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Abstract

The main objective of this dissertation is to study the use of state space models and
filtering methods in tackling several fundamental issues in longitudinal studies involving
multiple subjects. These include serial dependence of a subject’s responses that come
naturally from time, inter-subject heterogeneity, missing values and measurement errors
in subjects’ responses. and non-stationary process drifts. We consider both repeated mea-
sure problems and problems involving event histories, and in particular, recurrent events.
Several classes of models are introduced and filtering methods developed to implement
parameter estimation. Properties of the models and methods are examined. We consider
two sets of data for illustrations: a dataset from automobile manufacturing (repeated
multivariate measurements), and a set of small bowel motility data (recurrent events).

We consider a class of general state space models and give a review of some common
sub-models and the available tools for statistical inference. We point out the need for
more efficient estimation for handling missing values and measurement errors. a careful
understanding of different types of random effects models, and a tractable likelihood
inference procedure.

We first discuss methods of estimating the variation in product quality characteristics
measured at several stages in a manufacturing process. By determining which stages
contribute most to variation one can focus variation reduction activities more effectively.
A multivariate Gaussian Markov process is used to model the variation in characteristics.
Methods that deal with measurement error and missing data are introduced through a
state space formulation.

Then, we differentiate random effects models for recurrent events into autocorrelated

and dynamic random effects models. Their similarities and key differences are discussed

v



in the case of Gaussian models. Numerical comparisons are provided by using the small
bowel motility data and cases when the models might be used are discussed.

Thirdly, we study a dynamic proportional hazards random effects model for recurrent
events with non-informative right censoring. Subject heterogeneity and potential non-
stationary process drifts are handled by repeatedly updating an initial frailty as more
recurrence times are observed. An arbitrary baseline hazard together with an external
time-dependent covariate process are allowed. The full model is actually a non-Gaussian
state space model with a multiplicative state transition process. Parametric inference
on hyperparameters is carried out by maximizing the likelihood function, which can be
shown to be numerically tractable. A simulation study is conducted for further insight
into the model.

Finally, we conclude this dissertation with some general remarks and point to some

potential future research directions.
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Chapter 1

Motivation and Examples

1.1 Longitudinal Studies

1.1.1 Introduction

Longitudinal studies often involve analyses of specific dynamic changes of subjects in a
group over a certain time period. Longitudinal behaviour can be examined by either
monitoring subjects continuously over time. or examining them only at discrete time
epochs. A typical dataset in a longitudinal study consists of event occurrence times or
repeated measurements for each subject over time. Several recent books (e.g. Andersen
et al.. 1993; Diggle et al., 1994; Lindsey, 1993) discuss and provide comprehensive coverage
of various types of studies.

It is a characteristic of longitudinal studies that measurements or events associated
with individuals at different time points are related, i.e. not statistically independent. The
main objective of this thesis is to consider the use of dynamic models for representing

dependencies and to develop methods of inference for such models. We will consider
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situations with repeated measurements taken at discrete time points and also situations
where events may occur repeatedly to subjects over time. Section 1.2 provides some
motivating examples but first in Section 1.1.2, we consider some basic problems and

objectives associated with longitudinal studies.

1.1.2 Basic Problems and Objectives

It is possible to have numerous complications in longitudinal studies but there are three
basic ones. The most fundamental problem is modelling, because of the time element.
the inherent stochastic dependence between a subject’s measurements or event history.
in particular when previous observations contain information relevant to present and
future vanates. Modelling dependencies can be basically classified, from Cox (1981).
to be observation-driven when dependency is due directly to previous observations and
parameter-driven when it is induced by a hidden stochastic process of the parameters.
Choice of models will be discussed in Chapter 2.

Another problem is subject heterogeneity. This is usually handled by including ob-
servable covariates in models, but very often there remains unexplained variation. This
is often called unobservable heterogeneity and it can be effectively handled by using ran-
dom covariates or random effects with certain distribution assumptions (e.g. Aalen and
Husebye, 1991; Pickles and Crouchley, 1994; Hougaard, 1995).

Missing data is another common feature in longitudinal studies (e.g. Little, 1992, 1995:
Baker, 1995; Follmann and Wu, 1995). Subjects may drop out during surveillance or have
measurements missing intermittently. The presence of missing data has several effects in
longitudinal analysis. One is that a simple multivariate analysis for balanced data when

we have an equal number of observations for each subject measured at equal time intervals
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may be made complicated when data are missing. A similar problem arises for missing
data in event history analysis (e.g. Lawless and Yan. 1992). A worse complication is when
data are not missing completely at random (e.g. Little and Rubin, 1987). For example.
in a study of the efficacy of a new drug on lowering blood pressure, patients with higher
blood pressure may tend to drop out from the experiment. Ignoring the “reasons™ for
dropout will give a seemingly high efficacy of the new drug and lead to a biased conclusion.

These are not the only problems in longitudinal studies. Another problem we study
1s non-stationary process drifts due to interventions across time. There are still other
problems which include measurement errors in both responses and covariates. and data
collected at irregular time intervals.

However with all these kinds of complications. a major merit of longitudinal studies
is that we can differentiate the changes over time within subjects and differences among
subjects. Thus two basic objectives in longitudinal analysis are to characterize the degree
of heterogeneity across subjects and to assess the effects of covariates at a subject-specific
level. Other objectives depend on the type of data at hand. Specifically, with repeated
measurements taken at certain fixed discrete time points, we may be interested in char-
acterizing the response profile over time (Diggle et al.. 1994) while with recurrent event
data, we may be interested in estimation of the mean event recurrence times, prediction
of the next event occurrence, and analysis of rates (Lawless, 1995).

Motivating examples which highlight different problems and objectives in longitudinal

studies are discussed in the next section.
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1.2 Motivating Examples

Three datasets are used to motivate later developments, and illustrate different charac-
teristics and objectives in longitudinal studies. They will be studied in the rest of this

dissertation.

1.2.1 Automobile Manufacturing

The first two examples concern processes used in the production of automobiles. In each
case, certain important measurements on part of a car are taken at a sequence of several
stages of the process. The objective is to determine which stages contribute most to
variation in the part. and thus to help reduce variation. Lawless et al. (1997) discuss this

area In depth. The two datasets are shown in Appendix A.l.

Piston Machining

A piston is used in engines to impart motion by means of a piston-rod. It is a short
metallic cylinder which is closed at the top and open at the bottom, fitting closely inside
an engine cylinder in which it vibrates up and down, pushing out exhaust on the up-
stroke and intaking fuel on the down-stroke. The quality characteristics of interest were
four diameters, located at heights of 4 mm, 10 mm, 36.7 mm and 58.7 mm from the
bottom of the piston. The diameters were measured after each of four operations in the
machining process, the measurements being in millimeters, to a precision of 1 micron
(107% mm). Details of the study can be found in Agrawal et al. (1997).

It is clearly important to control the diameter across the body of the piston to ensure

a close fit and smooth movements inside the engine cylinder. However, note that the
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four diameter measurements are obviously correlated and thus separate modelling for
each single diameter is likely to be inappropriate. Simultaneous modelling of multiple
measurements is preferred to account for the interactions between the measurements.
Moreover, at each of the 4 locations on the piston, fewer than 15 distinct measured values
occur. Thus, accounting for measurement errors due to heavy rounding of measurements
is also desirable.

Our main interest focuses on determining the sources of variation contributing to the
diameters at the final stage and the variation transmitted across different process stages.
Major factors are (i) serial correlation of measurements across different process stages.
(i1) the presence of multiple measurements (the four diameters), and (iii) measurement

errors on the diameters.

Door Hanging

We consider an assembly process for rear doors of vehicles. There were seven stages of
the process, corresponding to seven operations: (1) the door hang, (2) paint the door. (3)

install door hardware, (4) striker installation, (5) striker fit, (6) install seals and chassis.

Rear Header Front Header
Kickup / /
Beltline

Figure 1.1: Locations of the four flushness deviation measurements of a rear door.
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and (7) final fit. The quality characteristics of interest relate to the flushness of the rear
door to the surrounding body of the car. This was quantified through four flushness
deviation measurements at locations called kickup, beltline, front to header, and rear
to header; see Figure 1.1. They were measured after each of the seven stages. A zero
measurement at any location means the door is perfectly flush, and positive and negative
measurements mean it is too high and too low respectively. Details of the experiment can
be found in Hamada and Lawless (1994) and Fong and Lawless (1997).

A major characteristic of the data is that not all measurements are successively taken
and around 46% of the data are missing. The missing data may be caused by the difficulty
in taking measurements while maintaining the flow of the whole production line but their
actual sources are not clear from the manufacturer. We will however assume the data
are missing in a random fashion. Moreover, all measurements were taken with a special
hand-held tool. Accounting for variation due to the instrument is thus desirable.

Primary objectives are to have rear doors as close to perfectly flush as possible after the
final stage and to learn about the origins and transmission of variation. Major factors are
(1) serial correlation across process stages, (ii) multiple measurements, (iii) the presence
of missing values, and (iv) measurement errors.

These two examples are discussed in some detail in Chapter 3.

1.2.2 Small Bowel Motility

Our small bowel has both absorptive and secretory functions and the muscular activity
(motility) of it is vital for gastrointestinal function in humans. In a study described by
Aalen and Husebye (1991), nineteen healthy individuals with age ranging from 22 to 50

were monitored for 13 hours and 40 minutes. from 5:45pm in a day to the next morning at
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7:25am. At 6:00pm, all individuals were treated with a standardized mixed meal. They
then entered a fed state with irregular contractions in the small bowel which is followed
by a fasting state with a regular cyclic motility pattern defined by three phases. However.
only “phase III” can be easily detected and is thus used to define the fasting cycle which
is termed the migrating motor complex (MMC). The first detected phase III is defined as
the start of the fasting state and recurrence times of phase III were continuously tracked
until the end of the experiment. Please refer to Aalen and Husebye (1991) for a detailed
description of the experiment. The data are reproduced in Appendix A.2.

In a closer look at the data, we can see that there are large variations of both within
and between subjects MMC periods. Subjects with different ages may have difference in
frequency of MMC periods. As the age of subjects or other subject specific information are
not recorded, the effects on subject heterogeneity remain unobserved. Also, accounting for
time trends or non-stationary drifts of a subject’'s MMC periods to assess the regularity
of MMC is also desirable. Moreover, removing the censored final MMC periods for each
subject will lead to estimation bias while treating them as if they were complete will lead
to underestimation of the overall mean of MMC period. Thus censored MMC periods
have to be handled properly.

Objectives of the study are to model the distribution of recurrence times. Major
factors are (1) possible correlation among recurrence times, (i) subject heterogeneity, (iii)
right censoring for the last recurrence time, and (iv) the possibility of time trends or
non-stationary process drifts.

This example is discussed in some detail in Chapter 4 and 5.
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1.3 Dissertation Plan

We will expand our discussions on the aforementioned topics in longitudinal studies in the
coming chapters. As suggested from the title of this dissertation, we will focus on using
state space models in capturing desired characteristics of longitudinal data and showing
how filtering methods can assist in facilitating statistical inference.

Chapter 2 introduces a general class of statistical models called a general state space
model and discusses several of its different common descendants in longitudinal studies.
Then a brief survey is given of the available tools for statistical inference with emphasis
on filtering methods. At the end of the chapter. we give background and motivation for
three specific areas that we will study in more detail in subsequent chapters.

Chapter 3 discusses methods of estimating the variation in product quality character-
istics measured in a multi-stage manufacturing process, e.g. the two automobile manufac-
turing examples in Section 1.2.1. A multivariate Gaussian Markov process is used to model
the variation in characteristics. Methods that deal with measurement errors and missing
data are introduced through a state space formulation. Estimation of model parameters
is developed through a filtering approach and the use of the parametric bootstrap.

In Chapter 4, we identify two different types of Normal-based random effects models
for recurrent events which are given the names: autocorrelated and dynamic random
effects models. Their similarities and differences are pinpointed and guidelines for their
use are provided. The Small Bowel Motility Data is analyzed using the models and
filtering methodology.

Chapter 5 studies a dynamic proportional hazards model to account for subject hetero-
geneity and non-stationary process drifts for times between recurrent events. Parametric

inference on hyperparameters is carried out by maximizing the likelihood function via fil-
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tering. This is numerically tractable. a property that is not shared by most hazard-based
random effects models. Properties of the model and estimation procedures are studied.

The last chapter discusses some further potential research.



Chapter 2

State Space Models and Filtering
Methods

2.1 General State Space Models

Before we introduce a general class of state space models and discuss the use of filtering
methods in longitudinal studies, we need some notation to describe the anticipated data.
We consider the situation where measurements are taken repeatedly on an individual at
each of several distinct time points. Suppose we studied N subjects and measurements
were taken at n; time points from subject ¢ ( = 1,2,..., N). Let y;; be a vector
of the jth (7 = 1.2, ..., n;) set of measurements taken from subject ¢ and z;; be a
corresponding vector of measured covariates. This is a standard type of longitudinal data.
The automobile manufacturing data in Section 1.2.1 have items (subjects) measured at a
given sequence of process stages (indexed by j), so that n; is a constant. The recurrent

event data in Section 1.2.2 can also be described in this way. It has y;; as the jth

10
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recurrence time but the number of event recurrences (= n;) varies with different subjects
stochastically. Throughout this chapter. we will assume this basic notation and more will
be specified if needed. Also, for brevity, indices 7 and j are assumed to run from 1 to N

and 1 to n; respectively unless otherwise specified.

Now. a general state space model (GSSM) is defined by

1. an observation model for

j—1
yii | Y97 Zije 25

where Yi’.'1 = {1, Yiz, - -- . Yij—1} denotes the set of all observations of subject z
up to and including the (j — 1)th one, ¥.° = null set, and z;’s, called states. are

unobservable random variables whose dynamics follow
2. a transition model for z; |z j-.

There are four basic assumptions for GSSMs by which the joint density of y;;'s and z;'s

can be generally written down. They are enumerated as follows.

(A1) The covariate process {z;;} is non-stochastic; otherwise we condition on its observed

values.

(A2) Responses between different subjects are conditionally independent, i.e.

N
f(ylj7 Yais -+ s yNJ'le—lr XJ- ZJ) = Hf(yijly::]_l’ Xf' Zr-.-,)

=1
where Y71 = {}’15_1, e YA’}—I}, and Z7. Z7, X7, Xf are similarly defined.

(A3) At occasion j and given all the past responses, Y7 ~!, current responses depend only
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on the current state and covariates, i.e.

Flys; | Y71 X2, Z8) = flys | Y770 2440 2i5)

(A4) The transition model is first order Markovian, i.e.

Flz | 21 Y7 = flzi] zige)-

Note that higher order Markov dependency can be transformed to first order by

augmenting z;; by its lagged variables.

Note that the independence assumption of the transition model on past responses can
be relaxed and this extension is considered in Chapter 5. Under the model. measurement
or response vector y;; is allowed not only to depend on its past observations and some
covariates but also on some unobserved effects, possibly due to measurement errors or
missing covariates, governed by the transition model. This class of GSSMs is quite gen-
eral and provides a unifying framework for models in longitudinal studies. However. an
example which does not belong to this class will be considered in Chapter 5. This section
will present several fruitful classes of commonly used longitudinal models which will be
frequently referred to throughout this dissertation. Most of them assume the Normal
distribution assumption for the sake of convenience only. It can be replaced by other

distributions whenever plausible, as directed by the references cited in the discussion.
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2.1.1 Normal (Gaussian) State Space Models

Linear state space models with Normal distribution assumptions can be derived from a

GSSM as

i | Y77' 235, 25 ~ N(Hjzij + Gjzij. T5)

zijlzijo1 ~ N(Bjzij_i1. Qj)

where H;, G; and B; are design matrices specified by some unknown parameters. The
initial z;5 can either be defined as a constant or another independent Normal variate.
This kind of model has been popular in time series forecasting (Harvey. 1989). Examples
of formulating some time series models into a linear state space form can be found in
Liitkepohl (1993). It has also numerous applications in longitudinal studies. e.g. growth
curve analysis (Wilson, 1988), longitudinal count data (Jergensen et al. 1996a, 1996bh).
Other applications can be found in the books by Jones (1993) and Fahrmeir and Tutz
(1994). The model assumes all responses are continuous and unrestricted, possibly after
transformation in order to justify the Gaussian distribution assumption. For responses
which are discrete (e.g. number of defective items in a batch in quality control), nominal
(e.g. type of infection among a number of categories), or ordinal (e.g. test results that
are classified as normal, borderline and abnormal) in nature, the Gaussian assumption is

far from being reasonable and the following models are usually considered.
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2.1.2 Dynamic Generalized Linear Models (DGLMs)

A dynamic generalized linear model has

g(pss) = Cij2i; + Hjzsj. pii = By | Y77 2450 zi5).
zij | zijo1 ~ N(Bjzij1. Q). zio ~ N (Aio. Qo)

where the design matrix Cy; is a function of Y7™! and z;;. and g is a monotonic and
differentiable link function. It includes the Gaussian linear state space model when g
is the identity function and the distribution of y;; | Yij—l, Tij. z;i; is Gaussian. Note that
the distribution assumption in the observation model, though not specified above is usu-
ally assumed to come from the exponential family. Through this. together with the link
function. discrete and categorical responses can be modelled. for example. a Poisson dis-
tribution with a logarithm link for counts. or a Multinomial distribution with a logistic
link to the marginal or cumulative probabilities for nominal or ordinal responses. Fur-
thermore. for the transition model. other dynamic processes other than the additive and
Gaussian assumption are also possible (e.g Jorgensen et al.. 1996a; Yue and Chan. 1994).

The ancestral model of DGLM is the dynamic linear model (with g as the identity
function) defined by Harrison and Stevens (1976). It was then studied by West et al.
(1985) through a Bayesian analysis using discounting to get rid of the unknown error
variance In the transition model; refer to Section 2.2.3 for more Bayesian methods on the
model. Thereafter, applications on longitudinal count data (Harvey and Fernandes. 1989:
Singh and Roberts. 1992; Lambert. 1996b, 1996a), competing risks models with discrete
duration times (Fahrmeir and Wagenpfeil, 1996), and recurrent event data (Smith and

Miller. 1986; Yue and Chan, 1994) were considered. Use of the model in handling random
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effects and serial correlation in longitudinal studies. especially on recurrent events. has
not been yet fully studied. The model is also described in the books by Lindsey (1993)
and Fahrmeir and Tutz (1994).

2.1.3 Generalized Linear Models (GLMs)

Diggle et al. (1994) and Lindsey (1993) described three extensions of GLMs (McCullagh
and Nelder, 1989) for longitudinal studies: namely, marginal, random effects and condi-
tional models (we use conditional model instead of “transition model” as in Diggle et al.
(1994) to avoid confusion with the transition model in GSSMs). They belong to the class
of GSSMs or DGLMs. All of them are defined by a linear regression on the mean of the
responses through a known link function g but they have different domains of application.

Marginal models separate the regression of the mean response from the within-subject

association. They assume

9(pi;) = zi;8: ti; = E(yij | zs5) (2.1)

and the within-subject covariance, Cov(y;r.yi,) is assumed to be a function of y;,. i, and
possibly some additional parameters. The model is appropriate when we are interested
in population-averaged inference, for example. a study of the average difference between
the effects of two treatments in clinical studies. In other words, we are interested in the

average behaviour over the whole population at various time points.
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Random (Mixed) effects models account for inter-subject heterogeneity by specifying

g(pwi;) = zB+wiz = Eyleyg. z) (2.2)

zz ~ N(0.%)

where w;; is usually a subset of the covariate z;;. The z;'s are subject-specific effects
assumed to be independent and identically distributed (i.1.d.}). This class of models is also
called the generalized linear mixed models (GLMMs) (Breslow and Clayton. 1993). Note
that given z;’s. the responses y;;'s are independent and thus within-subject association is
solely induced by the random effects. These models are appropriate when we are interested
in subject-specific effects or in accounting for extra inter-subject variation. perhaps due
to missing covariates. There is a huge literature on these models (e.g. see McCulloch.
1997).

Conditional models. unlike (2.1) and (2.2). make the within-subject association explicit

in the regression equation as

M
glus) = 2B+ D) [ a)s iy = By | Y77 =) (2:3)

m=1

where f,.'s are known functions depending on some unknown parameter . The condi-
tional variance Var(y;; | Y77}, zi;) is assumed to be a function of g;;. Modelling stochastic
dependence of a single subject’s responses directly. rather than by random effects. is of-
ten desirable. A merit of using (2.3) is that all successive conditional probabilities for
computing the likelihood function can be written down directly when a distribution is

adopted.
Although Models (2.1)-(2.3) stand on different objectives and conceive different struc-
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tural response behaviour, the fixed effects 3 from them have the same interpretation when
g is the identity function (Diggle et al., 1994). More comparisons are discussed in Diggle
et al. (1994) and Zeger and Liang (1992). Note however that these models are only
basic ingredients on which more useful models can be constructed. For example. we can
combine a marginal model with an exponential correlation structure and a random effects

model as

Yi; = z:-j,B + wéjb,- + e b~ N(0, w?), ey~ N(0, o2). (2.4)

e; = deijo1+ey; e ~N(0, 0%, |9 <1

where w;; is a subset of the covariate z;;. The model still falls in the class of GSSM.
The b; is the subject-specific effect and ¢ measures the intra-subject correlation. The
initial variance parameter o7 is usually chosen as 0 or a%/(1 — ¢°) to give an equilibrium
transition process. A major model characteristic is that the marginal correlation between
any two responses of a subject gets smaller exponentially as they are further apart which.
in the presence of random effects, converges to a non-zero positive constant. This model
will be revisited in Chapter 4. References on the model are Wilson (1988), Louis (1988).
and Chan and Kuk (1997). In addition, Sutradhar (1990) considers a similar model with

nested subject effects.

2.1.4 Frailty Models

Many models involving survival times or times between events are considered in terms of

hazard functions (Clayton, 1994). That is. we model y;; by its hazard function and often
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we employ a proportional hazards model (Cox, 1972)
hijlyis) = 256" % ho(ys;) (2.5)

where hg(-) is called the baseline hazard function. It is the hazard function when zy; =0
and z;; = 1. The z; is often called the frailty because, for example when y;;'s are the
recurrence times of a certain circuit failure, susceptibility to failure increases with z;;. One
objective in the thesis is to consider dynamic frailties for (2.5). For example, to model

inter-subject heterogeneity and non-stationary process drifts. we might define
zijer = Y7 2y iy ~ Beta($ry, (1 — p)ki;) (2.6)

where k;; = ¥r;;_; + &, 6;; i1s 0 when ¢ = 7 and 1 otherwise. k; = 1 + 1/w?, z; ~
Ga(Zs. %) and Ga(a.b) denotes the Gamma distribution with mean a/b and variance
a/b?. Equation (2.5) and (2.6) together define a dynamic frailty model which is clearly
a sub-model of GSSMs. It is described in Yue and Chan (1994) and is fully discussed in
Chapter 5. The model includes some special sub-models which have been used often in
the literature. In particular, when w? — 0, all survival times become independent and
ordinary survival analysis methods (e.g. Lawless, 1982) can be used. When ¢ — 1, (2.6)

becomes

1 1
zij =z ~ Ga(—, —)

which together with (2.5) defines the ordinary Gamma frailty model.
A survey of frailty models on survival and event history analysis is given in a series

of review papers by Aalen (1994), Pickles and Crouchley (1994) and Hougaard (1995).
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Recently, Petersen et al. (1996) constructed frailty models for clustered samples by letting
subjects within a cluster share some frailties. For example, in survival analysis of twins.

we can have
REV(E) = (217 + 2R (t) and AP(E) = (= + )R (1)

where hf.j) and h((,j ) are the hazard and baseline hazard for the jth (7 = 1, 2) one of a
twin and z{") (k = 0, 1, 2) are the frailty variables. Ng and Cook (1997) and Xue and
Brookmeyer (1996) provide other recent examples.

The hazard-based models (2.5) are particularly useful in modelling recurrent event data
when the covariates z;; are time-dependent, in which case distribution based approaches
are hard to use. Asin the GLMMs, conditional on z;;, all recurrence times are assumed
to be independent for each subject, so they form a renewal process. Use of this kind
of proportional hazards models has been quite popular in the literature of longitudinal
studies (e.g. Aalen and Husebye. 1991). Non- or semi-parametric analysis for the models
are generally pursued through a counting process approach for which details and more
references can be found in the book by Andersen et al. (1993). For parametric analysis.
the likelihood function is often intractable (e.g. Clayton, 1994). A class of dynamic frailty

models with a tractable likelihood is studied in Chapter 5.

2.2 Filtering and General State Space Solutions

With reference to the basic objectives of longitudinal studies in the first chapter. we are
interested in things like estimating fixed covariates effects, inter-subject variability, intra-

subject correlation. etc. All of these can be parametrically modelled into the observation
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and transition models of a GSSM. Estimation of parameters can be assisted by filtering
methods originally proposed by Kalman (1960), and Kalman and Bucy (1961) to estimate
the unobserved state z;; based on Y7 for some T > 0 under a Gaussian linear state space
model. In general, special cases are given the names filtering (T = j), prediction (T < j)
and smoothing (T' > j). The corresponding estimates are called filters, predictors and

smoothers. The filtering step evaluates. by Bayes Theorem.
Flzi | Y7 i) o< flysi | Y77 mig, 25) f(25 | Y77 25) (2.7)
which iterates with the prediction step
Flag | Y7 25) = [ Flo 30go0) aagea | V27 i (238)

to get all the filters and one-step predictors for later computing the smoothers. Note that
we have used f(-) as a generic function for the probability density function and distinctions
between the random variables referred to are made explicit in the function arguments.
Now, the unobserved state z;; is estimated by the smoothing density f(z;|Y. z;;) com-
puted recursively from f(z;|Y?, z;;) and f(zije1|Y?. 2iji1). A smoothing formula is
given by

fzig41 ] 25)
flzie | Y7, Zijer)

flzi | Y, mi5) = flzi| Y7 :c;,-)/f(z,-.,-“ DZREIY dz; ji1;
see Kitagawa (1987). For estimation and for prediction of y;;’s, we need to get f(y;; | Yf‘1 Tij)
by using certain formulas based on the z;;’s, e.g. equation (2.12); see also Figure 2.1.

For Gaussian linear state space models, the celebrated linear Kalman filter (Kalman,
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1960; Kalman and Bucy, 1961) can be easily implemented. There are several smoothing
algorithms but the classical fixed interval smoothing algorithm can be found in Ander-
son and Moore (1979). Recently, Koopman (1993) developed a faster and more efficient
smoothing algorithm when the Gaussian distribution assumption is not appropriate. For
non-Gaussian linear state space models, the Kalman filter still provides the best linear
predictor but not necessarily the optimal forecast in the sense of minimizing the mean
square errors. In general, with non-Gaussian and nonlinear structure, integrations in
(2.7) for computing the normalization constant, and (2.8) are hard to compute math-
ematically. Various approaches such as piecewise linear approximation of all densities
when the dimension of the states is small (in Kitagawa, 1987), Gibbs sampling on the
posterior density of the states, use of posterior modes under a Gaussian linear transition
model (in Chapter 7 and 8 of Fahrmeir and Tutz, 1994), and estimating functions without
distributional assumptions on the observation and transition models (in Naik-Nimbalkar
and Rajarshi, 1995) are proposed. More approximate filtering and smoothing methods
can be found in the books by Anderson and Moore (1979) and West and Harrison (1997).

The GSSMs provide a unifying framework for many important models used in lon-
gitudinal studies. An advantage of using filtering for statistical inference is, because of
its recursive nature, the high efficiency in handling data with lots of measurements per
subject. Different problems with specific estimation approaches tailored to different sub-
classes of GSSMs have been emerging in the literature. A main focus of this dissertation is
to explore how filtering works for estimation under different types of state space models.

Our main interest is in inference procedures for longitudinal models. We now discuss

approaches to estimation of parameters in state space models.
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prediction step

(oo s, Y27 [ 1 Y] g | 997 b s | 727

filtering step

Figure 2.1: A pictorial outline of the Bayesian scheme in West and Harrison (1997) for
DGLMs (m:; = g(pi;))-

2.2.1 The Expectation-Maximization (EM) algorithm

As the states of a GSSM are unobserved. it is natural to consider the well-known EM
algorithm proposed by Dempster et al. (1977) to tackle problems with unobserved or
missing values. In our applications, observed data refers to {y;;} and the “complete” data
refers to {y:j. z;;}. We assume that all covariates z;; in the model are observed. Let 4
be a vector of the unknown model parameters. Suppressing the dependence on z;;'s. the

log-likelihood based on the complete data is

N n;
(0 yi5's, zi5's) = Z {Z [log f(uyi; | Y77 zij, 2i;) + log f(zij | z:.j-1)] +log f(zio)}
i=1
(2.9)

=1

The EM algorithm is a recursion consisting of a E-step and a M-step. The E-step computes

the conditional expectation

M(016%) = B(L. | ys;'s: 6%)) (2.10)



CHAPTER 2. STATE SPACE MODELS AND FILTERING METHODS 23

where §*) is the estimate of 6 at the kth iteration. The M-step then maximizes M (8]6%)
at § = §*+1)_the next iterated estimate of #. The recursion then continues until conver-
gence. The M-step is usually easy to handle but the E-step is the most critical concern for
deciding whether the EM algorithm is applicable. In (2.10), the expectation may involve
some functions of the unobserved states. Accordingly, we are concerned with the posterior

density of z;;’s which relates with [, by

log f(zi;'s |yi;'s) = L(8; yij's. zij’s) + (65 yi5's) (2.11)

where [, is the log-likelihood based on the observed data obtained by integrating out the
z;;'s in l.. There are two main approaches in the literature. We can use either. if z;'s
appear linearly in [., the posterior means of the z;;’s which are the official requirement
of the E-step, or, more generally, the posterior modes by maximizing (2.11) directly with
respect to the z;;’s with 8 fixed.

Posterior means for the simplest Gaussian linear state space model are easily ob-
tained from standard fixed interval smoothing and the linear Kalman filter (Harvey, 1989:
Jorgensen et al., 1996a) as M(8|6%*)) is a linear function of the first two moments of
the states z;;'s. Extension to incorporate measurements taken at irregular time inter-
vals is straightforward and discussed in Jazwinski (1970) and Jones (1993). For DGLMs
and frailty models, conjugate-prior posterior Bayesian analysis is possible resulting in the
same form as the standard Kalman filter recursion (West et al., 1985; Smith and Miller.
1986). In general, when /. is non-linear in the z;'s, computing (2.10} resorts to numer-
ical integration such as the Gauss-Hermite quadrature technique (Schnatter, 1992) but

numerical effort increases exponentially with the dimension of the states. Instead. Monte
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Carlo methods, e.g. Gibbs sampling, are used (Clayton, 1991; Fahrmeir and Tutz. 1994:
Chan and Kuk, 1997). Estimation of standard errors can be approached by bootstrapping
(e.g. Stoffer and Wall, 1991; Efron and Tibshirani, 1993), the supplemented Expectation-
Maximization (SEM) algorithm which uses the convergence rate of the EM algorithm to
estimate the “missing information™ from using the Fisher information computed from (..
(Meng and Rubin, 1991), or Monte Carlo approximation to the complete and missing in-
formation matrices from which the sum leads to the observed information matrix (Louis.
1982; Chan and Kuk, 1997).

Alternatively, when working with DGLMs, integration in (2.10) for computing the
posterior means and covariance matrix can be avoided by approximating them with the
posterior modes and curvatures (defined as the negative inverse of the second derivative
of l.) respectively. They are obtained by maximizing /. in (2.9). However, direct maxi-
mization is inefficient when n; is large and several recursive posterior mode filtering and
stmoothing algorithms are derived by using Gauss-Newton (Fisher scoring) iteration to [,
(Fahrmeir and Kaufmann, 1991; Fahrmeir and Tutz, 1994). Clearly, the posterior modes
coincide with the posterior means under the special case of a Gaussian linear observation
model. For GLMs with random effects (GLMMs), the resulting covariance estimate of
¥ corresponds to the restricted maximum likelihood (REML) estimate (which will be
discussed in the next section). However, the resulting EM-type algorithm from posterior
mode filtering and smoothing relies on the appropriateness of the Gaussian linear transi-
tion model. For a highly skewed transition model, e.g. Gamma transition as in Jorgensen
et al. (1996a), there will be great discrepancies between the posterior modes and means.
and no guarantee that the recursion will converge.

In view of our own applications, preference will be given to the official posterior means
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as it is more natural and covers a wider range of distribution assumptions. But the main
disadvantage is that the integration may be hard to perform and Monte Carlo approx-
imation within each EM iteration may make it extremely slow to converge. However.
on the other hand, estimation can be directed to the likelihood based on observed data
l, obtained as a by-product of filtering (Figure 2.1). This will be discussed in the next
section. But the main advantages of using the EM algorithm over direct maximization of
the likelihood based on observed data are that we only need to manipulate (2.9) which is
usually much simpler as we do not need to integrate out the z;’s in I, and that solutions

of the M-step can often be performed with standard statistical software.

2.2.2 Direct Likelihood Methods

By direct likelihood methods, we mean methods that work directly on the likelihood to
be maximized. The EM algorithm is an indirect method as we work on the likelihood
based on complete data with the aim to maximize the observed data likelihood. Now, the
likelihood can be the one based on either observed or complete data.

To compute the observed log-likelihood [,, the successive predictive densities needed

Flys | Y778 ) = /f(y,-,- | Y77 i, 25) 22 | Y770 mij)dz (2.12)

which can be obtained as by-products of the filtering recursion in (2.7) and (2.8) (Fig-
ure 2.1). If all the densities in (2.12) can be at least numerically evaluated. maximum like-
lihood estimates can be obtained by using common optimization algorithms, e.g. Quasi-

Newton Raphson algorithm which has a fast convergence rate if the corresponding first
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derivative is tractable; otherwise derivative-free optimization algorithms such as Nelder-
Mead Simplex method (Press et al., 1986) are often more feasible. Availability of standard
errors depends on the effort in evaluating the second derivative of the log-likelihood. This
is usually high so we wish to resort to simulation methods such as parametric bootstrap-
ping. However, as mentioned earlier in this section, integrations in (2.7), (2.8) and (2.12)
may be hard to pursue. For DGLMs. numerical integration techniques or Monte Carlo
methods have been studied (e.g. Chapter 7 and 8 of Fahrmeir and Tutz. 1994; Chapter 15
of West and Harrison, 1997), or we can put appropriate conjugate prior and posterior dis-
tributions assumptions on the model from which successive predictive densities in (2.12)
can be written down mathematically (Smith and Miller, 1986; Harvey and Fernandes.
1989). A Bayesian approach from Chapter 4 and 14 of the book by West and Harrison
(1997) for DGLMs is depicted in Figure 2.1.

For GLMMs in (2.2), the likelihood based on complete observation (assuming all z;'s
are known) is sometimes maximized with respect to the fixed effects 8 and random effects
z;’s to get the so-called best linear unbiased predictors (BLUPs) for variance components
(McGilchrist, 1994). This is in contrast to the indirect posterior mode estimation when the
likelihood based on complete observation is maximized with all variance components fixed
in each M-step (Fahrmeir and Tutz, 1994). However, the BLUPs are asymptotically biased
and inconsistent. Adjustment can be made to the BLUPs to approximate the REML
estimates which have the variance components estimates corrected by an appropriate
degrees of freedom resulting in estimates with smaller bias (Schall, 1991; McGilchrist,
1994; Breslow and Clayton, 1993). Direct bias adjustment of BLUPs is also considered
by Kuk (1995) and McCullagh and Tibshirani (1990) using Monte Carlo iteration and

bootstrapping respectively. Kalman filtering can also be used for “prewhitening” to obtain
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REML estimates under linear mixed effects models (Wilson, 1988; Tsimikas and Ledolter.
1994). The validity and properties of most of these methods are not clear, but have been

investigated for a few models; the longitudinal problems have not been studied much.

2.2.3 Bayesian Methods

In Bayesian analysis of longitudinal data. known prior distribution is imposed on each
unknown parameter, and we want to compute the posterior density. Except under some
rather restrictive assumptions, the posterior density is intractable and Monte Carlo meth-
ods are used. A popular one is the Gibbs sampler which is an iterative resampling scheme
in a complete set of conditional posterior densities to approximate a marginal posterior
density. An overview on the Gibbs sampler and other sampling methods is given by
Gelfand and Smith (1990).

For GLMMs in (2.2) when the observation model assumes an exponential family dis-
tribution, the marginal joint posterior density of # and ¥ can be approximated by the
Gibbs sampler (Zeger and Karim, 1991). Carlin et al. (1992) considered the same ba-
sic technique on a special class of non-Gaussian and non-linear state space models but
the computing time may not be reasonably affordable. Carter and Kohn (1994. 1996)
developed more efficient Gibbs sampler based sampling schemes on a state space model
which is Gaussian and linear when conditioned on a set of indicator variables. Another
elegant Gibbs sampler based sampling scheme has recently been proposed on a Bayesian
version of DGLMs (Section 2.1.2) when g(;;) is treated as random and follows a Gaussian
distribution, i.e.

g(pi;) ~ N(Cijzij, Bj):
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see Cargnoni et al. (1997). However. even with current computing capacity, reducing
convergence time of Monte Carlo methods remains a challenging issue. More efficient

algorithm on broader class of models is still desirable.

2.2.4 Estimating Functions

We will mainly focus on maximum likelihood estimation in this dissertation but we briefly
mention the use of estimating functions due to their numerous applications in the sta-
tistical literature. An estimating function is a function of observations and unknown
parameters which is said to be unbiased if its marginal expectation is zero (Godambe.
1985; Thavaneswaran and Thompson. 1986. for discrete and continuous stochastic pro-
cesses respectively). Inference for parameters is pursued by searching for the optimal
estimating function among a class of unbiased estimating functions. Some optimality
criteria are given in Godambe and Thompson (1989) which, roughly speaking, amounts
to having the tightest confidence bounds for the estimates. In usual maximum likelihood
analysis. optimal estimating functions often coincide with the score functions. In cases
when iteration is needed to solve the score functions, good initial guesses can usually
be easily obtained from the class of unbiased estimating functions. Optimal estimat-
ing functions also have promising uses in semi-parametric models when we do not have
strong distribution assumptions. Some examples include non-linear time series estimation
(Thavaneswaran and Abraham, 1988), and obtaining filtering and smoothing algorithms
generally for non-Gaussian and nonlinear state space models (Naik-Nimbalkar and Ra-
Jarshi, 1995). Thompson and Kaseke (1995) has a brief review of unbiased estimating
functions, with motivation from the EM algorithm, for estimation in GSSMs.

Another similar class of estimation methods which is proposed by Liang and Zeger
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(1986) and Zeger and Liang (1986) is often called generalized estimating equations (GEEs).
It has also been popularly entertained to estimate fixed effects in GLMs with correlated
responses and possibly in the presence of random effects. A nice overview of using GEE
in GLMs can be found in Zeger and Liang (1992). For GLMs with independent responses.
the GEE reduces to a “quasi-likelihood” equation which corresponds to an optimal esti-
mating function. A more general definition of quasi-likelihood equations for dependent
responses and its application in stochastic processes are given in Godambe and Heyde
(1987). However, GEEs are only optimal estimating functions under some restrictive sit-
uation on the marginal covariance structure (Liang et al., 1992; McCullagh and Nelder.
1989. Chapter 9). For GLMMs. apart from estimating fixed effects, predicting random
effects and estimating between subject variability can be performed through a three-stage
iteration scheme using GEE and estimating functions (Waclawiw and Liang, 1993). More

references on GEE can be found in Diggle et al. (1994).

2.3 Applications in Longitudinal Studies

In this dissertation, we will focus on three main areas in longitudinal studies: missing
values and measurement errors in multiple responses, modelling recurrent events with
random effects, and differentiating between different random effects models. The following

sections will give a brief background and introductory discussion on each of these topics.
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2.3.1 Missing Values and Measurement Error in Multiple Re-
sponses

Missing values is an important issue in longitudinal studies which brings problems that
would not exist in cross-sectional studies. Let y be a vector representing all responses
as if they were all observed, and partition y = (y{°),y™)) where y'® are the observed
responses while y(™) are those which are actually missing. Then three types of missing
data mechanisms can be distinguished according to Little and Rubin (1987). namely.
(1) missing completely at random (MCAR) when the missing data mechanism. R. does
not depend on y!° and y'™): (ii) missing at random (MAR) when R depends on y{°
only: and (iii) informative when R depends on both y® and y‘™). MCAR and MAR
are also collectively called ignorable or non-informative missing data mechanisms wherein
likelihood based inference is unaffected due to the decomposition of the likelihood function
separately into one based on the observed responses and the other based on the missing
data mechanism. Only the likelihood based on the observed responses is used in statistical
analysis.

Throughout this dissertation, we assume all missing responses are ignorable or non-
informative. For the two sets of automobile manufacturing data mentioned in Section 1.2.1
of Chapter 1. the chief aim is to model production variation, added and transmitted.
across different process stages while incorporating missing values and measurement er-
rors in the multiple responses. For univariate responses without missing values. a first
order autoregressive model can be used to analyze the variation transmission process with
measurement errors (Lawless et al.. 1997: Agrawal et al., 1997). For multiple responses
with some or all values not measured. we can use the EM algorithm under a first order

multivariate autoregressive model with the E-step carried out by directly taking condi-
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tional expectations on the vector of responses from each vehicle (Hamada and Lawless.
1994). However, computational effort increases exponentially with the size of the multiple
measurements at each process stage and the total number of process stages. More effi-
cient estimation while handling missing values and measurement errors is desirable and

is studied, on Gaussian linear models. in Chapter 3.

2.3.2 Modelling Recurrent Event Data

The small bowel motility data mentioned in Section 1.2.2 of Chapter 1 is a typical set
of recurrent event data. The last recurrence time for each subject is censored at the
planned end of surveillance. That is. the last recurrence time is the time to end of
surveillance instead of the time to next event recurrence. Renewal processes. in which
the times between successive occurrences are independent and identically distributed.
are often used to analyze such data. Inter-subject heterogeneity or random effects come
naturally in longitudinal studies when the subjects are a random sample from some larger
population and some important covariates are missing or there are measurement errors
incurred in some time-independent covariates (Pickles and Crouchley. 1994). Modelling
within-subject correlation in observed measurements is another fundamental objective
and 1s also a consequence of using subject-level random effects.

Common parametric regression models for lifetime data (Lawless, 1982) can be clas-
sified into accelerated life models and proportional hazards models. One of their main
distinctions is that the effect of explanatory variables is directed to a function of the
recurrence time in accelerated life models and to the hazard function in proportional haz-
ards models. Aalen and Husebye (1991) compared the use of a Normal-based (GLMM)

and a hazard-based (Gamma frailty model) model on recurrent events in their extension
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of renewal processes. These models introduce inter-subject variability and intra-subject
covariability (that results in dependencies between a subject’s recurrence times). Also.
correlation between recurrence times of a subject is induced by subject-level random ef-
fects. Following these, we will discuss. in a more general framework. the Normal-based
and hazard-based models in accounting for inter-subject heterogeneity and within-subject
correlation.

A merit of using hazard-based models for recurrent events is the convenience of in-
corporating time-dependent covariates. For a proportional hazards model with a Gamma
frailty, maximum likelihood estimates can be easily obtained (Aalen and Husebye. 1991).
However, with a log-Normal frailty. the likelihood is no longer tractable and estimation
strategies typically resort to numerical integrations or Monte Carlo methods (Clayton.
1994; Ng and Cook, 1997; Xue and Brookmeyer. 1996). Thus. with emphasis on propor-
tional hazards models and additionally allowing non-stationary drifts., we would like to
study the use of filtering and smoothing type methods by which the likelihood function
and subsequent event recurrence times can be easily evaluated and predicted. This is

investigated in Chapter 5.



Chapter 3

Missing Data and Measurement

Error in a Multivariate AR(1) Model

3.1 Introduction

In order to reduce variation in manufacturing processes consisting of several discrete
stages it is often worthwhile to study the variation that is added at different stages. and
whether that variation is transmitted downstream to subsequent stages. In particular.
there may be certain stages where considerable variation originates, and other stages that
filter out variation introduced upstream. By understanding how variation is added and
transmitted across the stages of a process we can decide where to concentrate variation re-
duction efforts. The piston machining and door hanging processes taken from automobile

manufacturing in Section 1.2.1 are two examples.

33
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Lawless et al. (1997) present methods for analyzing the transmission of variation in a
univariate characteristic, based on a first order autoregressive model. In order to carry out
such analysis it is necessary to be able to track units (in our examples these are vehicles)
through the manufacturing process so that measurements may be taken on the same unit

at different stages. Lawless et al. (1997) assume that a univariate quality characteristic

Yy 1s measured at each of T process stages t = 1.... ,T, and consider the model
h = mte (3.1)
Yy = oy + ﬁt?/t-l + e t=2.... . T (3.2)

where e, ~ N(0.02) and are independent. This first order Markov. or autoregressive
AR(1) model can often be justified in manufacturing processes. and it leads to the follow-

ing variation transmission formula for o7 = Var(y,):
o} = Biol | + ol . (3.3)

The first term on the right side of (3.3) represents variation transmitted from stage £ —1 to
stage ¢, and the second term represents variation added at stage t. Lawless et al. (1997)
fit models (3.1) and (3.2) to process data and discuss how to use (3.3) recursively to assess
variation transmission across stages t = 1,...,T of a process.

In this chapter, we extend the techniques of Lawless et al. (1997) in several directions.
First, we consider multivariate measurements, and in particular, deal with a multivariate
version of (3.1) and (3.2). We will refer to the model as an AR(1) model, but it should be
noted that T is generally small and the model is non-stationary, unlike many applications

involving AR(1) models. Second, we deal with missing data; this is important since it is
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often difficult to measure all characteristics on every unit in a study that is undertaken
on-line, i.e. while the manufacturing process is operating. Finally, we incorporate mea-
surement error into the multivariate AR(1) model; this is important because, as discussed
by Agrawal et al. (1997) and Lawless et al. (1997). if substantial measurement error is
ignored the results of the AR(1)-based variance transmission analysis are misleading.
Section 3.2 of the chapter introduces the multivariate AR(1) model and incorporates
measurement error. Section 3.3 is the core of the chapter and presents methodology for
fitting the model to process data; this is done by using a state space formulation that
leads to efficient computational procedures. Section 3.4 illustrates the methodology on the
piston machining and door hanging processes. and Section 3.5 concludes with comments

and points that deserve further study.

3.2 An AR(1) Variation Transmission Model

The methods that we are considering are designed for use on a stable process. That is.
the model (3.4)-(3.5) applies to units manufactured over time, and the parameter values
in the model do not change over time. We assume that sequential measurements on a
random sample of n units from the process are available. As discussed by Lawless et al.
(1997) for the univariate case, we consider a (non-stationary) first order autoregressive.
or AR(1), model for the C x 1 vector of multivariate measurements on z; on unit : at

staget (¢ =1,...,T; i=1,..., n). This can be expressed as

zZi = M, +eqn (3.4)

zy = A+Biziga+e, t=2.....T (3.5)
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where e;; ~ Nc(0.>", ), t = 1.... .T: the notation y ~ N,(u. ) means that y has a p-
variate normal distribution with mean vector ¢ and covariance matrix ). The dimensions
of A; and B, are C x 1 and C x C, respectively. It is assumed that the measurements for
different units are independent.

The marginal means and covariance matrices for the z;'s are given by

E(Zil) = Hy. E(zit) =My = At + Bt’l’t_lt t= 2r- A (36)

Var(z;) = Ze,* Var(za) =) =By, Bi+Y .t=2...T (37)

In addition

Cov(zis. Zit) Z Z Bl ...Bl (s <t) (3.8)

The vector e; and its covariance matrix >, represent variation added at stage ¢. whereas
B: Y., , B; represents variation transmitted from stage ¢ — 1; in this regard the right
hand portion of (3.7) is the multivariate generalization of (3.3). The intercept A, allows
the means p; = E(z;) to vary across t = 1,....T. In a case like that in Example 2, for
instance, a stage may reduce the diameters from the preceding stage substantially. An
alternative but equivalent parameterization is E(zy|zis—1) = pe + Be(zip—1 — ppe—1)-

In practice there may be significant measurement error, that is, variation in the process
by which the z; = (zu,... , Ziee) are measured. As discussed in Section 3.5, this can
invalidate the methods described herein if it is ignored, so we consider it explicitly. We

let y;, represent the measurement of z; and assume that

Yy =2 +0u. t=1....T (3.9)



CHAPTER 3. MISSING DATA AND MEASUREMENT ERROR 37

where the d;;’s are mutually independent N.(0, Y ) random vectors and are independent
of the e;;’s in (3.4) and (3.5). It should be noted that the y,’s do not follow an AR(1)
model.

The motivation for considering the model (3.2) is to examine the sources of variation
in the measurements 2;7 at the final stage. This may be done by working backwards
from the final stage: (3.2) for ¢ = T indicates that the covariance matrix ), may be

decomposed into variation transmitted from stage T — 1 and variance added at stage T'.

ZT = BTZT_IB} + Ze, . (3.10)

Similarly, > ,_, may be decomposed and, working backwards. we may ascertain the con-
tribution of the variation added at any stage ¢ (i.e. 3, ) to > 5. Multivariate covariance
matrices may admittedly be hard to interpret, and it is important to relate them to the
physical properties of the units under consideration. The example of Section 3.5 illustrates
and discusses this further.

Care should be taken to assess the appropriateness of the model (3.1)-(3.5). possibly
with measurement error accounted for by (3.9). Section 3.4 discusses model checking and

Section 3.5 comments on the robustness of the methods to departures from the model.

3.3 Parameter Estimation

It is important to have estimation procedures that deal with missing data. since it is often
impossible to measure all the characteristics on every unit at every stage. We therefore

suppose that some arbitrary subset of the CT univariate measurements on unit ¢ may
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be missing, and that observations are missing at random in the terminology of Rubin
(1976) and Little and Rubin (1987). This means that the probability a particular set of
measurements on a unit is missing does not depend on the values of the measurements
for that or other units, and implies that the likelihood function may be based on the joint
distribution of the measurements available for each unit.

We assume that the covariance matrices ) 5 (t = 1,... .T) for the measurement errors
are known. In practice these should be estimated from measurement studies. The set of
unknown parameters then includes p;, the Ee‘ s(¢=1,...,T) and the A4,’s and B,'s
(t=2,...,T). Since the observed measurements y;.(t = 1,... .T;c=1,....C) for unit
¢ jointly follow a multivariate normal distribution of dimension CT or less, it would be
possible in principle to write the mean and covariance matrix for each ¢ in terms of the
unknown parameters and to maximize the likelihood by a search algorithm. In particular.

we note that, under (3.4), (3.5) and (3.9). the complete data y;;’s have means u, given

by (3.6) and covariance matrices

Var(y) = ) + 9. Cov(yiny) = ) (s <t), (3.11)

where ), and ), are given in (3.7) and (3.8). respectively. This brute force approach
encounters matrices of large dimension if CT is large, and is computationally slow: the
latter is a drawback for the use of bootstrap methods for obtaining variance estimates or
confidence intervals, as described in Section 3.4. Consequently we will express the model
in state space form (e.g. Harvey, 1989; Harvey and McKenzie, 1984; Shumway, 1988). and
utilize the EM algorithm (Dempster et al., 1977) to obtain maximum likelihood estimates.

The model given by (3.4), (3.5) and (3.9) with arbitrary measurements missing at



CHAPTER 3. MISSING DATA AND MEASUREMENT ERROR 39

random can be expressed in the following form. where y;, now stands for the vector of

observed measurements on unit ¢ at stage ¢:

Zi = A+ Bizii +eq (3.12)
Yi = Huza+ Hydy (3.13)
wherez=1,... .n;t =1,... . T wedefine A; = u,, B =0. z;0 =0, and where Hy is a

matrix obtained by taking the C x C identity matrix and deleting rows which correspond
to missing observations on unit i at stage ¢. This belongs to the Normal linear state space
models mentioned in Section 2.1.1 of Chapter 2.

The log-likelihood function based on the observed data is computed by a product of
all successive predictive densities, f(y:;| Y7 ™) which may be written in the form of an

arbitrary constant plus

1 1 -1
t= ) ; log |Z,-y(t|t - 1) - 5 Zt (yie — yi,zlt—l)lziy (tlt — I)(Yie — Yieje-1)-

(3.14)

where we introduce the notation
Yirla = Elyiplysr. - -ia). D, (plg) = Varlysplya - -y (3.15)
and where the range for 7 and ¢ in the sum Zi’t isoverz=1,...,nand t =1.....T.

Expression (3.14) assumes there is at least one measurement at each stage for each unit.
If all measurements at a stage t happen to be missing for unit 7, then (3.14) is modified to

omit terms involving ). (t[t~1). 3, (t+1[t) and to add a term involving ), (t+1[t—1).



CHAPTER 3. MISSING DATA AND MEASUREMENT ERROR 40

The terms y; 1 and >, (|t — 1) needed to calculate (3.15) may be computed recur-

iy
sively using the following state space, or Kalman filtering formulas as derived from (2.7).
(2.8) and (2.12) in Section 2.2. They have closed form expressions for Normal linear

models as we have here. Define, following (3.15),

Ziplg = Elziplyr, - - - g, Z{Z(Plfl) = Var[zp|yi1. . . - . yiq],

and set zpp =0, >, (0/0) =0. Thenfort =1.2.... . T,
Zitlt—1 = A+ Btzi.t—-l.[t—l (3.16)
Yo (e—1) =By (t-1t—-1)Bi+) (3.17)
Yiele—1 = HitZirje1 (3.18)
>0 (= 1) = Hed (e — ) Hi + Ha) ) H (3.19)

where z;, and Y, (t|t) are computed via

Pe=) (tt—1DHY  (¢lt—1)7"

Zitlt = Zigje—1 + PaYir — Yirle-1)

Do) =D (tt—1) = P (et~ 1)P;.

Derivation of these formulas is outlined in Appendix B. These calculations involve only
square matrices of dimension C or smaller.

Now that we can compute (3.14), we could maximize it by using a derivative-free
procedure such as the simplex search algorithm (Nelder and Mead, 1965; Press et al..

1986, Section 10.4). An attractive alternative, which also allows easier access to model-
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checking and to handling cases where entire stages are missing on some units. is an EM
algorithm. This has been well-discussed for use with missing data in normal models (e.g.
Little and Rubin, 1987. Chapter 8) and is adapted here to deal with both missing data

and measurement error. A brief discussion on EM algorithm was given in Section 2.2.1

of Chapter 2.

Referring to (3.12). we consider the “complete data™ log-likelihood as that based on

the z;’s, which may be written as an arbitrary constant plus
nC z 1 &« -1
te=~=" Zl loglzml -3 Zl 21 e, Z e . (3.20)
t= = t=

The model (3.12) is AR(1), and maximum likelihood estimates are easily found to be (e.g.
Mardia et al., 1979, Chapter 6)

A =2, E = S1.a
1

Be = Sc.t—l(St-l.t—l)—ls At =2z — Bt-12:—1 (3.21)

Ze = St.t - BtSt~1.:

for t =2,....,T, where

I 1 ¢ _ -
zZy = ;Z Zit, Sue = m Z ZiuZly — ZuZ, (3.22)

i=1 i=1

The M-step in the EM algorithm is given by (3.21). The E-step counsists of computing
the expectations of the complete data, conditional on the observed data, that are needed

to compute the conditional expectation of (3.20). This may be done using the state-space
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smoothing formulasfort =1,... ,T ~1:

Re=_ (tt)Bi, Yy (t+1]t)™
Zir = Zitje + R Zierr T — Ziespe) (3.23)

Yo GT)Y =) () — Rald | (t+10e) = D (t+1T)]RL, (3.24)

Derivations are outlined in Appendix B. The E-step is now carried out by replacing z,

and z;,_,2{, in the expressions (3.22) with (compare Little and Rubin. 1987, page 143)

1 n
— Z Zis|T (3.25)
n 4
=1
2ip1T 2y + Cov(zie-1. Zalya - - yiT) (3.26)

respectively. evaluated at the most recent parameter estimates from the M-step (3.21).
In the case where there is no measurement error, Cov(2ie-1. Zit|yir. ... .yiT) = Y, (=
1|T)B; . More generally. however, it must be obtained from the smoothing formula (3.24)

for the augmented model

Zt At Bt 0 Cit
Zig1 0 I 0] 0

where [ represents an identity matrix.

The EM algorithm proceeds by alternating E and M steps until convergence is achieved.
Initial estimates that can be used to start the process can be obtained by the following
simple procedure: compute empirical means 7, and cross-product matrices Sy, and S¢_; .

using units with no missing measurements at stage £ (for 7, and S;.) and at stages t — 1
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and t (for Si-;.). respectively. Then. compute the estimates

=3 ), =Su-) (3.27)
B: = St.e—L(S:-Lc—1 - 25 _l)_L t=2.....T

A =9, -Bg,  t=2....T

When there is no missing data. these are the estimates that would be obtained by maxi-
mumn likelihood if the process had only T' = 2 stages. Agrawal et al. (1997) study these
estimates in the univariate case.

There are many (CT + C?*(T —1)+ C(C + 1)T/2) parameters in the model. and we are
primarily interested in components of variance as epitomized in (3.3) and (3.7). In these
circumstances it does not make sense to develop estimates of the asymptotic variances and
covariances of all parameter estimates. In order to assess variation in estimates and to
obtain confidence intervals for quantities of interest, we use a parametric bootstrap (Efron
and Tibshirani, 1993). The procedure is as follows: treating the maximum likelihood
estimates as if they were the true parameter values and the H;'s as given by the pattern
of missingness in the original data. we generate B sets of data from the model (3.12)-
(3.13). For each of the B sets of data we obtain maximum likelihood estimates §; (where
6 stands for the vector of all parameters). Estimates of functions ¥ = g(¢) that are of
interest are then calculated for each sample. Variance estimates for ¢ = g(H) (where 6
is the maximum likelihood estimate from the original data) or confidence intervals for ¢
may then be calculated in various standard ways (see Efron and Tibshirani, 1993).

An example of the bootstrap methods is given in Section 3.4.
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3.4 Applications to Car Manufacturing Processes

Here we consider two car manufacturing data as described in Section 1.2.1 of Chapter 1.

The data are given in Appendix A.1.

3.4.1 Piston Machining

We consider data on 96(= n) randomly selected pistons from the piston machining process
mentioned in Section 1.2.1 of Chapter 1. Four (= C) diameter measurements were taken
at each of 4(= T') process stages.

The model represented by (3.4). (3.5) and (3.9) was fitted. There are no missing
observations here and the measurement error covariance matrix is assumed to be o} I,.
where I4 is the 4 x 4 identity matrix. The measurements are discrete. diameters being
measured to the nearest micron (1073mm). and at each of the 4 locations on the piston
fewer than 15 distinct values occur; see Section 1.2.1. Nevertheless we will work with the
assumed normal model, which seems to provide a reasonable picture of variation.

Models were fitted with o2 = .04167 microns® and also with ¢7 = .1 microns®. The
former corresponds to the variance of a triangular distribution on (—.5, .5) and the latter
is slightly larger than the variance of a uniform distribution on (—.5, .5). The latter
seems a more realistic value but we wanted to assess the effect of measurement error on
estimated variance components.

The EM algorithm based on the filtering and smoothing procedures was iterated until
the increase in the log-likelihood (3.14) was less than .1; the maximum value at conver-
gence was 8017.0. Maximum likelihood estimates of B;, ), and Ze‘, as in (3.7). are

shown in Table 3.1 for the case where 57 = .10. Estimates of y, are also shown. The units
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for all variances and covariances are microns?. Parametric bootstrap methods (Efron and
Tibshirani, 1993) were used to generate standard errors and confidence limits for variance
components. Standard errors for estimates of variance tended to be about 10-20% of the
size of the estimate. The entire procedure. including 1000 bootstrap replications. used
under 7 minutes of CPU time on a DEC OSF/1 V3.2 system when programmed in C++.
The estimates obtained when o2 = .04167 was used were a little different. but the quali-
tative picture was similar to that in Table 3.1. The main feature was that ‘:”_t tended to
be about 10% larger than in Table 3.1, whereas Zt was more or less the same.

Table 3.1 suggests that roughly 30-60% of the variation in diameters at each stage is
added at that stage and the rest is transmitted from the preceding stage. By using (3.10)
recursively we can express Z 4 as a sum of four components, one representing the variation
at each stage. This indicates that attempts to reduce variation at the final stage should be
directed at stages 3 or 4; little variation is transmitted from stages 1 and 2. We remark
that it i1s also of interest with multivariate measurements to examine their correlation
structure. Table 3.1 indicates a moderate degree of correlation for adjacent diameters
in both the total variance and in the variance added at each stage. The examination of
principal components or other linear functions of measurement variables is also of general
interest but we will not pursue this here.

The model (3.4), (3.5) and (3.9) can be checked informally by examining residuals
Tit = Yit — git|t—1

or standardized versions of the same by using Ziy(th& —1). Standardized residuals should

look roughly like N(0, 1) variables. Figure 3.1 shows plots of standardized residuals versus
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predictors g, across all stages measurements (i = 1.....96; t = 1.... .4) for ¢ =
1,2,3.4 (corresponding to 4.10,36.7 and 58.7 mm). The banded appearance in each
plot is due to the fact that for each diameter there are only 10-15 distinct values of y;.
and that the estimated variance for r; does not depend on i and varies slightly with ¢.
Figure 3.2 shows a normal probability plot of standardized residuals. These are reasonably
linear, though a single extreme observation is noted at each of 4 mm and 36.7 mm. More
exhaustive checks not shown here likewise do not indicate substantial departures from the

working model.

3.4.2 Door Hanging

We now examine the door hanging process in Section 1.2.1 of Chapter 1. The data
consists of 42(= n) vehicles passing through 7 (= T) process stages. At each stage.
4 (= C) characteristics of a rear door of each vehicle are of interest.

The model represented by (3.4). (3.5) and (3.9) was again fitted. There are no mea-
surement errors assumed here. Initial estimates were obtained by maximizing the likeli-
hood based on vehicles with complete measurements at all stages. The EM iteration was
stopped when the increase in log-likelihood (3.14) was less than .1. The recursion stopped
in ten iterations with converged maximum log-likelihood at —119.118 within 40 seconds
of CPU time on a DEC OSF/1 V3.2 system when programmed in C++. Standard errors
of the estimates, obtained from 1000 bootstrap samples, again tended to be around 10%
of the estimates. Maximum likelihood estimates of ), and }_, are shown in Table 3.2
and those of B, are shown in Table 3.3.

Table 3.2 shows little variation in door exterior fitness is transmitted from stage 3 to

subsequent stages. For the first fitness measure at stage 4, there is over 80% of variation



CHAPTER 3. MISSING DATA AND MEASUREMENT ERROR 48

added and a fair portion of them are transmitted to the later stages. The same is observed
for the last fitness measure at stage 6. More than 20% of variation added at the last stage
is also observed. Thus, attempts to reduce variability at the final stage should be directed
to stage 4, 6 and 7. Again, moderate correlations are observed.

The model was again checked by examining the residuals. Plots of standardized resid-
uals against the predictors y;—, for each characteristics are shown in Figure 3.3. Fig-
ure 3.4 shows normal quantile plots of standardized residuals for each characteristics. No

substantial departures from the working model are observed from further checks likewise.

3.5 Concluding Remarks

The methods in this chapter depend on the approximate validity of a normal AR(1) model
for the true measurements. This assumption should be realistic in many contexts. but it
would be of interest to comsider the implications of model departures. One topic which
is readily assessed is the effect of ignoring measurement error. If the model (3.4). (3.5)
is assumed correct but there is in fact measurement error as expressed by (3.9). then the
maximum likelihood estimates B, derived under (3.4), (3.5) alone converge in probability

in large samples not to B, but to

B = Btzt_x(}:t_l + Z&_l)‘l

This underestimation of regression parameters is well known when measurement error in
covariates is ignored (e.g. Fuller. 1987). A consequence of this in the present circumstances
is that the variation transmitted to each stage is underestimated and the variation added

is overestimated. This has serious consequences when there are several stages in the



CHAPTER 3. MISSING DATA AND MEASUREMENT ERROR 49

process. Agrawal et el. (1997) give a detailed discussion of measurement error for the
univariate (C = 1) case. They have shown for the case with measurement error but no
missing data that the use of simple estimates (3.27) combined with bootstrap confidence
intervals provide good procedures. Extension of these methods to the multivariate case
is worth considering. For example, sensitive analysis by trying different values for the
variability of measurement errors.

In practical situations one must decide which measurements to consider. This choice
can affect whether or not an AR(1) model is satisfactory. For example, if we include a
pair of measurements but omit a third which is highly correlated with the other two. we
may find an AR(1) model for the two measurements is inadequate.

The analysis here is based on the assumption that the missing mechanism does not
depend on the missing measurements. A likelihood ratio test can be used for testing “in-
formative™ drop-out processes (Diggle and Kenward, 1994). However. in our applications.
developing testing procedures for whether the intermittent missing values are informative
is desirable.

Further work on ways to interpret multivariate analyses of variation in special contexts
is desirable. In particular, one would hope to expose significant relationships among
variables and to relate them to the geometry of the units being manufactured. With the
piston data there do not appear to be important systematic effects but one could imagine
situations in which, for example, the deviations in diameters at opposite ends of a cylinder
were negatively correlated after certain stages. The present chapter has developed efficient
procedures for model fitting and assessment which should make it feasible to undertake
further studies with relative ease.

Finally, the methods here deal with processes in which the same variables are measured
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on parts at each stage. However. as mentioned by Lawless et al. (1997), the general ideas
of variation transmission also apply to studies of the effect of upstream process variables on

downstream measurements. This area requires further development in practical situations.
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Figure 3.1: Piston Machining: Plots of residuals against the predictors fiye—;.
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Figure 3.2: Piston Machining: Q-Q plots of standardized residuals.
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Stage (t) 21 Z:
1 1.4028 -0.8439 06333 0.7728 | 1.4028 -0.8439 0.6333 0.7728
0.0580 -0.6605 -0.7519 0.0580 -0.6605 -0.7519
0.7983 0.7112 0.7983 0.7112
1.4832 1.4832
2 0.1264 0.1683 0.6000 0.4552 | 1.2872 -0.5381 0.7034  0.8001
0.0345 -0.0202 0.5865 0.0654 -0.4677 -0.4611
0.0330  0.4338 0.8829  0.7359
0.1335 1.4565
3 0.0797 -0.2282 0.2830 0.1446 | 1.7144 -0.8559 0.5397 0.6718
0.0109 -0.1428 -0.5370 0.0713 -0.5424 -0.7894
0.1297 0.2739 0.8791  0.7419
0.3703 1.1138
4 0.3537 0.7997 0.5604 0.9362 | 0.3929 0.7514 -0.0676  0.4550
0.1496 0.4936 0.7183 0.2252 -0.4059  0.0947
0.0495 0.4971 0.6293  0.5049
0.1899 0.8429
5 0.0237 04207 0.7228 0.9260 | 0.3590 0.7894 -0.0380 0.4461
0.0097 0.3300 0.3096 0.2257 -0.2614 0.2419
0.3233  0.8709 1.0790 0.6394
0.4474 1.4483
6 0.0235 -0.2698 0.4256 0.3348 | 0.3880 0.6117 -0.2502 -0.1066
0.0389 0.0241 -0.2133 0.1931 -0.4874 -0.3543
0.1015 0.0004 0.5250  0.2304
0.3614 0.4541
7 0.0451 04965 0.3212 -0.0509 | 0.1974 0.5156 0.1512 -0.2005
0.0391 -0.3275 -0.0845 0.1298 0.3909 -0.1345
0.2239  0.5090 0.6159  0.4743
0.3982 0.8874

! The off-diagonal elements are the correlations; the diagonal elements are the variances.

Table 3.2: Estimated Covariance Matrices for Door Fitness



CHAPTER 3. MISSING DATA AND MEASUREMENT ERROR

Stage (¢) B,

1 0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 0

2 0.6948 -0.6962 -0.0009 0.1108
0.0244 0.5413 0.0374 -0.0887

-0.0225 -0.4437 0.9523 0.0166

0.0412 0.2400 0.0580 0.9182

3 1.0587 -0.3374 0.0900 -0.0334
-0.0693 0.2450 -0.0355 -0.0921
-0.0079 0.8442 1.1550 -0.1721

0.0931 -0.2171 0.7547 0.0487

4 -0.1133 -0.2108 -0.2472 0.1615
0.0123 -0.5841 -0.3534 0.0055

-0.2285 -0.3414 0.9668 -0.0854
-0.5094 -0.3259 -0.0958 1.0472

5 0.8028 0.0922 -0.0405 0.0900
0.0110 0.8789 -0.0875 0.0973

-0.7602 0.8216 1.0964 0.1874
-0.9288 1.0344 0.0395 1.2550

6 0.8894 0.2472 0.0235 -0.0497
-0.0592 0.9317 0.0308 -0.1126

0.2703 -0.4535 0.7106 -0.2670

-0.2931 -0.1537 0.0045 0.2528

7 0.1980 0.5970 0.0732 -0.1973
-0.3943 0.6602 -0.0367 -0.1557
-1.1818 1.7945 0.1370 0.2591
-0.5606 1.3000 0.7695 0.6986

Table 3.3: Estimates of B, for Door Fitness.
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Chapter 4

Random Effects Models for

Recurrent Event Data

4.1 Introduction

Recurrent events arise when a number of subjects experience repeated occurrence of an
event of interest. This kind of data has been frequently studied in the literature of
longitudinal studies (Lawless, 1995; Clayton. 1994). The small bowel motility data de-
scribed in Section 1.2.2 of Chapter 1 is a typical example with an additional feature of
right censoring. Objectives in analyzing recurrent event data include estimation of the
mean recurrence time (Aalen and Husebye. 1991), assessing the effects of covariates (e.g.
treatment and control), estimation of the cumulative mean number of event recurrences
(Lawless. 1995), prediction of next event recurrences (Chapter 5).

There are several approaches to the analysis of recurrent events (Lawless. 1995) but

we will focus on modelling the recurrence times between events. Lawless and Fong (1997)

a7
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review and discuss different choices of both modelling and analysis of inter-event times
and point out the main difficulties that are encountered. We consider two common issues
in modelling recurrent event data namely: inter-subject heterogeneity and within-subject
dependence. Heterogeneity between subjects may be related to observable covariates or to
unobservable random effects (often referred to as ‘frailty’). Sources of these unobservable
subject-level effects include unobserved subject-specific covariates, and measurement er-
rors in time-independent covariates. Clearly, random effects induce correlation between a
subject’s recurrence times. Aalen and Husebye (1991) considered models where recurrence
times are independent when conditioned on the random effects. Specifically, suppose there
are N subjects and each subject ¢ (= 1, 2, ..., N) is observed over some time interval.
say (0. 7). Let t;; (7 = 1. 2, ... . n;) be the jth recurrence time of subject 7 and £; 5,41 be
the last recurrence time which is censored due to the planned end of surveillance. Also. we
assume the censoring mechanism for 7; is non-informative (Section 2.3.1 of Chapter 2) and
only covariates which are constant between successive event recurrences are considered.
Then. if u; is the 7th subject-specific effect. one model in Aalen and Husebye (1991) (A-H

model) 1s

It SN+ w, 03). w N0, w?) (4.1)

where g is some one-to-one function and “i.i.d.” means independent and identically dis-
G G

Figure 4.1: Independent recurrence times when conditioned on random effects «;.
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tributed. It is depicted (by borrowing the symbols from Clayton, 1994) in Figure 4.1.
In cases with no time-dependent covariates, not only the marginal means and variances
of the recurrence times are constant but also the correlation among them are the same.
This kind of model structure is often unrealistic in practice as measurements closer in time
are likely to be more strongly related. Hence modelling stochastic dependence between
recurrence times of a subject by other models than that in Figure 4.1 is desirable.

Two general approaches to implanting non-constant correlation structure will be con-
sidered. One is to adopt certain dependence structure on the recurrence times. e.g. condi-
tioned on w;, a first order autoregressive process (AR(1)) on ¢;;'s as shown in Figure 4.2(a).
We will refer to this group of models as antocorrelated random effects models (AREMs).
Another approach is to allow dynamic random effects where the random effects them-
selves follow an AR(1) process as shown in Figure 4.2(b). This group of models is also
commonly called dynamic generalized linear models where we regress on a function of
the mean measurements other than the identity function. These dynamic random effects
models (DREMs) can be pushed further to have the transition process of the random
effects depend on the past recurrence times. We will however delay discussing models of
this type in the context of hazard-based models to Chapter 5. The AREMs have been

popularly used in modelling longitudinal data. Wilson (1988) used them in parametric

@) @®—@®—@—-
ti3 Ta) - - -

(a) Autocorrelated random effects models. (b) Dynarnic random effects models.

Figure 4.2: Two types of random effects models.
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growth curve analysis and it is also more recently mentioned in Chan and Kuk (1997).
Sutradhar (1990) has also consider a similar model with nested subject-specific effects.
The DREMs have been entertained by Singh and Roberts (1992) and Jorgensen et al.
(1996a) in modelling longitudinal counts data. However. there has not been any work in
the literature to directly address the relationships between the two types of models. They
are, though share some similarities. are quite distinct in nature. In this chapter. we will
study their properties and differentiate their uses in longitudinal studies.

In the sequel. to model recurrence times. we can specify either the distribution or
hazard function (e.g. Lawless and Fong, 1997). The hazard-based method will naturally
lead to Cox’s proportional hazard model (Cox. 1972) which is treated in Chapter 5. For
the sake of easy discussion, we will put our attention in this Chapter on Normal-based
models for which a Normal distribution is assumed on a certain suitably transformed
value of ¢;; as in (4.1). In the next section. we will first study the Normal-based approach
and contrast the properties of autocorrelated and dynamic random effects models. Then.
they are further studied by looking at the small bowel motility example from Aalen and
Husebye (1991) in Section 4.3. Some concluding remarks and discussions are given in the

last section.

4.2 Normal-Based Models

One of the main characteristics of recurrent event data is that the recurrence times are
all non-negative and most likely positive. Thus, it may be necessary to assume that some
transformation of ¢;;, denoted as y;;, is Normal if we wish to use the models here. Let

the overall mean be E(y;;) = p:j, which may depend on some covariates which are time-
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independent during the jth event recurrence of subject ¢. Then an autocorrelated random

effects model is specified as a variance components model with autocorrelated errors

Yi; = Mij + u;i + e, u; LR N(0. wz). el b N(O, O‘f), 17=1 2. ...

i.1.d. .
ei; = de; ;1 + €ij, €5 ~ N0, 0‘2), l¢| <1 J=2.3.... (4.2)

where u; is the subject-specific effect and ¢ measures the autocorrelation not explained
by the u;’s. Thus, a AREM is composed of “autocorrelated errors” e;; to impart within-
subject correlation and “random effects” u; component to account inter-subject hetero-
geneity. The model was also given in (2.4) of Chapter 2. The initial dispersion parameter
o} can be set to o? (e.g. as in Chapter 3) resulting in a non-stationary process. or
62/(1 — ¢*) when the recurrence times from a subject are stationary. However. it cannot
be left arbitrary; otherwise it will be confounded with w?. Model (4.2) includes several
commonly used sub-models. When (¢ = 0, w = 0), it reduces to the ordinary renewal
process (RP) model where all recurrence times (both between and within subjects) are
independent. When (¢ = 0, w > 0). we get back to the A-H model when there is only
inter-subject heterogeneity and each subject forms a renewal process conditional on ;.
When (0 < |¢| < 1, w = 0), we have independent and identically structured AR(1)
processes for subjects.

A dynamic random effects model is specified as

Yij = i + wi; + e, € £V N(O.a2). uy oy N@O,w?*), j=12...

Uij = d)u.;_j_l + €5, €ij L N(O 0'2). |¢l <1 73=2.3..... (43)
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where the random effects u;;’s are now not only subject-specific but also specific to the
jth event recurrence and o? measures the conditional response variability not explained
by the u;;'s (e.g. measurement errors).

Thus a DREM has the “dynamic random effects” wu;; to account for inter-subject
heterogeneity as well as non-constant within-subject correlation. The DREMs also include
the sub-models mentioned above. Specifically, we get the RP model when (w = o =
0. 0. > 0), the A-H model when (¢ — 1. ¢ = 0. 0. > 0), and the independent AR(1)
model when (0 < |4 < 1, o, = 0). However. when ¢ = 0, only 2 + w? and 52 + o2 are
the estimable variance components. Note that, to avoid too much notation, except for
ii; and y;;, other symbols in (4.2) and (4.3) do not share exactly the same interpretation
although they are consistent. For example. w? in (4.2) is measuring the variability of the
overall effect from subject heterogeneity. while in (4.3). it refers to the variability of the
effect from subject heterogeneity on the first event recurrence time (see Table 4.1).

Both the AREMs and DREMs are natural extensions to the A-H model in (4.1) to
accommodate non-constant within-subject correlation through a dynamic process (e.g.
an AR(1)) to the errors (AREMs) and random effects (DREMs). Note that both models
belong to the family of GSSMs defined in Section 2.1 of Chapter 2. Specifically, AREM

in (4.2) can be formulated as

Yii = pi;+(1 1)zi;
1 0O 0 0

zijlzijo1 ~ N Zij-1,

0 ¢ 0 o2

where zy ~ A ((3). (% %)) and z; = (w e)7. The DREM in (4.3) can also be

2
Oa‘
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easily verified by writing the model as

Yij IYZ‘J—le Hij. Wiz~ N(F:{J’ + U5, O’f)

wijluijor ~ N(duijoy. o)

where u;; ~ N(0, w?).

Compared with the AREM in (4.2) which. without counting the y;;, has three param-
eters {@, w, o}, the DREM in (4.3) has an extra parameter o2 to account for response-
specific variability not explained by u;; in (4.3). It is also interesting to see that the
autocorrelated process for the errors e;;'s in the AREM parallel to the dynamic process
of the random effects u;;’s in the DREM. In other words. there is some ambiguity about
what we call autocorrelated errors in (4.2) and what we call dynamic random effects in
(4.3). A key property of the random effects is that they are subject-specific (only indexed
by ). This is opposed to response-specific effects (indexed by both ¢ and j). The autocor-
related errors in (4.2) and dynamic random effects in (4.3) can be treated as compromise
between random effects and response-specific effects. The ambiguity can be cleared by

looking at the corresponding complementary components

yi; — b — € = ~ N (0. ) (4.4)

and yi; — pij — wij = ;5 ~ N(0, a2) (4.5)

for AREM and DREM respectively. The u;’s from AREM as viewed in (4.4) are constant
for a single subject and hence they represent the subject-specific random effects. The e;;'s

from DREM as viewed in (4.5) are independent for each measurement of all subjects and
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hence they represent the response-specific effects not explained by u;;.

If the DREM in (4.3) is extended to have certain correlation assumptions on {e;;}. e.g.
Corr(eij, €ij+s) = p* (s > 0), then as p — 1. the AREM can be viewed as a sub-model of
DREM. However, basically, the two models are not nested although they intersect at some
sub-models. To see this, we can look at their marginal properties which are summarized in
Table 4.1. Both models have stationary and non-stationary versions of their autoregressive
counterpart. In both cases, they share the same marginal means but different variances
and lagged correlations. Influence from (initial) inter-subject heterogeneity w? persists
under the AREM but keeps diminishing under the DREM with rate controlled by the
corresponding ¢. Moreover, the limiting correlation shows that recurrence times which
are infinitely apart are uncorrelated under the DREM but still mutually related under
the AREM. Hence, choice between the autocorrelated and dynamic random effects models
relies on whether the influence due to inter-subject heterogeneity will persist consistently
over time. For example, AREMs are more appropriate when sources of inter-subject
heterogeneity are missing important subject-specific and time-independent covariates. or
there are measurement errors of some time-independent covariates. On the other hand.

DREMs are desirable when (initial) inter-subject heterogeneity dilutes over time.

4.3 Application to Small Bowel Motility Data

Fitting both autocorrelated and dynamic random effects models can easily proceed by
computing the mean and variance of y;; conditional on its current past history. We
denote them as y:j);_; and o (j|j — 1) respectively, where we use the same notation as

in Section 3.3. Then, with the assumption of non-informative right censoring, the log-
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likelihood function can be decomposed as

N o
[ m RN (55 = vis-)’
T {“z“"g‘g”’”iz[bg”*’y(”"”* Gl 1)
1y

=1 Jj=1

Yini+1l — yi,n.'-}-l]n,-
+log|l-® 4.6
° [ ( Tiy(ni + 1[n;) )] } (40

where ® is the cumulative distribution function of the standard Normal. Maximum like-

lihood estimates are obtained by maximizing /. The conditional moments for AREMs
exist in closed form but are more efficiently computed from a modified Kalman filter re-
cursion as described in Appendix C. The DREMs are already in a linear state-space form
and the celebrated linear Kalman filter recursion can be conveniently applied. One could
also use an EM algorithm (Dempster et al.. 1977) with the “complete data” as all the
recurrence times as well as the random effects. However, we prefer direct maximization of
the log-likelihood (as discussed in Section 2.2.2 of Chapter 2) (4.6) which is more efficient
and convenient with standard maximization routines in common computing software (e.g.
SAS/IML, MATLAB and GAUSS).

We consider the small bowel motility example as described in Section 1.2.2 of Chap-
ter 1 for illustration. The complete dataset is reproduced from Aalen and Husebye (1991)
in Appendix A.2. All computations were programmed in SAS/IML version 6.10 under
Digital UNIX V3.2C. Optimization subroutine NLPNMS using the Nelder-Mead Simplex
method was employed to maximize (4.6) with a fast convergence rate. Standard errors
were obtained by inverting the observed Fisher’s information matrix approximated by
finite differences using subroutine NLPFDD. Both the identity and logarithmic transfor-
mation of ¢;; (i.e. yi; = t;; and y;; = logt;;) were considered. Here there are no covariates

present and we assume the recurrence times are identical in mean. Estimates and stan-
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dard errors from the autocorrelated random effects model (4.2) and some of its sub-models
are summarized in Table 4.2 while those from the dynamic random effects model (4.3)
are presented in Table 4.3.

From Table 4.2 where [,,,; is the maximum log-likelihood value, we see that, in all
cases, neither the random effects nor extra autocorrelation between recurrence times or
their logarithmic version is significant. Hence, an ordinary renewal process model is
sufficient for the data. This agrees with the results of Aalen and Husebye (1991) who
fitted only the frailty model (i.e. ¢ = 0) with y;; = ¢;;. From Table 4.3, both w? and
a? are highly insignificant (no evidence they are not zero) and have again resulted in the
same conclusion. Also, the estimates of ¢ are all close to 1 which reflects that the initial
random effect (though insignificant) tends to persist over time and an AREM is more
appropriate in this case.

A look at the data suggests the possibility of a longer first recurrence time. It is
also reflected from the difference between the Kaplan-Meier estimates for the survivor
functions of the first recurrence times and the others (Figure 4.3). Thus, we re-fitted the
data by an A-H model with a different initial mean (y;) and variance (s7). Results are
summarized in Table 4.4. The likelihood ratio statistics values are 3.82 (y;; = t;;) and
7.08 (y:; = logt;;) which have p-values 0.15 and 0.03 respectively from a x2-distribution
with 2 degrees of freedom. Thus, there is no significant difference based on y;; = ¢;; and a
marginally significant difference when based on y;; = log t;;, between the first recurrence
time and the rest in terms of the mean and variance. The two-sample non-parametric
log-rank test statistic is 2.5 which gives a p-value of 0.12 (insignificant) from x? with 1
degree of freedom.

Note that the distribution of all estimates, especially the variance estimates. may not
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Survival

o (=1} 100 150 200 250 300

Figure 4.3: Plots of Kaplan-Meier estimates for the survivor functions of the first re-
currence times (denoted by the solid line) and the others (denoted by the dotted line).

be close to Normal with only 19 subjects and a small number of recurrences for those
models. So, if we need precise significance levels or confidence intervals, parametric boot-
strapping (e.g. the end of Section 3.3 of Chapter 3) is more useful and feasible. Moreover.
although preliminary analysis from Aalen and Husebye (1991) suggested that y;; = ¢,
is a reasonable assumption, we find by looking at plots of non-parametric estimates that
log t;; is closer to Normal and that t;; departs from Normality (Figure 4.4). With the
small number of subjects and event recurrences, there is not a lot of power to detect lack

of fit, however.
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Figure 4.4: Q-Q plots of y;; without censored periods. The straight line is the ideal case
that the data are exactly Normal.
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4.4 Conclusions and Discussion

We have studied and numerically illustrated both the autocorrelated and dynamic random
effects models in longitudinal studies. Properties and comparisons of the two types of
models have not been thoroughly examined in the literature. The AREMs are attractive
by the fact that they “orthogonally” separate persistent inter-subject heterogeneity (wu;
in (4.2)) and non-constant within-subject correlation (through e;; in (4.3)). This is not
shared by DREMs and the dynamic random effects (u;; in (4.3)) account for both inter-
subject heterogeneity and non-constant within-subject correlation. The key distinction
of the two models is the persistent effect from initial inter-subject heterogeneity across
time in AREMs while the effect keeps decreasing with time in DREMs. Thus, AREMs
are used as strong derivative tracking models (e.g. Taylor et al.. 1994). For example. in
the AIDS-related study of the natural history of CD4 T-cell counts, an immunologically
weak subject who has an initial fast rate of decline of CD4 counts relative to other HIV-
infected people will persist with a more rapid rate of decline of CD4 counts than will
the others. Taylor et al. (1994) has indicated the desire for random effects which are
dynamically changing with time to study measurements of the human immune system.
They considered, instead of dynamic random effects, an AREM with the autocorrelated
errors replaced by the sum of an integrated Ornstein-Uhlenbeck and independent error
processes. Aalen (1994) has also a brief discussion of the need for dynamic random effects.
for example, because of the induced weakness that results from the stresses of life. In these
cases, DREMs are more appealing.

Generally, fitting both types of models is straightforward and convenient with the
maximization routines in SAS/IML. In our applications with the Nelder-Mead Simplex

method to maximize the log-likelihood function, different but rather arbitrary initial esti-
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mates were used to ensure a global maximum is attained. In maximizing the log-likelihood
functions from DREMs, the Simplex method did not converge with certain initial guesses
but only several tries were needed to obtain the estimates. On the whole, we did not
encounter serious difficulties in fitting the models.

Note that we have not mentioned the very important issue of model checking. Assess-
ing the fitness of both types of models can be generally pursued through the conditional
residuals r;; = yi; — yij;;—1. which are independently distributed as Normal with mean
0 and variance 6},(j|7 — 1) under the models. More work is also needed on testing and
confidence interval procedures. The bootstrap seems to be the most appealing method
but the usual likelihood ratio methods would also be applicable for large enough sam-
ples in both the number of subjects and event recurrences per subject. The bootstrap 1s
illustrated in Chapter 5.

Finally. also note that the discussion in Section 4.3 depends on what is assumed about
the p;; (we used p;; = p) in looking at variance components. For example. a time trend
may be confounded with the variance components when only a constant mean is modelled.
However, with not too many event recurrences per subject in the small bowel motility
data, it is hard to speculate on the mean profile. A model which adopts non-stationary

drifts is considered in next chapter.
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non-stationary

o =a? w? >0
E(y:;) i
Var(ys;) W GRS g2 gl g 1 2
Covlysj,yises): 8 >0 w? 4 ($2000F 4 1550007 ) g (420700 + 1E500%)
limiting correlation’ “’202 0

w4

stationary
ol = %5 w? = 12

E(y:;) Hij
Var(ys) S+ i o
Cov(yij, Yijrs)i s > 0 w? + ¢ 15 e
limiting correlation! _u 0

w'+l—_-;_r

! limiting correlation = lim,_,. Corr(yi;. Yijts)-

Table 4.1: Marginal properties of the autocorrelated and dynamic random effects models.
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Model P ) w? a? Loz
Yij = tij

RP 104.05 - - 2699.22 -437.12
(p=0,w=0) (5.58) (419.24)

AR(1) 104.58  0.05 - 2694.96 -437.04
0<|dl<l.w=0) (5.96) (0.12) (418.69)

A-H 106.82 - 262.47 2434.52 -436.41
(¢=0,w>0) (6.89) (277.83) (426.22)
non-stationary 106.97  -0.09 353.99 2327.96 -436.24
AREM (6.87) (0.16) (317.72) (439.64)
stationary 106.93  -0.10 358.23  2316.60 -436.23
AREM (6.86) (0.16) (316.72) (444.70)

yi; = logti;

RP 4.512 - - 0.302 -73.12
(¢ =0, w=0) (0.059) (0.048)

AR(1) 4.531 0.141 - 0.296 -72.40
0<|ol<l,w=0) (0.068) (0.116) (0.047)

A-H 4.542 - 0.029 0.271 -72.17
(¢=0,w>0) (0.072) (0.027)  (0.047)
non-stationary 4.543 0.068 0.022 0.277 -72.08
AREM (0.073) (0.165) (0.032) (0.051)
stationary 4.543 0.060 0.023 0.276 -72.09
AREM (0.073) (0.152) (0.031) (0.050)

Table 4.2: Estimates and standard errors (in parenthesis) of the autocorrelated random

effects model (4.2) and its sub-models.
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Model u ¢ a? w? o’ lmaz
Yij = bij

non-stationary 107.47 1.00 2418.87  195.77 33.60  -436.36

DREM (7.09) (0.36) (478.21) (392.86) (219.24)

stationary 106.79  0.879  2357.42 - 77.04  -436.37

DREM (6.90)  (0.41) (509.82) (310.98)

Yi; = log f,‘j
non-stationary  4.581 1.000 0.246 0.000 0.022 -70.46

DREM (0.076) (0.227) (0.053) (0.000)  (0.034)
stationary 4546 0.877  0.255 - 0.010  -71.90
DREM (0.074) (0.358) (0.068) (0.040)

Table 4.3: Estimates and standard errors (in parenthesis) of the dynamic random effects

model (4.3).

Yij J75 7 w? O’f o’ lmaz
ti; 125.63 100.25 179.53  2475.94 2297.74 -434.50

(11.82) (7.22) (242.54) (887.07) (441.71)
logt; 4.754 4472 0020  0.144 0293  -68.63
(0.093) (0.078) (0.024) (0.054)  (0.058)

Table 4.4: Estimates and standard errors (in parenthesis) of the A-H model when the first
recurrence time has different moments.



Chapter 5

A Dynamic Hazard-Based Model for

Recurrent Event Data

5.1 Introduction

Suppose a recurrent event of interest is studied among N subjects. For each subject. the
waiting times between successive event occurrences are recorded until a certain stopping
time is reached and thus the last recurrence time may be censored. An example is the
study of muscular activity (motility) of the small bowel discussed earlier in Section 1.2.2 of
Chapter 1 and in Chapter 4. Modelling inter-subject variability and stochastic dependence
between subject recurrence times using random effects is an important statistical issue in
longitudinal studies, as discussed in Chapter 4. This chapter will address these two issues
through hazard-based models. We focus on analysis in terms of the inter-event times.
Other methods of analyzing recurrent events are given by various authors (Wei et al..

1989, e.g.); Lawless (1995) gives a review.

74
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Following from Cox (1972), we consider a class of proportional hazards models defined

as
hij(t) = ziho(t)eP =is®) (5.1)

where h;j(t} and z;;(t) are the hazard function and time-dependent covariates for the jth
event recurrence of subject ¢ respectively and hqg(t) is called the baseline hazard function.
The variable z;; specific to the jth event recurrence of subject i is called the dynamic
frailty or dynamic random effect as it changes with the number of event recurrence. The
ordinary frailty model (A-H model) considered in Aalen and Husebye (1991) is a special
case of (5.1) when z;; = z; see also Section 2.1.4 of Chapter 2. As mentioned in the last
section of Chapter 4. dynamic frailty is a desired feature in some longitudinal studies.
Hazard-based dynamic frailty models are generally difficult to handle in terms of
frequency-based inference. Even in the “static” case when z;; are identical to e* and
z 1s Normally distributed. the likelihood is no longer tractable (Clayton, 1994). Our work
here represents one of the first tractable developments. For example, a class of stationary

dynamic frailty models can be obtained by taking z; ~ Ga(w™2, w™2) and

2y = ¢Z.;.J'__1 + (1 - ¢)Z;. 0< ¢ <1 ] =23, ... (52)
where 23,, z},, ... are independent (and of z;) with Ga (E%u‘z, i—-;%w‘z) distributions.

Note that Ga(k,v) denotes the Gamma distribution with mean x/v and variance x/v?.
We note (5.2) is a stationary process up to the first two moments of z;; which are 1 and
w? respectively. The lag s correlation of the z;;’s is ¢* and the model defined by (5.1) and

(5.2) gives the A-H model when ¢ = 1. Petersen et al. (1996) discussed the fitting of a
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similar kind of frailty models with the frailty composed of a sum of independent Gamma
variates. in another context. The likelihood function for these models can be expressed in
closed form as a sum but the number of terms increases exponentially with the number of
event recurrences per subject (Lawless and Fong, 1997). Models with log z;;'s following a
Gaussian distribution are also often proposed. but hard to handle computationally.

In general, likelihood based inference for dynamic random effects models outside the
linear Normal framework is often computationally intractable (Aalen. 1994, Section 5).
Various methods of approximation and other estimation approaches have thus been used.
These include generalized estimating equations which solely depend on the first two mo-
ments of observations (Zeger and Liang, 1992), linearization of the transition component
of a state space model (Jorgensen et al.. 1996a). Monte Carlo simulation (Carlin et al..
1992). and posterior mode estimation (Fahrmeir and Tutz. 1994). Smith and Miller (1986)
developed a class of non-Gaussian state space models with a multiplicative state transition
process by assuming the observation process is Exponential after a 1-1 transformation.
Under their model. all the predictive distributions (see below) can be numerically evalu-
ated and thus the likelihood function can be readily maximized. Harvey and Fernandes
(1989) considered an equivalent form of the model for count data without getting into the
state space form on which the full model is actually based. This model was also adopted
by Yue and Chan (1994) for recurrent event data. and we study it further in this chapter.
In particular, we consider an extension of the model for recurrent events proposed by
Yue and Chan (1994). and investigate its properties. The models in question have the
ability to incorporate both inter-subject heterogeneity and non-stationary intra-subject
variability in recurrence times. However. we will find that the applicability of the models

in multi-subject studies is somewhat limited. and that a fairly large number of subjects
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(N) and number of event recurrences per subject may be needed to estimate all model
parameters adequately.

In the following exposition, we first introduce and discuss the use of the modelling
scheme from Harvey and Fernandes (1989) when applied for recurrent events. Then an
intensity based model is proposed in Section 5.3 together with an updating scheme for
the random effects z;;. The link with the model above is thus made explicit. Then.
construction and computation of likelihood functions for censored recurrent event data
are discussed in Section 5.4. The score and the Hessian matrix are seen to be easily
computable and hence maximum likelihood estimates and standard errors of the estimates
may be obtained. In Section 5.5, the set of small bowel motility data in Aalen and Husebye
(1991) is used for illustration. A simulation study is given in Section 5.6 for further insight

on the model. Finally. conclusions and some further remarks are given in Section 5.7.

5.2 Harvey and Fernandes Model

For convenience, we will introduce the model in a general non-state space form which
allows the calculation of likelihood contributions. The state space formulation is given
in Section 5.3. Let ¢; (# =1,2,.... N, j = 1,2,..., n;) be the first n; uncensored
recurrence times for subject ¢ (i.e. times between successive events) and denote the last
censored recurrence time as t; ;3. For brevity, indices ¢ and j are assumed to run from
1 to N and 1 to »; + 1 respectively unless otherwise specified. Then, the model can be

characterized by

1. an observation model, f(t;;]z2;, Tij—l) where Tij = {ti1, tiz, ..., tij}, T7 is the null

set, and the z;;'s are random effects whose dynamics are controlled by
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2. a starting distribution, g(z; ). and

3. a sequential updating scheme for the “priors”. or random effects distributions from

9(25]T77Y) to g(2i41|T7) after t;; (5 =1. 2. ... . n;) is observed.

These are what we need in order to compute the predictive densities f( t;J-IT,-j ~*) and hence
to evaluate the likelihood function. The choice for g(z;;) and g(z;,-lTij—l) discussed below

is motivated by the fact that
Fl51TI) =/ Fltijlzig. T g(25|T7 ) dzi; (5.3)
0]

which suggests the use of a natural conjugate family in the priors g(z;|T7™") for the
sampling distributions f(t:;|z:;. T?7"). in order to get a closed form for f(t:;|T7 7).
Now, the information gained from ¢;; for updating g(z;,~|T‘-j—1) to g(z,-'j.,_llTij) can be
first utilized in the “posterior” g(zi;|77) and then linked to the next prior g(zi;1|T7).
In other words. in the updating scheme, we have an information update through the
posterior as well as a non-stationarity update by linking the posterior to the next prior.
For instance, if f(t;j{zi;, T') is Exponential with rate z;;, the corresponding conjugate

prior, g(z,-leij_l), is Gamma. In this Harvey-Fernandes scheme, the updating controls

the underlying mean and variance of the z; process, as follows:

Blzijnl|T!] = Elz4lT!]
and Var(zi;u|T/] = ~v7'Var(z;|T]] (5.4)
for j =1,2,...,n; where 0 < v < 1 is a parameter that possibly depends on the past

recurrence times.
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Previous applications have mainly focused on a single time series of data and ne-
glected the fact that v can be time-dependent (Smith and Miller, 1986; Harvey and Fer-
nandes, 1989). Lambert (1996b) considered a Poisson observation model and extended it
to repeated count data allowing irregular sampling intervals by having a time-dependent
parameter y. Lambert (1996a) considered a version of the model robust to extreme val-
ues and included the special case of having non-informative prior g(z;). Yue and Chan
(1994) considered a proportional hazards model with dynamic random effects designed
to incorporate both inter- and intra-subject variability in recurrence times. Our model is
essentially the same as theirs, except that the parameter v can be time-dependent. This

model is given in the next section.

5.3 An Intensity Based Model for Recurrent Events

We propose an intensity based model to account for intra-subject covariability as well as
inter-subject heterogeneity. Suppose that. in addition to the recurrence times ¢;;. we also
observed a time-dependent covariate process, z;;(¢). The model is characterized through

the hazard function of T;;, denoted by h;;(t), as

hij(t) = zijho(t)e’ =4t (5.5)

with z;le!'—l ~ G(l(h‘,iﬂj_l, Vijlj—l) and 21 ~ Ga(l/wz, l/wz) (56)

where 3 is a vector of covariate parameters with the same dimension as z;;(¢). and hq(?)

is a baseline hazard function. Note that we have implicitly defined &0 = viy0 = 1/w?.
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The posteriors g(z;,-{T,-j] are found to be Ga(k;j, vi;) where

Rij = Kijlj-1 + 055

&5 ,
and Vi; = V-1 +/ ho(t)eﬁz'-j(t)dt (57)
a

where é;; = 0 when j = n;+1 and 1 otherwise: see Appendix D.1. The “non-stationarity”

update is taken as in (5.6), with
Kigeil = U(T)ks; and vyjp; = O(T7 vy (5.8)

for j = 1, 2, ... .n; where \IJ(T,J ) can be any time-dependent positive-valued function
taking values less than 1. Note that, through (5.8), the mean of z;; is kept unchanged
while the variability is increased; this allows a non-stationary process drift as for (5.4).

The set of model parameters includes 3. w?, ¥(-). as well as any parameters in ho(t).
The initial z;’s are independent and identically distributed with mean 1 and variance w?.
Hence w? controls the initial variability due to subject heterogeneity. The function ¥(-)
reflects the within-subject stability. The closer ¥(-) is to 1, the more stable is the process
while the closer ¥(-) is to 0, the less stable is the process. The limiting behaviour at the
boundaries of w? and ¥(-) is better understood by looking at the state space form of the
model which we now describe.

Consider a state space model based on the model (5.5) for the distribution of T}; IT'_,'~1.

and sequence of z;;’s which follows the multiplicative transition process,

Zige1 = O(T?) zijmijs i=1,2, ..., n (5.9)

. .
L EERRE]
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where 7;; ~ Beta(‘I’(Tij)r:,-,-, (1-—‘1’(7’3))5;,-). Relationship (5.9) together with (5.5) defines
a full state space model which is equivalent to the model represented by formulas (5.5) -
(5.8); see Appendix D.2. With no subject heterogeneity, i.e. w? — 0, K0 = oo for all ¢
and, by (5.7) and (5.8), we have s;; — oo for all 4,j. Thus n;; = ¥(77) and (5.9) implies

Zijp1 =zij=2zp =1 forallz, 7 > 1.

Hence all between and within subject recurrence times are uncorrelated no matter the
value of ‘IJ(T;" ). In other words, intra-subject correlation is triggered by the random

effects. The functionality of ¥(-) is best seen by noting, from (5.9), that

Elzijilzj. T7)

Z{J'

and Var(z jp |z T = (9(TH) - l)zizj/("ij +1).

) 1 4

When ¥(T?) — 1, z;; = z; for all j > 1 and Model (5.5) and (5.9) reduces to the
Gamma frailty model considered by Aalen and Husebye (1991). When ¥(T7) — 0.
Var(ziju|zi;, T!] — oo which, from (5.5), means a high instability of the hazard due
to large process drifts. The random effect z;; induces within-subject covariability which
1s adjusted by ¥(.) to give a non-stationary process drift as more recurrence times are

observed.

5.4 The Likelihood

A merit of using the conjugate-prior type model in (5.5) and (5.9) is the availability of

the likelihood without the effort of numerical integration or the expense of inaccuracies
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from approximations. The likelihood function for recurrent event data with censoring can

be constructed through (5.3) and the usual decomposition rule as

N n;
L= H (H f(tijITiJ-l)) PT{Ti-n.'+1 > ti.n.-+1|Tin‘}

i=1 =1

where each individual predictive density is computed. using (5.5) and (5.6). by integrating
over zjj in E_ pi-t[ f(t;] zi;. T77')] and similarly for the last term with the censoring

1

time. This gives

Rijli-t
FUSITI™) = holteg) =) — 2L (5.10)
i
- Vi.n.'-l»lln.; Kin;+1ln;
and  Pr{Tin41 2 tin,1| T} = | ——— - (5.11)
Vin;+1
Thereupon, the log-likelihood function can be written as
N n;
I = Z {z [log ho(t;j) +ﬁlil,‘;j(t,‘j) + log(r;,-jlj_l) - log Uij]
1=1 j=t
n;+1
+ Z Kijli—1 [log vijij—1 — log Vij]} (5.12)
=1

which can be evaluated numerically by computing &jj;-1. vij;-1 and v;; recursively using
(5.7) and (5.8). Note that when there are no random effects, i.e. w? — 0, (5.10) and (5.11)
reduces to the densities from independent recurrence times (see Appendix D.3), but the
degeneracy does not cause much problem in our applications (see Section 5.5). The
score function and Hessian matrix can be routinely evaluated; see Appendix D.4 for the
case of a Weibull baseline hazard function with a time-independent discounting constant

¥(T/) = ¢ when there is no covariate process. Common optimization algorithms such as
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the Downhill Simplex Method (which does not require the first and second derivatives) and
the Newton-Raphson Method are usually sufficient in searching for maximum likelihood

estimates.

5.5 Application to Small Bowel Motility Data

The model in Section 5.3 was fitted to a set of small bowel motility data from Aalen and
Husebye (1991). There were 19 subjects with no covariates. Successive MMC periods
were recorded over a fixed time period. As in the Gamma frailty model in Aalen and

Husebye (1991), we considered a Weibull baseline hazard function, i.e.
ho(t) = bt*: b>0, k> —1.

We assumed ¥(-) = . Initial estimates for (. k.w?) were obtained by fitting a Gamma
frailty model as in Aalen and Husebye (1991) and 3 was initially taken as 0.5. To avoid
boundary value problems and highly correlated estimates, the set of parameters 8 =
(b, k,w?,7) was transformed to §y = (u,d.v,7) where

_ L gt
Tk+1 8\

).
(5.13)

), §=log(k+1). v=log(w?) and 7 =+ — log(

" Y
T-9
The corresponding log-likelihood, score and Hessian are given in Appendix D.4. We pro-
grammed in SAS/IML Version 6.10 in a DEC alpha, Digital UNIX (OSF/1) V3.2 system
and a nonlinear optimization subroutine, NLPNMS (Nelder-Mead Simplex method), was

employed for likelihood maximization.

The log-likelihood was maximized at —429.13 and maximum likelthood estimates to-
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gether with their asymptotic standard errors and correlation coefficients are shown in
Table 5.1. The sampling distribution of the estimates was examined by 500 bootstrap
samples. Figure 5.2 exhibits plots of histograms for various estimates and shows a fairly
symmetric empirical distribution for v and §. Using the Normal assumption, the 95%
confidence intervals for v and é are 4.75 £0.13 and 0.83 £+ 0.19 respectively and hence the

confidence interval for b and & are

(3.16 x 107°. 5.74 x 10~%) and (0.90, 1.77)

respectively. The seemingly bi-modal behaviour for the estimates of 7 is due to the flatness
of the likelihood as 7 gets small when the hypothesized value of 9 is close to 1. In a careful
look, estimates of 7 smaller than —9 usually have scores greater than —10~* which keep
increasing when the estimates are pushed smaller. Figure 5.3 shows the increasing score
for a typical iterated estimate of —13.31 for 7. Thus the left cluster of the estimates for
T should actually spread over towards —oo and the empirical distribution of both v and
T have a long left tail. Indeed, as can be seen in the next simulation study, the bi-modal
behaviour disappears for small values of 3.

The likelihood ratio statistic for the null hypothesis w? = 0 is B = 2.58. However.
since w? = 0 lies on the parameter space boundary, R is not distributed as a simple chi-
square. The empirical significance level of R is 0.09. It was computed by bootstrapping
1.000 samples with (b, k,w?) = (0.000044,1.28,0) and calculating the proportion of like-
lihood ratio statistics for testing w? = 0 that are greater than R. Thus, we arrive at the
conclusion as in Aalen and Husebye (1991) that the data do not exhibit strong evidence

of subject heterogeneity. Indeed, a graphical test of the Weibull model does not reveal a
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Parameters Estimates * Asymptotic correlation matrix
u 4.7525 0.0658 0.0789 -0.2031 0.1760
) 0.8261 0.0991 0.3409  0.2237
v -1.9304 0.9084 -0.3668
T -6.2818 52.9457
b 0.000044 0.000044 -0.9887 -0.3026 0.2683
k 1.2844 0.2265 0.3409 -0.2165
w? 0.1451 0.1318 0.3815
P 0.9873 0.6694

“The off-diagonal elements are the asymptotic correlations: the diagonal elements are the asymp-
totic standard errors.

Table 5.1: Maximum likelihood estimates for a set of small bowel motility data.

serious model departure (Figure 5.1). Consequently, the value of 1 becomes irrelevant as
mentioned in the last paragraph of Section 5.3. Indeed, the likelihood ratio statistic for
testing the null hypothesis w? = (0 against the alternative w? > 0 but ¥ = 1 (the frailty

model) is only slightly smaller (= 1.9 x 10~*) than R.

5.6 Simulation Study

To determine the efficacy of the estimators and enhance our understanding of the model.
we performed a simulation study at some hypothetical but plausible values of the pa-
rameters. We assumed the same number of subjects (19) and censoring times as in the
small bowel motility data. The baseline hazard is taken from a Weibull distribution. i.e.
ho(t) = bt*; b > 0, & > —1 and the discounting function is taken as a constant, i.e.
U(-) = 9. Then, with some specified value of § = (b, k,w?, 1), a set of recurrent event

times with censoring was generated from the following algorithm. For each subject ¢,

1. Take the censoring time. s;, from the zth subject in the small bowel motility data.
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Figure 5.1: A graphical check of the Weibull model. A correct model should give a linear

graph.
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Figure 5.2: Histograms for estimates from a bootstrap sample of size 500.
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Figure 5.3: Plot of scores against 7 for an iterated estimate of ~13.31 for 7 in a simulated
data.
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2. Set Ki1j0 = vy = 1/w? and generate z; from Ga(kiyo, Yi1p0)-

3. Generate £;; from its intensity function z;h,(t).

4. Set 7 =1.

5. Compute K;; = Kijli-1 + L.

6. Generate 7;; from Beta(v¥kij, (1 — 9¥)k;;) and evaluate z; ;4 = zi7:5/9-
7. Generate t; j;, from its intensity function z; j1h,(t).

8. If the total time span. f;i tit. is less than s;. compute K; j41); = Pri;. set j =j +1
and go to step 5.

n;

9. Put n; = 7 and t;,,41 = s; i=1 ti;.

From this. we generated 1,000 samples. For each simulated sample m (m = 1. 2. ... . 1000).
the log-likelihood (D.1) was maximized with respect to 8y = (u.d.~, 7). the transformed
form of 6 from (5.13). and the maximum likelihood estimates ég") as well as the asymp-
totic correlation matrix with the diagonal elements replaced by the asymptotic standard
erTors Eg") were obtained. The efficacy of the estimators was assessed by computing the

following summary statistics.

_ 1000 1000

= 1 N = 1 - . .
0y = 1000 ";G(Um). Yu = 1500 Z Zg"), Yy = sample correlation matrix with

m=1

diagonal elements replaced by

the sample standard deviations

and the 95% coverage which is the proportion of the 95% confidence intervals computed

using the Normal assumption, i.e. 7" + 1.96 x standard error(égn)), that includes the
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hypothesized value 8y. With obvious notation. 5 E, Z. and the 95% coverage were also
computed.

Based on the previous example, the values of b and k are taken to be 0.00005 and 1.5
respectively. The random effects variance w? is taken at two values: a small value 0.1 and
a large value 1.5. In either case. ¢ takes values in {0.1,0.5.0.9}. All summary statistics
at different values of the parameters are tabulated in Table 5.2 for w? = 0.1 and Table 5.3
for w? = 1.5.

In Table 5.2 with w? = 0.1. except for 7, there is a fair agreement between the average
of estimates and the true values as well as between the estimated standard errors and
the corresponding sample estimates. The coverage for 8y agrees very much with 0.95.
The finite sample approximation by Normal distribution for the sampling distribution of
fu can be reasonably assumed despite the long tail distribution for ¥ and 7 as in the
numerical example. Again, the great discrepancy between the standard error of 7 and
its small finite sample standard deviation is due to the flatness of the likelihood when
is close to 1. But this does not create any serious disagreement for ¥. Indeed. further
study of the empirical distribution of 7 for smaller values of . say < 0.5 shows the
seemingly bi-modal behaviour does not appear. This can also be seen from a much better
agreement between the standard errors and the corresponding finite sample estimates in
Table 5.2(a). In Table 5.3 with w? = 1.5, similar phenomena are observed with better
overall agreements of the estimates.

Thus with only a small number of subjects and around 10 to 20 recurrence times
per subject, the asymptotic approximations perform reasonably well when there are large
random effects. Standard errors of the estimates tend to be smaller for large values of ¥

which corresponds to a more stable process. Interval estimates should be computed by a
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Normal approximation for 8y. which gives closer to nominal coverage.

5.7 Concluding remarks

We have employed a proportional hazards model with dynamic random effects in mod-
elling inter-subject heterogeneity and non-stationary intra-subject variability in recurrent
events with censoring. It is flexible enough to incorporate random effects and pick up non-
stationary process drifts through z; and ¥(-) (as also discussed in Harvey and Fernandes.
1989, for the case with count data). The likelihood function, which is usually intractable
outside the linear Normal framework. can be easily evaluated and differentiated fromn
(5.12).

Now, prediction of the next event recurrence is based on the mean of T; ., I-I.‘_r».-j.i.ni+l it

which can be easily shown, from (5.11). to be tinie1 = ting41 + tiw where

Kin: n: < dt
tiw = Vi_n.,-:i” ' / . R Rin+ljn; ' (5.14)
tin;+1 (Ui.n;-{-lln; + J; ho(u)e? 2”'-"-'*"(“)du)

Thus the predicted waiting time until the next event recurrence for subject 7 is ¢;u and

the (m 4 1)th mean recurrence time (m > n; + 1) can be similarly deduced, from (5.10).

as
< h (t)eﬁ’zi,m-i-l(t)
- - : 0
imtim = Fimetm (Vppgfm) omttim / R Ot
0 (l/- + ft h (u)eﬁlzi.m-{'l(“) d»u)
i,m+1|m o °0 (5.15)
e , .
where Vi ntifm = O(T™) (u;‘.m[m_l + o7 ho(t)eP ”"'("dt> Vit = Vimitling and

7™ = {T"}U{t; 41 --- » tim}- Note that our results assumed the covariate process
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is known before prediction is made. Integration in (5.14) and (5.15) depends on the
complexity of ho(t) which is manageable in most applications.

Note that we have not looked at the very important issue of model diagnostics.
Some thoughts on diagnostic checking are to perform “post-sample” diagnostics where
we shorten the surveillance time of each subject. That is. we are discarding some ob-
servations (post-sample) but the last retained one is still censored. Then the present
model is fitted to the retained dataset and predicted values, from (5.14) and (5.15). are
computed and compared with those recurrence times in the post-sample. However. in the
case when we do not have too many observations for each subject. discarding observations
may result in a too small sample which is not informative enough for the model to be
well-fitted. Another approach would be by using parametric bootstrapping to generate
samples with values of the parameters taken as the estimates from fitting the original
data. The bootstrap samples are then compared with the original data to assess the fit
of the model. Sufficiency of ordinary proportional hazards models when subjects forming

renewal processes can be assessed by using hazard-based residuals (Lawless. 1982) defined

as
H (t:5) if £;; is not censored,
€i; =
H(t;;) +1 if ¢;; is censored
where H = — log S (t:;;) and $ are the estimated cumulative hazard and survivor function

under the ordinary proportional hazards model with a chosen baseline hazard function.
Then. the model is sufficient if a plot of the logarithm of the Kaplan Meier estimate of
the e;;’s versus e;; is roughly a straight line with slope —1. However, residual analysis
to assess proportional hazards models with a dynamic frailty, for example. the validity of

the baseline hazard function, is still desirable.
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It is also worth studying the possible use of semi-parametric methods when the baseline
hazard function kg is not specified. For example, semi-parametric analysis can be generally
pursued through the EM algorithm as in Petersen et al. (1996). In our model. the
logarithm of the complete data (assuming the frailties are known) likelihood can be written

as

L(B.ho.w®. W) = log f(za) + 3 log Flziser |25 T + 3 log(si)

n; n;i+1 tij
+ Z log [ho(tij)eﬂ x"'“"')] - Z z,-,-/ ho(w)ef i) dy (5.16)
i=1 j=1 0

Assuming »? is known and noting that the last two terms of l. in (5.16) only involve z;

linearly, the E-step requires

E(z; | T Ys). (5.17)

Then, in the M-step, we maximize (5.16) with respect to the baseline hazard function
ho and (3, after substituting z;; as (5.17). Note that only the last two terms in (5.16)
are needed to be maximized and this is equivalent to the usual Cox regression analysis
(zi;'s in the M-step are now known) which estimates the baseline hazard function through
the Nelson-Aalen estimator. Estimates of w? and ¥ can be obtained by maximizing the
observed data log-likelihood as given by (5.10) and (5.11). The EM-step together with
the estimation of w? and ¥ iterates until convergence. The key is to compute (5.17) which
can be generally approximated by the Gibbs sampler (e.g. Gelfand and Smith, 1990) by
noting f(zi;'s|¢ti;’s) is proportional to (5.16). However, further study of the convergence

properties is needed.
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Chapter 6

Conclusion and Further Research

6.1 Summary of Results

In this dissertation, we have used. in Chapter 3, a state space model to deal with mul-
tivariate longitudinal measurements with missing values and measurement errors. The
linear Kalman filter demonstrated its efficiency, especially when we have a number of long
series of multivariate measurements. Next, we identified and discussed, in Chapter 4, two
classes of Gaussian random effects models for recurrent event data; namely autocorrelated
and dynamic random effects models. Dynamic random effects models are more appro-
priate when the initial inter-subject heterogeneity does not persist over time, otherwise
autocorrelated random effects models are preferred. In Chapter 5, we extended the Cox
proportional hazards models for recurrent event data to allow inter-subject heterogene-
ity and non-stationary process drifts by using a dynamic Gamma frailty process. The
resulting model is somewhat similar to the dynamic random effects models discussed in

Chapter 4 but is distinct in the fact that each dynamic frailty effect also accounts for the

98
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past recurrence times (a slight modification of GSSMs). The model enjoys tractability
of the likelihood function by which scores and Hessian matrix can be easily numerically

evaluated. a property not shared by most general state space models with random effects.

6.2 Further Research

We would like. in the future, to embark on the use of filtering methods for longitudinal
data with different characteristics, e.g. missing responses and covariates. measurement
errors in respouses and covariates. measurements taken at irregular time epochs. inter-
subject heterogeneity., and more. Some potential topics are described in the following

sections.

6.2.1 Missing Data in Conditional Models

In Chapter 3, we dealt with multivariate and continuous measurements at specific time
epochs with values missing at random. Lipsitz et al. (1994) considered a marginal ap-
proach for categorical responses with time-dependent covariates. They estimated covariate
effects when responses are allowed to be missing at random. With illustration on binary
responses, they stratified subjects according to their covariate values. A two-stage estima-
tion procedure was adopted with the first stage used to estimate the marginal probabilities
of a subject’s responses and the second stage to estimate the covariate effects by regress-
ing a known function of the marginal probabilities on the covariates. The first stage was
carried out by maximizing the likelihood using EM or a Newton-Raphson method and the
second stage proceeded by using ordinary weighted least squares. However, estimation

especially in the first stage is cumbersome when the number of responses of a subject is



CHAPTER 6. CONCLUSION AND FURTHER RESEARCH 100

large. Moreover. the method of stratification may not be appropriate when the resulting
stratum size is small.

We are interested in the possible use of similar model and filtering methods as in
Chapter 3 to improve the efficiency of estimation while accommodating time-dependent

covariates and responses which can be missing at random and/or measured with errors.

6.2.2 Measurement Errors in Longitudinal Studies

Measurement errors can occur in both responses and covariates. They may also produce
identifiability problems, e.g. whether the variability is due to measurement errors or
inherent variations (Chapter 3). Ignoring measurement errors can lead to inconsistent es-
timates. However, most previous studies focused on examining the effects of measurement
errors on survival (Tsiatis et al., 1995; Raboud et al.. 1993) or ordinary GLM (Haukka.
1995; Sepanski et al., 1994) type data. Methods that account for errors in covariates are
mainly through imputation by assuming a certain measurement error model. or by the
bootstrap. It is worth studying the effects of measurement errors (in both responses and

covariates) in repeated measurements and exploring the applicability of filtering methods.

6.2.3 Combining Missing Values and Measurement Errors

We have discussed, in Chapter 3, missing values and measurement errors under Gaussian
linear models only. It is also worth extending this to non-Gaussian models such as the
exponential family models. There have been separate studies on measurement errors
and missing values. For example, Sutradhar and Rao (1996) studied the correction of
bias in regression parameters’ estimates from solving GEEs under GLMs as a result of

measurement errors on covariates. For partially missing covariates in GLMs, Ibrahim
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(1990) considered the use of an EM algorithm through the “method of weights”. More
general discussions on missing data in longitudinal studies can be found in Laird (1988).
However, it is in general hard to combine measurement errors and missing values on

responses and covariates, and further research is highly desirable.

6.2.4 Irregularly Spaced Measurements

Irregularly spaced time data arises when subjects are measured at arbitrary time intervals.
Sometimes, they can be treated as equally spaced time data with missing values but this
may not be plausible when there is no basic sampling interval. Thus, it is more natural
to consider an underlying continuous time process which govern the observed responses.
The use of linear Gaussian state space models and filtering methods for irregularly spaced
data are well described and discussed in Jones (1993). Elliott ef al. (1995) considered. in
a more general framework. the use of optimal filtering for estimation under both discrete
and continuous time Hidden Markov Models (HMMs). The HMMs can be treated as
another type of GSSMs. For example, a continuous time AR(1) process {X, : te[0,c0)}

with measurement errors can be formulated as a continuous time HMM by

Yi = X:+ W,

t
and X, = X0+/auXudu+V;
0

where Y, is the observable process while V; and W, are independent zero mean martingale
processes. The key technique used by Elliott et al. (1995) is a change of measure through
the Girsanov Theorem to work on a “fictitious world” where well-developed and straight-

forward tools can be employed. Results are then transformed back to the “real world™ by
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a reverse change of measure. The mathematics is neat and complete but its use in the

actual fitting of irregularly spaced measurements remains to be investigated.



Appendix A

Datasets

A.1 The Two Automobile Datasets

Both the Piston Machining and the Door Hanging Data are described in Section 1.2.1
of Chapter 1 and analyzed by a multivariate AR(1) variation transmission model in Sec-

tion 3.4 of Chapter 3. They are printed in the following two subsections.

A.1.1 Piston Machining Data

The table shown below gives the four diameter measurements located at heights of 4 mm.
10 mm, 36.7 mm and 58.7 mm (the four values from top to bottom of each cell of the

table) from the bottom of 96 pistons at four process stages.

Piston Stage 2 88.955 88.955 88.955 88.958

number 1 2 3 4 88.972 88.972 88.972 88.974

88.935 £8.934 88.934 88.937

1 88.960 88.959 88.957 88.959 88.163 88.159 88.157 88.160
88,976 88.975 88.973 88.975

88.936 88.935 88.935 88.936 3 88.958 88.959 88.957 88,960

88.167 88.163 88.161 838.163 88.974 88.975 88.973 88.975

88.936 88.938 88.935 88.938
88.163 88.164 88.160 88.163
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4 88.956 88.959 88.958 88.959 16 88.955 B88.955 88.956 88.953
88.973 88.976 88.973 88.974 88.972 88.972 88.973 88.972
88.935 88.937 88.935 88.937 88.933 88.933 88.934 88.932
88.162 88.160 88.159 88.1680 88.162 88.161 88.161 88.160
s 88.958 88.958 88.958 88.956 17 88.960 88.961 88.959 88.959
88.972 88.972 88.972 88.970 88.975 88.977 88.976 88.974
88.935 88.935 88.935 88.933 88.938 88.939 88.938 88.937
88.163 88.162 88.161 88.159 88.165 88.164 88.162 88.161
6 88.954 88.954 88.952 88.952 18 88.957 88.961 88.957 88.960
88.972 88.973 88.971 88.970 88.974 88.976 88.973 88.97S
88.935 88.934 88.933 88.933 88.936 88.939 88.932 88.938
88.164 88.162 88.1682 88,159 88.161 88.161 88.158 88.158
7 88.958 88.960 88.948 88,857 19 88.958 88.957 88.957 88.957
88.973 88.973 88.973 88.972 88.976 88.975 88.974 88.974
88.935 88.933 88.931 88.931 88.938 88.937 88.936 88.938
88.163 88.161 88.160 88.160 88.167 88.166 88.161 88.162
8 88.954 88.955 88.956 88.953 20 88.958 88.958 88.956 88.957
88.973 88.972 88.973 88.971 88.973 88.974 88.973 88.973
88.93¢ 88.934 88.935 88.933 88.935 88.933 88.933 88.934
88.163 88.163 88.163 88.161 88.161 88.160 88.157 88.159
9 88.957 88.958 88.957 88.959 21 88.959 88.959 88.960 88.957
88.974 88.977 88.975 88.976 88.972 88.971 88.972 88.970
88.936 88.938 88.936 88.938 88.935 88.934 88.935 88.933
88.165 88.165 88.162 88.162 88.163 B88B.161 88.162 88.160
10 88.957 88.959 88.957 88.959 22 88.951 88.954 88.953 88.950
88.974 88.975 88.973 88.975 88.971 88,976 88.972 88.970
88.937 88.938 88.936 88.938 88.934 88.935 88.934 88.934
88.161 88.159 88.157 88.158 88.163 88.163 88.159 88.160
11 88.960 88.960 88.957 88.956 23 88.960 88.960 88.961 88.958
88.977 88.976 88.973 88.973 88.974 88.974 88.974 88.972
88.938 88.937 88.936 88.938 88.935 88.935 88.932 88.932
88.168 88.162 88.160 88.162 88.162 88.161 88.159 88.159
12 88.957 88.958 88.955 88.956 24 88.954 88.954 88.955 88.952
88.973 88.974 88.972 88.972 88.972 88.973 88.972 88.971
88.935 88.938 88.935 88.935 88.936 88.935 88.935 88.934
88.162 88.160 88.162 88.157 88.163 88.183 88.182 88.162
13 88.960 88.958 88.959 88.957 25 88.957 88.957 88.958 88.959
88.974 88.973 88.973 88.971 88.974 88.975 88.975 88.975
88.935 88.933 88.936 88.935 88.937 88.937 88,937 88.937
88.164 88.161 88.181 88.157 88.165 88.162 88.163 88.1682
14 88.955 88.955 88.955 88.953 26 88.957 88.959 88.956 88.957
88.973 88,973 88.872 88.972 88.972 88.974 88.973 88.973
88.934 88.933 88.933 88.933 88.936 88.936 88.935 88.937
88.163 88.163 88.1682 88.162 88.163 88.162 88.157 88.160
15 88.959 88.958 88.957 88.956 27 88.957 88.958 88.8957 88.958
88.973 88.972 88.973 88.972 88.975 88.975 88.973 88.974
88.935 88.934 88.935 88.933 88.938 88.938 88.938 88.937

88.161 88.159 88.160 88.159 88.166 88.164 88.160 88.161
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28

29

30

31

32

33

34

35

38

37

38

39

88.958
88.975
88.937
88.163

88.960
88.974
88.936
88.164

B88.956
88.973
88.935
88.164

88.958
88.973
88.937
88.164

88.956
88.973
88.936
88.164

88.957
88.973
88.935
88.165

88.956
88.972
88.935
88.161

88.958
88.97S
88.938
88.168

88.956
88.972
88.938
88,162

88.959
88.973
88.934
88.161

88.951
88.969
88.933
88.164

88.959
88.973
88.935
88.163

88.958
88.97%
88.937
88.161

88.953
88.973
88.935
88.162

88.9568
88.974
88.933
88.160

88.959
88.973
88.937
88.163

88.955
88.973
88.935
88.163

88.960
88.975
88.937
88.165

88.957
88.973
88.931
88.180

88.958
88.974
88.937
88.164

88.958
88.974
88.937
88.160

88.958
88.972
88.933
88.159

88.950
88.969
88.933
88.162

88.959
88.972
88.934
88.161

88.956
88.974
88.936
88.158

88.959
88.973
88.935
88.161

88.957
88.974
88.934
88.162

88,958
88.973
88.936
88.162

88.955
88.972
88.935
88.161

88.958
88.974
88.935
88.162

88.955
88.971
88.930
88.158

88.956
88.973
88.93¢
88.161

88.956
88.972
88.935
88.159

88.959
88.973
88.933
88.160

88.950
88.973
88.933
88.163

88,959
88.971
88.933
88.161

88.957
88.974
88.937
88.160

88.958
88.972
88.933
88.160

88.955
88.973
88.934
88.160

88.958
88.972
88.936
88.160

88.954
88.971
88.935
88.180

88.959
88.973
88.935
88.163

88.955
88.971
88.933
88.158

88.957
88.973
88.936
88.162

88.956
88.973
88.935
88.158

88.959
88.973
88.933
88.160

88.949
88.969
88.932
88.163

88.958
88.970
88.932
88.161

40

41

42

43

44

45

46

47

48

49

50

St

88.954
88.971
88.934
88.182

88.958
88.976
88.931
88.157

88.955
88.972
88.933
88.160

88.953
88.971
88.93S
88.165

88.956
88.973
88.936
88.162

88.961
88.975
88.932
88.160

88.954
88.973
88.935
88.163

88.959%9
88.973
88.934
88.164

88.954
88.972
88.934
88.164

88.958
88.978
88.936
88.166

88.956
88.974
88.935
88.161

88.958
88.974
88.935
88.166

88.953
88.970
88.933
88.162

88.956
88.97S
88.931
88.156

88.957
88.973
88.935
88.158

88.955
88.972
88.936
88.164

88.958
88.975
88.938
88.161

88.959
88.973
88.932
88.160

88.960
88.973
88.934
88.161

88.962
88.974
88.930
88.158

88.954
88.972
88.934
88.161

88.960
88.977
88.938
88.165

88.958
88.975
88.937
88.159

88.957
88.976
88.938
88.164

88.952
88.970
88.932
88.160

88.955
88.974
88.929
88.154

88.955
88.972
88.934
88.158

88.953
88.971
88.936
88.162

88.958
88.973
88.936
88.155

88.960
88.973
88.931
88.189

88.9583
88.971
88.933
88.161

88.958
88.972
88.932
88.161

88.953
88.970
88.934
88.162

88.957
88.973
88.934
88.160

88.956
88.973
88.936
88.156

88.955
88.972
88.935
88.161

88.952
88.970
88.932
88.161

88.957
88.975
88.929
88.153

88.956
88.973
88.935
88.158

88.953
88.971
88.937
88.164

88.957
88.973
88.937
88.159

88.960
88.972
88.932
88.159

88.953
88.972
88.935
88.162

88.959
88.973
88.933
88.161

88.951
88.970
88.933
88.162

88.959
88.974
88.937
88.163

88.957
88.974
88.936
88.158

88.955
88.974
88.937
88.163
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52 88.958 88.959 88.956 88.956 64 88.955 88.954 88.954 88.953
88.973 88.975 88,973 88.973 88.973 88.972 88.972 88.972
88.936 88.937 88.934 88.936 88.935 88.934 88.934 88.932
88.163 88.160 88.156 88.160 88.165 88.163 88.163 88.164
53 88.958 88.954 88.957 88.958 &5 88.956 88.958 88.956 88.957
88.972 88.971 88.971 B8B.972 88.974 88.976 88.974 88.975
88.934 88.933 88.930 B8.934 88.934 88.935 88.935 88.935
88.165 88.163 88.161 88.162 88.166 88.162 88.162 88.162
54 88.954 88.955 88.955 88.954 66 88.956 B88.957 88.954 88.957
88.972 88.973 88.973 88.973 88.972 88.973 88.970 88.973
88.935 88.935 88.935 88.936 88.934 88.935 88.932 88.937
88.165 88.162 88.162 88.163 88.160 88.159 88.156 88.158
58 88.959 88.960 88.961 88.959 67 88.956 88.959 88.956 88.958
88.973 88.973 88.974 88.973 88.973 88.976 88.974 88.975
88.934 88.934 88.933 88.932 88.935 88,937 88.935 88.936
88.164 B88.162 88.162 88.160 88.164 88.163 88.161 88.162
56 88.956 88.955 88.956 88.954 €8 88.956 88.957 88.957 88.957
88.973 88.970 88.972 88.971 88.973 88.973 88.873 88.973
88.934 88.933 88.934 88.933 88.935 88.936 88.933 88.935
88.166 88.163 88.183 88.162 88.161 88.159 88.157 88.158
57 88,958 88.959 88,9568 88.957 €9 88.960 88.960 88.958 88.959
88.976 88.976 88.973 88.975 88.973 88.973 88.973 88.972
88.938 88.938 88.935 88.937 88.934 88.933 88.933 88.934
88.166 88.184 88.160 BB.162 88.162 88.16: 88.160 88.159
s8 88.957 88.959 88.958 88.958 70 88.953 88.954 88.953 88.952
88.973 88.975 88.974 88.974 88.972 88.972 88.971 88.971
88.935 88.923 88.935 88.929 88.93¢ 88.932 88.932 88.932
88.161 88.158 88.156 88.156 88.164 88.162 88.162 88.162
s9 88.958 88.959 88.956 88.958 71 88.960 88.961 88.959 88.960
88.975 88.974 88.972 88.974 88.973 88.973 88,971 88.973
88.937 88.937 88.933 88.936 88.931 88.932 88.927 88.928
88.166 88.162 88.158 88.161 88.162 88.161 88.161 88.161
80 88.958 88.958 88.956 88.958 72 88.954¢ 88.956 88.955 88.956
88.974 88.976 88.972 88.974 88.971 88.972 88.972 88.972
88.937 88.938 88.935 88.937 88.933 88.934 88.933 88.934
88.162 88.160 88.157 88.158 88.163 88.163 88.162 88.164
61 88.959 88.959 88.959 88.957 73 88.959 88.959 88.957 88.958
88.974 88.974 88.975 88.973 88.976¢ 88.976 88.973 88.975
88.933 88.931 88.931 88.929 88.937 88.938 88.935 88.936
88.164 88.162 88.162 88.160 88.168 BB.165 88.162 88.164
62 88.954 88.955 88.955 88.954 74 88.956 88.958 88.957 88.957
88.971 88.973 88.972 88.970 88.972 88.974 88.972 88.973
88.935 88.934 88.934 88.934 88.934 88.935 88.933 88.934
88.164 88.162 88.162 88.161 88.162 88.159 88.157 88.158
63 88.960 88.960 88.958 88.958 75 88.959 88.959 88.957 88.958
88.973 88.973 88.972 88.972 88.976 88.976 88.974 88.974
88.935 88.935 88.933 88.934 88.938 88.936 88.935 88.937

88.163 88.163 88.1682 88.162 88.166 88.183 88.1681 88.163



APPENDIX A. DATASETS

76

78

79

80

81

82

83

84

8§

8s

88.955
88.972
88.936
88,161

88.958
88.971
88.934
88.162

88.954
88.971
88.933
88.164

88.959
88.972
88.931
88.162

88.955
88.973
88.933
88.164

88.955
88.973
88.934
88.163

88.955
88.972
88.934
88.161

88.958
88.976
88.938
88.187

88.958
88.972
88.936
88.161

88.960
88.974
88.934
88.164

88.954
88.972

88.957
88.973
88.937
88.160

88.956
88.970
88.933
88.160

88.954
88.971
38.933
88.163

88.960
88.973
88.931
88.162

88.954
88.972
88.931
88.164

88.957
88.975
88.936
88.164

88,958
88.974
88.936
88.160

88.958
88.975
88.938
88,164

88.957
88.973
88.934
88.160

88.959
88.971
88.933
88.162

88.954
88.971

88.958
88.973
88.935
88,158

88.9568
88.870
88.933
88.161

88.955
88.972
88.934
88.182

88.959
88.972
88.931
88.160

88.954
88.972
88.933
88.163

88.954
88.971
88.933
£8.160

88.956
88.972
88.933
88.157

88.956
88.973
88.937
88.163

88.955
88.971
88.935
88.157

88.958
88.971
88.932
88.161

88.952
88.970

88.957
88.974
88.936
88.158

88.957
88.975
88.935
88.161

88.95¢4
88.971
88.934
88.163

88.958
88.972
88.932
88.162

88.954
88.973
88.932
88.164

88.956
88.974
88.937
88.183

88.958
88,972
88.938
88.159

88.958
88.973
88.938
88.163

88.956
88.973
88.937
88.160

88.959
88.973
88.934
88.163

88.953
88.971

87

88

89

90

91

92

93

94

95

96

88.93§
88.164

88.957
88.972
88.934
88.163

88.955
88.972
88.934
88.163

88.956
88.972
88.933
88.163

88.956
88.973
88.935
88.162

88.957
88.974
88.937
88.164

88.956
88.972
88.935
88.162

88.960
88.973
88.935
88.162

88.953
88.971
88.935
88.165

88.960
88.972
88,935
88.163

88.955
88.973
88.934
88.164

88.934
88.162

88.958
88.970
88.934
88.161

88.954
88.972
88.933
88.161

88.958
88.975
88.93%
88.163

88.957
88.973
88.935
88.160

88.957
88.974
88.937
88.183

88.958
88.975
88.936
88.161

88.959
88.972
88.934
88.160

88.951
88.970
88.930
88.162

88.959
88.971
88.934
88.161

88.955
88.973
88.933
88.183

88.933
88.162

88.956
88.970
88.932
88.159

88.955
88.972
88.934
88.160

88.957
88.973
88.93%
88.161

88.955
88.972
88.935
88.159

88.956
86.971
88.934
88.159

88.955
88.971
88.929
88.158

88.958
88.971
88.933
88.158

88.952
88.971
88.934
88.164

88.958
88.970
88.932
88.180

88.955
88.972
88.934
88.163

88.936
88.164

88.955
88.971
88.936
88.164

88.954
88.972
88.934
88.161

88.958
88.973
88.933
88.162

88.957
88.973
88.934
88.160

88.956
88.973
88.937
88.162

88.957
88.973
88.933
88.160

88.959
88.972
88.934
88.161

88,952
88.971
88.935
88.164

88.962
88.972
88.933
88.161

88.956
88.972
88.935
88.163
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A.1.2 Door Hanging Data

The table shown below contains the four measurements taken from 42 vehicles at seven

process stages. Values marked “NA” refer to missing data.

Stage Car Characteristic

Humber ID 1 2 3 4

1 Body BA NA NA HA Ba

1 Body 36672 HA HA HA HA

1 Body 37465 §A HA HA HA

1 Body 38788 0.4300 0.1200 8.8600 12.4900
1 Body 38792 0.7200 0.1300 8.5200 12.06800
1 Body 41178 0.6300 0.2600 8.6700 12.4600
1 Bedy 46764 HA BA KA HA

1 Body 46813 HA HA HA HA

1 Body 46982 HA | 1Y HA HA

1 Body 47051 HA HA HA HA

1 Body 47157 FA HA HA HA

1 Body 47170 Ha HA EA NA

1 Body 47176 BA HA HA Ha

1 Body 47208 0.5000 0.1000 9.3600 13.3100
1 Body 47228 1.1500 0.1100 7.5900 12.1500
1 Body 47228 ~1.0800 0.5100 7.7600 11.2000
1 Body 47233 0.7000 0.2900 8.3000 12.0000
1 Body 47236 0.7900 0.1900 6.8100 10.9800
1 Body 47243 -0.3500 0.4500 9.6100 12.3800
1 Body 47247 0.8300 0.0100 9.2900 12.0700
1 Body 47256 1.1800 -0.2900 8.9700 14.0900
1 Body 47269 1.4300 0.0700 8.5200 11.7500
1 Body 47274 2.2700 -0.0800 10.0600 13.6400
1 Bedy 47280 -1.3700 0.3800 7.5600 11.5600
1 Body 47284 0.8400 0.0150 3.6650 12.3700
1 Body 47299 ~1.7750 0.3700 8.1500 9.5200
1 Body 47318 0.7700 -0.0100 8.0600 12.0900
1 Body 47322 ¢.0400 0.0300 8.7000 12.0200
1 Body 47325 0.3800 0.0000 9.3800 12.1700
1 Body 47328 -1.8200 0.3200 7.9100 10.8200
1 Bedy 47332 0.3400 0.0500 8.9300 11.8400
1 Body 47335 HA HA HA HA

1 Body 47353 EA 0.6100 7.0600 9.3800
1 Body 47355 0.6300 0.1600 8.6400 13.0400
1 Body 47356 -1.6300 0.7800 7.0100 9.4600
1 Body 47358 1.5600 -0.0100 8.5500 11.4400
1 Body 47365 1.5600 -0.0800 10.2050 11.4500
1 Body 47369 1.1900 -0.1000 10.2100 13.1200
1 Body 47372 -1.5300 0.5200 8.7200 10.7200
1 Body 47395 1.0600 0.1250 9.3500 14.27S0
1 Body 47401 HA HA Ha HA

1 Body 47481 -2.0350 0.6850 7.4450 9.5700
2 Paint HA Ha HA HA HA

2 Paint 36672 -0.4900 0.2750 7.8450 10.4950
2 Paint 37465 1.4800 0.0450 9.0950 11.9750
2 Paint 38788 HA BA .73 HA

2 Paint 38792 -0.7050 0.1750 7.4250 10.0300
2 Paint 41178 -0.5650 0.2200 7.4150 10.3700
2 Paint 48764 0.8600 0.1800 9.4100 11.4200
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2 Paint 46813 0.5450 0.6100 8.5850 11.2500
2 Paint 46982 -1.0700 0.68200 7.3700 9.3200
2 Paint 47051 0.027S 0.1150 8.1700 11.0800
2 Paint 47157 -0.0150 0.2850 8.3400 10.4050
2 Paint 47170 0.5050 0.0950 7.9000 10.4800
2 Paint 47178 -0.4700 0.3800 7.2200 9.8450
2 Paint 47208 -0.1325 -0.1350 8.7900 11.5828
2 Paint 47228 HA NA EA BA

2 Paint 47228 -1.1850 0.5300 6.9850 9.5950
2 Paint 47233 ~-0.3875 0.5100 7.7175 10.5078
2 Paint 47236 -0.26S50 0.2350 6.0250 8.9150
2 Paint 47243 ~1.3600 0.2750 8.7200 10.9100
2 Paint 47247 -0.1550 0.5900 8.4250 11.0600
2 Paint 472586 HA HA HA HA

2 Paint 47269 -0.1400 -0.0900 7.6100 9.4500
2 Paint 47274 1.2500 0.0450 9.1000 11.9050
2 Paint 47280 HA 0.3100 6.5050 9.5800
2 Paint 47284 0.2300 -0.0050 9.0400 10.0850
2 Paint 47299 HA EA NA BA

2 Paint 47318 ~-0.38650 -0.0800 7.2950 10.3600
2 Paint 47322 -0.5900 0.0400 8.08S0 10.0550
2 Paint 47325 -1.3400 0.1600 8.3350 9.6700
2 Paint 47328 -1.9300 0.5150 7.1300 9.3700
2 Paint 47332 -0.1700 0.1400 8.0400 10.0200
2 Paint 47335 -0.0600 0.1800 7.4750 10.5100
2 Paint 47353 HA HA BA .7

2 Paint 47355 HA Ja HA HA

2 Paint 47358 HA HA HA BA

2 Paint 47358 0.5950 0.6000 7.7700 10.1050
2 Paint 47365 0.6550 -0.0250 9.3900 9.3050
2 Paint 47369 HA HA HA HA

2 Paint 47372 WA 0.68200 7.4550 8.6600
2 Paint 47395 0.2000 0.1200 8.3850 11.9300
2 Paint 47401 HA 0.2467 6.3700 7.5887
2 Paint 47481 HA HA BA HA

3 Before_Striker HA ¥a BA FA EA

3 Before_Striker 36672 -1.3500 0.4400 7.8900 10.23900
3 Before_Striker 37465 BA HA HA EA

3 Before_Striker 38788 HA HA HA HA

3 Before_Striker 38792 -1.1500 0.4500 7.7000 9.8000
3 Before_Striker 41178 -1.5500 0.3500 7.8000 11.2000
3 Before_Striker 46764 -0.0900 0.2400 9.7000 12.6800
3 Before_Striker 46813 HA BA HA HA

3 Before_Striker 46982 A HA HA HA

3 Before_Striker 47051 -0.7200 0.3%900 7.9500 10.9000
3 Before_Striker 47157 -0.7000 0.3600 8.5000 12.1800
3 Before_Striker 47170 BEA HA BA HA

3 Before_Striker 47176 HA A Ha [

3 Before_Striker 47208 -0.8000 0.0700 9.0000 12.6000
3 Before_Striker 47226 HA HA HA HA

3 Before_Striker 47228 HA A Ea RA

3 Before_Striker 47233 -0.9500 0.4500 7.8000 10.7000
3 Before_Striker 47236 -1.2600 0.7500 6.4000 9.3000
3 Before_Striker 47243 -2.1500 0.4500 8.7000 10.3000
3 Before _Striker 47247 ) 1 HA BA HA

3 Before_Striker 47256 EA HA BA HA

3 Before_Striker 47289 -1.2500 0.5500 6.9000 9.8000
3 Before_Striker 47274 0.1500 0.1500 9.,0000 11.0000
3 Before_Striker 47280 -3.4000 0.8500 8.7000 9.4000
3 Before_Striker 47284 BA HA HA HA



APPENDIX A. DATASETS 110

3 Before_Striker 47299 | 13 HA HA HA
3 Before_Striker 47318 ~1.1500 0.1500 7.5000 11.0000
3 Before_Striker 47322 -1.3500 0.4500 8.1000 10.7000
3 Before_Striker 47325 ~-1.7500 0.68500 9.7000 10.8000
3 Before_Striker 47328 ~3.6500 0.7500 7.8000 9.5000
3 Before_Striker 47332 ) I ) 7 HA HA
3 Before_Striker 47335 EA HA HA HA
3 Before_Striker 47353 A HA HA HA
3 Before_Striker 47355 BA HA BA BA
3 Before_Striker 473568 HA HA HA 1%
3 Before_Striker 47358 -0.2500 0.4500 8.8000 10.5000
3 Before_Striker 47365 EA NA HA .13
3 Before_Striker 47369 HA HA BA BA
3 Before_Striker 47372 -4.1500 0.8500 8.0000 10.6000
3 Before_Striker 47395 -0.7500 0.4500 8.4000 10.8000
3 Before_Striker 47401 HA BA HA NA
3 Before_Striker 47481 EA .7 HA HA
4 After_Striker ¥A A HA HA BA
4 After_Striker 36672 -0.5700 1.0100 7.9000 10.7000
4 After_Striker 37465 .13 HA HA .1
4 After_Striker 38788 A BA HA .18
4 After_Striker 38792 -0.5500 1.1500 7.9000 10.4000
4 After_Striker 41178 -1.4500 0.6500 7.8000 10.8000
4 After_Striker 467684 -0.3700 0.5400 9.4900 12.5800
4 After_Striker 46813 HA HA HA A
4 After_Striker 46982 NA EA BA HA
4 After_Striker 47051 ~2.6500 -0.0100 7.5800 $.8300
4 After_Striker 47157 -0.4500 1.4200 8.5900 12.3800
4 After_Striker {7170 HA HA HA A
4 After_Striker 47176 HA BA HA NA
4 After_Striker 47208 =-1.2500 0.5500 8.9000 12.4000
4 After_Striker 47226 A BA HA BA
4 After_Striker 47228 HA HA HA HA
4 After_Striker 47233 -1.8500 0.5500 7.5000 10.1000
4 After_Striker 47236 -0.3500 1.2500 6.5000 9.8000
4 After_Striker 47243 -0.9500 0.9500 9.1000 10.9000
4 After_Striker 47247 HA HA HA EA
4 After_Striker 47256 EA BA HA HA
4 After_Striker 472869 -1.5500 0.9500 7.2000 9.3000
4 After_Striker 47274 -1.6500 0.5500 8.3000 10.0000
4 After_Striker 47280 -0.4500 1.1500 7.4000 10.6000
4 After_Striker 47284 HA HA HA HA
4 After _Striker 47299 HA HA HA HA
4 After_Striker 47318 -0.2500 1.0500 7.9000 11.8000
4 After_Striker 47322 -1.6500 -0.0500 8.1500 10.5500
4 After_Striker 47325 -1.7500 -0.3500 9.9000 10.7000
4 After_Striker 47328 -0.9500 0.8500 8.6000 10.6000
4 After_Striker 47332 §A HA HA HA
4 After_Striker 47335 HA HA A HA
4 After_Striker 47353 Ha HA HA FA
4 After_Striker 47355 HA HA BA §A
4 After_Striker 473568 BA HA HA A
4 After_Striker 47358 -1.6500 0.3500 8.7000 9.8000
4 After_Striker 47365 HA ¥A A EA
4 After_Striker 473869 HA HA HA HA
4 After_Striker 47372 -1.2500 0.1500 8.1000 11.9000
4 After_Striker 47395 -0.8000 1.1500 8.3500 11.2000
4 After_Striker 47401 HA Ra HA HA
4 After_Striker 47481 HA HA A NA
5 Striker_Fit .7 % BA BA HA KA
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5 Striker_Fit 366872 -1.1400 0.7100 7.0800 8.8900
S Striker_Fit 37465 §A A HA FA

5 Striker_Fit 38788 HA EA HA | 18

S Striker_Fit 38792 -0.8500 0.8500 7.0000 9.2000
5 Striker_Fit 41178 -1.4500 0.6500 7.8000 10.8000
S Striker_Fit 46764 -0.3700 0.5400 9.4900 12.5800
5 Striker_Fit 46813 HA RA BA HA

S Striker_Fit 46982 HA HA HA A

5 Striker_Fit 47051 -2.6500 -0.3500 7.3600 9.6800
S Striker_Fit 47157 -0.4500 1.4200 8.5900 12.3800
S Striker_Fit 47170 HA RA EA HA

S Striker_Fit 47176 HA HA HA HA

S Striker_Fit 47208 -1.4500 0.3500 8.3000 11.7000
S Striker_Fit 47226 HA HA HA HA

§ Striker_Fit 47228 EA A HA HAa

§ Striker_Fit 47233 -1.9500 0.4500 6.6000 9.1000
§ Striker_Pit 47236 -0.6500 1.0500 5.6000 8.6000
S Striker_Pit 47243 -1.5500 0.5500 7.1000 8.6000
§ Striker_Fit 47247 HA BA HA A

S Striker_Fit 47256 HA A A HA

S Striker_PFit 47269 -1.8500 0.7500 6.5000 8.5000
§ Striker_ Fit 472749 -1.8500 0.4500 7.8000 9.3000
S Striker_Pit 47280 -0.6500 1.0500 6.2000 9.8000
S Striker_Fit 47284 HA A HA HA

S Striker_Fit 47299 EA EA A HA

S Striker_FRit 47318 -0.6500 0.8500 5.6000 9.8000
S Striker_Fit 47322 -1.8500 -0.1500 7.0000 9.5000
§ Striker_Fit 47325 -2.0700 -0.5500 8.9000 9.1000
S Striker_Fit 47328 -1.2500 0.5500 7.6000 9.6000
5 Striker_Pit 47332 A A HA BA

S Striker_ Fit 47335 BA HA HA BA

S Striker_Pit 47353 BA A HA A

S Striker_Pit 47355 §A HA HA BA

5 Striker_Fit 47356 HA BA .7 HA

S Striker_Fit 47358 -1.8500 0.1500 7.6000 8.6000
S Striker_Pit 47365 HA HA HA A

S Striker_ Fit 47369 HA HA HA HA

S Striker_Fit 47372 -1.7500 0.2500 6.2000 9.1000
§ Striker_Fit 47395 -1.1500 0.9500 8.0000 10.4000
5 Striker_Fit 47401 HA A A A

S Striker_PFit 47481 §A HA HA HA

6 Final HA EA A HA §A

6 Final 36672 -0.3700 1.6200 8.7500 14.8800
6 Final 37465 HA A HA A

6 Final 38788 HA HA HA A

6 Final 38792 -0.40S0 1.6450 8.8250 14.2600
6 Final 41178 -1.1250 1.2950 8.2050 14.8750
6 Final 46764 -0.0700 1.1200 9.9900 15.1600
6 Final 46813 HA HA BA §A

6 Final 46982 HA HA HA A

68 Final 47051  -2.1100 0.6600 8.7100 NA

6 Final 47157 0.1700 2.1500 9.1000 13.7000
6 Final 47170 HA HA HA HA

6 Final 47176 HA HA HA HA

6 Final 47208 -1.1800 1.1900 8.6800 14.5000
6 Final 47226 HA BA HA BA

6 Final 47228 HA HA HA HA

6 Final 47233 -1.2700 1.2700 8.7950 14.7200
6 Final 47236 -0.0950 1.9500 7.3150 13.5800
6 Final 47243 -1.0000 2.0300 9.1150 13.88S50
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VAN ANAANA AN AN NNANANYNNAGNGUNAGNANYNNYNNN YN NNNININ OO N DB BRARND R DD DRARNDRRD DD

Pinal
Final
Final
Final
Final
Final
Final
Final
Final
Final
Final
Final
Final
Final
Final
Final
Final
Final
Pinal
Final
Final
Final
Final
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced

47247
47256
47289
47274
47280
47284
47299
47318
47322
47325
47328
47332
47335
47353
47355
47356
47358
47385
47369
47372
47395
47401
47481

EA
36672
37485
38788
38792
41178
46764
46813
46982
47051
47157
47170
47176
47208
47226
47228
47233
47236
47243
47247
47256
47269
47274
47280
47284
47299
47318
47322
47325
47328
47332
47338
47353
47355
47356
47358
47365

BA

A
-1.0950
-1.3400
-0.06850
BA

BA
~0.0950
~1.5300
=-1.40C0
~0.7700
§a

| [

A

HA

A
-1.6650
A

| 13
-1.0800
-0.2500
A

§A
-0.3700
-0.7950
BA

A
-0.8700
-1.1150
A

A

A
-2.1200
=0.4550
A

5A
-1.2250
A

§A
-1.5400
-0.4250
-0.6600
A

A
-1.0700
§A

HA

BA

HA

A
-0.8800
-1.5850
-0.8150
A

EA

5A

-1

BA
-0.7150
NA

§A

HA
1.7350
1.3100
1.8900
JA

A
1.5300
1.4300
0.4150
1.5100

HA

HA

HA

HA

HA
1.4750

HA

HA
1.1950
1.9400

HA

-7 %
1.5700
0.8650

.7 S

HA
1.2950
1.0150

BA

3a

A
0.6250
0.8800
BA

Ha
1.1750

BA

Ha
1.3100
1.4050
1.7150
BA

HA
1.5300
BA

HA

HA

HA

HA
1.5300
0.5450
1.0600
HA

HA

A

BA

HA
1.5600
HA

§A

BA
8.1400
9.5700
7.9500

5A

HA
8.0050
8.8950
10.5200
8.6600

Ha

HA

A

BA

HA
9.2450

HA

HA
8.7150
9.3800

BA

HA
9.7050
8.4150

HA

HA
7.6100
8.2900

HA

A

HA
8.8600
8.5650

). 43

HA
8.1500

HA

HA
8.0700
€.9800
8.2100

EA

HA
8.0250

HA

HA

HA

HA

HA
8.8150
6.5900
8.1600

HA

HA

BA

HA

HA
9.3600

Ha

RA

A
14.0250
15.1800
14.60S0

HA

EA
14.5550
14.8200
14.4050
14.6950

FA

HA

ga

HA

§A
13.3250

A

HA
13.3250
15.5000

§A

HA
13.2100
14.0250

§A

HA
13.5250
11.7850

HA

BA

BA
14.3050
14.1800

Ha

BA
13.3400

A

HA
13.8600
10.9800
13.0650

HA

HA
13.1350

A

A

NA

A

BA
14.4800
12.7500
14.0200

HA

gA

HA

HA

HA
13.4150

HA
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7 Enhanced 47369 NA HA NA EA
7 Enhanced 47372 -0.5600 1.6000 7.9450 12.8650
7 Enhanced 47395 -0.4350 1.3450 8.5900 14.4900
7 Enhanced 47401 HA HA HA §A
7 Enhanced 47481 NA HA HA BA

A.2 The Small Bowel Motility Data

The table shown below is reproduced from Aalen and Husebye (1991) which contains the
observed migrating motor complex (MMC) periods (in minutes) for 19 subjects. The
data are described in Section 1.2.2 of Chapter 1 and analyzed by Normal-based models

in Section 4.3 of Chapter 4 and a Hazard-based model in Section 5.5 of Chapter 5.

Subject Complete observed periods Censored
1 112 145 39 52 21 34 33 51 54
2 206 147 30
3 284 59 186 4
4 94 98 84 87
5 67 131
6 124 34 87 75 43 38 58 142 75 23
7 116 71 83 68 125 111
8 111 59 47 95 110
9 98 161 154 55 44

10 166 56 122

11 63 90 63 103 51 85

12 47 86 68 144 72

13 120 106 176 6

14 112 26 57 166 85

15 132 267 89 86

16 120 47 165 64 113 12

17 162 141 107 69 39

18 106 56 158 41 41 168 13

19 147 134 78 66 100 4




Appendix B

Derivation of Filtering and

Smoothing Formulas

The filtering formulas (3.16)-(3.19) follow from straightforward conditional mean and

variance calculations.

For example.

zap—1 = E{E[zie|yis: 2isns =1,... £ —1]}
= E{At + Btzi.:—llyis-, s=1,...,t— 1}

= Ai+ Bezigo1p

Z_ (tlt""l) = E{Z Iyi,,8= 1,... ,t—l}+Va.r{At+B¢z,-_¢_1[y,-,,s=1,... .t—l}

= Zc. + B,Ziz(t —1t—1)B. .

Formulas for zuy:, ».;,(t|t) and the smoothing formulas (3.23). (3.24) are a little bit
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more complicated. but may be obtained from standard results about multivariate normal

variables. In particular, if z, y and z are random vectors with

T [ dDoez 2ozy
| X 2w
fie Dr 2

Yy ~~ Normal Ky

M M

N

zy

Then

E'(:BIZ) =/‘2+sz Z:l(z_#z) = Hal
Var(zlz) =Y, -3.37 2. = Zx[z
Cov(z.ylz) =3, -2, %, = Zm:

and so also. for example,

-1
Blaly.2) = pae + 3 Y (4= i) -

Then. for example, letting y7,_; = (yi1.... . Yit—1)'. we have

zig = E(zielyie. yie_y)

= E(zlyi,_1) + Cov(zir, Yarlyi,_1) Var(yuelyis— 1) ™" (tie — yiepe—1)

= zapeer+ Y (HE= DHLY (= 1) (g = viele-) -

These formulas are standard in state space models; see for example Harvey and McKen-

zie (1984) or Koopman and Shepherd (1992).



Appendix C

A Modified Kalman Filter Recursion
for AREMs

Here we describe a modified Kalman filter recursion for computing the conditional mo-

ments of the responses under Model (4.2) of Chapter 4. Further define
et = E(eis | YY) and ol(s[t) = Var(e, | YY)

where Y? = {ya1. yi2. ... . yir}. Now. forz=1.2..... N.

2

1. Initialize y;o = p. 02(1|0) = w® + 0}, ey = w—{—b{(y;l — p) and o2 (1]1) = :’—;ilv
2. Set j = 2.
3. (Filtering) Compute

Yijli-1 = Yij-1 — (1 —@)eijo1j1

and ol(jlj—1) = (1-¢)%2(-1j—-1)+°
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4. (Correcting) Compute

eijli = ¢eijouj-1+ [Pl — 1)o7 — 1|5 — 1) + oo’ (517 — 1)(wij — vijii-1)-

gl(il7) = 0i(i—1j—1)+0° — [-d(1 — $)oi(j — Lj — 1) + o207 (j]j — 1).

5. Setj=j+1.
6. Goto Step 3 until j > n; + 1.

The recursion can be derived as follows. For each i. when j = 1. we can directly
observe that

2
2
iy

yap = E(ya) = p and o (1)0) = Var(yy) = o? +w*.

Now.

€it /0\ (O 1

= + u; + €i1
Yir \*#/ \1 1
UARUAS

0\ 01 w? 0 01

~ N

p) \11)\0 otj\11
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Thus. from standard multivariate Normal theory.

2
71

i = Elealya) = i1 —
€11 (€1 |ya) w2+a_§(y1 i)
wia?
d oi(1) = V alya) = =—.
an du:( { ) ar(ellyl) a,f_*_wz
Hence, the initialization step is true. Now. for 7 > 1,
€7 0\ 0 1\
= + u; + €ij
Yij ,u/ 1 1/
0\ 0 ¢>\ 1
= + ui + €ij-1 + €ij
,u/ 1 ¢/ 1
0\ 0 1 €ij-1
= +
p) 1 1 €ij

Then. by noting that

E(uw: | Y7 = yijo1 — i — eij_q)jo

and  Covlu, ejor | Y7™Y) = —Var(w |77 or —ad(j—1l5 - 1).
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and assuming the recursion is true at j — 1. we have

€i; - N Peij1]j-1
vii | YT Yij-1 — (1 — d)ei i1
P*0l(j—1j—-1)+a ~¢(l — ¢)oi(j —1j — 1) + a2

~¢(1=¢)oZ(G—1Uji -1 +of (1=-9¢)al(j—1ji—1)+a7

and hence the filtering and correcting step follow immediately. [



Appendix D

Derivations of Formulas in Chapter 5

D.1 Getting the Posterior Densities

For j = 1. 2, ... . n;, the posterior densities are

9(z5|T]) o fltislz TV )glz1 T ™)
ti; ,
0
Kijli—1 t‘.‘ﬂj_;—l

exp {_Vijlj—lzij} Vijli—1 %ij

, Kist: bij ..
o ho(t;j)eﬂz"-"(t“"),z,-j”"'l exp {—z;,- (V,-_.,-Ij_l +/ ho(t)e? "’(”dt)} .
0

Similarly,

. - tlA‘rl,'ivl .
g(zi.n;+117",-";+1) x z:;;:,;lrn.‘ 1 exp {—Zi.n.--i—l (Vi,n;+1|n; +/ ho(t)e'a :c..n.-+|(t)dt) } .
0]

Thus, z;;|p; is distributed as Ga(k;;. vi;) where x;; and v;; are as given in (5.7).
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D.2 Getting the Multiplicative Transition Process

Note that

zijlpi ~ Galsijijoi. vij5-1) = Ga(B(TI kg U(TVvejoa)

and U(T7™Y) 1 zijoalpi- ~ Ga(kijoy, B(TI )wijon).
By considering the decomposition.
Rijer = U(T e jor + (1= (TP 7))k

it follows from standard results, e.g. Rao (1965), that

25

(T )z m

~ Beta(T(T? ™ )rijor. (1 — C(TI))mi o).

g

Hence. (5.9) follows. |

D.3 Getting back to Independent Processes

Observe that. for i =1.2,... .Nand j=1,2.... .n; + 1,
o(T{™!
Kijlj-1 = " )+Cl(‘1’)
T/t .
and Vijlj—l = a( L ) +Cz(‘I’,TiJ 1)

w?
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where a(T7™) = 1:11 U (T?), and c¢;(-) are c(-) are some functions not depending on w?.
Then
Kijli- a+ cyw?
JFJ 1 = —1_ — 1 as u)z N 0
Vijlj~1 a+ Cg'IUz
and (Uijli-l)nﬁu-l = 1+ fotij ho(t)eP =it dt ~Rijli-1
= Vijli-1
i o(t)eB w0 e T
= 1+ = —
ws Ca

ti;
— ezp {—/ ho(t)eﬂ z"(t)dt} as w?—0.
0
Hence. as w? — 0. (5.10) and (5.11) become
' tin;+1 ,
ho(tij)eﬂ::u(t.'j) and e:z:p{—/ ho(t)eﬁ "'"mdt}
0

respectively which do not depend on their corresponding past history. |

D.4 Getting the Scores and Hessian Matrix

With ho(t) = bt*; b > 0, k > —1, (a Weibull intensity function) and \II(T,’) = 1, and the

transformation of 8 to 8y in (5.13). the log-likelihood function, from (5.12), is

N n;
I(By) = Z { [6 — ue’ + (¢’ — 1)log t:; + log Kijj;—1 — log vij]

i=1 j=1

n;+1
+ Z Kijlj-1 [IOg Vijli—1 — log I/ij] } . (Dl)

i=1



APPENDIX D. DERIVATIONS OF FORMULAS IN CHAPTER 5 123

The corresponding score function and Hessian matrix among to compute the first and
second derivatives of k;j;_1, vi;;-1 and v;; which are evaluated recursively by the follow-
ings.

For evaluating the score function, we need

iy _ €77 Oijma | Kisnii g g g )
89(] 1 + e’ T aBU 1 + er—T » Uy - .
Wiy = L + Vij+1s (0,0,1, -1)
69U 1 + e’ 7 aHU 1 L e’ T s Uy L, .
R
and a;/; = 2‘70'; ! _ exp((f - uc‘;)tf; (l, u — 1og(tu). 0. 0)
9xi1je Wi

with starting values 5= = 5= = (0.0. —¢™.0). With

R A e '
M (e) (Q4.Q4.69U. 36’U)' 0, = p x L vector of 0.
a 0 0
-1 1
B(e) = Block | 0,0, € . Block(a.b.c)=[0 b 0
1 -1
0 0 ¢

and mi; = (1, U — log(t,-j)),

the Hesslan matrix is evaluated using

;i) e Py 1
aegjgéb' T Iqe 095251 T o= [M{Rieas) + M7 (kesaay) + Blrajias)]
oy e Qw1
_EWJ;ELE = T a0 T 1o o M) + M isany) + Bliseap)
2, LI 0 :
and ad Vi Vijli-1 + Block exp(cf— ue“)tf; Cgmijmz;' — . Myj .0,0

06y6% 966} 1
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a2 ) R a'.’ . - O
with starting values aa':;f;g = 60:4;'5 = Block | 0, 0, -
Then the inverted Hessian matrix for 8 can be computed from
PN\ (08 ) ( % '8 \"
66T ) \98% ) \ 98u6% a6%;
—exp(26 —uel) exp(d — uef)(1 — uef e’ 0
where 6%% = Block Pl ) P ) ) \
v § e i
0 € (1+e7=7)2 7 (14er—-7)2
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