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Abstract 

The main objective of this dissertation is to study the use of state space models and 

filtering met hods in tackling several fiindarnent al issues in longitudinal studies involving 

multiple subjects. These include serial dependence of a subject's responses that corne 

naturally from time. inter-subject heterogeneity? missing values and measurement errors 

in stib jectso responses. and non-stationary process drifts. We consider both repeated rriea- 

sure problems and problems involving event histories, and in particular: recurrent events. 

Several classes of models are introduced and filtering methods developed to implement 

parameter estimation. Properties of the models and methods are examined. We consider 

two sets of data for illustrations: a dataset from automobile manufacturing (repeated 

multivariate rneasurernents), and a set of small bowel rnotility data (recurrent events). 

We consider a class of general state space models and give a review of some cornmon 

sub-models and the avdable tools for statistical inference. We point out the need for 

more efficient estimation for handling missing values and measurement errors. a careful 

understanding of different types of random effects models, and a tractable Wrelihood 

inference procedure. 

We first discuss methods of estimating the variation in product quality characteristics 

measured a t  several stages in a manufacturing process. By determining which stages 

contribute most to variation one can focus variation reduction activities more effectively. 

A multivariate Gaussian Markov process is used to mode1 the variation in characteristics. 

Methods that deal with measurement error and missing data are introduced through a 

state space formulation. 

Then, we differentiate random effects models for recurrent events into autocorrelated 

and dynamic random effects models. Their s idar i t ies  and key Merences are cliscussed 



in the case of Gaussian models. Numerical comparisons are provided by using the s m d  

bowel motility data and cases when the models might be used are discussed. 

Thirdly. we study a dynamic proportional hazards random effects model for reciment 

events wit h non-informative right censoring. Sub jec t het erogenei ty and potential non- 

stationary process drifts are handled by repeatedly updating an initial frailty as more 

recurrence times are observed. An arbitrary baselirie hazard together with an external 

time-dependent covariate process are dowed. The full model is actually a noneGaussian 

state space mode1 with a multiplicative st ate transition process. Parametric inference 

on hyperparameters is carried out by rnaximizing the likelihood function. which can be 

shown to be numerically tractable. A simulation study is conducted for further insight 

into the model. 

F indy ,  we conclude this dissertation with some general remarks and point to sorrie 

potential future research directions. 
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Chapter 1 

Motivation and Examples 

1.1 Longitudinal S t udies 

1.1.1 Introduction 

Longitudinal studies often involve analyses of specific dynamic changes of subjects in a 

group over a certain time period. Longitudinal behaviour can be examined by either 

monitoring sub jects continuously over time. or examining them only at discrete time 

epochs. A typical dataset in a longitudinal study consists of event occurrence times or 

repeated rneasurements for each subject over tirne. Several recent books (e-g. Andersen 

e t  al.. 1993: Diggle et al.. 1994: Lindsey. 1993) discuss and provide comprehensive coverage 

of various types of studies. 

It is a characteristic of longitudinal studies that measurements or events associated 

with individuals at  different time points are related. i.e. not statistically independent. The 

main objective of this thesis is to consider the use of dynamic rnodels for representing 

dependencies and to develop methods of inference for such models. We will consider 
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situations with repeated measurernents taken at discrete time points and also situations 

where events may occur repeatedly to subjects over tirne. Section 1.2 provides sorne 

motivating examples but first in Section 1-12, we consider sorne basic problems and 

objectives associated with longitudinal studies. 

1.1.2 Basic Problems and Objectives 

It is possible to have numerous complications in longitudinal stuclies but there are t h e e  

basic ones. The most fundamental problem is modelling, because of the time element. 

the inherent stochastic dependence between a subject's measurements or event history. 

in particular when previous observations contain information relevant to present and 

future variates. Modelling dependencies can be basicdy classified. bom Cox (1951). 

to Le observation-driven when dependency is due directly to previous observations and 

parameter-driven when it is induced by a hidden stochastic process of the parameters. 

Choice of models will be discussed in Chapter 2. 

Another problem is subject heterogeneity. This is usually handlecl by including ob- 

servable covariates in models, but very often there rernains unexplained variation. This 

is often c d e d  unobservable heterogeneity and it can be effectively han&d by using ran- 

dom covariates or randorn effects with certain distribution assumptions (e.g. Aden and 

Husebye, 1991: Pickles and Crouchley. 1994; Hougaard. 1995). 

Missing data is another common feat ure in longitudinal studies (e-g. Little. 1992, 1995: 

Baker? 1995; FoUmann and Wu. 1995). Subjects rnay &op out during surveillance or have 

measurements missing intermit tently. The presence of missing data has sever al effects in 

longitudinal analysis. One is that a simple multivariate analysis for balanced data when 

we have an equal number of observations for each subject measured at equal time intervais 
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may be made complicated when data are missing. A similar problem &ses for missing 

data in event history andysis (e.g. Lawless and Yan. 1992). A worse complication is when 

data are not missing completely at random (e-g. Little and Rubin, 1987). For example. 

in a study of the efficacy of a new drug on lowering blood pressure. patients with higher 

blood pressure may tend to drop out £rom the experirnent. Ignoriiig the -*reasons" for 

dropout will give a seemingly high efficacy of the new h g  and lead to a biased conclusion. 

These are not the only problems in longitudinal studies. Another problem we study 

is non-stationary process drifts due to interventions across tirne. There are still other 

problems which include measurement errors in both responses and covariates. and data 

colIec t ed at irregular time intervals. 

However with all these kinds of complications. a major merit of longitudinal stndies 

is that we can differentiate the changes over time within subjects and differences among 

subjects. Thus two basic objectives in longitudinal analysis are to characterize the degree 

of heterogeneity across subjects and to assess the effects of covariates a t  a sub ject-specific 

level. Other objectives depend on the type of data at hand. Specifically. with repeated 

measurements taken at certain fixed discrete time points. we may be interested in char- 

acterizing the response profile over time (Diggle e t  al.. 1994) while with recurrent event 

data, we may be interested in estimation of the mean event recurrence times. prediction 

of the next event occurrence? and analysis of rates (Lawless. 1995). 

Motivating examples which highlight different problems and objectives in longitudinal 

studies are discussed in the next section. 
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1.2 Mot ivat ing Examples 

Three datasets are used to motivate later developrnents. and illustrate different charac- 

teristics and objectives in longitudinal studies. They will be studied in the rest of tliis 

dissertation. 

1.2.1 Automobile Manufact uring 

The first two examples concern processes used in the production of automobiles. In eacL 

case- certain important measurements on part of a car are taken at a sequence of several 

stages of the process. The objective is to determine which stages contribute most to 

variation in the part. and thus to help reduce variation. Lawless et al. (1997) disciiss tl~is 

area in depth. The two datasets are shown in Appendix A.1. 

Piston Machining 

A piston is used in engines to impart motion by means of a piston-rod. It is a short 

rnetallic cylinder which is closed at the top and open at the bottom. fitting closely inside 

an engine cylinder in which it vibrates up and down, pushing out exhaust on the iip- 

stroke and intaking fuel on the down-stroke. The quality characteristics of interest were 

four diameters. located at heights of 4 mm. 10 mm. 36.7 mm and 58.7 mm from tlie 

bottom of the piston. The diameters were rneasured after each of four operations in the 

machining process? the rneasurements being in millimeters, to a precision of 1 micron 

( l W 3  mm). Details of the study can be found in Agrawal e t  al. (1997). 

It is clearly important to control the cliameter across the body of the piston to ensure 

a close fit and smooth movements inside the engine cylinder. However? note tliat tlie 
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four diameter measurernents are obviously correlated and thus separate modelling for 

each single diameter is likely to be inappropriate. Simultaneous modelling of multiple 

measurements is preferred to account for the interactions between the measurements. 

Moreover, at each of the 4 locations on the piston. fewer than 15 distinct measured values 

occur. Thus, accounting for measurement errors due to heavy rounding of measurements 

is also desirable. 

Our main interest focuses on determining the sources of variation contributirig to the 

diameters at the final stage and the variation transmitted across dinerent process stages. 

Major factors are (i) serial correlation of rneasurements across different process st a g es. 

(ii) the presence of multiple measurements (the four diameters). and (iii) measurement 

errors on the diamet ers. 

Door Hanging 

We consider an assembly process for rear doors of vehicles. There were seven stages of 

the process. corresponding to seven operations: (1) the door hang, (2)  paint the door. (3) 

install door hardware. (4) striker installation. (5) striker fit: (6) i n s t d  seals and chassis. 

Rear Header Front Header 

i 

Figure 1.1: Locations of the four flushness deviation measurements of a rear door. 
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and (7) final fit. The quality characteristics of interest relate to the fliishness of the rear 

door to the surrounding body of the car. This was quantifiecl through four fliishness 

deviation rneasurements at locations c d e d  kickup, beltline: &ont to header. and rear 

to header; see Figure 1.1. They were measured after each of the seven stages. A zero 

measurement a t  any location means the door is perfectly flush. and positive and negative 

measurements mean it is too high and too low respectively. Details of the experiment can 

be found in Hamada and Lawless (1994) and Fong and Lawless (1997). 

A major characteristic of the data is that not all measurements are successively taken 

and aroiind 46% of the data are missing. The missing data may be caused by the clifficulty 

in taking measurements while maintaining the flow of the whole production line but their 

actual sources are not clear fiom the manufacturer. We will however assume the data 

are missing in a random fashion. Moreover, all measurements were taken with a special 

hand-held tool. Accounting for variation due to the instrument is thus desirable. 

Primary objectives are to have rear doors as close to perfectly flush as possible after the 

final stage and to leam about the origins and transmission of variation. Major factors are 

(i) serial correlation across process stages. (ii) multiple measurements. (iii) the presence 

of niissing values, and (iv) measurement errors. 

These two examples are discussed in some detail in Chapter 3. 

1.2.2 Small Bowel Motility 

Our small bowel has both absorptive and secretory functions and the muscular activity 

(motility) of it is vital for gastrointestinal function in humans. In a study describecl by 

Aden and Husebye (1991). nineteen healthy individuals with age ranging fkom 22 to 50 

were monitored for 13 hours and 40 minutes. from 5:45prn in a day to the next morning at 
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7:25am. At 6:00pm, all individuah were treated with a standardized mixed meal. They 

then entered a fed state with irregular contractions in the small bowel which is followed 

by a fasting state with a regiilar cyclic motility pattern defmed by three phases. However. 

only iphase 111" can be easily detected and is thus used to defme the fasting cycle which 

is termed the migrating motor complex (MMC). The first detected phase III is defined as 

the start of the fasting state and recurrence tirnes of phase III were continuously tracked 

until the end of the experlment. Please refer to Aden and Husebye (1991) for a detailed 

description of the experiment. The data are reproduced in Appendix A.2. 

In a closer look at the data. we can see that there are large variations of both within 

and between subjects MMC periods. Subjects with different ages may have Merence in 

frequency of MMC periods. As the age of subjects or other sub ject specific information are 

not recorded. the effects on subject heterogeneity remain unobserved. Also, accounting for 

tirne trends or non-stationary drifts of a subject's MMC periods to assess the regularity 

of MMC is also desirable. Moreover, removing the censored final MMC periods for each 

subject will lead to estimation bias while treating them as if they were complete wiU lead 

to underestimation of the overall mean of MMC period. Thus censored MMC periods 

have to be handled properly. 

Objectives of the study are to mode1 the distribution of recurrence times. Major 

factors are (i) possible correlation among recurrence times, (ii) subject heterogeneity. (iii) 

right censoring for the last recurrence time, and (iv) the possibility of time trends or 

non-s tationary process drifts. 

This example is discussed in sorne detail in Chapter 4 and 5. 
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1.3 Dissertation Plan 

We will expand our discussions on the aforementioned topics in longitudinal studies in the 

coming chapters. As suggested from the title of this dissertation. we will focus on using 

state space models in capturing desired characteristics of longitudinal data and showing 

how filtering methods can assist in facilitating statistical inference. 

Chapter 2 introduces a general class of statistical models c d e d  a general state space 

model and dis cusses several of it s different common descendants in longitudinal s t ildies. 

Then a bnef survey is given of the avdable tools for statistical inference with emphasis 

on filtering methods. At the end of the chapter. we give background and motivation for 

three specific areas that we wïü study in more detail in subsequent chapters. 

Chapter 3 discusses methods of estimating the variation in product quality character- 

istics measured in a multi-stage manufacturing process, e.g the two automobile manufrrc- 

turing examples in Section 1.2.1. A multivariate Gaussian Markov process is used to mode1 

the variation in characteristics. Methods that deal with measurement errors and missing 

data are introduced through a state space formulation. Estimation of model pararueters 

is developed through a filtering approach and the use of the parametric bootstrap. 

In Chapter 4. we identify two different types of Normal-based random effects models 

for recurrent events whch are given the names: autocorrelated and dynarriic random 

effects models. Their s d a r i t i e s  and ciifferences are pinpoint ed and guidelines for t heir 

use are provided. The S m d  Bowel Motility Data is analyzed using the models and 

filt ering met hodology. 

Chapter 5 studies a dynamic proportional hazards model to account for subject hetero- 

geneity and non-st ationary process drifts for times between recurrent events. Parametric 

inference on hyperparameters is carried out by maximizing the likelihood function via fü- 
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tering. This is numerically tractable. a property that is not shared by rnost hazard-baseil 

random effects models. Properties of the model and estimation procedures are stiidied. 

The last chap ter discusses some further potential research. 



Chapter 2 

State Space Models and Filtering 

Methods 

2.1 General State Space Models 

Before we introduce a general class of state space models and discuss the use of filtering 

methods in longitudinal s tudies, we need some notation to describe the anticipated data. 

We consider the situation where measurements are taken repeatedly on an individual at 

each of several distinct time points. Suppose we studied N subjects and measurements 

were taken at ni time points from subject i (i = 1: 2? . . . . N). Let 1 ~ j  be a vector 

of the j th  ( j  = 1. 2. . . . : TA;)  set of measurements taken fkom subject i and x, be a 

corresponding vector of measured covariates. This is a standard type of longitudinal data. 

The automobile manufacturing data in Section 1.2.1 have items (subjects) measured at a 

given sequence of process stages (indexed by j), so that n; is a constant. The recurrent 

event data in Section 1.2.2 can also be described in this way. It has y, as the j th 
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recurrence time but the number of event recurrences (= ni) varies with different siibjects 

stochastically. Throughout this chap ter. we will assume this basic notation and more will 

be specified if needed. Also: for brevity. indices i and j are assumed to run From 1 to N 

and 1 to ni respectively unless otherwise specified. 

Now. a generd state space mode1 (GSSM) is defined by 

1. an observation model for 

where q3-' = {yil , yi/;,' . . . . yi,j-i) denotes the set of all observations of siibject i 

up to and including the ( j  - 1)th one. q0 = n d  set. and z,'s. c d e d  states. are 

unobservable random variables whose dynamics follow 

2. a transition model for zij 1zi.j-1. 

There are four basic assumptions for GSSMs by which the joint density of s i ' s  and zij's 

can be generally written down. They are enumerated as follows. 

( A l )  The covariate process {xij) is non-stochastic: otherwise we condition on its observecl 

values. 

(A2) Responses between Merent  subjects are conditionally independent, i.e. 

where Yi-' = {k;j-l, . . . , YL-'), and Zj. z!, Xj, X! are similarly defined. 

(A3) At occasion j and given all the past responses. ~ j : - j - ' ,  current responses depend O& 
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on the current state and covariates. i.e. 

f ( y i j  1 x/. 2;) = f (yij 1 xi-'. Zij. z i j )  

(A4) The transition mode1 is &st order Markovian. Le. 

Note that higher order Markov dependency can be transformed to fust order by 

augmenting zij by its lagged variables. 

Note that the independence assumption of the transition model on past responses cari 

be relaxed and this extension is considered in Chapter 5. Under the model. rneasurement 

or response vector y, is allowed not only to depend on its past observations and some 

covariates but also on some unobserved effects' possibly due to rneasurement errors or 

missing covariates. governed by the transition model. This class of GSSMs is quite gen- 

eral and provides a unifying fkamework for models in loiigitudinal studies. However. an 

example which does not belong to this class will be considered in Chap ter 5. This section 

will present several huitful classes of commonly used longitudinal models which will be 

frequently referred to throughout this dissertation. Most of them assume the Normal 

distribution assumption for the sake of convenience only. It can be replaced by other 

dis tributions whenever plausible, as clirected by the references cited in the discussion. 



CHAPTER 2. STATE SPACE MODELS AND FILTERING METHODS 

2.1.1 Normal (Gaussian) S tate Space Models 

Linear date  space rnodels with Normal distribution assumptions can be derived fioni a 

GSSM as 

where Hj. Gj and Bj are design matrices speciiîed by some unknown parameters. The 

initial zio can either be defined as a constant or another independent Normal variate. 

This kind of model has been popular in t h e  series forecasting (Harvey. 1989). Examples 

of formulating some time series models into a linear state space form can be found in 

Lütkepohl (1993). It has also numerous applications in longitudinal stuclies. e.g. gowtli 

cuve  analysis (Wilson, 1988). longituclinal count data (Jergensen et al.. 1996a. 1996 b) . 

Other applications can be found in the books by Jones (1993) and Fahrmeir and Tutz 

(1994). The model assumes all responses are continuous and unrestricted. possibly after 

transformation in order to jus tify the Gaüssian distribution assump tion. For responses 

whch are discrete (e.g. number of defective items in a batch in quality control). nominal 

(e.g. type of infection among a number of categories), or ordinal (e.g. test results that 

are classified as normal, borderline and abnormal) in nature, the Gaussian assumption is 

far from being reasonable and the following models are usually considered. 
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2.1.2 Dynamic Generalized Linear Models (D GLMs) 

A dynamic generalized linear model hâs 

where the design matrix Cij is a function of qJ-' and z;j. and g is a monotonie and 

differentiable link function. It includes the Gaussian linear state space model when g 

is the identity function and the distribution of gij 1 x3j-'. z,. ri, is Gaussian. Note that 

the distribution assumption in the observation model. though not specified above is usii- 

ally assumed to corne from the exponential family. Through this. together with the link 

function. riiscrete and categorical responses can be modelled. for example. a Poisson dis- 

tribution with a logarithm Iink for counts. or a Multinomial distribution with a logistic 

Link to the marginal or cumulative probabilities for nominal or ordinal respouses. Fur- 

thermore. for the transition model. other dynamic processes other than the additive and 

Gaussian assumption are also possible (e-g Jmgensen e t  al.. 1996a: Yue and Chan. 1994). 

The ancestral mode1 of DGLM is the dynamic linear model (with g as the identity 

function) defined by Harrison and Stevens (1976). It was then studied by West e t  al. 

(1985) through a Bayesian analysis using discounting to get rid of the unknown error 

variance in the transition model: refer to Section 2.2.3 for more Bayesian methods on the 

model. Thereafter, applications on longitudinal courit data (Harvey and Fernandes. 1959: 

Singh and Roberts. 1992: Lambert. 1996b, 1996a), competing risks models with cliscrete 

duration times (Fahrmeir and Wagenpfeil. 1996). and recurrent event data (Smith and 

Miller. 1986: Yue and Chano 1994) were considered. Use of the model in handling randorii 
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effects and serial correlation in longitu<luial studies. especially on recurrent events. has 

not been yet f d y  studied. The mode1 is also described in the books by Lindsey (1993) 

and Fahrmeir and Tutz (1994). 

2.1.3 Generalized Linear Models ( GLMs) 

Diggle et al. (1994) and Lindsey (1993) described three extensions of GLMs (McCuIlagh 

and Nelder. 1989) for longitudinal studies: namely. marginal. random effects and condi- 

tional models (we use conditional mode1 instead of "transition model" as in Diggle e t  al. 

(1994) to avoid confusion with the transition model in GSSMs). They belong to the class 

of GSSMs or DGLMs. AU of them are defined by a linear regression on the mean of the 

responses through a known link function g but they have different domains of application. 

Marginal models separate the regression of the mean response from the within-subject 

association. They assume 

and the within-subject covariance. Cm(yir. yi,) is assumed to be a function of p,. p; and 

possibly some additional parameters. The model is appropriate when we are interested 

in population-averaged inference: for example. a study of the average difference between 

the effects of two treatments in clinical studies. In other words, we are interested in the 

average behaviour over the whole population at various time points. 
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Random (Mixed) effects models account for inter-subject heterogeneity by specifying 

where 7u;j is usually a subset of the covariate x,. The zi's are subject-specific effects 

assumed to be independent and identicdy distributed (i-id. ). This class of models is also 

called the generalized linear rnixed models (GLMMs) (Breslow and Clayton. 1993). Note 

that given ri's. the responses yij's are independent and thus within-subject association is 

solely induced by the random effects. These models are appropriate when we are interested 

in subject-specific effects or in accounting for extra inter-subject variation. perhaps tliie 

to missing covariates. There is a huge literature on these models (e-g. see McCdocli. 

1997). 

Conditional models. unlike (2.1) and (2.2).  make the within-subject association explicit 

in the regession equation as 

where f,'s are known functions depending on some unknown parameter a. The condi- 

tional variance Var(y;j 1 q'j-'. z,) is assumed to be a function of pij. Modelling stoclrastic 

dependence of a single subject's responses directly. rather than by random effects. is of- 

ten desirable. A merit of using (2.3) is that all successive conditional probabilities for 

computing the likelihood function can be writ ten down directly when a distribution is 

adop ted. 

Although Models (2.1)-(2.3) stand on Merent  objectives and conceive Werent striic- 
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t u rd  response behaviour, the fixed effects /3 fkom them have the same interpretation when 

g is the identity function (Diggle e t  al.' 1994). More cornparisons are discussed in Diggle 

et  al. (1994) and Zeger and Liang (1992). Note however that these models are only 

basic ingredients on whch more usefd models can be constructed. For example. we can 

combine a marginal model with an exponentid correlation structure and a random effects 

model as 

where 7u6 is a subset of the covariate xi j -  The model still falls in the class of GSSM. 

The bi is the subject-specific effect and 4 measures the intra-subject co~~elation.  The 

initial variance parameter a: is u sudy  chosen as O or 02/(l - 4') to give an equilibriuui 

transition process. A major model characteristic is that the marginal correlation betweeri 

any two responses of a subject gets smaller exponentidy as they are further apart wllich. 

in the presence of random effects. converges to a non-zero positive constant. This mode1 

will be revisited in Chapter 4. References on the model are Wilson (1988), Louis (1988). 

and Chan and Kuk (1997). In addition. Sutradhar (1990) considers a similar mode1 witli 

nes ted subject effects. 

2.1.4 Frailty Models 

Many models involving s w i v a l  times or times between events are considered in terms of 

hazard functions (Clayton, 1994). That is. we model gij by its hazwd function and often 
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we employ a proportional hazards model (Cox! 1972) 

where ho(-)  is called the baseline hazard function. It is the hazard function when z i j  = O 

and rij = 1. The rij is often called the frailty because. for example when are the 

recurrence times of a certain circuit fadure. susceptibility to failure increases with Gj.  One 

objective in the thesis is to consider dynamic &aihies for (2.5). For example. to mode1 

inter-subject heterogeneity and non-stationary process drifts. we might define 

where K i j  = + Jij .  Jij is O when i = j and 1 otherwise. ~ii;i = 1 + 1/w2. z;;1 - 
Ga(+, 5)  and Ga(a. b) denotes the G a m m a  distribution with mean a / b  and variance 

a / b 2 .  Equation (2.5) and (2.6) together define a dynamic frailty model which is clearly 

a sub-mode1 of GSSMs. It is described in Yue and Chan ( 1 9 9 4 )  and is fully cliscussed in 

Chapter 5. The model includes some special sub-models which have been used often in 

the literature. In particular, when w2 + 0. aJl survival times become independent and 

ordinary survivd analysis methods (e-g. Lawless, 1982) can be used. When $ + 1. ( 2 . 6 )  

becomes 

which together with (2.5) defines the ordinary Gamma frailty model. 

A survey of frailty models on survival and event history analysis is given in a series 

of review papas by Aden (1994) ,  Pickles and Crouchley (1994)  and Hougaard (1995) .  
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Recently. Petersen et al. (1996)  constructed frailty models for clus tered samples by let ting 

subjects within a cluster share some frailties. For example. in survival analysis of twins. 

we can have 

(1 ( 0 )  (1) ( 1 )  (3 )  (2)  hi ( t )  = (ri + ri )ho ( t )  and hi2'(t) = (=!O) + ri )ho ( t )  

where h!j) and h!' are the hazard and baseline hazard for the j t h  ( j  = 1. 2) one of a 

twin and z:" (k = 0. 1' 2) are the frailty variables. Ng and Cook (1997)  and Xue and 

Brookmeyer ( 1 9 9 6 )  provide other recent examples. 

The hazard-based models (2.5) are particularly usefd in modelling recurrent event data 

when the covariates x, are time-dependent . in which case distribution based ap proaches 

are hard to use. As in the GLMMs. conditional on zij: all recurrence times are assumecl 

to be independent for each subject. so they form a renewal process. Use of this kind 

of proportional hazards models has been quite popular in the literature of longitudinal 

stuclies (e-g. Aden and Husebye. 1991).  Non- or semi-parametric analysis for the models 

are generally pursued through a counting process approach for which details and more 

references can be found in the book by Andersen et al. (1993) .  For parametric analysis. 

the likelihood function is often intractable (e.g. Clayton, 1994). A class of dynamic fiailty 

models with a tractable likelihood is studied in Chapter 5. 

2.2 Filtering and General State Space Solutions 

With reference to the basic objectives of longitudinal studies in the f i s t  chapter. we are 

interes ted in things like estimating fixed covariates effects, inter-subject variabili ty ,  intra- 

subject correlation. etc. All of these can be parametricdy rnodelled into the observation 
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and transition models of a GSSM. Estimation of parameters can be assisted by filtering 

methods originally proposed by Kalman (1960), and Kalman and Bucy (1961) to estimate 

the unobserved state z, based on KT for some T > O under a Gaussian linear state space 

rnodel. In generd, special cases are given the names fütering (T = j) '  prediction (2' < j) 

and smoothing (T > j). The corresponding estimates are called filters, predictors and 

smoothers. The filtering step evaluates. by Bayes Theorem. 

which iterates with the prediction step 

to get ail the filters and one-step preclictors for later computing the smoothers. Note that 

we have used f (-)  as a generic function for the probability density function and distinctions 

between the random variables referred to are made explicit in the function arguments. 

NOW? the unobserved state zâj is estimated by the smoothùig density f (zij 1 qT. xâj) corn- 

puted recursively frorn f (rij 1 <', zij) and f ( z ~ , ~ ~ ~  1 v. ~ ~ , j + ~ ) .  A smoothing formula is 

given by 

see Kitagawa (1987). For estimation and for precliction of 1~~j . s .  we need to get f (si 1 y'-' xij) 

by using certain formulas based on the zij's, e.g. equation (2.12); see also Figure 2.1. 

For Gaussian linear state space models. the celebrated linear K h a n  filter ( K h a n .  



CHAPTER 2. STATE SPACE MODELS AND FILTERING METHODS 2 1  

1960; Kalman and Bucy, 1961) can be easily implemented. There are several smoothing 

algorithms but the classical fixed interval smoothing algonthm can be found in Ander- 

son and Moore (1979). Recently, Koopman (1993) developed a faster and more efficient 

srnoothing algorithm when the Gaussian distribution assumption is not appropriate. For 

non-Gaussian linear state space models, the Kalman filter still provicles the bes t linear 

predictor but not necessarily the optimal forecast in the sense of minimizing the mean 

square errors. In general, with non-Gaussian and nonlinear structure, integrations in 

(2.7) for computing the normalization constant, and (2.8) are hard to compute math- 

ematically. Various approaches such as piecewise linear approximation of all densities 

when the dimension of the states is s m d  (in Kitagawa, 1987), Gibbs sampling on the 

posterior density of the states, use of posterior modes under a Gaussian linear transition 

model (in Chapter 7 and 8 of Fahrrneir and Tutz. 1994), and estimating functions without 

distributional assurnp tions on the observation and transition models (in Naik-Nimbalkar 

and Rajarshi, 1995) are proposed. More approximate filtering and smoothing methocls 

can be found in the books by Anderson and Moore (1979) and West and Harrison (1997). 

The GSSMs provide a UILifying framework for many important rnodels used in lon- 

gitudinal studies. An advantage of using filtering for statistical inference is, because of 

its recursive nature, the high efficiency in handling data with lots of measurements per 

subject. DXerent problems with specific estimation approaches tailored to different sub- 

classes of GSSMs have been emerging in the literature. A main focus of this dissertation is 

to explore how filtering works for estimation under different types of state space models. 

Our main interest is in inference procedures for longitudinal models. We now cliscuss 

approaches to estimation of parameters in state space models. 
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s filtering step 

Figure 2.1: A pictonal outline of the Bayesian scheme in West and Harrison (1997) for 
DGLMs (qj = g(pij)). 

2.2.1 The Expectation-Maximization (EM) algorithm 

As the states of a GSSM are unobserved. it is natural to consider the well-known EM 

algorithm proposed by Dempster e t  al. (1977) to tackle problems with unobserved or 

missing values. In our applicationso observed data refers to and the .'completeq' data 

refers to {W. rij). We assume that all covariates xij in the mode1 are observed. Let 6, 

be a vector of the unknown mode1 parameters. Suppressing the dependence on zij's. the 

log-likelihoo d based 

/!Je: yij's7 zij's) = 

on the complete data is 

The EM algorithm is a recursion consisting of a Es tep  and a M-step. The Es tep  cornputes 

the conditional expectation 
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where ê(" is the estimate of û at the Eth iteration. The M-step then rnaximizes M(B 1 6(k)) 

at B = the next iterated estimate of B. The recursion then continues until eonver- 

gence. The M-step is u s u d y  easy to handle but the Estep is the most critical concern for 

deciding whether the EM algorithm is applicable. In (2.10), the expectation may involve 

some functions of the unobserved s tates. AccorcLingly7 we are concerned wit h the pos terior 

density of zij's which relates with 1, by 

where 1, is the log-likelihood based on the observed data obtained by integrating out the 

2,'s in 1,. There are two main approaches in the Iiterature. We can use either. if zG8s 

appear linearly in Z,, the posterior means of the z+ which are the official requirement 

of the Estep,  or. more generdy. the posterior modes by maximizing (2.11) directly with 

respect to the zij's with 0 fixed. 

Posterior means for the simplest Gaussian linear state space model are easily ob- 

tained fiorn standard fxed interval smoothing and the linear K h a n  filter (Harvey, 1989: 

Jorgensen et  al., 1996a) as M(6 1 8(") is a linear function of the e s t  two moments of 

the states zij's. Extension to incorporate measurements taken a t  irregular time inter- 

vals is straightforward and discussed in Jazwinski (1970) and Jones (1993). For DGLMs 

and frailty models, conjugat e-prior posterior Bayesian analysis is possible resulting in the 

same form as the standard Kalrnan füter recursion (West et al., 1985; Smith and Miller. 

1986). In general, when 1, is non-linear in the zij's. computing (2.10) resorts to numer- 

ical integration such as the Gauss-Hermite quadrature technique (Schnat ter, 1992) but 

numerical effort increases exponentidy with the dimension of the states. Instead. Monte 
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Carlo methods. e.g. Gibbs sampling, are used (Clayton, 1991; Fahrmeir and Tutz. 1994: 

Chan and Kuk, 1997). Estimation of standard errors can be approached by bootstrapping 

(e.g. Stoffer and Wall, 1991: Efron and Tibshirani, 1993), the supplemented Expectation- 

Maximization (SEM) algorithm which uses the convergence rate of the EM aigorithm to 

estimate the "missing information'' from iising the Fisher information computed from 1,. 

(Meng and Rubin. 1991), or Monte Carlo approximation to the complete and missing in- 

formation matrices fiom which the sum leads to the observed information matrix (Louis. 

1982: Chan and Kuk, 1997). 

Alternatively. when working with D GLMs, integration in (2.10) for compiiting the 

posterior means and covariance matrix can be avoided by approximating thern witli the 

posterior modes and curvatures (defined as the negative inverse of the second derivative 

of 1,) respectively. They are ob tained by maximizing 2, in (2.9). However. direct maxi- 

mization is inefficient when ni is large and several recursive posterior mode filtering and 

smoothing algorithms are derived by using Gauss-Newton (Fisher scoring) iteration to I ,  

(Fahrmeir and Kaufmann, 1991: Fahrmeir and Tutz, 1994). Clearly. the posterior modes 

coincide with the posterior means under the special case of a Gaussian linear observation 

model. For GLMs with random effects (GLMMs), the resulting covariance estimate of 

C corresponds to the restricted maximum likelihood (REML) estimate (which will be 

&scussed in the next section). However, the resulting EM-type algorit hm from pos terior 

mode filtering and smoothing relies on the appropriateness of the Gaussian 1inea.r transi- 

tion model. For a highly skewed transition rnodel. e.g. Gamma transition as in Jsrgensen 

e t  al. (l996a), there will be great discrepancies between the posterior modes and means. 

and no guarantee that the recursion wil l  converge. 

In view of our own applications, preference wil l  be given to the officia1 posterior means 
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as it is more natural and covers a wider range of distribution assumptions. But the main 

disadvantage is that the integration may be hard to perform and Monte Car10 approx- 

imation within each EM iteration may make it extremely slow to converge. However. 

on the other hand, estimation can be directed to the likelihood based on observed data 

1, obtained as a by-product of filtering (Figure 2.1). This will be discussed in the next 

section. But the main advantages of using the EM algorithm over direct maxirnization of 

the likelihood based on observed data are that we only need to manipulate (2.9) which is 

usually much simpler as we do not need to integrate out the r,'s in 1,: and that solutions 

of the M-step can often be performed with standard statisticd software. 

2.2.2 Direct Likelihood Methods 

By dkect likelihood methods, we mean methods that work directly on the likelihood to 

be maximized. The EM algorithm is an indirect method as we work on the likelihood 

based on complete data with the aim to rnaximize the observed data likelihood. NOW: the 

likelihood can be the one based on either observed or complete data. 

To compute the observed log-likelihood l , ,  the successive predictive densities needed 

are 

which can be obtained as by-products of the filtering recursion in (2.7) and (2.8) (Fig- 

lire 2.1). If dl the densities in (2.12) can be at least numericdy evaluated. maximum like- 

lihood es timates can be obtained by using common optimization algorit hms. e.g. Quasi- 

Newton Raphson algorithm which has a fast convergence rate if the corresponding fust 
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derivative is tractable; otherwise derivative-fiee optimization algorithms such as Nelder- 

Mead Simplex method (Press e t  al.? 1986) are often more feasible. Availability of standard 

errors depends on the effort in evaluating the second derivative of the log-likelihood. This 

is usudy high so we wish to resort to simulation methods such as parametric bootstrap- 

ping. However, as mentioned earlier in this section, integrations in (W) ,  (2.8) and (2.12) 

may be hard to pursue. For DGLMs. numerical integration techniques or Monte Carlo 

methods have been studied (cg.  Chapter 7 and 8 of Fahrmeir and Tutz. 1994: Chapter 15 

of West and Harrison, 1997), or we can put appropriate conjugate prior and posterior dis- 

tributions assumptions on the mode1 from which successive predictive densities in (2.12) 

can be written down mathematically (Smith and Miller. 1986: Harvey and Fernandes. 

1989). A Bayesian approach fiorn Chapter 4 and 14 of the book by West and Harrison 

(1997) for DGLMs is depicted in Figure 2.1. 

For GLMMs in (2.2). the LikeIihood based on complete observation (assuming all ri's 

are known) is sometimes rnaxirnized with respect to the fixed effects ,8 and random effects 

ri's to get the so-cded best linear unbiased predictors (BLUPs) for variance compone~i ts 

(McGilchrist . 1994). This is in contrast to the indirect posterior mode estimation when the 

likelihood based on complete observation is maximized with all variance components fked 

in each M-step (Fahrmeir and Tutz, 1994). However, the BLUPs are asymptotically biased 

and inconsistent. Adjustment can be made to the BLUPs to approximate the REML 

estimates which have the variance components estimates corrected by an appropriate 

degrees of freedom resulting in estimates with s m d e r  bias (Schd ,  1991; McGilchrist. 

1994: Breslow and Clayton, 1993). Direct bias adjustment of BLUPs is also considered 

by Kuk (1995) and McCullagh and Tibshirani (1990) using Monte Carlo iteration and 

bootstrapping respectively. Kalman filtering can also be used for "prewhitening" to obtain 
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REML estimates under Iinear mixed effects models (Wilson. 1988: Tsimikas and Ledolter. 

1994). The validity and properties of most of these methods are not clear, but have been 

investigated for a few models; the longitudinal problems have not been s tudied much. 

2.2.3 Bayesian Methods 

In Bayesian analysis of longitudinal data. known prior distribution is imposed on each 

unknown parameter, and we want to compute the posterior density. Except under some 

rather restrictive assumptions, the posterior density is intractable and Monte Car10 rneth- 

ods are used. A popular one is the Gibbs sampler which is an iterative resampling scheme 

in a complete set of conditional posterior densities to approximate a marginal post erior 

density. An overview on the Gibbs sampler and other sampling methods is given by 

Gelfand and Smith (1990). 

For GLMMs in (2.2) when the observation mode1 assumes an exponential f a d y  dis- 

tribution, the marginal joint posterior density of P and 'C can be approximated by the 

Gibbs sampler (Zeger and Karim. 1991). Carlin et al. (1992) considered the same ba- 

sic technique on a special class of non-Gaussian and non-Iinear state space models but 

the computing time may not be reasonably affordable. Carter and Kohn (1994. 1996) 

developed more efficient Gibbs sampler based sampling schemes on a state space mode1 

which is Gaussian and linear when conditioned on a set of indicator variables. Another 

elegant Gibbs sampler based sampling scheme has recently been proposed on a Bayesian 

version of DGLMs (Section 2.1.2) when g ( p i j )  is treated as random and follows a Gaussian 

distribution, i.e. 
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see Cargnoni e t  al. (1997). However. even with curent  computing capacity. reducirig 

convergence time of Monte Carlo methods remains a chdenging issue. More efficient 

algorithm on broader class of rnodels is still desirable. 

2.2.4 Estimating Functions 

We wiU mainly focus on maximum likelihood estimation in this dissertation but we briefly 

mention the use of estimating functions due to their numerous applications in the sta- 

tistical literature. An estimating function is a function of observations and iinknown 

parameters which is said to be unbiased if its marginal expectation is zero (Godambe. 

1985: Thavaneswaran and Thompson. 1986. for discrete and continuous stochastic pro- 

cesses respectively ). Inference for parameters is pursued by searching for the optimal 

estimating function among a class of unbiased estimating functions. Some optimality 

criteria are given in Godambe and Thompson (1989) which. roughly speaking, amounts 

to having the tightest confidence bounds for the estimates. In usual maximum likelihood 

analysis. optimal estirnating functions often coincide with the score functions. In cases 

when iteration is needed to solve the score functionso good initial guesses can i isudy 

be easily obtained from the class of unbiased estimating functions. Optimal estiniat- 

ing functions also have promising uses in semi-parametric rnodels when we do not have 

strong distribution assumptions. Some examples include non-linear time series estimation 

(Thavaneswaran and Abraham, 1988). and obtaining filtering and smoothing algorithms 

generally for non-Gaussian and nonlinear state space models (Nd-Nimbalkar and Ra- 

jarshi? 1995). Thompson and Kaseke (1995) has a brief review of unbiased estimating 

functions, with motivation from the EM algorithm, for estimation in GSSMs. 

Another similar class of estimation methods which is proposed by Liang and Zeger 
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(1986) and Zeger and Liang (1986) is often called generalized estimating eqiiations (GEEs). 

It has also been popularly entertained to estimate fixed effects in GLMs with correlated 

responses and possibly in the presence of random effects. A nice overview of using GEE 

in GLMs c m  be found in Zeger and Liang (1992). For GLMs with independent responses. 

the GEE reduces to a "quasi-likelihood" equation which corresponds to an optimal esti- 

mating function. A more general definition of quasi-likelihood equations for dependent 

responses and its application in stochastic processes are given in Godambe and Heyde 

( 1987). However, GEEs are only optimal es timating functions under some restrictive si t- 

uation on the marginal covariance structure (Liang et al.. 1992: McCdagh and Nelder. 

1989. Chapter 9). For GLMMs. apart hom estimating fixed effects. predicting random 

effects and estimating between subject variability can be performed through a three-stage 

iteration scheme using GEE and es timating functions ( Waclawiw and Liang. 1993). More 

references on GEE can be found in Diggle et al. (1994). 

2.3 Applications in Longitudinal Studies 

In this dissertation, we wilI focus on three main areas in longitudinal studies: missing 

values and measurement errors in multiple responses? modelling recurrent events with 

random effects, and differentiating between different random eEects models. The following 

sections will give a brief background and introductory discussion on each of these topics. 
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2.3.1 Missing Values and Measurement Error in Multiple Re- 

sponses 

Missing values is an important issue in longitudinal studies which bnngs problenis that 

would not exist in cross-sectional studies. Let y be a vector representing all responses 

as if they were aIl observed. and partition y = (y(0)! y(m)) where y(0) are the observed 

responses while y(m) are those which are ac tudy  missing. Then three types of missing 

data mechanisms can be distinguished according to Little and Rubin (1987). namely. 

(i) missing completely at random (MCAR) when the missing data mechanism. R. does 

not depend on y(0) and y(m): (5) missing ut random (MAR) when R depends on I/(") 

only: and (fi) infinmative when R depends on both y(0) and y("). MCAR and MAR 

are also collectively called ignorable or non-informative missing data mechanisms wherein 

Iikelihood based inference is unafFected due to the decomposition of the likelihood function 

separately into one based on the observed responses and the other based on the nsissing 

data mechanism. Only the likelihood based on the observed responses is used in statisticai 

analysis. 

Throughout this dissertation. we assume all missing responses are ignorable or non- 

informative. For the two sets of automobile manufacturing data mentioned in Section 1.2.1 

of Chapter 1. the chief aim is to model production variation. added and transmitted. 

across different process stages while incorporating missing values and measurement er- 

rors in the multiple responses. For univariate responses without missing values. a first 

order autoregressive model can be used to analyze the variation transmission process with 

measurement errors (Lawless et al.. 1997: Agrawal et  al.. 1997). For multiple responses 

with some or aU values not measured. we can use the EM algorithm under a first order 

multivariate autoregressive mode1 with the Estep carried out by directly taking condi- 
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tional expectations on the vector of responses from each vehicle (Hamada and Lawless. 

1994). However, computational effort increases exponentidy with the size of the multiple 

measurements at each process stage and the total number of process stages. More effi- 

cient estimation while handling missing values and measurement errors is desir able and 

is studied. on Gaussian linear models. in Chapter 3. 

2.3.2 Modelling Recurrent Event Data 

The s m d  bowel rnotility data mentioned in Section 1.2.2 of Chapter 1 is a typical set 

of recurrent event data. The last recurrence time for each subject is censored at the 

planned end of surveillance. That is. the Iast recurrence time is the time to end of 

surveillance instead of the time to next event recurrence. Renewal processes. in wliich 

the times between successive occurrences are independent and identicdy dis tributecl. 

are often used to analyze such data. Inter-subject heterogeneity or random effects corne 

naturally in longitudinal studies when the subjects are a random sample from sorne larger 

population and sorne important covariates are missing or there are measurement errors 

incurred in sorne time-independent covariates (Pickles and Crouchley. 1994). ModeLling 

within-subject correlation in observed measurernents is another fundamental objective 

and is also a consequence of using subject-ievel random effects. 

Common pararnetric regression models for lifetime data (Lawless, 1982) can be clas- 

sified into accelerated life models and proportional hazards models. One of their main 

distinctions is that the effect of explanatory variables is directed to a function of the 

recurrence time in accelerated life models and to the hazard function in proportional haz- 

ards models. Aalen and Husebye (1991) compared the use of a Normal-based (GLMM) 

and a hazard-based (Gamma frailty model) model on recurrent events in their extension 
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of renewal processes. These models introduce inter-subject variability and intra-siibject 

covariability (that results in dependencies between a subject's rectirrence times). Also. 

correlation between recurrence times of a subject is induced by subject-level random ef- 

fects. Following these, we will discuss. in a more general framework. the Normal-based 

and hazard-based models in accounting for inter-sub ject heterogeneity and within-stibject 

correla t ion. 

A merit of using hazard-based rnodels for recurrent events is the convenience of in- 

corporating time-dependent covariates. For a proportional hazards mode1 with a Gamma 

frailty. maximum likelihood estimates can be easily obt ained (Aden and Husebye. 1991). 

However, wit h a log-Normal fiailty. the likelihood is no longer tract able and es tirnation 

strategies typically resort to numerical integrations or Monte Carlo methods ( Clayton. 

1994: Ng and Cook. 1997: Xue and Brookmeyer. 1996). Thus. with emphasis on propor- 

tional hazards models and additiondy allowing non-stationary drifts. we would like to 

study the use of filtering and smoothing type methods by which the likelihood function 

and subsequent event recurrence times can be easily evaluated and predicted. This is 

investigated in Chap ter 5. 



Chapter 3 

Missing Data and Measurement 

Error in a Multivariate AR(1) Mode1 

3.1 Introduction 

In order to reduce variation in manufacturing processes consisting of several cliscrete 

stages it is often worthwhile to study the variation that is added at different stages. and 

whether that variation is transmitted downstream to subsequent stages. In particidar. 

there may be certain stages where considerable variation originates. and other stages that 

filter out variation introduced upstream. By understanding how variation iç added and 

transmitted across the stages of a process we can decide where to concentrate variation re- 

duction efforts. The piston machining and door hanging processes taken fiom automobile 

manufacturing in Section 1.2.1 are two examples. 
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Lawless et  al. (1997) present methods for analyzing the transmission of variation in a 

univariate characteristic. based on a first order autoregressive model. In order to carry out 

such analysis it is necessary to be able to track units (in our examples these are vehicles) 

through the manufacturing process so that measurements may be taken on the sanie unit 

at different stages. Lawless e t  al. (1997) assume that a univariate quality characteristic 

?jt is measured at each of T process stages t  = 1.. . . T, and consider the model 

where et .- N(0. q:t ) and are independent. This first order Markov. or autoregressive 

AR(1) mode1 can often be justified in manufacturing processes. and it leads to the follow- 

ing variation transmission formula for a: = Var(yt) : 

The first term on the right side of (3.3) represents variation transmit ted from stage t  - 1 to 

stage t ,  and the second term represents variation added at  stage t. Lawless et al. (1997) 

fit models (3.1) and (3.2) to process data and discuss how to use (3.3) recursively to assess 

variation transmission across stages t = 1. . . . . T of a process. 

In this chapter, we extend the techniques of Lawless e t  al. (1997) in several directions. 

First, we consider multivariate measurements. and in particular. deal with a multivariate 

version of (3.1) and (3.2). We will refer to the model as an AR(1) model, but it should be 

noted that T is generally small and the model is non-stationary, iinIike many applicatioris 

involving AR(1) models. Second, we deal with missing data: this is important since it is 
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often difficult to measure all characteristics on every unit in a study that is undertaken 

on-line, i.e. while the manufacturing process is operating. Finally? we incorporate mea- 

surement error into the multivariate AR(1) model; this is important because, as cliscussed 

by Agrawal et al. (1997) and Lawless et al. (1997): if substantial measurernent error is 

ignorecl the results of the AR(1)-based variance transmission analysis are misleading. 

Section 3.2 of the chapter introduces the multivariate AR(1) model and incorporates 

measurement error. Section 3.3 is the core of the chapter and presents methodology for 

fitting the model to process data: this is done by using a state space formulation that 

leads to efficient cornputational procedures. Section 3.4 illustrates the methodology on the 

piston machining and door hanging processes. and Section 3.5 concludes with commenta 

and points that deserve further study. 

3.2 An AR(1) Variation Transmission Mode1 

The methods that we are considering are designed for use on a stable process. That is. 

the model (3.4)-(3.5) applies to units manufactured over time, and the parameter values 

in the model do not change over tirne. We assume that sequential measurements on a 

random sarnple of n units from the process are available. As discussed by Lawless e t  al. 

(1997) for the univariate case, we consider a (non-stationary) f i s t  order autoregressive. 

or AR(l ) ,  model for the C x 1 vector of multivariate measurements on sit on unit i at 

stage t ( t  = 1,. . . , T ;  i = 1, .  . . , n). This can be expressed as 
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where ee .- &(O. Cet) ,  t = 1 . .  . . ' T :  the notation y - N p ( p .  C )  means that y has a p 

variate normal distribution with mean vector p and covariance xnatrix C. The dimensions 

of At and Bt are C x 1 and C x C, respectively. It is assumed that the measurements for 

different units are independent. 

The marginal means and covariance matrices for the zi;s  are given by 

In addition 

The vector et and its covariance matrix Cet represent variation addecl at stage t .  whereas 

Bt xt-l Bi represents variation transnùtted fiom stage t - 1: in this regard the right 

hand portion of (3.7) is the multivariate generalization of (3.3).  The intercept At dows  

the means pt = E ( z i t )  to vary across t = 1. .. . . T. In a case Iike that in Example 2, for 

instance. a stage may reduce the diameters fkom the preceding stage substantially. An 

alternative but equivalent parameterization is E ( Y ~  1 z ~ , ~ - ~ )  = pt + Bt ( z ~ , ~ - ~  - ~ t - ~ ) .  

In practice there may be significant measurement error, that is, variation in the process 

by which the rit = (zit1,  . . . , zitC)' are measured. As discussed in Section 3.5, this can 

invalidate the rnethods described herein if it  is ignored, so we consider it explicitly. We 

let y, represent the measurement of zit and assume that 
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where the 8;t.s are m u t u d y  independent N,(O. Est ) random vectors and are independent 

of the eit.s in (3.4) and (3.5).  It should be noted that the yit7s do not follow an AR(1) 

mo del. 

The motivation for considering the model (3.2) is to examine the sources of variation 

in the measurements %;T at the final stage. This rnay be done by working backwards 

from the b a l  stage: (3.2) for t = T indicates that the covariance matrix ET rnay be 

decomposed into variation transmitted hom stage T - 1 and variance added at stage T. 

Similady? may be decomposed and' working backwards. we may ascertain the con- 

tribution of the variation added at any stage t (i.e. Cet) to '&. Multivariate covariance 

matrices may admittedly be hard to interpret. and it is important to relate them to the 

physical properties of the units under consideration. The example of Section 3.5 illustrates 

and discusses t his furt ber. 

Care should be taken to assess the appropriateness of the model (3.1)-(3.5). possibly 

with measurement error accounted for by (3.9). Section 3.4 discusses model checking and 

Section 3.5 comments on the robustness of the methods to departures fiom the model. 

3.3 Parameter Estimation 

It is important to have estimation procedures that deal with missing data. since it is often 

impossible to measure all the characteristics on every unit at every stage. We therefore 

suppose that some arbitrary subset of the CT univariate measurements on unit i rnay 
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be missing, and that observations are missing at random in the terminology of Riibin 

(1976) and Little and Rubin (1987). This means that the probability a particular set of 

measurements on a unit is missing does not ciepend on the values of the measurements 

for that or other units. and irnplies that the likelihood function may be based on the joint 

distribution of the measurements available for each unit. 

We assume that the covariance matrices Cst(t = 1, . . . . T) for the measurement errors 

are known. In practice these shouid be estimated fkom rneasurement studies. The set of 

unknown parameters then includes pl .  the Cet 's ( t  = 1, . . . : T) and the At's and Bt 's 

( t  = 2 , .  . . , T). Since the observed measurements gitc(t = 1.. . . . T; c = 1,.  . . . C) for unit 

i jointly follow a multivariate normal distribution of dimension CT or less, it woidd be 

possible in principle to write the mean and covariance m a t h  for each i in terms of the 

unknown parameters and to maximize the hkelihood by a search algorithm. In particular. 

we note that, under (3.4), (3.5) and (3.9). the complete data yitos have means pt given 

by (3.6) and covariance matrices 

where Et and Cs, are given in (3.7) and (3.8): respectively. This briite force approach 

encounters matrices of large dimension if CT is large, and is computationally slow: the 

latter is a drawback for the use of bootstrap rnethods for obtaining variance estimates or 

confidence intervals, as described in Section 3.4. Consequently we will express the model 

in state space form (e.g. Harvey, 1989; Harvey and McKenzie, 1984; Shumway, 1988). and 

utilize the EM algorithm (Dempster e t  al., 1977) to ob tain maximum likelihood es timat es. 

The model given by (3.4), (3.5) and (3.9) with arbitrary measurements missing at 
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random can be expressed in the following form. where yit now stands for the vector of 

observed measurements on unit i at stage t: 

where i = 1.. . . .n; t = 1'. . . .T. we define Ai = p,, BI = O. zio = 0. and where Hit is a 

matrix obtained by taking the C x C identity matrix and deleting rows which correspond 

to missing observations on unit i at stage t .  This belongs to the Normal linear state space 

models mentioned in Section 2.1.1 of Chapter 2. 

The log-likelihood function based on the observed data is corn~uted by a product of 

d successive predictive densities. f ( y i j  1 Yf ) which may be written in the form of an 

arbitrary constant plus 

where we introduce the notation 

and where the range for i and t in the sum Ci_, is over 1 = 1,. . . .n and t = 1.. . . .T. 

Expression (3.14) assumes there is at least one measurement at each stage for each unit. 

If all measurements at a stage t happen to be missing for unit i, then (3.14) is modified to 

omit terms involving &,(tlt-1). &(t+llt) and to add a term involving x,(t+l(t-1). 
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The terms Y ; , , , ~ - ~  and &,(tlt - 1) needed to calculate (3.15) may be computed reciir- 

sively using the following state space. or K h a n  filtering fornulas as derived from (3.7).  

(2.8) and (2.12) in Section 2.2. They have closed form expressions for Normal linear 

models as we have here. Define, following (3.15). 

and set = 0, Ci.JO1O) = O. Then for t = 1.2.. . . .T.  

where zitp and xiz(t l t) are computed via 

Derivation of these formulas is outlined in Appendix B. These calculations involve only 

square matrices of dimension C or smaller. 

Now that we can compute (3.14), we could maximize it by using a derivative-free 

procedure such as the simplex searck algorithm (Nelder and Mead. 1965: Press e t  al.. 

1986? Section 10.4). An attractive alternative. which also allows easier access to model- 
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checking and to handling cases where entire stages are missing on some units. is an EM 

algorithm. This has been well-discussed for use with missing data in normal rnodels (e.g. 

Little and Rubin, 1987. Chapter 8) and is adapted here to deal with both missing data 

and measurement error. A brief discussion on EM algorithm was given in Section 2.2.1 

of Chapter 2. 

Referring to (3.12). we consider the "complete data" log-likelihood as that based on 

the zit's' which may be written as an arbitrary constant plus 

The mode1 (3.12) is AR(1) and maximum likelihood estimates are easily found to be (e.g. 

Marclia e t  al.: 1979. Chapter 6) 

for t = S.. . . . T: where 

The M-step in the EM algorithm is given by (3.21). The Estep consists of cornputing 

the expectations of the complete data, conditional on the observed data. that are neecled 

to compute the conditional expectation of (3.20).  This may be done using the state-space 
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srnoothing formulas for t  = 1. . . . ? T - 1: 

Derivations axe outlined in Appendix B. The E-step is now carried out by replacing Lt 

and zi,t-lr:t in the expressions (3.22) with (compare Little and Rubin. 1987. page 143) 

respectively. evaluated at  the most recent parameter es timates from the M-s tep (3.21). 

In the case where there is no measurement error. COV(Z;,~-~.  zit l l ~ ; ~ '  . . - . yiT) = Ci= ( t  - 

1IT)Bi . More generally. however, it must be obtained from the smoothing formula (3.24) 

for the augmented mode1 

where 1 represents an identity matrix. 

The EM algonthm proceeds by alternating E and M steps until convergence is achieved. 

Initial estimates that can be used to start the process can be obtained by the following 

simple procedure: compute empirical means ijt and cross-product matrices Stqt and St-l.t 

using units with no missing measurements at stage t (for gt and StYt) and at  stages t - 1 
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and t (for St-i,t). respectively. Then. compute the estimates 

When there is no missing data. these are the estimates that would be obtained by maxi- 

mum likelihood if the process had oniy T = 2 stages. Agrawal et al. (1997) study these 

estimates in the univariate case. 

There are many (CT + C Z ( T  - 1) + C(C + 1)T/2) parameters in the model. and we are 

primarily interested in components of variance as epitomized in (3.3)  and (3.7). In these 

circumstances it does not make sense to develop estimates of the asymptotic variances ancl 

covariances of all parameter estimates. In order to assess variation in estimates and to 

ob tain confidence intervals for quantities of interest. we use a pararnetric bootstrap (Efron 

and Tibshirani? 1993). The procedure is as follows: treating the maximum likelihood 

estimates as if they were the true parameter values and the Hit7s as given by the pattern 

of missingness in the original data. we generate B sets of data from the model (3.12)- 

(3.13). For each of the B sets of data we obtain maximum likelihood estimates 8; (where 

i9 stands for the vector of all parameters). Estirnates of functions $J = g(9 )  that are of 

interest are then calculated for each sample. Variance estimates for 4 = g ( 6 )  (where B 

is the maximum likelihood estimate from the original data) or confidence intervals for $J 

may then be calculated in various standard ways (see Efron and Tibshirani. 1993). 

An example of the bootstrap methods is given in Section 3.4. 
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3.4 Applications to Car Manufacturing Processes 

Here we consider two car manufacturing data as described in Section 1.2.1 of Chapter 1. 

The data are given in Appendix A.1. 

3.4.1 Piston Machining 

We consider data on 96(= n) randomly selected pistons from the piston machining process 

mentioned in Section 1.2.1 of Chapter 1. Four (= C) diameter measurements were taken 

at each of 4(= T) process stages. 

The model represented by (3.4). (3.5) and (3.9) was fitted. There axe no missing 

observations here and the measmernent error covariance matrix is assunied to be cri Iq. 
where I4 is the 4 x 4 identity matrix. The measurements are discrete. diameters being 

measured to the nearest micron (~O-~rnrn) .  and at each of the 4 locations on the piston 

fewer than 15 distinct values occur: see Section 1.2.1. Nevertheless we will work with the 

assumed normal model. which seems to provide a reasonable picture of variation. 

Models were fitted with ai = -04167 micronsZ and also with ai = -1 microns2. The 

former corresponds to the variance of a triangular distribution on (--5. .5) and the latter 

is slightly larger than the variance of a uniform distribution on (-.5' 5 The latter 

seems a more realistic value but we wanted to assess the effect of measurement error on 

estimated variance components. 

The EM algorithm based on the filtering and smoothing procedures was iterated until 

the increase in the log-likelihood (3.14) was less than .l; the maximum value at conver- 

gence was 8017.0. Maximum likelihood estimates of Bt7 Et and Cet as in (3.7) .  are 

shown in Table 3.1 for the case where 06 = .IO. Estimates of pt are also shown. The units 
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for all variances and covariances are microns2. Parametric bootstrap methods (Efkon and 

Tibshirani. 1993) were used to generate standard errors and confidence limits for variance 

components. Standard errors for estimates of variance tended to be about 10-20% of the 

size of the estimate. The entire procedure. including 1000 bootstrap replications. user1 

under 7 minutes of CPU tirne on a DEC OSF/1 V3.2 system when programmed in C++. 

The estimates obtained when rsi = -04167 was used were a little different. but the quali- 

tative picture was similar to that in Table 3.1. The main feature was that Cet tended to 

be abolit 10% larger than in Table 3.1. whereas Et was more or less the same. 

Table 3.1 suggests that roughly 30-60% of the variation in diameters at  each stage is 

added at  that stage and the rest is transmitted from the preceding stage. By tising (3.10) 

recursively we can express C, as a sum of four components. one representing the variation 

at each stage. This indicates that attempts to reduce variation at  the final stage should be 

directed at  stages 3 or 4; little variation is transmitted hom stages 1 and 2. We remark 

that it is also of interest with multivariate measurements to examine their correlation 

structure. Table 3.1 indicates a moderate degree of correlation for adjacent diameters 

in both the total variance and in the variance added at each stage. The examination of 

principal components or other linear functions of measurement variables is also of general 

interest but we will not pursue this here. 

The mode1 (3.4). (3.5) and (3.9) can be checked informally by examining residuals 

or standardized versions of the same by using Ciy(t(t - 1). Standardized residuals should 

look roughly like N(0:  1) variables. Figure 3.1 shows plots of standardized residuals versus 
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predictors &tlt-l across all stages meaÿurements (i = 1. . . . .96: t = 1. . . . .4)  for c = 

1,2 ,3 .4  (corresponding to 4.10: 36.7 and 58.7 mm). The banded appearance in each 

plot is due to the fact that for each diameter there are only 10-15 distinct values of y;, . 
and that the estimated variance for rit does not depend on i and varies slightly with t .  

Figure 3.2 shows a normal probability plot of standardized residuals. These are reasonably 

linear: though a single extreme observation is noted at each of 4 mm and 36.7 mm. More 

exhaustive checks not shown here likewise do not indicate substantial departures from the 

working model. 

3.4.2 Door Hanging 

We now examine the door hanging process in Section 1.2.1 of Chapter 1. The data 

consists of 42 (= n) vehicles passing through 7 (= T) process stages. At each stage. 

4 ( = C) characteris tics of a rear door of each vehicle are of interes t. 

The model represented by (3.4). (3.5) and (3.9) was again fitted. There are no mea- 

surement errors assumed here. Initial estimates were obtained by maximizing the likeli- 

liood based on vehicles with complete measurements at all stages. The EM iteration was 

stopped when the increase in log-likelihood (3.14) was less than -1. The recursion stopped 

in ten iterations wit h converged maximum log-likelihood at - ll9.118 wit hin 40 seconds 

of CPU time on a DEC OSFI1 V3.2 system when programmed in C++. Standard errors 

of the estimates, obtained from 1000 bootstrap samples, again tended to be around 10% 

of the estirnates. Maximum likelihood estirnates of Et and Cet are shown in Table 3.2 

and those of Bt are shown in Table 3.3. 

Table 3.2 shows little variation in door exterior fitness is transmitted from stage 3 to 

subseqtient stages. For the f is t  fitness measure at stage 4, there is over 80% of variation 
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added and a fair portion of them are transmitted to the later stages. The same is observed 

for the last fitness measure at stage 6. More than 20% of variation added at the last stage 

is also observed. Thus? attempts to reduce variability at the final stage should be directed 

to stage 4, 6 and 7. Again, moderate correlations are observed. 

The mode1 was again checked by examining the residuals. Plots of standardized resid- 

uds against the predictors for each characteristics are shown in Figure 3.3. Fig- 

ure 3.4 shows normal quantile plots of standardized residuals for each characteristics. No 

substantid departures from the working model are observed from further checks likewise. 

3.5 Concluding 

The methods in this chapter 

Remarks 

depend on the approximate validity of a normal AR(1) model 

for the true measurements. This assumption should be realistic in many contexts. but it 

would be of interest to consider the implications of model departures. One topic whicli 

is readily assessed is the effect of ignoring measurement error. If the model (3.4). (3.5) 

is assumed correct but there is in fact measurement error as expressed by (3.9). then the 

maximum likelihood es timates 3, derived under (3.4) (3 -5) alone converge in probability 

in large samples not to Bt but to 

This underestimation of regession parameters is well known when measurement error in 

covariates is ignored (e-g. Fuller. 1987). A consequence of this in the present circumstances 

is that the variation transmitted to each stage is underestimated and the variation added 

is overestimated. This has serious consequences when there are several stages in the 
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process. Agawal e t  al. (1997) give a cletailed discussion of measurement error for the 

univariate (C = 1) case. They have shown for the case with measurement error but ILO 

missing data that the use of simple estimates (3.27) combined with bootstrap confidence 

intervals provide good procedures. Extension of these methods to the multivariate case 

is worth considering. For example. sensitive analysis by trying different values for the 

variability of measurement errors. 

In practical situations one m u t  decide which measurements to consider. This clioice 

can affect whether or not an AR(1) mode1 is satisfactory. For exarnple. if we include a 

pair of measurements but omit a third which is highly correlated with the other two. we 

may find an AR(1) mode1 for the two measurements is inadequate. 

The analysis here is based on the assumption that the missing mechanislo does not 

depend on the missing measurements. A likelihood ratio test can be used for testing .-in- 

formative" &op-out processes (Diggle and Kenward, 1994). However. in our applications. 

developing testing procedures for wkether the intermit tent missing values are informative 

is desirable. 

Further work on ways to interpret multivariate analyses of variation in special contexts 

is desirable. In particular. one would hope to expose significant relationships among 

variables and to relate them to the geometry of the units being manufactured. With the 

piston data there do not appear to be important systematic effects but one could imagine 

situations in which, for example, the deviations in diameters at opposite ends of a cylinder 

were negatively correlat ed aft er certain stages. The present chap ter has developed efficient 

procedures for mode1 fitting and assessrnent which should make it feasible to undertake 

further studies with relative ease. 

F indy ,  the methods here deal with processes in which the same variables are measiired 
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on parts at each stage. However. as mentioned by Lawless e t  al. (1997), the general ideas 

of variation transmission also apply to studies of the effect of upstream process variables on 

downstream measurements. This area requires further development in practical situations. 
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Figure 3.1: Piston Machining: Plots of residuals agains t the predictors $iî;,l,-, . 
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Figure 3.2: Piston Machining: Q-Q plots of standardized residuals. 
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The off-diagonal elements are the correlations: the diagonal elements are the variances. 

Table 3.2: Estimated Covariance Matrices for Door Fitness 
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Table 3.3: Estimates of Bt for Door Fitness. 

Stage ( t )  
1 

Bt 
O O O O 



CHAPTER 3. MISSING DATA AND MEASUREMENT ERROR 

Kickup Beltline flushness 

* @  @ 

8 
t e e  a 

@ e  @ 

l I 

-0.5 0.0 0.5 1.0 1.5 2.0 
P redicto rs Predictors 

Front to header flushness Rear to header flushness 

1 ,  I 

5 6 7 8 9 10 
Predictors 

8 10 12 14 
Predictors 

Figure 3.3: Door Hanging: Plots of residuals against the predictors Giiirlt-i. 
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Figure 3.4: Door Hanging: Q-Q plots of standardized residuals. 



Chapter 4 

Random Effects Models for 

Recurrent Event Data 

4.1 Introduction 

Recurrent events mise when a number of slibjects experience repeated occurrence of an 

event of interest. This kind of data has been fiequently studied in the literature of 

longitudinal studies (Lawless. 1995: Clayton. 1994). The s m d  bowel motility data de- 

scribed in Section 1.2.2 of Chapter 1 is a typical example with an additional feature of 

right censoring. Objectives in analyzing recurrent event data include estimation of the 

mean recurrence time (Aden and Husebye. IWl), assessing the effects of covariates (e.g. 

treatment and control). estimation of the cumulative mean number of event recurrences 

(Lawless. 1995), prediction of next event recurrences (Chapter 5). 

There are several approaches to the analysis of recurrent events (Lawless. 1995) but 

we will focus on rnodelling the recurrence times between events. Lawless and Fong ( 1997) 
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review and discuss different choices of both modelling and analysis of inter-event times 

and point out the main diEculties that are encountered. We consider two cornmon issues 

in rnodelling recurrent event data namely: inter-subject heterogeneity and within-subject 

dependence. Heterogeneity between subjects may be related to observable covariates or to 

unobservable random effects (often referred to as 'fiailty') . Sources of these unobservable 

subject-level effects include unobserved subject-specific covariates. and measurernent er- 

rors in time-independent covariates. Clearly, random effects induce correlation between a 

subject's recurrence times. Aalen and Husebye (1991) considered models where recurrence 

times are independent when conclitioned on the random effects. Specificdy, suppose there 

are N subjects and each subject i (= 1. 2. . . . . N) is observed over some time interval. 

say (0. ri). Let tii ( j  = 1. 2, . . . : ni)  be the j th  recurrence time of subject i and ti.,i+i be 

the last recurrence time which is censored due to the planned end of surveillance. Also. we 

assume the censoring mechanisrn for ri is non-informative (Section 2.3.1 of Chapter 2) and 

only covariates which are constant between successive event recurrences are considered. 

Then. if u; is the i t h  subject-specific effect. one model in Aalen and Husebye (1991) ( A-H 

model) is 

where g is some one-to-one function and "i.i.d.'' means independent and identicdy dis- 

Figure 4.1: Independent recurrence times when conditioned on random effects 7 4 .  



CHAPTER 4. RANDOM EFFECTS MODELS 59 

tributed. It is depicted (by borrowing the symbols from Clayton, 1994) in Figure 4.1. 

In cases with no time-dependent covariates. not only the marginal means and variances 

of the recurrence times are constant but also the correlation among them are the same. 

This kind of mode1 structure is often unrealis tic in practice as measurements closer in time 

are likely to be more strongly related. Hence m o d e h g  stochastic dependence between 

recurrence times of a subject by other models than that in Figure 4.1 is desirable. 

Two general approaches to implanting non-constant correlation structure will be cou- 

sidered. One is to adop t certain dependence structure on the recurrence times. e.g. con&- 

tioned on IL; ; a first order autoregressive process (AR(1) ) on tij's as shown in Figure 4.2 (a). 

We will refer to this group of models as autocorrelated random effects models ( AREMs). 

Another approach is to allow dynamic random effects where the random effects them- 

selves follow an AR(1) process as shown in Figure 4.2(b). This group of models is also 

commonly called dynamic generalized linear models where we regress on a function of 

the mean measurements other than the identity function. These dynamic random effects 

models (DREMs) can be pushed further to have the transition process of the randoni 

effects depend on the past recurrence times. We will however delay discussing models of 

this type in the context of hazard-based models to Chapter 5. The AREMs have been 

populady used in rnodelling longitudinal data. Wilson (1988) used them in paxametric 

(a) Autocorrelated random effects models. (b) Dynamic random effects modeIs. 

Figure 4.2: Two types of random effects models. 
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growth curve analysis and it is also more recently mentioned in Chan and Kiik (1997). 

Sntradhar (1990) has also consider a similar model with nestecl subject-specitic effects. 

The DREMs have been entertained by Singh and Roberts (1992) and dorgensen et  al. 

(1996a) in modelling longitudinal counts data. However, there has not been any work in 

the literature to directly address the relationships between the two types of models. They 

are. though share some similarities. are quite distinct in nature. In this chapter. we will 

study their properties and differentiate their uses in longitudinal studies. 

In the sequel. to model recurrence times. we can s p e c e  either the distribution or 

hazard function (e.g. Lawless and Fong. 1997). The hazard-based method will naturally 

lead to Cox's proportional hazard model (Cox. 1972) which is treated in Chapter 5. For 

the sake of easy discussion. we will put our attention in this Chapter on Normal-based 

models for which a Normal distribution is assumed on a certain suitably transformed 

value of t ,  as in (4.1). In the next section. we will first study the Normal-based approach 

and contrast the properties of autocorrelated and dynamic random effects models. Then. 

they are further stiidied by looking at  the s m d  bowel motility example from Aden and 

Husebye (1991) in Section 4.3. Some concluding remarks and discussions are given in the 

last section. 

4.2 Normal-Based Models 

One of the main characteristics of recurrent event data is that the recurrence times are 

all non-negative and most likely positive. Thus. it may be necessary to assume tkat some 

transformation of t,_ denoted as w, is Normal if we wish to use the models here. Let 

the overall mean be E(xj) = p,, which may depend on some covariates which are time- 
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independent diiring the j th  event recurrence of siibject i. Then an a~rtocorrelated randorn 

eflects model is specified as a variance components model with autocorrelated errors 

where u; is the subject-specific effect and 4 measures the autocorrelation not explainecl 

by the ui7s. Thus. a AREM is composed of "autocorrelatecl errors" eij to impart witlùn- 

siibject correlation and %andom effects" IL; component to account inter-siibject hetero- 

geneity. The model was also given in (2.4) of Chapter 2. The initial dispersion parameter 

a: can be set to a2 (e-g. as in Chapter 3) resulting in a non-stationary process. or 

aZ/(l - 4') when the recurrence tirnes from a subject are stationary. However. it cannot 

be left arbitrary; otherwise it will be confoundecl with w 2 .  Mode1 (4.2) includes several 

coxnmonly used sub-models. When (#  = 0: w = O )  it reduces to the ordinary renewal 

process (RP) model where all recurrence times (both between and within subjects) are 

independent. When (4  = 0: w > O) .  we get back to the A-H model when there is only 

inter-subject heterogeneity and each subject forms a renewal process conditional on ai. 

When ( O  < 141 < 1: w = 0): we have independent and identically structured AR(1) 

processes for subjects. 

A dynamic random effects model is specified as 
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where the randorn effects uij's are now not o d y  subject-specific but also specific to the 

j th  event recurrence and gz measures the conditional response variability not explained 

by the uij's (e-g. measurement errors). 

Thus a DREM has the "dynamic random effects" uij to account for inter-siibject 

heterogeneity as well as non-const ant wit hin-sub ject correlation. The D REMS also include 

the sub-models mentioned above. Specificdy' we get the RP model when (w = a = 

O. O-, > 0). the A-H mode1 when (4 i 1. rr = O. rr. > 0). and the independent AR(1)  

model when (O < I#( < 1, ge = O) .  However. when 4 = O. only 0: + w Z  and rrz + rr2 are 

the estimable variance components. Note that. to avoid too much notation, except for 

pij and yij, other symbols in (4.2) and (4.3) do not share exactly the same interpretation 

although they are consistent. For example. w2 in (4.2) is measuring the variability of the 

overall effect from subject heterogeneity. while in (4.3). it refers to the variability of the 

effect from subject heterogeneity on the first event recurrence time (see Table 4.1). 

Both the AREMs and DREMs are natural extensions to the A-H model in (4.1) to 

accommodate non-constant within-subject correlation through a dynamic process (e.g. 

an AR(1)) to the errors ( AREMs) and random effects (DREMs). Note that both models 

belong to the family of GSSMs defined in Section 2.1 of Chapter 2. Specificaily, AREM 

in (4.2) can be formulated as 

where =il -- N (( ) . (O 2 )) and z~ = (TL; qJT. The DREM in (4.3) can also be 
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easily verified by writing the mode1 as 

where uil -- N(0. w 2 ) .  

Compared with the AREM in (4.2) which. without coiinting the Pi j?  has three param- 

eters (4.  W .  a), the DREM in (4.3) has an extra parameter a: to account for response- 

specific variability not explained by uij in (4.3). It is also interesting to see that the 

autocorrelated process for the errors ei jSs  in the AREM parde l  to the dynaniic process 

of the random effects aij's in the DREM. In other words. there is some ambiguity about 

what we c d  autocorrelated errors in (4.2) and what we c d  dynamic random effects in 

(4.3). A key property of the random effects is that they are subject-specific (only indexed 

by i). This is opposed to response-specific eEects (indexed by both i and j ) .  The autocor- 

related errors in (4.2) and dynamic random effects in (4.3) can be treated as compromise 

between random effects and response-specific effects. The ambiguity can be cleared by 

looking at the corresponding complementary components 

for AREM and DREM respectively. The ui's from AREM as viewed in (4.4) are constant 

for a single subject and hence they represent the subject-specific random effects. The eG's 

from DREM as viewed in (4.5) are independent for each rneasurement of all siibjects and 
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hence t hey represent the response-specific effects not explained by ui j .  

If the DREM in (4.3) is extended to have certain correlation assumptions on { e i j ) .  e.g. 

Cmr(eij, eiVj+.) = p8 (S > O) ,  then as p + 1. the AREM can be viewed as a sub-mode1 of 

DREM. However. basicdy. the two modeE are not nested although they intersect at some 

sub-moclels. To see this' we can look at their marginal properties which are summarized in 

Table 4.1. Both models have s tationary and non-s tationary versions of their autoregressive 

counterpart . In both cases, they share the same marginal means but clifferent variances 

and lagged correlations. Influence fkom (initial) int er-sub ject heterogeneity w2 persists 

under the AREM but keeps diminishing iinder the DREM with rate controlled by the 

corresponding 4. Moreover, the limitirig correlation shows that recurrence times which 

are infinitely apart are uncorrelated under the DREM but still mutually related under 

the AREM. Hence. choice between the autocorrelated and dynamic random effects models 

relies on whether the influence due to inter-subject heterogeneity wïH persis t consistently 

over time. For example, AREMs are more appropriate when sources of inter-subject 

heterogeneity are missing important sub ject-specific and time-independent covariates . or 

t here are measurement errors of some time-independent covariat es. On the O t her hand. 

DREMs are desirable when (initial) inter-sub ject heterogeneity dilut es over time. 

4.3 Application to Small Bowel Motility Data 

Fitting both autocorrelated and dynamic random effects models can easily proceed by 

computing the mean and variance of y, conditional on its cu ren t  past history. We 

denote them as yijlj-1 and cr&(j(j - 1) respectively, where we use the same notation as 

in Section 3.3. Then. with the assumption of non-informative right censoring, the log- 
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likelihood functiori can be decomposed as 

where 8 is the cumulative distribution function of the standard Normal. Maximiim like- 

lihood estimates are obtained by maximizing 1. The conditional moments for AREMs 

exist in closed form but are more efficiently computed hom a modified K h a n  filter re- 

cursion as descnbed in Appendix C. The DREMs are already in a linear state-space form 

and the celebrated linear Kalman filter recursion can be conveniently applied. One coidd 

also use an EM algorithm (Dempster et al.. 1977) with the "complete data" as all tlie 

recurrence times as well as the random effects. However. we prefer direct maximization of 

the log-likelihood (as discussed in Section 2.2.2 of Chapter 2) (4.6) which is more efficient 

and convenient with standard maximization routines in conimon computing software (e.g. 

SAS/IML, MATLAB and GAUSS). 

We consider the small bowel rnotility example as described in Section 1.2.2 of Chap- 

ter 1 for illustration. The complete dataset is reproduced from Aden and Husebye (1991) 

in Appendix A.2. All cornputations were programmed in SAS/IML version 6.10 under 

Digital UNIX V3.2C. Optimization subroutine NLPNMS using the Nelder-Mead Simplex 

method was employed to maxirnize (4.6) with a fast convergence rate. Standard errors 

were obtained by inverting the observed Fisher's information matrix approximated by 

finite differences using subroutine NLPFDD. Both the identity and logarithrnic transfor- 

mation of t i j  (i.e. y, = t i j  and y, = log t,) were considered. Here there are no covariates 

present and we assume the recurrence times are identical in mean. Estimates and stan- 
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dard errors from the autocorrelated random effects model (4.2) and some of its sub-models 

are summarized in Table 4.2 while those hom the dynamic random effects mode1 (4.3) 

are presented in Table 4.3. 

From Table 4.2 where lm., is the maximum log-likelihood value, we see that. in all 

cases, neitber the random effects nor extra autocorrelation between recurrence times or 

their logarithmic version is significant. Hence, an ordinary renewal process model is 

sufficient for the data. This agrees with the results of Aalen and Husebye (1991) wlio 

fitted only the frailty model (i.e. # = O )  with II, = t,. From Table 4.3. both w' and 

n2 are highly insignificant (no evidence they are not zero) and have again resulted in the 

same conclusion. Also: the estimates of 4 are all close to 1 which reflects that the initial 

random effect (though insignificant) tends to persist over time and an AREM is more 

appropriate in this case. 

A look at  the data suggests the possibility of a longer k t  recurrence time. It is 

also reflected from the clifference between the Kaplan-Meier estimates for the survivor 

functions of the first recmence times and the others (Figure 4.3). Thus. we re-fitted the 

data by an A-H model with a different initial mean (pi) and variance (a:). Results are 

summarized in Table 4.4. The likelihood ratio statistics values are 3.82 (yij = t i j )  and 

m 
1 -08 (l/ii = log tij) which have p-values 0.15 and 0.03 respectively from a X2-clistribution 

with 2 degrees of freedom. Thus, there is no significant clifference based on z/, = t i j  and a 

marginally significant difference when based on y, = log t,, between the first recurrence 

time and the rest in terms of the mean and variance. The two-sample non-parametric 

log-rank test statistic is 2.5 which gives a p-value of 0.12 (insignificant ) from x2 with 1 

degree of freedom. 

Note that the distribution of all estimates, especially the variance estimates. rnay not 
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Figure 4.3: Plots of Kaplan-Meier estimates for the survivor functions of the first re- 
currence tirnes (denoted by the solid line) and the others (denoted by the dotted line). 

be close to Normal with only 19 subjects and a s r n d  number of recurrences for those 

models. So, if we need precise significance levels or confidence intervals. parametric boot- 

strapping (e-g. the end of Section 3.3 of Chapter 3) is more useful and feasible. Moreover. 

although preliminary analysis from Aden and Husebye (1991) suggested that 1/, = t i j  

is a reasonable assumption, we find by looking at plots of non-parametric estimates that 

log t i j  is closer to  Normal and that t, departs from Normality (Figure 4.4). Witti the 

small number of subjects and event recurrences: there is not a lot of power to detect lack 

of fit, however. 
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Figure 4.4: Q-Q plots of yij without censored periods. The straight line is the ideal case 
that the data are exactly Normal. 
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4.4 Conclusions and Discussion 

We have stuclied and numerically illustrated both the autocorrelated and dynamic randorri 

effects models in longitudinal studies. Properties and cornparisons of the two types of 

rnodels have not been thoroughly examined in the literature. The AREMs are attractive 

by the fact that they .*orthogonalIy" separate persistent inter-sub ject het erogeneity ( 7 4  

in (4.2)) and non-constant within-subject correlation (throtigh eij in (4.3)).  This is not 

shared by DREMs and the dynamic randorn effects (uij in (4.3)) account for both inter- 

subject heterogeneity and non-constant within-subject correlation. The key distinction 

of the two models is the persistent effect fiom initial inter-subject heterogeneity across 

time in AREMs while the effect keeps decreasing with time in DREMs. Thus, AREMs 

are used as strong derivative tracking models (e.g. Taylor e t  al.. 1994). For example. in 

the AIDS-related study of the natural history of CD4 T-cell counts, an immu~iologically 

weak subject who has an initial fast rate of decline of CD4 counts relative to other HIV- 

infected people wiU persist with a more rapid rate of decline of CD4 counts than will 

the others. Taylor e t  al. (1994) has indicated the desire for random effects which are 

dynamicdy changing with time to s tudy rneasurements of the human immune systeni. 

They considered. instead of dynamic random effects, an AREM with the autocorrelated 

errors replaced by the sum of an integrated Ornstein-Uhlenbeck and independent error 

processes. Aden (1994) has also a brief discussion of the need for dynamic random effects. 

for example, because of the induced weakness that results from the stresses of life. In these 

cases, DREMs are more appealing. 

Generally. fitting both types of rnodels is straightforward and convenient with the 

maximization routines in SAS/IML. In our applications with the Nelder-Mead Simplex 

method to maximize the log-likelihood function? different but rather arbitrary initial esti- 
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mates were used to ensure a global maximum is attained. In maximizing the log-likelihootl 

functions f?om DREMs? the Simplex method did not converge with certain initial guesses 

but only several tries were needed to obtain the estimates. On the whole? we did not 

encounter serious difficulties in fitting the models. 

Note that we have not mentioned the very important issue of mode1 checking. Assess- 

ing the fitness of both types of models can be generally pursued through the conditional 

residuals rij = - yij; j l j -~. which are independently distributed as Normal with rnean 

O and variance o&(jl j  - 1) under the models. More work is also needed on testing and 

confidence interval procedures. The bootstrap seems to be the most appealing method 

but the usual likelihood ratio methods would also be applicable for large enough s a -  

ples in both the number of subjects and event recimences per subject. The bootstrap is 

illustrated in Chapter 5. 

Finally. also note that the discussion in Section 4.3 depends on what is assunied abolit 

the pij (we used p, = p )  in looking at variance components. For example. a tinie trarid 

may be confounded with the variance components when only a constant mean is modelled. 

However, with not too many event recurrences per subject in the s m d  bowel rnotility 

data. it is hard to speculate on the mean profile. A mode1 which adopts non-stationary 

drifts is considered in next chapter. 
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Autocorrelated Dynamic 
random effects mode1 random effects mode1 

non-s t ationary 
3 9 

/7f = r7- w2 > O 

. 1-& 

stationary 

Cm( '~ i i ,  gi,j+s); s > 0 w 2 + 4 s  2 6 2  
1-42 4" 

limiting correlation 7 "2  

w2+= 
O 

Table 4.1: Marginal properties of the autocorrelated and dynamic random effects models. 
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(O < (41 < 1. w = O )  (5.96) (0.12) (418.69) 
A-H 106.82 - 262.47 2434.52 -436.41 
( 4  = O, w > 0) (6.89) (277.83) (426.22) 
non-st ationary 106.97 -0.09 353.99 2327.96 -436.24 
AREM (6.87) (0.16) (317.72) (439.64) 
st ationary 106.93 -0.10 358.23 2316.60 -436.23 
AREM (6.86) (0.16) (316.72) (444.70) 

(4 = 0- w = O )  (0.059) (0.048) 
AR( 1) 4.531 0.141 - 0.296 -72.40 
(O < 141 < 1. w = 0) (0.068) (0.116) (0.047) 
A-H 4.542 - O .O29 0.271 -72.17 
( 4  = 0: w > O )  (0.072) (0.027) (0.047) 
non-s t ationary 4.543 0.068 0.022 0.277 -72.08 
AREM (0.073) (0.165) (0.032) (0.051) 
s tationary 4.543 0.060 0.023 0.276 -72.09 
AREM (0.073) (0.152) (0.031) (0.050) 

Table 4.2: Estimates and standard errors (in parenthesis) of the autocorrelated random 
effects mode1 (4.2) and its sub-models. 
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Modei Ft 4 4 o2 u2 &-na= 

l/;j = tv 
non-stationary 107.47 1.00 2418.87 195.77 33.60 -436.36 
D m M  (7.09) (0.36) (478.21) (392.86) (219.24) 
s t ationary 106.79 0.879 2357.42 - 77.04 -436.37 
DREM (6.90) (0.41) (509.82) (310.98) 

. 
yij  = log tv 

non-stationary 4.581 1.000 0.246 0.000 0.022 -70.46 
DREM (0.076) (0.227) (0.053) (0.000) (0.034) 
stationary 4.546 0.577 0.255 - 0.010 -71.90 
DREM (0.074) (0.358) (0.068) (0.040) 

Table 4.3: Estimates and standard errors (in parenthesis) of the dynamic randoni effects 
mode1 (4.3). 

Table 4.4: Estimates and standard errors (in parenthesis) of the A-H mode1 when the first 
recurrence time bas different moments. 



Chapter 5 

A Dynamic Hazard-Based Mode1 for 

Recurrent Event Data 

5.1 Introduction 

Suppose a recurrent event of interest is studied among N subjects. For each subject. the 

waiting times between successive event occurrences are recorded until a certain stopping 

time is reached and thus the last recurrence time may be censored. An example is the 

study of muscular activity (motility) of the small bowel discrissed earlier in Section 1.2.2 of 

Chap ter 1 and in Chap ter 4. Modelling inter-subject variability and stochastic dependence 

between subject recmence times using random effects is an important statistical issue in 

longitudinal studies, as discussed in Chapter 4. This chapter wJl  address these two issues 

through hazard-based models. We focus on analysis in terms of the inter-event times. 

Other methods of analyzing recurrent events are given by various authors (Wei e t  al.. 

1989, e-g.); Lawless (1995) gives a review. 
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Following from Cox (1972). we consider a class of proportional hazards models defined 

where hij(t) and x i j ( t )  are the hazard frinction and time-dependent covariates for the j th 

event recurrence of subject i respectively and ho(t)  is called the baseline hazard function. 

The variable z+ specific to the j th event recurrence of subject i is called the dynamic 

frailty or dynamic random effect as it changes with the number of event recurrence. The 

ordinary hailty model (A-H model) considered in Aden and Husebye (1991) is a special 

case of (5.1) when z, = z;; see also Section 2.1.4 of Chapter 2. As mentioned in the last 

section of Chapter 4. dynamic frailty is a clesired feature in some longitudinal studies. 

Hazard-based dynamic fiailty models are generdy difficult to handle in terms of 

frequency-based inference. Even in the "staticy case when zij are identical to ei and 

z is Normdy distributed. the likelihood is no longer tractable (Clayton. 1994). Our work 

here represents one of the first tractable developments. For example, a class of stationary 

dynamic frailty models can be obtained by taking ri1 - G ~ ( U - ~ .  w - ~ )  and 

where z;i. . . . are independent (and of yl) with Ga $ w - ~ ,  distributions. 
(L + - ,> 

Note that Gu(K, v )  denotes the Gamma distribution with mean rilu and variance tc/v2. 

We note (5.2) is a stationary process up to the ikst two moments of z, which are 1 and 

w2 respeetively. The lag s correlation of the zij's is 6 and the model defined by (5.1) and 

(5.2) gives the A-H model when # = 1. Petersen e t  al. (1996) discussed the fitting of a 



similar kind of fiailty models with the frailty composed of a sum of independent Gamma 

variates. in another context . The likelihood function for these models can be expressed in 

closed form as a sum but the number of terms inaeases exponentiaily with the number of 

event recurrences per subject (Lawless and Fong. 1997). Models with log zij7s following a 

Gaussian distribution are also often proposed. but hard to han& computationally. 

In general? likelihood based inference for dynamic random effects models oiitside the 

linear Nomal framework is often computationally intractable (Aden. 1994. Section 5 ) . 

Various methods of approximation and other estimation approaches have thus been used. 

These include generalized estimating eqiiations which solely depend on the first two mo- 

ments of observations ( Zeger and Liang, 1992). linearization of the transition component 

of a state space model (Jorgensen e t  al.. 1996a). Monte Carlo simulation (Carlin et  al.. 

1992). and posterior mode estimation (Fahrmeir and Tutz. 1994). Smith and Miller (1086) 

developed a class of non-Gaussian state space models with a multiplicative state transition 

process by assuming the observation process is Exponential after a 1-1 transformation. 

Under their model. all the predictive distributions (see below) can be numerically evalii- 

ated and thus the likelihood function can be readily maximized. Harvey and Fernandes 

(1989) considered an equivalent form of the model for count data without getting irito the 

state space form on which the f d  model is actually based. This model was also adopted 

by Yue and Chan (1994) for recurrent event data. and we study it further in this chapter. 

In particular, we consider an extension of the mode1 for recurrent events proposed by 

Yue and Chan (1994). and investigate its properties. The models in question have the 

ability to incorporate both inter-subject heterogeneity and non-stationary intra-subject 

variability in recurrence times. However. we will find that the applicability of the models 

in multi-siibject studies is somewhat limited. and that a fairly large number of siibjects 
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(N) and number of event recurrences per subject may be needed to estimate dl mode1 

parameters adequately. 

In the following exposition, we first introduce and discuss the use of the modelling 

scheme from Harvey and Fernandes (1989) when applied for recurrent events. Then an 

intensity based model is proposed in Section 5.3 together with an updating scheme for 

the random effects r,. The link with the model above is thus made explicit. Then. 

construction and computation of likelihood functions for censored recurrent event data 

are discussed in Section 5.4. The score and the Hessian matrix are seen to be easily 

cornputable and hence maximum likelihood estimates and standard errors of the estimates 

may be obtained. In Section 5.5, the set of s m d  bowel motility data in Aden and Husebye 

(1991) is used for illustration. A simulation study is given in Section 5.6 for furt her insight 

on the model. Findy.  conclusions and some further remarks are given in Section 5.7. 

5.2 Harvey and Fernandes Model 

For convenience, we will introduce the model in a general non-state space form wlùch 

allows the calculation of likelihood contributions. The s tat e space formulation is giveri 

in Section 5.3. Let tij (i = 1: 2: . . . . N T  j = 1. 2, . . . ?  ni) be the first ni uncensored 

recurrence times for subject i (Le. times between successive events) and denote the last 

censored recurrence time as ti.ni+l- For brevity, indices i and j are assumed to run from 

1 to N and 1 to ni + 1 respectively unless otherwise specified. Then, the model can be 

characterized by 

1. an observation model, f (tij[zij7 T;'-') where T/ = ( t i l y  tiz, . . . , t,)' T;O is the n d  

set. and the zij's are randorn effects whose dynamics are controlled by 
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2. a starting distribution, g(zil). and 

3. a sequential updating 

g(zij IT!-') to g(~i.j+l 

; scheme for the "priors" . or random effects distributions from 

IT:) after tij ( j  = 1. 2. . . . . ni) is obsenred. 

These are what we need in order to c o m p t e  the predictive densities f (tij(T;-') and hence 

to evaluate the likelihood function. The choice for g(zil) and g(rijl~:-') discussed below 

is motivated by the fact that 

which suggests the use of a naturd conjugate f a d y  in the priors g(rijl~;-L) for the 

sarnpling distributions f (tijlz,. T'- ' ) .  in order to get a closed f ~ n ~  for f ( t i j~~;"- ' ) .  

NOVI. tlie information gained from tij for updating g ( z i j l ~ ' - ' )  to S ( Z ~ + ~ + ~ ~ T ; )  can be 

f i s t  ittilized in the .'posterior" g ( ~ i j ( ~ ; )  and then linked to the next prior g(~;.j+l 1 ~ : ) .  
In other words. in the updating scheme, we have an information update through the 

posterior as well as a non-stationarity update by linking the posterior to the next prior. 

For instance! if f (t, ( y j .  T!-') is Exponential with rate zij, the corresponding conjugate 

prior. g(zij lT/-') is Gamma. In this Harvey-Fernandes scheme. the updating controls 

the underlying mean and variance of the zij process. as follows: 

for j = Io  2, . . . . ni where O < 7 < 1 is a parameter that possibly depends on the past 

recurrence tirnes. 
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Previous applications have mainly focused on a single time series of data and ne- 

glected the fact that 7 can be time-dependent (Smith and Miller. 1986; Harvey and Fer- 

nandes. 1989). Lambert (1996b) considered a Poisson observation model and extended it 

to repeated count data allowing irregular sampling intervals by having a time-dependent 

parameter 7. Lambert (1996a) considered a version of the model robust to extreme val- 

ues and induded the special case of having non-informative prior g(zil ). Yue and Chan 

(1994) considered a proportional hazards model with dynarnic random effects designed 

to incorporate both inter- and intra-subject variability in recurrence times. Our mode1 is 

essentially the same as theirs, except that the parameter 7 can be time-dependent. This 

modei is given in the next section. 

5.3 An Intensity Based Mode1 for Recurrent Events 

We propose an intensity based model to account for intra-subject covariability as well as 

inter-subject heterogeneity. Suppose that . in addition to the recurrence tirnes tij. we dso  

observed a time-dependent covariate process. xG ( t  ) . The model is characterized through 

the hazard function of Tijo denoted by h,(t). as 

where is a vector of covariate parameters with the same dimension as xij(t). and ho( t )  

is a baseline hazard function. Note that we have implicitly defined nri1lo = = l / w 2 .  
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The postenors g ( ~ i j ~ ~ j )  are found to be G a ( ~ i j ~  vij) where 

t; j 

and v;j = ~ i j l j - 1  + ho ( t )  efl'zij (t)dt  

where = O when j = ni + 1 and 1 otherwise: see Appendix D.1. The "non-stationarity" 

update is taken as in (5.6). with 

for j = 1. 2. . . . . ni where i k ( ~ , " )  can be any time-dependent positive-valued functio~i 

taking values less than 1. Note that. through (5.8). the rnean of rij is kept unchanged 

while the variability is increased; this allows a non-stationary process drift as for (5.4). 

The set of model parameters includes 8, w? @ ( O ) .  as well as any parameters in ho(t ) .  

The initial z;i7s are independent and identicdy distributecl with mean 1 and variance w Z .  

Hence w2 controls the initial variability due to subject heterogeneity. The function @(a) 

reflects the within-subject stability. The closer Q ( - )  is to 1, the more stable is the process 

while the closer *(*) is to O, the less stable is the process. The limiting behaviour at the 

boundaries of w2 and 9(-) is better understood by looking at the state space form of the 

model which we now describe. 

Consider a state space mode1 based on the mode1 (5.5) for the distribution of Tij l y - i  . = i l  . .-. . ri, 

and sequence of rij7s which follows the multiplicative transition process, 
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where q, -. ~ e t a ( i k ( ~ j ) " i ~ ,  ( ~ - @ ( T ! ) ) K ~ ~ ) .  Relationship (5.9) together with (5.5) defines 

a full state space model which is equivalent to the model represented by formulas (5.5) - 

(5.8); see Appendix D.2. With no subject heterogeneity, i.e. w Z  -t O? l i ; ~ ( ~  + 00 for all 1 

and. by (5.7) and ( 5 .8 ) :  we have ri, -t co for ail i: j .  Thus rl, = Q(T!) and (5.9) implies 

Hence all between and within subject recurrence times are uncorrelated no matter the 

value of Q(T~). In other words. intra-subject correlation is triggered by the random 

effects. The functionality of @ ( - )  is best seen by noting, fkom (5.9)? that 

When B(?-) + 1: Z i j  = =il for all j 3 1 and Mode1 (5.5) and (5.9) reduces to the 

Gamma frailty mode1 considered by Aden and Husebye (1991). When Q(T:) i 0. 

V n ~ [ ~ ; , ~ + ~ l ~ i j ,  T:] + oo which, from (5.5), means a high instability of the hazard due 

to large process drifts. The random effect ri1 induces within-subject covariability which 

is adjusted by @ ( O )  to give a non-stationary process drift as more recurrence times are 

observed. 

5.4 The Likelihood 

A merit of using the conjugate-prior type model in (5.5) and (5.9) is the availability of 

the Likelihood without the effort of numerical integration or the expense of inaccuracies 
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from approximations. The likelihood function for recurrent event data with censoring cari 

be constructed through (5.3) and the usual decomposition rule as 

where each individual predictive density is computed. using (5.5) and (5.6). by integrating 

over r i j  in EiijlTI-t [ f ( t i j  1 Z i j .  T/-') ] and sirnilady for the last term with the censoring 
I 

tirne. This gives 

Thereupon? the log-likelihood function can be writ ten as 

which can be evaluated numericdy by computing ~cy-1. v i j l j - 1  and v i j  recursively iising 

(5.7) and (5.8). Note that when there are no random effects. i.e. w2 + 0' (5.10) and (5.11) 

reduces to the densities from independent recurrence times (see Appendix D.3), but the 

degeneracy does not cause rnuch problem in our applications (see Section 5.5). The 

score function and Hessian matrix can be routinely evaluated; see Appendix D.4 for the 

case of a Weibull baseline hazard function with a time-independent discounting constant 

i k ( ~ j )  = 4 when there is no covariate process. Common optimization algorithms such as 
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the Downhill Simplex Method (which does not require the first and second derivatives) and 

the Newton-Raphson Method are usually sufficient in searching for maximum likelihood 

5.5 Application to Small Bowel Motility Data 

The model in Section 5.3 was fitted to  a set of small bowel motility data fiom Aalen and 

Husebye (1991) .  There were 19 subjects with no covariates. Successive MMC periocls 

were recorded over a fixed time period. As in the Gamma frailty model in Aalen and 

Husebye (1991) :  we considered a W e i b d  baseline hazard function. i.e. 

ho@) = ht" b > o. k > -1. 

We assumed $ ( O )  = 11. Initial estimates for ( 6 .  k. w 2 )  were obtained by Stting a Gamma 

fiailty model as in Aalen and Husebye (1991)  and $ was ini t idy taken as 0.5. To avoid 

boundary value problems and highly correlated estimates. the set of parameters 19 = 

(b ,  k, w 2 ,  $) was transformed to Bu = (u, 6. -y, r )  where 

The corresponding log-likelihood, score and Hessian are given in Appendix D.4. We pro- 

grammed in SAS/IML Version 6.10 in a DEC alpha, Digital UNIX ( O S F / l )  V3.2 system 

and a nonlinear optimization subroutine. NLPNMS (Nelder-Mead Simplex method). was 

employed for likelihood maxirnization. 

The log-likelihood was maximized at  -429.13 and maximum likelihood estimates to- 
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getker with their asymptotic standard errors and correlation coefficients are showu in 

Table 5.1. The sarnpling distribution of the estimates was examined by 500 bootstrap 

samples. Figure 5.2 exhibits plots of histograms for various estimates and shows a fairly 

symmetric empirical distribution for TL and 6. Using the Normal assumption. the 95% 

confidence intervals for u and 6 are 4.75 I 0.13 and 0.83 f 0.19 respectively and hence the 

confidence interval for h and k are 

(3.16 x 10-~. 5.74 x 10-~) and (0.90, 1.77) 

respectively. The seemingly bi-modal behaviour for the estimates of T is due to the flatness 

of the likelihood as T gets srnall when the hypothesized value of ?1, is close to 1. In a carefiil 

look. estimates of T s m d e r  than -9 usually have scores greater than -IO-= which keep 

increasing when the estimates are pushed smaller. Figure 5.3 shows the increasing score 

for a typical iterated estimate of -13.31 for T .  Thus the left cluster of the estimates for 

r should a c t u d y  spread over towards -00 and the empirical distribution of both 7 and 

T have a long left tail. Indeed, as can be seen in the next simulation study. the bi-modal 

behaviour disappears for s m d  values of $. 

The likelihood ratio statistic for the n d  hypothesis w2 = O is R = 2.58. However. 

since w2 = O lies on the parameter space boundary, R is not distributed as a simple chi- 

square. The empirical significance level of R is 0.09. It was cornputed by bootstrapping 

1.000 samples with ( b ,  k, w2) = (0.00004471.28,0) and calculating the proportion of like- 

lihood ratio statistics for testing w2 = O that are greater than R. Thus, we arrive at the 

conclusion as in Aden and Husebye (1991) that the data do not exhibit strong evidence 

of subject heterogeneity. Indeed, a graphical test of the W e i b d  mode1 does not reveal a 
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Parameters Estimates " Asymptotic correlation matrix 
u 4.7525 0.0658 0.0789 -0.2031 0.1760 
S 0.8261 0.0991 0.3409 0.2237 

7 -1.9304 0.9084 -0.3668 
T -6 -28 18 52.9457 
b 0.000044 0.000044 -0.9887 -0.3026 0.2683 
k 1.2844 0.2265 0.3409 -0.2165 

w2 O. 145 1 0.1318 0.3815 
4 0.9873 0.6694 

=The off-diagonal elements are the asymptotic correlations: the diagonal eIements are the a s y r n p  
totic standard errors. 

Table 5.1: Maximum likelihood estimates for a set of small bowel motility data. 

serious model departure (Figure 5.1). Consequently, the value of 11 becornes irrelevant as 

mentioned in the last paragraph of Section 5.3. Indeed. the likelihood ratio statistic for 

testing the n d  hypothesis w2 = O against the alternative w2 > O but 4 = 1 (the frailty 

model) is only slightly srnder (- 1.9 x than R. 

5.6 Simulation Study 

To determine the efficacy of the estimators and enhance our understanding of the model. 

we performed a simulation study at some hypotheticd but plausible values of the pa- 

rameters. We assumed the same number of subjects (19) and censoring times as in the 

s m d  bowel motility data. The baseline liazard is taken from a Weibull distribution. i.e. 

h,(t) = bt" b > 0: k > -1 and the discounting function is taken as a constant. i.e. 

( )  = . Then, with some specified value of 8 = ( b , k , w 2 , $ ) ?  a set of recurrent event 

times with censoring was generated fiom the following algorithm. For each subject i. 

1. Take the censoring time. si, from the i th  subject in the small bowel motility data. 
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Figure 5.1: A graphical check of the Weibull model. A correct mode1 should give a linear 
graph. 
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Figure 5.2: Histograms for estimates fkom a bootstrap sample of size 500. 
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tau 

Figure 5.3: Plot of scores against T for an iterated estimate of -13.31 for T in a simulated 
data. 



CHAPTER 5. A DYNAMIC HAZARD-BASED MODEL 

3 .  Generate til fiom its intensity function h,(t). 

4. Set j = 1. 

7. Generate ti,j+l from its intensity function ~ i ~ + ~ h , ( t ) .  

8. If the total tirne span. CE: tik. is less than si. cornpute rii.j+ilj = $tCijij. set j = j +1 

and go to step 5. 

From this. we generated 1: 000 samples. For each simulated sarnple rn (m = 1. 2. . . . .1000). 

the log-likelihood (D.l) was maximized with respect to Bu = (a. d.7: r). the transformecl 

form of B from (5.13). and the maximum likelihood estirnates 8bm' , w d  as the asymp- 

totic correlation matrix with the diagonal elements replaced by the asymp totic standard 

errors Cr' were obtained. The efficacy of the estimators was assessed by computing the 

following summary skatis tics. 

- 1 1000 - 1 1000 

Bu = - 
1000 

6Lrn). = - CLrn). Eu = sample correlation rnatrk with 
1000 

m=L m=l  
diagonal elements replaced by 

the sample standard deviations 

and the 95% coverage which is the proportion of the 95% confidence intervals compiited 

using the Normal assumption. i.e. 0:") k 1.96 x standard error(Obm)), that includes the 
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- - 
hypothesized value Bu. With obvious notation. 6 .  Co C. and the 95% coverage were also 

computed. 

Based on the previous example. the values of 6 and k are taken to be 0.00005 and 1.5 

respectively. The random effects variance w2 is taken at two values: a s m d  value 0.1 ancl 

a large value 1.5. In either case. $ takes values in (0.1.0.5.0.9)- AU summary statistics 

at different values of the parameters are tabulated in Table 5.2 for w2 = 0.1 and Table 5.3 

for d 2  = 1.5. 

In Table 5.2 with wZ = O. 1. except for T.  there is a fair agreement between the average 

of estimates and the true values as well as between the estimated standard errors and 

the corresponding sample estimates. The coverage for Ou agrees very much with 0.95. 

The finite sample approximation by Nomal  distribution for the sampling clistribution of 

Bu can be reasonably assumed despite the long tail distribution for -j and î as in the 

numerical example. Again: the great discrepancy between the standard error of î and 

its small finite sample standard deviation is due to the flatness of the likelihood when $1 

is close to 1. But this does not rreate any serious disagreement for II>. Indeed. further 

study of the empirical distribution of î for smaller values of 4. say < 0.5 shows the 

seemingly bi-modal behaviour does not appear. This can dso be seen from a much better 

agreement between the standard errors and the corresponding finite sample estimates in 

Table 5.2(a). In Table 5.3 with w" 1.5, similar phenomena are observed with better 

overall agreements of the estimates. 

Thus with only a s m d  number of subjects and around 10 to 20 recurrence times 

per sub ject , the asymptotic approximations perform reasonably weIl when t here are large 

random effects. Standard errors of the estirnates tend to be s m d e r  for large values of dl 

which corresponds to a more stable process. Interval estimates should be computed by a 



CHAPTER 5. A DYNAMIC HAZARD-BASED MODEL 

Normal approximation for eu. which gives 

5.7 Concluding remarks 

We have employed a proportional hazards 

closer to nominal coverage. 

mode1 with dynamic random effects in mod- 

elling inter-subject heterogeneity and non-stationary intra-subject variability in recurrent 

events with censoring. It is flexible enough to incorporate random effects and pick up non- 

stationary process drifts through and @(-) (as also discussed in Harvey and Fernandes. 

1989. for the case with count data). The Likelihood function. which is usually intractable 

outside the iinear Normal framework. can be easily evaluated and differentiated froxn 

(5.12). 

Nowo prediction of the next event recurrence is based on the mean of I T y  
I 

- whch can be easily shown. from (5.11). to be t;,,+, - ti.ni+l + t iw where 

Thus the predicted waiting time until the next event recurrence for subject i is tiw and 

the (m + l ) t h  mean recurrence time (m > n; + 1) can be similarly deduced. from (5.10). 

as 
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is known before prediction is made. Integration in (5.14) and (5.15) depends on the 

complexity of ho( t )  which is manageable in most applications. 

Note that we have not looked at the very important issue of model diagnostics. 

Some t houghts on diagnostic checking are to perform "post-sample' diagnostics where 

we shorten the surveillance time of each subject. That is. we are discarding some ob- 

servations (post-sample) but the last retained one is still censored. Tken the present 

mode1 is fitted to the retained dataset and predicted values. fiom (5.14) and (5.15). are 

computed and compared with those recurrence times in the post-sample. However. in the 

case when we do not have too many observations for each subject. discarding observations 

may result in a too s m d  sarnple which is not informative enough for the mode! to be 

wd-fitted. Another approach would be by using parametric bootstrapping to generate 

samples with values of the parameters taken as the estimates from fitting the original 

data. The bootstrap samples are then compared with the original data to assess the fit 

of the model. S&ciency of ordinary proportional hazards models when subjects forming 

renewal processes can be assessed by using hazard-based residuals (Lawless. 1982) defined 

~ ( t i j )  if tij  is not censored. 
e;j = 

H(tij) + i if t ,  is censored 

where H = - log S ( t i j )  and s are the estimated cumulative hazard and survivor function 

under the ordinary proportional hazards model with a chosen baseline hazard function. 

Then. the model is sufficient if a plot of the logarithm of the Kaplan Meier estimate of 

the eijgs versus e;j is roughly a straight line with dope -1. However, residual analysis 

to assess proportional hazards models with a dynamic frailty, for example. the validity of 

the baseline hazard function, is still desirable. 
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It is also worth studying the possible use of semi-parametric methods when the baseline 

hazard function ho is not specified. For example. semi-parametric analysis can be generally 

pursued through the EM algorithm as in Petersen et  al. (1996). In our rnodel. the 

logarithm of the complete data (assuming the fkailties are known) likelihood can be written 

as 

Assuming w2 is known and noting that the last two terms of 1, in (5.16) only involve zij 

linearly. the E s t  ep requires 

Then. in the M-step, we maximize (5.16) with respect to the baseline hazard function 

ho and ,û, after substituting zij as (5.17). Note that only the last two terms in (5.16) 

are needed to be maximized and this is equivalent to the usual Cox regession analysis 

(zij's in the M-step are now known) which estimates the baseline hazard function through 

the Nelson-Aden estimator. Estimates of w2 and Q can be obtained by maximizing the 

observed data log-likelihood as given by (5.10) and (5.11). The EM-step together with 

the estimation of w2 and Q iterates until convergence. The key is to compute (5.17) which 

can be generally approximated by the Gibbs sampler (e.g. Gelfand and Smith, 1990) by 

noting f(zij's 1 tij7" is proportional to (5.16). However, further study of the convergence 

properties is needed. 
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Chapter 6 

Conclusion and Furt her Research 

6.1 Summary of Results 

In this dissertation, we have used. in Chapter 3. a state space model to deal with mul- 

tivariate longitudinal measurements with missing values and measurernent errors. Tlie 

linear K a h a n  filter dernonstrated its efficiency. especidy when we have a number of long 

series of multivariate measurements. Next. we identified and discussed, in Chapter 4. two 

classes of Gaussian randoni effects models for recurrent event data: namely autocorrelated 

and dynamic random efFects models. Dynamic random effects models are more appro- 

priate when the initial inter-subject heterogeneity does not persist over time. otherwise 

autocorrelated random effects models are preferred. In Chapter 5. we extended the Cox 

proportional hazards models for recurrent event data to allow inter-subject heterogene- 

ity and non-stationary process drifts by using a dynamic Gamma frailty process. The 

resulting model is somewhat similar to the dynamic random effects models discussed in 

Chapter 4 but is distinct in the fact that each dynamic fiailty effect dso  accounts for the 
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past recurrence times (a slight modification of GSSMs). The mode1 enjoys tractability 

of the likelihood function by which scores and Hessian matrix can be easily niimericdy 

evaluated. a property not shared by most general state space models with random effects. 

6.2 Further Research 

We would like. in the future. to embark on the use of filtering methods for longitudinal 

data with difkrent characteristics, e.g. missing responses and covariates. measurernent 

errors in responses and covariates. measurements taken at irregular time epochs. inter- 

sub ject heterogeneity. and more. Some potential topics are described in the following 

sections. 

6.2.1 Missing Data in Conditional Models 

In Chapter 3. we dealt with multivariate and continuous measurements nt specific time 

epochs with values missing at random. Lipsitz et  al. (1994) considered a marginal ap- 

proach for categorical responses with time-dependent covariates. They estimated covariate 

effects when responses are dowed to be missing at random. With Uustration on binary 

responses. they stratified sub jects according to their covariate values. A two-stage estima- 

tion procedure was adopted with the first stage used to estimate the marginal probabilities 

of a subject's responses and the second stage to estimate the covariate effects by regress- 

ing a known function of the marginal probabilities on the covariates. The f i s t  stage was 

carried out by maximizing the likelihood using EM or a Newton-Raphson method and the 

second stage proceeded by using ordinary weighted least squares. Kowever. estimation 

especially in the f i s t  stage is cumbersome when the number of responses of a subject is 
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large. Moreover. the method of stratification rnay not be appropriate when the resulting 

stratum size is srnall. 

We are interested in the possible use of similar mode1 and filtering methods as in 

Chapter 3 to improve the efficiency of estimation while accommodating time-dependent 

covariates and responses which can be missing at randorn and/or measured with errors. 

6.2.2 Measurement Errors in Longitudinal Studies 

Measurement errors can occur in both responses and covariates. They may also produce 

identifiability problems, e.g. whether the variability is due to measlirement errors or 

inherent variations (Chapter 3). Ignoring measurement errors can lead to inconsistent es- 

timates. However, most previous studies focused on examining the effects of rneasurement 

errors on s w i v d  (Tsiatis e t  al.. 1995; Raboud et al.. 1993) or ordinary GLM (Haiikka. 

1995: Sepanski e t  al., 1994) type data. Methods that account for errors in covariates are 

mainly through imputation by assurning a certain measurement error model. or by the 

bootstrap. It is worth studying the effects of measurement errors (in both responses and 

covariates) in repeated measurements and exploring the applicability of filtering methods. 

6.2.3 Combining Missing Values and Measurement Errors 

We have discussed. in Chapter 3. rnissing values and measurement errors under Gaussian 

linear mcdels only. It is also worth extending this to non-Gaussian models such as the 

exponential family models. There have been separate studies on measurement errors 

and missing values. For example, Sutradhar and Rao (1996) studied the correction of 

bias in regression parameters' estimates from solving GEEs under GLMs as a result of 

measlirement errors on covariates. For partially missing covariates in GLMs. Ibrahim 
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(1990) considered the use of an EM algorithm through the "method of weights". More 

general discussions on missing data in longitudinal studies can be found in Laird (1988). 

However. it is in general kard to combine measurement errors and missing values on 

responses and covariates, and further research is highly desirable. 

6.2.4 Irregularly Spaced Measurements 

Irregularly spaced time data arises when sub jects are measured at arbitrary time intervals. 

Sometimes. they can be treated as equally spaced time data with missing values biit this 

may not be plausible when there is no basic sampling interval. Thus. it is more natiiral 

to consider an underlying continiious time process which govern the observed responses. 

The use of linear Gaussian state space models and filtering methods for irregularly spaced 

data are weU described and discussed in Jones (1993). Elliott e t  al. (1995) considered. in 

a more general framework. the use of optimal filtering for estimation iinder both cliscrete 

and continuous time Hidden Markov Models (HMMs). The HMMs can be treated as 

another type of GSSMs. For example, a continuous time AR(1) process { X ,  : t E [O: 00)) 

with measurement errors can be formulated as a continuous time HMM by 

t 

and Xt = Xo + /U auXidu+ K 

where Y, is the observable process while & and Wt are independent zero mean martingale 

processes. The key technique used by Elliott e t  al. (1995) is a change of measure through 

the Girsanov Theorem to work on a 'Yictitious world" where well-developed and straight- 

forward tools can be employed. Results are then transformed back to the "real world by 
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a reverse change of measure. The mathematics is neat and complete but its use in the 

actual fit ting of irregularly spaced measurements remains to be investigated. 



Appendix A 

Datasets 

A.1 The Two Automobile Datasets 

Botli the Piston Machining and the Door Hanging Data are described in Section 1.2.1 

of Chapter 1 and analyzed by a multivariate AR(1) variation transmission mode1 in Sec- 

tion 3.4 of Chapter 3. They are printed in the following two subsections. 

A . l . l  Piston Machining Data 

The table shown below gives the four diameter measurements located at heights of 2 mm. 

10 mm, 36.7 mm and 58.7 mm (the four values fkom top to bottom of each cell of the 

table) from the bottom of 96 pistons a t  four process stages. 

Piston S t a g e  2 88.955 
nnmbar 1 2 3 4 88.972 
----==5=--==--=--- 88.935 
1 88.960 88.959 88.957 88.959 88.163 

88.976 88.975 88.973 88.975 
88.936 88.935 88.935 88.936 3 88.958 
88.167 88.163 88.161 88.163 88.974 

88.936 
88.163 
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DATASETS 

Door Hanging Data 

The table shown below contains the four rneasurements taken fkom 42 vehicles at seven 

process stages. Values marked "NA?' refer to missing data. 

C a r  Characteristic 
ID 1 2 3 4 

1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
I Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
1 Body 
2 Pkint 
2 Paint 
2 Pkint 
2 Paint 
2 Paint 
2 Paint 
2 Paint 



DATASETS 

2 P a i n t  
2 P a i n t  
2 P a i n t  
2 P k i n t  
2 P a i n t  
2 P a i n t  
2 P k i n t  
2 P a i n t  
2 P a i n t  
2 P a i n t  
2 P a i n t  
2 P a i n t  
2 P a i n t  
2 P a i n t  
2 P a i n t  
2 P a i n t  
2 P a i n t  
2 P&t 
2 P k i n t  
2 P a i n t  
2 P k i n t  
2 P a i n t  
2 P a i n t  
2 P a i n t  
2 P a i n t  
2 P a i n t  
2 P a i n t  
2 P a i n t  
2 P a i n t  
2 P a i n t  
2 P a i n t  
2 P a i n t  
2 P a i n t  
2 P a i n t  
2 P a i n t  
3 Bof o r e - S t r i k e r  
3 B e f o r e - S t r i k e r  
3 B e f o r e , S t r i k e r  
3 B e f o r e - S t r i k e r  
3 B e f o r e - S t r i k e r  
3 Bef o r e - S t r i k e r  
3 B e f o r e - S t r i k e r  
3 Bof o r e - S t r i k e r  
3 B e f o r e - S t r i k e r  
3 B e f o r e - S t r i k e r  
3 Bof or .-Str iker  
3 B e f o r e - S t r i k e r  
3 B e f o r e - S t r i k e r  
3 B e f o r e - S t r i k e r  
3 Bef o r e - S t r i k e r  
3 Bef o r e - S t r i k e r  
3 Bof o r e - S t r i k e r  
3 B e f o r e - S t r i k e r  
3 Bef o r e - S t r i k e r  
3 B o f o r e - S t r i k e r  
3 Bef o r e - S t r i k e r  
3 B e f o r o - S t r i k e r  
3 B a f o r e - S t r i k a r  
3 Bef o r e - S t r i k e r  
3 Bef o r e - S t r i k e r  
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3 Batore-Striker 
3 Baiore-Strikor 
3 Bef ore-Striker 
3 Bmfore-Striker 
3 Bef ore-Striker 
3 Bef ors-Striker 
3 Bef ore,Strikor 
3 Boform,Striker 
3 Bef ore-Striker 
3 Before,Striker 
3 Before-Striker 
3 Before-Strikor 
3 Boform-Sttiker 
3 Bof ore-Striker 
3 Bef ore-Striker 
3 Bef ore-Strikmr 
3 Boforr-Striker 
4 Aftor-Strikrr 
4 After-Striker 
4 Aftor-Strikor 
4 After-Strikmr 
4 After-Striker 
4 Aftor-Striker 
4 Aftor-Strikor 
4 Aftor-Strikor 
4 After-Striker 
4 After-Striker 
4 After-Strikor 
4 Aiter-Striksr 
4 Aiter-Striker 
4 After-Striker 
4 After-Striker 
4 After-Striksr 
4 After-Striker 
4 hftor-Strikor 
4 After-Striker 
4 Aftar-Strikmr 
4 Aiter-Striker 
4 Aiter-Striker 
4 Aiter-Striksr 
4 After-Striker 
4 Aftar-Striker 
4 After-Strikar 
4 After-Striker 
4 Aftrr-Striker 
4 After-Striker 
4 After-Striker 
4 After-Striker 
4 After-Striksr 
4 Aftor-Striker 
4 Aftrr-Striker 
4 After-Striker 
4 Aftrr-Striker 
4 Aftrr-Striker 
4 After-Striker 
4 Aftrr-Striker 
4 After-Strikar 
4 Aftsr-Striker 
4 After-Striker 
5 Striksr-Fit 

PA BA HA 
O. 1500 7.5000 11 .O000 
O. 4500 8.1000 lO.7OOO 
O. 6500 9.7000 lO.8OOO 
0.7500 7.8000 9.5000 
BA PA BA 
BA BA E A 
E A NA BA 
B A BA BA 
PA BA HA 
0.4500 8.8000 10.5000 
RA BA E A 
B A RA BA 
0.8500 8.0000 10.6000 
O .GO0 8.4000 lO.8OOO 
BA RA HA 
B A PA BA 
HA BA UA 
1.0100 7.9000 10.7000 

HA HA BA 
UA BA BA 
1.1500 7 -9000 10.4000 
0.6500 7.8000 10.8000 
O. 5400 9.4900 12.5800 
UA BA BA 
BA HA BA 
-0.0100 7.5800 9.8300 
1.4200 8.5900 12.3800 

BA BA HA 
HA RA BA 
0.5500 8.9000 12.4000 

BA HA BA 
BA BA PA 
0.5500 7.5000 10.~000 
1.2500 6.5000 9.8000 
O .9SOO 9.1000 10.9000 
8 A Ir A HA 
BA RA BA 
0.9500 7.2000 9.3000 
O. 5500 8.3000 10.0000 
1.1500 7.4000 10.6000 

BA BA BA 
%A BA HA 
1.0500 7.9000 11.8000 
-0 .O500 8. 1500 10.5500 
-0.3500 9.9000 10.7000 
O. 8500 8.6000 lO.6OOO 

BA BA BA 
BA B A B A 
BA BA BA 
PA RA BA 
HA E A BA 
0.3500 8.7000 9 -8000 

BA RA BA 
BI. BA BA 
0.1500 8.1000 11.9000 
1.1500 8.3500 11.2000 

BA BA HA 
BA BA BA 
HA BA RA 





6 F i n a l  
6 F i n a l  
6 F i n a l  
6 F i n a l  
6 P h a l  
6 F ina l  
6 F ina l  
6 F ina l  
6 P i a d  
6 F i n a l  
6 P i n d  
6 F ina l  
6 F ina l  
6 F ina l  
6 F ina l  
6 F ina l  
6 F i a d  
6 Pinaï 
6 F ina l  
6 F i n a l  
6 F ina l  
6 F ina l  
6 P i n a l  
7 Enhanced 
7 Bnhanced 
7 Enhanced 
7 Enhanced 
7 Enhancsd 
7 Enhancad 
7 Enhanced 
7 Enhanced 
7 W a n c s d  
7 Enhancad 
7 Enhancsd 
7 Enhanced 
7 Eahancad 
7 Enhaaced 
7 enhanced 
7 Enhanced 
7 Enhnncod 
7 Enhnncad 
7 Enhancsd 
7 Enhanced 
7 Enhanced 
7 Entianced 
7 Enhanced 
7 Enhanced 
7 Enhanced 
7 Enhsnced 
7 Ehhaaced 
7 Enhanced 
7 Enhanced 
7 Enhanced 
7 Enhanced 
7 Enhanced 
7 Enhaneed 
7 Eahanced 
7 Enhsncsd 
7 Enhanced 
7 Enhanced 

DATASETS 
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7 Enhancod 47369 HA RA KA V A  
7 Enhanced 47372 -0.5600 1.8000 7.9450 12.8650 
7 Enhancod 47395 -0.4350 1.3450 8.5900 14.4900 
7 EIibancod 47401 HA PA BA r A  
7 Enhancid 47481 11 %A UA EA 

A.2 The Small Bowel Motility Data 

The table shown below is reproduced from Aden and Husebye (1991) wliich contains the 

observed migrating motor complex (MMC) periods (in minutes) for 19 subjects. The 

data are described in Section 1.2.2 of Chapter 1 and andyzed by Normal-based models 

in Section 4.3 of Chapter 4 and a Hazard-based model in Section 5.5 of Chapter 5. 

Subject Complete observed periods Censored 



Appendix B 

Derivation of Filtering and 

Smoot hing Formulas 

The filtering formulas (3.16)-(3.19) follow kom straightforward conditional mean aud 

variance calculations. 

For example. 

Formulas for z;,,, x i , ( t l t )  and the smoothing formulas (3.23). (3.24) are a little bit 
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more complicated. but may be obtained from standard resdts about multivariate normal 

variables. In particular. if x, y and z are random vectors with 

and so &o. for example. 

Then. for example, letting yZyt-, = ( ~ i , : .  . . . yiSt-l)' .  we have 

These formulas are standard in state space models; see for example Harvey and McKen- 

zie (1984) or Koopman and Shepherd (1992). 



Appendix C 

A Modified Kalman Filter Recursion 

for AREMs 

Here we describe a moafied Kalman filter recursion for computing the conditional mo- 

ments of the responses under Mode1 (4.2) of Chapter 4. Further defuie 

where Kt = ('il. Yi?. . . . . y;,). NOW. for i = 1. 2. . . . . N .  

2. Set j = 2. 

3. (Filtering) Compute 
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4. (Correcting) Compute 

5. Set j = j + 1. 

6- Goto Step 3 until j > ni + 1. 

The recursion can be derived as follows. For each i. when j = 1. we cari directly 

observe that 

Now. 
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Thus. from standard miiltivariate Normal theory. 

dl.: 
and ( 1  = Var(ei1lyil)= 

a: + w 2 *  

Hence. the initialization step is true. Now. for j > 1. 

Then. by noting that 
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and assuming the recursion is true at j - 1. we have 

and hence the filtering and correcting step follow immediately. 

(:) dei. j-i 1 j- i 

5'-l ( (y i , j -L - (1 - dle i . j - l l j - l  



Appendix D 

Derivations of Formulas in Chapter 5 

D. 1 Getting the Posterior Densities 

For j = 1. 2. . . . . ni. the posterior densities are 

Tkus. ~ ~ ~ l ~ , j  is distributed as Ga(kij,  yij) where K i j  and vij are as given in (5.7). 
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D.2 Getting the Multiplicative Transition Process 

Note that 

B y considering the decomposition. 

it follows fiom standard results~ e.g. Rao (1965). that 

Hence. (5.9) follows. 

D.3 Getting back to  Independent Processes 

Observe that. for i = 1.2?.  . . . N and j = 1,2.. . . .ni + 1, 
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where n ( ~ ; - ' )  = Q(T;')? and c l ( * )  are c~(*) are some functions not dependhg on m'. 

Then 

Hence. as w2 + 0. ( 5 . 1 0 )  and (5 .11)  becorne 

ti.n;-+ 1 

ho(t i j )$ '~i; ("i)  and c r p  {- h ~ ( t ) e 8 ' " ~ ( ' ) d t }  

respectively which do not depend on their corresponding past history. 

D.4 Getting the Scores and Hessian Matrix 

With h o ( t )  = bt" b > O, 12 > - 1 ,  (a Weibd  intensity function) and Q(T/) = II>. and the 

transformation of û to Bu in (5.13): the log-likelihood function. from (5.12).  is 
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The corresponding acore function and Hessian matrix among to compiite the first and 

second derivatives of r*ijü-,? u i j ~ - ~  and uij which are evaluated recursively by the follow- 

ings . 

For evaluating the score function. we need 

Bvi. j+i 1 j - eT-r Buij ~ ; . j + i ~  - - + 
1 + e7-r LWu 1 + er-r 

(O. O, 1. -1): 

OU; j - avijlj-i and - - 6 - exp(8 - a e  )f& (1. IL - log(tij). O. O )  
aeu 

asi I 10 avii 10 --- with starting values - - ml a,U - ( O .  O .  -e? O ) .  With 

û+ = p x 1 vector of O. 

the Hessian matrix is evaluated iising 

B2vij d 2 ~ i j l  j-i - and - - aeue~  8 0 ~ 8 ;  + B Z O C ~  
- ue6)it. l'mlm: - ( mtij)] . O. O) 
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a 2 ~ i i  10 @vil with starting values 7- = .- = 
aeu@, 

Then the inverted 

FOR.MULAS IN CHAPTER 5 

Hessian matrix for 6' can be computed from 

- exp(26 - ues) exp(d - u e 6 ) ( 1  - ue6)  
where 7 = Block 

a% O e 6 
( l + e 7 - Y ) 2  ( l + ~ ? - ~ ) ?  
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