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Abstract 

 

This paper is focused on the in-plane crushing of two-dimensional (2D) porous structures 

with a special attention on the effect of functionally graded (FG) porosities. The dynamic 

response and energy absorption of closed-cell metal foams with different porosity 

distributions are investigated by using finite element (FE) analysis. Two symmetric, two 

asymmetric and one uniform distributions of internal pores along the impact direction are 

constructed with Voronoi tessellation. The proposed porous structure is crushed under the 

impact of a rigid panel with a constant velocity. The deformation of cell walls is simulated 

using a plastic kinematic material model. The erosion criteria and hourglass control are 

applied to ensure the accuracy of numerical results, which are validated against the 

experimental data from open literature. The effects of varying parameters on the energy 

absorption, deformation pattern, and stress-strain curve of the FG porous structure are 

discussed. The dynamic response is found to be influenced by different random cell 

geometries, porosity gradients, cell wall thicknesses, internal pore numbers, and impact 

velocities. The effective way to improve energy absorption capability of the porous structure 

under a constant-velocity impact is proposed, shedding new insights into the deformation 

mechanism of the FG porous structure for engineering design. 

 

Keywords:  

Functionally graded porous structures, dynamic response, energy absorption, Voronoi 

tessellation, finite element analysis. 
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1. Introduction 

Metal foams have been widely used in various engineering applications, including 

sandwich panels, acoustic dampers, heat diffusers, electrodes and batteries [1-11], due to their 

excellent mechanical, thermal and electrical properties. Originated from the novel 

deformation behavior of internal cells, the superior dynamic performance and energy 

absorption capacities of porous structures, especially metal foams, also make them promising 

candidates for structural protection against impact, blast and explosion. Although extensive 

researches have been conducted is this area [12-18], the effective method to improve the 

energy absorption of porous structures hasn’t been well studied either theoretically or 

experimentally. 

Many studies have been reported on the effects of porosity geometry, crushing stress and 

strain, and deformation behavior of porous structures to characterize the dynamic response 

and energy absorption. Zheng at al. [19] investigated the dynamic impact behaviour of metal 

foams by using a three-dimensional (3D) FE model under different loading conditions and 

rates. Kader et al. [20] presented an FE analysis based on a mesoscale approach and plate-

impact experiments to investigate the elastic-plastic behavior of core collapse. Li et al. [21] 

built a 2D random cellular solid model to characterize Poisson’s ratio and energy absorption 

of porous structures with varying relative densities and area compression ratios. Fang et al. 

[22] constructed a 3D mesoscopic model of closed-cell aluminium foams and conducted 

numerical simulations for energy absorption capability. Vesenjak et al. [23] carried out FE 

and experimental analyses of open-cell metal foams with a special focus on the anisotropy 

and strain rate sensitivity. 

Compared with conventional porous structures, FG porous structures with graded porosity 

distributions possess advantageous mechanical properties. Numerous studies have been 

conducted on their static and dynamic performance. Chen et al. [24-26] gave a detailed 
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research concerning the elastic buckling, static bending, free and forced vibrations of porous 

beams with different FG porosity distributions. Kitipornchai et al. [27, 28] presented linear 

and nonlinear studies on the buckling and vibration behaviours of nanocomposite beams 

reinforced by graphene platelets, and focused on the influence of non-uniform porosities. 

Magnucka-Blandzi [29] carried out a dynamic stability analysis on a radial compressed metal 

foam circular plate and discussed the effect of porosity on critical loads. Mojahedin et al. [30] 

investigated the buckling behavior of FG circular plates made of saturated porous materials 

and employed the higher order shear deformation plate theory to derive the governing 

equations. It has been found from the above studies that an appropriately selected FG 

porosity distribution does improve the structural stiffness of porous beams and plates at a 

certain level. Thus, it is highly possible that FG porosity can be an effective way to improve 

the energy absorption capacity as well. 

However, the dynamic response and energy absorption of FG porous structures under 

impact loading, though important, still haven’t been studied systematically. Currently, only 

very limited researches were conducted in this area. Koohbor and Kidane [18] proposed a 

design optimization for continuously and discretely graded polymeric foams, and presented 

the effect of density gradation on the load bearing and energy absorption. Ajdari et al. [31] 

developed FE models to analyse the crushing behavior and energy absorption of regular, 

irregular and FG cellular structures, including 2D honeycombs with both regular hexagonal 

and irregular distributions. Liang et al. [32] carried out a theoretical and numerical 

investigation on the blast responses of one-dimensional continuous-density graded porous 

bars based on the rigid-perfectly plastic-locking model and FE analysis. 

This paper presents a numerical simulation of in-plane crushing of 2D FG porous 

structures made of closed-cell metal foams under constant-velocity impacting. Voronoi 

tessellation and FE modelling are briefly introduced. The present analysis is validated against 
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the experimental data in a split Hopkinson pressure bar test from open literature. The 

dynamic responses of porous structures with uniform and non-uniform porosity distributions 

are compared. Varying random cell geometries, porosity gradients, cell wall thicknesses, 

internal pores numbers, and impact velocities show different influences on the energy 

absorption, deformation pattern, and stress-strain curve. The proposed design of non-

uniformly asymmetric distribution of internal pores can effectively improve the energy 

absorption capacity of porous structures under a higher-velocity impact. 

2. Numerical modelling 

2.1. Porosity distributions 

Five different porosity distributions are considered in this paper, as illustrated in Figs. 1A-

1E, in which distributions A and B are non-uniformly symmetric, distributions C and D are 

non-uniformly asymmetric, and distribution E denotes the uniform porosity. The proposed 

2D porosities are constructed in an area of 0.05 m   0.05 m based on Voronoi tessellation. 

The cell wall thickness is assumed to be 0.1 mm, unless stated otherwise.  
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              (A) Distribution A                   (B) Distribution B                  (C) Distribution C 

                    (symmetric I)                         (symmetric II)                        (asymmetric I) 

 

      

                                      (D) Distribution D                  (E) Distribution E 

                                           (asymmetric II)                         (uniform) 

Fig. 1. Porosity distributions. 

 

The number of internal pores for non-uniform distributions varies smoothly along the 

thickness. Based on the coordinate system given in Fig. 1 (A), where z-axis is along the 

thickness direction and the origin point is on the mid-plane, the variation of internal pore 

number  S z  for distributions A-D can be approached by using polynomial curve fitting with 

a three-order polynomial as 

  3 2

1 2 3 4S S S S S  z z z z+                                                                                                    (1) 

z 

0 
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of which the coefficients 
1S , 

2S , 
3S  and 

4S  are listed in Table 1. For symmetric distributions 

A and B,  S z  denotes the internal pore number when 0 0.025 mz < , while that of 

asymmetric distributions C and D corresponds to the whole domain with 

0.025 m 0.025 mz <  . 

 

 Table 1 

 Coefficient in polynomials of internal pore numbers for different porosity distributions. 

Porosity distribution  1
S  

2
S  

3
S  

4
S  z  (m) 

Distribution A -2.9447e6 1.4895e5 -301.3133 11.2830 0 0.025z <  

Distribution B -1.6837e3 2.2661e4 -2.1748e3 51.3918 0 0.025z <  

Distribution C 1.5015e5 8.6806e3 638.3266 25.5700 0.025 0.025z <   

Distribution D -1.5015e5 8.6806e3 -638.3266 25.5700 0.025 0.025z <   

 

The relative density of porosity distributions is calculated by  

Structural area
Relative density

0.05 m 0.05 m



                                                                                        (2) 

All the porosity distributions in Fig. 1 have similar relative densities with difference less 

than 1.0 %, as tabulated in Table 2. Please note that although the overall distributions of 

internal pores are described as either graded or uniform, the randomness of porosity geometry 

is considered to simulate metal foams in reality. 
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                            Table 2 

                            Relative density of different porosity distributions in Fig. 1. 

Porosity distribution  Relative density (%) 

Distribution A 9.0311 

Distribution B 9.0211 

Distribution C 9.0077 

Distribution D 9.0077 

Distribution E 8.9796 

2.2 Voronoi tessellation 

 

The outstanding issues in computational modelling of metal foams are mainly focused on 

how to model the internal pores, which are usually randomly shaped and located. The original 

diversity of porosity geometries makes it very difficult for current researches to give reliable 

predictions of metal foams. Those based on the scanning electron microscope (SEM) imaging 

are only modelling specific types of metal foams. This paper applies Voronoi tessellation to 

generate the porosity geometry, which is an effective way to construct the closed-cell 

porosities and considers the randomness of pore shapes and locations simultaneously. It is 

commonly used in relevant studies. Given a set of initial points 1p , 2p ,  , np , a typical 2D 

Voronoi diagram divides the plane into n regions by drawing the perpendicular bisectors of 

line segments 
i jp p  (  1 i j n  , i j ), as shown in Fig. 2 [33], where each region denotes 

an internal pore. By dividing a square area (0.05 m   0.05 m) into nine layers with identical 

thickness (0.05/9 m) and distributing different numbers of initial points in each layer, FG 

porosities can be constructed as depicted in Fig. 1 with Voronoi tessellation. The initial points 
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in each layer are randomly distributed, resulting in irregular size, shape, and location of 

internal pores. The foregoing algorithm is programmed in MATLAB and the geometry model 

is generated by using ANSYS/APDL, then imported into the numerical calculation code LS-

DYNA for explicit dynamic analysis. 

 

 

Fig. 2. Voronoi diagram. 

2.3 Finite element analysis 

In this study, an impact rigid panel is placed on the top of porous structures with a 

constant velocity V pointing downwards along the thickness direction, as illustrated in Fig. 3. 

Meanwhile, a stationary rigid panel is fixed on the bottom to support the structure, of which 

the top and bottom are labelled as the impact and stationary ends, respectively. During the 

crushing progress, the porous structure can deform freely in the plane. All the translational 

movements along the out-of-plane axis are constrained. For a single node in the porous 

structure, neither the translational constraints in the local horizontal and vertical directions 

1
p  

2
p  

3
p  

4
p  

5
p  

6
p  

n
p  

Voronoi region  

 (internal pore) 
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nor the rotational constraint about the local out-of-plane axis are applied. The impact panel 

can only move in the vertical direction.  

 

 

 

Fig. 3. Schematic diagram of the constant-velocity impacting. 

 

 

LS-DYNA is employed to solve the equation of motion in FE analysis with Central 

Difference method for explicit time integration [34]. The deformation of cell walls is 

simulated by using the plastic kinematic material model with kinematic hardening plasticity, 

of which the typical elastic-plastic behavior is depicted in Fig. 4, where E is Young’s 

modulus and tE  is Tangent modulus [35]. In this paper, the porous structures are assumed to 

be made of Al-Si-Mg alloy foams with the following material parameters: Young modulus 

70E   GPa, Tangent modulus t 4.62E   GPa, yield stress 185   MPa, mass density 

2730   kg/m
3
, Poisson’s ratio 0.34  [22]. This material model is assumed to be strain 

rate insensitive, as no air flow is considered in this study and this rate effect is insignificant 

for low-density aluminium foams [22, 36-39]. The automatic single surface contact is applied 

on the cell surfaces, while the automatic surface to surface contact is employed to measure 

the mutual effects between the porous structure and rigid panels with the dynamic friction 

Impact panel 

Stationary panel 

Impact end 

Stationary end 

Constant impact velocity V 
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coefficient as 0.15 [21], which is actually reported as an insensitive parameter by other 

studies [40, 41]. 

 

 

 

Fig. 4. Typical elastic-plastic behavior of the plastic kinematic material model [35]. 

 

The geometry model of porous structures is meshed by using the default Belytschko-Tsay 

shell element (5 degree of freedom in local coordinate system) with the characteristic length 

as 0.1 mm, which is determined based on a mesh sensitivity analysis given in section 3.2. The 

erosion criteria for cell walls are also applied with the maximum principal strain of 0.89 and 

shear strain of 0.96 [22]. Based on the first-order plate theory, the shear correction factor for 

shell elements is set as 5 / 6 . Hourglass (HG) control is important and needs to be included in 

the calculation as well [42]. HG-shaped elements are characterized with the non-physical 

zero energy mode, resulting in inaccurate stresses, strains, and deflections. To minimize the 

HG energy, this paper implements HG control with HG viscosity type IHQ = 4 (stiffness 

form of Flanagan-Belytschko integration) and HG coefficient QH = 0.05. 

Yield stress 

E 

t
E  

Hardening 

Stress 

Strain 
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It should be noted that there are several significant weaknesses of 2D modellings in this 

matter. On one hand, 2D modelling can only be used for the closed-cell metal foams 

described in this paper. As for the open-cell metal foams, their cross sections involve 

unconnected cell walls, which are not possible to be reasonably simulated with 2D modelling. 

On the other hand, 2D modelling is only dealing with a single section of metal foams, of 

which the deformation is restricted in the plane only. The out-of-plane deformation is ignored 

completely, which is not the case in the reality. Thus, the obtained stress and strain fields 

with 2D modelling are always questionable to reflect the true response of 3D structures. 

Moreover, the results from 2D modelling are very difficult to be validated. Actually, most of 

the publications concerning the 2D modelling of porous structures cannot provide a 

validation analysis at all. This is due to the fact that the 2D modelling simply cannot capture 

the randomness of internal pores in all directions. The mentioned restricted deformation 

pattern contributes to this as well. Meanwhile, with 3D modelling, the open-cell metal foams, 

out-of-plane deformations, and the all-around randomness can be well simulated. 

However, 2D modelling has its own unique advantages compared with the 3D modelling. 

First, the calculation efficiency of 2D modelling is much better than that of 3D modelling, 

which can easily cause unaffordable work load especially for dynamic crushing analysis. This 

is extremely important for studies dealing with multiple models like those in this paper.  

Second, the 2D modelling excludes the effect of random porosities along the out-of-plane 

direction and presents more clear geometry design. Constructing various porosity 

distributions in 2D models can be more straight-forward to show how the internal pores vary 

along certain direction. While the 3D modelling has to consider the porosity variation in all 

directions, which may bring unnecessary influence to the results if the study is only about a 

specific porosity pattern. 
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Our study is focused on the closed-cell metal foams and the functionally graded porosities, 

which contain internal pores non-uniformly distributed only in one direction and can be 

sufficiently and clearly presented by using the 2D modelling. Different porosity distributions 

and impact velocities are considered here, resulting in a huge and unbearable work load if 3D 

modelling is adopted. Furthermore, 2D modelling can also provide reasonable predictions as 

shown in the following validation analysis. Therefore, employing 2D modelling in this study 

is appropriate considering the research propose and all the mentioned issues. 

3. Numerical results 

3.1 Validation study 

The validation study is conducted to verify the validity of the presented geometry 

constructing and parameter setting. The stress-strain curves based on the impact contact force 

calculated from the model in Fig. 5 (A) are compared to those obtained in a split Hopkinson 

pressure bar test with a closed-cell aluminium foam [43]. The validation model has the same 

external size and similar relative density (26 mm   26 mm and 10.2 %) as those of the 

experimental specimen (26 mm   26 mm and 10 %). The cell wall thickness is assumed to 

be 0.09 mm. Fig. 5(B) and Fig. 5(C) present the comparisons of stress-strain curves under 

different strain rates. The values of external force F in the FE analysis are determined to 

obtain the strain rates similar to those in the experiment with 35F   N and 50F   N for 500 

s
-1

 and 900 s
-1

 strain rates, respectively. It can be seen that our results agree well with the 

experimental data. The values of Pearson’s linear correlation coefficient are 0.9073 and -

0.1311 for the comparisons in Fig. 5(B) and Fig. 5(C), respectively, indicating a good 

correlation for the data in Fig. 5(B). Although those in Fig. 5(C) are poorly related, the values 

of stress are still close enough. Please note that during the FE analysis, the strain rate of 
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porous structure is generally growing due to the constant loading condition. The results under 

strain rates close to 500/900 s-1 are extracted for the comparisons. 

 

 

 

 

(A) Schematic diagram of the validation model. 
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Fig. 5. Validation model and comparison results. 

 

It should be noted that most of the experimental studies on metal foams fail to give a 

detailed description of the specimens, such as the distribution pattern of internal pores and the 

cell wall thickness, which brings difficulties to the corresponding numerical modelling. 

Constant external force F 

Impact panel 

Stationary panel 
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Especially for 2D modelling, if the internal pores of specimens change a lot in all direction, a 

big gap between the numerical and experimental results can be expected. However, this is 

actually quite reasonable due to the geometrical randomness. Thus, the best method is to 

build the models based on the SEM imaging or to manufacture the specimens with 3D 

printing to obtain the perfect match between the numerical models and metal foams used in 

experiments. 

 

3.2 Mesh sensitivity analysis 

A mesh sensitivity analysis concerning different porosities under varying impact velocities 

is conducted to determine the suitable element size employed in this study. Fig. 6(A) and Fig. 

6(B) present the effects of element size on the energy absorptions of porous structures with 

distributions B and C under 100 m/s and 200 m/s impact velocities, respectively. The energy 

absorption is obtained based on the internal energy computed in the FE analysis, which is the 

total strain energy of all elements per volume. Please note that the stored elastic strain energy 

is included in the absorbed energy along with the dissipated plastic energy, since the elastic 

energy also contributes to the converting of input kinetic energy during the proposed crushing 

progress. It is observed that the results for 0.0001333 m and 0.0001 m are very close in both 

examples with difference less than 5 %. Therefore, 0.0001 m is employed as the element size 

in following calculations, which is illustrated in Fig. 6(C). Please notes that the nominal 

strain presented in this paper is up to 0.8, which is sufficient for this research and can be well 

simulated with the given finite element models. But for other studies arming to investigate 

the crushing response with higher strains, the settings and models need to be revised 

accordingly to achieve the reasonable accuracy of the results. 
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(C) Employed element size (0.0001 m) 

Fig. 6. Mesh sensitivity comparisons and the employed element size. 

3.3 Effect of random cell geometry 

In sections 3.3-3.6, the effects of random cell geometry, porosity gradient, cell wall 

thickness, and internal pore number are examined by taking similar non-uniform symmetric 

distributions as typical examples. In the following section 3.7, the comparison between 

different porosity distributions under varying impact velocities is conducted based on the 

fixed porosity patterns shown in Fig. 1. The employed cell wall thickness for porosities in 

sections 3.3, 3.4, 3.6, and 3.7 is 0.1 mm. 

The randomness of cell geometry involves random pore size, shape, and location. Three 

different random geometries for uniform symmetric porosity are constructed, as shown in Fig. 

7, of which Randomness I in Fig. 7(A) is the same as the porosity distribution A in Fig. 1(A). 
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The relative densities of these three geometries are very close, specified as 9.0311% for 

Randomness I, 8.9199% for Randomness II, and 9.1022% for Randomness III. Fig. 8 

presents the effects of random cell geometry on the stress-strain curves and energy absorption 

versus strain curves. It should be noted that the stress is calculated with the contact force and 

the strain is the nominal strain of porous structures. It can be seen that, although the stresses 

at the impact and stationary ends vary slightly with different geometries, the energy 

absorptions with Randomness I, II and III are almost identical during the whole crushing 

progress, indicating that the energy absorption capacity of porous structures is independent of 

the geometrical randomness. 

 

              

             (A) Randomness I                    (B) Randomness II                  (C) Randomness III      

Fig. 7. Different random cell geometries for non-uniform symmetric porosity distribution. 
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Fig. 8. Stress-strain curves and energy absorption versus strain curves of porous structures: effect of 

random cell geometry ( 50V   m/s). 

3.4 Effect of porosity gradient 

Different porosity gradients can be employed for the similar FG distribution, as shown in 

Fig. 9 with four different gradient patterns for non-uniform symmetric porosity. The average 

size of internal pores on the mid-plane is the largest for Gradient I and the smallest for 

Gradient IV. Thus, the variation of porosity is the most obvious for Gradient I and the least 

pronounced for Gradient IV. The corresponding variations of internal pore number  S z  are 

quantified by using Eq. (1) with the coefficients specified in Table 3. For Gradient IV, the 

porosity distribution cannot be described with polynomial curves as the pore number 

approximately equals to 20 along the horizontal direction around the mid-plane ( 0.015z <

m), which increases and reaches over 45 near the surfaces ( 0.020z  m). For different 

patterns, the relative densities are similar, i.e., 9.0105% for Gradient I, 9.0311% for Gradient 

II, 9.0085% for Gradient III, and 9.0165% for Gradient IV. The stress-strain curves on the 

impact and stationary ends of porous structures with different porosity gradients are 
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illustrated in Fig. 10(A) and Fig. 10(B), respectively. Results show that the stresses on the 

stationary end are fairly close for all patterns with small vibrations due to the irregular 

porosity geometries, while that on the impact end varies more dramatically with Gradient I 

due to the larger pore size on the mid-plane. Fig. 10(C) gives the energy absorption versus 

strain curves for all patterns. It can been seen that when the impact velocity 50V   m/s, the 

energy absorption capacity of FG porous structures is only slightly influenced by the porosity 

gradient. 

 

          

                 Gradient I                      Gradient II                   Gradient III                   Gradient IV 

Fig. 9. Different porosity gradients for non-uniform symmetric porosity distribution. 

 

Table 3 

 Coefficient in polynomials of internal pore numbers for porosities with different gradients. 

Porosity distribution  1
S  

2
S  

3
S  

4
S  z  (m) 

Gradient I -4.1143e6 1.9019e5 -541.3039 9.7146 0 0.025z <  

Gradient II -2.9447e6 1.4895e5 -301.3133 11.2830 0 0.025z <  

Gradient III -7.3973e5 9.3790e4 -480.7264 16.4333 0 0.025z <  
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        (A) Stress-strain curves at the impact end                (B) Stress-strain curves at the stationary end 
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      (C) Energy absorption versus strain curves 

Fig. 10. Stress-strain curves and energy absorption versus strain curves of porous structures: effect of 

porosity gradient ( 50V   m/s). 

 

3.5 Effect of cell wall thickness 

The effect of cell wall thickness is examined based on the non-uniform distribution A with 

the porosity geometry given in Fig. 1(A). The relative density increases proportionally with 

the increasing of cell wall thickness, as given in Table 4. Fig. 11 presents the effects of cell 

wall thickness on the stress-strain and energy absorption curves. As expected, the increasing 
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of cell wall thickness leads to a sharp growth of contact stresses on both impact and 

stationary ends, as well as an evident increase in the energy absorption capacity of porous 

structures. 

                            Table 4 

                            Relative density of non-uniform distribution A with different  

                            cell wall thicknesses. 

Cell wall thickness (mm)  Relative density (%) 

0.05 4.5155 

0.10 9.0311 

0.15 13.547 

0.20 18.062 
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        (A) Stress-strain curves at the impact end                (B) Stress-strain curves at the stationary end  
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      (C) Energy absorption versus strain curves 

Fig. 11. Stress-strain curves and energy absorption versus strain curves of porous structures: effect of 

cell wall thickness ( 50V   m/s). 

3.6 Effect of internal pore number 

Fig. 12 shows four patterns of non-uniform symmetric porosity distribution with internal 

pore number  S z  decreasing from Number I to Number IV with coefficients given in Table 

5, while the corresponding cell wall thickness increases simultaneously, leading to similar 

relative densities listed in Table 6. The effects of internal pore number on the stress-strain and 

energy absorption curves are presented in Fig. 13. It can be found that the overall contact 

stress variations on both ends for all patterns are quite close to each other, except for the 

beginning part on the impact end with much higher stresses for Number III and Number IV. 

The energy absorption of Number IV is the highest, indicating that under the same relative 

density, decreasing the internal pore number and increasing the cell wall thickness can 

enhance the energy absorption capacity of porous structures. 
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                Number I                       Number II                     Number III                     Number IV 

Fig. 12. Different internal pore numbers for non-uniform symmetric porosity distribution. 

 

Table 5 

Coefficient in polynomials of internal pore numbers for porosities with different pore numbers. 

Porosity distribution  1
S  

2
S  

3
S  

4
S  z  (m) 

Number I -3.0639e6 1.8236e5 -862.8188 17.5934 0 0.025z <  

Number II -2.9447e6 1.4895e5 -301.3133 11.2830 0 0.025z <  

Number III -2.3350e6 1.3825e5 -925.3531 13.6733 0 0.025z <  

Number IV -7.0019e5 4.3797e4 425.4910 8.2093 0 0.025z <  

 

Table 6 

  Relative density of non-uniform distribution A with different internal pore numbers. 

Pattern Cell wall thickness (mm)  Relative density (%) 

Number I 0.08 8.9526 

Number II 0.10 9.0311 

Number III 0.12 8.9854 

Number IV 0.14 8.9513 
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        (A) Stress-strain curves at the impact end                (B) Stress-strain curves at the stationary end 
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      (C) Energy absorption versus strain curves 

Fig. 13. Stress-strain curves and energy absorption versus strain curves of porous structures: effect of 

internal pore number ( 50V   m/s). 

3.7 Effect of impact velocity 

In this section, the effect of impact velocity is studied based on the patterns illustrated in 

Fig. 1 for different porosity distributions. Fig. 14 presents the effect of impact velocity on the 

stress-strain curves at the impact ends of porous structures with different porosity 

distributions. As can be seen, there is no obvious change of plateau stress and densification 

strain when the impact velocity is raised from 10 m/s to 50 m/s, indicating similar absorbed 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

25 

 

energies. While in case of V 100 or 200 m/s, the contact stress increases dramatically and 

varies based on different porosity distributions. Since the internal pores are generally crushed 

around the impact panel during high-velocity impacting as indicated by the deformation 

patterns in Fig. 19, larger value of stress at the impact end is induced by the crushing of 

internal pores with smaller size. The observed fluctuations are caused by the rapid 

compression of cell walls. 
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Fig. 14. Stress-strain curves at the impact ends of porous structures with different porosity 

distributions: effect of impact velocity. 

 

As showed in Fig. 15, the stress-strain curves at the stationary ends under low impact 

velocities ( 50V  m/s) are fairly close, suggesting that the impact wave has enough time to 

propagate from the top end to the bottom end, resulting in similar stress variations as that of 

quasi-static (QS) analysis. However, when 100V =  m/s, the impact wave can only arrive at 

the bottom end when the deformation is relatively large, as evidenced by the sharp rise at the 

end of stress-strain curves. Meanwhile, when 200V =  m/s, the impact wave cannot arrive at 

the bottom end during the simulation, leading to the small contact stress over the entire 

progress of crushing. According to Fig. 14 and Fig. 15, it can be found that the stress-strain 

curves of low velocity impacting ( 50V  m/s) at both impact and stationary ends are 

consistent with the QS compression curve, while those of high velocity impacting 

( 100 / 200V  m/s) are related to the porosity distribution, as the deformation of porous 

structures is more localized around the impact panel with the increasing of the impact 

velocity. 
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Fig. 15. Stress-strain curves at the stationary ends of porous structures with different porosity 

distributions: effect of impact velocity. 

 

Fig. 16 shows the effect of impact velocity on the energy absorption of porous structures 

with non-uniform distribution A. It can be seen that under the same strain, the absorbed 

energy remains almost the same when 50V  m/s, while increases evidently when V is 

increased over 100 m/s. The results for other porosity distributions are quite similar and not 

given here for brevity. 
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Fig. 16. Energy absorption versus strain curves of porous structures with non-uniform distribution A: 

effect of impact velocity. 

 

 

Fig. 17 compares the energy absorption versus strain curves of porous structures and 

presents the difference induced by varying porosity distributions under different impact 

velocities. It is interesting to see that when 10V =  m/s, the energies absorbed by FG 

porosities A, B, C, and D are nearly the same during the crushing, while that absorbed by 

uniform porosity E is the largest. The difference between energy absorptions for uniform and 

non-uniform porosities increases in the beginning of crushing and drops by the end. It can 
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also be seen that under the low velocity impacting ( 50V  m/s), uniform porosity 

distribution E is preferred with the better energy absorption capacity. 

However, as the impact velocity increases to 100 or 200 m/s, the energy absorption of 

asymmetric distribution C turns out to be the largest under the same strain, while that of 

asymmetric distribution D is the smallest. Therefore, smaller size and larger density of 

internal pores close to the impact end will significantly improve the energy absorption 

capacity of porous structures under a high-velocity impact. When the strain is maximized at 

0.8 with the porous structure being highly densified, the absorbed energies for different 

porosities under the same impact velocity are nearly identical, as the similar relative densities 

are employed for all distributions. 
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Fig. 17. Comparisons of energy absorption versus strain curves of porous structures with different 

porosity distributions. 

 

Fig. 18 depicts the deformation patterns of porous structures with non-uniform distribution 

A and uniform distribution E when 50V =  m/s. Results show that the densification of non-

uniform porosity is first localized in the weak part with large size of internal pores, resulting 

in the so-called deformation band. While for the uniform distribution, no deformation band is 

observed as the densification is quite evenly distributed.  
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Fig. 18. Deformation patterns of porous structures with different porosity distributions ( 50V =  m/s). 

 

 

Fig. 19 presents the effect of high impact velocity on the deformation patterns of porous 

structures with non-uniform distribution A. It should be noted that there is no obvious change 

in the deformation pattern with low impact velocities ( 50V  m/s). Nevertheless, when the 

velocity increases to 100 or 200 m/s, the densification tends to localize near the impact end 

while the cell walls on the stationary end remain almost intact especially when  200V =  m/s, 

as the impact wave cannot propagate through the whole structure during the crushing 

progress under a high-velocity impact. It also can be observed that porous structures under 

high velocity impacting are more compressed and densified in the deformation area, leading 

to larger absorbed energies, as evidenced by the results given in Fig. 16. 
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Fig. 19. Deformation patterns of porous structures with non-uniform distribution A: effect of high 

impact velocity. 

4. Conclusions 

This paper presents an explicit dynamic analysis of FG porous structures under varying 

impact velocities. The effects of random cell geometry, porosity gradient, cell wall thickness, 

internal pore number, and impact velocity on the energy absorption, deformation pattern, and 

stress-strain curves on both impact and stationary ends are investigated and discussed in 

detail. Based on the numerical results, the following conclusions can be obtained. 

(1) When the impact velocity 50V =  m/s, the geometrical randomness and porosity 

gradient have no evident influence on the energy absorption of FG porous structures, 

which can be remarkably raised by increasing the cell wall thickness under the same 

porosity geometry. 
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(2) Decreasing the internal pore number and increasing the cell wall thickness can 

improve the energy absorption capacity of FG porous structures with the same relative 

density. 

(3) The variation of contact stress follows the typical QS compression curve with low 

impact velocities ( 50V  m/s), while depends on the distribution of internal pores 

under a high velocity impact ( V 100 or 200 m/s). 

(4) The absorbed energy of porous structures increases with the increasing of impact 

velocity. 

(5) Under low impact velocities, the energy absorption capacity of porous structures with 

uniform distribution E is the best, while the FG porous structure with non-uniformly 

asymmetric distribution C is preferred under a high-velocity impact. Thus, the porosity 

distribution of porous structures can be designed as uniform or non-uniform to 

improve the energy absorption capacity under different impact velocities. 

(6) The deformation pattern of FG porous structures is dependent on the porosity 

distribution. And the densification during the crushing progress tends to localize near 

the impact end under high impact velocities. 

The findings are based on the 2D assumptions and the constant-velocity crushing. All the 

corresponding issues have been discussed in detail, as well as the reason for the limited 

validation. With all these drawbacks, we still believe in the reliability of the findings, as the 

proposed numerical modelling is suitable for this study and sufficient to obtain reasonable 

results. The results are interesting and provide useful advice for the porosity design regarding 

the dynamic crushing. By simply changing the distribution patterns of internal pores, we can 

actually enhance the energy absorption capacities of metal foams, which is very exciting. Our 

research can be further improved by adopting both 3D modelling and 3D printing to fully 

reveal the novel structural properties of functionally graded metal foams. Since as mentioned, 
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the perfect match between the numerical modelling and experiments can only be achieved by 

building the models based on the SEM imaging or manufacturing the specimens with 3D 

printing. The latter method is preferred as the imperfections within the traditional 

manufacture progress can be avoided. Especially for the presented study, functionally graded 

porosities cannot be easily obtained with the traditional manufacture techniques. Meanwhile, 

3D printing is an effective method to construct the desired non-uniform porosity geometries 

with selective laser melting (SLM) for open-cell metal foams. While for closed-cell metal 

foams, other methods need to be proposed as the extra metallic powders in SLM cannot be 

taken out from the closed cells. All of these are included in our research plan. 
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Highlights: 

 The porosity distribution of porous structures has a significant influence on the 

dynamic response. 

 The energy absorption under high-velocity impacting can be considerably improved 

with the proposed graded porosity distribution. 

 The absorbed energy of porous structures increases with the increasing impact 

velocity. 

 The densification of cell walls tends to localize near the impact end under high impact 

velocities. 
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