
Tight Orthogonal Main Effect Plans 

Robert Gallant 

A t hesis 

presented to the University of Waterloo 

in fulfilment of the 

thesis reqairement for the degree of 

Doctor of Philosophy 

in 

Combinatoncs and Optimization 

Waterloo, Ontario, Canada, 1997 



National Library Bibliothèque nationale 
du Canada 

Acquisitions and Acquisitions et 
Bibliographie Services senrices bibliographiques 

The aiithor bas gnmted a non- 
exclusive licence dowing the 
National Library of Canada to 
reproduce, loan, dis&ibuîe or sell 
copies of M e r  thesis by any means 
and in any fm or format, making 
this thesis avaïiabie to i n t e r d  
personS. 

The author retains ownership of the 
copyright in M e r  thesis. Neither 
the thesis nor substantial extrac& 
from it may be printed or otherwise 
repfoduced with the author's 
permission. 

L'auteur a accordé une licence non 
exclusive permettant à la 
Bibliothèque nationale du Cana& de 
reproduire, prêter, ckibuer ou 
vendre des copies & sa Wse de 
que1qge manière et sous quelque 
forme que ce soit pour mettre des 
exemplaires de cette thèse à la 
disposition des personnes intéressées. 

L'auteur conserve la propdté du 
&oit d'auteur qui protège sa thèse. fi 
la thèse ni des extraits substantiels de 
celle-ci ne doivent être imprimés ou 
autrement reproduits sans son 
autorisation. 



The University of Watedoo requires the signatures of all persons using or pho- 

tocopying this thesis. Please sign below, and give address and date. 



Abstrad 

In this thesis, we stndy orthogonal main efFect plans (OMEPs), &O known as 

orthogonal sesolution I I I  iiadiond designs. OMEPs are are a generahation of 

orthogonal arrays, and play a role in experimentd design, in partidar in screening 

experiments. We show that for any OMEP parameter set P, there is a special pa- 

rameter set Pr, cded  a tight parameter set, so that if an OMEP with parameters 

Pr exists then it can be used to obtain an OMEP with parameters P easily. Tight 

OMEPs are more structured than general OMEPs and therefore are easier to ana- 

lyze. W e  fkid all tight OMEPs on three, four, and five rows, and use this to answer 

the existence question for four and five-factor OMEPs. The same procedure can be 

used to help answer the existence question for OMEPs on any number of rows. We 

also show that, asymptotically, for any tight parameter set there is a correspondhg 

OMEP (with one s m d  class ofexceptions). We ose this information to gain insight 

into Jacrowc's Iower bound on the number of nins in an OMEP. We demonstrate 

that any OMEP (not just every OMEP parameter set) having three rows can be 

uncollapsed to a tight OMEP, so in the case of OMEPs having three rows all the 

stmctural information about OMEPs is contained in the subset of three-row tight 

OMEPs . We also develop reentsive constructions for eqaally replicated OMEPs . 
OBen these constructions produce OMEPs having more rows than a direct prod- 

uct construction could achieve. Sometimes the OMEPs prodnced are tight. One 

of these constructions prodaces resolvable orthogonal arrays. Other miscdaneous 

results concerning OMEPs are also proven. 
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Chapter 1 

Introduction 

In recent years, combinatorial designs have found inmeashg use in various fields. 

In partidar, combinatorial designs are being used not only in traditional fields 

such as statistics, but +O in computer science and engineering. 

The field of experimental design uses many combinatorial designs, such as 

transversal designs and balanced incomplete block designs, as well as similar struc- 

tures such as fiactional factorial designs and orthogonal main effect plans. In this 

setting, these structures are often used to defme a sequence of evperiments so that 

the collection of experiments as a whole has desirable properties for statistical anal- 

ysis, 

In this thesis we investigate orthogonal main eftect plans, or OMEPs. (OMEPs 

are sometimes called orthogonal resolution III fractional designs.) This investiga- 

tion begins by considering the existence question. This question natmally Ieads to 

the concept of tight OMEPs, which are a particularly nice snbclass of OMEPs. In 

later chapters, we prove existence resdts about tight OMEPs and show why tight 

OMEPs are usefûl in answering questions about general OMEPs. 
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1.1 Definitions and Examples from Combinato- 

rial Design 

In this section we d e h e  some of the structures that occur in this thesis- We also 

give examples and describe some w d  known construction methods and existence 

r esults . 

The most well known type of design is probably a balanced incomplete block 

design, or BIBD. A BIBD is a pair (V, B), where V is a set of points and B is a 

collection of k-subsets of V, called blocks, with the property that any pair of points 

in V is contained in exactly A blocks in B. Since each pair of points is contained in 

a constant number of blocks these designs are also called Zdesigns. For example, 

by taking V = Zi and B = {0,1,3)+i , i  E Z7, weobtain aBIBD with k = 3 

and A = 1. Often the parameters of a BIBD are induded by calling the design a 

(v, k, A)-BIBD. One can easily cdculate b = Il31 using v ,  k, A. For instance, each of 

the v(v - 1) ordered pairs of distinct points in V must occur A times in the blocks, 

and each block contains k(k  - 1) such ordered pairs. Thus we find 

In a BIBD, any point occnrs in the sanie number of blocks, as the followhg argument 

shows. For a fked point p, consider the v - 1 ordered pairs (p ,  x) where x is a point 

of the design other than p. Each such ordered pair must occm A times in total, and 

any bloek containing p contributes k - 1  su& ordered pairs. Hence if t, denotes 

the number of blocks containing point p, we fmd 

and thus T, = X(v - l ) / ( k  - l), whieh is independent of the point p. Thus each 

point occurs in A(v - l ) / ( k  - 1)  blocks. We denote this common value by r.  



These equations give necessary conditions for the existence of BIBDs with speded  

parameters. In some literature, a (v ,  k, A)-BIBD is also called a (b ,  v ,  T, k, A)-BIBD. 

BIBDs are h o w n  to exist for many possible parameter sets. In particular, 

Hanani ([Ml, [13]) has shown that the necessary conditions 1.1 and 1.2 are d c i e n t  

when k = 3,4. Furthesmore, Wilson [28] ha9 shown that for fixed k, v ,  there is an 

N depending on k, v for which these necessaty conditions are dc ient  for A 2 N. 

Wilson [26] ha9 dso shown that for fixed k and A, these necessary conditions are 

safncient for alI but finitely many values of v.  

A w d  known family of BIBDs consists of the finite projective geometries. For 

example, all cosets of each 1-dimensional snbspace in a vector space of dimension 

two over GF(q) yield an afine plane, and these subsets are also the block set of a 

( q 2 ,  q, 1)BIBD. Furthermore, if V is a vector space of dimension three over GF(q), 

and we take each 1-dimensional subspace of V as a point and each %dimensional 

subspace of V as a block, we obtain a (q2 + q + 1, q + 1,l)-BIBD. A BIBD with 

these parameters is also called a projective plane. 

Another important type of design is a transversal design. Such designs are nsed 

in constmcting ut her combinatorid designs, in experimental s t atis tics, and in the 

study of error correcting codes. A transversal design is an ordered triple (K ',, B ) ,  

where again V is a set of points, Ç is a partition of V into parts of equal size 

(the parts are cded  groups), and B is a collection of snbsets of V, cded blocks, 

where every block contains exactly one point from each gronp (hence the name 

transversal). The defining property is that any pair of points in V in distinct 

groups occurs in exady A blocks in B, and any pair of points from the same group 

occurs in no blocks in B. If g is the size of the groups, then the block size is 

k = IV[ /g  and we c d  the design a TDA(k,g). When A = 1 the convention is to 

just write TD(k, g).  
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As with BlBDs, counting arguments can be used to find relationships among 

the parametas of a transversal design. For example, in a TDA(k, g )  thae are 

blocks and each point lies in Ag Hodts. Necessary conditions for the existence of 

transversal designs are not as easy to derive as with BIBDs, because if k is small 

enongh then the transversal design always exists. For example, a TD(3,g) exists 

for all g 2 1, and hence for all X 2 1. IIonever, it is possible to place an upper 

bound on le given the other parameters. 

In the above (7,3,1)-BIBD, the blocks containing O are {O, 1,3), {O, 4,5), {O, 2,6). 

We can form a TD(3,Z) by taking V = 27 \ {O), G = {{l, 31, {4,5), {2,6)), and 

B = {those blocks of our (7,3,1)-BIBD that do not contain O). More generally, 

reluoving a point in a (n2 +n+ 1, n + 1; 1)-BIBD and considering the blocks through 

that point as gronps yields a TD(n + 1, n). 

Orthogonal arrays are closely related to transversal designs. An orthogonal amay 

OAA(h, g )  is a k x Ag2 ma&, having symbols fiorn the g-set S in each row (asnally 

S = {1,2, . . . , g) ) ,  and with the property that for any pair of rows the 2 x Ag2 

submatrix induced by these rows consists of every possible coltmm of symbols from 

S with each such column occuring A times. Given a TDA(k, g) ,  we can write each 

of its blocks as a column vectar, where the symbol in row i is the point of the block 

occurring in the ith group of the transversal design. If we then rename the symbols 

in each row (there are g distinct symbols in each row) to coincide with S, then 

we obtain an OAA(k, g). This process is reversible, and so transversal designs and 

orthogonal arrays redy represent the same concept. Table 1.1 is an orthogonal 

array obtained fiom the above TD (3,2) nsing this constraction. 

Many objects in design theory are examples of incidence strnctures. An inci- 

dence structure is a triple (V, B,Z), whae  V and B are two sets (called the point 

set and the block set) and Z is a binary relation between V and B. We Say that 



Table 1.1: An OA(3,2) 

O 0 1 1  

0 1 0 1  

O 1 1 0  

point p E V is incidmt with a block (or line) L E B i f p U .  In the case of transver- 

sal designs and BIBDs, the incidence relation 1 is just pW if p E L. In any ob ject 

considered in this thesis, this is the case and so any blodr is always considered as 

a collection of points. We refer to incidence structnresr uiainiy to describe concepts 

whidi apply to more than one kind of design. 

One such concept is remlvability. An incidence structure is resolvable if its 

block set can be partitioned into classes so that the blocks in each class form a 

partition of the point set. Each such class is called a pardel class. Resolvability 

is usefiil in extendhg designs - adding points and blocks to an existing design to 

obt ain a new design. For example, a resolvable TD (k, 9) has g pardel classes. By 

adding a new point oo; to each block in the ith pardel class, adding the group 

{mi, OOa,. . -, ao,) to the group set, and adding the new points to the point set 

results in a TD (k + 1, g ) . Adding points to a resolvable design in t his manner is 

ofken called ''extending pardel  classesn or "adding points at infinity". In fact one 

sees that a TD(L + 1,g) gives a resolvable TD(k,g) by essentidy reversing this 

procedure. Resolvability of transversal designs with X > 1 also allows one to obtain 

another transversal design with a larger block size, but in this case it is no longer 

necessarily mie that a TDA(k + 1, g) can be used to obtain a resolvable TD*(k, g) .  

Resolvability of an orthogonal array OAA(k, g )  implies that we can partition the 

columns into Ag classes so that each row of each class contains each symbol exactly 



once. In this case, we can gronp the Ag classes into g classes Pt, Pz, . . . , Pgl each 

having Ag columns, and add a new row having symbol i b e h  each colamn in the 

Pi 'th dass. In this case we obtain an OAA(k + 1, g) . This operation of extending a 

resolvable orthogonal array by a row is also called extendhg the pardel classes. 

Another very cornmon incidence structure is a paimise balanced design, or PBD. 

A PBD is a pair (V, B )  where as usud V is a set of points and B is a collection of 

subsets of V, called bloeks, so that any pair of points in V is contained in exactly 

A blocks in B. There are many r d t s  about PBDs; perhaps the most w d  knoum 

is Fisher's ineqnality, namely 1 B 1 2 1 VI in any PBD. Many recursive constructions 

for designs involve PBDs. 

Many known incidence structures admit an antomorphism. An automorphism 

of an incidence structure is a bijection n mapping points to points and blocks to 

blocks so that for any block B of the incidence structure, n(B)  is also a block of 

the incidence structure. The set of automorphisms of an incidence structure form a 

gronp called the automorphism r o u p  of the structure. When an incidence strnctnre 

has a automorphism group, the group action partitions the block set into orbitu. 

Using any block in any p a r t i c h  orbit and the group action, one can obtain all 

the blocks in the orbit. For this reason, we sometimes c d  a block repsesenting an 

orbit a base block- 

In the case of orthogonal arrays, a "commonn a?itomorphism is the permutation 

that permutes the points of each row in a cycle. (It is common in the sense that 

many boum orthogonal amays have su& an antomorphism.) Such a permutation 

partitions the colamn set into Ag orbits of size g each, and thus we can genaate the 

columns in one orbit nsing any column in the orbit and applying a to this colamn 

g times. This operation of generating a collection of columns from one parti& 

colurnn nsing a gronp action is cded developing the colnmn, or developing the 



Table 1.2: A (3,3,1)-Diffaence Matrix 

0 0 0  

0 1 2  

0 2 1 

Table 1.3: An OA(3,3) 

O 1 2 0 1 2 0 1 2  

O 1 2 1 2 0 2 0 1  

O 1 2 2 0 1 1 2 0  

block in the more general case of incidence structures. For example, an OA(3,3) 

can be obtained by developing each column in the matrix in Table 1.2 using the 

permutation (O 1 2). Since many orthogonal arrays can be described in this way, 

it is common to give the "generator matrixn a special name. A (g, k, A)-difference 

matriz oves a group G is a k x gA matrix D = (d i j )  with entries fiom G with the 

property that for any i # j, the list (& - dji ) ,  1 = 1 . . . gX contains each elernent 

of G precisely X times. The subtraction is in the group G. If D is a (9, k, A)- 

clifference ma&, then the set of columns {D +glg E G) is a OAA(k,g)  with a 

set of automorphisms {x -t z + g1g E G). Difference matrices, or some variant 

of them, are of'ten nsed in conjmction with other automorphisms to find specific 

orthogonal arrays with a cornputer seacch. 

To illustrate another concept, we develop the matrix in Table 1.2 using the 

permutation (O 1 2), giving an OA(3,3). The gronp action partitions the nine 

columns into three orbits, each of size three. Foc example, the f i rst  orbit consists of 



the first three columns of Table 1.3. If we pi& any orbit, and choose any row, then 

each of the symbols in {O, 1 ,2 )  occnrs in that row in the colnmns of the orbit. Thns 

the colnnuis of the OA(3,3) can be partitioned into A g  classes of size g, so that 

in any clamy each row is a permutation of the elements {O, 1,2, . . . , g - 1). Thns 

the orthogonal array is resolvable. As with general incidence structures each class 

is called a pardel clam The development of any clifference matrix always &es a 

resolvable orthogonal array. When an OA(k, g) is resolvable, we can add a new row 

to the orthogonal array, and for each column in it we place an i in the new row if 

that column lies in the i'th pardel class. This results in an OA(k + 1, g). (This is 

analogous to extending paraUel classes in a msolvable transversal design). As with 

transversal designs, if an OA(k + 1 ,g )  exists then a resolvable OA(k,g)  exists. For 

A > 1, i t  remains mie that if a resolvable OAA(k,g) exists, then a OA*(k -t 1 , g )  

exists; however, the converse no longer holds. 

Various results are known about the existence of OA*(k, g) for varions g, k, A. 

One of the most important of these is the existence of an OA(q + 1, q)  whenever q 

is a prime power. In particnlar, if c is any q x 1 colnmn vedor consisting of distinct 

elements of GF(q) , then the matrix with colnrmis (a+ E GF(q)) is a (q, q, 1)- 

dlfference matrix over GF(q). Thns its development gives a resolvable OA(q, q), 

and by extending the parallel classes we obtain an OA(q + 1, q). 

Another u s a  fact is that a resolvable 0% (p"çi, pi) exk ts for any prime p and 

any nonnegative integers i, j.  For if D is a (v ,  k, A)-difiaence matrix over G, and H 

is a normal subgroup of G, then D can be considered as a (g / lHl ,  k, Al  HO-Werence 

matrix over the factor grmp G/ H. There is a (#+j, pi+j, 1)-difference matrix over 

(GF($+~), +), and furthermore this group has a normal subgroup of order pi. Thus 

this matrix, as viewed fkom the factor group, is a (p'*, pi+i, pi)-difference matrix 

whose development (in the factor group!) gives the desired resolvable orthogonal 



Further orthogonal arrays can be constructed by ming vatious recarsive con- 

structions. For example, it is well known [17] that the direct product of an OAA1 (k, gl) 

and a 0AA2(k,g2) is an OAAIA2(k,gtg2) . Using this construction, and the above 

facts about clifference matrices, if n = q1qz . . - q, i s  the prime power factorization 

of n, with qi < qi+17 then an OA(qi + 1, n) &sts. However, better results than this 

are known. For example, an OA(5, n) exïsts for ail n # 2,3,6,10. As an illustration 

of the clifEculty in constrticting and proving non-existence of orthogonal arrays, we 

mention that it is still not knom whether an OA(5,lO) exists, despite the relatively 

small values of the parameters. 

Another usefal remsive construction is the Kronecker product of two difference 

matrices. The Kronecker product of two matrices A = {aij)  (an m by n matrix) 

and B = {bi j)  is the matrix 

The Kronecker product of a (Q. kt. ~~~~Merence matrix over G and a (g, k2, A*)- 

diffaence matrix over G is a (g,  kik2, XJzg)-diffaence matrix over G. 

In fact, if A is an OAA(k, g),  and B is a (g, k', A')-merence matrix over a group 

G, then the Kronecker prodnct of A and B is an OAgAA.(kk', g).  See [20] for details. 

This resuit has been generalieed by Wang and W u  [25]. 

Various results e x i s t  bounding the block size k in an TDA(k, g )  . If the transversal 

design is resolvable, then k < gX. One method of proving this is to use linear 

algebra. However, in [15], Hine and Mavron, proved this r e d t  using a nice counting 
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argument, as folloas. Let D be a TDA(k; g) having t a o  disjoint blocks B and C. 

(If the TD A(k, g) is resolvable, then certainly there are two disjoint blocks. ) Define 

bx = ( B  nX[, cx = ICn XI, for a blo& X # B, C. By counting blocks (other than 

B) tkough a point in B,  we find Cbx = =(Ag - 1). Similady, C cx = k(Ag - 1). 

By considering pairs of points in B, we find C bx(bx - 1) = k(k - t ) (A  - I), which is 

also the value of cx(cx - 1). Findy, by countiag triples (p, q, X) with p E B, X, 

q E C , X ,  and X # B,C, we h d  Cbxcx = k(k - 1)A. Now, using the fact that 

0 5 C(bx -ex)* =Cbx(Qx  -1) + C c x ( c x  - 1) + C b x + C c x  - 2 C bxcx and 

substituting in the values above, we find O < 2k(Ag - k) which gives the result. 

1.2 Definitions and 

Design 

Definition 1.2.1 An orthogonal 

Examples from Experimental 

main efFect plan, or OMEP, is an array having 

k rows (or factors), n columw (or runs), si syrnbok in row i, for 1 5 i 5 b, and 

which satisfies the ptoperty: if 1 5 i < j 5 k, and if z is any symbol in row i, and 

y is any symbol in row j ,  then the number of columns with an x in row i and a y 

in row j eqvals the number of times x appeurs in row i, rnultiplied by the nurnber 

of times y appears in row j ,  divided 6y n. We cal1 the array an sl x 8 2  x . . . sk//n 
OMEP. 

W e  denote the nnmber of times symbol z occnrs in row i by th. These numbers are 

called the replication numbers of the OMEP. For example, the matrix of Table 1.4 

is a 2 x 3 x 41/16 OMEP. 

Orthogonal main dec t  plans are used in the design of statistical experiments. 

In [l6], Jacronx writes 



Table 1.4: A 2 x 3 x 41/16 OMEP. 

In many industnal situations, investigators will often begin an experi- 

mental study by employing a screening design to help them identify key 

factors for jkrther investigation. Orthogonal main-effect plans are often 

the smeening derrigns of choice used in such situations. OMEPs allow 

for the estimation of al1 main effects of a factorial arrangement urithout 

cowelation when the interactions are all assurned negligible. 

A representive application is as fonows. Suppose we have a machine that creates 

ground coffee fiom fresh beans. There are three di& on the machine, and for each 

dial there are a number of settings. The h s t  dial controb the length of time for 

which we roast the beans, and has h o  settings. The second dial controls how 

quickly the b a n s  are cooled, and has three settings. The third dial controls the 

amount of grinding done on the beans, and bas four settings. W e  wish to detamine 

the &ect of the settings of the diah on the quality of the final product (which we 

measure quantitatively in some mariner.) One way to do this is to perform a set 

of experiments, varying the settings on the di& in each and recording the quality 

of the resulting coffée for each setting. If we perform sixteen experiments, and for 

experiment i we set dia1 j to the k'th setting, where k is the symbol in position 

(j, i) of the matrix in Table 1.4, then the special strncture of the OMEP allows us 

to Say sornething about how the settings of the dials &ed the coffee produced. 
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Often we consida OMEPs with many rows havïng the same nnmber of symbols 

in them. In snch a situation the following notation is asefid. 

Definition 1.2.2 If un OMEP on n rouis has ml TOWS each contuinkg SI symbols, 

m2 TOWS each containing sa symbok, and so on up to rows each containing s, 

symbols, then we cal2 it an 

For example, a 2 x 2 x 2 x 3 x 3/19 OMEP is compactly described nsing this 

notation as a z3 x 32 / / 9  OMEP. E'urthennore, a 5 x 5 x 5 x 5 x 51/25 OMEP is aIso 

described as a 5'//25 OMEP. To avoid confasion, we avoid using exponents when 

writing the nnmber of symbols in a row of an OMEP. Thas a 25 x 11/25 OMEP 

would never be written as a s2 x 11/25 OMEP, since we reserve this to mean a 

5 x 5 x 11/25 OMEP. W e  might write it as a 25 x 1 / / 5 ~  OMEP, however, or even 

as a (Ei2) x 1//52 OMEP. 

OMEPs have close ties with orthogonal arrays, and thus with transversal de- 

sign~. For example, an orthogonal array OAA(k, g) is also a $//Ag2 OMEP. A simi- 

lar relation between OMEPs and transversal designs also holds since any transversal 

design corresponds to an orthogonal array. 

In fact , OMEPs can be used to describe resolvable orthogonal arrays also. Sup- 

pose we have a resolvable orthogonal array OAA(k,g) where each row contains the 

symbols 1 through g. Since the array is resohb1e the colamns can be partitioned 

into Ag paralle1 classes so that for any dam, and for any row in that class, each of 

the symbols in {1,2,. . . , g )  occnrs exactly once. Add a new row to the matrut and 

for each column, put the symbol i in the new row if the column is in the i'th class. 

(This completely s p e d e s  the new row.) The resulting matrix is a gC x Ag//Ag2 



Table 1.5: An eqnally replicated OMEP 
O 0 1 1 2 2 3 3  

0 1 0 1 0 1 0 1  

0 1 1 0 0 1 1 0  

OMEP, having k + 1  rows. Clearly we can obtain the original orthogonai array by 

removing the new row. Thus t hae  is a mapping fiom resolvable orthogonal arrays 

to OMl3Ps and vic~vetsa. 

Orthogonal main &ect plans w a e  apparently introduced by Addelman 11) in 

1962, dthough skailar structures have been considered eatlier. Addelman aiso 

introduced a usefid way of constructkig other OMEPs fiom a given OMEP. Given 

an sl x sz x . . . s k / / n  OMEP, pick a pair of symbols in a given row (say the ith 

row). Replace every occnrence of these symbols in this row by some new symbol. 

The resnlting matrix is a SI x sa x . . . x si-1 x (8; - 1) x si+l. . . x sc / /n  OMEP. 

Thus we have reduced the number of symbols in row i by one. This construction, 

or repeated applications of it, is c d e d  collapsing levels in the OMEP. 

There are certain classes of OMEPs that are of particular interest to statisti- 

cians. An OMEP in which every symbol in every row occurs the same number of 

times as each other s ymbol in that row is said to be equally replicateh For example. 

Table 1.5 is an equally replicated OMEP. In particular, this does not mean that 

the symbols in different rows must occur the same number of times. 

Recall that the numba of times symbol z occurs in row i is denoted rk, the 

replication number for symbol x in row i. Thus, equally replicated OMEPs have 

rk = ri, for each row i and for any choice of symbois x, y in row i. An equally 

replicated OMEP is &O cded an orthogonal anay o n  a vanable number ofsymbok, 
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or simp1y an OAVS. We see later that tight OMEPs are ecpdy replicated OMEPs. 

Another featnre of certain OMEPs of use to statisticians is the presence of 

repeated columns. In a practical setting, having repeated colamns means repeating 

an experiment but holding the parametas of interest constant. An article which 

discasses the usefdness of this is [5]. 

Various results are known about OMEPs. Since orthogonal arrays are specid 

cases of OMEPs, many knom results about orthogonal arrays apply. W e  attempt to 

give some idea of the known results speafieally concerning the existence of OMEPs. 

Much of this material is in the s w e y  by Street [23]. 

In [19], a construction is given for sy x . . . x ~ m / j s "  OMEPs, where C ti 5 

n, v 5 s for 1 < i 6 rn and where s is a prime or prime power. 

A n x n matrix H with entries in (1, -1) so that H P  = nl, is called a 

Hadamard matriz. If a Hadamard mat& of order n exists, then n is cded a 

Hadamard number. It is known that, with the exception n = 2, all Hadamard 

numbers are divisible by 4. Cheng [7] shows that if t and n are Hadamard numbers 

with t 2 n 2 4, then a 4'-' x 2*-3t+2//nt OMEP exists. He also shows that 

if t,n and t / 2  are Hadamard numbas, with n, t 2 4, then thae is a n x 4"-' x 

2n(t-1)-3(h-1)//nt OMEP, where h = min(n, t). Speual cases of this result have 

been given by varions authors. 

By extending the paralle1 Jasses, a resolvable OAA (k, g) can be used to a con- 

struct a Ag x $.//Ag2 OMEP [12]. 

If m 5 2k and q is a prime power, then for j = O, 1,. . . , ( k  - m/2) ve can 

construct a (2-e-j) x grn(qk+qk-' +--+qk")//2m~f l OMEP [Ml. IR addition, if 2 5 

m 5 2k, where again q is a prime power, and 2mr.f-j is a Hadamard nnmber, then for 

j = O, 1, . . . , (k - m/2) we =an consMct a (2'"'qL"-') x q2m(qk+~k- '+-- -+qk-i ) / /2mqk+1 
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OMEP. 

Another usehl construction due to Addelman, called the "method of replace- 

ment", is to replace each occurrence of the j'th distinct symbol in the i'th row 

of an SI x sz x . - - x si-1 x x s;+l x . . . x J ~ / / R  OMEP by the j'th COI- of 

a t l  x ta x . . . x tJ/v OMEP. An easy cddat ion shows this pives a $1 x s2 x 

. . . x si-1 x tl x ta x . . . x t ,  x si+l x . . . x sk / /n  OMEP. Using this method, a 

2 x 2 x 2 x 4 x 4 x 4 x 41/16 OMEP is obtained rsing a 4 x 4 x 4 x 4 x 41/16 

OMEP and a 2 x 2 x 2/14 OMEP. 

Various authors have proved direct produd constructions for Mnants of orthog- 

onal arrays. For example, see [Ml, [2], or [l?]. 

Orthogonal arrays and transversal designs can be used to constrnct OMEPs, but 

have been studied by many authors simply as combinatorid objeefs. Fondamental 

results were proven by Bose, ShriLhande, Parker [4] and Wilson [27], aithough many 

anthors have since contributed to the theory. A standard reference for resdts on 

orthogonal arrays (and most other objects in design th-) is [3]. 

For indnstrid applications of OMEPs, it may be desirable to have as few columns 

as possible since this means fewer experiments and therefore less experimental effort. 

Given SI, sz, . . . , Sk, if TL is the smdest number so that a sl x $2 x . . . s k / / n  OMEP 

exist s , then the corresponding OMEP is called minimal. 

This thesis concentrates mainly on the existence question for OMEPs, and in 

particular, on the concept and existence of a special class of OMEPs cded tight 

OMEPs. More precisely, given SI, 82, - . . , SL, and n, can a $1 x sz x . . . s i / /n  OMEP 

exist? This relates to the minimality question, for if we characterize those n for 

which a sl x sz x . . . s k / / n  OMEP exists, then we can find the minimal such n. 

In ansnering the existence question, the concept of a tight OMEP arises. This 
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concept, and its implications, are discnssed in the second ehapter of this thesis. We 

show that every OMEP parameter P set ha9 a corresponding tight parameter set 

P'. Furthermore, if an OMEP with parameters Pr exists, then one can collapse 

levels in this OMEP to obtain an OMEP with parameters P. We determine all 

tight O M E î s  having three, four, and five rows. Findy we use the knowledge of 

four-factor tight OMEPs to answer the existence question for generd four-factor 

OMEPs, 

In the third chapter of this thesis, we consider uncoIlapsing levels in an OMEP. 

We show that any three-factor OMEP can be uncollapsed to a tight OMEP. There- 

fore, any three-factor OMEP can be obtained by collapsing levels in a tight three- 

factor OMEP. We give examples of OMEPs on four and more factors that cannot 

be obtained by collapsing tight OMEPs. Also in this chapter, we consider the 

question of unconcatenating OMEPs. We prove a ftiite basis type result for the 

concatenation of tight OMEPs. 

Io the fourth chapter, we show asymptotic existence of tight OMEFs. More 

specifically, we show that for any fked number of rows k, and with the exception of 

parameters of the fonn Zk-' x s//2s for s odd, then there are only a fmite number 

of tight OMEP parameta sets for whieh the tight OMEP does not euist. This 

information is used to gain fnrther insight on Jacrowc's 1owe.r bound on the nnmber 

of columns needed in an OMEP with a speded number of symbols in each row. 

In the fiRh chapter of this thesis we develop some recursive constructions for 

equdy replicated OMEPs. The basic theme is that by using a resolvable PBD 

and some smder designs we can unite blocks fkom the smaller designs to obtain 

OMEPs with more rows than a direct product construction codd obtain. Some of 

the constructions produce tight OMEPs. 



Chapter 2 

Tight Orthogonal Main Effect 

Plans 

In the last chapter we introduced some common design theoretic structures and the 

general definition of an orthogonal main efEect plan. In this chapter we motivate 

and define an important subdass of OMEPs, called tight OMEPs. We &O give 

an application of tight OMEPs in the determination of those parameters for which 

four factor OMEPs exist. We take the view that the structure of OMEPs having 

one or tm rows is somewhat trivial, and so in what follows we assurne that the 

number of rows k is three or more- 

2.1 Definition and Motivation 

Suppose 2) is an s1 x s2 x . . . x sk / /n  oMEP, and that n = p y l p p  . . .pp is the 

prime power factorization of n. Let 

gi = gcd{r,l z a symbol in row i ). 

17 
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Since D is an OMEP 

n(rk.,r* for i # j, z in row i ,  y in row j , 

and so 

For each prime pt dividing n, let lt be the greatest integer such that pf lgj for 

each j ,  and choose so that exactly divides g,, . (By exactly divides we mean 

Pt lg., , but pf+' dg,. Note that y is not necessarily uniqnely determined.) Then, 

m e  - Ir by (2.1) , we have divides gj for j # 9. If pt exactly divides gj for j # cc, 
and furthermore if sj  = n/gj for each j E {Il 2,. . . k}, then we c d  the OMEP 

tight. In this case, since pt lg j  for each j ,  and p ~ ' - " l g j  ewctly for j # ct, we have 

lt 5 - lt and so It 5 7 4 2 .  Also observe that a tight OMEP is equally replicated, 

since s j = n / g j  for s u c h  OMEPS and this forces rjs = gj for each S.. 

If 2) itself is not tight, then the &'s and the ct7s still exist, and these determine 

the parameter set of a tight OMEP, 8; x a; x . . . x sL//n, where 

& = t~ = n n p f ,  and ~f = nt&. 

Note that si 5 si for each i ,  since gi 1 g: for each i. Hence, if this tight OMEP 

exists, then an OMEP with the same parameters as D can be obtained by collapsing 

levels in the tight OMEP. We state this formally. 

Theorem 2.1.1 Given OMEP parameters si x s2 x . . . x sk//n with associated 

replication numbers T&, there e&ts a tight parameter set si x si x . . . x sL./n with 

associated replication numbers ri=, so that if an OMEP with parameters si x s& x 

. . . x s;//n and replication numbers exists, then it can have leveis collapsed to 

obtain an OMEP with the original pa~ameters and replication numbers. 
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In fact the above analysis holds whether or not any of the OMEPs actually exist, 

so Li faet any set of OMEP parameters and replication numbers mast corne from a 

tight set of parameters and replication nambers by "collapsing the tight parameta 

setn . 

For example, consider the 2 x 3 x 41/16 OMEP in Table 1.4. In this case we 

have n = 16 = 24, so r l l  = rit = 8, and thas gl = gcd(8,S) = 8. Similady we h d  

gz = 4, and g3 = 4- In this case, the only prime dividing n is 2, and 2' divides each 

gil and it is the largest power of 2 to do so. Also, 22 exactly divides gz. Thns we 

ftid pl = 2,  Z1 = 2, and we can take cl = 2. Now, for the OMEP to be tight we 

require 2'-' to exactly divide gl and ga. Since fi = 8 this is not the case. However, 

fiom equations 2.2 we h d  = & = gj = 4, and so if we can h d  an OMEP with 

g; = 4 = g', = 4 and $1 = sl = $3 = 1614 = 4 then it wodd be a tight OMEP 

and fiirthermore we could collapse levels in it top obtain a 2 x 3 x 41/16 OMEP. 

Of course snch an OMEP exists; it is an OA(3,4)! As promised, this OA(3,4) can 

indeed be collapsed to obtain a 2 x 3 x 41/16 OMEP (i.e. an OMEP with the same 

parameters as our original). 

Equations 2.2 provide a method of simply describing a tight parameter set. 

Suppose si x si x . . . x a i l l n  is a tight parameter set. Since si = n/g: for such 

OMEPs, pf divides sf for i # q, and divides s i  for i = y. Since m, - le 2 tt 

for each t ,  if we set qe = p f ,  then qt divides each a;, and $'-2Ltqt divides exactly 

one si. This is hue for each prime divisor of n, and hence for each possible divisor 

of any sf. It foIlows that a tight OMEP parameter set can be written as 

where g is the product of the qt's, = &,,flt-"'. The &'s are pairwise rela- 

tively prime. 
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However, not every OMEP with these parameters is a tight OMEP. (We refer 

the reader ahead to Theorem 2.2.1 and Theorem 2.1.2, which we use here.) For 

example, t d e  g = 1, k = 3 and & = p:, where pl = 2, pl = 3, p3 = 5. Then for each 

i = 1,2,3 an equally replicated p: x pi x pi/ /p:  OMEP exists. By Theorem 2.2.1 

and Theorem 2.1.2, a tight p:p2p3 x p l p b s  x P i n P ~ / / P ~ p ~ ~  OMEP exists. Now, 

since the product of any tao of these primes is larger than the third prime, we 

3 3 3 can collapse levels in this OMEP to obtain a p: x pi x pg//p,p#, OMEP, with 

gi = P1p%& gz = pap2pi, 93 = p:p&. This 0- ha9 parameters as in (2.3), bat 

it is not tight, since gc # n / s i  (we do not have equd replication). 

If an OMEP has parameters as in 2.3, and in addition the OMEP has equal 

replication, then indeed the OMEP is tight. 

Theorem 2.1.2 An equally replicated OMEP with purameters 

and with the & painoise relatiuely prime is a tight OMEP. 

Proof: To conform with the notation used in the definition of tight OMEPs, let si = 

the number of symbols in row i = kg, and let n = the number of colnmns = 

Al A2 . . . Xkg2. Since the OMEP is equdy replicated, we have 

and so 
X l X 2 . .  . Xkg 

gi = gcd{r,(x in row i )  = t 
n; 

also. Suppose p;L1p? . . .p2d is the prime power factorization TL Equal replication 

ensnres that si = n/gi for each i. AU that temains is to show for each t, pmt-'t 
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exactly divides gj for j # ct, whae as befôre ft is the greatest integer sach that 

p! (gj for each j ,  and ct is wch that pf exactly divides g,, . Suppose pf is the latgest 

power of pt dividing g, and that is the largest power of pt dividing any &, say 

S .  ( b  = O is allowed, but if b > O then since the k's  are pairinse relatively prime, 

Ai. is the only & divided by pt.) Since n = Ai Az . . . Akg , we have rnt = 2a + b. 

Since gcd{gi(l < i 5 k) = g, we see that It = a. M h e r ,  pr exactly divides gp, so 

we can take y = i'. Thns for i # 4, gi has a factor A,g, and no other factors of gi 

are divisible by pe. Therefore p ~ c - ' t  = pf+b exactly divides g; for i # q, and so the 

OMEP is tight. 

The idea that should be emphasized here is that tight OMEP parameters are 

as "uncollapsed" as possible. In other words, there is no OMEP in which we codd 

collapse levels to obtain a tight OMEP. 

Sometimes it is desirable that an OMEP have equd replication, and so rk = ri9 

for every pair of symbols x and y in each row i. Tight OMEPs have this property 

since r* = gi for such OMEPs. But in fact tight OMEPs have a connection with 

equally replicated OMEPs similar to th& connection with the usual notion of 

OMEPs. Consider any SI x sz x . . . x s k / / n  OMEP with equal replication. Then 

ri, = gi for each i. As above, the replication nambers of this OMEP determine a 

tight parameter set, say si x 8: x . . . x s L / / n .  Since dlgi for each i, and we have 

n = Sig; = si&, it must be that ~ ~ 1 8 :  for each i. Hence, if the corresponding tight 

OMEP exists, we can collapse levels in it to obtain an equally replicated OMEP 

with the same parameters as the original OMEP. Again we state this result formally. 

Theorem 2.1.3 Given parumeters SI x sa x . . . x sk / /n  with ussociated replication 

numbers rk of an equally replicated OMEP, then ezists a tight paru me te^ set si x 
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s& x . . . x sL//n with associ<rted replication numbers rrp, so that if an OMEP &th 

parameters si x s: x . . . x s ; / / n  and replication numbers TL e t s ,  then it can have 

levels collapsed to obtazn an equally replicated OMEP with the original parameters 

and replication numbers. 

Given n = pytp? . . .PT', we can determine the parameters sl x s 2  x . . . x s, of 

all possible tight OMEPs on n columns, since for tight OMEPs these parameters are 

determined by the ft's and the q's, and there are only fiaitely many possibilities 

for each of these. In particular, there are only r 4 2 1  possibilities for 4, and k 

possibilities for ct. Some of these choices may give Bse to the same parameters 

s1 x s2 x . . . x si, but with the si's possibly reordered. 

For example, let us compute the possible tight parameter sets for a tkee-factor 

OMEP with n = 24 = 2'3'. Now LI can be O or 1, and h mnst be O. Both cl 

and cz can be any valne in {l, 2,3). If Il = 1, ci = 1, and c2 = 2, say, then 

gi = 2 - 3, gi = 22, and gl = 22 - 3. Hence the correspondhg tight parameter set is 

4 x 6 x 21/24. In this way, we find the possible parameter sets (reordered so that 

sl 2 SÎ 2 s3) are: 24 x 1 x 11/24, 8 x 3 x 1//24, 12 x 2 x 21/24, and 6 x 4 x 21/24. 

In the next section we give an application of tight OMEPs. 

2.2 Existence of Tight OMEPs on Four Factors 

In this section, we determine the tight parameter sets for which there corresponds a 

tight OMEP with four rows. By using this information, we then give a method for 

determining the minimal n for which an sl x s2 x 53 x s 4 / / n  OMEP exists. This is 

the first explicit method for finding the minimal n in the case of four factor OMEPs, 

and so it ftuther suggests that tight OMEPs are a usefal concept. Furthermore, 
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the method is easily generalizable to OMEPs on more fadors, and it can &O be 

used to determine the minimal n for which an si x $2 x so x s4//n OMEP with 

equal replication exists. 

We first introduce some recursive constructions for OMEPs, and we prove some 

existence resdts about tight OMEPs on four factors. 

As mentioned in the introduction, direct prodnct type constructions for com- 

binatorial designs have been studied by many anthors. Here is a direct prodnct 

construction for OMEPs, which is eredited to AdhiLary and Das [2]. 

Theorem 2.2.1 (Direct Product Construction) If an sl x sz x . . . x s k / / n  

OMEP ezLsts, and an si x si x . . . x ~ ; / / n '  OMEP ezlsts, then an sisi x s2s; x 

. . . x s&//nn' OMEP &ts. 

Proof: The direct product of the first two OMEPs gives the t k d  OMEP. For a 

fixed row, and a symbol z in this row in the fist OMEP and a symbol xf in this row 

in the second OMEP, there is a symbol (2, z') in the resultant OMEP. Furthesmore, 

if the replication number of z is rb, and the replication number of z' is TL, then 

the replication number of (2, 2') is T ~ T ~ , , .  For distinct rows i, j in the resultant 

OMEP, and a symbol (z, 2') in row i and a symbol (y, y') in row j, the number of 

columns in the resultant OMEP containing the symbol (x, 2') in row i and symbol 

(y, y') in row j is the number of colamns in the ïmst OMEP containing symbol z 

in row i and symbol y in mw j mdtiplied by the number of columns in the second 

OMEP containing symbol z' in row i and symbol y' in row j. Since the fist two 

arrays are OMEPs, then by definition this product equals 
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This la& expression is preusely the prodnd of the replication nambers of symbol 

( 2 ,~ ' )  in row i and a symbol (y, y') divided by the namber of columns of the 

resultant array. Thas by definition the remiltant array is an OMEP. O 

Notice that the direct product construction preservss equal replication, since 

the replication number of a symbol in the resulting OMEP is the product of the 

replication nnmbers of the associated symbols in the ingreclient OMEPs. 

Theorem 2.2.2 (Concatenation Construction) Suppose V is an SI i< s2 x . . . x 

s i / /n OMEP, and ZY is an si x sa x . . . x sk-1 x s;//nl OMEP, with replication 

numbers ri, and T', respectively. Fvrther suppose that these OMEPs have the same 

symbol sets in the jirst k - 1 rows, rk/n = &ln' when 1 5 i 5 k - 1, and for the 

remaining row, the symbols in the jirst OMEP are al1 different from the symbols of 

the second OMEP. Then the concatenation of these matrices is an si x sz x . . . x 

sk-1 x (SL + s l ) / / ( n  + n') OMEP. 

ProoE Let M be the k by n + n' array obtained by jnxtaposing the two OMEPs. 

Consider 1 5 i # j 5 k, and a symbol a in row i and a symbol y in row j. The 

number of columns in M that have an z in row i and a y in row j is 

For M to be an OMEP, this mast equal 

Since i # i, we may assume withont loss of generality that r y / n  = r&/nf'. Then 

(rü + rk ) / (n  + nt) = rk/n and so the above eqnation reduces to the first. O 

Corollary 2.2.3 If there is an equally replicated si x sa x . . . x sk-1 x sr / /nl  OMEP 

and un equally replicated si x $2 x . . . x sk-1 x st//nz OMEP, then there ezrPts an 

equally replicated s1 x a, x . . . x sk-1 x (sk + s;)//n1n2 OMEP. 
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Proofi Equally replicated OMEPs have rk/n = 1/si so if they have the same 

number of symbols in the fbst k - 1 rows the conditions of Theorem 2.2.2 are 

satisfied, O 

Since tight OMEPs are equally replicated, the corollary applies to tight OMEPs 

also. W e  use this corollary extensively later. 

We know that every tight OMEP on four rows has parameters of the form 

Xlg x A2g x X3g x ~//X1AZAÎ&g2. Thus it is naturd to consider cases based on 

the value of g. Given that we are breaking the cases up in this way, t h a e  are some 

simple observations that considerably eases our work. 

Lemma 2.2.4 If Al, A2, . . . , Ak are painmse nlatively prime, then a tight Al x X2 x 

.-. x At//A1X2 ... XI  OMEP ezists. 

Proofi For each i ne have a li-' x x 1'-'//& OMEP since it is simply a k x & array 

consisting of k - 1 rows containing a single symbol and another row containing & 

distinct symbois. We now apply the direct product construction to k such OMEPs 

(one for each &) to obtain an OMEP M. M is eq~ally replicated, since it is 

the direct product of eqnally replicated OMEPs, and it is tight since it i s  equally 

replicated and has the parameters of a tight OMEP. O 

Lemma 2.2.5 If an OA(k ,g)  ezists, then all tight OMEPs with k murs and &th 

parameters Aig x A2g.. . Akg//Al . - Akg2 exid. 

Proofi An OA(k, g) is an equdy replicated g x g x . . . x g/ /gZ tight OMEP (with k 

rows) , and an e q d y  replicated Xi x XI x . . . x &//Xi . . . At tight OMEP exists by 

the above lemma. The direct product of these two OMEPs is an equally replicated 
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OMEP haviag the desired parameters, which are the parameters of a tight OMEP, 

and so this OMEP is the desired OMEP. O 

Armed with this lemma, we see that for four-factor OMEPs, the only cases we 

must fnrther consider are when g = 2,6, since, for all other &es of g, an OA(4, g) 

exists (see [3] for example), and so Lemma 2.2.5 applies. Let us consider the case 

Any tight OMEP parameter set with g = 2 has the form 2X1 x 2A2 x 2A3 x 

2&//4A1&A&, with the Xi 's  pairwise relatively prime. If all &'s are 1, then the 

OMEP wodd correspond to an OA(4,2) which does not &t for trivial reasons. 

Before considering the 0th- cases, we first prove some lemmas. 

Lemma 2.2.6 An OMEP with parumeters 2 x 2 x 2 x 2s//4s does not e&t i f s  is 

odd. 

Proof: Suppose to the contrary that such an OMEP exists. Since the only tight 

parameter set, si x sz x s3 x s4//4s, with S ~ , S Z , S ~  2 2 and SI 2 2s is in fact 

2 x 2 x 2 x 2s//4s, we see that if this OMEP exists it must be tight, and so the 

replication numbers of the symbols in the first three rows is 2s. We may assume 

the symbols in each of the k s t  three rows are O and 1. Let q j k  be the namber of 

colnmns with an i in row 1, a j in row 2, and a k in row 3, and as usual let r~ 

be the number of t h e s  symbol j occars in row i. By definition r l o i z o / 4 s  equals 

the number of columns containhg a O in rows 1 and 2, which is &O the value of 

a000 + a o o i  Since T l 0  = T Z ~  = 2s we see this value is also S. Proceeding in this way 

we find that the sum 

evalua t es t O 
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and so 

Every symbol in the foarth row appears twice, and the colnmns above it are 

complementary (their components s u m  to 1 mod 2). Thus if we restrict the OMEP 

to the k s t  three rows, we can pair up the columns into pairs which are comple- 

mentary. However the above formula reduces to a00 + al11 = s, and since s is odd, 

this means we cannot pair up the corresponding columns. This is a contradiction. 

The reader familia with transversal designs shodd observe that this kst lemma 

is simply a statement that a RTDA(S, 2) cannot exist for odd A. 

Lemma 2.2.7 An equally replicated 2sl x 2s2 x 2 x 2//4s1s2 OMEP exists for al1 

odd ~ 1 , s ~  2 3. 

Proof: W e  can coIlapse levels in a 6 x 6 x 6 x 51/36 OMEP to obtain a equdy 

replicated 6 x 6 x 2 x 21/36 OMEP, such  that for each i, ry/36 = l/si for each 

symbol z in row i. Using this OMEP, and an equdy replicated 4 x 6 x 2 x 21/24 

OMEP, and Theorem 2.2.2, it follows inductively that we can construct an equdy 

replicated 2si x 6 x 2 x 2//12s1 OMEP for odd sl 2 3. But now using this OMEP, 

an e q u d y  replicated 2si x 4 x 2 x 2//8s1 OMEP, and Theorem 2.2.2, the resdt 

folIows inductively. O 

Lemma 2.2.8 A 2 x 2 x 2 x 4/18 tight OMEP exists.  

Proof: The following array is such an OMEP. 
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The tight parameta sets with g = 2 are handled by these last three lemmas, as 

the foUowing argument shows. Again r e c d  the general form of the parameters in 

this case is 2A1 x 2A2 x 2A3 x 2L//4X1A2A3&, and fnrthermore the A's are pairwise 

relatively prime. Since when all = 1 the OMEP cannot exist, ne assume that 

at least one Xi, say Ai, is greata than 1. Suppose some is even, Say & = 2 4 .  

Then a 2 x 2 x 2 x 4/18 tight OMEP exists (by Lemma 2-23)? and an eqnally 

replicated Al x Az x A3 x AX;/A1A22X3A; tight OMEP exists by Lemma 2.2.4, and 

the direct product of these OMEPs gives an OMEP with the desired parameters. 

This OMEP is tight by Theorem 2.1.2. Next suppose all the &'s are odd. If three 

of the &'s are 1, then this case is handed by Lemma 2.2.6 and the tight OMEP 

cannot exist. Otherwise, at least two of the Ai's are greater than or equal to 3, 

say XI and X2, and the corresponding OMEP exists, since it can be obtaiaed by 

using Theorem 2.2.1 with an equdy replicated 2A1 x 2A2 x 2 x 2//4AiX2 OMEP 

(exists by Lemma 2.2.7), and a 1 x 1 x X3 x &//A3& tight OMEP, and by applying 

Theorem 2.1.2. 

W e  now tum to the case g = 6, where the analysis is similar to the case g = 2. In 

this case the general form of the parameters of a tight OMEP are 6A1 x 6A2 x 6A3 x 

6A4//36A1X2A3.L, with the A's painvise relatively prime. Again, ifd the Ai's are 1, 

then the tight OMEP does not exist as it corresponds to an OA(4,6) which is h o w n  

not to exist, though this fact is not obvious (see [3], for example). Next suppose 

some & is even, Say Al = 2A:. Since a 12 x 6 x 6 x 61/72 tight OMEP exists (take 
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direct prodnd of 4 x 2 x2 x 2/18 and 3 x 3 x 3 x 3/19 tight OMEPs and apply Theorem 

2-12)? and a A: x A2 x A3 x A4//AiA2A3X( tight OMEP exists (Lemma 2.2.4), we 

see th& direct product is an equdy replicated 6Ai x 6A2 x 6A3 x 6&//36XIXZA& 

OMEP, which is tight by Theorem 2.1.2. Thns the only rernaining case is with all 

X i ' s  odd, and at least one 2 3. To finish this case we need the following fact. 

Proposition 2.2.9 An 18 x 6 x 6 x 6//108 tight OMEP exists. 

Proof: We give a completely resolvable 0A3(3, 6), (an orthogonal array with 6 

symbols, 3 rows, and 108 = 3 - colamns), fiom which yon jnst extend the 18 

pardel classes to get the desired OMEP. The solution is cyclic modulo 5, with one 

fixed point x in each row. The first five pardel classes are obtained by developing 

the following pardel Jass modulo 5, where x is fixed. 

The next five parallel classes are obtained by developing the following pardel 

Jass modulo 5. 
0 1 2 2 4 3  

The next five pardel classes are obtained by developing the following parallel 

class modulo 5. 
0 1 2 x 4 3  
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The sixteenth, seventeenth, and eighteenth pardel classes are 

Vdcat ion th& this gives the desired OMEP is routine. O 

Lemma 2.2.10 An equally replicated 6A1 x 6 x 6 x 6//36A1 OMEP &ts for al1 

odd Ar 2 3.  

Proof: Using the above 18 x 6 x 6 x 6//108 tight OMEP, a 12 x 6 x 6 x 61/72 

tight OMEP, and Theorem 2.2.2, ne can construct an eqnally replicated 6(s + 2 )  x 

6 x 6 x 6//36(s + 2) OMEP fiom an equdy replicated 6s x 6 x 6 x 6//36s OMEP. 

The resdt now follows indudively. O 

It now follows that any tight 6A1 x 6A2 x 6X3 x 6&//36X1A2A3& OMEP with ail 

Xi 's  odd and at least one & 2 3 (say Al)  exïsts since it can be obtahed by applying 

Theorem 2.1.2 to the direct product of an equdy replicated 6X1 x 6 x 6 x 6//36X1 

OMEP and a equally replicated 1 x A2 x X3 x &//r\Z&A4 OMEP. 

Thus we have shown the fonowing resnlt. 

Result 2.2.11 The only tight four-factor OMEPs that do not ez is t  have parameters 

6 x 6 x 6 x 61/36 or 2 x 2 x 2 x 2s//4s for s odd. 

We now wish to apply these resuits about tight OMEPs to the general existence 

question for four-factor OMEPs. The general theme is to show existence of an 

OMEP with a given parameter set by collapshg some tight OMEP. However we 

must be carefd in those cases where the tight OMEP we wodd "want" to collapse 

daes not exist. The following results help in these cases. 
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Corollary 2.2.12 The minimal n for which a 2 x 2 x 2 x s//n OMEP &ts, with 

s L 2 ,  LPn=2(s+l) f o r s r 1 , 3  (mod4),n=2(s+2) f o r s r 2  (mod4), and 

n = 2s for s O (mod 4). 

Proof: If s r O (mod 4), then s = 4s', and we can apply the direct product 

constrnction using a 2 x 2 x 2 x 4/18 OMEP and a 1 x 1 x 1 x s'//sr OMEP as 

ingredient OMEPs to obtain a 2 x 2 x 2 x 412s  OMEP. 

If s 1 (mod 4), then every tight OMEP on 2s columns exists by Result 

22-11, but by inspection none of them can have le& collapsed to obtain a 2 x 2 x 

2 x 412s OMEP. Hence, n 2 2(s + 1). Howeveq for each t 2 1, we c m  concatenate 

an equdy replicated 2 x 2 x 2 x 1//4 OMEP and t copies of an equally replicated 

2 x 2 x 2 x 4//8 OMEP to obtain a 2 x 2 x 2 x (4t + 1)//2(4t + 2) OMEP. Hence, 

a 2 x 2 x 2 x 9//2(s + 1) OMEP exists and so n = 2(s + 1) is minimal in this case. 

If s r 3 (mod 4), then every tight OMEP on 25 columas ex is ts  by Result 

2.2.11, but by inspection none of them can have levels collapsed to obtain a 2 x 

2 x 2 x s//2s OMEP. Hence, n 2 2(s + 1). But then as s + 1 r O (mod 4), a 

2 x 2 x 2 x (s + 1)//2(s + 1) OMEP exists, and so we can collapse levels to obtain 

the desired OMEP. 

Finally, if s 2 (mod 4), then Theorem 2.2.6 irnplies n > 2s. As n = (2 + 
i)(s + j) for some nonnegative integas i ,  j, the next possible value is n = 2(s + 1). 
However ail tight OMEPs on 2(s + 1) colnmns e x i s t  and none can have levels 

collapsed to obtain the desired OMEP. So in fact we have n 1 2(s + 2). AS 

s + 2 r O (mod 4), there exists a 2 x 2 x 2 x (s + 2)//2(s + 2) OMEP, in which 

we can collapse levels to obtain a 2 x 2 x 2 x s//2(s + 2) OMEP. O 

Proposition 2.2.13 The minimal n for which a 6 x 6 x 6 x 6/ / n OMEP ezîPts is 

n = 49. 
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Proofi W e  know a 6 x 6 x 6 x 61/36 OMEP does not exist. By considering the tight 

parameter sets nith 37 5 n 48 we h d  no possible OMEP on this nnmber of 

columns codd be collapsed to obtain a 6 x 6 x 6 x 61/36 OMEP. The next possible 

value for n is 7* = 49, and since a 7 x 7 x 7 x 71/49 OMEP exists we can collapse 

levels in it to obtain the desired OMEP- u 

Proposition 2.2.14 A 6 x 6 x 6 x 51/36 OMEP &ts. 

Proof: Eder fotmd a pair of latin squares LI, L2 of order 6, having a common 2 x 2 

subsquare, but otherwise orthogonal. Suppose the symbols in the snbsquare are 

z and y. Then by identifying z and y in tz, and constructing the corresponding 

matrix (with columns (i,j, L+, j], &[il j])), we get a 6 x 6 x 6 x 51/36 OMEP- 0 

We &O want to apply hiowledge about tight OMEPs to answer the existence 

question about equally replicated OMEPs, and so we &O need the next proposi- 

tions, 

Corollary 2.2.15 The minimal n for which an equally replicated 2 x 2 x 2 x s/ ln 

OMEP exists, with s 2 2, i s n  = 4s f o r s  E 1,3 (mod4), R = 4s f o r s  r 2 

(mod 4), and n = 2s for s P O (mod 4). 

Proof: Suppose s is odd. Since we desire equal replication, we have 2(n and sin 

and so 2sln. Rom Corollary 2.2.12, n # 2s. However, using the direct product 

construction, a tight (and so equally replicated) 2 x 2 x 2 x 1//4 OMEP, and a 

(eqndy replicated) 1 x 1 x 1 x s//s OMEP gives a 2 x 2 x 2 x 4 / 4 5  OMEP, so 

n = 4s is minimal in this case. Ifs = O (mod 4, then a tight 2 x 2 x 2 x s//2s 

exists and so the result follows in this case. Consider the case s 2 (mod 4). 

Since we want an equally replicated OMEP, and s1 = 5 2  = 2, we must have 41n. 
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Hence 2sln. We know n # 2 4  by Lemme 2.2.6, and so n 2 2(2s) = 4s. Let s = 2s'. 

Using a tight 2 x 2 x 2 x 4/18 OMEP, a tight 1 x 1 x 1 x s ' / /sr  OMEP, and the 

direct prodact construction yields a 2 x 2 x 2 x 2s//4s, and so n = 4s is minimal 

in this case. 13 

Proposition 2.2.16 The minimal n for wkch a 6 x 6 x 6 x 6//n OMEP with equal 

replication ezLsts is n = 72. 

Proofi Any eqnally replicated sl x s2 x sa x s4//n with 6 1 ~ ~  for each i has 91n 

and 41ra and so 361n. We know n > 36, since a 6 x 6 x 6 x 6//36 OMEP does 

not a ï & ,  but using Theorem 2.2.1, an equally replicated 2 x 2 x 2 x 4/18 OMEP, 

and a equally replicated 3 x 3 x 3 x 3//9 OMEP (both of which exïst) we obtain 

an equally replicated 6 x 6 x 6 x 121172 OMEP. This can have levels collapsed to 

obtain the desired OMEP. O 

Proposition 2.2.17 The minimal n for which an equally replicated 6 x 6 x 6 x sl l n  

ezists, s = 2,3,4,5, is (respectively) n = 36,36,72,180. 

Proofi An equally replicated 6 x 6 x 6 x 21/36 OMEP and an equdy  replicated 

6 x 6 x 6 x 31/36 OMEP can be obtained by collapsing lev& in a 6 x 6 x 6 x 51/36 

OMEP. In these cases we need at ieast 6 - 6 = 36 columns, so n = 36 is minimal in 

these cases. For an equally replicated 6 x 6 x 6 x 4//n OMEP, we need nl (n/6) (n/6) 

and nl(n/6)(n/4). Hence 361n, and 241n7 and so lcm(24,36)ln which implies 721n. 

However, n = 72 suffices, skice a 6 x 6 x 6 x 41/72 OMEP can be obtained as the 

direct product of an equally replicated 2 x 2 x 2 x 4/18 OMEP (Lemma 2.2.8) and 

an equally replicated 3 x 3 x 3 x 3/19 OMEP (an OA(4,3)). Similarly, an equally 

replicated 6 x 6 x 6 x 5//n OMEP must have lcm(36,30)(n, and so 1801n. Again, 
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n = 180 snnices, since the desired OMEP can be obtained as the direct prodnct of 

an equally replicated 6 x 6 x 6 x 11/36 OMEP (an OA(3,6) with a row of all l T s  

added) and an equdy replicated 1 x 1 x 1 x 5//5 OMEP (Lemma 2.2.4). O 

2.3 Existence for general four-factor OMEPs 

We now show how tight OMEPs go a long way in answering the existence question 

for general OMEPs. We give algonthms for determining the minimal n for which 

four-factor OMEPS and four-factor OMEPs with equal replication exist. 

h the introduction we saw that any sl x sz x s3 x s4//n OMEF' gives nse to 

a tight parameter set s i  x si  x s3 x s : / / n ,  where si 5 s: for each i. Furthermore, 

we saw that if the original OMEP had equal replication, then we in fact have sils:. 

Hence in both cases, if the corresponding tight OMEP d s t s ,  then it can have levels 

collapsed to obtain the original OMEP. Since we know exactly when tight OMEPs 

on four factors exist, it is not surprising that tao rather trivial algonthms work. 

Suppose we are given SI, 8 2 ,  SS, sl, and we do not require an OMEP with equal 

replication. Since we know how to generate all the tight parameter sets for a 

given n, we can find the smdest n so that there is a tight parameter set, Pf: 

3: x si x s& x s://n, with si 5 si. Now, if the corresponding OMEP exists then 

n is minimal and we are done. Otherwise, there are ody two possibilities for Pf: 

2 x 2 x 2 x 2s//4s, with s odd, or 6 x 6 x 6 x 6//36. In the first case, it must be that 

si, s2, s3, SI actudy equals 2,2,2,29 in some orda, in which case Theorem 2.2.12 

applies. In the second case, either each si = 6, in which case we h o w  n = 72 is 

minimal, otherwise n = 36 is minimal since an OMEP with the desired parameters 

can be obtained by collapshg levels in a 6 x 6 x 6 x 5//36 OMEP. 
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Suppose we are given al, sa ,  as, s4, and we do reqaire an OMEP with equal 

replication. Since we hion how to generate all the tight parameter sets for a 

given n, we can h d  the smdest n so that there is a tight parameter set, Pr: 

si x si x S; x ~ : / / n ,  with S;~S;. NOW, if the corresponding OMEP exists then n 

is minimal and we are done. Otherwise, there are only two possibilities for P': 

2 x 2 x 2 x 2s//4s, with s odd, or 6 x 6 x 6 x 61/36. Ln the first case, it must be 

that $1 = s a  = s3 = 2 in which case Theorem 2.2.15 applies. In the second case, 

either each si = 6, in which case we know n = 72 is minimal, otherwise n = 36 

is minimal since an equally replicated OMEP with the desked parameters can be 

obtained by collapsing levels in a 6 x 6 x 6 x 51/36 OMEP. 

2.4 Five-Factor Tight OMEPs 

In this brief section we determine all the tight parameter sets on five factors for 

which a tight OMEP exists. 

As in the la& section, we assume the tight parameter set has the form 

Also, we break up the cases depending on the valne of g. A TD(5,g) exists for 

any g 4 {2, 3,6,10), so for any such g and any choice of the Ai's a tight OMEP 

exists having these parameters, since it can be obtained as the direct product of a 

g x g x g x g x g//g2 OMEP and a Al x X2 x A3 x & x AS//A1A2A3AJ5 OMEP. 

Consider the case g = 10. It is dcnown whether a 105//100 OMEP exists, and 

we make no attempt to prove or disprove its existence here. In the Appendix, we 

give a resolvable TD3(4, IO), so by extending parallel classes we obtain an equdy 

replicated 10 x 10 x 10 x 10 x 30//300 OMEP. The direct product of an equally 
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replicated 2* x 4/18 OMEP and an equally replicated 5'1125 OMEP is an equally 

replicated 10 x 10 x 10 x 10 x 20//200 OMEP. By extending pardel classes and 

applying the concatenation construction we obtain an equally replicated 10 x 10 x 

10 x 10 x lOA//lOOA OMEP for ail A > 1. Any tight OMEP with parameters as 

in (2.4) and g = 10 and having at least one > 1, say A,, can non be obtained asing 

Theorem 2.1.2 applied to the direct product of an equally replicated 10 x 10 x 10 x 

10 x 10X5 //lM)A5 OMEP and an equally replicated Al x X2 x X3 x X4 x l//X1 X2A3A4 

OMEP. It follows that any tight parameter set having the form in (2.4) and havkig 

g = 10 has a corresponding tight OMEP, with the possible exception of a 105//100 

OMEP. 

Next consider the case g = 6. It is known that a 6'1136 OMEP does not 

exist, and thas a 6'1136 OMEP does not exist either. In the Appendix, we give 

a resolvable TDa(4,6) and a resolvable TD3(4, 6), and so by extending pardel 

classes and applying the concatenation construction we obtain an equdy replicated 

6 x 6 x 6 x 6 x 6A//36X OMEP for all A > 1. It follows then, as with the case 

g = 10, that any tight parameta set having the form in (2.4) and having g = 6 has 

a corresponding tight OMEP, with the exception of a 6'1136 OMEP. 

The case g = 3 is similar to the 1st two cases. For trivial reasons, a 35//9 

OMEP does not exist. In the Appendix, we give a resolvable TD2(4, 3), and so by 

extending pardel classes we obtain an equdy replicated 3 x 3 x 3 x 3 x 6//18 

OMEP. An equally replicated 3 x 3 x 3 x 3 x 91/27 OMEP exists since it can be 

obtained by extending parallel classes in a resolvable TD3(4, 3), which was shown 

to exist in the introduction. By applying the concatenation construction we obtain 

an equdy replicated 3 x 3 x 3 x 3 x 3A//9X OMEP for all X > 1. As in the previms 

two cases, it follows that any tight parameter set having the form in 2.4 and having 

g = 3 has a corresponding tight OMEP, with the exception of a 35//9 OMEP. 
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Findy, consider the case g = 2. For tnviai reasons, a 25//4 OMEP does 

not exist. First consider the case where some & is even, Say As. We have seen 

that an equally replicated Z4 x 4/18 OMEP exists, and so an equdy replicated 

2X1 x 2X2 x 2A3 x 2& x 2AS//4X1X2A3AJ5 OMEP can be obtahed as the direct 

product of an equally replicated 24 x 4//8 OMEP and an equdy replicated Al x 

A2 x A, x & x (As/2)//XlA2A3&(As/2) OMEP. N d  suppose d & are odd. Xfjust 

one & is greater than 1, say Al = A2 = A3 = & = 1 and As > 1, then Lemma 2.2.6 

applies and the tight OMEP cannot exist. On the other hand, suppose at least 

two & are greater than 1, Say & and Ag. In the Appendix, an equdy replicated 

2 x 2 x 2 x 6 x 61/36 OMEP is given. Further, a tight z3 x 6 x 41/24 OMEP exists, 

and so by the concatenation construction we can construct an equdy replicated 

z3 x 6 x 2X5//12Xs OMEP for all odd As 2 3. For sach As, an equdy replicated 

z3 x 4 x 2A5//8Xs OMEP exists, and so again by the concatenation consmiction we 

obtain an equdy replicated Z3 x 2& x 2A5 //4&A5 OMEP for all odd Ar, As > 3. 

Finally, the direct product of this OMEP with a Al x X2 x A3 x 1 x 1//XlX2X3 OMEP 

gives an equally replicated 2A1 x 2X2 x 2A3 x 2& x 2A5//4A1A2A3A,J5 OMEP- If 

the are pisirarise relatively prime, then Theorem 2.1 -2 gives the result . Thns, we 

have shown that in the case g = 2, the only tight parameta sets for which the tight 

OMEP does not exist is 25//4 and 2* x 2s//4s for s odd. 

In summary then, the only tight five-factor parameter sets for which the tight 

OMEP does not exist are 25//4, 2' x 2s//4s for s odd, 35//9, 65//36, and possibly 

105//100. 
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2.5 Summary 

There are some obvions applications of the techniques in this chapter. First of all, 

the results of this chapter show all tight OMEPs with three rows exist, and so we 

can Say that an sl x sa x s3 / /n  OMEP exists if and only if there exists a tight OMEP 

on n colamns wîth at least as many different syrnbols in each row. Similady, an 

si x sz x ss//rr OMEP with equai replication exists if and only if there &sts a 

tight si x si x s  j / / n  OMEP sach that GIS; for each i. The same techniques apply 

in determining minimal OMEPs with more rows. The only problem is that fewer 

of the "ingredientn OMEPs acist. For example, in the case of six rows, there is no 

2 x 2 x 2 x 2 x 2 x 4/18 OMEP so some other "basen ingredients must be used. 



Chapter 3 

Collapsing and Uncollapsing 

In this chapter we give new resalts concerning the collapsing and uncollapsing of 

three row OMEPs. As seen in the last chapter, for almost any OMEP parameter 

set with three or four rows, there is a tight OMEP which we can collapse to obtain 

an OMEP with these parameters. For example, It is possible to obtain a 7 x 7 x 

7 x 6 OMEP by collapsing a tight OMEP. However, there may exist a particdar 

7 x 7 x 7 x 6 OMEP that cannot be obtained by collapsing a tight OMEP. 

We show that there are indeed OMEPs on four factors that cannot be obtained 

by collapsing a tight OMEP. More importantly, however, we show that sny OMEP 

on three factors can be obtained by collapsing some tight OMEP. Put another way, 

any three factor OMEP can be uncollapsed to obtain a tight OMEP. We also prove 

some results concerning the concatenation and unconcatenation of tight OMEPs. 
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3.1 Uncollapsing Three-Factor OMEPs 

In this section we show that any OMEP on three rows can be obtained by collapsing 

some tight three-factor OMEP- In other words, for any tkee-factor OMEP it is 

possible to 'uncollapse'' levels in it to obtain a tight three-factor OMEP. 

Let û be an SI x $2 x s3//n OMEP, having symbol set {1,2, . . . si) in row i. If 

D is already tight then ne are done. Othemise, as we prove in the second chapter, 

there is an assouated tight OMEP parameter set si x si x s!J/n, which we can al- 

ternatively write as Xig x Xzg x X3g//XlA2A,g2, where the A$s are pairwise relatively 

prime. Also 4 2 si  and some s; > sx (so X indexes a row). If the replication 

numbers of the symbols in row i of D are ri1 , riz1 - . . rùi, then gcd(ril, r iz7 . . - , ri.;) 

is divisible by gi = n/s;. Since sx < s;, at least one +xi is not equal to c&, so 

rxu = dgk, for some d > 1 and some symbol Y. We now explain how to Kun- 

collapsen symbol Y in row X into d distinct symbols. In what follows, we assume 

without loss of generality that X = 1 and Y = 1 for ease of description. Let C 

be those columns of 'D containing a 1 (i-e. Y) in row 1 (i-e. X). We conshct  a 

bipartite graph T with bipartition classes A = {l, 2, . . . , s*) and B = {1,2, . . . , s3) 
by joining the vertices a in A and /3 in B for each colnmn (1, a, P)= in C. With 

this construction, thae is a one to one correspondence between the edges of T and 

the columns in C. Fmther, the degree of the vertex corresponding to the symbol j 

in row i, i # 1, is rl1rij/n, which is divisible by dg',g:/n which in turn is divisible 

by d. Thus, evay vettex in T ha9 degree divisible by 4 and each bipartition dass 

has a total of ICI edges leaving it. Therefore, there is a d-regalar bipartite graph 

Tr,  having two bipartition classes of size ICl/d fiom whidi we can obtain T by 

identifying sets of vertices in Tt's bipartition classes. (For example, to get such a 

graph T', pick a vertex in T of degree sd and arbitrarily "split" this vertex into s 
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vertices of degree d. Repeat this for each vertex in T to get T'.) The edge set of T' 

can be decomposed into d one-factors of T', since T' is a reguiar bipartite graph. 

(This is an easy corollary of Hall's Theorem or Kiinig's Theorem; see any good 

book on g a p h  theory.) These one-factors correspond to a partition of the edge set 

of T into d (spanning) subgraphs of T, Say Ti, T2, - - . , Td, where each vertex v in 

any Ti ha9 degree 
degree of v in T 

Also, each edge in each subgraph corresponds to a column in C, and thus corre- 

sponds to a column in D. Finally, for each edge in each subgraph Ti, ftid the 

associated colnmn in D and replace the symbol 1 in row 1 by a 1'. This has the 

efFect of replacîng the symbol1 in row 1 of D by d new symbols 11, 12,. . . , ld. Why 

is the resultant array an OMEP? A little thooght shows that we only need to check 

the number of occarences of one of the new symbols with a symbol fiom another 

row. Consider symbol 1' in row 1, 1 5 z < dl and symbol y in row j ,  2 j < - 3. 

Symbol 1 in row 1 occurs ri1 times in the original array, and symbol y in row j 

occurs rjy times. Iti the new array, symbol y in row j still occars times, but 

symbol 1' only occurs ril/d times. Furthermore, any vertex in the subgraph Tz (as 

defined above) has degree l/d of its degree in T, that is, riir&d. Thus in the 

new array, symbol y in row 3 occurs rllrjy/nd times in a colnmn with symbol lZ in 

row 1. As 

the two symbols occur the exact number of times required for the resultant array 

to be an OMEP. Thus the new array is ao (si + d - 1) x 8 2  x s3/ /n  OMEP. 

If this new OMEP is not tight, we can repeat this construction. Eventually, we 

obtain a tight OMEP (which cannot be fiuther uncollapsed)- This tight OMEP 

can be collapsed to obtain D, by just reversing the uncoilapsing operations. 



C U T E R  3. COLLAPSING AND UNCOLLAPSrnG 

The above argument proves the following theorem. 

Theorem 3.1.1 Any three-factor OMEP can be obtained by  collapsing a tight 

thne-factor OMEP. Equivalently, any three faetor OMEP can be vncollapsed to 

obtain a tight three-factor OMEP. 

Therefore, to enumerate all possible three-factor OMEPs (not jast the possible 

parameters, but the actual OMEPs), it suffices to generate every possible tight 

three-factor OMEP, and then record the OMEPs that can be obtained by collapsing 

levels in these tight OMEPs. Generating aIl possible tight three-factor OMEPs, 

even with a given set of parameters, is nontrivial. However it seems dear that this 

two step approach is compntationdy easier than directly generating all three-factor 

OMEPs, especially if we are using backtraeking to generate the OMEPs. 

As an example, we do one %rationn of this proceduce to partidy mcollapse 

the 2  x 3 x 41/16 OMEP of Table 1.4. We uncoUapse the symbol 1  in row 2 into 

two distinct symbols. In this case the set C of columns containing symbol 1 in row 

2 is 
1 1 1 1 2 2 2 2  

1 1 1 1 1 1 1 1  

Now we fonn the bipartite graph having bipartition classes {1,2), {l, 2,3,4). This 

graph is shown in Figure 3.1. Now, we must partition this graph into taro (span- 

ning) subgraphs so that the degree of each vertex in each subgraph is exactly half 

what it was in the original bipartite graph. In this case, the desired partition is 

easily found. Fnrthermore we mention that there are "nonisomorphicn partitions, 

corresponding to different ways to uacollapse. In any case, one such partition is 

çhown in Figure 3.2. Fkom this, we replace the symbol 1  in row 2 by the symbols 
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Figare 3.1: The Bipartite Graph T 

This array is a 2 x 4 x 41/16 OmP.  

3.2 Four-Factor OMEPs 

Although every three-factor OMEP can be ancolIapsed to a tight OMEP, this is 

not true of four-factor OMEPs. For example, a 6 x 6 x 6 x 51/36 OMEP ex ïs ts  (see 

Lemma 2.2.14, for example), but it cannot be uncollapsed to obtaia a tight OMEP, 

since the tight OMEP wodd have parameters 6 x 6 x 6 x 61/36 and sach an OMEP 

does not e s t ,  as it would correspond to two MOLS of order six. However, we 

mention th& the method of the last section can be generalized to OMEPs having 

four or more factors. For example, given a four-factor OMEP and a symbol z in row 

1 (say) that we wish to uncollapse into d distinct symbols. Fozm a tripartite graph 

analogoas to the graph of the last section, except that every column containing an 
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Figure 3.2: A Partition of the Graph T 



x in row 1 non contributes a 3-&que to the tripartite graph, instead of a %clique 

(edge). To ruicollapse, one wodd have to partition these Scliques into d classes, 

forming spanning sabgraphs Tt, T2,. . . , Td so that the degree of any vertex in any 

is l l d  times its degree in the original tripartite graph. As (implicitly) shown 

above, this is not always possible. In fact, deciding whether a tripartite graph has 

a partition into Sdiques is NP-complete [a]. 

It is tempting to wonder if the ody thing that prevents uncollapsing is the non- 

existence of the tight OMEP (as in the above example). This is not the case, as 

can be seen as folIows. Consider a matrix M with 4 rows and 45 colamns, with 

the symbols l,2,3,4,5,6,7 occurring in each row, so that for each pair of rows, 

each ordered pair of symbols except (1,1)*, (1,2)T7 (2, I ) ~ ,  (2, 2)T occnrs exactly 

once. Thus if a TD(4,2) actnally existed, we could add its corresponding columns 

to obtain a TD(4,7). For this reason such a rnatrix is sometimes called a TD(4,7) 

- TD(4,2). Replace each symbol 2 in row 1 of M by the symbol 1. Now add the 

columns of a 1 x 2 x 2 x 2//4 OMEP, with symbol set {l), {1,2), {1,2), {l,2) in 

each row, respectively. This results in a 6 x 7 x 7 x 7//49 OMEP. Furthermore, this 

OMEP cannot be uncollapsed to form a 7 x 7 x 7 x 71/49 OMEP, since the process of 

uncollapsing would uncollapse the 1 x 2 x 2 x 2/14 snb-OMEP kit0 a 2 x 2 x 2 x 2/14 

OMEP. Thus there is a 6 x 7 x 7 x 71/49 OMEP that cannot be uncollapsed to 

form a 7 x 7 x 7 x 71/49 OMEP, although there does exist a 7 x 7 x 7 x 71/49 

OMEP. Furthennore, it is hown that a TD(4,g)-TD(4,2) exkts for ail g 2 6, and 

so the above construction provides many examples of such OMEPs. 
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3.3 Unconcat enating 

As seen in the concatenation construction, Theorem 2.2.2, the juxtaposition of 

two OMEPs sometimes gives a new OMEP. ln the Iast section, we considered the 

question of nncollapsing a given OMEP. One may ask a similar question about 

nnconcatenating a given OMEP. In the context of tight OMEPs, this question 

becomes: When is a tight Alg x A2g x . . . x Akg//A1A2 - - . Akg2 OMEP the con- 

catenation of a Xlg x X29 x - - - x Ai-lg x pkg/ /AlX2 -. - X ~ - 1 ~ k g ~  OMEP and a 

Aig x A29 x . . . x Ar-ig x / & J / / X ~ A ~ .  . . Ak-l&g2 OMEP? 

We mention in passing that a tight 3 x 3 x 3s//9s OMEP is always the con- 

catenation of s 3 x 3 x 3/19 OMEPs, as the following argument shows. A tight 

3 x 3 x 3s / /9s  OMEP is equivalent to a completely resolvable OA.(2,3), so it is 

enough to show that a completely resolvable 0As(2, 3) is the union of s completely 

resolvable OA(2,3)s. A completely resolvable OA. (2,3) is by definition a collection 

of pardel cksses. Let %jk denote the number of times the pardel class 

0 1 2  

i j k  

occurs. (Here we are assnming the symbol set in each row is {O, 1,2).) If a012 = p, 

then since ao12 + ao21 = s, we must have a021 = s - p. Similarly since a012 + ai02 = s , 
we find al02 = s - p .  Conthuing in this manna, we find a012 = al20 = al01 = p 

and a021 = aloz = a210 = s - p- Notice that the collection of parallel classes 

correspondhg to the Mnables ao12, a120, as01 form a completely resolvable OA(2,3), 

as do the collection of pardel classes corregponding to the other three variables. 

Thus the completely resolvable OA.(2,3) is the union of s completely resolvable 

OA(2,3)'s : p of one kind and s - p of the other khd. 

C d  a tight OMEP decomposable if it is the concatenation of two other OMEPs. 



Theorem 3.3.1 For &ed k and f i e d  Al, AI,  . . . , Ak-i, g, there is only a finite num- 

ber of tight Alg x X2g x . . . x Aig//AlA2.. . Akg2 OMEPs that cannot l e  ezpressed 

as the concatenation of a Xlg x A2g x . . . x Ai-lg x pg//AlA2 . . Ak-1pg2 OMEP 

and a Alg x A2g x . . . x AL-lg x prg//A1A2. - - ^L-ipr# OMEP. 

The proof is similar to the îmite basis result for PBDs, see [21] for example. 

Proof: For convenience define A = Ai&. . .Ak. We first remark that the colnmns 

containing any fked symbol in the kth row of a tight Xlg x X2g-. . x Xkg//Ag2 

OMEP form a set of Ag/& columns so that any symbol in the ith row, 1 5 i 5 k - 1 

occurs A/(&An) times in this set of colnmns. Let S be that set of all k - 1 x Ag/& 

matrices so that any symbol in the ith row, 1 < i 5 k - 1 occurs A/(&&) times 

in this set of colnmns. Therefore, up to the naming of the symbols in row k, any 

Xlg x X2g - - . x Akg//Ag2 tight OMEP D is specified by a IS(-tuple TD, where the 

number in coordinate position j of this tuple indicates the nurnber of times the 

jth matrix in S occurs above some symbol in row k of our OMEP. Now, if L) is 

decomposable, then there are 1st-tuples TD, , Ta so that TD, + To, = To. Snch 

tuples can be partially ordered by 5, where Tl 5 T2 if every coordinate of Tl is 

less than or equal to its corresponding coordinate in Ta. Tuples Tl, T2 are said 

to be incomparable if neither Tl < T2 nor T2 < Tl. The tuples representing tao 

indecomposable tight OMEPs are incomparable, for if Ta 5 TD,, for two distinct 

indecomposable tight OMEPs Da, Db, then Th - TD, is a vector representing an 

OMEP De sueh that Db is the concatenation of Da and Dc, and therefore Ob is not 

indecomposable. Hence, to show that there are a finite number of indecomposable 

tight OMEPs (for fixed Al, A2, . . . , g),  it suffices to show that there are no 

infinite antichains in the partial order. However this is exactly what is guaranteed 

by Lemma 1 of [21]. We review the proof here. Suppose K = {TD,, Ta,. . .) is 
an infinite antichain in the partial order. Consider the first coordinate of elements 



in K. Since an infinite sequence of non-negative integers has an nondecreasing 

subsequence, K contains an infinite subsequence Ki so that the ftst coordinate 

of elements of KI is nondecreasing. Non the same argument shows Ki contains 

an infiaite subsequence KI so that the second coordinate of elements of Kz is &O 

nondecreasing. The number, (SI, of coordinates is finite, so eventually we produce 

a subsequence Klal that contains tao  comparable elements. However this is a 

contradiction since K is an antichain. O 

3.4 Summary 

The main result of this chapter is that any three-factor OMEP can be uncollapsed 

to ob t ain a tight t kee-factor OMEP. For four or more factors, there are exampIes of 

OMEPs that cannot be uncollapsed to a tight OMEP. Also in this chapter we have 

shown a finite basis type result for concatenation of OMEPs, which says, roughly, 

that tight OMEPs with n colnmns and having a fixed number of symbols in the 

f h s t  k - 1 rows are the concatenation of two smder OMEPs if n is large enough. 



Chapter 4 

Asymptotic Existence of Tight 

OMEPs 

Asymptotic existence of tight OMEPs is established in this chapter. This is accom- 

plished mainly throngli the use of a recnrsive constniction, and simple arithmetic 

facts. We also give an application of the asymptotic result to Jacroax's lower bound 

for OMEPs. In the second chapter, it was shown that every tight OMEP parameter 

set on thee or fewer rows has a corresponding tight OMEP, so we make the implicit 

assumption that k 2 4. 

4.1 The Main Result 

The following incidence structure is usetid. 

Definition 4.1.1 Let S = {vij[l 5 i 5 k, 1 5 j < g).  Let B ée a set of subsets 

(blocks) of S. The pair (S, B ) is called a R(g,  k, p, A) -design if the block set can 
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be partitioned into pamllef classes and if pairs of points v & , v ~  are in no blocks if 

i = j ,  in A blocks i f i #  j and z # y, and i n p  blocks ifi # j  and z =y .  

The main idea in this section is to introduce a recursive construction creating 

these R-designs, so that the recursion dows  for inmeasing the block sïze without 

necessarily making p a multiple of g. This results in the construction of resolvable 

transversal designs RTDA(k, g) with k as large as desired, and with X not necessarily 

a multiple of g (as in the Kronecker Prodnct construction). 

Lemma 4.1.2 Let g and k be fized. Then an R(g, k,$-Z - 1, &2)-desip exists. 

Proof: Let the point set be {(i, j)(l < i 5 g, 1 5 j 5 k). The set of blocks 

{{@17 l) 9 ( ~ 2  9 2)> - - . 7 ( ~ k ?  < pi < 97 piTs equal) 

is a R(g, k, $-* - 1, gk-2)-design. 0 

If we do not exclude blocks with aü pi eqnal, we get a RTD,r-2 (k, g). 

Remask 1 For uny fized g and 6, a RTDgk-2 (k, g) e x k t s .  

The union of the block sets of two RTD's on the same point set gives a third 

RTD. We use the following consequence of this fact repeatedly. 

Lemma 4.1.3 If a RTDA, (k, g )  and a RTDA~ (k, g )  exist, with gcd(X1, X2) = 1, then 

a RTDA(k,g) exists for al1 A 2 AIAz. Hence if a RTDp(k,g) gcd(p,g) = 1 

ezists,  then a RT&(k, g) ezLsts for al1 A suficiently large. 

Proof: The f i s t  statement holds since A = sX1 + tX2 has a nonnegative inte- 

gral solution in s, t for all X 2 XJ2, and since the union of the block sets of s 
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RTD*, (k, g) 's and t RTDA, (k, g)'s gives a RTD,*, (k, g). The second foUows by 

using Remark 1. O 

The advantage of the following constniction is that it allows for increasing the 

block size withont necessarily making the "index" a mdtiple of g. We see similar 

constructions in the next chapter. 

Theorem 4.1.4 If on RBIBQv, k, A) and a RTD,(v/b, g)  ezist,  W e n  a R(g,  v ,  Ap(g+ 

(V - k ) / ( k  - l)), Xp(v - k ) / ( k  - 1))-design ezists. 

Proof: We constnict blocks on the point set 

Assume that the RTD,(v/k,g) is on the points {(i, j)ll < i 5 g , l  5 j 5 v / k } ,  

and the gronps are Gj = {(i ,  j)ll 5 i < g). Assume the RBIBD is on the point 

set {l, 2, . . . v ) .  For each pardel class of the RTD, say (Bi, Bz, - , B,), and each 

parde1 class of the RBIBD, Say {Bi,  Bi , .  . . , Bk), we constnict a pardel class on 

S as follows. If 

then o u  paralle1 class on S has blocks Uj(l < j 5 g) defined by 

W e  now count the biocks of the resulting design containhg a given pair of 

distinct points. In what follows, let r = X(v - l ) / ( k  - l), and let R denote the 

set of blocks of the fmd structure. First, any pair of points in S with a common 

second index never occur together in a block 7Z, by d u e  of 4.1 and the fact that 

the Bi' form a pardlel class. Next consider a pair of points (il, ji), (iz, jz) ,  where 



CHAPTER 4- ASYMPTOTE EXISTENCE OF TIGWT OlMEPS 52 

il # iz and jl # j2- Again by 4.1, the only blocks in î?. in which these points occnr 

together corne fkom pardel classes of the RBIBD where jl and j2 lie in distinct 

blocks- T h a e  are r - A such pardel ciasses, and for each one there are p blocks 

of the resolvable transversal design that combine with this pardel &s to make a 

block of 7Z containing the points (ii,fl), (ii, j2)- This makes for a total of 

blocks of 7Z containing the given pair of points. Findy consider points where only 

the second index differs, Say (i, jl) , (i, j2). In this case every parallel dass of the 

RBIBD combines with some block of the resolvable transversal design to give a 

block of 'R containing the given pair of points. There are X blocks of the RBIBD 

containing the pair of points jl, jl, and for each such block B, there are pg blocks of 

the RTD that combine with it to give a block of 'R containing the pair (i,  ji), (i, jz). 

(These pg blocks are all bloclrs through a certain point of the RTD; that certain 

point depending on the value of i and the parallel class of the RBIBD.) There are 

T - X paraUel classes of the RBIBD in which the points jl, ja lie in different blocks, 

and for each such parallei class there are p blocks of the RTD that combine with it 

to give a block of îZ cont aining the pair (i, jl ) , (i, jz ) (These p blocks correspond 

to the blocks through a fixed pair of points of the RTD.) This makes for a total of 

blocks of 72 containing the &en pair of points. 

The above theorem allows us to prove, with minimal work, the asymptotic 

existence of resolvable transversal designs. This is the first step in proving the 

asymptotic acistence of tight OMEPs. 
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Corollary 4.1.5 Let g 2 4 be a fized numbet not divisible by 3, and let k be F e d .  

Then for ail X large enough, a R T a ( L , g )  ezists. 

Proof: Choose i such that 3*' 2 k. AppIy Theorem 4.1.4 nsing an RBIBD(3'+', 3', (3'- 

1)/2) and a RTD(3,g) to obtain an R(g, 3'+lTg(3' - 1)/2 + 3', 3')-design which we 

truncate to a R(g, k,g(3' - 1)/2 + 3', 3')-design. Now take g(3' - 1)/2 copies of the 

blocks of a R(g, k, $-2 - 1, $-2) and one copy of the blocks of our R(g, k, g(3i - 
1)/2 +- 3', 3')-design, to give a RTD,(k,g), where p = gk-'(3' - 1)/2 + 3'. Since p 

is relatively prime to g, Lemma 4.1.3 gives the resdt. 0 

Lemma 4.1.6 For any k, any nt, and any A suficz'ently large, a RTDA(k,3*) 

exists. 

ProoE First suppose m = 1. Choose i such that 4'+' 2 k. Apply Theorem 4.1.4 

ushg an RBIBD(4'+', 4', (4' - 1)/3) and a RTD2(4, 3) to obtain an R(3,4'+', 6(4' - 
1)/3 + 2 4', 2 4')-design which we truncate to a R(3, k, 6(4' - 1)/3 + 2 * 4', 2 - 4')- 

design. Now take 6(4' - 1)/3 copies of the blocks of a R(3, k, 3k-2 - 1, 3k-2) and 

one copy of the blocks of our R(3, k, 6(4' - 1)/3 + 2 4', 2 4')-design, to give a 

RTDJk, g) , where p = 2 3'-' (4' - 1) /3 + 2 - 4'. Since p is relatively prime to 3, 

Lemma 4.1.3 gives the r d t  in this case. 

Next suppose m > 1. Set g = 3-. Choose i such that 4'+' 2 k. Apply 

Theorem 4.1.4 nsing an RBIBD(4'+',4', (4' - 1)/3) and a RTD(4,g) to obtain an 

R(g, 4'f1, g(4i-1)/3+4', C)-design which we tmca te  to a R(g, k, g(4'-1)/3+4', 4')- 

design. Now take g(4' - 1)/3 copies of the blocks of a R(g, k, $-* - 1, #-2) and one 

copy of the blocks of our R(g, k, g(4' - 1) 13 + 4', 4')-design, to give a RTD,(k, g) , 
where p = gk-' (4' - 1)/3 + 4'. Since p is relatively prime to g, Lemma 4.1.3 again 

gives the resdt. O 
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Corollary 4.1.7 For any k and any g tmth 319, and al1 X sugiciently large, a 

R T R A ( ~ , ~ )  6. 

Proofi We first consider the case g = 6. In this case, choose i such that 5i+1 > - k. 
Applyïng Theorem 4.1.4 nsing an RTDs(5, 6) and an RBIBD(~'+', si, (5' - 1)/4) 

gives an R(6,5'+', 6.5(5 - 1) /4 + 5'+', 5'+')-design which we truncate to a R(6, k, 6 - 
5(5' - 1)/4 + 5*', 5i+')-design. Adding 6 5(5' - 1)/4 copies of the blocks of an 

R(6, k, 6k-2 - 1, 6'-')-design gives an RTD A (k, 6), where A = 5 - 6k-' + 5'+', 

which is relatively prime to 6. Thus Lemma 4.1.3 now gives the result . 

For g # 6, wrïte g = 3"g', with 3 Ag'. Since g # 6, we have gr # 2. Fkom 

Lemma 4.1.6, there exists a RTD*,(k,3") with gcd(Al,g) = 1, and by Corol- 

lary 4.1.5 t h e  is a RTDA, (k, g') with gcd(A2, g )  = 1. The direct prodnct of these 

is a RTD*,*, (k, g).  Since gcd(AlX2, g) = 1, Lemma 4.1.3 now gives the result. O 

These last few observations show that for fixed k and g 2 3, a RTDA(k - 1,g) 

exists for all A large enough, Say all A 2 M(g, k). Hence a tight Ag x gk-'//~g2 

OMEP exists for d A 2 M(g, k) . The product theorem implies that for any set of 

& 's pairnise relatively prime with at least one & > M(g, k) a tight 

OMEP exists. Since for h e d  k, g there are only a finite number of parameters of the 

form in (4.2) with the &'s all less than A, there are at most a finite nnmber of such 

tight OMEP parameters for which the tight OMEP does not exist. Fmthermore, for 

all suf6ciently large g a TD(k,g) exists, and for such g and any choice of pairwise 

relatively prime &'s a tight Alg x X29 x . . . x Akg//XiX2.. . Xkg2 OMEl? exists. 

Thus, there are only a finite number of tight parameter sets of the form in (4.2) 

with g # 2 for which the tight OMEP does not exist. It remains to show that there 

are only a h i t e  number that do not exist when g = 2. 
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Since a TD(k, 2 4  exïsts for some cr odd (depending on k), by collapshg levels 

in it ne obtain an equdy replicated 2a x 2 a  x 2k-2//4a2 OMEP. Also, there is 

a tight 2a' x zk-l//4a' OMEP for d a d c i e n t l y  large power of 2, and hence 

a tight 2d x 2 a  x 2k-2//4da OMEP. By nsing the concatenation construction 

(Theorem 2.2.2) we obtain a tight 2p x 2 a  x 2k-2//4pa OMEP for ail p 2 aa'. For 

su& p, there is also a tight 2p x 2a' x 2k-2 / / 4 p '  OMEP. Again using concatenation 

we obtain a tight 2p x 2p' x 2k-2//4plr' OMEP for aU p' 2 au. Thus, for any choice 

of piYs pairwise relatively prime with at least two of the f i ' s  at least ad, these is 

a tight 

2 ~ 1  x 2 ~ 2  x - - x 2 ~ k / / 4 ~ 1 ~ 2  - - - P k  (4.3) 

OMEP. We mnst now consider OMEPs of the form in (4.3) but where all but one 

of the are less than aa'. We need some lemmas k t .  

Lemma 4.1.8 For any k, there Is an odd A such that a tight 2A x 4 x 2C-2//81 

OMEP exists. 

Proof: Choose i such that 3'+' 2 k - 2 and i is even. For neatness define v = 3'+'. 

Let Dl be a 2 x 4 x 2 x 2 x 2/18 OMEP, and let 272 be an RBIBD(3'+', 3', (3' - 1)/2). 

Let 

7 = {d v-tnples using 0,l except (0,0,. . . ,O) and ( 1 , l .  . . ,1) ) . 

Let the jyth parallei class of V2 be {Bj13 Bj2, Bj3), 1 5 j 5 (3'+' - 1)/2. We 

construct an OMEP on v +2 rows, with rows labelled m, 0,1,2, . . . , v .  We construct 

the OMEP so that the symboh in row ao are 7 x {1,2, . . . , (3' - 1 ) / 2 ) ~  {1,2, . . . v - 
l), the symbols in row O are (0,1,2,3), and the symbols in each other row are 

{ O  1 Assume the symbols in the rows of 9 are {O, 11, {O, 1,2,3), {O, 11, {O, 11, 

and (0: 11, respectively. Assume the point set of is {l, 2,. . . v) .  For each column 
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@,, PO, P3)T of Dl and each paralle1 class {Bjly Bi2, Bj3) of V2 we constr~ct 

a colnmn with 23 - p, in the row m , po in row 0, pl in each row indexed in 

Bjl ,  pz in each row indexed in Bj2, and p, in each row indexed in Bj3- (Since 

{B j l ,  Bj2, Bj3) is a pardel class this defines the entire CO~IUIU.) Filrthei:, for each 

a E {1,2, . . . , (3' - 1)/2), each v-tuple T = ( t l ,  t2, .  . . , t,,) in 7, and each 3 E 

{O, 1,2,3) ne construct a colamn with (T, a) in row m, s in row 0, and tc+s in row 1 

for each row I ,1  2 1 5 u (where addition is done modulo 2). These columns together 

form an OMEP whae symbols from row ao and row O occnr together once, symbols 

fkom row m and row 1,1< 1 5 v,  occur together twice, symbols from row O and row 

1 , l  5 1 5 v ,  occar together X times, where X = (3'+' - 1) /2 +(2v-L - 1) (3'- 1) /2, and 

symbols from any pair of distinct rows with labels between 1 and v occur together 

2X times. (Since i is even, (3' - 1)/2 is even, and (3'+' - 1)/2 is odd, so A is odd.) 

Thus this is a 2X x 4 x 2"//8A OMEP on v + 2 rows, which gives the desired OMEP 

by possibly removing some rows. O 

Lemma 4.1.9 For any k, thete is a A that is  a power of 2 svch thut a tight 2X x 

4 x 2k-2//8A OMEP exii ts .  

Proof: Choose i so that 4' 2 k - 1. A 4' x 4 x 44i-1//4'+1 OMEP exists, since a 

RTD4i(4'+', 4) e*ists. By collapsing levels we obtain a 4' x 4 x 24i-1//4i+1 OMEP. 

Taking A = 2*'-', we find this is a tight 2A x 4 x 2*'-'//8~ OMEP, which can be 

truncated to give the desired OMEP. 0 

CoroUaty 4.1.10 For any k ,  and for al1 suficiently large A, a tight 2X x 4 x 

2 k - 2 / / 8 A  OMEP exists. 

Proof: This follows nom Lemma 4.1.8, Lemma 4.1.9, and Lemma 4.1.3. 13 



We now show asymptotic existence of OMEPs with parameters as in ( 4 4 ,  but 

where all but one of the f i ' s  are less than ad. Again recall that I; is some fixed 

number of rows. 

In the fist case at least one f i  is even, say p2 = 2&. Then by (4.1.9), a tight 

2A x 4 x 2 x 2.. . x 2//8A OMEP on k rows exïsts for all X large, Say A 2 Mr(k).  

Using the product constraction we fmd a tight 2X x 2p2 x 2 x 2 . .  . x 2 / / 4 u 2  

OMEP exists for X 2 Mr(k),  and so again nsing the product construction, a tight 

2A x 2p2 x 2p3 x 2. - . x 2pk//4Xp2p3 - . . pk OMEP exists for such A. Thus if some 

pi 2 M f ( k ) ,  and some pj is even, then a tight 2pl x 2pz x . - . x 2pi//4p1p2 - . . pk 

OMEP exists. Hence there are at most a finite nnmber of OMEP parameters in 

the first case for which the OMEP does not ex&. 

In the second case, no is even. W e  know if k 2 4 and at most one f i  is gseater 

than one then the OMEP cannot exist, and in this case the parameters have the 

form 2 x 2 x . . . x 2 x 2s//4s for s odd. (See Lemma 2.2.6.) Otherwise at least two 

k ' s  are greater than one. Suppose pl 2 > 1. By the earlier results a RTD y (k - 
1, 2p2) exists for some odd A', so an epually replicated 2p2X x 2&-' / / 4 X  OMEP 

exists, and so by collapsing levels we obtain an equally replicated 2Xp2 x 2p2 x 

2E-2//4()rfp2)p2 OMEP. Also a 2' x 2p2 x 2k-2//2'+1p2 OMEP exists for 2' 2 k - 1, 

since a tight 2' x 22i //2'+' OMEP exists. Thus again by an argument similar to the 

proof of Lemma 4.1.3, an equally replicated 2A x 2pz x 2k-2//4Ap2 OMEP exists for 

alI large A, and so an equdy replicated 2A x 2p2 x 2p3 x 2/14 x . - - x 2pk//4ApLp3 . . . p k  

OMEP exists for all large A. Thus if pi is sufnuently large the OMEP exists, and 

hence there are at most a finite number of OMEP parameters in the second case 

for which the OMEP does not exist, 

These are the only possible cases and so there are at most a finite number of 

OMEP parameters with the form in (4.3) for which the OMEP does not exist, with 



the one exception of parameters of the type 2s x 2 x 2. .  . x 21/45 with s odd and 

with four or more rows. 

Combining alI these results we find, for any fixed k, and with the exception of 

parameters of the form 2 x 2 x 2 x . . . x 2 x 2s//4s with s odd and having 4 or more 

rows, thae are a finite number of tight OMEP parameters on k rows for which the 

OMEP does not e x i s t .  

4.2 An Application to Jacrow's Bound 

With these results we can show that the Jacroux's lower bound on the number of 

nins n needed to construct an sl x sl x . . . x sls//n OMEP is "almost asymptotically 

tight". To explain what we mean here we need to make some observations. 

Jacroux's [16] lower bonnd on the ntunber of columns in a sl x s2 x . . . x s k / / n  

OMEP is as follows. 

Theorem 4.2.1 Suppose that an OMEP D hm k 2 3 factors in which factor i has 

s; levels, i = 1,2,. . . , k ,  with si 2 si+l, and n  ezperimental rum. If n = S ~ S ;  for 

si, si satiSfYng 

then D is a minimal O M E P .  

Essentially we are bounding the number of runs reqaired by botxnding the num- 

ber of runs required for the tnincated SI x s2 x st//n OMEP. 

Street [22] has extended Jacroux's result when k = 3: 
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Theorem 43.2 A minimal si x SI x s3/ /n OMEP, with si 5 s* < ss, ezists i f  

and only if 

a n = (s2 + x)(s3 + y) for some nonnegative integers x, y, 

The concept of a tight OMEP quickly leads to the above resalts, as follows. In 

the second chapter, it is shown that the minimal n for which an sl x s 2  x s 3 / / n  

OMEP exists is the minimal n for which a tight si x si x sj//n OMEP exists with 

si 2 si for i = 1,2,3. Let d = gcd(s:, si, si), a d  let = nls; for i = 1,2,3. 

Now since we are dealing with three row OMEPs, si x si x sj / /n  is the parameter 

set of a tight OMEP if and only if u1, 1 2 ,  u3 are pairwise relatively prime, and 

n = ~ ~ u ~ u ~ z L ~ .  AU tight three-factor OMEPs exist, so the minimal n for which a 

tight si x s& x ~ j / / n  OMEP exists is given by 

min %ulu2u3 

sub ject to 

u;d >: si, 

gcd(%, uj) = 1 for i # j. 

ui, d positive integers. 

We daim this system has an optimal solution with us = 1. Since sl 2 sz > s3, 
aoy solution (d ,  741, ua, u3) can be assumed to have ul 2 u, 2 US. Furthermore, the 

constraint gcd(y., uj )  = 1 for i # j does not change the minimum value achieved, 

for if (d, ui, ua, u3) is a solution with ut, uz having a common factor f ,  Say, then 

(df, ul/ f ,  u2/ f , u3) is a solution with the same objective value. So in what follows 
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we forget about this constraint. Now assume (dl UI , u ~ ,  u3) is an optimal solution 

with us > 1. Then (du3, rz1, FU;], 1) is a solution with an objective d u e  no larger 

than the fbst solution. Proving t 5 s  amomts to showing that 

To venfy the ineqdty, f is t  notice it is trivial if ul = u3 or 7.42 = u3. So assame 

ul > 2t3 and u2 > us. Then as 

it is enough to show that 

After expanding and cancelling a common factor (u3 - 1) we fmd the equivalent 

inequality 

u3 5 (UI - l)(W - 1) (4.7) 

which is trivially tnie as ul, uz > u3 and all are integral. 

Thus the system has an optimal solution with us = 1. Taking si = wd, we h d  

there is an optimal solution with n = sis;, and s: = gcd(s;, si), which should be 

compared with Theorem 4.2.2 and Theorem 4.2.1. 

Thus Jaaonx's lower bound is actudy t e h g  us the smdest n for which there 

is a tight OMEP parameter set si x si x ~j / /n  with sf 2 si. hirthermore, since 

the above integral system has an optimal solution with u3 = 1, the smallest n for 

which there is a tight OMEP parameter set si x si x . . . x s ; / /n  with sf 2 si can be 

assumed to have the fonn n = plp2g2, and the tight parameter set can be assumed 

to have the form 

Pl!? X 9 x - - - x sf l ~ i ~ 2 #  (4.8) 
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Now if g 3 3 then there are at most a finite nmnber of parameters with the form 

(4.8) for which the tight OMEP does not exist. Thus if sl 2 a2 - - . 2 s i ,  and 

53 2 3, then there are at most a finite number of cimices for the other si for which 

Jacroax's bonnd is not tight. Even if sa = 2 and both SI, s~ are greater than 2 then 

there are still at most a h i t e  number of cases where Jacroar's bound is not tight. 

This is what we mean by ''Jacroax's botmd is h o s t  asymptotically tight". 

4.3 Summary 

In this chapter we have proven the asymptotic existence of tight orthogonal main 

&ct plans, in the sense that for a fked number hi of rows, and with the exception 

of tight OMEPs with parameters 2k-1 x 2 s / / 4 s  for s  odd, there i s  aa N depending 

on k such that all tight OMEPs having N or more rows exïst. We have applied this 

resdt to show that Jacroux's lower bonnd for OMEPs is often met with equality. 

We &O found that OMEPs with parameters of the fonn 

are important when we are looking for minimal OMEPs- We give constructions 

which can produce OMEPs with these parameters in the next chapter. 



Chapter 5 

Recursive Constructions 

Although direct prodact type consmictions for OMEPs are usefiil, they give OMEPs 

having no more rows than the ingredient designs. Normally, one wishes to have as 

many rows as possible (for a fuced numba of columns) since this means that more 

factors can be analyzed. There are consmictions for produchg OMEPs having 

large numbers of rows, though these consmictions usndy involve Hadamard ma- 

trices (see [IO] for example). Furthermore, these constructions typically produce 

OMEPs having parameters of the fonn t x 4"' x 2 " ~  /ln, which can be restrictive if 

we have two factors having many levels, or if all factors have more than two levels. 

In the next section we give constructions which give eqnally replicated OMEPs hav- 

h g  large numbers of rows which have neither of these restrictions. Similar methods 

have been applied to constnict Merence matrices in [9]. 

In the last section, we saw that OMEPs with parameters of the form 

are important when we are looking for miaimal OMEPs. The constructions in this 

chapter can be used to consbc t  OMEPs with these parameters. 
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5.1 Constructions using PBDs 

For the first construction, we need the following structure. 

Definition 5.1.1 A (pg - 1) x $-If fPg2 - g Modijïed OMEP (or MOMEP) +p a 

k x (pg2 - g) array having pg - 1 dGtUict symbols in row 1, having the s p 6 0 l  set 

(1,2,. . . g )  in each of the other rows, and roith the property that any syrnbol from 

the f i s t  row occurs in a column ezactly once with ony symbol from row i, 1 < i 5 k, 

any pair of distinct symbols from TOWS i and j ,  1 < i < j 5 k ocmr together in a 

column ezactly p times, und identical symbols fwm rows i and j ,  1 < i < j 5 k, 

occur together in a column exactly p - 1 times. 

A resolvable orthogonal array ROAp(k,g) with a parallel class {(i, i, i, . . . , i)=Il 5 

i 5 g )  can be used to constrnct a pg - 1 x $-'//pg2 - g MOMEP by removing 

this pardel class and by extendhg each other pardel class. 

Recall that a PBD(v, A) is a pair (V, B ) ,  where B is a collection of subsets (called 

blocks) of the v-set V such that any pair of elements fkom V is contained in exactly 

X of the blocks of B. In some discussions of PBDs, blocks of size one are forbidden, 

but we do not require sach a restriction in this chapter. If we can partition B into 

1 classes each of ske at most w so that each class is a partition of V then the PBD 

is saîd to be resolvable and we c d  it a 1 x w PBD(v, A). As usual, each such ckss 

is called a parallel class. 

Here is the m a i .  construction. 

Theorem 5.1.2 Suppose a 1 x w PBD(v, A) exïsts, and a pg - 1 x gW+'//pg2 - g 

M W  M &th Apg = I ezists. Suppose Ap = ap, for some positive integers 

a, P. Then an equally replicoted a(pg - 1)g x pg x g v / / a ( p j  - l)Pg2 OMEP exists. 
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Proof: We construct the desired OMEP by concatenating together 1 smder arrays; 

one smder array for each pardel dass of the PBD(v, A). The resulting array 

has symbol set {(z, n) ( l  5 z 5 pg - 1 , l  5 CL <_ ag) in the first row, symbol set 

{(Y, b ) ( l  5 y 5 g, 1 5 b 5 p )  in the second row, and symbol set {zll 5 i 5 g) in 

each other row. 

Let N be a ag x P/ /gaf?  OMEP, whose i'th column is (nti, nai)=. Let C = [lij] 

be a latin square of side g. Let the PBD(v, A) have point set {3,4,. . . , v + 2), and 

pardel  classes {B<lly Bi,a,. . .,Bi,), 1 5 i 5 2 Let the ( i , j )  entry of M be w- 
The array A-, 1 5 i < 1 has v + 2 rows and pg2 - g colamns, and the symbol in 

row r and column c is 

(lP2,,n2i) where q = (nli mod g) + 1, if r = 2, and, 

mt, where Bi,tL2 is the block in the i'th pardel clam containing the point r, 

ifr > 2. 

We now verify that the array D obtained by concatenating these subarrays 

gives the desired OMEP. Any two symbols fiom the same row of D occur the same 

number of times in that row so if D is an OMEP it is equdy replicated. Let (x, a) 

be a symbol fkom row 1 of D, and let (y, b)  be a symbol fiom row 2 of V. Exactly 

one colamn of N is (a, b)=; suppose it is the p'th column. Then the subarray 

corresponding to the p'th pardel claps of the PBD has exactly one column with a 

(z, a) in row 1 and a (y, b) in row 2, and no other subarray has such a column. So 

this pair of symbols occurs in these rows in exactly one column of V. 

Let (2, a) be a symbol from row 1 of 'D, and let z be a symbol fiom row i of V, 

i > 2. The symbol (x,a) occurs in row 1 in P of the subarrays, and in each such 
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subarray there is exactly one column containing (2, a) in row 1 and z in row i. So 

the pair of symbols occurs in the given rows a total of f l  times. 

Let (y, b)  be a symbol fiom the second row of V, and let i index a row, 2 < 

i < v + 2. The symbol y also occurs in row i of 2). The symbol (y, b) occars in 

row 2 in ag of the subarrays, and in a(g - 1) of the subarrays there are p colnmns 

containing the given symbols in the given rows, and in a of the subarrays there are 

p - 1 columns containing the given symbols in the given rows. Thus in total there 

are a(pg - 1) columns of O containing (y, b) in row 2 and y in row i. 

Let z be a symbol fkom row i of 27, and y be a symbol fkom row j of V, with 

i # j and z # y, 2 < i < j 5 v + 2. For those subarrays corresponding to 

the A parallel classes where i and j are contained in a block of the parallel class, 

there are no columns containing these symbols in these rows. For the snbarrays 

corresponding to the 1 - A other pardel classes, these symbols occur in these rows 

in p columns, for a total of p(l  - A) = Xp(pg - 1) = ap(pg - 1). (Here we use the 

fact that 1 = Apg, and Ap = a&) 

Let z be a symbol fiom row i of V, and y be a symbol fkom row j of D, with 

i # j and with z = y, 2 < i < j 2 v + 2. For those subarrays corresponding to 

the X patdel classes where i and j are contained in a block of the pardel class, 

there are pg - 1 colamag containhg these symbols in these rows. For the subarrays 

corresponding to the 1 - A other parauel classes, these symbols occur in these rom in 

p-1 columns, for a total of A(pg-l)+(l-A)(p-1) = A(pg-l)+A(pg-1)(p-1) = 

Ap(pg - 1) = a&g - 1). (Again using the fact that 1 = Apg, and Ap = a&) 

Thus we see that symbols from different rows occur in the correct number of 

columns and so the resulting anay is an equdy replicated a(pg - l )g  x pg x 

sVII(P9 - 1bg2 O m w -  O 
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A nice corollary of this theorem is the folIoning resdt, which produces tight 

OMEPs having a large number of rows. 

Corollary 5.1.3 Suppose a RBIBD(v, k, 1) czfsts, and a resolvable orthogonal ar- 

ray ROAP(v/k + 1,g) with pg = (v - l ) / ( k  - 1) exists. Then a tight (pg - 1)g x 

pg x gV/ / (pg - 1)C<92 OMEP ezists. 

The hdamental idea in Theorem 5.1.2 is that we can obtain a design by jndi- 

ciously taking anions of the blocks of smaller designs. The foIIowhg construction 

helps illustrate the idea fnrther. 

Theorem 5.1.4 If an equally replicated Alg x X2g x . . . x Atg x gw//A1A2 . . . Atg2 

OMEP M, s ROAp(k7 g) 7, a 1 x w PBD(v, A) P haMng maximum block site ut 

most k ,  and an equally nplicated pl x pz x . . . / /1pg OMEP N al2 ezist then an 

equally replicoted pl Xlg x pa&g x . . . pJtg x gV / / lpX I  X2 . . . &g3 OMEP exists. 

Proof: We construct the OMEP by concatenating together lpg subarrays. The 

resulting OMEP has symbol set {(i ,  z ) ( l  5 i 5 Lg, 1 5 x i k )  in the rth row, 

1 5 r 5 t ,  and symbol set {rll 5 z 5 g) in each 0th- row. 

Let the (i, j)th entry of M be w, and let the (i, j)th enhy of N be n, 

Let the PBD(u, A)  have point set { t  + 1, t + 2, . . . , t + v ) ,  and parallel classes 

{&y - Bi,wi), 1 5 i < 1- 

There are pgl pairs (P, Q) where P is a pardel class of the PBD(v, A) and 

Q is a parallel dass of the ROA(k,g). For each block B of each parallel clam 

{Bi,i, Bi,*, . . . , Bivwi) of the PBD(v, A) we 6x a ROAp(IBl,g) 7 where the rows 

are indexed by the points in B. Fix an ordering of the parallel classes of each 

ROA,(IBI,g) and fix an ordering of the bloelrs (columns) in each pardel  class. 
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For the jth such pair (P, Q), we conshc t  a subarray APvQ, having t + v rows 

and Ai& . - . Argz columns, and the symbol in row r and column c is 

z, where z is the point in the group indexed by r in the m,th block of Q, 

where B,,-t is the bloc& in P containing the point r,  if r > t .  

We now vetify that the array 2) obtained by concatenating together these subarrays 

gives the desired OMEP. It is dear that the result is equdy replicated, so let 

(x, a) be a symbol fkom row i of D, and Iet (y, b)  be a symbol fkom row j of D, 

where 1 5 i < j 5 t. There are Ipg/(wpj) colnmns of N with an a in tow i 

and a b in row j .  The snbarrays corresponduig to these columns each contain 

A l & .  . . &/(&Aj) columns with (x, a) in row i and (y, b) in row j, for a total of 

(Lw Al A2 . . . Ar) /(A& j ~ )  colnmns alltogether (which is the number regnired for 

the OMEP property). 

Next let ( x , a )  be a symbol fiom row i and let r be a symbol fiom row j of 

2, with 1 5 i 5 t < j 5 v. There are Zpg/k colnmns of N with symbol o 

in row i. The subarrays corresponding to these columns each have XIAz . . . At/& 

columns containing symbol (z, a) in row i and symbol z in row j, giving a total of 

(1pgAiA2 . - . A t ) / ( ~ & )  s u c h  columns, which again is the desired number of columns. 

Finally, let q be a symbol fiom row i and let be a symbol kom row j of 

D, with t < i < j < v .  The A subarrays corresponding to the pardel classes 

of the PBD in which points i, j are in a block of the pardel dass each contain 

p(AiA2 -. . )<tg) columns with a 11 in row i and a za in row j .  Each of the 1 - X 

other subarrays contain (pg)AJ2.. . At colnmns with these symbois in these rows. 

In total this makes for AiAz.. . &pgZ such columns, which is the correct n u b e r  of 

columns. 



CHAPTER 5. R E C m S m  CONSTRUCTIONS 

To describe another construction, we need another definition. 

Definition 5.1.5 An (a, t ,g,  w,  A)-MOMEP is un sZ x ( t  + w )  umay, having gmz60l 

set {l, 2,. . . , s) in rows 1 throvgh t ,  and symbol set {I, 2,. . . , g) in TOWS t+l through 

t + w, such that 

a each symbol in row i occurs in a column with each symbol from row j e x a d l y  

once, 1 < i < j 5 t ,  

a each symbol from row i occurs in a column with symbd x fiorn row j ezactly 

*,= times, 15 i s t  < i  < t + w ,  

a each symbol z from row i occurs in a c o l m n  with symbol x fîom row j exaci?ly 

A, times, t + l  si< j < t + w ,  

a each symbol z from row i occvrs in a column with symbol y fiom row j ezactly 

X t i m e s , t + l ~ i < j ~ t + w ,  x # y .  

Table 5.1 gives an example of snch a structure. Althongh the parameters 

p b ,  Ar may be of interest in actually constrocting such objects, only the values 

of s, t ,  g, w , X will be of interest in the next construction, which explains why we 

list only these parameters when describing the ob ject. Some relations hold among 

the parameters. In particular, CL, f i ,  = S. 

Theorem 5.1.6 Suppose we have an 2 x w PBD(v, 1) and a (s, t ,  g, w ,  A)-MOMEP 

M so that 

. 1 = alaa . . . atg2, for some positive integers cri, 



CKAPTER 5- RECURSn/E CONSTRUCTIONS 

Table 

0 an equally replicated a l g  x azg x . . . x atg x g / / t  OMEP ezists. 

Then an equally replicated aisg x q s g  x . . . x atsg x gV//ls2 OMEP ezists. 

ProoE nie constmct the OMEP by concatenating together 1 subarrays. The redt -  

ing OMEP has symbol set {(z, a)l l  < z < s , 1  5 a < c ~ g )  Li the row i, 1 5 i 5 t, 

and symbol set (~(15 z < g )  in each 0th- row. 

Let N be an equally replicated alg x aag x . . . x a t g  x g / / I  OMEP. Let the 

(r, c)th entry of M be w*,, and let the (r, c)th entry of N be %,,,. Let L = [l(r, c)]  

be a latin square of side g. Let the PBD(v, 1) have point set {t + 1, t + 2, . . . , t + v ) ,  

and pardel classes {Bi,i, Bi ,21- - .  , BiVwi), 1 5 i ( 1- 

The pth subarray, 1 5 p < 1 has t + v rows and s2 coluxnns, and the symbol in 

row T and colmm c is 

We now verify that D, the concatenation of these snbarrays, is the desired 

OMEP. Any two symbols in the same row of D occur the same number of times so 
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if 2) is an OMEP it is equdy replicated. 

Let (si, al) be a symbol fkom row i of V, and let (x2 ,  a*) be a symbol fiom row 

j of Dl rith 1 2 i < j 5 t .  Exactly I / ( ~ a j $ )  colnmns of N have an ai in row 

i and a a2 in row j .  Suppose the pth column of N is one such column. Then the 

subarray correspondhg to the pth pardel class of the PBD has exactly one column 

with an (zl,al) in row i and a ( x ~ , u ~ )  in row j. Only these l/(o;-ajg2) subarrays 

have such a colmnn, and so this pair of symbols occurs in these rows in exactly 

I/(ai~jg2) C O ~ U ~ ~ S  of V. 

Let (2, a )  be a symbol fiom row i of V, and let y be a symbol fÏom row j' of 

27, 1 < i 5 t < j 5 t + W. The symbol (%,a) occurs in row i in I/(aig) of the 

subarrays, and for each z, 1 5 r 5 g there are l / (&g2) of these subarrays that have 

columns containing (x, a) in row i and y in row j .  So the pair of symbols occurs 

1 in the given rows a total of =(CLl f i )  = ( l ~ ) / ( ~ g ~ )  times. 

Let z be a symbol from row i of V, and y be a symbol h m  row j of D, with 

t < i < j < v + t and x # y. For that subarray corresponding to the parallel class 

where i and j are contained in a block of the pardel ckss, there are no columns 

containing these symbols in these rows. For the snbarrays corresponding to the 

1 - 1 0 t h  pardel classes, these symbols occur in these rows in X columns, for a 

total of A(1- 1) = Is2/# C O ~ I L I I L I I S .  (Here we use the fact that A = ( L S ~ ) / ( ~ ~ ( ~  - l)).) 

Let z be a symbol iiom row i of D, and let j index another row of O, with 

t < i < j 5 v + t. Exactly one parde l  dass of the PBD hm a blo& containing 

the points i, j ,  suppose it is the pth. The number of columns of D containing x 

in row i and row j is 6 ( ~ ~  + AZ + . . . + A*) + 4 - A*, where q is the column of L 

containing symbol x in row nt+t,, and b, is the number of colnmns of M containing 

a q in row t + 1. (Actually, bq is the same for all  rows except the &st t rows.) As 
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bp - = (g - 1)A, and CLi A, = si - g(g - 1)A, a lit tle arithmetic shows this 

reduces to ls2/g2. 

Thus we see that symbols fkom different rows occtu in the correct number of 

columns and so V is an eqnally replicated alsg x a2sg x . . . x atsg x gv OMEP. O 

For example, applying this construction nsing a RBIBD(9,3,1) and the (3,2,2,3,3)- 

MOMEP in Table 5.1, one obtains an eqaally replicated 6 x 6 x 2'1136 OMEP. 

It is possible to generalize the form of the MOMEP given in Table 5.1. 

Lemma 5.1.7 Suppose we have ROA(k,s) and a OA,(w,g) with pg2 - 1 = S. 

Then a (s, k, g, w, ps)-MOMEP ezists. 

Proof: Without loss of generality, the OA,(w, g) has symbol set {1,2, . . . , g}, and 

has a column consisting entirely of 1's. Let cl, cz, . - - , cPgz-, be the remaining 

columns. Let Pl, 5, . . . , P. be the pardel classes of the ROA(k, s). (So each Pi 

is a set of s columns.) Then a (s, k,g, w, ps)-MOMEP is given by appending the 

column to column j of the ROA(k, s) whenever column j is in Pi. Verification 

that this is the desired MOMEP is routine. CI 

Finally, we give a new construction for resolvable orthogonal arrays. Snch de- 

signs are u s a  to us since by extendhg parallel classes we obtain tight OMEPs. 

Proof: The points in each row of the redting orthogonal array will be from the 

set {(x, ~ ) ( l  < z 5 g1,l 5 y 5 g2)  Let the ith pardel class of the PBD be 
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B i  B i ,  , . - , B i  - For each i, 1 5 i < 1, we will use a RO& (wi , g2) missing a 

paraUel class {(i, i, . . . , i)= 11 5 i < g2)- ( Any RO& (wi, g2) can be assumed to 

have such a paralld class, by possibly permating the symbols set in each row. ) 

Denote the c o h  set of this structure by Ci 

For each block B of the PBD, fuc a ROA,,(IBl,gl) with rows indexed by 

the points in B. For each i, 1 5 i < 1, and each symbol x ip each row a of 

the RO& (wi, g2), fix a bijection fi,=,, between the plgl parallel dasses of the 

ROA,, (IBi,=l,g1) associated with block Bi,, and the r ~ g 2  - 1 columns in Ci con- 

taining symbol z in row a. 

Next, for each i, 1 5 i < 1, and each c01uxn.n (a l ,  a2, -. - in Ci, and each 

colnmn (b l ,  12,. - - , bWi)= in a ROk, ( w i , g l ) ,  we constrnct a column 

in the final array, where z,, y, are defined as follows. Let B, be the unique block 

in the ith pardel class of the PBD which contains the point r, and let D be the 

ROA,, (1 BI, gi) associated with this block. Then y, is defined to be aj, and z, is 

dehed to be the symbol in the row indexed by r and in the brth column of the 

parallel class of D whose image unda is (al, o z , .  . . , uJT. We daim that the 

resultiag collection of columns is the desired ROAu-A),, (v, g1g2) 

To vaify that the resdting array is an ROAv-A),, (v, g1g2), choose a pair of 

symbols ( z l ,  y l ) ,  (z2, y2) tiom the set { ( x ,  y) 11 < z 5 gl ,  1 < y < gz). and a distinct 

pair of rows T I ,  r~ fiom {1,2, . . . , v). We count the nnmber of columns in the final 

array which contain these symbols in these rows (respectively). 

First suppose y1 # y2. For each of the 1 - A pardel classes of the PBD in which 

r ,  and r z  do not occur together in a block, there are a total of r2r1 colitmns in the 

final array containing the given symbols in the given rows. The A parallel dasses 



CHAPTER 5. RECURSM CONSTRUCTIONS 73 

of the PBD in which r1, r2 occm in a block contribute no sach coltunns to the final 

array. Thas t h a e  are a total of (1 - X ) ~ T ~  coltunns of the resdting array containing 

the given symbols in the given rows. 

Next suppose y1 = y*. For each of the 1 - A pardel classes of the PBD in which 

r1 and r t  do not occur together in a block, t hae  are a total of (7- - l)ri columns in 

the final array containhg the given symbols in the given rows. Further, for the A 

parallel darses of the PBD in which TL, r2 occur in a block, there are plrlgl colamns 

of the final array in which these symbols occur in these rows. This makes for a total 

of ( l  - A)(r2 - l)rl + AplrIgl which simplifies to (1 - A)r2r1 since (2 - A) = Aplgi. 

Thus in this case the given symbols occur in the given rows in (1 - X)T*T~ columns 

of the final array. 

It is easy to see that the resdting array is resolvable, since the columns of the 

final array arising fiom a parallel class of the PBD, a pardel  class in some Ci and a 

pardel class of the ROA, (wi, 9,)s are a pardel  class of the find orthogonal array. 

Thus we see that the resulting array is a ROA(l-A),, (v ,  g1g2). O 

We mention that if each of the ingredient orthogonal arrays corne îrom Werence 

matrices (over Gi, G2), then the resulting orthogonal array has an automorphism in 

the group Gi x Ga, and thus an associated diffaence mahYc ex is ts .  Furthexmore we 

mention that if our ingredient designs are instead a ROA,, (k,gl), an O&(w, g2) 

(with a pardel class), an O& (w, gl), and a I x w PBD(v, A) with maximum block 

size at most k, with p ~ g l  = 7 2 9 2  - 1 and ( I  - A) = Aplgl, then a OA(i-A)nq (v,  g1g2) 

exists. 

This theorem appears to give the best known results for certain values of g and 

A. Colboum and Kreher [9] contains a table giving the best lower bounds on k 

in a (g, k, A)-Merence ma& given g, A. The above construction provides bet ter 



CHAPTER 5- RECURSM3 CONSTRUCTIONS 74 

bomds in a numba of cases. For example, using a RTD2(4, 2), a RTD(4,5), a 

5 x 4 PBD(16,4), and a RTDa(4, 2) in Theorem 5.1.8 gives a RTDs(16, 10). If the 

ingredients come fiom difFereoce matrices then the resnlting RTD has an assoüated 

diffaence matru, and so a (10,16,8)-diff'rence mat& exists, whereas the best 

ho- k for g = 10, A = 8 in [9] is 10- Using a RTD(3,3), a RTD(3,4), a 4 x 

3 PBD(9,3), and a RTD(3,3) in Theorem 5.1.8 gives a RTD3(9,12). As above 

one can constnict a (12,9,3)-diffaence matrix if the ingredient RTD7s come fiom 

difference matnees. The lower bonnd on k for g = 12, A = 3 in [9] is 6. Similady 

we can obtain a (6,9,6)-clifference matri* and a (15,25,10)-difference matru using 

Theorem 5.1.8. The best lower boands on k for these parameters in [9] are 6 and 7 

respectively. 

Summary 

In this chapter we have given new secursive consmictions for orthogonal main 

dec t  plans. These constructions have the advantage that the resdtant OMEPs 

have more rows than the ingredient designs. F'urther, the nnmber of levels for each 

factor is not particnlarly restricted, as is the case with some constructions based on 

Hadamard matnees, for example. The constnictions have the additional advantage 

that the OMEPs constnicted are equdy replicated. 



Chapter 6 

Conclusions 

In the previous chapters we see several ideas involving tight OMEPs. The second 

chapter introdnces the concept of a tight OMEP, and shows that answering the 

existence question for tight OMEPs helps in answering the existence question for 

general OMEPs and eqnally replicated OMEPs. In the third chapter it is shown 

that any tkee-factor OMEP can be uncollapsed to a tight OMEP. Hence, modulo 

the collapsing of leveis, al l  structural information about t hree-factor OMEPs is 

contained in the class of three-factor tight OMEPs. In the fourth chapter it is 

shown that practically all tight OMEPs exist, in the sense that for a fixed number 

of rom and with the exception of one small infinite class, there are only a finite 

number of parameters for which the c o ~ e s p o n ~ g  tight OMEP does not &st. This 

resdt allows for a better understanding of Jaeroax's lower bound on the number 

of runs in an OMEP. Even the constructions given in the fifth chapter were found 

by considering OMEPs of the fona 
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which is a form suggested by tight OMEPs. Thus thae  is considerable evidence 

that the concept of tight OMEPs is a usehl one. 

What further research is suggested by the r e d t s  in this thesis? An obvioas 

problem is in answerïng the existence question for tight OMEPs having six or more 

factors. As with OMEPs having fewer factors, such research wi l l  help in anmering 

the general existence question. 

hfore information about the uncollapsing of OMEPs having four or more factors 

sould be helpfd. Although we have shown that a generd result like the three factor 

case is not possible, perhaps a large class of OMEPs can be uxicollapsed to tight 

OMEPs. Even resdts specifically concerning four-factor OMEPs would be nsefid. 

It may be possible to apply the nncollapsing result about three-factor OMEPs to 

obtain structural information about such OMEPs. For example, a result concerning 

the existence of repeated colnmns in tight three-factor OMEPs might give a r d t  

about repeated colnmns in general three-factor OMEPs. 

1t wodd be interesthg to obtain non-existence resdts for OMEPs &o. For 

example, it is well known that an equdy replicated g k / / l g Z  OMEP cannot exist 

if k > g + 1. This is a non-existence result for tight OMEPs having parameters 

as in (6.1) and with all &'s equal to one. Perhaps there are more general resdts 

available if we allow the &'s to vary a small amonnt. Such a result would give a 

better idea of just how p l e n t a  tight OMEPs are. 

Of course, more constructions for OMEPs, and tight OMEPs in part idar,  

would be most helpful. The recursive constructions in chapter five are p o w d ,  

but as with many recnrsive constructions, they oRen produce designs having a large 

number of runs. Thus more direct constructions for tight OMEPs would be usef'ul, 

as such consmictions might give OMEPs which can be used both for practical use 
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and for use in recursive constnictions. 



Chapter 7 

Appendix 

An equally replicated 2 x 2 x 2 x 6 x 61/36 OMEP. 

There is a completely resolvable 0AÎ(5 ,  6), from which we obtain a 6 x 6 x 6 x 

6 x 6 x 12//72 OMEP. We provide a clifference matrix over Ze whose development 

gives the desired orthogonal array. 



An equally replifated 6 x 6 x 6 x 6 x 6 x 18//108 OMEP can be obtained fkom 

the following completely resolvable O&@, 6). Develop the followïng parallel class 

over & to obtain the fist five pardel cksses. In alI of what follows, X is a fixed 

point (so that X + anything = X). 

Develop the following paralle1 class over Zs to get the next five parallel classes. 

Develop the following pardel c k s s  over 5 to get the next five pardel classes. 

Finally, here are the sixteenth, seventeenth, and eighteenth pardel classes. 



An equally repiicated 10 x 10 x 10 x 10 x 30//300 OMEP. Develop the following 

pardel class over Z9 to obtain the first 9 parallel classes. 

Develop the following parailel class over Zs to ob tain the next 9 parallel classes. 

Develop the following paraliel class over Ze to obtain the next 9 parallel classes. 

Finally, the 28th, 29th, and 30th pardel classes 



There is a completely resolvable 0A2 (6,3), fkom which we obtain a 3 x 3 x 3 x 

3 x 3 x 3 x 6 / / 1 8  OMEP. We provide a Merence mat& over Z3 whose development 

gives the desired orthogonal array. 
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