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Abstract 

Eutrophication of Lake Victoria is attributable to the burgeoning human 

population in its watershed. The lake is expenencing increasing anthropogenic P h d s  

from expanding urban, agricultural and industrial development. Paieolimnological and 

nutrient status indicators indicate excess P on a system scale. Excessive P has stimulated 

phytoplankton biomass and promoted blooms of N-fixing cyanobacteria. High a l p l  

biomass provides organic matter that contributes to extensive oxygen depletion in 

hypolimnetic waters during the stratified penod. Low oxygen concentrations cause a 

complex suite of direct and indirect impacts including loss of aquatic animals and 

changes in nutrient cycling. Anoxia may be contributing to fish kills upon upwelling in 

Lake Victoria, and dso  causes release of materials bound to the bottom sediments 

including P. This release of nutrients reinforces eutrophication during periods of deeper 

and stronger mixing when dissolved nutrients are redistributed in the water column. 

Data from this study suggest two patterns controlling nutnent status and 

phytoplankton biomass production in the surface waters of Lake Victoria. The first is 

seasonal alteration of N and P limitation and undenvater light. Circumstantial evidence 

indicates that thermal stratification led to better light conditions for increased 

phytoplankton biomass, and increased P and N deficiency. Higher light during 

stratification compensated for and lessened effects of N deficiency and hence maintained 

higher algal biomass. Destratification and deeper mixing led to low underwater 

irradiance and reduced algal biomass and nutnent limitation. Entrainment of nutrient- 

rich hypolimnetic waters with low algal biomass reduces the potential for nutnent 

limitation during periods of stronger and deep mixing. A second pattern controlling 
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nutrient status is a longitudinal pattern of increasing light limitation and decreasing 

nutrient limitation. especially P. from inshore to offshore. Generally. light \vas the 

principal factor limiting phytoplankton production offshore as the ratio Iz~!Ik \vas ofien 

below one and indicating light deficiency. 

Thermal stratification and destratification influenced cyanobacterial species 

composition. Relatively warmer and shallowly rnixing epilirnnion promoted elevated N- 

fixing cyanobactena and heterocyst biomass production which in tum led to elevated 

rates of algal N-fixation and rapid N turnover during stratification. N-fixation was an 

important source of N in Lake Victoria that resulted in increased total N as well as higher 

particulate N:P ratios during the stratified period. N-fixation in Lake Victoria was 

predictable from heterocyst abundances and light attenuation. Heterocyst abundances 

can also be used to infer N-availability in Lake Victoria and as guide to water resource 

management in the lake. 

Overall, Lake Victoria is an example of a large ecosystem in which the 

phytoplankton community is usually Iimited by light availability but seasonally limited 

by nutrient availability. The ability to identify factors limiting phytoplankton 

community is of considerable importance to water management practices of Lake 

Victoria. Since both P and N are limiting, their reduction is essential in the control of 

cyanobacterial blooms and eutrophication of Lake Victoria. Nutrient status also provides 

a simple and yet an important tool for monitoring water quality. 
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Cbapter 1: General introduction 

A clear understanding of how physical. chemical and biological processes interact 

at ecosystem scale is imperative in the protection and sustainable utilization of aquatic 

resources (Vigano et al. 1999, Vallentyne 1999). An understanding of interrelationships 

among air, water, land and biota including human beings. is required for the 

development of effective nutnent control strategies that would led to successful 

management of culturally eutrophic systems (Vallentyne 1999) such as Lake Victoria 

(Hecky 1993). Human activity in the watershed has been found to induce lake responses 

at various levels, including at population and ecosystem scale. Goldman et al. (1 990) 

found that atmospheric deposition of material produced by fires stimulated productivity 

in large lakes. Recently, Carignan and Steedman (2000) reported on disruptions of 

biogeochemical cycles in temperate lakes following watershed deforestation and /or 

wildfire and Carignan et al. (2000) concluded that water quality and aquatic biota are 

strongly influenced by disturbances in the watershed. 

Already, human activity including overfishing. deforestation, intense cultivation. 

animal husbandry and introduction of exotic fish species has been linked to the 

modification of Lake Victoria in the 1990s (Bugenyi and BaIirwa 1989, Hecky and 

Bugenyi 1992,Ogutu-ohwayo 1990 a, b, 1992, Lowe-McConnel et al. 1 9920 Lipiatou et. 

1996, Ogutu-Ohwayo et al. 1996). There is evidence that atmospheric loads of sulphur 

and nitrogen (N) have increased due to acid rain produced by biomass buming in the 

catchent  (Simons 1989). Further, precipitation over the African Great Lakes, Malawi 

and Victoria (Bootsrna 1993) is now more enriched with phosphorus (P) and N than the 

in early 1930s. 



Research to answer key questions on how human activity and a suite of watenhcd 

disturbances have impacted water quality and biodiversity in Lake Victoria is undenvay 

in the three riparian States (Uganda. Kenya and Tanzania). By esarnining major physico- 

chemical and biological processes that Vary and interact in cornples patterns. criiical 

factors that control nutnent availability and influence phytoplankton biomass and 

productivity in lakes can be determined (Goericke and Welschrne}er 1998. Guildford et 

al. 2000). The goal of this research was to contribute to the knowledge that would be 

usehl in the reduction of cyanobacterial blooms and reversa1 of eutrophication in Lake 

Victoria. Specifically, I exarnined how nutrients (P &N) and light availability influence 

phytoplankton N-fixation and algal biomass development through time and space in Lake 

Victoria. 

Lake Victoria. the world's second largest (68.800kmz) freshwater body afier Lake 

Superior, has become more eutrophic due to nutrient ennchment from a variety of 

anthropogenic sources, including agricultural, urban and industrial runoff and 

atrnosphenc deposition (Hecky and Bugenyi 1992. Hecky 1993, Lipiatou et al. 1996). 

The long water residence time (140 years. Bootsma and Hecky 1993). and the long (3440 

km) and highly indented shoreline that includes numerous bays exacerbate eutrophication 

effects in Lake Victona. Human settlement in the numerous urban and rural centers 

along the shoreline enhances eutrophication in the inshore regions, where nutrient loads 

from municipal and agricultural effluents are high. 

In Lake Victona, eutrophication manifests as increased total P and N 

accompanied by severe silica depletion and proliferation of cyanobacteria (Hecky 1993, 

Ming et al. 2001). Eutrophication has undoubtedly resulted in increased phytoplankton 
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biomass and primary productivity (Mugidde 1992. 1993) that supports fish yields that 

have risen 4 to 5-foid since the 1950s (Ogutu-Ohwayo 1996). Increased tish production 

is a blessing as more local people have uirned to the lake for their livelihood and fish 

exports to international markets earn foreign exchange for the riparian States. However. 

increased eutrophication has had several negative consequences that include elevated 

algal biomasses and proliferation of the obnoxious water hyacinth that thrives in the 

shallow eutrophic bays receiving nutrient-nch influents from rural and urban watersheds. 

Anoxia created by decomposition of huge algal biomasses and aggravated by 

stronger thermal stability (Hecky 1993, Hecky et al- 1994, 1996. Lehman et al 1998) is 

one of the  detrimental impacts of eutrophication in Lake Victoria today. Low oxygen 

provides reducing conditions conducive to release of trace metais from their oxides, and 

P release from generic hydroxides and N loss to the atmosphere through denitrification 

(Seitzinger 1988). In addition to affecting nutrient concentrations, anoxia directly affects 

distribution of biotic oqanisms in Lake Victoria. The loss of approximately 50% of 

aerobic water vohme in Lake Victoria since the 1960s (Hecky et al. 1994) reduces fish 

habitat, which can lower the potential fish production. Hypolimnetic anoxia is thought to 

have forced haplocluornine and tilapiine fish species into the oxic surface waters where 

they experience heavy mortality by the introduced Nile perch (Lares Niloricus) (Ogutu- 

Ohwayo 1 WOa, Goldschrnidt and Witte 1992, Lehman et al. 1998). 

Whether introduction of the piscivorous Nile perch in the late 1950s and ensuing 

food-web changes have modified dgal responses to nutrient e ~ c h m e n t  through the 'top- 

down" effects in Lake Victoria has become a question of interest (Basin 1992). 

Elsewhere, changes in fish community accompanied by changes in grazing pressure have 
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been shown to lead to changes in phytoplankton biomass and species composition 

thou& cascading effects (Carpenter et al. 1985. Blomqvisit 2001 ). Afrer introduction of 

Lates niloticus. several herbivorous haplochromines and tilapiine fish species 

disappeared. while populations of some fish species (Rastrineobola argentea and 

Oreochromis niloticus) that prey on zooplankton increased in Lake Victoria (Ndawla 

1994). Loss of the phytoplanktivorous cichlids and increased abundance of 

zooplanktivorous fishes likely led to reduction in the grazing pressure that allowed a 

build up of excess algal standing crops in Lake Victoria. Ndawula (1  994) found 

increased predation by fish upon zooplankton contnbutes to the dominance of small- 

bodied zooplankton (Lehman and Branstrator 1993. 1994. Lehman 1996, Branstrator et 

al. 1996) incapable of controlling biornass of the large heterocystous cyanobacteria that 

dominate in Lake Victoria today (Kling et al. 2001). A reduction in grazing can result in 

reduced nutrient cycling including accumulation of particulate organic nutrients (Lehman 

l!N6)8. These changes wouid favor the observed increase in abundance of the detritivore 

Curadina niloticus (Lehman 1996). 

Changes in the fish community in Lake Victoria could also be linked to changes 

in algal species composition since the 1960s (Evans 1962 a, b, Talling 1966, 1987, Kling 

et al. 2001). The dominance of cyanobactena including toxic foms  and blooms of large 

heterocystous filamentous cyanobacteria such as Cylindrosperrnopsis, could have led to 

reduction of available food for the native fish species. Besides, cyanobacteria are l e s  

digestible and provide poor quality food (Taylor et al. 19%) that may have contnbuted to 

the reduction or loss of planktivorous haplochromines and tilapiines that once flourished 

in Lake Victoria. It is, therefore, reasonable that that changes in the fishery may have 
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resulted. in part. from dramatic shifis in phytoplankton species composition in ~ a k e  

Victoria, 

In nature. several factors including grazing. 1 ight and nutrient availabili ty affect 

phytoplankton biomass, growth and species composition (Reynolds 1984. Levine and 

Lewis 1987, Agrawal 1998. De Nobel et al. 1998. K a h  et al. 2000). When phpical and 

biological controls are negligible, macronutrient (P. N & C) concentrations control algal 

growth and species composition (Brown et al. 2000), as well as planktonic N1-fixation 

(Schindler 1977, Home and Communis 1987) in a vanety of ecosysterns. P and N are the 

two nutrients generally considered most likely IO limit algal growth in aquatic 

ecosystems. 

Nutrient limitation occurs when the availability of a given element is not close to 

the Redfield ratio of C: N: P = 105: 16: 1 (Redfieid 1963). This is possible through 

nutrient loss by uptake by biota. sedimentation or loss to the atmosphere. Deviations 

from the average Redfield ratios can also be due to alterations in the effective supply of 

nutrients to the phytoplankton through allochthonous inputs to the lake and intemal 

inputs such as N-fixation, release from the sediments and cycling from the heterotrophs 

(Levine and Schindler 1992). In general, P limitation of phytoplankton is expected when 

the effective supply N: P ratios are much higher than the average Redfield ratios of 16: 1 

(Hecky and Kilham 1988). In this study, particulate nutrient (P. N & C) ratios and P and 

N uptake rates (N and P-debt) were used to assess nutrient deficiency. Guidelines of 

Healey and Hendzel(1980) that have been developed and accepted as indicators of 

nutrient status in temperate freshwater lakes were used to help interpret phytoplankton 

nutrient status in Lake Victoria. 



For a long time. P has been identified as the primary limiting nutrient in 

fieshwater and N in manne ecosystems (Howarth et al. 1988a). However. it has now 

been recognized that both P and N cm be limiting in fresh~vater ecosystems in tropical 

and temperate locations (Smith 1983, Guildford and Hecky 2000). Phosphorus had been 

demonstrated to be the primary nument controlling and limiting phytoplankton biomass 

and productivity in temperate lakes during the summer (Schindler 1977. 1990. Hecky and 

Kilham 1988, Mollot and Dillon 1991). Few studies available demonstrate P-limitation 

in tropical East Afncan lakes (Melack, et al. 1982). Switching from P to N or co- 

limitation by both P and N does occur in some lakes (Morris and Lewis 1988. Miller et 

al. 1986, Guildford et al. 2000). In Lake Victoria, N-limitation was initially suggested by 

Talling and Talling (1965) and both N and P-limitation can be present (Hecky 1993. 

Lehrnan and Branstrator 1993, Lehman et al. 1998). The increased presence of 

heterocystous N-fixing cyanobacteria (Kling et al. 200 1) indicates the high N-demand 

and gives clue to the importance of N-fixation in Lake Victoria. Any P supply to an 

aquatic ecosystem will increase the N-demand which, if not met by allochthonous N 

supply andior N return from the sediments, may favor growth of N-fixing cyanobacteria 

(Schindler 1977, Hendzel et al. 1994. Howarth and Marino 1999). N-fixation as a source 

of N has received considerable attention as a natural process capable of reducing N 

shortages in lakes (Schindler 1977, Flett et al. 1980, Tilman et al. 1982, Howarth et al 

l988a). Whether N-fixation will balance N to P and eliminate N-deficiency in Lake 

Victoria remains to be evaluated. 

Low N availability relative to P, indicated by the low N: P ratios, has ofien been 

suggested as one of the important factors that control cyanobacteria biomass and 
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subsequently rates of N-fixation in situ (Levine and Schindler 1992). Schindler ( 1977) 

hypothesized that low N: P ratios should result in N-limitation of ph'oplankton growth. 

and should, therefore, be associated with blooms of N-fixing cyanobacteria in lakes and 

estuaries. This hypotheses has been supported by several experimental and obsemational 

studies around the world (Flett et al. 1980, Howarth et al. l988a, .Levine and Schindler 

1992, Hendzel et al. 1994) which show that low N: P extemal loading ratios (~enerally N: 

P 4  1 : 1 atom: atom) exert a strong selective influence on alga1 species composition and 

lead to dominance of N-fixing cyanobacteria. while higher N: P loading ratios favor other 

algal types that are not capable of fixing atmospheric nitrogen. On anal ysis of data from 

17 lakes throughout the world Smith ( 1 983) found that Iow epilimnetic ratios of total N to 

total P determine the relative proportions and composition of individual cyanobacterial 

species. He concluded that cyanobactenal blooms occur at low N: P ratios (TN: TP 

<29:1) and were rare when TN: TP exceeded this value. 

In some aquatic ecosystems. however. variations in N: P ratios do not always 

account for changes in cyanobacterial biomass and N-fixation (MacFarland and Toetz, 

1988, Smith et al. 1995). Neither do the low N: P loading ratios always resuit in 

dominance of heterocystous cyanobacteria in lakes (Pick and Lean 1987. Howarth et al. 

1988 b, Levine and Schindler 1992). Using data frorn temperate and tropical (including 

sub-tropical) lakes Smith (1 990) found no evident significant relationship between N: P 

loading ratios and annual rates of N-fixation. In Lake Victoria, proliferation of 

cyanobacteria including heterocystous N-fixers and nuisance toxic blooms of 

Cylindrosperrnopsis and Microcystis (Ochurnba and Kibaara 1 989, Ochumba 1 990, 



Kling et al. 2001) is consistent with increased P (Hccky and Bugenyi 1992. Lipiatou et al. 

1996) that c m  lower the N: P ratios in the lake. 

Although increased nutrient (P & N) enrichment and biotic cornmunit? changes 

have k e n  invoked to explain cyanobacteria dominance and algal taxonomie changes in 

Lake Victoria the stronger thermal stability in the 1990s (Hecky 1993. Lehman et al. 

1998) may also be a contributing factor. Cyanobacteria. in pneral, occur in warm waters 

and are positively correlated to temperature in temperate lakes (Pick and Lean 1987). In  

addition, increased thermal stability affects light and nutnent cycling and availability. 

which in tum affects biological productivity. Most nutrients in lakes reside in the 

hypolimnion and can be made available for biological processes in the epilimnion by 

vertical mixing. The frequency and extent of mixing govems nutrient and dissolved 

oxygen exchange between bottom and surface waters and as well as light availability in 

the water column. 

In tropical Afncan lakes, themal stratification has been found to regulate 

exchange of dissolved oxygen and nutrients between the epilimnion and hypolimnion 

(Talling 1966, Hecky 2000). A stronger thermal stratification due to elevated 

temperatures can accelerate temperature dependent chernical reactions and microbial 

processes such as denitrification-nitrification (Seitzinger 1988), thus affecting nutrient 

cycling and availability. In both temperate and Afncan tropical lakes anoxic hypolimnia 

allow retm of P to surface waters dunng rnixing, but can act as permanent sinks for N 

(Hecky et al. 1996, Hecky 2000). Continuous N loss to denitrification during persistent 

thermal stratification can lead to high N demand that favors growth of cyanobacteria 



including N-fixers, if lipht and other chernical variables such as micronu~rients are 

adequate. 

Thermal stratification can regulate algal biomass development and phototrophic 

N-fixation in the euphotic zone through alterations of the mixing Iayer depth (Reynolds 

1984, Levine and Lewis 1987). In temperate and high-altitude Mes. the role of lipht 

availability in controlling phytoplankton standing crops is ofien viewed from a seasonal 

perspective (Levine and Lewis 1987, MacFarland and Toetz 1988). Because of its light 

dependence, N-fixation in temperate lakes can be quite variable with season (MacFarland 

and Toetz 1988). Lower winter irradiance, combined with deeper mixed layers precludes 

development of high standing algal crops. Besides. mixing can retum ammonia and 

nitrate to the epilirnnion, which inhibits N-fixation. Thus, warm monomictic and 

dimictic lakes in temperate regions tend to have low rates of Nz-fixation during lake 

mixing. In many lakes cyanobactena biomass and N2-fixation c m  be restricted to periods 

of lake stratification during the warm water period in the summer, when phytoplankton 

sufficient light for growth, but dissoived inorganic nitrogen is scarce. However. high 

algal biomass or turbidity in eutrophic environments can reduce light available to the 

algae (Smith 1986, Pick and Lean 1987) with subsequent reductions in N-fixation. This 

study examines whether the tropical Lake Victoria, which experiences continuous 

irradiance and warm temperatures dubbed as the "endless summer" (Kilham and Kilham 

1989), follows the rules of wami monomictic and dimictic temperate lakes. In this siudy, 

nutrient statu measurements, algal biomass and biological N2-fixation of the de-stratified 

and stratified phases are compared to elucidate the importance of thermal stratification in 

Lake Victoria. 



in temperate aquatic ecosystems. rates of Nz-fisation are strongl?- dçpendent on  

the biomass of cyanobacteria and on the density of the heterocysts (Levine and Lewis 

1987, Home and Goldman 1972. Findlay et al. 1994). Given that N-fisation occurs in the 

heterocyst o f  cyanobacteria (Adams and Duggans 1999) it is logical to look for the 

relationships between rates of N -fixation and heterocyst abundance and cyanobacteria 

biomass in Lake Victoria. 

This study adds to existing data on nutrient status, algal biomass, thermal and 

dissolved oxygen stratification and the light environment in Lake Victoria. Emphasis 

was on estimation of planktonic N-fixation and the potential for light limitation in Lake 

Victoria as N-fixation seems important and yet remains an unknown component of the N 

input into Lake Victoria. Biological N-fixation is fundamental to an understanding of 

what constrains algal productivity and subsequentl y fish production in Lake Victoria 

today. Both nearshore and offshore stations were most sampled in 1998 to allow 

determination of seasonal dynarnics of phytoplankton nutrient status, N-fixation. and 

algal biomass. Measurements from nearshore and offshore waters were compared 

through periods of stable thermal stratification and de-stratification in Lake Victoria. The 

three specific objectives of this study were to ( 1  ) Determinate whether P and/ or N limits 

the phytoplankton community of Lake Victoria. Under this objective, the test hypothesis 

was: N-fixation and biomass production are restricted by P availability in inshore 

regions of Lake Victoria. (2). Quantify planktonic N-fixation and detemine the role of 

light availability in controlling rates of N -fixation. Under this objective. the test 

hypothesis was: N-fixation and algal biomasses were restricted by light availability in 

the deep pelagic regions, but not in the shallow inshore bays. (3) Derive a predictive 
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mode1 for N-fixation that relates NI-fixation to heterocyst abundance and light. Under 

this objective, the test hypothesis was: N-fixation can be rnodeled and predicted from 

heterocyst abundance and N-fixation response to Iight. 

Tbesis Format 

Each chapter in this thesis follows a research paper format with exceptions of the 

introduction (chapter 1) and conclusion (chapter 6). While chapter 4 on algal N-fixation 

is the central theme for this thesis, Chapter 2 on nutnent concentrations and thermal 

stratification is presented first, as these are important factors that may influence 

variations in algal abundance and species composition as well as N-fixation activity in 

Lake Victoria. Chapter 3 on particulate nutrient concentrations and nutrient status has 

been presented to explain why N-fixation occws and how P and N availability affect rates 

of N-fixation in Lake Victona. Chapter 5 addresses the relationship between N-fixation 

and cyanobactena biomass and considers how N-fixation can be predicted using 

biological variables such as heterocyst and cyanobactena biornass in Lake Victoria. It is 

important that N-fixation is reasonably predicted using biological variables because 

iakewide measurements of N-fixation are not possible given the size of Lake Victona and 

biological N-fixation is the dominant input of fixed N to the lake. Chapter 6 provides a 

generai conclusion on the importance of N-fixation in Lake Victoria and suggests 

possible effective management options for the resources of Lake Victoria. 



Chapter 2: Nutnent concentrations and thermal stratification in Lake Victoria. 

Abstract 

Temperature and dissolved oxygen profiles in combination with Wedderburn 

numbers were used to determine the patterns of thermal stratification or destratification 

in Lake Victoria. Thermal stratification, as described by the increasing Wedderburn 

number ( W 2 1 .O), occurred between September and MarchlApril. Deeper and stronger 

mixing (W 5 1 .O) occurred around July and resulted in almost uniform distribution of 

dissolved oxygen and nutrients in the water column and increased surface soluble 

reactive phosphorus (SRP). Decreased epilimnetic dissolved inorganic nitrogrn (DIN) 

and SRP occurred dunng the stratified period and coincided with increased algal 

biomasses. Strong stratification also led to impoverishrnent of DiIV in bottom waters as 

microbial populations use nitrate as an electron acceptor in anaerobic dissimilatory 

metabolism. 

Organic particulate N and P were the most abundant forms of N and P in surface 

inshore waters but not offshore. Particulate P and N contributed a Iesser fraction (< 35%) 

of the total P and N stock in the offshore stations. SRP made up a dominant fraction (48- 

80%) of the TDP offshore and was approximately 30-60% of the TDP in inshore. 

Mineralization of organic nutrients resulted in accumulation of inorganic fractions in the 

hypolimnion, especiall y P, during the stratified period. Total N, chlorophyll-a and 

particulate nutrient concentrations were higher by factors of 2 to 5 inshore than offshore. 

but total P was similar inshore and offshore. The low TN:TP ratios ( 120) suggest that N 

was the potentially lirniting nutrient of phytoplankton offshore except in September- 



October. This study suggests that Lake Victoria was P-sufficient at an ecosystem scalc 

given that molar R\I:TP ratios were ahvays < 50. 

Introduction 

Nutrïents, chemical elements essential for biological growth, have recirived much 

attention in temperate freshwaters, and the pace of their study has increased in the rropics 

over the last fifty yean. Nutrients have ofien been invoked to explain seasonality in algal 

biomass and productivity (Talling 1 966, 1 969: Hecky and Kling 1 987: Mugidde 1 993 : 

Hecky 1993: Patterson et. al 1998): and in species composition and succession (Schindler 

1977. 1990; Hecky and Ming 1987: Kling et al. 200 1 ) in both temperate and tropical 

freshwaters. Nutrient availability sets the general level of productivity in many aquatic 

ecosystems (Vollenweider 1968; Schindler 1977), and Hecky (1 993) specitically invoked 

nutrient availability as Iikely to have led to emergence of cyanobacteria as the dominant 

algae in Lake Victoria. 

In an effort to understand and subsequently manage the deteriorating ecosystem 

of Lake Victoria, inter-disciplinary research has been conducted since the beginning of 

the 1960s. Recent results indicate modifications in the water chemistry compared to 

historic records in Lake Victoria (Talling and Talling 1965, Tailing 1966a; Hecky and 

Bugenyi 1992; Hecky 1993; Hecky et al. 1994, 1996, Lehman and Branstrator 1993, 

1994; Lehman et al. 1998). Phosphorus concentrations doubled between the 1960s and 

1990s, while sulfate and soluble reactive siiica concentrations have decreased (Hecky 

1993, Lehman et al. 1 998). Silica concentrations have decreased ten-fold and are ofien < 

lm, suggesting severe silica depletion comparable to that observed during the 
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eutrophication of the Laurentian Great Lakes (Schelske 1975. 1988). Funher evidencc of 

nutrient modification in Lake Victoria cornes from paleolimnological records that 

indicate widespread and progressive enrichment of the lake's sediment with the essential 

nutrients P, N. and siIica (Hecky et al. 1996. Verschuren et al. 19%). Both Iirnnological 

data and paleolimnological evidence indicate that increased nutrient inputs. in panicular 

N, started in the 1920s- followed by increased P input in the 1950s (Hecky 1993). 

Verschuren et al. 1998). Elevated algal biomasses and a two-fold increase in algal 

primary productivity (Mugidde 1992. 1 993) provide further evidence of increased 

nutrient enrichment of Lake Victoria in the 1990s compared to the 1960s. 

Nutrient dynamics in aquatic ecosystems cm be altered by several factors that 

include anthropogenic activities (Hecky and Bugenyi 1992; Hecky 1993; Lipiatou et al. 

1996), changes in trophic relationships (Carpenter et al. 1985) and local or global climate 

change (Lehman et al. 1998). Numerous studies have demonstrated that "top-down" 

control by top consumers can have a cascading effect on the ecosystem through changes 

in planktivorous fish. zooplankton. phytoplankton and nutrients (Carpenter et al. 1985, 

Howarth and Mario 1999). Consequentty, changes in the nutrient concentrations in 

Lake Victoria may partly be in response to biotic changes that include introduction and 

establishment of the top predator, Nile Perch (Lates niloricus) and loss of native fish 

species since the 1960s (Ogutu-Ohwayo 1990). Fish and invertebrates (zooplankton & 

Caridina) populations in Lake Victoria may influence nutrient cycling within the water 

column through grazing, excretion and decomposition. High nutrient concentrations 

support elevated algal biomasses which, on sedimentation and decomposition, contribute 

to increased oxygen demand which partly accounts for pronounced hypolimnetic anoxia 
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in the modem Lake Victoria compared to the 1960s (Hecky et al. 1994). Anosia has 

direct effects on element cycling. in panicular P and N cyclinp. and on the distribution of 

aerobic organisms. 

Thermal stratification is one of the major physical factors responsible for seasonal 

changes in chernical propenies and biological processes in aquatic freshwier ecosystems 

in the world (Talling and Lemoalle 1998). Changes in thermal stratification associaied 

with changes in local meteorological conditions have oofn been invoked to esplain 

nutrient availability and distribution in tropical lakes. especialty o n  seasonal time scales 

(Talling and Talling 1965, Talling 1969, Beadle 198 1. Taliing and Lemoalle 1 998). 

Thermal stratification has direct physical impact on the depth of the mixed layer. which 

in turn affects the vertical distribution of nutnents including oxygen (Talling and 

Lemoalle 1998, Talling 1965) and light availability in the water column (Hecky 1993). 

In lakes, the strength and frequency of mixing governs the movcment of nutrients from 

deeper waters into the euphotic zone as well as the development of anoxia and the 

distribution of plankton and fishes. 

Despite scarce records of temperature profiles for the 1970s and 1980s, recent 

published studies indicate that climatic trends have increased themai stability of the lake 

in the 1990s compared to 1960s (Hecky 1993: Hecky et al 1993, Hecky et al. 1996; 

Lehman et al. 1998). Lehman et al. (1998) specifically suggests that increased thermal 

stability due to climate change may be a master variable contributing to the 

eutrophication in Lake Victoria. This might occur through thermal stratification's direct 

physical impact on the depth of the mixed layer. which in turn affects the vertical 



distribution of nutrients including oxygen (Talling % Lemoalle 1998) and light 

availability in the water column (Hecky 1993). 

Earlier published studies of  thermal stratification (Fish 1957. Ta1 Iing 1966) 

indicated a mobile thermal stratification, which was later found to be more persistent 

(Newell 1960). This earlier research gave initial insight to temporal variations of 

nutrients (Talling 1966) and phytoplankton (Fish 1957, Evans 1962; Tall ing 1 966) \\rith 

thermal conditions in Lake Victoria. Since the 1960s. however. similar studies were 

rarely done in Lake Victoria until the early 1990s. Some information on variation of 

oxygen concentrations over seasons are now published (Hecky et al. 1994) but a more 

detailed account of the interrelationships of nutrient. thermal and osygen variations over 

the annuai cycle remains to be made. Given this information gap and the relevance of 

thermal conditions in understanding nutrient dynamics. as well as biological productivity 

in aquatic ecosystems, temperature, dissolved oxygen and nutrients were measured in 

Lake Victoria fiom 1994 to 1998- This five-year study ( 1 994- 1 998) allowed 

observations of the weakening and strengthening of thermal stratification and subsequent 

changes in nutrient dynamics. The degree of thermal stratification was determined from 

temperature and dissolved oxygen profiles and Wedderburn numbers. Thermal 

stratification effects were assessed from measured dissolved and particulate nutrients. 

The overall goal of this study was to determine nutrient concentrations and describe 

thermal conditions of Lake Victoria in the 1990s. This study focused on the 

macronutrients phosphorus (P) and nitrogen (N) because N and to some extent P have 

been suggested to limit algal productivity and biomass production in Lake Victoria 

(Evans 1962 a, b; Talling and Talling 1965; Hecky 1993; Lehman & Branstrator 1993, 
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1994; Lehman et al. 1998). At the same time. both P and N seem important in drivinp 

current eutrophication processes in Lake Victoria. 

Data of  thermal stratification is presented first. because of its affects on vertical 

and horizontal nutrient distributions- Then data on nutrient concentrations and 

distribution follow. 

Materials and Methods 

Study areas 

To examine variability among stations. nutrient measurements \ xere made frequentl y 

at three inshore sites and one offshore site (Figure 1 a. b,). The inshore areas included: 1 ) 

Napoleon Gulf (maximum depth 20 m), a generally shallow well sheltered gulf located 

near Jinja town and near the River Nile outlet; 2) Pilkington Bay (maximum depth I 1 

meters), a relatively shallow and isolated bay on the north side of Buvuma island: 3) 

Buvuma Channel (maximum depth 22 meters), a relatively turbulent channel and 

Bugaia, the offshore station (maximum depth 65 m). Itome Bay (maximum depth 30 m) 

and the Far station (maximum depth 70 m) were sampled less frequently to enable a 

cornparison with the corresponding inshore and offshore stations. To examine broad 

inshore and offshore trends sites XL1 to X10 (Figure 1 b) were sampled infrequently 

between 1994 and 1996. Using a commercial Ferry Wagon, surface waters samples from 

Portbell, Uganda, to Mwanza, Tanzania, were sampled in December, 1994, and October. 

1995. 



Figure 1. (a) Lake Victoria sampling stations (a) inshore, (b)offshore 
and cross-lake transect (T) fiom Portbell (Uganda) to Mwanza (Tanzania) 
and (c) map of Africa showing location of Lake Victoria. 
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Field sampling 

In order to compare temporal events. measurements of nutrient concen~rations. 

temperature and dissolved oxygen were done between 1994 and 1998. Measurements 

were done more frequently in 1994 to 1996 and most intensely in 1998. Inshore shallow 

regions (Napoleon Gulf, Pilkington Bay and Buvuma Channel) were sarnpled monthly in 

1998. The deep offshore station (Bugaia) was sarnpled at least bi-monthly betwern 1994 

to 19%. Bugaia was sarnpled monthly from July to December 1998 in an attempt to 

capture events during phases of thermal breakdown and re-establ ishment. 

Temperature and dissolved oxygen 

Vertical profiles of temperature and dissolved oxygen were measured during the 

day between 10 -00 and 14.00 hours in 1994- 1998 using a submersible Hydrolab andior a 

conductivity-temperature-depth profiling system (CTD, Sea-bird Electronics @. SeaCat 

SBE 19) programmed to take measurements at one-second intervals. The CTD was 

calibrated annually by Sea-bird Electronics. The Winkler technique for determining 

dissolved oxygen was often used in conjunction with oxygen meters to assess their 

accwacy in measuring dissolved oxygen. At each site, water samples for nutrient 

concentration were drawn from discrete depths using a 3-L Van Dom water sarnpler and 

dispensed into 1 -L brown polyvinyl chloride bottles. In general, water samples for 

nutrient chemistry were taken fiom the surface to 60 m depth at 5 m to 10 m intervals in 

the offshore (Bugaia) water column, and fkom 2 m to 5 m intervals from the shallower 

inshore regions of Lake Victoria. 



Water samples for dissolved nuvients were filtered through Whatman GF'F filtefi 

either in the field or in the laboratory. Water samples of 200-300 ml from offshore and of 

50-100 ml from inshore \vere filtered onto Whatrnan GF!F fiIters and rerained for 

particulate nutrients (P. C & N) and chlorophyll-a analyses. These tilters were either 

desiccated over silica gel in the field or in an oven at 55 C for 24 hours and sealed in 

aluminum foi1 for storage. Samples for particulate P, C & N were shipped to the 

Freshwater Institute (FWI), Winnipeg, Canada. for analysis. The filtrate was analyzed 

for ammonium (NI&'), nitrite (NO?'), nitrate (NO3-). soluble reactive silica (Si). and 

soluble reactive phosphorus (SRP) within 2 hours or presewed with one molar 

hydrochloric acid and kept refrigerated for analysis within 18 hours. Unfiltered lake 

water sarnples were analyzed for total nitrogen and phosphorus concentrations. 

Laboratory methods 

Chernical and chiorophyll-a analysis 

Chlorophyll-a filters were immersed in 1 0 rnL of 95% methanol for 

approximately 20 hours at 4 OC in the dark and absorbances of the extracts were 

measured spectrophotometrically at 665 nm and corrected for turbidity at 750 m. 

Chloropyll-a concentrations were calculated as in Stainton et al. (1 977). using the 

relationship: 

Chlorophyll-a (mg m')) = (665,-750%' v * 1 3.9 * 1000* L 

v 

Where, 665, and 750, are absorbances at wavelengths 650 and 750 nrn, 

v = volume of extract, V = volume of water sarnple filtered, 
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13.9 is a constant using cold methanol. L = path length of the cuvette. 

Dissolved inorganic nutx-ients OTH4'. NOz'. NO;'. Si. SRP) and chlorophyll-a (Chi- 

a) were determined spectrophometncally following methods of Stainton et al. (1977). 

Ammonia was measured by the indophenol-blue method. Nitrate plus nitrite were 

determined using the cadmium method as described in Stainton et al. (1977). Briefly. the 

water sample was passed through a column packed with cadmium granules. Then the 

sample color was developed with a combined sulfanilarnide and ( 1  -naphthyl)- 

ethylenediamide dihydrochloride reagent and absorbance was read at 540 nm within 2 

hours. Total dissolved nitrogen (TDN), total dissolved P (TDP) concentrations were 

determined following oxidation of the filtrate of 20-ml subsamples in alkaline and acidic 

persulfate, respectively, and through subsequent analysis of nitrate and phosphate as in 

Stainton et al. (1977). Dissolved organic P (DOP) and dissolved organic N (DON) were 

calculated as the difference between dissolved total and inorganic N and P. Samples for 

TDN, total P and particulate nutrients were shipped to Freshwater lnstitute (FWI). 

Winnipeg, Canada for analyses. Filters were stored in the dark, sealed in aluminum bags 

and shipped to FWI for analysis, because these analysis were not possible at FIRRI. 

Analyses of particulate samples were done following methods of Stainton et aL(l977). 

A dimensionless Wedderburn numbers (W), a ratio of density stratification to 

wind forcing was used to describe the thermal stratification and was calculated as in 

Spigel and Imberger ( 1980) using the formula: 

W = g'h2/(u2. Lm) 

This formulae combines mixing depth h (in m), the reduced acceleration of gravity 

proportional to the density jurnp across the thermocline g' (m sa'), shear velocity 
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u. (m s") and the lake length 1, (in m). with g* = 2g (p-pi)/ (p, -pi 1- pi and pz = densitics 

of epilimnion and hypolirnnion respecti\rely. g = 9.8 m s-'. u'. ; (p,,, i p  ,,,,,) CV. p,,, 

and p,,., = densities of air and water in the mised layer respective1)-. C = coefficient of 

drag and V = wind speed. Water density of the epilimnion and hypoiirnnion was 

calculated from temperature and salinity as in Chen. C.T and Millero (1 977). Salinity 

was estimated from conductivity as in Wüest at la. 1996). Daily mean wind speed data 

was fiom the weather station at Jinja Peer. Water temperature data from Bugaia \vas used 

for the calculation of the densities of the epilimnion and hypolimnion. The hyposia was 

defined as dissolved oxygen concentrations I 4.0 mg L-'. and the hyposic-osic interface 

as the depth at which dissolved oxygen concentrations were approximately 4.0 mg L-'. 

Results 

Thermal conditions and dissolved oxygen concentrations in Lake Victoria 

Surface water temperatures ranged from 24.4 O C to 28.1 O C and averaged 26.2 f 

0.9 O C  in Lake Victoria. Differences between surface and bottom water temperatures 

were small and in the range 0.1 to 2.3 C, average 1.2 f 0.6 O (Figures 2.1, 2.2 & Tables 

2.0,2.1). Maximum surface-bottom temperature differentials were in November- 

December in Napoleon Gulf ( 1  -8- 1.9 OC) and in September (2.2 C) and March (2.3 C) 

in Bugaia and coincided with increasing Wedderbum numbers (2 1 .O) that indicate more 

stable thermal stratification. 

Diumal heating with temperature amplitudes of about 1 O C was often present in 

the upper surface waters of Lake Victoria (Figures 2.1 & 2.2 a-f). This die1 stratification 

was superimposed upon a persistent annual stratification in both Napoleon Gulf and 
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Bugaia. Thermal stratification was more intense offshore (Bugaia) than inshore 

(Napoleon Gulf) as indicated by the distinctively curved depth-temperature profiles and 

stronger thermal discontinuities in the water column (Figures 2.1 & 7.2 a-f). At Bugaia. a 

persistent seasonal thermocline \vas observed berween September and Apri 1. A shal lo\v 

thermocline developed at 20 m in September, and progressively deepened throughout 

November, forming a distinctive secondas* persistent thermocline at 40 m in December 

and an even deeper thermocline between 45 to 50 m in March 1998 (Figure 2.1 ). At the 

same time, Bugaia exhibited a well-developed os ycline between 3 0-40 m. which 

rendered 33-50 % of the deep-water column hypoxic from November to March in 1998. 

Although thermal stratification usually occurs in sufficiently deep waters, the 

shallow sheltered Napoleon Gulf (Z,, = 20.0 m) located in a low wind stress area had 

moderate thermal stratification (Figure 2.1 ). Well-developed oxyclines occurred between 

9 m to 20 rn, which apportioned 40-60% of Napoleon's waters to deep-water hypoxia in 

1998. With the exception of July, thermal stratification and hypoxia were persistent, 

suggesting lack of holomixis in Napoleon Gulf most of the year. Shallower Pilkington 

Bay (Z,,,, = 1 1 .O m) was different from other studied locations in that it experienced brief 

hypoxia that lasted 1-2 days only during extreme calm weather conditions. Pilkington 

Bay lacked persistent seasonal stratification and usually maintained relatively high 

dissolved oxygen concentrations (> 4.0 (mg L-') throughout the water column. 



Table. 2.0. Temperatures and dissolved oxygen from inshore (Kapoleon Gulf) Lake 

Victoria during 1998. 

Month Temperature (O C) Dissolved oxygen (mg c ' )  Mising depth 

Surface Bottom Surface Bottom Zmi\ (m) 

January 27.4 26.4 8.3 2.1 12.0 

March 28.1 26.9 9-7 4-4 8 .O 

October 25.6 25 -4 5.8 1.3 6-0 

November 27.7 25.8 9.8 0-5 6.0 

December 26.8 23 -9 7.0 0.6 8 .O 



Table 2.1 Temperature and dissolved oxygen fiom offshore (Bugaia) Lake Victoria. dunng 

Month Temperature (O C) Dissolved Oxygen ((mg L-') Mising dspth (ni) 

Surface Bottom Surface Bottom 

March 26.7 24.4 8.2 0.4 25.0 

Jul y 25.4 25.1 6 .  1 6.0 65 .O 

September 26.6 24.4 9.0 4.7 40.0 

Novernber 27.7 25.8 11.0 2.2 30.0 

December 25 -2 24.7 7.4 2.4 30.0 

Within the penod of this study (1994-1998). three major phases of thermal 

stratification were recognized in Lake Victoria. Early and then persistent thermal 

stratification occurred between September and December and between January-April 

respectively, as indicated by the increasing (1 1 .O) Wedderburn numbers (Figure 2.2 g). 

Deep and stronger mixing occurred between June and August as indicated by the falIing 

(I 1.0) Wedderburn numbers. Surface waters were coolest around July and the timing of 

this cool period remained relatively constant in 1994-1 998. Stronger vertical mixing was 

also indicated by weak thermal gradients in July and re-oxygenation of deep waters in both 

Napoleon Gulf and Bugaia (Figures 2.1 a, 2.2 a, f ) .  
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Figure. 2.1. Temperature and dissolved oxygen profiles from the inshore 

region (Napoleon Gulf) of Lake Victoria during 1998. 
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After Aupst. surface waters of Lake Victoria quickly and progressive1 y n-armed 

up from September to November. a period of shallow but stable stratification at both 

inshore and offshore sites (Tables 1.1 & 2.2. Figues 2.1 & 2.2). At the sarne tirne. the 

mixing depth decreased from 65 m to 30 m at Bugaia and from 10 m to 6 m at Napoleon 

Gulf and dissolved oxygen concentrations fell in concert to c 3.0 mg L - ~  in the bottom 

waters (Figures 2.2 f. table 2.0,2.1). Bottom waters of Napoleon Gulf were quiclil' and 

severely deoxygenated (< 0.1 mg L-') by August' but. a month later, had relatively high 

dissolved oxygen (4.7 mg L"). At Bugaia, surface temperatures fell slightly only at the 

surface in December, but did not result in deeper circulation as indicated by well 

developed thermoclines (Figure 2.2 d), bottom water anoxia (Table 2.1 ) and high 

Wedderburn numben (Figure 2.2 g). A deepening of the mixing depth by 2 m occurred 

in Napoleon Gulf but a similar occurrence in offshore surface waters was not clearly 

evident. 

Surface temperatures began to rise again between January and March causing 

more stable thermal stratification as indicated by maximum Wedderbum numbers (Tables 

2.0,2.1 & Figure 2.2 g). This intense thermal stratification was accompanied by further 

contraction of the mixed layer depth to 25 m at Bugaia. but Napoleon Gulf experienced a 

rise to 12 m and a fa11 to 8 rn in the mixed depth during this time (Table 2.1). Further, 

bottom oxygen depletion to < 0.5 mg L-' occurred at Bugaia (Table 2.0) but not in 

Napoleon Gulf. In the offshore regions of Lake Victoria (Bugaia), seasonal thermal 

stratification occurs over approximately 70-80% of the year, as it lasted from September 

to ApnlMay. Napoleon Gulf, unlike Bugaia, was susceptible to short term changes in 

the thermal structure as evidenced by fluctuations in dissolved oxygen and mixed depth 



during the stratified penod. Napoieon Guif is likely io experience episodes of deeper 

partial mixing due to wind generated turbulence. given its relarively shallo\ver depth and 

incursions of offshore waters due to set up under the dominant Southerly winds. 

Vertical distribution of phosphorus and nitrogen in Lake Victoria 

Particulate phosphorus (PP), dissolved P and total P varied over depth and time in 

Lake Victoria (Figure 2.3,2.4). Generally, particulate phosphorus concentrations (PP) 

were much higher in the epilimnion than in the corresponding bottom waters. while 

dissolved P was higher in the hypolimnion (Figure 2 .9 .  Dissolved inorganic P 

concentrations (SRP) were more easily measurable in offshore waters and were in the 

range 0.2 - 4.5 pM at Bugaia. Buvurna and Itome Bay (Figure 2.3, Table 2.2). Average 

SRP concentrations were 2 to 4-fold lower inshore at Pilkington Bay, Buvuma Channel 

and Napoleon Gulf than in offshore surface waters (Table 2.2). Vertical profiles of DOP 

and TDP were similar to those of SRP. Strong vertical gradients of total P and its 

dissolved components were encountered in Bugaia during December-March. Persistent 

thermal stratification enhanced the accumulation of hypolimnetic P in Bugaia (Figure 

2.3). At the same time, surface water SRP concentrations decreased remarkably as strong 

thermal stratification becarne established from December to March (Figures 2.3 d, f & 

2,2 g). Similarly, areal total P concentration in the whole water cotumn (0-65 rn) and in 

surface waters (0-20 m) decreased 2 to 4-fold during the stratified period (Table 2.3). 

Total P concentrations in the water column at Bugaia decreased by half between 

September and October and between Decernber and March. 



On the contran. areal total P concentration increased 2-fold in the whole water 

column and 5-fold nithin the surface mised \vaters during destratification (h43y- July) rit 

Bugaia (Table 2.3). As the thermocline continusd ro deepeii- areal P conct.ntrations for 

the whole water colurnn rose to the annual maximum concentrations of 565 ph1 P m--' in 

September. However. above 20 m depth total P concentrations remained relatively 

constant between Jul y and September- In July. particulate P. dissolved P and total P 

exhibited an almost homogenous vertical distribution (Figure 2.3a). SRP and DOP 

reached relatively high concentrations in surface waters in July to September indicating 

P retwn from bottom water and sediments. Despite increased SRP and DOP 

concentrations. minimum particulate P concentrations were measured in surface \vaters in 

July at Bugaia (Figure 2.3a). 

Table 2.2. Average soluble reactive phosphorus (SRP). total dissolved phosphorus 

(TDP) and total phosphorus (TD) and their standard deviation from the inshore (0-5 m) 

and offshore (0- 1 0 m) surface waters of Lake Victoria. Nurnbers in brackets indicate 

sample size. 

Station S W P M )  T W P M )  TP(PM) 

Bugaia 2.0 + 0.7 (25) 2.5 + 1.1 (25) 3.1 + 0.9 (13) 

Far Station 1.1 + 1.2 (14) 1.7 + 1.2 (4) 2.6 2 1 -3 (2) 

Itome Bay 1.5 + 1.5 (i4) 1.5 2 1.2 (6) 2.3 2 1 .O (6) 

B u m a  Channel 0.8 f 0.9 (1 3) 2.5 f 0.1 (1 5) 3.1 + 0-7 (7) 

Napoleon Gulf 0.8 + 1.3 (20) 1-4 2 2.5 (14) 2.9 + 2.1 (9) 

Pilkington Bay 0.5 + 0.8 (1 1) 1.4 + 0.1 (13) 2.3 k 0.9 (7) 



Table 2.3. Areal total P concentrations (,DM m2) from offshore (Bugaia) Lake Victoria 

during 1998 

Month Water column(0-65 m) Surface water(0-20 m ) 

March 1998, 156.6 3 5 -5 

May 1998 247.4 29.5 

July, 1998 432-8 137.7 

August, 1998 575.9 148.7 

Septernber, 1998 564.6 145.5 

October, 1 998 178.3 59.3 

Novemkr, 1 998 247.5 72.3 

December, 1998 296.5 60.5 
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Figure. 2.3. Depth profiles of particulate P (PP), soluble 
reactive P (SRP) and dissotved organic P (DOP) from 
of offshore (Bugaia) Lake Victoria, during, 1 998. 
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Figure. 2.4. Temporal variation of paiticulate P (PP), soluble 
reacüve P (SRP), dissolved organic P(D0P) and total P (TP) from 
(a) inshore (Napoleon Gulf) and (b) offshore (Bugaia) surface 
waters, 1994-1 998. 



Vertical distribution of dissolved inorgank nitrogen in Lake Victoria 

Figure 2.5 shows representative depth profiles of dissolved inorganic nitrogen 

(DM) fiom Bugaia. Dissolved inorganic niuogen varied over time and at all depths a< 

Bugaia, although concentrations hardly exceeded 20 FM in the water column (Figures 2.5 

& 2.6). Surface waters (0- 10 rn) were impoverished in DM between September and 

March. The most prominent feature of the vertical distribution of dissolved N was the 

DM maxima that occurred between 30 and 40 m depth in September-March (Figure 2.5 

b-d). The DRJ maximum was less prominent in July and occurred below 50 m in 

December (Figure 2.5 a-e). A decrease in DM concentrations to as low as 2.0 pM was 

observed just above the ammonium nutricline beginning at 40 m depth in December. 

Ammonium concentrations were generally 1 2.0 pM in the surface waters and 

tended to decrease slightly at 10 m depth (Figure 2.5 a, c, d). but increased below 30 m in 

December. Ammonium profiles show a distinct nutricline begiming at 40-m depth in 

December. Mid and bottom water ammonium maxima occurred below the oxycline 

between October and March in Bugaia. A deep-water (50-60 m) ammonium pool (2 10 

pM) occurred when dissolved oxygen concentrations fell to 5 1 .O mg L-' in December. 

This hypolimnetic ammonium reservoir vanished or becarne very low (5 2.0 pM) when 

dissolved oxygen concentration began to increase (5 2.0 mg L-') in March and in June- 

July. Apparently, much of the ammonium regenerated in the hypolirnnion in December 

hardly reached the surface layers as indicated by the falling DIN concentrations between 

the nitrate maximum and ammonium minimum (Figure 2.5 b, c, d). 
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Figure. 2.5. Selected depth profiles of dissolved 
inorganic nitrogen (amrnonia, nitrate, nitrite) and 
dissolved oxygen (DO) at Bugaia, dunng 1998. 



Figure. 2.6. Temporal variation of particulate N (PN), dissolved 
inorganic N(DIN), dissolved organic N(DON) and total N UN) at 
(a) inshore (Napoleon Gulf) and (b) offshore (Bugaia) sudace 
waters, 1994-1 998. 



Nitrate concentrations in surface waters (0-1 0 m) \vert generally Lon- (5 2 . 0 ~ )  md 

bottom waters were equally impoverished in nitrate escept in July-Septemher and March. 

Deep vertical mixing allowed a build up of elevated nitrate concentrations (7.0-1 3.0 ,uM) 

throughout the oxic waier colurnn of Bugaia in June-July (Figure 2.5a). but surface n-atrr 

concentrations begm to decrease in September. The highest concentrations of nitrates 

(7-14 PM) were observed in mid-waters (20-30 rn) as indicated by the depth-nitrate 

profiles in September. December and March at Bugaia. The mid-u-aier nitrate maxima 

occurred just above the arnmonia minima and were also above the oxic-anosic interfaces 

where dissolved oxygen was 2 4.0 mg L-'. With falling hypolimnetic dissolved osypn  

concentrations (S 2.0 mg L-') nitrate diminished to low concentrations (0-1 -2 PM) and 

was undetectable below 50 m depth except in March. Total N increased to maximum 

concentrations between September and November in both inshore and offshore surface 

waters. 

Spatio-temporal variability of nutrients in surface waters of Lake Victoria. 

Total P concentrations were in the range 1 .O to 12.0 pM (Figure 2.3.2.4 a, b). 

Average total P concentrations in surface waters generally had a narrower range of 

2.3pM to 3.1 pM (Table 2.2) and were not significantly different among stations 

(p > 0.05). Bugaia and Buvuma Channel had similar but slightly higher total P 

concentrations compared to the Napoieon Gulf, Pilkington Bay and Itome Bay- 

However, SRP concentrations were significantiy lower inshore than offshore. Inshore 

shallow waters in conaast had highest values of  particulate P as well as other particulate 



nutrients and chlorophyll-a (Figure 2.6.2.7.2.8. Table 2.4). 

- - 

Table 2.4 ~ v e r a ~ e  particulate phosphorus (PP). nitrogen (PN). carbon (PC) and their 

standard deviation from the inshore (0-5 m) and offshore (0-1 0 m) surface \vaters ot' 

Lake Victoria. Nurnbers in brackets indicate sarnple size. 

Bugaia O.S+O.2(24) 10.6k4.4(24) 79.1 k31.1 (33) 

Far Station 0.7 + O. 1 (8) 11.3 k 2-0 (8) 109.7 + 23.6 (8) 

Itome Bay l.OkO.5 (19) 20.3I10.9(19) 138.8 I73.9 (19) 

Buvuma Channel 1 .O t 0.6 (33) 25.5 k 20.8 (33) 178.4 & 127.4 (33) 

Pilkington Bay 1.4&0.6(38) 31.1+14.9(38) 230.6 k 103.1 (38) 

Napoleon Gulf 1 1 7 ( )  42.8 k47.1 (33) 289.7 + 283.0 (33) 



Months 
Figure. 2.7. Temporal variation of particulate C (PC) and 
chlorophyll-a from surface water of (a) Napoleon Gulf and 
(b) Bugaia, 1994-1 998. 
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Figure. 2.8. (a) particulate carbon (PC) and nitrogen 
(PN) and chlorophyll-a concentrations (chl-a) from Bugaia 
and other offshore stations, (b) and (c) cross-lake transects 

from Portbell to Mwanza of particulate nutrients, chl-a, total 
N and P, in 1994-1 995. 
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Seasonal dynamics illustrate similar trends in dissolved and total P in inshore and 

offshore surface waters of Lake Victoria (Figure 2.4 a. b). The greatest change in total P 

concentrations occurred between July and September corresponding to mising and early 

stratification penod (Figure 2.1 a & 2.2 a, g). At Bugaia. a major total P maximum 

(5-8 pM) occurred in July to September dunng de-stratification and early re-stratification 

respectively. Total P concentrations were halved (2-4 PM) dunng periods of prolonged 

intense stratification (December to April) in Lake Victoria (Figure 2.4 b). 

Total nitrogen concentrations were in the range 19.0-23 1 pM in the surface waters 

of Lake Victoria (Figure 2.6 a & b). Average total N, total dissolved N and particulate N 

were 2x-3x higher nearshore than offshore (Table 2.5). Average total N was of sirnilar 

magnitude in Napoleon Gulf and Pilkington Bay and was somewhat lower ( 1  9-23%) in 

Buvuma Channel. Napoleon Gulf had higher dissolved N concentrations than Pilkington 

Bay and Buvuma Channel (Table 2.5). Temporal variation in dissolved N. particulate N 

and total N were qualitatively similar (Figure. 2.6 a & b). Total N concentrations rose to 

maximum concentrations in September-November at both inshore and offshore and 

deceased remarkably in December. Offshore, the variation in TN was lower in amplitude 

but coincided in timing with Napoleon Gulf s minor maxima in October. 

Maximum total P and its dissolved species was in My-September at both inshore 

and offshore sites (Figure 2.4 a, b) whiie maximum total N and particulate N values were 

measured later in September to November (Figure 2.6 a, b). The major total P maximum 

in Napoleon Gulf coincided with the total N maximum and with Bugaia's total P 

maximum (Figure 2.4 a, b, 2.6 a). Total P tended to increase with increases in suspended 

P, particularly in September when it increased to maximum concentrations and 
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contributed approximately 70 ?' of the total P concentration in Napoleon Gulf (Figure 

2.4 a). Particulate C and chlorophyll-a concentrations were highest between September 

and March when the iake was thermally stable (Figure 2 3 . 2 . 7  a. b). Particulate nutrient 

concentrations and chlorophytl-a were lowest in Juty when the mixed layer \vas most 

turbulent and deepest 65 m) in Bugaia. Overall. Napoleon Gulf rnaintained highsr 

total N as well as higher particulate nutrient and chlorophyll-a concentrations than 

Bugaia. 

Table 2.5 Average ammonium, nitrate, total dissolved inorganic nitrogen (DIN)- total dissolved 

nitrogen (TDN) and total nitrogen (TN) and standard deviation in inshore (0-5 m) and offshore (0-1 O 

m) surface waters o f  Lake Victoria during 1994-1998. Numbers in brackets = N. 

Station Ammonium Nitrate DIN TDN TN 

(PM) (PM) (PM) (FM)  (PM) 

Bugaia 1.4+1,1(25) 3.0+2.5(25) 4.5+3.2(25) 26.314.2(25) 37.1+18.7(25) 

Far Station 1 -6 + I .O (3) 0.6 + 2.0 (2) 3.9 I 1.2 (2) 24. 1 + 4.8 (2) 

ItomeBay 2.4+3.7(16) 1.4-+2.2(16) 3.7+4.6(16) 

Buvuma 4.5c4.9(12) 1.4f1.8(12) 6.0f5.7(12) 54.0+5.3(12) 81-42 13.0(12) 

Pilkington 4.5+5.9(12) O.ZfI.O(i2) 4.7t9.6(12) 63.4+8.6(12) 100.2f 24.0(12) 

Napoleon 2.0t3.6(18) 131.7(18) 2.4&1.2(18) 70.4k18.218) 106.4+28.2(22) 



Total P and N and theh species in the surface waters o f  Lake Victoria 

The relative distribution of phosphorus between the dissolved and particulate 

form was different for inshore and offshore surface waters. Particulate P was by far the 

largest form of P inshore accounting for 40-60 % of total P (Table 2.3.2.4 Br Table 2.3). 

In Napoleon Gulf, particulate P was approxirnately 55% of the total P most of the year. 

except in September when it peaked and contributed 70-77% of  the total P (Figure 1.4). 

Particulate P contributed a iesser fraction of 16% and 27% of the total P stock in the 

offshore Bugaia and Far stations. respectively. Buiuma Channel and Bugaia had much 

higher total dissolved P than any other stations (Table 2.3). SRP made up a dominant 

fraction (48-80%) of the total dissolved P offshore (Bugaia) and was approximately 30- 

60% of the total dissolved P in Napoleon Gulf and Pilkington Bay. However, SRP was 

frequently more variable in Napoleon Gulf. being undetectable to as high as 3.0 pM 

(Figure 2.4 a). 

Particulate N was the dominant form of N inshore accounting for 52-61 % of total 

N (Table 2.4 & Table 2.5). In Napoleon Gulf, particulate N was approximately 5 1% of 

the total N most of the year, except in September when it peaked to 187.0 PM, 

accounting for 87% of the total N (Figure 2.6a). Particulate N contributed a lesser 

fraction (average 35%) of the total N stock in the offshore. In Bugaia. a particulate N 

maximum (24.0 PM) accounting for 37% of the total N was observed in October, but the 

largest suspended N: total N fraction (55%) was observed in May when PN was only half 

(1 2.0 pM) as high as in October and total N was also lower. In both Napoleon Gulf and 

Bugaia, maximum algal biomass (chlorophyll-a) occurred close but prior to the 

particulate N maximum. 
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Total dissoived N made up approximately 49% and 65?6 of the total h: in 

Napoleon Gulf and Bugaia surface waters. respectively. Dissolved inorganic N 

contributed small proportions of 17% and 3-1 1 % of the total dissolved N in Napoleon 

Gulf and Bugaia. respectively. and dissolved organic N (DON) contributed the ereater 

fraction. A major DON maximum coincided with the TN maximum in Octoher in 

Napoleon Gulf. Nitrite as a component of the total N was negligible and was always 5 

0-1 pM in Lake Victoria. Amrnonia made up a larger fraction (65%-87%) of the total 

dissolved inorganic N inshore and constituted only 37%-48% offshore. Ammonia 

concentrations were 50% lower in Napoleon Gulf. and home Bay, and 30 % lower in 

Bugaia compared to concentrations in Pilkington Bay and Buvuma Channel. Nitrate 

unlike ammonia constituted a larger fraction (6567%) of the D[N offshore and a lesser 

Fraction (23-38%) inshore. Average nitrate concentrations in Bugaia were almost double 

Buwma Channel, Itome Bay and Napoleon Gulf values. Pilkington Bay on average had 

15 times lower nitrate concentrations compared to Bugaia. 

Inshore to offshore trend of nutrients and chlorophyll concentrations. 

Particulate nuuient, total N and chlorophyll-a concentrations were much higher in 

the shallow inshore regions than offshore dunng cross-lake transects (Figure 2.8 a, b, c). 

Nutrient concentrations were low and remained relativeiy constant at Bugaia and other 

offshore stations. Chlorophyll-a and particulate P, N and C decreased along the transect 

fiom Portbell in Uganda to the Tanzania offshore waters k d  then increased again on the 

Tanzanian inshore waters (Figure 2.8 b, c). Total N was higher in the Ugandan and 

Tanzania inshore portions of Lake Victoria while total P remained fairiy constant. 
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Inshore-offshore nutrient transects show that Bugaia marked the beginning of deep 

offshore waters. ~vhile the Far station and XL1 -XLS were typical offshore sites ~vith low 

chlorophyll-a and particdate nutnent concentrations (Tables 2.4 & 2.5).  

Total N and total P relationship and their ratios in Lake Victoria. 

Total nitrogen: total P (TN:TP) ratios were in the r a n g  8-12. average 15.7 + 9.3 

(std) in Lake Victoria (Table 2.6). Average and minimum TN: TP ratios in Napoleon 

Gulf were almost double the corresponding values in Bugaia. In Bugaia. M:TP ratios 

were low ( 5 20 ) most of the year with exceptions in Septernber-October. Overall, 

higher TN:TP ratios occurred between September and Aprii when the lake was thermal 1 y 

stable and low ratios occurred on destratification and deep mising in May-August (Figure 

2.9 a). Based on the criteria of Guildford and Hecky (2000). Napoleon Gulf tended 

toward N deficiency (TN:TP ratios < 20) for most of the year while Bugaia was only N- 

deficient in October when TN: TP ratios rose to maximum values. The particularly high 

TN:TP ratios in Septernber to October (43.2) and February to March (42-43.2) in 

Napoleon Gulf were slightly lower than the accepted value of 50 which suggests P- 

deficiency on a system scale (Guildford and Hecky 200 l ). Based on the TN:TP ratios, 

Lake Victoria may be classified as a P-sufficient ecosystem with inshore shallow bays 

tending to N-deficiency during the mixing. Total N was strongly correlated with total P 

(Figure 2.9 b) and gave a regression dope (1 9.7) that was significant (p < 0.0 1 ). This 

regression slope approximately corresponds to the average TN:TP ratios which suggests 

that N may be limiting in Lake Victoria. 



. 

Table. 2.6. Minimum. average aandmaximum total nitrogen (TN): total phosphorus (TP) 

molar ratios in surface waters of Lake Victoria during 1994-1 998. 

Station Depth (m) Minimum Average Maximum 

Bugaia Surface (0- 10) 8.1 14.5 27.2 

Bugaia Bottom (50-60) 4.4 8.1 11.9 

Napoleon Gulf Surface (0-5) 14.3 29.1 43.2 
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Figure. 2.9. Surface total nitrogen (TN):total phosphorus (TP) 
ratios for Napoleon Gulf (NPL) and Bugaia (BUG) and (b) 
relationship of average TN and TP within the euphotic zone 
of 0-5 m in Napoleon Gulf (NPL) and (0-1 0 m) in Bugaia (BUG). 
Dashed line, 1, = 20 and 2, = 50 indicating possible N and P 
deficiency (Guildford and Hecky (2001 ). 



Discussion 

Lake Victoria experienced phases of thermal stratification and destratification in 

1994- 1998 that were similar to those reported by Talling ( 1 966). -9s in the 1 960s. surface 

waters were coolest around M y  and the timing of this cool period remained relriti~ely 

constant in 1 994- 1 998 and consistent with earlier findings of the 1 960s ( Fish I 95 7: Ta1 Iing 

1966) and the recent measurements of the 1990s (Hecky et al. 1994). A s  in the 1950-60s. 

destratification and complete mixuig in Lake Victoria occurred during penods of increased 

southerly wind stress around June-July. This windier season is a result of strong and cool 

Monsoon winds that blow towards Lake Victoria leading to a seasonal fa11 in air 

temperatures and lake-wide cooling (Newell 1960; Tdling 1 969). Talling ( 1 966) found that 

increased evaporative cooling made the cooler and denser surface waters descend into the 

hypolimnïon. However, current water temperatures, especially during mixing. were 

consistently higher compared to values reported in the 1960s (Talling 1966. Fish 1957) 

but were consistent with observations of higher temperatures and increased thermal 

stability in the lake in the 1990s (Hecky and Bugenyi 1992; Hecky 1993: Lehrnan et al. 

1998). 

Despite decreases in Wedderburn numbers in Decernber and March, Lake 

Victoria remained thennally stable between Septernber and March as indicated by the 

persistent thennociines and nutriclines, and bottom water anoxia at Bugaia. Decreases in 

Wedderburn numbers during the stratified phase were likely a result of internal waves 

(seiches). Fish and Talling observed strong oscillations of offshore waters and 

thermocline tilts due to internal waves that could bring deep waters near the surface 

during periods of maximal thermal stabiiity (Fish 1957, Talling 1966). These seiches 
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lasted a penod of 40 davs and had the capability to spread their effects from offshore 

(Bugaia) to inshore waters (Buwma). It  seems possible that stronger thermal 

stratification in December in Napoleon Gulf ma' be due to incursion of cooler \vater at 

depth as indicated by the relatively lower bottom temperatures in December than 

November. Seiches or episodes of incursions of cooler water can be ecologicall~ 

important as they permit partial return of various dissolved nutrients accumulated in deep 

waters to the mixed layer. Kitaka (1 971) observed spikes in nutrient concentrations in 

surface waters during similar thermal events descri bed by Fish ( 1 957). and interpreted 

them as cyclonic upwelling. 

The annual cycle of thermal stratification and destratification influenced the 

vertical distribution of dissolved oxygen and nutrients in Lake Victoria. Destratification 

allowed oxygen-rich surface waters to reach the hypolimnion, as indicated by 

substantially higher oxygen concentrations at bottom depth in June-July. In addition, 

strong and deeper mixing allowed nutrients' in particular P, from the hypolimnetic 

reservoirs to return to surface waters as indicated by the weak vertical nutrient gradients 

and the almost even distribution of total dissolved P and DM in the water column. In 

contras, during the stratified period (September to April) a stable thermocline extended 

through Napoleon Gulf and Bugaia, and limited exchange and supply of nutrients from 

the hypolimnion to the epilimnion resulting in a build up of regenerated nutrients in the 

hypolimnion. Thermal stratification \vas a strong barrier to P and N exchange between 

surface and bottom waters during the advanced phase (December-April) as more concave 

nutrient and oxygen profiles indicate. Duration of thermal stratification also contributed 

to concavity . 



Thermal stratification isolated the epilirnnion from the hypolimnion and. 

increased the potential for deoxygenation of bottom waters. Indeed. thermal siratification 

delimited the deeper oxygen-poor waters from the surface osygen-saturated waters 

leading to a hypoxic hypolimnion for 80% of the year in Lake Victoria. Deosygenation 

did occur rapidly, particulariy inshore. resulting in deep water hypoxia that has spread 

upward to 25-40 m in Bugaia and horizontally further into the shallow nearshore 

Napoleon Gulf. Hecky et al. (1994) observed a hypoxic hypolimnion in Bugaia. but did 

not report similar observations in nearshore regions of Lake Victoria. The persistent deep 

water hypoxia during this study (1994-1 998) and earlier studies of 1990-1 997 (Hecky et 

al. 1994) indicate that hypoxia has become almost a persistent feature of 40% to 60 % of 

the bottom waters of Lake Victoria. Talling (1966) observed brief moderate hypoxia at 

the deepest depths (60 m) during bnef periods of stratification in offshore waters 

(Bugaia) of  Lake Victoria. 

Oxygen concentration tended to be higher in the upper surface waters of Lake 

Victoria, where photosynthesis occurs, and lower below the therrnociine as a result of 

respiration. Increased algal biomass (Mugidde 1992, 1993) likeiy contnbuted to 

increased photosynthesis and increased respiration. Oxygen consuming reactions are 

likely to have increased with increased organic substrate and in concert with increased 

temperatures (Hecky 1993, Hecky and Bugenyi 1992) in Lake Victoria. Lehman et al. 

(1998) suggested that increased stability may have contributed to higher algal biomasses 

in Lake Victoria today. This is because thermal stratification has a direct impact on the 

mixing depth, which in tum affects the vertical distribution of dissolved oxygen and 

nutrients. Thermal stratification reduces the mixing depth and improves light for aigal 
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@ o h .  Dissolved oxygen availabiliq has consequences for various redos biochemical 

reactions as well as aerobic life in Lake Victoria. Oxygen availability or deficiency is 

likely to influence nutrient cycling (Hecky 2000) and availability. and nutrient 

availability in tum put checks on algal biomass production and species composition in 

Lake Victoria (Chapter 5) .  

Examination of the SRP and DM profiles show that thermal stratification and 

hypoxia affect P and N recycling differentially in Lake Victoria. Generally, SRP 

increased with depth dunng the stratified penod while DM decreased below the 

themocline by end of the stratified penod in March. This is because PO4 is released 

frorn insoluble iron oxides under reducing hypoxic hypolimnion conditions. but N can be 

lost to denitrification at the oxycline (Hecky et al. 1996). This, in part. explains high SRP 

in bonom waters as indicated by low average TN:TP ratios (8: 1), as well as low N 

availability in surface waters. Bugaia had 40-50 % lower Ru: TP ratios than Napoleon 

Gulf. The almost 3-foid higher total N concentrations in Napoleon Gulf were the reason. 

because average total P was of similar magnitude in both nearshore and offshore surface 

waters. TN:TP ratios < 20 suggest that N was likely to be limiting algal growth at Bugaia 

and is consistent with previous suggestions that N may be limiting in Lake Victoria 

(Talling 1966, Hecky 1993, Lehrnan and Branstrator 1993). 

Phosphorus was in excess on a system scale given that TN:TP ratios were always 

a 50, a critical value above which P is likely to be limiting algal growth and frequently 

< 20 offshore indicating N-deficiency (Guildford and Hecky (2000). The considerably 

higher SRP in Bugaia is consistent with earlier findings of excess P in Lake Victoria 

(Hecky 1993; Lehrnan et al. 1998) and further suggest a P-sufficient environment 
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offshore. The simuhaneous occurrence of the higher TT\I:TP ratios in September-October 

in Napoleon Gulf and Bugaia likely indicates N income via biological N-fixation 

(Chapter 3). It is difficult to assess algal nutrient status at community l e 4  using ambient 

nutrient concentrations and TN:TP without analyzing the particulate stoichiometry and' 

or  physiological indicators. These will be addressed in Chapter 3. 

In this study. it was not possible to quantif\ the impacts of osygen depletion and 

oxic-hypoxic interface on dissolved inorganic nitrogen. But depth profiles of DIN show 

a minimum of N at oxic-hypoxic interface, regeneration of ammonia in the hypolimnion 

and formation of nitrate above the oxic-hypoxic interface. The ammonium maximum 

that occurred usually below the oxyl ine  between September and December ma' be a 

result o f  ammonium regeneration in the anoxic hypolimnion. Apparently. much of the 

ammonium that might have d i f i s e d  through the thermal boundary may be transfonned to 

nitrate and much of the nitrate was denitrified at the low orygen concentrations near the 

oxic-anoxic interface (Hecky et al. 1996). This process may appear in the profiles as low 

DM concentrations between the nitrate maximum in the epilimnion and ammonium 

maximum in the hypolimnion as observed in December. Loss of DIN at the oxic-hypoxic 

interface due to denitrification is common in productive lakes (Hecky 1993). Upon 

oxygen depletion, nitrate can replace oxygen as a terminal electron acceptor during 

dissimilatory metabolism by anaerobic microorganisms (Hecky et al. 1996). 

Denitrification results in N loss and may explain the mid-water si& o f  dissolved 

inorganic N between the nitrate and ammonium maxima in Lake Victoria. A mid-water 

N sink has been previously reported in Lake Victoria (Hecky et al. 1 996) and is also 



known to occur in other African Great Lakes. such as lakes Mala~vi and Tanganyika 

(Hecky 1993, Bootsma Br Hecky 1993). 

Despite ammonium loss at the osic-anoxic interface. ammonium concentrations in 

surface waters of Lake Victoria today are higher compared to values of the 1960s. 

Talling (1 966) failed to measure ammonia concentrations. but suggested that N was a 

limiting nutrient for many phytoplankton of Lake Victoria. The very presence of N- 

fixing cyanobactena (Chapter 5) suggests that regeneration and re-rnineralization 

processes alone are unlikely to meet the aIgal N demand in Lake Victoria. The N 

demand enhanced by denitrification and increased P loading is likely to be met through 

biological N-fixation by the heterocystous cyanobacteria (Chapter 4. 5) as N loading 

from the watershed is insufficient to support the observed algal production in the lake 

(Lehman and Branstrator 1 993). 



Chapter 3: Particulate nutrient concentrations and nutrient status of Lake Victoria 

Abstract 

Phytoplankton nutrient status was detemined using seston ratios and 

physiological nutrient indicators (P and N-debt) collected between 1994- 1998 from 

inshore and offshore waters of Lake Victoria. Examination of particulate N : P. C: P and 

C: N ratios indicates that N and P-deficiency were more common in inshore than in 

offshore surface waters of Lake Victoria. N andior P-deficiency were present when the 

lake was thermally stable and were absent when the lake \vas deepiy mixing. lnshore. P 

rather than N-deficiency had a somewhat stronger control of phytoplankton biomass 

developrnent, as N-fixers can draw on the atmospheric N source when the light climate is 

good. Offshore, phytoplankton was less constrained by N and P availability. as N and P- 

deficiency were absent most of the year. Despite the absence of nutrient deficiency, 

phytoplankton biomass (as chloropyll-a) and particulate nutrient concentrations were 

consistently lower offshore. probably due to Iight limitation. as grazing pressure is low in 

Lake Victoria. Consequently. total P (TP) and total N (TN) were only weakly correlated 

with chloropyll-a in Lake Victoria. These weak chl-a-TP and chl-a-TN correlations 

suggest that îùrther P and N input into Lake Victoria may not result in further increases in 

algal biomass as light now limits biomass maxima. 



Introduction 

Eutrophication has become a global problem responsible for changes oTchemical 

properties and biological processes in freshu-ater (VoIIsntveidsr 1 968. SchinJIer 1 977. 

Hecky 1993) and marine ecosystems (Smith 1998. 1999) around the umld. 

Consequentiy, many studies have been camed out to tackle eutrophication and its 

attendant problems. Many of these studies aimed at identifying nutrient(sl and othcr 

factors that contribute to eutrophication. Nutrients. especially P. have been identi fied as 

the major factors responsible for eutrophication (Schindler 1977) and for changes in algal 

biomass, productivity and species composition (Kanda and Hattori 1988. Hecky and 

Kilham 1988). The relationship between nutrient concentrations. algal grouth and 

occurrence of nuisance cyanobacterial blooms has been studied in temperate lakes 

(Hendzel et al. 1994. Guildford et al. 1994). Several studies show that aquatic primary 

productivity is frequently limited by the availability of nutrients (Howarth 1989. Sommer 

1990). Nutrient deficient algae may be Iow qualiry food for consumers and rnay 

contribute to food webs high in contaminants (Taylor et al. 1991 ). The ability to identify 

nutrients limiting algal growth is of considerable importance to Our understanding of the 

ecology of aquatic plants and to water management practices. Such knowledge has also 

proven useful in the management of the northern temperate Great Lakes. and will 

possibly be important in the management of Africa's largest Great Lake. Victoria. 

Algae have basic metabolic requirements for nutrients in relatively fixed 

proportions and most dgae are near the Redfield molar ratio of C: N: P: 105: 16: 1 when 

, they attain maximum growth rates (Goldman et al. 1979, Hecky and Kiliiam 1988). 

Growth of an algal species will be limited if the cellular nutrient concentration falls 
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below a critical level. But individual algal species can achieve optimal grouth ai 

different nutrient ratios of C: N: P. Therefore. nutrient ratios may predict the outcome of 

cornpetition arnong aigal species when nutrients become limiting (Tilman 1 9 8 3  

Algae show markedly similar cornpositional and physiological responses to 

nutrient-limitation (Healey and Hendzel 1980, Hecky and Kilham 1988)- Some 

responses are specific to a given nutrient while others are general responses to nutrient 

limitation of any kind. A decrease in the interna1 stores of nutrients. which ofien 

determines nutrient uptake kinetics and growth rates. is a general response to nutrient 

limitation. An algal C: N: P ratio near the Redfield Ratio (1  05: 16: 1)  indicates near 

nutrient-sufficient status and near-optimal growth rates for given set of light and nutrient 

conditions (Goldman et al. 1979' Goldman 1980). Vari-ability in particulate C: N: P 

ratios from the Redfield ratio does occur. and higher ratios of C to N and N to P are 

indicative of a nutrient deficient algal community as a whole (Healey and Hendzel 1980; 

Hecky and Kilham 1988). 

Of the macronutrients, nitrogen and phosphorus are most ofien identified as the 

principal nutrients limiting algal growth in many aquatic ecosystems, while silicon is 

essential for diatom growth (Hecky and Kilham 1 98 8). Phosphorus andor nitrog- ,n can 

be limiting in temperate manne and fresh waters (Hecky and Kilham 1988, Guildford and 

Hecky 2000) and in tropical freshwaters (Guildford et a1.2000). However, large and 

small-scale expenments show that P is oAen the primary nutrient limiting algal growth 

and biomass in freshwaters lakes. Indeed phosphorus has been found to limit algal 

growth and biomass in many temperate aquatic freshwater ecosystems (Schindler 1977, 

1978, Dillon 1991) and in several small East African lakes (Melack et al. 1982). 
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However, P-limitation in fieshwaters is not always the rule. Studies condiicted at the 

Experïmental Lake &ea (ELA). Ontario. Canada- dernonstrated that increassd P loading 

induces an N-deficiency and leads to increases in planktonic cyanobacteria that c m  fis 

atmospheric nitrogen (Schindler 1977. Hendzel et al. 1994). 

Nitrogen has been found to limit algal growth in a number of tropical \vaters 

(Levine and Schindler 1987, Phlips and Inhat' 1995) including the African Great Lakes 

such as Lake Malawi (Guildford et a1.2000). A potential for N-limitation in Lake 

Victoria was suggested by histonc evaluations in the 1960s (Evans 1962 a. Talling and 

Talling 1965, Talling 1966). More recent studies conducted in the earl y 1990s led to the 

conclusion that N may limit many phytoplankton species in Lake Victoria (Hecky 1993) 

because soluble reactive P was in excess and nitrogen fixing species were present in the 

lake. Hecky (1 993) demonstrated a tendency to P-limitation in the shallow inshore 

waters with high algal biomass based on nutrient composition. Funher indications of 

increasing N-limitation in Lake Victoria come from nutrient bioassay expenments that 

were done to determine algal response to nutrient conditions (Lehman and Branstrator 

1993, 1994, Lehman et al. 1998). Nitrogen additions were found to increase algal growth 

and biomass (as chlorophyll-a) in Lake Victoria. Most recently, Lehman et al. ( 1  998) 

hypothesized that increased P input into Lake Victoria has caused algal biomass to 

increase as in temperate lakes similarly subjected to increased P loading. However, 

extrapolations from temperate lakes must be made cautiously, because of Lake Victoria's 

tropical location and associated differences in physical and biologicai dynamics that go 

with it, such as continuous high temperatures and solar irradiance (Kilham and Kilham 

1989). Nutrient enrichment (Hecky and Bugenyi 1992, Hecky 1993, Hecky 2000) with 
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subsequent increases in al gal biomass and productivity (Mugidde 1991. 1993) and 

cyanobacterial blooms confer upon Lake Victoria some characteristics typical of large 

eutrophied temperate lakes during summer. 

In temperate regions, algal stoichiornetry and other nutrient status indicators (for 

example, N and P debt) have proven useful diagnostic tools in understanding the relative 

availability of nutrients, and the specific nutrient(s) causing water quality deterioration. 

A combination of dissolved and particulate nutrient ratios and physiological assays al1 

contribute to assessing phytoplankton nutrient status (Healey and Hendzel 1980. 

Guildford et al. 1994). In the dark, phosphorus or nitrogen deficient algae will take up 

phosphorus or nitrogen that is made available and the amount taken up relative to cellular 

biomass (as chloropyll-a) is referred to as a debt. Nitrogen and P uptake rates 

normalized over chlorophyll-a per 24 hours are known as & and P debt and are used as 

algal physiological indicators of N and P deficiency (Healey and Hendzel 1980). N and 

P debt as indicators of nutrient-deficiency, are feasible because algae adapt to nutnent 

deficiency by increasing their active sites for transport (V,,) to overcome low nutrient 

concentrations in their surroundings, while maintaining cellular growth and metabolism. 

Nutrient uptake rates depend on algal nutrient status and growth rates (Berzezinski and 

Nelson 1988, Kanda and Hatton 1988). 

Based on the assumptions that algal particulate ratios are meaningful indicators of  

lirniting nutrient(s) at a community level, and that N and P debt are useful diagnostic 

tools of phytoplankton nutrient status (Healey and Hendzel 1980), N: P, C: P and P-debt 

and C: N and N-debt were used to determine P and N deficiency in Lake Victoria. 

Previous nutrient limitation inferences in Lake Victoria, based on ambient nutrient 
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concentrations. sestonic composition ratios (Hecky 1993)- nutnents liinetics and 

enrichment experiments (Lehman and Branstrator 1994, Lehman et al. 1998). were 

narrow in spatio-temporal coverage and did not allow fim conclusions on the estent of 

nutrient limitation in Lake Victoria. The seasonaI cycle of phytoplankton nutrient status 

and the extent of nutrient limitation in Lake Victoria remained unknown. Comples 

patterns of nutrient deficiency are likely to emerge in Lake Victoria. given large spatio- 

temporal variations in the physico-chernical environment. Because of this. field sampling 

and measurements covered the annual thermal stratification cycle and were done in both 

shallow nearshore bays with high algal biomass and deep offshore regions with lower 

algal biomass. The goal of this study was to detemine which nutrients lirnit 

phytoplankton biomass production as a basis for effective strategies for control/reversal 

of eutrophication in Lake Victoria. The specific objectives of this study were to 

determine if P and/or N limit the algal community of Lake Victoria. and if so, which 

nutrient was most Iimiting. 



Materials and Methods 

Study areas 

To examine spatio-temporal variability. samples were collected between 1994 and 

1998 in both inshore and offshore regions of northem Lake Victoria (Figure 2.1. a- b. c)- 

Sampling was done most frequentl y at three inshore locations (Napoleon Gulf. Buvuma 

Channel and Pilkington Bay) and one offshore station (Bugaia). The inshore areas were 

relatively shallow, generally much less than 30 m and mixed more frequently than the 

deep offshore site (Bugaia, depth 65 m) which thermally stratifies most of the year. but 

mixes completely around June-July when the south-east trade winds blow across the take 

(Talling 1966) causing increased cooling by evaporation. Further measurements were 

made in Itome Bay (30 m). but Iess frequently, to enable a cornparison with the 

corresponding inshore locations in the lake. 

Field sample collection, treatment and analysis 

Measurements of Secchi transparency. under water light attenuation and 

temperature and dissolved oxygen profiles were done dunng sample coliection at al1 

sites. Secchi readings were recorded using a 20-cm white disk. Profiles of 

photosynthetically available radiation (PAR) were measured with a Li-Cor sensor (model 

LI-1 9 2 s  sensor. model LI 185 meter) at 0.5 m to 1 m interval. Field sampling was done 

regularly and intensely in 1998 compared to 1994- 1997. In 1998, nutrient concentrations 

and nutrient status measurements were done more frequently (monthly) in the shallow 

nearshore regions and at least bimonthly in the deep open waters (Bugaia) of Lake 

Victoria. The offshore (Bugaia) site was sarnpled monthly from July to December 1998 
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in an attempt to capture events during complete vertical mining (July-August) and stable 

thermal stratification (September-December). 

Nutrient starus samples were drawn from several depths within the surface waters. 

but within twice the Secchi depth. usinp a Van Dom water sampler. In general. 2s 

Secchi depth was 1-2 m inshore and 4-6 m offshore. At each site, water samples were 

pooled in 10 -L polyethylene carboys and kept in the cool and dark. Sub-samples w r e  

taken from the pooled samples for nutrient status bioassays (N & P debt). particulate 

chemistry (C, N & P), chlorophyll-a (Chl-a) and initial ammonium and soluble reactive 

phosphorus concentrations. Samples for vertical nutrient concentrations were taken from 

discrete depths in the water column and dispensed in 1 -L brown polyvinyl bortles. Water 

samples of 200-300 ml from offshore and of 50- 1 00 ml from inshore were tiltered ont0 

Whatman G F F  filters and filters used for chlorophyll-a and particulate nutrient analyses. 

The filters were desiccated over silica gel in the field or in the oven at 55  C ovemight in 

the laboratory at the Fishenes Resources Research Institute ( F I W ) ,  Uganda. The filtrate 

was used for analyses of ambient dissolved inorganic nutrients (ammoniumt SRP) 

following methods of Stainton et al. (1 977) as described in Chapter 2. Within 1 to 3 

hours the unfiltered pooled lake sarnple was used for N and P-debt bioassays. 

Laboratory measurements 

Phytoplankton nutrient status: Suspended nutrient ratios. 

Particulate and total dissolved P and N and Chl-a were analyzed as described in 

chapter 2. Known volumes (40 to 300 mL) discrete depth a d o r  from pooled surface 

samples were filtered ont0 pre-ignited Whatman GF/C filters and used for analyses of 
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particulate P. C and N. These filters Lvere desiccated over silica gel or in the ovrn at 55" 

CI sealed in dark aluminum bags and shipped to FWI. Winnipeg. Canada for analyses. 

because this analyses \vas not possible at FIRRI. Uganda. At F W .  anal>.ses of suspended 

nutrients were done following methods of Stainton et al. (1977). Seston composition 

ratios of N: P, C: P and C: N were used and interpreted in terms of nutrient deficienc?. as 

in Healey and Hendzel(l980, Table 3.0). 

Table. 3.0. Indicator values of phytoplankton nutrient deficiency (Heriley and Hendzel 

1980). Al1 elemental ratios of phosphorus. carbon and nitrogen are espressed on a molar 

basis. Units for chlorophyll-a are ug L" or mg m-' and N and P debt are p M  chi-a-' day". 

Indicatod ratio Nutrient No detkiency Moderate deficiency Estreme deficiency 

Phytoplankton nutrient status: Nitrogen and phosphorus debt. 

In darkened flasks, 0.5 mL of 1 .O m M  concentration of potassium dihydrogen 

phosphate solution was added to 100 rnL unfiltered lake sample to yieid a final 

concentration of approximately 5.0 PM. Similarly, a 100 mL of sample was spiked with 

0.5 mL of ammonium chloride solution to give a final concentration of approximately 5.0 
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pM. Triplicate samples were removed at the beginning and approsimately II latrr afier 

incubation at room temperature (26-29 OC) and ammonium and soluble reactive 

phosphorus were measured spectrophotornetrical1y as in Stainton et al. ( 1977). The 

difference in ammonium and soluble reactive phosphorus concentrations between the 

begiming and the final concentration (24 hours) was the net assimilation. N and P debt 

were calculated as the amount removed during the 24-hour period per unit of chlorophyll 

a, and were interpreted in terms of nutrient deficiency as in Healey and Hendzel ( 1 980). 

The Wedderbm number (W), which is a lake thermal structure index that describes the 

potential for mixing was calculated as described in Chapter 2. When W is 5 0.5. the 

water column is not stable and little work is needed to mis it (Coulter and Spigel 1996). 

Data anabsis 

Statistical analyses were done using SYSTAT 9. AnaIyses of variance (ANOVA) 

was used to examine differences in particdate nutrient concentrations. paniculate 

nutrient ratios, and N and P-debt between surface and bottom waters, locations, months 

and years. When ANOVA indicated significant differences in the test variable. Tukey 

HSD multiple cornparison tests were used to differentiate means. Ratios of N: P, C: P 

and C: N were log10 transformed to achieve normality, and their variability due to station, 

years, month, and unexplained variance was partitioned using ANOVA. ANCOVA was 

also used to test for differences in regression slopes and constants. 



Results 

Spatio-temporal variability of particulate nutrients. 

Concentrations of particulate nutrients (CI N & P) in the water column cowred a 

very broad range in Lake Victoria (Table 3.1). Particulate N was in the range 0.7- 

338pM. particulate P in the range 0.03- 1 2pM, and particulate C in the range 22- 1 269 

PM. Spatio-temporal variability of particulate C was much less than for particulate P and 

N. Particulate nuvient concentrations were significantly lower (P<O.O 1 ) at deeper depths 

than in the corresponding surface waters (Table 3.1 ) li kel y as result of nutrient 

regeneration at deeper depth. Particulate P was about 60% higher in surface than in the 

corresponding bottom waters. while PN was 2-3x higher. Similarly. PC was 2-3 fold 

higher in surface waters. 

The shallow inshore locations (Pilkington Bay, Napoleon Gulf. Itome Bay and 

Buwna Channel) supported significantly higher PP' PN and PC (p < 0.00 1) 

concentrations than the offshore surface location (Bugaia) (Table 3.2). Particulate N, PP 

and PC concentrations were 2 to 4-fold higher inshore. There were no significant 

differences (P > 0.05) in average PN, PP and PC concentrations among inshore locations, 

despite the higher average suspended nutrient concentrations in Napoleon Gulf and 

Pilkington Bay. 



Table 3.1. Average particulate nutrient concentratioris (phl) and their standard dcviation ac 

inshore and offshore regions of Lake Victoria. during 1994-1 998. Number in 

Parentheses = N 

Nutrient Inshore Offshore (Bugaia) 

(0-5 m) (1 5-30) m (0- 1 0 m) (50-56 m) 

PP 1.6 I 1.4 (205) 1 O 2 0.4 (3 1 0.5 I 0.2 (24) 0.3 k 0.5 (24) 

Table 3.2 Average particulate nitrogen (PN). phosphorus (PP). nitrogen (PC) and their 

standard deviation from the surface mixed waters of Lake Victoria, 1993- 1998. Number in 

bracket = N, the nurnber of months. 

Location PN 01W PP (PM) PC (PM) 

Napoleon Gulf 42.8 + 47. I(33) 1 -9 + 1 -7 (33) 289.7 + 283.0 (33) 

Pilkington Bay 3 1 . 1  k 14.9 (3 1 )  1.4 i 0.6 (3 1) 230.6 + 103.1 (38) 

Buvuma Channel 25.5 t 20.8 (33) 1.0 f 0.6 (33) 178.4 1 127.4 (33) 

home Bay 20.3 t 10.9 (1 9) 1 .O + 0.5 (1 9) 138.8 + 73.9 (19) 

Bugaia 10.6 I 4.4 (24) 0-5 2 0-2 (24) 79.1 + 31.1 (24) 



Slopes of the linear relationship of PN and PC regrrssed as dependent variables of 

PP, and PC as a dependent variable of PN, correspond to the more conventional 

particulate N:P, C:P and C:N ratio respectively (Figure 3.1). Particulate P was strongly 

(r2 = 0.89) related to PN and PC and the relation between PC and PN was even much 

stronger (2 = 0.97). The slopes of regessions of PN on PP (26.7), PC on PP (1 61.3) and 

PC on PN (6.0) were close to the average corresponding values of particulate nutrient 

ratios (Table 3.3). Overall the particulate N:P and C:P values had a small range and 

were close to the lines whose slopes denote nutrient deficiency (Figure 3.1). The inshore 

values had a wider scatter from their respective Iines. Most of the C:N values were lower 

than a slope of 8.3 which is considered indicative of N-deficiency. 



Table 3.3. Particulate N: P. C: P and C: N molar ratios in the surface waters of Lake 

Victoria, 1994-1 998. 

Inshore Offshore 

Nutrient Napoleon Buvuma Pilkington 1 tome Bugaia 

Ratio GuIf Channel Bay Bay 

N:P ratio Minimum 7.3 8.6 10.0 2.7 3 -3 

Average 23 -6 23 .O 22.4 21 -2 20.1 

Maximum 77.6 75.5 40.0 30.0 3 1.1 

Std. 11.1 11-1 6.2 6.2 6.2 

C:P ratio Minimum 46-6 64.9 65.3 24.3 56.8 

Average 164.1 163.7 168.6 148.0 151.4 

Maximum 465.4 50 1.4 291 -8 276.7 290.0 

Std. 68.9 71.1 49.2 48.5 50.3 

N 3 1 3 1 3 1 19 24 

C:N ratio Minimum 4.5 5.5 5 -2 4.5 5 -7 

Average 7.2 7.4 7.6 7.1 7.9 

Maximum 14.8 11.1 10.1 9.2 17.5 

Std. 1.4 1.3 1.5 1 .O 2.3 

N 3 1 33 38 19 24 



400 1 PC -6.0 [PN] + 30.9. r2 = 0.97 

Figure. 3.1. (a) Particulate N(PN) vs particulate P(PP), (b) 
particulate N (PN) vs PP, (c) PC vs PN from surface waters 
of Lake Victoria, 1994-1 998. Slope in a, b, and c are equai 
to values 22, 129 and 8.3 that are indicative of P and/ or N 
deficiency according to the criteria of Healey and Hendzel 
(1 980). The equations in a, b, & c are fMed regression 
equations to the data and the $values. 
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Spatial patterns of nutrient deficiency 

Particulate N:P and C:P ratios had a wider range inshore than offshore (Figure 

3.1, a b, c & Tables 3.3.3.4). Generally particulate N:P and C:P ratios were 

approximately 30% to 40% higher in the surface than in the corresponding bottom waters 

with exception in July when ratios had almost a homogeneous vertical distribution 

(Figure 3.2). Vertical distribution of particulate N:P and C:N ratios ofien sho\ved a 

decrease below 40 m depth during the stratified period at Bugaia (Figure 3.2). -4 

decrease of surface N:P and C:P ratios was also obsen-ed in July-August at both inshore 

and offshore and in November at Bugaia (Figure 3.3 a. b. d. e). Phosphorus was often in 

excess in both inshore and offshore bottom waters as indicated by the low percentage 

fiequency (6%-10%) of N: P values indicative of low P availability (Table 3.5). 

Extremely low hypolimnetic N:P ratios ( 5 4.0 ) are also indicative of low N availability 

in deeper depths at both inshore and offshore sites. (Table 3.4). 

Although average particulate C:N ratios were about 20% higher in the surface than 

in the corresponding bonom waters, no coherent vertical distribution pattern of C:N ratios 

was evident at Bugaia (Figure 3.2 & Tables 3.3,3.4). Hypolimnetic average particulate C:N 

ratios were similar at both inshore and offshore but maximum C:N ratios were aimost 

double inshore (Table 3.4). The higher maximum C:N ratios were indicative of lower N 

availability in the inshore than in offshore bottom waters. Although low hypolimnetic N 

availability was more extreme inshore, it was rare as indicated by the low percentage (1 OYO) 

of C:N ratios indicative of sufficiency (Table 3 -5). 



Table. 3.4, Particulate nutrient ratios in the inshore ( 1  5-30 m) and offshore (50-65 m) 

bottom waters of Lake Victoria during 1 994- I 998. 

Nutrient ratio Inshore Offshore (Bugaia) 

N:P Minimum 

Average 

Maximum 

N 

Minimum 

Average 

Maximum 

N 

Minimum 

Average 

Maximum 

N 
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Figure. 3.2. Depth profiles of particulate nutrients ratios from 
offshore (Bugaia) Lake Victoria, during 1998. 



Phosphorus deficiency was more cornmon in inshore than offshore surface waters 

as indicated by the higher percentage frequency of 3 : P  and C:P ratios greater than values 

indicative of deficiency (Figure 3.3.a b- d.e. Table 3.5)- The ahnost double masimum 

N:P and C:P ratios indicate that P-deficiency was more extreme in inshore than in 

offshore surface waters of Lake Victoria (Figure 3.3 a. b.d, e, Table 3.3). However. 

average surface water C: P ratios did not differ markedly in their composition from 

values indicative of moderate P deficiency at al1 sites. Average N: P ratios indicated 

marginal P-deficiency in shallow Napoleon Gulf. Buvuma Channel and Pilkington Bay 

and no P-deficiency in the inshore Itome Bay and offshore (Bugaia) stations (Table 5.4). 

Occasionally, low epilimnetic N:P ratios (5 5 ) indicative of escess P were measured in 

both inshore and offshore surface waters of Lake Victoria (Figure 3.3 a. b. d. e & Table 

3.3). 

% of C:N ratios % of N:P ratios 

Table 3.5. Percentage frequency of particulate nutrient ratios indicative of N and P- 

deficiency in the surface and deeper inshore and offshore waters of Lake Victoria. 1994-1 998. 

Inshore (surface = 0-5 m, bottom =15-30 m), offshore (surface 0-1 0 m, bottom 50-65 m). 

Station N-deficiency P-deficienc y 

Surface Bottom 

Inshore 21 10 

Offshore 29 63 

ratios 

Swface Bottom Surface Bottom 

83 20 58 1 O 

70 6 33 6 
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Figure. 3.3. Particulate N:P (a 8 d), C:P (b & e) and C:N (d & f) ratios from 
surface mixed waters of (i) Napoleon Gulf and (ii) Bugaia during 1994-1 998 
Dashed lines indicate P and N deficiency. 



Nitrogen deficiency. as indicated by particulate C :  N ratios. \sas almost as 

frequent in inshore (2 1 %) as in offshore (29%) surface wvaters of Lake Victona (Figure 

3.3 c, f. Table 3.6). However. the relatively higher C: N ratios indicatr strongsr N- 

deficiency events offshore than inshore (Table 3.4). The overall average C: N ratios in 

the range 7.2-7.9 (Table 3.3) were indicative of no N-deficiency in both inshore and 

offshore surface waters, according to the cnteria of Healey and Hendzel (Table 5.4)- 

Average particuiate nutrient ratios (N: P. C: P & C: N) from the surface waters did not 

differ significantly between locations in Lake Victoria (p > 0.05). but highest N: P and C: 

P ratios were inshore. Although there were shifis from conditions of N and P-sufficiency 

to N and P-deficiency' particuiate C: N and N:P ratios did not va- significantly arnong 

months nor months nested into seasons (p 2 0.05). Months nested into seasons 

accounted for a significant @ 5 0.05) proportion of the C:P ratios in the surface waters of 

Lake Victoria. Unexplained variation accounted for the largest proportion (2 60%) of the 

variation in N: P. C: P and C: N particulate ratios from the surface mixed waters of Lake 

Victoria (Table 3.6). 

Table 3.6. Percentage of  the total sum of squares explained by station, month and 

unexplained variance of particulate nutrient ratios in Lake Victoria. 

Variable Station Month Unexplained 



Temporal trends in deficiency as indicated by particulate nutrient ratios 

Temporal trends of particulate N: P. C: P and C: N ratios indicate that P and N 

deficiency were present and absent at particular tirnes in both inshore and offshore 

surface waters (Figure 3.3). Particulate nutrient ratios were frequently low and indicative 

of no P and N deficiency between April and July in Napoleon Gulf and between May and 

August in Bugaia (Figure 3.3 a. b. d. e). During that period. Wedderbum numbers of s 

0.5 were frequent (Figure 3.3 c) and indicating strong mising of the water column. 

P-and N-deficiency was ofien present between September and A p d  when the lake was 

thermally stable as indicated by the increasing Wedderburn numbers. Severe P- 

deficiency indicated by hiph ratios o f  N: P (è 30) coincided in timing (Septernber - 

October) but not in magnitude in Napoleon Gulf and Bugaia (Figures 3 -3 & 3.4 a. b). 

Extreme N-deficiency (N: C > 14.6) was rare and was only observed in October 

and February in Napoleon Gulf. In Bugaia. estreme N-deficiency occurred once at the 

end of October but was rapidly relieved in November to Decernber (Figure 3 -4 b). In 

Bugaia, extreme N-deficiency (C: N > 14.6) at end the of October coincided with 

conditions of P-sufficiency as indicated by both low N: P (< 5 )  and C: P (c 100) ratios 

(Figure 3.3 b). N- and P-deficiency occurred contemporaneously in October and (Figure 

3.4 a) and N- and P-sufficiency coincided in December and in July-August in Napoleon 

Gulf. 
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Physiological indicators of P and N status in Lake Victoria 

Figures 3.5 shows temporal patterns of P-debt and particulate N:P ratios used as 

indicators of P-deficiency in this study. P-debt \\-as in the range 001 -0.25 phi P 

chl-a-' 24 h-'. P-debt indicates that P was only occasionally Iimiting in both inshore and 

offshore surface waters of Lake Victoria (Figure 3.3 a. b). Uptake rates (P-debt) 

indicated P-deficiency in August. October and June in Napoleon Gulf and in September 

and April in Bugaia (Figure 3.5 a. b. Table 3.7.3.8). P-debt indicates that P deficiency 

was almost as frequent inshore as offshore. Out of 1 9 P-debt measuremcnts frorn 

Napoleon Gulf. 3 (16%) indicated P-deficiency and only 2 were in agreement ~vith other 

indicators of P-deficiency (Table 3.7). In Bugaia. three (14%) out of 21 P-debt 

measurements showed P-deficiency and al1 the 3 correlated with deficiency determined 

fiom particulate N:P and C:N ratios (Table 3.8). Ovenll, elevated phosphate uptake rates 

indicative of P-deficiency coincided with elevated particulate N:P and C:P ratios 

indicative of P-deficiency. But high N:P and C:N ratios indicating P-deficiency were not 

always accompanied by high P-debt. 



Table 3.7. Partiçulate nutrient ratios. P-debt and N-debt in the surface waters (0-5 rn) at 

Napoleon Gulf. during 1994-1 998. Presence = + and absence = - of deficiency of P 

or N- 

Date N:P C:P P-debt C:N N-debt 

06-0ct-94 

04-NOV-94 

1 O-May-95 

02-NOV-95 

3 1 -Jan-96 

1 5-Mar-96 

27-JuI-96 

02-Ott-97 

0 1 -0ct-97 

03-Dec-97 

30-Jan-98 

1 0-Feb-98 

23-Mar-98 

03/27/98 

26-Mar-9 8 

I O-Apr-98 

27-May-98 

27-Jun-98 

25-JuI-98 

14-Aug-98 

26-Aug-98 

24-A ug-98 

2 1 -Sep-98 

23-Sep98 

14-Oct-98 

04-NOV-98 

24-NOV-98 

1 3-Dec-98 

Total + 



Table 3.8. Particulate nutrient ratios- P-debt and N-debt in the surface \vaters (0-10 m )  of 

Bugaia, during 1994-1998. Presence = + and absence = - of drficienc>- of P or N.. 

Date N:P C:P P-debt C:N N-de bt 

26-NOV-98 

1 1 -Dec-98 

Total + 
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Ammonium u p k e  per unit of chloroph!-11-a (hl-debt) mged from 0.01 -0.15 pb1 I\! 

chl-a-' 24 h" (Figure 3.6 a, b). At both inshore and offshore sites. N uptake was often well 

below cntical values of 0.1 5 pM N chl-a-' 24 h-' denoted by the horizontal line 1. indicating 

N-deficiency. N-debt hdicated marginal N-deficiency in August in Napoleon and in March 

in Bugaia. Low N-debt values indicative of no N-deficiency were rneasured even when 

high C: N ratios indicating deficiency were present (Figure 3.6 a, b). Clearly, N-debt and 

C:N as indicators of N deficiency were not always in agreement in Lake Victoria. 
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Algal biomass (Chloropyll-a) -autrient relationship 

Chiorophyll-a (chl-a) concentrations ranged from 2.5 to 657.0 mg-m"'. msan 46.4 

mg rn" in the surface waters of Lake Victoria (Figure 3.7 a. b). Epilimnetic chlorophyll-a 

concentrations exhibited a much wider range inshore than offshore. and average 

concentrations were 3 to 5-fold higher in inshore than in offshore Lake Victoria (Table 

3.9). In the surface waters of Lake Victoria. chlorophyll-a was lowest when the lake \vas 

deeply mixing around July as indicated by the low W 5 0.5 and was highest during the 

stratified phase when W b 0.5 (Figure 3.6 a.b.c). A temporal algal biomass plot shows a 

major chlorophyll-a maximum in September in Napoleon (Figure 3-73) that coincided 

with N and f -suffkient conditions in the Gulf (Figure 3.3 a. b). Afier the maxima. 

chloropyll-a concentrations declined and remained relatively constant from November to 

April despite a relief in N and P-deficiency in Napoleon Gulf. At Bugaia. the September- 

May chlorophyll-a concentrations were almost double the June- August values (Figure 

3.7 b). Despite N and P-sufficiency at Bugaia, chlorophyll-a concentrations remained 

low dunng periods of strong wind stress and lower water column stability indicated by W 

5 1.0 



Table 3.9. Average chiorophyll-a concentrations in the surface inshore (O -5 m) and 

offshore (0- 10) waters of Lake Victoria during 19%- 1998. 

Location 

Inshore O flshore 

Minimum 14.8 2-5 

Average 59.6 13-5 

Maximum 655.8 29.0 

Std 79.4 5.8 

C .v. I .3 0.4 

N 105 42 
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Figure. 3.7. Chloropyli-a concentrtations at (a) Napoleon Guff, (b) 

Bugaia, (c) estimates of Wedderburn number(W) for Lake Victoria 
1994-1 998. Das hed line = W of 0.5, indicative of strong deep rnixing. 



Chlorophyll-a - total P and total N relationship 

Data of total P and chlorophyll-a concentrations split into inshore and offshore 

sets exhibited fundamental differences in TP- chl-a relationship (Figure 3.8a). The 

coefficient of determination for the relationship of chl-a to TP for inshore \vas higher (r' 

= 0.52, n = 26) and the slope (1 5.6) was significant (p = c 0.01) compared to offshore 

where the relationship was very weak (r2 = 0.1 1. n = 20) and not significant (p > 0.05'). 

Offshore, chlorophyll-a did not increase with increases in total P concentrations as 

indicated by the negative dope (-1 -8). The chlorophyll-a vs. total N relationship was 

fairly strong (r2 = 0.42' n = 27) and the slope was significant (p 0.05). 
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Figure.3.8. Relationships between epilimnetic chlorophylla 

concentrations and (a) total P and (b) total N. 



Discussion 

Use of particulate nutnent ratios as a tool for assessing nutrient availability 

indicated that both P and N may limit the phytoplankton community in the surface waters 

of Lake Victoria. Examination of the distribution and frequency of many particulate 

nutrient ratios indicate that the algal community offshore was more nutrient sufficient 

cornpared to those growing in the inshore regions of the lake. Indications of P-deficienq. 

were more common (33-58%) than indictors of N-deficiency (2 1-29%). especially 

inshore where high sestonic N: P and C:P ratios indicated that P might limit further 

biomass increases at biomass maxima. P and N-deficiency were infrequent offshore and 

only occurred during the stratified period when aIga1 biomass increased. Offshore. the 

algal community was less likely to be suppressed by P-deficiency as stocks ofdissolved 

inorganic P were large and often in excess of 1 .O m. Given the infrequent P and N 

deficiency offshore, the low algal biomasses (as chlorophyll-a and paniculate nutrients) 

were likely a result of stronger light limitation (Chapter 4.5). The very weali and 

negative chlorophyll-a- total P relationship indicates that phytoplankton in offshore 

regions of Lake Victoria are insensitive to high P enrichment. This implies that further P 

loading may not increase algal biomass offshore, but could stimulate larger 

cyanobacterial blooms inshore. 

Temporal variability of  particulate nutnent ratios indicates that P and N 

deficiency was absent during periods of deeper and stronger mixing (June-July) in Lake 

Victoria. Absence of nutrient deficiency was likely due to impacts of stronger and deeper 

mixing that relaxed nutrient demand. Strong mixing reduces nutrient demand in surface 

waters as regenerated nutrients are re-distributed and algal biomass mixed deeply and has 
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less light. Deeper and stronger mixing lirnits the algaee's ability to utilize dissolved 

inorganic P because of reduced light availability (Chapter 4). Consequently. dissohDed 

inorganic nutrients. in particular P. remain unutilized in offshore surface waters because 

algal biomasses remain consistently low. However, increases in algal biomass in 

September-October did lead to conditions of P-deficiency followed by severe N- 

deficiency at Bugaia. This deficiency in N favors N-fixing cyanobacteria (Chapter 5) and 

their biomass will be determined by light availabiIity. Light limitation of N-fisers Iimits 

N availabiiity for other algal species (Hendzel et. al. 1994) and without such light 

limitation, N-fixen could possibly tix adequate N to allow other algal species to increase 

using regenerated N. 

Lake Victoria was frequently driven to conditions of N and P deficiency during 

periods of stable thermal stratification (September to April). This was indicated by the 

relatively high particulate C: N (>IO) and low N: P (>22) ratios that occurred when 

thermal stratification was established (Figure 3.3 c, Hecky et al. 1994). Shallower 

mixing during early stable stratification (September-December) creates favorable light 

conditions that allow development of algal biomass and nutrient demand in the lake. 

These high algal biomasses consume nutrients and reduce dissolved inorganic 

concentrations, and subsequently the phytoplankton became increasingly P and N 

deficient with persistent thermal stratification. Continuous P and N removal by uptake 

and sedimentation, in addition to restricted nutrient exchange between the epilimnion and 

hypolimnion during sustained thermal stratification, resuit in reduced dissolved inorganic 

P and N concentrations in the surface waters. This was more evident in Napoleon Gulf 



where hi@ algal biomasses occurred contemporaneous with elevated sestonic K: P (> 2 2 )  

and C: P (> 129) ratios indicative of P deficiency. 

In addition. stable thermal stratification restricts dissol ved cisygen eschange 

between the epilimnion and hypolimnion. thus enhancing hypolimnetic nnosia. 

Hypolimnetic anoxia has intensified and is almost a permanent feature of Lake Victoria 

dunng the penods of stable thermal stratification (Chapter 2. Hecky et al. 1994). .4nosia 

promotes N loss in Lake Victoria (Hecky 1993. Hecky et al. 1996) as it promotes 

denitrification that converts nitrate to nitrous oxide and dinitrogen gas. both of which are 

lost to the atmosphere. Consequently. Lake Victoria becomes reduced in N relative to P 

during periods of stable thermal stratification. This result is consistent with observations 

in sorne temperate freshwater such as Lake 227 at the ELA, where denitrification reduced 

TN: TP to 4: 1 in the hypolimnion resulting in an overall low N: P ratio upon mixing of 

deep waters into surface waters (Findlay et al. 1994). This low N: P ratio favored growth 

of Nz-fixing-cyanobatena (Schindler 1977. 1978; Flett el. 1980; Findlay et al. 1 994). 

Similarly, in bottom waters of Lake Victoria, low sestonic N: P ratios of < 8 occur as well 

as low TN: TP ratios of < 20 occur (Chapter 2. Hecky and Guildford 2000) due to 

denitrification (Hecky et al. 1996). These low hypolimnetic ratios are more common 

during periods of prolonged stable thermal stratification in Lake Victoria, whereas 

epilimnetic values are generally in escess of 16 (Chapter 2, Hecky et al. 1996). This 

difference is maintained by N-fixation (Chapter 4) which offsets hypolimnetic losses to 

denitrification. 

Given that N supply from the hypolimnion is reduced by denitrification and N 

fiom the ca t chen t  is insufficient to support observed algal production (Lehman and 
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Branstrator 1993). the phfloplankton in Lake Victoria have resorted to the more energ' 

expensive diazotrophic activity (Turpin 1991) to mitigate perpetual N-deficiency. In 

Lake Victoria, conditions of N-deficiency are quickly overcome by the N-fising 

cyanobacteria that maintain low C: N ratios (<8.3) in the euphotic zone. indicatine that N 

requirements of the phytoplankton are frequently met through N-fixation. This 

observation is not in conflict with the finding that N sometimes limits the phytoplankton 

comrnunity in the surface waters of Lake Victoria. In aquatic ecosystems with diverse 

algal communities. it is possible for non-nitrogen fixers to be limited by N while N-fixing 

algae with ability to fix molecular N2 remain N-sufficient. Howeve- this condition may 

lead to dominance of by N-fixing algae. As a range of nutrient ratios is required by 

different algae for optimal algal growth (Hecky and Kilharn 1988): an algal community 

c m  be limited by both P and N as frequently observed in Lake Victoria. Moreover, algae 

have different abilities to assimilate nutrients at low concentrations which allows 

different algal species to be limited by different nutrients. 

Seston N: P, C: P and C: N ratios were more sensitive as indicators o f  P and N 

deficiency than the physiological nutrient status indicators P and N-debt. The 

consistently low N-debt values even when C: N values were high and indicative of N- 

deficiency casts doubt on the suitability of N-debt as an indicator of N-deficiency in Lake 

Victoria. The particulate N: P and C: P ratios and P-debt were often in agreement as a 

measure of P-deficiency. Overall N: P ratios were sensitive and may be the best 

measures of P-deficiency in Lake Victoria. 

Use of N-debt as an indicator of N-deficiency in Lake Victoria suggested no or 

minimal N-deficiency even when high C: N ratios indicative of moderate to extreme N- 
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deficiency were present. This inconsistency is not unique to Lake Victoria. In P- 

deficient culture experiments (Healey and Hendzel 1980) and in Lake Superior. 

irrespective of high C: N ratios. N-debt \vas always observed (Guildford and Hecky 

2000). N-debt as a measure of N-deficiency is expected to be ineffective for N-fixing 

algae as they possibly can fix adequate N and lower their N-debt when light and other 

factors are favorable. So. when N-fixers dorninate. N-debt may be ION- although the very 

presence of Nz-fixers indicates N-deficiency in the system. In temperate systems. there is 

often a time Iag in the onset of N-deticiency during which N-debt can be useful in 

predicting the succession of N2-fixing algae (Hendzel et al. 1994). Han-ever. in tropical 

systerns that are continuously warm. illuminated and with a tendency to N-limitation 

(Guildford et a1.2000)o the succession may be very rapid (within hours of onset of N- 

debt). 

Particulate nutrient ratios of N: P, C: P and C: N allow the general conclusion that 

both P and N limit the algal phytoplanliton community in the surface waters of Lake 

Victoria. However, surface inshore waters were more frequently P-deficient than 

offshore due to hipher N-fixer biomass that draws on the atmospheric N given better light 

conditions (Chapter 4- 5). These high algal biomasses, in tum. draw down the available 

dissolved inorganic P, leading to more frequent P-deficiency inshore than offshore. But. 

the N-fixers do  not provide the entire required N to balance P because this process is 

energetically expensive and primary production in Lake Victoria is light limited 

(Mugidde 1992, 1993). Although P and N CO-lirnit biomass production, hence 

contributing to eutrophication, reduction of P loads is key to the control and reversa1 o f  

eutrophication that threatens the ecosystem health of Lake Victoria. Phosphorus 
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reduction will lead to reduced frequency of Pz-de ficienq-. and consequent 1 y reduced lS - 

fixation and cyanobacteria biomass and bloorns. including genera known to produce 

phycotoxins. Reduced biornass \vil1 improve the undenvater light availability and expand 

the euphotic zone. It is possible that increased light availabiiity will maintain current 

pnmary productivity with less anoxia or even increase fish production in Lake Victoria. 



Chaptcr 4: Planktonic nitrogen fixation in Lake Victoria. Africa 

Abstract 

Planktonic N-fixation provides up to 80% of the total N input in the surface 

waters of Lake Victoria. Rates of biological N-fixation in Lake Victoria were high and 

often exceeded 0Spg N L-' h-'. Average rates of volumetric N-fixation at optimal 

irradiance were 8 times higher inshore than offshore. Rates of annual areal N-fisation- 

modeled fiom the N-fixation light-response per unit chlorophyll-a and light attenuation in 

the lake, were moderate to high (1 -8-23.1 g N m" y-'). and were only twice as high 

inshore as offshore. Variation in the light extinction coefficient esplained a smali but 

significant proportion of the variation in the optimai N-Gxation in Lake Victoria. N- 

fixation increased significantly with increases in algal biomass (chloropyll-a). Algal 

biomass and N-fixation were lower in the more deeply mixing (> 20 rn) offshore waters. 

because of the persistently low mean light intensities over 24 hours (Iz4) in the water 

column most of the year. N-fixation increased with increases in light availability 

associated with shallower mixing depths. and maximal rates occurred when the lake was 

thermally stratified and shallowly mixing. 

At both inshore and offshore, minima of algal biomass and N-fixation were 

consistent with low light conditions around July when the lake was most deeply mixing. 

The ratio of IZq to the irradiame at which N-fixation approaches saturation (Ik) was often 

4, and provides evidence that N-fixation was Iight-limited, particularly offshore. Light 

limitation lessens the algal demand for N, and constrains algal biomass development and 

N-fixation more in the offshore compared to the shallower and more protected inshore 

surface waters of Lake Victoria. 



Introduction 

Lake Victoria. a large (68.800 km') eutrophic lake (Hecky 1993 1. is rrcognized 

as one of the mon productive freshwater ecosystems. ~vith the largcst frrshwater fishery 

in the world (Ogutu-Ohwayo 1990, 1992, Goldschmidt 8; Witte 1992) and high rates of 

phytoplankton primary production (Mugidde, 1992. 1993. Ogutu-Ohwiyo et al. 1996). 

With commercial fish yields that can exceed 500.000 metric tonnes a !-car. the Inke 

constitutes a huge fishery resource for human consumption within the East African 

region, and even beyond to international markets. Lake Victoria and its tributaries 

provide dnnking water for about I O  million people, and for a huge livestock and wildlife 

population in the region. However. the lake's importance as a reservoir of biodkrersity 

and a source of clean drinking water, hydroelectric power and transport as well as tourist 

attraction is threatened by undesirable changes in the water quality since the early 1960s. 

Unwanted water quality effects in Lake Victoria include objectionable taste and odors of 

drinking water, fish kills associated with cyanobacterial blooms (Ochumba and Kibaara 

1989, 1990, Hecky 1993) and deep water anoxia (Hecky 1993. Hecky et al. 1994). 

Despite the increasing nutrient enrichment that is recorded in the sediments 

(Lipatou et ai. 1996) and documented in the water column (Hecky and Bugenyi 1992, 

Hecky 1993), ambient dissolved inorganic nutrïents c m  be low in the surface mixed 

waters of Lake Victoria (Chapter 2, Hecky 1993, Lehman et al. 1998). Total dissolved 

inorganic nitrogen concentrations c m  be low in surface waters and even in the mid- 

waters, where high rates of N loss through denitrification at the oxic-anoxic interface in 

the water column occur (Hecky et al. 1996). The oxic-anoxic interface is present during 

the thermally stratified phase that persists for approximately 80 % of the year, from 
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September through May (Chapter ZI Hecky et al. 1994) and limits nitrogen return from 

the deep waters of Lake Victoria (Hecky et al. 1996). In contrast. seasonal anosia favon 

P regeneration from the sediments (Hecky et al, 1996). Consequently. the bottorn waters 

become enrïched with phosphorus relative to nitrogen. This imposes low N: P ratios 

when deep waters are mixed into surface waters around July. Moreover. Lake Victoria is 

heavily loaded with P relative to N from the catchment (Lehman and Branstrator 1993) 

which exacerbates the already low N: P ratios and imposes a nitrogen deficit that favors 

large populations o f  nitrogen fixing cyanobacteria (Schindler, 1977, Levine and Schindler 

1992, Hendzel et al. 1994). Consequently Lake Victoria has one of the lowest recorded 

TN: TP ratios for a large water body (Chapter 2, Guildford and Hecky 7000). 

The shifi in dominance from the historie algal community dominated by diatoms. 

such as Aulacosiera (Melosira) and Cyclostephanos, and chlorophytes (Talling 1957 a, 

b, Evans 1962) to cyanobacteria including N-fixing, filamentous cyanobacteria (Kling et 

al. 2001) also provides evidence of increased P loading in Lake Victoria. The persistence 

and abundance of the blue-green algae CyIindrosperrnopsis and Anabaena that can fix 

atmospheric N2 provides additional evidence of N-deficiency in Lake Victoria. Given 

that N-fixation is an energetically expensive biochemical process catalyzed the by 

oxygen-sensitive enzyme nitrogenase (Gallon, 200 1 ), the light-N-fixation relationship 

was evaluated. Mugidde (1993) has previously demonstrated that phytoplankton primary 

productivity is light-limited, which implies that light possibly limits N-fixation in Lake 

Victoria. 

Although indirect evidence suggests that algal N-fixation must be high, the 

quantitative importance of N-fixation and its relative importance to other sources of N 
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loadinp have not been previously detennined. N-fixation of gaseous nitrogen by 

cyanobacteria such as Ci-lindrospermopsis ma>- be important to maintaining high pbmar?. 

productivity (Mugidde 1992. 1993). and thus the transfer of energ- tn higher levels in the 

food web in Lake Victoria. The objective of this nudy was to determine nitrogen fixation 

rates in Lake Victoria, and put those rates in the context ofN-budget of Lake Victoria 

and to the nitrogen requirement of the phytoplankton. 

Methods 

Study areas 

Lake Victoria has two ecologically distinct regions. the shallow inshore bays (< 

30 m) along the irregular coastline and behind the estensive northem archipelago of 

islands (Figure la) and the deeper offshore region (> 60 m) that experiences stable 

thermal stratification between September and April and complete vertical mixing in June- 

July. The upper mixed layer depth averages 10 rn in protected inshore areas and 30 m 

offshore during periods of stable thermal stratification (Fisherîes Resources Research 

Institute (FIRRI) unpublished data). N-fixation measurements were made between 1994- 

1998 at inshore and offshore locations (Figure 1 b). The inshore sites in Napoleon Gulf 

(19 m), (Pilkington Bay (1 I m), home Bay (30 m) and offshore sites Bugaia and Far 

station (65 m) were sampled frequently between 1994- 1998. Buvuma Chamel (2 1 m) 

was sampled once in 1997, and monthly in 1998. Further offshore sites XLI to XLl2 (> 

65 m, Figure Ic) were sampled once or twice between 1995-1 996. 

Water samples were drawn from the epilimnion, but within twice the Secchi 

depth, that generally was 0-2 m inshore and 0-6 m offshore. Water samples were passed 
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through a 100 pM nylon mesh to exclude large zooplankters. and were retumed to the 

laboratory at FIRRI. or used on deck. for N-fixation bioassays as well as dissolved 

nutrients and chlorophyll-a analyses. Water was filtered onto GF!F filters for 

determination of suspended nutrients (C. N & P) and chlorophyll-a. Desiccated filters 

were sent to the Freshwater lnstitute Winnipeg. for analysis of suspended C. N 8: P 

following procedures as in Stainton et al. (1 977). Chlorophyll-a samples were estracted 

in 90% methanol, kept in the cold (4 O C) and dark for about 20 hours, and the 

absorbances of the extracts were meaçured spectrophotometrically at FIRRI. Uganda. 

Chlorophyll-a concentrations were calculated as in Stainton et al. (1  977). 

N-fixation was measured using the modified acetylene reduction method of Flett 

et al. (1976). N-fixation samples were incubated in light and dark syringes filled wiih 

lake water. A control syringe (acetylene blank) was filled with de-ionized water. Light- 

tight syringes wrapped in alumnium foi1 were used to measure dark N-fixation. With 

little or no aeration, 50-ml pyrex glass syringes (Luer-Lock) fitted with a three-way 

valves were filled with 30-40 ml of lake water or de-ionized water. Each sample was 

injected with 5 ml of acetylene. shaken vigorously to dissolve the acetylene into the 

liquid phase, and incubated for 4 h under simulated in situ light conditions either in the 

laboratory or in the on-deck incubators, maintained within 2 OC of ambient lake surface 

temperature. Light syringes were placed in an incubator at positions of decreasing light 

intensity. A 1 O00 watt white lamp pmvided a constant light source that gave a gradient 

of light intensities in various positions in the laboratory incubator. Natural light adjusted 

with fibre-glass window screen was used to produce high to low light intensities in on- 



deck incubations. A spherical light sensor and rneter (Li-COR 1000) were used to 

measure the light intensity at each syringe position in the incubators. 

Stripping the incubated samples with 10 mL of clean air to estract ethylene ended 

the N-fixation incubations. The resulting gas sarnples were stored in vacutainers and 

measured using the flame ionization gas chromatography as in Hendzel et ai. ( 1994). The 

ethylene measured in the control was subtracted from the light values to estimate 

biological N-fixation. Nitrogen fixation was estimated from the ethylene production 

using a conversion factor of 3: 1 (atom: atorn) as in (Flett et al. 1976) and 15-57 (weight: 

weight), and volumetric rates of N-fixation are reported in pg N L-' h''. 

N-fixation vs. irradiance cunres from the incubator were used to calculate three 

N-fixation parameters. NoPt (hl-fixation at optimal irradiance in pg N L-' h-'). N~ 

(maximum rate of N-fixation normalized to chlorophyll-a in pg N pg chl-a-' h-') and aB, 

the slope of chlorophyll-a normalized N-fixation at nonsaturating irradiances in 

pg N pg chl-a" m ~ - '  nf2 (E = Einstein). The light saturating irradiance (II;) in mE m'2 

min" for N-fixation was detemined as the ratio N~ /aB (Figure 4.3). The modified 

numerical photosynthesis mode1 of Fee (1 990) was used to estimate daily and annual 

rates of N-fixation from the temporal distribution of photosynthetically available 

radiation (PAR), the underwater extinction of PAR and volumetric N-fixation as a 

h c t i o n  of light intensity in the incubator or deck box. Daily and annual N-fixation were 

calculated using light attenuation coefficients and actual global radiation data, integrated 

each 30 minutes from sunset to sunrise as described in Fee (1 990). The fraction of solar 

PAR that reaches each depth relative to surface light (13 was calculated as in Hutchinson 

(1 957) with the following equation: 
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I, = Is e-" 

where k is the vertical extinction coefficient of PAR. 1, is the surface irradirince, 1, is the 

solar irradiance at depth 2. The mean irradiance in the \vater column over 24 hours (12r. 

mE m-2 min") was calculated as in Hecky and Guildford ( 1984) with the following 

equation: 

1 ~ 4  = (1 - eah) 

kz 

where, 1, is the surface light and z is the mixed layer depth. 1, \vas obtained from 

c1oudIess soIar irradiance and was corrected for altitude and latitude of Lake Victoria as 

in Fee ( 1 990)- 

The daily N demand was determined from the particulate C:N ratios and daily 

areal C-fixation calculated from gross oxygen production assuming a photosynthetic 

quotient of 1.25. Gross photosynthesis was estimated as changes in dissolved oxygen 

evohed in the light and dark bottles as in Talling (1 965). Water sub sarnples drawn from 

the sarne sample as N-fixation sarnples were siphoned into either clear or blackened 60 

mL glass bottles. These dark and light bottles were piaced in the laboratory incubator, 

where irradiances and temperatures closely approximated in situ conditions, for three 

hours. In other cases, light and dark bottles were tilled with water taken from several 

depths in the euphotic zone (0-6 m) and then incubated in situ at irradiances received at 

those specific depths. At the end of the incubation, samples were fixed using manganese 

chloride and potassium iodide with sodium azide. 



Data on 6 '-'N of particulate organic matter (POM) was from the multidisciplinq 

Lake Victoria Ecosystem study and \vas provided by Ms. P. Ramla1 who performed the 

analysis. I participated in the Lake Victoria Ecosysiem research program and did C-and 

N-fixation measurements- Statistical tests were conducted with SYSTAT version 9.0. 

Results 

N-fixation in inshore and offshore Lake Victoria 

Table 4.1 gives measured volumetric rates at optimal Iight for N-fisation. and 

Table 4.2 presents areal N-fixation modeled from N-fixation parameters N~ and aB 

(derived from incubator N-fixation - light response) and in situ light attenuation. 

Napoleon Gulf and Bugaia were chosen to represent typical inshore and offshore stations. 

Measured and modeled daily rates for 1998- the year of most frequent sampling for 

Napoleon Gulf and Bugaia, are used to illustrate seasonality of N-fixation and the 

importance of light. 

Optimal rates of volumetric N-fixation were in the range 0.0 -5.0 pg N L-' h-' 

during 1994-1 998 in Lake Victoria (Figure 4.1 a. Table 4.1 ). Overall, N-fixation 

decreased from nearshore to offshore and average inshore rates (0.90 pg N L-' h-') were 

significantly higher (p4.0 1) than offshore average values (0.1 1 pg N L-' h'l). Maximum 

rates of volumetric N-fixation were orders of magnitude higher and average rates were 

approximately 8 times higher in inshore than in offshore regions of Lake Victoria. 

Annual and optimal average N-fixation did not di ffer signi ficantl y (pB0.05) among 

inshore stations Napoleon Gulf, Buwma Channel and Pilkington Bay (Table 4.1 & 4.2). 

However, Itome Bay, the deepest inshore station. did have lower average and maximum 
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rates than the other inshore stations. being intemediate between inshore and offshore 

rates. There were sipificant differences (pC0.0 1 ) in average N-fixation arnong offshore 

stations near at Bugaia, XL9- XL 12 and farther offshore stations ai XL 1 to XLS. X 1 O to 

XL11. 

Table 4.1. Optimal volumetric rates of N-fixation (pg N L-I h-') for inshore and offshore 

Lake Victoria, during 1994-1 998. Std = standard deviation. 

Station Minimum Average Maximum Std N 

Napoleon Gulf 0.023 0.889 4.886 1.195 36 

Pilkington Bay O. 154 0.996 3.885 0.996 18 

Buvuma Channel 0.360 1.200 4.390 1.120 I l  

Itome Bay 0.27 1 0.57 1 1.122 0.327 I l  

Bugaia, XL9, XL12 0.000 O. 167 0.378 0.1 17 19 

FAR Station, XL 1 -XL8, XL 1 O-XL 1 1 0.000 0.004 0.009 0.005 13 



Table 4.2. Annual (areal) rates of N-fisation (g N m" y-i) and their coefficient of  \,arialion (CL. 

standard deviation expressed as  percentage of the mean) in Lake Victoria during I99-t- 1998. 

N = number of measurements during the year. 

Location lnshore regions Offshore regions 

Napoleon Pilkingon Buvuma Bugaia XL7 Far XL 1 XL5 

Y ear GuIf Bay Channel 

1998 15.0 (19) 23.1 (12) 13.2 ( 1  1) 10.4 (9) 

1997 10.9(2) 18.1(2) 6.1 (2) 

1996 9.1 (4) 1 1-5 (4) 7.8 (3) 1.3(1) 0.5(1) 0.0(1) 

i 995 16.0 (4) 8.5(3) 1.8(2) 13.1(1) O . O ( l )  O . O ( l )  2.2(1) 

1 994 1 4.4 (2) 4.5 (1) 0.0 (1) 

Average 13-1 20.6 11.0 6.1 13.1 O -4 0.3 1.1 

C.V. 20% 1 2% 17% 48% [JI% 100% 100% 



Lig ht extinction (m" ) 

Figure. 4.1. (a) Optimal rates of volumetric N-fixation at 
inshore in Napoleon Gulf (NPL) and ofkhore at Bugaia (BUG) 
between 1994 and 1998. (b) optimal N-fixation vr light extinction (k) 
at NPL and BUG and (c) temporal variation of k at NPL and Bugaia 



Modeled annual rates of integral N-fixation were quite variable and in the range 

0.5 to 23.1 g N mdy-', average 8.1 g N nf2 y-' (Figure 4.2 a, Table 4.2,4.3). Areal rates 

of N-fixation did not vaiy significantly (p > 0.05) between years in Lake Victoria. The 

shallower inshore bays with high light extinction coefficients (Table 4.4) had 

significantly higher (p = 0.002) average daily areal rates of N- fixation than offshore 

(Table 4.2,4.3). Estimated annual N-fixation was four times higher in the shallower 

inshore areas than in the deeper offshore (Bugaia & Far) waters of Lake Victoria. Annual 

average integral N-fixation was significantly higher (p (0.0 1 ) in the offshore Bugaia 

region than in the fiirther offshore Far region that was sampled less frequently (Table 

4.3). 

Table 4.3. Average integral N-fixation and standard deviation from of the inshore and 

offshore regions of Lake Victoria dunng 1994-1998. Std = standard deviation, N= 

number of measurements. 

Location Average N-fixation Std N 

(g N m-* y-') 

Inshore: Napoleon Gulf, Pilkington Bay and 14.0 

Buvuma Channel region 

Offshore Bugaia, XL7, XL9, XL 12 region 7.3 

Offshore Far, XL 1-XLS, XL 1 O-XL 1 1 region 0.6 



Table 4.4 Average light characteristics and their standard deviation for inshore and offshore Lake 

Victoria. from measurements between 1994 and 1998. Number of rneasurements is reported in 

parentheses. 

Parameter Inshore (Napoleon Offshore (Bugaia) 

Gulf) 

Light extinction coefficient (m-') 1 . 1  + 0.3 (25) 0.6 +I 0-1 (23) 

Mean light in water column (IZ4, mE m-2 min-') 13.3 + 0.8 ( 1  2) 6.5 + 2.7 (12) 

Secchi transparency (m) 1.5 k0.4 (22) 2.4 + 0.6 (25) 

Euphotic depth (m) 4.7 f 1.2 (24) 9.2 + 2-0 (22) 

Mixing depth (rn) 7.1 + 2.6 (24) 35.0 k 12.6 (24) 

Chlorophyll-a (mg m") 



Month 

Month 

Figure. 4.2. (a) Modeled daily rates of N-fixation in Napoleon 
Guif (NPL) and Bugaia (BUG). N-fixation (N-fh), mixing depth 
(Zmix) and chlorophyll-a at (b) Napoleon Guif and (c) Bugaia 



N-fixation parameters and light response 

Algal N-fixation increased with increased Iight intensity until light-saturated N- 

-2 -1  fixation was achieved between irradiances of 100-1 30 pE m s . The shape of the N- 

fixation-light response curve was similar both inshore and offshore. but a steeper gradient 

of nonsaturated N-fixation and higher rates of rnaimurn N-fixation were measured 

inshore (Figure 4.3, Table 4.5). Maximum chlorophyll-a -normalized N-fixation rate 

(hlB) ranged by hvo orders of magnitude, from 0.001 to 0.1 pg N chl-a-' h-', and the N- 

fixation coefficient at nonsaturating irradiances (K~) ranged by o v a  one order of 

magnitude, from 0.003-0.085 p g  N chl-a-' €lm". Highest values of both parameters 

were in inshore surface waters, and average and c c B  values were significantly different 

(P < 0.05) amongst inshore and offshore sites (Table 4.4). The Iight saturation parameter 

(6) ranged from 45 to 347pEin s-l and average inshore and offshore rnean values 

were not significantly different among stations. 

Selected volumetnc N-fixation depth profiles provide a simple means of assessing 

light constraints on phytoplankton N-fixation (Figure 4.4 a, b). Rates of volumetric N- 

fixation were typically higher in the shallower photic depth (approximate 5m) in 

Napoleon Gulf than in the deeper euphotic depth (10 m) offshore. Further evidence of 

higher N-fixation inshore was provided by patterns of 6 "N content of particdate organic 

matter (POM) that were consistent with higher diazotrophic activity fixing atmospheric 

NZ (6 '% = O) inshore than offshore. The 6 "N of POM ranged from 0.8 to 16.3 (Figure 

4.5 a, Table 4.5). The 6 "N of  POM was strongly (r2 = 0.94) and significantly @<0.01) 

correlated with the daily integral rates of N-fixation in Lake Victoria (Figure 4.5 b), 



calculated for the sarne stations. Increases in 6 '% POM were accompanied by 

decreased N-fixation as indicated by the negative linear regression siope (Figure 4.5 b). 

Concentrations of 6 "N in POM were 3- to 6-fold higher offshore than inshore reflecting 

the higher degree of diazotrophy inshore. The higher S "N offshore implies that intemal 

cycling processes with the recycled Dm having a high 6 '% were a larger source of N 

offshore than inshore. The y-intercept of the relation in Figure 4.5 b may represent the 

isotopic signature (6 '% = 9) of regenerated deep water 6 1 5 ~  afier annual mixing. 

Table 4.5. Average values with standard deviations of N-fixation parameters and 6 l 5  N of 

POM for inshore and offshore Lake Victoria. Nurnber of measurements is reported in 

parentheses. 

Parameter Inshore (Napoleon Gulf) Offshore (Bugaia) 

NB (pg N pg chl-a-' ha') 0-0 18 + 0.01 8 (32) 0.011 $: 0.01 (18) 

aB (pg N pg chl-a-' Ein -' m-2 ) 0.098 + 0.098 (32) 0.062 I 0.085 (18) 

Percentage N demand 

N-turnover (days) 



l rradiance (u Ein .m? s" ) 

4.3. N-fixation (N-fix -light (1 curve for. Lake Victoria, 1994-1 998 
and graphitai defini 1 ion for 1 he N-fixation parameters normalized 
to chlorophyll-a and used in rnodeling areal N-fixation. 



Euphotic 

Euphotic 

Figure. 4.4. Simulated in situ mean N-fixation depth-profiles from 
Napoleon Gulf and Bugaia. Dail surface irradiance (PAR) r depth profiles of PAR and incuba or-derived data of maximum 
and nonsaturating rates of N-fixation normalised to chlorophyll-a 
were used in the generation of these N-fixation depth profiles. 



O lnshore CI Offshore 

Minimum Average Maximum 

Figure. 4.5. (a) Minimum, average and maximum 6% of POM 

(6) relationship of 6% of POM and N-fixation 



N-demand and turnover times in Lake Victoria 

Sirnultaneous measurements of the higher contribution to the daily N-demand 

calculated from the primary production measurements (Figure 4.6 a) and faster N 

tumover times of particulate N (Figure 4.6 b) provide further evidence of higher 

dependence on N-fixation by phytoplankton inshore than offshore. The daily N-demand, 

calculated from particulate C:N ratios and daily carbon fixation, contributed 1 % to 20 %, 

average 4% of the daily N requirement in Lake Victoria. The N-fixation contnbution to 

the dai ly N-demand varied with season (p<0.0 1 ) and was slightl y higher inshore ( 1 -20%) 

than offshore ( 1-9%). The highest N-fixation contribution to the daily N-demand 

occurred during the early stratified period (September-December) at both inshore and 

offshore and also in February-March in Bugaia. 

The fact that N-fixation contributed a small proportion (5 20%) of the daily N 

demand, especially offshore, suggests that a large fraction of the daily N requirements 

originate from interna1 recycled N. Tt thus follows that N tumover times, calculated from 

particulate N concentrations and daily rates of N-fixation, were longer offshore than 

inshore. N tumover due to fixation varied remarkably, and was in the range 4 to 173 

days, average 73 days (Figure 4.6 b). Shortest N turnover times occurred between 

September and December in Napoleon Gulf and in September-October and February- 

March in Bugaia. Overall, shortest N tumover occurred dunng the stratified period 

(Figure 4.6 b) when rapid increases in phytoplankton biomass occurred in September- 

November especially in the inshore surface waters (Figure 4.2 a, b). At this time of the 

year, the new N delivered via N-fixation would take approximately 60 days to increase 

algal biomass and dependent daily N-fixation rates to maximum values (Figure 4.2 a, b) 
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and this increase can be accounted for by N-fixation rates during this time interval. 

Total N also increases to its annual maximum (see chapter 5, Figure 5.5 f) at this time. 

Longest turnover times of the particulate N pool occurred in July-August (Figure 4.2 a, 

b, 4.6 b) when biomasses were low, but N-fixation was minimal. Recycling of N was 

adequate to meet the low N demand (Figure 4.6 a) at this time. 



J F M A M J J A S O N D  

Figure. 4.6. (a) Percentage N-fixation contribution to the daily 
N-demand at Napoleon Gulf (NPL), Bugaia (BUG) and (b) 

nitrogen- turnover times due to N-fixation, 1994-1 998. 



Spatio-temporal variation of  N-fixation, algal biomass and light 

The relationship between optimal rates of volumetric N-fixation and the light 

attenuation coefficient (k) is illustrated in Figure 4.1 b. Optimal rates of N-fixation 

varied with fluctuations in Iight extinction coefficient, and yielded a weak linear 

correlation (r2 = 0.41) that was statistically significant at p < 0.05. Inshore (Napoleon 

Gulf), the light extinction coefficient was double the offshore (Bugaia) coefficient, and 

the Secchi and euphotic depth were half as deep (Table 4.5). Despite higher light 

extinction coefftcients inshore, the shallower depths for mixing resulted in higher light 

availability (12& More iight availability (124) in the shallower mixed water coiumn 

inshore supported higher rates of planktonic N-fixation and algal biomass 

(chlorophyll-a) than in the deeper rnixed water column offshore (Figure 4.2 a, b, c, Table 

4.3,4.5)- 

The volurnetric and areal rates of N-tixation showed simi lar temporal and 

quantitative trends in Lake Victoria (Figure 4.1 a* 4.2 a). Optimal (volumetric) and daily 

N-fixation varied significantly (p<0.05) with season in Napoleon Gulf. Highest rates of 

N-fixation occurred between September and November when the lake was thermally 

stable and algal biomass had reached its maximum (Figure 4.2 b, c, 3.3 c). Minimal 

fixation occurred between April and August, when Iight extinction coefficients were 

relatively low (k 4 .O m") but mixing depths were greatest al1 over the lake. There was 

Iittle seasonality in volumetnc rates of N-fixation and light extinction coefficients in 

offshore (Bugaia) Lake Victoria (Figure 4.1 b, 4.2 b' c). N-fixation did not Vary 

significantly with months and semons (p > 0.05) in the optically more clear but more 

deeply mixed offshore (Bugaia) waters of Lake Victoria. However, both measured 
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(volumetric) and modeled (areal) N-fixation rates were particularly low around July when 

the lake was deeply mixing in both Napoleon Gulf and Bugaia. 

Algal biomass (chlorophyll-a) was much higher inshore, with average 

chlorophyll-a concentrations approximatel y 5-times higher in Napoleon Gu1 f t han at 

Bugaia (Table 4.4). Chlorophyll-a concentrations were correlated to volumetric N- 

fixation (r = 0.80, n = 30) in Lake Victoria (Figure 4.7a). In Napoleon Gulf, high 

chlorophyll-a concentrations were associated tvith high rates of N-fixation (Figure 4.2 b). 

The N-fixation maximum occurred just pior  to increased and maximum chlorophyl1-a 

concentrations in Napoleon Gulf in September-October. Afier this, chlorophyll-a 

decreased 3-fold and remained lower until fürther decreases in April in Napoleon 

Gulf. Variation in chlorophyll-a concentrations and N-fixation was less in Bugaia, 

although slightly higher values between September and May and minimal values in June- 

July were measured (Figure 4.2 c). Algal biomass (chlorophyll-a) in the range 6.5-1 60 

mg m;' was significantly related to light extinction (r2 = 0. 38, n = 58) (Figure 4.7 b). 

The ratio of Ik to in situ It4 is an indicator of the light available in the water 

column to saturate rate of N-fixation (Hecky and Guildford 1984). Evidence obtained 

from the ratio Iz4 Ac shows that planktonic N-fixation was often light deficient and may 

be light limited (Figure 4.8 a & b), especially in the deep offshore regions (Bugaia). The 

deeper mixing depth (> 20 m) contributes to the low It4 (Figure 4.2 c, 4.8 c) which, in 

turn, supports low algal biomass and N-fixation at Bugaia. The Iz4 Ar ratio < 1 indicates 

that N-fixation is light-limited in Bugaia most of  the year, with exceptions in September, 

December and March (Figure 4.8b). Light was adequate to saturate N-fixation in 

September-October, when the lake was warming and shallowly mixing. The high 
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chlorophyll-a concentrations in Napoleon Gulf are made possible by the shallower 

mixing depth (< 1 0 m) and relatively higher 124 than offshore (Figure 4.8~) .  Light was 

more available in the shallow inshore waters as indicated by the higher IZ4 most of the 

year (Figure 4.8a). Extremely low 124 /Ik (c 0.5) vaiues were measured during 

destratification (May-August) offshore because of deeper mixing depths at that time of 

the year. 



Figure. 4.7. Relationship between epilimnetic aigai biornass 
(chlorophyll-a) and (a) volumetric N-fixation, (b) vertical light 
extinction coefficients in Lake Victoria between 1 994-1 998. 
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Figure. 4.8. Temporal variation of optimal N-fixation and light 
characteristics in (a) Napoleon Gulf, (b) Bugaia and (c) mean 
water column irradiance in Napoleon Guîf (NPL) and Bugaia (BUG) 
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Discussion 

Rates of planktonic N-fixation in Lake Victoria were arnong the highest observed 

in the world (Table 4.6). The annual average integral fixation rates in the range 0.6-23.1 

g N y-' for Lake Victoria stations often exceed the moderate to high fixation rates 

(0.2-9.2 g N m-2 y-') measured in other eutrophic lakes of the world (Table 4.6. Howarth 

et al. 1 988a). Although N-fixation contributed a small fraction on average to the daily N 

demand of the phytoplankton community, it was important in the N-budget of Lake 

Victoria and contributed approximately 80% of the total annual N input into the lake 

(Table 4.7). This relatively high N contribution via fixation is not unique to Lake 

Victoria as fixation contributes over haif of the total N input in the shallow tropical Lake 

George in Uganda (Home and Viner 197 1 ), and as much as 7-60 % of total N into other 

eutrophic freshwaters in the world (Table 4.7). Levine and Schindler ( 1 992) report 1 4- 

-2 -1  98 g N m y , equivalent to 10-80 % of the total annual N input in lakes which have N: 

P supply ratios as Lake Victoria. In Lake Victoria, epilimnetic and hypolimnetic M:TP 

ratios range from 8-44 and 4-1 2 respectively (Chapter 2, Guildford and Hecky 2000) as 

intemal processing of N and P lowers the effective supply ratio of N:P to the 

phytoplankton from hypolimnetic waters (Hecky et al. 1996) which favors N-fixing 

cyanobactena (Hendzel et al. 1994, Findlay et al. 1994). Phosphorus is supplied 

primarily by rain and rivers, while N-fixation is the major source for addition of N to 

Lake Victoria. 



Table 4.6. Rates of  planktonic N-fixation and N-fixation as  a percentage of total N inpui in selected lakes and 

other aquatic ecosystems in the world. = Eutrophic, " = mesotrophic and O = oligotrophic. 

Lakdsystem Mean Range of N input in Reference 

N-fixation N-fixation system (%) 

(g N m-Z y-') (mg ~ r n - ~ d - ' )  

L.Victoriak 11.4 6 - 322 80.0 this study 

ELA, Lake 302 0-98 0-42 0-80 Levine and Schindler 1992 

ELA, Lake 2 ~ 7 ~  . 1990- 1 992 1.5 0-40 53 .O Hendzel et al. 1994 

L. Valencia. venezuelaE 1.3 13.0 Levine and Lewis 1987 

Rievtvlei dam, S. Afiica 9.2 

ELA, Lake 226, 1 97sE 0.62 

L. ~ a s h i n ~ t t o n , ~ a s h i n ~ t o n "  O. 13 

L. Mendota. wisconsinE 0.97 

L. Superior. ~ i c h i ~ a n '  0.0003 

L. Erie, western areaE 0.23 

L. Clear lake. califomiaE 2.6 

L. George, ugandaE 4 -4 

Arabian sea 

Tropical Atlantic ocean 

35.0 Ashton 198 1 

Flen el. 1980. 

O -3 Howarth et al. I988b 

7 .O Torrey and Lee 1976. 

0.02 Mague and Barris 1973 

Mague and Burris 1973. 

43.0 Home and Goldrnan 1972 

65.0 Home and Viner 197 1. 

1 74 25.0 Capone et al. 1998. 

25-65 25 .O Carpenter et al. 1999. 



Table 4.7. Provisional nutrient budgets for Lake Victoria based on inflowing river 

concentrations using annual mean concentrations of the Linthipe River (Malawi) 

apportioned to river flow into Lake Victoria. volume weighted concentration of the rain 

measured at Jinja, Uganda. nitrogen fixation (this assumes 1 O g y-' for inshore 40% of lake 

area and 5 g y'1 for offshore 60% of lake area), sedimentation rates and denitrification. 

Flux Water TN TP TN:TP 

mm y-' Kt y-1 Kt y*1 Molar 

Inputs: 

Rainfal 1 1790' 83' 4.8* 39 

Rivers 338' 433 9.83 1 O 

Extemal Total 126 14.6 20 

N Fixation 380" 

Total 2128 606 14.6 

Outputs: 

Nile 524 25 1.8 59 

~edirnentation~ 78 13.9 13 

~ e n i t r i  fication6 503 

Total 2128 606 15.7 

 in and Nicholson (1998), '~ootsma and Hecky 1999, based on volume weighted 

4 concentrations of rain measured at Jinja, Uganda, apportioned to total rainfal 1, this 

study, S ~ o m w e l l  and Giblin (1 999), 6denitrification by difference. 



In nature, many factors including nutrient and light availability, micronutrients 

(Paerl et al. 1987) and excessive turbulence (Levine and Lewis 1987. Bell et al. 1999) can 

influence biological N-fixation. Inshore, the patterns of lower 6 ''N of POM, the shorter 

N turnover due to fixation and higher N-fixation contribution to the daily N demand than 

offshore emphasize the greater importance of N-fixation. Shortest N-turnover times (4- 

25 days) and elevated algal biomasses coincided and were measured between September 

and November in Napoleon Gulf and in February-March in Bugaia. These short 

turnover times occurred when N-fixation contributed a higher proportion to the daily N- 

demand. At this time of the year, the phytoplankton were more N limited (Figure 3.3 a. 

b) and stability of the thermoctine was high (W 2 1 .O) (Figure 3.3 c). In addition, marked 

increases in daily areal N-fixation occurred between September and November and 

approximately 60 days were required to reach maximum total N concentrations observed 

in Napoleon Gulf. The rate of N-fixation occumng at that time could account for the 

observed increase in total N. This tirne scale was close to calculated average N-turnover 

times (67) for the inshore Lake Victoria (Table 4.5) at this time. 

Despite higher N-fixation pararneters blB and ocB inshore than offshore, the 

average Ik values were rather similar at both inshore and offshore. Judging from the 

average N~ and aB values, both pararneters decreased similarly (36-38%) from inshore to 

offshore (Table 4.5) and, thus similar average Ir values occur lakewide. The high average 

N~ accompanied by high acB values kvas an unexpected result given that analogous 

increases in light saturated photosynthetic rates are fiequently associated with decreasing 

values of the chlorophyll-a specific light-limited photosynthetic rates (Hecky and 

Guildford 1984, Basterretxea and Aristegui 2000). This was probably because N-fixation 
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system is operating under low light conditions in Lake Victoria. Different vertical light 

regimes associated with changes in the physical conditions of the water column, 

particularly thermal stability, may partly be responsible for the overall high blB values 

accompanied by high aB. The lower N-fixation parameter N~ offshore could be 

interpreted as a result of low light adaptation (Falkowski 198 1). But the wide range of 

aB and N~ perhaps reflects a process of photoacclimation given the changing irradiames 

in the water column. Overall, the lower variability of aB (28-fold) compared to N~ (100- 

fold) may be expected because aB is a function of basic photochernical reactions (Côté 

and Platt 1983). In Lake Victoria, variability in  a and ccB may also be related to shifts in  

phytoplankton assemblages (Chapter 5) andor changes in algal photophysiologica1 

status, that in turn, respond to changes in the physical conditions of the water column. 

Since si and xB are based on chlorophyll-a and not al1 phytoplankton fix N, a lot of the 

variance rnay be due to abundances of non-fixers. As well  a and arB cûn Vary with N- 

deficiency and will likely be inhibited by high aminonia. 

Increased thennai stability and a more persistent anoxic-oxic interface (Hecky et 

al. 1 996) in September -0ctober likely had effects on light and nutrient avai lability which 

influenced N-fixation and total N concentrations in Lake Victoria. This is because light 

availability to phytoplankton is a function of mixing depth and was typically higher in the 

shallower inshore bays that had almost double 124 than the deeper mixed offshore regions 

of Lake Victoria. Consequently, N-fixation was typically higher inshore and during the 

thennally stratified periods because of the relatively higher 124. The 124 was greater than 

the saturating irradiance (IK, 1 1.0 mE rn-l min") reported for phytoplankton 

photosynthesis in Lake Victoria (Mugidde 1993), and supported higher algal production 
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as indicated by the chlorophyll- a and N-fixation maxima in September-October. Peaks 

of algal biomass and N-fixation occurred during periods of lake stratification when 

phytoplankton had sufficient light for growth. but dissolved inorganic N compounds were 

scarce. 

Overall, N-fixation increased prior to increases in algal biomass production in 

Lake Victoria, a pattern similar to N-fixation and algal biomass observations made in 

temperate Lake 227 (Hendzel et al. 1994). This further indicates the critical role N- 

fixation plays in generating algal biomass maxima. In Lakes 227 and 226 within the 

Experimental Lake Area (ELA) in Ontario, Canada, N-fixation provided sufficient N to 

allow proportionate P utilization and algal growth (Schindler 1977, Hendzel et al. 1994, 

Findlay et al. 1994). In Lake Victoria, soluble reactive P concentrations in the offshore 

are aiways in excess of 1-0 PM, but concentrations as low as < 0- 1 ,A4 occur inshore, 

especially, dunng the biomass maxima (Mugidde unpublished). 

Simultaneously low rates of N-fixation and algal biomass, and absence of 

nutrient deficiency suggest that factors such as light were an important constraint of algal 

growth in June-July. N-fixation was minimal during complete vertical mixing because 

complete circulation deepens the mixed layer and mixes algal populations below the 

critical depth for photosynthesis (Mugidde 1993, Lehman et al. 1998). Consequently, the 

phytoplankton community becomes light-limited and N-fixation and primary production 

are low around July. Light-limitation constrains N-fixation because fixation is an energy 

consuming process and photosynthesis provides much of this energy through direct photo 

reduction and/ or carbon reserves (Turpin 1991). Light-lirnited algal photosynthesis has 

been previously reported for Lake Victoria (Mugidde 1993). Light suppresses 
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photosynthetic production (Mugidde unpublished data), leading to the reduction in the 

supply of energy (ATP) and the reducing power that ultimately limits the N-fixation 

potential in Lake Victoria. 

The weak correlation between N-fixation and chlorophyll-a suggests that algal 

biomass production has approached its maximum potential productivity in Lake Victoria. 

Further additions of N through fixation will not increase algal biomass production in the 

lake as light limited photosynthesis will set upper bounds on algal biomass as self- 

shading of algal populations occurs. Algal biomass and N-fixation in Bugaia were 

subject to less seasonai variation because of severe light limitation most of the year. The 

offshore region (Bugaia) was more turbulent and had a deeper mixed layer (1 20 m) that 

resulted in low Iz4 irradiances and light deficiency, as indicated by I z ~ / I K  < 1. Light 

deficiency, rather than nutrient deficiency per se, precludes further development of high 

algal standing crops and suppresses N-fixation at offshore Lake Victoria- 

Light is an important factor affecting N-fixation by cyanobactena in Lake 

Victoria, but light alone cannot trigger nor sustain N-fixation in Lake Victoria. During 

complete circulation (July) the phytoplankton community of Lake Victona has been 

found to be nutrient sufficient (Chapter 3, Lehrnan et al. 1998) due to retum of dissolved 

nutrients from bottom waters to surface waters (Talling 1966, Hecky 1993). Nutrient 

retum fiom the hypolimnion to surface waters relaxes N-demand and reduces N-fixation 

in Lake Victoria as indicated by very low rates of N-fixation in the lake around July. At 

the same time, N removal through denitrification (Hecky et al. 1996) will be reduced due 

to high arnounts (> 4 mg/L) of dissolved oxygen throughout the water column during 

circulation (Hecky et al. 1994). However, this nutrient return has a low N: P ratio (8: 1, 
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Hecky et al. 1996) and will lead to N-limitation as stratification occurs and nitrogen 

compounds are taken up into algal cells and lost to the sediment. 

lncreased P-loading from the watenhed into Lake Victoria (Hecky 1993. 

Lipiatou et al. 1996, Table 4.7) is the ultimate force driving the N-demand and, therefore, 

elevated rates of N-fixation and algal production in Lake Victoria. Observations of 

higher P concentrations and associated high cyanobacterial biomasses following 

eutrophication (Hecky 1 993, Kling et al. 200 1 ) and high rates of N-fixation are consistent 

with observations made at ELA Lake 226 and 227 (Findlay et al. 1994) and in many 

temperate fieshwater lakes (Schindler 1977, Flett at al. 1980) and in Lake Kinneret, Israel 

(Gophen et al. 1999). Higher photosynthetic and N-fixation rates allow and maintain 

high inshore biomasses which consume and deplete dissolved inorganic N and P resulting 

in higher seston N: P andor  C: N ratios at particular times (Chapter 3). Higher seston N: 

P ratios inshore indicate that P may limit further biomass increases at biomass maxima if 

light availability is high, for exarnple, during very shallow diumal stratification. 

Although light is one of the important controls of N-fixation in Lake Victoria, P 

relative to N concentrations also plays a major role. N-fixation provides the required N 

loading to respond to anthropogenic P loads that have increased 2 to 3-fold since the 

beginning of the twentieth century (Hecky 1993). Consequently, increased P and N loads 

have contributed to the eutrophication and to the modification of the ecology of Lake 

Victoria. Modification of  Lake Victoria includes proliferation of nuisance blooms of 

cyanobacteria that include heterocystous Nz-fixers as well as the potentially toxic taxa 

such as Cylindrospermopsis, Anabaena and Microcystis. These algal blooms are often 



associated with fish kills and undermine the use of  Lake Victoria as a source of cIean and 

safe drinking water. 

The undesirable algal blooms in Lake Victoria will persist if increased P loads 

persist and conditions of anoxia and high rates of denitrification continue- External P 

loads, rather than N-fixation, are controllable and P reductions is the most economically 

feasible and viable option for water quality and fisheries management of Lake Victoria. 

Reductions in P loads will lead to decreases in cyanobacterial biomass in inshore areas 

and, in particular, biomass of heterocystous Nz-fixers including toxic species. This 

should relax some of the negative consequences of high algal biomass such excess 

oxygen demand and nutrient-and light-limited algal growth. Reductions in algal biomass 

will improve the light environment which will led to improved algal productivity and 

ecological efficiency in the transfer of energy to higher levels in the food-web and 

sustaining high levels of fish production in Lake Victoria. 



Chapter 5: Cyanobacterial blooms and heterocyst abundance in Lake Victoria 

Abstract 

Abundance of cyanobacteria in relation to environmental factors was studied at a 

shallow inshore (Napoleon Gulf) and the deep offshore (Bugaia) station in Lake 

Victoria. The aim was to outline seasonal changes in cyanobacteria and heterocyst 

biomass and occurrence of dominant species in relation to light and nutrient availability. 

Average total cyanobacteria, N-fixing and heterocyst biomasses were respectively 4,7 

and 5 times higher inshore than offshore. Irnproved light conditions during the thermally 

stratified phase boosted the development of algal biomass, including N-fixing species and 

heterocysts, especially inshore. The heterocystous N-fixing cyanobacteria, Anabaena and 

Cylindr-ospermopsis, contributed a large fraction (2 50 %) of the total cyanophyte 

biomass during the stratified phase. Overall, Anabaena was the most abundant 

cyanobacteria followed by Microcys!is in Lake Victoria. Anabaena made up a major 

fraction of the biomass maxima inshore while the non- heterocystous Aphanocupsa were 

most abundant and dominated the cyanobacteria maximum offshore. 

Low algal biomass in June-August, when undenvater Iight was Iow and P and N 

were sufficient, indicates that light restricts algal standing crop to levels below the 

potential provided by the available nutrients dunng penods of  mixing. N-fixation was 

strongly related to heterocyst biomass, so the relationship was used to develop a simple 

N-fixation model. This model is a useful tool in estimating lakewide N-fixation as it 

correctly predicts the magnitude and temporal patterns of rates of N-fixation in the lake. 

It might also be used to predict potentially toxic cyanobacteria blooms. 



Introduction 

Cyanobacteria can be the pximary contributors to alçal biomass. primary 

production and N-fixation in fresh and marine waters (Paerl et al. 1989, Howarth and 

Mario 1999), especially in nitrogen deficient systems. Eutrophication of freshwaters 

frequently gives nse to development of cyanobacterial blooms (Schindler 1977, Findlay 

et al. 1994) that have become an increasing problem worldwide. Blooms of toxin- 

producing cyanobacteria cause unwanted water quality effects such as fish kills, and can 

poison drinking water, thus increasing costs of water treatment. Deaths of wildlife and 

livestock and adverse effects on human health caused by cyanophyte poisoning have been 

reported from many geographical regions (Hallegraeff et al. 1989, Haugen et al. 1994). 

Lake Victoria is one of the world's most productive freshwaters. Phytoplankton 

biomass evaluated as chlorophyll-a or as biovolume has increased by 6-fold or more 

since the 1960s (Talling 1966, 1987, Mugidde 1992, 1993, Kling et al. 200 1). The 

eutrophic conditions now favor dominance of blue-green algae while large chlorophytes 

such as Pediastrum and diatoms such as Aulacosiern have disappeared. Despite a 7-fold 

reduction in soluble reactive s i k a  in the water column, diatoms have increased their 

biomass since the 1960s in Lake Victoria (Kling et al. 2001). These changes in 

phytoplankton biomass and species composition have been annbuted to general increases 

in P and N loading (Hecky 1993, Lipiatou et al. 1996), changes in fish communities 

(Ogutu-Ohwayo 1992) and climate change (Lehman et al. 1998). Current evidence of 

global warming and possibilities of climate change stimulating phytoplankton blooms 

and driving algal biornass towards Hue-green algae drives considerable scientific interest 

in the phytoplankton ecology of tropical lakes. Already, thermal stability of Lake 
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Victoria and hypolimnetic temperatures are higher in the 1990s than in the 1960s (Hecky 

1993, Lehman et al. 1998). 

The success of cyanobacteria and their ability to dominate phytoplankton 

communities is influenced by many factors, including the ability oFsome genera to fix 

atmospheric nitrogen when N: P ratios are low (Levine and Schindler 1992. Findlay et al. 

1994), buoyancy-regulation in stratified environrnents (Bradford et al. 1998): adaptation 

to elevated water temperatures and resistance to grazing by zooplankton (Paerl 1996). 

Recently, several authors have addressed cyanophyte dominance in Lake Victoria. and 

Hecky (1993) attributes it to low N: P ratios. Low N: P ratios have been found to induce 

cyanobacterial blooms and initiate planktonic N-fixation in freshwater lakes (Schindler 

1977, Levine and Schindler 1992, Findlay et al. 1994) as well as marine waters (Kahru et 

al. 2000). Lehrnan (1996) found that smalt-bodied zooplankton cannot effectively graze 

down and control the algal bIooms in modem Lake Victoria. Trophic cascade rnodels 

(Howarth et al. 1999) support Lehrnan's conclusion, but do not explain the proliferation 

of N-fixing cyanobactena in Lake Victoria. Historically, Lake Victoria was thought to be 

limited by N supply (Talling and Talling 1965) and has increased its biornass since the 

1960s. Much of the increase is accounted for by presence of heterocystous cyanobacteria 

(Kling et al. 200 1) capable of biological N-fixation (Chapter 4). 

Although N-fixation is not restricted to heterocystous cyanobacteria (Paerl et al. 

1995, 1996, Thiel and Pratte 2001), most N-fixation in freshwater lakes occurs in 

heterocysts. Consequently, relationships between N-fixation, cyanobacteria and 

heterocyst abundance have been found for some ternperate and tropical lakes (Levine and 

Lewis 1987, Findlay et 1994) and have proven usefùl in estimating biological N-fixation 
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(Levine and Lewis 1987, Hendzel et al. 1994). Prompted by the frequent occurrence of 

cyanobacteria blooms (Ochumba and Kibaara 1989) including heterocystous N-fixers 

(Kling et al. 2001), this study examines the spatio-temporal variation of cyanobactena 

abundance and aIso the relationship between heterocyst biomass and N-fixation in Lake 

Victoria- The goal was to develop a simple and predictive mode1 that would be usefùl for 

the lakewide estimation of N-fixation based on empirically derived relationship between 

heterocysts, measured N-fixation and light attenuation. 

Material and methods 

Phytoplankton and N-fixation samples were drawn from inshore (Napoleon Gulf) 

and offshore (Bugaia) surface waters as described in Chapter 1. The major physico- 

chernical parameters and chlorophyll-a were done as described in Chapter 2, nutrient 

stahis as in Chapter 3 and N-fixation was estirnated from acetylene reduction bioassays as 

described in Chapter 4. Chlorophyll-a was used as an estimator of total algal biomass 

because of its strong and significant relationship (r2 = 0.87) with total phytoplankton 

(wet) biomass in Lake Victoria (Kling et al 2001). Phytoplankton sarnples were 

preserved in acidic LugoI's solution. A 1-2 ml phytoplankton sub-sample was placed in a 

Utermohl sedimentation charnber and left to senle for at Ieast three hours. PhytopIankton 

species and heterocyst identification and enurneration were done using a Zeiss Axioinvert 

35 inverted microscope at 400x. Ce11 measurements were made on each cyanobacteria 

species to a maximum of 20 individuals. At 400x magnification, ten fields of view were 

counted for the most numerous coccoid cyanobacteria and a 12.42 mm2 tmnsect was 

counted for the nurnerous and large heterocystous cyanobacteria and heterocysts. Algai 
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and heterocyst bio-volumes were determined using fomulae as in Wetzel and Likens 

(1991). The whole bottom area of  the chamber was exarnined for the big and rare taxa 

under low (100x) magnification. Heterocysts were enwnerated and measured separately 

from vegetative cells. Ce11 measurements were converted to biovo lumes of c yanoph ytes 

and heterocysts (H) from appropriate geometric fomulae, and biovolumes were 

converted to wet biomass assurning a density of 1 pg pm" (Nauwerck 1963). 

Light attenuation, maximum rates of N-fixation norrnalized to chlorophyll-a (NB), 

light limited N-fixation per unit chlorophyll-a (aB, and the light saturation parameter Ir, 

the intercept between initial dope aB and N~ were calculated as in Fee (1990). The 

relationship between N-fixation and heterocysts was used to estimate maximum optimal 

N-fixation (NH,,) per heterocyst, and the light Iimited ratio of N-fixation based on 

heterocyst abundance (aH) W ~ S  derived as a ratio of NH,, to Ik. ~ e k  Ir for Lake 

Victoria was also used to derive a second set of values of light limited N-fixation (aHA). 

The calculated N-fixation parameters ( N ~ ,  ocB, were used in the modified Fee (1 990) 

photosynthetic model to calculate daily and annual integral rates of N-fixation. By 

H substituting estimated N-fixation parameters (NH,,, a or ocHA) based on heterocysts in 

Fee's model, predicted daily and annual integral N-fixation were obtained and compared 

with estimates based on the direct measurements of N-fixation. Wedderburn numbers 

were calculated as described in Chapter 2. 



Results 

Spatio-temporal patterns of algal biomass 

Total algal biomass evaluated as chlorophyll-a and cyanobacteria biomass showed 

a common pattern o f  higher concentrations at the onset of stable thermal stratification 

(September-December) and relatively low concentrations during penods of sustained 

thermal stratification (January-April) and mixing (June-July) (Figure S. 1 ). The maximum 

total cyanobacteria biomass and chlorophyll-a concentrations coincided in Napoleon 

Gulf, but not in Bugaia. Biomasses were always higher inshore than in offshore surface 

waters (Figure 5.1 a, b, Table 5.1). Average cyanobacteria biornass was typically four 

tirnes higher in the inshore sudace waters than offshore, and maximum biomass was 

three times higher. Similarly, average non-N-fixing, N-fixing and heterocyst biomasses 

were 2,7 and 5 times higher inshore than offshore and were accompanied by dfold 

higher rates of N-fixation (Table 5.0). 



Table 5. Average biomasses and optimal N-fixation and standard deviation at inshore 

(Napoleon Gulf) and offshore (Bugaia) Lake Victoria, during 1998. N = number of  

Inshore Offshore Overali (inshore & 

offshore) 

Total cyanobacteria biornass (mg L-') 29.3 + 36.7 6.9 + 10.6 18.6 k 30.3 

Non-N-fixers biomass (mg L-') 12.2f 17.5 4.6 f 7.1 8.5 k 14.1 

N-fixer biornass (mg L-') 17.1 zk36.6 2.3 f 3.6 10.0 + 27.5 

Heterocyst biomass (mg c ' )  0.9 k 1.1 0.2 f 2.5 0.5 + 0.9 

Optimal N-fixation (ug L-') 1 . 2 I  1.3 0.2 f 0.1 0.7 + 1-1 

N 16 20 36 



Napoleon Gulf 

- 

J A S O N D J F M A M J  

J A S O N D J F M A M J  

L Therr 

,I 
J A S O N D J F M A M J  

Month 
Figure. 5.1. Phytoplankton biomass as chlorophyll-a (Chl) and 

cyanophyte biomass (Cya) at (a) Napoleon Gulf, (b) Bugaia and 
(c) Wedderburn numbers 0 for Victoria at Bugaia, 1998. Dashed 
line, W, = 0.5, indicative of strong deep mixing. 
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Spatio-temporal variation of cyanobacteria biomass 

Total cyanobacteria biomass varied between 0.3 and 136 mg L-' but was often > 

5.0 mg L-' in the surface waters (Figure 5.1 a, b). In Napoleon Gulf, cyanobacteria 

biomass was in the range 5-9.0 mg L*' in June-September and increased to maximum 

concentrations (1 35.5 mg L-') in October. Total cyanobacteria abundance remained 

relatively high (53-69 mg L - ~ )  in November-December, but deceased 5-fold in January 

and decreased even further to seasonal minimum concentrations of 3.8 to 4.7 mg L" in 

Febniary-March. Biomass increased in April and doubled to a small peak (26.4  mg^-') 

in May in Napoleon Gulf (Figure 5.1 a). As in Napoleon Gulf. minimal cyanobacteria 

biomass concentrations (0.3-0.6 mg L-') occurred in June-July at Bugaia (Figure 5.1 b). 

Cyanobacteria biomass began to increase in Septernber and achieved a well defined but 

less persistent biomass maximum (39.3 mg L-') in mid December in Bugaia. AAer 

December, cyanobacteria biomass decreased 4 to 9-fold during periods of prolonged 

thermal stratification (January to April) and decreased even further in May at the onset of 

thermal destratification. 

N-fixing cyanobacteria exhibited similar spatio-temporal trends as total 

cyanobacteria biomass and were a significant component of the total cyanobactena in 

Lake Victoria (Figure 5.2 a, b, c). Generally, N-fixing cyanobacteria were more 

abundant when Wedderbum numbers were increasing or near maximum as the lake 

became stably stratified (Figure 5.1 c) and dominated in Napoleon Gulf, making up 65- 

98% of the total cyanophyte biomass between October and March. N-fixing 

cyanobacteria with a predominance of Anabaena reached maximum abundances (1 32.9 
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mg L-') in October in Napoleon Gulf. In Bugaia, N-fixing cyanobactena contributed 

approximately 60% of the total cyanobacteria biomass in October-November and reached 

13.4 mg L-' in December (Figure 5.2 b). Falling Wedderbum numbers led to deciines in 

cyanobacteria biomass that was lowest when the lake was mixing. In Napoleon Gulf, N- 

fixing cyanobacteria occurred in low abundance (4 I .O mg L-') contributing to 5 20% of 

the total cyanobacteria biomass in Jul y-August when the lake was destrati fied. Similarl y 

in Bugaia, N-fixer biomass was very low (< 1.0 mg L-') and contributed 8% to 20% of 

the total cyanobacteria biomass in June-August. Despite elevated total cyanobacteria 

biomasses in December, N-fixers contributed only 34% and 4% to the total cyanophyte 

biomass in Bugaia and Napoleon Gulf at that time (Figure 5.2 c). 



Figure. 5.2. Temporal variation of Nofixer and non N-fixer 
biomss at (a) Napoleon Gulf, (b) Bugaia and (c) N-fixer 
biomass as a percentage of total cyanophyte biomass at 
Napoleon Gulf (NPL) and Bugaia (BUG), during 1998. 



Cyanobacteria population dynamics and species composition 

Nine cyanobacterial species were frequently encountered dunng this study (Table 

5.1 ). The large fi lamentous c yano bacteria (Anabaena, Cylindrosperrnopsis and 

Planktolyngbya) and the colonial mucilaginous forms (Aphanocapsa. Microcystis, 

Chroococcus, Coeleospharium and Merisrnopedia) ofien formed blooms in Napoleon 

Gulf and were the 8 most cornmon cyanobacteria during 1 998 (Table 5.1. 5 -2). Overall. 

Anabaena had the highest biomass, followed by Microcystis and then 

Cylindrosperrnopsis in Lake Victoria (Table 5.2). Anabaena biomass was double that of 

Cylindrospermopsis in Napoleon Gulf. Microcystis had higher biomass than 

PlanhoIyngbya while Chrococnrs and Coleospharium biomass was equal in Napoleon 

Gulf. In Bugaia, Aphanocapsa had the highest biomass followed by Anabaena and 

Cylindrospermopsis that were equal in biomass (Table 5.2). 



Table 5.1. Minimum, average and maximum biomass (mg. L") of nine cornmon 

cyanobacteria species in Lake Victoria, during 1998. N = nurnber of samples 

Anabaena 

Cylindrospermopsis 

Microcyst is 

Planktolyngbya 

Aphanocapsa 

Chroococcus 

Coeleospharium 

Merismopedia 

Aphanotheca 

Minimum Average Maximum Std C.V. N 

0.00 8.9 13 1.6 20.3 235 26 

0.0 1 3 -6 35.5 5.1 117 26 

0.02 5.8 23.1 5 -4 I l  1 26 

O .O2 1.9 13.9 2.2 1 07 26 

0.00 1.7 23 -2 4.3 22 1 26 

0.02 0.7 5.5 0.9 112 26 

0.00 0.6 2 -6 0.5 1 O0 26 

0.0 1 0.5 2.8 0.6 117 26 

0.00 0.3 1 -4 0.5 161 26 



Table. 5.2. Average and standard deviation (StD) of cyanobactena biomass (mg. L-') in 

inshore and offshore surface waters of Lake Victoria, during 1998. 

Inshore (Napoleon Gulf) Offshore(Bugaia) 

Taxon Average StD Average StD 

Anabaena 

Cylindrosperrnopsis 

Plan ktolyngbya 

A phanocapsa 

Microcyst is 

Chroococcus 

Coeleospharium 

Merismopedia 



A general succession pattern of increased dominance of N-fixing cyanobactena 

during the early stratified pe60d (September- December) followed by non-fixers later in 

the stratified period and lowest cyanobacterial abundances during the deepest mixing 

period in June-July was apparent in Lake Victoria (Figures 5.3 & 5.4). 

Cylindrospermopsis was the most common cyanobactenum as it appeared nearly 

continuousl y throughout the year and frequentl y dominated other c yano bacteria in both 

inshore and offshore surface waters. In Napoleon Gulf, Anabaena reached maximum 

concentrations contributing to > 90% to the cyanobactena biomass maxima in October 

(Figure 5.3 a). In November, Anabaena declined and was replaced in dominance by 

Cylindrosprmopsis (5.3 b). Anabaena became dominant again in December, but its 

abundance began to decrease in January and reached minimum concentrations in June- 

July. The phytoplankton cornmunity of  Napoleon Gulf became more diverse as N-fixers 

declined and non-N-fixing cyanobacteria (Planktoiyngbya, Aphanocapsa und 

Microcystis) increased to small peak concentrations in December. Although 

Cylindrospermopsis was in low abundance, it dominated again from January to April but 

was succeeded by Microcystis in May. Microcystis contributed approximately 89% of 

the total cyanobactena biomass in May in Napoleon Gulf. Generally, the non N-fixing 

species, Planktolyngbya, Aphanocapsa, Chroococcus, Merismopedia and Aphanofheca, 

formed small peaks in December and in April (Figure 5.3 d-e) as N-fixers declined in the 

population. Merismopedia became prominent oniy in July in Napoleon Gulf. 





Figure.5.4. Temporal variation of biomasses of 
N-fixers, non-N-Fiers and major cyano bacetrial 
taxa at Bugaia, during 1998. 



Bugaia had a similar seasonal pattern of cyanobacteria species composition as 

Napoleon Gulf (Figure 5.4). Peak heterocystous cyanobacterial biomass occurred in 

December during the stratified phase, but species of non-N-fixing cyanobacteria 

represented high proportions of the total cyanobacteria biomass most of the year except 

in October-November (Figure 5.2 c). The filamentous species Anclbaena, 

Cylindrospermopsis and Planktolyngbya, and the small coccoid Chvoococczrs and 

Merismopedia were prevalent in September. Anabaena appeared in the plankton for a 

greater part of the year and had three peaks in abundance. two minors in September and 

April and a major one in December (Figure 5.4 b). But Annbaena dominated only during 

its small peak in September and was replaced by Cylindrospermopsis that contributed a 

major fraction to the N-fixer biomass maxima in October-November (Figure 5.4 c). 

Aphanocapsa fonned a large bIoom and becarne the most dominant cyanobacteria in 

December at Bugaia (Figure 5.4 d), and at this time Anabuena also achieved maximum 

abundance. Cylindrospermopsis remained fairly abundant between January and Mûrch 

and was replaced in dominance by Microcystis in March. PlanboZyngbya had three srnall 

peaks of aimost equal magnitude that coincided with peaks in N-fixing cyanobacteria in 

September, December and April in Bugaia. Planktolyngbya was nearly as abundant as 

Cylindrospermopsis in Apd-May, while Chroococcus and Merismopedia had low 

background level concentrations most of the year. They achieved smdl peak 

concentrations in September and April, as the plankton became more diverse 

(Figure 5.4 e, c). 



Relationship behveen heterocysts and N-fixation 

Seasonality in heterocyst biomass was well defined in Lake Victoria. Heterocyst 

biomass ranged fiom O to 3.6 mg ~ % n d  had sirnila. seasonal and spatial trends as N-fixer 

biomass. Elevated heterocyst biomass (2.0-3.6 mg L-') occurred between Septernber and 

November in Napoleon Gulf, and maximum concentrations were in September just prior 

to the N-fixer and total cyanobactena biomass maxima (Figure 5.2 a, 5.5 a). In Bugaia, 

heterocyst biomass \vas elevated between October and January and maximum biomass 

(0.7 mg L") coincided with the N-fixer and total cyanobacteria biomass maxima in 

December (Figure 5.2 b, 5.5 a). Generally, elevated heterocyst biomass occurred at a 

time when the phytoplankton of Lake Victoria showed indications of N-deficiency (C: N 

ratios > 8.3, Figure 5.5 b) as the lake became more thermally stable (Figure 5. lc). In 

Napoleon Gulf, maximum heterocyst biomass in September was preceded by moderate 

N-deficiency in August. High C: N ratios (2 10) also preceded maximum heterocysts 

biornass in December in Bugaia. Extremely low heterocyst biomass (L 10 ug L-') in 

Apnl to July in Napoleon Gulf and in May to July in Bugaia coincided with deeper 

mixing periods (Figure 5.5 c) and conditions of reduced N-deficiency (Figure 5.5 b). 

The higher heterocyst biomasses inshore than offshore were accompanied by 

higher volumetric rates of N-fixation (Figure 5.5 a, d). Maximum rates of N-fixation 

coincided with heterocyst biomass maxima in Napoleon Gulf and their minima occurred 

contemporaneously in June-August. Similady, increases in concentrations of total N 

coincided with elevated heterocyst biomass production and rates of N-fixation in 

September- December. Consequently, the linear regression of N-fixation on heterocyst 

biomass was strong (8 = 0.89, n = 29) and significant @< 0.01) in Lake Victoria (Figure 
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5.6 a). N-fixation was ais0 significantly correlated with the biomass of N-fixing (r2 = 

0.83) and total cyanobacteria (2 = 0.76). 



Optimal N-fixation 1 

O I J ~ ~ Ô ~ ~ j ~ ~ Â ~ J J  
Months 1 -.a&. .. . . . BUG. 1 

Figure. 5.5. Temporal distributions of (a) heterocyst biomass 
@) C:N ratios, (c) mixing depth, (d) N-fixation and (e) total 
nitrogen concentrations in Napoleon (NPL) and Bugaia (BUG). 
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Heterocyst biomass (mgL1) 

N-fixer biomass (mgL1) 

Total Cyanobacbria biomass (mg. f ) 
Figure. 5.6. Linear regression of the volumetric 
rates of N-fixation (N-fix) against (a) heterocysts 
biomass (HB), (b) N-fixer biomas(NB) and (c) 
total cyanobacteria biomass (TC) of Lake Victoria. 



Calculated and predicted N-fixation 

The measured daily rates of N-fixation were highly correlated with predicted rates 

of N-fixation based on heterocyst biomass (Figure 5.7 a). Daily rates of N-fixation 

predicted using heterocysts derived N-fixation rates and either specific Ik (NP 1)  or 

average Ik (NP2) for Lake Victoria had sirnilar slopes (Figure 5.7 a) and were not 

significantly different (P< 0.01) from calculated N-fixation values using measured N- 

fixation (NC) and a values (Table 5.3). Cornparison of calculated rates of areal daily and 

annual N-fixation to corresponding values predicted from heterocyst biomass show 

similar spatio-temporal trends in both inshore and offshore (Figure 5.7 a, b, c). Similarly, 

the annual calculated N-fixation of 14.4 g N m'2 y-' for Napoleon Gulf and 10.4 g N m-2 

for Bugaia were of the same order of magnitude as respective predicted values of 15.5 

g N m-2 y-' and 9.5 g N m'2 y-'. Annual N-fixation predicted using an average Ir for 

Napoleon Gulf (13.7 g N m-2 y") and Bugaia (8.4 g N y-') was slightly lower but not 

significantly different from their respective calculated values. 

Table 5.3. Average daily calculated rates of N-fixation normalized to chlorophyll-a 

(NC) and predicted daily rates of N-fixation based on heterocysts and specific Ik (NP 1) 

and on average Ik (NP2) during 1 998. 

Average 37.4 

Std 46.3 

C.V. 124 

N 23 
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Figure. 5.7. (a) Unear regression of predicted N-fixation 
(NP) aganist calculated N-fixation (NC) , (b) temporal variation 
of NP and NC of (a Napoleon Gulf, (c) Bugaia. NP1 was d predicted using in ividual 1, and NP2 with average I, . 



Discussion 

Algal biomass as chlorophyll-a and total cyanophyte biomass were much higher 

inshore than offshore because mean light conditions were better and the light dependent 

carbon and nitrogen fixation reactions less light limited (Chapter 3,1). Inshore, reduced 

mixing depth allows relatively high mean viater colurnn irradiances (Iz4. t 1 1 .O m E -' 
min-') which permit growth of higher algal biomass before self-shading. In contrast, 

algai biomass was low offshore because the deeper rnixed layer leads to light deficiency, 

as indicated by iK/124 < 1, most of the year. In the modem Lake Victoria, the euphotic 

depth is often 5 10 m offshore and is half as shallow inshore (Chapter 4). and 

stratification is necessary to create a good light environrnent for planktonic algae. But 

mixing depths are always 1 20 m at Bugaia and compatible with only low algal 

biomasses as light limits photosynthesis over most of mixing layer. 

Total cyanobacteria, N-fixer and heterocyst biomass as well as chlorophyll-a 

varied seasonally, but similar temporal trends occurred at inshore and offshore sites. 

Variation in algal biomass was likely a result of combined effects of the mixing and 

thermal stratification regime which cause changes in nutrient concentrations (Hecky 

1993, Hecky et al. 1996) and underwater light conditions (Chapter 4). In Lake Victoria, 

light-lirnited algal crops generally coincide with minor and deeper mixing periods. As 

mixed layer depths increase, for example on de-stratification in ApriI-May and dunng 

strong mixing in June-July (Chapter 1,3), the mean water column irradiances become 

very low (2-5 mE m-2 min-') leading to diminished total cyanophyte and chlorophyll-a 

concentrations. Guildford and Hecky reported (1984) reported light limitation of 

phytoplankton growth at similar 124. 



Light deficiency with possibly enhanced N availability during destratification and 

deep mixing may be largely responsible for the decline of  the heterocyst and N-fixation 

processes that require energy. N-fixation requires both ATP and a source of reducing 

power (reductant) such as NADH and NADPH. Photosynthesis provides much of this 

energy and reductant from new organic matter production when carbon and N-fixation 

occurs contemporaneousf y (Turpin 1 99 1 ). Lack of su fficient recent pho tosynthate or 

stored carbon due to severe light limitation may lead to a reduction of diazotrophic 

activity and subsequent reductions in total cyanophyte biomass as observed in Lake 

Victoria. A decline in N-fixer and heterocyst biomasses due to inadequate light energy 

seerns likely given that light can be the ovenvhelming constraint to phytoplankton 

production in Lake Victoria (Mugidde 1992, 1993). Lehrnan et al. (1 998) inferred frorn 

modeling and experimental approaches that when mixing depth equals or greatly exceeds 

the critical depth, 5-1 8 m, defined as depth where net primary production above that point 

is balanced by respiration, algal growth ceases and biomass levels decline in Lake 

Victoria. The cntical depth of 5-1 8 m at Bugaia far exceeds the Zmix/Zeu values of 4-5 

that result in light limitation (Talling et al. 1971). These results are consistent with 

observations fiom other Great Lakes of the world, such as Lakes Superior, Ontario, Erie 

and Michigan, where inadequate light due to deep mixing constrains phytoplankton 

growth and influences algal species during winter mixing (Fahnenstiel et al. 2000' 

Reynolds et al. 2000, Guildford et ai. 2000). 

The low cyanobacteria and chlorophyll-a abundances in June-July were not a 

result of nutrient deficiency as both N and P deficiency were alleviated inshore and 

offshore. Nutrient limitation was absent because deeper mixing causes low light 
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availability at this time and entrains higher nutrient concentrations (Talling 1986). It also 

re-oxygenates deeper waters (Hecky et al. 1994) eliminating the anoxic-oxic interface 

that prevents ammonium diffusion fiom the hypolimnion (Hecky et al. 1996). Reduced 

N loss via denitrification and increased N fluxes delivered into the euphotic zone during 

destratification result in no N-deficiency in June-July as indicated by the low C: N ratios 

(< 8.3) in both inshore and offshore surface waters. Consequently, the diazotrophic 

activity may also be less because other N sources, such as ammonium and nitrate, are 

adequate at this tirne of the year. The preferential uptake of dissolved inorganic N, if 

present in abundance, inhibits N-fixation and is an adaptation resulting in energetic 

savings due to the higher energy requirements for N-fixation (Reuter 1 988, Turpin 199 1, 

and De Nobel et al. 1998). 

Elevated algal biomass during the early to mid-stratification penod were likely a 

result of increased water thermal stability (Wedderburn number > 1 .O). Stratification 

improves light conditions between September and December and induces nutrient 

deficiency, especially inshore, which favors N-fixing species and cyanobacteria to grow 

and accumulate. Diffision of DM from the hypolimnion is prevented by denitrification 

at the anoxic-oxic interface in the water column (Hecky et al. 1994, 1996). 

Consequently, N-deficiency becomes fiequent and leads to the maintenance of N-fixing 

cyanobactena. Better light environment inshore because of shallow mixing depths may 

compensate for P-deficiency, while maintaining the N-deficit and allowing higher N- 

fixers and heterocysts biomasses than offshore. Healey (1 975) found fiorn culture 

expenments that algae reduce their need for P as light becomes more available. At this 

time of the year, excess P at Bugaia c m  readily be assirnilated into new algal biomass as 
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N-fixation provides the required N. Only fiirther inshore does soluble reactive P fa11 to 

low values suggesting P-deficiency. 

The lower N-fi xer and heterocyst biomasses between January and Apnl, given the 

simultaneous increase in the light resource and increased N demand, suggests that light 

and macr~nut~en t s  interactions may not be the only factors influencing algal biomass 

production in Lake Victoria. it is possible that algal biomass production can be 

constrained by availability of micronutrients, especially Fe that plays a crucial role in 

nitrogen and carbon metabolism of cyanobactena (Reuter 1988, 199 1, Kudo et al. 2000, 

Guildford et al. 2001). iron has been found to influence phytoplankton photosynthesis, 

growth and biornass in freshwater lakes (Twiss et al. 2000) and marine environments 

(Kudo et al. 2000, Fitzwater et al. 2000, Watson et al. 2000). In oceanic environments, 

deficiency of bio-available iron leads to low chlorophyll-a concentrations despite high 

nutrient concentration (Pichford and Brindley 1999). Because of iron's low solubility in 

oxic conditions (Stal et al. 1999), it may limit N-fixation and algal growth in the oxygen- 

saturated surface waters of Lake Victoria, with its long water residence time in excess of 

a century. Anoxic deep water can lead to rernoval of Fe to the sediments as iron sulfide. 

Iron is biochemically involved in nitrogen metabolism as it forrns part of the 

nitrogenase complex and is necessary for N-fixation even when anoxic conditions and 

appropriate energy resources are established (De Nobel et al. 1 998, Howarth and Marion 

1999). In Lake Victoria, prolonged thermal stratification may raise the opporhmity for 

epilimnetic trace metal depletion as iron and molybdenum are often depleted fiom 

stratified epilirnnia of lakes (Coale at al. 1996). Guildford et al. (2001) were able to 

demonstrate iron stimulation of algal growth and N-fixation in lakes Victoria and 
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Malawi. The role of trace rnetals in phytoplankton dynamics of the African Great Lakes, 

in particular Lake Victoria, needs M e r  investigation as factors that affect 

micronutrients supply rate, chemical speciation or recycling c m  alter algal biomass 

production as well as species composition. 

In addition to other factors, nutrients and light availability drive the phytoplankton 

species composition of the modem Lake Victoria. The higher P loads relative to N from 

the catchment (Hecky 1993, Lipiatou et al. 1996) and resultant high concentrations of 

total P (> 2.0 pM) has doubtlessly contributed to the dominance of cyanobacteria in Lake 

Victoria (Kling et al. 200 1 ). As well, light and nutnent availability also determine 

temporal variation of individual species. When thermal stratification raises light 

availability and N-demand, the heterocystous N-fixing cyanobactena, 

Cylindrospermopsis and Anabaena dominate other cyanobacteria. Dominance by the 

heterocystic N-fixing cyanobacteria is maintained until N-deficiency is arneliorated by N- 

fixation and remineralization, the introduction of N from other sources, or until Iight 

becomes limiting because of shading by algae or deep mixing. The high abundance of 

the Anabaena inshore and dunng periods of thermal stability may be related to the 

simultaneous effects of N-deficiency and high light. Anabaena is a "sun" species with 

high light requirements and has been shown to competitively displace other species under 

saturating irradiances in N-limited culture experiments (Nobel et al. 1998). 

Cylindrospermopsis is a low light species that will be abundant with the small and fast 

growing non-nitrogen fixing species that tend to dominate offshore where deeper mixing 

and light limitation can slow the grow rate of the large heterocystous N-fixers. 



The finding that pronounced and prolonged blooms of cyanobacteria, including 

the toxic species Cyl indrospermopsis. Annbaena and Microcystis, were associated with 

lake characteristics of thermal stratification, hi& light and increasing total N, can be 

usefül in predicting the occurrence of nuisance and toxic bloom events in Lake Victoria. 

It is important that environment factors associated with the continued presence of toxic 

cyanobacteria be invest igated fiirther as phycotoxin production has been confirrned in 

Lake Victoria (H. Kling, FWI, Winnipeg). Phycotoxin effects may already be having 

adverse consequences on the productivity of the fishery and may be responsible for some 

of the massive fish kills that frequently occur in Lake Victoria. Elsewhere, 

cyanobacterial microcystin toxins have been demonstrated to alter the hatching time of 

rainbow trout and advenely affect the survival, growth and morphology of zebrafish 

(Oberemrn et al. 1999). Microcystin toxins have been shown to slow down zooplankton 

growth, and Daphnia c m  potentially transfer toxins to higher trophic levels in the aquatic 

food (Thostnip et al. 1999). The continued presence of toxic cyanobactena and toxin 

production are a serious concem for water and fishenes managers as well to the lakeside 

cornrnunities who heavily depend on lake for fish food and drinking water. Airborne 

microcystin can directly affect people, especially when showering and also when on the 

water d u h g  algaI blooms (Kotak et al. 1994, Dunn, 1996, ). 

The strong and signifiant relationship between heterocysts and volumetrïc N- 

fixation permitted prediction of daily and annual integral rates that were consistent with 

measured rates of N-fixation. N-fixation predicted from heterocysts abundance and light 

extinction, can be used to estimate lakewide N-fixation given that predicted daily rates of 

N-fixation had similar spatio-temporal patterns as measured rates and were of similar 
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magnitude. Acquisition of data on heterocyst abundance and light attenuation with 

limited seasonal measurements of N-fixation provide an alternative and less expensive 

alternative for estimation of lakewide N-fixation- This mode1 can also be used to predict 

the timing of heterocystic cyanobacterial blooms that may allow water treatment plants to 

alter their intake locations or strategically add additional water treatment such as 

ozonation, 

In summary, results fiom this study show that Lake Victoria supports a large 

cyanobacteria crop dominated by heterocystous N-fixers through much of the annual 

cycle. Its eutrophic character due to high P loading (Hecky 1993), and being a high N 

sink (Hecky et al 1996), are largely responsible for the dominance of cyanobacteria today 

(Kling et al. 200 1). Circumstantial evidence indicates that light (Mugidde 1992, chapter 

4) and nutrient availability (chapters 3,4, 5) were two important factors influencing total 

cyanophyte biomass as well as N-fixer and heterocysts biomass production in Lake 

Victoria. Biomass of heterocystous and non-heterocystous cyanobacteria were higher 

durhg the stratified phase when light \vas adequate, but were limited under conditions of 

light-deficiency caused by deep water-column mixing offshore or self shading inshore. 

As heterocyst biomass increased, rates of N-fixation increased proportionally and so did 

concentrations of total N. This allowed algal biomass increases and blooms to proliferate 

in the surface waters. N-fixation was successfully predicted when calculated N-fixation 

parameters were substituted with values predicted fiom heterocyst biomass because of 

the strong relationship between heterocysts and N-fixation. Heterocyst biomass can be 

used to infer N-fixation and N-availability in Lake Victoria and as guide to water 

resource management in the Lake. 
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Chapter 6: General summary and conclusion 

Summary 

1. During the period of study, 1994-1 998, the persistent eutrophic condition of Lake 

Victoria was indicated by water column characteristics of high concentrations of P 

and N, elevated total phytoplankton biomass (as chlorophyll-a) and total 

cyanobacteria biomass (as biovolume), reduced water transparency, hypolimnetic 

anoxia and fiequent cyanobacterial blooms. 

2. Total P concentrations were of the same order of magnitude ( 1.5-1 2 PM), average 

2.6-3.1 PM, in both inshore and offshore surface waters- Increased P was reieased 

into the water column at Bugaia when the lake was deeply and strongly mixing (July- 

August), and concentrations remained high until periods of re-stratification in 

September. However, average total N concentrations in the range 37 pM to 106 pM 

were three times higher inshore than offshore. Maximum total N concentrations 

occurred during periods of shallower mixing and coincided with elevated rates of 

planktonic N-fixation in September-December. 

3 Deoxygenation of bottom waters of Lake Victoria has become extensive and now 

occurs in the shallow inshore bays, such as Napoleon GUI f, for most the year. 

Extensive anoxic conditions were associated with high water column stability 

(Wedderburn number > 1 .O), that restricted dissolved oxygen exchange between 

surface and bottom waters leading to hypolimnetic anoxia. Once Lake Victoria 

becomes thermally stable, its bottom water is depleted of dissolved oxygen. 

4 Surface inshore waters had higher phytoplankton biomasses and rates of N-fixation 

than offshore. Chlorophyll-a concentrations and total cyanobacteria, N-fixer and 
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heterocyst biomass were, respectively, 5x, 6x, 8x and 5x higher inshore than offshore 

because light waç often inadequate for algal growth offshore. Inshore regions are the 

shallower parts o f  the lake that are compatible with potentially higher mean water 

column irradiances and will have denser algal populations before and when self 

shading occurs. Inshore waters also have faster nutrient regeneration from sunken 

particulate organic rnatter as a larger proportion of the epilimnetic waters are in 

contact with the bottom sediments. Therefore, nutrient regeneration to the euphotic 

zone is more effective inshore than offshore. However, P regeneration may be more 

efficient than N due to denitrification under low oxygen conditions. 

5 Relatively low chlorophyll-a concentrations and c yanobacteria biomasses in June- 

July are due to low light as indicated by IZ4/IK < 1 .O, accompanying full water 

column mixing, rather than nutrient supply or heavy grazing. De-stratification in 

April-May, and cornplete circulation brought about by surface cooling around July, 

lowers the mean water column irradiances (2-5 mE m'2 min-') to less than the 

threshold Ik that indicates light saturation. Previous studies document grazing 

pressure by the zooplankton as insufficient to control algal biomass and rhis rnay 

partly be responsible for accumulation of  particulate nutrients. At al1 sites 

investigated, particulate organic P and N were the mosi abundant form of P and N 

most of the year, suggesting loss terms must be low. The dominant cyanobacterial 

species have low sinking rates and can modify their buoyancy through gas 

vacuolation which further allows accumulation of biomass in the upper water column. 

6 Changes in nutrient availability, as indicated by particulate nutnent ratios and 

dissolved inorganic nutnents concentrations, were related to the mixing and thermal 

162 



conditions in the lake. Increased P and N-deficiency occurred during periods of 

stable thermal stratification. There are three reasons why P and N availability were 

lower during the stratified period. First, thermal stratification restrkts nutrient 

supply from the hypolimnion to the epilimnion. Second, the oxic-anoxic interface in 

the water column promotes N loss via denitrification (Hecky et al. 1996) further 

reducing regeneration of DIN and raises the potential for N-deficiency. Third, 

improved light conditions as indicated by IK/IZ4 > 1-0 allow accumulation of elevated 

algal biomasses before self-shading. High consumption of dissolved inorganic 

nutrients by elevated algal biomasses results in increased P and N-deficiency- 

especiaIly inshore where highest algal biomasses occur. 

7 Offshore, TN:TP deviations fiom balanced N and P concentrations tended to be 

small based on the average molar ratio of 1 6. Offshore, approximatel y 33% of the 

particulate N:P ratios and 29% of the C:N ratios were in excess of Heaiey and 

Hendzel ( 1980) cutoff values indicative of severe P and N-deficiency. Inshore, 5 8% 

of the observations of particulate ratios indicated severe P-limitation and 2 1 % N- 

limitation. The higher maximum particulate N:P ratios of 80 and 32 at inshore and 

offshore, respectively indicate that P-deficiency can be more severe inshore than 

offshore. In contrast, C:N ratios were as high as 18 and 12 at offshore and inshore, 

respectively, indicating that N-deficiency can be more severe offshore than inshore. 

8 P and N deficiency were relaxed in June-July partly because of reduced demand fiom 

algal growth because of increased light limitation and because of entrainment of 

nutrient-rïch hypolirnnetic waters due to stronger mixing. Although stronger and 

deeper mixing relaxes nutrient deficiency, it results in severe light deficiency that 
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constrains dgal biomass production. These low algal biomasses leave most of the 

new dissolved inorganic nutrients unutilized. 

9. Offshore, algal biomass production was ofien suppressed by light limitation as P and 

N-deficiency were less frequent and SRP was often in excess of 1.0 PM. 

High P concentrations created an N-demand that was often met through intemal 

cycling within the mixed water column if biomass was low. The higher 6 '% of 

particulate organic matter (POM) offshore (average = 8.9) resuIts from recycling of N 

which was adequate to meet the Iow N demand. The high delta 6 '% of POM implies 

that intemal cycling processes, rather that N-fixation, contributed the larger fraction 

of N-demand offshore. 

10. The low N availability relative to P in surface waters was partly a result of P retum 

from the low-oxygen hypolirnnetic waters, especially offshore. Enhanced N loss 

relative to P due to differential recycling efficiencies can also be an explanation for 

the recurrent low N:P ratios in surface waters dunng mixing. These low N:P ratios 

select for dominance by cyanobacteria during stratification and are dictating the 

dominance of N-fixers and heterocyst biomass production in Lake Victoria. 

Nevertheless, high N input by the N-fixing cyanobactena often redressed the low N 

availability, as indicated by the high N:P ratios and low C:N ratios, especially in 

inshore swface waters. 

1 1. Two prominent ecological groups of cyanobactcria were recognized: (i) the large 

heterocystous N-fixing cyanobacteria, Anabaena and Cylindrospermopsis, known for 

their high Iight requirements, and, therefore, achieving their maximum abundances 

dunng improved light conditions when the lake was stratified. N-fixing 
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cyanobacteria were most abundant and contributed the greatest proportion (2 80%) to 

the total cyanophyte biomass maxima in October in Napoleon Gulf. Offshore at 

Bugaia, N-fixing cyanobacteria comprised a smaller proportion (5 40 %) of the total 

cyanophyte biomass most of the year, except in October-November and in May. (ii) 

Srnall-celled coccoid species dominated other cyanobacteria most of the year and 

contributed significantly (>60 %) to the total cyanobacteria biomass maxima 

offshore. 

12. N-fixation was carried out by the autotrophic heterocystous N-fixing 

cyanobacteria, as rates of N-fixation were highly correlated with biomass of 

heterocystous N-fixing cyanobacteria. Heterocysts were the best prediction of N- 

fixation and their strong and significant relationship allowed development of a simple 

and sensitive N-fixation model that correctly predicted the magnitude and spatio- 

temporal patterns of rates of N-fixation. This model provides a useful tool for 

estimating lakewide N-fixation and is also a promising tool for predicting the 

timing of potentially toxic cyanobacteria blooms. 

13. Higher diazotrophic activity inshore than offshore was indicated by three pieces of 

evidence. First, volumetric and areal rates of N-fixation were respectively 8 and 2 

times higher inshore than offshore. Second, the higher N-fixer and heterocyst 

biomass indicated higher diazotrophic activity inshore than offshore. Third, the 3- to 

6-fold lower 6 '% of POM inshore than offshore provided further evidence of 

reduced diazotrophic activity offshore. Low 6 '% was consistent with enhanced 

N-fixation inshore, because N-fixation of atmospheric Nz with 6 '*N of zero dilutes 

the 6 "N o f P O M .  



14. The siinultaneous effects of nutrient and light availability affected N-fixing 

cyanobacteria and heterocyst biomass as well as rates of N-fixation. Biomass of N- 

fixing cyanobactena were eIevated when Wedderburn nurnbers were increasing or 

near maximum and the lake was stably stratified. Thermal stratification permitted 

better light conditions through reduced depth of the mixing layer, and increased N 

deficiency and diazotrophic activity. With falling Wedderbum numbers, nutrient 

deficiency and light sufficiency decreased and diazotrophic activity decreased in 

concert. 

15. Later in the stratified period (January-April), N-fixation as well as N-fixer 

and heterocyst biomass were lower than expected from considerations of the 

N-demand by the algae. Low N-fixation and biomass may. in part, be a consequence 

of low light availability due to the progressive deepening of the themocline from 

January until complete mixing in June-July. With lower, light-limited N-demand for 

phytoplankton growth recycling of previously fixed N can satisfy the N-demand 

during this period. Trace metal limitation; in particular Fe, has been hypothesized as 

a possible factor that could limit diazotrophic activity at this time of the year. 

16. Rates of N-fixation in Lake Victoria were among the highest when compared to 

literature values from tropical and temperate freshwater lakes. Although biological 

N-fixation contributed a small fraction (1 -20 %) of the daily N-demand because 

recycled N met most of the N-demand, it constituted approximately 80% of the total 

annual N input into Lake Victoria. However, this high N income may almost be 

balanced by high m u a 1  N-loss via denitrification due to persistent hypolimnetic 

anoxia. Denitrification and stratification synergistically contribute to the maintenance 
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of N-limitation in Lake Victoria- 

Conclusions 

A combination of light and nutrient limitation regulates phytoplankton biornass, 

species composition and rates of N-fixation in Lake Victoria. Emerging evidence from 

particulate nutrient ratios shows that both P and N were only temporarily limiting, but 

light limitation ultimately controls phytoplankton biomass production and rates of N- 

fixation, especially in offshore areas and when the lake was mixing. These finding are 

not surprising, as historic studies have suggested N limitation, and various modem 

studies have inferred or indicated that N and P were potentially lirniting in Lake Victoria. 

The current study shows how patterns of nutrient and light availability are related to 

water column stability, and how they rnay influence biological variables. This also adds 

more to our knowledge of phytoplankton biomass and species composition. It provides 

the most detailed data available on nutrient and Iight status, and new information on 

spatio-temporal variability of N-fixation in Lake Victoria. 

Circumstantial evidence ailows the general conclusion that thermal stratification 

and destratification exert considerable influence on light availabiIity, which in turn 

controls phytoplankton biomass, and biomass, in turn, controls nutrient availability in 

Lake Victoria. Phosphorus limitation kvas stronger inshore where maximum algal 

biomasses occur than offshore as indicated by the high elemental particulate N:P ratios. 

The TN:TP ratio, used as indicator of P-status, indicated that P was potentially a system 

limiting factor, especially in the shallow inshore regions of the lake. This observation is 

not in conflict with findings that anthropogenic nutrient supply is emiched with P relative 
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to N (Hecky 1993, Lehman et al. 1998)' and therefore low N:P ratios are expected in 

Lake Victoria. The low N:P loading ratios are counteracted by biological buffers and 

mechanisms that include changes in algal species composition and N-fixation. High N 

input via fixation modifies N:P ratios and frequently drives the phytoplankton community 

to conditions of P-deficiency, as indicated by high N:P ratios, especially inshore. N- 

deficiency füels proliferation of nuisance N-fixing cyanobacteria blooms that reach their 

maximum abundances during the stratified period- High N income via N-fixation ofien 

alleviates N limitation, but high organic loading to the hypolimnion enhances 

denitrification (Hecky et al. 1996) along the persistent mid water column oxic-anoxic 

interface and serves as an important N sink that is equilibrium with N-fixation in the lake 

today (Chapter 4). N and P deficiency are infrequent and rarely extreme because of  self 

shading. Shading most ofien determines upper level of biomass concentrations. Further 

P and N loading will only aggravate algal blooms by promoting higher concentrations in 

the shallower areas of the lake. Nutrient reductions wïll not reduce productivity but 

would reduce incidences of algal blooms and might cause shifis to less obnoxious algal 

. species. 

Nutrient e ~ c h m e n t  has had both detrimental and beneficial effects in Lake 

Victoria. Increased nutrients stimulate high algal N-and C-fixation which provide the 

required new production that maintains the current high fish production in Lake Victoria. 

Increased algal primary productivity has likely contributed to increased fish production, 

although we cannot attribute the higher fish yields only to higher production since fishing 

effort has also expanded. Increased fish production is beneficial to the people in the 

region as a source of  affordable animal protein, and the fish industry provides job 
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opportunities to al1 gender groups. Fish yields that are 5 times higher than in the 1 960s 

and that exceed 500,000 tonnes (Ogutu-Ohwayo et al. 1996) provide a major export that 

is economically important to the three riparian States. Despite that there is no direct 

evidence that eutrophication may be damaging the fisheries, there is great concem that 

fish production may not be sustainable because of the already poor water quality of Lake 

Victoria. Already, fish are restricted to the shmnken aerobic surface waters and more 

productive inshore waters where they are heavily over-exploited. This dong with other 

effects of eutrophication, in particular the proliferation of cyanobactena known to be 

poor quality food, threaten sustainable fish production in Lake Victoria. Of great concem 

are the increased frequency of harmful algal species that form conspicuous blooms which 

become positively buoyant and aggregate into large visible patches in surface waters. 

Blooms of cyanobactena have received much attention due to their interference with 

abstraction and treatment of drinking waters, and their possible toxicity that may be 

responsible for some of the fish kills that occur in Lake Victoria today. 

Application of results 

It has been recognized that remedial action to mitigate eutrophication of Lake 

Victoria requires concerted regional and international effort. Regional management and 

research efforts are being provided by the Lake Victoria Fisheries Organization (LVFO) 

and Lake Victoria Environmental Management Project (LVEMP). Progress so far is in 

the right direction as tripartite environmental management agreements have been signed 

and relevant watershed and in-lake studies are ongoing. This study contributes to 

comrnon strategies of eutrophication control measures based on reduction of nutrients 
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that Iimit algal biomass production as the most efficient option. Current studies confimi 

that both P and N are limiting in particular places and particular times and contribute to 

the eutrophication of Lake Victoria. Consequentiy, reductions of both P and N are 

essential in the control of nuisance cyanobacteria blooms and ultimate reversa1 of 

eutrophication that threatens the ecosystem health of Lake Victoria. Even though N is 

the limiting element, it can enter from the atrnosphere through biological N-fixation 

(Chapter 4) as long as P and light allow. Therefore, direct N reduction is practically 

difficult and ineffective, and its reduction may result in even increased frequency of 

potentidly toxic species such as Cylindrosperrnopsis, Anabaena and Microcystis. 

Reduction of P load is the most efficient and feasible option for reducing 

eutrophication effects and ultimately, restoring Lake Victoria. P reduction is practical, as 

P is not maintained by equilibrium with an infinite atmospheric reservoir as N is. P 

reduction wiII lead to reductions in algal biomass and will also lessen the N demand that 

favors growth of the harmful toxic cyanobacteria in the modem Lake Victoria. 

Reductions in algal biomass will improve the water quality and possibly increase algal 

productivity. This is possible as reductions in algal biomasses wi 1 l result in improved 

Iight conditions and primary productivity, that would be maintained over a greater depth 

range and, capable of maintaining the high fish yields or even supporting increased fish 

production in Lake Victoria. The fact that anthropogenic nutrient supply to Lake Victoria 

has increased (Hecky 1993, Lipiatou et al. 1996) and atmospheric nutrient chemistry has 

changed over the Afncan Great Lakes including Lake Victoria (Bootsma 1993, Bootsma 

and Hecky 1998) is usehl information for management of Lake Victoria today. Recent 

studies indicate that rainfall contributes approxirnately 5 kt per year of TP into Lake 
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Victoria (Chapter 4) and rivers almost twice as much. Total N income through rainfall 

was approxirnately 83 kt year-' and half as high entered through rivers. Atmospheric 

deposition is recognized as a potentially large source of inorganic P and N to Lake 

Victoria (R. Tarnahtamah, U of Waterloo, personnel communication). These nutnents 

can stimulate productivity of bacteria and phytoplanlcton production in Lake Victoria. 

The nutrient load via precipitation is rnagnified as rainfall accounts for >90% of water 

budget of Lake Victoria. 

These hi& nutrient loads are characteristic of disturbed watershed where 

extensive agriculture and land clearing are common (Bootsma and Hecky 1999, Carignan 

et al 2000). Based on the above information, nutrient reduction into Lake Victoria 

requires reduction of direct and indirect anthropogenic loads that contribute to 

enrichment of rivers and to modification of the precipitation chemistry of Lake Victoria. 

Reduction of nutrient Ioads requires watershed management and good soil conservation 

practices aimed at reducing extensive vegetation clearing, soil erosion and vegetation 

buming. In addition, municipal and industrial effluents should reduced to acceptable 

nutrient concentrations and ratios so to reduce local proliferation algaI biornass and 

weeds, such as water hyacinth. 

Management strategies to protect water quality of Lake Victoria should give high 

priority to actions that control nutrient loads into the Iake. Management strategies should 

also give consideration to other stressors that include exotic species and habitat loss. 

Effective watershed management should involve educational programs aimed at 

sensitizing the local people as to how their activities including intense subsistence crop 

fanning, animal husbandry, mining and releasing of waste products, change the 
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atrnospheric and river chemistry, which in turn impact water quality and aquatic biota. 

Unless local people recognize the adverse impacts of their uncontrolled soi1 erosion and 

generation of waste products and take action to reduce the nutrient emissions, 

eutrophication reversai will be difficult to achieve. Recognition by the riparian 

governrnents and water resources managers that safe fish production and clean water for 

humans and animals requires a Lake Victoria that is free of pollutants and toxins is 

already progress in the right direction, As the catchent of Lake Victoria is beyond the 

three ripanan countries, countries beyond the lake borders should be encouraged to 

participate in remedial actions. Management effects are expected to be rather slow given 

the large catchment and the great diversity in the degree of economic development of the 

lake-basin countries, with conesponding differences in according pnority to 

environmental protection. 
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Appendices 

Appendix 1 .  Minimum, average and maximum Wedderbum numbers (W) 

for offshore (Bugaia) Lake Victoria. dunng 1994-998. 

Date Wedderburn number (W) 



Appendix 1 (continued) 
Date Wedderburn number 

20-Dec-95 3 -6 

2 1 -Dec-95 2.5 

26-Jan-96 2.1 

27-Jan-96 2-7 

06-Apr-96 1 . 1  

2 1 -Jw-96 O -2 

22-Jun-96 O. 1 

27-Ott-96 2.6 

23-Mar-98 1 .O 

10-Apr-98 0.2 

3 1 -Jul-98 0.7 

30-Sep-98 3.1 

03-NOV-98 1.7 

26-NOV-98 1.8 

1 1 -Dec-98 1.2 

Overall minimum 

OveralI average 

Overall maximum 

Std 

N 



Appendix 2. The daily N-demand of inshore stations (Napoleon Gulf (NPL), Buvuma Channel 

(BUV), Pilkington Bay (PLK), Itome Bay and offshore at Bugaia (BUG) during 1998. The daily 

N-demand was calculated fiom the reciprocal of the C:N moiar ratios and average phytoplankton 

carbon fixation (0.57 moles c-d-') for Lake Victoria. The percentage daily N-fixation contribution 

to the daily N-demand = (N-fixation per daymaily N-demand) x 100. 

Date Statio C:N ratio Daily N-demand Daily N-demand Daily N-fix N-fi;u(N- 

n (molar) (in moles) (mg N rn-' d") (mg N rn-' 6 ' )  demand (%) 

29-Jan-98 NPL 6 -9 0.08 1151 24 2.1 

NPL 

NPL 

NPL 

NPL 

NPL 

NPL 

NPL 

NPL 

NPL 

NPL 

NPL 

BUV 

BUV 

BUV 

BUV 

BUV 

BUV 

B W  

BUV 

BUV 



Appendix 2 (continued) 
Date Statio C:N ratio Daily N-demand Daily N-demand Daily N-fix N-fr'lM- 

n (molar) (in moles) (mg N rn'* d-') (mg N m-' d-') demand (%) 

BUV 

PLK 

PLK 

PLK 

PLK 

PLK 

PLK 

PLK 

PLK 

PLK 

Itome 

Itome 

Itome 

home 

Itome 

Itome 

Itome 

BUG 

BUG 

BUG 

BUG 

BUG 

BUG 

II76 

1259 

Il62 

1119 

859 

1195 

1204 

1100 

1115 

1 SOI 

940 

1156 

1 O62 

1175 

1214 

1143 

1141 

609 

732 

665 

647 

85 1 

732 

07/3 1/98 BUG 6.0 0.06 885 12 1.4 

08/3 1 /98 BUG 8 -2 0.05 65 1 23 3 -5 



Appendix 2 (continued) 
Date Statio C:N ratio DaiIy N-demand Daily N-demand Daily N-fix N-fi.u/N- 

n (molar) (in moles) (mg N rn'2 d-') (mg N m" d-') demand (%) 

O913 0198 BUG 9.1 0.04 5 82 26 4.5 

1 0/2 7/98 BUG 5.9 0.06 909 15 1.7 

1 1/26/98 BUG 1 1  0.03 484 18 3 -7 

1211 1/98 BUG 6.4 0.06 825 27 3.3 

0 1 -Sep-94 BUG 8.9 0.04 598 15 2.5 

29-Sep-94 BUG 8 .O 0.05 662 15 2 -3 

30-Oct-94 BUG 7 -9 0.05 676 15 2.2 

25-NOV-94 BUG 7 -6 0.05 697 18 2.6 

06-May-95 BUG 9.1 0.04 585 9 1.5 

2 1 -May-95 BUG 7.9 0.05 672 9 1 -3 

13-Jul-95 BUG 6.9 0.06 774 8 1 .O 

2 1 -0ct-95 BUG 7.9 0.05 672 15 2 -2 

0 1 -Sep-95 BUG 8.4 0.05 635 26 4.1 

01-NOV-95 BUG 17.2 0.02 3 09 18 5 -8 

28-Jan-96 BUG 7.5 0.05 705 20 2.8 

06-Apr-96 BUG 8 .O 0.05 667 20 3 .O 

08-Ott-97 BUG 7.8 0.05 682 15 2.2 

Overall average 3.9 

Ovetall minimum 0.7 

Overall maximum 20.2 

N 63 




