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ABSTRACT 

This thesis constitutes a series of 4 studies which examined the physiological mechanisms 

involved in recovering balance fkom an unexpected perturbation to upright stance in humans. 

Postural reactions to unexpected falls are typicaily probed through manipulations of support 

surface charactenstics, such as tilting rotations or sliding translations of the support surface. in 

the past, these perturbations have been applied alrnost exclusively in a single pitch 

(forwardhackward) direction. However, outside of the laboratory we stumble, become shified 

or bumped in many directions and not just in the pitch plane. The main objective of this thesis 

was to extend the current undentanding of how humans recover From perturbations which 

might lead to falls in the pitch direction, to multiple directions nhich may mimic more normal 

postural challenges faced in daily life. 

Our first study examined normal response characteristics of healthy young controls recovering 

from unexpected pitch and roll combinations of surface rotations in 16 different directions. The 

results revealed distinct muscle response charactenstics of both early stretch and later balance 

correcting responses whic h were highl y sensitive to the direction of perturbation. Trunk 

muscles in particular were found to provide early directionally sensitive proprioceptive 

information on roll perturbations. Trunk motion occurred earlier in the roll compared to the 

pitch direction. These findings verified the importance of examining postural reactions in 

multiple directions and highlighted the role of proximal muscles involved in control of the 

tnink and hip joint. 

Previous studies examining the effects oleither penpheral balance deficits such as vestibular 

loss or central disorders such as Parkinson's disease have had varied and inconsistent results. 

We hypothesized that the lack of agreement between studies and poor discnminatory ability of 

dynamic posturography to identify patients with balance deficits may have stemmed from the 

inability to observe roll directed instability in these populations. We performed two different 

studies to examine how bilateral peripheral vestibular loss and Parkinson's disease (PD) 

influenced postural reactions to perturbations in multiple directions. We have examined our 

results with two underlying themes. Fint to determine whether previous findings based on 

pure pitch plane research cm be extended to directions other than the pitch plane. Second, 



what new information can be yielded fkorn multi-directional perturbations which is not 

available from observations restricted in the pitch plane. 

In patients with compensated bilateral peripheral vestibular loss, we obsewed differences in 

amplitude modulation of both leg and trunk muscle balance correcting activity, and 

particularly abnormal control of the trunk in the pitch and roll directions which were not 

previously observed using only pitch plane perturbations. As a result we hypothesized that roll 

and pitch control is separately prograrnrned by the central nervous system. 

PD patients had impaired gain control of both stretch and subsequent balance correcting 

responses in lower leg, hip and tnink muscles. This was cornpounded by a loss of directional 

sensitivity in soleus and paraspinals, which led to CO-contraction and stiffening of the ankle 

and trunk. Leg and trunk abnomalities were poorly compensated by protective arm 

movements which were reduced in amplitude and improperly tuned to the direction of the 

perturbation. Abnormalities in PD patients became most prorninent when perturbations were 

backward and to the side. Although some of the abnomalities were clearly due to the disease 

itself. some rnay have also been related to medication effects and other factors such as 

increased fear of falling. 

Previous studies have shown that fear O f falling c m  influence other aspects of balance control 

including quiet standing, and anticipatory postural adjustments preceding a voluntary 

movement. The final study of the thesis was directed at identifying which components of a 

normal postural reaction are susceptible to a confounding influence of fear of falling. We 

found that both the amplitude of the balance conecting response as well as the directional 

sensitivity of some postural muscles was significantly influenced by an increase in postural 

threat. These alterations in muscle responses were expressed in significant changes in knee and 

tnink control as well as protective ami movements when standing under increased threat 

conditions. 



In combination these studies provide important new evidence to suggest that multi-directional 

perturbations are necessary to fully explore aspects of both normal, pathological and 

psychological influences on postural reactions in man. 
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CHAPTER 1 

INTRODUCTION 

What are the normal, pathological and psychological factors that contribute to generating a 

postural reaction of appropriate timing, magnitude and direction to prevent an unexpected fall? 

This has been a question which has driven extensive research over the past 25 years and 

fomed the basis of the field of dynamic posturography, the study of postural reactions to 

unexpected perturbations to upnght stance (Nashner et al. 1982). Although, a vast body of 

knowledge has been collected on how the CNS organizes muscular and biomechanical 

reactions to sudden perturbations, a great deal of inconsistency and controveny exists between 

researchers (for review refer to Horak et al. 1997; Dietz 1992; Allum and Shepard 1999; Allum 

et al. 1998; Horak and Macpherson, 1 996). 

The lack of consensus amongst researchen in the field ofdynamic posturography may have 

resulted from differences in methodology. One major difference between studies is the way in 

which different groups have manipulated unexpected perturbations. There are a variety of 

methods that have been employed to deliver an unexpected perturbation to balance. The most 

common methods involve two types of movements of the support surface upon which the 

participant is standing, surface rotations about the ankle joint and horizontal translations in the 

sagittal plane (For review see Allum and Shepard, 1999). In addition, these two paradigrns have 

also been combined to enhance or reduce stretch reflexes in triceps surae muscles. For 

exarnple, combining backward transiation with toe-up rotation maximizes the stretch reflex on 

tnceps surae muscles. In contrast, using backward translations while controlling toe-down 

rotation to minimize ankle rotation, can effectively 'null' or reduce stretch reflexes in the 

tnceps surae muscles (Allum et al. 1995; 1998, Bloem et al. 2000). Perturbations to balance 

have also been achieved by delivering a push or pulling force to the upper tnuik or pelvis 

(Cresswell et al. 1994, Rietdyk et al. 1999, Gilles et al. 1999 Brown and Frank 1997, Matjacic 

et al. 2000). 

The dificulty with such a wide range of protocols is that each elicits a distinctly different 

biomechanical challenge to the CNS which requires a unique balance response. For exarnple, 



toe-up rotations and backward translations both cause stretch of tricep surae muscles, but elicit 

oppositely directed displacements of the COM, and opposite polarities in balance correcting 

torques in the ankle, knee and hip joints after 150 ms (Allum et al. 1992). Therefore, studies 

using different perturbation types are in fact examining distinctly different balance response 

patterns. 

Other charactenstics of the platfonn perturbation have been shown to have significant 

influences on the ensuing postural responses. Dilferent velocities and amplitudes of the initial 

platform displacement have been shown to influence the amplitude of the stretch and 

automatic triggered responses (Diener et al. 1984, Sztum and Fallang, 1998, Allum and Pfaltz, 

1985) . In addition, the deceleration of the platform has been shown to also have a significant 

influence on the postural responses. Mc llroy and Maki (1994a) demonstrated that participants 

not only respond to the deceleration of transient perturbation, but c m  also leam to anticipate 

the deceleration, and use this knowledge to alter the magnitude of the postural response. 

Lack of common features between studies may have contributed to a divergence in opinions 

throughout the literature. For example, translational paradigms have, in general, supported a 

distal to proximal activation theory for postural control, in which a postural response is fint 

tnggered by ankle proprioceptive input, that radiates fiom distal to proximal joints (Horak et 

al. 1986; Nashner et al. 1982). In contrast, most studies using rotational perturbations or 

pushes to the upper trunk, have argued that postural reactions receive triggering input fiom 

more proximal centres in the knee, hip or trunk (Fonberg and Hinchfeld, 1994; Allum et al. 

1998; Do et al. 1988; Rietdyk et al. 1999; Gilles et al. 1999; Horstmm and Dietz, 1990; Di 

Fabio, 1992). 

Differences between studies also exist regarding different types of postural responses that are 

measured. Postural reactions have been divided into 'feet-in-place' responses, featuring 

reactions that do not require a change in base of support (for review see Horak et ai. 1997; 

Allum and Honegger, 1998), and 'cornpensatory' responses which involve a change in base of 

support, such as taking single or multiple steps to recover balance (Maki and Mcilroy, 1997; 

Nutt et al. 1993). 



Reaching out with the arms has been shown to be another common compensatory postural 

response which is scaled to magnitude and direction of response (McIlroy and Maki, 1994b). 

However, arm movements are yet another factor which has not been consistently controlled 

between studies. For example, sorne studies have left arms free to move, while others require 

the arms to be crossed in front of the chest to facilitate motion analysis recording. Denying the 

ability to use normal am responses may increase the need to compensate with other protective 

responses such as stepping. Conversely, fixing the feet in place, may increase the need to 

compensate with protective arm movements. In addition, the restriction of protective 

compensatory reactions, be i t  stepping or reaching movements may highlight or rnask postural 

abnonnalities in patients with different balance deficits. Therefore, it is important to gain a 

better undentanding of how protective compensatory responses may influence other postural 

responses independently and in combination. 

Other confounding factors have been s h o w  to influence the automatic postural responses in 

standing subjects including pnor knowledge (Horak et al. 1989; Maki and Whitelaw, 1993; 

Diener et al. 1991) expectation (Keshner et al. 1987, Sveistrup and Woollacott, 1997; Chong et 

al. 1999), pre-stimulus posture (Diener et al. 1983; Allum and Pfaltz 1985; Schieppati et al. 

1995; Horak and Moore 1993; Beckley et al. 199 1 ) and background activity (Bedingham and 

Tatton, 1984, Allum and Mauritz, 1984, Bloem et al. 1993). These factors have al1 been 

controlled or accounted for differently in different studies, thereby making meaningful 

cornparisons between tindings even more di fficult. 

The great variability in protocol and methodology in previous research may partly explain the 

limited success for pitch-plane dynarnic posturography in diagnosing and discriminating 

balance disorders (Di Fabio 1995; Bronstein and Guerraz 1999, Bloem et al. 1992). Although 

more recently, greater success to discriminate between patient populations has been achieved 

using upper rather than lower-body responses to pitch plane rotations (Allurn et al. 2001 a), its 

Fundamental utility to screen for more subtle balance disorders or recognize disease-specific 

information, such as the side of a lesion is questionable (Lipp and Longridge 1994; Furman 

1995). 



Adding further to the limited success of dynamic posturography to identify balance deficits has 

been the reliance on recordings From perturbations within a single unidirectional pitch plane. 

This has major drawbacks when concepts of normal and pathological balance control need to 

be generalized to multiple directions. Real life situations, such as an accelerating bus, pitching 

boat or rolling train, impose destabilizing forces which rarely act along a purely sagittal plane. 

When a faIl does occur in older adults, they fiequently occur in lateral as well as pitch 

directions (Holliday et al. 1990; Maki and McIlroy 1998). However, falls in the lateral 

direction may be more severe as they become the cause of hip and wrist fractures in elderly 

(Cummings and Ncvitt, 1994; Greenspan et al. 1998). Lateral instability has been confirmed in 

both the pitch and roll planes in aging (Gill et al. 2001) and patients with balance disorden 

(Allum et al. 2000b) during both balance and locomotor tasks. nierefore, the ability to 

examine postural reactions in multi-directional perturbations may prove to be more usefbl in 

discriminating between groups with different balance def cits by using perturbation directions 

that are most destabilizing and threatening in these populations. 

Sensory systems may also contribute to a balance correction differently depending upon the 

direction of perturbation. For example, vestibular recepton are most sensitive in the planes of 

the semi-circular canals (Tomko et al. 198 l), while joint receptors (Rothwell, 1994) and stretch 

receptors provide directional information in multiple directions. Furthemore, the directions of 

maximum isometric stabilizing activity in neck (Keshner et al., 1988), trunk (Lavender et al., 

1994) and elbow muscles (Buchanan et al., 1986) lie in multiple planes. 

Recent studies have begun to examine postural reactions in multiple directions (Maki et al. 

1994; Moore et al. 1988; Henry et al. 19%; Allurn et al. 1998). These studies have yielded 

interesting new results which have shed new light on previously contentious issues. For 

example, perturbations in off-pitch directions elicit muscle responses in proximal muscles, 

such as erec tor spinae, tensor fascia latae and hip abdcucton which have onsets as earl y or 

earlier that that in the distal ankle musculature (Maki et al. 1994; Henry et al. 1998). These 

observations provide convincing evidence to argue against a distal to proximal activation 

theory. Multi-directional perturbations also provides insight into the range of activation and 



directional sensitivity of different muscles (Moore et al. 1988, Henry et al. 1998; Maki et al. 

1994; Macpherson et al. 1988) which may prove to be susceptible to specific balance deficits. 

Finally, roll or lateral perturbations allows for analysis of tnink control in the fiontal plane 

which has been shown to be unstable in gait and postural tasks in elderly (Gill et al. 2001) as 

well as patients with vestibular loss (Martin, 1965) and Parkinson's disease (Adkin et al. 

2000). 

To date, there have been no previous studies which have examined postural reactions to multi- 

directional perturbations delivered by rotations of the support surface. One benefit of using 

rotational perturbations, compared to translational perturbations, is that the stretch related 

information can be elicited in a muscle antagonistic to that generating the balance correcting 

response (Diener et al. 1983; 1984; Allum et al. 1992). 

Therefore, the goal of the present thesis was to examine the normal, pathological and 

psychological factors that influence postural reactions fkom two new perspectives. The fint 

goal was to determine if the present understanding of normal and pathological postural 

responses are applicable to perturbations in multiple directions. which may more accurately 

mimic events experienced in everyday life. The second goal was to detemine what new 

information can be extracted Frorn multi-directional perturbations that has not been previously 

evident using only pitch plane pemirbations. 

In the following chapten, these two goals will be addressed by examining the postural 

reactions in four distinct populations. Fint we have analyzed the response to 16 different 

directions in normal healthy young adults to gain a clear understanding of the normal postural 

response (Carpenter et al. 1999). Second we examined patients with a bilateral vestibular loss 

to detemine the role of vestibule-spinal interaction on controlling postural responses in multi- 

directions (Carpenter et al. 2001). Third we examined the effects of a more central balance 

deficit by comparing patients with idiopathic Parkinson's disease, both 'on' and 'off their 

medication, to normal controls. Finally we exarnined the influence of a postural threat, in a 

group of young healthy controls to try and understand how increased threat and possibly fear 



of falling may play a confounding role in the observed changes seen in patients with balance 

deficits. 



REFERENCES 

Adkin AL, Allum JHJ, Carpenter MG, Bloem BR. (2000) Clinical evaluation of postural 

instability in Parkinson's disease using quantifiable lrunk sway measures in freely moving 

subjects. Movement Disorders 15 (Suppl 3): 77-78 

Allum JHJ, Bloem BR, Carpenter MG, Honegger F (2001a) Differential diagnosis of 

proprioceptive and vestibular deficits using dynarnic support-surface posturography. Gait & 

Posture (in press) 

Allum JHJ, Bloem BR. Carpenter MG, Hulliger M, Hadders-Algra M (1998) Proprioceptive 

control of posture: a review of new concepts. Gait Posture 8:2 14-242 

Allum JHJ, Held-Ziolkowska M. Adkin AL, Carpenter MG, Honegger F (200 1 b) Trunk sway 

measures of postural stability during clinical balance tests: E ffects of a unilateral vestibular 

de ficit. Gait and Posture (In Press) 

Allum JHJ, Honegger F (1992) A postural mode1 of balance-correcting movement strategies. J 

Vestib Res 2: 323-347 

Allum JHJ, Honegger F (1998) Interactions between vestibular and proprioceptive inputs 

tnggering and modulating human balance-correcting responses differ across muscles. Exp 

Brain Res. 12 1 : 478-494 

Allum JHJ, Honegger F, Acuna H (1 995) Differential control of leg and tmnk muscle activity 

by vestibulo-spinal and proprioceptive signals during human balance corrections. Acta 

Oto la rpg~l  (Stockh) 1 15: 124-1 29 

Allum SHJ, Mauritz KH (1984) Compensation for intrinsic muscle stifiess by short-latency 

re flexes in human triceps surae muscles. J Neurophysiol52:797-8 1 8 



Allum JHJ, Pfaltz CR (1985) Visual and vestibular contributions to pitch sway stabilization in 

the ankle muscles of normals and patients with bilateral peripheral vestibular deficits. Exp 

Brain Res 58:82-94 

Allum JHJ, Shepard NT (1999) An overview of the clinical use of dynamic posturography in 

the differential diagnosis of balance disorders. J Vestib Res 9: 223-252 

Beckley DJ, Bloem BR, Remler MP, Roos RAC, Van Dijk JG (1991) Long latency postural 

responses are functionally rnodified by cognitive set. Electroenceph Clin Neurophysiol8 1 : 

353-358 

Bedingharn W, Tatton WG (1984) Dependence of EMG responses evoked by imposed wnst 

dispiacements on pre-existing activity in the stretched muscles. C m  J Neurol Sci 1 1 : 272-280 

Bloem BR, Allum JHJ, Carpenter MG, Honegger F (2000) 1s lower leg propnoception 

essential for tnggering human balance corrections? Exp Brain Res 130: 375-39 1 

Bloem BR, Beckley DI, van Dijk JG, Zwindeman AH, Roos RAC (1992) Are medium and 

long latency reflexes a screening tool for early Parkinson's disease? J Neurol Sci 1 13: 38-42 

Bloem BR, van Dijk JG, Beckley DJ, Zwindeman AH, Remler MP. Roos RA (1993) 

Correction for the influence of background muscle activity on stretch reflex amplitudes J 

Neurosci Methods 46: 16% 174 

Bronstein AM, Guerraz M (1999) Visual-vestibular control of posture and gait: physiological 

mechanisms and disorders. Curr Opin Neurol 12:5-11 

Brown LA, Frank JS (1 997) Postural compensations to the potential consequences of 

instability: kinematics. Gait and Posture 6:89-97 



Buchanan TS, Alrndale DP, Lewis JL, Rymer WZ (1986) Characteristics of synergic relations 

during isometric contractions of human elbow muscles. J Neurophysiol56: 1225- 1241 

Carpenter MG, Allum IHJ, Honegger F (1 999) Directional sensitivity of stretch reflexes and 

balance corrections for normal subjects in the roll and pitch planes. Exp Brain Res 129: 93-1 13 

Carpenter MG, Allum JHJ, Honegger F (2001) Vestibular influences on human postural 

control in combinations of pitch and roll planes reveai differences in spatiotemporal 

processing. Experimental Brain Research (In press) 

Chong RKY, Horak FB, Woollacott MH (1 999) Time-dependent influence of sensonmotor set 

on automatic responses in penurbed stance. Exp Brain Res 124: 5 13-5 19 

Cresswell AG, Oddsson L, Thorstensson A (1 994) The influence o f  sudden perturbations on 

tmnk muscle activity and intra-abdominal pressure while standing Exp Brain Res 98: 336-341 

Cummings SR, Nevitt MC. (1 994) Non-skeleial determinants of Fractures: The potential 

importance of the mechanics of falls. Osteoporosis International 1: S67-70 

Di Fabio RP (1995) Sensitivity and specificity of platfonn posturography for identifying 

patients with vestibular dysfùnction. Phys Ther. 75:290-305 

Di Fabio RP, Graf B, Badke MB, Breunig A, Jensen K (1992) Effect of knee joint laxity on 

long-loop postural refiexes: evidence for a human capsular-hamstnng reflex. Exp Brain Res 

90: 189-200 

Dicner HC, Bootz F, Dichgans J, Bwek  W (1983) Variability of postural "reflexes" in 

humans. Exp Brain Res 52: 423-428 



Diener HC, Dichgans J, Bootz F, Bacher M (1984) Early stabilization of human posture afler a 

sudden disturbance: influence of rate and amplitude of displacement. Exp Brain Res 56: 126- 

134 

Diener HC, Horak F, Stelmach G, Guschbauer B, Dichgans J (1991) Direction and amplitude 

precuing has no effect on automatic posture responses. Exp Brain Res 84: 2 19-223 

Dietz V (1992) Human neuronal control of automatic functional movements: interaction 

between central prograrns and afferent input. Physiol Rev. 72: 33-69 

Do MC. Brenière Y, Bouisset S (1988) Compensatory reactions in forward fall: are they 

initiated by stretch recepton? Electroenceph Clin Neurophysiol69: 448-452 

Forssberg H, Hirschfeld H (1994) Postural adjustments in sitting humans following extemal 

perturbations: muscle activity and kinematics. Exp Brain Res 97: 5 15-527 

Funnan JM (1 995) Role of posturography in the management of vestibular patients. 

Otolaryngol Head Neck Surg 1 12:8-15 

Gill J, Allum JHJ, Held-Ziolkowska M, Carpenter MG, Honegger F, Pierchala K (2001)Trunk 

sway mesures ofdynamic equilibrium dunng ciinical balance tasks: effects of age. J 

Gerontol Med Sci (in press) 

Gilles M. Wing AM, Kirker GB (1999) Lateral balance organisation in human stance in 

response to a random or predictable perturbation. Exp Brain Res 124: 137-144 

Greenspan SL, Myea ER, Kiel DP, Parker RA, Hayes WC, Resnick NM (1998) Fall direction, 

bone mineral density, and fùnction: risk factors for hip fiacture in h i 1  nursing home elderly. 

Am J Med 104: 539-545 



Henry SM, Fung J, Horak FB (1998) EMG responses to maintain stance during multidirection 

surface translations. I Neurophysiol80: 1939- 1950 

Holliday PJ, Femie GR, Gryfe CI, Griggs GT (1990) "Video recording of spontaneous falls of 

the elderly." slips. stumbles, and falls: Pedestrian footwear and surfaces, ASTM STP 1 103, 

B.E. Gray, Ed., Amencan Society for Testing and Materials, B.E. Gray (Ed.) Phiiadelphia: 7- 

16 

Horak FB, Diener HC, Nashner LM (1989) Influence of central set on human postural 

responses. J Neurophysiol62: 84 1-853 

Horak FB, Henry SM, Shumway-Cook A (1997) Postural perturbations: New insights for 

treatment of balance disorden. Physical Therapy 77: 5 17-533 

Horak FB, Macpherson IM. (1996) Postural orientation and equilibrium. In: Smith JL, ed. 

Handbook of Physiology, Section 1 2: Exercise: Regulation and htegntion of Multiple 

Systems. New York, NY: Oxford University Press Inc: 255-292 

Horak FB, Moore SP (1993) The effect of prior leaning on human postural responses. Gait 

Posture 1 203-2 10 

Horak FB, Nashner LM (1986) Central programming of postural movements: Adaptation to 

aitered support-surface configurations. J Neurophysiol5 5 : 1 369- 1 38 1 

Horstmann GA, Dietz V (1 990) A basic posture control mechanism: the stabilization of the 

centre of gravity. Electroenceph Clin Neurophysiol76: 165-1 76 

Keshner EA, Allurn IH, Pfaltz CR (1987) Postural coactivation and adaptation in the sway 

stabilizing responses of nomals and patients with bilaterai vestibular deficit. Exp Brain Res 

69: 77-92 



Keshner EA, Woollacott MH, Debu B (1988) Neck, trunk and limb muscle responses during 

postural perturbations in humans. Exp Brain Res 71(3): 455-466 

Lavender S, Trafimow J, Andersson GB, Mayer RST Chen ICH (1994) Tmnk muscle 

activation. The effects of torso flexion. moment direction, and moment magnitude. Spine 19: 

77 1-778 

Lipp M, Longridge NS (1 994) Computensed dynamic posturography: its place in the 

evaluation of patients with dizziness and imbalance. J Otolaryngol23: 177-1 83 

Macpherson JM (1 988) Strategies that simplify the control of quadrupedal stance. II. 

Electromyographic activity. J Neurophysiol60: 21 8-23 1 

Maki BE, Mcilroy WE (1997) The mle of limb movements in maintaining upright stance: the 

'Change in Support' strategy. Phys Ther 77: 488-507 

Maki BE, Mcilroy WE (1998) Control o f  compensatory stepping reactions: Agç related 

impairment and the potential for remedial intervention. Physiotherapy Theory and Practice 15: 

69-90 

Maki BET Mcllroy WET Peny SD (1994) Compensatory responses to multi-directional 

perturbations. In: Taguchi K, Igarashi M, Mon S (eds) Vestibular and Neural Front, Elsevier 

Science, Amsterdam, pp 43 7-440 

Maki BE, Whitelaw RS (1 993) influence of expectation and arousal on center-of-pressure 

responses io transient postural perturbations. J Vestib Res 3: 25-39 

Martin JP (1965) Tilting reactions and disorden of the basal ganglia. Brain 88: 855-874 



Matjacic 2, Voigt M. Popovic D, Sinkjaer T (200 1) Functional postural responses after 

perturbations in multiple directions in a standing man revealed by net joint torques: A pnnciple 

of decoupled control. .i Biomech 34: 187- 196 

McIlroy WE, Maki BE (1994a) The 'deceleration response' to transient perturbation of upright 

stance. Neurosci Lett 175: 13- 16 

McIlroy WE, Maki BE (1994b) Cornpensatory a m  movements evoked by transient 

perturbations of upright stance. In: Taguchi KT Igarashi M, Mori S, editors. Vestibular and 

neural front. Amsterdam: Elsevier: 489-92 

Moore SP, Rushmer DST Windus SL, Nashner LM (1988) Human automatic postural 

responses: responses to horizontal perturbations of stance in multiple directions. Exp Brain Res 

73548-058 

Nashner LM, Black FO, Wall C 111 (1982) Adaptation to altered support surface and visual 

conditions during stance: patients with vestibular deficits. I Neuroscience 2: 536-544 

Nutt JG, Marsden CD, Thompson PD (1993) Human walking and higher-level gait disorders, 

pailicularly in the elderly. Neurology 43: 268-279 

Rietdyk S, Patla AE, Winter DA, Ishac MG, Little CE (1999) NACOB presentation CSB New 

Investigator Award. Balance recovery fiom medio-lateral perturbations of the upper body 

during standing. J Biomech 32: 1 149- 1 158 

Rothwell J (1994) Control of human voluntary movement, 2"' edn. Chapman Hall, London: 

103-1 17 

Schieppati M, Nanione A, Siliotto R, Grasso M (1995) Early and late stretch responses of 

hurnan foot muscles induced by perturbation of stance. Exp Brain Res 105: 41 1-422 



Sveistrup H, Woollacott MH (1997) Practice modifies the developing automatic postural 

response. Exp Brain Res 114: 33-43 

Szturm T, Fallang B ( 1  998) Effects of varying acceleration of platfom translation and toes-up 

rotations on the pattern and magnitude of balance reactions in humans. J Vestib Res 8: 38 1-397 

Tomko DL, Peterka RI Schor RH ( 1  98 1 )  Responses to head tilt in cat eigth nerve afferents. 

Exp Brain Res 4 1 :2 16-22 1 



CHAPTER 2 

DIRECTIONAL SENSITIVITY OF STRETCH REFLEXES AND BALANCE 

CORRECTIONS FOR NORMAL SUBJECTS IN THE ROLL AND PITCH PLANES 

MG CARPENTER', JHJ ALLUM~, F HONEGGER~ 

Dept. of Kinesiology, University of Waterloo, Ontano, canada' 

Dept of ORL, University Hospital, Basel, ~witzerland' 

Published in Expenmental Brain Research 



ABSTRACT 

A large body of evidence has been collected which describes the response parameten 

associated with automatic balance corrections in man to perturbations in the pitch plane. 

However, perturbations to human stance can be cxpected from multiple directions. The 

purpose of the present study was to describe the directional sensitivities of muscle responses 

reestablishing disturbed stance equilibrium in normal subjects. The contributions of stretch 

reflex and automatic balance- correcting responses to balance control, and concomitant 

biomechanical reactions, were exarnined for combinations of pitch and roll perturbations of the 

support surface. More specifically, muscle responses, initial head accelerations and tnink 

velocities were analyzed with the intent to identify possible origins of directionally specific 

tnggcring signals and to examine how sensory information is used to modulate tnggered 

balance corrections with respect to direction. 

Fourteen healthy adults were required to stand on a dual axis rotating platform capable of 

delivenng rotational perturbations with constant amplitude (7.5 deg) and velocity (50 deg/s) 

through multiple directions in the pitch and roll planes. Each subject was randomly presented 

with 44 support surface rotations through 16 different directions separated by 22.5 deg first 

under eyes open, and then, for a second identical set of rotations, under eyes closed 

conditions. Bilateral muscle activity fiom tibialis anterior, soleus, lateral quadriceps and 

paraspinals were collected, averaged across direction, and areas calculated over intervals with 

significant bursts of activity. Trunk angular velocity and ankle torque data were averaged over 

intervals corresponding to s i g i  ficant biomechanical events. Stretch reflex (intervals of 40- 100, 

80- 120 ms) and automatic balance correcting responses (1 20-220,240-340 ms) in the sarne 

muscle were sensitive to distinctly different directions. The directions of the maximum 

amplitude of balance-conecting activity in leg muscles were oriented along the pitch plane, 

approximately 180 deg fiom the maximum amplitude of stretch responses. Ankle torques for 

almost al1 perturbation directions were also aligned along the pitch plane. Stretch refïexes in 

paraspinal muscles were tuned along the 45 deg plane but at 90 deg to automatic balance 

corrections and 180 deg to unloading responses in the sarne muscle. Stretch reflex onsets in 

paraspinal muscles were observed at 60 ms, as early as those of soleus muscles. In contrat, 



unloading reflexes in released paraspinal muscles were observed at 40 ms for perturbations 

which caused roll of the trunk towards the recorded muscle. Onsets of trunk roll velocities 

were earlier and more rapid than those observed for pitch velocities. Trunk pitch occurred for 

pure roll directions but not vice versa. When considered together, early stretch and unloading 

of paraspinals, and concomitant roll and pitch velocities of the trunk requinng a roll-and-pitch- 

based hip torque strategy, bnng into question previous hypctheses of an ankle-based tngger 

signal or ankle-based movernent strategies for postural balance reactions. These findings are 

compatible with the hypothesis that stretch, force and joint related proprioceptive recepton at 

the level of the trunk provide a directionally sensitive tnggering mechanism underlying a, 

minimally, two stage (pitch-based leg and pitch-and-roll-based trunk) balance-correcting 

strategy. Accelerometer recordings from the head identified large vertical linear accelerations 

only for pitch movements and angular roll accelerations only during roll perturbations with 

latencies as early as 15 ms. Thus, it appears that balance corrections in leg and trunk muscles 

may receive strong, receptor dependent (otolith or vertical canal), and directionally sensitive 

amplitude modulating input from vestibulo-spinal signals. 

Key words: Balance corrections, stretch reflexes, directional sensitivity, vestibulo-spinal 

input, proprioception, posturography, torque strategies. 



INTRODUCTION 

Falls occur in different directions and at different speeds depending primarily on the original 

direction and intensity of the perturbation and secondarily on the flexibility of the trunk in both 

the roll and pitch planes. The conversion of sensory information on the perturbation to 

appropnate balance corrections is a task the central nervous system (CNS) must rapidly initiate 

and accurately modulate if a fall is to be prevented. This is accomplished by the CNS initiating 

bursts of muscle activity with onset latencies around 100 to 120 ms at a number of body 

segments thereby providing the effective righting reaction (Allum and Honegger 1992, Allum 

et al 1994, Keshner et al 1987, 1988). Bunts of muscle activity appearing up to 100 ms after 

onset of the perturbation, generated by proprioceptive stretch reflexes, do not have sufficient 

strength to prevent a fall (Allum and Pfaltz,1985). From a neurophysiological viewpoint a 

number of general questions cm be raised about these processes. For exarnple, the question 

arises about the earliest and most directionally specific trigger signal for balance corrections, 

be it of vestibular or proprioceptive origin. Following initiation ofa pattern ofresponses 

appropriate for the direction of falling, the responses must be scaled to correct the fall. Again 

the question is the nature of the underlying sensory signais contributing to this modulation of 

balance corrections and whether this scaling could be different for different directions of 

falling. 

Previous work on balance corrections has almost been exclusively limited to the pitch plane. 

This work which mostly concentrated on Iower-leg muscles, established that the latencies of 

balance corrections occur in a narrow time band of 90- 120 ms (Nashner, 1977; Allum and 

Budingen, 1979; Diener et al., 1983). Following the teminology of Melville-Jones and Watt 

(1 97 1) the observed balance corrections were initially classified as 'functional stretch 

reflexes', with ankle inputs seen as the primary sensory triggering signal (Nashner, 1976; 

1977; Diener et al., 1983; 1984). The term ,,fÛnctional stretch reflex-' implies that automatic 

balance corrections are very similar to or even initiated by stretch of leg muscles. Based on 

this concept the question anses whether information on the directional sensitivity of balance 

corrections is best studied using either a constant arnount of ankle rotation or other joint 

rotation. 



One common approach used previously for pitch perturbations has been to manipulate 

different characteristics of the perturbation to destabilize the body while holding ankle rotation 

at a constant amplitude and observe resultant changes in the automatic responses of 

biomechanical and muscular variables. For example, translational venus rotational 

movements of the support surface yield very distinct postural responses regardless of the 

sirnilarities in ankle joint rotation and stretch responses of ankle musculature (Nardone et al., 

1990; Allum et al., 1990; 1992; 1993; Schieppati et al., 1995). Allum et al. (1989) observed 

postural responses to ankle dorsi-flexion rotations of the support surface which were consistent 

with a two segment 'stiffening strategy' whereas a backward translation elicited a multiple 

segment or 'multi-link' strategy of movement. Observation of stretch related information at 

the level of the neck (Keshner et al., 1988) and in intrinsic muscles of the foot (Schieppati et 

al., 1995) pnor to stretch responses in triceps surae muscles provideci additional evidence that 

stretch reflexes and balance corrections consist of distinct neurophysiological entities in 

contrast to the long-standing hypothesis of an ascending pattern of muscle activation triggered 

by stretch-related proprioceptive input fiom the ankle joint muscles (Nashner, 1977; Horak 

and Nashner, 1986). To pmvide further suppon for the concept that balance corrections cm be 

triggered independent of ankle stretch input, Allum et al. (1995; 1998) utilized combinations of 

backward translations and plantarflexion rotations of the support surface. This combined 

perturbation provided a unique condition by nulling any proprioceptive input from &le joint 

or lower-leg muscle stretch recepton. With this combination, Allum and colleagues were able 

to demonstrate that properly timed balance corrections in leg and tmnk muscles of normal and 

vestibular loss subjects were still present in the absence of ankle input. 

An alternative method commonly employed in searcbing for the origin of triggered postural 

responses has been to study the automatic responses of patient populations with 'Iesions' of the 

hypothesized triggering sensory system. Observing changes associated with the absence of 

information from lower-leg proprioceptive systems may help to reveal the relative 

contributions of proprioceptive information to the triggenng and modulation of automatic 

postural responses that comprise balance corrections. For exarnple, Inglis et al. (1 994) found 

significant differences in the onset latencies of postural responses between patients with 

selective proprioceptive loss at the level of the &le and normal controls. However, recent 



investigations by Bloem and colleagues (Allum et al. 1998, Bloem et al. 1999), which 

employed a more vigorous selection procedure to eliminate any confounding effects of muscle 

strength frequently accompanying selective proprioceptive loss, yielded no evidence of 

significant differences in onset latencies of automatic postural responses to pure rotation and 

combined translation/plantarflexion rotation perturbations with nulled ankle inputs. These 

findings, when considered with earlier evidence from the work of Keshner et al. (1 988), Allum 

et al. (1995; 1998) and Schieppati et al. (1 995), provide a substantial body of evidence 

supporting the position that lower leg stretch reflexes and subsequent balance corrections 

involve di fferent neurophysiological mechanisms. 

Additional directional characteristics of balance corrections in the pitch plane have been 

discovered. Following the observation of correct postural responses to changes in the fonvard 

and backward direction of platfom perturbations within a single trial in cats, Rushmer et al. 

(1983) concluded that these triggered postural responses were sensitive to the direction of the 

perturbation. In addition, both the arnount of information available prior to the perturbation 

and previous experience with sirnilar perturbations in the pitch plane have been show to 

signi ficantl y influence the magnitude of the automatic postural response (Horak et al., 1989; 

Beckley et al., 1991). 

Although significant amounts of information regarding the characteristics of balance correcting 

responses have resulted fiom both altered perturbation and lesional studies, the general 

applicability of ihese findings to falls in several directions should be seriously questioned. In 

al1 of the aforementioned studies, regardless of the type of pemirbation (i.e. translational, 

rotational or combination of both), each has limited the direction of the perturbation to a single 

plane, specifically the sagittal or pitch plane. However, joint recepton (Rothwell, 1994) and 

vestibular receptors (Tomko et al., 1981) provide directional information in planes other than 

the pitch plane. Furthemore, the directions of maximum isometric stabilizing activity in neck 

(Keshner et al., 1988), trunk (Lavender et al., 1994) and elbow muscles (Buchanan et al., 1986) 

lie in multiple planes. As perturbations to equilibriurn cm be expected, under normal 

conditions, to occur in directions other than that of a pure pitch orientation it seems essential to 

characterise the properties of the postural control system using perturbations in multiple 



directions. Amin and Latash (1995) have demonstrated that anticipatory postural reactions in 

postural Ieg muscles are modulated to the direction of fast voluntary ami movements. 

However, to date only a limited amount of research has been devoted to examining the 

sensitivity of postural leg and trunk muscle responses to unexpected perturbations in multiple 

directions. Some studies involving multi-direction platform displacements have been 

performed using human (Maki et al. 1994; Moore et al., 1988; Henry et al., 1998), and cat 

paradigms (Rushmer et al., 1988; Macpherson, l988a; l988b; 1994). Expenments fiom both 

paradigms have produced evidence supporting the sensitivity of both muscular and 

biomechanical postural responses to petturbation direction. However, the findings of these 

multi-directional studies must be weighed against the limitations of the expenmental design, 

inciuding non-randomized and restricted directions and the choice of a single measurement 

interval overlapping both stretch-reflex and balance-correcting activity. Irrespective of any 

limitations in protocol, support surface translation studies may also lack the capability to 

independently observe directionally specific responses in stretch reflex and automatic balance 

correcting responses in the lower leg muscles unless the stretch reflex is fini nulled out by 

simultaneous planta-flexion of the support surface (Nashner et al. 1982, Allum and Honegger 

1998). Support-surface translation, in contrat to rotation, has generally a slower nse time 

because of the large mass that must be rnoved. The slower rise time causes stretch reflex and 

balance correcting activity to coalese in lower leg muscles (Allum et al. 1993). However, in 

order to understand how directional proprioceptive information is used to tngger and/or 

rnodulate postural responses, the ability to distinguish between stretch reflex and triggered 

automatic balance-correcting responses seems vital. 

The purpose of the present study was to examine the postural responses of normal healthy 

adults to support surface rotations in sixteen different, randomiy presented, pitch and roll 

combinations. It was hypothesized that biomechanical and muscular activity of lower leg and 

tmnk muscles with respect to stretch reflex and subsequent balance correcting responses would 

be sensitive to the direction of the perturbation. It was hoped that observed intrarnuscular 

differences in the directional sensitivity of response magnitudes would shed m e r  light ont0 

the relative contributions fiom the hip, knee and ankle proprioceptive inputs in triggering 

balance corrections and increase the understanding of how the CNS utilizes vesiibular and 



proprioceptive information to code and modulate responses to the direction of a postural 

perturbation. 

METHODS 

This study exarnined the effect of multi-direction rotations of the support surface on muscular 

and biomechanical responses in normal healthy young adults. Seventeen participants (8 male. 

9 female; mean age=23 sd 2.6 yrs; height4.73 sd 0.08 m; weigh~69.5 sd 12.2 kg) 

volunteered for the study and gave witnessed prior informed consent to participate in the 

experiment aAer observing several multi-directional movements of the support surface. Al1 

subjects were fiee from any neurological or previous orthopaedic injuries as verified by self 

report and possessed normal balance function as verified by Unterberger and Romberg stance 

tests. 

Subjects were positioned on the force-measurîng platform with their feet lightly strapped 

across the instep to the support surface. Backward movement of the heel was prevented by an 

adjustable heel bar. This procedure ensured that the lateral malleoli were aligned with the 

platform's pitch avis of rotation for every trial and was identicai to that used in our previous 

studies (Allum and Pfaltz 1985, Allum et al. 1993, 1994, 1995, 1996, Allum and Honegger 

1998). The subjects were asked to assume their normal standing posture, with straight knees 

and arms hanging comfortably at their sides. Force-plate reaction forces were then reset to 

zero to establish a reference value for the individual's 'prefened stance' position. 

Stimulus Parameters 

The dual axis rotating force-platform was capable of delivering unexpected rotations through 

multiple directions in the pitch and roll planes. Platform rotations had a constant amplitude of 

7.5 deg and angular velocity of 50 deg/s. A clockwise increasing notation, as viewed fiom 

above, was used to speciQ rotation direction. The O deg rotation direction represented a pure 

'toes dom '  tilt of the pladorm, conversely, 180 deg direction represented a pure 'toes up' 

rotation. Pure roll movements were assigned angles of 90 deg to the right and 270 deg to the 

lefi. Combinations of pitch and roll rotations were used to denote 12 other directions, each 

separated by 22.5 deg. In order to record electromyographic activity, ankle torque and tmnk 



angular velocity two sequences of 8 directions (0,45,90, 135, 180,225,270,3 15) and (22.5, 

67.5, 112.5, 157.5,202.5,247.5,292.5,337.5) were presented on two separate days (on 

average, 3 days apart) under eyes open and eyes closed conditions on both occassions to 14 

subjects (7 female and 7 male). Each senes consisted of 44 randomly presented rotational 

stimuli. Responses to the very fint stimulus in each series were ignored in the data analysis to 

reduce the effects of adaptation (Nashner et al., 1982; Keshner et al., 1987) entenng the data, 

leaving 5-6 sets of responses per direction and condition in the subject average. The order of 

presentation of the iwo directional sequences was counterbalanced between subjects to 

minimize any ordering effects. Order of visual manipulation (eyes open vs. eyes closed) was 

not randornized to allow Future cornparisons between normal and subsequently collected 

patient population data. Although it is acknowledged that the non-randorn presentation of 

visual conditions may have invited confounding effects due to order (Keshner et al., 1987), the 

balance tasks had to be perfomed in a sequence of increasing difficulty to ensure the safety of 

patients in future studies. A five to ten minute rest period was provided between eyes open and 

eyes closed conditions to try to minimize any confounding effects due to order andfor fatigue. 

Biornechanical variables, and repeated measures of ankle torque and trunk angular velocity, 

were recorded in a separate session on average 19 days afler the EMG recordings. For this 

session only the sequence of directions (0,45,90,135,180,225,270,3 1 5) was presented under 

eyes-open conditions to 9 of the subjects (5 females and 4 males) who had had EMG 

recordings and 3 female subjects without EMG recordings to have roughly equal numbers of 

subjects for EMG and biomechanical recordings. 

Each perturbation was preceded by a random 5-20 s delay. During this delay period subjects 

were required to maintain antenor/posterior (A-P) ankle torque within a range of +/- 1 Nm 

from the 'preferred stance' reference value using on-line visual feedback h m  an oscilloscope 

placed at eye level approximately 1 m away fkom the subject. During the eyes closed condition 

two distinct auditory tones were substituted for visual feedback to monitor variations in A-P 

ankle torques prior to the stimulus onset. The 5-20 s interstimulus delay was initiated 

automatically once the platform had retumed to its original pre-stimulus position and the 

subject regained his preferred vertical position. 



In response to each rotational perturbation, the subject was insmicted to recover their balance 

as quickly as possible. Handrails were I~cated on the lateral borden of the platfon apparatus 

in case of loss of balance and a spotter was present in close proximity to lend support in case 

of a fall. No stimuli caused the subject to touch the handrail or to need assistance by the 

spotter. 

Biomechanical and EMG Recordings 

Al1 biomechanical and electromyographic (EMG) recordings were initiated 100 ms prior to the 

onset of the perturbation and had a sarnpling duration of 1 S. Support surface reaction forces 

were measured from two independent force-plates mounted on the moveable platform. 

Vertical forces were rneasured by strain gauges located under the corners of each plate. From 

these forces A-P and media1 lateral (M-L) ankle torques were calculated (Allum and Honegger. 

1998). Trunk angular velocity in the pitch and roll planes were collected using Watson 

Industries transducers (* 300 de@ range) mounted to a metal plate which hung from shoulder 

straps at a level on the chest equivalent to the position of the sternum. Pitch and roll angles of 

the leR lower leg were recorded with respect to vertical using a goniorneter system consisting 

of two potentiometers oriented at 90 deg to one another and attached to a lightweight metal rod 

strapped to the lower leg just below the knee at 4 cm below the lateral condyle of the tibia. The 

le fl upper-leg pitch and roll angular velocities were measured with Watson industries 

transducers (k 100 degis range, O to 50 Hz bandwidth). The transducen were mounted 

perpendicular to one another on a 20 cm long metal plate molded to the curvature of the upper 

leg. The plate was held firmly attached to the upper leg by means of an elasticated bandage. 

Left knee pitch and roll angular velocities were computed off-line fiom the difference of the 

upper- and lower-leg angular velocities after differentiating the lower leg angle digitally. Al1 

biomechanical data was sampled at 500 Hz and digitally iow-pass filtered off-line at 25 Hz 

using a zero phase-shitt 1 0th-order Butterworth filter. 

Surface EMG electrodes were placed bilaterally, approximately 3 cm apart, along the muscle 

bellies of tibialis anterior, soleus, lateral quadricep (vastus laterdis) and paraspinal muscles. 

EMG amplifier gains were kept constant and pain of electrodes and lead lengths assigned to 

individual muscles were not changed between subjects. EMG recordings were sarnpled at 1 



KHz, band-pass filtered between 60-600 Hz, full wave rectified, and low pass filtered at 100 

Hz as recommended by Gottlieb and Agarwal(1979). 

Data .4nalvsis 

Following analog to digital conversion of the data, offline analysis was initiated by defining 

the zero latency point and averaging subject EMG and biomechmical signals for each 

perturbation direction (5-6 stimuli per direction). Zero latency was defined as the fint inflexion 

of ankle rotation velocity and did not Vary with direction or subject. For each trial background 

EMG activity of each muscle recorded 100 ms prior to stimulus onset was averaged and 

subtracted From the EMG signal before response areas for the trial were calculated. EMG areas 

were calculated using trapezoid integration within pre-deteminecl time intervals associated 

with previously identified stretch (40- 100,8O- [?O ms from stimulus onset), balance correcting 

(1 20-220 ms), secondary balance conecting (240-340 ms), and stabilizing reaction (350-700) 

responses (Allum et al., 1993; 1994; 1996). Fixed intervals were used rather than alternative 

terminologies for averaging intentals such as medium (ML) and long latencies (LL) response 

intervals (Beckley et al. 1991, Diener et al. 1983, 1984) for two reasons. Oflen it is difficult to 

define separate ML and LL penods of activity in a muscle response (Allum et al. 1993) and 

secondly responses after early stretch reflexes were often active at several body segments 

simultaneously (see figures 4 and 6). Al1 biomechmical and muscular profiles were averaged 

across each direction and subject averages were pooled to produce population average for each 

direction. Response latencies were measured on individual trials once it had been determined 

visually that a consistent activity pattern occurred for al1 responses from the subject for one 

direction. A latency was set if the activity pattern diverged for more than 40 ms at least one 

standard deviation away fiom the mean EMG activity 100 rns pnor to stimulus onset. 

RESULTS 

Rotation of the support surface induced direction specific displacement of body segments 

during the first 150 ms From onset of the stimulus (Fig. 1). in general, the subsequent balance- 

corrections enhanced initial movements of the tnuik (see Figs. 2,3 and 5). Balance corrections 

consistai of multi-segmental, automatic, muscle activity with onsets in the range of 100 to 150 

ms fiom stimulus onset (see Figs. 4 and 6). Roll displacements of the tnmk occurred earlier 



and were corrected earlier than pitch displacements (see Figs. 2,3 and 5), even though balance 

correcting muscle activity did not appear to change in onset between pitch and roll. However, 

the depth of modulation of muscle activity changed considerably between pitch and roll (see 

Figs. 4 and 6) being stronger and more asymmetric in the ûunk muscles, and weaker in the leg 

muscles for roll (see Figs. 7 to 10). The presence of stretch reflex and/or unloading activity 

after 39,44 and 73 ms in paraspinal, soleus and tibialis anterior, respectively. was another 

significant muscle activity pattern change with direction (see Figs. 4 and 6). Our working 

hypothesis is that these phases of early stimulus induced and the later occumng, balance- 

correciing, muscle activity result from different neurophysiological phenornena underlying the 

postural response to the balance perturbations. Therefore our experimental observations have 

been presented within the concept oTa sequence of such balance-related intervals which 

together. constitute a smoothl y executed movement strategy. 

Stimulus Induced Responses: 

Pitch plane rotations 

Dunng the 180 deg (toes up) rotational stimuli, the body was forced into movement as a two 

segment system (Fig. 1). This two-link motion dominated the subsequent balance correction 

(see Fig. 2), because the upper and lower legs moved as essentially one link. As obsented in 

Fig. 3, within 50 ms following the onset of platfom rotation the ankle was passively dorsi- 

fiexed to reach a peak velocity of 60 deg/s (thinnest set of lines in &le pitch velocity traces). 

Corresponding stretch reflexes in soleus muscles were observed (Fig. 4), with an onset latency 

of 44 ms (sd 3.7 ms). Stimulus onset marked the begiming of a passive backward rotation of 

the lower limb segment coupled with fonvard rotation of the upper leg thereby forcing the 

knee into hyperextension with a maximum knee angular-velocity of 20 de@. Fonvard flexion 

of the other major link, the trunk segment, was first observed at 50-60 ms which caused a 

s~e t ch  reflex in paraspinals with onset latency of 68 ms (sd 15 ms). initial movements of the 

hezd were dominated by early upward accelerations at 15 ms followed by smaller horizontal 

accelerations in the backward direction. Upward accelerations of the head reached a maximum 

of 0.45 m/s2 at a tirne to peak of 3 5 ms (Fig. 3). For the purposes of movement strategy 

conceptualisation, motion of the head as a separate link is not emphasised here (see Allum et 

al. 1997)- These results did not differ from those obtained in our pitch rotation studies (see 



figure 2, Allum and Honegger 1998) for which the feet were also strapped to the support 

surface . 

As illustrated in Fig. 1, during the O deg (toes down) stimulus the body responded as a three- 

link system and again this mode of movement comprised the subsequent balance correction 

(see Figs. 1,2 and 5). The ankles were initially pulled into plantar-flexion by platform rotation 

with a maximum angular velocity of 70 degk (Fig. 5). Stretched tibialis anterior muscles (see 

Fig. 6) demonstrated reflex responses with latencies of 73 ms (sd 12 ms). Forward rotation of 

the lower leg segment began at 100 ms. However, backward rotation of the upper leg caused 

flexion of the knee joint as early as 15 ms with increasing velocity until a maximum of 60 

de@ was reached at 200 ms (Fig. 5). Corresponding to this period of knee flexion, stretch 

reflexes were observed in quadricep muscles with latencies of 85 ms. Backward rotation of the 

tmnk segment was first observed in angular velocity traces. unloading the paraspinal muscles 

as evidenced by a decrease in stimulus induced paraspinal EMG activity below pre-stimulus 

background levels clearly seen at 70 ms (see, for example, the thin traces in left paraspinals in 

Fig. 6). The onset latency of the unloading response was on average 45 ms (sd 12 ms). Trunk 

movement was preceded by early downward vertical linear accelerations of the head peaking 

at 30 ms and smaller antenor head accelerations at 50 ms (see Figs. 1 and 5). Maximum 

vertical accelerations of the head reached 0.6 ds'.  

Roll plane rotations 

For pure roll conditions to the right (with mirrored responses for left roll stimuli), the lower 

and upper leg segments initially rotated in the same direction as the platform rotation (see Figs. 

1 and 3). tnterestingly, stretch reflexes were observed in the lefi soleus muscle with an onset 

latency of ca 50 ms, similar to that observed in a pure toes up rotation but such early stretch 

reflexes were not observed in the right soleus (Fig. 4). The trunk segment demonstrated 

consistent early roll velocities at 20 ms in the direction opposite to that of the platform rotation 

(see Figs. 1 and 3). Between 100-150 ms the aunk demonstrated average roll velocities of 12 

deg/s to the leR (Figs. 1 and 3). Small stretch reflexes in the right paraspinal for right 

platform, lefi tnuik roll, were obsewed at ca 60 ms while an unloading reflex, characterized by 

decreased EMG activity below background levels, was observed in lefi paraspinals with 



latencies as early as 30 ms (Fig. 4). Very large head roll angular accelerations were recorded in 

the same direction as tmnk rotation (to the left in response to a pure nght roll stimuli) 

beginning at 40 ms and reaching peak accelerations of 200 de& within 80 ms (Fig. 3). Notice 

however, that head vertical accelerations were of a small, almost negligible, amplitude over the 

first 150 ms (sec Fig. 3). 

Of-pitch. off-roll rotaiions 

Stimulus induced movements were unique for each off-pitch and off-roll perturbation direction 

containing both pitch and roll characteristics, however, certain differences in trunk velocities 

and head accelerations were observed with respect to knee and ankle velocities. Generally, 

clear direction specific magnitude changes were seen in ankle and knee velocities that were not 

so well defined in tmnk velocities and head accelerations. Generally ml1 of the support surface 

induced little pitch of the ankle and knee and vice versa for pitch displacements. Between these 

two extremes a step-wise progression in the amount of roll and pitch was noted, consistent 

with the direction of support-surface motion. This information on the direction of roll was not 

encoded into soleus stretch reflexes (see Fig. 8) nor clearly into tibialis antenor stretch reflexes 

(see Fig. 7) because the sensitivities of these refiexes were aligned along the pitch axis. in 

contrast, trunk velocities showed a strong pitch component for roll rotations of the support 

surface, but no tnink roll velocity was observed following pitch rotations of the support 

surface. Furthemore, the change in tmnk velocity vector between the 67.5 and 1 12.5 

directions of roll was encoded more in tmnk pitch velocity (compare trunk roll and pi tch 

velocity traces in Figs. 3 and 5). Perturbations with a nght roll component (between 22.5 and 

153 deg) induced tmnk roll velocities to the left with latencies of 20-30 ms (see Figs. 3 and 6). 

Pitch rotations of the trunk followed with longer latencies of60 ms and slower accelerations, 

pitching backward during toes down combinations (for directions in the range 270 to 90 deg), 

and forward in response to toes up combinations except 1 12.5 and 247.5 deg for which no 

early pitch occurred (see Figs. 3 and 5). The direction of maximum sensitivity of paraspinal 

stretch reflexes were observed for backward directions 45 deg from pure-pitch, with lefi and 

nght pamspinal muscles having opposite directions (see upper left polar plots in Fig. 9). So for 

that matter were those of the unloading reflexes in paraspinals (not illustrated) albeit oriented 

180 deg to the stretch reflexes. The earliest population average stretch reflex onsets in the right 



paraspinals were observed for the 135 deg direction (63.4 ms, sd 12 ms) and the earliest 

average unloading response for the 3 15 deg direction (39 ms, sd 10 ms). Considering the mean 

onset for combined stretch reflexes in soleus and tibialis antenor muscles as one possible 

trigger source and the mean onset for paraspinal stretch/unloading interaction as another, 

cornparison with a one-way analysis of variance revealed significantly lower onsets for the 

mean trunk cornpared to mean leg reflexes (p<0.05). Thus, despite the fact that trunk pitch 

velocities are observed even during roll perturbations, and limited variation in trunk roll 

velocities to near pure-roll perturbations, the interaction between early stretch and unloading 

paraspinal reflexes on opposite sides of the body provided discriminatory information 

regarding the direction and onset of mink movements. Consistent with the observation of 

unifomi trunk roll profiles for different directions, but different tmnk pitch profiles, similar 

amplitudes of head roll angular acceleration profiles were observed for 135 and 90 deg, in 

contrast to the large change in head vertical linear acceleration profiles (see upper sets of traces 

in Fig. 3). Thus the direction of support surface rotation may also be accurately encoded from 

the combined head angular- and linear-acceleration profiles. 

Balance Correctine Responses 

Balance corrections were characterised biomechanically by a reversal fiom stimulus-induced 

responses in both A-P and M-L ankle torque records and by a second phase of body segment 

(lower-leg, upper-leg, tnink) velocity commencing at approximately 160 ms (Figs. 3 and 5). 

Ankle and knee joint pitch velocities rose to a second clearly defined peak around 240 ms for 

al1 perturbation directions (see Figs. 3 and 5). This phase in angular joint velocity occurred as a 

result of movement of the upper leg in the opposite direction to that induced by the stimulus 

(compare leg velocities in Figs. 1 and 2). The trunk, in contrast, generally continued to pitch 

forward or changed to pitching forward except for toe-dom stimulus combinations between 

3 15 and 45 degs. (compare upper and lower parts of Fig. 12). Roll velocities in the legs during 

balance corrections were of more limited amplitude than those during pitch movements 

presurnably because of the limited joint motion possible in the roll direction. Ankle and knee 

joint roll velocities during baiance corrections were, however always in the opposite direction 

to those induced by the stimulus and small compared to pitch velocities (Fig. 3). Trunk roll 

velocities reversed direction only afler 220 ms (see Figs. 3 and 12). Thus, trunk motion is 



hndamentally different during balance corrections fiom motion of the leg for al1 perturbation 

directions in one major aspect. The amplitudes of roll trunk velocities were similar to those of 

pitch. Due to this difference it might be expected that muscle response amplitudes of automatic 

balance corrections are highly directionally sensitive and differ in directional sensitivity 

between trunk and leg muscles. As s h o w  in Figs. 4 and 6, amplitudes of muscle responses 

rather than muscle response onsets underlie these differences in trunk and leg movements to 

di fferent perturbations. 

Pitch plane rotations 

Figs. 1 and 7 show that the largest responses in tibialis muscles over al1 directions were 

obtained between 120 and 220 rns when the support surface was tilted toes-up. Quadriceps also 

produced the largest bunt of activity over this time period for the sarne direction (see Fig. 10). 

At the sarne time soleus showed a small amount of balance correcting activity (see Figs. 4 and 

8) for this direction. Presumably this coactivated activity in the leg muscles is largely 

responsible for bringing the lower-legs forward and braking the rearward motion of the upper 

legs depicted schematically in Fig. 2. Interestingly, although the largest angular velocity of the 

trunk was observed for 180 deg pitch rotations of the support surface (the average velocity of 

the trunk between 240 and 300 ms equalled 19 deg/s in the pitch direction, see Fig. 2). the 

paraspinal activity was smaller than that obtained for roll perturbations that caused trunk 

motion towards the paraspinals recording side (e.g. left paraspinals unloaded by right roll 

support-surface motion). 

In response to toes d o m  perturbations. soleus produced the largest balance correcting 

responses of al1 muscles we recorded fiom. As with toe-up perturbations in tibialis anterior, 

responses in soleus were similar between eyes-open and -closed conditions, although responses 

were larger on average for eyes closed. Presurnably, soleus activity was recruited to oppose the 

continuing foward motion of the lower leg (see Figs. 1 and 2). After motion of the support 

surface ceased at 150 ms, this forward motion of the lower leg led to a dorsi-flexion of the 

ankle joint which peaked with a velocity of 35 de@ at 200 ms (Fig. 5). Quadriceps activity 

during the balance conecting penod acted to decelerate backward motion of the upper leg (see 

Fig. 2). Thereby knee flexion peaked at 200 ms and came to rest ai Ca. 350 ms. Minimal 



balance correcting activity for tibialis antenor and paraspinal muscles was observed during toe 

down perturbations (Figs. 6 and 9). We assume that muscles such as the abdominals, fiom 

which we did not record, were responsible for the double-peaked profile of tmnk pitch angular 

velocity seen in response to toe-down support-surface rotations (see Fig. 5). 

Roll plane rotations 

The automatic balance-correcting responses in left and nght muscles during the pure roll 

conditions were not syrnmetrical. The asymmetries were similar under eyes open and eyes 

closed test conditions. An asymmetrical balance-correcting response is unavoidable given that 

the trunk tilts in the direction opposite the support-surface movement and the uphill leg is 

flexed at the knee and the downhill leg is extended into a knee-locked position (see Fig. 2). 

Thus, in response to right down support-surface movements shown in Fig. 6, balance 

correcting activity in right tibialis anterior, quadriceps and soleus were involved in stabilizing 

the right ankle and knee joint to maintain a straightened position and resist the initial rightward 

rotation of the legs. The larger tibialis anterior and smaller soleus activity in the Ieft leg (see 

lower left Figs. 6 and 8) preceded flexion of the knee and ankle which commenced at 

approximately 160 ms (see Fig. 3). Simuitaneously, the knee was pulled slightly to the left, 

reflected by increased knee roll velocity which peaked at 190 ms. Following the initial stretch 

reflex of the right and unloading reflex of the left paraspinal muscles, large balance-correcting 

responses in the left paraspinals were observed accompanied by a weak contraction in the right 

paraspinal muscles (Fig. 6). This activity presumably was required to counteract ensuing trunk 

roll in the rightward direction. Average nght roll velocities of the trunk to right down support- 

surface movements were thereby limited 2.4 de@ between the measurement period of 240- 

340 rns (Figs. 2,3 and 5). 

Off-pitch. of--roll rotations 

As roll and pitch perturbations were combined, the balance correcting responses associated 

with pure pitch and roll stimuli were superimposed to create unique directionally-speci tic 

postural responses. Balance correcting responses, like stretch reflexes descnbed above, and 

subsequent stabilizing reactions described below, were influenced by perturbation direction. 

Tibialis anterior dernonstrated balance responses through dl backward directions with the 



majority of activity observed in directions greater that 1 35 and less than 225 deg and maximal 

responses oriented just off 180 deg at 177 deg and 186 deg for lefi and right muscles, 

respectively (Figs. 4,6 and 7). Balance correcting responses in soleus muscles were obsewed 

in al1 directions with maximum activity occurring in directions between O and 68 deg for the 

nght and between 293 and O for the left muscle (Figs. 4.6 and 8). Smaller amplitude soleus 

activity was observed in directions between 90-270 deg corresponding to coactivation with 

tibialis antenor activity. Minimum activity was recorded for pure roll directions. These two 

zones of soleus activity caused maximal activity vecton for soleus to be oriented slightly off 

the pitch axis at 332 and 35 deg for the left and nght leg, respectively (Fig. 8). Quadriceps 

followed the trend exhibited by tibialis anterior with maximum activity vecton aligned along 

the toe-up (1 80 deg) direction, except that some activation was observed for roll and the toe- 

down directions. Quadriceps demonstrated larger mean values for the lefi than the right leg. 

Though this difference is unlikely to approach significance because large standard erron were 

associated with these means (see Fig. 10, lower right) the difference in means is nonetheless 

surprising given the precautions we took to avoid a leWright bias. This was the only muscle for 

which such differences were observed and could be associated with the fact that most subjects 

were right-footed. As observed in Fig. 9 from both the directions of maximum activity vectors 

and the range of activity, paraspinals responded best to roll backwards, consistent with the 

combined roll and pitch effect of the stimulus on the tnink (see Figs. 3 and 12). Maximal 

activity vecton for paraspinals were directed towards 142 and 225 deg for the left and right 

muscles with activation ranges between 90 and 225 deg and between 135 deg and 270 deg, 

respective1 y. 

For al1 leg muscles we recorded fiom (tibialis anterior, quadriceps and soleus) maximum 

activity vectors for balance correcting responses were oriented aiong the pitch a i s .  Even for 

the lateral quadriceps muscle this finding is consistent with the action of leg muscles, being 

restricted by ankle and knee joint motion to the pitch plane. The stretch responses in leg 

muscles were oriented approx. 180 deg from the balance-correcting response in same muscle 

(compare polar plots in the lefl half of 7, 8 and 10). Paraspinal muscles, however, 

demonstrated maximum stretch reflexes activity in directions onented 90 deg nom the sarne 

muscle's maximum balance correcting response (see left half of Fig. 9). This evidence, 



suggesting an underlying neurophysiologicai difference between the mechanisms responsible 

for eliciting stretch and subsequent balance correcting responses, cm also be observed in Figs. 

4 and 6. Directions which elicited strong stretch reflexes in a particular muscle were followed 

by proportionally smaller balance correcting responses. in addition, the inhibition or unloading 

reflex observed in lefi paraspinals during trunk motion caused by nght roll perturbations, and 

likewise for right paraspinals dunng lefi roll perturbations, were succeeded by very prominent 

balance correcting responses. Maximum activity for the unloading reflexes were observed at 

57 and 3 10 deg, for the leH and right tnink muscles respectively. Maximum unloading reflex 

activity was oriented 90 deg fiom the maximal balance correcting response and 180 deg to 

maximal stretch reflexes in the sarne muscle.Thus in the tmnk muscles the primary direction of 

the stretch reflex is not opposite that of the balance-correcting response, but phase shifted. 

Joint forqrtes 

Our findings with respect to the A-P directionality of leg muscle maximum activity vecton 

was replicated in ankle muscle torques. This was done by exarnining the directionality of 

torque muscle responses during the period 160 to 260 ms, that is, in the penod influenced by 

balance correcting responses acting over the time M e  of 120 to 220 ms. The upper part of 

Fig. 1 1 shows the amplitudes of A-P and M-L ankle torque change calculated from the strain 

gauge measurements over 160 to 260 ms. Notice that the difference in the scales for the A-P 

and M-L torques in Fig. 11 signifies that the ankle torque is dominated by the A-P torque. As 

with the lower-leg muscle responses, eyes closed A-P torques were slightly larger than those 

obtained under eyes-open test conditions. The centre plot of the three polar plots in the upper 

part of Fig. 1 1 shows the direction of the movement forces for the nght ankle torque vector. 

That is, the direction the body would move (viewed fkom above) if it could be modelled as an 

inverted pendulum rotating at the ankle joints. These directions are almost exclusively aligned 

dong the slightly off-pitch direction of the tibialis anterior and soleus maximum activity 

vectoe for the right foot for a11 perturbation directions. The alignment of the torque vecton 

was not different for eyes open and closed conditions (only eyes-closed torque directions are 

shown in Fig. 1 1). 



Likewise our findings of a different directional sensitivity for trunk muscles could be 

confirmed by examining the directionality of average tnink velocity responses over the penod 

160-220 ms. This time frame encompasses the peak pitch velocity of the tnink backwards for 

al1 forward and roll support-surface rotations (see Fig. S), the peak roll velocity of the trunk 

(see Figs. 3 and 5 ) ,  and would presurnably reflect the action of ankle and hip torques between 

160 and 260 ms. The upper part of Fig. 12 shows how the amplitude of the average pitch and 

roll trunk velocity over 160-220 ms varies with perturbation direction. The centre plot of the 

three upper polar plots indicates that the direction of trunk motion is highly directionally tuned 

and symmetncal. That is, the trunk motion is always opposite the direction of support-surface 

perturbation. Di fferences between this direc tional sensitivity of trunk motion under eyes-open 

and eyes-closed conditions were not observed. 

Secondarv Balance Correctine Responses 

A somewhat unexpected finding was an extension of the burst of balance-correcting activity 

for backwards perturbations compared to forwards and/or roll perturbations. It is possible that 

this additional activity is due to the greater instability of the body during backward compared 

to forward falls. This extension of activity lead to distinct bunt of muscle activity at a latency 

of 220-240 ms in tibiaiis anterior, specifically for toe up (1 80 deg) directions (see Fig. 4). The 

mean latency of this burst has been shown to be 226 ms in previous studies (Allum and Pfaltz 

1985, Figure 1). Furthermore the secondary balance correction in tibialis antenor is larger than 

normal in vestibular-loss subjects, whereas the primary balance correction is smaller (Allurn 

and Honegger 1998, Figures 2,6 and 7). These population differences in the pitch plane 

responses and observations of corresponding changes in time-parsed (160-260,280-380 ms) 

ankle torque responses in al1 planes (Carpenter et al. 1999) provides a rationale for considering 

the muscle synergy of the secondary balance corrections as a distinct response. This secondary 

balance correcting activity following the decline of the initial automatic balance correcting 

response was generally absent for roll perturbations and much smaller for forwards 

perturbations. A cornpanson of the amplitudes of pnmary and secondary balance corrections 

in Figs. 7 and 8, shows that soleus secondary balance corrections were some 40 % of the main 

balance-correcting activity whereas that of tibialis antenor was of equal amplitude. Activity 

was also apparent in soleus and paraspinal muscles for toes-down rotations during the period 



we designated as secondary balance correcting activity (240-340 ms), but did not have the 

same burst-like profile as seen with the toe-up rotation (compare Figs. 4 and 6). As observed 

in Figs. 7 and IO, secondary balance correcting activity in both tibialis anterior and quadriceps 

were onented in the same directions as earlier automatic balance correcting responses 

(between 1 13 and 248 degrees) and share similar maximum activity directions at 180 deg. As 

shown in Fig. 9, paraspinal activity during this period is observed over a diverse range of 

directions, however the direction of maximum activity vector remained unchanged. 

A-P directionality was also a feature of ankle torques associated with secondary balance 

corrections. The lower part of Fig. 1 1 shows the magnitude of the torque change generated for 

the right foot over the period 280-380 ms as the A-P torque approaches a minimum (Fig. 3). 

The torque change during this period was approximately one third of that during the previous 

balance correcting period ( 160-260 ms, see upper part of Fig. 1 1 ). The features noted for the 

earlier period were similar: resultant torque vectors were orientated just off the pitch a i s ,  the 

change over fiom fonvard to backwards directed torque occured slightly backward of right roll 

and slightly forward of leR roll for the right foot, and lastly eyes closed magnitudes were larger 

than those for eyes open. 

Average tmnk angular velocities computed during the period of the secondary balance 

correction displayed a strong pitch plane asymmetry and oppositely directed roll components 

to those observed during the main balance correction. The lower part of Fig. 12 illustrates both 

the amplitudes of the tmnk pitch and roll velocities over the period 240-300 ms, as well as the 

direction of trunk motion. This measurernent penod includes the peak pitch velocity to toe-up 

(O deg) displacement of the support surface, as well as the peak roll velocity opposite to that 

initially induced by the stimulus. It is apparent from the directional polar plot that the 

underlying torque profile at the trunk must have a stronger roll component than that ai the 

ankle joint. 

Stabilizine Reactions 

Muscle activity between 350-500 ms reflects stabilizing reactions which fail well within the 

bounds of possible voluntary control (Allum et al. 1996). This tonic low-level activity is 



required to maintain the new posture dictated by the biomechanical constraints of the new 

platform orientation and to control residual velocities of the trunk which are patticularly 

prevalent in the pitch direction. Tibialis anterior and quadriceps had stabilizing activity which 

bcused around 180 deg, reinforcing the automatic and secondary balance correcting activity 

(Figs. 7 and IO lower right). Soleus activity was oriented to toes-down directions lateral of the 

pitch plane with maximum activity directed between 23 and 45 deg for the right side, similar to 

that of the automatic balance correcting response (compare Fig. 8 lower-left and lower-right 

panels). As expected fiom ongoing tmnk pitch, paraspinals activity is still relatively high 

during the stabilizing penod with activity ranges and maximum activity vecton directed to 225 

and 135 deg for nght and lefi muscles (Fig. 9 lower right). 

DISCUSSION 

Until recently, almost al1 hypotheses about the sensory rnechanisms underlying human reactive 

postural control have been based on observations denved frorn uni-directional perturbations to 

equilibrium, speci fically in the pitch plane (Nashner and McCollum, 1985; Dietz et al., 1992; 

Forssberg and Hinchfeld, 1994). These theories have mainly convergeed to describe human 

postural reactions as highly stereotyped patterns of muscle activity which are activated in an 

ascending distal-to-proximal order (Nashner and Horak, 1986) in leg and trunk muscles afier 

being triggered by ankle inputs (Horak et al. 1990, Inglis et al. 1994). Leg-muscle balance- 

correcting activity, as we have demonstrated here, is almost exclusively pitch-plane directed. 

However, fkom the standpoint of extemal validity it is unreasonable to assume that under 

conditions of daily living a postural perturbation will be experienced along a purely pitch 

plane. As our findings demonstrate, the trunk moves readily in the roll plane even if leg 

movements are restricted by joint motion to the pitch plane. 

Rushmer et al. (1983) and Allum et al. (1990) have show that appropnate balance correcting 

responses are elicited within a single trial following directional change fkom fonvard to 

backward translations or rotations of the support surface. This finding highlighted the possible 

sensitivity of balance corrections to the pitch plane charactenstics of the perturbation. Out of' 

the pitch plane, COP displacements even for quiet stance in the A-P and M-L directions are 

controlled through di fferent mec hanimis (Winter et al. 1 996). A-P displacements are ac hieved 



through dorsi- and plantarflexion ankle torques, whereas M-L corrections are achieved ihrough 

loadinghnloading hip torques. Therefore, it might well be expected that multi-directional 

perturbations would provide insights on the CNS control of muscle CO-ordination between 

ipsilateral and contralateral postural muscles to achieve appropnate directionally specific 

ankle, knee and hip torques to prevent a fall. The main purpose of the present study was to 

increase the understanding of postural control mechanisms through examination of muscular 

and biomechanical responses to postural perturbations in multiple planes. The focus of our 

investigation centered specifically upon three distinct characteristics of automatic postural 

responses. The fint issue related to identifying the origin of directionally specific triggering 

information responsible for the initiation of muscle responses generating appropriate timing 

pattems for ankle and hip torques. Secondly, to understand how proprioceptive, vestibular and 

visual information could rnodulate tnggered balance-correcting responses relative to the 

direction of the perturbations. Thirdly, to gain insights into the action of central pattern 

generators in executing appropriate ankle and hip torque movement strategies. 

Possible Triegering Mechanisms 

Moore et al. (1988) were the first to examine how changes in perturbation direction would 

influence variations in human muscle response patterns. Observation of discrete muscle 

responses corresponding to specific perturbation directions led to the conclusion that automatic 

postural responses were not components of a relatively small number of postural synergies 

(Nashner and McCullum, 1985; Horak and Nashner, 1986) but a complex process in which 

perturbation direction was a significant variable. Systematic variation of muscle responses to 

perturbation direction has also been observed in cats responding to multi-directional 

translations (Rushrner et al., 1988; Macpherson, 1988). However, the findings of these multi- 

directional studies must be weighed against the limitations of iheir design. To generate multi- 

directional perturbations, Moore et al. (1988) employed a uni-planar platform upon which the 

subject was turned to produce translations in 16 different directions relative to the subject. 

Therefore, unlike in the present study, the participant was capable of deducing that the 

upcoming perturbation would be directed in either the positive or negative direction of a given 

plane, based on their orientation relative to the platfom ' s constant translational plane. 

Previous studies have shown that prior knowledge of the direction or magnitude of an 



upcoming perturbation may influence the pre-stimulus posture of a subject, reflected by 

anticipatory changes in the mean position of the centre of pressure (COP) in healthy normals 

(Maki and Whitelaw, 1993) and patient populations (Diener et al., 199 1). Anticipatory 

postural leaning supported through changes in the mean position of COP, significantly 

influences postural responses to unexpected surface translations (Nashner et al., 1985; Horak 

and Moore, 1993) and rotations (Diener et al., 1983; Allurn and Pfaltz, 1985; Schieppati et al., 

1995). The second limitation of the study by Moore et al. (1988) and Henry et al. (1998) was 

the restriction of muscle recordings to uni-lateral muscles, preventing any cornparisons 

between bilateral muscle activity and asymmetries related to loadinghnloading responses to 

perturbations with lateral components. Henry et al. (1998) attempted to improve upon the 

shoncomings of Moore et al. (1988) by investigating postural reactions under narrow and wide 

stance width to unexpected random translations of the support surface through both A-P and 

M-L planes. Their findings also supported different EMG synergies specific to the 

biornechanical constraints imposed by direction of the perturbation. Mechanical constraints 

were found to be imposed at the very initiation of the perturbation in the present study. As has 

been argued previously (Allurn et al., 1993; Allum and Honegger, 1 W8), the number of links 

the body is forced into by the perturbation, plays a significant roie in determining the 

subsequent movement strategy underlying the balance correction (see Figs. 1 and 2). We could 

demonstrate essentially three types of movement strategy and combinations thereof depending 

on whether the support surface moved toe-down, toe-up or into roll (see Figs. 2 .3  and 5). 

interestingly, these movement strategies appeared to be generated by two types of muscle 

synergistic timing pattems that were simply modulated appropriately for the direction of 

perturbation. We tenned these two types of activation pattem the pnmary and secondary 

balance-correcting activity (see Figs. 7-1 0). Given that two types of timing patterns are 

generated for al1 directions, with some predominance of the secondary correction for 

backwards perturbations, it would seem appropriate that a restricted number of trigger signals 

with direc tional information would initiate these pattern types. 

The present findings support the notion proposed in previous work (Allurn et al., 1995; Allum 

and Honegger, 1998) that proprioceptors responsive to early stretch and release of paraspinals 

(and muscle spindles in other muscles acting at the pelvis) provide the pnmary trigger signal 



for balance corrections. We can now provide additional details conceming the directional 

specificity of this trigger signal. In a follow-up study we obtained even earlier stretch reflex 

responses in the lower hip muscles, gluteus medius, at 25 msec (Bloem et al 1999). These 

reflexes are also most active in roll directions. Such early proprioceptive reflexes in hip and 

pelvic are different on each side of the body providing an imrnediate indication of the lateral 

direction of the tmnk motion. This indication appean as early as 25 msecs in hip and trunk 

muscles (see Allum et al 1999 as well as results reported here) presumably because the trunk 

roll motion, when the balance perturbation has any roll component, occurs earlier than pitch 

motion (Figs. 3 and 5). That is the trunk is more flexible in the roll direction. Such 

directionally speci fic information does not appear to be available in lower-leg muscles. For this 

reason it is surpnsing that Henry et al. (1998) still cling in their conclusions to an ankle-input 

triggered, distal-to-proximal activation of automatic postural responses in ieg and trunk 

muscles, even though they observed early trunk flexorlextensor and tensor-fascia latae activity 

for perturbations in A-P and M-L directions, respectively, which consistently preceded Iower 

leg muscle activation. Early proximal muscle activity could be triggered by muscle or joint 

proprioception underlying paraspinal stretch reflex activity with onset latencies equivalent to 

those observed in soleus muscles (Fig. 5) or by proprioceptive inputs underlying gluteus 

medius reflex activity at 25 rns (Allum et al 1999). Al1 three sets of reflex responses are within 

the range of 40-70 ms which has been proposed as the latency limit for feedback information 

to facilitate an automatic postural response (Macpherson, 1994). Likewise, Moore et al. (1988) 

observed abdominal bunts of balance correcting activity in response to backward translations 

pnor to activation of gastrocnemius, harnstnng or paraspinal activity. Keshner et al. (1 988) 

have reported balance-correcting activity in neck muscles prior to observed activity in ankle 

musculature, M e r  challenging the theory of an ascending ankle-motion triggered synergy for 

postural reactions. 

A growing body of evidence cm be found which contradicts a proprioceptive trigger for 

postural reactions located at the ankle joint. Bloem et al. (1999) have demonstrated normal 

onset latencies of balance corrections in patients with selective proprioceptive loss of ankle 

stretch recepton in response to unexpected dorsiflexion rotations of the support surface. 

Allum and Honegger (1998) found normal latencies for automatic postural reactions when 



plantarflexion rotations were combined with backward translations to nul1 propnoceptive ankle 

input. Therefore, evidence of early activity in trunk muscles and tensor fascia latae muscles 

during multiple direction translations (Henry et al., 1998) and in paraspinal muscles in 

response to multi-directional rotations, as observed in the present study, focus on 

proprioceptive recepton at the level of the trunk or the hip as the most likely directionally 

specific triggenng centres for automatic postural reactions. interestingly, observation of trunk 

propnoceptive reflexes with the range of maximum activity along 45 deg axes highlights the 

necessity for off-pitch perturbations to accurately investigate tngger signals for balance 

corrections. The choice of a trigger signal aligned along the planes of the vertical semi-circula 

canals would presumably offer some simplification in the central processing of appropriate 

balance corrections using vestibular inputs. Paraspinal stretch and unloading reflexes provide 

another advantage for central processing because in contrast to leg and neck muscles (Allum 

and Honegger. 1998; Kanaya et al., 1995) these reflexes appear not to be modified by 

vestibular loss. That considerable central processing must occur in generating appropriate 

amplitudes for the bursts of muscle activity in the range of 90- 120 ms has been emphasized by 

several authors (Nashner and Horak. 1986; Dietz, 1996; Forssberg and Hinchfeld, 1994). 

Conceming the use of tmnk proprioceptive reflexes, we can add the information that this 

processing may well include a vectonal transformation From the planes of maximum activity 

of stretch reflexes to those of balance corrections. For this reason it seems crucial to consider 

balance corrections as generated by different neurophysiological processes From those 

generating stretch reflexes. 

Platforrn rotations will elicit stretch reflexes in lower-leg muscles antagonistic to those used in 

balance correcting responses and act to further destabilize the body (Nashner, 1976; Diener et 

al., 1983; 1984). Altemativeiy, translational perturbations will elicit stretch reflexes and 

balance correcting responses in the sarne muscles (Allum et al., 1993). As observed in Fig. 4, 

the stretch reflex activity of the soleus muscle in response to toe-up perturbations does not 

subside until at least 80-90 ms following perturbation onset. Likewise, tibialis anterior stretch 

reflexes in response to toe-down perturbations begin at approximately 80 ms and diminish at 

120 ms (Fig. 6). In the trunk muscles, balance- correcting activity to roll stimuli is asymmetnc 

with the larger response preceded by an unloading response and the smaller response by a 



stretch reflex (Figs. 4 and 6). Thus the time interval utilized by Moore et al. (1988) and Henry 

et al. (1999) to examine muscle responses, must have included portions of both stretch reflex 

and balance correcting responses and lead to an inability to separate stretch reflex and 

subsequent balance correcting responses from one another. For example, Henry et al. (1 999) 

used an interval which began at 70ms afier support surface movement and lasted 200 ms. 

Under these circumstances it is more di ffkult to reach conclusions about neurophysiological 

mechanisms underlying balance corrections. By examining stretch (or unloading) and balance 

correcting responses separately, as in the present study, an interesting, muscle specific, 

relationship between stretch and balance correcting responses in the same muscle becomes 

apparent. As shown in Figs. 7 and 8 maximum activity vectors for stretch reflexes for both 

tibialis anterior and soleus muscles are oriented approximately 180 deg fiom those associated 

wi th the balance correcting response in the respective muscle. Alternative1 y, paraspinal 

muscles demonstrated maximal balance correcting responses in directions approximately 90 

degree fiom initial stretch refïexes (Fig. 7). This trade-off between stretch and subsequent 

balance conecting amplitude may at fint glance suggest that automatic balance corrections 

may be based upon localized stretch responses in individual muscles. However, previous 

research has argued against such a local rnechanism for postural control. Toe-upward rotation 

and backward translations of the support surface elicited similar ankle stretch, however, 

different timing patterns and response modulation of balance correcting activity was required 

in several muscles to respond to rotation in contrast to activity required during translation 

(Allum et al., 1993). In addition, observations of early arm movements with latencies similar to 

corrective activity in lower leg muscles despite a lack of pnor stretc h in shoulder and elbow 

muscles led Mcllroy and Maki (1995) to conclude that balance correcting responses could not 

be related to simple localized reflexes. 

As opposed to backward roll perturbations which elicit stretch reflex responses in paraspinal 

muscles at 63 rns, on average (Fig. 4, right paraspinal), forward roll perturbations are 

associated with unloading responses in the paraspinals, consistent with latencies at 39 ms, on 

average, (Fig. 6, left paraspinal). Similar to paraspinal stretch responses, maximum activity 

vectors for unloading responses are onented 90 degrees to subsequent balance correcting 

responses. Other researchen have aiso reported observations of unloading responses in trunk 



and neck muscles following unexpected postural perturbations. Hinchfeld and Forssberg 

(1994) observed postural reactions of lower leg and trunk muscles in seated infants following 

unexpected rotations and translations. Calculation of mean muscle activity (area) during the 

first 100 ms following both legs-up rotation and forward translation of the support surface, 

revealed reduced EMG activity below background levels associated with inhibition of neck, 

leg and trunk extensor muscles. Likewise, Kayana et al. (1995) observed inhibition of 

splenius/paraspinal muscles following unexpected pitch movements to seated healthy and 

labrinthine-defective patients. The inhibitory activity was observed with latencies of 20 ms and 

preceded a short muscle bunt characterized by Kayana et al. as an unloading response. The 

latency of the inhibitory activity in splenius/paraspinal muscles following seated rotations is 

similar to the unloading of paraspinals observed in the present study (Fig. 3), and previously 

reported by Allum et al. (1995). Similar unloading responses have been reported in other 

skeletal muscles as well, including the hand (Marsden et a1.,1983; Traub et al. 1980). in 

response to translations of the support surface at the 1 13 deg direction, Macpherson et al. 

(1 988) observed significant decreases in muscle activity of hip, knee and ankle extensors in the 

unloaded limb of cats. Therefore, the unloading responses we observed in released paraspinal 

muscles following forward and roll perturbations is not a unique phenomenon. One receptor 

mechanism through which such muscle unloading may be coded to trigger postural reactions 

may be through afferent information received fiom force related Golgi tendon organs of the 

lower trunk and pelvic muscles. The abundanc y of Golgi tendon organs in the muscle-tendon 

junction of most muscles, (approximately 1 :2 ratio io stretch receptors), and low sensitivity 

threshold of approximately 0.1 gram (Rothwell, 1994) makes these receptors plausible 

candidates for postural triggenng mechanisms. Usually considered to have an inhibitory role, 

feedback from Golgi tendon afferents via spinal intemeurons has demonstrated a capability to 

modulate its reflex output, producing both inhibitory and excitatory signais during different 

phases of locomotion (Yang et al., 1990; Pearson, 1995). Based on the observation of 

compensatory EMG responses to platform translations and rotations of the support surface in 

vertical and supine orientations, Dietz et al. (1992; 1996) concluded that loading information, 

detected by Golgi tendon organs in extensor muscles, were responsible for activating postural 

reflexes. Therefore, based on recent evidence, it is very conceivable that unloading reflexes of 



paraspinal and other mink and hip muscles may provide directionally sensitive triggenng 

information in parallel with musc!- stretch information. 

Attaching a high importance to early stretch and unloading responses in paraspinals focuses 

attention on the very early roll responses observed in the trunk segment. As demonstrated in 

Figs. 4 and 6 trunk roll occun approximately 20 ms following perturbation onset and almost 

?O ms pnor to any pitching movements of the trunk. However, we cannot exclude other 

possible mechanisms through which early trunk movements, particularly in the roll direction, 

could be detected and integrated as a directionally sensitive triggenng signal. Forssberg and 

Hirschfeld (1994) observed rotations of the pelvis as early as 10 ms following sudden rotations 

of the support surface beneath seated adults. They concluded that rotation of the pelvis may 

tngger a pnmary level of a central pattern generator (CPG) responsible for initial spatial and 

temporal activation of appropnate postural muscles. Following initial triggenng of the 

postural response, a secondary system is required to rnodulate the magnitude of the response to 

correspond with the demands of the perturbation. As movements of the hip joint have been 

postulated to entrain the CPG for stepping during locomotion, it is possible that a similar CPG 

could tune postural responses to platform perturbations using similar directionally specific 

information for angular hip motion (Macpherson, 1988). Besides muscle spindle and Golgi 

tendon organs deiecting stretch and unloading of paraspinal and hip muscles, other receptors at 

the level of the hip and trunk have been previously hypothesized as possible triggenng 

rnechanisms, such as joint recepton of the vertebral column (Gurfinkel et al., 1979; Hontmann 

and Dietz, 1990; Fonsberg and Hirschfeld, 1994) and changes in abdominal pressure 

(Mittelstaedt, 1992; Do et al., 1988). 

Vestibular signals may also be considered as a possible triggenng mechanism for postural 

reactions. Directionally sensitive vertical accelerations were observed for pitch perturbations 

with latencies of 15 ms (Figs. 4 and 6); these could provide early stimulation to otolith 

recepton. During roll perturbations, semi-circular canal afferents would transmit angular roll 

acceleration information with latencies as early as 40 ms to the CNS (Figs. 3 and 5). Fonsberg 

and Hinchfeld (1994) also reported early (10 ms) vertical accelerations of the head in seated 

adults following up and downward pitch plane rotations. By changing the location of the pitch 



axis relative to the hip joint, these authors were able to induce vertical vestibular accelerations 

in different directions while maintaining constant rotation of the pelvis. Observations of no 

significant change in the activation patterns of postural muscle responses in ieg and tnuik 

muscles provided contradictory evidence against a vestibular trigger. Allurn et al. (1994) and 

Horak et al. (1990) observed normal response latencies in patients with bilateral vestibular loss 

cven under eyes-closed conditions following unexpected toe-up rotations and backward 

translations, supporting the notion of both a non-vestibular and non-visual origin for a 

tnggering mec hanisrn of postural reactions. Furthemore, the magnitude of postural leg 

balance correcting responses were signi ficantl y influenced by vestibular loss suggesting a 

rnodulatory role for the vestibular system. 

Direction Speci fic Modulation of Balance-Correctine Reswnses 

A directionally-specific modulatory role for the vestibular system has been fùrther supported 

by recent studies in which unexpected translations and rotations were expenenced by patients 

suffering from total body somatosensory loss (Horak et al. 1996, Allurn et al. 1999). Although 

bursts of muscle activity in postural leg and neck muscles were delayed with respect to normal 

response latencies, the muscle activity was observed to be sensitive to the direction of the 

perturbation. These findings seem to converge with the two hypotheses we have developed 

above: the triggenng mechanism for automatic balance correcting responses between 120-220 

ms is tied to a tmnk proprioceptive origin, and the directional sensitivity of postural responses 

must be modulated by vestibular infonnation. 

While there are obvious advantages to the concept that the early vertical linear accelerations 

and roll angular accelerations of the head may be coded as directionally-specific vestibular 

infonnation which was used to modulate the magnitude of the balance correcting response, 

there are also disadvantages. Certainly the finding from the present study provides evidence of 

early vestibular directionally specific stimulation. As observed in Figs. 4 and 6 (top panels), 

vertical and angular roll accelerations provide very early (1 5 and 40 ms) directionally specific 

stimuli to both the otolith and the vertical semitircular canal systems. Furthemore, muscle 

activity associated with automatic balance corrections are modulated with respect to the 

direction of the perturbation. Although this evidence alone does not confimi a vestibular 



modulation of postural control it does collaborate with the findings of previous studies which 

make similar conclusions (Fonsberg and Hirschfeld, 1994). The disadvantage of this concept 

is the permanent disability that results fiom loss of peripheral vestibular function. For example, 

Allum et al. (1994; 1985; 1998) observed similar latency, but changed amplitudes of EMG 

activity in tibialis anterior, soleus, and paraspinal muscles in response to unexpected rotations 

in the pitch plane measured fiom bilateral vestibular loss patients compared to healthy 

controls. 

Ankle and Hip Torciue Strateeies 

The modulation of muscle activity with the direction of perturbation has been shown to 

markedly influence both ankle torque generation and trunk angular velocities. As shown in 

Fig. 1 1,  vectorial orientation of the resultant ankle torque was along one of two directions, 

similar to the ..force constraint strategy" suggested by Macpherson (1 988a;b). An exception to 

this strategy was observed at the change-over points from forward to backward-directed ankle 

totque close to the pure-roll perturbation direction (see Fig. 1 1). In contrast, Henry et al. (1998) 

reported that orientation of ground reaction forces was dependent upon the direction of 

translational perturbations. This resul t rnay, however, be fortuitous, because these authors on1 y 

perturbed in two sets of opposi te directions, A-P and M-L, Le. close to roll changeover points 

we observed. An interesting difference to our WO-legged force constraint strategy at the ankle 

joint and that of Macpherson (1984aJ 994) appeared. Cats generated ground reaction forces 

along one of two directions along the 45 deg plane, with a 90 deg shift of symmetry between 

paws for al1 perturbation directions. Only the amplitude of the force was changed as a function 

of direction as in Our study. Di fferences between the directional orientation of the ankle 

torques we noted and those of the 'force constraint' strategy demonstrated by cats 

(Macpherson, 1994) may be explained by differences in the biomechmical constraints inherent 

to quadrapedal stance compared to bipedal stance. Macpherson et al. (1989) have show that 

hurnans do demonstrate similar postural responses and torque profiles to cats when assuming a 

quadrapedal posture. These findings emphasize the need to take into account differences in the 

postural constraints between humans and animal models before attempting to parallel 

observations between the two. The interesting similarities between the results of the present 

study and that of Macpherson et al. (1988; 1994) is the consistent orientation of ankle vecton 



slightly off-pitch for pure doni-flexion and plantarflexion rotations. Possible explanations 

include the biomechanical constraints associated with anatomical configuration of the foot, line 

of action of ankle dorsi-fiexor and plantadiexor muscles and point of calcaneal insertion which 

may act independently or in concert to fix ankle torques to an off-pitch plane (Nichols et al., 

1993; Bonasera et al., 1996). Certainly the off pitch-axis orientation of ankle torques is not 

unexpected in Our results considering that maximum activity vectors of al1 leg muscles we 

recorded fiom favoured this orientation (see Figs. 7,8 and 10). 

It is an open question whether the ankle force-constraint strategy is also applicable to the hip 

joint. we suspect that this is not the case for two reasons. Firstly paraspinal, and presumably 

other trunk muscle maximum activity vectors, are not oriented along the pitch direction. 

Secondly, the flexibility of the tmnk in the roll direction and the large roll velocities we 

observed in our study necessitates early roll torques prior to those in the pitch direction. 

Furthemore, we expect that from polar plots of tnink velocities (Fig. 12) and previous 

modelling studies (Allum and Honegger, 1992), that in contrast to ankle torques, hip torques 

will be oriented in a highly directional fashion and be tnphasic in the roll direction, and 

biphasic in the pitch direction. All of these factors suggest that hip torques will be multi- 

directional in contrast to ankle torques. However, to answer the question definitively, two 

dimensional calculations of hip torques similar to those already perfonned in the pitch 

dimension (Allum and Honegger, 1992) are required. We assume that the results of these 

calculations will add more evidence for an at least three-stage vectorïal transformation of 

sensory signals by the CNS to provide the appropriate modulation of joint torques via muscle 

activity to correct a postural disturbance From any direction. At one stage the appropriate hip- 

torque strategy is computed. At a second stage the ,,constrained" ankle torque is computed 

with an intermediate calculation of knee torques depending on whether this joint is forced into 

the locked position by the perturbation and at a third stage the stabilizing neck torques are 

worked out. This proximal to distal separation of torque strategies, coupled with the 

differences in sensitivity to roll and pitch of lower-leg, trunk and neck muscle responses 

indicates that balance corrections must be triggered and organised in other than a distal- 

proximal pattern. 



Ln summary, we have established that stretch reflex, automatic balance-correcting, and 

subsequent balance and stabilizing reactions in trunk and leg muscles have different 

sensitivities to the direction of external pemirbation. The observation of very early paraspinal 

stretch reflexes and unloading reflexes, coupled with early roll velocities of the trunk brings 

into question previously established theones regarding ankle-based mggenng mechanisms. 

Perturbations containing roll charactenstics are necessary to elicit maximal muscle responses, 

particularly in paraspinal muscles. in light of previous reports of enhanced sensitivity of 

otolith afferents, vestibular neurons, nec k and vestibular re flexes to roll movements (Tomko et 

al., 198 1 ; Schor et al., 1984; Wilson et al., 1986) it seems that multidirectional perturbations 

may prove to be a sensitive tool for assessing the contributions of vestibulo-spinal inputs to 

balance corrections. 
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Fieure 1. Initial stimulus induced link movements in response to rotational perturbations in pure pitch and roll 
directions. Curved filled arrows and correspoading values represent the direction and average (population) 
mgnitude of mnk, upper leg and lower kg angular velocity in deg/s calculated over the period 0-150 ms. The 
thickened curved anow indicates the fastest üunk velocity. Open anows represent average linear (süaight arrows, 
values in cds') and angular roll (curved anows, values in de&) accelentioas of the head between 40-90 m. 
Toe up and roll perturbations elicit two segment, whereas toe d o m  rotations elicit multi-link reactions. 
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Segment Movements during Automatic Balance Correcting Response 

b u r e  2. Biomechanical responses during of automatic baiance conectiag responses to rotational perturbations in 
pure pitch and roll directions. Cwed  filled arrows and corresponding values represent the direction and average 
(population) magnitude of trunk, upper leg and lower leg angular velocity in &g/s calcuiated between 240-300 
rns. Open arrows represent average linear (sûaigbt in cm/s2) and anguiar roll (cwed in deg/s2) accelerations of 
the head between 180-240 ms. 



Biomechanical Responses to Platform Rotations 
in Multiple Backwaid Directions 

F i p e  3. Biomechanical responses (average of 12 subjects) to rotational perturbations in multiple backward 
directions between 90 (pure roll right) and 180 (toe-up) directions for both eyes open (solid lines) and eyes closed 
(dashed lines) conditions. The black vertical line at O ms represents the omet of ankle rotation. For rnost recorded 
variabies 4 traces are s h o w  (for the directions of 90, 1 12.5, 135, 180 degs) in decreasing Iiae thichess as the 
perturbation direction moves kom pure roll to pure pitch In the set of recordiags for ankle and imce angdar 
velocities, and head accelerations, only 3 traces are shown (for 90, 135 and 180 degs) because these variables 
were not recorded for 1 12.5 degs. 



Muscle Responses to Platform Rotations 
in Multiple Backward Directions 

Fieure 4. Muscfe responses (average of 14 subjects) to rotational perturbations in multiple backwzird directions 
between 90 (pure roll right) and 180 (toe-up) directions for both eyes open (solid lines) and eyes cIosed (dashed 
lines) conditions. For each set of traces 3 or 4 recordings are shown increasing in line thickness with increasing 
roll component to the stimulus. For other details refer to Fig. 3. 



Biomechanical Responses to Platfoim Rotations 
in Multiple Fowaid Directions 

Fieure 5 .  Population biomechanical responses to rotational perturbations in multiple forward directions between O 
(toes down) and 90 (pure roll right) directions for both eyes open (solid lines) and eyes closed (dashed lines) 
conditions. For details refer to Fig. 3. 



Muscle Responses to Platform Rotations 
in Multiple Forward Directions 

M o 1 1 1 1  Pttdi An* 

Right Pl- 

Figure 6. Population muscle responses to rotational perturbations in multiple forward directions between O (toes 
d o m )  and 90 (pure roll right) directions for both eyes open (solid lines) and eyes closed (dashed Iines) 
conditions. For details refer to Figs. 3 and 4. 



Fieure 7. Polar plots for tibialis anterior EMG activity under eyes-open conditions averaged over four distinct 
tirne intervals representative of stretch, balance correcting, secondary balance correcting and stabilizing reactions. 
Each radial line or spoke represents the direction of platform rotation. For each hection mean muscle activity 
(pattern) and the rnean plus one standard error (shade) of al1 subjects for eyes closed are plotted for left and right 
muscles separately. The amplitude is plotted as distance fiom the centre. The response amplitude represented by 
each of the concentric circles in the plot is scaled according to the vertical scale between the set of plots for the 
left and ngbt recording sites. Black arrows represent the direction of calculated maximum activity vector for each 
averaging interval. 



Sokus 12B22O mr 

Fipure 8. Polar plots for soleus EMG activity (eyes open) during four distinct cime intervals represenbtive of 
saetch balance correcting, secondary balance corrccting and stabilizing reactions. For details of the figure refer to 
the Iegend of Fig. 7. 



Fiaure 9. Polar plots for paraspinals EMG activity (eyes open) over distinct response intervals. For details of the 
figure refer to the legend of Fig. 7. Note the off-pitch-axis orientatior! of the mximum activity vecton. 



Fieure 10. Polar plots for quadriceps EMG response activity (eyes open) over distinct time intervals, For details 
refer to the legend of Fig. 7. 
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Figure 1 1. Polar plots of the calculated change in right ankle torque between 160-260 rns (upper plots) and 
between 280-380 m (lower plots) under eyes-open and eyes-closed conditions. Each radial Iine or spoke 
represents the direction of platform rotation. The magnitude of the mean change (pattern) and mean standard error 
(shaded) in anterior-posterior (A-P) and lateral torque of al1 subjects are plotted for each direction on the lefl and 
right graphs respectively. Concentric circles indicate the amplitude of the torque change as shown by the vertical 
scale between the lefi and right pair of polar plots. Black arrows in the centre graphs illustrate the direction of the 
resultant vector calculated from A-P and Latenl torque for each perturbation direction with wkch the body wouid 
move assuming the body was simply an inverted penddum. 
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Figure 12. Polar plots of the average amplitude of trunk angular velocity between 160-220 ms and between 240- 
300 ms under eyes-open and eyes-closed conditions. The form of the plot is sirnilar to that of Fig. 1 1. The black 
anows in the centre graphs illustrate the resultant direction of the tnmk movemeat during the time periods as 
viewed fiom above the subject. 
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ABSTRACT 

The present study examined the influence of bilateral peripheral vestibular loss in humans on 

postural responses to multi-directional surface rotations in the pitch and roll planes. 

Specifically, we examined the effects of vestibular loss on the directional sensitivity, timing 

and amplitude of early sketch, balance correcting and stabilizing reactions in postural leg and 

tmnk muscles as well as changes in &le torque and trunk angular velocity following multi- 

directional rotational perturbations of the support surface. Fourteen normal healthy adults and 

5 bilateral peripheral vestibular loss (BVL) patients stood on a dual axis rotating platform 

which rotated 7.5 degrees at 50 deg/s through 8 different directions of pitch and roll 

combinations separated by 45 degrees. Directions were randomized within a series of 44 

perturbation trials which were presented first with eyes open, followed by a second series of 

trials with eyes closed. 

Vestibular loss did not influence the range of activation or direction of maximum sensitivity 

for balance correcting responses (120-220 RIS). Response onsets at approximately 120 ms were 

nomal in tibialis antenor (TA), soleus (SOL), paraspinals (PARAS) or quadriceps (QUAD) 

muscles. Only SOL muscle activity demonstrated a 38-45 ms delay for combinations of 

forward (toe-down) and roll perturbations in BVL patients. The amplitude of balance 

correcting responses in leg muscles between 120-220 ms was, with one exception, severely 

reduced in BVL patients for eyes open and eyes closed conditions. Soleus responses were 

decreased bilaterally for toe-up and toe-dom perturbations, but more significantly reduced in 

the downhill (load bearing) leg for cornbined roll and pitch perturbations. TA was significantly 

reduced bilaterally for toe-up perturbations, and in the downhill leg for backward roll 

perturbations. Forward perturbations, however, elicited significantly larger TA activity in BVL 

between 120-220 ms compared to nonnals, which would act to m e r  destabilize the body. As 

a result of these changes in response amplitudes, BVL patients had reduced balance correcting 

ankle torque between 160-260 ms and increased torque between 280-380 ms compared to 

nomals. There were no differences in the orientation of the resultant A l e  torque vecton 

between BVL and nomals, both of which were oriented primarily along the pitch plane. For 

combinations of backward (toe-up) and roll perturbations BVL patients had larger balance 



correcting and stabilizing reactions (between 350-700 ms) in PARAS than normals and these 

corresponded to excessive tnink pitch and roll velocities. During roll perturbations, tnink 

velocities in BVL subjects aiter 200 ms were directed along directions different to those of 

normals. Furthemore, roll instabilities appeared later than those of pitch p~icular ly  for 

backward roll perturbations. The results of the study show that combinations of roll and pitch 

surface rotations yield important spatio-temporal information, especially with respect to tnuik 

response strategies changed by BVL which are not revealed by pitch plane perturbations alone. 

Our results indicate that vestibular influences are earlier for the pitch plane and are directed to 

leg muscles, whereas roll control is later and focused on tmnk muscles. 

Key words: Balance control, vestibulo-spinal system, proprioceptive reflexes, vestibular 

loss. 



INTRODUCTION 

Pitch plane perturbations of the support surface (or dynamic posturography) have provided 

clinicians and scientists with an experimental paradigm to study normal and pathological 

characteristics of the CNS response to unexpected falling due to extemal perturbations. The 

most common form of this dynamic posturography involves tipping or translating the support 

surface forward or backward beneath the standing subject, while recording the ensuing 

muscular and biomechanical responses required to maintain upright equilibnum. Undeniably, a 

great amount of knowledge has been developed from this p a n d i p .  For example, these 

uniplanar posturography studies have s h o w  that movements of the support surface elicit 

automatically triggered patterns of balance correcting muscle activity across many body 

segments (Cordo and Nashner 1983; Allum et al. 1993; Horak et al. 1997), which are 

dependent upon the amplitude (Diener et al. 1984; 1991), velocity (Allum and Pfaltz 1985; 

Allum et al. 1993) and the direction (forwards or backwards) of perturbation (Rushmer et al. 

1983; Allum et al. 1993). Pitch-plane dynamic posturography has also been used extensively to 

examine differences between healthy individuals and patients with selective sensory deficits. 

Based on these results, valuable information has been acquired to help understand the relative 

contnbut ion and individual influences of di fferent sources of sensory information on postural 

control including proprioception (Inglis et al. 1994; Horak et al. 1996, Bloem et al. 2000), 

vision (Nashner and Berthoz 1978, Timmann et al. 1994, DiFabio et al. 1998) and vestibular 

information (Allum and Pfaltz 1985; Keshner et al. 1987; Allum et al. 1994; 1998; Horak et al. 

i 990; Runge et al. 1998) 

One major limitation inherent to al1 of the studies mentioned above is their reliance on 

recordings fiom perturbations within the pitch plane. This has several major drawbacks when 

concepts of normal and pathological balance control need to be generalized to multiple 

directions including the roll plane. First, falls in everyday life and particularly in older adults 

occur frequently in lateral directions (Maki and Mcllroy 1998). Real life situations, for which 

surface perturbations are intended to mimic, such as an accelerating bus, pitching boat or 

rolling train, impose destabilizing forces which rarely act along a purely sagittal plane. Second, 

proprioceptive and vestibule-sensory systems underlying balance control have sensitivities in 



other than the pitch plane. Stretch receptors, for example, have preferred directions of activity 

along muscles. Furthemore, some central vestibular neurons show responses after 

transformation of afferent sipals characteristic of canal plane responsiveness (Schor et al. 

1984, Wilson et al. 1986) whereas others have different response properties for roll and pitch 

(Angelaki and Dickman 2000). Thus both sensory systems may contribute to a balance 

correction differently depending upon the direction of perturbation. Third, clinical observations 

of patients with balance disorden (Allum et al. 2001a) and aging individuals (Gill et al. 2001) 

reveal significant instability in both pitch and roll planes. The lirnited success that pitch-plane 

dynarnic posturography has had in diagnosing and discriminating balance disorden (Di Fabio 

1995; Bronstein and Guerraz 1999) clearly illustrates the limitation of pitch plane perturbations 

to capture the essential components of normal and pathological balance. Although more recent 

success to discriminate between patient populations has been achieved using upper rather than 

lower-body responses to pitch plane rotations (Allum et al. 2001b) its fundamental utility to 

screen for more subtle balance disorders or to recognize disease-specific information, such as 

the side of a lesion is questionable (Lipp and Longridge 1994; Fuman 1995). 

A shifl to the use of multidirectional perturbations for understanding human postural control 

has provided new evidence that challenges the fondation of long standing postural control 

theones. Normal responses to multidirectional perturbations have been exarnined using 

surface translations and rotations in sagittal and frontal planes in quadnpedal animals 

(Rushmer et al. 1988; Macpherson l988a; 1988b; 1994) and hurnans (Moore et al. 1988; Maki 

et al. 1994; Henry et al. 1998a; 1998b; Carpenter et al. 1999), as well as perturbations 

delivered to the trunk and pelvis (Rietdyk et al. 1999; Gilles et al. 1999). Throughout this 

literature, two main themes emerge. Fint, postural responses are directionally sensitive and 

involve combinations of A l e ,  knee and hip responses which are different for roll and pitch 

directions. Second, directionally sensitive trigger information is available at the level of the 

hip and pelvis prior to, or simultaneously with more pitch-plane sensitive information received 

fiom the lower leg and ankles. These findings contend with previously developed concepts of 

hurnan balance control based on unidirectional studies and highlight the need to investigate 

balance control under more rigorous parameten which challenge the multi-directional nature 

of the postural control system. 



With a more comprehensive understanding of normal healthy responses to multidirectional 

perturbations, it is important to extend our research to investigate how different sources of 

sensory information may contribute to the triggering and modulation of directionally sensitive 

postural responses. The role of vestibular information on postural control has been studied 

extensively using unidirectional perturbations, with new studies beginning to shed new light 

(Allum and Honegger 1998; Runge et al. 1998) on previously conflicting results (Allum et al. 

1994; Nashner et al. 1982; Horak et al. 1990). Only one study to date has examined the effects 

of vestibular loss on multidirectional perturbations. In this case, Inglis and Macpherson (1995) 

observed signi ficant di fferences in amplitude, but not in timing or pattern of postural muscle 

responses in labrynthecomized cats dunng sudden unexpected muitidirectional translations. 

Since the biomechanical constraints imposed by surface perturbations are different for 

quadnpeds and bipeds (Macpherson et al. 1989). it is important to also examine the specific 

effects of vestibular loss in hurnans on triggenng and modulation of postural responses to 

multidirectional perturbations. 

Inherent to balance control cornparisons between normal and vestibular loss subjects is the 

assumption that a vestibular deficit will lead to a permanent sensory deficit that c m o t  be 

arneliorated by switching to another sensory input for adequate directional information 

underlying balance commands (Allum and Honegger 1998). Although such a switching 

mechanism has been proposed (Horak et al. 1994; Nashner et al. 1982), it would appear that 

switching to other inputs only occurs for later stabilizing action, once the pnmary motor 

command to correct the imbalance has been issued (Allum and Shqard 1999). Another 

operating assumption of such a cornparison must be that spinal stretch reflex mechanisms can 

be separately observed and are not altered by the absence of tonic or dynarnic vestibular input, 

or that the alteration is not significant enough to change the pattem of subsequent balance 

corrections. For some perturbation paradigms, notably with translations of the support surface, 

an interaction between initial stretch reflex and subsequent balance corrections is difficult to 

avoid and this interaction is altered afier vestibular and proprioceptive sensory loss (Allum and 

Honegger 1998; Bloem et al. 2000). For rotational support-surface paradigms a clearer 

distinction between early stretch reflex and balance corrections can be obtained (Diener et al. 



1983; Allum et al. 1993; Carpenter et al 1999). Furthemore, it is known for pitch plane 

rotations, that influences ofvestibular loss on stretch reflexes are small (Keshner et al. 1987; 

Allum and Honegger 1998). Under thcse assumptions the present study was dedicated to 

addressing nvomain goals using multi-directional rotations of the support surface. The f in t  

goal of the present study was to detemine whether the current understanding of the effects of 

BVL on postural reactions, established with pitch plane perturbations, can be extended to 

perturbations which contain both pitch and roll components. The second goal of the 

experiment was to determine what new information is available fiom multidirectional (pitch 

and roll planes) perturbations, which might provide a framework for understanding the role of 

central transformations of vestibular inputs in generating motor programs that arrest falls in 

di fferent directions. 

METHODS 

This study examined the effect of multi-directional rotations of the support surface on 

muscular and biomechanical responses in normal healthy young adults and subjects with 

bilateral peripheral vestibular loss acquired idiopathically as adults at least 2 years prior to 

these experiments. Fourteen normal controls (7 male, 7 female; mean age=22.7 1 sd 2.40 yrs; 

height=1.73 sd 0.08 m; weight=69.5 sd 1 1.7 kg) and 5 bilateral peripheral vestibular loss 

patients (4 male, 1 female; mean age=39.4 sd 6.18 yrs; height=1.72 sd 0.07 m; weight=74.2 sd 

7.76 kg) volunteered for the study and gave witnessed pnor informed consent to participate in 

the expenment aAer observing movements of the support surface. Normal subjects were fiee 

from any neurological or previous orthopaedic injuries as verified by extensive questioning. 

Normal vestibular funciion was furiher verified using Romberg and Unterberger stance tests. 

Bilateral peripheral vestibular loss was characterized by no response (slow phase velocity less 

than 2 degsec) to bithennal caloric imgation (100 cc of water for 30 secs) of each ear and by 

horizontal vestibule-ocular reflex responses to whole body rotations of 80 deg/ s2 which were 

smaller than the lower 1 % bound of normal reference values (Allurn and Ledin 1999). 

Subjects were positioned on the force-measuring platform with their feet lightly stnpped to the 

support surface and the lateral malleoli aligned with the platfom's pitch axis of rotation. The 

roll axis had the same height as the pitch axis and passed between the feet. The subjects were 



asked to assume their normal standing posture, with knees locked and arms hanging 

comfortably at their sides. Offsets were added to force-plate readings so these readings were 

without a dc bias. These were then treated as the reference values for each 

individual's'preferred-stance' position. 

Stimulus Parameters 

The dual a i s  rotating force-platforrn delivered unexpected rotations through 8 different 

directions in the pitch and roll planes. A clockwise increasing notation, as viewed from above, 

was used to specify rotation direction. The O deg rotation direction represented a pure'toes- 

down' tilt of the platform. conversely, 180 deg direction represented a pure'toes-up' rotation. 

Pure roll movements were assigned angles of 90 deg to the right and 270 deg to the lefi. 

Combinations of pitch and roll rotations were used to provide 4 other directions, each 

separated by 45 deg. Platfon rotations had a constant amplitude of 7.5 deg and angular 

velocity of 50 degls. One series of 44 randomly presented directional stimuli was always 

perfomed fint with eyes open. Following a 5 to 10 minute rest penod to minimize any 

confounding effects due to order and/or fatigue a second series of 44 random stimuli were 

perfomed with eyes closed. Although it is acknowledged that the non-random presentation of 

visual conditions may have invited confounding effects due to order (Keshner et al. 1987), it 

was deemed necessary to maintain a constant presentation order of increasing difficulty to 

minimize anxiety and reduce the fear of falling of the vestibular-loss subjects. For each series 

of 44 stimuli, the very fint stimulus was ignored in the data analysis to reduce the effects of 

adaptation (Nashner et al., 1982; Keshner et al. 1987) entenng the data. Of the remaining 43 

stimuli included in each data series, each of the 8 perturbation directions were presented 

randomly 5-6 times. 

Each perturbation was preceded by a random 5-20 s delay. During this delay period subjects 

were required to maintain anteriodposterior (A-P) ankle torque within a range of +/- 1 Nm 

fiom the 'preferred-stance' reference value using on-line visual feedback fiom an oscilloscope 

placed at eye level (approximately 1 m away fiom the subject). During the eyes closed 

condition two distinct auditory tones were substituted for visual feedback to monitor variations 

in A-P ankle torques pnor to the stimulus onset. The 5-20 s interstimulus delay was initiated 



automatically once the platform had retumed to its original pre-stimulus position and the 

subject regained and maintained his preferred vertical position as monitored by the A-P ankle 

torque reading. in response to each rotational perturbation, the subject was instmcted to 

recover their balance as quickly as possible. Handrails were located on the lateral bordea of 

the platfom apparatus in case of loss of balance. Patients were instructed to grasp the 

handrails in the case of a fall. Two spotters were always m g e d  with one behind and one to 

the side of the vestibular-loss subjects to lend support in case of a fall. 

Biomechanical and EMG Recordings 

AI1 biomechanical and electromyographic (EMG) recordings were initiated 100 ms pnor to the 

onset of the perturbation and had a sampling duration of 1 second. Support surface reaction 

forces were measured fiom two independent force-plates, one for each foot, embedded within 

the rotating support surface of the moveable platform. Vertical forces were measured by strain 

gauges located under the corners of each plate. From these forces A-P and media1 lateral (M-L) 

ankle torques were calculated (Allum and Honegger 1998). Trunk angular velocity in the pitch 

and roll planes were collected using Watson Industries transducen (+/- 300 de@ range) 

mounted to a metal plate at a level of the sternum. The plate was strapped to the chest firmly 

with straps across the shoulden, back and waist. Al1 biomechanical data was sampled at 500 

Hz after second-order low pass filtering around 30 Hz. To avoid variations in analog low pass 

filtering occunng across different signals, al1 signals were digitally low-pass filtered off-line at 

25 Hz using a zero phase-shift 10th-order Butterworth filter. 

Surface EMG electrodes were placed bilaterally, approximately 3 cm apart, along the muscle 

bellies of tibialis anterior (TA), soleus (SOL), vastus lateralis (QUAD) and paraspinal 

(PARAS) muscles. Electrodes were mounted on the paraspinals at the LLL2 region of the 

spine. EMG amplifier gains were kept constant and pairs of electrodes and lead lengths 

assigned to individual muscles were not changed between subjects. EMG recordings were 

band-pass analog filtered between 60-600 Hz, full wave rectified, and low pass filtered at 100 

Hz as recornrnended by Gottlieb and Agarwal(1979) pnor to sampling at 1 KHz. 



Data Analpis 

Off'hne analysis was initiated by averaging subject EMG and biomechanical signals for each 

perturbation direction (5-6 stimuli per direction). For this purpose zero latency was defined as 

the tint inflexion of ankle rotation velocity. We had previously detemined that this did not 

vary with direction or subject (Carpenter et al. 1999). The average level of single subject 

background EMG activity for each muscle response recorded 100 ms pt-ior to stimulus onset 

was subtracted fiom the remaining EMG signal fiom the sarne response. EMG areas were then 

calculated using trapezoid integration within pre-determined time intervals associated with 

previously identified stretch (40-100, 80420 ms from stimulus onset), balance correcting 

(1 20-220 ms). secondary balance correcting (240-340 ms), and stabilizing reaction (350-700) 

responses (Carpenter et al. 1999). Response latencies for balance correcting responses were 

detemined semi-autornatically based on the foilowing critenon: later than 90 ms, bunt longer 

than 40 ms and a continuous amplitude of at least 2 standard deviations above the mean 

activity level prior to the stimulus onset. Al1 biomechanical and muscular profiles were 

averaged across each direction and subject averages were pooled to produce population 

averages for a single direction (as shown in figures 2,3,8 and 9). Average tmnk anguiar 

velocity was calculated over 60 ms dunng time intervals between 160-220,240-300,470-530 

ms. T'orque changes were calculated between 160-260 and 280-380 ms. AI1 EMG areas, 

average trunk velocities and ankle torque changes were analyzed in a 2 x 8 (group by 

direction) repeated measures ANOVA. Significant main effects were explored using paired t- 

tests with a level of significance set maximally at 0.05. 

RESULTS 

Our description of normal responses compared to BVL patients has been separated into three 

sections. Fint, we present the effect of BVL on the timing and pattern of the muscle responses 

for differently directed perturbations. This comparison provides information conceming the 

onset of activation of stretch and subsequent balance correcting activity as well as differences 

in intrarnuscular CO-ordination with respect to normal responses. Second, we report on the 

influence of perturbation direction, vestibular loss and their interaction on the amplitude of 

triggered balance correcting responses and subsequent stabilizing reactions. Finally we 

describe the biomechanical consequences in the form of ankle torques and Enuik motion to 



alterations in muscle activation pattems and amplitude modulation associated with BVL as a 

Function of perturbation direction. 

T i m i n ~  and Muscle Coordination 

Platform rotations induced a cascade of muscle activation patterns that were highly dependent 

on the direction of perturbation. Varying the direction of perturbation selectively stretched or 

unloaded particular muscle groups as well as bilateral pain of muscles differently, depending 

on their relative orientation with respect to the a i s  of rotation. in general, muscles that were 

stretched by the perturbation generated relatively small balance correcting responses following 

the stretch reflex in the sarne muscle. Such action has functional significance as activation of 

stretched muscles would act to further destabilize the body in the direction of the initial fall. In 

contrast, muscles which were unloaded or released by the initial stimulus movement displayed 

the most prominent balance correcting responses. For specific cornparisons between normal 

and BVL subjects on the effects of timing and pattern of response we descnbe, in more detail, 

the muscle activation profiles associated with platform rotations in two directions, backward to 

the right (1 35 deg) and fonvard to the nght (45 deg). A more detailed and comprehensive 

description of normal responses through 16 different directions can be found in Carpenter et al. 

( 1999). 

Bockwurd to the righr 

When the platfom tips backward and to the right, the body moves in a multi-link fashion 

(figure 1 lefi). The uphill leg (left) is dnven upwards by the elevated side of the platform while 

the lower leg falls simultaneously backwards to the right. Consequently, the coupling action at 

the hip causes the trunk to roll first to the lefi starting at approximately 30 ms, then pitch 

forwards at 50 rns. The initial roll is rapid, but the pitch is only rapid after 100 ms (see figure 

7). The uphill leg buckles during the rapid muik roll, flexing at the knee and ankle joint (see 

figure 1 left). As illustrated in figure 2, the initial doniflexion of the ankles causes a prominent 

stretch reflex in soleus (SOL) muscles of normal subjects at a latency of 54 ms. Shortly 

thereafter, small amplitude stretch reflexes in the right paraspinals (PARAS) occurred at a 

normal latency of 63 rns. The stretch reflexes in PARAS and SOL were followed by relatively 

small levels of automatic balance correcting activity (120-220 ms) in the same muscles. In 



contrast, muscles unloaded by the perturbation, including right and left tibialis antenor (TA), 

right quadriceps (QUAD) and left PARAS demonstrated dominant balance correcting 

responses to counter rotation of the ankle, knee and hip respectively (figure 2). Dunng the 

stabilizing period elevated levels of muscle activity in nght TA, SOL and QUAD and left 

PARAS were employed to stabilize the tmnk and the ankle and knee joints of the downhill leg 

to compensate for the new tilted orientation of the support surface. 

BVL patients did not differ in the timing or pattern of muscle activity for perturbations 

backwards to the nght. As observed in figure 2, BVL patients demonstrated similar latencies to 

that of normals for stretch reflexes in SOL and PARAS muscles. In muscles unloaded by the 

perturbation (lefl TA, right QUAD and lefl PARAS), the normal pattem of an initial inhibition 

followed by a prominent balance correcting response was replicated in pattem and timing by 

BVL subjects (figure 2). However, differences in the magnitude of the balance correcting 

response were observed with BVL subjects. For exarnple, BVL subjects in that they generated 

only negligble balance correcting activity in soleus afier the initial stretch reflex cornpared to 

nonnals (figure 2). Distinct differences in amplitude modulation were also observed in the 

stretched PARAS muscles. in the right PARAS muscle, large bursts of activity were recorded 

following the initial stretch response in BVL subjects but not in the normals. 

Fonvard to the right 

Platform rotations forward to the right were associated with stimulus lnduced body movements 

and corresponding muscle activation patterns which were distinctly different from those for 

backward right perturbations. Both knee joints were flexed by the forward rotation of the 

platfonn, while the trunk was rotated backward to the left (see figure 1 right). The forward 

rotation of the platfom also pulled the ankles into plantarflexion while platform roll 

movements caused eversion of the left and inversion of the nght ankle simultaneously. Stretch 

reflexes in left TA and right QUADS were elicited in normals with latencies of approximately 

80 ms (figure 3). A small stretch reflex in the right PARAS of normal subjects could also be 

observed. Stretch reflexes in TA and nght PARAS muscles were followed by minimal balance 

correcting activity in normals as this activity would act to further destabilize the body. in 

contrast, stretch reflexes in the QUADS were followed by a significant balance correcting 



response to resist furiher flexion of the knee. Left PARAS demonstrated an unloading 

response, charactenzed by decreased activity below background levels, with a latency of 

approximately 40 ms (preceding any other stretch responses we had observed in response to 

support surface movements). As noted for backward right perturbations, muscles released by 

the perturbation including, left PARAS and nght SOL muscles, demonstrated the pnmary 

balance correcting responses in normals (figure 3). 

Vestibular loss subjects did not differ from normals in the onset of stretch reflexes or 

unloading reflexes (figure 3). BVL subjects exhibited distinct pattern differences during 

balance-correcting penods in both stretched and unloaded muscles. The balance correcting 

activity in the unloaded SOL muscles was not only reduced in amplitude, but was also delayed 

in onset for vestibular loss patients. Statistical cornparisons using t-tests for onset latencies in 

nght soleus between normals and BVL subjects revealed significant delays in BVL subjects 

for al1 forward directions. Onsets latencies of normal balance correcting responses in right 

SOL were 136.2+/- 15.8 ms for O deg, 140.6+/-23.7 ms for 45 deg and 140.9+/-27.2 ms 315 

deg perturbations. Compared to normals, BVL subjects had significantly delayed balance 

correcting onsets in right SOL with average latencies of 18 1.2+/-19.4 rns for O deg (p< 0.001), 

1 83.6+/-25.1 ms for 45 deg (p< 0.0 13) 179.1 +/- 18.5 ms for 3 15 deg (p<0.022). Similar 

differences were observed in the Iefl soleus. In the stretched lefl and right TA and right 

PARAS muscles, BVL subjects had strong bursts of activity during the balance correcting 

penod (1 20-220 ms) which was absent in nomals. Such TA responses are clearly destabilizing 

by continuing the forward rotation of the lower leg (figure 3). BVL subjects had a normal 

pattern and magnitude of balance correcting response following stretch of the nght QUADS. 

BVL subjects also demonstrated normal balance correcting activity in the unloaded left 

PARAS muscles. 

Ambii tude Modulation 

Stretch r e m s  (responses occuring benveen 40- 120 rns) 

There were no significant effects of B VL on the amplitude of stretch reflexes over the period 

we analysed (40-120 ms) in any of the postural muscles. There was a significant main effect 

for direction on stretch reflex ampli tude for al1 muscles. As observed in the polar plots of the 



stretch reflex amplitude in figure 4 and the responses in figures 2 and 3, different muscles were 

selectively stretched by perturbations of different directions. Stretch reflexes for right TA 

(F(7,119)=3 7.7, p ~0.000 1) were activated by directions ranging between 225 deg to 135 deg 

(clockwise notation) with a maximum activity vector at 338 deg for both nomals and BVL 

patients. Right SOL (F(7,119)=23.5, p<0.0001) was stretched by toe up rotations, ranging 

between 135 and 225 deg with maximum activity vectors oriented close to 180 deg for normals 

and vestibular loss patients. PARAS were stretched by perturbations that caused pitch of the 

tmnk forward and roll of the trunk away from the side of the PARAS muscle. Therefore, for 

the right PARAS (F(7,119)=7.3, p<0.000 1 ) perturbations between 45 and 180 deg caused 

stretch reflexes with maximum stretch vectors calculated at ca 135 for normal and BVL 

subjects. Right QUADS (F(7,119)= 12.4, p<0.000 1) were stretched by toes-down perturbations 

causing flexion of the knee, with maximum activity at approximately O degrees for both 

groups. Similar significant effects were found for leR sided muscles, with activation ranges 

and directions of maximum activity vectors which rnirrored those reported above for right 

muscles (figure 4). 

Balance correcting activity (responses ocairring benveen 1 20-220 ms) 

The amplitude of balance correcting activity measured between 120-200 ms was also 

significantly influenced by the direction of the perturbation with each muscle having clearly 

defined ranges of activation. Balance correcting activity in SOL, TA and QUADS muscles was 

oriented 180 deg From directions that elicited stretch reflexes in both normal and BVL subjects 

(figure 4). 

In addition to the significant main effect of direction, balance correcting activity in TA (right 

F(7,119)=7.44, p<0.0001; lefl F(7,119)=7.85, p<0.0001) and SOL (right F(7,119)=4.22, 

p<0.0003; left F(7,l l9)=2.65, peO.0 1 3 8) muscles were si gni ficantl y influenced by the 

interaction between perturbation direction and vestibular loss, independent of vision. That is, 

the effect of BVL on the amplitude of the balance correcting response in both SOL and TA 

muscles was dependent upon the direction of the perturbation (figures 4 and 5). The 

amplitudes for five directions and their standard deviations have been ploned on horizontal bar 

representations in the upper and lower part of figure 5 for TA and SOL, respectively, to 



highlight the significant interaction between BVL and perturbation direction for these muscles. 

As observed in figure 5, for pure toe-up rotation (1 80 deg), balance correcting activity in TA 

was significantly lower for BVL patients compared to normals for both left and right muscles 

(pcO.O5), and significantly lower in right TA when the perturbation was backwards to the right 

( 1 35 deg). Likewise, the same trend of reduced amplitude response in BVL subjects was 

observed for lefl TA when the perturbation was backward to the lefl (figure 4). in contrast. 

when perturbations are composed of pure rotations to the right (90 deg) and forward roll right 

(45 deg), normal and BVL patients have similar amplitudes of balance correcting activity in 

TA. One unexpected finding was the significant differences between the responses of normal 

and BVL patients during the balance correcting period for O deg toes down perturbations. BVL 

patients showed significantly larger responses between 120-220 ms compared to normais, in 

both leA and right TA (pcO.05) for the O deg direction (figure 5). It is of note that TA activity 

is minimal over the balance correcting penod in normals during forward perturbations. 

Therefore the increased activity in BVL subjects would act, in addition to stretch reflex 

activity, to further destabilize the body in the direction of the perturbation. Soleus balance 

correcting activity was also influenced by a significant interaction between vestibular loss and 

perturbation direction. As observed in figure 5, the magnitude of this interaction was different 

for right and lefi muscles for rightward perturbations. For the right SOL (downhill leg), 

vestibular loss patients had signficantly lower balance correcting activity for al1 directions 

(~'0.05). Less significant differences were observed in the leR SOL muscle on the uphill leg 

(figures 4 and 5). The largest differences between normals and vestibular loss patients were for 

toes-down and forward roll conditions, when the muscle has been initially unloaded by the 

perturbation (pcO.01). It must be noted that the decreased amplitude seen in SOL for fonvard 

perturbations may be patially explained by the delayed onset of this muscle. However, despite 

the delay. the peak response for both normals and BVL patients has been capiured within the 

predetermined time window (1 20-220 ms) used for calculating the balance correcting response. 

Furthemore, cornparisons between the peak amplitudes of the balance correcting responses in 

figure 3, confirms the reduced amplitude response in BVL patients which is independent of 

alterations in timing. For perturbations which initially stretch the SOL muscle (1 35 and 180 

deg), vestibular loss patients also had significantly less activity in the right soleus compared to 

normals (pcO.05). Nctably, in normals this activity is much smaller than for toe-dom 



perturbations. For the O deg direction, the left SOL, just as the nght, was significantly reduced 

in vestibular loss patients compared to normals (p<O.OS). Overall SOL responses were the 

most reduced of al1 balance correcting responses we measured. The maximum activity 

direction vector was associated with considerable variance in BVL subjects because of the 

effect of the reduced response amplitudes. Therefore the differences observed in figure 4 with 

respect to the directions of normal subjects were not signi fiant. 

Stu bilizing react ions (responses oc furring between 35 0- 700 nis) 

Consistent with both stretch and balance correcting responses, stabilizing reactions were 

significantly influenced by the direction of the perturbation. As observed in figure 6, 

stabilizing reactions in TA (right F(7,l l9)=45.8, pc0.0001; le R F(7,l l9)=28.22, p<0.0001) 

had activation ranges and maximum activity vecton that correspond to earlier balance 

correcting responses. Soleus responses were similar in this respect (right F(7,119)=30.3, 

p<0.000 1 ; left F(7,119)=27.46, p<0.000 1). However, stabilizing reactions were also influenced 

by a three way interaction between perturbation direction, BVL and vision, for TA (nght 

F(7,l l9)=6.03, p<0.0001; le ft F(7,119)=3.80, p<0.0009), QUADS (right F(7,I lg)=S.O6, 

p<O.Oûû 1 ; iefi F(7,119)=3.89, p<O.OûûS) and PARAS (nght F(7,119)=2.93, p<0.0072) (upper 

part figure 6). For nomals, there is no difference between stabilizing reaction amplitudes for 

eyes open and eyes closed as perturbation direction changes for any of the muscles. However, 

vision does significantly affect stabilizing reactions in BVL subjects differently for different 

directions. For exarnple, in both right TA (figure 6) and QUADS, as perturbation direction 

moved from forward right to backward right directions, BVL subjects had greater stabilizing 

amplitudes compared to normals (figure 6) and these responses were larger for eyes closed 

compared to eyes open conditions. However, for the pure toes up (180 deg) perturbation, there 

was a change in the BVL pattern, in which larger stabilizing reactions were observed during 

the e y s  open compared to the eyes closed condition For the right PARAS, BVL patients 

standing with eyes open demonstrated the largest stabilizing responses compared to eyes 

closed and normal responses. This effect remained for al1 perturbation directions contralateral 

to the right PARAS muscle (upper right figure 6). The net result of the changed amplitudes of 

stabilizing reactions and foregoing balance corrections in BVL subjects is shown in the lower 

half of figure 6. Trunk sway at 500 ms in BVL subjects was an order of magnitude larger than 



for normals and roll perturbations yielded a backward rather than foïward instability compared 

to normals as shown by the differently directed resultani velocity vecton. 

Biomechmical Conseauences 

An kle rorq lies 

Differences in ankle torque profiles between nonnals and BVL patients were primarily related 

to timing and rate of change for active torque responses. For backward perturbations, A-P 

ankle torque in normals initially doaiflexes, then begins to plantarfiex, b e g i ~ i n g  at 150 rns 

and reaching peak plantarflexion at 350 ms. BVL patients have a similar onset of 

plantarflexion compared to normals, however the rate of change is decreased. In addition, BVL 

patients do not reach peak plantarflexion torque until afler 500 ms (figure 7). In forward 

perturbations. normal ankle torque is initially plantarflexing, followed by rapid doniflexion 

begiming at 120 ms and peaking at ca 375 ms (figure 8). For identical perturbations, BVL 

patients have a slightly extended period of doniflexion, followed by a decreased rate of 

plantarflexion which does not reach a peak before 500 ms. These differences can be easily 

observed in figure 9, where the ankle torque change between two different time periods is 

plotted for each perturbation direction. During the early period between 160-260 ms, 

signi ficant interaction effects were found between group and direction for A-P (F(7,119)=3.59, 

p~O.00 1 5) and M-L (F(7,l 19)=2.30, peO.03 13) ankle torque change. Dunng this period, BVL 

patients had reduced A-P torque for perturbations with a pitch component, and reduced M-L 

torque for perturbations with a roll component (figure 9, upper right). A significant interaction 

between group and direction was also observed between 280-380 ms for A-P (F(7,l l9)=4.25, 

p<0.0003) and M-L (F(7,119)=2.13, p<0.0457) ankle torque change. Dunng this latter period 

of time, normal torques have reached a plateau, whereas BVL torques continue to change. This 

results in relatively larger A-P torque changes in pitch directions and larger M-L torque 

changes in roll directions for BVL compared to nonnals (figure 9, upper lefi). Although the 

magnitude of torque change was altered in BVL patients compared to normals, the directional 

sensitivity of the torque response was maintained (see resultant vector plot in figure 9), with no 

differences in direction of the resultant torque vecton. The resultant torques remained onented 

mainly in the pitch plane. 



Tmnk velocity 

A common element of the mink response, regardless of perturbation direction was an initial 

movement in a direction opposite to that of the support surface (figure 1 and figure 9, lower 

lefl). However, in response to perturbations with a roll component, initial tnink roll movements 

were observed 30 ms prior to any detected movements in the pitch direction (figure 7 and 8). 

Platform rotation to the nght caused trunk roll to the lefl with peak velocities reaching 10 deg/s 

by 120 ms in normals. ARer this time, trunk roll slowed and the angular velocity changed 

direction atter crossing zero velocity at 200 ms (figure 7 and 8). Initial roll velocities in BVL 

patients were slightly smaller in magnitude compared to nomals, but took longer to bring 

under control, crossing zero around 300 ms. Afier 300 ms, BVL patients experienced large roll 

velocities in the opposite direction to initial plat fom induced trunk movements instead of near 

zero velocities of normal subjects (figures 6, 7 and 8). That is, the BVL patients tended to faIl 

in the direction of platform movement. 

Al1 perturbations, including pure roll perturbations induced pitch movements of the trunk but 

pure pitch perturbations did not induce noticeable roll movements. For backward 

perturbations, initial Forward pitch velocities were similar in magnitude for BVL and normals, 

however, BVL patients peaked earlier and changed direction earlier than normals (figure 7). 

BVL patients also had very large residual pitch velocities afler 350 ms, which were opposite in 

direction to the initial pitch velocity, but in the sarne direction as platform movement (see 

figures 6 and 9). For forward perturbations, both the magnitude and timing of the tmnk pitch 

velocity profile was different for BVL patients. For these perturbations, BVL patients 

experienced backward mink velocities almost two times greater and peaked 80 ms later than 

nomals. Once the backward rotation of the trunk was arrested it was followed by large 

overcorrecting 'stabilizing', response in BVL patients (figure 6) also in the direction of the 

initial platfom motion, however without a falling tendency. As shown in figure 9, differences 

between BVL and normals extended to al1 perturbation directions. During the period between 

160-220 ms, which primarily measures the stimulus induced rotation of the trunk, BVL 

patients had only slightly larger average trunk pitch velocities for perturbations with pitch and 

roll combinations (figure 9 lower left). Dunng the later period between 240-300 ms, BVL 

patients had significantly larger (F(1,17)=8.82, pc0.0086) pitch velocities across al1 



perturbation directions (figure 9 lower right). Significant group by direction interaction effects 

were observed during the later period between 470-530 ms for both pitch hunk velocity 

(F(7,119)=3.45, p<0.002 1) and tmnk roll velocity (F(7,119)=4.69, p<0.0001). During this later 

penod, BVL subjects had larger tmnk pitch velocities for pitch oriented perturbations, and 

larger tmnk roll velocities for roll oriented perturbations (figure 6, lower halo. 

Unlike the resultant direction of the ankle torque vectors which were oriented primarily along 

the pitch plane, the resultant trunk velocity vecton during the early period between 160-220 

rns were oriented opposite to the direction of platform movement for both normal and BVL 

subjects (figure 9, lower left). The resultant trunk velocity vectors took on a slightly greater 

pitch orientation later during the measurement period 240-300 ms as indicated in figure 9. 

However, during this latter period, the orientation of the BVL vectors deviated from normal for 

pure roll and foward roll perturbations. Finally, over the stabilizing period when a steady state 

combined roll and pitch hip torque must be imposed to keep the trunk upright, pelvic torque 

was clearly insufficient for BVL subjects as they had continued motion in the perturbation 

direction (figure 6). Furthemore, for roll directions the orientation of tnink motion was still 

di fferent from normal. 

DISCUSSION 

From its fastest (skiing) to rnost elegant (dancing) forms, human motion is constantly disturbed 

in multiple directions either by changes in surface orientation or extemal forces acting on the 

body. In al1 cases, the ability to roll the trunk and counter roll the legs by flexing the knees 

provides a crucial element of stability for motion. Previous research on human balance control 

has large1 y ignored this element b y limiting anal ysis to a single planar mode1 moving on1 y in 

the pitch plane. Although important information has been discovered using single plane 

perturbation models, the results represent only a flat snapshot of the balance phenornenon 

without important three-dimensional detail, thereby preventing application to real life 

situations. Therefore, previous findings which have proven highly consistent in the pitch plane, 

may not represent normal responses to perturbations which occur in off-pitch planes. The first 

goal of the present study was to determine whether the cunent understanding of the effects of 



BVL on postural reactions, established with uni-planar perturbations, c m  be applied to 

perturbations which contain both pitch and roll cornponents. 

The second goal of the experiment was to determine what new information, if any, is available 

with multidirectional perturbations, which would provide insights on how the CNS develops 

motor programs based on vestibular inputs when arresting falls in different directions. Due to 

the directional sensitivity of vestibular receptors, particularly the off-pitch orientation of the 

vertical semi-circular canals, it was hypothesized that a multi-directional posturographic 

paradigm would provide new insights about the focus of vestibular and proprioceptive 

contributions to balance control using the patient mode1 of bilateral penpheral vestibular loss. 

Furthermore the different dynamics of some central vestibular ncurons for roll and pitch 

perturbations (Angelaki et al. 2000) might be matched to the different dynamics of the tnink in 

these directions (Carpenter et al. 1999). With onsets as early as 15-20 ms, Carpenter et al. 

(1999) observed vertical linear and angular roll accelerations of the head, with magnitudes 

exceeding known vestibular thresholds (Benson et al. 1989; Gianna et al. 1996). In addition. 

the magnitude of the vertical and angular accelerations were dependent upon the direction of 

platform rotation a d o r  tnink motion. Information from otolith afferents (Tomko et al. 198 1) 

and serni-circular receptors (Graf et al. 1993; Wilson et al. 1995) is integrated into a single 

directional signal which acts to drive ocular and cervical motor responses. Directional 

integration of information for balance control may also occur in higher neural centres such as 

the vestibular nuclei (Schor et al. 1984) and the cerebellum (Pompeiano et al. 1997). When 

directionally specific head acceleration information is not available, as is the case for bilateral 

penpheral vestibular loss, the behavioural deficits observed in dynarnic postural control may 

be used to hypothesize the specific role of the vestibular system in triggenng and/or 

modulating appropnately scaled, directionally- sensitive balance responses. If central 

vestibular neurons play a major role in coordinating roll and pitch movements of the trunk, the 

loss or reduced effect of the neural control exercised by ihese neurons can be expected to lead 

to uncoordinated tank control. 

Previous posturography experiments using only pitch plane perturbations have uncovered 

consistent differences in balance control between patients with BVL and normals. BVL 



patients have normal onset latencies of both stretch reflexes and automatic balance correcting 

responses to pitch directed translation (Runge et al. 1998; Horak et al. 1990; Allum et al. 

1994), rotation (Allum and Pfaltz 1985; .411um et al. 1994), and combined translation/rotation 

(Allum and Honegger, 1998) of the support surface. Despite normal onset, the amplitude of 

automatic balance corrections between 120-220 ms in TA, SOL and QUAD muscles was 

found to be signi ficantly decreased in BVL (Allurn and Pfaltz 1985; Keshner et al. 1987; 

Allum et al. 1 994; Allum and Honegger 1998; Runge et al. 1998). Slower rate of change in A- 

P ankle torque generation in BVL patients (Allum and Pfaltz 1985, Keshner et al. 1987) has 

been shown to be conelated with the decreased amplitude of lower leg automatic responses in 

BVL patients. Decreased balance correcting responses in postural leg muscles are typically 

followed by excessive activity in paraspinal muscles aAer 200 ms. (Allum et al. 1994, Runge et 

al. 1998). The increased tmnk activity during this later period corresponds to a signi ficantly 

larger tmnk pitch velocity in BVL which persist longer than that of normals. 

We have determined that the findings uncovered by pitch plane perturbations do in fact apply 

to perturbations which include both pitch and roll components. Specifically this applies to leg 

muscle responses whose direction of maximum activation lies primarily dong the pitch plane. 

We have observed similar effects in BVL to that of previous uni-directional studies for 

perturbations in both pure pitch. as well as pitch and roll directions. The timing and amplitude 

of early stretch reflexes are normal in BVL across al1 directions (figures 2,3 and 5). As 

observed in figures 1 and 3. there were no observable differences in the timing or pattern of the 

balance correcting responses between BVL patients and normals, with the exception of SOL. 

For soleus, muscle activity was significantly delayed by 38-45 ms for al1 toe-down 

perturbations. The amplitude of balance correcting activity in TA and SOL was significantly 

reduced in BVL patients for both pitch and pitch/roll directions (figure 4 and 5). This 

attenuation of lower leg balance correcting activity was followed by a decreased rate of A-P 

unkle torque production, and longer time to peak in BVL compared to normais for both pitch 

and off-pitch perturbations. Also similar to uni-directional perturbations, BVL patients 

demonstrated excessive muscular activity during the stabiliting period between 350-700 ms in 

TA, QUADS and PARAS, for pitch and off pitch perturbations (figures 2,3 and 6). Finally, 

BVL patients experienced significantly larger average ûunk pitch velocities compared to 



normals as early as 240-340 rns following perturbation onset, which peaisted between 470- 

530 ms, when normal subjects experience small residual trunk motion (figure 7). inglis and 

Macpherson (1995) also observed normal timing and pattern of muscle activation. Their 

responses, however, were accornpanied by increased response amplitudes of postural muscles 

in labrynthecomized cats following multi-directional translations. At fint this observation 

seems contradictory to our observations of decreased amplitude balance correcting activity in 

lower leg muscles with BVL. However, considering that translational perturbations stretch the 

same muscle responsible for the balance correction, these findings, do in fact coincide with our 

observations of increased destabilizing activity over the balance-correcting rneasurement 

period in TA muscles that were initially stretched by the perturbation (figures 3 and 5). 

There are a number of other sirnilarities and differences in findings between the present and 

other multidirectional studies for normals which should be highlighted as they may influence 

the interpretation of results pertaining to the effects of bilateral vestibular loss (BVL). The 

range of activation of erector spinae and vastus medialis reported by Henry et al. (1 998a) is 

similar to the ranges we observed in lefl paraspinals and left vastus lateralis (quadriceps) 

responding to rotational directions that would elicit comparable body sway as that induced by a 

translational perturbation. A preponderance of pitch oriented lower leg muscle activity, 

specifically noted in SOL and TA (see figure 4), was also observed by Henry et al. (1998a) and 

Moore et al. (1988). However, there are differences between the present and previous 

findings conceming the direction of maximum activity vectors. Henry et al. (1998a) report 

maximal activity in TA and media1 gastrocnemius muscles to be onented at approxirnately 60 

and 300 degrees respectively, whereas in the present study, maximal balance correcting 

activity in right TA and SOL was more pitch-oriented at 186 and 35 degrees, respectively (see 

figure 4) very similar to the direction of balance correcting torque for the same foot (figure 9). 

Since the use of translational perturbations induces stretch and balance correcting activity in 

the sarne muscle (Diener et al. 1983; Allum et al. 1993), the constant long time-frame (70-270 

ms aAer platform onset) which was used to observe integrated EMG areas by Henry et al. 

(1 998a) must have captured components of both early stretch and later triggered balance 

correcting responses. in contrast, rotational studies such as the present study, elicit stretch and 

triggered balance correcting responses in antagonistic muscles for a single perturbation (Diener 



et al. 1983; Allum et al. 1993). This approach, coupled with the use of consecutive time 

intervals to measure stretch (40-100 ms) and balance-correcting responses (120-220 ms) 

pemits stretch reflexes to be observed in TA and SOL muscles which were oriented 

approximately 180 degrees to balance correcting activity in the sarne muscle (compare upper 

and lower plots in left side of figure 4). In contrast, PARAS balance correcting activity is 

oriented 90 degrees to the most sensitive directions for stretch reflexes and the amplitude of 

the PARAS stretch reflex compared to balance correcting activity is smaller than in lower 

muscles (Carpenter et al. 1999). 

A non-vestibular and non-lower leg proprioceptive ongin of a postural trigger For balance 

corrections was onginally proposed by Forsberg and Hirschfeld (1994). This finding has 

recently been verified by observation of unaltered balance correcting response latencies to 

'nulled ankle input' responses of healthy nonnals to combined backward translation and 

downward rotation, and patients with either selective lower leg proprioceptive loss (Bloem et 

al. 2000) or bilateral vestibular loss (Allum and Honegger 1998). The absence ofa vestibular 

based postural tngger was extended to al1 pitch and roll directions of rotation in the present 

study with the important exception of the soleus response to forward pitch and roll rotations. It 

is interesting to note that SOL, the only muscle to date for which a change in latency and the 

largest change in amplitude has been observed following vestibular loss, is also a muscle 

which plays a major role in arresting a vertical fa11 (Greenwood and Hopkins 1976; Melvell 

Jones and Watt 1971; Wicke and Oman 1982). Vertical falling, while either sitting or standing, 

is associated with an initial early startle response in al1 muscles, followed by a second burst of 

activity, between 70- 12Oms which is confined to lower-limb extenson in triceps surae muscles 

in falling humans (Greenwood and Hopkins 1976), babwns (Lacour et al. 1978; Lacour et al. 

1983) and cats (Watt 1976). The amplitude of the second burst has been shown to be modified 

by bilateral vestibular loss (Lacour, 1978) as well as experience. The response amplitude 

decreases with multiple exposure (Lacour 1978). Similar modulating characteristics with 

respect to vestibular loss (Allum and Pfaltz 1984; Allum et al. KM), and experience (Horak et 

al. 1989; Beckley et al. 1991) have been shown in leg muscles to unexpected movements of the 

support surface, providing a common ground fiom which shared neural mechanisms may be 

infened. According to Watt (1 98 1), the vestibule-spinal reflexes, observed in falling studies, 



would be suitable to contribute to ankle extensor muscles during locomotion, and presumably 

during postural reactions. However, it must be acknowledged that unlike the selective 

activation of vertical1 y oriented otoliths affec ted in falling studies, our rotational perturbations 

involve very early (15-20 ms onset), vertical linear and roll angular accelerations of the head 

which are sensitive to both direction of perturbation (Carpenter et al. 1999) and reduced 

stimulus velocity (Carpenter et al. unpublished observations) rhot will simultaneously activate 

a variety of recepton at the head including semi-circular canals, otoliths and proprioceptive 

receptors in the neck. As off-pitch components are added to the perturbation direction, head 

vertical accelerations are decreased and roll angular accelerations are increased. For example, 

when the platfom rotates forward to the lefl, head vertical acceleration is directed downward 

and head roll acceleration is directed to the right both in normals and BVL subjects (Carpenter 

et al. 1999, Bloem et al. 2001). Other authon have also reported early. and directionally 

discriminating, head accelerations measured during pitch plane rotations (Allum and Pfaltz 

1985; Forssberg and Hirschfeld 1994) and translations (Allum et al. 1993; Runge et al. 1998) 

of the support surface. However, none of these previous experiments have measured head 

linear and angular accelerations along several axes as we have done (Carpenter et al. 1999, 

Bloem et al. 2001) in order to parse out those accelerations showing the greatest sensitivity to 

perturbation direction. In searching for possible control mechanisms by which vestibular-based 

modulation of muscles may be achieved especially by head roll accelerations, important clues 

may be drawn Bom studies exarnining postural reactions in subjects with unilateral vestibular 

loss (Carpenter et al. unpublished observations). 

Our observations of combined pitch and roll surface rotation in BVL subjects support the 

notion that automatic balance correcting movements charactenzed hy flexion of the contra- 

lateral "uphill" leg (generated by several muscles including tibialis anterior) and extension of 

the ipsilateral "downhifl" stance-bearing leg to platfom rotation (assisted by soleus activity) 

are driven by vestibulo-spinal inputs induced by head roll and linear accelerations. This 

movement pattern is not quite consistent with that associated with vestibulo-spinal reflexes in 

the cat elicited when the head is rolled to the side (Wilson et al. 1986). In the cat vestibulo- 

spinal reflexes involve extension of the ipsilateral limbs to head roll, and flexion of the 

contralateral limbs (Wilson and Melville-Jones 1979), such that when the head is rolled to the 



left, with right ear up in relation to the body, the left lirnbs are extended while the right limbs 

are flexed. Extension of the ipsilateral limbs is achieved by facilitory input fiom the lateral 

vestibular nucleus to ipsilateral extensor muscles with simultaneous inhibition of ipsilateral 

flexon via the medial reticulo-spinal neurons (Lund and Pompeiano 1968). Cervico-collic 

reflexes act in opposition to vestibulo-spinal reflexes, so that, when the head is rolled to the 

lefi, with right ear up in relation to the body, the right limbs are extended and the lefi limbs are 

flexed. In both these cases, it may be hypothesized that a loss of vestibular input would have 

the most pronounced effects on the amplitude modulation of ipsilateral extensor muscles in 

response to unexpected rotation of the platform. The results of the present study seem to be 

correlated with expected behaviour predicted fiom neurophysiological cat expenments as long 

as one takes into account a major hinging at the pelvis that occun in man when the body is 

rolled via a support surface. As observed in figure 5, the most dramatic effects of decreased 

balance correcting activity in soleus due to BVL occurs for muscles that are contra-lateral to 

the side of head rotation, but ipsilateral to pelvis rotation. 

Our results have succeeded in demonstrating that the effects of BVL on postural control in leg 

muscles observed with pitch plane perturbations comprise elements of postural control 

required in each leg when support surface tilts contain both pitch and roll directions. These 

results are directed towards Our second goal which was to determine what additional 

information, if any, might be yielded fiom a multi-directional paradigm which cm be used to 

expand our present understanding of the effects of BVL on postural reactions. Similar to 

differences observed for A-P ankle torque in pitch directed perturbations, significant 

differences in lateral ankle torque change for BVL were obsewed for perturbations which 

contained a roll component. As observed in figure 9, lateral torque was significantly smaller in 

BVL for roll directions between 160-260 ms, and significantly larger in roll directions between 

280-380 ms. Although changes in the magnitude of ankle torque change was aliered by BVL, 

the relative contribution of A-P and lateral torque to a given perturbation was maintained, as 

observed by the notmally oriented resultant ankle torque vectors (figure 9). Based on the 

assumption that the CNS controls pitch and roll torques separately (Winter et al. 1996; 

Matjacic et al. 2000), our observations would indicate that the cosrdination between these 

separate control systems is maintained in BVL for ankle torques but not for hip torques for 



reasons described below. 

Significant differences in trunk roll velocities behveen noimals and BVL were also revealed 

exclusively by roll directed perturbations (figure 6 and 9). When roll components were added 

to the perturbation, BVL patients experienced smaller (although statistically insignificant) 

initial tmnk roll velocities compared to normal between 160-220 ms, followed by significantly 

larger trunk roll velocities dunng the periods between 240-300 ms and 470-530 ms. We would 

hypothesize that this may be due to insufficient amplitudes in early hip muscular activity 

(From which we have yet to record - it is readily acknowledged by the authors that other hip 

muscles, from which we have not recorded, may also be influenced by BVL) but more 

prominantly due to excessive trunk muscle activity during the later stabilizing period, as we 

have s h o w  in the present study (figures 2,3,6) and in previous pitch plane expenments 

(Allum et al. 1994). These findings suggest that, while patients are able to achieve 

directionally modulated, although delayed, tmnk corrections in the pitch plane with respect to 

normal, there is a diminished capacity to maintain appropriate control of direction, timing and 

magnitude of trunk movements and corresponding hip torques in the roll plane. These findings 

in roll perturbations collaborate with well known clinical findings of lateral instability in BVL 

patients perfoming clinical balance tasks which require lateral control of the center of mass 

with lateral hip torques such as tandem walking, standing on one leg or walking while rotating 

the head (Allum et al. 2001 a). 

Roll instability of the trunk bean directly on the issue that has been unresolved by previous 

pitch plane studies conceming the relationship between vestibular loss and control of postural 

hip movements. Horak et al. (1 990) postulated an inability of vestibular loss patients to 

generate hip movement strategies while standing on a narrow support surface, possibly related 

to alterations in the timing metrics associated with hip torque generation (Allum et al. 

1992; 1997). In contrast, both Allum et al. (1992; 1997) and Runge et al. (1998) have 

demonstrated that in the pitch plane, vestibular loss subjects are able to generate appropriately 

sized hip torque amplitudes even for high perturbation velocities. It is the timing metrics of the 

pitch plane torques, being progressively delayed throughout the responses in vestibular loss 

subjects (Allum and Honegger 1992; Allurn et al. 1997), which cause these subjects to have 



excessive velocities and to fall. The results of the present study suggest that trunk roll 

movements associated with BVL are delayed and excessive too but with different metrics than 

the pitch delays. This and previous studies (Allum et al. 1994; Allum and Honegger 1998) 

have provided evidence that vestibular modulation of trunk responses is predominantly later 

than modulation in the leg muscles (figures 2 and 3) and tmnk roll modulation is even later 

than that of pitch. One reason for this could well be linked to the early biomechanical response 

of the tmnk in roll compared to pitch (Carpenter et al, 1999) and possibly the marked response 

differences of central vestibular neurons to different directions of head tilt (Angelaki and 

Dickrnan 2000). Balance corrections probably cm influence those in the pitch direction as 

these are occurring, but only partially brake those in roll. Another reason for this may be due to 

the inhibitory nature of trunk roll control via paraspinal muscles. We assume that in BVL 

subjects. the excessive activity in paraspinal muscles ipsilateral to platform tilt direction is the 

result of an absence of inhibitory control by vestibulo-spinal pathways. This excessive activity 

causes the body to be "pulled downhill following the tilt of the support surface. During the 

stabilizing penod, between 470-530 ms, normal subjects experience small residual tmnk 

motion following backwards support-surface rotations with a roll component. BVL patients 

however, exhibit excessive backward pitch and roll velocities (figure 7) related to hip roll 

torque generation as a result of further excessive paraspinal activity needed in uphill muscle 

dunng later stabilizing periods (figures 2 and 6) to avoid falling. Noticably this activity is 

larger when visual input are present (figure 6). Thus when roll components are added to the 

perturbation. BVL patients experience initially similar roll velocities to those of normals 

followed by significantly larger average roll velocities between the period of 240-300 ms and 

470-530 ms because paraspinal muscle responses with backwards roll directions of maximum 

activity are enhanced due to a lack of inhibitory vestibulo-spinal control. 

By recording responses under both eyes-open and eyesîlosed conditions we were in a position 

to investigate whether BVL subjects can better utilize visual information to compensate for 

lack of balance related vestibular information. Normals did not demonstrate any significant 

differences between eyes open and eyes closed conditions in any direction for either onset or 

amplitude of stretch, balance correcting or later stabilizing reactions for any of the postural 

muscles recorded. These findings are consistent with previous research that has shown similar 



responses to unexpected perturbations in normals when standing with eyes open and closed 

(Vidal et al. 1982). Vestibular loss patients also demonstrated, with the exception of soleus, 

similar onset and amplitude of stretch and balance correcting activity in al1 muscles and 

directions for eyes open compared to eyes closed conditions. However, during the stabilizing 

period between 350-700 ms, vision significantly interacted with direction in BVL patients. For 

pure roll and backward roll perturbations, BVL patients had stabilizing reactions in TA and 

QUADS which were reduced in eyes open compared to eyes closed conditions. In contrast, 

dunng pure toe-up perturbations, BVL patients demonstrated larger stabilizing activity in TA 

and QUADS for eyes open compared to eyes closed conditions (figure 6). The modulatory 

effect of vision on vestibular induced postural responses has been previously demonstrated in 

studies on falls (Vidal et al. 1979), and the present results suggest that BVL patients attempt to 

use vision to compensate for earlier consequences of absent vestibular input. However, the 

direction-dependence for use of vision in BVL has not been previously demonstrated and may 

pose interesting questions on the differential use of visuai inputs for pitch and roll control 

which require further investigation. It might be hypothesized that roll and backward roll 

perturbations, which are associated with significant angular roll and lateral head accelerations 

(Carpenter et al. 1999), would require an intact and multi-directional acting VOR reflex to 

maintain multi-dimensional gaze on a fixation point md provide usehl information to make a 

visually based compensation to postural response. in this regard, BVL patients would not be 

able to accurately maintain gaze on a visual target and make appropriate postural adjustments 

based on visual input. Thus, lower stabilizing responses rnay be expected in the eyes open 

compared to eyes closed conditions. In contrast, pure toe-up perturbations do not induce 

significant head roll or lateral head accelerations (Carpenter et al. 1999) that would complicate 

estimation of head movement in BVL patients using visual and neck proprioceptive inputs. 

Interestingly, nght PARAS demonstrated increased activity for eyes open compared to eyes 

closed conditions for al1 directions except pure roll to the nght (figure 6). Such an observation 

may suggest a greater role of trunk muscle propriocepton in establishing appropriate head- 

trunk CO-ordination in the roll plane. These possibilities are only speculative at best and 

de finitely require M e r  investigation. 



in conclusion, roll directed disturbances to equilibrium, provided by multidirectional 

perturbations, are necessary to fully comprehend the extent to which bilateral vestibular loss 

influences normal postural reactions. Multi-directional perturbations were used to identify 

observable differences in muscle activation profiles, and pariicularly differences in trunk and 

ankle torque control with bilateral vestibular loss that were not previously observed using only 

pitch plane perturbations. Part of the reason for this may be due to fundamentally earlier 

hinging of the tmnk around the pelvis which occurs with roll compared to pitch. Not only does 

this have consequences with respect to sensing of centre of mass motion by vestibular sensors, 

but also with respect to the need for different response dynamics of trunk roll and pitch motion 

in order to regain upnght stance. It is perhaps for these reasons that leg muscle control by 

vestibulo-spinal system in man appean to be different fiom that of the tmnk where inhibitory 

vestibulo-spinal effects seem to dominate. Future neurophysiological research should be 

dedicated to extending the implications of these observations on balance control of the trunk in 

the roll plane and examining the contribution of central and penpheral mechanisms to the 

different dynarnics of balance control in the roll and pitch planes. 
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Backwards Right (135 deg) Forwards Right (45 deg) 

Fieure 1 - Graphical xhematic representation of stimulus induced movements of the head, muik and leg 
segments in response to unexpected support surface rotations directed backwards to the right (135 deg) md 
forwards to the right (45 deg) 
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Fipure 2 - Average EMG traces fiom 14 nonnal subjects (thin lines) and 5 bilateral vestibular loss patients (thick 
lines), measured during eyes closed trials in response to unexpected surface rotations directed bachuards to the 
right ( 1  35 deg). The black vertical line at O ms represents the onset of ankie rotation. Gray m w s  represent 
predetemiined time intervals selected for calculation of stretch reflex (40-100 ms or 80-120 ms depending on the 
occurrence in the muscle). balance correcting ( 120-220 ms) and stabilizing (350-700 rns, only the fmt 150 rns is 
shown) responses. 
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F i w e  3 - Average EMG traces hom 14 normal subjects (thin Iine) and 5 bilateral vestibular loss patients (thick 
Iine). measwed during eyes closed trials in response to unexpected surface rotations directed forwards to the right 
(45 deg). The black vertical line at O ms represents the onset of anWe rotation. Mean onset of normal and 
vestibular loss soleus responses are marked with arrows. The mean and standard deviation are also listed next to 
the arrows. Gray arrows represent predetemiiaed time intervals selected for calculation of stretch reflex (40-100m 
or 80- 120 ms depending on the occurrence in the muscle), balance conecting ( 120-220 rns) and stabilizing (350- 
700 ms) responses. 



Fisure 4 - Polar plots for tibialis anterior (left panel) and soleus (right panel) muscles under eyes closed 
conditions averaged over hree distinct tirne intervals representative of stretc h (40- 100; 80- 120 ms) and balance 
correcting (1 20-220 ms) responses. Each radio1 line or spoke represents one of eight platform directions. For each 
direction, mean muscle activity for normals (diagonal hatch filled), normal mean plus one standard enor (cross- 
hatched border) and bilaterai vestibular Ioss (unfiiled, thick line as border) for right and left musdes sepmtely. 
The response amplitude represented by each of the concenûic cùcles in the plot is scaled according to the vertical 
scale between each set of plots for lefi and right recording sites. White and black arrows represent the direction of 
caIculated maximum activity vector for each averaging interval for normals and vestiiular loss patients 
respec tively. 
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Fiaure 5 - Mean amplitudes and standard emr  bars (eyes open and eyes closed cornbined) for balance comcMg 
response (120-220 ms) in upper half left and right tibialis antenor muscles and lower half leR and right soleus 
muscles. Normal amplitudes arc shown as white bars and bilateral vestibular loss patients as black bars for pure 
pitch, and roll right combinations of platfonn rotations. The maximum activity direction in normals is 35 deg in 
right soleus and 177 deg in lefl tibialis anterior and &or-imaged for the opposite sided muscles. 
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Figure 6 - Upper half- Polar plots of average EMG activity during the period between 350-700 ms for n o m l s  
with eyes open (filled, black) and eyes closed (filled with diagonal hatch lines), and bilateral vestibular Ioss eyes 
patients with eyes open (filled white) and eyes closed (filled grey, black border) measured in right tibialis 
antenor and right paraspinals muscles. Lower half- Mean absolute values for average trunk angular velocity 
calculated between 470 - 530 ms. The Iarger polar plots to the Iefl and right of each panel represent pitch velocity 
and roll velocity respectively. The lower centered polar plot represents the caiculated direction of the resuirant 
tnink cuigular velocity vector for each perturbation direction for normals (thick hatched anow) and bilaterol 
vestibular loss patients (thin blac k arrow). 
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Figure 7 - Average biomechanical traces for normals (thin lines) and bilateral vestibular Loss patients (thick 
lines), rneasured during eyes closed trials in response to unexpected surface rotations directed backwards to the 
right (135 deg). Refer to fig. 3 for details. 
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ABSTRGCT 

If and why patients with Parkinson's disease (PD) have a directional preponderance for falls is 

unclear. To answer these questions, we studied automatic postural responses to randomly 

mixed perturbations of stance in multiple directions. We examined trunk control, protective 

arm movements and associated muscle responses. These questions were addressed in 10 PD 

patients (mean age 64 years) tesied during their best clinical condition ('ON') and in 1 1 

healthy controls (mean age 68 years). To examine the effects of antiparkinson medication, we 

performed additional tests (nndomised with the 'ON' tests) in 7 patients after ovemight 

withdrawal of their medication ('OFF'). In ail experiments, upright-standing subjects received 

support surface rotational perturbations (7.5 degrees amplitude) that were randomly delivered 

in 6 different directions and at 2 different velocities (30 or 60 de@). Outcome measures 

included electromyographical and biomechanical responses of the lower legs, pelvis, tnink and 

arms. 

Patients revealed several distinct postural abnormalities: (1) excessive medium latency activity 

(80- 120 ms) and later balance correcting responses (120-220 ms), not only in distal (lower leg) 

muscles but also in more proximal (hip and trunk) postural muscles; (2) a loss of directional 

sensitivity for soleus and paraspinal muscles, leading to CO-contraction and stiffness 

(' inflexibility ') of the ankles and trunk, particularly for backward and roll-oriented falling; and 

(3) early activated but functionally inadequate protective  am^ responses, again particularly for 

backward and roll-oriented falling. Antiparkinson medication gave little improvement of these 

postural abnomalities. Velocity scaling was notmally preserved in patients. 

Our results suggest that postural instability in PD is not a 'negative' phenomenon of basal 

ganglia dysfunction, characterised by a loss of postural responses, but is rather a 'positive' 

phenomenon characterised by abnomally high muscle activity and CO-contraction of postural 

responses, resulting in excessive stifiess. The backward and laterally directed preponderance 

for falls, combined with inappropriately executed a m  movements, may clarify why hip 

eactures appear more comrnon in PD than wrist fractures. Our findings also help to eiucidate 

why balance impairnent and falls in PD are ofien resistant to doparninergic medication, and 

underscore the need to develop strategies to improve trunk and arm control in PD. 



INTRODUCTION 

Balance impairment and falls are an important featwe of Parkinson's disease (PD) [Rogers 

1996;Bloem et al. 200 1 a]. Studies using stance perturbations (dynamic posturography) have 

helped to clarify the pathophysiology of these balance impainnents in PD. Several 

distinguishing postural abnormalities included: (1) abnomally sized automatic postural 

responses, in particular an increased amplitude of 'medium latency' stretch responses in lower 

leg muscles; (2) 'inflexibility' of automatic postural responses, i.e. an inability to modulate the 

response magnitude according to the demands of the actual postural task at hand; (3) delayed 

initiation or underscaling of voluntary postural responses; (4) abnormal execution of 

compensatory stepping movements; and (5) inadequate anticipatory postural responses (for 

reviews, see Horak and Frank 1996;Bloem 1994;Bloem et al. 2001 b). Although such postural 

abnormalities are clearly present in patients as a group, they do not appear to provide reliable 

diagnostic indicaton [Bloem et al. 19921. Furthermore, many postural abnomalities do not 

correlate well to clinically-rated irnpairments [Schieppati and Nardone 1 99 1 ; Watenton et al. 

1993;Bloem et al. 1998al. 

It is possible that the poor correlation between posturography results and clinical balance 

measures is due to shortcomings in previous study designs. Most previous studies analysed 

postural control in PD using a senes of identical perturbations in only one direction, 

particularly the pi tch plane [Schieppati and Nardone 1 99 1 ;BIoem et al. l996;Horak et al. 1992, 

19961. Hence, the postural perturbations became direc tionally predictable though repeti tion. 

This predictability could lead to habituation of postural responses, and such habituation effects 

may mask abnormalities in PD patients, which are most pronounced for unpredictable 

perturbations [Bloem et al. 1998a;Smithson et al. 19981. Furthermore, use of unidirectional 

and predictable perturbations prevents insight into natural circumstances, where falls are 

typically unpredictable and may occur in any given direction. Analysis of automatic postural 

responses to a randomly applied mix of perturbations in multiple directions might provide 

better insight into the mechanisms underlying falls in daily life in PD patients. Assessing 

postural responses to multidirectional perturbations could particularly help to clarify if and 

why there is a directional preponderance to falls in PD. Anecdotal reports suggest that PD 



patients fa11 more easily backward than forward wutt et al. 1992;Bloem et al. 2001b1, but this 

observation needs to be studied objective1 y. 

Most postural studies of PD have focused largely on electromyographical (EMG) responses in 

the lower legs [Scholz et al. 1987;Beckley et al. 199 1 ;Schieppati and Nardone 199 1 ;Horak et 

al. 19921. Only few studies have studied tnink control in PD patients, either while sitting 

[Martin 1965;Schenkrnan et al. 20001, standing upright [Bloem et al. 1996;Schenkmm er al. 

20001 or while tuming around in a recwnbent position [Lakke 1985;Bridgewater and Sharpe 

19981. Studies of tnink movement in standing PD patients are interesting. for several reasons. 

First, simultaneous evaluation of tmnk motion and trunk muscle activation could clarify 

whether postural instability in PD is tmly a 'negative' manifestation of basal ganglia disease, 

charactensed by loss of normal postural responses [Martin 19651, or whether other 

mechanisms might play a more important role. Second, because an abnormal tmnk position (as 

reflected by the characteristically stooped posture) is a core feature of PD, analyses of mink 

motion and muscle activation patterns in proximal leg or tmnk muscles may yield an increased 

diagnostic identification of balance problems in PD. Indeed, assessment of these variables 

yields a good diagnostic utility for the classification of patients with vestibular or lower leg 

proprioceptive disorders [Allurn et al. 2001al. Use of perturbations in multiple directions are 

particularly useful in this respect due to a need to process pitch and roll motion separately to 

maintain balance. This spatio-temporal coupling is deficient in vestibular loss patients 

[Carpenter et al. 1999a1, but has not been studied in PD. 

We were also interested in studying protective arm movements in PD. When postural 

perturbations are large enough to threaten balance, normal subjects initiate protective arm 

movements so rapidly that they are considered to be 'automatic' [McIlroy and Maki 19951. An 

alternative explanation is that arm movements represent early 'leamed' voluntary reactions. 

These protective ami movements apparenily constitute an important defensive strategy against 

falls mutt et al. 19931. It is conceivable that protective ami movements are delayed or even 

absen! in PD. There is some evidence that initiation of automatic and later, more voluntarily 

initiated postural corrections are delayed in PD [Scholz et of. 1987;Allum et al. 1988;Bloem et 

al. 1996;Burleig.h-Jacobs et al. 19971. Kprotective am movements are (partially) under 



voluntary control, then the akinesia and bradykinesia of PD patients would result in these 

being delayed in initiation and execution, respectively. Protective ami movements could also 

be lost entirel y due to basal ganglia dys func tion [Martin 19651. A demonstration of abnomal 

arm movements could help clarify anecdotal reports that wrist fractures are relatively rare in 

PD patients, compared to the incidence of hip fractures [Johnell et (il. 1992;Sato et al. 

1999;Bloem et al. 2001bl. To our knowledge, protective a m  movements have never been 

examined in PD while standing. 

in an attempt to clarify the issues outlined above, we have studied postural responses to 

multidirectional postural perturbations in PD. To reduce predictability, we randomly 

administered perturbations at two different velocities and in six different directions. This also 

permitted us to examine whether PD patients can scale their postural responses to velocity. Our 

primary focus was to examine if and why PD patients have preponderance for falls in specific 

directions. A second goal was to examine postural abnomalities in the pelvis, trunk and arms, 

and to compare these to previously described lower leg abnormalities. These two goals were 

addressed in patients tested dunng their "best" clinical condition ('on' medication). To 

examine whether antiparkinson medication could correct any of the observed postural 

abnormalities, we performed additional tests (randomised with the 'on' tests) in a subgroup of 

patients who consented to a withdrawal of their usual medication for overl2 hours. This rnight 

help to eiucidate why balance impairment and falls in PD are oflen resistant to dopaminergic 

medication [Bonnet et al. 1987;Koller et al. 1989;Bloem et al. 19961. 

SUBJECTS AND METHODS 

Subiects (Table 1) 

Subjects included 10 patients who fulfilled the cnteria for idiopathic PD of the Brain Bank of 

the United Kingdom Parkinson's Disease Society [Hughes et al. 19921. Al1 patients sustained a 

clear and lasting benefkial response to treatment with levodopa and/or a dopamine agonist. 

Controls included 1 1 healthy elderly subjects. Subjects with other neurological or non- 

neurological causes of balance impairment (including visual, vestibular and orthopaedic 

disorden) were excluded. We aiso excluded patients with dementia, a considerable postural 

tremor and significant dyskinesias (score >2 on the Modified Dyskinesia Rating Scale) [Goetz 



et al. 19941. Ail patients were exarnined during their best clinical condition (termed 'ON' in 

this paper), about 1 hr afier intake of their antiparkinson medication. 

Seven of these patients were also tested after ovemight withdrawal of al1 antiparkinson 

medication ('OFF'). Al1 patients had predictable end-of-dose wearing off. Some patients 

reponed occasional random on-off fluctuations in daily life, but none occurred dunng the 

present expenments. The interval between start of the expenments and intake of the last 

medication was at least 12 hrs. Althougb it may be necessary to withdraw antiparkinson 

medication for several days to entirely eliminate treatment effects, this approach allows for 

assessrnent of parkinsonian manifestations in a fairly stable 'off state [Blin et al. 199 11. The 

order of the 'ON' and 'OFF' experiments was counter-balanced across subjects. 

Before the experiments. patients (both 'ON' and 'OFF') and controls were clinically examined 

using the modified Hoehn and Yahr stages, the Unified Parkinson's Disease Rating Scale 

(UPDRS) [Lang 19951, the Tinetti Mobility Index [Tinetti 19861, a quantified balance 

screening protocol based on trunk sway [Gill et al. 20011 and the Activities-specific Balance 

Confidence (ABC) scale [Powell and Myen 19951. A fear of falls was more common arnong 

patients than controls, and patients had lower ABC scores. Al1 patients had clinical balance 

impaimient, as reflected by the Tinetti Mobility Index. Posture and balance were unremarkable 

in controls. One control had recently fallen, due to environmental circumstances. Clinical signs 

(including balance and gait scores) were more severe dunng the OFF condition than during the 

ON condition (Table 1). 

Al1 subjects gave witnessed infonned consent according to the declaration of Helsinki. The 

institutional Review Boards of the hospitals where the subjects were outpatients (Base1 and 

Leiden) approved the study. 

Outcome Measures 

We obtained EMG and biomechanical outcome measures. To record EMG signals, pain of 

silver-silver chlonde electrodes were placed appmximately 3 cm apart along the muscle bellies 

of left tibialis anterior, lefl soleus, and bilaterally on gluteus medius, paraspinals at the LI-L2 



level of the spine, and medial deltoid muscles. EMG amplifier gains were kept constant and 

pain of electrodes and lead lengths assigned to individual muscles were not changed between 

subjects. Support-surface reaction forces of the left foot were measured from strain gauges 

embedded within the rotating suppon. The strain gauges were located under the corners of the 

plate supporting the left foot. From these forces, the AP and mediolateral ankle torques were 

calculated for the lefl foot [Carpenter et al. 1999bI. Trunk angular velocity in the pitch and roll 

planes was collected using Watson industries transducen (+/- 300 deg/s range) mounted to a 

metal plate that hung at the level of the sternum from shoulder straps that wrapped around the 

shoulders back and chest. Two similar S ystron-Donner angular velocity transducers 

(Inglewood, Calif., USA) measured movements of the left upper arm in the pitch and roll 

directions. These transducen had a range of +/- 200 deg/sec and noise specification of 0.04 

deglsec (average standard deviation). The transducers were attached to a IO-cm long metal 

plate curved to the radius of the m. The plate was strapped to the lateral aspect of the left 

upper a m  using an elasticised bandage. To measure lower leg angle in the pitch plane a 

lightweight rnetal rod was fixed with an adjustable strap to the lateral aspect of the lefl tibia, 

about 4 cm below the level of the lateral condyle. The rod was connected to a potentiorneter 

located on the pitch axis of the platform. 

Procedure 

The subject's feet were lightly strapped into heel guides fixed to the top surface of the dual- 

axis rotating platform. The guides were adjusted in the AP direction to ensure that the ankle 

joint axis was aligned with the pitch axis of the rotating platform. The roll axis had the same 

height as the pitch a i s  and passed between the feet. Just prior to the experiment, subjects were 

asked to assume their 'preferred' standing posture with the arms hanging comfortably at their 

sides. At each individual's 'preferred-stance' position, we measured the low pass filtered (5Hz) 

AP torque from two strain gauge systems embedded in the surface of the rotating platform. 

This was then treated as the reference value for 'preferred-stance' for the remainder of the 

experiment. 

The experiment consisted of two series of 44 perturbations each. The first trial of each series 

was excluded from fùrther analysis to reduce habituation effects [Keshner et al. 1987;Bloem et 



cil. 1998bl. The remaining 86 perturbations consisted of randomised combinations of six 

different perturbation directions and two different perturbation velocities (either 30 degh or 60 

de@), al1 at a constant amplitude of 7.5 deg. The six perturbation directions included two that 

were purely in the pitch plane (forward or O deg; and backward or 180 deg in our notation). 

For the four additional perturbation directions, pitch stimuli were combined with l eha rd  and 

rightward roll components to form 'fonvard right' (45 deg), 'backward right' (135 deg), 

' backward le fi' (225 deg) or ' forward left' (3 1 5 deg) perturbations. Eac h of the 12 di fferent 

combinat ions of perturbation direction and velocity were randorni y presented 7 or 8 times 

throughout the two series of perturbations. Each perturbation was preceded by a random 5-20 s 

delay. Dunng this period, subjects were asked to monitor an oscilloscope, which was located at 

eye level, approximately 1 m in front. This oscilloscope displayed online the low pass filtered 

AP torque, which was measured as described above. Using this visual feedback, subjects were 

required to maintain AP A l e  torque within a range of +/- 1 Nm from their 'preferred-stance' 

reference value. The 5-20 s interstimulus delay was initiated automatically once the platfonn 

had retumed to its original pre-stimulus position and the subject had regained and maintained 

his preferred vertical position as monitored by AP ankle torque reading. in response to each 

rotational perturbation, subjects were instructed to recover their balance as quickly as possible. 

Three handrails (80 cm hi&) were located at a distance of 40 cm to the sides and to the fiont 

of the platform centre. Subjects were informed they were allowed to grasp the handrails if 

needed. Two assistants (one behind and one to the side of the subjects) were present to lend 

support in case of a fall. To minimise fatigue, al1 participants were given a 2-3 minute seated 

rest after the 15th and 30th trial of each senes. A longer seated rest period (5 minutes) was 

provided between each series. 

Data Analysis 

All EMG and biomechanical recordings were initiated 100 ms pnor to perturbation onset and 

had a sarnpling duration of 1 S. EMG recordings were band-pass analog filtered behveen 60- 

600 Hz, full wave rectified, and low pass filtered at 100 Hz prior to sampling at 1 KHz. Al1 

biomechanical data were sampled at 500 Hz and digitally low-pass filtered off-line at 25 Hz 

using a zero phase-shift 10th-order Butterworth filter. Angular velocities were integrated off- 

line using trapezoid numerical integration to yield angular displacement. 



Following analog to digital conversion of the data, al1 biomechanical and EMG signals were 

averaged offiine across each perturbation direction and velocity. Zero latency was defined as 

the first inflexion of ankle rotation velocity and did not vary with direction or subject. Subject 

averages were pooled to produce population averages for a single direction and velocity 

combination (as s h o w  in figures 2 , 3 , 8  and 9). Average trunk angular velocity was calculated 

over time intervals between 160-220,240-300 and 470-530 ms. Ankle torque changes were 

calculated between 160-260 and 280-380 ms. Angular displacements of the a m  were 

calculated relative to the trunk by subtraciing the arm position fiom the tnink position. 

Onset latencies were analysed for directions that elicited primary balance correcting responses 

in each particular muscle. For each subject, the average EMG traces for al1 directions and 

muscles were displayed on screen. EMG latencies were detemined using a semi-automatic 

computer algorithm that selected the fint point at which the average profile exceeded and 

remained longer than 50 ms above a threshold greater than 2 standard deviations above 

background muscle activity (BGA), calculated over the 100 rns period preceding perturbation 

onset. Each latency was fint selected by the algonthrn and then approved or manually 

corrected following inspection by the operator. This was particularly important in patients who 

frequently had enlarged, so called 'medium latency ' (ML) responses (interval between 80- 120 

ms) which blended with the later balance correcting responses. The same operator checked al1 

latencies to maintain consistency across trials. 

Effects of prestimulus BGA may confound between-group cornparisons for stretch reflex and 

automatic balance correcting amplitudes [Bedingham and Tatton 1984;Allum and Mauritz 

19841. Therefore, EMG areas were corrected by subtracting the average arnount of BGA 

(measured over a 100 ms penod pnor to perturbation onset) from the overall response 

amplitude. This approach largely eliminates influences of prestimulus BGA [Bloem et al. 

19931. Corrected EMG areas were calculated using trapezoid integration within pre- 

detemined time intervals associated with stretch reflex (40- 100 from stimulus onset), ML 

responses (80- 1 20 ms) and balance correcting responses (1 20-220 ms) [Carpenter et al. 

1999b3. We also analysed secondary balance conecting responses (240-340 ms) and stabilising 



responses (350-700). but these showed no changes in patients. Therefore, this paper will be 

restricted to the earlier postural responses. 

We were interested to see how symmetrically muscles were activated for perturbations 

containing a roll component. For this purpose, we calculated an 'asymmetry index' as the ratio 

between lefbsided and right-sided activity. Purely syrnmetncal responses in left and right 

muscles have a ratio equal to 1, whereas smaller or larger ratios indicate asymrnetnca1 

activation. 

Because ail 10 patients were tested during their best clinical condition, Our primary analyses 

concemed the between-groups companson of PD-ON patients and controls. To examine 

differences between patients and controls, between different fall-directions and between 

different velocities, we used a mixed ANOVA mode1 (group x direction x velocity) for both 

EMG and biomechanical data. Distributions of EMG response areas and BGA were skewed, 

even afier log transformation, and were therefore analysed statistically following rank- 

transformation. To detemine the effect of medication on postural responses, the mixed-mode1 

ANOVA was applied to repeated mesures for the seven patients who were tested both ON 

and OFF. Significant main and interaction effects were further explored using post-hoc 

comparisons, suing t-tests for pararnetric data (biomechanics and onset latencies) and non- 

parametic tests (Mann-Whitney and Wilcoxon tests) for EMG amplitudes. Significance levels 

were set at 0.05. 

RESULTS 

Lower Lee Control 

Normal responses 

The normal response to backward left perturbations consists of multi-segmental body 

displacements in both the pitch and roll plane. The toe-up rotation of the platfom drives the 

ankles into doniflexion and the fower legs backward. As shown in the lefi panel of figure 1, 

the left lower leg pitch angle increased immediately following perturbation onset, and reached 

an initial peak backward displacement at ca 200 ms. M e r  this time point, the lower leg 

displacement levelled off, before falling still M e r  backward at 300 ms. AP plantar-flexing 



torque increased with the initial upward rotation of the platform until ca 200 ms, at which point 

it reversed and was dominated by an active doni-flexion torque which peaked at 400 ms. 

Backward perturbations elicited a short latency reflex in the stretched soleus muscle at ca 50 

ms. This stretch reflex in soleus was followed by a relatively small balance correcting 

response. The major balance correcting response occurred in the antagonist tibialis anterior 

muscle, which generated a doniflexion torque to counteract the backward COM displacernent 

that follows these toe-up perturbations. Onsets for balance correcting responses in left tibialis 

anterior were 132.8 +/- 18.7 rns for backward leR perturbations, 132.1 +/- 1 1 .Z ms for purely 

backward perturbations, and 126.4 +/- 12.2 ms for backward right perturbations. 

For forward IeA perturbations, the lefl lower leg initially fell slightly backward over the first 

1 50 ms (figure 1, right panel). This was followed by a large forward displacement, which 

reached a peak forward angular displacement of ca 3 deg at 275 ms. lnitially dorsiflexing ankle 

torque was observed dunng the first 100 ms as the front of the platform dropped away from the 

feet. This was followed by an actively generated plantar-flexion torque that reached a peak at 

500 ms. At the same time, the knees flexed while the trunk pitched backward. Forward 

perturbations pulled the ankle joint into plantarflexion, and thus elicited a stretch response in 

tibialis anterior muscles at ca 80 ms. This was followed by a large balance correcting response 

in the antagonist soleus muscle (which was initially unloaded by the perturbation). Onset 

latencies for balance correcting activity in lefl soleus were 182.4 +/- 18.2 ms for forward left 

perturbations, 178.3 +/-20.3 ms for purely foward perturbations, and 147.3 +/- 36.9 rns for 

forward right perturbations. 

Parkinson patients ('ON' condition) 

PD-ON patients demonstrated segmental movements and muscle response profiles sirnilar to 

those of controls, with the exception of clear bunts of ML activity. For backward lefl 

perturbations, the lower leg angle was displaced backward with an identical onset and velocity 

compared to controls (figure 1, lefi panel). However, the lower leg angle had a smaller peak 

backward displacement, which remained less than that of controls throughout the trial. Initial 

plantar-flexing torque induced by platform rotation did not differ between PD-ON patients and 



controls. However, the active doni-flexing torque profile was weaker after 200 ms in PD-ON 

patients compared to controls. BGA in soleus and tibialis anterior was higher in patients than 

controls, but these differences were not significant. Initial stretch reflexes in soleus had normal 

onset latencies and amplitudes. Onset latencies for balance correcting activity in le fi tibialis 

anterior did not differ fiom controls for any backward direction, with mean values of 143.8+/- 

24.7 ms (backward left), 129.2+/-17.7 ms (purely backward) and 13 1 S+/-34.2 ms (backward 

nght). In contrast, ML responses and balance correcting responses in tibialis antenor did differ 

between patients and controls. Because these differences are best appreciated from the polar 

plots (figure 2), we shall discuss these ampli tude changes below for al1 perturbation directions. 

For forward lefi perturbations, PD-ON patients had a larger initial backward displacement of 

the lower legs, followed by a more rapid forward angular leg displacement (figure 1, right 

panel). Initial dorsi-flexion torques were normal in patients, but active plantar-flexing torques 

aRer 1 50 ms were generated at a lower rate and had a reduced peak magnitude. Onset latencies 

and amplitudes of stretch reflexes in left tibialis anterior were similar between PD-ON patients 

and controls. Onset latencies of balance correcting responses in le fi soleus of' patients were 

176.9+/-23.0 ms (fonvard lefi) and 149.7+1-9.8 ms (forward nght), and this did not differ from 

controls. Onset latencies in soleus could not always be determined reliably for purely forward 

perturbations because there was oAen no clear distinction between balance correcting and 

earlier ML responses. 

Illustrating the EMG areas on a polar plot, with median amplitudes plotted along axes that 

correspond to different perturbation directions, allows for an easy visualisation of the 

magnitude and directional sensitivity of responses from different postural muscles. The polar 

plots of figure 2 illustrate the median amplitude and directional sensitivity of ML and balance 

correcting responses for lefi tibialis anterior and soleus across al1 perturbation directions. in 

tibialis anterior, both ML responses (significant interaction effect between group and 

perturbation direction; F(5,430) = 2.46; ~ ~ 0 . 0 5 )  and balance correcting responses (significant 

interaction effect between group and perturbation direction; F(5.430) = 2.68; pC0.05) were 

increased in PD-ON patients compared to controls. Figure 2 reveals enlarged ML responses for 

al1 forward and rîght perturbations (upper lefi panel) and enlarged balance correcting responses 



in tibialis anterior of patients for al1 backward perturbations (lower left panel). The maximal 

directional sensitivity for tibialis anterior ML responses were oriented along the pitch axis (7.3 

deg) in controls, which is similar to that reported for stretch reflexes at this latency in young 

nonnals (Carpenter et al. 1999b). In contrast, directional sensitivity for ML responses in PD- 

ON patients was more roll oriented at 35.9 deg . The directional sensitivity of the balance 

correcting responses in tibialis anterior was normally maintained in PD-ON patients, with 

maximal directional activity vectors at 173.5 deg and 176.1 deg for controls and PD-ON 

patients respectively. 

Figure 2 also shows that PD-ON patients had increased ML responses in soleus across al1 

perturbation directions (significant group effect; F( 1,19) = 9.88; p<0.0 1). Furthemore, soleus 

balance correcting activity was significantly larger in PD-ON patients compared to controls 

across al1 perturbation direction (significant group effect; F(l'19) = 10.43; pcO.005). Similar to 

tibialis anterior, the directional sensitivity of soleus responses was markedly changed in PD- 

ON patients. This was particularly clear for ML responses in soleus, which (unlike controls) 

showed prominent activity for backward and both roll directions in patients. Overall, figures 1 

and 2 show PD-ON patients had increased amplitudes of balance correcting responses in 

tibialis anterior and soleus that were appropnately directed but were preceded by abnormal 

activation and direction of ML activity in antagonist muscles. For example, for backward right 

periurbations, enlarged balance correcting responses were preceded b y a distinct earlier 

('medium latency') burst in tibialis anterior activity that was not observed in controls and 

accompanied by large soleus CO-contracting activity. This excessive activity in both ankle 

muscles presumably resulted in a significantly reduced AP torque generation in PD-ON 

patients, not only for backward and lateral directions, but also for forward falling (significant 

interaction effect for ankle torque between group and direction (F(5,95)=5.20, p<0.001). 

Effect of antiparkinson medication 

The pattern and timing of postural responses in lower leg muscles was very similar between 

PD-OFF and PD-ON patients (figure 1). For al1 recorded responses, onset latencies did not 

differ between PD-OFF and PD-ON patients. Response amplitudes were not M e r  increased 

in PD-OFF patients compared to PD-ON patients. If anything, antiparkinson medication 



appeared to aggravate the postural abnonnalities in PD, because ML responses (in tibialis 

anterior) and balance correcting responses (both in tibialis anterior and in soleus) were larger 

in PD-ON patients compared to PD-OFF patients (figure 1). For example, balance correcting 

responses in tibialis antefior were larger in PD-ON patients compared to PD-OFF patients 

(ANOVA, significant interaction effect between group and perturbation direction; F(S,288) 

=5.9 1 ; p<O.OOO 1). 

Hip. Tmnk and Head Control 

Normal responses 

Backward leR perturbations caused the tank to rotate fonvard, i.e. in the opposite direction to 

pitch rotation of the platform and lower legs, and l e h a r d  (figure 3, left panel). Forward pitch 

rotation occurred fint at ca 100 ms, reaching a peak pitch angle at 350 ms. The trunk was then 

slowly retumed to a position with slightly less forward lean by 700 ms. Trunk roll in controls 

had a negligble rightward roll displacement ( ~ 0 . 2  deg on average) beginning at ca 30 ms, then 

oscillated around O deg (vertical) until 150 ms. This was followed by a rapid rotation of the 

trunk to the left (the same direction as platform roll) which reached an initial peak at 300 ms, 

then fell further to the left to an angle of >2 deg by 700 ms. 

For fonuard leR perturbations, the trunk pitched backward at ca 50 ms and reached a peak 

backward displacement of 2 deg at ca 300 ms (figure 3, right panel). AAer 300 ms, the trunk 

began to retum to a near upright position, which was reached by about 700 ms. in the roll 

direction, the trunk initially moved negligbly to the right at ca 30 ms. After 125 ms the tnink 

moved rapidly l eha rd  and reached a maximum displacement by 300 ms, where it remained in 

this position for the remaindcr of the trial. 

Proximal muscle activity was highly sensitive to perturbation direction, with larger balance 

correcting responses for perturbations that initially unloaded the muscle. For exarnple, l ehard  

roll perturbations initially generated an unloading response in the left gluteus medius that was 

followed by a large balance conecting response (figure 3). Purely fcrward or rightward 

perturbations elicited srnalier responses in left gluteus medius muscles. 



Paraspinals were stretched by perturbations that tilted the support surface towards the muscle. 

For exarnple, lefi roll perturbations caused the tnink and pelvis to roll in opposite directions 

(right and left respectively) and stretched the left paraspinal muscle (figure 3). Similar to 

gluteus medius muscles, controls exhibited larger balance correcting activity in paraspinals that 

were initially unloaded by the perturbation (Le. rightward perturbation for the leA paraspinal 

muscle). Thus, controls had relatively smaller balance correcting responses in paraspinals for 

directions that initially stretched this muscle (i.e. lefl roll for leA paraspinals). 

Parkinson parients ('ON' condition} 

Distinct changes were observed in the pattern and amplitude of proximal muscle responses of 

PD-ON patients. Onset latencies of gluteus medius muscles did not differ significantly 

between PD-ON patients and controls (figure 3). BGA in gluteus medius activity was higher in 

PD-ON patients cornpared to controls (ANOVA, significant group effect; F(l, 19) = 8.59; 

pcO.01). For al1 perturbation directions, PD-ON patients showed bursts of gluteus rnedius 

activity at ca 80 ms, which were not present in controls. However, aAer correcting for BGA, 

the amplitude of ML activity in gluteus medius, did not differ significantly between both 

groups. Figure 3 also shows that amplitudes of balance conecting responses in gluteus medius 

were increased in PD-ON patients compared to controls. This amplitude difference is best 

appreciated from the polar plots (figure 4A), which show that balance correcting responses in 

gluteus medius were increased in PD-ON patients for al1 perturbation directions (ANOVA, 

significant group effect, F(1,19) = 5.28; pc0.05). However, directional sensitivity (with the 

largest balance correcting responses for directions that initially unloaded gluteus medius) was 

preserved in PD-ON patients. Maximum activity vectors were oriented at 255.5 deg in controls 

and 238.3 deg for PD-ON patients. Preserved directional sensitivity in gluteus medius was 

M e r  supported by analysis of the 'asymmetry index' (ratio between left-sided and right- 

sided activity), which reflects how asymmetrically both muscles are activated (figure 48). 

Both groups showed similar ratios of asymrnetry for backward left perturbations (ratio >1) and 

backward right perturbations (ratio cl). Ratios between both gluteus medius muscles did not 

differ significantly between PD-ON patients and controls, which suggests that the relative 

contribution of left and right muscles to balance corrections was similar in both groups. 



In paraspinals BGA was about 42% higher in PD-ON patients compared to controls, but this 

difference was not significant. Both the timing and amplitude of stretch reflexes in paraspinals 

were normal in PD-ON patients. For al1 roll directions, PD-ON patients developed a bunt of 

paraspinal activity at ca 80 ms that was not present in controls (plotted for two l eha rd  

perturbations in figure 3). However, the difference in responses between patients and controls 

over this ML measurement period was not significant. For directions that stretched (not 

unloaded) the paraspinals, balance correcting activity was larger in PD-ON patients compared 

to controls. Group cornparisons for al1 eight perturbation directions (ploned in figure 4) 

showed that balance conecting activity in paraspinals was particularly enlarged in PD-ON 

patients for those perturbations that nomally elicit small responses in controls (ANOVA, 

significant interaction effect between group and perturbation direction, F(5,430) =10.69; p = 

0.0001). For example, balance correcting responses in lefl paraspinals were significantly 

increased compared to controls for left roll perturbations, which stretched the left paraspinal 

muscle and caused minimal activity in controls. In contrast, balance correcting activity was 

decreased for directions that unloaded the paraspinals and caused large responses in controls 

(backward right, figure 4, top right). Maximum activity vectors were more roll oriented at 

143.5 deg for controls and were more pitch oriented at 165.4 deg in PD-ON patients. PD-ON 

patients consequently lacked the normal left-right asymmetry in their paraspinal responses, 

which were CO-contracted. This was reflected by the asymmetry index, which showed that 

controls had very asymmetrical activation amplitudes for left and right paraspinals (figure 4B). 

in contrast, ratios between lefi and right paraspinals were significantly different from controls 

(significant interaction effect between group and perturbation direction (F(5,2 18)=3.48; 

p<0.005). PD-ON patients did not have asymmetrical responses (as seen in controls) but 

instead had more symmetrical activation of bilateral paraspinals, as evidenced by asymmetry 

ratios that were closer to one (figure 48). 

The global pattern of tmnk rnovement in patients was similar to that of controls. However, 

quantitative analysis revealed various changes in tnuik movements of PD-ON patients, both in 

the pitch and the roll plane. Following backward left perturbations, there was no difference in 

onset and time to peak forward displacement of hunk pitch (figure 3, left panel). However, for 

bac kward tilts the velocity of fonvard trunk pitch was slower, and resulted in a smaller peak 



forward displacement in PD-ON patients (figure 5). The reduced peak trunk pitch angle was 

followed by a reduced final position at 700 ms in PD-ON patients. in contrast, the backward 

trunk pitch angle differed little between PD-ON patients and controls following forward lefl 

perturbations (figure 3, nght panel). This discrepancy between forward and backward directed 

perturbations is fùrther illustrated in figure 5, which shows the group compxisons for al1 eight 

perturbation directions. Peak trunk pitch angle at 300 ms was significantly influenced by a 

interaction effect between group and perturbation direction (F(5,80)=2.8 1, p<0.05). PD-ON 

patients had a significantly smaller forward pitch angular displacement of the tnink for 

backward perturbations (particularly the purely backward rotations). In contrast, peak 

backward trunk angular displacement did not differ between PD-ON patients and controls for 

forward perturbations. 

Trunk roll movements were also abnomal in PD-ON patients. Trunk roll angle was delayed in 

PD-ON patients, particularly for forward roll tilts. When the trunk did roll (to the left for 

l e h a r d  roll perturbations), the displacement was rapid (particularly when combined with 

backward perturbations) and reached a peak roll angle by 700 ms that was almost two times 

greater than in controls. Controls consistently demonstrated a larger early tmnk roll angle at 

300 ms compared to PD-ON patients (figure 5B)but this difference was not statistically 

signi ficant. 

Effect of antiparkinson medicorion 

There were no major differences between PD-ON and PD-OFF patients for hip or trunk 

control. Balance correcting responses in gluteus medius were somewhat larger in PD-OFF 

compared to PD-ON patients (figure 3). Withdrawal of antiparkinson medication further 

increased the amplitudes of balance correcting responses in paraspinals. The loss of normal 

asymrnetry for paraspinal balance correcting responses was equally present in both PD-OFF 

and PD-ON patients. Tnink angular displacement was slightly more impaired in PD-OFF 

compared to PD-ON patients. However, none of these differences were significant. 

Protective Arm Movements 

Normal responses 



EMG recordings fforn both medial deltoid muscles revealed responses for al1 perturbation 

directions. Onset latencies in the left medial deltoid muscle were 124.1 +/- 18.1 ms (backward 

left), 1 XIA+/- 12.3 ms (purely backward) and 133.6+/- 18.2 ms (backward nght perturbations). 

Muscle activity appeared to be bilateral, because deltoid responses were observed in both arms 

regardless of whether the perturbation was to the le ft  or right (figure 6). However, some 

directional sensitivity of am responses was observed for forward venus backward 

perturbations. Smaller arm responses were observed for forward perturbations, with alrnost 

negligible activity for purely 'toes down' (O deg) perturbations. Larger responses were elicited 

for directions with either a 'toes up' or a roll component (figure 7). 

The biomechmical analyses (measured fiom the lefi am) revealed that a m  movements were 

initiated in the same pitch direction as the initial trunk movements (figure 6). Controls thus 

moved their anns into the direction of the impending trunk instability. For backward leA 

perturbations, the trunk pitched fonvard, and rapid shoulder flexion occurred with a peak 

angular displacement of 6 deg by 350 ms. Sirnilarly, for forward leR perturbations, the tnink 

pitched backward and the am was sirnultaneously brought back (shoulder extension) to reach 

a peak amplitude relative to the trunk at ca 300 ms (figure 6). Generally, backward roll 

perturbations elicited larger absolute arm angular displacements compared to forward roll 

perturbations in controls (figure 6 and 7). Arm roll movements were also in the same direction 

as tmnk roll movements in controls. For backward left perturbations (which evennially roll the 

tnink to the lefi), controls abducted the left ami away fiom the trunk, reaching a peak angle of 

1 deg by 700 ms. Altematively, when the platform rolled rightward, causing the tnink to roll in 

the same direction, the left a m  was adducted towards the trunk. 

Parkinson patients ('ON' condition) 

The onset of media1 deltoid responses was often earlier in PD-ON patients compared to 

controls. Onset latencies for deltoid responses in patients were earlier for purely backward 

perturbations (1 19.6+/-22.l ms; t-test, pc0.05) and backward right perturbations (1 14.3+/- 19. 1 

ms; t-test, p<0.05), but in the normal range for backward left perturbations (1 16.6+/-28.7 ms; t- 

test, p = 0.53),. Furthemore, the amplitude of balance correcting deltoid responses tended to 



be increased in PD-ON patients (figure 7) compared to controls (interaction effect between 

group and perturbation direction, F(5,430)=1.87; p = 0.09). 

The biomechanical analyses revealed directionally dependent changes in ann responses of PD- 

ON patients compared to controls, similar to the trunk abnormalities described above. 

Abnormalities were seen in both the pitch and roll planes. For backward left perturbations, 

patients had less peak Forward arm pitch angle than controls, and brought the arms back 

rapidly to near the pre-stimulus position by 700 ms. In contrast, PD-ON patients had a normal 

amplitude of peak backward am pitch angle for forward left perturbations. This was again 

followed by a quick retum of the arms to a slightly fonvard (flexed) position. The relative ami 

pitch angle was reduced in patients compared to controls for all backward perturbations, with 

less difference between groups for forward directions. However, the overail group differences 

were not significant. 

In the roll plane, there was a significant group by direction interaction for relative a m  

movement at 300 ms (F(5,80)=2.35, p<0.05), suggesting directionally specific abnonnalities in 

PD. Lehard  roll perturbations elicited lefi arm movements in PD-ON patients that, afier 150 

ms, were oppositely directed to those of controls (figure 6 and 7). For leftward roll 

perturbations, PD-ON patients adducted the le ft a m  (bringing it closer to the trunk), then 

abducted the lefl a m  after 300 ms. Patients even adducted their amis for purely backward 

perturbations, when practically no am roll movement occumed in controls. Lefi ami 

movements for right roll directions showed similar, but smaller, differences in trajectories 

between PD-ON patients and controls (figure 6 right). These differences were not significant in 

amplitude at 300 ms. 

Effect ofantiparkinson medicntion 

Compared to PD-ON patients, PD-OFF patients had delayed onset latencies for purely 

backward perturbations ( l33.2+/- 10.7 ms; t-test, p<0.05) but comparable latencies for 

backward left perturbations (107.0tI-15.8 ms; t-test, p = 0.52) and backward right 

perturbations (1 17.5+/-19.1 ms; t-test, p=0.71). Amplitudes of lefi media1 deltoid responses did 



not differ between PD-OFF and PD-ON patients. There were no significant differences in peak 

amplitude of ami angles between PD-ON and PD-OFF patients. 

Scaling Effects 

Figure 8 shows that control subjects approptiately scaled their balance correcting responses in 

leg and tmnk muscles to different perturbation velocities (signiticant main effect for velocity, 

p<O.OS). Patients also scaled their balance correcting response in leg and trunk muscles to the 

same degree as (or even greater than) controls when perturbation velocity was increased (no 

interaction between velocity and group, or between velocity, group and direction). There were 

no scaling differences between PD-ON and PD-OFF patients. 

DISCUSSION 

Multidirectional stance perturbations revealed four distinct postural abnormalities in PD. First, 

patients had excessive activity over the ML period pnor to onset of balance correcting activity 

in the antagonist muscle. Second, excessively large balance correcting responses were 

observed in both distal (lower Ieg) and proximal (hip and trunk) postural muscles. PD thus 

appears to be charactensed by global overactivity of automatic postural responses. Third, the 

spatio-temporal coupling was also changed. Medium latency activity in leg muscles changed 

their overall pitch sensitivity, while balance correcting responses in paraspinals lost their roll 

sensitivity and were bilaterally CO-activated. This was associated with stiffiess of the ankles 

and trunk, particularly for backward and laterally directed falling. Fourth, patients had early 

but functionally inadequate compensatory arm responses. Antiparkinson medication gave little 

improvement of these postural abnormalities. These observations will be discussed below, with 

two underlying themes. First, what new information on postural abnormalities in PD was 

obtained using multidirectional perturbations with pitch and roll components, over and above 

previously identified changes using pure pitch plane perturbations. Second, how can analysis 

of ûunk control and protective arm movements improve our understanding of clinical balance 

deficits and fall-related injuries in PD. We will also consider various factors that may affect the 

interpretation of the present results. 



Enhanced Activation of Medium Latencv and Balance Correcting; Remonses 

Posturography studies using pitch plane perturbations reported impaired gain control of ML 

responses in lower leg muscles of PD patients [Scholz et al. 1987;Dietz et al. 1988;Schieppati 

and Nardone 199 1 ;Horak et al. 1992;Bloem et al. 19961. This was reflected by abnormal 

(usually increued) response amplitudes and, in particular, an inability to adapt postural 

responses to the environmentai demands ('postural inflexibility'). Others reported similar gain 

changes in leg muscles of seated subjects [Berardelli et al. 1 983;Diener et al. 19871 and upper 

lirnb muscles [Tatton and Lee 1975;Cody et al. 19861. The present study extends these 

observations to a multidirectional environment and to different muscles. We observed a global 

elevation of ML activity in PD, not only in muscles that showed ML activity in controls (such 

as tibialis anterior), but also in muscles that normally show little ML activity. indeed, healthy 

subjects generally avoid strong activity over the ML penod in in muscles such as soleus, 

presumably because this would counteract later balance correcting responses. This is not the 

case, in muscles such as gastrocnemius and tihialis anterior which have weak or absent stretch 

activity at 50 ms, but have large responses with onsets at 80 ms. [Nardone et al. 1990; Allum 

et al. 19981. Thus, a novel observation in the current study was the presence of distinct ML 

bursts in soleus, gluteus medius and paraspinals of patients that were not present in controls. 

Interestingly, enhanced ML responses in patients occuned even when muscles were unloaded, 

rather than stretched. It is possible that the higher BGA levels of patients facilitated this 

appearance of ML activity in gluteus medius and paraspinal muscles, but not in the lower leg 

muscles. Taken together, our findings suggest that PD is associated with a global impairment 

of ML gain control in any muscle, independent of stretching. Impaired ML gain control 

(particularly for muscles that normally show little ML activity) may contnbute to balance 

impairment in PD, because it leads to CO-contraction just before normal balance correcting 

activity in antagonist muscles. 

Enhanced amplitudes (presumably reflecting impaired gain control) were also observed for 

balance correcting responses. Previous studies using rotational or translational perturbations in 

the pitch plane reported abnomal amplitudes of balance conecting ('long latency') responses 

in tibialis anterior [Allum et al. 1988;Dietz et al. 1988;Schieppati and Nardone 199 1 ;Beckley 

et al. 19931. These abnormalities were associated with a reduced stabilising torque and 



appeared to contnbute to balance impairment in PD [Bloem et al. 1996;Horak et al. 19961. The 

present study extends these observations. Patients had an increased response gain in soleus and 

tibialis anterior for both pure toe-up rotations and perturbations that combined pitch and roll 

components. Theoretically, these higher response amplitudes should have increased the 

stabilising torque about the ankle joint with respect to controls [Keshner et al. 19871. However, 

this was not the case (patients actually had weaker ankle torques), because the antagonist 

musc les showed enlarged ML responses and excessive activity over the balance correcting 

period (see below), leading to counteractive torques. We also observed an increâsed gain for 

balance correcting responses in proximal muscles (gluteus medius and paraspinals), and, 

because of the roll sensitivity of these muscles, this was rnost clearly seen for off-pitch stimuli. 

Thus, balance correcting responses in gluteus medius were markedly increased for backward 

lett perturbations, but no abnormalities were seen using purely toe-dom perturbations. Such 

observations provide a first indication that multidirectional perturbations are needed to fûlly 

comprehend balance abnomalities in PD. However, particularly relevant information was 

obtained regarding the directional sensitivity of balance correcting responses. as will be 

discussed next. 

Reduced Directional Sensitivitv and Postural Stiffhess 

Use of multidirectional perturbations showed that the directional sensitivity of postural 

responses in leg and trunk muscles is changed in PD. in the lower legs, controls pnmarily had 

large balance correcting activity in soleus for toe-down perturbations that initially unloaded the 

muscle. This directional sensitivity was altered in PD, because patients had globally enhanced 

soleus responses across al1 backward perturbation directions. This change of directional 

sensitivity presumably offset the normal agonist-antagonist relationship with tibialis antenor. 

Thus, the overactivity of soleus for backward perturbations, coupled with normally directed 

balance correcting response in tibialis anterior, led to increased active CO-contraction in 

patients. This CO-contraction might be expected to increase stihess of the ankle joint, and 

reduce net joint torques. The latter was indeed revealed by the biomechmical analyses. PD 

patients had a smaller lower leg angular displacement and a decreased change in active AP 

ankle torque between 280-380 ms. Other investigaton also identified ankle stifhess and 

weaker ankle torques in PD [Hufschmidt et al. 199 1;Bloem et al. 1996;Horak et al. 19961. A 



new observation is that ankle torque changes appear to result fiom enlargement of both ML 

and later balance correcting activity, leading to CO-contraction in tibialis anterior and soleus. 

Opposing effects in antagonist muscles explains why ankle torques were weaker, even though 

muscle response amplitudes were increased. Significantly, this CO-contraction was seen in 

particular for backward directed perturbations. This may be one of the mechanisms underlying 

a directional preponderance for falls in daily life. Note that CO-contraction has also been 

observed in PD under various other circumstances, including gait [Dietz et al. 19951, 

maintaining balance against extemal perturbations [Beckfey et al. 1991 ;Dietz et al. 

1993 ;Ho& et al. 1 9961 and self-initiated postural adjustments [Lee et al. 1 9951. 

A similar loss of directional sensitivi ty was noted for muscular and biomechanical responses of 

the trunk. In controls, the normal paraspinal response to roll perturbations is a reciprocal 

relationship between stretched and unloaded muscles. For example, backward left 

perturbations elicited large balance correcting responses in the unloaded nght paraspinal 

muscle, with minimal activity in the lefi paraspinal muscle. In contrast, PD patients 

demonstrated more syrnmetrical activation of paraspinals, with near-equal activation of each 

muscle for both backward left and backward right perturbations. An increased BGA level in 

paraspinals compounded this reduced asymmetry. As expected, the CO-contraction and high 

BGA levels of paraspinals were associated with increased trunk stimiess, as reflected by the 

biomechanical responses of the tank in the pitch and roll planes. For backward left 

perturbations, the rate and maximum amplitude of forward trunk pitch was reduced in PD 

patients. Similar observations (a reduced rate of trunk angular acceleration and an earlier 

reversal in trunk acceleration) were made in PD patients recovering fiom pure toe-up 

perturbations [Allurn et al. 19881. Furthemore, the peak trunk pitch angle at 300 ms was 

significantly reduced for backward directions. Lnterestingly, there were no differences in trunk 

pitch angle for forward perturbations. Together with our observations on ankle muscle CO- 

contraction, these results suggest that PD patients predominantly expenence postural problems 

for backward and lateral falling. 

PD patients also had a reduced rate of trunk roll angle compared to controls, suggesting 

additional stifhess in the roll plane. The high BGA levels in hip and trunk muscles, as 



observed here and by others [Horak et al. 19961, might partially explain ihis roll stiffhess by 

providing a stiffer trunk. Indeed, we have observed an even more radically altered trurik pitch 

and roll profile in a patient with severe proprioceptive deficits, and this stifhess was 

apparently brought about by excessive BGA levels in gluteus medius and paraspinals [Bloem 

et al., submitted]. Some additional stifiess may be explained by the increased ML and 

balance correcting responses in gluteus medius. An additional problem for both patients and 

elderly controls is that their initial trunk roll is negligible compared to younger subjects [Allum 

et al. 200 1 b]. Thus, both elderly controls and PD patients had initial trunk roll (over the first 

150 ms) in the same direction as the platform perturbation. In contrat, young controls have a 

'hinging' response. so that the upper trunk rolls in the opposite direction to platform roll and 

thus moves the COM away fiom the downhill side [Carpenter et al. 1999bl. Therefore, it is 

possible that some aspects of trunk stiffhess in PD (particularly in the roll plane) may be 

compounded by age-dependent alterations in e.g. viscoelastic properties of muscles, joints or 

ligaments. 

Our observations shed new light on the pathophysiology underlying trunk instability in PD. It 

has long been believed that balance deficits in PD are 'negative' phenomenon, characterised by 

loss O l normal postural responses. For exarnple, when seated patients w ith postencephaletic 

parkinsonism are tilted laterally, righting responses of the mink seem absent because patients 

fa11 passively sideways into the direction of tilt, without making compensatory movements 

[Martin 19651. This absence of postural tnink responses seemed to be caused by defective 

central processing of vestibular feedback, because patients with labyrinthine defects showed a 

similar lack of tnink movements. However, this observation has pwzled subsequent 

investigaton who failed to observe vestibular deficits in PD (reviewed by Bloem 1994). We 

have now observed a similar absence of compensatory trunk movements in the roll plane, yet 

this was not caused by lack of postural activity, but rather by excessively large and co- 

contracting responses. Note that Martin did not record EMG of postural responses to tilt, but 

only used visual inspection of cinematograph records to analyse tnuik movements. To the 

naked eye, his Parkinsonian patients may certainly have looked similar to vestibular loss 

patients. However, we are aware that the pathophysiology of hunk instability is different in the 

two groups [Carpenter et al. 20011, with excessive CO-contraction occurring in Parkinsonian 



patients. As such, the postural trunk deficits in PD would be better classified as a 'positive' 

phenornenon of basal ganglia dysfûnction. 

Protective Arm Movements 

Arm movements are an important defence strategy against unexpected balance perturbations 

[Nutt et al. 1993;Maki and McIlroy 19971. Protective a m  movements would be particularly 

vital for PD patients to compensate for the above-descnbed abnormalities of automatic 

postural responses in leg and trunk muscles. Controls had onset latencies in deltoid muscles 

that ranged between 121-140 ms, i.e. very similar to onset latencies for balance conecting 

responses in distal and proximal postural muscles. In contras1 to our prediction. PD patients 

had significantly earlier deltoid responses (range 1 14- 1 19 ms) than controls. This unexpected 

observation can be explained in several ways. First, it is possible that the reduced onset latency 

in patients is caused by an early o c c h n g  'startle' reaction that precedes and blends with the 

normally timed balance correcting response. Startle reactions have rarely been studied for 

somatosensory stimuli, but if there is any resemblance to the acoustic startle reaction, then the 

observed onset latencies would be appropriately timed to represent such startle responses 

[Rothwell 19941. Acoustic startle reactions normally habituate rapidly, and this also occurs 

(even in PD) for postural 'startle-like' responses evoked by unexpected platfonn movements 

[Bloem et al. 1 998bI. However, habituation of postural responses is diminished when subjects 

are prepared to execute a motor task [Valls-Sole et al. 19971, as was the case in Our 

expenments. Furthemore, it is possible that habituation was reduced by the postural threat of 

our randomly mixed and multidirectional perturbations. Note that most of our patients were 

fearhil and had low balance confidence scores. Interestingly, others have observed 

significantly earlier onset latencies for posterior deltoids during large compared to small 

translational perturbations (90 ms and 106 ms, respectively) WcIlroy and Maki 19941. The 

shorter latencies were perhaps associated with an increased postural threat or startle. 

A second possibility is that the early responses in PD represent some fom of triggered or even 

'over-leamed' voluntary responses [McIlroy and Maki 19951. indeed, both healthy subjects 

and PD patients can activate arm muscles much earlier than under normal volitional control 

when movement is accompanied by a startling (acoustic) stimulus [Valldeoriola et al. 19981. 



Interestingly, the motor cortex projects not only to contralateral deltoid muscles (using fast- 

conducting corticomotoneuronal projections), but also projects to lefi and nght deltoids via 

somewhat slower bilateral connections [Colebatch et al. 19901. This bilateral projection could 

well be involved in the bilateral ami movements seen in our study. The possibility of an early 

voluntary response is supported by the f i e r  reduction in onset latencies following intake of 

anti parkinson medication, because this reduces brad ykinesia and akinesia. However, akinesia 

should result in delayed onset latencies for PD-OFF patients, with perhaps a retum to more 

normal latencies in PD-ON patients, but this was not observed. 

A third possibility is that a distinct ML response was elicited in PD patients that blended with a 

normally timed, later balance correcting response. Indeed, closer inspection of the deltoid 

muscle traces reveals an initial peak in PD patients, which is not present in controls. This early 

response could be similar to the increased ML responses seen in leg and trunk muscles of 

patients, and would thus represent yet another muscle affected by abnormal ML gain control. 

Our observations of earlier and larger deltoid responses in muscles for PD-ON patients 

compared to PD-OFF patients are consistent with the similarly enlarged ML responses in 

tibialis anterior and soleus for PD-ON patients. 

The larger and earlier arm muscle responses raises the question whether patients inadequately 

executed their protective arm movements. The biomechmical analyses provide the impression 

of inappropriate arm responses. in the pitch direction (backward Falls), PD patients had 

decreased forward ami movements compared to controls. Moving the m s  forward normally 

moves the body's COM forward and thus acts to counter the backward body displacement 

following toe-up perturbations ('countenveight' function). In addition, arm raising creates 

reaction moments at leg and trunk joints that may aid or disrupt stability, depending on the 

direction of ami acceleration or deceleration [Eng et al. 19921. interestingly, backward arm 

movements (elicited by forward perturbations) did not differ between PD patients and controls. 

This observation again emphasises the increased difficulty of PD patients to compensate 

backward falis, relative to foward fails. 



In the roll direction, controls abducted their m s  relative to the trunk. Others made similar 

observations in sitting [Martin 19651 and standing subjects [Maki and Mcllroy 19971. Because 

the tmnk fell in the sarne direction as the platform movement, these abduction movements of 

the arms in controls were likely protective in nature and served to either grasp the rail or brace 

for a fall. PD patients had distinctly different a m  roll responses compared to controls. After 

150 ms, they initially adducted their arms (bringing them closer to the t h )  for al1 

perturbation direct ions, inc luding pure toes-up perturbations (which elicit negligible responses 

in controls). ARer 300 ms, the a m  movements were reversed and abducted, similar to controls, 

but still rernained adducted. Taken together, our findings suggest that (despite early and large 

muscle responses) protective arm responses are poorl y executed in PD patients. 

Note that we could not test stepping reactions, which represent another important protective 

postural response [Nutt er al. 1993;Maki and Mcllroy 19971. The feet of our subjects were 

strapped to the platform for safety reasons (in view of the small support surface), and to 

maintain constant foot placement and body orientation between and within subjects. Denying 

stepping responses may have increased the need to compensate with a m  responses and have 

highlighted the abnormalities in PD. Interestingly, othen have previously shown that 

protective stepping responses are abnormal (delayed and reduced in amplitude) in PD 

[Burleigh-Jacobs et al. 19971. PD patients are therefore saddled with a particularly unfortunate 

combination of inadequate 'reactive' postural responses and poorly executed defensive 

responses. 

Velocity Scaline, 

Velocity scaling of ML and balance correcting responses was preserved in PD. In both groups, 

response amplitudes were larger for fast compared to slow velocities for al1 muscles tested. 

These findings confirm previous observations of normal velocity scaling in PD using 

unexpected translations [Horak et al. 19961. In contrast, scaling to different perturbation 

amplitudes is impaired in PD [Beckley et al. 19931. It thus appean that the basal ganglia are 

responsible for response scaling to perturbation amplitude. in contrast, the basal ganglia 

apparently play a minor role in 'online' scaling of postural responses to perturbation velocity, 

for which the cerebellum seems more important [Timmann and Horak 19971. 



Effects of Antiparkinson Medication 

Antiparkinson medication generally yielded little improvement of postural abnormalities in 

PD. Minor improvements included a decreased BGA and reduced amplitude in gluteus medius 

balance correcting responses. The lack of improvement to postural reactions with medication 

was not caused by an overall treatment failure, because UPDRS scores and Tinetti Mobility 

Index were significantly better in PD-ON compared to PD-OFF patients. 

Some postural abnomalities even appeared to be aggravated by antiparkinson medication. For 

example, we observed increased BGA levels in PD-ON patients, particularly in lower leg 

muscles. This finding contrasts with previously descnbed reductions in muscle tone in PD-ON 

versus PD-OFF patients [Burleigh et al. 19951. A possible explmation for the high BGA levels 

in PD-ON patients rnight be increased voluntary activation due to reduction in bradykinesia. It 

is unlikely that the changes in BGA with medication were due to excessive dyskinesias, 

because patients with scores >2 on the Modified Dyskinesia Rating Scale [Goetz et al. 19941 

were excluded. Fatigue, learning effects and changes in electrode positions or impedance 

(which we tned to keep constant across test conditions) are also unlikely explanations, because 

the testing order was counter-balanced across PD-ON and PD-OFF patients. 

The biomechanical analyses neither showed significant improvement in PD-ON cornpared to 

PD-OFF patients. The A l e  torque remained weaker than controls. Furthemore, there were 

no improvements in t d  stimiess, as refiected by roll and pitch flexibility, or protective atm 

movements with medication. These findings corroborate previous studies which found little or 

no improvement of postural responses with antiparkinson medication [Bonnet et al. 1987;Blin 

et al. 1 99 1 ;B loem et al. 1 9961. 

Possible Confoundinrr Factors 

Various factors may have influenced the observed differences between patients and controls. 

High BGA levels were observed in most muscles of PD patients, including tibialis anterior, 

gluteus medius and paraspinals. Similar findings were reporteci by othen [Scholz et al. 

1987;Schieppati and Nardone 199 1 ;Bloem et al. 1993;Burleigh et al. 1995;Horak et al. 19961. 



BGA markedly affects the amplitude of short latency and ML stretch responses, and 

differences in BGA can partially explain 'changes' in response amplitudes of patients and 

controls [Bedingham and Tatton 1984;Allum and Mauritz 1984;Bloem et al. 19931. However, 

it is unlikely that the observed amplitude differences of ML activity and balance correcting 

responses were attributable to high BGA alone, for three reasons: (a) BGA was corrected using 

a subtraction method, a technique that adequately removes the confounding influence of BGA 

[Bloem et al. 19931; (b) ML and balance correcting responses were significantly enlarged in 

soleus, which did not have elevated BGA levels; and (c) no group differences were observed 

for early stretch reflexes (which are very sensitive to BGA changes [Bedingharn and Tatton 

1984; Allum and Mauritz 1984]), suggesting that the correction for BGA was effective. 

A second possible confounding influence is the stooped posture of PD patients. As noted 

above, patients were purposely studied in their preferred stance, hence initial posture likely 

differed between patients and controls. Indeed, the pattern in patients of high BGA in tibialis 

antenor and normal BGA in soleus also occurs in healthy subjects who assume a stooped 

posture [Bloem et al. 19991. However, this study did not report the amplitude changes we have 

observed for ML and balance correcting responses. It remains possible that a stooped posture 

partially explained the stiffening observed in this study, and further studies are required to 

disentangle the primary ('disease related') postural abnomalities and the secondary 

(compensatory) changes due to e.g. a stooped posture. Such information could help guide the 

development of new treatment strategies for secondary changes, such as physiotherapy to 

improve posture and reduce trunk inflexibility. 

Clinical hplications 

These findings may help clarïfy some clinical features observed in PD, and offer opportunities 

for new treatrnent strategies. Our study is one of the first to provide a pathophysiological 

explanation why PD patients might faIl particularly backward and sideways. Co-contraction 

and concomitant stiffhess of the ankles and trunk seemed to play a major role in causing these 

Falls. In terms of stability, it is unimportant whether this stifiess was pnmarily disease-related 

or a secondary manifestation because, irrespective of its cause, CO-contraction impairs postural 

responses to multidirectional perturbations. Trunk stiffening caused by tonic CO-contraction 



may help to reduce sway under static conditions, but can be deleterious if phasically applied to 

unexpected postural perturbations because the trunk action is forced to 'follow' the direction of 

the fall. Indeed. young healthy subjects whose tnink was 'artificially' stiffened by a rigid 

corset had similarly directed roll movements as PD patients and were severely unstable on a 

moving platform [Grüneberg et al. 20011. An abnormal trunk movement in roll could explain 

the high incidence of hip fractures in PD, which rnostly occur afler falls sideways ont0 the 

affected side [Greenspan et al. 19981. This notion may have particular implications for the 

prevention of hip fractures, e.g. by using physiotherapy to reduce co-contraction and stiffhess 

of the ankles and tmnk [Bridgewater and Sharpe 19971. 

The absence of abduction movements of the arms (as healthy persons do in an atternpt to 

cushion the fall) could explain why wrist fractures are relatively rare in PD. The potential 

association with startle and fear of falls may have therapeutic implications. Reduction of fear, 

perhaps by cognitive training or physical therapy, could help to improve balance control. 

Finally, out results suggest that antiparkinson medication gave little improvement of the 

observed postural abnormalities. This finding highlights the need for development of 

alternative treatments. As mentioned earlier, one promising approach is the use of 

rehabilitative strategies, such as physiotherapy to reduce co-contraction and therefore trunk 

stifhess [Bridgewater and Sharpe 19971. Another option is stereotactic deep brain surgery 

(stimulation or lesions), that often leads to marked alleviation of parkinsonian manifestations 

in the extremities [Bloem et al. 2001bl. The effects on axial features of PD are less well 

studied, but we are currently investigating whether bilateral stimulation of the subthalamic 

nucleus can be used to improve tmnk and ann control in PD. 
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Table 1. Baseline clinical characteristics. Data are displayed as mean î standard deviation or 
as the number of persons, as well as number of persons for which information was available 
(percentage between parentheses). 

Patients (N = 10) Controls (N = I l )  Significance 

Age (yean) 63.7 * 6.1 68.1 * 4.8 p = 0.08 
CVomen 5 (50%) 6 (55%) p = 0.60 
Height (rn) 1.7k 0.1 1.7* 0+1 p = 0.84 
Weight (kg) 70.4 12.6 76.2 k 13.1 p = 0.32 
Duntion of disease ( yem) 10.4 i 7.2 - - 

Fallen (5 3 months) 6 (60%) 1 (12.5%) p = 0.07 
Fear of falling 6 (60%) 1 (1  2.5%) p = 0.07 
ABC scale 6.2 k 1.9 8.9 * 1.1 p < 0.01 
Hoehn & Yahr stage ' 

'On ' condition 2.6 * 0.6 - - 
*Off condition 2.9 * 0.6 - - 

WDRS motor score 
'On ' condition 31.8 i 12.8 0.2 * 0.4 p < 0.001 
*Off condition b*J 39.4 * 14.3 - 

Tinetti Mobility Index, total score 
'On' condition 7.7 5.1 0.0 * 0.0 p < 0.005 
-Off condition b" 10.3 * 6.3 - 

Medication 
Levodopa 1 carbidopa 9 (90%) - 
Dopamine recepior agonist 8 (80%) - 
Amantadine 8 (80%) - 
Antic holinergic 4 (40%) - 
Other 

Benzodiazepine 4 (40%) - 

Clozapine 4 (40%) - 
Cisapnde 1(10%) - 
Omeprazol 1 (10%) 1(17%) 
Diuretics O ( 0%) 1 (17%) 

individual Hoehn and Yahr stages were stage 1.5 (n = 1), stage 2.5 (n = 6), stage 3 (n = 2) 
and stage 4 (n = 1) for the ON condition, and stage 2.5 (n = 4), stage 3 (n = 2) and stage 4 (n = 

1) for the OFF condition; seven patients were tested during the OFF condition; controls were 
only tested once; p = 0.06 (ON versus OFF); p < 0.05 (ON venus OFF); p = 0.07 (ON 
versus OFF) 
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ABSTRACT 

Previous studies have show significant effects of increased postural threat in even healthy 

young individuals when standing, performing voluntary postural tasks or recovenng fiom an 

unexpected push from behind. However, al1 of these studies exarnined postural control in only 

the sagittal plane. The present study examined how increased postural threat influenced 

postural reactions to unexpected surface rotations in multiple directions. 

Ten healthy young adults (mean age 25.5, range 22-27 yean) were required to recover fiom 

unrxpected rotations of the support surface (7.5 deg amplitude, 50'1s velocity) delivered in six 

different directions while standing in a low postural threat (surface height 60 cm above 

ground) or high postural threat (surface height 160 cm above ground) condition. From full 

body kinematics, joint anguiar displacements and total body centre of mass (COM) 

displacement and velocity was calculated. Electromyographical data from 10 di fferent postural 

leg, hip and tank muscles was collected simultaneously. 

lncreased postural threat caused significant increases in the automatic balance correcting 

responses (120-220 ms after perturbation onset) in al1 postural muscles. Despite this increase, 

the directional sensitivity of balance correcting activity was preserved in al1 muscles except in 

two muscles. Altered pitch sensitivity in biceps femoris and roll sensitivity in paraspinals was 

observed. Peak anterior-posterior displacements of COM were reduced when postural threat 

was increased, which was likely achieved through CO-contraction of leg and trunk muscles and 

increased a m  movements. increased postural threat was also related to significant reductions 

in perceived balance confidence and perceived stability and increases in perceived anxiety. In 

conclusion, postural threat has been shown to significantly increase muscle reactions and 

reduce biomechanical responses comprising responses to an unexpected perturbation and 

should be strongly considered as a potentially confounding variable when using dynamic 

posturography to diagnose patients in whom fear of falling may be prevalent. 



INTRODUCTION 

Fear of falling has been shown to have a significant reiationship with balance control and 

falling, especially in the aging population. Approximately 50% of oider adults who have 

previously fallen have reported having a feu of falling ( M e n  et al. 1994; Niino et al. 2000; 

Tinetti et al. 1994; Vellas et al. 1997; Walker and Howland; 1991). Fear of falling does not 

only occur following a fall, since over 30% of older individuals who have never fallen report a 

fear of falling (Downton and Andrews, 1990). Fear of falling has been shown to be related to 

an increased nsk of falls (Cumming et al. 2000) as well as irnpairments to balance and gait 

control (Tinetti et al. 1994; Vellas et al. 1997; Meyen et al. 1996; Hill et al. 1996). 

Recent efforts have been made to determine how feu of falling may contnbute to specific 

aspects of balance control. It has been established that increased postural threat can cause 

significuit changes in postural sway, muscle tone and ankle stifhess during quiet standing, 

which are indicative of a tighter control of the COM. both in young healthy adults (Carpenter 

et al. 1999a; 2001 a; Adkin et al 2000) and in elderly (Carpenter et al. 1999b). Increased 

postural threat also influences the preparatory postural adjustments and subsequent voluntary 

control of a rise-to-toes task (Adkin et al. 2001a). 

In al1 of the aforementioned studies, postural threat was manipulated by altering the height at 

which the participant stood above the ground (Carpenter et al. 1999a; 200 1 a; Adkin et al. 

2000; 2001a). Alterations of surface height, using an elevated maze, also is comrnonly used in 

studies with mice to examine anxiety related behaviour to different phannacological or genetic 

manipulations of anxiety (Lepicard et al. 2000). In humans, increasing the surface height on 

which an individual stands has been shown to significantly alter their perceived balance 

confidence, perceived anxiety, as well as cause physiological changes such as increased blood 

pressure (Carpenter et al. 1999b) and increased skin conductance (Adkin et al. 2001 a). 

However, most falls in the elderly do not occur during quiet stance, but instead are a result of 

environmental conditions or unexpected perturbations to balance (Holliday et al. 1990). 

Therefore, a more interesting question is how increased fear of falling can influence automatic 

postural reactions to unexpected perturbations to stance. Fear of falling fkequently has been 



implied as a possible confounding factor which may influence postural reactions to unexpected 

perturbations (Bloem et al. 2001 ; Maki and McIiroy, 1996; Maki and Whitelaw, 1993). 

However, there have been few studies that have exarnined the extent to which fear of falling 

may influence postural reactions. It has been found that fear of falling and decreased balance 

confidence are prevalent in patients with balance deficits, such as vestibular Ioss, 

proprioceptive loss (Yardley and Hallam, 1996) and Parkinson's disease (Adkin et al 2001 b; 

Carpenter et al. 2001b). Therefore, any interaction between fear of falling and postural 

reactions rnay play an important role as a confounding factor when trying to use dynamic 

posturography to diagnose or discriminate between those patients in whom fear of falling may 

be prevalent, and those with the same disease state, but without a fear of falling. 

Brown and Frank (1997) were the first to examine the influence of increased postural threat on 

postural reactions to unexpected perturbations. Participants were required to recover fiom 

unexpected perturbations delivered to the back while standing under diffèrent conditions of 

postural threat, manipulated through changes in surface height. The results reveaied significant 

changes in the peak magnitude and time to peak velocity of COM displacement which were 

consistent with a stiffening control strategy when standing in conditions of increased postural 

threat. However, the limitations of the study by Brown and Frank (1997) were that the 

perturbations were delivered in a constant direction (relative to the location of postural threat) 

and caused predictable falls in a single pitch plane. It is unclear to what extent findings 

established in the purely pitch plane can be applied to other directions of falling, which rnay 

occur more fiequently in natural conditions. For example, lateral falls cm account for up to 23- 

43% of reported falls (Maki and Mcllroy, 1998) and represent the greatest threat for hip and 

wrist Fractures (Cummings and Nevitt, 1994). It might be hypothesized that falls which contain 

a lateral component may pose a greater risk of injury and thus may elicit more distinct changes 

in postural control than pitch directed falls when standing in conditions of increased postural 

threat . 

Differences for postural control in pitch and roll planes to conditions of increased postural 

threat cm be better examined using postural reactions which include those to multi-directional 

perturbations. Other balance characteristics in normal (Carpenter et al. 1999c; Henry et al. 



1998, Maki et al. 1994a) and pathological populations (Carpenter et al. 2001b, 2001c) have 

been recently discovered using multidirectional perturbations which were previously 

undetected b y pitch plane perturbations. 

Therebre, the goal of the present study was to examine the influence of increased postural 

threat on postural reactions to unexpected surface rotations in combinations of both the pitch 

and roll planes. We have utilized different surface heights on which a person stands as a 

method of manipulating postural threat in otherwise healthy young adults. We have examined 

muscle activation patterns as well as segment and COM displacements to determine how both 

neuromuscular responses and resulting movement strategies may be influenced by an increase 

in postural threat. 

METHODS 

Subiects 

Six male and four female univenity students (mean age 25.5 +/- 5.3 years) volunteered to 

participate in the study and provided informed consent in accordance with guidelines outlined 

by the Human Ethics Committee, University of Waterloo. Each participant w u  free from any 

neurological or othopaedic disorder as verified by self report. Pnor to the expenment, 

anthropometnc measures were recorded, including height (mean 174.5 +/- 9.9 cm), weight 

(73.4 +/- 11.7 kg ) and leg length (86.7 +/- 6.7 cm). Subjects were tested barefoot, and wore 

tight fitting clothing. 

A~paratus 

As shown in figure 1, surface rotations were delivered using a single axis rotating platfom 

which was bolted firmly to the front edge of a PENTALFT hydraulic lift (minimum deck 

height = 20 cm, maximum=l60 cm). The motor for the rotating platform could be swivelled 

180' around a vertical auis, relative to its fixed base. A footplate with heelguides was attached 

to the top surface of the rotating platform that could also be swivelled 1 80° around a vertical 

axis. Therefore, with this system, the top of the rotating platfom (on which the participants 

stood) could be maintained in a constant position, while the axis of rotation delivered by the 

platfom motor could be manually turned relative to the position of the participant to achieve 



platform rotations in multiple directions. This method is distinctly different han that used by 

Moore et al. (1988) in which the participant was tumed relative to the axis of platform rotation. 

The benefit of the present apparatus was that the participant was completely unaware of the 

direction of upcoming rotation. 

The distance of the axis of rotation to the front edge of the hydraulic lift was 38 cm. The top 

surface of the rotating platform was 40 cm above the deck of the hydraulic lie. Therefore, 

when the hydraulic lifl was in the lowest position, the top surface of the rotating platform was 

60 cm above the ground. Handrails were located 38 cm on the lefi and right side of centre of 

the rotating platform and bolted to the deck of the hydraulic l if i  so they could be raised along 

with the moving platfom. There were no handrails located either in the front or back of the 

plat fom. Handrails were 165 cm long and 125 cm high above the top surface of the rotating 

platform (figure 1). 

Procedure 

Participants initially were fitted securely with a climbing hamess that would support body 

weight from straps under the legs and around the shoulders and chest. Participants were seated 

while the hydraulic li A was raised to the tint surface height condition, representing either a 

low postural threat (surface height fiom top of rotating surface to ground = 60 cm) or high 

postural threat (surface height from top of rotating surface to ground = 160 cm) condition. 

Order of initial surface height presentation was counter-balanced between subjects to remove 

any confounding effects due to learning. Seated participants completed questionnaires probing 

their balance confidence and task specific balance efficacy related to their ability to recover 

from balance perturbations at the height at which they were presently seated (Adkin et al. 

2001 b). Subjects then stood on the platforni and the heelguides were adjusted to align the ankle 

joints with the pitch axis of the platfom. The heelguides maintained a constant stance width 

and foot angle within and between participants. The feet were lightly strapped across the 

bndge of the foot to the surface of the platfonn and a climbing rope, attached to the ceiling, 

was fixed to the back of the safety harness. The supporting rope had enough slack so as to not 

provide any cutaneous information during normal movements on the platform, while still able 

to provide support in case of a fall. Two spotten were arranged with one on the hydraulic lift 



behind the participant, and the other on the floor to the side of the hydraulic lift to lend support 

in case of a fall. 

Participants were required to focus on a target on the wall approximately 6 m ahead and 

assumed a normal upright standing position, with knees straight and arms hanging comfortably 

at their sides. While standing in their 'preferred stance' position, a temporary ink marking was 

made on the side of their leA lower leg which was aligned with a sight mounted on a fixed 

ngid rod located lateral to the left leg. Prior to each perturbation, the sight was used to venfy 

that the subject was standing in their preferred stance position before the next perturbation 

was initiated. Subjects were presented with 37 randomly directed platfom rotations in one 

series. Ail platform rotations were at a constant amplitude (7.5 deg) and had a velocity of 50 

deg/s. The first trial of each series was an adaptation trial, which was excluded fiom fùrther 

analysis to reduce habituation effects (Keshner et al. 1987). The following 36 perturbations 

consisted of 6 different directions, each randomly presented 6 times. Directions were achieved 

by uniocking the tuming mechanisms on the motor and top plate of the rotating platform, and 

manually turning the pitch axis of rotation relative to the participant. Directions were each 

separated by 45 deg and will be referred to using clockwise notation, as if viewed fiom above. 

The perturbation directions were forward (toes-down - 0°), backward (toes-up - 180") and four 

combinations of pitch and roll including fonvard nght (4S0), backward nght (13S0), backward 

left (22S0) and forward left (3 15'). Between each trial, the orientation of the platform was 

manually altered by the experimenter without revealing the identity of the subsequent trial to 

the subject. Subjects were pexmitted to grasp the handrails in between each trial while the 

onentation of the platfonn was changed, however they were required to continuously look 

ahead at the target and were not aware of the new orientation of the platform. 

At the end of each series of 37 trials, the feet were unstrapped, and the participant performed a 

1 minute trial of quiet stance with eyes open and arrns hanging at the sides. The participant was 

then seated and completed questionnaires on perceived anxiety and perceived stability with 

respect to their previous performance at the present surface height. A 5 minute rest was given 

to remove any possible effects due to fatigue, after which the platfonn was moved to the 

second surface height condition (either low or high). 



M i l e  seated at the new surface height, questionnaires regarding the subject's balance 

confidence and task specific balance efficacy were repeated. Subjects stood and were required 

to assume the sarne normal 'prefened stance' as in the previous height condition, by enswing 

the marking on the lower leg was aligned with the sighting rod on the platfom fiame. A 

second series of 37 randomly presented platfom rotations was perfomed (36 trials plus 1 

adaptation trial) followed by a one minute quiet standing trial. Participants were then seated 

and completed the perceived anxiety and perceived stability questionnaires, with respect to 

their latest performance at the new surface height. 

Data Collection 

Recordings of al1 biomechanical and electromyogaphical (EMG) data commenced 2 seconds 

pnor to the onset of the perturbation and lasted 5 seconds. EMG recordings were sarnpled at 

1024 Hz. Electromyographical recordings were made fiom disposable surface electrodes, 

placed 2 cm apart along the muscle bellies of 10 different muscles: 1cR soleus, lefi tibialis 

anterior and bilaterally on rectus femoris, biceps femoris, gluteuç medius, paraspinals and 

medial deltoids. Electrode leads were attached to a prearnplifer unit which was attached to the 

rail beside the participant during testing. Therefore, no additional weight or encurnberance was 

placed upon the participant. Kinematic data was recorded at 64 Hz using the OPTOTRAK 

(Northern Digital Canada Inc., Waterloo) motion analysis system. Twenty-one infrared 

emitting diodes (ireds) were placed on anatomical landmarks (bilaterally on the ankle, knee, 

greater trochanter, anterior superior iliac spine, iliac crest, lower nb, shoulder, elbow, wrist, 

temple and centre of zyphoid). Three additional ireds were placed at the front corners and 

centre of the forceplate to define pitch and roll movements of the moving platform. 

Prior to each series of perturbations (both at low and high threat conditions), seated 

participants were required to estimate both their general balance confidence as well as their 

task specific balance efiicacy in their abilities to (1) avoid a fall, (2) maintain concentration, 

(3) overcome worry, and (4) reducing nervousness during the postural task of recovering from 

an unexpected perturbation. This is in keeping with recommendations of McAuley and 

Mihalko (1998), that efficacy mesures must be developed which are specific to the task. 



General balance confidence was estimated on a percentage scale at each surface height, with O 

representing no confidence and 100 representing complete confidence. 

After the completion of a series of postural perturbations and quiet stance mals at each surface 

height, seated participants completed perceived anxiety and perceived stability questionnaires. 

Perceived anxiety was assessed using a 16 item questionnaire, contextually modified from 

Smith et al. (1990), which probed 3 different elements of anxiety: somatic, worry, and 

concentration. Participants were required to score each item using a 9 point scale ranging fiom 

(1) '1  don't feel at all' to (9) '1 feel extremely'. For example. one question pertaining to 

somatic related mviety (modified context underscored) reads 'My heart was racing when 

standing at this height' . Items were summed for a total perceived anxiety score for each threat 

condition. Perceived stability was estimated on a percentage scale, with O representing a 

feeling of complete instability and 1 00 representing a feeling of complete stability. 

Data Anal~sis 

Zero latency for each trial was determined as the fint inflexion of the platfonn angle measured 

fiom an angular potentiometer. EMG signals were digitally full wave rectified and low pass 

filtered ai 100 Hz. For each trial, background activity recorded 500 ms prior to perturbation 

onset was averaged for each muscle and subtracted fiom the rest of the EMG signal. EMG 

areas for al1 Ieft sided muscles were calculated using trapezoid integration within pre- 

determined time intervals associated with early stretch (40- 100 ms), medium latency responses 

(80- 120 rns), balance correcting responses (1 20-220 ms), secondary balance correcting 

responses (240-340 ms) and stabilizing reactions (350-700 ms). 

in order to determine the asyrnmetry of paraspinal muscle activity for perturbations containing 

a roll component wr calculated an 'asymmetry ratio'. The asymmetry ratio was calculated by 

dividing the EMG areas (between 120-220 ms) recorded for backward lefi perturbations by 

those recorded for backward nght perturbations. Purely symmetrical responses between the 

two perturbation directions will have a ratio equal to 1, whereas smaller or larger ratios 

indicate asymmetrical activation. 



Onset latencies for stretch refiexes and balance correcting responses in left sided muscles were 

calculated for each trial and muscle. For each subject, the six individual muscle traces for a 

specific direction in a single senes were displayed together on a screen. EMG latencies were 

determined using a semi-automatic computer algorithm that selected the first point that activity 

rose (and remained active longer than 50 ms) over a threshold of 2 standard deviations above 

mean activity calculated over the 500 ms perîod just prior to perturbation onset. Each latency 

first was selected by the computer algorithrn, then approved or manually corrected by the 

operator. The sarne operator selected al1 of the latencies to maintain consistency across trials. 

Note that EMG fiom one subject could not be used for analysis due to equipment difficulties. 

Across al1 subjects, a motor artifact was found in the lefi paraspinal traces which prevented 

further analysis. Thus, for graphical purposes throughout the paper, the mirror image of the 

directional responses of the right paraspinal muscle will be used to represent the ieft muscle 

responses. 

Total body COM dispiacement was calculated in the anterior-posterior (A-P) medial-lateral 

(M-L) and vertical directions using a 14 body segments mode1 which included 2 lower legs, 2 

thighs, pelvis, 4 trunk, 2 upper am, 2 lower arm and a head segment (for details refer to 

Winter et al. 1997). Position data was digitally filtered at 25 Hz using a zero-phase shift, dual 

pass Butterworth filter, fiom which segment angular displacements were calculated in the pitch 

and roll direction for each body segment. Al1 EMG areas, latencies and kinematic results were 

averaged across perturbation direction. Subject averages were averaged together to yield group 

averages for low and hi& threai conditions. 

The mean position of COM was calculated for each one minute standing trial. The mean value 

was then subtracted fiom each signal and filtered at 1.2 Hz using a zero-phase shift dual pass 

Butterworih filter. Root mean square (RMS) and mean power fiequenc y (MPF) were 

calculated fiom the filtered COM signal (with the bias removed) for each standing trial. 



Statistical Analysis 

Al1 EMG areas, latencies and kinematic results were examined using a 2 x 6 (threat by 

direction) repeated measures between and within subject anal ysis of variance. Al1 signi ficant 

main and interaction effects were further analysed using individual t-tests with a level of 

signficance of 0.05. Mean position of COM, RMS and MPF values calculated over the one 

minute standing trials were analyzed using a repeated measures one-way analysis of variance, 

with a level of significance of 0.05, Similarly, scores for general balance confidence, task 

specific balance efficacy, perceived anwiety and perceived stability were also exarnined using 

repeated measures one way ANOVA, with a level of significance of 0.05. 

RESULTS 

Sement Movements 

As show in figure 2, backward left perturbations caused the ankle initially to be àriven 

passively into dorsi-flexion. At the sarne time the lefl lower leg segment rotated backwards, 

reaching a peak angular displacement at 250 ms after the onset of plat fom rotation (figure 3). 

Backward lower leg rotation, pulled the knee into extension and caused the upper thigh 

segment to also pitch backwards. With the leg segments falling backward, the pelvis and mink 

segments pitched forward in the opposite direction (figure 2 and 3). Peak angular displacement 

was almost two times greater in the pelvis segment than for the upper rmnk segment. 

In general, when the platfom rolls to the left, the lower leg, ihigh and pelvis are rolled to the 

left, while the upper trunk is rolled in the opposite direction to the right (figure 3). Similar to 

pitch directed displacements, the pelvic segment had the largest angular deviations compared 

to al1 other leg and tmnk segments. The pelvis began to roll left at approximately 50 ms and 

reached a peak left angular displacement of 2.5 deg by 200 ms. In contrast, the upper trunk fell 

to the right, in the opposite direction to roll displacement of the thigh and pelvis. Trunk roll 

angular displacement occurred around 30 ms and reached a peak amplitude of 1.2 deg at 

approximately 200 ms. 

Standing in a high threat condition had only minor influence on segment displacements for 

backward left perturbations (figure 3). In the high threat condition, backward rotation of the 



lower legs was reduced in amplitude but had similar velocity compared to the low threat 

condition. The degree to which the knee was pulled into extension was slightly reduced in the 

high ihreat condition, and remained less extended throughout the trial. There were minimal 

differences in the angular displacement profiles of both the pelvic and mink segments, which 

pitched forward with similar peak amplitude and time to peak velocity in both the low and high 

threat conditions. in the roll plane, there were no noticeable differences in the traces of any of 

the leg, knee, pelvis or tmnk roll angle for backward left perturbations between the two height 

conditions. 

Forward lefi perturbations elicited segment displacements which were distinctly different from 

backward lefi perturbations in the pitch plane, with similar displacements between the two 

perturbations observed in the roll plane (figure 2). As shown in figure 4, as the plat forrn rotated 

Forward and to the left, the ankle becarne plantarflexed and inverted. The lower leg fell 

forward, reaching peak forward rotation after 200 ms, then retuming slightly more vertical 

position where it was held throughout the remainder of the trial. The thigh segment was 

simultaneously pitched backwards reaching a peak angular displacement with sirnilar time to 

peak as seen in the lower leg (200 ms). Fonvard lower leg rotation coupled with backward 

upper leg rotation resulted in a rapid flexion of the knee joint before straightening to within 1 

deg of initial standing posture by 500 ms. The pelvic segment was tint displaced backward, 

then revened direction and pitched fowards after 150 ms. It should be noted that the overall 

pitch displacement of the pelvis was small for forward lefl perturbation (less than 1.5 deg) 

compared to the larger (>4 deg) rotation observed for backward left perturbations (figure 3 and 

4). The upper trunk also pitched backwards for foward left perturbations. Tmnk pitch 

backward displacernent was later than for the pelvis, and continued to rotate backwards until 

350 ms when it became relatively stable. 

Roll angles for forward lefl perturbations were similar to those observed for backward lef? 

perturbations. As s h o w  in figure 4, the lower leg had minimal roll rotation to the left which 

did not begin until after 200 ms. The thigh and pelvic segments were rotated to the left in the 

same direction as platforni roll, reaching maximum roll at approximately 200 ms where they 



remained throughout the trial. In contrast, the upper trunk segment rolled in the opposite 

direction (right) to leg and pelvic rotation, with similar onset and time to peak amplitude. 

The effects of increased postural threat had a more dramatic influence on segment control 

during fonvard le fi perturbations compared to backward perturbations. Whereas most 

differences in hi@ versus low threat conditions were in the lower leg angle in backward lefi 

perturbations, forward left perturbations had most changes occumng in the thigh and mink 

segments. There was no noticeable difference in the forward displacement of the lower leg for 

high versus low threat conditions. In contrast, the thigh pitched backwards with a larger peak 

amplitude displacement and remained further back cornpared to the low condition for the 

remainder of the trial. These changes in thigh displacement yielded a larger peak knee angular 

displacement in the high threat condition. Despite changes in peak amplitude, there were no 

observable differences in onset or time to peak displacement for knee angle. Pelvis pitch angle 

reached the same peak amplitude in the high compared to low condition, but maintained a 

more flexed position throughout later periods of the response. Tmnk pitch angle was similar in 

high and low conditions for the first 200 ms. in both conditions the tmnk initially pitched 

backward into extension. However, in the high condition. tank pitch angle was revened afler 

700 ms and brought into a flexed position. in the roll direction, there was less lower leg roll in 

the high compared to low condition. Othenvise, little observable differences in roll angle were 

observed between height conditions for either the thigh, pelvis or trunk segments. 

Protective h Res~onses 

The normal response for compensatory arm pitch movements is to move the amis  in the sarne 

direction as trunk movernent. Therefore, for backward left perturbations, which cause fonvard 

pitch rotation of the trunk, the left a m  pitched forward (shoulder flexion) (see figure 5). 

Shoulder flexion begins around 150 ms and reaches almost 3 deg flexion by 400 ms. The amis 

are then held in the flexed position for the remainder of the trial, likely to counterbalance the 

backward shifi of the COM. Likewise for forward left perturbations, which cause the trunk to 

extend backward, the left arm pitched backward (shoulder extension) (see figure 5). Shoulder 

extension begins at 100 ms and reached peak angle by 200 ms, before being bmught back to 

starting position at 500 ms. Note that left shoulder extension movements (for forward lefi 



perturbation) are much faster and smaller (< I deg) compared to shoulder flexion movements 

(seen in backward Ieft perturbations). Arm movements in the roll direction were found to 

precede arm pitch movements by alrnost 100 ms. However, the fint adduction of the arms, 

between 20 and 200 ms, was likely attnbuted to a passive movement relative to the tnink. For 

lefl perturbations, the trunk rolls to the right in young adults, which will cause the lefi arm to 

fall into adduction relative to the trunk. Afler 200 ms this passive movement of the lefl arm 

was overcorne by active abduction of the arms away from the body. For backward leA 

perturbations the time to peak arm abduction was similar to that of peak arm flexion at 400 ms. 

Arm abduction was less for fonvard left perturbations, returning only to the pre-stimulus 

position by 500 ms. 

Distinct differences in a m  pitch and roll movements were observed when subjects stood in a 

high threat condition. For backward letl perturbations, initial  am^ pitch angle was oppositely 

directed in the high cornpared to the low threat condition (figure 5). As described previously, 

in the low condition the amis were pitched immediately forward in the same direction as tnink 

flexion. However, in the high condition, the arms were brought backwards into extension for 

over 100 ms before changing direction and pitching fonvard similar to the low condition. For 

forward lefi perturbations, backward ami pitch angle is faster and reaches a larger amplitude in 

the high compared to the low height condition. Arm roll movements occurred earlier and 

reached larger peak abduction amplitudes in the high compared to low threat condition. Earlier 

and larger arm abduction in the high height condition was observed for both backward lefl and 

forward le fi petturbations. 

Total Bodv Centre of Mass 

Changes observed in joint and segment profiles appear to successfÙlly control movernents of 

the COM for botb foward and backward directed perturbations. Range of total body COM 

displacement did not exceed 2 cm in either the A-P, M-L or vertical directions for any 

perturbation direction (figure 6). The COM was displaced in the same direction as the platform 

perturbation. As shown in figure ïb, the resultant vecton of A-P and M-L displacement of the 

COM lie along the directions of the platform rotation. Therefore, for backward left 

perturbations, the total body COM was displaced backwards and to the lefi. Forward Iefi 



perturbations caused the total body COM to be displaced fonvards and to the left. COM was 

displaced upwards in backward lefi perturbations, and slightly downward for forward left 

perturbations (figures 6 and 7a). 

In the high threat condition the total body COM had similar patterns of displacement compared 

to the low condition. For both backward lefl and forward lefi perturbations, the peak 

displacement of total body COM was reduced in both the A-P direction, and to a lesser extent 

in the M-L direction (figure 6 and 7a). Upward vertical displacement of total body COM was 

greater in the high standing condition for both backward and forward directed perturbations. In 

the A-P direction, peak displacement was reduced for al1 perturbation directions, except pure 

toes-up rotations (1 80 deg) which was larger. Differential changes in A-P peak COM 

displacement approached statistical significance (height by direction interaction F(5,45)=2.04, 

p<O.O9 15). Similarly, peak M-L displacement of total body COM was reduced in al1 directions 

which had a roll component; however these results were not statistically different (height 

F(1,5)=0.02, p=0.88 10; height by direction F(5,45)= 1.06, pc0.3935). COM displacement in 

the vertical direction was si gni ficantl y di fferent (height F(1,9)=6.06, p<0.0360) between high 

and low threat conditions, with higher peak vertical displacements observed in the high threat 

condition across al1 perturbation directions (mean difference = 0.67 cm) (refer to figure 7). 

Although, the magnitudes of peak COM displacement were altered due to increased postural 

threat, there was no change in the resultant directional vector for the displacement of the COM 

(figure 7b). 

Lee, Hii, and Tmnk Muscle Res~onses 

Backward left perturbations caused the ankle to initially dorsiflex (figure 3) which elicited an 

early stretch reflex in the soleus muscle at an average latency (and standard enor) of 46.4 +/- 

3.05 ms (tigure 8). Extension of the knee joint may be related to a stretch reflex observed in 

biceps femoris (figure 8). As described above, backward perturbations caused the trunk to 

rotate forward, while the total body COM was displaced backward (figures 3,6). These 

changes elicited large balance correcting responses in paraspinals (to control mink flexion), 

rectus femoris (to maintain knee extension), and tibialis anterior (to provide doniflexing ankle 



torque to counteract the backward displacment of COM). Large gluteus medius responses on 

the left side were required to maintain stability of the hip joint in the roll direction (figure 8). 

In contrast, forward left perturbations initially caused the ankle to plantarflex and knees to flex 

(figure 4).These stimulus induced link movements elicited stretch reflexes in different muscles 

including tibialis anterior and rectus femoris with average (and standard error) latencies of 88.0 

+/- 2.33 ms and 85.3 +/- 2.87ms respectively (figure 9). The total body COM displaced 

forward for forward lefi perturbations (figure 2,4), requiring a large balance correcting 

response to be generated by the soleus muscle. Distinct b u t s  of activity dunng the balance 

correcting response period were also recorded in other postural leg and trunk muscles. Lefi 

rectus femoris and biceps femons muscles were CO-activated to provide st ihess at the knee 

and hip joint. Similar to backward pertubations, gluteus medius activity acted to increase 

stability of the hip joint in the roll direction (figure 9). 

In the high threat condition, there were no differences in the latency of the stretch reflexes or 

balance correcting responses for any muscle. The pattern and amplitude of initial stretch 

reflexes in soleus in backward lefi perturbations was similar in the high compared to low threat 

condition (mean and standard error for onset latency = 42.3 +/- 2.09ms). Likewise, for forward 

left conditions there were no significant differences in amplitude or onset of initial stretch 

reflexes in tibialis anterior (83.7 +/- 2.67 ms) or rectus femoris (8 1.6 +/- 2.91 ms). In contrast 

to normal stretch reflexes, differences between threat conditions were observed in subsequent 

balance correcting responses for al1 postural muscles. For example, the amplitude of the 

balance correcting responses were elevated for the high condition for soleus and tibialis 

anterior for forward lefl and backward leA directions respectively (figure 10). For backward 

left perturbations, the largest amplitude changes were observed in the primary balance 

correcting muscles such as biceps femoris, paraspinals, rectus femons and tibialis anterior 

(figure 8). For forward left perturbations there was excessive muscle activity in soleus, biceps 

femoris and paraspinal muscles, a muscle that was minimally activated in the low threat 

condition (figure 9). Distinct bursts of muscle activity were observed during the secondary 

balance correcting penod (240-340 ms) in tibialis anterior muscles that were not present in the 

low condition (figure 9 and 10). Similar increases in secondary balance correcting activity was 



observed in biceps femons with larger amplitude than for low threat conditions. During the 

later penod of time between 350-700 ms there were no observable differences in response 

amplitude or pattern of response with increased postural threat (figures 8 and 9). 

Changes in Amplitude and Directional Sensitivity with Increased Postural Threat 

lllustrating EMG areas on a polar plot, with mean amplitudes plotted along axes that 

correspond to different perturbation directions, allows for an easy visualization of the 

magnitude and directional sensitivity of different postural muscles. The polar plots in figures 

1 1 and 12 depict the magnitude and directional sensitivity of EMG areas calculated over the 

balance correcting penod for al1 muscles recorded on the left side of the body. Statistical 

compatisons revealed a significant influence of threat on amplitude of balance correcting 

responses across al1 directions for al1 muscles analyzed. As observed in figure 1 1, participants 

had larger responses between 120-220 ms in the high compared to low threat condition for 

tibialis anterior (F(1,9)= 13.59, p<0.0050), soleus (F(1,9)=5.06. pC0.05 1) gluteus medius 

(F(1,9)=24.07, p<0.0008) and rectus femoris (F(1,9)=5.43, p<0.0447). All of these muscles 

demonstrated normal directional sensitivity, with response amplitudes for particular directions 

similar to those observed in the low condition. As shown in figure 12, significantly larger 

balance correcting responses were also observed for biceps femoris (F=(1,9)=8.42, pc0.0 176), 

paraspinals (F(1,9)=5.14, p~0.0495) during the high threat condition. in addition to increased 

amplitude of balance correcting response, biceps femons and paraspinals demonstrated a 

change in the directional sensitivity with increased postural threat. In the low condition, 

balance correcting activity in biceps femons was largest for backward perturbations with least 

activity for the forward direction. However, in the high height condition, biceps femoris 

activity was much larger in ail directions, with particularly large differences seen in the 

forward direction compared to low threat condition (figure 12). Paraspinal balance correcting 

activity was normally tuned to backward directions which initially unload the muscle. For 

exarnple, left paraspinal was most active for pertubations backward to the right. Minimal 

activity is observed in the paraspinal muscle initially stretched by the perturbation i.e. 

bacltward left directions for left paraspinal. However, in the high threat condition, paraspinal 

activity became more symrnetrical, with equal amplitude responses seen for both backward lefi 

and backward right perturbations in the le A paraspinal muscle (figure 12). Evidence for more 



symmetrical activation of paraspinals in the high threat condition was supported From 

assymeiry ratios calculated between backward leA and backward right perturbation directions 

for the left paraspinal muscle. in the low threat condition, the median assymeûy ratio was 2.94 

compared to a more symetrical ratio of 1.10 seen in the high threat condition, suggesting equal 

activation of this muscle for both roll directions. 

S houlder Musc le Res~onses 

Baclcward left perturbations elicited distinct bunis of muscle activity in both lefl and right 

medial deltoid activities with onset latencies similar to that seen for balance conecting 

responses in more distal leg and trunk muscles (mean and standard error of onset = 103.7 +/- 

5.87 ms for lefl deltoid). Balance correcting responses appeared to be syrnmetrical, with 

similar amplitudes observed between leA and right deltoids for the same perturbation direction 

(figure 5). These responses were observed without the presence of any prior stretch or 

unloading responses, and retum to resting levels of activation after 150 ms. Forward lefi 

perturbations also elicited distinct balance correcting activity in medial deltoids. Onset latency 

of 106.8 +/- 5.62 rns for left deltoid for forward left perturbations was similar to that for 

backward left pertubations; however the overall amplitude of the response was reduced in 

fonvard compared to backward perturbations (figure 5). 

In the high threat condition, both the onset latency and amplitude of balance correcting activity 

in media1 deltoids was signficantly different fiom responses seen in the low threat condition. 

ANOVA results revealed a significant effect of threat (F(1,6)=9.77, p<0.0204) for onset 

latencies in lefl deltoid muscle. Onset latencies in lefi medial deltoid were earlier (average 18.8 

ms) in the high threat condition for al1 perturbation directions. For exarnple for forward let? 

perturbations, rnean onset latencies (and st. error of mean) were 90.8 +/- 4.09 ms in the high 

threat compared to 106.8 +/- 5.62 ms in the low threat condition. Latencies were slightly 

earlier in the deltoid muscle that was contralateral to the side of the platfom roll compared to 

the muscle on the same side. Balance conecting amplitudes were also larger dunng the high 

compared to low threat condition (figure 5). Differences appeared to be directionally 

dependent, with largest differences observed between threat conditions for fonvard directions 



and in muscles contralateral to platforni ml1 (deltoid right for forward and backward left 

perturbations). 

As s h o w  in polar plots in figure 12 (right panel), significantly larger balance correcting 

responses were present in deltoid muscles (F(1,9)=4.85, pc0.055 1) dunng the high threat 

condition. Deltoid responses were relatively symmetrical in the low height condition, with 

equal amplitude responses for perturbations to the left and to the ri@. However, in the high 

standing height condition, deltoid balance correcting responses were proportionately larger for 

fonvard perturbation directions which rolled away from the side of the muscle. In other words, 

roll perturbations caused the trunk to rotate in the opposite direction to platform roll (figure 3 

and 4). Therefore, under more threatening conditions, deltoid responses seem to be tuned more 

to perturbation directions that will cause the tnink to roll to the same side of the deltoid 

muscle. 

Quiet Standing 

When standing for one minute in the high height, differences were observed in the mean 

position, as well as amplitude and Frequency characteristics of COM displacement compared to 

standing in the low threat condition. The mean position of COM during the one minute 

standing trial was shifted a mean distance of 0.28 cm forward in the high threat condition. 

MPF of COM displacement was increased on average by O.Cl5  Hz in the A-P direction and 

0.023 Hz in the M-L condition in the high compared to low threat condition. Average RMS of 

COM displacement was decreased in the high threat condition by 0.081 cm in the A-P and 

0.040 cm in the M-L direction. it should be noted that these trends did not reach statisticai 

si gni ficance for any variable tested. 

Perceived Amie- and Balance Efficacv 

Postural threat had a significant influence on participant's balance confidence, balance efficacy 

to specifically avoid a fall, perceived anxiety and perceived stability. Participants estimated 

their balance confidence to be signficantly lower (F(1,9)=27.21, p<0.001), and reporteci lower 

self efficacy to avoid a faIl (F(1,9)=13.52, pc0.01) when standing in the high threat compared 

to the low threat condition. Following their performance on the moving the platform, the 



participants reported expenencing significantly higher perceptions of anxiety (F(1,9)=10.55, 

pc0.02) in the high threat condition. In addition, participants felt significantly less stable when 

standing in the high threat compared to low threat condition (F(1,9)=11.12, pC0.02). 

DISCUSSION 

A perceived risk of injury, as a result of postural instability, may contribute to changes in 

postural control through alterations in central set (Brown and Frank, 1997; Adkin et al. 2000). 

Changes in central set, as a result of increased postural threat, have the potential to influence 

postural control in two different ways. First, postural threat may alter aspects of pre-stimulus 

posture, or preparatory postural adjustrnents that precede either a reactive or voluntary postural 

response. Altematively, postural threat may modulate the reactive or voiuntary component of 

the postural response directly. For exarnple, Adkin et al. obsemed changes in the performance 

of a voluntary rise to toes task, as well as the preceding anticipatory postural adjustment in 

healthy subjects standing in a condition of increased postural threat. Brown and Frank (1997) 

also observed changes in pre-stimulus postural parameten, as well as changes in postural 

reaction to an unexpected perturbation when standing in a condition of increased postural 

threat. In the following discussion we will examine the results of increased postural threat on 

postural reactions to multi-directional perturbations with respect to these two possible 

mechanisms of central set. 

Influence of Postural Threat on Pre-stimulus Posture 

Previous studies have shown that increased postural threat cm influence aspects of balance 

control which would precede any reactions to a balance perturbation. Participants have been 

shown to lean away fiom the direction of the perceived threat (i.e. edge of a high surface) and 

therefore, shift the mean position of the COM backward when standing in a high compared to 

low threat condition. Furthenriore, increased background activity in tibialis antenor, and 

decreased activity in triceps surae muscles has been observed in participants standing in more 

threatening conditions (Brown and Frank, 1997, Carpenter et al. 200 1 a). Such changes are not 

unique to studies using environmental changes to alter postural threat. Maki and McIlroy 

(1 996) observed forward leaning and increases in background activity of tibialis anterior in 

anxious subjects while standing and performing a secondary cognitive task. Maki and 



Whitelaw (1993) also showed a tendency to lean foward with expenence and prior 

information. 

Changes in control of postural sway during quiet stance also has been observed when 

participants stood in conditions of increased postural threat. Decreased amplitude and 

increased fiequency of centre of pressure (COP) oscillations have been observed in 

participants standing in high compared to low threat conditions (Carpenter et al. 1999a; Adkin 

et al. 2000). These changes were considered indicative of a stiffening strategy used to exert 

tighter control over the COM under threatening conditions. This hypothesis was later 

supported b y findings showing that ankle sti fhess signi ficantl y increases and amplitude of 

COM decreases under conditions of increased threat (Carpenter et al. 2001a). Elderiy fallers 

with a fear of falling have been s h o w  to have increased amplitude and velocity of COP 

displacemeni (Maki et al. 1994b). In patients with phobic postural vertigo, Krafczyk et al. 

(1999) reported higher Frequency sway and presumably stiffer control compared to normals. 

Taken as a whole, the body of evidence does support a significant influence of postural threat 

and fear of falling on postural control parameters during quiet standing, which may potentially 

influence the normal response parameters of subsequent balance conecting responses. For 

exarnple, increased background activity has been s h o w  to affect amplitude of short and 

medium latency stretch responses and may also influence longer latency balance correcting 

responses (Bloem et al. 1993; Bedingharn and Tatton 1984; Allum and Mauritz, 1984). Pre- 

leaning also has been s h o w  to significantly increase the stretch reflex and decrease balance 

conecting responses to postural perturbations (Diener et al. 1983; Allum and Pfaltz 1985; 

Schieppati et al. 1995; Horak and Moore 1993) and thus may interact with subsequent postural 

reactions (Maki and McIlro y, 1 996). 

In the present study, the same trends for changes in postural sway characteristics were 

observed during quiet standing as reported previously. The mean RMS of COM displacement 

was reduced and mean power fiequency was increased in the high venus low threat condition. 

These changes did not reach statistical significance, but the magnitude of change observed in 

the present study for RMS and MPF are similar to those reported previously (Carpenter et al. 

1999a; Adkin et ai. 2000), suggesting that this is a problem related to small sarnple size. 



Despite the clear indications that postural threat influences postural control during quiet stance, 

we observed no significant changes in the postural control preceding the onset of postural 

perturbations. Background activity was not si gni ficantly increased in any muscle tested in the 

high versus low threat condition when measured 500 rns pnor to the onset of perturbation. This 

implies that pre-stimulus changes in background activity in previous studies rnay have been 

secondary effects related to an unchecked leaning strategy. The lack of observable changes in 

background activity is likely explained by the stringent control of lower leg angle pnor to the 

onset of each perturbation trial. Previous research has shown a signi ficant correlation between 

leaning and background muscle activity (Sinha and Maki, 1 996; Horak and Moore, 1993; 

Carpenter et al. 200la). Negligible changes in background activity and pre-leaning were 

further confirmed by the equal amplitude stretch reflexes in both high and low threat 

conditions. No observable differences in amplitude or timing of the stretch reflexes in the high 

threat condition also argues against any change in alpha motor drive due to increased threat. 

Altematively, pre-stimulus changes seen in previous studies rnay be due to the predictable 

nature of the protocol. hl1 previous studies on postural threat have used either static posture 

(Carpenter et al. 1999a;3001 a; Adkin et al. 2000), or dynamic tasks in which the direction of 

the voluntary movement (Adkin et al. 200 1 a) or postural perturbation (Brown and Frank, 

1997) was predictable and in the same direction as the postural threat. In these circumstances, 

the opportunity exists to use anticipatory postural adjustments in muscle tone or postural 

leaning to improve stability or perfomance in upcoming trials. in contrast, the present study 

employed unpredictable perturbations that were delivered in different directions relative to the 

position of the perceived postural threat. in such situations, using anticipatory changes in pre- 

stimulus posture rnay not be advantageous. For example, it rnay provide protection against 

perturbations in one direction but will have adverse effects for perturbations in other 

directions. Therefore, it rnay be hypothesized that in cases where balance perturbations are 

unpredictable, changes in set due to increased postural threat rnay more likely manifest 

themselves in automatic postural responses which can be appropriately tuned to the direction 

(Moore et al. 1988; Henry et al. 1998; Carpenter et al. 1999c), amplitude (Diener et al. 1984; 

199 1), and velocity of the perturbation (Allum and Pfaltz, 1985; Allum et al. 1993). 



Influence of Postural Threat on Automatic Res~onses 

Central set has been shown to exert significant influence on the amplitude of automatic 

postural reactions to unexpected perturbations, whether through prior knowledge (Maki and 

Whitelaw 1993; Diener et al. 199 1) or expectation (Keshner et al. 1987, Sveistnip and 

Woollacott, 1997; Chong et al. 1 999; Horak et al. 1 989). In the present study postural threat 

was shown to have a significant influence on the magnitude of automatic postural responses in 

leg and trunk muscles. The overall gain of the balance correcting responses were increased in 

al1 muscles recorded when standing in the high threat compared to low threat condition. In 

tibialis anterior, soleus, gluteus medius and rectus femoris, the muscles maintained sensitivity 

to particular directions, suggesting that the responses were being altered online and modulated 

by increased postural threat. These results do not support a global activation pattern, or startle 

response, which would be activated independently for the direction of perturbation (McIlroy 

and Maki, 1994). In biceps femoris and paraspinals, the directional sensitivity was aitered in 

the high threat condition. Biceps femoris had equally large responses for al1 directions, which 

created the largest difference in forward perturbations (directions which had minimal biceps 

femoris activity in the low condition). Paraspinals had a more symmetrical activation panem 

for laterally directed perturbations for high venus low threat conditions. in the low condition, 

left paraspinals had a large balance correcting response for directions which initially unloaded 

the muscle (in this case, back to the right, which causes the trunk to fa11 forward and left). In 

contrast, backward left perturbations cause an initial stretch reflex in the left paraspinals which 

is followed by relatively low balance correcting activity (Carpenter et al. 1999~). When 

standing under high threat condition, the left paraspinal had equally large amplitudes for both 

backward left and backward right directions that would stretch or unload the muscle 

respectively. Presurnably similar symrnetrical activation for both backward left and backward 

right directions would be seen in the opposite paraspinal as well, which would lead to CO- 

contraction between bilateral paraspinals for these directions. hcreased coîontraction in 

bilateral paraspinals and increased activation of biceps femons, and rectus femoris, will al1 

contribute to greater trunk stiffness in the high threat condition. 



Tmnk stiffhess in hi& threat condition was confirmed with the biomechanical analysis. 

During backward lefi perturbations, forward tnink angular displacement and hip angular 

displacement reached a lower peak amplitude with slightly earlier time to peak amplitude in 

the high compared to low threat condition. Increased stiffhess has been previously reported 

clinically in patients with pathological fear related disorders. Tijssen et al. (1995) described a 

temporary generalized stiffness of the body in a subset of patients with excessive startle 

re flexes. Sti ff-man syndrome, involves involuntary sti fmess of the axial muscles induced by a 

startling or emotiona! stimuli (McEnvoy, 199 1 ). Although these are extremely rare clinical 

examples, there existence suggests the possibility that far less dramatic changes in trunk 

stiffness may be achieved using similar pathways in normals responding to a postural threat. 

Pro tec tive A m  Movements 

Protective arm movements provide an important defense strategy against falls (Maki and 

McIIroy, 1997). Unlike leg and trunk muscles which had changes in amplitude but not timing 

or pattern of response. arm muscles responses were significantly earlier and larger in 

conditions of increased postural threat. Lefi deltoid activity had latencies that were, on 

average, 18.8 ms earlier in the high compared to low threat condition across al1 directions (Le 

at 90.8 +/- 4.09 ms in the hi& threat compared to 106.8 +/- 5.62 rns in the low threat condition 

for fonvard left perturbations). McIlroy and Maki (1994) also reported earlier and larger 

activation of biceps brachii muscles in young controls dunng large amplitude compared to 

small amplitude perturbation. It is possible that the larger perturbations represent more 

threatening conditions to subjects and rnay cause earlier arm muscle responses similar to that 

found in the present study under conditions of increased threat. McIlroy and Maki (1995) 

argued that the responses were not startie responses but triggered automatic responses because 

they were scaled to both perturbation size and direction. Valls Sole et al. (1999) have reported 

that some voluntary movements, including arm movements, can have onsets as early as 90 ms 

when accompanied by an acoustic startle stimulus. It is unlikely that the earlier deltoid 

responses seen in the present study are consistent with the early voluntary movements 

triggered by a startling stimulus. Valls Sole et al. (1 999) repocted that the responses were 

shi fled in time, with earlier onset and offset, whereas in the present study, the deltoid responses 



have an earlier onset latency but appear to have the same offset latency (thus an extended 

response duration) in the hi& threat compared to the low threat condition. 

.An alternative explanation is that an earlier startle reflex may have been triggered at 80-90 ms, 

which was blended with the normally timed balance correcting response in the sarne muscle. 

Indeed, when the traces are inspected closely, there appean to be an initial peak in some traces 

pnor to the normally timed balance correcting response which would suggest an earlier burst 

of activity. This is supported by the significantly larger EMG areas for leR deltoid measured 

during both medium latency period (between 80-1 20 ms) and the later balance correcting 

period (between 120-220 ms). However, the presence of slightly earlier and larger amplitude 

responses in the left compared to nght deltoid muscle for left directed perturbations would 

suggest that these responses are oriented to the direction of perturbation and not a simple 

stanle reflex (Mcllroy and Maki, 1994). 

The third possibility is that the rapid early arm movements are a preprogrammed response used 

to exert a early protective mechanism to reduce movements of the COM in threatening 

conditions. Rapidly raising or lowenng the amis has been shown to have significant secondary 

effects on joint moments at other lower leg and hip joints (Eng et al. 1992; Hodges et al. 2000; 

Ishac et al. 200 1). Raising the anns generates reaction moments including an extensor moment 

at the hip, flexor moment at the knee and plantarfiexor moment at the ankle. The net result of 

a m  raising is a forward displacement of the total body COM (Friedli et al. 1988; Eng et al. 

1992; Ishac et al. 2001). The stimulus induced changes in joint angles seen in the present study 

for a toe up rotation, consist of hip flexion, knee extension and ankle doniflexion, with a 

backward displacement of the COM (figure 2). Therefore, the forward pitch rotation of the 

arms (raising relative to the trunk), which is a feature of the response to toe-up rotations, will 

generate intemal reaction moments at each joint which oppose initial stimulus induced 

moments to that caused by the perturbation. Likewise, lowenng the amis @ulling toward the 

trunk) is followed by reactive flexor moment at the hip, extensor moment at the knee and 

dorsiflexion moment at the ankle (Eng et al. 1992; Ishac et al. 2001). For toes down 

perturbations, in which the arms are moved backward (toward the body), stimulus induced 

body movements included hip extension, knee flexion and ankle plantadexion, and were 



accompanied by a forward displacement of the COM (figure 2). Therefore, in this case the 

backward a m  movements will also generate reaction moments which will counteract the 

stimulus induced joint moments caused by the perturbation. The early and larger a m  

activation seen in threatening conditions may be a pre-programmed response to generate 

earlier and larger stabilizing joint moments. 

It is interesting that for backward perturbations am responses are directed differently in the 

high threat condition, being pulled back instead of fiexing forward as seen in the low threat 

condition. One possible explanation is that the amis are initially brought in to the trunk as part 

of an initial startle response. Altematively, the initial backward displacement of the m s  may 

represent a default strategy to protect against a possible faIl toward the edge. In this case, the 

participants may first generate arm movements in anticipation of a fonvard perturbation 

(towards the direction of threat) and then adjust the direction of a m  movements once the 

initial perturbation has been accounted for. 

More detailed analyses of ann movernent strategies and involvement of other shoulder, arm 

and back muscles is needed to further establish the role of compensatory arm responses in 

normal healthy and pathological populations. 

Effects on Centre of Mass Displacement 

The relatively small changes in COM displacement between the high and low threat conditions 

despite significant changes in segments angles and EMG amplitudes supports the notion that 

the COM represents a key variable controlled by the central nervous system. In the high threat 

condition, the A-P displacement of the COM was reduced in magnitude across al1 perturbation 

directions (significmt only at the 0.10 level). This reduction in A-P COM displacement could 

have been achieved by a number of factors such as increased amplitude of muscle activity 

during balance correcting period, increased CO-contraction of paraspinal muscles and larger 

arm movements causing inter-link changes in stimulus induced joint movements. 

Observation of reduced peak amplitude of COM to postural perturbations in threatening 

conditions in the present study was similar to that found previously by Brown and Frank 



(1997). However, there was no evidence for decreased time to peak COM velocity in the 

present study. It is possible that changes in pre-stimulus posture between threat conditions, 

such as increased forward leaning, increased background activity, and presumably ankle 

stiff'ness, contributed to the differences in time to peak COM velocity observed by Brown and 

Frank (1997). In contrast, the more stingent control over the prestimulus posture, and a more 

unpredictable nature of the perturbation directions used in the present study, may explain the 

lack of observable changes in either background activity, postural leaning, or stiffness that 

would have facilitated changes in COM velocity. 

The most significant change in COM displacements with increased threat was seen in the 

vertical direction. For al1 directions, COM was displaced higher in the high threat compared to 

low threat condition. The geater upward movement of the COM potentially could be a 

strategy for converting the kinetic energy which moves the COM off balance to potential 

energy in order to decrease the COM horizontal velocity. 

Less change in M-L displacement of the COM, may have been related to the constant location 

of the percieved threat along the pitch plane. Further research is required to detemine whether 

postural reactions in the roll plane will be more greatly influenced by a postural threat located 

to the side or back of a subject. 

Clinical Implications 

The results of the present study have show that increased postural threat in otherwise healthy 

adults can significantly alter the response characteristics of a postural reaction to a sudden 

perturbation. Unless accounted for, response characteristics related to an increased fear of 

falling in patients with balance deficits may otherwise be falsely attributed to the physiological 

disorder. Particularly, when studies are limited to a small number of muscle responses, or 

perturbation directions, the ability to discriminate between psychological and physiological 

manifestations of a balance disorder may become more diflïcult. For example, PD patients 

tested with a multi-directional protocol have been shown to have increased balance correcting 

response amplitudes, alterations in directional sensitivity of soleus and paraspinal muscles 

which leads to ankle and trunk stifiess, and earlier and larger amplitudes of deltoid muscle 



responses (Carpenter et al. 2001 b). Some of these responses have also been observed in the 

present study in the same muscles of healthy young individuals standing under conditions of 

increased postural threat. These similarities should emphasize the need, both in clinical and 

expenmental conditions, to carehlly consider the potential of fear of falling to influence 

certain aspects of postural behaviour in some patient groups. 

Possible Con foundinrr Influences 

There are a number of factors that may have had a confounding influence on our results that 

should be considered. In the present study only a single constant location of postural threat was 

used (edge of high surface was always located in front of the participant). The pitch oriented 

nature of the postural threat may have restncted Our ability to elicit changes in segment 

movements and COM displacements in only the pitch plane (particularly for forward 

perturbations, which moved the COM toward the edge). However, it should be noted that roll 

perturbations elicit tmnk pitch displacements, as well as tmnk roll displacements. This is not 

the case for pure pitch perturbations which elicit trunk pitch but not roll angular displacements 

(Carpenter et al. 1999~). Therefore, even roll perturbations in the present study would have 

generated postural instability in the mink which was directed towards the direction of the 

postural threat. It is still possible that a different location of the perceived postural threat, (Le. 

positioning the edge of the high surface to the side or behind the participant) rnay yield 

distinctly different postural strategies. Further studies into the influence of the location and 

different types of postural threat should be perfonned to further unravel this issue. 

A second limitation to this study is that no direct physiological measure of fear or anxiety was 

recorded to confirm the threatening nature of our manipulation in postural threat. Previous 

studies using the same surface heights have shown significant changes in blood pressure and 

skin conductance in participants of similar age and characteristics to those participating in the 

present study (Carpenter et al. 1999b; Adkin et al. 2001 a). Nonetheless, participants in the 

present study reported significantly lower balance confidence, decreased stabililty as well as 

increased perceived anxiety while standing under conditions of increased postural threat. 

Sirnilar changes in balance confidence and percieved anxiety have been shown previously to 



parallel changes in physiological measures in participants standing under identical postural 

threat conditions (Carpenter et al. 1999b; Adkin et al. 200 la). 

A third limitation of the present study was the restriction in available recovery strategies to be 

used by the participants. By lightly strapping the feet to the support surface, we have restricted 

the participants ability to take a compensatory step, a strategy which has been shown to be an 

important protective response to unexpected perturbations (Maki and McIlroy, 1996). 

However, it was deemed necessary in the present study to restrict motion of the feet during 

perturbations for two different reasons I )  to ensure safety due io the small support surface 

upon which the subjects were standing 2) to maintain constant foot placement and body 

position between and within subjects. We acknowledge that by denying participant's ability to 

use a stepping responses we may have increased the likelihood to compensate with a m  

responses or other balance strategies. However, similar a m  responses in young adults have 

been observed even when stepping responses were available (McIlroy and Maki, 1994) 

Conc hsions 

Increased postural threat (and presumably fear of falling) has a significant impact on the 

normal postural reaction to unexpected perturbations to balance. Using multi-directional 

perturbations removes the subjects ability to predict the direction of perturbation and with 

control of leaning may eliminate alterations to pre-stimulus posture that may interact with 

subsequent balance correcting responses. in addition, mulii-directional perturbations allows for 

insight into changes in directional sensitivity of muscle responses and segment movements to 

differently directed periurbations, which will contain an element of falling in the direction of 

the threat. hcreased postural threat was associated with increased amplitude of muscle 

responses, and alterations of directional sensitivity in hip and trunk muscles which may 

contribute to increased trunk stifhess. Lack of changes in early stretch reflex amplitudes and 

background activity suggests these changes are not due to leaning or alterations in spinal 

neuronal drive. Arm movements provided an important protective strategy which were larger 

in threatening conditions. These findings may have important implications for using dynamic 

posturography to screen or discriminate between patients which may be prone to increased fear 

of falling. 
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Fi pure 1 Illusnation of apparatus used to deliver multi-directional postural perturbations under di fferent levels of 
postural threat achieved by adjusting surface height. The present photograph depicts the hi@ threat condition 
(surface height 160 cm above ground). 
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Fisure 2 Illustration of initial body segment movements induced by platfonn perturbations directed bachuard to 
the IeR (225 deg) aud forward to îhe Ieft (3 15 deg). Anows represent the direction of absolute initial stimulus 
induced segment rotations of the lower leg, thigh, peivis, upper muiL and upper a m  segments. 
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Figure 3 Segment angular displacements to backward left (225 deg) perturbations (7.5 deg at 50 de&). Traces on 
left panel represent aagular displacements in the pitch plane, whereas txaces on right are in the ml1 plane. Each of 
the traces shows the average for 10 participants to 6 randomized repititions of the stimulus direction. The thick 
black vertical line at O ms represents the omet of support surface rotation A positive defiechon of the traces 
represents absolute backward angular displacernenr, while a negative deflection represents absolute focward 
anguiar displacement. 
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Figure 4 Segment angular displacements to forward lefi (225 deg) perturbations (7.5 deg at 50 de&). Details of 
the responses have been provided in the legend of figure 3. 
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Figure 5 A m  pitch and roll angular displacements relative to the muik are shown in the upper panel for backward 
leA (left panel) and forward lefi (right panel) perturbations. A positive deflection of the traces represents either 
shoulder flexion (pitch) and shoulder abduction (roll) relative to the mu*. A negative deflection of the traces 
represents either shoulder extensioa (pitch) or shoulder adduction (roll) relative to the mink. Bonom panel 
contains average muscle responxs in right and left medial deltoîd muscles. Black sluded area represents periods 
t b t  actirity is greater in the high threat compared to low threat condition. Details of the responses have k e n  
provided U? the legend of figure 3. 
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F i w e  6 Average Iinear displacement for the total body COM for bachuard IeA (225 deg) and forward lefl(3 15 
deg) perturbations. Details of the responses have been provided in the legend of figure 3. 
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Fieure 7 a) Mean and standard error values for peak displacement of COM in the A-P (upper panel), M-L (middle 
panel) and vertical (lower panel) planes for different perturbation directions. b) Resultant vecton calculated from 
peak A-P and M-L COM displacements are shown as directional arrows for each perturbation direction. 
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Figure 8 Mean muscle responses for IeR sided postural leg, hip and trunk muscles for backward lefl(225 deg) 
perturbations. Black shaded area represents penods that activity is greater in the high threat compared to low 
threat condition. Details of the responses have been provided in the legend of figure 3. 
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Figure 9 iMean muscle respows for lefi sided posniral Ieg, hip and muik muscles for forward left (3 15 deg) 
perturbations. Black shaded area represents penods chat activity is greater in the high threat compared to low 
ihreat condition. Details of the responses have been provided in the legend of figure 3. 
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Fipure 10 Profiles demonstrating the balance correcting responses fiom lefi soIeus and leA tibialis muscles 
measured from a single representative participant during both low k t  and high h e a t  conditions. 
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Figure 1 1 Poix plots for average EMG areas For bahce correcting response period (120-220 ms) for left sided 
soleus, tibialis anterio. gluteus medius and rectus femons muscles. Thick black lines represents high postural 
chreat condition; grey filled a m  rcpresent low postural threat condition. Each radial line represents one of six 
different directions (0.45, 135, 180,225,3 15 deg) in clockwise notation. For each direction mean values are 
ploned dong each radial axis with magnitude represented by the distance to the centre. 
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Fi~ure 12 Polar plots for average EMG areas for balance correcthg response period (120-220 rns) for left sided 
biceps fernoris, paraspinals and deltoid muscles. Thick black Iines represents high postural threat condition; grey 
filled area represent tow postural threat condition. Details of the responses have been provided in the legend of 
figure 1 1 .  



CHAPTER 6 

CONCLUSION 

The focus of the present thesis was to examine normal, pathological and psychological factors 

that influence postural reactions fiom two new perspectives. The first goal was to determine 

what previously known aspects of postural reactions, established using pitch plane 

perturbations, can be extended to perturbations in multiple directions, which may more 

accurately mimic events experienced in everyday life. The second goal was to determine what 

new information cm be extracted from multi-directional perturbations that are not available 

when using only pitch plane perturbations. In the following chapter, these two goals will be 

addressed with respect to three different aspects of postural reactions 1) possible triggering 

mechanisms 2) modulation of triggered postural responses and 3) trunk control. 

Trirrering Mechanisms 

The origin of the primary tnggenng mechanism responsible for detecting and initiating the 

cascade of muscular responses required to recover fiom an unexpected perturbation is a 

contentious, and to date, unresolved issue in postural control literature. One view supports the 

theory of a distal to proximal activation of postural muscles, which is triggered primarily from 

proprioceptive input from the ankle joint (Nashner et al. 1982, Horak and Nashner, 1986). This 

theory has been established from observations of an initial early activation of triceps surae 

muscles, followed chronologically by activation in upper leg and trunk muscles. Others have 

reporied observations of early muscle activity in more proximal muscles, such as deltoids 

(Mcllroy and Maki, 1995) and neck muscles (Keshner et al. 1988), which are simultaneous or 

pnor to activity observed in triceps surae muscles. These observations do not support a distal 

to proximal activation pattern that is triggered by early ankle proprioceptive input. Instead, 

they have provided evidence for a second theory which suggests that the primary trigger for 

postural reactions originates in various proprioceptive recepton in proximal sites such as the 

knees, hips, and trunk (Fonberg and Hirschfeld, 1994; Allum et al. 1993, Bloem et al. 2000; 

Hontmann and Dietz, 1990; Do et al. 1988; Di Fabio, 1995). 



Using single directional perturbations may not provide a complete picture of the mechanisms 

involved in triggering postural reactions. For example, certain joints may not be displaced by 

perturbations within a particular direction, but may be greatly influenced by other types or 

direction of perturbation. For example, the knee joint remains locked into extension for pure 

toe-up perturbations, but has large flexion movements to both toes down and roll perturbations 

(Carpenter et al. 1999). Similarly, certain muscles may provide important triggering 

information which are more sensitive to lateral displacement of the joints through 

combinations of stretch and unloading of bilateral muscles. Therefore, by using multi- 

directional perturbations, significant new information has corne to light which rnay reshape 

present hypotheses conceming the primary triggering mechanisms for postural reactions. For 

example, off-pitch perturbations have revealed early stretch and unloading reflexes in 

paraspinals (Carpenter et al. 1999; 2001a) and gluteus medius muscles (Carpenter et al. 

2001b;2002), which precede stretch responses in triceps surae and tibialis anterior muscles. 

This finding suggests that directionally sensitive tnggering information is, in the very least, 

available for the CNS to trigger a postural response with the same, if not earlier, latencies 

compared to that from ankle propnoceptive inputs. 

The presence of very early head accelerations (20 ms after perturbation onset), with 

directionally sensitive changes in vertical and rotational accelerations suggests that vestibular 

inputs could also provide the triggering signal (Carpenter et al. 1 999). However, the normal 

onset latency for balance correcting responses in leg and trunk muscles was preserved in cases 

of bilateral (Carpenter et al. 2001 a) and acute unilateral (Carpenter et al. 1999b) vestibula. 

loss. The exception to this finding was an increased latency in soleus muscles for toes d o m  

perturbations, which supports, at least, a partial contribution of the vestibular system to 

tnggenng postural reactions in directions in which head accelerations indicate a downward fa11 

(Carpenter et al. 200 1 a). 

Research using a patient with total leg propnoceptive loss due to a dorsal root ganglionopathy 

has provided further convincing evidence for a directionally sensitive biggering mechanism 

which presides above the ankle joint. The patient had absent propnoception in both the ankle 

and knee joint, with severe impairment but not total loss of proprioception at the level of the 



hip and trunk in addition to impaired cutaneous sensation in the feet and lower legs. in controls 

and patients with selective loss of triceps surae refiexes due to lower leg diabetic neuropathy, 

onset latencies for balance correcting responses were normal, however few automatic postural 

responses appeared to be triggered or modulated by lower leg proprioception (Bloem et al. 

2000). In contrast, the patient with total leg proprioceptive loss had significant delays in the 

onset of balance correcting responses in both soleus and tibialis antenor to perturbations in 

both pure pitch plane perturbations and perturbations in both the pitch and roll planes (Bloem 

et al. 2001). Surprisingly, balance correcting responses in upper leg, hip and trunk muscles 

were not delayed in onset, suggesting that lower leg postural responses rnust be pnrnarily 

tnggered by proprioceptive input at the level of the knee or higher. 

The multi-directional perturbation paradigm has provided evidence for a primary trigger signal 

which onginates in either the knee or hip joint, but is augmented by ascending proprioceptive 

information from the ankle joint and descending vestibular information (Allum, personal 

communication). This new hypothesis calls for more extensive research to examine the role of 

other trunk and hip muscles to provide relevant triggering information and subsequent balance 

correcting activity for multi-directional perturbations to posture. 

Modulation of Automatic Postural Respnses 

Previous studies using pitch plane perturbations have shown that amplitude of automatic 

postural responses can be modified by cutaneous information (Perry et al. 2001), stretch 

related (Bloem et al. 2000; inglis and Horak, 1994) and load dependent (Horsmiann and Dietz, 

1990) proprioceptive information, vestibular information (Allum and Honegger, 19%; Runge 

et al. 1998; Horak et al. 1990; Allum et al. 1994; Nashner et al. 1982), as well From higher 

centres such as the basal ganglia (Allurn et al. 1988; Dietz et al. 1988; Schieppati and Nardone 

1 99 1 ; Beckley et al. 1993) and cerebellum (Timmann and Horak, 1997). 

An issue that has not been well addressed is how the central nervous system (CNS) and 

different sensory systems contribute to the appropriate modulation of postural responses for 

different perturbation directions. Rushmer and Moore (1983) argued that postural perturbations 

were modulated to direction of perturbation upon observations of altered response profiles 



within a single trial of unexpectedly reversing perturbation direction fiom backwards to 

forwards. Recently, these observations have been extended to include unpredictable changes in 

direction in both the pitch and roll plane. These studies have revealed muscle specific ranges of 

activation and directional sensitivity of response amplitudes of both early stretch reflexes and 

subsequent balance correcting responses (Carpenter et al. 1999; Henry et al. 1998; Moore et al. 

1988; Maki et al. 1994). 

More recent work has begun to examine how postural deficits due to vestibular loss (Carpenter 

et al. 2001a), proprioceptive loss (Bloem et al. 2001) and Parkinson's disease (PD) (Carpenter 

et al. 2001 b) may influence the normal activation pattern and directional sensitivity of postural 

response amplitudes to multi-directional perturbations. For example, vestibular loss has been 

characterized by a decreased modulation of balance correcting response (1 20-220 ms) 

amplitude in tibialis anterior and soleus muscles, followed by excessive activation of these 

muscles and paraspinals during the later stabilizing period (between 350-700 rns). In contrat, 

patients with Parkinson's disease have extra responses during the so called 'medium latency' 

period (80-120 ms) in distal and proximal muscles followed by excessive balance correcting 

responses in both leg, hip and trunk muscles. In total, this represents an overactive response 

pattern. In both cases, despite opposite changes in amplitude modulation, the directional 

sensitivity of the balance correcting responses in patients with vestibular loss and Parkinson's 

disease are generally well preserved compared to normals. The exception is in soleus and 

paraspinal muscles in PD patients which have greater activation in pitch and roll directions 

respectively leading to CO-contraction with normally directed responses in antagonist muscles. 

Total leg proprioceptive loss also had relatively normal directional sensitivity of balance 

correcting responses in distal muscles, but had more prominent shiA of activity to roll directed 

perturbations in hip and tnink muscles. These findings in general would suggest that the 

original directional sensitivity of the balance correcting response in most leg, hip and trunk 

muscles is coded in the original primary proximal triggering signal and later modulated by 

lower leg proprioceptive inputs, vestibular inputs and higher centres including the basal 

ganglia. Recent evidence has also s h o w  that directionally sensitive postural responses can 

also be modulated by changes in central set such as prior knowiedge (Horak et al. 1989; Maki 

and Whitelaw 1993; Diener et al. 199 1 ), experience (Keshner et al. 1987; Sveistrup and 



Woollacott, 1997; Chong et al. 1999) and other factors such as a perceived increase in postural 

threat (Carpenter et al. 2001c; Brown and Frank, 1997). Evidence has been shown that cortico- 

spinal inputs are related to changes in postural responses (Keck et al. 1998), suggesting a 

possible descending cortico-spinal pathway is available for modulatory influence of central set 

on the amplitude of postural responses. 

Trunk Control 

The tnink consists of nearly 112 of the total body's COM which is perched nearly 213 of the 

total body height above the ground (Winter et al. 199 1) Therefore, trunk control represents a 

significant challenge for the CNS during static balance conditions, and particularly dunng 

locomotion and in cases in which balance is perturbed. Early trunk motion to unexpected 

perturbations in the pitch plane has been shown in normal controls (Allum et al. 1993) and 

constitutes a major impairment in a number of balance disorden. Horak et al. (1990) have 

argued that vestibular loss patients are unable to control large trunk movements when standing 

on a narrow surface. a deficit they claim is due to an inability to generate the appropriate hip 

strategy response. In contrast Allum et al. (1998) and Runge et al. (1998) have shown that 

vestibular loss patients are capable oigenerating appropriate hip toques to control pitch 

oriented tmnk motion, but are hampered by a deficit in the timing metrics. These difficulties 

are di fferent than those observed in PD, which have been show to exert a stiffer trunk control 

to unexpected postural perturbations, as evidenced by larger and early tmnk accelerations 

(Allum et al. 1988). 

These previous findings have remained relatively robust when exarnined using multi- 

directional perturbations. Normal subjects were shown to have trunk pitch veiocities (onset 

latency 50-60 ms) for pitch directed perturbations, as well as perturbations in a pure roll 

direction (Carpenter et al. 1999). in vestibular loss patients, initial trunk pitch movements were 

relatively normal until 150-200 ms, but were followed by excessively large ûunk corrections 

due to overactivity in the stabilizing period in paraspinals and tibialis anterior muscles. Trunk 

pitch displacement in PD was reduced for al1 backward rotations which caused the trunk to 

pitch fonvard. This response was likely due to increased tnuik stiffiess achieved through 

increased background activity in hip and muik muscles, and altered activation of paraspinal 



muscles leading to coîontraction between left and right muscles. New evidence has been 

found for altered mink control in the pitch plane in patients with total leg proprioceptive loss 

(Bloem et al. 2001) and to a lesser extent in healthy elderly (Allum et al. 2001a). In al1 of these 

subjects, muik velocity was decreased in the pitch plane, which was likely attributed to 

increased tnink stifhess. Carpenter et al. (2001~) provided evidence io suggest that increased 

trunk stifhess in the pitch plane, whether it is observed in patients with PD, total 

proprioceptive loss or in aging populations, rnay be attributed to increased fear of falling. in 

young normal subjects, decreased trunk displacement was observed for backward directed 

perturbations when standing in a hi& postural threat condition compared to a low threat 

condition. These changes in tmnk displacement are associated with increased amplitudes of 

balance correcting responses in hip and tmnk muscles and a change in directional sensitivity of 

paraspinal muscles leading to CO-contraction and presumably increased trunk stimiess. 

The major benefit of using multi-directional perturbations is the ability to observe how the 

trunk is controlled in both pitch and roll planes. Winter et al. (1 996) dernonstrated that the 

COP during quiet stance is independently controlled in A-P and M-L directions. Pitch and roll 

movements of the tnink may also be independently controlled. Observations of trunlc roll 

displacements to off-pitch perturbations have initial onsets which are 20-30 ms prior to any 

pitch displacements of the trunk (Carpenter et al. 1999). Furthemore, kinematic analysis has 

demonstrated that the upper tmnk rnoves in the opposite direction to that of the pelvis and 

lumbar region which are rolled in the sarne direction of the platform roll (Carpenter et al. 

2001~). Therefore, it is likely that a different control system is required to cornpensate for pitch 

and roll displacements of the tnink respectively. The ability to control the spatio-temporal 

requirements between these two independent systems may be useful in discriminating between 

patients with different balance deficits. 

Patients with bilateral vestibular loss have early stimulus induced tmnk roll which is similar to 

that of healthy controls. However, after 150 ms the trunk experiences excessive movement in 

the opposite direction, ovenhooting the normal response and continuing to rotate in the same 

direction of platform roll, which still increases beyond 500 ms (Carpenter et al. 2001 a). In 

contrast, PD patients have no initial movement of the trunk during the fiat 150 ms after 



perturbation onset, due presumably to increased trunk stiffhess. This was followed by inink 

roll movement in the sarne direction as platform roll, as the subject falls like a log. It is 

interesting that early experiments by Manin (1965) reported similarly directed tnuûc roll 

movements in seated subjects suffering from both vestibular loss and post-encephaletic 

parkinsonism which he attributed to an absence of postural reflexes in these patients. However, 

it rnust be noted that Martin's observations were based on video analysis that would not allow 

him to observe the early passive component of mink roll (prior to 150 ms) and did not record 

electrornyographical data that would have provided insight into the electrophysiological 

aspects of these disorders. In fact, it is possible that what Kartin observed was overactivity and 

not an absence of postural reflexes, with excessive stabilizing activity in vestibular loss 

subjects, and increased co-contraction and trunk stiffness in PD patients both contributing to an 

eventual roll of the tmnk in the sarne direction as platfom roll. More drastic changes in tmnk 

instability in the roll plane were observed in the patient with total leg proprioceptive loss. In 

this case, trunk roll fell immediately in the same direction as platfom roll and opposite to that 

of young nomals, suggesting even greater elevations in background activity, co-contraction 

and trunk stifhess in this patient (Bloem et al. 2001). However, some of the hunk stiffhess 

seen in both PD patients and the total leg proprioceptive loss patients may be associated with 

normal effects of age, as increased background activity and improper direction of inuik roll 

was also observed in elderly individuals compared to younger controls (although differences 

were not nearly as prominent as that seen in the patients - see Allurn et al. 2001a). Trunk 

stifhess has been experimentally confirmed as a possible contributor to the abnormal roll 

characteristics observed in PD patients, total proprioceptive loss patients and to a lesser extent 

in elderly. Gruneberg et al. (2001) have shown that young normal subjects will fa11 in the sarne 

direction to platfom roll when their trunks have been artificiaily 'stiffened' by wearing a 

corset which impeded any pitch or roll movements amund the hip. Increased posturai threat 

appeared to have no impact on control of tmnk movements in the roll direction, however this 

may have been linked to the location of the perceived postural threat which was always 

positioned in the pitch plane. 

In sumrnary, large differences have been observed between patients with peripheral and central 

balance deficits in their ability to control stimulus induced tnuik rnovement in the pitch and 



roll planes due to unexpected multi-directional perturbations. Recent evidence has show that 

the inclusion of trunk pitch velocity has greatly improved the discriminatory ability of dynamic 

posturography (Allum et al. 200 1 b). The results of the present thesis and that of other research 

examining multi-directional perturbations may suggest that even greater discriminatory ability 

rnay be achieved if both pitch and roll characteristics of trunk control are used as identifjmg 

factors. 
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