithm The idea of redundant bais c m be easily applied to the normal b a i s gen-

ented with the Gauss period of type (m, k), k > 1. Let @ be a primitive (mk + 1)st root

of unity in F p r and 7 be a primitive kth root of unity in G = IF&+, . If G = (2, C),
k-1

A 2 then a = p7i is a normal element and I4 = (a. a , alrn-') is a normal basis in
i=O

F2n with complexity not greater than k'm - 1.

Consider two sets of km elements in F2rm: SI = {PZ'". i = 0,l.. . . : rn - 1; j =

0.1,. . + k - 1) and Sa = {p. PZ? . . . ,ph). For any element B2'+ E SI, we have
0 2 ~ 7 ~ - - pli7J mod(mk+l) E &, and thus, Si C S2. Let G = FA+, then G = (2 , ~) .

For any integer 1 E (1.2.. . . , Inn), there exist integers i E {O, ll . . . , m - 1) and j E

{O. 1.. . . . k - 11, such that 1 = 2 ' 9 mod (km + 1). Therefore, Sz C Si + S2 = SI.
k-1 k- l k-1

Since 4 = (z p7' . phi. /32m-'f') and each elernent in I4 is a sum of k
i=O i=O i=O

elements in SI, it c m be seen that elements in Si (= S2) c m serve as a b a i s in !?*m. Con-

sider redundant ba i s Is by adding element '1' to the set &: Is = (1, P, PZy ! 0").
Obviously, any element B E F2m can be represented with 15: B = bo + Li,3 + +
bh,ûh, where bo, bh E IF2. Then the multiplication of B with ,8' is actually an

1-fold cyciic shift of the coordinates of B:

rnk

Architecture A structure for multiplication in IF2m over IF2 using 15 is shown in Fig-

ure 3.2. The structure is very similar to that s h o w in Figure 3.1 except that it requires

more gates and registers. Its compiexities are compared to those of other similar mul-

tiplier~ in Table 3.3 (When the Gauss period is of type (m, 2), comparison is made and

shown in Table 3.2).

Figure 3.2: Bit serial multiplier using redundant basis.

9 n fact, it is a cenain permutation of a nomd basis.

Table 3.2: Cornparison of bit-serial rnultipliers using type II ONB and RB.

basis
normal
normal

Agnew et al [3]
Gao-Vanstone [26]

presented here

From the table it can be seen that the new structure suffers a lower ihroughput and

when k is an odd integer not less than 3 it aiso has higher space complexity. However, it

stiii has the advantage of simpler architecture over the other implementations.

Multipliers
Massey-Omura [49]

Basis conversion Now let us look at the conversion from the normal basis I4 = (a? a', . . . , Q2m-')

to the bais 15. AS we have seen before, the conversion between redundant bais I5 and

the basis consisting of elements from Sa = SI is simple. If A = (ab, a;, . . . , a&-,) wiih

#XOR
2m - 2

#AND
2m - 1

m
m

#1-bit reg. (# CU< cycles
2m 1 rn

3m-2 1 rn Feng [22]
2m-1
2m-1

2m-1 13m-2

2m + 1 1 2m

normal
normal

3m 1 rn

redundant
2m+1
2 m + 1

m
2m + 1

C H ' 3. NORMAL BASIS MLIL,TZPLERS 29

bIn the exmple presented in [22]. a technique of rnising panid sum was used CO

nduce the complexity. Thus the number of XOR gates should be not p a t e r than
C,y + m - I if a non-optirnd nonnal basis is used.

Multipliers
Massey-Omun [49]

Feng [22]
Agnew et al [3]
presented here

Table 3.3: Cornparison of bit-serial multiplien using NB and RB.

the normal basis, then with the bais from SI,

#AND

CN
2m-2
m

km+1

whereatj = a : fo r j =0.1k - l a n d i =0 .1m- 1.

3.3 Bit Paraiiel NB Multipliers

#XOR
CN - 1

C N + m - l b
CN
km

3.3.1 Previous implementations

Aithough the original Massey-Omura multiplier focuses on bit-serial form. its paral-

lelization is straightforward. The architecture of a bit-pardel version of Massey-Omura

multiplier can for instance be Found in Wang, et. al.'s paper [7q, The complexity is

meN AND gates and m(CN - 1) XOR gates. If an optimal normal b a i s is chosen, the

complexity is m(2m - 1) + m(2m - 2) = 4m2 - 3m.

Later. Hasan. Wang and Bhargava proposed a modified Massey-Omura bit-parallel

multiplier [36] using the type4 optimal normal basis which has accomplished the Low-

est complexity among bit-paralle1 normal basis multiplien reported so far in the litera-
9m-1

aire. Let the normal basis (at a'. a-) be generated with the Gauss period of type

1 -bit reg.
2m

3m - 2
3m

km+1

clk cycles
m
m
m

km + 1

basis]
nomal
normal
nonniil

redundant

C H ' R 3. NORMAL BASIS MULTLPUERS 30

(m, 1). Since a is a primitive (m + 1)s root of unity in F2,, then, aiaj = 1 for some

Since for fixed io, t (iO. j) runs through 0.1' 2, rn - 1 except io, CL has m(m - 1)

ternis and ai would appear in m - 1 terms for 1 = O. 1. . . . , m - 1. Therefore, in

ck = c i i 4, c i bas m - 1 terms and requires m - 1 AND gates and m - 2 XOR gates.

While 4 = %bacil has m t e m but they are the sarne ones for Ir = 0.1. . . . ? rn - 1,
hence c?, needs to be implemented only once which costs m AND gates and m - 1 XOR
gates. Considering another m XOR gates to realize ck = c', + 4 for k = O? 1, . . . , m - 1,

the complexity is m(m - 1) +m = m3 AND gates and m(m - 2) + (m - 1) +m = m2 - 1

XOR gates.

Other parallel multiplien using type4 ONB include the one presented in [45]. It is a

combination of a polynomial bais multiplier and bases conversion circuits.

CNAPTER 3. NORMAL BASlS M Z n . T ï P m S

1 Multipliers Tirne delay 1

Table 3.4: Cornparison of bit-parallel multipliers using type I ONB and RB.

3.3.2 New bit-parailel multipliers

When a normal basis in h m is generated with a Gauss period of type (m, 1). a parailel

version of the multiplier using a redundant basis is shown in Figure 3.3. On the left

side of the figure inputs {e) and { b i) are fed into rn blocks (Block B). The detailed

structure of Block B is shown on the right side of the figure. It can be seen that (rn + 1)2
AND gates and m(m + 1) XOR gates are required. The time delay is Ta + [log,(m +
1)l Tx. Compared to the b i t - p d e l multiplier proposed in [36], this one uses more

gaies, but has a simpler architecture (see Table 3.4 and Fig. 3.3). Moreover. it can be

easily made for trade-offs between size and t h e complexities: If t Block B's are used

to construct a multiplier and thus in one dock cycle t ci's are computed and output, then

one multiplication operation cm be completed in dock cycles.

Figure 3.3: Parallelization of the bit-serial multiplier using the redundant basis.

When the redundant bais is generated with Gauss period of type (m. k), the paral-

lelization of bit-serial multiplier can be obtained in a simila. way.

CWW'7E.R 3. NORMAL BASIS iMULTPDS 32

3.4 Discussions on Redundant Basis

From the previous sections, it cm be seen that a redundant basis is the set of al1 the nth

roots of unity over Fq which includes m field elements in Fqm which form a basis in Fqm

over F,. Cleuly, any field Fqm has a redundant basis if there is a cyclotomic field over Fq

that contains Fqm as a subfield. Thus the redundant basis cm be the set of (qm - 1)st roots

of unity if p does not divide qm - 1,where p is the characteristic of F q m . To efficiently

represent the field elements, the redundant bais should be chosen such that its size is as

small as possible. Now the question is: Given Fqm , what is the smallest cyclotomic field

that contains Fqm as a subfield? A systernatic algorithm for cornputing such an la is

given below.

Algorithm 3.1 Computing the smailest cyclotomic field that includes IFqm as a subfield

1. Find al1 the factors 4 of qm - 1 that are greater than m and List them in an increasing

order: dl. dz. . . . , dk = qm - 1;

If m 1 4(4), then output 4 as n. and Stop; Use i t i + 1.

Since the (qm - 1)" cyclotomic field has a degree of 9(qm - 1) and contains the field

Fqm as a subfield, we have that m divides 9(qm - 1).

A redundant basis consisting of ail the nth roots of unity is an optimul redundant

basis if epn) is the smailest cyclotomic field over IF2 that contains Fqm as a subfield.

Given a basis I in Fqm, the general case of basis conversion between 1 and the re-

dundant basis R may not be trivial. If I is a normal basis generated with the Gauss

period of type (m, k), then how to obtain R has been discussed in 53.2 and 53.3. If

CWAPTER 3. NORMAL BASIS MULTIPLlERS 33

I = (1, a, . . . , am-') is the polynomial basis, and if we know that the order of element

a is ord(a) . then the redundant basis R cm be obtained using the following aigorithm

Algorithm 32 Computing the RB from the PB (1, a,. . . ,am-')

1 . Compute n using Mgonthm 3.1 :

3. Compute the order of the imducibie polynomial ord(a);

3. Let t = ord(a)/n, then the RB is given by (1, a', a"? . . . , cr(n-W).

Chapter 4

Parallel Dual Basis Multipliers

In this chapter, first a complexity bound for parailel weakly dual basis (WDB) multipli-

ers in Fqm over Fq is given (54.2). Then panllel rnultipliers using WDB in IFq.. over Fq

(§4.2) and iFZm over (84.3 and 54.4) are presented, respectively. When the generating

polynomid is zm + zk + 1,1 < k < [y 1 , or an t-ESP (+ 2 1) over &, low complexity

bit-parailel rnultipliers are constructed with reduced propagation delays. Basis conver-

sions between the wDB and the polynomial bais and vice versa are discussed in 54.5.

Parts of this chapter were presented in [82] and [8 11.

4.1 A Brief Review of Dual Basis Multipliers

Implementation of dual basis (DB) multiplication is known as bit-serial Berlekamp multi-

plier w hic h efficientiy reaiizes the operation using a linear feedback shift register (LFSR) [12].

Recently many other DB type bases (which, in the sequel, will be referred to as weakiy

dual basis or WDB) have been found and used to achieve a LFSR style operation [60,77].

A selfaual normal basis has also k e n considered and used for the implementation of

multiplication in [75l. Bit-parallel DB muitipliers have been discussed in [63,23]. %y

reusing some other previously generated signais, it has been shown in [23] that signifi-

cant reduction of size complexity can be achieved for the fields of characteristic two.

Parallel Muhipliers in Fp over IFq

4.2.1 WDB multiplication

Definition 4.1 Two bases (ao, al y . . . , h-i) and (Po. Pl, . . . , of Fqm over F, are
. . said to be weakly dual to each other if Tr(yqpj) = dij , 2.3 = 0, l . 2, . . . , m - 1, where

7 E F,', = Fqm \O and 6, is the Kronecker delta function, which is equai to 1 if i = j

and O othewise.

In this chapter, we consider (w, al. . . . , a,,,-l) to be the polynornial bais (1. a, . . . : am-')

where a is a root of monic irreducible polynomial f (z) = zm + f i z i with fi E F,.

For a field element A E Fpm, A = aiai = ai&, where ai's and a: 's are the

coordinates of A with respect to the &T;nomial b z and its weakly dual bais (WDB),

respectively. Then we have

Let the field element B E Fqn be given by B = b;&, where hi's are the coordi-

nates of B with respect to the WDB. Consider the of A and B, in the WDB, given

From (4. l), c j c m be expressed as a sum of ai's as follows:

where

Define the reduction matrix R = (Ti , j)(m-l)xm, T i j E Fq, by

\ 1 m-1 m-i

The rows of the reduction matrix give the representation of am+$ i = 0.1, . . . , m - 2, in

terms of the polynornial basis. The fbst part of the above identity is obtained fkom (4.4),

whereas the last part foiiows fiom (4.1). It can be seen that (4.2), (4.3) and (4.5) will

decide the multiplication in Fqm over Fp. The above cm be surnrnarized in the following

algorithm.

Algonthm 4.1 Parallel multiplication in F q m over F,

Input: Field elements A = (ao, al, . . . , am-l)? B = (b;, b î , . . . , b;J;

Output: The product C = (ci, c;, ck-,).
(Precompute Ti,., i . j = O. 1,. . . . rn - 1.)

m-1

1. Cornpute ~ r (a r ~ + ') = ~ ~ , ~ b z ~ for 2 = 0,1,. . . . m - 2;
i=O

2. Compte C+ for i, j = O. 1:. . . , m - 1;
m- 1

3. Computec; = Cc+ for j = 0,1, ... , m - 1.

Note that the above multiplication aigorithm has been suggested in [i2, 63, 231 for

q = 2. Write (4.5) as

m-l

~ r (a " + ' ~) = Tr = C fiR(ai+' B) , 1 = O, l? 2, . . . , - 2.

In Step 1 of Algorithm 4. i, if we 6rst compute ~ r (a ' ' ~) with smaiier F, then it can be

seen that each Tr(crm+' B) needs H(f) - 2 bit additions when the field is of character-

istic 2 [23]. where H (f) is the Hamming weight of f jz). The consequent architecrue

requires oniy m3 two-input AND gates and (m - l) (m + H(f) - 2) two-input XOR

gates [23].

4.2.2 A complexity bound

For paraiiel multiplication in Qm over Fq, it is nanuai to repment its complexity based

on the nurnbers of multiplication and addition operations in the ground field IFq ',. Conse-

quentiy, the complexity of a paraiiel multiplier in Fqm can be measured ia terms of the

numbers of multiplies and adders in the ground field $.

Theorem 43 Let f (z) be an irreducible polynomial of degree m over FQ. If f (2) has k

nonzero te=, then a panllel WDB multiplier in Fqm over $ cm be constmcted with at

most m' multiplien and (k - l)(m - 1) consrant multipliers in IFq, m2 + (k - 3) m - (k- 2)

adden (or subtracton) and m - 1 constant adden (or subtracton) in FQ.

hf= From the discussion of the previous section. a parallel WDB multiplier can be

implemented based on Algorithm 4.1. Steps 1, 2 and 3 of Algorithm 4.1 will determine

the complexity of this multiplier. It cm be readily seen that realizations of Steps 2 and

3 require m2 multiplication operations in IFq and m(m - 1) addition operations in IFq,

respectively. In the following we will prove that the complexity required in Step 3 is

(k - l)(m - 1) constant multiplications in Fq. (k - 2)(m - 1) multiplications and m - 1

constant additions in Fq.
Let the monic irreducible polynomial

have k nonzero terms. where O = eo < el < < a - 2 < m. fei E F,' = Fq\{O). We

proceed by induction on I in ~ r (a " + ' ~) .

1. When 2 = 0,

Since fei, bli E Fq, obviously, k - 1 constant multiplications in IFq and k - 2
k-2

additions in $ are required to generate fei b li, and one constant subtraction
i=O

k-2

operation for Tr(am B) = - f, b:, .
Ln

2. Assume that ~ r (a ~ + ' ' B) has been generated with k - 1 constant multiplications in

iFq, k - 3 additions and one constant subuaction in Fq , for each of 1' = 0,l I -

1. Then

For each of i = O, 1 , . . . , k - 2, when O < I + < m, Tr(d+") = bî+,,. is

available as a certain coordinate of input B; when m 6 1 + < 1 + m, Tr(d+'i)

has already been generated as assumed. Therefore, Tr(crm+') can be generated

with k - 1 additions (subtractions) in Fq and k - 1 muftiplications in $.

We conclude that a realization of Tr(am+'), 1 = 0,1,. . . ? m - 2, requires at most (k -
i) (m - 1) constant multiplications in IFq, (k - 2)(m - 1) additions and m - 1 constant

additions in IFq. Thus the lemma holds. O

CoroUary 4.1 Let f (z) be given as in Lemma 4.2 and q a power of 2. Then a parallel

weakiy dual bais multiplier in IFq.. over IFq can be constructed with m2 multîpliers and

(k - l) (m - 1) constant multiplien in Fq, and at most m2 + (k - 3)m - (k - 2) adders

(or subtractors) in Fq.

h o f i Since the field bas characteristic of 2. T'r(um+'B) = - ~ r (a ~ + ' B) for 1 =

0: 1,. . . . m - 2. The corollary follows by noting that the m - 1 constant subtracton in

!Fq are not needed. compared to the case of Lemma 4.2. Cl

When q = 2 we obtain the same results as Fem. Benaissa and Taylor proposed

in [23]:

Coroiiary 4 2 Let f (z) be a k term irreducible polynomial over F2 of degree m. Then

a bit-parallel weakly dual basis multiplier in F2m can be constructed with m2 AND gates

and at most m2 + (k - 3)m - (k - 2) XOR gates.

4.2.3 Algorithm and architecture

An algorithm for parallel multiplication in Fqm, which conforms to the complexity bound

discussed in the previous section, can be given as follows.

Algorithm 4 2 Modified Parallel Multiplication in Fqm over Fq

Input: Coefficients of an irreducible polynomiai: (fo. fi, . . . , fm-i, fm = 1) ;

Two field elements (ao, a l , h - 1) . and (b:, b i , b;J ;

Output: The product (ci, ci . . . , cm-,) .
(Precompute for l = O. 1.. . . .n - ek-2 and j = 0 , l :m - 1;)

la. Compute:
m-1

i=O
16. Compute:

Fori=O.l m-ek-2 - l , i f (t i< e k - 2 - 1)

Compute Tr(ya2m-"-2+ti) for i = 0.1. . . . , m - et-2 - 1;
t = t + 1;) While (ti < ek-2 - 1);

2. Compute:
fori. j = 0 , Lm - 1;

3. Compute:
m-L

$ = C ~ i , ~ @ f o r j = O . I ,... .m-1 . O
i=O

In order to obtain Tr(ytm+j), Algorithm 4.2 allows us to use certain Tr(yPti) terrns

which have aiready been generated in the generation of some other signals Tr(yam+j).

Consequentiy, generating Tr(yamcj) shouid be arranged as foilows: Fît, terms Tr(7am+j)

with j = O, 1,. . . . min(m - ek-2 - 1,Zm - 2) are generated. Then Tr(7amh"-ek-i+j)

with j = 0- 1,. . . , min(m - ek-2 - 1,2m - 2) are generated where the previously

generated terms ~ r (~ a " * j) are used as avdable inputs, and so on. An implementation

procedure for a parallel multiplier in iFqm cm be summarized as the following three steps:

Scheme 4.1 implementation of parallel multiplier in Fqm over IFq

1. Generate cjti = ~ r (~ a ' + j B) for n < i + j < 2m - 2.

la. Generate those ~r(Ta"+' B) w hich are to be reused in some other T ~ (T am+" B) .
1 b. Generate those Tr(?arn+' B) which reuse some other Tr (pm+" B) .

2. Generate citi%, for i, j = O, 1, . . . , m - 1, with m multipliers in IFq.

m-1

3. Genente ci = c& for j = 0.1,. . . . rn - 1 by using tn binary tree network

When q = 2, Fem, Benaissa and Taylor proposed the simikir implementation proce-

dure [23], where Step 1 is implemented with Module B and Steps 2 and 3 are realized

with Module A (see [23]).

At Step 1 of Mgonthm 4.2, the longest propagation delay occurs at Tr(ya2m-2) and it

is tT6 + t [log,(H(f) - 1) 1 Te, where Tg and Te denote the propagation delays iocurred

with a constant multiplier and an adder in Fq, respectively, and t can be solved from

Step Ib in Aigorith.cn 4.2 as follows:

Considering the time delay incurred at Steps 2 and 3, the tirne complexity of the paralle1

multiplier is

where Te denotes the time delay with a multiplier in F,.

4.2.4 Architecture with reduced time delay

The propagation delay of the multiplier presented above can be further reduced if the

terms in the parallel multiplier are arranged properly. This can be illustrated in the fol-

lowing example.

Let two bases (l.a.a2,a3.a') and (/30,/3iJz,/3&) be weakly dual bases in f i s

over Fï, where a is a root of irreducible polynomial f (2) = x5 + 3x3 + 5. Let A and
4 4

B be two field elements E F75 given by A = aiai and B = b;&, where and

6;' are the ih coordinates of A with respect to the polynomîal basis and of B with respect
4

to the weakly dual basis, respectively. Let their product C be denoted by C = cipi.
i=O

where c; is the zlh coordinate of C with respect to the weakly dual basis.

From (4.3) and Step 1 in Algorithm 4.2, we c m write

ciei = bI+jt for i + j = 0.1,2$3,4;

civ4 = cie3 = Cj,2 = civ1 = TT($ B) = 5bG + 26;;

Gv4 = civg = c ; , ~ = Tr(7a6B) = 5b; + 2b;;

clp4 = cio = Tr(a7B) = 5 4 + 2c; r;

ci, = Tr(dB) = 56; + 2G,.

When al1 for i. j = 0; 1,2.3.4. have been generated, then we have

If we irnplement (4.7) using Scheme 1, from (4.6) it has a time delay of 2T' + Te + 5Ta.

Categorizing al1 the terms occuned at the nghthand side of (4.7) into ihree sets, one

can obtain:

It can be seen that the generation of the signals belonging to SI, S2, and S3 requires a

t h e delay of T'., Tg + Te + Te, and 2Ti + Ta + 2Te, respectively. Then (4.7) can be

written as

where signal c;,si denotes the sum of those terms that belong to Si. It can be seen that the

longest propagation deiay of the multiplier occurs ro generate c which is 2Ti f T', +4Ta

CH- 4. PARALLEL DUAL BASIS MULTLPUERS

(see Figure 4.1).

Figure 4.1: Architecture of a panllel multiplier in F76 over F7 when f (x) = x5 + 2x3 +
5 E FT[x].

4.3 ESP Based Bit-Parallel Multiplier in I F p

4.3.1 Algorithm

Let f (2) be an irreducible T-ESPof degree m, i.e., f (x) = I +zr +x" + $2" +xm,

where m = (t + 1)r. for a root a of f(z) we obtain the equations for am+i, j =

0,1,. . . , m - 2, as follows.

Applying the trace function Tr(7 B) to the above equations we have

Tr (yPc jg) = b; + b' t+3 . + + b,+j for O < j < r - 1
Tr (y arn+'+j B) = b; forO< j g m - T - 2 .

From (4.3), it follows

Clearly, the complexity of a bit-parallel WDB multiplier completely depends on iden-

tities (4.2) and (4.8). It can be readily seen that when c;,~'s are given, a realization

of (4.2) requires na2 AND gates and m(m - 1) XOR gates and has a time delay' of

TA + [logz ml Tx, where TA and Tx denote the delays caused by one AND gate and by

one XOR gate, respextively. Another time delay of [log,(t + 1)l Tx = [log, Tx is

required to generate those czi's with rn < i + j < rn + t - 1. The number of XOR gates

requiredistr. For0 < i + j 6 n- 1andm+r < i+ j < 2m -2.c~'sarecertain

coordinates of B with respect to the WDB and are available without any cost of gates and

gate delays.

LWe assume thac for the generation of ci, the m - 1 XOR gatcs arc connccted in the b i q tree form.

CHAPTER 4. P m DUAL BASZS M U L T I P m S 46

We summarize the above discussions as follows: In the finite field F p constructed

with an irreducible r-ESP, at most rn2 AND gates and m2 - T XOR gates are required to

build a bit-parallel multiplier. The time delay incurred is at most TA+ ([log, ml + bg, F]) Tx.

In most cases, however, the time delay of the multiplier can be further reduced as it is

discussed in the next section.

Let us consider the case when f (x) is an irreducible r-ESP. Then c;,~ is given by (4.8)

and a bit-parallel multiplier can be implemented using the following three steps.

1. Obtain civi for i , j = 0,l m - 1 using (4.8). In this step, logic gates are needed
t t

only to generate signals 6:+ j-,+4, = 6;+l,, for k = O, 1, r - 1, where
k 0 L=O

k = i + j - m. Each of these signais can be reused for rn - k - 1 cii*s, since

- * - cj,m- j+k and j can be any vdue of k + 1, k + 2,. . . ,na - 1. The number of

XOR gates needed is rt = rn - r and the tirne delay incurred is [log2(t + 1)l.

2. Generate c&e, for i , j = O, 1, . . . , m - 1. where m2 two-input AND gates are used

and the incwed time delay is TA.
rn-1

3. Obtain C; = for j = O, 1, . . . , m - 1. Each ci can be implemented with
k 0

a binary tree network of rn - 1 XOR gates. The tirne delay is pog, ml Tx.

coordinates of the element B and are already available. We may let each of these c&'s

enter an AND gate (Step 2) before the rest of the c;,;'s are generated and thus the total

time delay of the multiplier might be reduced. This can be illustrated by the multiplier

structure shown in Figure 4.2.
t

l=O
in accordance with (4.8b). This block consists of tr = m - r XOR gates and has a

The c;,~ terms obtained from B 1 are ANDed with ai, 1 6 i < m - 1 in block B2

to generate cipi& for m < i + j < m + r - 1. For these particulas constraints on i

and j , the nurnber of aiai terms is mr - rW. Consequently, block B2 consists of

mr - w, AND gates and has a propagation delay of TA only. For convenience, the

outputs of B2 are show at m - 1 ports, viz.. P,(*), pi2), . . . , P:!~. The nurnber of cimi%

From (4.3), the number of c;,~% terms for O 8 i , j < rn - 1 is m2. The te=,

which are not generated in B2, are generated in block B3. The latter takes <ri and b;,

O 6 i < m - 1 as inputs. As given in (4.8a) and (4 . 8 ~) ~ the br's are directiy related to

temis c;,,~ for these values of i and j. This requires m2 - m+ + rw, AND gates

and a propagation delay of TA. Similar to B2. the outputs of B3 are shown at m ports,

namely, ~,(3), P?), . . . , p,fLl. Let the number of terms at port be denoted by

The tenns obtained through port pi(') are then partially added in block B4 using

XOR gates that are arranged in binary tree forms with pogl(t + 1)l levels. This is to

ensure that the surn of the propagation delays of B3 and B4 is equal to that of B1 and

(4) B2. The outputs from B4 are presented at ports PA'), pj4), . . . , Pm-,. If Np!,) denotes
J

the nurnber of outputs at port then

The outputs from the corresponding ports of B2 and B4 are then added in block B5 using

XOR gates to generate ci (eqn (4.3)). The maximum propagation delay in B5 is

Since m2 ANDed terms, Le., cii%, O 6 i , j 6 m - 1, are added in B4 and B5 to generate

m outputs ci, O < j < m - 1, the total number of XOR gates in B4 and B5 combined is

m(m - 1).

As an example, the details of the blocks used in Figure 4.2, are shown in Figure 4.3

with imducible 3-ESP x6 + z3 + 1 of degree 6.

The result of the above discussions can be s-d in a theorem as given below.

where 1
l =o,l , . . . l t .

Sie Compklcity

BI: rn - t XOR gatea

~ 2 : r n t - ~ A N D g a k m

B S ~ r n ~ - n r + . ~ m g a t m

84 d BS: m(m - 1) XOR gaka

Figure 4.2: Architecture for a parallel multiplier when f (2) is an r-ESP.

Theorem 4 3 If the finite field F2m is defined by an irreducible r-ESP, Le., f (x) = 1 +
zr + x2' + + xtT + xm, where rn = (t + 1)r. then. a bit-parailel WDB multiplier

can be implemented with m2 AND gates, m2 - r XOR gates, and time delay of TA +

It can be xen that imducible 9-ESP is a trinomial zm + x y + 1. In this case, both

the size and the time cornplexities achieve the minimum: Numbers of required AND

and XOR gates are at most m2 and m2 - y. respectively, and incumd tirne delay is

TA + log2 m + Tx. In the AOP case, T = 1 and such a multiplier requires ma r (Trnl)l
AND gates and m2 - 1 XOR gates and has a t h e delay ofTA + (1 + pog2 m1)T'.

Figure 4.3: Multiplier swcture when f (z) = xs + z3 + 1.

Trinomial Based Bit-Parallel Multiplier in F2m

Analysis of multiplier complexity

Corollary 4.2 has s h o w that a parailel WDB multiplier can be coastnicted with m2 AND

gates and at most m2 - 1 XOR gates when f (z) is an îrreducible trinomiai.

Since the size and time complexities of a bit-pardel WDB multiplier are determined

by (45) and (42), we shall use CFA, c!& CF) and c ~ L , CS!, CF) to denote the

contributions to the size complexity and the time complexity of a circuitry realiting (45)

and (4.2), respectively.

It can be readily seen that an implementation of (4.2) requires m2 AND gates and

m2 - rn XOR gates and has a time delay of TA + [logl ml Tx. or CS! = m2, c!? =

m2 - m, cg) = TA + [log2 rn] Tx. Now consider eqn (4.4): (am, am+' Y - - * t a 2 m - *) ~ =

R(1, a,. . . , where a is a root of f (z) = 1 + zk + tm.
(i) When k = 1, one can write

am+j = d + al+j for O 6 j < m - 2. (4-9)

Thus each row of R has only two nonzero entries. Then from (4.5) we have Tr(yam+j B) =

(1 bj + bi+j for j = 0,1, . . . , rn - 2. Clearly, Csx = rn - 1, and c!) = Tx.

(ii) When 1 < k < y or m - k > k. According to anthmetic modulo a polynornial,

amfi. j = O , 1.. . . , m - 2, can be computed as follows

A where Sa denotes the set {O, 1, . . . , rn - k - l), and Sb = {O, 1,. . . , k - 2).

Applying trace function Tr(7 B) to both sides of (4.10a) and (4.10b). we h d

It is readily seen that the fint two ternis on the right side of (4.1 1b) (in bolciface) are

exacîiy the sarne ones as those on the right side of (4.1 1 a). Notice that Sb C S. (O.* m >

2k), thus we can Ruse the term Tr(7am+j B) = bi + bi+j , j E S., of (4.1 la) in (4.1 1 b)

and it follows (reused terms in boldface)

Clearly, computing (4.12a) and (4.12b) requires m - k and k - 1 bit additions, respec-

tively. Hence, CS' = m - k + k - 1 = rn - 1 XOR gates. The longest tirne delay occurs

at (4.12b) with the fint T' time delay to carry out Tr(yam+jB) = bj' + bi+j and a second

Tx delay to accomplish ~ r (~ a ~ + j B) + bim-kl+j for0 < j < k - 2 . Thus, CF) = 2Tx.

(iii) When k = y, m even, we have

am+i = d +,m-*+j + O < j < k - 1 (4.13a)

am+k+j = a', O < j < k - 2 . (4.13b)

Applying trace function Tr(7 B) to both sides of (4.13a) and (4.13b). we obtain

Ciearly, only (4. Ma) requires k = 21 XOR gates and has a time delay T.. Thus. =

y and cT = Tx.

Now we c m summarize the above discussions as follows. When f (x) = 1 + zk + xm.
a WDB multiplier cm be constnicted with CSA = m2, and

(i) C s x = m 2 - 1 and CT=TA+([loglm]+l)Tx for k = 1 ;

(ii) Csx=rn2-1 and CT=TA+([log2m]+2)Tx for l < k < ? ;

(iii) Csx = rn2 - y and CT = TA + ([log2 ml + 1) Tx for k = 9.

4.4.2 Construction with reduced propagation delay

When f (x) = xm + xk + 1 , l < k < y , from (4.3). (4.12a) and (4.12b) we obtain

The boldface terms in (4.15b) can be obtained by reusing the same terms in (4.15a). We

put (4.3). (4.15a) and (4.1%) together and it yields

bi+ j fori + j E Sc, (4.16a)

b:+j-m + 6i+j-m+k for i + j E Sd, (4.16b)

, - + + + j - f o r i + j E S c . (4. Idc)

A A A whereS. = { O , l , ... , m - 1),& = {m,m+ 1 ,... ,2m- k - l) ,andSe = (2m-

k , 2 m - k + 1 , ... ,2m-2).

Notice that in (4.16) it may take dinerent tirne delays to generate cli with dinerent

values of i + j. By exploithg thîs fact, we rnight expect that the whole time delay of the

mu1 tiplier cm be further reduced (for some m and k).

It c m be seen that no time delay is incurred for generating c;*~, i + j E Sc, but Tx,

and 2Tx are requirrd to generate c;ei for i + j E Sd, and for i + j E S., respectively. If

those ciei*s that are generated earlier are allowed to multiply with <li tint, the overali time

delay of the multiplier might be further reduced. A multiplier architecture with reduced

time delay can be shown in Figure 4.4.

B l : k - l X O R p t ~

82: AND
k r . t

BS: AND glr

M t B 7 4 8 : ma - m XOR BUS

Figure 4.4: Muitipiier structure when f (x) = zm + zk + 1,l < k < y.

Block B3 generates civi = 6:+ j-, + b&,, , i + j E Sa. in accordance with (4.16a).

This block uses m - k XOR gates and causes a time delay of Tx. The c;, terms obtained

fkomB3areANDedwith~,l < i <m-lioblodrB4togeneratec~~fori+j E Sd.

C H ' 4. PARALLEL DUAL BASIS MULïlPLIERS 55

Conwquently, m q , - AND gates are required in B4 and they cause a

(4) (4) time delay of TA. The outputs of B4 are shown at rn - 1 ports, namely, P, , . . . , Pm-l.

The number of c;,~Q terms at port P'') is denoted by Nfi4, and
J

forO 6 j d m - k ,

m-k f o r m - k + l (j < m - 1 .

(il In the sequel, the output ports of block Bi. i = 2,4,5,6,7, are denoted by pii), . . . , Pm-, .
and the number of binary outputs at port P:') is denoted by N (il.

PI

Block B 1 produces c;,~ = c;,~-,+~ + 6:+ j-m 9 i + j E S., where ~ i , ~ - ~ + ~ is from the

output of B3 and reused by B 1, see (4.16~). The number of XOR gates used is k - 1 and

the time delay incurred is 2Tx (since the input of the reused signals have already a delay

of Tx). Then the output of B 1 is multiplied with in B2 to yield c & ~ for i + j E Se,
where AND gates are used and incurrcd deiay is TA. Frorn (4.16c),

forO < j < m - k ,
Npp, =

I j - m + k f o r m - k + l < j < r n - 1 .

From (4.2), the numkr of ciici terms for O < i, j < m - 1 is m2. The c;,~% tenns,

which are not generated in B2 or B4, are generated in block B5. The latter takes q and

b:, O < i m - 1 as inputs. As given in (4.16a), the hi's are directly related to cii for

i + j E Se. The B5 outputs ANDed terms c&* for these values of i and j . This requires m+ AND gates and a propagation delay of TA. ClearIy, the number of te-

at p:) is N (si = m - j.
pi

The t e m at port fj5) are then partially added in block B6 using one layer of

XOR gates. This is to ensure that the sum of the propagation delay of B5 and B6 is equal

(0) p(6) (6) to that of B3 and B4. The outputs from B6 are presented at ports Po , , , . . . , Pm-,
andN = 131 , j = O , L , , m - 1.

To ensure that the sum of time delays of B5, B6 and B7, or B3, B4 and B7 is equal to

that of B3, B 1 and B2. block B7 must consist of one layer of XOR gates. Then, we have

Finally, the outputs frorn the corresponding ports of B2 and B7 are added together

(8) in block B8 to get cj . Let the input ports of B8 be pi8), P,(", . . . , Pm-, and the number

of binary inputs at P:' be Np!.). Then, we have Npp1 = NYl + NpP. Thus, the
J 3

propagation delay caused in B8 can be computed as

When f (x) = x* + xf + 1. the if-and-only-if condition for that f (x) is irreducible

is that rn = 2 3', 1 = 0,1,2, * . This is so because g (x) = 1 + I + z' is irreducible and

by Cohen's theorem 1191, f (z) = 9(zk) is irreducible iff k = 3'. This is dso a special

case of T-ESP when r = y which has been discussed in the previws section.

When f (z) = zm + z + 1, from (4.3) and (4.9),

I -

c;*$ =
b + + + for m < i + j < 2m - 2.

In this case, a block diagram for parallel multiplier is shown in Figure 4.4. It is easy

to see that the total time delay is TA + ([log, ml + 1) Tx.

Figure 4.5: Architecture of WDB multiplier when f (2) = zm + x + 1.

We summarize the results for the reduced time delay multipliers in the following

theorem.

Theorem 4.4 If finite field F2m is generated with an imducible trinomial f (z) = 1 +
zk + zm, 1 < k < [~ l , then, a bit-pardel WDB multiplier can be comtructed with

(i) C s x = m 2 - 1 and C T = T A + ([l o g 2 m] + 1) T x , for k = 1;

(ii) C s x = m 2 - 1 and ~ ~ = ~ ~ + ([l o g , [~ + ,] l + 2) ~ x , for l < k < Y ;

(iii) Csx = m2 - and CT = TA + for k = y.

4.5 Basis Conversion

Since two bases are involved in the WDB multiplication, sometimes it may be necessary

to have a basis conversion between the polynomial basis and the WDB, and vice versa
m-1

Given an element A = %ai E F 2 m . from (4.1) its jth coordinate with respect to the
i=O

WDB is given by

[a;,.-- = T - [ao , * * * ,&-ilT,

where basis conversion matrix T is defined by

Lemma 4.1 [60, 771 kt the polynomial basis be defined by an imducible trinomiai

f(z) = x* + xk + 1, then 7 can be chosen so that the basis conversion matrix is a

permutation back circulant matrix. O

When the field is defined with an irreducible trinomial, from Lemma 4.1 we know that

the coordinates of a field element represented with the dual basis is simply a permutafion

of its polynomial bais coordinates. Then. with a little added cost. a dual basis multiplier

can be used as a polynomial basis multiplier.

Lemma 4.2 Let the field be dcfined with a d + 3 term irreducible polynomiai f (x) =

+m +zk+d + x ~ + d - ~ +.-+zk+l. Then wecanchoose~ such thatT hasm+l+- d d - 1

nonzero entries. O

P m f : k t a be a root of f (2) and let to,i = Tr(7ai), 7 E F2m, to,i E &, and i =

O, 1. . . . , m- 1. Then when 7 mns through ail the 2" elements in bm, (tOvo, to,l, . . . , to,m-i)

will give each of the possible 0- 1 sequences of length m once.

Choose 7 E F& such that t o , = to+ = 1. toti = O for i = 1,2,. . . , m - 1 and i # P.

Then we have

~r(Ta"+') = Tr(rai) +~ r (~c t&+ ') + .. + T ~ (~ Q ~ + ~ + ')

= O f o r O < i < k - 1 ;

~ r (~ a ~ + ~) = Tr(?ak) + ~ r (~ a ~ ~) + + ~r(Tcr~'+~) = 1;

2k+i ~ r (~ u " + ~ + ') = T+r(7ak+') + Tr(7a) + - . - + T ~ (~ ~ ~ ~ + ~ *)

= O for 1 Q i G m - k - d - 1 ;

~r(Ta"-~) = ~ r (~ a ~ - ~) + + . . - + ~ r (~ ~ ~ + ~) = 1.

If we assume that ~r(?a~"-~+') = 1 for i = 1,2 . . . , d - 2 and let the number of nonzero

entriesinTbeN. Then N < l + (k - 1)+(2m- 1 -m- k)+(1+2+-+d-1) =
d d 1 m+l+,-.The b=~holdswhenm+k+d-2 < 2m-d, orm > k + 2 d - 2 . O

Clearly, for d = 2, f (x) = zm+zk+2 +xkC1 +zk+ 1 is a pentanomial and N = m+2.

which was dixussed by Moni. Kasahara and Whiting [60].

Lemma 4.3 Let the polynomial basis be given by an irreducible T-ESP f (2) = 1 + zr +
zZr + + ztr + xm (r) 1). Then we can choose 7 such that the basis conversion mauix

T has 2m - 2r ones. O

Proof: Choose 7 E Qm such that toqr-, = 1. toei = O for i = O, 1,. . . , rn - 1 and

i # r - 1. Then we have

Clearly, T has r + m - r + m - 2r = 2m - 2r 1's. O

Wmg and Blake have given a simple T for any polynomial basis [77].

Lemma 4.4 [77] Let the polynomial bais be given by an irreducible polynomial f (x) =

rm + CE:' fixi. Then a bais conversion matrix T can be given as

where bmel = 1. bi+l = xi=,-, bj fj-i+(m-l,, i = m - 1, m,. . . ,2m - 2.

If we choose f (x) with its second highest order term being xe, then it can be seen that the

(e + l) (e + 2) number of noruero envies will not be greater than rn + -. More interesting

is that the entnes 4's can be computed serially with a linear feed-fonvard shift register

which cm be easily implemented in hardware [77,34].

4.6 Chapter Summary and Discussions

in this chapter, we have first presented an upper bound on the size complexity of bit-

parallel multipliers using an arbitrary field F2n. Then for classes of fields which are

generated with irreducible trînomials, or irreducible ESPs, we have given both the size

and tirne complexities of the bit-paralle1 multiplier. Implementation issues have been

discussed especidy to reduce the time delay iacurred by the multiplier. These re-

sults compare favorably with those of the recentiy proposed mdtiplien of the same

classes [35,23].

Mdtipliers presented in this chapter are suitable for the cases where the weakly dual

bais representation of one input is available. When the polynomial basis is defined by

an irreducible trinomial, our results match exactly those of Fenn, et al [23], who have

implemented the bit parallel multiplier for small size fields (m 15, rn # 8,12). When

the polynorniai basis is defined by an irreducible AOP, which is a specid case of T-ESP

with T = 1, the complexities of Our bit-parailel multiplier in terms of both size and

time complexities are equal to those of MMOM proposed by Hasan, et. al. [36] (see

Table 4.1(0)). When the finite field is defined by an irreducible T-ESP (r > 1)- the com-

plexities of our multiplier are significantly Iower than those of the previously reported

ESP based multipliers as shown in Table 4.1(6). If the field generating polynomial is a

trinomial, the results presented in this chapter compare favorably with those of recently

proposed multiplien of the same ciass 1231.

1 Mtùtiplias 1 Bais used 1 Nomber of tw* / Numba of 1 T i e delay due to gates

MOM [IO]

Table 4.1: (a) Comparison of multipüers based on AOP- (b) Comparison of multipliers
based on T-ESP (T > 1)-

(4

ITM [6] P o l y n o d m2 + 2m + 1 m2 + TA + ([log, ml + Pog,(m + 211) Tx
BWBM 141 Polynomial m2

Normal
input AND gates
27n2 - m

WDBM Weakly duai rn2

Number of h o -
input AND gates

(na + r)
m2

Mnltipliers

' ITM [BI
HWBM (41

Nnmber of
XOR gates
(m++)'-r
3 + m - 2 r

Basis used

Polynomid
Polynomid

Tirne delay due to gates

T~+([log ,m]+[log~ (m+rt l) l)T~
~ ~ + (~ t ~ l o g , m]) ~ x

XOR gates
2 d - 2 m T ~ + (p o g ~ m] + l) T x

The scope of the proposed architecture, like al i other bit-parallel multipliea. appears

to be constrained to relatively small-to-medium size fields since the size cornplexity of

0(na2) makes hardware realization difficult with large values of m which are of interest

for cryptographie algorithms, especially, those which a~ based on the discrete logarithm.

The recent advances in the elliptic c u v e cryptosystems, however, have k e n making it

possible to use relatively smail fields for attaining similar level of data security [32].

Moreover, as VLSI and packaging technologies, such as multi-chip-module continues

to improve, the proposed bit-paralle! multipliers are expected to find potential use in

practical applications.

Chapter 5

Parallel Pol ynomial Basis Multi pliers

In this chapter, we present a low complexity aigorithm for computing reduction modulo

a polynomiai. Implementations of polynomiai basis multiplies using the new method of

modular reduction is proposed in 5 5.2.2. New algorithms for squaring in F2m are also

presented and their implementations are discussed in f 5.3.

5.1 Polynomial Basis Multiplication in F2m

Let the finite field IFzrn be generated with an irreducible r-tem polynomiai f (x) = xm +
t - 2 m-1

zei, where O = eo < el < - * - < +-2 < m. Let A(=) = %zi and B(z) =
i=O &O
m-1 m-l

biz' be any two elements in &m. Then. C (t) = E b. the product of A(z)
LQ i=O

and B(x) can be obtained in two steps:

1. Polynomial multiplication:

2m-2

where S(z) = x s k r k , and SL is given by

2. Reduction modulo the imducible polynomial:

C(z) = S(z) mod f (x),

where C (r) = x qzi, e; E F2.

Obviously, the complexities of the polynomial ba i s multiplication in F2m are determined

by these two steps. The complexity of the first step (polynomid multiplication) is in-

dependent of choice of the irreducible polynomial f (x), and it has been shown to be

O(m log mlog log rn) in bit operations [68]. We will show that the complexity of the

second step (modular reduction) is O (rm), where r is the Hamming weight of the ine-

ducible polynomial f (z) .

5.1.1 Polynomial multiplication

In the fint step of PB multiplication (5. L), if S(z) is computed fiom A(o) and B(x) by

the conventional polynomial multiplication methoci, it requim m2 multiplications and

(m - 1)2 additions in the ground field and the time delay is TA + [logt ml Tx. However,

there are some asymptotically faster methods for polynomial multiplication over finite

fields [q, such as, the Fast Fourier Transform method [S, 421 and the Karatsuba-Ofman

algorithm (41, 2,631. They can result in asymptotically fewer bit operations at the ex-

pense of longer time delay and certain costly pre- and pst-computations. Another tech-

nique for polynomial bai s multiplication that cm combine polynomiai multiplication

with modulo reduction into one single step is called the Montgomery method [58,44].

5.1.2 Reduction moduio a polynomial

For modular reduction C (x) = S(z) mod f (x), where deg f = m, deg S < 2m - 2 and

deg C < m - 1, if the conventionai polynomiai division method is used, the complexity

is 0(m2) in ground field operations. Mastrovito [50] has found that if the irreducible

polynomial is chosen properly for m < 15, m # 8, the complexity of modulo reduction

can be greatly reduced by using some partial sums. Paar [63] has also discussed this

issue for certain smaii values of m. However, their methods are based on cornputer based

exhaustive search and available for only moderately small size fields. In the foliowing,

we will present a new aigorithm that can perform modulo reduction in O (m) ground

field operations for any irreducible polynomial f (x) with the Hamming weight r.

Theorem 5.1 If the Hamming weight of the irreducible polynomial f (x) is T , then the

modular polynomial reduction (5.2) cm be done with (r - l)(m - 1) bit operations.

tjf)*s have the initial values ti-" = ai. and. we try to solve for the 'final' values ti"-2) =

In the following, we shall prove by induction that the cornplexity of solving t!m-2), i =

0,1,2,. . . , m - 1, is (T - l) (m - 1) bit operations.

When 1 = O, from (5.3) we have

t!-') + s,, if i = O, el, ea, . . . , e,-2,
Cieariy. ti0) =

if 1 5 i 5 m - 1, andi # e ~ , e z , . .. ,eV-%

- Assume when 1 < 1'. + - 1 bit-additions are required for obtaining t!') from tit-'), i -
O, 1,. . . , m - 1. Then. when 1 = I', we have

(l t - 1) Obviously, tll') cm be computed frorn ti using r - 1 bit additions. Now suppose that
A I f + eV#-l < m < I f + e,1,rf € (l ,T - 2) and eo = O, thus it foIlows

(L I - 1)
it can be x e n that r' bit additions are required to obtain t?'') from ti , z = O, 1, . . . , m-

l.

In the following we shall prove that t:"), i = 0,1,. . . , m - 1, cm be obtained frorn

("*O) with r - r' - 1 bit additions. Define t i

m-t m-1

Since 1' + e,t - m < l', we have

(ll+e,r -m) (Lt+epi -m-1) S ince t has k e n obtained from ti with r - 1 bit additions as assumed,

comparing (5.5) to (5.6). we cm see that (5.5) and (5.6) can be combined together to Save

bit operations. That is. when I = 2' + e+ - m, instead of performing (5.6). we perform

m-1 m-1 c tj'+eG-m-l) z i + + ~ ~ + p) d " ~ @ m ~ d f (z) = C ti (L8+e# -m.*) xi (5.7)
i=O Ln

with r bit additions, while (5.5) c m be saved. In the sense of the count of bit operations,

we may equivalently Say that (5.5) requires one bit addition, while (5.6) still needs T - 1

bit operations. SiMlar arguments can be applied to the remaining r - r' - 2 terms in
(1'-1) (5.4). Thus for 1 = 2'. r - 1 bit additions are required for obtaining t!") frorn ti ,

y i = O, 1,. . . ,m - 1, for i = O, 1 . . , m - 1 Therefore. to compte t r) from t,

needs r - 1 bit additions for any integer 1. We conclude that computing ci = tIm-') from

si, i = 0,1, . . . ,2m - 2 requires (m - 1) (r - 1) bit additions. D

Theorem 5.1 c m be easily extended to Fqm as it is stated in Theorem 5.2. A proof for

Theorem 5.2 is analogous to that of Theorem 5.1.

Theorem 5.2 If the rnonic irreducible polynomial f (x) E F, [x] of degree m has the

Hamming weight of r , then the modular polynomial reduction in polynomial basis mul-

tiplication can be done with (r - l) (m - 1) multiplications and (T - l) (m - 1) additions

in Fq.

5.2 Bit Parallel PB Multipiiers

5.2.1 Previous implementations

The eatliest parallel polynomial basis (PB) multiplier was suggested by Bartee and Schnei-

der [IO]. Depending on the irreducible polynornial, the implementation ~quires as many

as m3 - m two-input adders over F2 [Il]. Some proposais on bit-parailel PB multipii-

ers are suitable for VtSI implementation by using cellular array, systolic array, or other

highly regular structures [83,70], while others with l e s complexity are based on some

specinc class of fields such as ail one polynomials and equally spaced polynomiais which

c m potentially simplify the multiplication circuitry [38,35].

Bit-parallel PB multiplien based on the irreducible trinomial zm + zk + 1 with

1 5 k 5 121 are attractive because they require fewer gates for modular reduction.

Mastrovito has proposed a multiplication algorithm and architecture when f (2) is a tri-

nomiai [SOI. He has shown that the number of both AND and XûR gates needed is propor-

tional to 2m2 when the degree of f (x) is no greater than 15 and not equal to 8. The KOA

has also been considered for building bit-pamllel finite field multiplien [63, 21. Paar's

irnplementation has shown that bit-paralle1 multiplication architectures using the KOA

in certain composite fields c m have significantly Iower complexity, compared to that of

Mastrovito's. However, the time deiay of the architectures using the KOA can be longer.

5.2.2 Implementation with new method of modulo reduction

If the conventional method for polynomial multiplication is used, then the compIexity of

a bit pardiel multiplier in F2m c m be described as follows.

Theorem 53 Let f (z) be an irreducible r-term polynomial of degree m over iF2. Then

PB multiplication in F2-. can be performed with at most m2 bit multiplications and m2 +
(t - 3)m - (r - 2) bit additions.

PmoE It i s a direct consequence from Theorem 5.1 when the conventional polynomial

multiplication is used for (5.1). Cl

In the following, we wiii present an analysis of propagation delay for the bit paraiiel

multiplier when the irreducible polynomial is a trinomiai.

Lemma 5.1 Ifthe finite field IFp. is defined with an irreducible trinomial f (z) = 1+rk+

zrn, 1 < k < y* then a bit-pardel PB multiplier can be constructed with CSA = m2,

Csx = m2 - 1 and

h f i If the conventional polynomial multiplication method is used, an irnplementation

of the first step (5.1) requires m2 AND gates, (m - 1)2 XOR gates and a time delay of

TA + rlog2 ~ I T X .

In the following we solve the complexities requind for implementing the second step

(5.2). Define

uizi = 8izi mod f (z).

(i) When Ir = 1, f (x) = xm + z + 1. we have

It can be seen that term xo = 1 occurs once on the right hand side of (5.8) when j = 0,

term xm-' occurs once on the nght hmd side of (5.8) when j = rn - 2, and term

xi, i = 1,2,. . . , m - 3. occurs twice on the right hand side of (5.8) when j = i - 1, i.
Thus, we obtain

Clearly, CS = m - 2, and Cc = TX. The longest delay accurs at the terms uj, j =

(ii) When k) 2, since f (2) = 1 + zk + zm and k < y or m - k > k, we can write

the terms zj, j = O, 1,. . . , m - 2 as follows

Let Tl and 4 denote the fint and second texms on the right hand side of (5.9a),

respectively. Let T3, T4. and T5 denote the fiai, second and third ternis on the right hand

side of (5.9b). respectively. Note the range of degree of each term. We illustrate their

relationship in Fig. 5.1.

Figure 5.1: Indication of the relation between ternis in (5.9a) and (5.9b).

It can be eady seen from Fig. 5.1 that ierm x i , O 5 j k - 2, only exists in Tl and

and term zk-' exists only in Tl. Thus we have

Case 1: When 2k - 2 5 m - k - 1, we have

Case 2: When 2k - 2 2 m - k, we have

Rewrite the above equations to obtain

and

Case 2 :

Thus, for both cases we have C i = m - 2 XOR gates. and C$ = 2Tx. The longest

delay occurs when generaihg the terms uk+ j, O 5 j 2 b - 2. The lemma follows by

noting CSA = Ci + CS and CT = Ci + CI. O

Lemma 5 2 If the finite field iF2, is generated with an irreducible trinomial f(t) =

1 + x? + xm, then a bit-parallel PB multiplier can be consuucted with C s ~ = mZ,

Cfl = m a - Y a n d C ~ = T A + ([l o g l r n l +1)T',

Proof: Since xm = 1 + x p. we have

From the above equations. we have

CHAPTER S. PARALLEL POLvivOlWAL BASLS M U L T L P m S 76

Clearly, Ci = 7 - 1 XOR gates and C$ = Tx. Then, the lemma follows by noting

c S A = c ~ + c ~ ~ d C T = c ~ + C ~ . 0

Since the above proofs are constructive, architectural implementation of the bit-

parallel multiplien is straightfonvard. We summarize the results in the following the-

orem:

Theorem 5.4 If the finite field iF2m is generated with an irreducible trinomial f (2) =

1 + 2 * + z m , 1 < k < [y], then a bit-parailel PB multiplier can k consmcted with

CSA = m2,

(i) C s x = m 2 - 1 and CT=TA+([10g2rnl+1)fi for k = 1 ;

(ii) Csx = m2 - 1 and CT = TA + ([log, ml + 2)Tx, for 1 < k < y;
(iii) Csx = n2 - y and CT =TA+(rl0g2m] + l)Tx for k = y.

5.3 Low Complexity PB Squarer in lF2m

5.3.1 Complexity of PB squaring in h m

Let f (2) be the irreducible polynomial over iF2 generating the 6eld IF2,. Let A(z) =
m-1

ezi be the polynomial representation of an arbitrary element of F2n. The squarïng
k 0

operation of A(z) is C (x) = A2(x) mod f (x) , where O 5 deg C (z) < m - 1. In A2(z) ,

the terms with degree equal to or higher than zm are tramformed to lower degree terms

using the (m - [y] - 1)-by-m r e d u c h matrix R. as follows [SOI.

R, (1, z, . . . , = (z2rF1, s2(r91+l), . . . , z2m-2)T mod f (r)

mod f (2) .

4 nien the square C (r) cizi = A*(z) mod f (z) = oo + aiz2 + a2z + . . . +
i=O

n r2rFl + . . . + 4n-ix2m-2 mod f (x) be described as a r ~ l

The complexity of the polynomial ba i s bit-parallei squaring depends on the number

of 1's in matrix Ra. The coordinates ci is the sum of at most -2 + 1 terms which can L"1
be realized using a binary tree of at most XOR gates when i is even. Otherwise, 1"l
has at most [y] te- and ne& L?] - 1 XOR gates or fewer. The total number of

Thc maximal time dclay is [log2 ([y] + 1)1 Tx- The above can be summarized as

follows: Let the field Fam be generated with the irreducible polynomial f (z) of degree

m. Then squaring a field element cm be performed with at most

operatiom.

It c m be seen that squaring in F2m is actuaily a case of polynomial rnodular reduction

that has been discussed in 05.1.2. where the degree of each squared t e m in A2(z) is an

even integer between O and 2m - 2. From the discussion in 5 5.1.2 (Theorem SA), the

following corollary is obvious.

Corollary 5.1 Let the field be generated with the irreducible r-term polynomial

f (z) of degree m. Then squaring a field element can te ~ r fo rmed with at most (T -
1) (m - 1) addition operations in IF2.

When f (z) is an irreducible trinomial, however, both the size complexity and time

complexity can be further reduced.

Theorem 5.5 Let the field F2m be generated with the irreducible trinomial f (x) = xm +
zk + 1, where m is even and k odd. Then squaring a field elernent can be performed with

at most ?+- bit operations. O

O (1) where ai = ai i f i even, and O i f i odd, and 1 = -1,0,1,. . . ,y - 1. The terms ti 's

e-1) = (.., = have theK initial values t:-') = ai, and we try to solve the b a l values ti

0,1, . . . , m - 1. In the following we shall prove the theorem by induction.

When 1 = 0,

I O7 i odd, i # ~ c ;

Clearly. one bit addition is needed to cornpute t p) from t!-'), i = O, 1, . . . , m - 1. For

2 > O, we have

(1'- 1)
It can be xen that only one bit addition is required to compute tr) from ti for O <

1 < v , a n d i = 0 , 1 , ... , m - 1 .

In the following we proceed with induction. When 1 = m+, (.: m - k is odd),

we have

Obviously, two bit additions are required to compute t f) from tr-'), i = 0,1, . . . , m - 1.

(il ti = <

(1-1) ' t i + a&+,,, i = 21 or i = 12 + 1;

&+a 7 i = 1;
(1-1) t i , i even.i # 21. Ir + 1;

o r i = k , P + 2 , ... ,12+2(1- 1);

, O ! i o d d , i # k , k + 2 , 1 ; + 2 (1 - l) a n d i # l .

k 1 Assume that for < 1 c P, (5.1 1) holds. then for 1 = 2' c y, we have

t=O i=O
21' < m. and k + 21' - rn i s odd and less than k,

Thus it requins one bit addition to obtain t!'**) from $'-')* i = O, 1,. . . , m - 1.

When 2k + 21' - rn < rn, we have t<') = til'") if i # 2k + 21' - m, otherwise

tr') = tf'") + a&+,,. It is therefore two bit operations are nquired to cornpute tf') fiom

tr'-') fori = O , . . . ,m - 1.

When 2k + 21' - nt 2 m. consider

It can be seen that the last terms of the right hand side of (5.12) and (5.14) are the same

except

at step

for the coefficients. If we perform

1 = k + F - m at the cost of one more bit operation. then at step 1 = t', the

(L I - 1) - - te* t!") c m be computed from Ti , - O.. . . , rn - 1 with only one bit operation.
(1 1 - 1) Equivalentiy. we might say that at step 1 = 1'. term t!") can be computed from ti ,

k 1 i = O, 1, . . . , m - 1. at the cost of two bit operations. Thus for v- < 1 < 7 - 1,

it requires two bit additions at each step.
(Z-1)

We conclude that the total cost for computing Q = ti a from t!-') = ai, i =

Theorem 5.6 Let the field F2, be generated with the irreducible trînomid f (2) = zm +
xk + 1, where m is odd and k even. Then squaring in F2m can be perfonned with at most

m+. bit additions.

Theorem 5.7 Let the field F2m be generated with the imducible trinomial f (z) = zm +
zk + 1. where both m and k are odd. Then s q u a ~ g in F2m cm k perfonned with at

most m+. bit additions. O

Prwfs of Theorerns 5.6 and 5.7 are similas to that of Theorem 5.5.

Theorern 5.8 Let the field &m be generated with the irreducible trinomial f (x) = zm +
zk + 1, where m + k is odd. Then a bit-parallel squarer can be implemented with at

L 1 most XOR gates. For k = 1 and 2, the incurred time delay is Tx, and for

2 c k 6 it is 2Tx.

hf: Foracenain valueofi, i = 0,1,. . . ,m- 1, it can be seen from(5.10) and (5.13)

that that every bit addition occurs for a different value of i . Thus the tirne delay incurred

with (5.10) and (5.13) is at most Tx. The longest time delay is incurred with (5.12). A

simple method to estimate this delay is to count the number of times that (5.15) is used

when computing (5.12). When 1' = 32 - 1. x 2k+21t-m = 22k-2. Applying the mapping

zm = xk + 1 to x * * - ~ until al1 the tenns with degree less than m. Let the number of the

mappings is y. then

211.-m-2
2 1 s - 2 - y (m - k) < m a y >

m - k

:. The longest time delay = m - k lm - 2] = 1. and when2 < h 6 F, [FA.] = 2. Forh = 1,2, we have ,a, I3

Theorem 53 Let the field F2.. be generated with the irreducible trinomial f (z) = x* +
xk + 1, where both m and k are odd Then a bit-parallel squarer can be implemented

with at most XOR gates. The incurred time delay is Tx if k = 1, and 2Tx if

2 < k < y -

Prrn,f= The proof is similar to that of Theorem 5.8.

Chapter 6

Analysis of SD Form Exponents

The primary opration in most discrete logarithrn and elliptic curve public-key cryptosys-

tems is to rais an element in the group to large powers, Le., exponentiation and point

multiplication on an elliptic c w e . This chapter deals with the efficient represemtations

of the exponent. Fint a brief review of signed-digit (SD) number systems (56.1). then

closed form formula for the number of nonzeros and the length of the (SD) non-adjacent

form (NAF) are denved in 5 6.2.

6.1 Exponent Representations

6.1.1 Using conventional number systems

The conventional number systems are non-redundant and hed-radix number systems. In

a non-redundant number system, every number has a unique representation. An integer
n-1

N is uniquely represented with a radix-T number system as N = 4, where E
à=O

CHMïER 6. ANALYSIS OF SD FORM EXPONENTS 85

(O, 1,. . . , r - 1). The ordered string (G-~ , . . . , ao) is called the radix-T representation

of N. A binary or raàix-m representation of N naturdy introduces a method to compute

aN (square and multiply method or m-ary method [57]).

6.1.2 Using redundant number systems

-
In a fixed-radix system. if we ailow the digit set to be extended to {ü, . . . ,1,0,1, . . . , a):
where ü = -a. then the resultant number system is called the signed-digit (SD) nwnber

systern. A radix-r SD representation of N is given by:

where bi E {O. f 1.. . . , f (T - 1)) and C 6 < ~ ' = N.
i=O

The SD number system is redundant since some numben have more than one repre-

sentation. Note that the number of nonzeros digits of an SD form is actuaiiy the length

of the corresponding addition/subtraction chah [59], then we can present the following

definition:

Defmition 6.1 [67, 18-61 N = (!~,b,-~ . . . bo) is referred to as a minimal weight r&-
rn

T SD representcition of N if the sum zi is minimized, where

1 i fbi # O ,

O otherwise.

al%e positive integer a can be in the range of [Tl < a < r - 1. Men a = [q l . the set of -
(E, , . . ,1,0,1, . . . , a) is themtnimnlsigneddigitset (5 11 and the systern is cailed theminimally mdwrdrurr
signed-digit number system.

CHAPTER 6, ANALYSIS OF SR FORM EXPONENTS 86

It can be shown that a minimal weight radix-r SD representation is of length not p a t e r

ihan n + 1, where n is the binary length of N.

Among the minimal weight radix-T SD representations of N, a canonical radix-r SD

form can be defined as follows which is a generization of the canonical binary SD (BSD)

form [67].

Definition 63 [18] Let N = (b,bn-l . . . bo) be a minimal weight radix-T SD npresen-

tation. It is refemd to as a canonical radix-r SD representation of N if hi's satisfy the

following two conditions:

where 1 bl denotes the absolute value of b.

In Clark and Liang's papa [18], where the canonical SD representation is referred to

as a generalized nonadjacent form (GNAF), since it has the property that there is no

two consecutive nonzero digits in this representation when T = 2, proofs have been

provided for minimality, uniqueness and existence of the canonical SD representation

for any integer N. An algorithm from Theorem 3 of [18] that converts the conventional

radu-r representation of an integer into the canonical fadix-T SD form is given below.

Algorithm 6.1 [1 81

Input: The radix-T form of an integer: N = (U,,-~U,,-~. . . %),

where E {O, 1,. . . , r - 1).
Output: The canonical d i x - r SD fom: N = (bnbn-l . . . b) ,

where bi E {O, 33,. * . , &(r - 1)).

Step 1: 4, := O; h+l := O; := O;

Step2: fori = O tondo

End.

6.2 Average Hamming Weight and Length of Non-adjacent

Form

Minimal weight signed-digit (SD) representations have been used in many arithmetic o p

erations, such as, computation of exponentiations in the integer domain and in a cyclic

group [17. 801, computation of multiple of a point on an eiiîptic c w e [59], etc. In

these algorithms, the number of certain basic arïthmetic operations, for example. multi-

plication and squaring, depends on both the H m i n g weight and the length of the SD

representations used. It is thus important to know their precise formulae to determine the

number of underlying basic arithmetic operations.

6.2.1 Hamming weight of radix-T NAF

Lemma 6.1 Let p(n, T) denote the average number of nonzero digits in the minimal

weight d i x - T SD representation of an integer which is between O and rn - 1, inclusive.

Assurning p(0 , r) = O . we have (n 2 1)

r - 1 1
(n - 1 - (1 forneven.

r + l rn t

r - 1 1
p(n - 1 7) + -(1+ -p) for n odd.

r + l

Proof:
r - 1 (i) When n = 1, obviously, p(1. r) = 7.

(ii) When n = 2. it can be verified that the number of nonzero digits cannot be reduced in

the minimal weight SD form. and thus p(2. r) is equal to the average number of nonzero

digits in the radix-r form of an integer N. O 6 N < r2 - 1. Then p(2, r) = w-
7 ' -

T - 1 p (k 4 + y*
(iii) When n) 3. let N = (~,,-~u,,-, . . . ao) be an integer in radix-r iorm between O and

rn - 1, inclusive. We have

1 r - 1
= -p(n - 1, r) + -o(n, r) ,

T r

where o (n , r) denotes the average number of nonzero digits in the minimal weight radix-

T SD form of an integer whose radix-r representation is of length a with the most signif-

icant digit king nonzero.

Let each ofuj,vj,Gj mdwj, j = 0,1,2,. . . . denote adigit andbe given by

Let N' = (u,,-,G~. . .ao). and let Nt' = uo rn-1 + N' = (4 ~ - , 4 - 3 . . .ao). Then

al1 the possible combinations of the three most significant digits in the radix-t form of

N' cm be divided into three cases Ao, Bo, and Co:

Now apply Aigorithm 6.1 to both N' and N" and let the resultant canonical SD f o m

<

be 4-, - bh and b: b;, respectively. Obviously, b: = b! for i = 0,1, . . . , n - 3 and

4-, = 44-
When the case A. is considered. one cleariy has bn-, = vl + C-, and bL-, = O. If

uo + v l + cn-2) r then bk-, = vl + dm-, # O and 4-, = vl + 6-, - r # O and,
II bn-, = u o + 1 # Oandb: =Oifuo < r -l.orb:-, =Oandb: = l i f u o = T - 1. If

uo + vl + CA-, < T then bn-, = vl + 4-, = 6nw2 and b:-, = uo # O. Thus. in Ao, the

SD f o m of N" has one more nonzero digit than that of N'.

\ (Co) u o (~ 1 w -

f

(Al) uoIv1w2

When the case Co is considered then 4-, = di-, = 1 since al + ul 2 r. Also

(Bo) uolÜl0-** -i

b,, = 0. bi-, = 1. andbn-, = Oand. bE-, = u o + l # Oifu < t -2,orb:-, = O

and b: = 1 if uo = r - 1. T'us. in the case of Co the SD forms of N' and of N" have the

f

(A i) uo l+ü10v3w4

(BI) U ~ ~ Ü ~ O ~ ~ O * * * +

, (Ci) uo~oloü3u4-~*

same number of nonzero digits.

In case Bo, it cm be easily checked that the SD form of N" has as many nonzero digits

as that of N' if<-, = di-, = 1. and the SD form of Nt' has one more nonzero digit than

that of N' if 4-, = Ln-, = O. Further including next two digits so that it c m be divided

into three subcases Al, BI, and 4. then in subcase Al we have dn-, = <-, = O,

CHAPïER 6. ANALYSIS OF SD FORM EXPOlrlENTS 90

and in subcase Cl we have 4-, = dn-, = 1 because 4-, = <-, = 1. In subcase

BI, the above dividing procedure is repeated. It can be verified that in al1 subcases

Aj , j = 0,1 ,2 , . . ., we have dn-, = cn-, " - - 0, and in di subcases Cj, j = 0,1 ,2 , . . . ,
we have $-, = 6-, = 1. If n is odd, the repeated procedure stops when it reaches

subcases AT, Bq, and CM. Obviously, 4-, = <-2 = O in subcase Bn-3 If n
2 T *

is even, the final subcases to consider are subcases A?, B?, and Cq. In subcase

B w further including the last remaining digit ao, it is easy to see that 4-, = 4-, = O
a

when a0 either is O or belongs to (1.2,. . . , r - 1).

Following the above argument and noting that

when n is odd one can write

CHAPTER 6. ANALYSIS OF SD FORM EXPONENTS

Then by noting (6.2). we obtain

When n is even, we have

From (6.2) and (6.4). we O btain

0

From the recunive relation in Lemma 6.1, we can derive a closed f o m expression
1 for p(n, T) . When n is odd, by recalling that p(1, r) = and using Lemma 6.1 we

CHAPTER 6. AhrALYSlS OF SD FORM EXPONENITS

can wnte

When n is even, it yields

We summarize the above results in the following theorem.

Theorem 6.1 Let p(n, r) denote the average number of nonzero digits in the minimal

weight radix-r SD representation of an integer whose radix-t form is of Iength n (between

O and rn - 1. inclusive. and n) 1). Then a closed forrn expression on p(n, r) is given

2r
n+---

2 1 % (r + l I 2 (T + I) ~ T " - ~
for n even,

2r - r2 + 1
-n+ for n odd.
r + 1 (r + 1)2 (r + l)lrn

For the case of the minimal weight BSD form. we have the following expression for

the average number of nonzero digits in the minimal weight BSD form of an integer

whose radix-r form is of length n (n) 0):

6.2.2 Length of radix-r NAF

We have also obtained the average length of the canonical SD fom and it is summarized

in the following theorem.

Theotem 6.2 Let A(n,r) denote the average length of the canonical d i x - r SD repre-

~ntation of an integer whose radix-r fom is of length n (n) 1) with the most significant

digit being nonzero. Then X(n, r) can be given by the following expression,

T
for n odd.

CkMPïER 6. ANALYSIS OF SD FORM EXPONENTS

Proof:
(i) When n = 1, X(1, r) = 1.

(ii) When n = 2. the SD form has length 3 only when al = r - 1 and a0 # O, otherwise
T - 1 1 the SD form has length 2. Thus, A(2, r) = 2 + 7 = 2 + +.

r(r
(iii) When n 2 3, it is easy tu see that c, = 1 is a necessary and sufficient condition for

that the canonical SD form is longer than its radix-T fm. If c, = 0. the canonical SD

form keeps the same length as its radix-r fom.

Let uj, v j , Ci. and w j 7 j = O. 1, be defined as in the proof of Lemrna 5.1 and

xi, j = O, 1,. . . . be a digit E {1,2,. . . , r - 2). Let T ôe an integer between rnœL and

rn - 1. inclusive. Consider al1 the possible combinations of the ieading three digits (the

most significant digits) in the radix-r form of T (shown below) and apply Algorithm 8.2

to them:

(Ao) ~ o W I W ~ " '

(Bo) ü o O ~ a

(Co) c000V2 +

(Do) ü o ~ l ~ 2

It can be seen that c, = O ia cases 4 and &, and c, = 1 in case &. In case Co, indude

the next two digits and consider ai i possible combinations of the leadhg five digits, it is

easy to see that c, = O in case BI. and in case Di we have ç, = 1 (y = 1 and

+ = Co + k-2) r, .=. k-l = 1 and 6-1 + G-L) r). For Cl, we can m e r

divide it into three sub-cases B2. C2, and 4 and a similar discussion can be applied

CHAPTER 6, ANALYSIS OF SD FORM EXPONENTS

Obviously we have

r - 2
Pr(Ao) = -

r-1'
1 1 r - 1 1 Pr(&) = - - - = -

r - 1 r r T~ '
1 1 1 pr(co) = - - - = 1

r - 1 r r r2(r - 1)'
1 r - 1 1 pr(Do) = - * - = -

r - l T r '

and

When n is even, the procedure would continue until the least significant digit is

reached, where the last digit is a O with a probability of) and a nonzero with a probability

T l. corresponding to e, = O and c, = 1, respectively. Then, of -

CHAPTER 6. ANALYSIS OF SD FORM EXPONENTS 96

When n is odd, this procedure can be repeated to the end of the original d ix-r fonn

and the length of the canonical SD form is,

O

When the radix r = 2. we have the following formula for the average length of a

canonical BSD form whose binary expansion is of length n (n 2 0):

Chapter 7

Realization of Finite Field

Exponentiation

In this chapter, we present efficient architectures for exponentiation of a primitive ele-

ment of a finite field. We consider two different representations of the element - one

using the polynomial basis and the other using its weakly dual basis. Parts of this chapter

have been presented in [80,79].

7.1 Brief Review

Many cryptosystems require extensive exponentiation in finite fields [20,3]. High-speed

computation of this function in large finite fields, which are nefessary to achieve a high

level of security, r e q u k hardware implementation. A specid case of exponentiation in

M t e fields is that the base a is a root of the primitive polynomial F (z) generating the
m-1

field I69.501. Given a primitive element (z E F2m and an integer H = k2', O 5
i=O

H 5 T - 2, the exponentiation function of a is given as y = # E Km = F2, - {O).

The basic scheme for cornputing the exponentiation function aH in Rn is the Square

and Multiply aigorithm. The number of multiplications involved in this aigonthm is

detemiincd by the number of 1's in the binary representation of the exponent H.

When a polynomial basis or its weakly duai basis is used to represent the field ele-

ments. multiplication with a is simple and squaring cm be implemented in a bit-parailel

fashion [50]. If a normal basis is adopted, the squaring is trivial; the multiplication is

however quite complicated. The multiplication. however, can be simplified when an op-

timal nomai basis [7] is used. Using the square and multiply algorithm, architectures for

exponentiation of a primitive root with polynomial bais and normal bais can be found

in [69, 501. Since a is a fixed element. one rnethod to compute clH is to precompute

the conjugates of a and store them in a memory. and then multiply together some of the

conjugates according to the binary representation of H 1691. The multiplications can be

performed in a parallel fashion with a number of multipliers arranged in a binary tree

form. Processor-time tradeoffs can be made by adopting a subset of the full multiplier

tree.

Other methods for exponentiation of a primitive root are based on lookup tables

(LUTs) [50] and linear feedback shift registen (LFSRs) [SOI. The former is advanta-

geous only for srnall m, since the size of the LUT is proportional to m x 2*. The LFSR

based method requires H multiplications to compute a* = It is suitable for
K

smali values of m and under the condition that the computation t h e is not critical (501.

It is worth mentioning here that the binary representation of H is used in al1 the above

algorithms.

On the other hand binaiy signed digit (SD) representation of H whose symbols be-

long to {-1,0, l) has been used in exponentiation ba when the base b is a conventional

real number [17]. In the binary SD number system, H may have several representations;

however, the minimal binary SD representation, which has the least number of nonzero

symbols, can reduce the average number of nonzero symbls to y h m y contained in

the conventional binary representation [28]. . Consequently, the use of the minimal SD

representation results in fewer multiplications required for the computation of exponen-

tiations in the real numkr field.

However, introducing SD number system, especiaiiy with a higher radix, into expo-

nentiation in F2, would involve a multiplicative inversion operation. which is commonly

known to be difficult. To solve this problem, in this chapter, we present novel architec-

tures as well as new algorithm for exponentiation of a primitive root in F2m. Using

the minimal binary SD representation and bidirectional LFSR, an architecture for the

exponentiation is developed. This architecture has a low size complexity and can effec-

tively reduce the number of underlying operations. Consequently. it is suitable for low

power implementation using VLSI technologies. Furthemiore, the use of the minimal

radix-4 SD representation of the exponent is investigated and an extended bidirectional

LFSR is devised to perform multiple operations that arise due to the use of the radix-4

representation. The attractive feature of the extended bidirectional LFSR is that a multi-

plication with a primitive root, or its square or its inverse or its inverse-and-square can be

performed with one single shift operation. Using this LFSR, a second architecture for ex-

ponentiation in Fan. is developed. With a modest extra size complexity, this architecture

has the potential of significantly reducing the total computation time as weil as power

consumption, when implemented using VLSI technologies. As a rcsult, the proposed ex-

ponentiation architectures are suitable when low power and compact conQurations are

of prime concem. such as personal communication systems.

7.2 Efficient Representations of Exponent

73.1 Algorithm

One special case of the redundant SD number representations (discussed in 56.1.1) is r =

4, and a = 2, w hich uses radix 4 and the minimal signed digit set {- 2, - 1,0,1,2). This
class of SD representations is weU known and has ban applied to the design of cornputen

[8]. In this section, we will give an explicit definition of the reduced redundancy minimal

radix-4 SD form and an algonthm to generate the canonical representation. as well as

some properties.

Definition 7.1 The reduced redundancy radix-4 SD number K = &-1 t - 1 ..&, k E
n-1

a {2,1, O, i ,2) , is a minimal radDr-4 SD representatiun, if si is minimized, where Z =
i=O

-2: and

i forl;i#O
S i =

O otherwise

A method called the extended canonical recoding to obtain the radix-4 SD represen-

tation from a binary number H = . . . ho is given below.

Algorithm 7.1

Step 1. Use the canonical recoding to obtain the canonical binary SD representation

of H [67]:

The radix-4 SD form H = klyl kLFJ -l . . . k~ computed from Algorithm 7.1 is calied

the (reduced redwidancy) canonical radUc-4 SD representation. Circuits to transform a

binary number to its canonical radùr-4 SD representation using Aigorithm 7.1 are shown

in Fig. 7.6. An example of using the extended canonicd recoding to obtain the canonical

radix-4 SD form is given in Example 7.1 in the next subsection.

73.2 Features of minimal radix-4 SD form

L e m 7.2 Every integer has a unique canonicai radU-4 SD representation.

Proof= {gmgm-l . . . go) computed in Step 1 is a canonical binary SD number and has

the property: gj+lgj = 0, for j = O, 1, . . . , m - 1 [67]. Then the possibie values of

g2i+1g2ip in Step 2, are 00,O 1,10, oT, and 10. and correspondingly, = 0,1,2, T. and

It is obvious that there is a one-to-one correspondence between g2igzd+l and ki. Thus,

{kLfl kLTl-1 . . . b) is uniquely decided by the {gmgm-l . . .go). The lemma follows by

noting that any binary number H has a unique canonical binary SD form {gmgm- 1 . . . go)

Lemma 7 3 Canonical radix-4 SD form is a minimal radix-4 SD representation.

Proof: From the proof of Lemma 7.2, we know that = O if and only if both

and g2i+l are zero, and # O if and only if either gzi or 92i+l is a nonzero digit, and

moreover, gzi and g2i+l cannot be both nonzero. Thus, the canonical radix-4 SD form

{EL% kLrJ-i . . .4) has the same number of nonzero digits as its canonical binary SD

form {gmgm-1- - go)

For the sake of contradiction assume that the canonical radix-4 SD number H =

kL7 l t p l -l . . . is not a minimal SD representation. k t {kiki-, . . . &,} be another

radix-4 SD representation of H, which is a minimal radix-4 SD number. Then there are

fewer nonzero digits in {kiki-, . . . ki) than those in {kLll hLFj-1 . . . ho) or in {gmgm-t . . . go}.

Applying the conversion mles 5 = 10, = oT, O = 00, 1 = 01, and 2 =

10 to {k:ki-, . . . k;}, we obtain a binary SD form {g;n+lg;, . . .&} with the same

number of nonzero digits as {kiki-, . . . g). Then the number of nonzero digits in

. . . &) is less than that in {gmgm-t . . . go). which is however impossible since

H = gmgni-l . . .go is a minimal binary SD representation. Thus the lemma holds. O

Note that 2-bit Booth [8] form uses the same digit set {2,1,0,1,2). The following

lemma States a cornparison between these two SD representations.

Lemma 7.4 The average number of noazero digits in a minimal radix-4 SD number is

asymptoticaily 1 1% less than that of its 2-bit Booth form.

Proof: First, we obtain the number of nonzero digits in the 2-bit Booth form. Let

X = z , - ~ x , - ~ ... 2 0 , xj E {0,1),j =0,1, ... ,m-1,bcanybinarynumberoflength

m, and Y its 2-bit Booth form. Let the two consecutive bits xz+lx2i in X conespond to

the digit Yi in Y, where Yi E {2,1,0,1,2). The conversion rules for the 2-bit Booth form

are given in Table 7.1 [8].

Table 7.1 : Radix-4 SD number encoding using 2-bit Booth algorithm [8].

(a) When i = 0 ; xli-1 = x-1 = 0 , and either of x l and xo with equal probability can

be O or 1. corresponding to the cases It = 1.2.3.4. Then it is obvious from Table 7.1 that
3 Pr(yo # O) = ,, since each case of k = 1,2,3,4, has equal probability.

(b) When 1 5 i 5 !?f - 1 (m even), or 1 2 i - 1 (m odd); each of

zzi+l, ~ 2 i and 22;- 1 has equal probability to be O or 1. Consider in Table 7.1 di the

values of k i.e., 1,2,3,4,5,6,7,8, each of which has the same probabiiity, then we have

rn (c) When i = (m even); zzi = ~ 2 i + l = 0. and zli-1 can be O or 1, with equal

probability. Consider the cases k = 1,5 with equal probability in Table 7.1, obviously,

Pr(yi + O) = a.
(d) When i = + (m odd); z*i+i = 0, and with equal probability, either of zzi

and x * ; - ~ can be O or 1. Consider in Table 7.1 the cases k = 1,2,5,6, which are equally

Let Ly be the average number of nonzeros in Y. then we have

3 7 3 Therefore, for any large m, Ly = grn + -t gm.

Thus, the lemma follows by noting that the radix-4 minimal SD number of length 21
has average y nonzero digits. O

Below is an example which shows that the nonzero digits in a minimal radix-4 SD

number are fewer than those in its 2-bit Booth form. It is worth noting here that the

(reduced redundancy) minimal radix4 SD number has fewer nonzero digits and shorter

length than the comsponding 2-bit Booth form, since they both use the same symbol set

(2. T, 0, 1.2).

Example 7.1 Consider the binary number 100111001000110110. Its canonicai binary

SD form is 10100~00100100~0T0. Then, from the extended canonical recoding, its

canonical radix-4 SD representation is 2 2 0 2 1 0 2 2. According to the conversion ta-

ble for 2-bit Booth algorithm shown in Appendix A, however, its 2-bit Booth form is

122î121T22*

Thus the 2-bit Booth fonn has three more nonzero digits than the canonicai radix-4 SD

representation. (Also notice that the 2-bit Booth form is longer than the canonical radix-4

SD representation by one digit.)

Lemma 7.5 Let a number H, in the conventional binary representation, be of length

m. Then, for large m. the average length of its canonical dix-4 SD representation is

Proof= Let H = L-iL-a . . . ho be a binary number of length rn with its leading bit

&-l = 1. Let LI and L2 be the lengths of the corresponding canonicai binary SD form

and canonical dix-4 SD form of II, respectively. From Theorem 6 2 and for m > 1,

2 1 2 Li = m + 3. Or, Pr(&, = m) = 3 and Pr(LI = rn + 1) = 3. When m is even.
1 m + 2 m (= + 1) = ~ + ~ . ~ h e n r n i s o d d , ~ ~ = ~ ~ - . L 2 = 3 X 7 3

Therefore, for any binary number of length m (large m), its canonical radix-4 SD

representation has the average length of ml = (y + $ + + $) = y + 6. O

The use of the minimal radix-4 SD representation of H is advantageous over the 2-

bit Booth form as stated in Lemma 7.4. The former can also nduce the computation

time for exponentiation by about half of what is needed using the minimal binary SD

representation (Lemma 7.5).

7.3 Exponentiation Algorithms

In the squaring and multiply scheme of exponentiation. a multiplication operation results

from each nonzero digit in the exponent. Thus an exponent in minimal SD representation

would require a minimum number of multiplications. Minimal binary SD representation

cm be obtained from its conventional binary form using the canonical recoding [67].

An alternative method for the conversion is Booth's algorithm which usually yields sub-

optimal but not minimal SD number representation [161.

The algorithm for computing a*, where a is a primitive root in F2m and X is repre-

sented as a minimal SD number, is given below.

Algonthm 7.2

X = 1; \ * 1 E F p * \
FOR i = m TO O DO

{
X = X * X ;
X = X * a P i ;

}
The h a l vdue of X is S.

When the exponent is represented in the minimal radix-4 SD form. an analogue of

the "square and multiply" aigorithm is given below.

Algorithm 73

X= l ;

{
X = X4;
X = x * a k i ;

}
The final vaiue of X is a*.

Notice that the number of the founh power operations in Algorithm 7.3 is only about

half of the number of squaring operations in Algorithm 7.2. This feature can potentially

nduce the dynamic power dissipation of the overdl exponentiation structure. when irn-

plemented in VLSI technologies. However, Algorithm 7.3 requires a few finite field oper-

ations (e.g. multiplication with a* 2, which were not requkd in Algonihm 7.2. Efficient

realization of these operations is discussed in the next section.

7.4 Implementation Using Polynomial Basis

Since a is primitive, there is a one-to-one correspondence between H and y = a* in the

range O 5 H 2 2" - 2. In practical applications, H usually satisfies gcd(H, 2m - 1) = 1

for security considerations [69]. Recently proposed structures for exponentiation are to

use the "square and mdtipiy" scheme. However. the exponentiation of a primitive root,

as we show here, cm be calculated with the exponent repnsented by a minimal SD

nurnber which can effectively reduce the underlying multiplication o p t i o n s .

Bit-paraiieï squarer and bit-paraiieI fourth power A polynomial bais bit-pardel

squarer has k e n discussed in 05.3. When f(z) is chosen as an irreducible trinomial

zm + xk + 1. by Theorems 5.7 and 5.8 we know that a bit-parallel squarer in can be
3 implemented with fewer than am XOR gates and a propagation delay of not greater than

2Tx.

One way to obtain a bit-parallel fourth-power (FP) is to cascade two bit-paralle1 squar-

ers. Then the complexities of the resultant architecture double those of a bit-parallel

squarer.

If we consider f (x) of a generai form, the fourth power is D (x) = A4(z) mod

F(x) = a0 + a1z4 + alz8 + . . . + alT1~41?1 + . . . + 4n-ix4m-4 mod F (z) , O 5 deg

D (x) 5 rn - 1, and the corresponding (m - [y] - 1)-by-m reduction matrix P is

defined by

Th coefficients of D (r) 4z' fan be obtained by
i=O

or + ary1Po.i + ayyl+@i.i + + h - i p ~ ~ j - l , i , i is a multiple of 4,
'&=

wherei=0,1,2 ,... ,m-1.

When m = 4n + i, i = 0,1,2,3, and n E N, the upper k t of the size compiexity of
3 1 3 1 &e f o d power is - $m. $rn2 - #m + a, :m2 - 8,. 2, a d p2 -na + a, XOR

res~ctivel~, and the time complexity for al1 c ~ S is at most log2 ([$ml + 1)1
Tx for arbitrary polynomial F (2).

The complexities can be significantly reduced when we choose f (z) as an irreducible

trinomial or an irreducible pentanomial of the fonn f (x) = zm + xk+2 + xk+l + xk + 1.

When such a polynomial is of degree which is a Mersenne exponent, the bit-parailel

fourth power complexities are given in Table 7.2.

For the fourth power (FP) module, let SFp denote the size complexity in terms of the

number of its 2-input XOR gates and TFp the time complexity in ternis of the number

of levels of XOR gates needed to realize the FP module. Table 7.2 shows the values of

SFp and TFp when f (z) is an irreducible trinomial or pentanomial whose degree is a

Mersenne exponent for Mg 5 deg(f (x)) < MIS, where Mj denotes the jth Merseme

exponent. Note that an heducible polynornial is also a primitive polynomial if the degree

is a Mersenne exponent.

Table 7.2: Table for bit-parallel fourth power complexity when f (z) is a primitive trino-
mial or pentanomial (k 5 F) whose degree is a Mersenne exponent.

From Table 7.2, one can choose certain primitive trinomial f (z) for w hich the FP

module needs only l$m XOR gates or fewer and has a t h e delay of at most two levels

of XOR gates. However. if a pentanomial is used, according to Table 7.2, the FP module

would require as many as about 5712 XOR gates and cause a time delay of four layers of

XOR gates.

Structure for exponentiation with a binary SD exponent Let F (z) and a be given

as above. then (1, a, a'. . . . , am-') is a polynomial basis. Let A k a field element in &,
m-1 m-1 m-1

and A = &ai. Since F (a) = O. it yields am = fiaà and a-' = fi+lai.
i=O

Then one cm easily obtain

where dij is the Kronecker delta function which is 1 when i = j. and O otherwise.

Equations (1) and (2) show how a field element can k multiplied with a and a-'.

The corresponding realization using shift register is shown in Fig. 7.1. The LFSR is

bidirectional which is referred to as BiLFSR and initially loaded with A. If a nghtward

shifi is appiied, the BiLFSR will have Aa, while a lef'tward shift will result in A&. It

can be seen later that this BiLFSR is a building block of the structure for exponentiation

of a primitive mot a whose exponent is represented as a binary SD number. More on the

BiLFSR can be found in [34].

The algorithm for the exponentiation of a primitive rwt with the exponent repre-

sented as a binary SD number is shown in Algorithm 7.2. The corresponding structure,

REG W w

Figure 7.1 : Bidirectional LFSR (BiLFSR) for rnultiplying a field element with a primitive
root a! and its inverse a".

or EXPl as we cal1 it, is shown in Fig. 7.2. EXP i has a BiLFSR for multiplication with

af '. The direction of a shift depends on the sign of the nonwo digit of the SD expo-

nent H. The bit-parallel squaring is employed for faster operation. Since EXPl uses, the

minimal binary SD form of the exponent. the average number of multiplications is 3 as

opposed to y when the exponent is in the conventional binary form.

(BiLFSR is ini-
tialized with '1')

Squarer

H in minima1
binary SD form

Figure 7.2: The Structure EXPl for computing a* with H king converted to a minimal
binary SD number.

To further reduce the number of operations in the exponentiation in finite fields, a

simple technique can be used on the exponent H before the exponentiation. If dI is

greater than half of Zrn - 1. let H t H - 2m + 1, which redts in performing square

and multiply algorithm at the other end of '1' (= aZm-'), d e r than 1 = au. This

technique would Save one square and multiply operation on average. More significantly,

when H is very close to 2", or 2" - H is very srnail, only about llog,(2" - H + 1) j

square and multiply operations are needed using the modined method For example, to
1000 -5

compte a* , where a is a primitive element in F ~ o o , the m M e d method requires

oniy about [10g,(2'~ - H + 1) J = llog, 61 = 2 square and multiply operations. rather

than about llog, HJ = 999 square and multiply operations. To use this method, all that

is needed is to reduce the exponent as H t H - 2" + 1 before applying Algorithm 7.2

to it to compte the exponentiation.' This simple operation cm be combined into the

exponent conversion with little extra hardware. since al1 that is needed is to change H =

L-i h,,+2 . . . ho into its two's complement if # O.

Complexity of EXPl Here we give the size and the time complexities of UB1. For the

BiLFSR and Squaring modules. the total nurnber of XOR gates is at rnost [y] m- [!f] +
WF - 2, where WF is the Hamming weight of F (x) . together with m 1-bit registers. If

we choose the dock cycle period as the sarne as the delay of the squaring operation Ts
(for example, expanentiation in ii?pi~, TE < Pog2 (L y] + 1)l x TX = OZ"', w h e ~

Tx is the delay in one XOR gaie), the exponentiation can be cornpleted in [log, H] + 3
dock cycles on average.

If F (2) = 1 + xk + xm. 1 k 9 [y]. at rnosr $ XOR gates besides m 1-bit reg-

isters are required. and the delay of the squaring operation Ts < 2Tx. It both increases

the computing speed and reduces the size complexity significantly. Since a multiplication

operation (either with a or a-') is due to a nonzero digit in the SD number representation

of the exponent. the number of multiplication operations would be minimized using the

minimal SD number representation and the structure can potentiay reduce the dynamic

power dissipation when implemented in VLSI technologies.

Structure for eexpnentiation with a radix-4 SD exponent Since F (a) = O, we have

--

'A similar idea can be applicd to Aigorithm 73 whcrc radix-4 exponcnts arc uscd.

Thus from (1), (2), (3) and (4), we obtain

Fig. 7.3(a) shows the structure for multiplications with a2 and a-2 using the poly-

nomid basis. The field element, whose coordinates are stored in REG, is multiplied with

a2 when a right-shift is applied and multiplied with aW2 when a left-shift is applied.

Comparing Fig. 7.3(a) with Fig. 7.1, one can see that the former has a BiLFSR for ai'

multiplication embedded in it. Thus, with minor modification it can be used for both

a*' and ak2 multiplications as shown in Fig. 7.3(b). which is referred to as the Extended

BiLFSR or XBiLFSR. When the switches are at upper positions (solid lines). the circuits

are configured to perform a* multiplications. When they are at lower positions (dotted

lines), the upper branch of the circuits is discomected and the circuits are able to mui-

tiply with a". The switches are controlled by the signed digits of the exponent. For

simplicity, the control circuitry is omitted from the figure.

When the exponeni is represented as a minimal tadix4 SD number, the XBiLFSR can

be used to realize Algorithm 7.3. The corresponding structure (referred to as EXP2) is

shown in Fig. 7.4. Here the XBiLFSR is used for the multiplication with a*' or a", and

the bit-pardel fourth power replaces the squaring for performing power of four. The

sign of the digit in the radix-4 SD exponent would control the shifting directions while

the absolute value of the nonzero digit would decide switch positions in the XBiLFSR

The number of clock cycles needed in EXP2 is about half of thaî of EXPI.

REG

Figure 7.3: (a) Circuits for multipling a field element with a2 and ü2; (b) Circuits for
rnultipling a field element with a*' and aA2.

Complexity of EXP2 There are at most 2m - 2 XOR gates, together with m 1-bit reg-

isters in the XBiLFSR. If F (z) is chosen as a trinomial, XBLFSR would only need two

XOR gates and rn 1-bit registers. The size complexity of the fourth power module is at

most 124 m - 124 (XOR gates), which also heavily depends on the choice of the

field-generating polynomial. The system clock cycle perîod should be no shorter than

Tm 5 [log2 (L$zl + 1)l x T"', whea TPp is the delay of a fourth power operation.
7 The time required for an exponentiation would be [log, HJ + ~2 dock cycles on av-

erage. If a primitive trinomial is chosen, the size complexity would be not greater than

lana gates and propagation delay is withui 4T..

Exponent conversion The exponent K is represented as a minimal binary SD number

in EXPI. and as a minimal radix-4 SD number in EXP2. Where EXPl or 082 is only a

c m 7. REALnAmON OF rn FIELD EXPONENTIATlON

m,

(XBILFSR is ini-
tializcd with '1')

H

H in min id
d i x 4 SD forni

Figure 7.4: The Structure U[P2 for a* with H represented as a minimal radix-4 SD
number.

part of a larger system. H might be available in the f o m of a conventional binary number.

In such cases, simple extra circuitry can be used to obtain the required SD representation

as briefly explained below.

Assume that bits hohl . . . &-i are stored in an m stage shift register R (Fig. 7.5) from

where these bits sequentially enter Converter 1. The latter simply realizes the canonical

recoding, and can be readily implemented using 2 flip flops and a few logic gates ar-

ranged in two levels. The outputs of Converterl. each of which consists of two bits, are

pushed into the stack S 1 from where MPl gets H in the required SD form. The aack

allows the SD symbols enter EXPI in the reverse order.

Figure 7.5: -1 with a converter that performs the canonical recoding.

For EXP2, to take the advantage of its lower cornputation tirne which is about half

of that of EXPI, bits hohl . . . L-l are stored into two -2 stage shift ~gis ters - one Pl
register with bh2hr . . . and the other with hthths . . . (see Fig. 7.6(a)). These two reg-

isters are shifted in parallel to allow two consecutive bits to enter Converter2 every clock

cycle. Converter2 realizes the extending canonical recoding to generate the xquence of

symbols kki . . . kLOJ each of which consists of three bits. These symbols are stacked in

S2 and then enter U82 in the reverse order. Converter2 can be implemented using 4 flip

flops and a few logic gates as shown in Fig. 7.6(b). Compared to Converterl, the gate

count is almost doubled in Converter2.

Assume that m is even. EXP2

S2 :

Figure 7.6: (a) EXP2 with a converter that perfolllls the extended caaonical recoding; (b)
Circuits for the extended canonical recoding (Algorithm 7.1).

To pipeline exponentiation operatioos. an extra stack (Wte S 1 with Converterl or

S2 with Converter2) can be used. Notice that the structures of Converterl as weU as

Converter2 are independent of the values of m and do not slow down the clock speed at

which -1 and EXP2 operate.

If one could use a l g o r i t h for obtaining the required minimal SD representations

by scanning the sequence hOh, . . . &-, from the most significant bit, there would not

be any need for stacks S1 and S2: consequently, the time to reverse the order of the SD

symbols could be saved. However, it seems the irnplementation of such aigorithm may

not be simple. As a trade-off, one can use the 2-bit Booth algorithm which, however,

generates about 11% more non-zero symbols on average as compared to the extended

canonical recoding as stated in Lemma 7.6.

7.5 Realization Using Weakly Dual Basis

Exponentiation algorithm An analogue to Algorithm 7.1 by using WDB is as follows:

Algorithm 7.4

{
X = X4;

X 8 = T * X ;
x* = (X .
X = T-' X';

1
The final value of X is aH.

* bais conversion: from PB to WDB *\
* k E {Z,ï,0,1,2) * \
* basis conversion: fiom W D B to PB *\

Since multiplication by aki is achieved with weakly dual bases, basis conversions be-

fore and after multiplication operation at each iteration are necessary. Basis convenions

are usuaiiy reaüzed by multiplying by the conversion mauix T or the inverse of T. From

Lemma 4.1 we h o w that those rnatrix operations can be a simple permutation of the

coordinates if a primitive trinomial is chosen as the generating polynomial.

If the multiplication operations are efficiently implemented we can then increase

the computing speed as well as potentially reduce the dynamic power dissipation of the

overall exponentiation structure when implemented in VLSI technologies.

Multiplication in weakiy dual bases Following the discussion in i4.2.1. multiplica-

tions of A by some powers of a can be obtained below.

(&A); = rn- 1

Tr(@A) = fi+laf j = 0;

Equations (7.5) and (7.6) cm be readily realized as shown in Fig. 7.7(a). The LFSR

is bidirectional which is referred to as (Fibonacci type) BiLFSR. The coordinates of A

with respect to the weakly dual basis are initially Ioaded into BiLFSR. If a nghtward shift

is applied, the BiLFSR will have Aa, while a leftward shift wiil result in A&. BiLFSR

c m be extended for redizing multiplication by a2 and a-' (Fig. 7.7(b)). By combining

these two LFSRs, we obtain a structure for the multiplication of A with both a*' and

a**, which is refemd to as (Fibonacci type) bxtended bidirectional LFSR or XBiLFSR

and shown in Fig. 7.7(c). When the switches are at upper positions (solid lines), the

circuits are configured to perform af2 multiplications. When they are at lower positions

(dotted lines). the upper branch of the circuits is discomected and the circuits are able

to multiply with afl. The switches are controlled by the signed digits of the exponent.

For simplicity, the control circuitry is omitted from the figure. When the exponent is

represented as a minimal radix-4 SD number. the XBLFSR can be used to reaiize the

multiplication operation step in Algorithm 7.4.

When the generating polynomial f (x) is a trinomial, the XBiLFSR cari be built with

oniy two two-input XOR gates and rn I-bit registers and minimal dock pend can be

chosen as no shorter than the tirne delay of one layer of XoR gates.. When f(x) is

chosen as a pentanomial, four more two-input XOR gates are requùed to construct the

XBiLFSR, while the dock period should be equd to or longer than the time delay caused

by two layen of xûR gates.

Basis conversions Since the product obtained from the XBiLFSR is in weakly dual ba-

sis and the fourth power operation requires polynomial basis, intemediate mults should

be converted between the weakly dual basis and the polynomial basis before and after

the multiplication operation. The conversions of bases can be greatly simplified if we

choose a proper generating polynomial f (x) .
From the discussion in 3 4.5, we have the following two lemmas:

Lemma 7.6 [60,77] Let f (x) = xm + zk + 1 be an irreducible trinomial in Fp and a

its root. Then for the polynomial bais (aà), there exists a weakly dual basis and it has

the form: {aw('), a*('), . . . , where r(j) = k - 1 - j mod m, O 5 j 5 rn - 1.

In Lemma 7.6. the permutation can be done with a cyclic shift of lines with no time delay.

Since r(r(i)) = ~ (k - i - 1 mod nt) = [k - 1 - (k - i - l)] mod m = i, we have

r-'(i) = a(i) = k - i - 1 mod m. Therefore the same permutation cm also be used to

perform the conversion from the weakly dual basis back to the polynornial basis.

Lemma 7.7 [60] Let f (2) = xm + rk+2 + zk+' + zk + 1 be an irreducible pentanomial

and a its root. Then for polynomial bais {a'), there exists a weakly dual basis which

has the form: {Po, ,Oi, . . . , Pm- '), where

[l+d for j = O,

When f (x) = x" + xk+* + zk+' + zk + 1, it can be checked thai two two-input XOR

gates are required to realize the basis conversion from the polynomial basis to the weakly

duai basis or fiom the dud basis back to the polynomial basis.

C H ' 7. REAUZATION OF FLNITE FIELD EXPONENTIATION 119

System architecture and its complexities When a is a rwt of a trinomial, the archi-

tecture for exponentiation using weakly dual basis is shown in Fig. 7.8. which is cded

EXP3. Here the XBiLFSR is used for the multiplication with a*' or af2. and the bit-

parallel fourth power for performing power of four. The sign of the digit in the radix-4

SD exponent would control the shifting directions while the absolute value of the nonzero

digit would decide switch positions in the XBiLFSR. The permutation block is to realize

basis conversions between the polynomial basis and the weakly dual basis, which is a

simple re-arrangement of lines. If the polynomial basis is generated by a primitive pen-

tanomial of the form f (z) = zm + zk+* + xk+l + xk + 1, the two permutation blocks

would be replaced by two slightly more complicated bais conversion blocks which can

be implemented with four two-input XOR gates. Fourth power module is implemented

in bit-parailel fashion with combinational logic. Its time delay would determine the min-

imum period of the system clock.

The time required for an exponentiation would be about ;log, H clock cycles on

average if the exponent H is available in its minimum radix-4 SD form. When the gen-

erating polynomial is a primitive trinomial whose degree is a Mersenne exponent, the

FP module needs fewer than 13, XOR gates and has a time delay of at rnost two levels

of XOR gates. Consequently, the size complexity of the proposed system is less than
3 (lZm + 2) XOR gates, together with m 1-bit registen, and the system CIO& penod can

be chosen as Tclmk 2 2TXOR, where TXOR is the t h e delay of one layer of XOR gates.

When one primitive pentmomiai in Table 7.2 is to be used as the generating polynomial,

substantially more gates are required to implement Fi? module and XBiLFSR The system

complexity cm be as much as (5m + 6) XOR gates and m 1-bit registers. The system

clock period should be chosen as no shorter than the time delay of four layers of XOR

gates.

When the generating polynomial f (z) is an irreducible trinomial. the proposed weakiy

dual bais method in this section afhieves time and size complexities which are equiva-

lent to those described in the last section. Using weakly dual bais rather than polynomial

basis. the proposed method provides an example of the equivalence in the complexities

of implementation of many finite field operations by using different bases.

7.6 Cornparisons

In this section, the proposed exponentiation schemes are compared with the existing

schemes for similar operations which have ken briefly reviewed in 97.1. In the foliow-

ing discussion, it is assumed that for an arbitrary IF2" the gate count for a bit-parallel

multiplier using either a polynomial or normal bais is proportional to m2 and that for a

bit-parailel squarer using the polynomial basis is proportional to m. (It has aiready been

mentioned that squaring using normal basis is free of cost.)

In the full-parallel scherne of stored conjugates method [69, 501, let L be the delay

due to an m-bit multiplier, then the time complexity of an exponentiation is proportional

to L x [log,(rn - 1)1, where [log, (m - 1)1 is the depth of the multiplier me. If the

bit-parallel multipliers are employed. L would be greater than both Ts and Tm. where

Ts and TFP are the time delays of the squaring operation and the fouah power opera-

tion proposed in this paper, respectively. While [log,(m - 1)1 would be much less than

log, H, and the total time of exponentiation might be less than those of our proposed

structures, the gate count of the bit-parallei multiplier tree is. for an arbitrary F (x) , pro-

portional to m3 for both polynomial and normal basis multipliers, which is much higher

than those of our proposed methods (whose complexities are proportional to m2). When

trade-off is made in the stored conjugates methods by using a smaller multiplier tree,

the time complexity would increase while the size complexity is still much higher than

those of our proposed methods, since the number of gates in a polynomial or normal

basis bit-parallei multiplier is proportional to m2. If the bit-sequentiai multipliers are

employed, the multiplier tree has a gate count of about 4m2 for a polynomial basis mul-

tiplier or 5m2 for normal basis multiplier and the time for perfocming an exponentiation

is at lest m pog,(m - 1)l clock cycles. In ihis case, all size and time complexity and

consequently power consumption an higher than those of Our proposed structures. An

additional memory of rn2 bits is dso required for the stored conjugates methods which

we do not take into consideration for cornparison.

If the squaring and multiply scheme (Algorithm 7.2) is adopted. both the polynomial

basis and normal basis can be used. An exponentiation structure with the polynomial

basis is presented in [SOI. The squaring module is the same as that of the structure in this

paper. The multiplication with a has a simple non-LFSR structure with complexity of

WF -2 XOR gates, where WF is the Hamming weight of F (z) . At ieast one m-bit register

is required to temporarily store the intermediate results and support the iterations. The

time complexity is about the same as that of EXPI, which is ([logl Hl + l)Ts, where Ts
is the delay caused by one squaring operation. However more multiplication operations

would be performed and therefore more power dissipation would be required compared

with EXPI. If the normal basis is used, the squaring is readily implemented with a shift

of the coefficients, while the multiplier is more complicated. It is shown in [50] that the

complexity of multiplier (multiplication with a constant) and squaring pair in the normal

basis is higher than that in the polynomial basis. Even when an optimal normal basis is

chosen, the size cornplexity is proportional to 3m. which is still higher than that in the

polynomial basis when the field-generating polynomial F (z) = xm + xk + 1, k <
is used.

1 y1
Some specific classes of fields can be used to reduce the multiplier complexity (for

example, the field-generating polynomial is a t ~ o m h l [sol or m is a power of 2 [63]),

and the cornparisons can be made in a similar way. However, it is worth noting here

that the base a is a primitive element and hence F (z) should be primitive. As a result,

multipliers based on all one polynomials (AOP) or equally spaced polynomials (ESP) as

proposed in 135,361 cannot be used shce AOPs and ESPs are non-primitive imducible

polynomials (except when the polynomial is of degree two).

Simple schemes for exponentiation are to use LFSR or LUT. The time needed to

compute an exponentiation using LFSR is H clock cycles, which is much more than

CHAPTER 7. ItEUmU7ON OF FINITE FIELD EXPONENTIATION 122

those of ail the other methods discussed above. This methoci is adequate only for small

m. The LUT method is simple in design, and it requires the use of a memory of size

proportionai to rn x T, which might be unacceptable even when m is moderately large.

in our proposed structures using PB or WDB, the gate count for EXPl is about 66.7%

of that of EXPZ or EXP3, while the computation time for U(P2 or EXP3 is 50% of that of

EXPI. The number of multiplications is reduced to minimum in both structures since the

minimai SD representations are employed.

7.7 Chapter Summary

Exponentiation of a primitive element has applications in cryptography. In this chap-

ter, we have presented architectures for realizing this computation for the cases where

the element is represented with respect to a polynomiai bais or a weakly dual basis.

Compared to previous proposais, the new proposais have lower size complexity, shorter

propagation delay, and thus they are expected to require less power when implemented

in VLSI technologies.

Figure 7.7: (a) The BiLFSR: LFSR for multiplying by a"; (b) The LFSR for multiplying
by clf2; (c) The XBiLFSR: LFSR for multiplying by a%nd as.

CHAPTER 7. REALLZATION OF FINITE FIELD EXPONENTIATION

p~ynomral SU. / Permutation 1 I I

Figure 7.8: System diagram for exponentiation when the weakly dual bais is used.

Chapter 8

Efficient Computations for Elliptic

Curve Cryptosystems

8.1 Introduction

In this chapter. the computation of ml Pl + m2P2 + + mkPk is considered, where mi

is an integer and Pi a point on an elliptic curve for i = 1,2, . . . , k. When k = 1, m P
is the primary operation in most EC cryptosystems [56]. When k = 2, computation of

ml Pl + m2& has applications in various elliptic curve signature schemes 1561. When

k = 3, the computation of mLP1 + m2P2 + m3P3 is required in verifying ElGamal

signature 1571. With k = 4, we have ml Pl + + m4fi which has application in the

Burmester-Desmedt keying scheme [571. In the recent past. several algorithms have been

proposed for efficientiy computing m P, e.g., 159.43, 53.46, 32, 30, 721. The general

idea behind these algorithms for computing mP is to find ways to m h h h the number

of point operations (i. e., ellip tic addition or doubhg for non-supeningular c w e) .

In order to compute mP, Agnew, M u l h and Vaastone have applied the double-

and-add methad [4], while Morain and Olivos have used the binary signed-digit (SD)

CHAPTER 8. COMPUTATIONS FOR EUP77C CURE CRYPTOSYSTEMS 126

non-adjacent form (NAF) to compute mP [59]. The use of the SD form is based on

the fact that obtaining an additive invem of a given point is at little cost. Koyama and

Tsuruoka have speeded up the computation using a binary SD window scheme [46]. In

their method, fint m is tmnsformed into a binary SD form with fewer zero runs than

that of the NAF, and certain point multiples are computed and stored. Then computation

of mP is perforrned with elliptic doublings and additions of some of the stored values

On the other hand Shamir has developed a novel scheme to compute multiple expo-

nentiation of the form M;' M;" Mik [57]. which can be easily modified to compute

mi Pi + + mr Pk. With a few extra stored values, his method can compute multiple

exponentiation in the same way as perfonning a single exponentiation operation using

square-and-multiply method. An extension of Shamir's method proposed by Yen and

Laih requires more stored points by using a window method, and thus fewer steps are

needed for obtaining the final result (841. An alternative to the window method is the

'comb algorith' which is proposed in [48] and described in [57].

Efficient computation of m P has also been proposed for a class of non-supeningular

curves - e.g., anomalous or Koblitz curves (43, 53, 72, 291. The ment work by Soli-

nas shows that computation of m P on a Koblitz curve requires only about $ eliiptic

additions, where n is the degree of the finite field over which the group of points is

defined [72,29].

In the sequel, the set of iF2m -rational points E (IF2-) on a nonsupersingular curve E is

considered. We assume that the point Pl has prime order p and thus ml a positive iuteger

l e s than p. While P2, . . . , Pk are other points on the curve of order not greater than that

of Pl and integers ma, . . . , mr are also not greater than p. Since p < 2"-' + 0(2?-'),

then the binary form of any one of ml,. . . , nzk is of length not greater than n. In the

sequel, for generality, we, however, denote the binary length of mi by h.

The organization of this chapter is as foilows. In 5 8.2, a general sliding window

method for cornputhg ml Pl + na P2 + - + mk Pk on nonsupersingular curves is pro-

CHAITER 8. COMPUTATIONS FOR Er.LrprrC CURVE CRYPTOSYSTEMS 127

posed. A new SD representation with fewer zero runs is pmposed and its application

CO the computation of point multiples is discussed in 2s 8.3. Such computation of ad-

dition of point multiples on a Koblitz curve is considered in § 8.4. Finally, numencal

cornparisons are made in 5 8.5.

8.2 Sliding Window Method for Non-Supersingutar Curves

8.2.1 Modified Shamir's method

Since negating a point is equaily expensive as adding a point, a simple modification of

Shamir's method c m be used to compute ml Pl + ml Pz + + mkPk.

Let us consider the case of k = 2. First compute points Pl + P2 and i$ - P2 and

store them dong with the points f i and Pz. WhiIe ml and mz are converted into their

NAFs :

wheremy) E {-1,0,1). fori = 1.2 and j = 0.1h.

Now we have

[2h (1) h-i (1) h (2) h-1 (2) 0 (2) p mh + 2 m , - l + ~ - - + 2 0 m ~ ' 1 ~ ~ + [2 m h + 2 m , - , + - - - + 2 m , 1

(1) Since mj Pl + mY'~2 , for O < j < h, is either the point O or one of the stored points

or the negative of one stored points, ml Pl + m2P2 can be computed in a double-and-add

Algorithm 8.1 Moditied Shamir's Method

Input: Integers mi, w, and points Pi. i = 1.2. . . . : k.
Output: Point P = ml Pl + - + mc Pk.

Compute and store the points l1 Pl + Pz + - + lkPk, where li E (-1,O. 1). not

dl li*s are zeros and fint nonzero li is positive.

Conven mi into the NAF, for S = 1.2,. . . , k : mi = rnh (4 . . . ml (il m$), where mj (4

E {- 1.0: 11, for j = 0.1.h; Place them as an array of size k x (h + 1).
(4 T S t d n g from the leftrnost end, find the f i n t nonzero column [mi1), . . . mj] and

its corresponding point stored as Po (or -Po); Set L t j and P t Po (or P t -Po).

Do while L) O Begin:

4.1 Set P i- 2P.

4.1 Set P c P ; Pt (or P t P - P') if the next column is not a zero column and

the corresponding point king stored as Pr (or - P').

4.1 Set L + L - 1.
End.

The performance of Algorithm 8.1 can be s~l~lfnarized in the foiiowing theorem.

Theorem 8.1 For computing ml Pl + m2 P2 + - + mk Pk, the modified Shamir's method
1 I a k h - I 1 3k - 1 requires h - 3 - 7- eiliptic doublings and [l - (3)] [3 - --] + 7 - k 2 - 1 2 -

3" 1 additions on average. with N., = -7 stored points. The worst case performance is:
3k - 1 h + 7 - k elliptic additions and h doubhgs.

A sketch of proof:

CHAPTER 8. COMPUTATIONS FOR ELUPï7C CURVE CRYPTOSYSTEMS 129

3k - I The nurnber of the stored points is -7.

The number of elliptic additions required for stored points is v, - k. This c m
be shown as follows: Let S denote the set of the stored points. Let Al be any point
E S except for Pl, &. Ph. Write A, = llPt + 12P2 + = - O + ikPk. without loss
of generality, assume that I l > O. Then LI = 1, and point Al can be computed from
the point A2 = l2 P2 + - i Li& E S by one addition. Perform this process on A2
and repeat until Aj is one of Pl, 4 , . . . , Pk. Then the statement foliows by noting
that the k points Pt. Pz. Pk E S are already available.

The average lengtha of the NAF of r r ~ is h - 5 for O < mi < 2" and i =
1.2, k (see 5 6.3).

The average lengthb of an k x (h + 1) arny of binary signed digits is Z = h +
1 ' and thus the number of doublings is h - 3 - 1

5 - 5 c 7 2-7'

Let d denote the average number of di-zero columns between two nonzero columns,
(2) k

then d = ,+.
1 4 ;)

The number of elliptic additions except those for the stored points is

8.2.2 General sliding window methods

Wmdow method with double-and-add

If we view the modified S h d s method as a sliding window algorithm with window

'The length of a number rcpresentation is equd to the number of the digits between the most significant
nonzero digit and the least significant digit, inclusive.

bThe length of an array is equal to the number of the coiumns between the Ieftmost nori2cro column
and the rightmost column, inclusive.

CH- 8. COMPUTATIONS FOR HUP77C CURVE CRYPTOSYSTEMS 130

size w = 1. then further improvements may be explored using a window of size w > 1.

Let us wnteml,m2,mh in tbeir NAFs and put them as an k x (h + 1) a m y

of binary signed-digits ({T. O. 111, see Figure 8.l(a). Consider a window of size k x w

horizontally sliding along the array from the leftmost end. Then the array c m be split

into blocks of size k x w whose leftmost column is not ail zero. If we compute and store

the points Pl + I2 P2 + + + ik Pk, where II , la, lk are al1 possible integers whose

NAF is of length w or less, the required point cm be computed with elliptic doublings

and additions performed only on some stored points. The number of elliptic additions

can be less than that in Shamir's method for w > 1 if the computation complexity of the

stored points is compmtively low.

window of size w x k

(a 1

Figure 8.1: (a) A window of size w scannùig along an k x (h + 1) array of binary signed
digits; (b) An example showing the blocks resdted from the scanning and splitting.

The number of stored points cm be reduced if we allow the use of variable block

widths, If blocks are of maximum width w , then the block of the smaiiest width w' < w

is used provided that it is still able to coutain ail the nonzero digits as a block of width w

does. When such a block is chosen, its both rightmost and leftmost columns are nonzero

columns. See Figure 8.1 (b), where a window of size 3 x 3 used to scan and split the

array into four blocks of size not greater than 3. The main steps in this method can be

(XAlTER 8. COMPUTAï7ONS FOR EUP77C CURVE CRYPTOS YSTEMS 13 1

illusvated in the fo llowing example.

Example 8.2 Compute 60454P1 + 1274536 using window size of two.

Fint 8 points are computed and stored that costs 6 elliptic additions:

While the two multiples are converted into the NAFS and they are placed as a 2 x (h + 1)
array of binary signed digits. Then, a window of maximal length 2 is used to scan over

the array and to split the array into a number of blocks. Each block is of width two or one

and there is at least one nonzero digit in both the leftmost and the nghtmost columns.

The array is spiit into a number of blocks of maximal length 2 as shown below.

For each block we c m find the comsponding point in the storage. The solution can

finaiiy be obtained with

It can be seen that five eiliptic additions and sixteen doubhgs are required for the above

equation. Then the total cost for computing 60454P1 + 1274534 is 11 eiliptic additions

and 16 doublings.

We sumrnarize the general window method in the foUowiag algorithm.

CIUPîER 8. COWWATIONS FOR ELLPï7C CURVE CRYPTOSYSTEMS 132

Input: Integers mi, w , and points Pi, i = 1.2. k.
Output: Point P = ml Pl + + mrPk.

1 Convert mi into a certain signed-digit (SD) form, and place them as a Ir x n array

of binary signed digits.

2 Compute the points l1 Pl + + + lk Pk, -Y < fi < Y, Y is the largest integer

whose SD form is of length W. The first nonzero li > 0, and at least one Zi is odd

(for the binary case).

3 Find the fint block of size $ w from the leftmost end of the array. Find the cor-

responding point Po or its negative - Po arnong the stored points. Set P t Po

(or P t -Po); Set L t the length of the remaining array.

4 Do w hile (L > O) Begin:

4.1 Let the window of size w slide dong the array rightward and find the next block

if such a block exists. Let the stored point Pt be the corresponding point of the

block (or the negative of the corresponding point).

4.2 Set P t 2 d ~ , where d denotes the distance between the nghtrnost column of

the current block and that of the previous block. If there is no block to be found

in Step 4.1, then let d be the length of the remaining array.

4.3 Set P t P + Pr (or P + P - Pt).

4.4 Set L t L - d.

End.

CHAPTER 8. COMPIITATIONS FOR E T _ r C CURVE CRYFTOSYSTEMS 133

8.2.3 Window method with efficient computation of 2 ' ~

Recently, it has been shown that under certain circumstances it is advantageous to directiy

compute 16 P , 8 P and 4P instead of performing consecutive doublings [34 6 11. This

idea can also be applied to the algorithm presented in this article by perfodng a 4P,

8P or 16P operation whenever there are two, three or four consecutive doublings are

required.

Algorithm 8 3 Window method with efficient computation of 2'P

Input: Integers m. w , and points Pi, i = 1.2.. . . . k.
Output: Point P = m& -1 + m i S .

(Same as Aigorithm 8.2 except Step 4.2 should be divided into 4 sub-steps:)

4.2.1 Set P t (16)'~ P. where t l = [il;
4.22 Set P c (S) t 2 P, where t2 = Ld+-l :

4.2.3 Set P t (4)t3 P, where t3 = ld - 4ti - 3t21 ;
4.2.4 Set P t (2)"P. where t4 = d - 4tl - 3t2 - 2t3.

8.2.4 Results and features

Some of the salient features of Algorithm 8.2 and 8.3 are presented in the foilowing

theorems.

Theorem 8 3 For w 2 1, the number of stored points required in both Algor i th 8.2

and 8.3 is

CHAPTER 8. COMPLITATIONS FOR EL.UP77C CURVE CRYPTOSYSTEMS 134

where Y is the largest integer whose NAF is of tength w, and Y = 8 - 3+ (- l) w + l] .

Proof: For the computation of ml Pl + + mj Pi. j) 1, and a certain window size

w 2 1, let the points to be stored be denoted by I l f i + + LjPj, where li is of length

not great than w in its NAF, and the number of points to be stored be denoted as N,.
(k) (Note that N,,, = Ai,,).

In the case of j = k: When w is even, the largest integer whose NAF is of length w is

Y = 2"'-l + 2"-3 + + 2. Obviously there are Y + 1 integen in [O, Y] and 5 of them

are odd numbers.

Y 1. When II is one of those odd numbers, li can be any number in [-Y, Y], for
Y i = 2 .3 k for this case. Thus we have to store =(2Y + l)k-l points.

2. When Il is nonzero even number in [l, Y], 4 can be any number in [-Y, Y] for

i = 2 .3 k, except at lem one of 1;'s is an odd number. Since there are Y + 1

even numbers in [-Y. Y], $ [(2 ~ + l)'-l - (Y + 1)"-'] points need to be stored.

3. When l1 is zero, clearly, N!:,') points should be computed and stored.

Thus we have

When w is odd, similar analysis cm be appiied.

Theorem 8 3 For h » w and w 3 1, the average number of eiiîptic additions required

in both Algorithms 8.2 and Algorithm 8 3 is

CHAPTER 8. COMPUTATIONS FOR ELI_lPTlC CURE CRYPTOSYSTEMS 135

while the average number of doublings required in Algorithm 8.2 is

A sketch of p m f :

1. The number of elliptic additions required for the stored points is N,, - k.

2 2. The average length of an k x (h + 1) array of binary signed digits is = h + 3 -
1

2*-1'
3. The average length of blocks is

The number of elliptic doublings is - zb.
4. The average number of dl-zero columns between two nonzero columns is d =

(fi"
1 4 3)

5. The number of elliptic additions except those for computing the stored points is
?; 2. 'L
Lb+d

Theorem 8.4 The wont-case performance of Aigorithm 8.2 for h » w and w 3 1
requires N,. - k + 131 ellipric additions and h doublings. The number of elliptic

additions needed in the wont case for Algorithm 8.3 is N,, - k + . Pl
Proof= By direct inspection.

CHAPTER 8. COMPUTATIONS FOR ELLlPTIC CZiRVE CRYPTOSYSTEMS 136

From Theorem 8.2, the optimal length of the window wop, for the average @or-

mance of Algorithm 8.2 can be obtained by solving the equation

for W . where we assume that the complexity of an elliptic doubling is a times that of

an elliptic addition. If the solution w = w,,, is not an integer, then we can try both

w = rwOptl and w = LutOptJ, and choose the one with smaller NJdd + ddoublinp

In Algorithm 8.3, if we funher assume that the complexities of 4P, 8P, and 16P are

Pi. Pa, and a times that of a doubling, then the optimal value of window size w c m be

obtained by solving

where Nap, Ne. and Nlep denote the nurnbers of operations of 2 P, 4P. 8 P and

16 P , respectively.

8.3 Algorithm using a New SD number Representation

8.3.1 A New SD representation with fewer zero runs

It is weli known that a binary NAF of iength n has the minimal number of norueros which

is approximately 9. However, Koyama and Tsuruoka have observed that the NAF is not

, necessarily the best representation to use for computing point muitiples on an elliptic

curve. It does have minimai weight, but aiiowing a few adjacent nomeros may increase

the length of zero runs, reducing the total number of eiliptic additions. They ako have

given an algorithm for cornpuhg an SD representation with such features [46].

In the foilowing, we wïU present a aew SD number representation which is similar

CHAPTER 8. COMPCRCATIONS FOR U l P T l C CüRVE CRYPTOSYSTEMS 137

to that of Koyaa and Tsuruoka [46] in the seNe that they both have a much reduced

number of zero runs, compared to that of the NAF.

Given a bit string A = [* - , ~ , ~ - ~ , - .ai,ao], ai E {OJ) for i = 0,1,2,*-,

define a Rag function g (*) over A as g(0) = oo. and for j > O as

if aj-i is the rightmost bit in a convertible block.

A convertible bloc& [aco+l-iaio+i-~ . . . aie] of length 1 is defined by

1. g(lo - 1) = O or& = O;

2. g (6) = 1;

3. a(j) + a (j + 1) > O for b < j < b + 1 - 2;

4. IFg(j) = O,theng(j- 1) < 2 forIo+ 1 j < b+I-2;

5. g(10 + I - 1) > 2 and ab+l = 0.

The new recoding algorithm takes a bhary form as a bit string and the operation

starts at the least significant end. The transformation from binary digits into signed

digits is performed ody on convertible blocks whiie the ordinary binary bits are retained

outside the blocks. The transform operation appiied to a convertible block is the Booth

aigorîthm [16]. Note that the transformation is made block by block starting fiom the

least signincant end of the input since the result from transforming a convertible block

couid affect the caiculation of the next convertible block

Then the details of the transformation of an integer into the new SD form are shown

in Aigorithm 8.4. The function g(-) is denoted by f lag. Lines 4 to 8 are to obtain the

binary form of an integer while the Booth algorithm [La is used in Lines 13 to 18. A

CHAPTER 8. COMPUTATIONS FOR EUIPTlC CURVE CRYPTOSYSTEMS 138

convertible block is found in Lines 24 to 32. In the sequel, the SD form with fewer zero

runs obtained from Algorithm 8.4 is denoted as the FZR form.

Algorithm 8.4 Recoding into binary SD form with Fewer zero runs (FZR fom)

Input: n: Integer;
Output: S: FZR form of n.
1 . Begin:
2. kl <= n; k2<= n; i <= O; flag <= O; t c= O; st <= 0;
3. do while k1>0 Begin:
4 . if kl even
S. then u <= 0;
6. else u <= 1;
7. kl <= (kl-U) /2;
8. S [i] c= u;
9. if u=l
10. then flag <= flag+l;
11. else flag <= flag-1;
12. if f lag>=O
13. then
14. if k2 even
15. then v <= 0;
16. else v <= -1;
17. k2 <= (k2-v)/2;
18. T [i] c= v;
19. else
20. j from st t o i do: Begin: T [j] <= S [j] ; End;
21. k2 <= kl;
22. t <= 0;
23. flag <= 0;
24. if flag=l
25. then
26. if t = O then st <= i;
27. t C= 1;
2 8 . elseif f l a p 2 and kl even
29 . then
30. j frorn st to i do:

Begin: S [j] <= T [j] ; End;
31. kl <= k2;
32. flag <= 0;

CHAPTER 8. COMPUTATlONS FOR ELLLPTlC CURVE CRYPTOSYS7EMS 139

3 3 . i <= i71;
34, End;
35.End.

1 1 Binary 1 Nonadjacent 1 KT 1 Proposed 1
1 1 fom 1 form 1 form 1461 1 form 1

128 bits
125.92 1 126.66 1 127.27 126.29

4

256 bits
253.85 1 254.65 1 255.3 1 1 254.25

Table 8.1 : Cornparison of the various binary number representations

Average zero run length

Average length
Average # of nonzeros
Average # of zero runs

Average zero run length -

Table 8.1 shows some staùstical parameters of the FZR form, dong with those of

the binary form, the NAF and the SD form obtained with the Koyama and Tsuruoka

algorithm [46]. It can be seen from the table that the EZR form not only has the min-

imal number of nonzeros but also has an average length which is less than that of the

NAF. One can also see that the FZR form is as good as the SD form obtained using the

Koyama-Tsumoka aigorithm. This new fonn wûs conjectured having not only the mini-

mal number of nonzero digits but also the fewest zero nuis among dI minimal binary SD

representations. Later, Roos has found an example to show that the conjecture does not

hoid [651,

1.9930 1 1.994 1 1 2.4526 1 2.4542
512 bits

509.63
156.00
127.17
1 9979

51 1.10
171.72
138.17
2.4583

5 10.59
17 1 .O7
170.17
1.9958

510.1 1
171.07
137.98
2.459 1

CHAPTER 8. C O M P O T ~ O N S FOR ELfP7TC CURE CRYPTOSYSTEMS 140

8.3.2 Window method with the FZR form

If the FZR fonn is used in Algonthm 8.2 and Algorithm 8.3, we have the following

evaiuation:

Evduation 8.1 For w 2 1. the number of stored points required in Algonthm 8.2 and

Algorithm 8.3 using the FZR form is

k Y - 1 k ' i C [Y (Z Y + ~) ~ ' - ~ - -Y 9 -] if w is odd,

k Y kt-1-
~ [Y (S Y + I) ~ ' - ' - - (Y + ~) 9] ifwiseven,

where Y which is the larges nurnber whose FZR form is of length w is given by b [5

2" - 3 + (-l)'].

Proof

From Algorithm 8.4. it can be seen that Y = P-1 +2w-2+2w-4+- a + 1 if w is even, and

Y = ?w-1+~w-2+2w-4+-+2 i i w isocid. ~huswehavey = Q[592w-3+(-1)wj.

The rest is similar to the proof of Evaluation 8.7.

8.4 Window Method for Koblitz Curves

Based on the results obtained by Merier and Staffelbach [53], Soiinas [72] and Gor-

don [29], we have developed a new algorithm for cornputing ml Pi + m2P2 + +mrPk,

where is an integer and Pi is a point on a Koblitz curve. The algorithm is stated below.

Algorithm 8 3 Window method for Koblitz Cumes

Input: Integers mi, w, and points Pi, i = 1.2. . . . , k.

Ouput: P o h t P =mlPl + * - * + m k f k .

CHAPTER 8. COMPCITATIONS FOR ELLLPTIC CURVE CRYFTOSYSTEMS 14 1

(4 1 Compute and store the points ll Pl + + -t b P k . where Ii = (l ~ ! , l ~ ! , 1,) are

al1 possible 7-adic N u s of length not greater than w, 1;) E (-1: 0 , l) for i = 1,

. . . , k, and j = 0 , lu - 1, and the nonzero li with smallest i has a positive

T-adic NAF and at Ieast one of the r-adic NAFs is odd (lf) f O).

2 Use the method presented in Theorem 3,4 and 5 in [29] to obtain the r-adic

NAFS formi = ~:=,e;)rj(rnod rn - 1) ande:) E {-1.0J) fori = 1, ... ,k
and j = 0: 1,. . . . h, where the eiliptic curve is defined over F'. , and, h = n + 1

as it is shown in Theorem 5 in [29].

3 Set L + O and P t O;

4 Do while (L 6 h) Begin:

4.1 Let the window of size w scan leftward dong the array to locate the next block

and its corresponding point in the storage be P' (or - P'). If no block is found

then exit the iteration and stop the prograrn.

4.2 Set P t P + rdP' (or P + P - rdP'), where d is the distance between the

nghtmost coiumns of the curent block and that of the previous block.

4.3 Set L t L + d;

End.

Some features of Algorithm 8.5 c m be surnmarized in the following theorems.

CHAFER 8. COMPOTATIONS FOR ELUP'MC CURVE CRYPTOSYSTEMS 142

Theorem 8 5 For w 2 1, the number of stored points required in Algorithm 8.5 is

where Y is the largest number whose NAF is of length w , and Y = 6 [zw+* -3+(- 1)"+'].

A proof cm be similar to that of Theorem 8.2.

Theorern 8.6 For h >> w and w 2 1, on average Algorithm 8.5 requires

eliiptic additions. Here we assume that the statistical properties of the NAF of and

those of the r-adic NAF of mi are the same except that the T-adic NAF is longer than the

NAF by one digit on average.

A proof can be similu to that of Theorem 8.3. Note that in Theorem 8.6 we do not include

the cost of some up-front calculations required in Step 2 of Algorithm 8.5, which cm

be estimated io be a couple n-bit binas, multiplications and divisions and is negligible

compared to the cost of ebptic addition and doubling [53.29].

Theorem 8.7 The worst-case performance of Aigorithm 8.5 for h » w and w) 1

requires N,,, - k + [&l eiiiptic additions.

PPOOfi By direct inspection. 0

CHAPTER 8. COh4PUTATIONS FOR ELLP77C CURVE CRYPTOSYSTEMS 143

8.5 Numerical Results

In this section. we give sorne numencal cornparisons for the proposed algorithms. The

underlying field is chosen to be -163 which has been considered for implementing elliptic

curve cryptosystems [I l .

8 . 1 Cornparison of computing m P

3
3
3

Algorithm 8.2 (NAF)
Algorithm 8.2 (FP()

Algorithm 8.5 (~-adic NAF)

Table 8.1: Comparîson of the algorithms for computing mP.

Algondun 8.1 (NAF)
Aigorithm 8.2 (FZR)

Algorithm 8.5 (r-adic NAF)

I 1

From the data shown in Table 8.2, we c m see that if the number of eiliptic operations

is al1 what we are coacemed of, then Aigorithm 8.3 using the NAF and Algorithm 8.5 with

wuidow size of 4 or 5 may be the best options for computing mP on a non-supersingular,

or on a Koblitz cuve in i F p , respectively. When the memory size for the stored points is

dso an issue of consideration or the window size is srnail, we may choose Algorithm 8.2

using the FZR form to cornpute mP on a non-supersingdar cuve in &i63.

When the point P is ked, then al1 the possible point multiples, whose correspondhg

binary SD forrn is within a window of size W. can be precomputed and stored. Conse-

37.65
38.35

I

160.67
160.68

53.76
44.52
54.10

Algonthm8.2 (NAF)
Algonthm 8.2 (FZR)

Algorithm 8.5 (T-adic NAF)

37.88 1 O

41.74
47.19
41.88

' 161.70
161.09

O

35.02
36.66
35.17

5
7
5

34.19) 159.93

158.01
157.54

O

1
2
1

34.96
34.68

70.98
120.94
71.09

21
27
21

158.94
158.81

O
159.80

O

11
13
11

157.01
156.84

O

53
105
53

CHAPTER 8. COMPIITATIONS FOR UZP77C CURE CRYPTOSYSTEMS 144

Algonthm 8.7 (NAF)
Algonthrn 8.2 (FZR)

Algorithm 8.5 (r-adic NAF)

Table 8.3: Comparison of the aigorithm for computing mP (P fixed).

Algorithm 8.3 (NAF)
Algorithm 8.2 (FZR)

Algorithm 8.5 (7-adic NAF)

quently, the computationd cost for computing mP may exclude the precomputations.

From Table 8.3, it can be seen that it is advantûgeous to use Algorithm 8.2 with the FZR

form to compute m P for the cases when the point P is fixed.

Instead of performing consecutive doublings, when the operations like 16P, 8P, and

4P are utilized, the efficiency of the Mgonthm 8.3 is shown in Table 8.4. Tt can be seen

that the algorithm using the EZR form sometimes has more 16P and 8P operations than

using the NAF.

8.5.2 Comparison of computing mPl + rP2

The best option for cornputing mPl + +fi is to use Mgonthm 8.2 with the NAF

for non-supeningular curve and Algonthm 8.5 for Kobiitz curve with window size of 2.

when the curve is dehed in F21" . additions is

If either Pl or P2 is fixed. Say, Pl is hxed, which is also the case practicaiiy used

21
27
21

18.98
16.94
19.09

21.74 ' 158.01
21.19
21.88

157.01
156.84

O
157.84

O

53
105
53

CHAPTER 8. COMPUTATTONS FOR ELUP77C CURVE CRYPTOSYSTEMS 145

Table 8.4: Cornparison of the numbers of 16P. 8P, 4P and 2P operations required to
compute m P for non-supersingular curves.

Algorithm 8.3 (NAF)
Algorithm 8.3 (F;ZR)

Algorithm 8.3 (NAF)
Aigorithm 8.3 (FZR)

Algorithm 8.3 (MF)
Algorithm8.3(FZR)

Algorithm 8.3 (NAF)
Aigorithm8.3 (FZR)

in the Eiliptic Curve Digital Signature Algorithm (561, then ail the Pl multiples whose

binary SD form has length within w can be precomputed In this case the data are given

in Table 8.6, and it is stili Aigorithm 8.2 using the NAF with a window of size 2 which

yields the best results for non-supeningular curves.

If both Pl and P2 are 6xed then Algorithm 8.2 using the NAF with window of size

3 and using the FZR form with window of size 2 seem to be good choices for computing

mPl + rPz on a non-supersingular curve (see Table 8.7). Aiso fiom Tables 8.5.8.6 and

8.7. the computation of mP1 + rP2 on a Koblie curve, no matter whether the points

are h e d or not, instead of using Algorithm 8.5 with k = 2, it is more advantageous to

34.49
34.96

8.73
7.33

29-74
28.57

w = 5

7.68
7.68

5.27
7.72

35.02
36.66

5
7

29.75 1 5.90
30.06 1 6.37

w = 6

6.39
6.72

7.92
6.36

11
13

41.74
47.19

6.21
5.28

30.53
31.115.86

w = 7

6.33 4.47
5.26

21
27--

70.98
120.94

4.34
4.57

32.32
32.15

4.63
5.13

4.80
4.66

53
105

CHAPTER 8. COMPUTATIONS FOR Ei.I,ïPrrC CURVE CRYPTOSYSTEMS 146

Table 8.5: Cornparison of aigorithms for computing mPl + r P2

I

1 1

compute mPL and T P2 separately using Algonthm 8.5 with k = 1 and then add them up.

When the operations like 16 P. 8 P, and 4P cm be performed more efficiently than

by consecutive doublings, it can be seen from Table 8.8 that with the FZR form Algo-

rithm 8.3 has significantly more operations like 16P and 8P for w = 1 and w = 2, while

for w = 4 the NAF has better performance.

It is also worth noting that when n is large, say, n) 400, the algorithm using the

FZR fonn for computing both mPl and m f i + +Pz perfonn significantiy better than that

using the NAF.

For computing ml Pl + + r n ~ Pk? k 2 3, it is comrnon to choose w = 1 since the

cases of w) 2 often require large memory to store precornputed points. For example,

when k = 3, Algorithm 8.2 using the NAF requires 13 stored points for w = 1 and 49

s tored points for w = 2, and when k = 4, this algorithm requires 40 stored points for

w = 1 and even much more stored points for w > 1.

72.01
76.09
72.43

In this chapter, the general sliding window method and its performance analysis are

presented for computing na& + m2 P2 + + mkPk for nonsupersingular and Koblitz

4
4
4

Algorithm 8.2 (NAF)
Aigorithm 8.2 (FZR)

Algorithm 8.5 (T-adic NAF)

Algorithm 8.2 (NAF)
Aigorithm 8.2 (FZR)

Aigorithm 8.5 (7-adic NAF)

162.05
161.51

O

48
60
48

8
20
8

92.22
92.19
92.77

90.14
102.27
90.42

162.42
162.08

O

160.89
160.80

O

193.31
312.41
193.53

160.03
159.77
0

160
280
160

~~ 8. COMPCITATlONS FOR EUP77C CURVE CRYPTOSYSTEMS 147

Algorithrns

Algonthm 8.2 (NAF)
Algorithm 8.2 (FLR)

Algorithm 8.5 (7-adic NAF)

Algorithm 8.2 (NAF)

Table 8.6: Cornparison of the dgonthms for computing mPl + T P2 (Pl fixed).

curves. For computing a point multiple on an EC over a certain field, the numencai results

have given a hint on how to choose a recoded SD representation and window parameters

for efficient computations.

CHAPTER 8. COMPLITATIONS FOR ELLiH'IC CURVE CRYPTOSYSTEMS 148

Algorithm 8.2 (FZR)
Algorithm 8.5 (T-adic N U)

Algorithm 8.2 (NU)
Algorithm 8.2 (FZR)

Algorithm 8.5 (r-adic NAF)

Table 8.7: Cornparison of algorithms for cornputing mPl + rPÎ (both Pt and P2 fixed).

Algorilhms

Algorithm 8.3 (NAF)
Algorithm 8.3 (FZR)

Algorithm 8.3 (MF)
Aigorithm 8.3 (FZR)

Aigorithm8.3(NAF)
Algorithm 8.3 (FZR)

Table 8.8: Cornparison of the numbers of 16P, 8P, 4P and 2P operations required to
compute m Pl + r P2 for non-supersingular curves.

L 1

n = 256
Ndd 1 N16~ 1 N8P 1 N4P 1 N2P 1 N i o r e

w = 1

Aigorithm 8.3 (NAF) 1 193.31
Algorithm 8.3 (FZR) / 312.41

92.22
92.19

30.13 1 5.40 1 5.51
28.36 1 6.99 1 7.51

3.35
5.23

10.14
13.08

w = 2

12.29
10.34

40.78
28.50

37.04
44.93

72.01
76.09

160
280

4
4

6.71
12.41

w = 3

20.24
21.08

90.14
102.27

33.51
19.13

8.05
7.81

24.74
23.57

7.48
10.38

8.85
11.24

12.34
13.23

8
20

48
60

Chapter 9

Summary, Discussions and Future

Work

Computations in finite fields pIay an important role in cryptography, coding theory, se-

quence generation, signai processing and VLSI testing. In this thesis, a number of effi-

cient algonthms and architectures for finite field multiplication have been presented. Ef-

ficient realizations of finite field exponentiation and point multiples on an eUiptic curve

have also been proposed.

A normal bais is commoniy used in many cryptographic systerns, since a squaring

operation using the normal basis is simply a cyclic shift. This can potentially simplify

exponentiation, elhptic addition and doubling, and Frobenius mapping. Since the in-

vention of the Massey-Omura multiplier, a few alternative normal basis multipliers have

been proposed, e-g., [22,3]. The redundant b a i s presented in this thesis takes advantage

of the elegant multiplicative structure of the set of (mk + l)n roots of unity over F, that

includes a basis of F,*. The resultant multiplier architectures using redundant basis are

extremely simple and also have a lower complexity when k = 1 and 2. Further work

on this topic might include the investigation of Iow complexity muitipliea when k has a

CHAPTER 9. SUMMARk: DlSCUSSlONS AND FUTURE WORK

small value but greater than 2. It will also be interesting to study efficient representation

of the field elements when the normal buis is generated by the general Gauss period.

Weakly dual basis multiplication architectures have also k e n considered in this the-

sis. For the classes of finite fields generated with an irreducible trinomial or an irreducible

ESP, low complexity bit-paralle1 multipliers have been presented. Basis conversion has

also been discussed such chat we have given its complexity bound when the field is gen-

erated with an ESP or a polynomial of fom f (z) = zm + x'+~ + $+d-L + + xk + 1.

Future work might include the investigation of multiplier architectures with reduced time

delay when the field is generated with an irreducible pentanornial or a polynomial of ar-

bitrary fonn. Multipliers using normal duai bases might also be worthy to further study.

A polynomial bais probably has been most comrnonly used in various applications.

In this thesis, we have given a size cornplexity bound for a polynomial basis multiplier

in an arbitrary finite field. When the field is of characteristic 2 and generated with an

irreducible trinomial. both the size complexities and time deiays of the multiplier and

the squarer are anaiyzed. Given the irreducible trinomial, we can easily build a multi-

plier or a squarer conforming to the complexity parameters foliowing the steps in the

proofs of the theorems. However, general diagrams of the multiplier and the squarer

architectures have not been available because they seem quite complicated and couid be

considered for further investigation. Future work shouid also include study of using the

FFT and the KOA methoâs and seeking the possibility to combine these methods with

other techniques to yield more efficient architectures for finite field computatioas.

Finite field exponentiation and eiliptic curve operation have received considerable at-

tention recently for their uses in cryptography. To efficientiy perfom an exponentiation

operation. on the one hand, fast multiplication and squaring must be provided; on the

other hand, efficient representaîion of the exponent should be investigated Precompu-

tation can be done if certain information about the base andor the exponent is known

before hand, and consequentiy, speed and rnernory size tradesffs can be made to obtain

the maximum efficiency.

CHAPTER 9. SUM2MARY; DISCUSSIONS AND FUTURE WORK 151

In this thesis, architectures for exponentiation of a primitive element have been pro-

posed. LFSR-style structures are presented to realize multiplication operation, while

squaring or power operation is performed in a bit-parallel module. On the other hand,

minimal weight signed-digit forrns have been utilized to efficiently represent the expo-

nent. For cornputation of point multiples for elliptic curve cryptosystems, algorithms

have been proposed for efficient representation of the multiples. Future work in this area

should include research on efficient computation of elliptic point operation. Investiga-

tion c m be carried out for the design of a finite field processor especiaily for performing

elliptic point operations, which cm coordinate the data flows between its sub-modules,

such as the inverter and the multiplier.

Bibliography

[2] V. B. Afanasyev. On the complexity of finite field arithmetic. In froc 5th

Joint Soviet-Swedish In tem. Workshop on Information Theory, pages 9- 1 2. 1 99 1.

Moscow, USSR.

[3] G. B. Agnew, R. C. Mullin, 1. Onyszchuk, and S. A. Vanstone. An irnplementation

for a fast public key cryptosystem. J. Cryproiogy, 3:63-79, 199 1.

[4] G. B. Agnew, R. C. Mullin, and S. A. Vanstone. Fast exponentiation in GF(2"). In

Eurocrypt '88. S pringer-Verlag , 1989.

[5] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysiî of Computer

Algon'thms. Addison-Wesley Publ. Co., Reading, MA, 1974.

[6] S. Arno and F. S. Wheeler. Signed digit representation of minimum Hamming

weight IEEE Trms. Compctt., 42: lûû7-10 10, 1993.

[7] D. W. Ash, 1. F. Blake, and S. A. Vanstone. Low complexity normal bases. Disc.

Appl. Math.. 25: 19 1-2 10, 1989.

[8] D. E. Atkins. Design of the ariihmetic units of Illiac III: Use of redundancy and

higher radix methods. IEEE Trms. Cornput., 9:72Q-733, 1970.

[9] E. Bach and J . Shallit. Algorithic Nmber Tlieory, MIT Ress, 1996.

[IO] T. C. Bartee and D. I. Schneider. Computation with finite fields. Inform. and

Cornput., 6:79-98, 1963.

[11] E. R. Berlekamp. Algebmic Coding Theory. McGraw-Hill Book Company, New

York, 1968.

[12 1 E. R. Berlekarnp. Bit-serial Reed-Solomon encoders. IEEE Trans. IT, 28:869-974,

1982.

[13] R. E. Blahut. Theory and Practice of Error Contml Codes. Addison-Wesley Pub.

Co., Reading, Mass.. 1983.

[141 R. E. Blahut Algebraic Methods for Signal Processing and Communications Cod-

ing. S pringer-Verlag, New York, 1992.

[15] 1. F. Blake, S. Gao, and R. Lambert. Constructive problerns for irreducible polyno-

miais over finite fields. In Canadian Workshop on Infonnarion Theory. Springer-

Verlag, 1993.

[16] A. D. Booth. A signed binary multiplication technique. Quart. J. Mech. Appl.

Math., 4236-240, 195 1.

[17] E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson. Fast exponentia-

tion with precomputation (exteoded abstract). in EUROCRYPT'92. pages 200-207.

Springer-Verlag, 1992.

[18] W. E. Clark and J. J. Liang. On aithmetic weight for a general radix representation

of integers. IEEE Tram iT, l9:82>826, 1973.

[19] S. D. Cohen. On ûreducible polynomials of cenain types in fmite fields. Pmc.

Camb. Phil. Soc., 66:335-344, 1969.

[20] W. Difne and M. E. Heliman. New directions in cryptography. IEEE Trans. fl,

22:644454, 1976.

[21] S. Feisel, I. von zur Gathen, and M. A. Shokrollahi. Nomai bases via general

Guass periods. Math. Cornp., 1998. To appear.

[22] M. Feng. A VLSI architecture for fast inversion in GF(2m). IEEE Trans. Comput.,

38: 1383-1386,1989.

[23] S. T. J. Fenn, M. Benaissa, and D. Taylor. GF(2") multiplication and division over

the dual basis. IEEE Trans. Comput., 45(3):3 19-32'?, 1996.

[24] S. Gao. Normal Bases over Finite Fields. PhD thesis, University of Waterloo,

Waterloo,Ontario,Canada, 1993.

[25] S. Gao. Gauss periods, groups, and normal bases. Preprint. August 1997.

[26] S. Gao and S. Vÿnstone. On orden of optimal normal basis generators. Math.

Comp., 64(2) : 1227- 1233, 19%.

[27] S. Gao, von zur Gathen, and D. Panario. Gauss periods and fast exponentiation in

finite fields. Lecture Notes in Compurer Science, 9 1 1:3 1 1-322, 1995.

[28] H. L. Garner. Number systems and arithmetic. In Advan. Cornputers 6, pages

13 1-194. Academic Press, 1965.

[29] D. M. Gordon. A survey of fast exponentiation rnethods. Reprint, August 1996.

[30] 1. Guajardo and C. Paar. Efficient algorithms for eIliptic curve cryptosystems. ?n

CRYP197, pages 332-3 56. S pringer-Verlag, 1997.

[31] T. A. Guliiver, M. Serra, and V. K. Bhargava The generation of primitive poly-

nomials in GF(q) with independent mots and their applications for power residue

codes, VLSI testing and finite field muitiplien using normal basis. Int. L Etectron-

ics, 7 1559476, 199 1.

[32] G. Harper, A. Menezes, and S. Vmstone. Public-key cryptosystems with very smaii

key lengths. In Advcznces in Crypology -Crypro '93, pages 1 63- 1 73. S pringer-

Verlag. 1993.

[331 M . A. Hasan. Eflcient Computations over Galois Fields. PhD thesis, University of

Victoria, Victoria, B.C., Canada, 1993.

1341 M. A. Hasan and V. K. Bhugava. Architecture for a low complexity rate adaptive
a

Reed-Solomon encoder. IEEE Trans. Comput., 44938-942, 1995.

[35] M . A. Hasan, M. Wang, and V. K. Bhargava. Modular construction of low corn-

plexity parailel rnultipliers for a class of finite fields GF(2"). IEEE Truns. Comput.,

3 1 (8):962-97 1, 1992.

[36] M. A. Hasan, M. Wang, and V. K. Bhargava. A modified Massey-Omura paralIel

multiplier for a class of finite fields. IEEE Truns. Comput., 42(8): 1278- l28O,l993.

[37] A. Hocquenghem. Codes corecteurs d'erreurs. Chiffres, 2: 147-156, 1959.

[38] T. Itoh and S. Tsujii. Structure of parailel rnuitipiiers for a class of fields GF(2m).

Inform. and Comput., 8 3 2 140, 1989.

[39] Y. Jeong. VLSIAlgorithms and Architec?ures fur Real-tirne Computation over Finite

Fiel& PhD thesis, University of Massac husens Amherst, Amherst, Massachusetts,

USA, 1995.

[40] D. Jungnickel. Finite Fieldsr Stmcrure and Arithmerics. B. 1. Wissenschaftsverlag,

Mannheim, Germany, 1993.

[41] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata.

Sov. Phys. -DoW. (English translation), 7(7):595-596,1963.

[42] D. E Knuth. The A n of Compurer Progruming: Seniinurnerical Algorithm.

Addison-Wesley Publishing Company, Reading, MA, 198 1. +

[43] N. Koblitt. CM-curves with good cryptographie properties. In CRYPT091, pages

279-287. Springer-Verlag, 1992.

1441 C. K. Koc and T. Acar. Montgomery multiplication in GF(2'). Designs, Codes and

Cryptography, 1457-69, 1998.

[45] C. K. Koc and B. Sunar. Low-complexity bit-parallel canonical and normal multi-

pliers for a class of finite fields. IEEE Trm. Cornpur, 47(3):353-256, L998.

[46] K. Koyama and Y. Tsunioka. Speeding up elliptic cryptosysterns by using a signed

binary window method. In CRYPT093, pages 345-357. Springer-Ver1 ag, 1 993.

[47] R. Lidl and H. Niederreiter. Finite Fields. Addison-Wesley Publishing Company,

Reading, MA. 1983.

[JS] C. H. Lim and P. J. Lee. More flexible exponentiation with precomputation. In

Advancrs in Cryptology -Crypte '94, pages 95- 107. Springer-Verlag, 1994.

[49] 1. L. Massey and J. K. Omura. Computationai method and apparatus for finite field

arithmetic. U.S. Patent No.4587627, 1984.

[SOI E. D. Mastrovito. VLSI Architectures for Cornpurations in Galois Fields. PhD

thesis, Linkoping University, Linkoping, S weden, 199 1.

[5 11 D. W. Matuia Basic digit sets for radh representation. J. of the ACM, 29: 113 1-

1143,1982-

[52] R J. McEliece. Finite Fiel& for Computer Scienristr and Engineers. Kluwer Aca-

demic Publishers, 1 987.

[53] W. Meier and 0. Staffelbach. Efficient multiplication on certain nonsupersingular

elliptic curves. In CRYPT0'92, pages 333-344. Springer-Verlag, 1993.

1541 A. I. Menezes. Elliptic Curve Public Key Cryptosystem. Kluwer Academic Pub-

iishers, 1993.

1551 A. J. Menezes. 1. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone, andT. Yaghoobian.

Applications of Finite Fields. Kiuwer Academic Publishers, 1993.

[56] A. I. Menezes, M. Qu. and S. A. Vanstone. Worlung draft: EEE P 1363 standard.

1995.

[57] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1996.

[58] P. L. Montgomery. Modulv multiplication wirhout trial division. Mathematics of

Computation. 4 k 5 19-52 1, 1985.

1591 F. Morin and J. Olivos. Speeding up the computatioas on an elliptic curve using

addition-su btraction c hains. Theoretical IR formatics and Applications, pages 53 1-

543, 1990.

[60] M. Morii, M. Kasahua, and D. L. Whitîng. Efficient bit-senal multiplication and

discrete-time Wiener-Hoph equation over finite fields. IEEE T m s . IT, 35: 1 177-

1184,1989.

[6 11 V. Muiler. A survey of fast exponentiation methods. Preprint, August 1997.

[62] R. Muiiin, 1. Onyszchuk, S. A. Vanstone, and R. Wilson. Optimal normal bases in

GF(pn) . Disc. Appl. Math., 22: 149- 16 1, 1988.

[63] C. Paar. Eflcimr VLSl Architectures for Bit-Parailel Computatîun in Galois Fields.

VDI-Verlag, Düsseldorf, 1994. Ph-D Thesis.

[64] C. Paar and N. Lange. A comparative VLSI synthesis of finite field multipliers. In

P m 3rd Intem. S-mp. Comm. nteory and ItJ Applications, 1995. Lake District,

UK.

1651 J. Proos Private communication, 1998.

[66] 1. S. Reed and G. Solomon. Polynomial codes over certain finite fields. J. Soc. Ind.

Appl. Math., 8:3&304, 1960.

[67] G. W. Reitwiesner. Binary arithmetic. In Advan. Cornputers 1, pages 232-308.

Acadernic Press, 1960,

1681 A. Schonhage. Schnelle Multiplikation von Polynomen uber Korpern der Charak-

tenstik 2. Acta Infi, 7:395-398, 1977.

[69] P. A. Scott, S. I. Simmons. S. E. Tavares, and L. E. Peppard. Architectures for

exponentiation in GF(2"). IEEE J. Selected Areas in Comm., 6:57û-586. 1988.

(701 P. A. Scott, S. E. Tavares. and L. E. Peppard. A fast VLSl multiplier for GF(2").

IEEE J. Selected Areas in Comm., 462-66, 1986.

[7 11 G. Seroussi. Table of low-weight binary irreducible polynomials. Technical Report

HPL-98- 135, Hewlett-Packard Laboratones, Pafo Alto, CA, August 1998.

[72] 1. A. Soiinas. An improved algorithm for arithmetic on a family of elliptic cunies.

In CRYPT'97, pages 357-37 1. Springer-Verlag, 1997.

[73] D. R. S tinson. Crvptography: î7zeor-y and Practice. CRC Press, Inc., Boca Raton,

Horida, 1995.

[74] C. C . Wang. Ekponentiation in Finite Fields. PhD thesis, University of California

at Los Angeles, Los Ar~geles, CA, USA, 1985.

[75] C. C. Wang. An aigorithm to design finite field rndtipliers using a self-dual nomal

basis. IEEE Trans. Comput., 38(10): 1457- 1459, October 1989.

[76] C. C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K Omura, and 1. S. Reed.

VLSI architectures for cornputhg multiplications and inverses in GF(2"). IEEE

Trans. Comput., 34(8):709-7 17,1985.

[77] M. Wang and 1. F. Blake. Bit serial multiplication in finite fields. SIAM Discrete

Mathematics, 3(1): 130- 148, 1990.

1781 A. Wassermann. Konstruktion von Normalbasen. Bayreuther Mathematische

Schrifen, pages 155-164. 1990.

[79] H. Wu and M. A. Hasan. Exponentiation using dual basis. in Pmceedings of 18th

Biennial Communication Symposium, pages 204-207. 1 996. Kingston. Canada.

[80] H. Wu and M. A. Hasan. Efficient exponentiation of a primitive root in GF(2m).

IEEE Trans. Comput., 46(2): 1 62- 1 72, Fe b u r q 1997.

[8i] H. Wu and M. A. Hasan. Low complexity bit-parallei rnultipliers for a ciass of

finite fields. IEEE Trans. Cornpur.. 47(8):883-887, August 1998.

1821 H. Wu. LM. A. Hasan, and 1. F. Blake. Low complexity weakly dual basis bit-parallel

multiplier over finite fields. IEEE Trans. Comput., November 1998. scheduled to

3PFX

[83] CA. Yeh. 1. S. Reed, and T. K. Truong. Systolic multipliers for finite fields GF(2m).

IEEE Trans. Comput.. 33:357-360, 1984.

[84] S-M. Yen and C-S. Laih. The fast cascade exponentiation aigorithm and its a p

plications on cryptography. In ASIACRYPT'92, pages 447456. Springer-Verlag,

1992.

