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Abstract 

This thesis makes a contribution to the solution of Hadamard's problem for some rel- 
ativistic wave equations on Petrov type III spacetimes. For the conformally invariant 
scalar wave equation we show that if any one of the spin coefficients a, P ,  1~ or Ricci 
spin coefficient vanishes in an appropriate n d  tetrad, then Huygens' prhciple is not 
satisfied on Petrov type III space-tirnes. We also show that the correspondhg problem 
for the non-self-adjoint scalar wave equation can be reduced to the conformally invariant 
scalar equation case. FinaUy, we prove that there are no Petrov type III space-times 
on which either the conformally invariant scalar equation, Weyl's neutrino equation or 
Maxwell's equations satisfy Huygens' principle in the strict sense. In order to obtain 
the above results we have employed Newman-Penrose spin coefficient formalism and Pen- 
rose's two-component spinor formalism, together with their implementations a d a b l e  in 
the cornputer algebra system Maple, to determine the components of the tensorial rela- 
tions given by the imposition of Huygens' principle. The resulting system of polynomial 
equations is then analysed by using a variant of Buchberger's a l go r i t h ,  available in 
Maple. 
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Chapter 1 

Introduction 

in this Thesis we are concemed with the vaiidity of Huygens' principle for wave propa- 
gation in curved space-times. Ptobably the fkst systematic study of wave propagation 
through a medium aras made by Christiaan Huygens [46] in his "Traité de la Lumière", in 
1690. The term "Huygens' principle", however, was not clear until its precise mathemat- 
icd meaning, within the context of the theory of hyperbolic partial differentid equations, 
was given by Hadamard [42] in 1923. His formulation, given in his Yale lectures on the 
Cauchy pro blem is the following: 

(A) (major premise). The action of phenomena produced at the instant t = O on the 
state of matter at  the later time t = ta takes place by the mediation of every intermediate 
instant t = t', i.e. (assuming O < t' < ta), in order to find out what takes place for t = to,  
we can deduce from the state a t  t = O the state at t = t' and, from the latter, the required 
state at  t = to.  

(B) (rninor premise). If, at  the instant t = O, or more precisely, in the short interval 
-c  < t 5 O ,  we produce a luminous distubance localized in the Unmediate neighbourhood 
of 0, the effect at the subsequent instant t = t' is localized in a very thin spherical shell 
with centre O and radius d, where c is the velocity of the Iight. 

(C) (conclusion). In order to calculate the effect of the initial phenornenon produced 
at O at t = 0, we may replace it by a proper system of disturbances taking place at  t = t' 
and distributed over the surface of the sphere with centre O and radius cf. 

Premise (A) can be considered as a statement of the causality principle. Premise (C) 
is the principle of superposition of secondary waves, or difhision of waves, which holds 
for al1 kinds of wave propagation. What was considered by Hadamard as the proper 
Huygens' principle, or "Huygens' principle in the narrow sense" is premise (B). Unlike 



the diffusion of waves, premise (B), which essentidy asserts that signal5 emitted sharply 
wïil propagate sharply, is a very exceptional phenornenon, since a s m d  perturbation in 
the wave equation will destroy the property. 

Huygens' principle is more precisely formulated using the concept of Cauchy's prob- 
lem. Let us consider the general second order hyperbolic equation in n dimensions, with 
Cm coefficients: 

The Cauchy problem for (1.1) is the problem of detennining a solution which assumes 
given values of u and its normal derivative on a given space-like (n - 1)-dimensional 
manifold S. These given values are caUed Cauchy data. The first general solution to 

Cauchy's problem for (1.l)was given by Hadamard [42]. He has shown that in general, 
for the second order hyperbolic equation (1.1) the solution u(E), at fixed point E, depends 
on the data in the interior of the region defined by SîIC- (c) , where S is the initial surface 
and C-(E) is the past characteristic conoid with vertex at  E. If the solution depends only 
on the data in an arbitrarily small neighborhood of S n  C-(C) for every Cauchy problem 
and for every point of the manifold, we Say that the equation satisfies Huygens' principle, 
or that it is a Huygens' equation. The simplest examples of Huygens' equations are the 
ordinary wave equat ions, also cailed trivial equations: 

w here 

and N := n - 1. For the initial data 

the fundarnent al solutions have the form 

where H is the Heaviside function, defined by H(t) = 1 if t 2 0, and H ( t )  = O if t < 0, 
and d is the Dirac delta fimctional. Equation (1.6) shows that for N = 3 the support of 



the fundamental solution is located oniy on the charocteristic cone surface, Le., for t > O 
the solution will dways stay concentrated on the sutface of a sphere of radius 1x1 = t, 
propagating sharply. Thus, Huygens' phciple is satisfied in this case. For N = 2, (1.5) 
shows that the support of the fundamental solution is containeci in the interior of the 
characteristic cone and, for t > 0, the solution is concentrated on the surface of a disk 
121 < t. Propagation here is not sharp in general. Once a signal has reached a point in 
space, it persists there indefinitely as a reverberation, thus violating Huygens' principle. 
Hadamard &O showed [42] that in order that Huygens' pririciple be valid for (1.1) it is 
necessaxy that n 2 4 be even. For (1.1) it can be shown [42] [32] that for n ewn, the 
forward and backward fundamental solutions G* of the operator P split in two parts as 
follows: 

GI(z) = G?(Z) + G"(z) , . (1-7) 

where 
supp~?(z) = c*(z) , 

where K is a srnooth kernel. It is from t his "tail termn K that the necessary conditions for 
the validity of Huygens' principle can be obtained, In general there are some coefficients 
of (1.1) which make this kernel vaniçh at  all points. For n odd however, it  can be shown 
that such decomposition is impossible. An example is given by (1.5), which is singuisr 
on C-. 

Two equations of the forrn (1.1) are said to be equivalent if they are related by one 
or a combination of the following transformations, called trivial tnrnsfornzations which 
presewe the Huygens' character of the differential equation: 

(a) a transformation of coordinates; 
(b) multiplication of both sides of the equation by a non-vanishing factor e-*d, 

where &(E) is an arbitrary function of the coordinates (this transformation in- 
duces a conformal transformation of the metnc); 
(c) replacement of the unknown u by Au, where A(x) is a non-vanishing h c -  

tions of the coordinates. 

Hadamard's pmblem is the problem of finding al1 Huygens' equations. For the scalar 
wave equation it  can be formulated as foUows: 

Determine explicitly all equivalence classes of Huygens' equations rnodulo the 
trivial tmnsfonnations, on the set of al1 second order linear hyperbolic partial 
diflerential equations of the f o m  (1.1).  



Although this problem has been studied extensiveiy, it is stiii far from being solved. 
A conjecture that R. Courant [26] attnbuted to Hadamard states that the only Huygens' 
operators are the trivial ones. This is known as Haùamad's conjecture. Mathisson [56] 
Hadamard [43] and Asgeirsson [8] proved this conjecture for the case of four-dimensional 
Minkowskian spafe-times. They have considered hyperbolic equations of the form (1.1) 
with gij  = const. and proved that they satisfy Huygens' principle if and only if they are 
quivalent to the ordinary wave equation, i-e., A' = 0, B = O. However, Stellmacher [76] 
showed in 1953 that this conjecture is not vaiid for Minkowski spaces with N odd and 
N 2 5. These non-trivial hyperbolic equations are given by 

Stellmacher also proved that for N = 5 the above equations exhaust all possible cases for 
non-trivial Huygens' equations of the form 

( A )  u + B t , 1 , . . . l . 5 ) u = - 0 .  

Rirther generalizations for Minkowski spaces were obtained by Stelhacher, Lagnese, [77] 
[51] [52] [53] [54], Berest and Veselov [13] [15] [14]. 

For many years there was a suspicion that the four-dimensional Minkowski space, and 
the Riemannian space-times conformally related to it, were the only instances of space- 
times in which Huygens' principle for the second order linear hyperbolic operator is valid. 
However, in 1965 Günther [40] established the existence of non-conformally Bat space- 
times for which the scalar wave equation (1.1), with A' = O and B = O, is a Huygens' 
equation. These space-times are described by the following metric: 

ds2 = 2dx"dx1 - ai jdx idz j  ( i ,  j = 2,3). (1.12) 

The symmetric matrix (a;j) is positive d e h i t e  with components which are functions only 
of xO. This f a d y  of metriu had been previously studied by Petrov [68], who classified 
it as a maxixnurn mobility space-the of type T2. This metric had also been studied by 
Ehlers and Kundt [31] in a coordinate system where it has the form 

where D = D(v) and e = e(v) = ë. This is the exact plane gravitational wave solution 
of the vacuum or Einstein-Maxwell equations. Up to now these are the only known 
nontrivial Huygens' equations for n = 4. In particular, McLenaghan [58] proved the 
foUowing result: 



The general scalar wave equation on spcrce-times that a7e confonnally related 
to an emp ty space-time (Rab = O ) ,  satisfies Huygens ' princip1e only i f  it às 

equivalmt to the plane-waue metric (1.13). 

Thus, Hadamard's problem was solved for this case. One special aspect of the space- 
times with metnc (1.12) is that their conformai group is nontriuial in the sense that in 
any space-time which is conformaiiy equivalent to (1.12), the confomal group is wider 
than the group of isometric motions [49]. It was shown by Ibragimov [47] [48] [49] that 
in space-times with non-trivid conformal group, conformai invariance of the associated 
scalar operator Mplies the vaIidity of Huygens' principle. 

By imposing that the tail term on the elementary solution vanishes, Hadamard was 

able to establish a necessary and sdEcient condition for the validity of Huygens' p h -  
ciple, for the scalar wave equation. Rom this criteriion, necessary conditions, involving 
the coefficients of the equation, were obtained, dowing deeper investigations about the 
nature of Huygens' equations. These conformally invariant, symmetric, trace-free ten- 

sorial expressions are the result of work of several researchers (see Section 2.3.2). By 
considering these necessary conditions, Carminati and McLenaghan [la] have outlined a 
program for the solution of Hadamard's problem in four dimensions based on the Petrov 
classification of the Weyl conformal curvature tensor, in the respective five disjoint cases. 

This seems to be a very effective way to deal with the problem, since the Petrov type is 
invariant under a general conformal transformation. 

Hadamard's problem for (1.1) was completely solved for Petrov type N space-times 
by Carminati, McLenaghan and Walton [19] [20] [61], and the following result was found: 

Eve y Petrov type N space-time on which equation (1 . l )  satisfies Huygens' 
principle is conformally rekated to an exact plane wave space-time (1.13). 

Equation (1.1) with Ai = O and B = R/6, where R is the Ricci scalar associated to the 
metric g ~ ,  is known as the confomolly invariant scalar wave equation. Equation (1 .1)  
with A'P is called non-self-adjoint equation. In Petrov type D spacetimes the following 
result was obtained by Carrninati, McLenaghan and W'iarns [21] [62] and Wünsch [a?]: 

The= exist no Petmv type D space-times on which the confonnally invariant 
scalar wave equation satisfies Huygens' principle. 

In al1 other cases the results are partial, but there are indications that the following 
conjecture may be true [19] (201 [23]: 



Every space-time on which the confomally invariant scalar wave equation 
satisfies Huygens' principle is confmal l y  related to the plane-wave space- 
time (1.13) or i s  confonnally Bat. 

In this Thesis we are also concerned with Hadamard's problem f o d a t e d  for 
Maxwell's equations for the electromagnetic field [40]: 

where w is the 2-form 
1 

W* = - w i j d ~ ' ~ d z f -  (1.15) 
2 

The syrnbols d and 6 denote the exterior differentiation and coMerentiation operators, 
respectively. The initial value problem for (1.14) was studied by Duff [30] in 1953, using 
the Riesz kernel formalism [Tl], and Lichnerowicz [55] in 1961, using the distribution 
formalism. Giinther [40] used the fLst method to establish the f i s t  necessary condition 
for the validity of Huygens' principle, which ïs the vanishing of Bach's tensor. 

We are aIso concerned with Weyl's neutrino equation. It can be expressed in a unified 
form with Macweil's equations in the following form [85]: 

where rp is a symmetric (m, O)-spinor field, and vK2 is the covariant derivative on 2- 
spinors. For rn = 1 we have the WeyI neutrino equation and for m = 2 we have the 
homogeneous Maxwell's equations. 

GUnther and Wünsch [39] [41] [82] [84] [85] [86] have formulated Cauchy's problem 
for these equations and several other spinor field equations by defming the Riesz spinor 
kernel. B y using Hadamard's criteria for the resulting representation formulas, necessary 
conditions for the validity of Huygens' principle were obtained for Maxwell's equations and 
Weyl's neutrino equation [39] [41] [82] [84] [85] [36] [3]. Using these conditions, Carrninati 
and McLenaghan [21], WUnsch [87], and McLenaghan and Williams [62] obtained the 
following result : 

There exist no Petmv type D space-tintes on which Maxwell's equations (1.14) 
or Weyl's neutrino equation (1.16) satàsf;y Huygens' phciple.  

For Maxwell's equations and Weyl's neutrino equation on Petrov type N space- times, 
Hadamard's problem was solved recently by Wünsch [89]: 



Every Petmv type N space-time or C-space-tirne' on which Maxwell's equa- 
tiom or Weyl's neutrirro equation satisfy Huygens' principle i s  confomaily 
related to the exact plane-wave space-time (1.13). 

In this Thesis we make contributions to the study of Hadamard's problem for the 
non-self-adjoint and self-adjoint scalar wave equations, Maxwell's equations and Weyl's 
neutrino equation on Petrov type III space-thes. A physical example of a Petrov type III 
space-time was given by Robinson and Trautman [73]. For this purpose we have followed a 

research program started by Carminati and McLenaghan [la] which consists in anaiysing 
the necessary conditions for each Petrov type, using the tools of two-component spinor 
fonnalism of Penrose [67] [69] and the spin-coefficient fomalism of Newman and Penrose 
[64], [24] (see Appendix C). Essentiaily, the analysis starts with the use of the conformal 
invariance of the problem and a convenient choice of local basis (dyads) to simplify the 
necessary conditions. The tensonal expressions for these conditions must be converted 
h s t  to their corresponding spinor form and then decomposed in a dyad basis. 

The task of representing tensorial expressions in a spinor dyad bas& involves Iengthy 
calculations, especially when the expressions contain derivatives of third order of the Weyl 
tensor. However, using the Maple computer algebra package NPspinor, developed by 
Czapor and McLenaghan [27] [29], we were able to do these computations very efficiently. 
After the conversion to the dyad form is completed, we still have to face the problem of 
using the expressions obtained fiom the necessary conditions together with the N P  Ricci 
identities, N P  Bianchi identities and N P  commutation relations to obtain useful PfafIian 
and polynomial relations. Although the expressions involved are in general very large, 
NPspinor provides efficient tools for their manipulation. 

The final problem is to solve the resulting (very large, in general) polynomial systern, 
involving the NP scalars. For this purpose we have used witksuccess the Maple package 
grobner, developed by Czapor [28], which makes use of Buchbergers' algorithm to find 
Grobner bases for systems of polynomial equations (see Appendix A). Our experience 
shows t hat a direct application of Buchberger's algorithm to our problem, using the pro- 
cedure gbasis fiom grobner or the package Gb [34] [33], in total degree or lexicographical 
ordering, is not practical. However, the procedure gsolve fiom grobner has proved to 
be very successfd in this case. This procedure computes a collection of reduced lexico- 
graphie Grobner bases corresponciing to a set of polynomiais. The system corresponding 
to the set is first subdivided by factorization. Then a variant of Buchberger's algorithm 
which factors al1 intermediate results is appIied to each subsystem. The result is a list 
of reduced subsystems whose roots are those of the original system, but whose variables 

'Gspace-times are defined by the property VaCSscd = O 



have been successively eliminated and separated as far as possible. This means that in- 
stead of trying to find a Grobner bais ,  the package attempts to  factor the pol~nomials 
that form the system after each step of the reduction algorithm. 

Next we siimmarize the contents of the chapters that form this Thesis. 

In Chapter 2 we present a review for the Cauchy problem and Huygens' principle for 
the second order linear partial ditferential equations of normal hyperbolic type in curved 
space. In Section 2.1 we present some basic definitions Section 2.2 is based on Fned- 
lander's book [32], and McLenaghan's works [57] [60], and surnmarizes the procedures 
for the construction of the fundamental solution of (1.1) and the representation formula. 
This approach is based on the work of Hadamard [42], although the theory of scaiar 
distributions is used. As we s h d  see, he fwidamental solution consists of the sum of two 
terms: a singulat part, with support on the characteristic cone, and a regular part, with 
support in the interior of the cone. By imposing that the regular part vanish, we can 
obtain necessary and suffieient conditions for the validity of Huygens' principle. Finally, 
in Section 2.3 we present a review based on McLenaghan's fundamental paper (601 show- 
h g  how to derive explicit necessary conditions frorn the expansion of the diffusion kernel 
in a Taylor series in normal coordinates. The form of the known necessary conditions is 
presented, 

Chapter 3 is dedicated to the study of Hadamard's problem for the conformally in- 
variant scalar equation (&O called the self-adjoint scalar equation) on Petrov type III 
space-tirnes. Carminati and McLenaghan [22], ushg the t w e  and four- index necessary 
conditions and the Newman-Penrose formalism have proved the following result: 

If any one of the following three conditions 

is satisfied, then the= ex& no Petrov type III space-times on which the con- 
formally invariant scalar waue equation (1. !) satisfies Huygens ' principle. 

This is the same as stating that, with the particular choice of tetrad and conformal gauge 
used to deal with this problem, space-times for which any one of the NP coefficients, 
a, p or r is zero, violate Huygens' principle. Using the six-index necessary condition of 
Rinke and Wünsch [72], we have found a system of polynomials involving a, P ,  x and the 
constant N P  Ricci component Glthough the complete solution of the problem was 
not yet achieved, we give a step further towards its solution by proving that, 



On Petmv type III space-tinzes, the validity of Huygens' principle for the con- 
forrnally invariant equation (3.1) implies that Q,~OALB&B # 0. 

Chapter 4 is dedicated to the non-self-adjoint scalar equation. Here we have used 
a five-index condition derived Anderson and McLenaghan [5] [6], extending the results 
found recently by the same authors [7]. Our main result can be stated in the following 
way : 

If a non-self-adjoint scalar equation satisfies Huygens' principle on Petmv 
type III space-tinzes, then it must be equivalent to the conformally invariant 
scalar waue equation. 

In Chapter 5 we study Hadamard's problem for Maxwell's equations and Weyl's neu- 
trino equation on Petrov type III space-times. In Sections 5.2 and 5.3 we give a review 
based m a d y  on Wünsch and Giinther's papers [39] [41] [82] [84] [85]. We show how 
Riesz kernel theory can be used for Maxwell's equations and some spinor equations, to 
determine necessary and sufficient conditions for the validity of Huygens' principle. We 
also show how the theory of conformally invariant, rational integral, metnc differential 
concomitants [78] [?O] [82] can provide a very elegant tool in the determination of the 
necessary conditions [36] (371 [3]. In Section 5.4 we describe some important results for 
the Hadamard problem and present the known necessary conditions. Finally, in Section 
5.6 we use the five-index necessary condition derived by Alvarez, Gerlach and Wünsch 
[3] [4] [36] to prove the main result of the Chapter, which solves Hadamard's problem in 
this case [63]: 

There exist no Petmv type III space-times on which Maxwell's equations or 
Weyl's equation satisfy Huygens' principle. 

In Chapter 6 we present the conclusions of this work and prospects for future research 
on t his sub ject . 

Appendix A is a brief introduction to the theory of Grobner bases. 

Appendix B makes a brief description of the two-component spinor formalism of Pen- 
rose [67] [69] and the spin-coefficient formalism of Newman and Penrose [64], [24]. 

Appendix C lists the NP field equations and commutation relations. 

Appendix D liçts the conventions used in this Thesis. 

Appendix E gives a Iist of some Maple codes used to perform the N P  calculations. 



Chapter 2 

Huygens' Principle for the Scalar 
Wave Equation 

2.1 Definitions 

Let us consider the general linear second-order hyperbolic equation with CO" coefficients: 

This equation can be interpreted as a generalized wave equation in a pseudo-Riemannian 
space Mn with a metric defined by the principal part of the operator P: 

where 119;j(~)ll =: 9 = l lgG(z)l l- l  . The hyperbolic character of (2.1) implies that the 
metric (2.2) has a Lorentzian signature (+, -, -, -). The operator P can be expressed 
in covariant form: 

P = O i- A ~ ( z ) v ~ +  B ( z ) ,  (2-3) 

where 

with g := d e t ( g i j ( x ) ) ,  is the Laplac*Beltrami operator defined on Mn, and Vk is the 
covariant derivative dehed  in terms of the metric (2.2). 

The Cauchy pmblem for the wave equation Pu = f , where f is Cm, consists of finding 
a C2 solution in a neighborhood of a (n- 1)-dimensional space-iike hyper surface S, given 
u and Vu on S. We denote a point in Mn by a = (zO, x ' ,  . . .a, 2"). 



The considerations here wiU be local. This means that we wiU be restricted to an 
open comected neighborhood S2 E Mn of a point zo. The null (characteristic) conoid 
through any point zo E R will be denoted by C(zO)- It is definecl as the set of points z 
such that I'(zo, z) = O, where I'(xo,z) is the square of the geodesic distance of z from 
20- The n d  cone is separated into two nuli semi-conoids C+(zo) and C-(zo), cailed 
respectively the future (or forwani) and p s t  (or backwani) -conoid, respectively, such 
that C(z0) = C+(zo) U C-(zo) and Cf (zo) n C-(xO) = {xO) The correspondhg open 
subsets of R bounded by Ci(zo) are denoted by ~ * ( z ~ )  and satisfy 

The closure of D* (20) , Df (zo)), is cdled the futum (past) emission of 20 and is denoted 

by Ji(.o). 

Let C[ denote the class of al1 functions in ck with compact support. The members 
of Co are called test finctioni and will be denoted by 4. A distribution (f, 6)  is defined 
as a continuous linear functiond on Co. The symbol Vf(R) denotes the vector space of 
distributions in 0. 

It is useful to reformulate Huygens' principle, in the sense of Hadamard's premise (B), 
in a more general way. The homogeneous equation Pu  = O satisfies Huygens' principle if 
u(x) depends o d y  on the Cauchy data in an arbitrarily smali neighborhood of C-(2) n S 
(the intersection between the backward characteristic conoid with vertex a t  z and the 
initial surface S), for arbitrary Cauchy data on S, arbitrary S, and for al1 points x in the 
future of S. 

The forwurd (backward) fundamental solution of the operator P is defined as a distri- 
bution G' E Df(R) such that 

where 6.,(x) is a Dirac delta-measure on Mn concentrated at  the point zo. 

In Subsection 2.2.5 it will be shown that the opemtor P, defined by (2.3), is a Huygens' 
operutor in a connected open set R c Mn if and only iffor every point xo E Cl we have 
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2.2 Fundamental solutions and representation formula 

2.2.1 The ordinary wave equation 

Let us consider the ordinary wave equation on a four-dimensional Minkowskian space- 
tirne, 

u ~ = ( a , " - a ; - a : - a ; ) ~ = f ,  (2.9) 

where ai = &, and z denotes a point on R4, with Cartesian coordinates ( t , X )  = 
( x O ,  xl, x 2 ,  x 3 ) .  This can be also considered, in a fixed coordinate system, as a partial 
differential equation on R4. 

A fundamental solution of (2.9) is a distribution G such that DG(x) = b(x) - This 
means t hat 

(G,O#)=(ClG,4)=4(o),  h a l l # E ~ o m ( R ~ ) .  (2.10) 

Next we shall show how to construct the fundamental solution for the ordinary wave 

equation (2.9). First, we need to enunciate a lemma frorn distribution theory [32]: 

Lemma 2.1 Let p(z)  E Cz, z E R, be such that 

Suppose that f (2 )  E ck, and put 

where c is a positive number and y E R. Then f, E Cm, and its support is contazned in 
an e-neighborhood of supp f . Moreouet, if r + O, then Pf, -+ aa f for al1 n with la1 5 6, 
unifonnly in any compact set. 

We are now ready to prove the following theorem: 

Theorem 2.1 Let r denote the Euclidean n o m  of X E R3 . The two distributions 

defined by  

where dX is the volume element on RS, art fundamental solutions of the wave equation 
(2.9). 
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Proof: If +(t) E Cr (R), then the function (XI t) + qb(t - r ) / r  is locally integrable, and 
so can be identified with the distribution 

Since O [$(t - r ) / r ]  = O on r $ c, the last integral can be written in the form 

The integral of the a/at term is zero, since $ ( t )  has compact support. The remaining 
te- are, according to the divergence theorem, given by 

where dw is the surface element on S2. This can also be written as 

When c + O we get 

Hence, 
El ' ( t  - = 4x6(t )  @ 6 ( X ) .  

7' 

Let us take $ ( t )  2 0 ,  and 

Then, by Lemma 2.1, there exists a function h E Cm, where v is a positive number, that 
tends to the distribution b(t )  when v + O. Replachg $ by  +,, in (2.15), and changing 
the variables of integration on the right-hand-side, yields 
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Also, from Lemma 2.1, 

On the other hand, since $v @6(2)  -t b(t)  @6(X) = b(z ) ,  as v -t oo, we have fkom (2.21) 

The proof for the advanced potential of 4 is similar. 

The support of G* is the future (past) n d  semi-cone C* (O) = { ( t ,  X )  ; f t  = 
r = 1x1) with vertex on the origin of the coordinate system. 

2.2.2 Manifestly invariant derivation of the fundamenta solutions of 
the ordinary wave equation 

The square of the geodesic distance of a point z = ( t ,  X )  from the ongin is 

and D+(O) will denote the interior of the future nul1 semi-cone C+(O): 

Since Vy # O in D+(o) ,  a theorem of distribution theory ' guarantees that we can define 
a distribution 6+(7 - e) E D'(D+(o)),  where E is a positive number, by 

where ~r, is the Leray t om,  such that dy A = dx, with dx being the volume el- 
ement on M4. We shall denote the support of 6+(7 - E), which is the hyperboloid 

(x, 7(z) = t), by Çf. We cm extend 6+(y - E )  to V'(M') by setting it to zero in 
{z = (t,  X) , t < J-), so that, instead of (2.28) we have 

A similar expression for 6- (y - É) , with support on the lower sheet C c  of 7(2) = E can 
be obtained. 
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Since, from (2.26), dy = 2tdt - 2XdX1 in order to satisfy dy 14 = dz ,  we can take 
= d X / 2 t .  Thuç 

When é -+ 0, 

Comparing this to (2.14) we obtain the Lorentz invariant forms of GA: 

1 G* = -6' (r) = iim 6* (7 - c). 
2~ c+O 

In the next section we deal wïth the general second order h e a r  hyperbolic scalar 
equation, using the basic ideas that were presented above for the ordinary wave equation. 

2.2.3 Singular part of the fundamental solution 

A method for finding necesçary and sufEcient conditions for the validity of Huygens' prin- 
ciple, in terms of the coefficients of Pl was provided by Hadamard [42]. Using the initial 
value formulation he determined a fundamental (element ary ) solution for the problem. 
Thus, the conditions can be obtained by making vanish those parts of the solution which 
do not ptopagate along the characteristic surfaces of the differential equation. In what 
follows we shaU summarize this procedure uskg the modem approach of distribution 
theory on a curved space-tirne [57] [32]. 

Suppose that the connected open set R c M' is a geodesically convez domain, i.e., 
any two points xo and x in R are joined by a unique geodesic in fl. This implies that 
0 is time-orientable. In what follows, zo is considered to be fixed. Let us now consider 
the scalar differential operator (2.3) defined on Q. The fundamental solution of P is a 

distribution (Gzo (2), #(x)) in 2)' (Q) , such that 

where t P  is the adjoint of Pl 
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The study of. the Minkowski case suggests that the fundamentai solutions of P have the 
form U&(I'), where U is a COD function which depends on z and 20. 

Since we caa always construct a local coordinate system which is normal and 
Mhkowskian at 20, defined for all geodesically convex neighborhoods R, the distribu- 
tions 6* (I') = b,o 6* (I' - c) exist . However, since this dist~bution has support on the 
nul1 cone, and since we expect that Huygens' principle is not satisfied in the general case, 
we could also guess that this is o d y  part of the solution. In fact , as we s h d  see, this is 
the singular part. 

Let us first examine the effect of P on U6+(I'). Using the chah n i l e  for distsibutions, 
which states that for a distribution f (S), S E Co(f2), Vf(S) = f '(S)VS, we find 

Since t6"(t) + 2dt(t) = O, we have 

So, (2.36) can be written as 

Since b:(r - e) does not tend to a b i t  when B + O, we chodse U as o solution of 

If s + z(s) is a geodesic such that E (O) = 20, s being 

& 
vr=29- 

ds ' 

an affine parameter, then 

(2.41) 

along this geodesic. We cean then see that (2.40) is in fact a first order ordinary dinerential 
equation whose chasacteristic c w e s  are the geodesics through z: 
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The general solution for this equation is 

where the integration is carried out dong the geodesic 202. We made the constant of 
integration quai  to one, so that U(zo, zO) = 1. TO obtain a more explicit form of this 
integral we introduce local coordinates that are normal through zo. Then, with 20 having 
coordinates z = O, we obtain 

or 
1 

ziai [ ( - g ) 1 / 4 ~ ]  + 2 ~ ~ i ( - g ) 1 / 4 ~  = O .  

If z is replaced by rz ,  O < r 5 1, we get 

Then, since U ( z o )  = U ( 0 )  = 1,  the solution of (2.39) can be written as 

As the second member is a Cm function of x ,  and the exponential map depends smoothly 
on 20, U E Co(R x 0). 
Now let us investigate the term that remains in (2.39): 



2.2 Amdamental solutions and representation formula 

Since the limit 6+( ï  - E )  + 6+(I') a~ c + O exists, we &O have, by continuity of 
the map P : D'(R) + 'Dl@), P (U 6+ (I' - c)) -t P(d+(I')). In normal coordinates, 
I ' (z ,z~)  = Y(Z) = qijijeitj. Thus 4eUd:(I' - c) = 4 ~ U 6 : ( 7  - s). In distributional 
notation, 

(4 E Ud!$' - c), 4) = 4 ~(d!(~ - a), U ( z )  +) fi). (2.53) 

Using the chain nile for distributions, the relation t B ( t )  +2 5'(t) = 0, and (2.32), we h d  

iim4 cb:(y - c) = 2 d ( z ) .  
e-bo 

(2 -54) 

Then (2.53) tends to 2 r  U(O)#(O)J=g when c + O,. But U(0)  = 1 and g(0) = 1. Thus, 
from (2.52) we obtain, as E + 0, 

P ( u ~ + ( r ) )  = P(U) d+(r)  + 2 TJ,,. (2.55) 

Sirnilarly, 
P (U 6- ( r ) )  = P(U) 6- ( r )  + 2 rd,, . (2.56) 

If P(U) = O on ck(xo) then U ( x ,  xo) dI(r(+, xo)) is a fundamental solution of P, with 
support on C'&(xo) . I fP (U)  # 0, the term P(U)JI(ï) in (2.55-2.56) has to be eliminated, 
Le., we have to find the regular part of the fundamental solution. 

2.2.4 The general equation - regular part of the fundamental solution 

Using the Heaviside function H(t) ,  and the fact that VJ # O in D+(zo), we c m  define 
the distribution H + ( î  - c), É > O, extended to 'D1(Q) (cf. eq. 2.28), by 

where C: = {z; 2 E D+(xo), I'(z, 20) - c = t > O), and pr is the Leray form such that 
dJ'(z, 20) A pr = p ( x )  (p  is the invariant volume elernent). When ç 4 O this distribution 
tends to the characteristic function J+(zo) . Thus 

Sirnilarly, H-(I') is the characteristic function of J - ( z o )  We can now begin to construct 
the complete fundamental solution of P in the form U6* (I') + W HI (I') , W E Cm (0 x 0). 
The first step wïU be the investigation of the action of P on W H+(r) .  Since Ht(t) = 6(t) 
and l b , o  dt(r - c) does not exist, we first calculate P(W H+(î - É)), c > O. Using the 
chain d e  for distributions we find 
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Since b - 0  (rd; (I' - E )  = O we have, usbg t6'(t) + 6( t )  =. O, 

iim rd; (r - e) = lim (€6; (r - C) - d+ ( r  - c)) = -d+ (r) .  
c-O c-bo 

Hence, 

P(W E+(r)) = P(W) H+(r)  + [wir viw + (Or + A'v'~ - 4) W] &+(r). 

We now prove that there exists a Vo E Cm(n x 0) such that 

2Vir vi& + (Or + A'v~I' - 4) = -PU. 

Dividing the above equation by U, and using (2.40) to  eliminate ViI' v'U, we get 

Consider this equation in local coordinates. Let [O, 11 3 r + z(t)  = h(xol rB(x, +O)) be 
the solutions of the differential equations of the geodesic zox with initial values z(0)  = 20, 

&(O)/& = 0. Then, on this geodesic, 

and 

The 

(2.63) becomes 

Eounded solution for this equation is 

or, since z(1) = x, 

Vo(z, x 0 )  = 
P U  

ds. 
2=z(a) 

Thus, if W = Vo on C+(xo), (2.61) and (2.62) imply 
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Adcihg thu to (2.55) we get 

Similarl y, 

P(U L (ï') + W N- (r)) = P(W) H-(r) + Zr 6,, . (2.71) 

This result shows that we can obtain the fundamental solution of P if we can solve the 
characteristic initial value problem 

In fact, for W = V* , (2.42) and (2.43) imply that 

1 Go = (UJ*(r) + H*(F)) 

is a fundamental solution of P, whose support is contained in J* (xo). It can be shown 
that this problem is well posed [32]. 
We shaU prove now that the characteristic initial value problem (2.72) can be formally 
solved by the series 

where Vu, v > 1, satisfy an appropnate set of transport equations. Applying P to (2.74) 
yields 

I 
+4 r Vu(v - 1) 

(u - l)! 

If we suppose that V1 can be chosen so that 

These equations have the same form as (2.61) and (2.62). If we eliminate the term 
+ A'V$ in (2.76), using (Ut)), we get 



2.2 Eirndamental solutions and representation formula 

In local coordinates, with 

(2.78) assumes the form 

4 U 
z=z (r) 2=z(r) 

If we mdtiply this by ru, we obtain 

Assuming that Vu-i has already been determined, we can solve this for Vv, and determine 
the only solution that remains bounded when r -t O: 

Putting r = 1 we find 

In the analytical case, Le., when the space-time has an analytical structure and andytic 
metric, and the coefficients of P are analytic, the series (2.74) converges to a solution of 
the characteristic initial problem (2.72), for s d c i e n t  s m d  Ir(x, zO) 1 In the general Cm 
case the series does not converge. However, by multiplying each term of the series by a 
suitable factor, we can convert it into a convergent series. The sum is a Cm function 
such that Y = V, on C(zO), and PV vanishes to ail orders on C(zo). This is formaily 
expressed in the following lemma [32]: 

Lemma 2.2 Let u(t) E Cr(R) k such that O 5 u(t) 5 1, that u(t) = 1 for Itl < 1/2, 
and that ~ ( t )  = O for ( t  1 > 1. Then there ezists a sequence of positive numbers kl , k2, .. . , 
strictly increasing and tending to infinity, such that the series 

"" ru C vu- a(kur) 
=1 

v ! 
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converges to a finction S(z , zo) E Cm (Cl  x O), unifonnly in eu- compact subset of 
Q x R.  Also, S -+ O when r + O ,  and 

The last relation implies that the series (2.74) is an asymptotic expansion of S, when 
I' + O. Applying (2.70) to a test function q5 E C?(n), we get, using (2.33), 

where K = 1/(2n)P W(zo, z), W = Vo when x E C+(zo),'and pr is the Leray form 
such that &l'(a, zo) A pr(x)  = p(z). This can be viewed as an integral equation for 6. 
If this can be solved, then we can defme the linear form 'Pq5 -+ q5(zo), which will be a 
fundamental solution of P, if it is a distribution. 

The next step is to build the fundamental solutions in a causal domain. First we 
introduce the concept of a pammetriz [ S I :  A Cm parametrix of P is a distribution G;, 
such t hat 

P G ~  - 6,, E Ca (R) . (2.88) 

It can be proved that it has the form 

where 

A causal domain is a connected open set Qo if (i) there is a geodesicdy convex 
domain R such that !2 c no, and (ii) for ail pairs of points z, xo in no, J+(zo) n J - ( 2 )  
is a compact subset of Q, or void. Condition (ii) is a simplified version of the condition 
of global hyperbolicity, suitable for domains that satisfy (i). In a causal domain an 
important theorem can be established: 

Theorem 2.2 Theorern 2.4 Let Ro be a causal domain, and let K(z, zo) be a function 
defined on Ro x no whose support is contained in the closed set 
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and whàch is continuous on A+. Then the= ezists a function L(2, +O), ako supported in 
A+ and continuous on A+, such that, for every 4 E Cr(Ro)  the equation 

implies that 

The proof can be found in [32] (p.151). 

The fundamental soIution to P in a causal domain can then be given by the following 
t heorem: 

Theorem 2.3 Let Ro be a causal domain, and let P = + A'v;+ B, whem A and B are 
in Cr(Ro),  be a scalar diflerential opemtor defined on no. Then P has a findamental 
solution G$o in Ro, such that PG:, = 6,, and supp G,<I c J* (zo), given by 

where supp V' C A' and V* E Cm(A*). Moreouer, when r -t O for ( x ,  zo) E A*, we 
have the following asymptotic expansion for V*: 

The proof of the first part consists of taking W = V in (2.87). Then, using the parametrix 
properties (2.88), (2.89) and (2.90), we use Theorem 1.6 to solve the corresponding inte- 
gral equation. It has the fonn 

Then, using (LM), equation (2.93) follows. 
The two fundamental solutions Gr, can now be used to build the theory of wave equations 
in the curved space-time. 

The distribution Gf, can be considered as the field of a point source at 20, acting on 
a previously undisturbed background. This fundamental solution consists of two parts: 

' ~ h e  proof of &teme and uniquenese for these solutions can be found in [32], p.167. 
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(i) a singular part U6+(r) that is a rneasure supported on the future semi- 
cone with vertex C+(zo) ; 
(ii) a regular part V+, which is a function x -t V + ( z ,  zo) , with support 
contained in J+ (zo), and V+ E CQ(Jf ( 2 0 ) ) .  

The regular part, also called the tail term of the fiindamental solution, does not appear 
in the Minkowskian case, where G& is "sharpn , with support only in Cf (zO). 

2.2.5 Representation formula 

In order to state more precisely the necessq and s a c i e n t  conditions for the validity 
of Huygens' principIe, we need the representation formula for the solutions of the scalar 
wave equation [55] [57]. At this point we change some of our conventions to those of 
McLenaghan [57] [60]. He defines the fundamental solution of the scalar operator P as 

the scalar distribution sati-g 
t P ( G )  = k a  (2.96) 

instead of P(G,, ) = 6,, . Thus, instead of (2.68) we must have 

We must also change A; by -A;, and the f o m  of the expressions in the previous sections 
remains valid. 

The reason for this is that Iater we shaU use Green's theorem, applied to P and tP ,  
in order to obtain a representation formula. This is the method used by McLenaghan 
[57]. The explicit assumption that R is a causal domain is not necessary in the process, 
although we still keep it. Let S be a non-compact space-like 3-manifold contained in a 
causal domain SIo, and let xo be a point in Jf \ S. Consider the operators P and ' P ,  
defined in (2.3) and (2.35). For the functions u and v in C2(4), we can use GreenYs 
theorem ' to form the expression: 

uP(u) - utP(v) = 6[udv - vdu - a r v ] ,  (2.98) 

where a = Ai dzi, and 6T is the coderivative of the tensor T, defined in local coordinates 

by .- (JT)" .-& . . - 1 - 4  . . 
11 ... sr - 11 ...se (2.99) 
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Lichnerowicz [55] defined the bUcalar fundamental solutions (&O c d e d  elementary ker- 
nels) Gf(zO, x) E Ro x Ro in temis of the tundamental solutions G& (z) as follows: For 
4 E cyn x n), 

(~*(zO12)t$(z0, 4) = (G=o'(x)~ 6(z0,~) )  (2.100) 

Thus, (2.96) can be written as 

where 6(xo, z) is the biscalar distribution defined by 

Let us consider the inhomogeneous equation Pu = O u  + A ~ V ~ U  + Bu = f . Substi- 
tuting v = G-(zo, 2) in (2.98), and using (2.101), gives 

w here 

Let D+ denotes the future of the initial surface S, and H+(S,  x) be the characteristic 
function of D+. Since the support of A- k in D-(Q) ,  the function 

is a well-defined distribution, because the integrand has compact support. Thus, for a 

scdar B(zo) defined in Rol 

where Stokes' theorem was used, and S, the boundary of D; in no, L oriented in the 
future direction. On the other hand, from (2.103), 
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where 

f+ (4 = f (z)H+(S,z), ui(+o) = f (20)H+(S120) (2.108) 

Thus, fhom (2.107) and (2.106), we obtain the retarded weak solution of Cauchy's problem: 

The advanced solution can be obtained fiom the above by interchanging + and -. 
If we now substitute the expression (2.93) in (2. log), considering the homogeneous 

case f = O, we get the formal solution: 

For signal propagation to be sharp, u(xo) can depend only on the Cauchy data in an 

arbitrarily sm& neighborhood of S n C-(20). It is clear that a sufliuent condition for 
the validity of Huygens' pMciple is that V- (zo, z) = O for any 20 and al1 x E 23- (XQ) . 
We can show that thiç is dso a necessary condition. Therefore, in order that the solution 
(2.110) be independent of the Cauchy data on S n D-(q) ,  we must have 

We now choose coordinates (zO, dl z2, x 3 )  = (t, X), SU& that, at  each point on S n 
D - ( q ) ,  +O is normal to S. Then, since dxo = dt = O on S, the above equation becomes: 

But this equation must be valid for any initial condition on S. Since u and can be 
chosen independently, we take u = O on S. Then (2.112) becomes 

Thus we must have Y- = O on S n D-(Q). Since this must be tme for al1 S and x the 
necessary and sufEcient condition for the validity of Huygens' principle for the retarded 
Cauchy problem is 

V-(z0, X )  = 0 ,  vzo, VZ E D - ( ~ 0 ) .  (2.114) 

Similarly, for the advanced solution, 
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This condition is not very usefd, however. A more convenient necessary and s f ic ient  
condition is 

'PU = 0, z E C(zo) = C+ (20) u C- (20). 

To prove this, consider first the case when V* = O. Then, since U # O in general, we 
have fiom (2.68) and (2.72)) 

which implies 'PU = O on C(zo). Conversely, suppose 'PU = O on C(zo) holds. Then, 
by (2.68) and (2.72), V* ( x o ,  z) = O for z E C* (zo). Since this must hold for any zo, and 
since V* is continuous, (2.114-2.117) follows. 

2.3 Necessary conditions for the validity. of Huygens' prin- 
ciple 

2.3.1 The trivial transformations 

As we s h d  show in this section, the Huygens' character of the second order Merential 
operators (2.3) is presenred under the following local transformations, c d e d  trivial (or 

elementary) tnrnsfonnations: 

(a) a tmnsformation of coordinates, 
(6) the multiplication of Pu = O by a factor e2'(=) (equivuient to a conforma2 
transformation of the rnetric), 
(c) wplacing the dependent variable u by X(z)u, where X(z) ts a nowhere 
vanishing fùnction. 

We need to define the following tensors on M4, which will be useful in the subsequent 
analysis: 

Here := g i k ~ k ,  Rahd denotes the Riemann tensor, Cijkl the Weyl tensor, &j := 
g c d ~ , j d ,  the Rica tensor, and R := g " ~  the Ricci scalar associated to the metric 
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gij- We shall now, following McLenaghan [60], w the trivial transformations to find 
convenient parameters cp and X that sirnplify the process of obtaining the explicit forms 
of the necessary conditions for the validity of Huygens' principle. These WU be obtained, 
for general space-times, from a covariant Taylor expansion of the diffusion kemel. We s h d  
first show that the Huygens' character of the operator P is preserved under Hadamard's 
trivial transformations. 

W e  s h d  &O use an additional transformation defined by Hadamard [43], that we 
shaU denominate as (bc): 

(bc) Replacement of the function u in Pu = O by X u, (A(+) # O), and simul- 
taneous multiplication of the equation by A-'. 

In what foilows, we s h d  use the notation ii to refer to a quantity obtained by applying 
(b) to a. The symbol E denotes the effect of both (b) and (bc) . The transformation (b) 
and (bc) transform the dinerential operator P[u] into a s i d a  operator F[u], as we shall 
see next. The specialization for n = 4 will be made Iater. 

Transformation (b) induces a conformal transformation on the metric: 

from which one obtains the following transformation Iaws 

so we rnust have 

Let us define 
F :='P, 

where ' P denotes the adjoint operator of P, dehed in (2.35). Then, xcording to (2.124), 
we have - 

Fv = x~-"'F[A-' e(n-2)vv]. (2.128) 
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We define the fundamental solutions G+, of Fv by 

where Z,, (2) := e-nq&o (2). From these two equations we then get 

where i:= X(zo). Thus by uniqueness of the elementary soluiions we have 

Thus supp (2, zo) J* (=O) provided supp G* (z, zo) C J* (zo). We can now obtain 
the transformation properties of [U], V*, and [F(U)], where the brackets [ ] denote the 
restriction of the enclosed function to C(zo) = C+(zo) u C- (20). [F (U)] t called the 
diffusion kernel. Thus, nom (2.93), we have, for n = 4: 

We must now find a relation between b ( r )  and 6(Î?). Since I' = O if and ody if f = 0, 
we write F in the form: 

F = air + a2r2 + ... , (2.133) 

where the a; are functions of xo and z to be determined. Since 

we obtain, on substituting the series in the second of the equations above, and equating 
coefkients of equd powers of î: 

The solution to this equation, reguiar at s = O, is 

where the integration is carried dong the ntdl geodesic zox with respect to an affine 

parameter. Since 
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we obtain Gom (2.132), 
~ ( f )  = qld(r) . 

Thus, fiorn (2.132) we get 

[sl =x-l a'pt?-'Vq , 

If we dinerentiate (2.97) we get 

A similar expression must hold for the transformecl operator 

where B is an &ne parameter along the generators of c(zo) = C(zo) ( n d  geodesics are 
preserved under conforma1 transformations), related to s along a fked null geodesic by 

Substituting (2.139), (2.140) and (2.143) into (2.142) gives 

Comparing this equation to (2.141) we find 

which is the transformation law for the diffusion kernel. Thus, the necessary and suffient 
condition (2 .Il61 is invariant under the trivial transformations. 

We can now specXy a choice for transformations (b) and (bc) that will simplify future 
calculations. We begin with transfomation (bc). From (2.43) and (2.125) we find 

Since 
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(2.146) simplifies to 
- 0-1 
u =A AU. 

We can now express U in a form dinerent fiom (2.43), using the identity (741 

where p is given by 

Substituting (2.149) into (2.43) gives 

If we choose, for a given point 2 0  

O 

then A= 1. Consequently, fiorn (2.148) and (2.151) we find 

for ail z 0. Then 
i A vir = 0. 

To choose a transformation (b) we first note that, under (b), (2.121) transforms as 

Foilowing Günther [38], at any point zo we can choose the derivatives of $ at 20 such 

t hat 
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O 

where Eijj= &(ta), and so on. From now on we assume that the chosen transf'ormations 
(b) and (bc) have been made and cirop tildes and bars. 

Contracting (2.157), and using the definition of L, given in (2.121), we find at 20: 

On the other hand, from the Ricci identity we h d  

Frorn (2.158), we get the following 

O O O O 

R,i= O 1 L à ;  - R i ;  O R= O (2.162) 
O 5 0 O O 4 

O Re= -3 R;ij= O Lij O Lij;k' - 3 ' (2.163) 

where SGk := Làkk1. Rom (2.159) we get 

It still remains to choose transformation (a). A convenient choice is a system of 
normal coordinates z' around the point zo. We can use (2.51) and (2.155) to find the 
form of U in these coordinates 

F'rom this equation we can obtain 
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then, in the normal coordinates, using (2.35), we find 

Rom (2.165) we see that U(zo ,  z) # O for z in the convex neighborhood O. Then 
[O] = O o [F(U)] = O. Thus, Huygens' prindple is valid if and only if 

for any point 20 in the manifold. 

2.3.2 Expansion of the diffusion kernel and necessary conditions 

The next step consists in obtaining a covariant Taylor expansion of o about an arbitrarily 
chosen point t a .  The calculations are lengthy and we s h d  present ody  the method and 
some results. Details can be found in [57] [58] [60]. The temis to expand are those that 
define u: g ~ ,  gij, A ~ ,  and B. This expansion is made in a normal coordinate system 
x i ,  with ongin in XO. The covariant expansion of g+ and to sixth and fourth order 
respectively was obtained by McLenaghan [58], using the methods of Herglotz [44] and 
Günther [38]. m e n  the obtained resdts are substituted in (2.167), and the conf'ormal 
transformation (2.157)-(2.159) is aumed,  we obtain y, expanded ter- of the tensor of 
Riemann (and its derivatives), the Weyl tensor, and the metrie tensor, all evaluated at  
+O, and in terms of the coordinates 2'. For example, to second order we have 

For A', an expansion is performed about 20, to fîfth order, using the condition A'zi = 
O that cornes fiom (2.45), (2.51) and (2.155). Then, in order to make the expansion 
covariant, partial derivatives must be expressed in terms of covariant derivatives. The 
result, to second order, is 

The expansion for the scalar B is trivial, since in normal coordinates (2') we have the 
following property for scalars: 
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Then, to second order, 

Now, on C ( x O ) ,  

Thus, the necessary conditions are given by 

where TS( ) denotes the operation which forms the trace-fiee symmetric tensor from the 
enclosed tensor. 

Order of magnitude [O]: 
According to (2.169) we have 

O O 
o= -4 B . 

which implies 

This is valid only for our special choice of trivial transformations. So, we have to find a 

quantity that reduces to B in zo, when the special trivial transformations are taken, and 
that satisfis, in general, a relation invariant under trivial transformations. The required 
quantity is the Cotton invariant denoted by C. In fact, under trivial transformations we 
have C = e-*'C. Thus, the first necessaxy condition is 

Order of magnitude [l]: 
Since, 

we have 
- 2 ~ ' ; ~  + t J i k s i k l j ~ j  A - 2 ~ ' ~ ~  . 

Using (2.181) and (2.183) we can write a in the form: 
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By dxerentiating the equation above, evaluating at zo, and using (2.173), we obtain 

O k  4 O k  g,i= 2 A ,& = 3 H ;;i = 0 (2-185) 

in the special gauge. But this is valid also in general, since, under trivial transformations, 

9Jk; = e - 2 v ~ c ~ k ; .  (2.186) 

Thus, the second condition is given by 

( I I )  filka;h = O Hab := . (2.187) 

The third, fourth and fifth conditions are calcuiated in the same way and are given 
respectively by 

k l k l  1  ( I I I )  Sabk; - ab lu = -5 - -~&H.Hu) , 
4 

(2.188) 

A seventh necessary condition, valid for the self'-adjoint scalar equation, has the following 
forrn: 

(2) (3) (VI') TS (Q'L~, - 10Qaw + 4Q,, + 54:Lf + Q:&) = O 1 (2.192) 

where 



Condition I was already known by Cotton in 1900 1251. He proved that the necessary 
and sufficient conditions for the n-dimensional general wave equation P u  = O to be 
equivalent to the n-dimensional ordinary wave equation are 

Holder (451 also found condition I  in the case Au = B = O. Mathisson [56], Hadamard 
1431, and Asgeirson [8] obtained conditions 1, I I  and I I I  in the case g" constant. Con- 
ditions I to IV  were obtained in the general case by Günther [38]. Condition V was 
obtained by McLenaghan [58] in the case Rab = 0 ,  and by Wünsch [81] for Aa = O. Con- 
dition V I  was found by Anderson and McLenaghan [6]. In the generai case, condition V 
was obtained by McLenaghan [60]. Condition VII was obtahed by Rinke and Wünsch 
[72] for Aa = O. The term on the right side of condition I I I  is aiso called Bach tensor: 
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Giinther [39] observed that conditions I I  and III display some interesting formal anal* 
gis. If we consider & as  a four-potential then (2.187) represents the homogeneous 
Maxwell equations. On the right side of (2.188) we would have the dectromagnetic 
energy-momentum tensor. The tensor on the left side of (2.188), caiied Bach tensor and 
denoted by Cab, can be obtained from the variational principle applied to the conformally 
invariant integrai J@%Gu dx [9] and has nd i  divergence, = O. Thus (2.188) is 
analogue to Einstein's field equations, but it is conformaily invariant. 

It is expected that the use of a finite number of necessary conditions would be sufncient 
to solve Hadamard's problem, but this is not yet proved. 

2.4 Necessary conditions in NP form 

We can use the relations (B.37)-(B.40), given in Appendù B to convert the necessary 
conditions I I  - V I I ,  given respectively by (2.181), (2.187), (2.188), (2.189), (2.190), 
(2.191) and (2.192) to their spinor forms. 

For condition I 1, 
H ~ , ; ~  = 0 , 

we obtain, using the correspondence (B.38),  

Since Rab = AIovbj , we have 

or, in spinor form, 

Multiplying this equation by E ~ ~ E ~ ~  we fhd  

which c m  also be written as 

By comparing this equation with (2.203) we find 
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The four dyad components of this equation are the NP source-free Maxwell equations: 

For condition I I I  a direct application of the correspondence relations yields 

- . . 
K L 

Q A B ~ ~ ;  A f T ~ ~ ~ ~ ; ~ A ' ~  + B ~ ~ ~ @ ~ ~ ~  f aÀÉIKL~kLAB + 1 0 4 ~ $ ~ ~  = 0 .  
(2.210) 

Instead of (2.210) we shall use a stronger f o m  of this condition, obtained by McLenaghan 
and Williams 1621: 

While the original necessary condition (2.210) is Hermitian, (2.211) is cornplex. Its dyad 
components can be obtained now by using the NPspinor package. The conversion of the 
remaining conditions to the respective spinor form and then the determination of the 
dyad components is better done automaticaily by defining templates in the NPspinor 
package (see Appendix E) . In the definition of the templates for the necessary conditions 
that involve the trace-free symmetric part of a tensor, we use the following theorem (see 

[79] for the proof): 

Theorem 2.4 If X,, ..,, is a mal trace-free symmetrie tensor and 



Chapter 3 

The Conformally Invariant S calar 
Wave Equation 

3.1 Previous results 

This chapter is devoted to the solution of Hadamard's problem for the conformdly in- 
variant scdar wave equation, 

1 
~ U + ~ R U = O ,  (3.1) 

Petrov type III spacetimes are characterized by the existence of a spinor field O* 

satisf'ying 
C D ,  Q A B c ~ o  O - O ,  ! P u c D o D  # 0. (3.2) 

Su& a spinor field is cailed a repeated principal spznor of the Weyl spinor and is determined 
by the latter up to an arbitrary variable complex factor. Let bA be any spinor field 
satisfying 

olirA = 1. (3.3) 

The ordered set OA, LA, called a dyad, defines a bas& for the 1-spinor fields on M4. 

The main results, obtained by Carminati and McLenaghan for Petrov type III space- 
times, using conditions III and V, c m  be stated as foliows [22]: 

Theorem 3.1 The validity of Huygens' ptinciple for the confomally invariant scalar 
wave equation (3.1), on any Petmv type III space-time implies that the space-time is  



conformdfy related to one in which every mpeated pn'ncipl spinor field o~ of the Weyl 
spirtor is recumnt, thut is 

OA;BB = o ~ l ~ i )  1 (3.4) 

where IB8 is a 2-spinor, and 

A B C  D E l ? -  
qABcD;BB~ L L O O 5 - 0 ,  

Theorem 3.2 If nny one of the follouing three conditions 

zs satisfied, then them exbt no Petrov type III space-times on which the confonnally 
invariant scalar wave equation (3.1) satisfies Huygens' principle. 

For the sake of completeness, in the remaining part of this Section we shall obtain the 
results of Carminati and McLenaghan [22], that lead to the proof of the above theorems. 
A generalization of their result will be obtained subsequently. 

In Petrov type III space-times the Weyl spinor has the form ': 

where aA  and BA are the principal spinors. If we choose the spin basis such that a~ 
is proportional to the dyad basis spinor OA and f i A  proportional to LA, we obtain from 
(B .42) : 

  AB CD = -~*~O(ABCLD)  . (3.11) 

Using (B.87) we can see that we can choose the tetrad such that 4 = -1, so that 

Condition (3.12) determines uniquely the spinor dyad {O,, L ~ )  

In order to make this expression conformally invariant, it is clear from (B.104) that 
we must set r = -1. 
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We now start exarnining the consequences that follow fiom the necessary conditions 
III and V. This can be done by running the appropriate codes iisted in the Appendix 
E, which use the package Wspinor in Maple [29]. The input of these codes consists of 
the tensorial expressions of the necessary conditions III and V and the output consists of 
the independent dyad components obtained by contracting the resulting dyad expressions 
with appropriate products of oA, L~ and th& complex conjugates. The conversion fiom 
the tensorial form to the spinorial one is done automaticdy by defining templates in the 
beginning of the programs. The conversion to the respective dyad form is carried out by 
using expressions (B.42), (B.44) and (B.48). 

It follows fiom the codormd invariance of conditions III and V [60] [82] that each 
dyad equation must be individually invariant under the conformai transformation (B.100). 
We begin by substituting the expression (3.12) for ! l f M C ~  in condition V. The contrac- . . . -  
tien of the resuiting dyad expression with oABCD~*CD and ~ ~ B C L D Z ~ ~ L ~  irnplies, 
respectively: 

n=O, a=O. (3.13) 

These conditions, which are invariant under general dyad t'ransformations (B .65) and 
conformal transformations (B.100), irnply that the repeated p ~ c i p a l  nul1 congruence of 
CaM defmed by the principal nul1 vector field la, is geodesic and shear-fiee. We use now 
the conformal freedom to restrict p. From (B.lO1) we obtain 

Thus, by irnposing D# = ( p  + p ) / 2 ,  we obtain + P = O or, dropping tildes, 

By contracting L(AOB)Z" with III, and with V, are get, respec- 
tively : 

Adding (3.16) to its cornplex conjugate, and subtracting the result h m  (3.17), we obtain 

Solving this equation for p and using (3.15), we obtain 



E'rorn the Newman-Penrose Ricci identities (NPl), (NP3), (NP4), (NPS), (NPl l ) ,  
(NP21) and from the contraction of condition III with L A B Ü A ~  and L(*o%OZ~) we 
have, respectively, 

W e  still have enough confoimal freedom, preserving (3.19), to set 

Accordhg to (B.101), this hirther restriction is possible if there exists a solution for the 
following system of partial Werential equations: 

In order to establish that this system has a solution we must show that the integrability 
conditions for (3.22) are satisfied. They are given by the following NP commutation 
relations applied on 4: 

It can be easily verified that the above conditions are satisfied when applied to 4. 
Rom (NP16) and (NP17) we now obtain, using (3.21), 

Rom Bianchi identities (NP23) and (NP22) we also have 

The expressions in (3.20) which are aot conformally invariant can also be recovered. 

The above results can be summarized as follows: N e c e s s q  conditions I I I  and V 
imply that there exists a dyad (oA,  r A )  and a conforma1 transformation q5 such that 



We notice that the expressions (3.29) determine the tetrad uniquely. On the other 
hand, conditions (3.28) are invariant under any conformal transformation satismg 

which impiies that we stilI have some conformal fieedom. Under (3.33) the transformation 
law for Qll, given by (B.lO7), becomes 

Thul we can choose 4 such that 

*ll = C ,  (3.35) 

where c is a constant. Conditions (3.33) are satkfied in view of (3.32). Although it sim- 
plifies calculations, this last specification of the conforniai gauge is not strictly necessary 
for our proof, Le., our results do not depend on the Pfaffian A*11. 

3.2 Main Theorem 

Carminati and McLenaghan [22] used the above conditions to prove that Huygens' prin- 
ciple is not satistied if any of the spin coefficients a, ,8 or n vanish. We shail extend 
the proof for the case in which apir # O and = O, i-e., we shdl  prove the following 
t heorem: 

Theorem 3.3 (Main Theorem) Let M 4  be any space-time which admits a spinor dyad 
with the pmperties 

0 ~ ~ 8 ~  = 0 ~ 1 ~ 8  (3 .36)  

whem IBB is a 2-spinor, and 

R = O ,  @,,oAoB=O. (3.38) 

Then the validity of Huygens' principle for the confonnally invariant equation (3.1) im- 
plies that 

A B  A B  
QABa0 L 5 f # O .  (3.39) 
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3.3 Proof of the Main Theorem 

In what follows we assume th& cvpn # O, since the case in which this is not true was 
aLeady considered in [22]. 

By contracthg condition III with L A O B Z ~  we get 

Rom the Bianchi identities, using the above conditions, we obtain 

From the Ricci identities we get the folIowing relevant Pffians: 

We can obtain useful integrability conditions for the above Pfaffians, by using NP com- 
mutation relations. By substituting them in the commutator expression [6, - 
[A? Dl@l21 we get 

By contracthg condition V with L ~ C D L ~ @ ~ ,  we get 

By substituting (3.35) into this equation we get 

From (3.49), (3.50) and (3.35) we obtain: 
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By contracthg condition V with L ~ ~ ~ ~ ~ z ~ ~ z ~ ~  we find 

Using (3.45), (3.50) and the complex conjugate of (3.51), we get 

On the other hand, the NP commutator [6, q(a+2a) = (a -p )b (a+2a)  + ( - ~ + ~ ) z ( a +  
2n), yields the following expression 

Eliminating Dp between (3.56) and (3.57), and solving for DG, we get 

where we have assumed that the denominator of the expression above, given by 

is non-zero. The case dl = O d l  be considered later. 

Substituting expression (3.58) for D p  into (3.56) we obtain 

One side relation can now be obtained by subtracting the cpmplex conjugate of (3.58) 
from (3.60). We obtain: 
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We notice that (3.58) and (3.60) have the same denominator. Thus, if we keep these 
expressions for Dp and DP, the PfafEans @, 60, 675 given by (3.51), (3.47) and (3.50), 
respectively, and their cornplex conjugates, also have the same denominator- This pro- 
cedure is crucial to keep the expressions to be obtained fiom the integrability conditions 
within a reasonable size. Except for ba, aii Pfaffians involving 6 ,  6, appiied to a ,  P , a 
are explicitly determined. 

The foilowing expression for 60 can be obtained nom the NP commutator [6,@ = 
(p- p ) ~ g +  (0 - P)@+ (p - Q)@ : 

By substituting (3.58) and (3.60) into this equation we get: 

where, for now, we assume that the denominator in the expression above: 

is non-zero. 
. . .  . . .  

Contracting condition V I 1  with L ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ T ~ ~ ~  yields 



3.3 Proof of the Main Theorem 



3.3 Proof of the Main Theorem 

The second-order terms D (TT), ~ ( & y ) ,  ~ ( g j ï ) ,  D (AP), D(Aa) , D (Ar), can be expressed 
in terms of known PfafEans and &, by using the NP commutation relations involving 
each pair of operators. After the substitutions we obtain 

Solving this equation for Ta! we get 



3.3 Proof of the Main Theorem 49 

where the denominator of (3.67), 

is supposed to be non-zero for now. 

Subtracting (3.63) fiom (3.67) and taking the numerator 



3.3 Proof of the Main Theorem 

At this point we suppose that Bll = O. In this case, Ni surprisingly factors in the 
following form : 

Ni := -12Ppl p2 , (3.70) 

where 
pl := 1 2 p F + 2 n ~ + ~ a ~ + 5 p ~ + 6 ~ n + 2 i r a ,  (3.71) 

Let us consider first the case in which p2 = 0. Applying.6 to (3.72) and solving for 
su, we obtain: 
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where the denominator of the expression above, given by 

is assumed to be non-zero, for now. 

Here Ni, and al1 equations obtained by comparing dinerent expressions for 'da, are 
polynomials in three complex variables a, B and n. One complex variable can be elimi- 
nated by introducing the following new variables: 

In what follows we first prove that the necessary conditions imply that both zl and x2 

are constants. Then, later, we shall prove that this leads to a contradiction. 

In the new variables defined by (3.75), (3.72) assumes the form 

Subtracting (3.73) from (3.67) (with $11 = O ) ,  and taking the numerator, gives 
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We now apply the Maple procedure gsolve to the systern of polynomial equations 
bz = O ,  Nz = O). In the algorithm, the variables x i ,  zz and their complex conjugates, 
21 and q, are treated as independent variables. In the subsequent andysis we use the 
fact that they are complex conjugates of each other. 

In the present case, despite the size of one the equations, the set of solutions was 

promptly obtained and is given as foIlows: 
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Using the fact that the pairs (2 i ,  x2) and (q , 22) are complex conjugates of each other, 
we conclude that the sets G1 to G5 provide solutions which are either impossible or irnply 
that 21 is constant. Only G6 is not immediately trivial. Its srndest term is: 

Subtracting (3.84) fiom its complex conjugate we obtain the conclusion that xl is real, 
which implies that it must be constant. Let us consider now the case 

We now use the side relation Si given by (3.61). Its numerator takes the form: 
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Applying gsolve to  p i  and num(St) we obtain the following system of equations: 

Subtracting (3.87) fkom its complex conjugate yields = 21. Subtracting (3.89) from 
its complex conjugate now gives 2 2  = = 12zi + 22. Substituting these relations back 
in (3.87) and (3.88) results in a system with no solution. 

Let us consider now the cases where each of the denorninators d2, d3 and 4, that 
appeared in the preceeding equations are zero. 

(i) d2 = O 

In this case, from (3.64) and (3.751, we have 

This implies that the numerator of (3.63) is &O zero: 

Applying gsolve to these two equations we obtain the following equivalent set of equa- 

tions : 

From the real part of (3.93) we obtain that == X I  and thus 

Applying gsolve to (3-94) and (3.92) we find that = 2 1 ,  which impiies that z2 = 
const . ,  zl = const. 

(ii) d3 = O 

Bere, fiorn (3.68) and (3.75) we have 
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The numerator of (3.67) must also be zero, i.e., 

Applying gsolve to ds and n~ given above we obtain the foilowing sets of solutions 
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The only set whose incompatibility is not evident is the third one, 93. The system is 
given by 

Applying B to d3, given by (3.95), and solving for 8a we obtain 
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where the denominator, given by 

dg := 5(-l2a - 227r + P)(36*+ 8 4 ~ F  - PZ+ 26?'a - 8Wf 64ii5r + 2 a ~ )  , (3.106) 

is assumed to be non-zero for now. 

Subtracting this expression fiom (3.63) and taking the numerator, we get, in the 
variables defined by (3.75) : 
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-3773952 2: z: 3$ - 12947904 mi* + 237312 52 z: 
+28O44 z i g  z2 + 203736 z2 21 - 345600 qt: z 2  

f3640896 z:2r2 T X ~  + 691200 2:=zi.z2 - 3519936 2 2  25 2: 21 

+6943200 Kzz  + 107676 2 2  X I  $ - 13461720 z2i$ Z, Zy 

+47820240 5$ X I  2 2  - 3616992 z t q 2  - 888541422 2;' 2: 
f20887648 $ q2 + 183120 22 z: 2; = O .  (3.107) 

Applying gsolve to N3, given by (3.107), and d3, given by (3.95), we now obtain the sets 

of solutions: 

The only set that is not obviously incompatible is (3.115), which forms the foIlowing 
system: 
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Kz := 6375 Z $ q  + 54200 -22 + 14910 =z1 - 530060 xl 

-129888 2: ~y - 546508 1;: + 15300 2 2  G~ - 18550 + 56472 2 2  

-9090 X I  2r + 491516 + 468244 21 + 112608 2: = 0 ,  (3.117) 

K3 := -84456 z: + 97416 2:- - 499212 z: + 570492 z : h  + 6894 

- 1 0 6 7 4 ~ ~ :  q- 987180 21 + 405 q2 21 Zr+ 24390 zi= 

-41400 + 1107060 21 - 270 q2 21 + 709812 

-40106 -2T - 651912 + 810 2r2 + 21536 - 450 q2 O . (3.118) 

Applfig gsolve to K3 and F5, given respectively by (3.118) and (3.104), we obtain 

The non-trivial system here is ml with equations 

Di := 1125 Kq - 63294 xl - 109126 q+ 1980 xi= - 35100 2: - 81996 zl 

-32944 + 4020 = 0 , (3.128) 

D2 := 124398 2: - 165168 2: + 423963 zl - 601128 z l  + 359684 

-547064 = 0 , (3.129) 

DS := -10530 2: - 66915 Z: + 594 2: 22 + 2619 zl 22 - 140031 Z~ - 96734 

+2787e= 0. (3.130) 
- 

If we now apply gsolve to Dl, D2, 4, K1, and K3, we find that there are no 
solutions, 



3.3 Proof of the Main Theorem 60 

When the denominator ci5,  given by (3 .lO6), is zero, we have, in terms of the variables 
dehed in (3.75), 

Applying gsolve to d3 (cf. (3.95)), &, dsl Z, and F5 (cf. (3.104)), we find again that 
the system allows no solution. 

Rom (314)  and (3.75) we have 

The numerator of (3.73) now satiçfies: 

Applying gsolve to system of polynomials formed by d4 = O, n4 = O and pz = O (cf. 
(3.76)) we obtain a set of solutions where zl and 2 2  are constants. 

(iv) XI , xz = const. 

Let us consider now the case in which z1 and x2 are constants. We must then have 
bz2 = O ,  or 

;fa := -ii& -4na - 18xP-  3d. (3.134) 

Substituting this in 6z1 = O we obtain, in the coordinates (21, x 2 )  
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Applying gsolve to (3.135), (3.136), their complex conjugates and (3.137), we find that 
this system has no solutions. 

(v) di = O 

Let us consider f indy the case in which the denominator of Dp, given by (3.58), is 
zero. Kere we shall suppose that is not necessariiy zero, so we can illustrate how is 
the form of the equation that appear when we try to solve this problem in the generd 
case. According to (3.59) and (3.75), 

Rom (3.58) we obtain 

where $11 is defined as follows: 
*11 := -. 
nT 

(3.140) 

Applying b to il, using (3.35), (3.47) and (3.45), and solvhg for h, we get 

ba = 120& + 66na + 2201rFf 33a2 - F .  (3.141) 

By applying 6 to dl, now using (3.49), (XSO), (3.51) and (3.56) and solving for Dp, we 

get 

Subtracting Dp, given by (3.56), from the complex conjugate of (3.142), gives 
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Applying 8 to (3.143) gives 

Applying gsolve to dl, f;, El, E, E2 and E3, we find that this system has no solution. 

Thus, for Huygens' principle to be satisfied on Petrov type III spacetimes we must 
have Gli # O. Using Theorem 3.1, the Main Theorem, which states this resdt in a 
conformally invariant way, is proved. 

3.4 Discussion 

In order to obtain the above result 3. we have used the six-index necessary condition 
VII, denved by Rinke and Wiùisch [72], which had not been employed in [22]. It was 

essential for the proof that Dp and DJi codd be expressed in such a way that they both 
have the same denominator. As a resdt the integrability conditions obtoined from the 
commutation relations turned out to be relatively simple. The most general case, in which 
911, a, p and n are not necessarily zero, has been reduced to a system of polynomial 
equations in one real and two cornplex variables. These polynomial equations are obtained 
by applying the operator 6 to Ni, given in (3.69), and then solving for ba. A new side 
relation can then be obtained by subtracting this h fiom (3.63). Using the variables 
defined in (3.75) and (3.140) we obtain equations in one real and two complex variables. 
The system forrned by the side relation Si = O (cf. (3.61)) and Nl = O was not yet solved 
in the general case in which f O , but its size is relatively s m d .  If any of these 
variables can be shown to be zero, then Hadamard's problem will be solved for this case. 

'In a private communication, S. Czapor hm informed us that he bas found the same remit using 
Grobner bases defined on a prime fieid (unpublished). 



Chapter 4 

The Non-Self- Adjoint Scalar Wave 
Equation 

4.1 Previous results and Main Theorem 

In this chapter we consider the general linear second-order hyperbolic equation, in f o u  
space-time dimensions, with Cw coefficients: 

This equation is also referred as the non-self-adjoint scalar equation. 

McLenaghan and Walton [61] have shown that any non-self-adjoint equation (4.1) on 
any Petrov type N space-time satisfis Huygens' principle if and only if it is quivalent 
to a scalar equation with A; = O and B = O, on an space-time corresponding to the 
exact plane-wave metric (1.12). For the case of Petrov type III space-times, Anderson, 
McLenaghan and Walton ([7]) have proved the following theorems: 

Theorem 4.1 The validity of HuygensJ prànciple for any non-self-adjoint scafar waue 

equation (4.1) on any Petmv type IIIspace-time implies that the space-time is conformafly 
related to one in which every repeated nul2 vector field of the Weyl tensor La, is recurrent, 
t .e. ,  

Z F I ~ ; ~  = O (4.2) 
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Theorem 4.2 There d t  no non-self-adjoint Huygens ' equation (4.1) on uny Petrov 
type III space-time for which the following conditions hold 

In this chapter we show that the restrictions imposed by these two theorems can be 
removed thus obtaining a stronger result, whkh can be stated as foilows: 

Theorem 4.3 (Main Theorem) If a non-self-adjoint scaiar wave equation of the f o m  
(4.1) satisjîes Huygens' principle on any Petrov type III space-time, then it must be 
equivalent to a confomalZy invariant scafar wave equation 

4.2 Proof of the Main Theorem 

In the first part of this proof we get the same result obtained by Anderson et al. [7]. The 
procedure is, however, slightly different. The final part, which consists in the proof of the 
Main Theorem, is our original contribution. 

We sshail prove first, using the necessary conditions II to V I  (see (2.187) - (2.191)), 
that the assumption Hij := AIiA # O leads to a contradiction. In temis of the dyad 
components of the Maxwell tensor Hab, this is the same as proving that the necessary 
conditions imply = q51 = & = O. Finaily we invoke a lemma by Günther [38] that 
states that every equation of the form (4.1) for which AIobl := O is related by a trivial 
transformation to one for which Ai = O. It then follows from condition 1 (2.181) that 
B = R/6.  

In this Chapter we shall use a notation for the dyad components of the necessary 
conditions in the form Xab, where X is the Roman numeral corresponding to the necessary 
condition, a denotes the number of indices corresponding to the dyad spinor L and b the 
number of dotted indices corresponding to the dyad spinor t. 

As a starting point we use condition IV. The contraction with oABcdiB$) gives 

Let us suppose that K # O. Then $0 = O and 
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implies #l = O. It then follows fkom 

IV21 = ~ ( 3 5 2  -k f )  = O (4.7) 

that 4 2  = O and = 0, whidi contradicts the initial assumption. Thus, we must have 

n=O. (4-8) 

From I I I 2 2  we then have immediateIy that 

# o = o .  

This impiies 
= 0. 

If a # O then 4l = 0, and 
I I I ~ ~  = 9aq2 - adz = O 

implies 92 = O ,  which again contradicts our initial assumption. Thus, we obtain 

We now have 

and thus 
d i ( 2 r -  2 p + p )  = O .  

If we suppose that t # ~  # O, then we get 

Since, according to (8.101) and (B.113), the equations (4.8) (4.9) (4.12) are conformally 
invariant, we use this freedom to impose again condition (3.15), i.e., p = -pl so (4.16) 
impiies that 

From the NP equation (Cl) we now obtain 
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Adding (4.18) to its cornplex conjugate we obtain 

2 ! S o o = - p .  

Substituting these results in Vlr we obtain 

4i ib2 = 0 

This implies that p = r = GW = O. Now, substituting these results into N P  equations 
(NPI), (NP3) and (NP11) we obtain DT = DP = dio1 = 0. n o m  III l1  this woidd imply 
h a l l y  that = O, which contradicts the initial assurnption, which must then be faise 
and t herefore 

& = O .  (4.21) 

The conditions IIoo and IIoi now become, respectively, 

Substituting these equations into IVlo we get 

Equation (4.19) is still valid: 
2 *OO = -p  . 

From IVll, NP1 and III l2  we now have, respectively, 

Substituting the previous PfaEans into Vz2 we obtain 

Applying the operator D to  (4.29) yield a third side relation: 
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Let us suppose that p # O .  Then, from (4.30) it foilows that Z = -e.  This Unplies 
that, from (4.27), that Dp = O. By subtracting (4.28) fkom its complex conjugate we get 
DE = O. Then, (NP3), (NPll),  (NP4) and (NP5) give, respectively, 

Since lilil has the form 

we can now detennine the Pffians Da, û/3 and bé: 

IVlI has the form 

(41 - W ) ( ~ P  - 2 4  = 0 

Also from (NPll) ,  III lL  and I I I I z ,  we have, respectively 

- 
Regarding (4.42), let us consider first the case c = p / 2 .  Then, from (4.39), $2 = 42. 

The expression 6(c - p / 2 )  = O, using (4.40) and (4.41), gives 

Le., r = 2P. The conditions SI, V2j and IIIo2 now become, respectively, 
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i.e., = -2p and 8 = (5/21)a. Applying D to (4.45) and solving for gives 

VI2 and VZ2 give, respectively, 

This implies cr = B = rr = r = Qlo = O and -19 + 4dz2 = O. From Vzo, now we have - 
EX = 0, and fiom (NP16), @oz = - 2 d t  so GO2 = 0. 
The remaining conditions I I I  are IIIw and I I b l  are given by 

Almost ali PfafEans in (4.50) and (4.51) can be determined fiom NP equations. From 
(NP6), (NP8), (NP15) and (NP17) we obtain, respectively, 

Thus, (4.50) and (4.51) have the foIiowing fom,  respectively: 

F'rom (NP21) and (NP27) we obtain 

Dali  = -2 (jï - 2p - 27 - 27) 2 ( - 4 ~ ~  - 6iPi1)ct (4.58) 

Applying D to (4.57) three times succe~sively~ using (4.58) and (4.59), we obtain 
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The solutions for the system formed by these last three equations, together with (4.57) 
are easily obtained by gsolve and yield 

Rom (NP13), 
b p  = - 4 é ~  - 1 - @21. 

Using (4.65) and (4.66), (4.56) now becomes 

Solving this equation for and substituting in (NP18) we find 

Solving this for QI1 and substituting in (NP9) we get 

which is impossible. 

Let us consider again (4.42) in the case p = (2/3)ç. From I I I l i ,  III02 and V22, we 

have, respectively, 

By using (4.71) and (4.72) in Vii to eliminate Da and q2 we get 

By applying D to the previow equation two times successively we obtain (after discarding 
factors in c): 
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By applying 6 t o  (4.72) we obtain a fourth equation in the same variables: 

t 4  = (3087 - 353F - 8 8 t ~ ) & ~  + 1221++ 242a + 484s. (4.76) 

By applying gsolve t o  the set { t l ,  t2 ,  t3, t4 )  we find that 

Conditions IIIoo and IIIoi now become 

From (NP6), (NPS), (NP15) remain the same as (4.52), (4.53) and (4.54) while (NPl?), 
(NP21) and (NP27) imply 

Expression (4.79) now becomes 

Applying D to this equation two times consecutively, we get 

By applying grobner to (4.83), (4.84) and its complex conjugate, and (4.85) we obtain 

Using (4.86) we obtain from (NP13), 

Equation (4.65) now becomes 
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Solving this equation for ü and substituting it in (NP18), using (4.87) (4.88), we obtain 

Substituting in (NP9) we get 
6 5 - - -4232 = O ,  
5 2 

which contradicts (4.72). Thus, 
p = O ,  

and we now go badc to (4.30). From III l1  and IIIi2 we have, and 

We notice now that, according to (B.101) and (B.113), equations (4.8), (4.12), (4.21), 
(4.8), (4.92), (4.93) are conformally invariant. Thus, we have exactly the same case that 
was already discussed, for the self-adjoint scalar equation, in Chapter 3 (cf. (3.21) and 
the discussion that follows). Thus, the remaining gauge freedom is used to set 

E'rom the N P  equations we now obtain irnmediately: 

and 

Thus, we have proved the Iernmas of Anderson et al. [7] : 

Lemma 4.1 For the non-self-adjoint scalar wuve equation of the form (4.1), on Petmv 
type III space-times, the necessary conditions I I ,  I I I ,  IV, V and VI together wàth the 
assumption that the Maxwell spinor q 5 ~  às nonzero, imply  that the= exists a spinor dyad 
{oA , L ~ )  and a conformal trnnsfomnation such that 

This proves Theorem 4.1, as can be verified fiom the following lemma, proved by Carmi- 
nati and McLenaghan (221: 
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Lemma 4.2 If. for a y  space-tirne, t h e n  Quts a spinor dyad {oA, L ~ )  and a confonnal 
transfomation such that 

then every repeated principal nul1 vector field of the Weyl tenror is r e c u m t .  

We now proceed with the proof of the Main Theorem, using the necessary conditions 
conditions (4.97). Let us assume initidy that apn # O. 

E'rom Ilol, Iloo, IIIlol (NP6) and (NP25) we have, respectively, 

%y adding (NP22) to the complex conjugate of (NP23), and solving for D912 we get 

Subtracting (NP24) fiom (NP29) and solving for 8911 we obtain 

&2 = 2(-p + * ~ I P  - P h )  , (4.106) 

Adding (NP24) to two times (NP29) and solving for Dez2 we get 

By substituting (4.100) into IVlo we find 

Using (4.107) and (4.lO8), Vzo and VIo3 can be written respectively as 
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The denominator -h2 + 4 in the expression above must be nonzero, since & cannot be 
constant. Otherwise, from (4.lOO), we would have P = 0. 

In order to determine further side relations we stU need to find the Pfaffians da, 
and br, in terms of (ia. Fkom (NP6), (NP7), (NP8), (NP9) and (NP12) we have 

Using (4.104) and (4.107), we now evduate the NP commutator [6, D]<PZ2 - [A, to 
obtain 

From [A, we obtain 

Substituthg (4.119), (4.118), (4.102), (4.112), (4.113), (4.114) and (4.115) into (4.117) 
we obtain 

~ ~ = - E ~ - ~ F ~ - ~ D P - ~ P + ~ T T - ~ ~ P ~ ~ .  (4.120) 
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Ushg (4.99), (4.100), (4.108), (4.114), (4.116) and (4.120) in the commutator p, 
and solving for D p  we obtain 

The explicit fomi of DA can be obtained by substituting (4.113) into (4.109) and (4.110): 

From V12 we get 
D7r=0. 

We have now determined di P f a a n s  needed for finding new side relations, using 
integrability conditions. Before we proceed let us go badc to (4.111) and introduce a 
further simplification by expressing tp2 in te- of 32, 

- 

Substituting (4.124) into the numerator of the complex conjugate of (4.111), we find 

Frorn the NP eornmutatot [z, q(a  + 2n) we get 

It follows from (4.124) that the numerator 19 n + 10 a in the preceeding equation must 
be non-zero. Solving this equation for we obtain 
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where, for now, we assume that the denominator in the expression above, 

Evaluating 642 + 242B = O (cf. Eq. (4.104))) using (4.124), Rand solving for Qll we 

find 

where we assume, for now, that 

Evaluating the cornmutators [6, bJp and [6,  6]&, and solving each one for $a we find, 
respect ively, 

where we assume, for th2 moment, that 

By subtracting (4.131) from (4.132) and soIving for <Pl1 we have 
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where the denominator of (4.135)' 

is assumed to be nonzero for the moment. 

Subtracting (4.127) fiom (4.129) and taking the numerator we find 

By subtracting (4.129) from (4.135) and taking the numerator, we find the third side 
relation: 

S3 := -9374472 x2 a2 7F - 4687236 ir2 a2 a + 6137076 ir37$ + 5150178 n 3 p z  

- 179600 aa4 - 2128896 ZT a - 580608 p2 =a2 + 686160 8 a a 3  
- 1951488 p2 a x 2  + 4189824~&~ ,O + 4040184 a2 *FE 
+ 5272368 rr a' ifp + 9852984 n2 a jip + 8913384 r2Ba/3 

+ 6244920 7r3p p - 1505080 ir a3 a + 940320 a3 FE - 3010160 n d  ii 

- 3295930 n 4 5  - 12877972 an37f - 6438986 n 3 a a  - 6591860 r 4 ~  

- 359200 a' T + 7909932 cm2 PZ - 1689984$ a2 /3 - 20736 a' TB* 

- 69696 x2 7fp2 - 76032 rra 3P2 + 646560 Da3 /3 - 6234624 rrp2 a 
- 5749920 r 2 @ P  = 0. (4.138) 

We can elimuiate one complex variable by defining new variables zl and 2 2  by 

The side relations now assume the form (modulo non-zero factors) 
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Applying gsolve to the set of equations formed by S2, S3, their cornplex conjugates, 
and SI, we find the the o d y  possible solution for which zl # O and 2 2  # O is given by 

By substituting (4.144) into any of the previous expressions for we fhd that Qll = 0. 
Using this and .rr = -a 6/11 in Vll one gets 

It is easy to verify that (4.145) and the first equation in (4.42), now given in the form 
1 0 8 9 ~ ~  - aE = O, imply that a = P = 0. 

Let us consider first the cases in whi& each one of the denominators d l ,  dz, d3, d4 

and ds, given respectively by (4.128), (4.130)~ (4.133), (4.134) and (4.136)~ is zero. 

(i) dl = 0 

F'rom (4.128) we have, in terms of the variables 21 and 2 2 :  
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Since the numerator of (4.127) must be zero too, we have 

Applying gsolve to the set of equations consisting of (4.146)~ (4.147), their complex 
conjugates, and Si = O (cf. eq. (4.141)) we find that ail possible solutions require that 
2 2  = o. 

(ü) d, = O 

n o m  (4.130) we have 
2 3 0 ~ ~  +437- 372== O .  

Since the numerator of (4.130) must also vankh we have . 

Applying gsolve to the set of equations consisting of (4.148), (4.149), their complex 
conjugates, and Sl = O we find again that ail solutions require that z2 = 0. 

(iii) d3 = O 

Solvïng d3 = O for +11, and using the variables zl and 2 2 ,  we find 

By subtracting (4.150) from its complex conjugate we obtain 

Subtracting (4.150) from (4.127) and taking the numerator, we get 
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An additional side relation is obtained by subtracting the copiplex conjugate of (4.150) 
fiom (4.129) and taking the numerator of the resulting expression: 

Applying grobner to the set consisting of E2, its cornplex conjugate, El, E3 and Si we 
find that this system aclmits no solution. 

When the denominator of (4.132) is zero, d4 := a + 27r = 0, its numerator must be 
zero, implying that a = P(443/3). This, on the other hand implies irnmediately, from 
Si = O (cf. (4.125), that P = 0. 

In terms of variables z~ and 2 2  the equations for the numerator and denominator are, 
in this case, given respectively by 

Applying gsolve to the polynomial system defined by the systern of polynomials defined 
by (4.154), (4.155),their cornplex cojugates, and S1 = O, we find that there are no possible 
solutions. 

Next, we shall prove that if either a = O or P = O or a = O then we must have d2 = 0. 
We notice that this proof is concerned with a case that is more general than that one 
considered by Anderson et al. [7]. They have used the assumption a = f i  = n = O as the 
starting point. 

Let us begin with the case a = 0. 

(i) a = O . 
In this case, from (4.101) and (4.116), we have 

Rom the commutator [x , qD we now obtain 
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Let us suppose f i s t  that P = O,  then = O, from (4.157). From (NP25), a = O. Rom 
IIoo and n/ro we get 

a h = o ,  @ , = O .  (4.159) 

Rom the NP equations, 

An interesting relation cornes from I l loo:  

Thus, we must now determine &p. Rom the cornmutators [if, A], [6, A], we obtain 

Applying 6 to this equation, using (4.163), (4.161) and (4.160), we obtain 

On the other hand, from Vlo, 

Rom these two equations we can determine bp: 

where, obviously, 32 + 5dz # O. Substituting this Pf&an in (4.162) we obtain 

Solving this equation for we obtain 

where, for now, we suppose that the denominator of the previous equation, 
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is nonzero. The Pfaffian 6X is now determined, since from (NP13), 

Now, fiom VIol we have 

Applying 6 to (4.172) and using (4.163), (4.167), (4.168), (4.169), and (4.171) we find 
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Defining two new real variables, y1 and y2 , by 

we fmd that the real and Unaginary parts of (4.173) can be written respectively ao 

Applying gsolve to the system of equations formed by (4.175) and (4.175) we find the 
set of five possible solutions: 

RI := [ ~ z ~ ~ i ] ,  (4.176) 

& := [YI ,  -3568 + 802200 y24 - 23416 yÎ2 + 299025 y26], (4.177) 

RJ := [,, 30375 - 4280 y12 + 312976 - 1390050 y14], (4.178) 

R4 := (13896 yz2 + 24660 y12 + 1211,44562960 y: - 4 9 7 8 1 3 0 4 ~ ~ ~  + 542891, (4.179) 

The solution RI is of course a direct contradiction and R4 is ipipossible, since it  does not 
admit any real solution for y2. The rernaining solutions requise further analysis, since 
they can lead to real solutions. Using the fact that 42 is constant we have A 4 2  = O. The 
condition Voo now becornes 
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Applying 6 to this equation, using (4.ll9),  (4.161), (4.16?), and the second order Pfaffians 
&(Ar), 6 ( A ) ,  6 ( A p ) ,  b(Ajï), obtained fiom the corresponding commutators we find 

On the other hand, substituting au calculated Pfaffians into VIol, and taking its complex 
conjugate, we have 
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Solving (4.184) for 6X we find 

where the denominator in the above expression, 

e2 := 207 4z2 32 + 300 4 2  + 243 42 &' + 24'7 32 , 
is supposed to be non-zero for now. 

Substituting the previous expression for 6X into (4.183) gives 
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4.2 Proof of the Main Theorem 

Applying 6 to  this equation we finally obtain 

In terms of the real variables y1 and y2 defined in (4.174), the real and imaginary parts 
of (4.188) have the fonn 
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Applying gsoïve now to the set of equations {NT, N i ,  L, , Li) we find that the only 
possible solutions are given by 

TI := [Yi j YZ] l (4.191) 

T2 := [2460oy? + 138961~: + 1211,990288y,4 + 2135768~: + 182405I. (4.192) 

Obviously, the set T2 adrnits no real solution. 

Let us now suppose that the denominator of (4.169) 1s ' zero: 

This also implies that the numerator of (4.169) is zero: 

In terms of the real variables (4.174) the real part of (4.194) have the form 

which Ieads to a contradiction, since it admits no real solution. 

Let us consider now the case when the denominator factor e2 of (4.185) is zero: 
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In this case the numerator of (4.185) is also zero: 

fi := 8775 &3 425 + 780 425 & 
+ 62100 4z4 &' + 68745 4z4 $22 - 2028 + 577260 d 2  $23 
+ 3364 4z3 $2 + 583740 4z2  + 242436 422 - 6448 422 
+ 11088 42 qZ3 + 20128 42 $2 - 347760 &* + 35040 & 2  = 0. 

The real and imaginary parts of (4.196) are @enl respectively, by 

The real part of (4.198) has the t o m  

The application of gsolve to the system of equations forrned by (4.199), (4.200) and 
(4.201) shows that the only possible solution is y1 = O ,  y2 = 0, which is a contradiction. 

Let us now go back to (4.158) and consider the case in which Qili = O. We asurne 
that B # O, since the case p = O , 9 1 1  = O was already considered. 

Suppose initially that n # O. From IIl1, IVlo and III lo we have 

From the NP equations, 

Rom the commutator [al we h d  
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Rom the commutator F, 6]+2 we now find 

Since we are assuming 7r # O, we can solve this equation for 6. Substituting in VZ0 we 
find 

- np=O, (4.212) 

which contradicts the assumption. 

Let us now consider the case in which /3 # O and x = O. From Vza, we find 

a contradiction. 

(fi) 7r = O .  

Here we consider a # O, since the case a = O,  n = O waç examined before. Let us 
assume f i s t  that @ # O. Then, from (4.100) we must have 922 - 4 # O. Equations (4.111) 
and (4.125) now imply, respectively, 

Substituting (4.lOO), (4.101) and (4.108) into (4.216), and solving the complex conjugate 
for 6a we obtain 

Solving (4.214) for Q;z and substituting into (4.217) we h d  

However, from (4.132), - 
6a = o(157P - 30) , 
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implying ,& = O, a contradiction. 

Let us suppose now that #3 = O. Rom IIIol, 

From the NP equations 

Substituting these Pfafians into (4.220) we fmd 

= o .  

The commutator [6, 6]32 (cf. (4.132)) gives 

- 
Le., 4 2  = #2. Equation (4.219) becomes 

and from Vll, 
a ~ ( 4 ~ ~  - 4) = 0 . 

From IIIoo, and (NP15), 

Since d2 is constant VO2 now becornes 

Using (4.224), (4.226) and (4.227)) this equation becomes 

or, since ~ $ 2 ~  = 4, 
a(-8 + 3sZ1) = 0. 

However, trom the NP equations, 
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so a = O ,  which is a contradiction. 

( i i i ) B = O .  

We now suppose that a # O,  since the case a = O ,  P = O was dready considered. 
Rom the NP equations 

6a = aai + 
6r = Dp - n n f ~ r a t ,  

D ~ = c x W + ~ ~ ~ .  

F'rom (4.1201, 
D ~ = R X - @ ~ ~ .  

Thus, IIoo and IVlo now become 

642 = 0, 
dS2 = -2&a + 4F42 + 2 4 2 ~ .  

Thus, using these Pfafnans in the commutator r, we find 

gl := 2 a ~ 2 a - 4 ~ a & 2 - 2 ~ & a - d 2 @ 1 1 + 8 ~ i i 4 2 + 4 ~ ~ 2 ~  
- 

-#2@tl + 4 a ~ t # ~  = 0 .  

From VsO and V12 we have, respectively 

- 1 6 d ~ ~ a i i ~ -  1 2 4 2 ~ ~ ~  + 3 2 ~ A -  32?iZ + 64ai?F+ 1665+480i2 

- 8 + 2 2 ~ X + 8 + 2 2 n Z - 4 4 2 2 6 ~ = ~ ,  

4 d 2 b a ~ -  8 n Z @ 2 0 i - 6 6 a ~ 2 ~ + 1 6 ~ ~ F 4 2  +8DX+2E - - 
+ 4 ~ 4 ~ 6 a + 8 ~ i + ~ d a -  1 2 z i b 2 ~ ~ + 8 n & ~ ~  - 1 6 ~ ~ ~ 4 ~  

- 2 + 1 1 & ~ -  26@11$2rr- 30a2&ZF- 127F&a2+28ir2ZF& 

+ 2 4 r S 2 r 2  + 6 ~ ~ ~ # ~ ~ + -  2 4 ~ 2 a 2 ~ + 4 8 i i ~ 2 ~ 2  - 4 a & @ 1 1  

+ 6 ~ n & a + 1 2 ~ n # ~ a -  1 6 ~ a a &  

- 3 8 ~ d ; ~ ~ a + ~ ( h $ ~ ) a = 0 ,  

where the second order PfafEan D ( A ~ ~ )  c m  be determineci fiom the NP commutator 

[A,  ~ 1 3 2 :  
D(A&) = - 2 ~ 7 &  + 4rFd2 + 2?r42Q. (4.241) 



4.2 Proof of the Main Theorem 92 

Solving the complex conjugate of (4.239) for DA and substituting it into (4.240) we obtain 

Applying gsolve to gl, g2, and their complex conjugates, we obtain the following set of 
possible solutions: 

If 42 = & we have from (4.238) and (4.239) that ~ 9 5 2  = 0, so x = O = 0, a contradic- 
tion. 

Ifcr+27r = O and QIi  = O, we obtain the corresponding forms of 6&, 60, Dp, calculate 
the the second order Pfaffian D(A42) from the respective commutator, and substitute 
them into VIl to find a = ?r = 0. 

What remains is solution K3. If a = O we have immediately that 92 - T2 = O ,  a case 
that waç considered above. So, taking sr # O, we introduce the variable xl := a/r. Thus 
this solution implies 

Thus, we can eliminate z l  in terms of 42: 

At this point, the simplest attempt to close this case would consist in using (4.247) 
and (4.248) to eliminate and X I  f h m  Vll: 

- 
Since the case 42 - d2 = O 
relation 

was already considered, we find that 952 must satisfy the side 
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However, this equation is not restrictive enough. It is also recurrent under further appli- 
cations of 6 to it. Thus, we still need one more side relation. W e  observe that Vo2 has 
the form 

Let us determine al1 Pfaffians appearing in the expression above, beside those found 
previously. From (NP15), (NP7) and the commutator [b, ~ 1 3 ~  we have, respectively: 

The Pfaffians DA and DP can be eliminated using (4.239) and (4.235), respectively. The 
terms containing 6a and cancel themselves. Finally, from IIIao, 

After al1 substitutions, (4.252) takes the form 

Using (4.247) and (4.249) this equation assumes the form 

From (NP25), 
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Substituting this expression into (4.258) we get, h d y ,  

i.e., & = O,  a contradiction. 

Thus, we have proved that the assumption that AIi,j # O leads to a contradiction. 
So, the necessary conditions for the vaiidity of Huygens' principle imply that we must 
have Hij := A F , ~  = O. The last step of the proof requires the use of the foiiowing lemma 
[38] : 

Lemma 4.3 Every scalar wave equation of the form (4.1) for which Afi3 = 0, is  related 
by a triuial tmnsfomation to one for which Ai = 0. 

The proof consists in observing that = O implies that the differential form A =  id^' 
is closed. Thus there exists locally a function h such that A = dh. It follows that for 
transformation (bc) (cf. Subsection 2.3.1) with A = e x p ( - h / 2 )  one has, according to 
(2.125)' = O. 

Fkom necessary condition I (cf. (2.181)) we now have B = R/6, so the wave equation 
is conformally invariant. 

Thus, the Main Theorem is proved. 



Chapter 5 

Maxwell's Equations and Weyl's 
Neutrino Equation 

Introduction 

In this chapter we consider the problem of determining the vaiidity of Huygens' principle 
for Maxwell's equations and Weyl's neutrino equation in Petrov type III space-times. 
We çtart by reviewing the theory of the initial value problem for both cases and the 
determination of the necessary conditions. The review will follow the papers of Günther 
and Wünsch [39] [41] [82] [84] [85]. Finally we shali prove the main resdt of this chapter, 
that states that there are no Petrov type III space-times on which Maxwell's equations 
or Weyl's neut rino equation satisfy Huygens' principle [63]. 

5.2 Huygens' principle for MaxweIl's equations 

The problem of the validity of Huygens' principle for the solutions of Maxwell's equations 
for p-forms in a curved space-time was considered for the first time in 1965 by Günther 
[39]. These equations are given by 

where w,, is the pform 
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The symbols d and 6 denote the exterior Merentiation and codifferentiation operators, 
respectively, given by 

(dw,)i, -.-ip+, = @ + i)a[il~i2...ir+1 J , (5.3) 

For p = 2 and dimension n = 4 we obtain the Maxwell's equations for the electromagnetic 
field: 

aIawai=O, V3wja=o. (5.5) 

The LaplaceBeltrami operator in this case is defined as 

The initial value problem for (5.1) was stuaied by Duff [30] in 1953, using the Riesz 
kemel formalism [71] , and by Lichnerowicz [55] in 1961, using the distribution formalism. 
Günther uçed the first method to establish the first necessary condition for the validity 
of Huygens' principle for (5.1) with n = 4 and p = 2, which is the vanishing of Bach's 
tensor (2.201). 

5.2.1 The Riesz kernel 

Let I'(z,c) denote the square of the geodesic distance between two points z and ( (cf. 
(2.134) in a n-dimensional pseudo-Riemannian space Mn. The Riesz kernel is defined 
by the double p-tensor: 

where X is a complex parameter, r ( X )  is the Euler gamma function analytically contin- 
ued to the complex plane, and v , )  are double p-dinerentid fonns given by 

The symbols Akil ..+ , ,, ..,, denote the components of the double p-fom vF) and the 
symbol " is used to denote operations relative to the variables ta. It can be shown [30] 
that Vp must satisfy 

QVp(z, E ,  + 2) = V,(Z' €, A) - (5-9) 

' we denote the Euler gamma function by a boldfaced gamma to distinguish it fkom the square of the 
geodesic distance 
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Substituting (5.7) into (5.9) and equalling the coetIieients of the powers of r to zero, we 
obtain the foilowing recursive system: 

where the covariant derivatives are relative to za, and V,V[ is the dinerential form whose 
coefficients are given by VaAki,..c ,,,... ,,(z E )  (with A ,-.-,-.. considered as a covariant 
t ensor of rank p) . L (z , E) is given by 

Equations (5 .IO) and (5.11) can be considered as ordinary differential equations (transport 
equations) dong the geodesic iine between z and ( [71] (421 [32]. For p = O,  v,(') is 
uniquely determined by (5.10) and the initial condition V~(O)(E,O = 1. Notice that vJO' 
can be identified with the U defined for the self-adjoint scalar equation (A' = O) (see 
(2.40)). It can be shown that for vP) we have the following initial condition: 

white v ' ~ ) ,  k > 1 is determined by (5.ll), together with the requirernents for regularity 

at z = E.  This shows that (5.11) admits a solution systern V?)(Z, E )  , which is analytic 
in z and E.  When 2 and ( are in a sufficiently smail neighborhood U(() and 8 ( X )  > p 
the series in (5.7) converges absolutely and is regular in z, [ and A. Thus Vp(x, cl A) for 
x, < E U, ï > 0, and X arbitrary, is an analytic function in z, F and A. If R(X - n)  > 0, 
then V&, E ,  A) is also regular on the characteristic surface, r ( x ,  E )  = O. If, however, 
R(A - n) < O, then V,(z, 6, A) is singuiar for r(z, [) = O. One exception occurs for 
X = n - 28, q = 1,2,. . ., when Vp(z,  E,  n - 2q) is regdar for ail x, C E U. 

The Riesz kernel also satisfis the following usefd relations [30]: 
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5.2.2 Cauchy's problem for Maxwell% equations 

Let us consider an n - 1-dimensiond space-like surface S of class Cm, with parametnc 
representation 

2' = za(ui) i =  1,2) ...Jz- 1 -  (5.18) 

Using this pararnetrized representation for the coefficients of s form wp,  we obtain the 
tangential part of wp, denoted by ( w , ) ~ ,  gioen in terms of the variables ui and dinerentials 
dza. If we substitute dza = %dui into (u,)~ we obtain a form ( q , ) ~ , ~ ~  in the variables 
ui and differentials dui. The class of these forms is denoted by M ( S ) .  The initial value 
problem for Maxwell's equations is the problem of hding a form u,, 1 5 p < n - 1, 
satisfying (5.1)  for given ( w , ) ~ .  This problem is also equivalent to the following: For 
given ( w ~ ) ~  h d  a form w,, 1 < p < n - 1, satisfying 

The coefficients of ( w p ) s  (the initial data) are not arbitrary, but on account of (5.20) 
must satisfy 

The initial value problem can now be stated in the following marner: 

Given on M ( S )  the p - f o m  ep = (wp)s,ds and a (n - p)-form = 
( + w ~ ) ~ , ~ ~ ,  wïth dûp = 0, d a - ,  = 0, f i d  a p-form wp sutisj'&ng the equations 

It has been shown by DUE 130) that the above problem has a unique solution. 

Now we can state Huygens' principle as follows: 

Huygens' principle is said to be valid for Maxwell's equations (5.1) if for any 
space-like surface S and any point x , wp (x) = O for all pe&ible choices for 
the initial data on S, with support in D* (2) n S. 
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5.2.3 Necessary and sufficient condition 

For the initial value problem, let u s  choose x in a neighborhood of S, suppû,, 
suppl l , - ,  E D ( z )  fi S, Then, fiom the Riesz integration method the following repre 
sentation is found: 

where the integration variable is E. Ernploying the above repreçentation, with 

and using partial integration, Günther [39] proved that a necessary and sufficient condition 
for the Mlidity of Huygens' principle Maxwell's equations (5.1) of order pl 1 5 p 5 n - 1 
is 

a V p ( 4 2 )  = 0 1 (5.26) 

for al1 z and E.  Condition (5.26) is *O equivaient to 

A detailed proof can be found in [39]. 

From this result Günther [39] obtained the following immediate consequences: 

(i) n is odd Huygens' principle is never valid for (5.1). 
(ii) If n is even and the metric is Minkowskian then Huygens' principle is 
valid for Mc~xwell's equations (5.1) for any order pl satisfying 1 5 p < n - 1. 
(iii) If n is even and the space-time is conformally flat, then Huygens' principle 
is vaiid for Maxwell's equations (5.1) of order p = n/2. 

The essential reason for the restriction in (iii) is that Maxwell's equations (5.1), for n 

even, are conformally invariant only for p = n/2[39]. 

5.2.4 Necessary conditions for n = 4 and p = 2 

When n = 4 and p = 2, equation (5.1) represents Maxwell's equations for the electromag- 
netic field and Huygens' principle is satisfied if the metric is conformaily flat. Explicit 
necessary conditions for the validity of Huygens' principle can now be obtained from 
(5.26) or (5.27). Günther [39] considered the second equation in (5.27) : 
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with 

The coefficients A k i , a ( ~ l  () of can be developed into a Taylor series around 6: 

where = z' - and the following notation is used: 

As in the case for the scalar equation, covariant Taylor expansions are here determined 
in a system of normal coordinates z', with ongin at a fked point Co. The equalities that 
are valid only in this coordinate system are denoted by g. Thus 

From (5.10) a differential equation for A,<, (2, E )  can be obtained in normal coordinates. 
Using the initial condition Aoil, (c, 6 )  = gk(c), from (5.13)' the coefficients î,, , aia,;, , . . . 
can be specified in terms of the metric and its derivatives. In order to expand (5.29) up 
to three terms, we need to find bila, bbl;, , biPlilil and cil,. 

Using (5. I l ) ,  a differential recurrence relation between A, ;,,(xl1 () and Aoil,(xl, E )  
is induced. Since v,((') does not appear in (5.29), we need only the first four terms in 
the expansion (5.30). The recurrence relation allows the determination of li,=, biaIi,, 
bialilà2 and qla(C) in terms of the metric and its derivatives. The calculations are lengthy, 
requiring the use of the conformd invariance of certain tensors. Details can be found in 
Günther's paper [39]. The result is 

O 

This implies that Lab= O and so, the conformally invariant Bach's tensor, Cab := Lo[b;c] - 
f ckab' L~ vanishes. 

Thus, we have the following result [39]: 

A necessary condition for the validity of Huygens' principle for the homo- 
geneous Maxwell equations for the electmmagnetic field is the vanishing of 
Bach 's tensor. 
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5.2.5 Determining necessary conditions using conforma invariance of 
tensors 

The vanîshing of Bach's tensor and other higher order necessary conditions for the valid- 
ity of Huygens' principle for Maxwell's equations can be determined by using general 
properties of tensors which are symmetric, trace-free and conformally invariant. W e  s h d  
surnmarize the method by following the paper of Wh& [82]. We mite K ( x , c )  (cf. 
(5.28)) as 

K ( t l  () = K ~ ~ ~ ~ ~ z '  A d ~ j @  A &', (5.37) 

and 

Thus, from (5.28)' Huygens' principle is satisfied when KGaBlil -..ir (<) = O, Vr E EN. Let 
Ç denote the set of ail metric tensors g E Cm defined on M 4 ,  

p. := { for s = O 

g E GIQ? '+ {O, 1, - - -,s - 1)VC € MM' : K+gji,..c(() = O) fors E N\{o) . 
(5.40) 

Wünsch [83] proved that ( M 4 ,  8.) defines a conformal class of Riemannian spaces. It 
can also be shown that for s E N and g E G, we have 

We now define an additional tensor 

K j S l  . , if s is even , 
Eifiil ...;, := 

K ; , ~ ~ ~ . . ; ,  , if s is odd . 
In [82] Wünsch proved the following facts: 
1. Fors E N and g E Ç, we have 

2. Ejail ..Ga in the class (M4, Ça),  are conformally invariant tensors with weight -1. 
3. EjP;, ..;. is s-etric: 

Ejgiii4 = E(joit -i.) 1 (5.44) 

'From now on, by Maxweil's eqyations ne mean the phys idy  relevant equations (5.1), with n = 4 

and p = 2. 
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4. E;, i, ..<, P trace-fie: 

~ j ' ~ ~ ~ i ~ - - - i , - ~  = O . 
As consequence, the foliowing result foilows: 

Let Ejd<l..i,' s E N, be symmetric, tmce-free, in the class ( M 4 ,  Ç) of con- 
formally inuariant tensors of weight -1. Then Huygens' principle is valid for 
Maxwell's equationr (5.5) when the follom-ng equation is satisfied: 

This result enables us to determine explicit necessary conditions, by studying the possible 
representations of E;, ..;, . It was shown by Wünsch [83] that if Ei, ...;, is a rational integral, 
syrnmetric, trace-fiee tensor, in the class (M4, Ç a )  of confokally invariant tensors of 
weight -1, then the following properties must be satisfied: 

where 
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These classes are such that XI, 3Cz E Gr. Furthermore, with 

we define, for any null vector ka, the scaIars 

V Y 

M (k) :=Mi, ...< kit ..& (v - l , 2 , 3 ) .  

By developing Ei, kil - 4  , with respect to  a 
we obtain, for g E R2 [41], 

2 1 
In the dass W2, M (k) is zero, but not M (k) 

1 
0 1  = - 

336 ' 

Calculating now Ei,...i4 kit '+ for g E R2, and 

normal coordinate system, in Taylor series 

3 
and M (k), in generd. Thus, 

a3=0. (5.59) 

using (5.59), Wünsch [82] has shown that 

'1 

Thus, from these results and from (5.46), we obtain two necessary conditions for the 
validity of Huygens' principle: 

The generating set for s = 5 was found by Gerlach and Wünçch [36]. The necessary 
condition for the validity of Huygens' principle in this case was par t idy  determined by 
Alvarez and Wünsch [3]. We shall present the erplicit form of this condition later. 

5.3 Huygens' principle for some spinor equations 

Using Riesz' integration method, Wünsch [84] [85] [86] has formulated the Cauchy p r o b  
lem for several genemlited spinor equationç. In many cases, he found a representation 
formula, and was abIe to formulate the corresponding necessary and sufficient conditions 
for the validity of Huygens' principle. We shaIi follow Wihsch's papers and Alvarez's 
thesis [3] to make a brief summary in this section. Complete details can be found in these 
papers. As we shaU see, the spinor approach can deal not only with the Weyl neutrino 
equation, but also with MaxweIl's equations. 
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5.3.1 Definitions 

Let S = S(M4) be a complex vector fiber bundie on M4, 'whose fiber on each point 
E E M~ is a two-dimensional vector space S, over the complex field C. Let S' be the - -  
dual vector fiber bunde to S, and S (S') the antidual vector fiber bundle to S (SR). The 
elements of 

P P - n  rn- 
S g  : = @ S 8 S @ S n 8 S ' ,  @ , q , n , m ~ N )  (5.62) 

are calIed spinors of type (z). Ln other words, a spinor at  x E M4 is defined to be a 
point of S z  lying in the fiber over z. A srnooth spinor field e is a (smooth) crois section 
of SE. The coordinats of a spinor field with respect to a bui s  of S,W, are designated 

where the indices can take vales O and 1. 

Spinors with p + q + n + rn = 1 are called 1-spinors and spinors of type (z:) are 
called (n, m) -spinors. The set of al1 Cm (n, m) -spinors on M4 is designated by Sn,, . 
The set of all C" symmetric (n, m)-spinor fields on M4 is designated by S = {e E 

& 

sn.m leAI ..-An*, ...km - @(A,  .-.A,.,)(k, . . .A~))+ 
- - 

We define the first order differential operators M : S,, + Sn,i,m+l, and M : Sn, 4 - 
Sn-l,rn+i by 

The dinerential operators of second order Q : Sn,, + Sn,,, and Q : Sn-l,m+l + 
Sn-l,,+i are defined by 

Q : = M M ,  Q : = M M ,  (5.66) 

where n E N\{O) m E N. 

Usïng the operator M we can express some particular field equations. Let us consider 

For cp E Si,, , we have 
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cailed the genemlUed Weyl eqwtion The relativistic equation for a massless field of spin 
s is given by: 

(Mc)A~ ---A.-~ := v~,, (PKAI . --A,-~ = 0 r (5.69) 

where y E &O, and s = n/2. In particdar, for n = 1 (9 E we have the Weyl 
neutrino equation: 

K (My)* := VX <PK = O . (5.70) 

For n = 2, (p E Szlo), we have the homogeneous Maxwell equations for the electromagnetic 
field: 

( M P ) ~  := vXKPKA = 0 .  (5.71) 

The Riesz spinor kenels VA (x,  (, A) with respect to the operator Q are spinors on 
Sn,, (x , () @ Smln (2, O, dependent of a complex parameter A, and for all z , ( E R, (where 
R is a geodesically convex domain), whicà satisfy the relation 

with ~ ~ ( z , ~ ,  0) = O. For ( and x in a sufnciently small neighborhood V$~(X,<, A) is 
analytic. Thus, it can be represented as a power series in I' [30] [75] [84]: 

The spinor coefficients vSm rnust then satisfy the transport equations [71] [32] [75] [80] 

O for k = 0 ,  v j r v , v -  + (L + 2k)vP_n = 

where L = L ( x ,  c) 
The coefficient 

is given by (5.12). 

satisfies the initial condition 

y?m(~t  €1 = &n 9 

where 
.- 

(Cn")A1...An~ ,... X , ~ , . . - ~ , X  ,... $m Y,- B ~ l ~ , E ~ , ~ , ,  2, &x,xm 1 
(5 -76) 

with hatted indices referring to (. The coefficients e,, k 2 1, are determined by the 
second equation in (5.74) and by the the condition that each V,, remains bounded when 
x -t E.  If I' > O and 2 ,  6 E R the series (5.73) converges absolutely and the Riesz kernels 
V??(Z, (, A) are analytic in z, (, A. 

'The 0pMt0r Q and d dmmtivur in the foliowing formulas refér to (. 
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- 
Defining the Riesz spinor kernels v&(z, é, A) on Q S,-ll,+i the above rela- 

tions are again valid and the foilowing symmetry relations, obtained by Wiinsch [84] are 
çatisfied: 

5.3.2 Cauchy's Problem 

Let us consider a thredimensional space-Like surface F C M~ of claw Cm, with para- 
metric representation 

If 9 is a spinor field on M4, then ?:= pp on F is induced by the parametrization (5.80). 
The spinor field on F defined from Sm, is designated by &,(F). The Cauchy Pmblem 
for the equation My = O, rp E Sn,, is the foIlowing: 

Find a solution 9 E Snlm of Mp = O, for which 6 on F is prescribed. 

In order to obtain a representation for the solution of Cauchy's problem the use of Green's 
formulas for spinor fieIds is necessary. Let R be a bounded domain of M4 with smooth 
boundary 80. Then, for (pl ,g E Sn,, we d e h e  the scalar product 

where dV, is the invariant volume element in 2: E a, and 

Integrating the above expression and using Gauss' theorem, the Green's formula can be 

obtained [84]: 

e)n - (9, Me)n = - ln(%, e )ds= ,  (5  -84) 
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where 

Here r)i is the interior unit normal vector of a f l  and dS, is the invariant element of area 
of an. 

r Q  
Following the Riesz method, using (5.84) with g = M Y,:= MT/:~,, 0 = DF(<) := 

D - ( 0  n F, Wünçch obtained, by analytic continuation of A, as solution of the Cauchy's 
problem in the point <, the ioiIowing representation formula [84] [30] [75]: 

On the other hand, Huygens ' principle Lr valid for the equations (5.681, (5.70) or 
(5.71) i f  and only ~ for arbitnzrily chosen consistent Cauchy data which has support 
inside Ft, the solution y(€) of the enunciated Cauchy problem at  any point 6 vanishes. 

Wünsch [84] has proved using (5.87) that for Weyl's neutrino equation, Le. n = 1, 
Huygens' principle is valid if and only if for al1 z and (: 

If one defines 
s Q  

Wrn) (2, E )  := f M  vi, (2, c, 2)) m E N , (5.89) 

the criteria for validity of Huygens' principle become the following: A necessary and 
suscient condition for the validity of Huygens' principle for equations (5.68) and (5.70) 
is 

p ( z ,  C) = O (Weyl's neutrino equation) , (5.90) 

for al1 x ,  (. 

Let 

Wm (z, c) = O (Genemlited Weyl's equation) , (5.91) 

It was shown in [84], using (5.87), that: a necessary and suficient condition for the 
validity of Huygens' principle for the homogeneous Mazwell equations is giuen by 
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for all 2 ,  c. 
It can be shown that the conditions (5.90), (5.91), and (5.92) are conformally invariant 

[85]. The following relations are then satisfied [Ml: 

Let us consider the case of Weyl's n e u t ~ o  equation. In terms of the spinor field W:A(Z, 0, we define for r E N the trace-free syrnmetric tensor 

F'rom (5.90) it follows that Weyl's equation (5.70) sutisj?es Huygens'principle if und only 
i f  for k E N\O and for al1 ( E M 4  we have 

Let us define, (cf. (5.40)): 

for k = 1 , Ak := 
{ (P:EÇIVT(~{I  , . . . , ~ - ~ } V ~ ' E E ~ : W ~ ,  ...iK)=O) f o r k ~ N \ ( O ) .  (5.98) 

In [85] Wünsch has proved that: 

The tensors +il ..ik := (i)* w;, ...ik f i  E N\(O)) in AL a 4  n d ,  syrnmetric, 
trace-free, integer rational and confonnally invariant with weight -1.  

For the homogeneous Maxwell's equations (5.71) we define for r E N\{O, 11, 

for E = 2 ,  3Ck := 
{g E ÇlVr c { 2 , . . . , k - l ) V ( ~ ~ ~  = O )  fork > 2 .  

(5.100) 
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Thus, Huygens' principle i s  valid for Muzwell's equations (5.71) if und only i ?  for k E 
N\{O, 1 )  and for d l  ( E M 4  we have 

For this case, Wünsch [85] has proved that: 

The tensors Eii..+ := ( i ) *~ ; .~ . . . ;~  (k E N\{O, 1)) in 3tk are mai, trace-free, 
symmetric, integer rational and conformally invariant &th weàght -1. 

5.3.3 Necessary conditions 

We now refer to the discussion in Subsection 5.2.5. The results described in the preceeding 
Section irnply that the tensors Wil ..i, and Yi, must be decomposable as in (5.48) and 
(5.49). The vanishing of Bach's tensor as  a necessary condition for the validity of Huygens' 
principk, for both WeyI's and Maxwell's equations, follows immediately. The coeficients 
cr, can be determined by using the transport equations (5.74) and (5.75) together with the 
necessary and sufacient conditions (5.96) and (5.99). Taylor series expansions of tensors 
expressed in a normal coordinate system can be applied, in a procedure similar to that 
explained in Chapter 2 for the scalar wave equation. Using the weak field space-time aç 
a test metric, Wünsch [85] found the coefficients of the expansion (5.49) for Wi,. . i4,  to 

be al = -1/2520, a2 = 13/20160, a3 = 0. 

For r = 5 a five-index necessary condition is obtained. Using the results of Gerlach 
and Wünsch [36], Alvarez [3] was able to show that 

V 

where Ao, Xi and X a  are fixed real numbers, and the T;,..i, are trace-free, symmetric, 
conformally invariant tensors given by 
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A sirnilar relation is valid for Y;, ..+. The constant A. was determined in [3] and is 
nonzero for both cases. Thus the necessary conditions for vaiidity of Huygens' principle 
for the Maxwell's equations (5.71) and Weyl's neutrino equation (5.70) are given by ' 

( I I I )  Ci,i2=01 (5-106) 

1 2 3 

(VI') Ti, --G +cl Ti, --+ + ~ 2  Til ---is= O , 

(kl, ki) = (5'16) corresponds to Maxwell's equations, (61, k2) = (8'13) to Weyl's neutrino 
equation. The real numbers al and uz are fixed in each case. We note here that necessary 
condition I I I  for the conformaily invariant scalar wave equation (3.1) is given by (5.106) 
with (kl, kZ) = (3,4). 

5.4 Previous results 

Applying condition V I r  to a Petrov type N space-time Alvarez and Wünsch [3] [4] obtained 
the following result . 

Every Petrov type N space-time on  which Maxwell's equations or Weyl's neu- 
trino equation satisfy Huygens' principle i s  confonnally related to the gener- 
alized plane wave metfic space-time of McLenaghan and Leroy [59]. 

Later, Wünsch [89] (see also [88]) solved Hadamard's problem in this case, obtaining the 
following result: 

Euery Petrov type N space-time or C-space-tinte5 on which Maxwell's equa- 
tions or Weyl's neutrino equation sut* Huygens' principle is confonnally 
related to the exact plane- wave space-tirne (1.12). 

In Petrov type D space-times Hadamard's problem was solved by Carminati and McLe- 
naghan [22], Wünsch [87], and McLenaghan and Williams [62]. The result can be stated 
as follows: 

'in our conventions, the Riemann tenaor, Rica tensor and the Rica scalar have opposite sign to those 
used by W h c h  and collaborators [85] [3] [4]. 

'C-space- times are defined by the property Va Cascd = O. 



5.5 Main Th eorem 

There exist no Petmu type D space-tintes o n  which Maxwell's equations or 
We y1 's neutrino equation satisfy Huygens' prinçiple. 

5.5 Main Theorem 

The main results obtained by Carminati and McLenaghan [22] for the conformally in- 
variant scalar equation on Petrov type III space-times as stated in Theorerns 3.1 and 3.2 
of Chapter 3 are also valid for Maxwell's equations and Weyl's neutrino equation. 

Maxwell's and Weyl's equations in P etrov type III space-tirnes was stated in Theorems 
3.1 and 3.2 of Chapter 3, also valid for the conforrndy invariant scalar equation. 

It will be proved here that conditions (3.7), (3.8) and (3.9) are supeduous, Le., they 
are consequences of the necessary conditions for the validity of Huygens' principle. The 
main resuIt of this Chapter is the proof of the following Theorem: 

Theorem 5.1 (Main Theorem) There ezkt no Petrov type III space-times on which 
Maxwell's equations (5.71) or Weyl's equation (5.70) satisfy Huygens' principle. 

5.6 Proof of the Main Theorem 

We shall use here the same method employed on Chapters 3 and 4. The explicit form 
of the necessary conditions is obtained by first converting the spinorial expressions to 
the dyad form and then contracting them with appropriate products of oA and L~ and 
their complex conjugates. The templates used for obtaining the dyad components of the 
necessary conditions are given in the Appendix E. 

It was shown in [22] that there exists a dyad O A ~  LA and a conformal transformation 
such that 

n = a =  p = r = é =  0 ,  (5.110) 

where c is a constant. The proof is similar to that illustrated in Chapter 4, when we 
treated the self-adjoint scalar equation, except for the fact that the paper by Canninati 
and McLenaghan [22] considers al1 three cases at once. Here we s h d  consider the cases 
for Maxwell's equations and Weyl's neutrino equation separately. 
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5 -6.1 Maxwell's equations 

We start by supposing that crp* # O. By contracting condition III with rMLBoAB and 
L A O B Z ~  (where the notation o ~ ,  ...A, = o ~ ,  . o ~ ,  , etc. has been us&) we get, respec- 
tivel y, 

h = O ,  (5.115) 

R o m  the Bianchi identities, using the above conditions, we obtain 

We can obtain useh1 integrability conditions for the above identities by using the N P  
commutation relations. Using (5.117), (5.118), (5.121), (5.116), (5.122), (5.123), (5.124) 
and (5.126) in the commutator expression [b, - [A, D]al2, we obtain 

From now on we shall consider both Maxwell and Weyl cases separately. We begin 
with Maxwell's equations, i.e., (kl, k2) = (5,16) in (5.107). By contracting condition V 
with L * ~ ~ s A ~ $ ~ ,  we get 



5.6 Proof of the Main Thearem 

Substituting (5.116) in this equation we get 

6(2T + â) = -627Fp - 39@ - 6- - 3a2 . 

From (5.125), (5.126) and (5.127) we obtain 

6 ( 2 ~ + a )  = 2ao i+aE-  6pn  - 3Pa - al1. (5.130) 
. . .  . 

Contracting condition V with ~ ~ ~ ~ 0 % * ~ # ,  using (5.122), (5.126) and the complex 
conjugate of (5.127), leads to the real expression: 

148iS11 + 152@ + 76[Dp + Dp] - 8ira - l04/@ - 8aZ - 2 3 2 5 ~  

+152plr - 8nZ = 0 .  (5.131) 

Using (5.129), (5.130), (5.116), (5.125), (5.126), (5.127) in la, q(a + 2.) = (a - p)d(a + 
27r) + (-5 + ,8)8(ar + 2r), we obtain 

- 20P+ll+ 

By eliminating Dp from (5.131) and (5.1321, we find 

where we are assuming, for now, that the denominator of (5.133), 

is non-zero. 

By substituting (5.133) into (5.131), we find an expression for Djï: 

We notice that (5.133) and (5.135) have the same denominator. So, in what follows we 
shall use the Pfaffians 60,  &r, and 68, given by (5.125), (5.126) and (5.127), respectively, 
and their complex conjugates, in such a way that they have aiI the same denominator. 
This procedure simplifies the expressions to be obtained from the integrability conditions. 
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Converting (5.108) to its spinorial form in the dyad basis, and contracting with 
, A B , ~ D E ~ ~ C D E  @, 

Substituting the expression (5.116) for 68 into (5.136), we get 

W e  observe that the terms (5.104) and (5.105) do not contribute to this component. 
Using (5.129) to eliminate 6~ fiom this equation, we have 

solving (5.138) for d a  yields 

Now, from (5.129), 
&T = -127-p - 80pa - 3 ~ .  

We have now a11 the Pfaffians we need to cornplete the proof. The integrability 
conditions provided by the N P  commutation relations can n8w be used. 

Let us onsider the NP comrnutator F, 6]a = ( P  - p)Da + (a - P)6(a) + (-a+ p ) L .  
Using the Pfaffians calculated previously, and solving for Qii,  we obtain 

where the denominator of the expression above, 
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is assumed to be non-zero for the moment. 

On the other hand, the commutator F,,61(a+p) = ( p  -p)(D(a+p) + (a -P)(~(Q+ 
17) + (-a + P)Z(a + B) gives the foliowing expression for 011 : 

*il := 8P(-8056Prâ - 533088 a - 17273-* + 7776 n'a - 9568p~ a 
+ 13294 arr E - 211556 aFn - 5035Paüt 5290 a2 Z+ 20672Bs 
+ 12920riaa - 65010?iu2) /(148960 ir2 + 10412 - 13047pa 
C42940 a2 + 162944 rra - 18564 rrn , (5.143) 

where we assume, for now, that 

Using the fact that = O, we obtain, from (5.143), a third expression for ail: 
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where we assume that 

The next step consists in proving that (5.141), (5.143), and (5.145) imply that a, /3 
and r are proportional to each other. In order to get a system with only two cornplex 
variables, instead of three, new variables are defined as foliows: 

By subtracting (5.141) fiom (5.143), taking the numerator and dividing by (8 + 521 - 
2;;) (5776q2a4~)) ,  we obtain 

By subtracting (5.143) fkom (5.145), taking the numerator and dividing by (8 + 5 x 1  - 
6) (5776m6?), we get 
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At this point we shall consider 21, 2 2 ,  q, as independent variables, and apply gsoive 
to the polynornial system formed by the polynomiak NI, K .  The four possible solutions 
are given by 

Vl := [42-3~+65~222,8+5~1], 

:= [2175607695654600868370 Z 7 2 2  - 244429060944194171242925 x 2 z x l  
-362016456337543432617920~~~-25492004395136420363950~~~~ 

- 33777552239002423460240 xz - 352210319977170626297190 zl 21- 
- 527515033185400238012371 @ - 372609773697867989940085 XI 21 
- 568758266358009596992694~+357242473687668404124275~~~ 
+529100974647178863056960~+421165196163010815629650~~ 

+ 6 l3523694569903050334320,7442 16713682OO x2 E~ 
- 372lO835684lOOO ~ ~ z z ~  - 595373370945600 t2= 
+ 202992871981785 + 309188233840256 q- lO87?0l35076600 ria- 
+ 408707348737250 x1 22 + 731690446259960 =- 363026773505 180 
- 558465136160528, 
139740 22- - 497365 21 - 799324% + 279480 22 - 1187280 X I  - 1879248 , 
43975 2: + 137900 zl + 1078241, 
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- 180544080 22 - 17865753288 si - 158418580 si --_23445716600 ZL 21 

- 7696469075 2: K~ 38482345375 X:E; + 30893730250 2: 
+ 1 IO13812625 x: + 1003413125 zz 2: ~ i :  + 3385996250 xz x: 

+ 51211999525 x:q2 + 16053417900 x2 x: + 4651759450 2 2  zi2 E 
+ 177479507850 2 : ~  + 140245780600 x: + 212140488080 zl 
+ 7133355840 z2 zl ZI + 272934958520 x 1 K  + 25260582880 z2 x1 
+ 79415365840 x ~ % ~  + 106967929856 + 13183919424 z2 + 41078949112$ 
+ l39XW56352 zf f 3612843312 Ex2, 427238747000 xz q2 
- 80593740760 X S ~  - 961615825940 5$ II + 72041680708 
+ 31587988349750 2: + 9360849735875 z: + 90434478667240 XI 
+ 26404464403460 21 21 + 549197297800 xl 22 + 64702426970096 
+ 18636073790528 =+ l397883OgO496 22 - 2547657512880 E', 
31185310 z2ZyzL + 52924196 xa= - 6814654-q - 716848880 X: 
- 440552505 X:= - 2156806048 zl - 1352366658 ~12;. - 45578530 xi 
- 1620399064 - lO386O37OO q- 90980056 g, 505750 02: + 149875 2: 5 
+ 1539520 XI + 440460 xi K + 116450 q x l  zi + 232900 zl q+ 1160352 
+ 3 17976 + 372640 + 186320 . 

The oaly sets where the solutions xl = const. and 2 2  = const. are not obvious are VI, 
and Vq. For VI, if we substitute zl = -8/5 into Ni we get 195z2e + 70215 = O ,  which 
is incompatible with the first equation of this set. 

We consider now the fourth and fifth equations in set V4, given respectively by 

Soiving (5 .l5l) for q, we get 
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By decomposing 21 into real and imaginary parts, x l  := al + i b l ,  where ai and b1 are 
real constants, we obtain 

Note that the denominator in (5.153) is non-zero, for otherwise bl = O and ai is -8/5 
or -2, in which case the numerator is not zero. The imaginary and real parts of the 
numerator of (5.150) are given, respectively, by 

Applying gsolve to these two equations we get 
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+ 622744?4933156500 a: + l29080l88237l3750 af 
+ 1132171938071875 al7 + 24562542110062592], 
116 bl2 + 1,4q + 71, [l48225 h2 + 40804,385 ai + 8181, 
[265225 bI2 + 6084,952 + 515 al], [6717299609435847\ 
94824830992201165680405029801540622591163634175\ 

8O757295393684357497O5674723O5374528SO lO3356992\ 

213754' + 6524656716421327074670655831371561677\ 

59961810634274525286395504982544348989403683041\ 

75846540367435906495438912914203000a~ + 1268436\ 
36848768527485589126510676549749821344243259063\ 

1757858644401918881902371130700206752?298652615\ 

32491267281522597038al + 4422585554549177527847\ 
32263068743767829966 llO34182618672625585lO63327\ 

89904909811686411081682293895778361714099659320\ 

2350aI3 + 11237211285977585777210502807916771300\ 

12135639384027821315066763423010850458738004101\ 

564759833322705547989100245959212495a~~ + 536656\ 
60951906154805215031233483426225190352037534112\ 

39243178045826084009946615806771758683781318083\ 

3697523 t407627695244, 

42718375190532690473528672373404295756839213650625 als 

+ 361406063293826379400562992657674998947543835431875~~~ 

+1222753876336528955590266313 14967l000600007216479875a~~ 

+20679838465715243514611082352929204319948~9305750505al2 

+1748279636334904363175342610403332595088199218681388a1 

+ 591032130843345547761619408868305384589251879895804~]. 

This implies that al and bl must be constants, and so zl and 2 2  are also constants. 

Let us consider now the special cases in which each one of the denorninators V I ,  vz, 

v3 and ud, in the previous used expressions for eL1, is zero. 

In terms of the variables zi and 2 2 ,  V I  = O (cf. (5 .KM)) assumes the form 

Applying 6 to this equation, using (5.116), (5.139) and (5.140), we get 
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Thus, the only soIution for these equatioas is 

Since the numerator on the right side of (5.133) must be zero, we obtain, solving for <Pl i ,  

Applying 6 to this equation, using (5.140), we obtain 

Applying 8 to this equation we get 
61r = lr2 - 

If we calculate the NP commutator [& qr, using these Pfaflians and the values given in 
(5.158)~ we h d  no solution other than a = O, which is a contradiction to our initial 
assumptions. 

(ii) va = O 

In this case, from (5.142) we have 

Applying to (5.162) we obtain 

Applying 6 again on (5.163) leads to 

Using gsolve on (5.162), (5.163) and (5.164) gives the empty set solution. 
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From (5.144) we have 

AppIying 6 twice to (5.165) gives 

and 

Using gsolve on (5.165), (5.166) and (5.167) we obtain the empty set solution. 

(iv) Y* = O 

We observe now that one of the factors in dg is d2. Tbus, if ds = O, we have to consider 
only the expression 

By applying 8 twice to this equation, we obtain 
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and 

By applying gsolve to  (5.170) and (5.171) we obtain again the empty solution set. 
- 

W e  consider now the case in which zl and 2 2  are constants. From Txl = b(a/rr) = 0, 
and 6z2 = d(p/ir) = O we get, respectively, 

and 
63z2+40z2-+21 = O .  

Thus, we have two solutions, given by xl = x2 = -8/5 and z l  = -3/2, z2 = 1/2. The 
first solution is impossible, since these values do not satiçfy the equation Ni = O. The 
second one is included the case 5z1 + - 8 = O, which was dready considered. 

Before analysing the cases in which any one of the spin coefficients a, ,8 or n is zero, 
Iet us study the cése of Weyl's neutrino equation. 

5.6.2 Weyl's neutrino equation 

For the Weyl neutrino equation (5.70) the proof foilows the same steps used in Maxwell's 
equations case. The numerical coefiicients are different, however, since in condition V, 
we now have ki = 8 and k2 = 13. Condition VI' remains the same. Supposing that 
aprr # 0, the corresponding PfafEans are now given by 

= -P@+ 8) , (5.174) 

dp= - ~ Q ~ ~ - ~ - ~ * - ~ D P - @ P + ~ T T ,  (5.175) 

d l r = D p - ~ n + n a i - p n ,  (5.176) 
- 

6 a = 6 P + a ~ + @ - 2 p r r + @ l ~ ,  (5.177) 
1 Dp := - 

109 
(387ra + 242/@ + 38aà + 346rrE - 199811) - 2Pa 

-2% - D ~ ,  
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For now we suppose that the denominator of (5.179) 

is non-zero. 

%y evaluating the NP commutator [& 6]a and solving for @il ,  we h d  

where, for now, we assume that the denominator of (S.l83), 

~ 1 2  := 6639868416 ra2 + 12728096988 r2 a - 3519721740 rrzp - 320122100 r p 2  
- 1512677760Par2 - 160164491 PL a - 4676894514 rra p + 8011469480 n3 

+ 1134018560 a 3 ,  (5.184) 

is non-zero. 

Frorn the commutator [6, q(a + p) we obtain 

- 1909041Pa + 35954522 rra - 2471658 a) , 
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where the denorninator of  (5.185), 

is assumed to be non-zero for now. Applying 3 to (5.185) and solving for ql1 leads to 
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((1055170442911 np2 + 1078454503804 7r23 + l~l2507879634 na p 
+ 502505920896w + 539884980544F a + 20438706838844 a2 a 
+ 11874643647996 7r3 + 2258636415872 a3 + 11752612613194aa2) 
(39562643 + 34832476 n2 + 8859520 a* - 2471658 X P  - 1909041k 
4- 35954522 ira)) , (5.187) 

where the denominator of the expression above, given by 

is assumed to be non-zero. 

Using again the new variables defined on (5.147) we find that the numerator of the 
expression resulting fiom the subtraction of (5.183) from (5.185), modulo non-zero factors, 
is given by 

Subtracting (5.187) fiom (5.185) and taking the numerator we obtain 
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- 2395601461620224 z:z2 - 592506195135140 22 $ 
+ 2l5914322990080 z1 zz 3$ - l22987344l8880 23 z: 
+ 86l4WO58~7280 22 xl - 324490247237888 e~y z: 

- 3566306629981524 z z2 22 - 2497?7O55569174O z1 5 
- 1?5177816815716O~~~- Il45153l47O2O94O~ 

+ 9538495990898584 z1 + 8328991417137380 x: 
- 2262375560761580 Kz1 + 168195489543l200 3$ 
- 1829880263729056 zl + 3261696353289728 Z ~ Z :  

+ 387971049122800 z2i$ + 154800252712300 Z$ 
+ 483642598244352 2 : ~  - 220462420144384 2:- 
+ 488572339166080 X?K* - 22201920565760 22 ~1 

- 396075553505280 2: - 39894076016600 $ + 150798528554560 
- 31572436015965 21 - 1487221068155276 K ~ Z :  

- 3469302732542492 X: = O. 

By applying gsolve to (5.189) and (5.190) we obtain 
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10072797662497856 2 2  O: 21 - 298230023477643584 2: 
+ 10346866846955648 x2 X: - 6899l695053497024 z f ~ '  

- 319773751004882816 1: - 1487784358371461151 zfjci 

- 348909525470751281 x : ~ '  - 157?7O 1651433863034 X: 
+ 38235478794520579 zt z: + 73996603694063622 2 2  x i  

- 590857363509776915 tl q2 - 2484379550399181610 xl 
- 2 6 0 3 1 4 5 8 4 9 4 2 2 2 0 8 5 2 0 ~ ~ + 4 5 7 3 4 1 1 4 0 9 7 6 5 0 5 5 0 ~ ~ ~ ~ ~  

+ 89O44Ol28O279934O z1 z2 + 3377463lO634304OO z2 

- 1439493309495798400 - 1391014344034870800 - 
- 335461621166647400 + l72696832509344OO -z2, 

68930851862096014419200 x2 q2 + 36347153899567955649920 2 2  22 
- 27674566080809380678400 21 - 41160443800662115740500 tazi 
- 1555088136882902032797568 O: - 809644697205174851164096 x:= 

-2747702512044784276737709~~~+124782918376053863614720~~~ 

-5231459772963769369377242~~-2335350482507069487515200~ 

+ 103158379644007188899800 q- 4402864679022309409187200 
- 117443866483672195833600 *, 392792077300480 zi 2 2  z2 
+ 313814577190400 zp 22 + 157374791510300~~ 
+ 7956462676222848 x: + 3631141844920896 z ? ~  

+ 12051358297504479~~21- 353837491121920 
+ 25875506363560382 x1 + 10079551565718080 q+ 32057ll2659OOQ 22 
+ 21132353181745280,1562218112 r: + 813356864 xi 
+ 2437615431 ~ ~ 2 1 - F  1205250560 x 1 K  + 4726959758 X I  
+ 60262528022x1 5 + 1745440320 2.1+ 21656846OO=+ 3413589120 

+ 1082842300 22211. 

Among these sets of solutions, the only ones which are not trivially impossible, or do not 
imply 11 and 2 2  be constants, are GI and Gia Let us take the third equation in Gi: 

Applying if twice successively to this equation, using the Pfaffians calculated previously, 
we obtain respectively: 
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Applying gsolve to these three equations we obtain 2 2  = O, a contradiction. 

Let us now consider Gio The fourth and fïfth equations of this set are given respec- 
tively by 

Applying gsolve to (5.194)) (5.195) and their complex conjugates we h d  the four for- 
mally possible solutions, not Listeci here due their huge size, with coefficients having up 
to a thousand digits. They can be easily cornputed, however, by running the code listed 
in the Appendix EL They ali imply that at most x l  and zz are constants. 

We s h d  consider now the cases where each of the denominaton that appeared in the 
equations above is zero. 

In terms of variables X I  and 2 2  we have from (5.182), 

Applying 6 twice to this equation, using (5.174), (5.181) and (5.189), we obtain 
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Applying gsolve to (5.196), (5.197) and (5.198) we fïnd that we m u t  have 2 2  = 0. 

From (5.184) we have 

By applying d to this equation twice, we obtain, respectively, 

By applying gsol~e to (5.199), (5.200) and (5.201) we find immediately that 22 = 0. 

(Üi)w, = O 

From (5.186) we have 

Again, by applying 6 to this equation we get 
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and 

By applying gsolve to these three equations we find again that x2  = 0. 

(iv)w4 = 0 

From (5.188), 

We observe here again that the second factor of (5.205) is proportional to (5.202)- Thus, 
only the fmt factor needs to be considered. Applying 6 to the first factor of (5.205) we 

get 

Applying gsolve to (5.205) and (5.206) we find that al1 possible solutions require that 
both zl and xz are constants. 

When X I  and 2 2  are constants we have 

Fkom (5.207) we have zl = -115/64 or 21 = -3/2. In both cases, we can obtain the 
corresponding d u e  for 2 2  from (5.208), substitute into Ml = O (cf. (5.189)) and h d  
that this would imply rr = O, a contradiction to Our initial assurnptions. 
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The analysis of the case a@a = O follows exactly the steps described in [22] for the 
self-adjoint scdar equation. Instead ofrepeating them again we present the proof for the 
Weyl and Maxwell cases in the fonn of a Maple code in Appendix E. 

5.7 Discussion 

We have proved Theorem 5.1 (Main Theorem) : 
on which Maxwell equations or Weyl neutrino 

thme exist no P e t m  type III space-times 
equations satisfy Huygens' pn'nciple. The 

use of the necessary fiveindex condition VI' determined by Gerlach, Alvarez and Wiinsch 
[36] [3] [4] was essential for the solution of this problem. Its conversion, fiom tensorial to 
spinor dyad forrn was possible thanks to the Maple package NPspinor. The polynomial 
systern obtained fiom integrability conditions waç simplified using the procedure gsolve, 
fiom Maple's package grobner. Since a direct application of the algorithm seems impossi- 
ble, due to the large size of the polynomial system, a "divide and conquer" approach was 

applied with success to solve this problem, i.e., we took pairs of polynomials, decomposing 
the problem into several smaller, manageable parts. 



Chapter 6 

Conclusion 

In this Thesis we have studied three problems concerning Hadamard's problem in Petrov 
type III space- times. 

In Chapter 3 we have considered the conformally invariant (self-adjoint) scalar wave 
equation in four dimensions: 

1 

In this case we have proved the foilowing result: 

Let M 4  be any space-tirne which admits a spinor dyod with the properties 

where I B ~  is a 2-spinor, and 

R = O ,  gABABoAoB = O .  (6-4) 

. Then the valzdity of Huygens' ptinciple for the conformally invariant equation 
(6.1) implies that 

A B  A B  Omao 1 O ï # O .  (6 -5) 

Besides the necessary conditions III and V (cf. (2.188) and (2.190)), that were 
dready used by Carminati and McLenaghan [22], we have used the six-index necessary 
condition V I I  derived by Rinke and Wünsch [72] (cf. (2.192)). Aithough we have not 
solved polynornial system involving a, P ,  rr and in the general case, the analysis offers 



evidence that these necessarg conditions are enough to settle the problem for Petrov type 
HI space- times. 

In Chapter 4 we have studied the non-self-adjoint scalar wave equation: 

In this case, using the necesary conditions I I ,  I I I ,  I V ,  V and V I  (cf.(2.187) - (2.191)) 
we have obtained the foilowing r e d t :  

If a non-self-adjoint scalar voue equation (6.6) satiçfies Huygens' principle on 
any Petrov type III space-the, then it must be equivalent to the self-adjoint 
invariant scdar waue epuation (6.6) tmth A' = O and B = R/6. 

In Chapter 5 we have considered Hadamard's problem for the homogeneous Maxwell's 
equations, and Weyl's neutrino equation, given respectively bj. 

We have solved Hadamard's problem for this case by proving the following statement: 

Thex  etist no Petrov type IIIspace-times on which Maxwell's equations (6.7) 
OF Weyl's equation (6.8) satisfy Huygens ' princip le 

In order to obtain this result, we have used necessary conditions I I I ,  V' and VI'  (cf. 
(5.106), (5.107), (5.108)). 

An essential tool in our calculations was the Maple package NPspinor [27] [29], used 
to convert tensorial expressions into their corresponding spinorial fomis , and also for 
rnanipulating the Newman-Penrose (NP) expressions. The Maple package grobner [28] 
was used to study the polynomial systems that would be obtained fiom the necessary 
conditions, the NP field equations and commutation relations. We have verified that  
the procedure gsolve, fiom grobner, which attempts to  factor the polynomial system 
after each reduction step of Buchberger's algorithm, was more useful than procedures 
or programs that try to find a Grobner bis .  Moreover, we have used a "divide and 
conquer" approach, dealing with pairs of equations and then analysing separately the 
several sets of possible (smaller) results together with the polynomials that had been left 
out. 

We believe that Hadamard's problem can f i n d y  be solved for the scalar wave equation, 
on Petrov type III space-times, by using the methods employed on Chapter 3, or using 



heuristic Grobner basis methods. Hadamard's problem for équations (6.1), (6.6) (6.7) 
and (6.8) on Petrov type II space-times has been partially studied [23] and is good area 
for the application of the techniques developed in this Thesis. 



Appendix A 

Grobner Bases 

In this Appendix we present a summary based on the references [35], [l], [28] [2]. 

A.1 Basic definitions 

Definition A.1 A commutative ring is a set (R,  +, -) with the two binary operations 
(+) and multiplication (.) defined on R such that (R,  +) is a commutative group, (RI -) 
is commutative and associative, and the distributive law a (b + c)  = ab + ac holds 
V a ,  b, c, f R. 

Deilnition A.2 A field (K, +, -) is a commutative ring in which every nonzero element 
has a multiplicative inverse. 

Definition A.3 Let N denote the non-negative integers. Let o = (ai, .. ., an) be a 
power vector in N" , and let x 1 ,  2 2 ,  . . . , z, be any n variables. Then a monomial x" is 
defined as the product xu = xfi - x;' . .xsn. The total degree of the monornial xa is 
defined as la1 = al + - - +  G. 

Definition A.4 A multivariate polynomial f in zl, 2 2 ,  ..., z, with coefficients in a 
field K is a finite Linear combination f (q, 2 2 ,  ..., 2,) = Ca a,za, of monorniah xa and 
coefficients aa E K. The total degree of the polynomial f is defined as  the maximum lu1 
such that a, # 0. 

We denote the set of al1 multivariate polynomials in x = (xl, xz, ..., x.) with coeffi- 
cients in a field by K[x]. It can be shown that K[x] fomis a commutative ring. It is called 
a polynomial ring. 

Definition A.5 A nonempty subset I of a noncommutative ring K is cded  an ideal 
of K if, V x ,  y f I and r E K, 



(i) z - y E 1, 
(ii) 2 . r  and?-z E 1.  

Definition A.6 Let F = {fi, ..., f,) be a set of muhivariate polynomials. Then the 
ided generated by F, denotateci by I =  (F) = (fi, ..., fa), is given by 

8 

(fi, - * O ,  fs) = {C hifi : hl, - O -  ha E K[xi, --• t xn]) - 
i=l 

The polynomi* fi, ..., f, are said to iorm a b a s i s  for the ideal they generate and, since 
F is finite, we say that the ideal is finitely generated. The two polynomials are said to 
be equivalent with respect to an ideal if their Merence belongs to the ideal. 

Theorem A.7 (Hilbert Basis Theorem). In the ring K[xl, ... , x.] the following 
properties are satisfied: 

(i) If I is any ideal of K[xi, ... , x.], then there exist polynomials fi,  ..., fs E 
K[xl, ... , x.] such that I = (fi, ...,fa). 
(ii) If Il 2 Iz C C 1, Ç - - . is an ascending chah of ideals of K[xl, ... , x.], 
then there exists N such that IN = IN+l = IN+Z = . - .  

Thus, according to Hilbert Basis Theorem, every ideal is finitely generated. Every 
ideal can be generated by different bases, since we can dways add any iinear combination 
of the generators, or suppress one of them if it is a linear combination of the others. In 
general, it is a difEcult problem to decide whether a given polynomial is a member of an 
arbitrary ideal. This problem can be considered as an instance of the "zero-equivalence" 
problem. For example, deciding if a polynomial h E I = (fi, ..., f.) is the same as 

deciding if h simplifies to O with respect to the side relations fi = O, ... , f, = O. Also, 
the problem of solving a polynomial system of equations fi i O, ... , f, = O,  where each 
fi E K[xl , ... , xn] , is equivalent to h d l i g  a "reduced" basis for the ideal (fi, ..., fa), i.e., 
a basis in which the system assumes a simpler form. 

What the Grobner bases theory provides is an algorithm that Leads to the determi- 
nation of a standard basis for a polynomial ideal, where this standard or reduced basis 
always exists and fiom which the existence and tmiqueness of solutions (or even the 
solutions t hermelves) may bo easily determined. 

A.2 Monomial ordering 

As we shall see, the computation of Grobner bases is very sensitive to the choice of the 
monornial ordering. Let us consider polynomials in K[xl, ... , x,,]. For the variables z i  we 

assume the ordering zl > zz > ... > z,,~ > 2,. 
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Definition A.8 An admissible total ord&ng > on Nn is defineci by the two conditions: 

An admissible ordering establishes a one-to-one correspondence between Nn and the 
rnonomials xa = x;l x;~ - e x ?  in K[xi, ... , x.], Le., if > is an admissible ordering on Nn 
then > is an ordering on the monornials, a > @ za > zfl. Among the several dinerent 
monomial orderings we consider only the three most important ones: 

D a t i o n  A.9 Let a and P be in N". We define the fouowing monornid orderings: 

1.  PUE lezicogmphic order (plex): cr >fiez P the left-most nonzero 
entry in a - p is positive. 
2. Gmded lezicogmphic order (grlex): a >,c, P lai > IBI Or la1 = IPI 
and a >fi, p. 
3. Gmded reverse Zexicogmphic ordm (grevlex): o: P > IP 1 
or ]al = IPI and the right-most nonzero entry in a - P is negative. 

The orderings grlex and grevlex are also called total degree ordering. In Maple the 
grevlex order is referred by tdeg. 

Definit ion A. 10 Given a particular admissible ordering > and a nonzero polynomial 
h E K[xi, ... , x"], we define: 

- Multidegree of h: multideg(h) = max(cr E Nn, a, # 0 )  . 
- Leading monomial of f : LM( f) = zmulti&g(f . 
- Leading coeficient of f : LC (f) = amulrih(f) . 
- Leading term of f  : LT(f) = LC(f).  L M ( f )  . 

A. 3 Polynomial reduction 

The reduction method for the case of rnultivariate polynomials is a generalization of the 
reduction process known for linear and univariate polynomials (long division), normally 
used for solwig systerns of equations. The basic idea consists of the following: when 
dividing f by f i  , ... , fa ,  we have to cancel terms of f using the leading tenns of the 
fis (so the new terms which are introduced are smailer than the cancelled temis) and 
continue this process untd it cannot be done any more. 
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Definition A.11 Given f, g, hin K[xi, ... , xJ, with y # O, a E K - O, we Say that 
f reduces to h modulo g in one step, denoted by f 3 h, if and only if LM@) divides a 
nonzero term axa of f and 

Example A.12 Consider the polynomials f = 6z4 + 1 3 2  - 62 + 1, g = 3x2 + 52 - 1. 
Then, if we decide to reduce the first term of f we get f 3 hl where 

If we start by reducing the term of degree 3 of f, we obtain 

In both cases we could continue the reduction until we get.0, since in fact g divides f .  

Example A.13 Let f = 6 z 2 y  - x + 4y3 - 1 and g = 2xy + If we use the plex 
ordering with z > y ,  then LT(g) = 2zy, axa = 6x2y, and f 4 h, where 

We can continue the process to get 

Since no term in the l ad  polynomial is divisible by LT (g )  = 2+y1 the process cannot 
continue. If we use grler ordering, with z > y, then LT(g) = y', and axa = 4y3 and 
f A h, where 

Here h cannot be reduced further since it does not contain any term which is divisible by 
LT(g)  = y3. 

In the multivariate case we usually have to make reductions modulo many polynomials 
at a time. Thus, the followiag Definition is necessary: 

Definition A.14 Let f , hl and h , ..., f. be polynomials in K[xl, ... , xn], with fi # O, 

(1 5 i 5 S )  and let F = {fi, ..., f a ) .  We Say that f reduces to h xnoddo F, denoted 
F 

f 4 +h, if and only if there exist a sequence of indices i l ,  i2,  ..., it E 1, ..., s and a 
sequence of polynomials hi, ..., ht-i E K [ x i ,  ... , x.] such that 
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of the division of f by {fi, fl) is nonzero, but f E (fi, fi). This fact shows that the 
Muftivariate Division Algorithm is of limited usefihess. In the next sections we describe 
how Grobner-Buchberger theory deais with these difinculties. 

A.4 Grobner bases 

Definition A.20 A set of non-zero polynomials G = {gl, ..., g,) contained in an ideal I is 
caUed a Gr6bner b a s i s  for I if and oniy if for d non-zero f E 1, there exists i E (1, ..., t )  
such that LT(gi) divides LT(f). In other words, if G is a Gr6bner basis for Il then there 
are no non-zero polynomiais in I reduced with respect to G. 

There are other usefd characterizations of a Grobner basis, which will be preçented 
in the next Theorem. We first need the foiiowing definition: 

Definition A.22 For a subset S of K[xl, ... , xJ, the Ieading tenn ideal of S is defined 
as the ided 

Lt(S) = (LT(s)ls E S)  . ( A 4  

Theorem A.23 Let I be a non-zero ideal of K[xl, ... , x,,] . The foliowing are equiva- 
lent for a set of non-zero polynomials G = {gl, . . . , gt )  C 1: 

(i) G is a Grobner basis for 1, 

(ii) ~ E I = ~ - % + O ,  
(iii) f E 1 f = C:=, kg;, with L M ( f )  = m a ~ l < ~ < ~ ( L M ( k )  - - LM(g;)) , 
(iv) Lt(G) = Lt(1) .  

(i) ( )  Let f E K[xl, ... , x,,]. Then, by Theorem A.18, there exists 

r E K[xi, ... , x.], reduced to G, such that f a+ r. Thus f - r E I and so 
f E I if and only if r E 1. If T = O then, of course, f E I. Conversely, if f E 1 
and r # O then r E 1 and, by (i), 3 i  E (1, ..., t )  such that LM(g;) divides 
LM (r). this contradicts the fact that r is reduced with respect to G. Thus 

G 
T = O and f ++ 0. 
(ii) =+ (Ci). Follows immediately from Theorem A.18. 
( 5 )  (iv). Clearly, Lt(G) C Lt(1) .  To prove the reverse inclusion, we 
notice that from (iii) it  follows that LT (f) = Ci LT(hi) LT (gi), where the 
sum is over al l  i such that L M ( f )  = LM(H;) LM(g;).  This implies that for 
ail f E 1, L T ( f )  E Lt(G) and thus, Lt(1) C Lt(G). 
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(iv) (i). For f E I we have LT(f) E Lt(G) and thus L T ( f )  = 
z:=, b L T ( g j )  for some h; E K[xi, ... , xJ . Expanding the right side of this 
equation it is dear that each term is divisible by some LM(gi).  Thus LT( f )  
is also divisible by some LM(gi), as required. 

Corollary A.24 If G = (gl, ...,g;} is a Grobner basis for the ided Il then I = 
(91, - - - 9  9t). 
ProoT: We must have (gi, ..., gt) C 1, since eadi gr is in 1. For the reverse indusion, let 
f E I. Then, by Theorem A.3, f -%+ 0, which Mplies that f E (gl, ..., gt). 

Let us consider now the special case of ide& generated by monomials. 

Lemma A.25 Let 1 be an ideal generated by a set S of nonzero tenns, and let 
f E K[xl, ... , x,,]. Then f is in I if and only if for every monomial X appearing in f there 
exists a monomial Y E S such that Y divides X. Moreover, there exists a finite subset 
So of S such that 1 = (So). 
Proof: If f E I then f = ~ f , ,  kX;, where hi E K[xl, ... , xn] and Xi E S, for i = 1, ..., 1. 
Thus, every term of the left-hand side of this equation must be divisible by some Xi f S. 
Conversely, if for every term X appearing in f there exists a term Y E (S) such that Y 
divides X. For the last statement we note that, according to the Hilbert Basis Theorem 
(Theorem A.7), I has a finite generating set. By the first part of the the lemma, each 
term of each rnember of this generating set is divisible by an element od S. Thus, the 
finite set So of such divisors is a generating set for (1 ) .  

CoroUary A.26 Every non-zero ideai I of K[xl, ... , x,,] has a Grobner basis. 
Proof: According to Lemma A.25, the  leading term ideal Lt(1) has a finite generating 
set of the form (LT(g, ) ,  ..., LT(g t ) ) ,  with gl , ..., gr E 1. If we let G = {gl, ..., gt), then 
Lt(G) = Lt(1).  Thus, by Theorem A.23, G is a Grobner basis. 

In order to make use of a shorter terminology, fiom now on we Say that a subset 
G = {gl, ..., gt) of K[xl, ... , xn] is a Grobner basis if and only if it is a Grobner basis for 
the ideal (G) it generates. 

Theorem A.27 Let G = {gl, ..., g,) be a set of non-zero polynomids in K[xl, ... , xn]. 
Then G is a Grobner b a i s  if and only if V f E K[xl, ... , x.], the rernainder of the division 
of f by G is unique. 

The proof for this Theorem is straightforward but long, and can be found in [II. 
Example A.28 Let us consider Example A.19 again, where f = yz2 - x , fi = yx - z, 

F F 
fi = y2 - x ,  and F = {fi, f2). We have already verified that f ++ O or f t+ z2 - 2, 

depending of the order in which fi and fi are taken to make the reduction. Thus, 
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according to Theorem A.27, F is not a - ~ r ~ b n e r  basis. There is another way to prove 
F 

this. Since f = yh + j5 E (fl,fi), and f -t+ z2 - z, we have z2 - 2 E (fi,f2). 
However, LM(x* - z) = z2 is not divisible by either LM(f1) = zy or L M ( f 2 )  = y2. 

Thus, by Definition A.20, F is not a Grobner basis. 

A.5 Buchberger's algorit hm 

The preceding section proved the existence of a Grobner basis for an ideal 1. We shall 
now be concerned wïith a method to find Grobner bases. As we have already seen in 
Example A.19, the multivariate algorithm alone has limitated usefdness, since we can 
have f E I = (fi, ... , f.) , where the leading power products of f are not divisible by any 
LM(fi). Let us analyse this ambiguity in a more systematic way. Namely, in the division 
of f by fll ... , f., it may happen that some term X appearing in F is divisible by both 
LM( fi) and LM(fj), for i # j. If we reduce f using fi we get the polynomial hl = 
f - +fi, and if we reduce f using fj, we get h2 = f - 

L W .  1 f - . Thus, the introduced 
X X ambiguity is given by h2 - hi = fi - - L T ( f j )  fj. SInce X must be dso divisible by 

L = LCM(L M(fi), L M ( f i ) ) ,  where LCM denotes the " least common productn , we can 

Definition A.29 Let O # f, g E K[xl, ... , x,], and let L = L C M ( L M ( / ) ,  LM(g)). 
We define the S-pofynornial of f and g as 

Theorem A.30 Let G = {gl, ..., gt)  be a set of non-zero polynomials in K[xl, ... , x,,]. 

Then G is a Grobner basis for the ideai I = (gi , . .. ,g3 if and only if for ali i # j ,  

G 
S(f ; t  f j)  ++ 0 (~4 .3)  

In order to prove this theorem, we need to  introduce the following lemma: 

Lemma A.31 Let fi, ... , fa E K[xl, ... , xn] be such that LM( fi) = X # O , V i  = 
1, S.., S. Let f = cifi, e t 6  ci E K, i = 1, ..., S. If LM(f) < X, then f is a linear 
combination, with coefficients in K, of S(fi, fi), 1 5 i 5 j 5 S. 

Proofi Let fi = cr;X+lower ternis, ai E K. Then the hypothesis asserts that C:=, c;e = 
O, since x:=, ci(&X + lower te-) and LM( f) < X. Since LM( fi) = LM (fj) = X , the 



S-polynomisls ~ i l l  take the forni S(fi, f j )  := & f; - I f j .  Thus 
ai 

= c ia iS ( f i ,  f i )  + (ciai + c2a~)S( f2 ,  f3) + . . + (qq + - + ~ . - l a ~ - ~ ) S ( f , , - ~ ,  f,) . 

Proof of Theorem A.30: If G = gl, ..., gt is a Grobner bas& for 1 = (gl, ..., gt) ,  then, by 
G Theorem A.23 (ü), S(g;,gj) ++ O ,  Qi # j, since S ( g i , g j )  E I. Conversely, let us assume 

G 
that S(g;, g j )  t+ O , V i  # j - Let f E I .  Then it can be written as f = C:==, higi, 
with X = m a ~ l ~ ; ~ t ( L M ( h ; ) L M ( g ; ) ) .  According to Theorem A.23 (iii), if we prove that 
X = L M ( f ) ,  then we are done. Let us assume, on the contrary, that L M ( f )  < X. Let 
S = { iILM(k)LM(g;)  = X ) .  For i E S we can write = ciXi + Iower t e m .  Define 
g = LpsqX;g;-  Then LM(X;g;) = X, V i  E S ,  and LM(g) < X (since L M ( f )  < X). 
By Lemma A.31, there e t  d i j  E K SU& that g = Ci,jéslipj&jS(X;g;,Xj,gj). Since 
X = LCM(L M(Xigi) ,  LM(Xjg j ) ) ,  we have 

where 

where 
t 



Thus, 

Thus, from (A.4), (A.5), 

which is a contradiction. 

kl 

(8 .6 )  and (A.?), we obtain, finaiiy, 

Buchberger's Theorem provides a strategy for computing Grobner bases: reduce the S- 
polynornials and, if a remainder is non-zero, add this remainder to the List of polynomials 
in the generating set. Continue this until there are enough polynomials to make aU S- 
polynomials reduce to zero. In other words, given a set F = {fi, ..., f,}, fj E K[xl, ..., xS], 

we start testing F by checking whether S( fi, fi) A+ O, V fi, fj E F I  i # j .  If we find a 

pair (fi, fj) sudi th& S(fi, fi) A+ r # O, then (F) = (F, t) (since S ( f i ,  f j )  E (F)), and 

S(fil fj) FU(;'+ O. The procedure is repeated for all pairs ( f i ,  fj) formed in the updated 
generating set, until the proces terminates. 

Example A32 Let G = {gr, g2) with gl = 4z2z - 7y21 g2 = zyz2 + 3zz4. We use 
plex ordering with z > y > z .  Thus, in the first step we get ' 

The generating set is now G = {gl, 92, 93). The S-polynornials to be considered now are 

S(gi,g3) and S(gz, g3). If we pick the first pair we get S(gl, g3) -%+ 4gy5 + 1323z6y2 = 
94, and G is updated to G = {g1,g2,g1,g4). The S-polynomials to be considered 
now are S(g2, g3) , S(g1, g4) , S(gt,  g4), and S(g3, 94). If we cornpute each of these S- 
polynomials and reduce them modulo G, we h d  that they all reduce to zero. Hence, 
G = (91, 9 2 ,  9 3 ,  94) i+ a Grobner basis. Buchberger's Algonthm for computing Grobner 
bais  is as follows: 

Input: F = (f, , fi,  .-., f.) Ç K[xi, ... , x.] with fi # O (1 5 i < s) 
1 Output: G := (gl, ..., gt), a Grobner basis for ( f t ,  ..., f,,) 
Initia1ization:G := FI M := {{fi, fj)lfi # fj E G) 
While M # 0 do 
Choose any { f, g )  E M 
M := M - {{f,d) 
S( f ,g )  a+ h 
If h # O then 
M ;  = M u {(u, h)lVu E G) 
G := G U  ( h )  - 



We can show that this algorithm terminates. Let us suppose the contrary. Then, as 
the algorithm progresses, we obtain a strictly increasing infinite sequence Gr C Gz 5 . . 
Each Gi is obtained fkom Gi-r, by adding some h E I to Gi-l1 where h is the non- 
zero reduction, with respect to G;-l, of an S-polynomial formeci by a pair of elements 
of Gi-i. Since h is reduced with respect to Gi-l,  we have LT(h) 6 Lt(Gi-& Thus, 
Lt(Gl) C Lt(G2) C - . . This is a strictly ascending chah of ide& which contradicts the 
Hilbert Basis Theorem. 

2 2 Example A-33 Let F = {g1,g2,g3}, where g, = 2*z - y , g2 = y =  + z ,  g3 = Y -  L 

W e  use plex ordering with z > y > r .  
1nitkdization:G = F = {gl, g2,93), M = ((g1, g2), (g1, g3), {g2 , g3) 1 - 
First pass through the while loop: 
Choose the pair (gl, g2) 

Third pass through the while loop: 
Al1 pairs of M reduce to zero modulo G 
M=O 

Rom this example we observe the following facts: 
1. The computed Grobner basis G is not reduced: 

-g4 = zg5 ,  and therefore the ideal generated by G does not change. Thus g4 
can be eliminated. 
- LT (g3) divides LT(g2), so g3 can also be eliminated. 

2. There are some reductions of S-polynomials that are unnecessary- For example, the 
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fact that LT(gl) = z2+ and LT(g3) = y are relatively prime assures us that S(gi,g3) 
reduces to zero without carrying out the reduction. 

These fxts  give a hint for some improvements to Buchberger's algorithm which will 
be be describeci in the next section- 

A.6 Improved Grobner bases 

As we saw in the previous section, Buchberger's algorithm consists basicdy of two steps: 
the computation of S-polynomials and their reduction. A possible problem that might 
arise is the possibly very large number of S-polynomiaIs that must be computed and 
reduced. As the computation progresses the number of polynomials in the basis gets 
larger, and therefore, each t h e  a new polynomial is added to the basis, the number of 
S-polynomials to compute dso  increases. Since the proportion of S-polynomials which 
reduce to zero eventuaIly increases as we get far in the dgorithm, a huge amount of 
computation might be performed for very Little gain, since few new polynomials are added 
to the basis. Indeed, at some point, the computation of S-polynomials and their reductions 
are useless except for the fact that they verif'y that we really have a Grobner bais .  In 
order to improve this situation one has to h d  a way to predict which S-polynomials 
reduce to zero without actuall y cornputhg or reducing t hem. 

A starting point towards the desired improvements is given by the following theorem: 

Theorem A.34 Let f, g E K[xi, ..., xs] be non-zero polynomials. Then the following 
statements are equivalent : 

(i)LCM(LM(f), LM(g) )  = L M ( f ) L M ( g ) ,  i.e., LM(f)'and LM(g)  are rela- 
tively prime. 

( W f ,  9) 3, 0- 
In particular, {f, y) is a Grobner basis if and only if LM( f )  and LM(g)  are 
relatively prime. 

A proof for this theorem can be find in [l], p.125, although it is formulated there in 
a slightly ditrerent form. 

This theorem gives a criterion for a priori zero reduction: during Buchberger's algo- 
rithrn, whenever f and g are such that L M ( f )  and LM(g) are relatively prime, it is not 
necessary to compute S(f ,  g ) ,  since it wiU reduce to zero, and therefore will not create a 
new polynomial in the basis. The next criterion is based on the following theorem. 

Theorem A.35 G is a Grobner basis if and only if Vf  , g E G either 
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(i) S(f,p) d++ O) or (ii) 3 h E G, f # g, such that 

The proof is given in [35] , p.444 . 
This theorem irnplies that if there is an element fk of the basis such that LM ( fk) di- 

vides LCM(L M ( f i ,  LM( fj)) and if S( fi, fk) and S ( f j ,  f,) have already been considered, 
then S(f;, f i )  reduces to zero and can be ignored. 

A third criterion was proposed by Buchberger and Winkler [17] : In the process of 
selecting a pair {fi, fj), choose one such that LCM(LM( fi; L M ( f j ) )  has the minimal 
degree among the pairs. 

Another useful irnprovement is the reduction criterion divides LM(gj), then gi can be 
deIeted from the basis. We can carry this out by reducing ail polynomials in the basis with 
respect to each other. Each time a new poiynornial is adjoined ta the basis, all the other 
polynomials may be reduced using the new polynomial. Such reductions initiate a whole 
cascade of reductions and cancellations. If this process is carried out systematically, the 
resulting basis will be reduced. 

We can summarize these criteria as foliows: 

The rnodified Buchberger's algorithm is given below . 
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Input: F = {f. , fi, ..., f,) C K [ q ,  ... , x,,] with fi # 0 (1 5 i 5 s) 
Output: G := {gi, ..., gt}, a Grobner basis for (fi, ..., fa) 

Initia1ization:G := F, reduce(G) M := {{fi, fi)[ fi # fj E G ,  1 5 i 5 j 5 )  , t = s 
While M # O do 

(fi, fi) := a pair in M satisfying Crite+ionl(f;, fj) = true 
If (Criterion2( fi,  fj) = true and Crite+ia3(fi, fi, G) = false) then 

Example A.36 Let us consider again Example A.33, where F = {gt,g2,g3), g1 = 
z2z - y2. 9 2  = yz2 + 2, 93 = y - z, using plex ordering with z > y > z. 
Initialization: G = F = {g1,g2,g33). Since LM(g3) divides LM(g2),  we detect that 

{QI 1 
9 2  +g4=z3+z .  Thus,G={~lig3tg4}andM={(gl,g3),(gl1g4),(g3,g4)}- 
First pass through the while loop: 
Since LCM(LT(gi) ,  LT(g3)) = 1 has the minimum degree, we choose (gl, g3). However, 
LT(gl) and LT(g3) are relatively prime. Thus, by Cri ter ia2 ,  this pair can be ignored. 
For the same reason, the nert pair. (93, g4), can also be deleted, and the only remaining 

pair is (91,94)- Thus S(gl,g4) = z2z + y2z2 -%+ O. The algorithm then stops, and the 
Grobner basis for the ided generated by F is, therefore, G = {gl ,93, 94) = {z2+ - z2, y - 
2, z3 + z ) .  

Thus, in cornparison with its predecessor, the irnproved version of Buchberger's algo- 
rithm provided a reduced Grobner basis, and instead of ten reductions we needed only 
three. 



Appendix B 

B .l The NP formalism 

We shall use here the two-cornponent spinor formalism of Penrose [67] [69] [24] and the 
spin-coefficient fomalism of Newman and Penrose [64], whose conventions ' we follow. 
In the spinor fonnalism tensor and spinor indices are related by the complex connection 
quantities a.M (a = 0 ,  . . . , 3  ; A = 0 , l )  which are usuaIly chosen to be Hermitian in the 
spinor indices A ,  A, and satisfy 

In these equations spinor indices have been lowered by the Levi-Civita symbois defined 

wit h the conventions 

= c B ~ B A  , lB = E ~ ~ [ ~ .  

T hus 
eACsBC = 6% = -bgA , 

To every tensor Tc... ab" we can therefore associate an equivalent spinor defined by 

the relation: 

It can be verified that the spinor equivalent of a real tensor & Hermitian. 

'See the conventions in Appendix D. 
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The correspondence between tensors and spinois wiU be denoted in the foIlowing way: 

The invariant associated with a 4vector Ca, expiessed in te- of the metrics M, EAB 

and of the space-time and spinor space, has the form 

B.2 The dyad formalism 

We can set up, at each point of space-tirne, an orthonormol dyod busis A and c ( ~ ) A  

(a, o = 0 , l  and A, A = 0 , l )  for spinors in the same way as we set up an orthonormal 
tetrad b a i s  eb(,) (a, b = 0,1,2,3) for tensors in a tetrad formalism. The dyad indices 
are Ulcluded in parentheses. It is convenient, however, to define special symbois for the 
two basis spinors in the following way 

The condition of orthonormality is given by 

This implies that 

As in the tetrad formalism, we can project any spinor CA ont0 the dyad basis: 

(B. 14) 



The spinon d' and L" and th& cornplex conjugates determine the nuil tetrad (1 n mm) 
by the correspondence 

T hese nulI vectors satisfy the ort hogonaüty conditions 

A B  A B  Pn. = O  5 LAZB = 1 ,  ma=, = O  L r ~ s h  = -1 y (B.16) 

whiie all the remaining inner products are zero. We can determine, fkom (B.l5), the 
Hermitian representation for the matrices a," and auu. In a dyad basis we have 

The metric tensor, according to (B.8) and (B.21), is given by 

Thus, the null vectors ( P t  na, ma, e), determuid fkom the dyads, are the same as 
those ongindly d e h e d  in the Newman-Penrose (NP) spin coèfficient formalism. 

B .3 Covariant derivat ive of spinors 
, 

The covariant differentiation of spinor fields can be uniquely defined by the following 
postdates: 

(i) It must satisfy the correspondence relations 



(ii) The covariant Werentiation of spinor fields satisfis the Leibnitz rde: 

where S.-* ... are any two spinor fields. 

(iii) The operator Vb is real, i.e., 

In a way analogous to the case of the tetrad formaiisrn, we define the intrimic deriva- 
tive of the dyadic component Q,) of a spinor dong the "directionu (a) (b) by 

c(c)~(G)(6) = h C ~ c ; ~ ~ ( 4 A ~ ( b ) B  1 
(B -28) 

or 
C 

$c)lAA = 4 4  &lB - 
From (B.%), (B.1) and the Leibnitz mie it follows that 

Aiso, fiom (B.24), the Leibnitz rule for tensor and spinor fields, and (B.8) it follows that 

E C D ; d  = 0 - (B.31) 

The spin coeficients, r(a)(b)(,)(a, are defined in the dyad formalism by 

The first two indices of the above spin coefficients are symrnetric, as it can be immediately 
verified by applying the covariant derivative to (B.11) and by'using the dekition (B.33) 
together with (B.31). We now use the preceeding definitions to find the erplicit expression 
of intrinsic derivative of the dyadic components of spinors of first rank, in ter- of the 
spin coefficients. Thus, 

The first term inside the square brackets is the scalar ((a). To find an expression for the 
second term we notice that, using (BAI), we obtain from (B.33): 



B.4 The basic equations of the NP formahm 

Since the spin coefficients are symmetric in the two first indices, there are twelve 
independent components. To these coefncients are assigneci special symbols described in 
the Table B.3. 

Table B.1: NP spin coefficients 

It can be verified that these definitions of the spin coefficients agree with those of the 
Ricci spin-rotation 7ak defined in the N P  formalism [24]. 

B.4 The basic equations of the NP formalism 

The spinor equidents of the tensors (2.119), (2.118), (2.121) and (2.120), which appear 
in the necessary conditions I - V I I  are given by [69] 

where *acD = S(Mcn) ,  is the Weyl spinor and A := (1/24)R. 4~ = is called - 
the Maxwell spinor, and = @(AB)(a) = QAB2 is-called the trace free Ricci 
spinor (since it is the spinor equident  of the trace-fiee Ricci tensor Rab - 4 Rgd). As we 
shail see, the basic equations of the N P  formaiism can be expressed in terms of spinors 
defined above and their derivatives. 



B.4 The basic equations of the NP fomalism 

The NP components of the Weyl tençor are defineci as follows 

In (B.41) and (B.42) we have used the notation 00 ... := o ~ o ~  -. 
The NP components of the trace-free Ricci spinor are given by 

or, equivalently, 

For the Maxwell spinor we have 

40 = 4(0)(0) = ~ ( o ) ~ i o )  * +AB = oM  AB , 
41 = 4(0)(1) = ~ [ I ) ( o )  = c ~ ) ~ < ( o ~  B $ ~ ~  = d b B h  , (B. 45) 

4 2  = 4 ( 1 ) ( 1 )  = c ( ~ ) ~ c ( ~ ~ ~ ~ A B  = L ~ % A B  , 

The covariant derivatives of the dyad basis spinors can be obtained fiom (B.33), 
together with definition of the NP spin coefficient symbols dehed on Table B.3: 

where 
rBZ, := yos~i ,  - aosza - P L B ~  + ELBZ;, 

-B IIBir := - s o ~ s ~  + ~ o B Z B  + ULBO - ~~B~~ , (B .48) 
I I IBB := V O B ~ &  - XoBZ* - p b ~ ~ B  + X L B ~ ~  
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The N P  difkrentid operators can be defineci as being the dyad components of ab: 

D := a(,,(,) = c < ~ ) ~ < ( ~ )  *ad = laaa , 
6 := a(q(i) = ~ ~ ) ~ c ( ~ ) f 8 ~  = ma&, - 1 (B -49) 
6 := a(,,(, = ~ ~ ~ ~ ~ < ~ ~ ~ a ~  = ni.aa , 
A := = <(i)*T(ilBad = naam. 

These operators give rise to the following commutation relations 

[A, D] = ( ~ + T ) D + ( c + z ) A  - (1+rr)6- (r+ii)6, (B.50) 

[&DI = (a+@ -r i )D+.A - ( ~ + E - z ) ~ + u ~ ,  (B.51) 

[6,A]= - Ü D + ( T - Z - # ~ ) A + ( ~ - - ~ + ~ ) ~ + X ~ ~  (B.52) 

Pl 
The Ricci identity 

has the foliowing spinor 

where cA is an arbitrary 1-spinor. It is easier to count independent components in the 
spinor fomalism than in tetrads or coordinates. Identity (B.55) clearly contains six 

complex components, while identity (B.56) has six real ones. 

The Bianchi identity 

%b[&;e] = O 

has the spinor fonn 

Clearly, equation (B.58) possesses eight complex components and (B.59) three real corn- 
ponents. 

The Ricci and Biancfü identities can be wntten explicitly in terms of twenty nine 
dyadic components, by using (B.42), (B.44), (B.47) and (B.49). They are listed in A p  
pendix C. Together with the commutation relations (B.50- B.53), they constitute the 
basic equations of the Newman-Penrose formalism. In general, however, it iç not clear 
what these equations are for and in what sense they replace Einstein's equation or are 
equident  to it [24]. 



B. 5 Pe trov ClitssXcation 

B S Petrov classification 

Let  DA^ &.-.Ap = p ( ~ ~  A~.-.A,,) be a spnmetric p-spinor, and let cAi be an arbitrary 1-spinor. 
Then the expression 

Y(<) := (PA,A~..A,C~' . - .cAp (B.60) 

is a hornogeneous polynomial of degree p in (' and c2. By the Fundamental Theorem of 
Algebra, this polynornial can be factored into p linear factors': 

Thus, 
1  P 

( Y D A ~  A~...A, - QA, . . . a4)cA1 . . . = O - 
Since cAi is arbitrary, we have 

i.e., a p-spinor is decomposable into p 1-spinors. Since the Weyl spinor is totally syrnmetric 
we must have 

1 2 3 4  
*ABCD = ~ ( A Q B P C ~ D ) ,  (B -64) 

Each of the 1-spinors LA is calIed a principal spinor of BABCD and their corresponding 
nul1 vectors are the principal nul1 vectors (or directions). Spacetimes in which al1 four 
principal null directions of the Weyl spinor are not distinct are cailed degenerate or 
dgebraically 

Table B .2: Petrov classification 

special. The Petrov type is defined according to the following table: 

Petmv 

"type 
I 

II 

D 

III 
N 

1 2 3  4 
where the 1-sphors a ~ ,  CYA, a~ and a~ are distinct, and X # 0. 

F o m  of 

*ABCD 
1  2 3 4 
a ( ~ a ~ a ~ a n )  
1 1 2 3  
a p ~ a c a ~ )  
1 1 2 2  
a ( , p g a ~ a ~ )  
1 1 1 2  
a ( ~ a ~ a ~ a ~ 1  
1 1 1 1  
Q ( A ~ B B Q C ~ D )  

Eq. satisfied by 

  AB CD 
1 1 1  1 

!PABCD Q * Q a = A a* 
1 1  1 1  

BABCD a O = A QAQB 
1 1  1 1  

gABCD a a = a ~ a g  
1 1 1  

!PuCD A * = x a ~ a g a ~  
1 1 1 1  

  AB CD = a ~ a ~  QCQD 



B .6 Dyad transformations 

In est ablishing the necessary conditions for the validity of Huygens' principle, it is usual to 
take advantage of the fieedom to chaose a nuii b a i s  that is best suited for the calculations. 
The proofk for the results presented in this and in the next Section can be found in [79] 
[61]. The tetrads transform as folIows: 

where a and b are real-valu4 fimctions and q is a cornpiex-valued function. The corre- 
sponding transformation of the spinor dyad { O ,  L )  is given by 

where w = a + ib. This induces the foUowing transformations on the covariant derivatives 
of the dyad: 

- p / 2  
1 0 i tsB-  ( O A ; B B ~ ~ O A W ~ , & ) ~  (B .67) 

The NP spin coefficients can now be obtained by contracting the above equations, 
using (B.48), with the appropriate pairs of basis spinors. The result is aç follows: 



B- 6 Dyad transformations 

The transformation iaws for the NP components of the Weyl spinor are obtained by 
contracting PDco with the transformed basis spinors oAt and " L I .  The result is: 

The NP components of the trace-fiee Ricci spinor are obtained by contracting 
with the basis spinors oAt l  L ~ '  and its complex conjugates: 

The NP operators transform as foilows: 



B. 7 Conformal t r ~ o r m a t i o n s  

B. 7 Conformal transformations 

The trivial transformation corresponding to the conformal transformation of the metric: 

is induced by the foilowing transformation of the n d  tetrad [79] [61]: 

The transformation Iaws for the spin coefficients now are: 

The Weyl spinor components tramfonn as foilows: 

For the NP components of the tracefiee Ricci spinor we get 
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(B. 107) 

The Maxwell tensor Hab is invariant under conformai transformations [60]: 

Thus, using the correspondence (B.38), 

or 
JAB = e-2Q+AB. (B.112) 

Thus, the NP components of the Maxwell spinor transform as follows: 



Appendix C 

Newman-Penrose Field Equat ions 

C. 1 Bianchi ident ities 



C.2 Ricci identities 

C .2 Ricci ident ities 



C.3 NP commutation relations 

C.3 NP commutation relations 



Appendix D 

Notation and Conventions 

D.1 Symbols and tensors 

Mn 1 n-dimensional pseudo-Riemannian space . . 
a,bl ..-, z , ~ !  ..., i 1 , i 2 - - . 1  natural basis, range O .  . . n 

metric tensor with signature (+ - - - -) 
components of the metric covariant derivative 
class of al1 functions in ck with compact support 
set of au metric tensors of class CO" 

vector space of distributions on the set R f Mn 
open connected neighbourhood in Mn 
square of the geodesic distance of z fiom 
Euler gamma function 
null conoid with vertex at  E 
future (past) null serni-conoid with vertex at 5 
open subsets bounded by Cf (0 
closure of D* (0 
Laplace-Beltrami operator on Mn 
p-fom 

exterior dxerentiation 
exterior codifferentiation 
trace-fiee syrnrnetric part of the 
enclosed tensor 



0.2 Correspondence between tenson and spinors 

Ricci identi ty 
Bianchi identity 
Ricci t ensor 
Ricci scalar 

Weyl tensor 

Bach tens~r  
Levi-Civita pseudotensor 
Mt dual of Cabcd 

D .2 Correspondence between t ensors and spinors 



Appendix E 

Maple Codes 

The codes described below were used to make obtain most of the results of this Thesis. 
They are applications of the Maple packages NPspinor written by Czapor [27] [29] and 
grobner, also by Czapor [28]. These codes should run under the versions 5.2 or 5.3 
of Maple. The package NPspinor is not present in the latest version, 5.4, but it should 
appear again in the folIowing one, as an updated package built by Holly and McLenaghan 
1 

The files must be run interactively, since certain calculations can easily exceed Maple 
memory and/or system memory. 

E.l Heading and templates 

%Cal1 NPspinor package and unprotect the name "gc" (garbage collecter) 
aith(HPspinor) : 
unprotact ( ' g c J  ) : 
maplec : =op (gc) : 
gc:=<gcr : 
gbar : =gc : 
gbarc : =g : 

SDef ine spinor symbols 
templata [loapsl :=(loeps CI ,BI =O CU *i [BI -i [Al *O [BI ) : 
e x l : = p s i t ~ , ~  ,C,ZJ *conj (loepsCA,Bl *loeps[Z ,Cl) : 
tomplats CCYf : ~ ( ; T Y [ A , A ~ , ~ , B C ~ C ~ C ~ , ~ , Z ~ ~ ~ ~ X ~ + C O ~ J  (0x1) : 
# contract (dyad(eps U c  @Cc] *loepsc U c  ,Cc] ) ) : 
0x2:-I*exl: 
templateCSCY1 :=S~~A,Ac,B,Bc8C8Cc,Z~ZcJ=e~+conj(ex2) : 
tomplate [LU :=LL[A ,Ac ,B ,Bc1=2*(phiU 'B ,AC ,BcI -L*loeps fA,B] * ~ O ~ ~ S C [ A C , B C ]  ) : 
tsmplata [SS] :=SSCA,Ac,B,Bc,C,Cc]=- 

' private communication 



#Name of the file: headingII1 

equat ion 

SComponents of condition VIS (Rinlre-Vuasch) 
#lama of the file: VIS 

read heading; 
read headingII1; 

SFirst  terni, 
Q 1 1 : = 3 * d a l ~ C Y ~ ~ , ~ c , ~ , ~ c , B . B c ~ ~ , ~ c l  .~~~c)*epr~K,R]*eps[Rc,Rc~*eps~,~~*eps[~c,Qc]* 
eps CM, Cl *@pst plc ,Cc] : 
Qll:=contract(dyad(Q11)): 
Q1l:~eorite(Qll,A1dmBAlsxp) : 
Aldum:=AIexp: 
Q11:=contract(dyad(Q11)): 
Q11 :=del (QI1 ,Cs Cc) : 
QI1 : =contract (dyad(Q11) : 
QI1 :~e~rite(Qll,B2dum,B2eq) : 
B2dum:=B2exp: 
Qll:~contract(dyad(Qll)): 

Q~~:=~~~(CY[V,V~,&,A~,B,BC,R,R~] ,C,Cc)*eps[K,V]* 
eps EKc , Vcl *eps CH, RI *eps Bit, Rc] : 
Ql2:=contract(dyad(QlZ) : 
Q12:=contract(dyad(q12)): 
Q12:=de1(Ql2,DDDc): 
Ql2:=revrite(Q12,D2duin,D2elp): 
D2dwn:=D2exp: 
Q121:~10*del(SS[3(,Kc,i18Hc,E,EcJ ,FBFc)+6*del(SS~,Ec,FDFc,K,Kc~ BH,H~) : 



E.2 Self-adjoin t scdar equation 

Q ~ ~ : = ~ * ~ ~ ~ ( C U ~ R , R C , C ~ C ~ , D , D C , K , K ~ ~  ,V.VC)*~~S~~R]*~~S[HC,RC~: 
QI6 :=contract(dyad(Q16) 1 : 
~16:=contract(dyad(q16)): 
~16:=del(Q16 ,E.Ec) *LLUl,Hc,F,Fcl: 
916 : =contract (dyad(Qt6) 1 ; 
~16:~earite(Q16,Fildtllp,~11erp) : 
Fiidua:=Fllexp: 
Ql6:=contract(Q16* Y): 
Q 16 : =contract (dyad&16 ) ; 
save(Ql6, gensrQ16) : 



Ql?:=contract(dyad(q17)): 
Ql?:=contract(dyad(Ql?)): 
917:~e~rite(Ql?,F3din.P3exp): 
F3dua:=F3erp: 
Q17:~contract~Q17*dyd~dyad(U~,Ec,F,Fc]))*~W): 
save (Q 17, generQ17) : 

Second tom, 92 

Q~~:=~~~(SS[K.KC,V,V~,D.DC~ ,E,Ec) : 
Q21:=contract(dyad(Q21)): 
Q21 :=contract (dyad(Q21) : 
Q21: acontract (dyad(Q21) : 
Q21 :=expand(") : 
Q21:=de1(Q2lpF.Fc): 
Q2l:ttearits(Q21,F7dum,F7exp): 
F7dum:=F7erp: 
Q ~ ~ ~ : ~ ~ ~ ( C V ~ , R ~ , A , A ~ . B , B ~ . G , G C ~  .C,Cc)*epsCK.RJ* 
eps [Kc . Rcl *eps I V .  G] *eps m c  , Cc] : 
Q211:=contract(dyad~Q211)): 
QW2:=contract(dyad(Q211)): 
save (QW2, generQV2) : 
Q21:=cantract(Q2l*QY2): 
save(Q21DgenerQ21): 

Q~~:=~*~~~(sSCD.DC,E.EC.K~KC~ ,V.Vc) : 
922 : =contract (dyad(Q22) ) : 
Q22 :=contract (dyad(q22) ) : 
Q22 : =contract (dyad(Q22) ) : 
922 : -leurite (Q22, C2du~i, G2exp) : 
G2dum:=GZerp: 
Q22:=del(Q22,F8Fc) : 
922 : =contract (Q22*QV2) : 
save (Q22 ,generQ22) : 



E.2 Self-adjoint scaiar equation 

GS1dum:rCSlerp: 
Q23 : acontract (Q23*QQ23) : 

924: =-5*SS U ,Ac ,B ,Bc ,K .Kc] *eps U, R] *eps CKC, Rc] : 
Q24:=contract(dyad(Q24)): 
Q24 :=contract (dyad(Q24) : 
Q24:=contract(dyad(Q24)): 
Q ~ ~ : ~ Q ~ ~ * S S ~ C , C ~ , D , D ~ , R , R ~ ~ * U ~ , E C ~ F , F ~ ~  : 
Q24:=contract(dyad(Q24)): 
Q24 : =contra& (dyad(Q24) ) : 
Q24:=contract(dyad(Q24)): 

QV~:~-(~/~)*~~~(CY[R,R~,A,A~,B,B~,C,G~~ ,~,~c)*eps~,R]* 
sps ClCc ,Etcl *eps CV, GJ *eps [Vc, Cc1 : 
QY3:=contract(dyad(QW3)): 
qU3:=contract(dyad(QU3)): 

Q25:=2*del(CU~,Rc R,Kc,V,Vc,D.Dc] ,E,Ec)* 
sps ~ H , R ~ * ~ ~ S ~ C ~ R ~ ~ * U U [ , H ~ . F , F C I  : 
sava(QW3,gen~rQU3): 
Q25 :=contract (dyad(Q25) ) : 
Q25:=contract(dyad(q25)): 
Q25 :=contract (Q25*QY3) : 
sava (925, geaarQ25) : 

Q26 :=3*del(CU[R,Rc,D,Dc,E,Ec~K~Kc~ ,V,Vc)* 
sps~H,R1*eps()lc,Rcl*UCH,Hc,FDFcl : 
Q26 :=contract (dyad(Q26) : 
Q26 :=contract (dyad(Q26) : 
Q26 :=contract (Q26*QY3) : 
savs (Q26, gensrQ26) : 

~ 2 7 : ~ c o n t r a c t ( d y a d ( ~ ~ C ~ , ~ c , V , ~ ~ ~ D , ~ c ~ * ~ , ~ c , F , F c ~ ~ ~  : 
Q27:=conttact(dyad(Q2?)): 
Q27:=contract(dyad(Q2?)): 
Q27:=coatract(Q27*QV3): 
save (Q27, generQ27) : 

Q28:=3*del(CU[K,Kc D,Dc,E,Ec,R,Rcl ,F,Fc)* 
e p s ~ ~ . ~ ~ * ~ p r ~ c , ~ c ~ * ~ ~ ~ , ~ s , H , H s ~  : 
Q28:=contract(dyad(Q28)): 
Q28 : =contract (dyad(Q28) : 
Q28:=contract(Q28*QU3): 
savs (Q28, generQ28) : 

~ 2 9  :=~s*ssEP,Dc,E,Ec ,K ,Kcl*LLCVDvc ,F,Fc] : 
Q29 : =contract (dyad(Q29 ) : 
Q29: ocontract (dyad(Q29) ) : 
Q29:=contract(dyad(Q29)): 
Q29:=contract(Q29* Y3): 
Q29 :=contract(dyad?Q29) 1 : 
Q29:=contract(dyad(Q29)): 
save (929, generQ29) : 

Q Y ~ : = - C Y [ C , G ~ , A , A ~ , B , B C , R , R ~ ~ * ~ ~ ~ ~ , G ~ *  
eps [Kc ,Cc] *eps IV, RI *eps m, Rc] : 
QU4 : =dyad ( " ) : 
QU4 : =dyad(" ) : 
sava (QY4, ganerQY4) ; 

Q~~~:=~~~(CY~,KC~C,CC,D,DC,R,EIC] ,~,~c)*epsPI,~*eps[Hc,Hc] : 
Q2iO :=contract Cdyad(P210) ) : 
Q210:=contract(dyad(Q2iO)): 
~ ~ 2 1 0  :=(i/s) *(dsi(uCv,v~,n,n~I ,F,FC)+ 
del(LLM,Kc,F,Fcj ,V,Vc)+del(LLCF~Fc,V,VcI ,H,ilc) 



E.2 Selfladjoint scalar equation 

Q~~:=~*~~~(CU[V,V~,X,XC,H~HC,D,D~~ ,E,Ec) : 
931 : =contract (dyad(Q31) : 
931 :=contract (dyad(~31) : 
931 :=contract (dyad(Q31) 1 : 
Q31:=del(Q31,F,Fc) : 
931 :=contract (dyad(Q31) 1 : 
~3l:=contract(dyad(q31)): 
~31:=contract(dyad(Q31)): 
Q31 : =murite (~3l,Hldrnn,~lexp) : 
Hldum:=Hlexp: 
~ 3 f  ~ : = c v [ K ~ K ~ , R , R ~ , H , H c , c , c c ~ * ~ ~ ~ ~ , ~ *  
eps [Mc , R c l  *eps EX, BI *eps D(c , Hcl : 
~31:=contract(dyad(Q31*~311*QU4)): 
Q31:=contract(dyad(~31)); 
save(Q31 ,generQ31) : 

Q ~ ~ : = - ~ o * ~ ~ ~ ( C Y ~ , K ~ , E ~ E C ~ F ~ F ~ , V . V C ] ~ M ~ W C ) :  
Q32 : =contract (dyad(Q32) ) : 
Q32:=contract (dyad(Q32) 1 : 
Q32:=del(Q32,X,Xc): 
Q32:=re~rite(Q32~H32dum,H32exp): 
H32dum:=H32erp: 
Q321:=dyad~CYCff ,Hc ,C ,C~ ,D ,D~ ,U ,Uc1*eps~*  
eps [Mc, Hcl *eps LX, U3 *eps D c  , Ucl ) : 
Q321 :=contract (dyad(Q321) ) : 
Q32 : =contract (Q32*Q321*QU4) : 
save(Q32,generQ32): 



eps [Kc , flcl *eps CV, XI *eps CVc. Xcl : 
Q34 : =contract (dyad(Q34) ) : 
Q34:del(Q34,F,Fc) : 
Q34:~emite(Q34,R3dtf~1,K3erp): 
K3dum:rKSexp: 
Q341:3CVCV,VcDI¶,I¶c G,Gc B,Bc]*cvI~(,Kc,Y,Y~,u,uc.A,Ac]* m .n ceps D ~ C  .yCj tePs tc .a reps CGC .UCI : 
9341 : =contract (dyad(Q341) ) : 
Q34l:=contract(dyad(Q341)): 
Q34:=contract(Q341*Q34): 
934 : =contract (dyad(") : 
Q34: =contract (dyad(") ) : 
434: -contract (dyad(") : 
934 : 'contract (dyad(") ) : 
save (934, generQ34) : 

Q ~ s : ~ T * c Y [ K , K c , Y , Y c , U ~ U C ~ C , C C ] * ~ ~ ~ ~ D Y ~ *  
eps WC. Yc] *eps CG , a  *eps CGC, Ucl 
CV[V,VC,U,~C,G,GC,D,DCI: 
~35:=contract(dyad(Q35)): 
Q35 : =contract (dyad(Q35) : 
Q~~~:=LL~,EC,F,PCJ * (-QU41 : 
~351:=contract(dyad(Q351)): 
Q351: =contract (dyad(Q351) ) : 
935 : =contract (Q35* 351) : 
Q3S : =sontract (dyadqu ) : 
save (Q35, generQ35) : 

Q36:=-lO*CYCK,Rc,E E ~ , P , F ~ , V , V ~ ] * C V ~ U , U ~ , C ~ C C , D , ~ ~ , ~ ~ ~ *  . 
eps M.üJ *eps M c  .ucj *aps [Y ,XI *eps [Ys .XC] : 
Q36:=contract(dyad(Q36)): 
Q36:scontract(dyad(Q36)): 
~361:=U[H,k,Y ,YC] *(-QU4) : 
9361 :=contra& (dyad(Q361) 1 : 
Q36l: =contra& (dyad(Q36 1) 1 : 
Q36 : =contract (Q36* 361) : 
936 : =contract (dyad?Q36) : 
Q36 : =contract (dyad(Q36 1 ; 
save (936, generQ36) : 

#Fourth tom, Q4 
Q~~:=~*~~~(CY[K,K~,U,UC,X,XC,C,CC] ,D.Dc) * 
eps CH, U1 *eps Pic ,Uc7 *eps tY ,X I  *eps CYc . Xcl : 
Q4l: =contract (dyad(Q41) 1 : 
Q41: =contract (dyad(Q41) ) : 
Q41 :=rewrite (Q41 ,K62dumnK62eq) : 
R62dum:=K62exp: 
~4ll:=del~CV[V,Vc,H,~c,Y,~c,E~Ec] ,F,Fc) : 
Q411 :=contract(dyad(Q411) : 
Q411: =contra& (dyad(Q411) ) : 
QQIZ :=reurite(Q41i ,K63dmPK63exp) : 
K63dum: =K63erp: 
Q41: =contract (Q41*Q411*QV4) : 
save (Q4l ,generQ41) : 



E.2 Selt-&joint scalar equation 

~46:=6*dsl(CV~,Uc,B,Bc.~,Cc,X,Xcl ,D,Dc)*epsCK,iJl* 
eps [Kc ,Ucl *eps CV, XI *eps CVc , XC] : 
~46:=contract(dyad(~46)): 
Q46:=coatract(dyadCQ46)): 
Q461:=dal(CUEV,Vc,E,Ec F,FC,H,M~],C,GC)* 
C V [ K . K ~ . Y . Y ~ , U , U ~ . A . A ~ ~ * ~ ~ ~ C ~ , Y I * ~ ~ ~ M ~ . Y ~ I * ~ ~ ~ C G , ~ * ~ ~ ~ C ~ ~ . ~ ~ I  : 
9461 : =contract (dyad(Q461) 1 : 
~461:=contract(dyad(Q461)): 
Q461:~evrite(Q46l,Lldu~i,Lleq): 
Lldum:=Llaxp: 
946 : =contract (Q46*Q461) : 
savo(Q46.generQ46): 

q52:=(1/6)*(-QU4)*CYDt,Rc,C,Cc,D Dc,V,Vc] *87* 
~ ~ [ ~ . ~ c . ~ . ~ s l * e ~ s ~ l l . ~ * e ~ s [ ~ c , ~ c ~ * ~ a i , H s , ~ . ~ s ~ :  
Q52:=contract (dyad(Q52) ) : 
Q52:*contract(dyad(QSZ)): 
save (952 ,  generQ52) : 

#Ue have to break the contractions into parts in order 
8 to Save cornputer memory 



colsc:=conj (cols )  : 
co2sc :=con j ( ~ 0 2 s )  : 
co3sc :=conj ( ~ 0 3 s )  : 
co4sc :=conj ( ~ 0 4 s )  : 
co5sc: =conj ( ~ 0 5 s )  : 
co6sc :=conj (co6s) : 
co?sc :=conj ( ~ 0 7 s )  : 



E.2 Self-adjoint scalar equation 

sixQl:=array(i. .28): 
for j from 1 to 28 do 
sixq1Cjf :=erpand(contract(Ql*cCjI*fc~c) : 
od: 
sixQ2:=array(l. .28) : 
for j from 1 to 28 do 
skQ2 Cj3 :=expand(contract (Q2*c 1 j] *f c*f c )  ) : 
od: 
sirQ3:=array(l. .28): 
for j from 1 to 28 do 
sUQ3 Cj3 :=srpd(contract (Q3*c[j] *f c) ) : 
od: 
sUQ4:=array(1..28): 
for j from 1 to 28 do 
sixQ4 Cjl :=expand(contract (Q4*c Cjf *fc*f c )  ) : 
od: 
sixQS:=array(1..28): 
for j from 1 to 28 do 
sixQ5 Cjl :=expand(coatract (QS*c[jl *f c*f c )  1 : 
od : 

six:=array(l. -28)  : 
for j fron 1 to 28 do 
sirCj1 :=priPpart(f actor~s~Qll~j~+s~Q12[j]+sU~l3I:j]+six~14~j]+sir~l5~~] 
+six~16~j]+sLx~17~j]+sirQ18~j~+sirql9[jJ -1O*(sixQ21Cjf 
+slxQ22 [JI +~irQ23 Cj3 eixQ24 Cj] +sùQ25 [ j] +sirQ26 [j] 
+ s l x Q 2 7 C ~ j ~ i x ~ 2 8 P 1 + s i x ~ 2 9  CjI+sixQ210[jl+sùQ211 Cjl)+4* (sixQ31[j]+ 
srxQ32 Cj1 + s u ~ 3 3  C~l+sir~34Cj]+six~35 Cj] 
+sixQ36 Cj1)+5*(sixQ41 [jI+sixQ42 [j]+sixQ43[j ] 
+sixQ44 C j 1 +sir945 C j] + 
sixQ46CjI )+jixQ51Cjl+sixQ52Cjl)) ; 
od : 
savebix, 'six, m a y '  : 
siO:=six[i~f : 
save(s10 ,six10) ; 
0 - m  
#Solvin for the case R11-O 
#Paie 08 th6 file: soloeself O 
R11:=O: 

read 'tt.arrayr; 
~ ( b )  : =soive(tt C4J ,X(b) 1 ; 
Y (bc) :=conj (X(b) ; 
eq30 :=tt Cl] /2; 
eq31:=tt 121 ; 



E.2 Self-&joint SC& equation 

It Condit ion V 
t5:rarray(l.. 15): 
read 'tSsca.arrayC; 
ItScalar field equations 
Skl:=3;k2:=4; 
for j from 1 to 15 do 
tSCj1 :=normal(tSCj]) ; 
od: 
eq39 : =normal (tS Cl J ) ; 
eq40 :=normal (t 5 [51) ; 
eq41: aormal (t5 Cg]) ; 
eq42 : aormai  (tS Cl5 J ; 
D(lc) :=salve (eq41,D(lc) ) ; 
D(I> :=conj (D(lc)) ; 

y,X(a+2*p) :":" : ":" : 
eq43: =factor(") ; 
normal (eq43) : " : " : " : 
solve(",D(m)) : 
D (ml :=factor (" ; 
nornd(0 (mc) -conj (D (m) ) ) : 
1,. 18. $1 * - 



E. 3 Non-selt-adjoin t scalar equation 

eql :=no&l(~al-~a6) ; 
neql : =numer(") : 
neql :=factor (" : 
aeql:=op(S,neql) ; 

#Y (neql) yields neql again 
y(neql) : 81 : 44.8). 11. Il. 

S . . .  

eq60:=normal(") ; 
s a l v e  (eq60 ,Y (a) ) : 
Ya4:oW; 
eq4 : =normal (Yai-Ya4) ; 
neq4 : zfact or (numer (" ; 
a: =xl*p: 
ac:=conj ("1 : 
b : =x2*pc : 
bc:=conj(") : 

Non-self-adjoint scdar equat ion 

$Components of condit ion II (on-self-adjoint scalar equat ion) 
#Rame of the f i l e :  IInon 
read heading; 

for j from 1 to 4 do 
QQI Cjl :=contract(dyad(Q2*f*f c*c[j]) 1 ; 
od; 
save(QQ1, 'qq1.arrayf): 
a a m m w t s = = a 1 # u C - ~ ~ a = j c m t a t ~  
tcondit ion III 
#lame of the file: IIInon 
read heading; 



colco :=conj (cols) : 
co2co :=con j (co2s) : 
co3co:=conj(co3s): 

QQ2:=array(1. -9 )  : 
for j from 1 to 9 do 
QQ2Cjf :=factor(contract Cdyad(cCj1 *T2*f *f c )  1 )  ; 
od; 

Condit ion IV 
%lame of the file: IVnon 
read heading; 

colc:=conj (col) : 
co2c:rconj (co2) : 
~ 0 3 ~ :  oconj (~03) : 
co4c :=con j (co4) : 



E.3 Non-selSadjoint SC& equation 

QQ3:=arrayCi..lO): 
for j from 1 to 10 do 
QQ3 Cjl :=factor(contract (dyad(ctj1 *Q3+f+fc))) ; 
od; 

SCondit ion V 
#lame of the file: Vnon 

read heading; 

441:- 3*delCCUCK,Kc,C,Cc,D Dc,V,Vcl ,H,Hc)* 
~~~(cv(u.u~.E,E~.F,P~,G,G~~ .H.Hc)*eps~K.~]*~psD[c.Ys]*epr[V,~]*eps[Vc,~c~* 
eps CH, Hl *eps D c  , Hcl : 
Q41:*contract(dyad(")): 
Q41:=factor(contract(dyad(") ) )  : 
save(q4l,Q4lself): 
1; 
~42:=8+del(CY~V,Yc,C.~c,D,Dc,~Hc] ,E,Ec)*eps[K,U]* 
eps~Kc,Uc]*eps~V.U]*eps~c,Ucl*SS[K,Kc,V,~c,F.Fc] : 
442 : =contract (dyad(") ) : 
442 : =contract (dyad(")) : 
442 : =contract (dyad("1) : 
Q42:=factor(") : 
Save (Q42, Q42self) : 
2 ;  
443 : +40*SS CC ,Cc .D , Dc ,H, Hc] *sps [K ,HI *eps [Kc, Hcl : 
443 : =contract (dyad("1) : 
~43:=contract(dyad(")): 
943 : =contract (dyad(") ) : 
Q43 : =contract (dyad(Q43*SS CE, Ec ,F, Fc ,K,Kc] 1) : 
443 : =contract (dyad(") : 
443 : =contract (dyad(") ) : 
443 :=factor(") : 
save (Q43, Q43self) : 
3 ; 

Q~:~-8*CU~U,Yc.C,Cc.D.Dc,H.Hc~*epsCK,~*eps~Kc,Vcl*epsCV,MI*epsCVc,~c] : 
944 : =contract (dyad(lt) ) : 
Q44:=contract(dyad(")): 
Q44l:=delCSS~,Rc.V,Vc,E,Ecl ,F,Fc): 
9441 :=contract (dyad(") ) : 
0441 : =contract (dyad(") ) : 
9441 : =contract (dyad(") ) : 
Q441 :=reuriteCQ441 ,F11duxa,Fllexp) : 
Flldum:=Flierp: 
Q44:fcontract (Q441*q44) : 
Q44:=f actor(") : 
save (Q44, Q44self) : 
4 - 
~ ~ 5 : = - 2 4 * ~ ~ ~ ~ , ~ c . ~ . ~ c . ~ , ~ c . ~ ~ ~ c 1 * e ~ s ~ r , d * e ~ s [ ~ c , ~ c ~ * e ~ s f ~ . ~ * e ~ s ~ ~ c . ~ c ]  : 



E. 3 Non-seif--adjoint scaiar equa tion 

445 : =contract (dyad(") ) : 
Q45:'contract (dyad("1) : 
Q451:=dsl(SS(E,Ec,F,Fc K,Kcl ,V,Vc): 
Q451 :=contract (dyad(") : 
Q4Sl:=contraet(dyad(")): 
Q45l:=contract(dyad(")): 
q4Sl:~sutite(Q451,F12d~,F12erp): 
FlZdum:=Fi2erp: 
Q45:=contract(Q45*QGl): 
445: =factor(") : 
save (Q45, Q45seU) : 
5 ;  
Q ~ ~ : ~ * C Y ~ , U ~ . C , C ~ , D , D ~ , X , X ~ ~ * ~ ~ ~ ~ K ~ ~ R * ~ ~ ~ D [ C . U C I * ~ ~ S [ V , X ] * ~ ~ S [ V C , X C ]  : 
946 : 'contract (dyad(") ) : 
446 : wontract (dyad(")) : 
Q461:=CV[V,Vc,H,Ec,E.Ec,K,Kcl.eps~~~*ep~[Hc~Hc] : 
4461 : 'contract (dyad(") ) : 
946 1 : =contract (dyad(*') : 
Q462:=LLIpDFc,U,Uc] : 
Q462:=contract(dyad(")): 
9462 : =contract (dyadc'') ) : 
Q46:=contract(q46*Q462*Q461): 
Q46: =factor(") : 
save (QQ6, q46self : 
6; 
Q47:=12*~~~,Vc,C,Cc,D,Dc,~,Hcl*eps~K,~*eps~Kc,Uc] *~~S[V.H]*~~S[VC,HC] * 
CVCH,Hc,E.Ec,F,Fc,V,Vc~*eps~.HI*eps~c,Hcl: 
447 :=contract(dyad(" 1) : 
Q47:=contract(dyad(") : 
Q~~~:=LLcK.Kc.~,~cI : 
9471 : =contra& (dyad(") 1 : 
9471 : =contract (dyad(" : 
Q4?:=coatract(Q471*Q47): 
Q47 :=factor(") : 
save(Q47,Q47self): 
7 ;  
Q48:=dal(12*BH[K8Kc,C,Ccl ,D,Dc) : 
448 : =contract (dyad(") ) : 
448 :=contract (dyad(") ) : 
Q48:=del(Q48,EaEc) : 
Q48:=reurite(Q48.F13dum~F13exp): 
Fl3duia:=F13erp: 
4481 : =KH fH ,Bc ,F .Fcl *eps ÛC ,Hl *eps CKc , Hc] : 
9481 :=contract(dyad(18) : 
Q481:=contract(dyad(")): 
448 :=contract (Q48*q48l) : 
Q48:=factor(") : 
save (Q48, 448sel.f : 
8; 
Q49:~-16*del(HüO(,Kc.CBCc] 8DDDc) : 
Q49 : =contract (dyad(" ) : 
949 : =contract (dyad(") ) : 
Q49 : =Q49*del (BtI D!.Hc ,E , Ecl , F ,Fc) *eps D l  *eps [Kc *Mc] : 
449 : acontract (dyad (" 1 ) : 
949 : "contract (dyad(") ) : 
949 :=factor(") : 
save (949, Q49self ) : 
9; 
~4i0:=-84*EfII[)I,n~~c,C~3*epsCK.nl*ep~ÛC~,H~J : 
4410 : =contract (dyad("1) : 
Q410:=contract(dyad(")) : 
Q410:=q410*CY[K,Kc,D,Dc,E,Ec,V,Vcl : 
4410 :=contract(dyad(") : 
Q4lO:=contract(dyad(") ) : 
Q410:=Q410*HHCB,Hc ,F,FcI*eps~ ,Hl *epscVc ,Hel : 



E. 3 Non-self-adjoint scdar equation 

colco :=conj (cols) : 
co2co:=conj(co2s): 
co3co:=conj(co3s) : 
co4co:=conj(co4s): 
co5co : =conj (CO%) : 
c C13 : =cols*co1co: 
c [2] :=CO ls*c02c0 : 
c [31: =cols*co3co : 
c c41 :=CO ls*co4co : 
c [5] :=CO ls*co5co : 

for j from 1 to 15 do 
qQ4t jl :=expand(contract (dyad(Q4*c Cjl *f ) 1 ; 
od; 

Condit ion VI 
#Mame of the file: V h o n  

read heading; 



E.3 Non-self-adjoint scalar equation 

de1(CY[V.Vc,C8Cc.D.D~,HDH~~ .K.K~)*BBCJ.J~.E.ECI*~~~P~~JJ*~~S~C,JC] : 
951 : =contract (dyad(") ) : 
951 : =contract (dyad(")) : 
Q5 1 : =contract (dyad(" 1 ) : 
951 :riactorC1') : 
sava (Q51, Q51sdf) : 
1; 
Q ~ ~ : = - ~ * ~ ~ ~ ( C V [ U , U ~ , A ~ A ~ , B , B C ~ G , G C ]  .C,Cc)* 
eps [K , *op8 m c  .WC] *aps . G] *eps [Vc , Gc] * 
CY~V,VC,D,DC,E,E~,J, Jc]*epsC~, JJ*eps[3lc, JC]*HHCR,RC,H,HC]: 
QS2:=contract (dyadIam)) : 
Q52:=contract(dyad(")): 
QS2 : =contract (dyad(" 1 : 
Q52:=factor(") : 
save (952, Q52self) : 
2; 
953:-138*CU~,Kc,C,Cc.D~Dc8V,Vc] : 
453 : =contract (dyad (" ) 1 : 
Q53:rcontract (dyad(")) : 
Q53:=Q53*üH[G8Gc,E ,Ecl *eps[V,GI*eps CVc.Gc] : 
Q53:=contract(dyad(")): 
Q53:=contract(dyad(")): 
9531 : =contract (dyad(SS CA, Ac, B. Bc, Y, Ycf seps [K. U] *eps CKc, WC] ) ) : 
9531 : =contract (dyad((0 ) : 
Q531:=contract(dyad(")): 
Q53:=cotltract(dyad(Q531*Q53)): 
453 : =contract (dyadc") 1 : 
453 :=factor(") : 
save (QS3, Q53sslf : 
3; 

Q54:=6*dal(HH[X8Xc,C,Cc] ,D.Dc)*epsCK,Xlrc,Xc] : 
Q54: contract (dyad(") ) : 
954:f actor(contract (dyad("11 ) : 
954: contract (dyad(") ) : 
Q54:=dyad(") : 
Q54:=raurita(Q54,F12dum,F12exp): 
F12duni:=F12erp: 
Q54:=dal(Q54,E,Ec): 
Q54:=reurite(Q54,F13dum,F13erp) : 
F13dum:=Fl3exp : 
Q541:=SSCA,AcmB ,Bc.K,KcJ : 
Q541:=f actor(contract (dyad(")) ) : 
QS4l: =contract (dyad(")) : 
Q54:=QS4*Q541: 
454: contract (dyadP) : 
Q54: contract (dyad("1) : 
Q54:=factor(*') : 
sava (Q54, QS4self) : 
4; 
Q55:=6*dal(CU[U8Vc A,Ac B,Bc,G,Gcl ,C,Cc)*. 
eps CR, Y] *eps D c  . V C ~  *op. h. GJ reps [Vs . Gc] : 
955 : 'contract (dyad(la) 1 : 
455:=contract(dyad(")): 

~551:=del(IilJUf,Kc,D,Dc] .V,Vc) : 
QS51 :=contract(dyad(") 1 : 
455 1 : =contract (dyad(") 1 : 
QS51:=de1(Q551.E8Ec): 
Q551:~errrite(Q551,F14dum8F14erp): 
F14dum:=F14exp : 
Q55:=contract(Q551*Q55): 
Q55:=f actor(") : 
save (955, Q55self : 
5; 



E. 3 Non-self-adjoint scalar equation 

q56:=-24+del(~S~,~c,B,Bc~Kc] ,C,CC) : 
QS6 :=contract CdyadC") 1 : 
QS6 : =contract (dyad(") ) : 
QS6 : =contract (dyad(") : 
langth(Q56) : 
qS6 :-reurito (956 ,FI6dum,Pl60rp) : 
Fi6dun:=F16exp: 
leagthCQ56) : 
Q561:rdel(IliIa,~c,D,Dc] ,E,~c)*eps~,~*eps~c,Xc] : 
9561 : =contract (dyad("1 : 
4561 : =contract (dyad(") 1 : 
Q56:=contract(Q56*Q561): 
Q56 :=factor(") : 
save (QS6, Q56self : 
6 ;  
Q~~:=~~*CY~,Y~.A,AC,B,BC,G,GC~ *eps[:K,Ul* 
e p s ~ c , ~ c ] * a p s [ ~ , ~ I * e p s ~ ~ , ~ c ] * ~ ~ ~ , R ~ , ~ , ~ ~ ] * d e 1 ~ ~ ~ , ~ c , ~ , ~ c ~  ,E,Ec): 
Q57 : =contract (dyad(")) : 
457 : =contract (dyadc") : 
QSf:=faetor(") : 
save(Q57,Q57self): 
7 - 
Q~~:=-~*~~~(CYCU.VC,A,AC,B,BC,G,GC] ,C,Cc)* 
~ ~ ~ ~ K , Y ~ * ~ ~ ~ ~ ~ , U ~ ~ * ~ ~ ~ ~ , C ] * ~ ~ ~ [ V C , G C ~ * L L ~ K , K C , D , D C ] * H E I ~ , V ~ , E , E ~ ]  : 
Q58:=contract(dyad(")): 
Q58:=contract(dyad(")): 
458 :=factor(") : 
Save (Q58, Q58self) : 
8; 
Q S ~ : ~ - ~ * S S ~ , A C , B ~ B ~ , K . K ~ ~ * L L ~ C , C ~ , D , D ~ ~ * H H [ G , G ~ , E , E ~ ~ * ~ ~ ~ C K , G ~ * ~ ~ ~ ~ ~ , G ~ ~  : 
QS9 :=contract (dyad(") ) : 
Q59:=contract(dyad(")): 
Q59 : =contract (dyad(") ) : 
Q59:=factor(") : 
save (959 ,q59seif) : 
9; 

CO lsc :=con j (CO 1s) : 
co2sc:=conj(co2s): 
co3sc: sconj (~03s) : 
co4sc :=con j (~04s) : 
co5sc :=conj (~05s) : 
co68c:=conj(co6s): 



E.3 Non-self-adjoint scolat equation 

QQS:=array(l. ,211 : 
for j froa 1 t o  21 do 
QQ51 [jl :=expand(contract (dyad(Q51* J f 1) ; 
QQS2 Cjl :=expand(contract (dyad(QS2ec Cj] *f ) 1 1 ; 
QQ53 [ jl : =erpand(contract (dyad(Q53*c tj3 *f 1 ; 
QQS4C jl : =expand(contract (dyad(Q54*c [jl Y )  1) ; 
QQ55 C j] : =expaad(contract(dyad(Q5S*c Cjl *f 1) ; 
QQ56 Cjl :=expand(contract (dyadC956*c cjl *f 1) 1 ; 
QQS? Cjl : =erpand(contract (dyad(QSf*c Ijl *f ; 
QQ58 Cjl :=erpand(contract (dyad(458*c Lj3 *f) ) ) ; 
QQS9 [j 1 :=expand(contract (dyad(Q59*c Cjl *f) 1) ; 
QQS Cj3 :=factor(QQSlCjl+QQS2 CjI+QQ53 tj1 WQ55 tjl+ 
9455 Cjl +QQ56 Cj] 4457 Cjl +QP58 tjl +QQ59 (31 ) : 
od; 
save (WS, 'QQS. artay ' 1 ; t a a a a -  
#Building and solving the polynonial systea for a,b and p 
#Mame of the file: solvanon 

read heading; 
YOc:=O: U2c:=0: Ylc:=O: U4c:=0: YO:=O: U2:=O: U4:=0 : 
u1:=0: 
V3:=-1: Y3c:~-1: 
k:=O:kc:=O:sc:=O: s:=O: rc:=O : r:=O: o:=O:ec:rO:t:=O:tc:=O: - 
R00:=0:RO1:=0:R02:=O:R2O:=O:RlO:=O: 
L:=O: 
D(a) :sO:D(b) :=O: D(ac) :=Q:D(bc) :=O: D(p) :=O:  D(pc) :=O: 
X(R11):=0;Y~R11~:~0;D(R11):rO;V(R11):=0; 
D(p2) :=O: D(p2c):=O: 
p0:=0:pOc:n0:pl:=O:p1~:=o: 

read 'QQ1-array': 
X(p2) :=salve ( Q Q ~  [41. X(p2) ) ; 
Y (p2c 1 : =conj ("1 : 

read 'QQ2.arrayr: 
X(b) :=solve(QQ2[4] ,Xl(b) 1 : 
Y(bc) :=conj (") : 



E.3 Non-seV-adjoint scatar equation 

read 'Qq3.arrayC: 
eq40 :=Qq3 C91 ; 
eq41 :=QQ3 Cl01 ; 
X(p2c) :=solvs(eq40 ,~(p2c) ; 
Y(p2) :=conj(") ; 
Y-X(p2) : " : 
eq~:*actor(rhs(")-Ihs(")) ; 
D (mc) :=salve (eq44,D(nc) ) ; 
D (m) :=con j ('* ; 

raad 'Q94.arrayC: 
for j from 1 to 15 do 
QQ4CjI :=factor(Qq4CjI ; 
od; 
D(lc) :=solve(QQ4~9l ,D(lc) ) ; 
D(1) :=conj ("1 ; 

read '995. array ' : 
for j fron 1 to 21 do 
QQS Cjl :=factor (QQS ljl) ; 
od; 
QQS (41 : Il : 18 : 18 : 18 : 88 : 
eq46 :=factor (Il) ; 
eq47:=conj ("1 ; 
eq48 :=op(3, eq46) ; 
eq49 : =op (3,eq47) ; 
xp2: =X(p2) ; 
p2 : =salve (aq48 ,p2) ; 
factor(X(p2)-Xp2):":":": 
eq50 :=factor(") ; 
eq51:=numer(eq49)/p2c; 



E.4 Maxwell's equations and Weyl's neutrino equation 

E.4 Maxwell's equations and Weyl's neutrino equation 

ItBachs ' teruor, condit ion III for the self -adjoint scalar equat ion,  
#Maruel1 equations and Ueyl-neutrino equation 
#Mame o f  the f i l e :  111s 
read headïag ; 

We take haro only the f irst tuo terms. Thus the t o t a l  expression a i l 1  
Sbe compler (not Hermit ian) 



E.4 Maxwell's equations and Weyl's neutririo equation 

tt :=array(l. .9) : 
for j from 1 ta  9 do 
tt [jl :=factor(contract(dyad(cCj]*TTu) 1 > ; 
od; 
save(tt, 'tt-array'); 
wt###s-##-=-l#t 

#Condit ion V s  
#Hanie of the f i l e  : V s  
#Self -adjoint scahr equat ion: hl :=3, k2 : =4 
#Haxuell equat ions : hl : =SB k2 :=l6 
Weyl-neutrino eqyat ion: k1-5, k2= 16 

read hsading; 

Tl:=kl*del(psi[A,B,C,F] ,K,Kc)*de1~psic~c,Bc,~c,Fc] ,E,Ec) 
*eps CK , El] reps CKc . Ecl : 
Tl : =contract (dyad (Tl) ) : 
Tl:=contract(dyad(Tl>): 



E.4 Maxwell's equations and Weyl's neutrino equation 

f : =eps CS, A] *eps [Sc ,Ac1 *eps Cl,Bl *eps CHc ,Bc3 *sps  P. Cl *eps CPc? Cc] *eps CQ ? FI * 
e sCQc.FcJ : 
#u : =TT*f : 

colco :=conj (cois) : 
c02co :=conj (~02s) : 
co3co:=conj(co3s): 
co4co:=conj(co4s): 
co5co :=conj (~05s) : 



E.4 Maxwdk equations and Weyl's neutrino equation 

save (TTu, Vt en) ; 

t5:=array(1..15): 
for j from 1 to 15 do 
t g  [j] :=expand(contract (dyad(lTu*c [JI ) ) ; 
od; 

tfive-index necessary condition of Alvarez--ch, 
#Uarvell equat ions and Weyl-neutrino squat ions 
#Condit ion VIS 
#lame of the fila: VInarweyl 

read heading; 
read headingI11; 

T1:=del(CüCJ8Jc,D,Dc,E,Ec,P,Pc] ,U,Uc)*eps[U,J~*eps[Uc,Jcl: 
Tl : =contract (dyad(T1) : 
Tl:=contract(dyad(Tl)): 
Tl : ~ e u r i t s ( T l , A l d t f ~ i , A l e q )  : 
Aldum:=Alexp: 
Tl:=del(Tl,K.Rc): 
Tia:=Tl: 
Tl :=rsurite(Tl ,AZdum,A2srp) : 
A2dum:=A2exp: 
Tl:=del(Tl ,C,Cc) : 
T1:tzrearite(T18A3dum,A3erp): 
A3dum:=A3exp: 
T~:=SCYC~,HC,A,AC,B,BC,Q.QC~+~~SCK~U] 
*eps [Rc , UcJ *eps P, QI *eps CPc , Qcl *Tl : 
Tl:=contract (dyad(T1) : 
Ti:=contract(dydCTi)): 
length(T1) ; 
save (Tl, Tlres) : 

SOther te- of sq. (12) 
# 2. Terms (13) and (14): 



E.4 Maxwell's equstions and Weyl's neutrino equation 

T~:=~~~(CYD[,KC.D,DC,E,EC.P,PC~ ,R,Hc): 
T4:=coatra&(dyad(TQ)): 
T4 : =contract (dyad(T4) 1 : 
T4:=reurite(T4,Dldum8D1erp): 
Didun:=Dlexp: 
T4:=del(T4.C8Cc): 
T4:%eurite(T4,D2dum,D2etp): 
DZdum:=D2exp: 
T~~:~~~(SCV~G,GC,A.AC,B,BC,J,JC] ,U,Uc)*epsCK,Gl 
*eps [Kc , Cc] *eps [P ,.JI *eps CPc , Sc3 *aps CH ,a *eps CEfc. Ucl : 
T4a: =contract (dyad (T4a) : 
T4a:=contract(dyadCT4a)): 
T4a:=rsvrite(T4a.D3dum8D3exp): 
DJdum:=D3exp: 
T4:=T4a*T4: 
T4:~contract(dyad(T4)): 
T4:scontract (dyad(T4) : 
sava(T4,T4res): 

T5:=del(CY~JSJc,D,Dc,E~EcBP8Pc~ ,c,cc)*~~s~,J]*o~s[Hc, JC]*LL[K~KC,H,HC~ : 
TS:=contract(dyad(T5)): 
TS : =contract Cdyad(TS)) : 
T~:=revrite(TS ,Eldum,Elexp) : 
Eldum:=Eiexp: 
T ~ ~ : = S C U C C , G ~ , A , A ~ . B , B ~ , U , U ~ ~ * ~ ~ ~ D I , G ~ * ~ ~ ~ ~ K ~ , C ~ ~ * ~ ~ ~ ~ ~ , ~ ~ * ~ P ~ ~ ~ ~ ~ ~ ~ ~  : 
T5a:=coatract(dyad(TSa)): 
T~a:=contract(dyad(T5a)): 
TS:=T5*TSa: 
TS : =contract (dy ad (TS 1 : 
T5 : =contract (dyad(T51 1 : 
save (TS , T5res 1 : 

T~:=~~~(CVCJ,J~,C,C~,D.D~,P.P~),K,K~)*~~S~~J]*~~~CHC,JC]*LL~E~EC,~,RC~ : 
T6 : =contract (dyad(T6 1 : 
T6:=contraet(dyad(T6)): 
T6:=T5a*T6: 
T6 : =contract (dyad(T6) ) : 
TG:=contract(dyad(T6)): 
save (T6, TGres) : 

T7:=de1(CYCJsJcsK,Kc,P ,Pc,C,Ccl ,ü,üc)*eps~,Jl*epsCUc, Jcl*LL~D,Dc,EBEc~ : 
T? : =contract (dyad (T7) ) : 
T?:=contract (dyad(T7)) : 
T?:=TSa*T?: 
T7:=contract(dyad(ïï)): 
T7 : =contract (dyad(T7) ) : 
save (T7 ,T?res) : 

T8:4el(CY[J,Jc,C,Cc,D,Dc.K.Kc] ,U,Uc)*qsCüBJ] 
*eps LUC, Jc] *U[E,Ec,P,Pc] : 
T8 : =contract (dyad(T8) : 
T8 : =contract (dyad (T8) ) : 
T8:=TSa*T8: 
T8 : =contract (dyad(T8) 1 : 
TB : =contract (dyad(T8 1 1 : 
s a m  (T8, T8res) : 



E.4 Maxwell's equations and Weyl's n e u t ~ o  equation 

t 3 b : = - c Y ~ , K c 8 ~ , Y c , X 8 X ~ , A , ~ c ] * e p s ~ c . X c ~ *  
CW@.Pc H.He,J, Jc.B,Bcl* 
~~I~SCY$.FC.D.DC.E.B~.U~U~I .C,C~)*~~SCP,U~*~~SDC.UCI* 
eps CR, FI *eps [Xc ,Fc] : 
t3b : =contract (dyad(t 3b) ) : 
t3b:=contract(dyad(t3b)): 

t4a:=SCVCK.Rc8Y ,Yc,X,Xc,A,Ac]*eps[G,~ 
eps CGC, Ycl *eps CJ , XI reps [Jc, Xcl 
CüCP,Pc,B,Bc,G.Gc,J Jc~*del~CYCP,Fc,D,Dc,E8Ec,U,UcJ~C,Cc) 
* ~ p s ~ , ~ * r p s [ ~ c . ~ s ~ * ~ p s ~ ~ . ~ ~ * e p s ~ c , ~ c ]  : 
t4a:=contract(dyad(t4s)): 
t4a:=contract(dyad(tQa)): 
t4: =8*t3a+t4a: 
sava (t4, t4rss) : 

# 3.  Raisiag indices and sumiautg (building eq(8) ) : 

SCaldat h g  camponent s 



E.4 Maxwell's equations and Weyl's neutrino equation 

T'i:=a.rray(l. -21) : 
for j from 1 to 21 do 
TT1 [jl :=arpand(contract(dyad(Tl*f*fc*c[j] ) 1) ; 
TT2 Cjj :=expand(contract (dyad(T~*f*fc*cCjl) 1) ; 
TT3 [j] :=expand(co~tract (dyad(T3*f*fc*c [j] ) ) ) ; 
TT4 [ j] : =axpaad(contract (dyad(TQ+f*fc*c Cj1) ; 
TT5 Cj] : =expand(contract (dyad(TS*f *c*c [jl)) 1 ; 
TT6 [ jl : =expand(coatract (dyad(T6*f +fc*c Cj] 1 ; 
TT7 [ j] :=erpand(contract (dyad(T?*f *f c*c [jl ) 1) ; 
TT8 [ j J : =erpand(contract (dyad(T8*f *fc*c Cj] 1 1 ; 
tt3CjJ :=expand(contract (dyad(t3*f *fc*c[j] 1) ; 
tt4Cjl :=erpand(contract (dyad(t4*f *f c*c Cjl) 1) ; 
TT [j] :=factorC4*TTl[jl-6*TT2 [j]+26*~~3 [j] +TT4 [jf +5*TT5 [j]+4*TT6 [jl 
+4*TT7[j] -2l*TT8[j]+alphaI*tt3 CjJ+alpha2*tt4[j]) ; 
od; 
save(TT, 'ïT.arrayC): 
C a m # # # # &  
#Determination of Pf aff ians for the 
t Haxrrell equations and Weyl-neutripo squation 
Casa a*b <>O 
*Baie of 2. file: Pfarieyliax 

rsad heading; 
read headingII1; 

#Condit ion III , (Bach tansor) 
read 'tt.array ; 
X(b) :=solvo(tt C41 ,X(b) ; 
Y(bc) :=con3 (X(b)) ; 
eq30 :=tt C1]/2; 
eq31:=tt 121 ; 
a q n s 0  ;eqnd); 



E.4 Maxwell's equations and Weyl's neutrino equation 

SE.& 
*Hamiroll equat ions 
Condition V 
read 't5max.arrayc ; 
kl:=S;k2:=16; 

aread component TTC141 of condition VIS 
read TT14; 
eq35 : Pfactor (t 14) ; 
X(ac):=solve(eq46,X(ac)); 
Y (a) :=conj (X(ac) ; 
X(pc) :":": 
X(pc) :=factor(") ; 
Y(p) :=conj (") ; 
#----## 

#Ushg the P f a f f i a r u  to build and salve polynomiai systemj for a,b and p.  
#Case a*b*pC>O 
#Uaxuell equat ions 
#lame of the f i l a :  solvemax 

read heading; 
read headingIIf; 

X(bc) :=conj (Y(b)) : 
Y (bc) :=conj (X(b) ) : 



E.4 Maxwell's equations and Weyl's neutrino equation * 

#Denominat ors 

Y(d1) :": 
Ydl :=factor(") ; 
Y(Yd1):":": 
R d 1  :=factor(") ; 
with(grobner) ; 
~i:=Cdl,Ydl,Wdll: 
RI :=gsoive (FI) ; 

Slew variables 
a:=xl*p: 
ac:=conj (") : 
b : =r2*pc : 
bc:=coaj (") : 

Wsing the Pf aff ians to f ind polynomial relations betueen a,b and p. 
Weyl neutrino squat ion 
#Case a*b* 0 0  
8 ~ u s  of tEe tiie: so1vewey1 

read heading; 
rsad headingII1 ; 

Y (a) :=787/19*bc*a-3*a~2+1380/19*p*bc ; 
Y(b):=-b*bc+2*pc*p-2*Rli-b*a+b*p-2*D(m); 
X (a) : = Y (b) +a*ac+b*bc-2*b*a+Rli; 
X(p) : D (a) -pc*p+p*ac-b*p; 
X(b) := -b*ac-b'2; 



E.4 Maxwell's equations and Weyl's neutrino equation 

SDenoninat ors 

Y(d1) :": 
Yd1 :=factor(") ; 
Y(Yd1) :":": 
Wdl :==factor(") ; 
uith(grobnar) ; 
~ i : = [ d i , ~ d i , n d i I :  
Ri : =gsolve (Fi) ; 

#New variables 
a:rxl*p: 
ac : =con j Ci') : 
b : =x2*pc : 
bc: mconj (") : 



E.4 Maxwell's equations and Weyl's neutrino e q u i l t i ~ ~  

for j from 1 to nops(R2) do 
G C j J  :=op(j ,R2) ; 
od; 

#Analysis of the solutions 
for j from 1 to nops(R3) do 
HCj]  :=op(j,R3) ; 
od; 

#Apply Y over f 1 
#f2:~-1079685917*bc*a'2-252496320*a'3-3781787431*a*p*bc-f0247038??*p* 
#a'2-3287720348*p'2*bc-87748î56*bc"2*a-9O1378O5~*bcœ2-375845O8* 
abc-3-992725566*p'2*a 
aY(fs) 
#f3:=3794884235*bc*a~3+13984191503*bc'2*a~2+227246688O*a~4-917394512* 
ltbc'3*a+40424847312*p'S*bc'S-12805233934*p-2*a*bc+9222334893~*a- 
#3-11338514006*a'2 *bc+47275438170*bc'2*a 112753524*bc'4- 
#19 1858 19 1~*bs'B*p~210JZ25320*PP3*bc+8934~094*p'2*~~2 

m###- 
#Conditions for a=b=p=O 
#Haxuell equat ions 
Slame of the f i l e :  solvernax0 

read haading; 
read headingIlI; 

a:=0:ac:=0:b:=0:bc:=O:p:=O:pc:=O: Rll:=O: 
read 'tt-array'; 
for j from 1 to 9 do 
t3 Cjl : =factor(tt Cj] ; 
od; 
eq30 : e t  C11/2; 
e 31:=tt[2]; tiesiui- enr rose qua, io, 
e q n s o  ;eql lso;  



E.4 Maxwell's equations and Weyl's neutrino equation 

#Ifaxael1 squat ions 
It Condit ion V s  
k1:=5;k2:=16; 
read 'tSmax.arrayt; 
f o r  j from 1 t o  15 do 
ttslj] :=factor(tS[j]): 
ad : 
eq32:=prinpart(factor(tSCSI)); 
eq33 :=primpart (f actor(tS[lS] )) ; 

#Determination of second order Pfaffians 



E.4 Maxwell's equations and Weyl's neutrino equation 

uith(gr0bner): 
F1 :=Ceq44, -451 : 
vars:~CR21,Rl2,m,mc,V12,V2l,gc,l,l,lc~: 
non:=<l,lc): 
R1:=gsolve(Pl,vars,aorr); 
for j from 1 to nops(R1) do 
rCj1 :=op(j ,RI) ; 
od; 
f l:=op(4,rEll) ; 

eq40 :=tactor (evalc (Re (sq39) ) ; 
y:=w(1/2); 
solve(sq47,u) ; 
m a # #  

#Conditions for a=b=yO 
W e y l  neutrino equation 
#lame of the file: solveweyl0 

read heading; 
tead headingf II; 

a:=0:ac:=O:b:~0:bc:=O:p:~O:pc:~O: Rll:=O: 
read 'tt.srray6; 
for j fron 1 to 9 do 
t3 Cjl :=factor(ttCjl) ; 
od; 
eq30:ztt Cl3/2; 
e 31:=ttC2] ; tdesian- enr rose squat ions 
eqns0 ;eqnsO ; 

D(R12):=solve(eq28,D(R12)); 
D(R2l) :=conj (D(R12)) ; 
Y (R21) :=solve(eq25 ,Y (R21) 1 ; 
X(R12) :=conj ("1 : 
Y (R12) : =solva(erpand(eq24-eq29) /3 ,Y (R12) 1 ; 
X(R21) : =conj ("1 : 
~(R22) : =solve(conj (eq24)+2*eq29 ,D(R22) 1 ; 
Y (R22) :=solve(eq26 ,Y (R22) ) ; 
X(R22) :=conj (") : 
D (ml : =salve (eq8 ,D (ml ; 
D(mc) :=conj(") : 
X(a) :=solve(eq30,X(m)) ; 
Y (mc) :=coaj ("1 : 
X(l):=solve(eq13,X(l)); 
Y(1c) :=conj(X(l)) ; 
X(g) : =solve(eqi5 , ~ ( g )  1 ; 
Y (gc) : =conj C") : 
Y (g) :=~oi~e(qia,y(g) ; 
XCgc) :=conj ("1 : 



E.4 Maxwell's equations and Weyl's neutrino equation 

Sue y 1-neutrino eqyat ion 
S Condition Vs 
k1:=8;k2:=13; 
read 't5max.arrayg; 
for j from 1 to 15 do 
t t5  [jl :=factor(tSCjl) : 
od: 
eq32 : =primpart (f actor(t5 [SI ) ) ; 
eq33 :=printpart ( f a c t o r ( t 5 m  )) ; 

#Detemination o f  second order Pf af f ians 

X(eq35):":": 
sq36 : =numer(f actor (" ) ) ; 
eq37 : auinsr (sq35) ; 

uith(gr0bner) : 
F 1 : = Coq44 , eq451: 
~ars:=(R21.Ri2,m~mc,V12,V2l,g,gc~1~1~>: 
aon:=€l,lc>: 
R1 :=gsolve (Fi, vars ,non) ; 
for j from 1 to nops(R1) do 
rCj1 :==op(j ,RI); 
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