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Abstract

In this thesis, we study orthogonal main effect plans (OMEPs), also known as
orthogonal resolution III fractional designs. OMEPs are are a generalization of
orthogonal arrays, and play a role in experimental design, in particular in screening
experiments. We show that for any OMEP parameter set P, there is a special pa-
rameter set P’, called a tight parameter set, so that if an OMEP with parameters
P’ exists then it can be used to obtain an OMEP with parameters P easily. Tight
OMEPs are more structured than general OMEPs and therefore are easier to ana-
lyze. We find all tight OMEPs on three, four, and five rows, and use this to answer
the existence question for four and five-factor OMEPs. The same procedure can be
used to help answer the existence question for OMEPs on any number of rows. We
also show that, asymptotically, for any tight parameter set there is a corresponding
OMEP (with one small class of exceptions). We use this information to gain insight
mto Jacroux’s lower bound on the number of runs in an OMEP. We demonstrate
that any OMEP (not just every OMEP parameter set) having three rows can be
uncollapsed to a tight OMEP, so in the case of OMEPs having three rows all the
structural information about OMEP:s is contained in the subset of three-row tight
OMEPs. We also develop recursive constructions for equally replicated OMEPs.
Often these constructions produce OMEPs having more rows than a direct prod-
uct construction could achieve. Sometimes the OMEPs produced are tight. One
of these constructions produces resolvable orthogonal arrays. Other miscellaneous

results concerning OMEPs are also proven.
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Chapter 1

Introduction

In recent years, combinatorial designs have found increasing use in various fields.
In particular, combinatorial designs are being used not only in traditional fields

such as statistics, but also in computer science and engineering.

The field of experimental design uses many combinatorial designs, such as
transversal designs and balanced incomplete block designs, as well as similar struc-
tures such as fractional factorial designs and orthogonal main effect plans. In this
setting, these structures are often used to define a sequence of experiments so that
the collection of experiments as a whole has desirable properties for statistical anal-
ysis.

In this thesis we investigate orthogonal main effect plans, or OMEPs. (OMEPs
are sometimes called orthogonal resolution III fractional designs.) This investiga-
tion begins by considering the existence question. This question naturally leads to
the concept of tight OMEPs, which are a particularly nice subclass of OMEPs. In
later chapters, we prove existence results about tight OMEPs and show why tight
OMEPs are useful in answering questions about general OMEPs.
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1.1 Definitions and Examples from Combinato-

rial Design

In this section we define some of the structures that occur in this thesis. We also
give examples and describe some well known construction methods and existence

results.

The most well known type of design is probably a balanced incomplete block
design, or BIBD. A BIBD is a pair (V,B), where V is a set of points and B is a
collection of k-subsets of V, called blocks, with the property that any pair of points
in V is contained in exactly A blocks in B. Since each pair of points is contained in
a constant number of blocks these designs are also called 2-designs. For example,
by taking V = Z7 and B = {0,1,3} 4+ 1,7 € Z;, we obtain a BIBD with k£ = 3
and A = 1. Often the parameters of a BIBD are included by calling the design a
(v, k, A)-BIBD. One can easily calculate b = |B| using v, k, A\. For instance, each of
the v(v — 1) ordered pairs of distinct points in V' must occur A times in the blocks,

and each block contains k(k — 1) such ordered pairs. Thus we find
Av(v — 1) = bk(k — 1). (1.1)

In a BIBD, any point occurs in the sare number of blocks, as the following argument
shows. For a fixed point p, consider the v — 1 ordered pairs (p, z) where z is a point
of the design other than p. Each such ordered pair must occur A times in total, and
any block containing p contributes k — 1 such ordered pairs. Hence if r, denotes

the number of blocks containing point p, we find
Av—1)=r,(k—1), (1.2)

and thus r, = A(v — 1)/(k — 1), which is independent of the point p. Thus each
point occurs in A(v — 1)/(k — 1) blocks. We denote this common value by r.
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These equations give necessary conditions for the existence of BIBDs with specified
parameters. In some literature, a (v, k, A)-BIBD is also called a (b,v,r, &k, A)-BIBD.

BIBDs are known to exist for many possible parameter sets. In particular,
Hanani ([14], [13]) has shown that the necessary conditions 1.1 and 1.2 are sufficient
when k = 3,4. Furthermore, Wilson [28] has shown that for fixed k, v, there is an
N depending on k,v for which these necessary conditions are sufficient for A > N.
Wilson [26] has also shown that for fixed k and )\, these necessary conditions are
sufficient for all but finitely many values of v.

A well known family of BIBDs cousists of the finite projective geometries. For
example, all cosets of each 1-dimensional subspace in a vector space of dimension
two over GF(q) yield an affine plane, and these subsets are also the block set of a
(¢%, g, 1)-BIBD. Furthermore, if V is a vector space of dimension three over GF(q),
and we take each 1-dimensional subspace of V as a point and each 2-dimensional
subspace of V' as a block, we obtain a (¢> + ¢ + 1,¢ + 1,1)-BIBD. A BIBD with

these parameters is also called a projective plane.

Another important type of design is a trensversal design. Such designs are used
in constructing other combinatorial designs, in experimental statistics, and in the
study of error correcting codes. A transversal design is an ordered triple (V, G, B),
where again V is a set of points, G is a partition of V into parts of equal size
(the parts are called groups), and B is a collection of subsets of V, called blocks,
where every block contains exactly one point from each group (hence the name
transversal). The defining property is that any pair of points in V in distinct
groups occurs in exactly A blocks in B, and any pair of points from the same group
occurs in no blocks in B. If g is the size of the groups, then the block size is
k = |V|/g and we call the design a TD,(k,g). When A = 1 the convention is to
just write TD(k, g).
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As with BIBDs, counting arguments can be used to find relationships among
the parameters of a transversal design. For example, in a TD,(k, g) there are \g®
blocks and each point lies in Ag blocks. Necessary conditions for the existence of
transversal designs are not as easy to derive as with BIBDs, because if k is small
enough then the transversal design always exists. For example, a TD(3,g) exists
for all ¢ > 1, and hence for all A > 1. However, it is possible to place an upper

bound on k given the other parameters.

In the above (7, 3, 1)-BIBD, the blocks containing 0 are {0, 1,3}, {0, 4,5}, {0,2,6}.
We can form a TD(3,2) by taking V = Z7 \ {0}, G = {{1, 3}, {4,5},{2,6}}, and
B = {those blocks of our (7,3,1)-BIBD that do not contain 0}. More generally,
removing a point in a (r?+n+1,7+1,1)-BIBD and considering the blocks through
that point as groups yields a TD(n + 1,n).

Orthogonal arrays are closely related to transversal designs. An orthogonal array
OA\(k, g) is a k x Ag? matrix, having symbols from the g-set S in each row (usually
S = {1,2,...,9}), and with the property that for any pair of rows the 2 x Ag®
submatrix induced by these rows consists of every possible column of symbols from
S with each such column occuring A times. Given a TD,(k, g), we can write each
of its blocks as a column vector, where the symbol in row 7 is the point of the block
occurring in the ith group of the transversal design. If we then rename the symbols
in each row (there are g distinct symbols in each row) to coincide with S, then
we obtain an OA,(k,g). This process is reversible, and so transversal designs and
orthogonal arrays really represent the same concept. Table; 1.1 is an orthogonal
array obtained from the above TD(3,2) using this construction.

Many objects in design theory are examples of incidence structures. An inci-
dence structure is a triple (V, B,Z), where V and B are two sets (called the point
set and the block set) and Z is a binary relation between V' and B. We say that
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Table 1.1: An QA(3,2)

0 0 11
60 1 01
0110

point p € V is incident with a block (or line) £ € B if pZ{. In the case of transver-
sal designs and BIBDs, the incidence relation T is just pZ{ if p € £. In any object
considered in this thesis, this is the case and so any block is always considered as
a collection of points. We refer to incidence structures wmainly to describe concepts

which apply to more than one kind of design.

One such concept is resolvability. An incidence structure is resolvable if its
block set can be partitioned into classes so that the blocks in each class form a
partition of the point set. Each such class is called a parallel class. Resolvability
is useful in extending designs — adding points and blocks to an existing design to
obtain a new design. For example, a resolvable TD(k, g) has g parallel classes. By
adding a new point oo; to each block in the ith parallel class, adding the group
{001,002,...,004} to the group set, and adding the new points to the point set
results m a TD(k + 1,g9). Adding points to a resolvable design in this manner is
often called “extending parallel classes” or “adding points at infinity”. In fact one
sees that a TD(k + 1,g) gives a resolvable TD(k, g) by essentially reversing this
procedure. Resolvability of transversal designs with A > 1 also allows one to obtain
another transversal design with a larger block size, but in this case it is no longer

necessarily true that a TDy(k + 1, g) can be used to obtain a resolvable TD,(k, g).

Resolvability of an orthogonal array OA,(k, g) implies that we can partition the

columns into Ag classes so that each row of each class contains each symbol exactly
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once. In this case, we can group the Ag classes into g classes Py, Ps,..., P, each
having A\g columus, and add a new row having symbol i below each column in the
P;’th class. In this case we obtain an OA,(k+1,g). This operation of extending a
resolvable orthogonal array by a row is also called extending the parallel classes.

Another very common incidence structure is a pairwise balanced design, or PBD.
A PBD is a pair (V, B) where as usual V is a set of points and B is a collection of
subsets of V, called blocks, so that any pair of points in V is contained in exactly
A blocks in B. There are many results about PBDs; perhaps the most well known
is Fisher’s inequality, namely |B! > |V| in any PBD. Many recursive constructions
for designs involve PBDs.

Many known incidence structures admit an antomorphism. An automorphism
of an incidence structure is a bijection © mapping points to points and blocks to
blocks so that for any block B of the incidence structure, #(B) is also a block of
the incidence structure. The set of automorphisms of an incidence structure form a
group called the automorphism group of the structure. When an incidence structure
has a automorphism group, the group action partitions the block set into orbits.
Using any block in any particular orbit and the group action, one can obtain all
the blocks in the orbit. For this reason, we sometimes call a block representing an

orbit a base block.

In the case of orthogonal arrays, a “common” automorphism is the permutation
that permutes the points of each row in a cycle. (It is common in the sense that
many known orthogonal arrays have such an automorphism.) Such a permutation
partitions the column set into Ag orbits of size g each, and thus we can generate the
columns in one orbit using any column in the orbit and applying 7 to this colamn
g times. This operation of generating a collection of columns from one particular

column using a group action is called developing the column, or developing the
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Table 1.2: A (3,3, 1)-Difference Matrix

0 0O
01 2
0 2 1

Table 1.3: An OA(3,3)
012 01201 2

0121 20 201
012 201120

block in the more general case of incidence structures. For example, an OA(3, 3)
can be obtained by developing each column in the matrix in Table 1.2 using the
permutation (0 1 2). Since many orthogonal arrays can be described in this way,
it is common to give the “generator matrix” a special name. A {g, k, \}-difference
matriz over a group G is a k x gA matrix D = (d;;) with entries from G with the
property that for any i # j, the list (dy — d;1),! = 1...g) contains each element
of G precisely A times. The subtraction is in the group G. If D is a (g,k, \)-
difference matrix, then the set of columns {D + g|g € G} is a OA,\(k,g) with a
set of automorphisms {z — z + glg € G}. Difference matrices, or some variant
of them, are often used in conjunction with other automorphisms to find specific

orthogonal arrays with a computer search.
To illustrate another concept, we develop the matrix in Table 1.2 using the

permutation (0 1 2), giving an OA(3,3). The group action partitions the nine

columns into three orbits, each of size three. For example, the first orbit consists of
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the first three columns of Table 1.3. If we pick any orbit, and choose any row, then
each of the symbols in {0, 1,2} occurs in that row in the columns of the orbit. Thus
the columns of the OA(3,3) can be partitioned into Ag classes of size g, so that
in any class, each row is a permutation of the elements {0,1,2,...,9 — 1}. Thus
the orthogonal array is resolvable. As with general incidence structures each class
is called a parallel class. The development of any difference matrix always gives a
resolvable orthogonal array. When an OA(k, g) is resolvable, we can add a new row
to the orthogonal array, and for each column in it we place an 7 in the new row if
that column lies in the i’th parallel class. This results in an OA(k +1,g). (This is
analogous to extending parallel classes in a resolvable transversal design). As with
transversal designs, if an OA(k + 1, g) exists then a resolvable OA(k, g) exists. For
A > 1, it remains true that if a resolvable OA,(k, g) exists, then a OA,\(k + 1,9)

exists; however, the converse no longer holds.

Various results are known about the existence of OA (%, g) for various g,k, A.
One of the most important of these is the existence of an OA(g + 1, ¢) whenever ¢
is a prime power. In particular, if ¢ is any ¢ X 1 column vector consisting of distinct
elements of GF(q), then the matrix with columns {acla € GF(q)} is a (¢, ¢,1)-
difference matrix over GF(g). Thus its development gives a resolvable OA(q,q),
and by extending the parallel classes we obtain an OA(g + 1.q).

Another useful fact is that a resolvable OA,;(p**7, p’) exists for any prime p and
any nonnegative integers 1, j. For if D is a (v, k, A)-difference matrix over G, and H
is a normal subgroup of G, then D can be considered as a (g/|H|, k, A\| H|)-difference
matrix over the factor group G/H. There is a (p**?, p**7, 1)-difference matrix over
(GF(p*+7), +), and furthermore this group has a normal subgroup of order p. Thus
this matrix, as viewed from the factor group, is a (p,p*+7,p’)-difference matrix
whose development (in the factor group!) gives the desired resolvable orthogonal
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array.
Further orthogonal arrays can be constructed by using various recursive con-
structions. For example, it is well known [17] that the direct product of an OA,, (k, g1)
and a OA,,(k,g2) is an OA,,,,(k,9192) - Using this construction, and the above
facts about difference matrices, if » = q1¢z - - - ¢, is the prime power factorization
of n, with ¢; < ¢;+1, then an OA(q; + 1, n) exists. However, better results than this
are known. For example, an OA(5, n) exists for all n # 2,3,6,10. As an illustration
of the difficulty in constructing and proving non-existence of orthogonal arrays, we
mention that it is still not known whether an OA(S5, 10) exists, despite the relatively

small values of the parameters.

Another useful recursive construction is the Kronecker product of two difference
matrices. The Kronecker product of two matrices A = {a;;} (an m by n matrix)
and B = {b;;} is the matrix

auB apB --- a;.B

ale ang see Gan

@B ama2B -+ amaB

The Kronecker product of a (g. k. A, )-difference matrix over G and a (g, k2, A2)-
difference matrix over G is a (g, k1kz, A1 A2g)-difference matrix over G.

In fact, if A is an QA ,(k, g), and B is a (g, k', \')-difference matrix over a group
G, then the Kronecker product of A and B is an OA (KK, g). See [20] for details.
This result has been generalized by Wang and Wu [25].

Various results exist bounding the block size k in an TD,(k, g). If the transversal
design is resolvable, then & < g\. One method of proving this is to use linear

algebra. However, in [15], Hine and Mavron, proved this result using a nice counting
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argument, as follows. Let D be a TD,(k,g) having two disjoint blocks B and C.
(If the TD.(k, g) is resolvable, then certainly there are two disjoint blocks.) Define
bx = |BnX|,ex = |CNX]|, for a block X # B,C. By counting blocks (other than
B) through a point in B, we find Y bx = k(Ag — 1). Similarly, ¥~ cx = k(Ag — 1).
By considering pairs of points in B, we find 3 bx(bx —1) = k(k—1)(A—1), which is
also the value of ¥ cx(cx —1). Finally, by counting triples (p, ¢, X) with p € B, X,
g € C,X,and X # B,C, we find Y bxcx = k(k — 1)A\. Now, using the fact that
0 < Y(bx —cx)? =L bx(bx — 1) + Tex(ex — 1) + Xbx + T ex —2X bxex and
substituting in the values above, we find 0 < 2k(Ag — k) which gives the result.

1.2 Definitions and Examples from Experimental

Design

Definition 1.2.1 An orthogonal main effect plan, or OMEP, is an array having
k rows (or factors), n columns (or runs), s; symbols in row, for 1 <i < k, and
which satisfies the property: if 1 < i< j <k, and if z is any symbol in row 1, and
y 8 any symbol in row j, then the number of columns with an z in rowi and a y
in row j equals the number of times = appears in row i, multiplied by the number
of times y appears in row j, divided by n. We call the array an 3y X s X ... 8/ [n

OMEP.

We denote the number of times symbol z occurs in row i by r;;. These numbers are
called the replication numbers of the OMEP. For example, the matrix of Table 1.4
is a2 x 3 x 4//16 OMEP.

Orthogonal main effect plans are used in the design of statistical experiments.

In {16}, Jacroux writes
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Table 1.4: A 2 x 3 x 4//16 OMEP.

1111111122222222
1123112311231123
113 4224334223411

In many industrial situations, investigators will often begin an ezperi-
mental study by employing a screening design to help them identify key
factors for further investigation. Orthogonal main-effect plans are often
the screening designs of choice used in such situations. OMEPs allow
for the estimation of all mair: effects of a factorial arrangement without

correlation when the interactions are all assumed negligible.

A representive application is as follows. Suppose we have a machine that creates
ground coffee from fresh beans. There are three dials on the machine, and for each
dial there are a number of settings. The first dial controls the length of time for
which we roast the beans, and has two settings. The second dial controls how
quickly the beans are cooled, and has three settings. The third dial controls the
amount of grinding done on the beans, and has four settings. We wish to determine
the effect of the settings of the dials on the quality of the final product (which we
measure quantitatively in some manner.) One way to do this is to perform a set
of experiments, varying the settings on the dials in each and recording the quality
of the resulting coffee for each setting. If we perform sixteen experiments, and for
experiment ¢ we set dial j to the k’th setting, where k is the symbol in position
(7,2) of the matrix in Table 1.4, then the special structure of the OMEP allows us
to say something about how the settings of the dials affect the coffee produced.
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Often we consider OMEPs with many rows having the same number of symbols

in them. In such a situation the following notation is useful.

Definition 1.2.2 If an OMEP on n rows has m, rows each containing s, symbols,
m, rows each containing s; symbols, and so on up to m, rows each containing s,

symbols, then we call it an

ST x 832 x ... x 8¢ //n OMEP.

For example, a 2 x 2 x 2 x 3 x 3//9 OMEP is compactly described using this
notation as a 2% x 32//9 OMEP. Furthermore,a 5 x5 x 5 x 5 x 5//25 OMEP is also
described as a 5°//25 OMEP. To avoid confusion, we avoid using exponents when
writing the number of symbols in a row of an OMEP. Thus a 25 x 1//25 OMEP
would never be written as a 5% x 1//25 OMEP, since we reserve this to mean a
5 x 5 x 1//25 OMEP. We might write it as a 25 x 1//52 OMEP, however, or even
as a (5%) x 1//5? OMEP.

OMEPs have close ties with orthogonal arrays, and thus with transversal de-
signs. For example, an orthogonal array OA,(k, g) is also a g*//Ag?> OMEP. A simi-
lar relation between OMEPs and transversal designs also holds since any transversal

design corresponds to an orthogonal array.

In fact, OMEPs can be used to describe resolvable orthogonal arrays also. Sup-
pose we have a resolvable orthogonal array OA,(k,g) where each row contains the
symbols 1 through g. Since the array is resolvable the columns can be partitioned
into Ag parallel classes so that for any class, and for any row in that class, each of
the symbols in {1,2,..., g} occurs exactly once. Add a new row to the matrix and
for each column, put the symbol ¢ in the new row if the column is in the ¢’th class.

(This completely specifies the new row.) The resulting matrix is a g¥ x Ag//Ag?
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Table 1.5: An equally replicated OMEP
0 0112 233

01 01 0101
01100110

OMEP, having k + 1 rows. Clearly we can obtain the original orthogonal array by
removing the new row. Thus there is a mapping from resolvable orthogonal arrays

to OMEPs and vice-versa.

Orthogonal main effect plans were apparently introduced by Addelman [1] in
1962, although similar structures have been considered earlier. Addelman also
introduced a useful way of constructing other OMEPs from a given OMEP. Given
an s; X 83 X ...sx//n OMEP, pick a pair of symbols in a given row (say the ith
row). Replace every occurence of these symbols in this row by some new symbol.
The resulting matrix is a $; X 83 X ... X 8i—1 X (8i — 1) X 841 ... x sx//n OMEP.
Thus we have reduced the number of symbols in row ¢ by one. This construction,

or repeated applications of it, is called collapsing levels in the OMEP.

There are certain classes of OMEPs that are of particular interest to statisti-
cians. An OMEP in which every symbol in every row occurs the same number of
times as each other symbol in that row is said to be equally replicated. For example,
Table 1.5 is an equally replicated OMEP. In particular, this does not mean that

the symbols in different rows must occur the same number of times.

Recall that the number of times symbol z occurs in row ¢ is denoted r;., the
replication number for symbol z in row z. Thus, equally replicated OMEPs have
Tiz = T4y for each row ¢ and for any choice of symbols z,y in row i. An equally
replicated OMEDP is also called an orthogonal array on a variable number of symbols,
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or simply an OAVS. We see later that tight OMEPs are equally replicated OMEPs.

Another feature of certain OMEPs of use to statisticians is the presence of
repeated columns. In a practical setting, having repeated columns means repeating
an experiment but holding the parameters of interest constant. An article which
discusses the usefulness of this is [5].

Various results are known about OMEPs. Since orthogonal arrays are special
cases of OMEPs, many known results about orthogonal arrays apply. We attempt to
give some idea of the known results specifically concerning the existence of OMEPs.
Much of this material is in the survey by Street [23].

In [19], a construction is given for s x ... x st=//s™ OMEPs, where Y t; <
gt 1 m//

n,8; < s for 1 <7 < m and where s is a prime or prime power.

A n x n matrix H with entries in {1,—1} so that HHT = nl, is called a
Hadamard matriz. If a Hadamard matrix of order n exists, then n is called a
Hadamard number. It is known that, with the exception n = 2, all Hadamard
numbers are divisible by 4. Cheng [7] shows that if £ and n are Hadamard numbers
with ¢ > n > 4, then a 4*~1 x 2™-3+2//nt OMEP exists. He also shows that
if t,n and ¢/2 are Hadamard numbers, with n,t > 4, then there is a » x 4" x
2n(¢=1)~3(A-1) / /nt OMEP, where h = min(n,t). Special cases of this result have

been given by various authors.

By extending the parallel classes, a resolvable OA, (%, g) can be used to a con-
struct a Ag x g¥//\g* OMEP [12].

If m < 2k and q is a prime power, then for j = 0,1,...,(k — m/2) we can
construct a (2™g*~7) x g?"@ ¥t T +ta ) [ 19m k+1 OMEP [24]. In addition, if 2 <
m < 2k, where again ¢ is a prime power, and 2™¢*~7 is a Hadamard number, then for

i=0,1,...,(k—m/2) we can construct a (229" 7 =1) x g2"(a"+a" " ++a* )/ rom gt
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OMEP.

Another useful construction due to Addelman, called the “method of replace-
ment”, is to replace each occurrence of the j'th distinct symbol in the i’th row
of an 83 X 83 X ... X 81 X 8 X 8i41 X ... X 8¢//n OMEP by the j’th column of
aty Xtz X...Xtyn//s; OMEP. An easy calculation shows this gives a $; x s; X
s X Sim1 Xt X3 X ... Xty X 8541 X ... X 8 //n OMEP. Using this method, a
2x2%x2x4x4x4x4//16 OMEP is obtained vsing a 4 x4 x4 x4 x 4//16
OMEP and a 2 x 2 x 2//4 OMEP.

Various authors have proved direct product constructions for variants of orthog-

onal arrays. For example, see [18], [2], or [17].

Orthogonal arrays and transversal designs can be used to construct OMEPs, but
have been studied by many authors simply as combinatorial objects. Fundamental
results were proven by Bose, Shrikhande, Parker [4] and Wilson [27], although many
authors have since contributed to the theory. A standard reference for results on

orthogonal arrays (and most other objects in design theory) is [3].

For industrial applications of OMEPs, it may be desirable to have as few columns
as possible since this means fewer experiments and therefore less experimental effort.
Given s3,83,. .., Sk, if n is the smallest number so that a s; x s3 X ... s¢//n OMEP

exists, then the corresponding OMEP is called minimal.

This thesis concentrates mainly on the existence question for OMEPs, and in
particular, on the concept and existence of a special class of OMEPs called tight
OMEPs. More precisely, given s, s2,...,8,and n, can a 8; X 33 X ...s¢//n OMEP
exist? This relates to the minimality question, for if we characterize those n for

which a s; X 83 X ...s://n OMEP exists, then we can find the minimal such =.

In answering the existence question, the concept of a tight OMEP arises. This
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concept, and its implications, are discussed in the second chapter of this thesis. We
show that every OMEP parameter P set has a corresponding tight parameter set
P’. Furthermore, if an OMEP with parameters P’ exists, then one can collapse
levels in this OMEP to obtain an OMEP with parameters P. We determine all
tight OMEPs having three, four, and five rows. Finally we use the knowledge of
four-factor tight OMEPs to answer the existence question for general four-factor

OMEPs.

In the third chapter of this thesis, we consider uncollapsing levels in an OMEP.
We show that any three-factor OMEP can be uncollapsed to a tight OMEP. There-
fore, any three-factor OMEP can be obtained by collapsing levels in a tight three-
factor OMEP. We give examples of OMEPs on four and more factors that cannot
be obtained by collapsing tight OMEPs. Also in this chapter, we consider the
question of unconcatenating OMEPs. We prove a finite basis type result for the
concatenation of tight OMEPs.

In the fourth chapter, we show asymptotic existence of tight OMEFs. More
specifically, we show that for any fixed number of rows k, and with the exception of
parameters of the form 2¥~! x s//2s for s odd, then there are only a finite number
of tight OMEP parameter sets for which the tight OMEP does not exist. This
information is used to gain further insight on Jacroux’s lower bound on the number

of columns needed in an OMEP with a specified number of symbols in each row.

In the fifth chapter of this thesis we develop some recursive comstructions for
equally replicated OQMEPs. The basic theme is that by using a resolvable PBD
and some smaller designs we can unite blocks from the smaller designs to obtain
OMEPs with more rows than a direct product construction could obtain. Some of
the constructions produce tight OMEPs.



Chapter 2

Tight Orthogonal Main Effect

Plans

In the last chapter we introduced some common design theoretic structures and the
general definition of an orthogonal main effect plan. In this chapter we motivate
and define an important subclass of OMEPs, called tight OMEPs. We also give
an application of tight OMEPs in the determination of those parameters for which
four factor OMEPs exist. We take the view that the structure of OMEPs having
one or two rows is somewhat trivial, and so in what follows we assume that the

number of rows k is three or more.

2.1 Definition and Motivation

Suppose D is an s; X 83 X ... X 8¢//n OMEP, and that n = p[™p™*...p™ is the

prime power factorization of n. Let
g: = ged{r:z| = a symbol in row ¢ }.

17
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Since D is an OMEP
nlriry for i #j, zinrow ¢, y in row 7 ,

and so
nlgg; forall1<i<j<k. (2.1)

For each prime p, dividing m, let I, be the greatest integer such that pjt|g; for
each 7, and choose c¢ so that pi* exactly divides g.,. (By exactly divides we mean
Pt [gee, but pet! Jg.,. Note that c, is not necessarily uniquely determined.) Then,
by (2.1), we have p™~* divides g; for j # c,. If p™ ¢ exactly divides g; for j # c.,
and furthermore if s; = n/g; for each j € {1,2, ...k}, then we call the OMEP

e—le

tight. In this case, since pit|g; for each j, and p |g; exactly for j # c., we have
l <my—1I, and so l; < m,/2. Also observe that a tight OMEP is equally replicated,

since 8; = n/g; for such OMEPs and this forces rj, = g; for each z..

If D itself is not tight, then the l,’s and the ¢,’s still exist, and these determine
the parametfer set of a tight OMEP, s] x sj x ... X s}.//n, where
gi=ri= [ 2" II »t, aund s; =n/g. (2.2)
ticei tree=i
Note that s; < s; for each %, since g; > ¢! for each i. Hence, if this tight OMEP
exists, then an OMEP with the same parameters as D can be obtained by collapsing

levels in the tight OMEP. We state this formally.

Theorem 2.1.1 Given OMEP parameters s, X 83 X ... X $¢//n with associated
replication numbers ri, there exists a tight parameter set sj x sy X ... X s/ [n with
associated replication numbers v, so that if an OMEP with parameters s X s} X
... X 8/ /n and replication numbers r}_ ezists, then it can have levels collapsed to

obtain an OMEP with the original parameters and replication numbers.
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In fact the above analysis holds whether or not any of the OMEPs actually exist,
so in fact any set of OMEP parameters and replication numbers must come from a
tight set of parameters and replication numbers by “collapsing the tight parameter

set”.

For example, consider the 2 x 3 x 4//16 OMEP in Table 1.4. In this case we
have n = 16 = 24, so r;; = ry; = 8, and thus g; = gcd(8,8) = 8. Similarly we find
g2 = 4, and g3 = 4. In this case, the only prime dividing n is 2, and 22 divides each
gi, and it is the largest power of 2 to do so. Also, 22 exactly divides g,. Thus we
find p; = 2,1; = 2, and we can take ¢; = 2. Now, for the OMEP to be tight we
require 2*~2 to exactly divide g; and g;3. Since g; = 8 this is not the case. However,
from equations 2.2 we find g; = g; = g5 = 4, and so if we can find an OMEP with
gy =g, =¢g3 = 4 and 3; = s; = s3 = 16/4 = 4 then it would be a tight OMEP
and furthermore we could collapse levels in it top obtain a 2 x 3 x 4//16 OMEP.
Of course such an OMEP exists; it is an OA(3,4)! As promised, this OA(3,4) can
indeed be collapsed to obtain a 2 x 3 x 4//16 OMEP (i.e. an OMEP with the same

parameters as our original).

Equations 2.2 provide a method of simply describing a tight parameter set.

Suppose s} x 85 X ... x s¢//n is a tight parameter set. Since s! = n/g! for such
OMEPs, p* divides s, for i # ¢, and pf™ " divides s/ for i = c,. Since m, — I > I,
m.—2(¢

for each ¢, if we set g, = pit, then ¢ divides each s, and p; g divides exactly
one s;. This is true for each prime divisor of n, and hence for each possible divisor

of any s{. It follows that a tight OMEP parameter set can be written as
z\lg szg... X /\kg//Al ...Akgz, (2.3)

where g is the product of the ¢'s, A\; = [y, pt™ ~2k The A;’s are pairwise rela-

tively prime.
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However, not every OMEP with these parameters is a tight OMEP. (We refer
the reader ahead to Theorem 2.2.1 and Theorem 2.1.2, which we use here.) For
example, take g = 1,k = 3 and )\; = p?, where p; =2,p, = 3,ps = 5. Then for each
¢ = 1,2,3 an equally replicated p? x p; x p;//p} OMEP exists. By Theorem 2.2.1
and Theorem 2.1.2, a tight p3p;ps x p1pips x pipap3//pip3pS OMEP exists. Now,
since the product of any two of these primes is larger than the third prime, we
can collapse levels in this OMEP to obtain a p? x p3 x p3//pip3p3 OMEP, with
g1 = p1pPip3, 92 = pip2p3, 93 = p3pips. This OMEP has parameters as in (2.3), but

it is not tight, since g; # n/s; (we do not have equal replication).

If an OMEP has parameters as in 2.3, and in addition the OMEP has equal
replication, then indeed the OMERP is tight.

Theorem 2.1.2 An equally replicated OMEP with parameters
/\1g X /\zg X...X /\kg///\ll\z.../\kgz

and with the A; patrwise relatively prime is a tight OMEP.

Proof: To conform with the notation used in the definition of tight OMEPs, let s; =
the number of symbols in row ¢ = \;g, and let n = the number of columns =

A1)z ... Aeg?. Since the OMEP is equally replicated, we have

1\1/\3 s ’\kg
Tiz = Nf8; = ——,
/ A
and so
gi = ged{riz|z in row i} = k\E&—'\ﬂ

also. Suppose p*'p5?...p7* is the prime power factorization n. Equal repl.icaﬁon

ensures that s; = n/g; for each i. All that remains is to show for each ¢, p™
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exactly divides g; for 7 # c;, where as before [, is the greatest integer such that
pit|g; for each j, and ¢, is such that pi* exactly divides g.,. Suppose p? is the largest
power of p, dividing g, and that p? is the largest power of p. dividing any \;, say
Ais. (b =0 is allowed, but if b > 0 then since the A;’s are pairwise relatively prime,
A;« is the only ); divided by p..) Since n = A);...A\g?, we have m; = 2a + b.
Since ged{g:|1 <i < k} = g, we see that [, = a. Further, p} exactly divides g;-, so
we can take ¢, =i*. Thus for 7 # ¢, ¢g; has a factor A., g, and no other factors of g;
are divisible by p,. Therefore pf™ ™" = p2*® exactly divides g; for i # c,, and so the
OMERP is tight.

a

The idea that should be emphasized here is that tight OMEP parameters are
as “uncollapsed” as possible. In other words, there is no OMEP in which we could
collapse levels to obtain a tight OMEP.

Sometimes it is desirable that an OMEP have equal replication, and so ri; = 74
for every pair of symbols z and y in each row . Tight OMEPs have this property
since 7 = g; for such OMEPs. But in fact tight OMEPs have a connection with
equally replicated OMEPs similar to their connection with the usual notion of
OMEPs. Consider any s; X 82 X ... X si//n OMEP with equal replication. Then
Tiz = g; for each i. As above, the replication numbers of this OMEP determine a
tight parameter set, say s} X 83 X ... X s;.//n. Since g}|g; for each i, and we have
n = 3;g; = 8.4}, it must be that s;|s! for each i. Hence, if the corresponding tight
OMEP exists, we can collapse levels in it to obtain an equally replicated OMEP
with the same parameters as the original OMEP. Again we state this result formally.

Theorem 2.1.3 Given parameters s; X 83 X ... X 8¢/ /n with assoctated replication

numbers riz of an equally replicated OMEP, there ezists a tight parameter set 8] x



CHAPTER 2. TIGHT ORTHOGONAL MAIN EFFECT PLANS 22

85 X ... X 8t/ [n with associated replication numbers ., so that if an OMEP with
parameters 8y X $5 X ... X 3t/ [/n and replication numbers r’, ezists, then it can have
levels collapsed to obtain an equally replicated OMEP with the original parameters

and replication numbers.

Given n = p7"'p3? .. .p;"¢, we can determine the parameters s; x s3 X ... X s of
all possible tight OMEPs on n columns, since for tight OMEPs these parameters are
determined by the l’s and the ¢'s, and there are only finitely many possibilities
for each of these. In particular, there are only [m./2] possibilities for [, and k
possibilities for ¢;. Some of these choices may give rise to the same parameters

81 X 82 X ... X S, but with the s;’s possibly reordered.

For example, let us compute the possible tight parameter sets for a three-factor
OMEP with n = 24 = 2331, Now !, can be 0 or 1, and !/, must be 0. Both ¢,
and c; can be any value in {1,2,3}. If;, = 1, ¢ = 1, and c; = 2, say, then
g1 =2-3, g2 =22, and g3 = 2% - 3. Hence the corresponding tight parameter set is
4 x 6 x 2//24. In this way, we find the possible parameter sets (reordered so that
81 2 83 > 83)are: 2dx1x1//24,8x3x1//24,12x2x2//24, and 6 x4 x 2//24.

In the next section we give an application of tight OMEPs.

2.2 Existence of Tight OMEPs on Four Factors

In this section, we determine the tight parameter sets for which there corresponds a
tight OMEP with four rows. By using this information, we then give a method for
determining the minimal n for which an s; x s; % s3 x 34//n OMEP exists. This is
the first explicit method for finding the minimal » in the case of four factor OMEPs,
and so it further suggests that tight OMEPs are a useful concept. Furthermore,
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the method is easily generalizable to OMEPs on more factors, and it can also be
used to determine the minimal n for which an s; x s; X 83 X s4//n OMEP with

equal replication exists.

We first introduce some recursive constructions for OMEPs, and we prove some

existence results about tight OMEPs on four factors.

As mentioned in the introduction, direct product type constructions for com-
binatorial designs have been studied by many authors. Here is a direct product
construction for OMEPs, which is credited to Adhikary and Das [2].

Theorem 2.2.1 (Direct Product Construction) If an s; x s2 X ... X s8¢/ /n
OMEP ezists, and an s; x 85 x ... X s//n' OMEP ezists, then an s,3] x szsh x

... X 88/ [nn' OMEP ezxists.

Proof: The direct product of the first two OMEPs gives the third OMEP. For a
fixed row, and a symbol z in this row in the first OMEP and a symbol z’ in this row
in the second OMEDP, there is a symbol (z, z’) in the resultant OMEP. Furthermore,
if the replication number of z is v, and the replication number of z’ is r/_, then
the replication number of (z,z’') is rrl,,. For distinct rows 7,j in the resultant
OMEP, and a symbol (z,z') in row ¢ and a symbol (y,y’) in row j, the number of
columns in the resultant OMEP containing the symbol (z,z’) in row ¢ and symbol
(v,¢) in row j is the number of columns in the first OMEP containing symbol z
in row  and symbol y in row j multiplied by the number of columns in the second
OMEP containing symbol z’ in row ¢ and symbol ¥’ in row j. Since the first two
arrays are OMEPs, then by definition this product equals

(TiTiy/n) (Pl 7)) = (riarin) (riytiy ) (A1) = Ty 2y Tiyary [ (n0).
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This last expression is precisely the product of the replication numbers of symbol
(z,2') in row ¢ and a symbol (y,y’) divided by the number of columns of the
resultant array. Thus by definition the resultant array is an OMEP. o

Notice that the direct product construction preserves equal replication, since
the replication number of a symbol in the resulting OMEP is the product of the
replication numbers of the associated symbols in the ingredient OMEPs.

Theorem 2.2.2 (Concatenation Construction) Suppose D is an 8; xs; X ... X
sk//n OMEP, and T’ is an s; X 83 X ... X $g~1 X si//n’ OMEP, with replication
numbers i and 1}, respectively. Further suppose that these OMEPs have the same
symbol sets in the first k — 1 rows, rizfn =7 [n' when 1 <i < k — 1, and for the
remaining row, the symbols in the first OMEP are all different from the symbols of
the second OMEP. Then the concatenation of these matrices s an 8; X 83 X ... X

St—1 X (& + s)//(n +n') OMEP.

Proof: Let M be the k by n + n’ array obtained by juxtaposing the two OMEPs.
Consider 1 € ¢ # j < k, and a symbol z in row ¢ and a symbol y in row j. The

number of columns in M that have an z in row ¢ and a y in row j is

For M to be an OMEP, this must equal

o (e £740) (i +75)
(“")[(nw) (ntw) |

Since ¢ # j, we may assume without loss of generality that r;/n = rl./n’. Then

(riz + 1iz)/(n +n') = riz /n and so the above equation reduces to the first. o

Corollary 2.2.3 If there is an equally replicated sy X s2 X ... X 8k X s/ [ny OMEP
and an equally replicated sy X 33 X ... X 8g_1 X 8¢//ny OMEP, then there ezists an

equally replicated 3, X 83 X ... X Sg—1 X (8 + 8})//nin. OMEP.
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Proof: Equally replicated OMEPs have r;./n = 1/s; so if they have the same
number of symbols in the first £ — 1 rows the conditions of Theorem 2.2.2 are

satisfied. 0

Since tight OMEPs are equally replicated, the corollary applies to tight OMEPs
also. We use this corollary extensively later.

We know that every tight OMEP on four rows has parameters of the form
A1g X A2g X Aag X Agg//M1AzAzAeg®. Thus it is natural to consider cases based on
the value of g. Given that we are breaking the cases up in this way, there are some

simple observations that considerably eases our work.

Lemma 2.2.4 If A;, Az, ..., A; are pairwise relatively prime, then a tight A\; X A2 X

o X Me//A1Az ... A OMEP egists.

Proof: For each ¢ we have a 17! x\; x1¥~//A; OMEP since it is simply a kx ); array
consisting of k — 1 rows containing a single symbol and another row contfaining A;
distinct symbols. We now apply the direct product construction to k such OMEPs
(one for each X;) to obtain an OMEP M. M is equally replicated, since it is
the direct product of equally replicated OMEPs, and it is tight since it is equally
replicated and has the parameters of a tight OMEP. a

Lemma 2.2.5 If an OA(k,g) ezists, then all tight OMEPs with k rows and with
parameters A\jg X Az2g ... Aeg/ /A1 - .- Aeg® ezist.

Proof: An OA(k, g) is an equally replicated g x g x...x g//g® tight OMEP (with &
rows), and an equally replicated A; X A3 X ... X Ac//A; ... A tight OMEP exists by
the above lemma. The direct product of these two OMEPs is an equally replicated
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OMEP having the desired parameters, which are the parameters of a tight OMEP,
and so this OMERP is the desired OMEP. a

Armed with this lemma, we see that for four-factor OMEPs, the only cases we
must further consider are when g = 2,6, since, for all other values of g, an OA(4, g)
exists (see [3] for example), and so Lemma 2.2.5 applies. Let us consider the case

g = 2 first.

Any tight OMEP parameter set with ¢ = 2 has the form 2\; x 2); x 2A; x
204/ /4A1 A2 A3, with the \;’s pairwise relatively prime. If all A;'s are 1, then the
OMEP would correspond to an OA(4,2) which does not exist for trivial reasons.

Before considering the other cases, we first prove some lemmas.

Lemma 2.2.6 An OMEP with parameters 2 x 2 x 2 x 2s//4s does not ezxist if s is
odd.

Proof: Suppose to the contrary that such an OMEP exists. Since the only tight
parameter set, $; X 8; X 83 X s¢//4s, with s;,32,83 > 2 and s4 > 2s is in fact
2 X 2 x 2 x 2s//4s, we see that if this OMEP exists it must be tight, and so the
replication numbers of the symbols in the first three rows is 2s. We may assume
the symbols in each of the first three rows are 0 and 1. Let a;; be the number of
columns with an ¢ in row 1, a j in row 2, and a k in row 3, and as usual let r;;
be the number of times symbol j occurs in row i. By definition 710750/4s equals
the number of columns containing a 0 in rows 1 and 2, which is also the value of
@goo + Goo1- Since o = 720 = 28 We see this value is also s. Proceeding in this way

we find that the sum

T10T20 T10T31 + Tr21731
4s 4s 4s

evaluates to

(@000 + @oo01) — (@001 + ao11) + (@011 + @111) = s,
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and so

dooo + G111 = 8.

Every symbol in the fourth row appears twice, and the columns above it are
complementary (their components sum to 1 mod 2). Thus if we restrict the OMEP
to the first three rows, we can pair up the columns into pairs which are comple-
mentary. However the above formula reduces to ageo + a;11; = 3, and since s is odd,
this means we cannot pair up the corresponding columns. This is a contradiction.

o

The reader familiar with transversal designs should observe that this last lemma
is simply a statement that a RTD,(3,2) cannot exist for odd A.

Lemma 2.2.7 An equally replicated 2s; % 282 x 2 x 2//458,32 OMEP ezists for all

odd 81,82 > 3.

Proof: We can collapse levels in a 6 x 6 x 6 x 5//36 OMEP to obtain a equally
replicated 6 x 6 x 2 x 2//36 OMEP, such that for each ¢, r;;/36 = 1/s; for each
symbol z in row ¢. Using this OMEP, and an equally replicated 4 x 6 x 2 x 2//24
OMEDP, and Theorem 2.2.2, it follows inductively that we can construct an equally
replicated 2s; x 6 x 2 x 2//12s; OMEP for odd s; > 3. But now using this OMEP,
an equally replicated 2s; x 4 x 2 x 2//8s; OMEP, and Theorem 2.2.2, the result

follows inductively. O
Lemma 2.2.8 A 2 x 2 x 2 x 4//8 tight OMEP ezists.

Proof: The following array is such an OMEP.
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01010101
01100110
01 011010
0011223 3

]

The tight parameter sets with ¢ = 2 are handled by these last three lemmas, as
the following argument shows. Again recall the general form of the parameters in
this case is 2A; X 2A; x 2A3 X 274/ /41 A2A3)4, and furthermore the );’s are pairwise
relatively prime. Since when all A\; = 1 the OMEP cannot exist, we assume that
at least one \;, say Ay, is greater than 1. Suppose some ); is even, say Ay = 2A}.
Then a 2 x 2 x 2 x 4//8 tight OMEP exists (by Lemma 2.2.8), and an equally
replicated A; X Az x A3 x AL//A; A2A3A) tight OMEP exists by Lemma 2.2.4, and
the direct product of these OMEPs gives an OMEP with the desired parameters.
This OMERP is tight by Theorem 2.1.2. Next suppose all the A;’s are odd. If three
of the A;’s are 1, then this case is handled by Lemma 2.2.6 and the tight OMEP
cannot exist. Otherwise, at least two of the A;’s are greater than or equal to 3,
say A; and Az, and the corresponding OMEP exists, since it can be obtained by
using Theorem 2.2.1 with an equally replicated 2A; x 2A; x 2 x 2//4A\; A, OMEP
(exists by Lemma 2.2.7), and a 1 x 1 x A3 x A\y//A3A4 tight OMEP, and by applying
Theorem 2.1.2.

We now turn to the case g = 6, where the analysis is similar to the case g = 2. In
this case the general form of the parameters of a tight OMEP are 6); x 62 x 6A3 x
6A4//36A1 Az2A3), with the A;’s pairwise relatively prime. Again, if all the A;’s are 1,
then the tight OMEP does not exist as it corresponds to an QA(4, 6) which is known
not to exist, though this fact is not obvious (see [3], for example). Next suppose
some J; is even, say A; = 2A]. Since a 12 x 6 x 6 x 6//72 tight OMEP exists (take
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direct product of 4x2x2x2//8 and 3x3x3x3//9 tight OMEPs and apply Theorem
2.1.2), and a A} x Az x A3z X Ay//A]A2A3A4 tight OMEP exists (Lemma 2.2.4), we
see their direct product is an equally replicated 6A; x 6A; X 6A3 X 6Ag//36A1 A2 A3A4
OMERP, which is tight by Theorem 2.1.2. Thus the only remaining case is with all
Ai’'s odd, and at least one A; > 3. To finish this case we need the following fact.

Proposition 2.2.9 An 18 x 6 x 6 x 6//108 tight OMEP ezists.

Proof: We give a completely resolvable OA3(3,6), (an orthogonal array with 6
symbols, 3 rows, and 108 = 3 - 6 columns), from which you just extend the 18
parallel classes to get the desired OMEP. The solution is cyclic modulo 5, with one
fixed point z in each row. The first five parallel classes are obtained by developing
the following parallel class modulo 5, where z is fixed.

01 =z 3 4 2
0 2 41z 3
0z 14 2 3

The next five parallel classes are obtained by developing the following parallel

class modulo 5.
012 =z 43

z 2 413€0
0 314z 2

The next five parallel classes are obtained by developing the following parallel

class modulo 5.
01 2 = 4 3

0z 41 3 2
0 3 z 4 21
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The sixteenth, seventeenth, and eighteenth parallel classes are

01234=z|01234=zzi01234T=z
01234 =z|340122=z|3 4012¢=
123 40=z(40123=z|23 4001¢z

Verification that this gives the desired OMEP is routine. m]

Lemma 2.2.10 An equally replicated 6A; x 6 x 6 x 6//36\; OMEP ezists for all
odd A\; > 3.

Proof: Using the above 18 x 6 x 6 x 6//108 tight OMEP, a 12 x 6 x 6 x 6//72
tight OMEP, and Theorem 2.2.2, we can construct an equally replicated 6(s + 2) x
6 x 6 x6//36(s + 2) OMEP from an equally replicated 6s x 6 x 6 x 6//36s OMEP.
The result now follows inductively. m]

It now follows that any tight 6); x 62 x 63 X 6Ag//36A; A2A304 OMEP with all
A:’s odd and at least one A; > 3 (say A;) exists since it can be obtained by applying
Theorem 2.1.2 to the direct product of an equally replicated 6A; X< 6 x 6 x 6//36,;
OMEP and a equally replicated 1 x A; x A3 x Ay//A2A304 OMEP.

Thus we have shown the following result.

Result 2.2.11 The only tight four-factor OMEPs that do not ezist have parameters
6 x6x6x6//36 or2 x2x2x2s//4s for s odd.

We now wish to apply these results about tight OMEPs to the general existence
question for four-factor OMEPs. The general theme is to show existence of an
OMEP with a given parameter set by collapsing some tight OMEP. However we
must be careful in those cases where the tight OMEP we would “want” to collapse

does not exist. The following results help in these cases.
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Corollary 2.2.12 The minimal n for which a2 x2 x2 x s//n OMEP ezists, with
$22,isn=2(s+1) fors=1,3 (mod 4),n=2(s+2) fors=2 (mod 4), and
n=2s fors =0 (mod 4).

Proof: If s = 0 (mod 4), then s = 4s’, and we can apply the direct product
construction using a 2 x2x2 x 4//8 OMEP and a1l x1x 1 x s'//s" OMEP as
ingredient OMEPs to obtain a 2 x 2 x 2 x s//2s OMEP.

If s =1 (mod 4), then every tight OMEP on 2s columns exists by Result
2.2.11, but by inspection none of them can have levels collapsed to obtain a 2 x 2 x
2 x s//2s OMEP. Hence, n > 2(s+1). However, for each £ > 1, we can concatenate
an equally replicated 2 x 2 x 2 x 1//4 OMEP and ¢ copies of an equally replicated
2x2x2x4//8 OMEP to obtain a 2 x 2 x 2 x (4¢ +1)//2(4t + 2) OMEP. Hence,
a2x2x2xs//2(s+1) OMEP exists and so n = 2(s + 1) is minimal in this case.

If s =3 (mod4), then every tight OMEP on 2s columns exists by Result
2.2.11, but by inspection none of them can have levels collapsed to obtain a 2 x
2 x 2 x s//2s OMEP. Hence, n > 2(s +1}). But thenas s+1 =0 (mod4),a
2x2x2x(s+1)//2(s +1) OMEP exists, and so we can collapse levels to obtain
the desired OMEP.

Finally, if s =2 (mod 4), then Theorem 2.2.6 implies n > 2s. Asn = (2 +
t)(s + j) for some nonnegative integers 1, j, the next possible value is n = 2(s +1).
However all tight OMEPs on 2(s + 1) columns exist and none can have levels
collapsed to obtain the desired OMEP. So in fact we have n > 2(s + 2). As
s+2=0 (mod 4), there exists a 2 x 2 x 2 x (s + 2)//2(s + 2) OMEP, in which
we can collapse levels to obtain a 2 x 2 x 2 x s//2(s 4 2) OMEP. o

Proposition 2.2.13 The minimal n for which a 6 X6 x 6 x 6//n OMEP ezists s
n = 49.
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Proof: We know a 6 x 6 x 6 x6//36 OMEP does not exist. By considering the tight
parameter sets with 37 < n < 48 we find no possible OMEP on this number of
columns could be collapsed to obtain a 6 x 6 x 6 x 6//36 OMEP. The next possible
value for n is 72 = 49, and since a 7 x 7 x 7 x 7//49 OMEP exists we can collapse
levels in it to obtain the desired OMEP. a

Proposition 2.2.14 A6 x6 x 6 x 5//36 OMEP ezists.

Proof: Euler found a pair of latin squares L,, L; of order 6, having a common 2 x 2
subsquare, but otherwise orthogonal. Suppose the symbols in the subsquare are
z and y. Then by identifying z and y in L;, and constructing the corresponding
matrix (with columns (3, §, L1[¢, 7], L1[¢, j])), we get a 6 x 6 x 6 x 5//36 OMEP. O

We also want to apply knowledge about tight OMEPs to answer the existence
question about equally replicated OMEPs, and so we also need the next proposi-

tions.

Corollary 2.2.15 The minimal n for which an equally replicated 2 x 2 x2 x s//n
OMEP ezists, with s > 2, isn = 4s for s = 1,3 (mod 4), n = 4s for s = 2
(mod 4), andn = 2s for s=0 (mod 4).

Proof: Suppose s is odd. Since we desire equal replication, we have 2|n and s|n
and so 2s|n. From Corollary 2.2.12, n # 2s. However, using the direct product
construction, a tight (and so equally replicated) 2 x 2 x 2 x 1//4 OMEP, and a
(equally replicated) 1 x 1 x1 x s//s OMEP gives a 2 x 2 x 2 x s//4s OMEP, so
n = 4s is minimal in this case. If s =0 (mod 4), then a tight 2 x 2 x 2 x 3//2s
exists and so the result follows in this case. Consider the case s = 2 (mod 4).

Since we want an equally replicated OMEP, and s; = s; = 2, we must have 4|n.
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Hence 2s|n. We know n # 2s, by Lemma 2.2.6, and so n > 2(2s) = 4s. Let s = 2¢'.
Using a tight 2 x 2 x 2 x 4//8 OMEP, a tight 1 x1 x 1 x s’//s" OMEP, and the
direct product construction yields a 2 x 2 x 2 x 2s//4s, and so n = 4s is minimal
in this case. a
Proposition 2.2.16 The minimal n for which a 6 x6x6 x6//n OMEP with equal
replication ezists is n = T2.

Proof: Any equally replicated s; x s2 x 33 X 84//n with 6|s; for each ¢ has 9n
and 4|n and so 36in. We know n > 36, since a 6 x 6 x 6 x 6//36 OMEP does
not exist, but using Theorem 2.2.1, an equally replicated 2 x 2 x 2 x 4//8 OMEP,
and a equally replicated 3 x 3 x 3 x 3//9 OMEP (both of which exist) we obtain
an equally replicated 6 x 6 x 6 x 12//72 OMEP. This can have levels collapsed to
obtain the desired OMEP. |

Proposition 2.2.17 The minimal n for which an equally replicated 6 x6 x6 xs//n
ezists, s = 2,3,4,5, ts (respectively) n = 36, 36,72, 180.

Proof: An equally replicated 6 x 6 x 6 x 2//36 OMEP and an equally replicated
6 x 6 x 6 x3//36 OMEP can be obtained by collapsing levels in a 6 x 6 x 6 x 5//36
OMEP. In these cases we need at ieast 6 - 6 = 36 columns, so n = 36 is minimal in
these cases. For an equally replicated 6 x 6 x 6 x 4//n OMEP, we need n|(n/6)(n/6)
and n|(n/6)(n/4). Hence 36jn, and 24|n, and so lem(24, 36}|n which implies 72|n.
However, n = 72 suffices, since a 6 x 6 x 6 x 4//72 OMEP can be obtained as the
direct product of an equally replicated 2 x 2 x 2 x 4//8 OMEP (Lemma 2.2.8) and
an equally replicated 3 x 3 x 3 x 3//9 OMEP (an OA(4, 3)). Similarly, an equally
replicated 6 x 6 x 6 x 5//n OMEP must have lcm(36, 30)|n, and so 180|n. Again,
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n = 180 suffices, since the desited OMEP can be obtained as the direct product of
an equally replicated 6 x 6 x 6 x 1//36 OMEP (an OA(3,6) with a row of all 1’s
added) and an equally replicated 1 x 1 x 1 x 5//5 OMEP (Lemma 2.2.4). =]

2.3 Existence for general four-factor OMEPs

We now show how tight OMEPs go a long way in answering the existence question
for general OMEPs. We give algorithms for determining the minimal n for which
four-factor OMEPS and four-factor OMEPs with equal replication exist.

In the introduction we saw that any s; X 32 X 83 x s¢//n OMEP gives rise to
a tight parameter set s} x s, X s3 X s4//n, where s; < s} for each ¢. Furthermore,
we saw that if the original OMEP had equal replication, then we in fact have s;|s!.
Hence in both cases, if the corresponding tight OMEP exists, then it can have levels
collapsed to obtain the original OMEP. Since we know exactly when tight OMEPs

on four factors exist, it is not surprising that two rather trivial algorithms work.

Suppose we are given 3;, 33, 33, 34, and we do not require an OMEP with equal
replication. Since we know how to generate all the tight parameter sets for a
given n, we can find the smallest n so that there is a tight parameter set, P":
81 X 85 X 83 X 8¢/ [n, with s; < si. Now, if the corresponding OMEP exists then
n is minimal and we are done. Otherwise, there are only two possibilities for P’:
2x2x2x2s//4s, with s odd, or 6 x6 x 6 x6//36. In the first case, it must be that
31, 82, 83, 84 actually equals 2,2,2,2s in some order, in which case Theorem 2.2.12
applies. In the second case, either each s; = 6, in which case we know n = 72 is
minimal, otherwise n = 36 is minimal since an OMEP with the desired parameters

can be obtained by collapsing levels in a 6 x 6 x 6 x 5//36 OMEP.
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Suppose we are given s;, sz, 83,34, and we do require an OMEP with equal
replication. Since we know how to generate all the tight parameter sets for a
given n, we can find the smallest n so that there is a tight parameter set, P':
s} x 85 x 85 x 8,/ /n, with s;|s.. Now, if the corresponding OMEP exists then »
is minimal and we are done. Otherwise, there are only two possibilities for P’:
2 x2x2x2s//4s, with s odd, or 6 x 6 x 6 x 6//36. In the first case, it must be
that s, = s; = s3 = 2 in which case Theorem 2.2.15 applies. In the second case,
either each s; = 6, in which case we know n = 72 is minimal, otherwise n = 36
is minimal since an equally replicated OMEP with the desired parameters can be

obtained by collapsing levels in a 6 x 6 x 6 x 5//36 OMEP.

2.4 Five-Factor Tight OMEPs

In this brief section we determine all the tight parameter sets on five factors for

which a tight OMEP exists.

As in the last section, we assume the tight parameter set has the form
/\lg X /\2g X /\3g X /\4g X /\5g///\1/\2/\3/\4/\592. (2.4)

Also, we break up the cases depending on the value of g. A TD(5,g) exists for
any g € {2,3,6,10}, so for any such g and any choice of the \;’s a tight OMEP
exists having these parameters, since it can be obtained as the direct product of a

gxgxgxgxg//g’> OMEP and a Ay x A3 X Az X Ay X As//A1A2A3A¢As OMEP.

Consider the case g = 10. It is unknown whether a 10°//100 OMEP exists, and
we make no attempt to prove or disprove its existence here. In the Appendix, we
give a resolvable TD3(4, 10), so by extending parallel classes we obtain an equally
replicated 10 x 10 x 10 x 10 x 30//300 OMEP. The direct product of an equally
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replicated 2* x 4//8 OMEP and an equally replicated 5°//25 OMEP is an equally
replicated 10 x 10 x 10 x 10 x 20//200 OMEP. By extending parallel classes and
applying the concatenation construction we obtain an equally replicated 10 x 10 x
10 x 10 x 10A//100A OMEP for all A > 1. Any tight OMEP with parameters as
in (2.4) and g = 10 and having at least one A; > 1, say A5, can now be obtained using
Theorem 2.1.2 applied to the direct product of an equally replicated 10 x 10 x 10 x
10 x 10)5//100As OMEP and an equally replicated A; x A; X Az X Ay X 1//A1 X230
OMESP. It follows that any tight parameter set having the form in (2.4) and having
g = 10 has a corresponding tight OMEP, with the possible exception of a 10%//100
OMEP.

Next consider the case ¢ = 6. It is known that a 6*//36 OMEP does not
exist, and thus a 6°//36 OMEP does ndt exist either. In the Appendix, we give
a resolvable TD;(4,6) and a resolvable TD3(4,6), and so by extending parallel
classes and applying the concatenation construction we obtain an equally replicated
6 x6x6x6x6A//36A OMEP for all A > 1. It follows then, as with the case
g = 10, that any tight parameter set having the form in (2.4) and having g = 6 has
a corresponding tight OMEP, with the exception of a 6°//36 OMEP.

The case g = 3 is similar to the last two cases. For trivial reasons, a 3%//9
OMEP does not exist. In the Appendix, we give a resolvable TD,(4, 3), and so by
extending parallel classes we obtain an equally replicated 3 x 3 x 3 x 3 x 6//18
OMEP. An equally replicated 3 x 3 x 3 x 3 x 9//27 OMEP exists since it can be
obtained by extending parallel classes in a resolvable TD;3(4,3), which was shown
to exist in the introduction. By applying the concatenation construction we obtain
an equally replicated 3 x 3 x3 x 3 x3A//9A OMEP for all A > 1. As in the previous
two cases, it follows that any tight parameter set having the form in 2.4 and having

g = 3 has a corresponding tight OMEP, with the exception of a 3°//9 OMEP.
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Finally, consider the case g = 2. For trivial reasons, a 2°//4 OMEP does
not exist. First consider the case where some J; is even, say A\s. We have seen
that an equally replicated 2* x 4//8 OMEP exists, and so an equally replicated
201 X 2A2 x 2A;3 x 2)4 %X 2X5/[/4A1 X223 0 s OMEP can be obtained as the direct
product of an equally replicated 2* x 4//8 OMEP and an equally replicated A; x
Az X Az X Ag X (A5/2)//A1A2A3A4(As/2) OMEP. Next suppose all A; are odd. If just
one J); is greater than 1, say \; = A, = A3 = A4 =1 and A5 > 1, then Lemma 2.2.6
applies and the tight OMEP cannot exist. On the other hand, suppose at least
two J); are greater than 1, say Ay and As. In the Appendix, an equally replicated
2x2x2x6x6//36 OMEP is given. Further, a tight 2° x 6 x 4//24 OMEP exists,
and so by the concatenation construction we can construct an equally replicated
2% x 6 x 2X5//12As OMEP for all odd As > 3. For such g, an equally replicated
23 x 4 x 2As//8As OMEDP exists, and so again by the concatenation construction we
obtain an equally replicated 2 x 24 x 2A5//4A;As OMEP for all odd A, As > 3.
Finally, the direct product of this OMEP with a A; x A; x A3 x1x1//A;A2A3 OMEP
gives an equally replicated 2A; x 2A; x 2A; x 2A4 X 2A5//4A1A2A30)05 OMEP. If
the A; are pairwise relatively prime, then Theorem 2.1.2 gives the result. Thus, we
have shown that in the case g = 2, the only tight parameter sets for which the tight
OMERP does not exist is 2°//4 and 2* x 2s//4s for s odd.

In summary then, the only tight five-factor parameter sets for which the tight
OMERP does not exist are 2°//4, 2* x 2s//4s for s odd, 3°//9, 6°//36, and possibly
10%//100.
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2.5 Summary

There are some obvious applications of the techniques in this chapter. First of all,
the results of this chapter show all tight OMEPs with three rows exist, and so we
can say that an s; X s; X s3//n OMEP exists if and only if there exists a tight OMEP
on n columns with at least as many different symbols in each row. Similarly, an
31 X 82 % s3//n OMEP with equal replication exists if and only if there exists a
tight s} x s; x s3//n OMEP such that s;|s; for each i. The same techniques apply
in determining minimal OMEPs with more rows. The only problem is that fewer
of the “ingredient” OMEPs exist. For example, in the case of six rows, there is no

2x2x2x2x2x4//8 OMEP so some other “base” ingredients must be used.



Chapter 3

Collapsing and Uncollapsing

In this chapter we give new results concerning the collapsing and uncollapsing of
three row OMEPs. As seen in the last chapter, for almost any OMEP parameter
set with three or four rows, there is a tight OMEP which we can collapse to obtain
an OMEP with these parameters. For example, It is possible to obtain a 7 x 7 x
7 x 6 OMEP by collapsing a tight OMEP. However, there may exist a particular
7 x 7 x 7 x 6 OMEP that cannot be obtained by collapsing a tight OMEP.

We show that there are indeed OMEPs on four factors that cannot be obtained
by collapsing a tight OMEP. More importantly, however, we show that any OMEP
on three factors can be obtained by collapsing some tight OMEP. Put another way,
any three factor OMEP can be uncollapsed to obtain a tight OMEP. We also prove

some results concerning the concatenation and unconcatenation of tight OMEPs.

39
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3.1 Uncollapsing Three-Factor OMEPs

In this section we show that any OMEP on three rows can be obtained by collapsing
some tight three-factor OMEP. In other words, for any three-factor OMEP it is
possible to “uncollapse” levels in it to obtain a tight three-factor OMEP.

Let D be an s, x s; x s3//n OMEP, having symbol set {1,2, ...s;} in row 2. If
D is already tight then we are done. Otherwise, as we prove in the second chapter,
there is an associated tight OMEP parameter set s} x s} x s5//n, which we can al-
ternatively write as A1 g x A2g X A\3g//A1AzA39%, where the );’s are pairwise relatively
prime. Also s! > s; and some s% > sx (so X indexes a row). If the replication
numbers of the symbols in row ¢ of D are ry, 7y, ... 14, then ged(ri, rig, - - -, Tiy;)
is divisible by g = n/s;. Since sx < s'%, at least one rx; is not equal to g/, so
rxy = dgx, for some d > 1 and some symbol Y. We now explain how to “un-
collapse” symbol Y in row X into d distinct symbols. In what follows, we assume
without loss of generality that X = 1 and Y = 1 for ease of description. Let C
be those columns of D containing a 1 (ie. Y) in row 1 (i.e. X). We construct a
bipartite graph T with bipartition classes A = {1,2,...,s;} and B = {1,2,..., s3}
by joining the vertices a in A and 8 in B for each column (1,a,8)T in C. With
this construction, there is a one to one correspondence between the edges of T and
the columns in C. Further, the degree of the vertex corresponding to the symbol j
in row ¢, ¢ # 1, is ryyri;/n, which is divisible by dg}g!//n which in turn is divisible
by d. Thus, every vertex in T has degree divisible by d, and each bipartition class
has a total of |C| edges leaving it. Therefore, there is a d-regular bipartite graph
T', having two bipartition classes of size |C|/d from which we can obtain T by
identifying sets of vertices in T"’s bipartition classes. (For example, to get such a
graph 7", pick a vertexin T of degree sd and arbitrarily “split” this vertex into s
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vertices of degree d. Repeat this for each vertexin T to get T’.) The edge set of T'
can be decomposed into d one-factors of T”, since T" is a regular bipartite graph.
(This is an easy corollary of Hall’s Theorem or Konig's Theorem; see any good
book on graph theory.) These one-factors correspond to a partition of the edge set
of T into d (spanning) subgraplis of T, say T1,T5,...,Ts, where each vertex v in

any T; has degree
degreeof vin T
y .

Also, each edge in each subgraph corresponds to a column in C, and thus corre-

sponds to a column in D. Finally, for each edge in each subgraph T;, find the
associated column in D and replace the symbol 1 in row 1 by a 1°. This has the
effect of replacing the symbol 1 in row 1 of D by d new symbols 1*,1%,...,1¢. Why
is the resultant array an OMEP? A little thought shows that we only need to check
the number of occurences of one of the new symbols with a symbol from another
row. Consider symbol 1* in row 1, 1 < z < d, and symbol y in row 5,2 < j < 3.
Symbol 1 in row 1 occurs 7y, times in the original array, and symbol y in row j
occurs rj, times. In the new array, symbol y in row j still occurs rj, times, but
symbol 17 only occurs 7y, /d times. Furthermore, any vertex in the subgraph T (as
defined above) has degree 1/d of its degree in T, that is, ry;7;,/nd. Thus in the
new array, symbol y in row j occurs ry;7;,/nd times in a column with symbol 17 in
row 1. As
ru=riy/n = (ru/d)(riy)/n,

the two symbols occur the exact number of times required for the resultant array

to be an OMEP. Thus the new array is an (s; +d — 1) x s3 X s3//n OMEP.

If this new OMERP is not tight, we can repeat this construction. Eventually, we
obtain a tight OMEP (which cannot be further uncollapsed). This tight OMEP

can be collapsed to obtain D, by just reversing the uncollapsing operations.
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The above argument proves the following theorem.

Theorem 3.1.1 Any three-factor OMEP can be obtained by collapsing a tight
three-factor OMEP. FEquivalently, any three factor OMEP can be uncollapsed to
obtain a tight three-factor OMEP.

Therefore, to enumerate all possible three-factor OMEPs (not just the possible
parameters, but the actual OMEPs), it suffices to generate every possible tight
three-factor OMEP, and then record the OMEPs that can be obtained by collapsing
levels in these tight OMEPs. Generating all possible tight three-factor OMEPs,
even with a given set of parameters, is nontrivial. However it seems clear that this
two step approach is computationally easier than directly generating all three-factor
OMEPs, especially if we are using backtracking to generate the OMEPs.

As an example, we do one “iteration” of this procedure to partially uncollapse
the 2 x 3 x 4//16 OMEP of Table 1.4. We uncollapse the symbol 1 in row 2 into
two distinct symbols. In this case the set C of columns containing symbol 1 in row
21s

11112222

11111111

11223 434
Now we form the bipartite graph having bipartition classes {1,2},{1,2,3,4}. This
graph is shown in Figure 3.1. Now, we must partition this graph into two (span-
ning) subgraphs so that the degree of each vertex in each subgraph is exactly half
what it was in the original bipartite graph. In this case, the desired partition is
easily found. Furthermore we mention that there are “nonisomorphic” partitions,
corresponding to different ways to uncollapse. In any case, one such partition is

shown in Figure 3.2. From this, we replace the symbol 1 in row 2 by the symbols
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Figure 3.1: The Bipartite Graph T

11, 12, as follows.

1 11111112 2 222 22322
1223 11223 1t1231%1 23
1 1342 2 433 422 3 411

This array is a 2 x 4 x 4//16 OMEP.

3.2 Four-Factor OMEPs

Although every three-factor OMEP can be uncollapsed to a tight OMEP, this is
not true of four-factor OMEPs. For example, a 6 x 6 x 6 x 5//36 OMEP exists (see
Lemma 2.2.14, for example), but it cannot be uncollapsed to obtain a tight OMEP,
since the tight OMEP would have parameters 6 X 6 x 6 x 6//36 and such an OMEP
does not exist, as it would correspond to two MOLS of order six. However, we
mention that the method of the last section can be generalized to OMEPs having
four or more factors. For example, given a four-factor OMEP and a symbol z in row
1 (say) that we wish to uncollapse into d distinct symbols. Form a tripartite graph

analogous to the graph of the last section, except that every column containing an
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Figure 3.2: A Partition of the Graph T
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z in row 1 now contributes a 3-clique to the tripartite graph, instead of a 2-clique
(edge). To uncollapse, one would have to partition these 3-cliques into d classes,
forming spanning subgraphs T},7T3,...,T; so that the degree of any vertex in any
T: is 1/d times its degree in the original tripartite graph. As (implicitly) shown
above, this is not always possible. In fact, deciding whether a tripartite graph has
a partition into 3-cliques is NP-complete [8].

It is tempting to wonder if the only thing that prevents uncollapsing is the non-
existence of the tight OMEP (as in the above example). This is not the case, as
can be seen as follows. Consider a matrix M with 4 rows and 45 columns, with
the symbols 1,2,3,4,5,6,7 occurring in each row, so that for each pair of rows,
each ordered pair of symbols except (1,1)7,(1,2)T,(2,1)7,(2,2)T occurs exactly
once. Thus if a TD(4,2) actually existed, we could add its corresponding columns
to obtain a TD(4,7). For this reason such a matrix is sometimes called a TD(4,7)
— TD(4,2). Replace each symbol 2 in row 1 of M by the symbol 1. Now add the
columns of a 1 x 2 x 2 x 2//4 OMEP, with symbol set {1},{1,2},{1,2},{1,2} in
each row, respectively. This results in a 6 x 7 x 7 x 7//49 OMEP. Furthermore, this
OMERP cannot be uncollapsed to form a 7x7x7x 7//49 OMEP, since the process of
uncollapsing would uncollapse the 1 x2x2x2//4 sub-OMEP intoa2x2x2x2//4
OMEP. Thus thereis a 6 x 7 x 7 x 7//49 OMEP that cannot be uncollapsed to
form a 7x 7 x 7 x 7//49 OMEP, although there does exist a 7 x 7 x 7 x 7//49
OMEP. Furthermore, it is known that a TD(4,9)—TD(4,2) exists for all g > 6, and

so the above construction provides many examples of such OMEPs.
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3.3 Unconcatenating

As seen in the concatenation construction, Theorem 2.2.2, the juxtaposition of
two OMEPs sometimes gives a new OMEP. In the last section, we considered the
question of uncollapsing a given OMEP. One may ask a similar question about
unconcatenating a given OMEP. In the context of tight OMEPs, this question
becomes: When is a tight A\jg X A2g X ... X Aeg//A1Az2...A\eg? OMEP the con-
catenation of a A1g X A2g X ... X Ae1g X pg//AMAz-. . Ae—1peg® OMEP and a
ALg X A2g X -.. X Ap—19 X phg// A1z - . . A1 phg® OMEP?

We mention in passing that a tight 3 x 3 x 3s//9s OMEP is always the con-
catenation of s 3 x 3 x 3//9 OMEPs, as the following argument shows. A tight
3 x 3 x 3s//9s OMERP is equivalent to a completely resolvable OA,(2,3), so it is
enough to show that a completely resolvable OA,(2,3) is the union of s completely
resolvable OA(2, 3)s. A completely resolvable OA,(2, 3) is by definition a collection
of parallel classes. Let a;;z denote the number of times the parallel class

01 2

t j ok
occurs. (Here we are assuming the symbol set in each row is {0,1,2}.) If ap12 = g,
then since agy2 + ao21 = 8, we must have agy; = s —pu. Similarly since ag12+a102 = s,
we find a@j02 = s — p. Continuing in this manner, we find ag12 = @120 = a0 = p
and dg2; = @102 = @210 = S8 — p. Notice that the collection of parallel classes
corresponding to the variables aq;2, @120, @201 form a completely resolvable QA(2, 3),
as do the collection of parallel classes corresponding to the other three variables.
Thus the completely resolvable OA,(2,3) is the union of s completely resolvable
OA(2,3)’s : u of one kind and s — p of the other kind.

Call a tight OMEP decomposable if it is the concatenation of two other OMEPs.
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Theorem 3.3.1 For fized k and fized Ay, A, ..., Ak_1,9, there is only a finite num-
ber of tight A1g x A3g X ... X Aeg//M1Az2 ... Ag® OMEPs that cannot be ezpressed
as the concatenation of a \jg X A2g X ... X Ae—1g X pg/[MAz ... Ae_1pg® OMEP
and @ Ayg X Aag X ... X Ay g X p'g/[MAz . .- A1 i'g® OMEP.

The proof is similar to the finite basis result for PBDs, see [21] for example.

Proof: For convenience define A = AjA;...Ar. We first remark that the columns
containing any fixed symbol in the kth row of a tight A\;g x A2g... X Aeg//Ag?
OMEP form a set of Ag/\; columns so that any symbol in theithrow,1 <i < k-1
occurs A\/(A;Ax) times in this set of columns. Let S be that set of all £k —1 x Ag/\e
matrices so that any symbol in the ith row, 1 <1 < k —1 occurs A/(A:)g) times
in this set of columns. Therefore, up to the naming of the symbols in row &k, any
A1g X A2g. .. X Aeg//Ag? tight OMEP D is specified by a [S|-tuple T, where the
number in coordinate position j of this tuple indicates the number of times the
jth matrix in § occurs above some symbol in row k of our OMEP. Now, if D is
decomposable, then there are |S|-tuples Tp,,Tp, so that Tp, + Tp, = Tp. Such
tuples can be partially ordered by <, where T} < T, if every coordinate of T; is
less than or equal to its corresponding coordinate in T,. Tuples T;,T, are said
to be incomparable if neither T} < T; nor T2 < T). The tuples representing two
indecomposable tight OMEPs are incomparable, for if Tp, < Tp,, for two distinct
indecomposable tight OMEPs D,, D;, then Tp, — Tp, is a vector representing an
OMEP D. such that D is the concatenation of D, and D., and therefore D is not
indecomposable. Hence, to show that there are a finite number of indecomposable
tight OMEPs (for fixed A, Az, ..., M1, 9), it suffices to show that there are no
infinite antichains in the partial order. However this is exactly what is guaranteed
by Lemma 1 of [21]. We review the proof here. Suppose K = {Tp,,Tp,,.--} is
an infinite antichain in the partial order. Consider the first coordinate of elements
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in K. Since an infinite sequence of non-negative integers has an nondecreasing
subsequence, K contains an infinite subsequence K; so that the first coordinate
of elements of K; is nondecreasing. Now the same argument shows K; contains
an infinite subsequence K, so that the second coordinate of elements of K is also
nondecreasing. The number, |S|, of coordinates is finite, so eventually we produce
a subsequence K)s; that contains two comparable elements. However this is a

contradiction since K is an antichain. a

3.4 Summary

The main result of this chapter is that any three-factor OMEP can be uncollapsed
to obtain a tight three-factor OMEP. For four or more factors, there are examples of
OMEPs that cannot be uncollapsed to a tight OMEP. Also in this chapter we have
shown a finite basis type result for concatenation of OMEPs, which says, roughly,
that tight OMEPs with n columns and having a fixed number of symbols in the
first £ — 1 rows are the concatenation of two smaller OMEPs if n is large enough.



Chapter 4

Asymptotic Existence of Tight
OMEPs

Asymptotic existence of tight OMEPs is established in this chapter. This is accom-
plished mainly through the use of a recursive construction, and simple arithmetic
facts. We also give an application of the asymptotic result to Jacroux’s lower bound
for OMEPs. In the second chapter, it was shown that every tight OMEP parameter
set on three or fewer rows has a corresponding tight OMEP, so we make the implicit

assumption that k& > 4.

4.1 The Main Result

The following incidence structure is useful.

Definition 4.1.1 Let S = {v;|]1 < < k,1 < j < g}. Let B be a set of subsets
(blocks) of S. The pair (S,B) is called a R(g,k,p, A)-design if the block set can

49
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be partitioned into parallel classes and if pairs of points viz,v;, are in no blocks if

t=7j,in A blocks ifi # j and z # y, and in p blocks ifi # j and z = y.

The main idea in this section is to introduce a recursive construction creating
these R-designs, so that the recursion allows for increasing the block size without
necessarily making g4 a multiple of g. This results in the construction of resolvable
transversal designs RTD,(k, g) with k as large as desired, and with A not necessarily
a multiple of g (as in the Kronocker Product construction).

Lemma 4.1.2 Let g and k be fized. Then an R(g,k,g*% — 1, ¢*"?)-design ezists.

Proof: Let the point set be {(z,5)|1 <: < g,1 < j < k}. The set of blocks
{{(Pla l)a (p2’ 2)7 ety (pkv k)}' 1 S pi S 9, Pi’s not all equal}

is a R(g, k,g* % — 1, g"?)-design. 0

If we do not exclude blocks with all p; equal, we get a RTD iz (k, g).
Remark 1 For any fized g and k, a RTDj—(k, g) ezists.

The union of the block sets of two RTD’s on the same point set gives a third
RTD. We use the following consequence of this fact repeatedly.

Lemma 4.1.3 If a RTD,,(k, g) and a RTD,,(k, g) ezist, with gcd(Ay, Az) =1, then
a RTDx(k,g) ezists for all A > A\ A;. Hence if a RTD,(k,g) with ged(p,g) =1
exists, then a RTDi(k, g) ezists for all A sufficiently large.

Proof: The first statement holds since A = sA; + tA; has a nonnegative inte-

gral solution in s,t for all A > A, )3, and since the union of the block sets of s
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RTD,, (k, g)’s and t RTD,,(k, g)’s gives a RTD,,, +¢x,(k, g). The second follows by

using Remark 1. a

The advantage of the following construction is that it allows for increasing the
block size without necessarily making the “index” a maultiple of g. We see similar
constructions in the next chapter.

Theorem 4.1.4 Ifan RBIBD(v,k, ) and a RTD,(v/k, g) ezist, then a R(g,v, Ap(g+
(v—k)/(k —1)), \s(v — k)/(k — 1))-design ezists.

Proof: We construct blocks on the point set
§={(J)1<i<g,1<j<v}

Assume that the RTD,(v/k, g) is on the points {(7,7)[1 < i < g,1 < j < v/k},
and the groups are G; = {(¢,7)|1 < ¢ < g}. Assume the RBIBD is on the point
set {1,2,...v}. For each parallel class of the RTD, say {Bi, B,..., B,}, and each
parallel class of the RBIBD, say {Bj, B;, ..., B’%}, we construct a parallel class on
S as follows. If

B: = {(d1,1), (8:2:2), -, (i )

then our parallel class on § has blocks {8;]1 < 7 < g} defined by

B; = ({8;1} x By) U ({82} x B) U... U ({852} x By). (41)

We now count the blocks of the resulting design containing a given pair of
distinct points. In what follows, let » = A(v — 1)/(k — 1), and let R denote the
set of blocks of the final structure. First, any pair of points in S with a common
second index never occur together in a block R, by virtue of 4.1 and the fact that
the B! form a parallel class. Next consider a pair of points (21,71), (32, j2), where
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i1 # 1; and j; # j2- Again by 4.1, the only blocks in R in which these points occur
together come from parallel classes of the RBIBD where j; and j, lie in distinct
blocks. There are r — X such parallel classes, and for each one there are x blocks
of the resolvable transversal design that combine with this parallel class to make a
block of R containing the points (21, j1), (¢2,j2)- This makes for a total of

p(r —A) = Ap(v — k)/(k - 1)

blocks of R containing the given pair of points. Finally consider points where only
the second index differs, say (i,7:),(%,72). In this case every parallel class of the
RBIBD combines with some block of the resolvable transversal design to give a
block of R containing the given pair of points. There are A blocks of the RBIBD
containing the pair of points ji, j2, and for each such block B, there are ug blocks of
the RTD that combine with it to give a block of R containing the pair (3, 7,), (, 2)-
(These pg blocks are all blocks through a certain point of the RTD; that certain
point depending on the value of 7 and the parallel class of the RBIBD.) There are
r — A parallel classes of the RBIBD in which the points j;, j; lie in different blocks,
and for each such parallel class there are g blocks of the RTD that combine with it
to give a block of R containing the pair (%, j1), (¢,72). (These g blocks correspond
to the blocks through a fixed pair of points of the RTD.) This makes for a total of

Apg + p(r —A) = Ap(g + (v — k) /(k — 1))

blocks of R containing the given pair of points. a

The above theorem allows us to prove, with minimal work, the asymptotic
existence of resolvable transversal designs. This is the first step in proving the

asymptotic existence of tight OMEPs.
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Corollary 4.1.5 Let g > 4 be a fized number not divisible by 3, and let k be fized.
Then for all A large enough, a RTD,(k, g) ezists.

Proof: Choose i such that 3**! > k. Apply Theorem 4.1.4 using an RBIBD(3+*, 3¢, (3* —
1)/2) and a RTD(3,g) to obtain an R(g, 3**!, g(3° — 1)/2 + 3*, 3*)-design which we
truncate to a R(g, k, g(3* — 1)/2 + 3¢, 3*)-design. Now take g(3* — 1)/2 copies of the
blocks of a R(g, k, g*~2 — 1,¢*~?) and one copy of the blocks of our R(g, k, g(3* —
1)/2 + 3%,3%)-design, to give a RTD, (k, g), where u = g*~(3* — 1)/2 + 3°. Since u
is relatively prime to g, Lemma 4.1.3 gives the result. =]

Lemma 4.1.6 For any k, any m, and any A sufficiently large, a RTDy(k,3™)

exists.

Proof: First suppose m = 1. Choose i such that 4t! > k. Apply Theorem 4.1.4
using an RBIBD(4*+!, 4%, (4° —1)/3) and a RTD;(4, 3) to obtain an R(3,4"*!,6(4" —
1)/3 +2-4%,2 . 4%)-design which we truncate to a R(3,%,6(4° — 1}/3 +2-4°,2-4%)-
design. Now take 6(4° — 1)/3 copies of the blocks of a R(3,k, 32 —1,3%2?) and
one copy of the blocks of our R(3,k,6(4° — 1)/3 + 2 - 4*,2 - 4*)-design, to give a
RTD,(k,g), where g = 2 - 3*7} (4 — 1)/3 + 2 - 4*. Since u is relatively prime to 3,
Lemma 4.1.3 gives the result in this case.

Next suppose m > 1. Set ¢ = 3™. Choose i such that 4*' > k. Apply
Theorem 4.1.4 using an RBIBD(4'+!, 4%, (4* — 1)/3) and a RTD(4, g) to obtain an
R(g,4", g(4'~1)/3+4%, 4°)-design which we truncate to a R(g, k, g(4'—1)/3+4*, 4')-
design. Now take g(4° —1)/3 copies of the blocks of a R(g, k, g*~2 —1, ¢*~2) and one
copy of the blocks of our R(g, k,g(4* — 1)/3 + 4%, 4*)-design, to give a RTD,(k,g),
where y = gF~1(4' — 1)/3 + 4°. Since g is relatively prime to g, Lemma 4.1.3 again
gives the result. a
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Corollary 4.1.7 For any k and any g with 3|g, and all A\ sufficiently large, a
RTD,\(I:, g) ezists.

Proof: We first consider the case g = 6. In this case, choose ¢ such that 5! > k.
Applying Theorem 4.1.4 using an RTD5(5,6) and an RBIBD(5**!, 5%, (5 — 1)/4)
gives an R(6, 5+, 6-5(5° —1)/4 451, 5*t1)-design which we truncate to a R(6,k,6-
5(5° — 1)/4 + 51, 5"¥1)-design. Adding 6 - 5(5° — 1)/4 copies of the blocks of an
R(6,k,6%2 — 1,6%2)-design gives an RTD,(k, 6), where A = 55;—'1 . 6F-1 4 51,
which is relatively prime to 6. Thus Lemma 4.1.3 now gives the result.

For g # 6, write ¢ = 3™¢/, with 3 /Jg’. Since g # 6, we have ¢ # 2. From
Lemma 4.1.6, there exists a RTD,, (k,3™) with ged(\,g9) = 1, and by Corol-
lary 4.1.5 there is a RTD,,(k, ¢’) with gcd()Az,g) = 1. The direct product of these
is a RTDj,a,(k, g)- Since gcd(A1Az,9) =1, Lemma 4.1.3 now gives the result. O

These last few observations show that for fixed k and g > 3, a RTD\(k —1,9)
exists for all A large enough, say all A > M(g,k). Hence a tight A\g x g*~1//\g?
OMERP exists for all A > M(g, k). The product theorem implies that for any set of
A;’s pairwise relatively prime with at least one A; > M(g, k) a tight

A1g X A29 X ... X Aegf [ M1 Az ... Meg? (4.2)

OMERP exists. Since for fixed k, g there are only a finite number of parameters of the
form in (4.2) with the \;’s all less than A, there are at most a finite number of such
tight OMEP parameters for which the tight OMEP does not exist. Furthermore, for
all sufficiently large g a TD(k, g) exists, and for such g and any choice of pairwise
relatively prime A;’s a tight Ajg x A2g X ... X Aeg//A1Az... \eg? OMEP exists.
Thus, there are only a finite number of tight parameter sets of the form in (4.2)
with g # 2 for which the tight OMEP does not exist. It remains to show that there

are only a finite number that do not exist when g = 2.
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Since a TD(k, 2a) exists for some a odd (depending on k), by collapsing levels
in it we obtain an equally replicated 2a x 2a x 2572//4a® OMEP. Also, there is
a tight 2o’ x 2¥-1//4a’ OMEP for o’ a sufficiently large power of 2, and hence
a tight 2’/ x 2a x 2*~2//4a’a OMEP. By using the concatenation construction
(Theorem 2.2.2) we obtain a tight 2u x 2a x 22/ /4ua OMEP for all u > aa’. For
such g, there is also a tight 2u x2a’ X252/ /4ua’ OMEP. Again using concatenation
we obtain a tight 2p x 2u’ x 28-2/ /4uu’ OMERP for all 4’ > aa. Thus, for any choice
of u:’s pairwise relatively prime with at least two of the u;’s at least aq’, there is
a tight

2p1 X 2p2 X .. X 2/ [4prpa - - - ik (4.3)

OMEP. We must now consider OMEPs of the form in (4.3) but where all but one

of the pu;’s are less than aa’. We need some lemmas first.

Lemma 4.1.8 For any k, there is an odd \ such that a tight 2)\ x 4 x 2¥-2//8)
OMEP ezists.

Proof: Choose i such that 3**' > k—2 and ¢ is even. For neatness define v = 3**1,
Let D; be a 2x4x2x2x2//8 OMEP, and let D, be an RBIBD(3*+!, 3¢, (3* —1)/2).
Let

T = {all v-tuples using 0,1 except (0,0,...,0) and (1,1...,1) }.

Let the j’th parallel class of D; be {Bj;, Bj2,Bjs}, 1 < j < (3! —1)/2. We
construct an OMEP on v+2 rows, with rows labelled 00,0, 1,2, ...,v. We construct
the OMEP so that the symbols in row co are T x {1,2,...,(3'-1)/2}u{1,2,...v—
1}, the symbols in row 0 are {0,1,2,3}, and the symbols in each other row are
{0,1}. Assume the symbols in the rows of D, are {0, 1}, {0,1,2,3}, {0,1}, {0,1},
and {0, 1}, respectively. Assume the point set of D, is {1,2,...v}. For each column
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(Pocs Pos P1, P2, p3)T of Dy and each parallel class {B;;, Bj2, Bjs} of D; we construct
a column with 27 — p, in the row oo , pg in row 0, p; in each row indexed in
Bj;, p; in each row indexed in Bj;, and p3 in each row indexed in B;;. (Since
{Bj1, Bj2, Bj3} is a parallel class this defines the entire column.) Further, for each
a € {1,2,...,(3* — 1)/2}, each v-tuple T = (t3,ts,...,¢,) in T, and each s €
{0,1,2,3} we construct a column with (T, a) in row oo, s in row 0, and #;+s in row [
for eachrow I, 1 <l < v (where addition is done modulo 2). These columns together
form an OMEP where symbols from row co and row 0 occur together once, symbols
from row oo and row [, 1 < I < v, occur together twice, symbols from row 0 and row
[,1 <1 < v, occur together A times, where A = (3! —1)/24+(2""! —1)(3'—1)/2, and
symbols from any pair of distinct rows with labels between 1 and v occur together
2 times. (Since i is even, (3* — 1)/2 is even, and (3**' — 1)/2 is odd, so A is odd.)
Thus this is a 2A x 4 x2"//8X OMEP on v + 2 rows, which gives the desired OMEP

by possibly removing some rows. a

Lemma 4.1.9 For any k, there is a A that is a power of 2 such that a tight 2\ x
4 x 2572/ /8X\ OMEP ezists.

Proof: Choose 7 so that 4° > k — 1. A 4f x 4 x 4*'~1//4"+1 OMEP exists, since a
RTD,(4°+1,4) exists. By collapsing levels we obtain a 4° x 4 x 2¢~1//4"+1 OMEP.
Taking A = 2%~1, we find this is a tight 2\ x 4 x 2¥~1//8A OMEP, which can be
truncated to give the desired OMEP. a

Corollary 4.1.10 For any k, and for all sufficiently large )\, a tight 2\ x 4 x
2t-2/ /18X OMEP ezists.

Proof: This follows from Lemma 4.1.8, Lemma 4.1.9, and Lemma 4.1.3. m]
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We now show asymptotic existence of OMEPs with parameters as in (4.3), but
where all but one of the y;’s are less than aa’. Again recall that k is some fixed

number of rows.

In the first case at least one y; is even, say u; = 2u,. Then by (4.1.9), a tight
2A x4 x2x2...x2//8\ OMEP on k rows exists for all X large, say A > M'(k).
Using the product construction we find a tight 2A x 2u; x 2 x 2... x 2//4)\pu.
OMEP exists for A > M'(k), and so again using the product construction, a tight
2A X 2p2 X 2p3 X 2... X 2uif [4Apaps3 - . . i OMEP exists for such A. Thus if some
p: > M'(k), and some p; is even, then a tight 2y x 22 X ... X 2ue/[4pipa - - - P
OMEP exists. Hence there are at most a finite number of OMEP parameters in
the first case for which the OMEP does not exist.

In the second case, no y; is even. We know if £ > 4 and at most one y; is greater
than one then the OMEP cannot exist, and in this case the parameters have the
form 2x2x...x2x2s//4s for s odd. (See Lemma 2.2.6.) Otherwise at least two
:’s are greater than one. Suppose y; > p2 > 1. By the earlier results a RTD . (k —
1,2u.) exists for some odd ), so an equally replicated 2u, X’ x 2u5~! //4) u2 OMEP
exists, and so by collapsing levels we obtain an equally replicated 2\ u; x 2u; x
262/ [4( X p2) 2 OMEP. Also a 2° x 2u3 x 252/ /2¢+2 4y, OMEP exists for 2° > k—1,
since a tight 2° x 2%'//2¢+! OMEP exists. Thus again by an argument similar to the
proof of Lemma 4.1.3, an equally replicated 2\ x 2u, x 252/ /4Au, OMEP exists for
all large A, and so an equally replicated 2A X 2ug X 23 X 2p4 X . . . X2/ /4 ps2 23 - - - piic
OMEP exists for all large A. Thus if g, is sufficiently large the OMEP exists, and
hence there are at most a finite number of OMEP parameters in the second case

for which the OMEP does not exist.

These are the only possible cases and so there are at most a finite number of

OMEP parameters with the form in (4.3) for which the OMEP does not exist, with
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the one exception of parameters of the type 2s x 2 x 2... x 2//4s with s odd and

with four or more rows.

Combining all these results we find, for any fixed k, and with the exception of
parameters of the form 2 x 2 x2x ... x2x 2s//4s with s odd and having 4 or more
rows, there are a finite number of tight OMEP parameters on k rows for which the
OMEP does not exist.

4.2 An Application to Jacroux’s Bound

With these results we can show that the Jacroux’s lower bound on the number of
runs n needed to construct an sy X 8, X ... x sx//n OMEP is “almost asymptotically

tight”. To explain what we mean here we need to make some observations.

Jacroux’s [16] lower bound on the number of columns in a s; X s; X ... x s¢//n

OMEDP is as follows.

Theorem 4.2.1 Suppose that an OMEP D has k > 3 factors in which factort has
s; levels, i = 1,2,...,k, with s; > s;;1, and n ezperimental runs. If n = s}s, for

s}, 8y satisfying
8183 = min{zy|z > 81,y > 32,2y < 25132, 33 < ged(z,y)}

then D ts a minimal OMEP.

Essentially we are bounding the number of runs required by bounding the num-

ber of runs required for the truncated s; x s; x s3//n OMEP.

Street [22] has extended Jacroux’s result when k = 3:
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Theorem 4.2.2 A minimal s; X 33 X s3//n OMEP, with s; < s; < s3, ezists if

and only if

¢ n = (82 + z)(83 + y) for some nonnegative integers z,y,
o s <gcd(s; +z,83+y)-

The concept of a tight OMEP quickly leads to the above results, as follows. In
the second chapter, it is shown that the minimal n for which an s; x s; % s3//n
OMEP exists is the minimal n for which a tight s] x s; x s3//n OMEP exists with
st > s;for t = 1,2,3. Let d = ged(s], s5,33), and let u; = =n/s! for 1 = 1,2,3.
Now since we are dealing with three row OMEPs, 3] x s, x s3//n is the parameter
set of a tight OMEP if and only if u;,u;,u; are pairwise relatively prime, and
n = d*ujusus. All tight three-factor OMEPs exist, so the minimal n for which a
tight s} x s, x s3//n OMEP exists is given by

min d®u;uu3
subject to
uid > s,
ged(ui, ;) = 1for 1 # j.

u;, d positive integers.

We claim this system has an optimal solution with u; = 1. Since 8; > 3, > 33,
any solution (d,u;,us,u3) can be assumed to have u; > u; > u;. Furthermore, the
constraint ged(u;, u;) = 1 for i # j does not change the minimum value achieved,
for if (d,u;,u2,%3) is a solution with u;,u; having a common factor f, say, then

(df,u1/f,u2/ f,u3) is a solution with the same objective value. So in what follows
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we forget about this constraint. Now assume (d, u;, u3,u3) is an optimal solution
with u3 > 1. Then (dus, I’:—ﬂ , f:—ﬂ ,1) is a solution with an objective value no larger

than the first solution. Proving this amounts to showing that
U4 U2
— || —=] <L . .
usfuslfu31 < wiup (4.4)

To verify the inequality, first notice it is trivial if ¥; = u3 or u; = u3. So assume
u; > ug and uz > uz. Then as

(u1 +1L3~1) (‘uz +1l3—1)

Uy, U2
— =1 < .
“3fu3] f%] < ug - - (4.5)
it is enough to show that
(v + us — 1)(uz + u3 — 1) < wyuqu;. (4.6)

After expanding and cancelling a common factor (u3 — 1) we find the equivalent
inequality

uz < (up — 1)(vz — 1) (4.7)
which is trivially true as u;,u; > u3 and all are integral.

Thus the system has an optimal solution with u; = 1. Taking s! = u;d, we find
there is an optimal solution with » = s{s}, and s; = ged(s], s;), which should be

compared with Theorem 4.2.2 and Theorem 4.2.1.

Thus Jacroux’s lower bound is actually telling us the smallest n for which there
is a tight OMEP parameter set s} x s, x s§//n with s; > s;. Furthermore, since
the above integral system has an optimal solution with u; = 1, the smallest n for
which there is a tight OMEP parameter set s] x s, X ... x s;.//n with s} > s; can be
assumed to have the form n = p;u,9%, and the tight parameter set can be assumed
to have the form

prg X p2g X g X ... %X gf[papiag® (4.8)
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Now if g > 3 then there are at most a finite number of parameters with the form
(4.8) for which the tight OMEP does not exist. Thus if 3; > s2... > s, and
s3 > 3, then there are at most a finite number of choices for the other s; for which
Jacroux’s bound is not tight. Even if s; = 2 and both s;, s, are greater than 2 then
there are still at most a finite number of cases where Jacroux’s bound is not tight.

This is what we mean by “Jacroux’s bound is almost asymptotically tight”.

4.3 Summary

In this chapter we have proven the asymptotic existence of tight orthogonal main
effect plans, in the sense that for a fixed number k of rows, and with the exception
of tight OMEPs with parameters 2~ x 23//4s for s odd, there is an N depending
on k such that all tight OMEPs having N or more rows exist. We have applied this
result to show that Jacroux’s lower bound for OMEPs is often met with equality.
We also found that OMEPs with parameters of the form

H1g X pzg X g X ... X g/ [p1p2g” (4.9)

are important when we are looking for minimal OMEPs. We give constructions

which can produce OMEPs with these parameters in the next chapter.



Chapter 5

Recursive Constructions

Although direct product type constructions for OMEPs are useful, they give OMEPs
having no more rows than the ingredient designs. Normally, one wishes to have as
many rows as possible (for a fixed number of columns) since this means that more
factors can be analyzed. There are constructions for producing OMEPs having
large numbers of rows, though these constructions usually involve Hadamard ma-
trices (see [10] for example). Furthermore, these constructions typically produce
OMEPs having parameters of the form ¢ x 4™ x 2™2//n, which can be restrictive if
we have two factors having many levels, or if all factors have more than two levels.
In the next section we give constructions which give equally replicated OMEPs hav-
ing large numbers of rows which have neither of these restrictions. Similar methods

have been applied to construct difference matrices in [9].
In the last section, we saw that OMEPs with parameters of the form
Mg X g X g X ... X g/ [p1pig’ (5.1)

are important when we are looking for minimal OMEPs. The constructions in this

chapter can be used to construct OMEPs with these parameters.

62
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5.1 Constructions using PBDs
For the first construction, we need the following structure.

Definition 5.1.1 A (ug — 1) x g*"*//ug* — g Modified OMEP (or MOMEP) is a
k x (pg® — g) array having ug — 1 distinct symbols in row 1, having the symbol set
{1,2,...g} in each of the other rows, and with the property that any symbol from
the first row occurs in a column ezactly once with any symbol from rowt, 1 < <k,
any pair of distinct symbols from rows i and j, 1 < i < j < k occur together in a
column ezactly p times, and identical symbols from rowsi and j, 1 <1 < j < k,

occur together in a column ezactly u — 1 times.

A resolvable orthogonal array ROA,(k, g) with a parallel class {(z,%,1,...,7)T|1 <
i < g} can be used to construct a ug — 1 x g*~'//ug* — g MOMEP by removing
this parallel class and by extending each other parallel class.

Recall that a PBD(v, A) is a pair (V, B), where B is a collection of subsets (called
blocks) of the v-set V' such that any pair of elements from V is contained in exactly
A of the blocks of B. In some discussions of PBDs, blocks of size one are forbidden,
but we do not require such a restriction in this chapter. If we can partition B into
[ classes each of size at most w so that each class is a partition of V' then the PBD
is said to be resolvable and we call it a [ x w PBD(v,\). As usual, each such class
is called a parallel class.

Here is the main construction.

Theorem 5.1.2 Suppose a l x w PBD(v,\} ezists, and a ug — 1 x gt/ /ug®> — g
MOMEP M with A\ug = l exists. Suppose \u = af8, for some positive integers
a,3. Then an equally replicated a(ug —1)g x Bg x g°//a(ug —1)Bg* OMEP ezists.
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Proof: We construct the desired OMEP by concatenating together [ smaller arrays;
one smaller array A; for each parallel class of the PBD(v,A). The resulting array
has symbol set {(z,a)|]l < z < pg —1,1 < a < ag} in the first row, symbol set
{(y,0){1 <y < g,1 < b < B} in the second row, and symbol set {z]1 < z < g} in

each other row.

Let N be a ag x B//gaff OMEP, whose i’th column is (ny;,n2)?. Let L = [I;;
be a latin square of side g. Let the PBD(v, A) have point set {3,4,...,v + 2}, and
parallel classes {B;y, Bia,...,Biw}, 1 < i < L. Let the (i,7) entry of M be my;.
The array A;, 1 < 7 <[ has v + 2 rows and pg? — g columns, and the symbol in

row r and column cis

o (mlc’ nli) ' ifr = 11
® (lgm,. ;n2:) where ¢ = (ny; mod g) + 1, if r = 2, and,

® m,. where B;,_ ; is the block in the z'th parallel class containing the point r,
ifr>2.

We now verify that the array D obtained by concatenating these subarrays
gives the desired OMEP. Any two symbols from the same row of D occur the same
number of times in that row so if D is an OMERP it is equally replicated. Let (z,a)
be a symbol from row 1 of D, and let (y,b) be a symbol from row 2 of D. Exactly
one column of N is (a,b)%; suppose it is the p’th column. Then the subarray
corresponding to the p’th parallel class of the PBD has exactly one column with a
(z,a) in row 1 and a (y,b) in row 2, and no other subarray has such a column. So

this pair of symbols occurs in these rows in exactly one column of D.

Let (z,a) be a symbol from row 1 of D, and let z be a symbol from row i of D,

t > 2. The symbol (z,a) occurs in row 1 in 3 of the subarrays, and in each such
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subarray there is exactly one column containing (z,a) in row 1 and z in row 7. So

the pair of symbols occurs in the given rows a total of 8 times.

Let (y,b) be a symbol from the second row of D, and let ¢ index a row, 2 <
t < v + 2. The symbol y also occurs in row ¢ of D. The symbol (y,b) occurs in
row 2 in ag of the subarrays, and in a(g — 1) of the subarrays there are u columns
containing the given symbols in the given rows, and in « of the subarrays there are
g — 1 columns containing the given symbols in the given rows. Thus in total there

are a(pug — 1) colamns of D containing (y,b) in row 2 and y in row i.

Let z be a symbol from row z of D, and y be a symbol from row j of D, with
i#jandz #y,2 <i<j < v+ 2 For those subarrays corresponding to
the A parallel classes where ¢ and j are contained in a block of the parallel class,
there are no columns containing these symbols in these rows. For the subarrays
corresponding to the ! — X other parallel classes, these symbols occur in these rows
in g columns, for a total of u(l — A) = Ap(ug — 1) = af(ug — 1). (Here we use the
fact that { = Aug, and Ap = aff.)

Let z be a symbol from row ¢ of D, and y be a symbol from row j of D, with
t #jand with z =y, 2 < ¢ < 7 < v+ 2 For those subarrays corresponding to
the A parallel classes where ¢ and j are contained in a block of the parallel class,
there are ug — 1 columns containing these symbols in these rows. For the subarrays
corresponding to the [ — ) other parallel classes, these symbols occur in these rows in
p—1 columns, for a total of A(pg—1)+(I—A)(p—1) = Apg—1)+A(gg—1)(p~1) =
Ap(pg — 1) = aB(pg — 1). (Again using the fact that [ = Aug, and Ap = af.)

Thus we see that symbols from different rows occur in the correct number of
columns and so the resulting array is an equally replicated a(ug — 1)g x Bg x
9°//(pg — 1)ug> OMEP. o
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A nice corollary of this theorem is the following result, which produces tight

OMEPs having a large number of rows.

Corollary 5.1.3 Suppose a RBIBD(v,k,1) ezists, and a resolvable orthogonal ar-
ray ROA,(v/k+ 1,g) with pg = (v — 1)/(k — 1) ezists. Then a tight (ug — 1)g x
ng % g°/[(ng — 1)pg* OMEP ezists.

The fundamental idea in Theorem 5.1.2 is that we can obtain a design by judi-
ciously taking unions of the blocks of smaller designs. The following construction
helps illustrate the idea further.

Theorem 5.1.4 If an equally replicated Aig X Azg X ... X Aeg X g“[[A1 A2 - .. Aeg®
OMEP M, a ROA,(k,g) T, al x w PBD(v,A) P having mazimum block size at
most k, and an equally replicated py X pta X ...pef [lpug OMEP N all ezist then an
equally replicated pyA1g X para2g X ... pedeg X g°/[lpA1Az . .. A\eg® OMEP ezists.

Proof: We construct the OMEP by concatenating together lug subarrays. The

resulting OMEP has symbol set {(z,z){1 < ¢ < A.¢9,1 < z < g} in the rth row,
1 <r <t, and symbol set {z|1 < z < g} in each other row.

Let the (z,7)th entry of M be m;;, and let the (i,j)th entry of A be n;;
Let the PBD(v,A) have point set {t + 1,t + 2,...,¢t + v}, and parallel classes
{Bi,l, Bi,Z’ ceey Bt',w.'}: 1 g 1 S L

There are ugl pairs (P,Q) where P is a parallel class of the PBD(v,A) and
Q is a parallel class of the ROA(k,g). For each block B of each parallel class
{Bi1,Bi2,-..,Biw} of the PBD(v,\) we fix a ROA,(|B|,g) T where the rows
are indexed by the points in B. Fix an ordering of the parallel classes of each
ROA,(|B|, g) and fix an ordering of the blocks (columns) in each parallel class.
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For the jth such pair (P,Q), we construct a subarray Apg, having ¢ + v rows

and A;);...Ag? columns, and the symbol in row r and column c is

L] ('”"fc,nfi) 3 if‘l‘ Sta
e 2, where z is the point in the group indexed by r in the m..th block of Q,

where B, .. is the block in P containing the point r, if » > ¢.

We now verify that the array D obtained by concatenating together these subarrays
gives the desired OMEP. It is clear that the result is equally replicated, so let
(z,a) be a symbol from row i of D, and let (y,b) be a symbol from row j of D,
where 1 < i < j < t. There are lpg/(pip;) columns of N with an a in row 2
and a b in row j. The subarrays corresponding to these columns each contain
A1Az ... A/(M:A;) columns with (z,a) in row z and (y,b) in row j, for a total of
(LegAi g ... Ad) [(AipsA;p85) columns alltogether (which is the number required for
the OMEP property).

Next let (z,a) be a symbol from row 7 and let z be a symbol from row j of
D withl <% <t < j<wv There are lug/u; columns of N with symbol a
in row t. The subarrays corresponding to these columns each have A1 A, ... A/
columns containing symbol (z,a) in row ¢ and symbol z in row j, giving a total of

(lpgAi Az ... M)/ (m:A:) such columns, which again is the desired number of columns.

Finally, let z; be a symbol from row ¢ and let z; be a symbol from row j of
D, with t < i < j < v. The A subarrays corresponding to the parallel classes
of the PBD in which points i,j are in a block of the parallel class each contain
#{A1Az ... Aeg) columns with a z; in row ¢ and a z; in row j. Each of the [ — A
other subarrays contain (pg)A1;...A: columns with these symbols in these rows.

In total this makes for A A;... A;ugl such columns, which is the correct number of

columns.
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To describe another construction, we need another definition.

Definition 5.1.5 An (s,t,g9,w,\)-MOMEP is an s* x (t+w) arrey, having symbol
set {1,2,...,s} in rows I through t, and symbol set {1,2, ..., g} in rowst+1 through
t + w, such that

e each symbol in row i occurs in a column with each symbol from row j ezactly
once, 1 <1 <3<t

e each symbol from row t occurs in a column with symbol  from row j ezactly
piz times, 1 <:<t<j<t+w,

e cach symbol T from row i occurs in a column with symbol z from row j ezactly
Az times, t+1 <1 <j<t+w,

o cach symbol ¢ from row i occurs in a column with symboly from row j ezactly

Atimes, t+1<i1<j<t+w, z#y.

Table 5.1 gives an example of such a structure. Although the parameters
iz, Az may be of interest in actually constructing such objects, only the values
of s,t,g,w,\ will be of interest in the next construction, which explains why we
list only these parameters when describing the object. Some relations hold among

the parameters. In particular, 39_, u; . = s.

Theorem 5.1.6 Suppose we have an l x w PBD(v,1) and a (s,¢t,g9,w,\)-MOMEP
M so that

o A=(Is%)/(g*(1 - 1)),

o l=aja;...ag%, for some positive integers oy,
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1 23123123
123 231312
1 112 2 2 2 2 2
2 221112 2 2
2 2 2 222111

Table 5.1: A (3,2,2,3,3)-MOMEP

o an equally replicated a9 x azg % ... x arg X g/ [l OMEP ezists.

Then an equally replicated a;sg x azsg x ... x a,sg x g°//ls* OMEP ezists.

Proof: We construct the OMEP by concatenating together ! subarrays. The result-
ing OMEP has symbol set {(z,a)|]1 <z <s,1 <a < ag}intherowi, 1 <i<t¢,
and symbol set {z|1 < z < g} in each other row.

Let N be an equally replicated a;g x azg x ... x a,g x g//| OMEP. Let the
(v, c)th entry of M be m, ., and let the (r,c)th entry of N be n,.. Let L = [I(r, c)]
be a latin square of side g. Let the PBD(v, 1) have point set {t+1,¢+2,...,t+v},
and parallel classes {B;,, B:3,...,Biw;}, 1 <3 < L.

The pth subarray, 1 < p <! has t + v rows and s? columns, and the symbol in

row 7 and column cis

o (mrmnrp) 1ifr Stv
o l(n441p,m; ), where 2z is such that the block B, . . contains the point », if

r >t

We now verify that D, the concatenation of these subarrays, is the desired
OMEP. Any two symbols in the same row of D occur the same number of times so
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if D is an OMEP it is equally replicated.

Let (z,,a,;) be a symbol from row ¢ of D, and let (z,, az) be a symbol from row
jof D, with 1 <z < j <t. Exactly l/(a;a;g*) columns of N have an a; in row
i and a a2 in row j. Suppose the pth column of A is one such column. Then the
subarray corresponding to the pth parallel class of the PBD has exactly one column
with an (z;,a,) in row 7 and a (z2,a;) in row j. Only these {/{a;a;9%) subarrays
have such a column, and so this pair of symbols occurs in these rows in exactly

l/(a:a;g9?) columns of D.

Let (z,a) be a symbol from row i of D, and let y be a symbol from row j of
D,1<i1<t<j<t+w The symbol (z,a) occurs in row i in I/(a;g) of the
subarrays, and for each z, 1 < z < g there are {/(a;g®) of these subarrays that have
pi. columns containing (z,a) in row ¢ and y in row j. So the pair of symbols occurs

in the given rows a total of ‘(;:?)(221 piz) = (Is)/(a;g?) times.

Let £ be a symbol from row 7 of D, and y be a symbol from row j of D, with
t<i<j<v+tand z #y. For that subarray corresponding to the parallel class
where ¢ and j are contained in a block of the parallel class, there are no columns
containing these symbols in these rows. For the subarrays corresponding to the
[ — 1 other parallel classes, these symbols occur in these rows in A columns, for a

total of A(I —1) = ls?/g® columns. (Here we use the fact that A\ = (Is?)/(g%(I—1)).)

Let z be a symbol from row i of D, and let j index another row of D, with
t <t < j < v+t Exactly one parallel class of the PBD has a block containing
the points t,j, suppose it is the pth. The number of columns of D containing z
in row ¢ and row j is (A1 + A2 + ... + Ag) + by — Aq, Where q is the column of L
containing symbol z in row n.4; 5, and by is the number of columns of M containing

a qin row t + 1. (Actually, b, is the same for all rows except the first ¢ rows.) As
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by — Ay = (g —1)A, and T, A\, = s® — g(g — 1), a little arithmetic shows this
reduces to ls?/g>.

Thus we see that symbols from different rows occur in the correct number of

columns and so D is an equally replicated a;3g X azsg X ... x a,sg x g° OMEP. O

For example, applying this construction using a RBIBD(9, 3, 1) and the (3,2, 2, 3, 3)-
MOMERP in Table 5.1, one obtains an equally replicated 6 x 6 x 22//36 OMEP.

It is possible to generalize the form of the MOMEP given in Table 5.1.

Lemma 5.1.7 Suppose we have ROA(k,s) and ¢ OA,(w,g) with ug* — 1 = s.
Then a (s,k,g,w, us)-MOMEP ezists.

Proof: Without loss of generality, the OA(w, g) has symbol set {1,2,...,g}, and
has a column consisting entirely of 1’s. Let ¢;,ca,...,c 21 be the remaining
columns. Let Py, P,,..., P, be the parallel classes of the ROA(k,s). (So each F;
is a set of s columns.) Then a (s,k, g, w, us)}-MOMERP is given by appending the
column ¢; to column j of the ROA(k, s) whenever column j is in P;. Verification

that this is the desired MOMEP is routine. O

Finally, we give a new construction for resolvable orthogonal arrays. Such de-

signs are useful to us since by extending parallel classes we obtain tight OMEPs.

Theorem 5.1.8 Suppose there ezists a ROA,, (k,q1), a ROA,,(w, g2), ROA, (w, 1),
and a |l x w PBD(v, \) with mazimum block size at most k, so that p1g1 = 1292 — 1

and (I — A) = Ap1gr. Then a ROAg_\yryn (v, 192) erists.

Proof: The points in each row of the resulting orthogonal array will be from the
set {(z,y}|ll1 < z < g1,1 <y < g2}.- Let the ith parallel class of the PBD be
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B;1,Bia,...,Biw;- For each i, 1 < i < {, we will use a ROA,,(w;, g;) missing a
parallel class {(i,1,...,7)7|l < i < g2}. ( Any ROA,, (w;,g,) can be assumed to
have such a parallel class, by possibly permuting the symbols set in each row. )
Denote the column set of this structure by C;

For each block B of the PBD, fix a ROA, (|B],g:) with rows indexed by
the points in B. For each 7, 1 < ¢ < [, and each symbol z in each row a of
the ROA,,(wi,g2), fix a bijection f;.. between the u;g; parallel classes of the
ROA,, (|Bial,91) associated with block B;, and the 739, ~ 1 columns in C; con-

taining symbol z in row a.

Next, for each ¢, 1 < i < I, and each column (a,,a;,...,a,,;)T in C;, and each

column (b;,b,,...,b,;)T in a ROA,, (w;, g1), we construct a column

((271, yl)v (327 y2)7 sty (zvy yv))T

in the final array, where z.,y, are defined as follows. Let B;; be the unique block
in the ith parallel class of the PBD which contains the point r, and let D be the
ROA,, (|B|,41) associated with this block. Then y, is defined to be a;, and z, is
defined to be the symbol in the row indexed by r and in the ,th column of the
parallel class of D whose image under f;,;,; is (a1, 4z, . ..,a,)T. We claim that the

resulting collection of columns is the desired ROA - yr,n, (v, 9192)

To verify that the resulting array is an ROAj_j)ryr, (v, 9192), choose a pair of
symbols (z1,1), (2, y2) from the set {(z,y)|L <z < g1,1 <y < g2}. and a distinct
pair of rows ry,7; from {1,2,...,v}. We count the number of columns in the final
array which contain these symbols in these rows (respectively).

First suppose y; # y;. For each of the [ — \ parallel classes of the PBD in which

r1 and r, do not occur together in a block, there are a total of 7,7; columns in the

final array containing the given symbols in the given rows. The A parallel classes
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of the PBD in which r;, 7; occur in a block contribute no such columns to the final
array. Thus there are a total of (I — A)m21; columns of the resulting array containing

the given symbols in the given rows.

Next suppose y; = y2. For each of the { — A parallel classes of the PBD in which
T, and 7, do not occur together in a block, there are a total of (72 — 1)7; columns in
the final array containing the given symbols in the given rows. Further, for the A
parallel classes of the PBD in which r;,r; occur in a block, there are u;7g; columns
of the final array in which these symbols occur in these rows. This makes for a total
of (I — A)(m2 — 1)1y + Ap17191 which simplifies to (I — A)r7y since (I — X) = Ay g
Thus in this case the given symbols occur in the given rows in (I — A)m,7; columns

of the final array.

It is easy to see that the resulting array is resolvable, since the columns of the
final array arising from a parallel class of the PBD, a parallel class in some C; and a
parallel class of the ROA,, (w;, g1)s are a parallel class of the final orthogonal array.

Thus we see that the resulting array is a ROA(_a)mn (v, 9192)- 0

We mention that if each of the ingredient orthogonal arrays come from difference
matrices (over G, G,), then the resulting orthogonal array has an automorphism in
the group G x G2, and thus an associated difference matrix exists. Furthermore we
mention that if our ingredient designs are instead a ROA, (k,g1), an OA,,(w, g2)
(with a parallel class), an OA,,(w,g1), and a I x w PBD(v, A) with maximum block
size at most k, with p;¢, = 729, — 1 and (I~ A) = A1 g1, then a OAy_rynn (v, 9192)

exists.
This theorem appears to give the best known results for certain values of g and

A. Colbourn and Kreher [9] contains a table giving the best lower bounds on k
in a (g, k, A)-difference matrix given g,A. The above construction provides better
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bounds in a number of cases. For example, using a RTD,(4,2), a RTD(4,5), a
5 x 4 PBD(16,4), and a RTD;(4,2) in Theorem 5.1.8 gives a RTDs(16,10). If the
ingredients come from difference matrices then the resulting RTD has an associated
difference matrix, and so a (10,16, 8)-difference matrix exists, whereas the best
known k for g = 10, A = 8 in [9] is 10. Using a RTD(3,3), a RTD(3,4), a 4 x
3 PBD(9,3), and a RTD(3,3) in Theorem 5.1.8 gives a RTD;3(9,12). As above
one can construct a (12,9, 3)-difference matrix if the ingredient RTD’s come from
difference matrices. The lower bound on k for g =12, A = 3 in [9] is 6. Similarly
we can obtain a (6,9, 6)-difference matrix and a (15, 25, 10)-difference matrix using
Theorem 5.1.8. The best lower bounds on k for these parameters in [9] are 6 and 7

respectively.

5.2 Summary

In this chapter we have given new recursive constructions for orthogonal main
effect plans. These constructions have the advantage that the resultant OMEPs
have more rows than the ingredient designs. Further, the number of levels for each
factor is not particularly restricted, as is the case with some constructions based on
Hadamard matrices, for example. The constructions have the additional advantage
that the OMEPs constructed are equally replicated.
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Conclusions

In the previous chapters we see several ideas involving tight OMEPs. The second
chapter introduces the concept of a tight OMEP, and shows that answering the
existence question for tight OMEPs helps in answering the existence question for
general OMEPs and equally replicated OMEPs. In the third chapter it is shown
that any three-factor OMEP can be uncollapsed to a tight OMEP. Hence, modulo
the collapsing of levels, all structural information about three-factor OMEPs is
contained in the class of three-factor tight OMEPs. In the fourth chapter it is
shown that practically all tight OMEPs exist, in the sense that for a fixed number
of rows and with the exception of one small infinite class, there are only a finite
number of parameters for which the corresponding tight OMEP does not exist. This
result allows for a better understanding of Jacroux’s lower bound on the number
of runs in an OMEP. Even the constructions given in the fifth chapter were found
by considering OMEPs of the form

/\1g X /\29... x Akg//z\l...Akgz, (6.1)

75
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which is a form suggested by tight OMEPs. Thus there is considerable evidence
that the concept of tight OMEPs is a useful one.

What further research is suggested by the results in this thesis? An obvious
problem is in answering the existence question for tight OMEPs having six or more
factors. As with OMEPs having fewer factors, such research will help in answering

the general existence question.

More information about the uncollapsing of OMEPs having four or more factors
would be helpful. Although we have shown that a general result like the three factor
case is not possible, perhaps a large class of OMEPs can be uncollapsed to tight
OMEPs. Even results specifically concerning four-factor OMEPs would be useful.
It may be possible to apply the uncollapsing result about three-factor OMEPs to
obtain structural information about such OMEPs. For example, a result concerning
the existence of repeated columns in tight three-factor OMEPs might give a result
about repeated columns in general three-factor OMEPs.

It would be interesting to obtain non-existence results for OMEPs also. For
example, it is well known that an equally replicated g¥//g> OMEP cannot exist
if K > g+ 1. This is a non-existence result for tight OMEPs having parameters
as in (6.1) and with all A;'s equal to one. Perhaps there are more general results
available if we allow the );’s to vary a small amount. Such a result would give a
better idea of just how plentiful tight OMEPs are.

Of course, more constructions for OMEPs, and tight OMEPs in particular,
would be most helpful. The recursive constructions in chapter five are powerful,
but as with many recursive constructions, they often produce designs having a large
number of runs. Thus more direct constructions for tight OMEPs would be useful,
as such constructions might give OMEPs which can be used both for practical use
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and for use in recursive constructions.
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Chapter 7
Appendix

An equally replicated 2 x 2 x 2 x 6 x 6//36 OMEP.

001011010101000111001011101100000111
000111001011010101000111001011101100
010101000111001011101100000111001011
0000001111112222223333334444445555655
012345012354412350341205351204351204

There is a completely resolvable OA;(5,6), from which we obtain a 6 x 6 x 6 x
6 x6 x 12//72 OMEP. We provide a difference matrix over Zg whose development
gives the desired orthogonal array.

00000O0O0COOOOGOCO
0011223 3445H5
9495321431020
552423010413
553 24013410 2
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An equally replicated 6 x 6 x 6 x 6 x 6 x 18//108 OMEP can be obtained from
the following completely resolvable O A3(5,6). Develop the following parallel class
over Zs to obtain the first five parallel classes. In all of what follows, X is a fixed
point (so that X + anything = X).

A L
RN W o D

1
3
X
1
1

© X NN W
W O = O

3
1
0
3
X

Develop the following parallel class over Zs to get the next five parallel classes.

O I I -

0
X
4
2
1

© M W
N W e O

2 3
2 1
0 2
X 1
4 X

Develop the following parallel class over Zs to get the next five parallel classes.

N
o~ o X o
N O X W

W XN NN
- o W O

3
1
4
2
X

Finally, here are the sixteenth, seventeenth, and eighteenth parallel classes.
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0123 4 X012 34X
4 01 2 3 X|401 23X
3 4012 Xi1 23 40X
3 4012 X|23 401X
4 01 2 3 X(01 2 3 4 X

W - - s O

- o

O W W = N

= N W

NOO O W

T B

80

An equally replicated 10 x 10 x 10 x 10 x 30//300 OMEP. Develop the following
parallel class over Zg to obtain the first 9 parallel classes.

X 0 1 2 3 456178
8§ X 7 6 5643210
8 7 X 6 53 410 2
8 7T 6 X 512043

Develop the following parallel class over Zy to obtain the next 9 parallel classes.

X 01 2 3 456
8 X 6 7 4513
7 8 X 6 3 4 20
J 41 X 02286

Develop the following parallel class over Zg to obtain the next 9 parallel classes.

X 01 2 3 456
8 X 5 4 310 2
2 0 X 8 4765
7T 6 8 X 301 4

Finally, the 28th, 29th, and 30th parallel classes

7
7
1
5

-5 v N Q@

8
6
3
2
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01 23 45 6 7 8 X|012 3 456738 X
3 6 78 0123 4 X[(56T17 801234 1X
7T 8 01 23 456 X617 8 012345 X
8 01 2 3 45 6 7 X7 8 012 3 45¢6 X

01 2 3 45617 8 X

5 6 7 8 01 2 3 4 X

6 7 8 012 3 4 5 X

3 4 56 78 01 2 X

There is a completely resolvable O A,(6,3), from which we obtain a 3 x 3 x 3 x
3x3x3x6//18 OMEP. We provide a difference matrix over Z, whose development
gives the desired orthogonal array.

o O o o o o
N N -~ - O O
N = N O = O
—- NN O N =D
- O N =N o
[— T o N Y N R
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