# Accepted Manuscript

The equilibria of Ta-W-Al-Si-O system at 1200 °C

Hongye Wang, Yuhong Chen, Zhangjun Bai, Baojun Zhao, Kang Wang, Laner Wu

PII: S0925-8388(17)34165-8

DOI: 10.1016/j.jallcom.2017.11.383

Reference: JALCOM 44076

To appear in: Journal of Alloys and Compounds

Received Date: 1 September 2017

Revised Date: 27 November 2017

Accepted Date: 30 November 2017

Please cite this article as: H. Wang, Y. Chen, Z. Bai, B. Zhao, K. Wang, L. Wu, The equilibria of Ta-W-Al-Si-O system at 1200 °C, *Journal of Alloys and Compounds* (2018), doi: 10.1016/j.jallcom.2017.11.383.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



#### The equilibria of Ta-W-Al-Si-O system at 1200 °C

Hongye Wang<sup>1</sup>, Yuhong Chen<sup>\*</sup>, Zhangjun Bai<sup>2</sup>, Baojun Zhao<sup>3</sup>, Kang Wang<sup>1</sup>, Laner Wu<sup>1</sup>

1. North Minzu university, Yinchuan, Ningxia 750021, China

2. CNMC Ningxia orient group Co.L.td, Shizuishan, Ningxia 753000 ,China

3. The University of Queensland, Brisbane, Queensland 4072, Australia

Abstract: Solid reactions among Ta-W-Al-Si oxides are discussed and the phase compatibilities of these oxides at 1200 °C have been investigated. The results showed that complex oxides of  $Ta_{22}W_4O_{67}$ ,  $Ta_2WO_8$ ,  $Ta_{16}W_{18}O_{94}$ ,  $Al_2W_3O_{12}$  and AlTaO<sub>4</sub> could be formed by solid reactions. Liquid phase formed by Al<sub>2</sub>O<sub>3</sub>-WO<sub>3</sub> in WO<sub>3</sub>-SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> benefits the mullitization reaction, thus mullite can be formed at 1200 °C in ternary system. Solid solution with a formula of  $(1-x)Ta_2O_5 \cdot xWO_3$  was formed, and up to 25.0% SiO<sub>2</sub> and 6.0% Al<sub>2</sub>O<sub>3</sub> can be dissolved in the solid solution. Liquid phase first appeared in the Ta<sub>2</sub>O<sub>3</sub>-WO<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> ternary system at 1300 °C in the WO<sub>3</sub>-rich corner. As the temperature increased, the liquidus area expanded towards the Al<sub>2</sub>O<sub>3</sub>-and the Ta<sub>2</sub>O<sub>5</sub>-rich corners.

Key words: Tantalum oxide; Tungsten trioxide; solid reaction; compatibility; solid solution; Liquidus boundary.

#### 1.Introduction:

In recent years, advanced structural materials have been strongly required for application at temperature of above the maximum operating temperature of conventional high temperature engineering materials. Tantalum (Ta) and tungsten (W) have very high melting point (Ta: 3233K, W: 3693K), good erosion resistance, high strength and elastic modulus which are considered as excellent refractory metals in aerospace industry [1-3]. Due to the poor oxidation resistance of Ta, W and their alloys is still poor to be a barrier for their further application [4-6]. Smaller ionic radius, such as V, Al, Cu and Si, reduces the volume ratio of the oxides, thus alleviates spalling of the oxidation products from the surface [7]. Nowadays, a large number of alloying elements atnear-equimolar concentration have been used to form solid solution body-centered-cubic (bcc) or face-centered-cubic (fcc) phase crystal structure based on tantalum and tungsten such as MoNbTaWV [8], TaNbHfZrTi [9] and WMoCrTiAl [10] because of their excellent mechanical properties at high temperature. High entropy alloys (HEAs) are expected to own improved oxidation resistance of matrix metal due to strongly reduced diffusivity and formation of complexes oxides. O. N. Senkov reported that formation of complex oxides such as CrTaO<sub>4</sub>, Ta<sub>12</sub>MoO<sub>33</sub>, CrNbO<sub>4</sub> and Nb<sub>2</sub>Zr<sub>8</sub>O<sub>22</sub> results in better oxidation resistance of NbCrMo<sub>0.5</sub>Ta<sub>0.5</sub>TiZr HEAs as compared with Nb–Si–Al–Ti and Nb–Si–Mo alloys [11]. This result indicates that the reaction between oxides could form complex oxides and the oxidation mechanism has been changed. Therefore, for developing Ta-W based alloys with high oxidation resistance, it is necessary to know the reaction and the compatibility between the oxides.

In this study, the solid reaction among oxides of Ta-W-Al-Si (Ta<sub>2</sub>O<sub>5</sub>-WO<sub>3</sub>-SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>) are discussed and the phase equilibria of these oxides are investigated at 1200 °C. Since the liquid phase resulted in oxides layer can protect the alloy from severe oxidation, the liquid phase region of Ta<sub>2</sub>O<sub>5</sub>-WO<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> ternary system in isothermal section 1300 °C, 1400 °C and 1500 °C, is also studied in this work.

2. Experimental

 $Ta_2O_5$  (D50 = 40 µm, purity > 99.9%, Ning Xia Orient Tantalum Industry Co., Ltd., China), WO<sub>3</sub> (D50 = 20 µm, purity > 99.9%, General Research Institute for Nonferrous Metals, Beijing, China) and SiO<sub>2</sub> (D50 = 1 µm, purity > 99.0%, Sinopharm Chemical Reagent Co., Ltd, China)

 $Al_2O_3$  (D50 = 3.5 µm, purity > 99.0%, Sinopharm Chemical Reagent Co., Ltd, China) powders were used as the starting materials. The Ta-W-Al-Si are abbreviated as TWAS series followed with numerical which means the mole proportion. For solid phase reactions, power mixtures with total mass 1.5 grams were mixed by hand with an agate pestle and mortar for 2 hrs using anhydrous ethanol as medium. After being dried, batches of the power mixtures were dry-pressed in a steel mode with inner diameter of 10 mm at 30 MPa for 30 s. And then, each sample was heat treated at high temperature in a sealed  $Al_2O_3$  crucible to avoid mass loss of the volatile substance. For investigating the reaction in binary system, hold time of heat treatment was 6hr; for studying the equilibrium of ternary and quandary systems, holding time was 6hr, 30hr and 72hr, respectively, until phase compositions had no more changes. The sealed specimens were cooled in furnace with in cooling rate of 30°C/min until 500°C then quenched in air.

According to thermodynamic estimation and experimental observations, liquid phase appears in the Ta<sub>2</sub>O<sub>5</sub>-WO<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> powder mixture above 1200 °C. Liquidus regions in the phase diagrams were determined by observation on melting of the respective samples after heating for 2 h at 1300 - 1500 °C. The sealed crucibles containing the specimen were quenched into water.

The as-sintered samples were pulverized by hand with an agate pestle and mortar. To avoid the contamination of crucible, the surface of sample was polished carefully by diamond sand paper primarily. Phases presented were identified by X-ray diffractometer (XRD-6000, Shimadzu, Japan) with Cu K $\alpha$  radiation in a scanning range of 10-80 °. Typical microstructures of the samples and compositions of the phases present were measured using an electron probe X-ray micro-analyzer (EPMA) with wave length dispersive detectors (JXA-8200, JEOL, Japan ).

3. Results and discussion

#### 3.1 The reaction and solid solubility of binary system

This system includes Ta<sub>2</sub>O<sub>5</sub>-WO<sub>3</sub>, Ta<sub>2</sub>O<sub>5</sub>-Al<sub>2</sub>O<sub>3</sub>, WO<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub>, Ta<sub>2</sub>O<sub>5</sub>-SiO<sub>2</sub>, WO<sub>3</sub>-SiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> six binary systems. The compositions of binary systems are summarized in Table 1. The reactions of  $Al_2O_3$ -SiO<sub>2</sub> binary have been report many times [12,13]. In this binary system, mullite is an important high-temperature structural refractory, due to its good mechanical strength, excellent thermal shock, high creep resistance, low thermal conductivity and high-temperature stability. Solid-state reaction process to synthesize mullite requires extremely high temperature (> 1300 °C) [14,15]. In this study, no solid reaction was observed at 1200 °C. The experiments in Ta<sub>2</sub>O<sub>5</sub>-SiO<sub>2</sub> and WO<sub>3</sub>-SiO<sub>2</sub> binary systems showed that no reaction happened in these systems, while, phase transform of hexagonal quartz to tetragonal cristobalite was observed (Fig. 1)[14]. In WO<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> binary system, J. L. Waring found that compound 2Al<sub>2</sub>O<sub>3</sub>·5WO<sub>3</sub> (Al<sub>4</sub>W<sub>5</sub>O<sub>21</sub>) can be formed [16], while no X-ray diffraction data of this compound can be found in PDF database, and single crystal data indicate that the composition of the compound is Al<sub>2</sub>O<sub>3</sub>•3WO<sub>3</sub> rather than 2Al<sub>2</sub>O<sub>3</sub>•5WO<sub>3</sub>. In this study, compound Al<sub>2</sub>W<sub>3</sub>O<sub>12</sub> (Al<sub>2</sub>O<sub>3</sub>•3WO<sub>3</sub>) was identified (Fig. 2). As M. G. Zuev reported, after heat treated the oxides of Ta and V, and Al(OH)<sub>3</sub> in air(in the sequence of 675 °C, 1000°C, 1200°C, and 1350°C each for 40 h ), the compound of  $AITaO_4$  ( $Ta_2O_5$ · $Al_2O_3$ ) can be formed [17]. In this case, after heat treatment for 6hrs in air, Al<sub>2</sub>O<sub>3</sub> and Ta<sub>2</sub>O<sub>5</sub> reacted to form AlTaO<sub>4</sub>, which is confirmed with by M. G. Zuev(as seen in Fig.2).

Three compounds were found in  $Ta_2O_5$ -WO<sub>3</sub> binary system,  $Ta_{22}W_4O_{67}$ ,  $Ta_2WO_8$  and  $Ta_{16}W_{18}O_{94}$  [18,19]. The reaction between  $Ta_2O_5$  and WO<sub>3</sub> had also been discussed previously [20]. The reactions of binary systems are summarised in Table 2. The crystal lattic parameters formed binary compounds are listed in Table 3.

The solid solubility: Schmid [21] reported a continuous solid solution with a formula of (1-x)Ta<sub>2</sub>O<sub>5</sub>•xWO<sub>3</sub> at 0-26.7 mol% WO<sub>3</sub>. A solid solution was presented in the composition range of SiO<sub>2</sub>:Ta<sub>2</sub>O<sub>5</sub> from 0 to 1:4 [22]. The addition of Al<sub>2</sub>O<sub>3</sub> forms phases structurally similar to low Ta<sub>2</sub>O<sub>5</sub> which are stable up to the solidus temperatures, the solubility is less than 6.0mol% [18,23] 3.2 Equilibria in ternary system

The compositions of sample choosen for ternary system is listed in Table 4.

#### 3.2.1 Ta<sub>2</sub>O<sub>5</sub>-WO<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> ternary system

Typical samples were reacted 6 to 72 hr for studying the phase equilibrium in this system and the results are showed in Table 4. Five compounds were formed in this system and five coexisting triangles  $WO_3$ -Al<sub>2</sub> $W_3O_{12}$ -Ta<sub>16</sub> $W_{18}O_{94}$ , Al<sub>2</sub> $W_3O_{12}$ -Ta<sub>16</sub> $W_{18}O_{94}$ -Al<sub>2</sub>O<sub>3</sub>, Ta<sub>16</sub> $W_{18}O_{94}$ -Al<sub>2</sub>O<sub>3</sub>-AlTaO<sub>4</sub>, Ta<sub>16</sub> $W_{18}O_{94}$ -AlTaO<sub>4</sub>-Ta<sub>2</sub> $WO_8$  and AlTaO<sub>4</sub>-Ta<sub>2</sub> $WO_8$ -Ta<sub>22</sub> $W_4O_{67}$  constructed the compatibility relationship of ternary system. Viewed from the back-scattered electron image of typical Ta<sub>2</sub>O<sub>5</sub>-WO<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> ternary system sample, three phases, dark, grey and white were coexisting as shown in Fig. 2. EMPA results showed that the elemental contents of these phases were coincidence with AlTaO<sub>4</sub>, Ta<sub>16</sub> $W_{18}O_{94}$ , Ta<sub>2</sub> $WO_8$  respectively.

It is interesting that in the sample of TWA 811, only two phases  $AITaO_4$  and  $Ta_2O_5$  are identified. Solid solution is predicted based on binary system results. TWA 81H and TWA810 with alumina content 0.3 and 0 were prepared to compare the solubility of alumina. Only one phase  $Ta_2O_5$  can be found in the XRD pattern, as showed in Fig. 3. Simultaneously, the diffraction peaks of the  $(1-x)Ta_2O_5 \cdot xWO_3$  were shifted to lower angles, indicating incorporation of  $Al_2O_3$  into the lattice to expand the solid solution along the compositional line of  $11Ta_2O_5 \cdot 4WO_3$ - $Al_2O_3$ . For explanation of the lattice expansion,  $Al_2O_3$  substituted WO<sub>3</sub> with avoidance of forming O vacancies, replacement of 1 mole W with cation radius of 137 pm by 2 mole Al with cation radius of 236 pm would expand the lattice. The phase compatibility relationship and solubility of ternary system are summarized as Fig. 4.

3.2.2 Ta<sub>2</sub>O<sub>5</sub>-WO<sub>3</sub>-SiO<sub>2</sub> ternary system

The phase relationship of  $Ta_2O_5$ -WO<sub>3</sub>-SiO<sub>2</sub> ternary system had been published previously. [18] Since SiO<sub>2</sub> did not take part in the reactions, the system contained three-phase compatibility regions, one continuous solid solution and a solid solution region.

3.2.3 Ta<sub>2</sub>O<sub>5</sub>-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> ternary system

Similar with binary system, mullite cannot be formed at 1200 °C, only  $Al_2O_3$ -AlTaO<sub>4</sub>–SiO<sub>2</sub> and AlTaO<sub>4</sub>–SiO<sub>2</sub>-Ta<sub>2</sub>O<sub>5</sub> coexisted. While at 1500 °C, XRD patterns of typical samples (Fig. 5) show that due to formation of  $Al_6Si_2O_{13}$  (mullite) and AlTaO<sub>4</sub>, coexisting of  $Al_6Si_2O_{13}$ , AlTaO<sub>4</sub> and SiO<sub>2</sub> in sample TAS 122, AlTaO<sub>4</sub>, Ta<sub>2</sub>O<sub>5</sub> and SiO<sub>2</sub> coexisting in sample TAS 214. No solid solution region was observed in this system. Thus, the compatibilities at 1200 °C and 1500 °C are summarized as Fig. 6. Mullitization samples were annealed at 1200 °C for 6 hours, no decomposition reaction was observed, confirming the stability of mullite phase at 1200 °C.

3.2.4 WO<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> ternary system

In the binary system, mullitization temperature was higher than 1200  $^{\circ}$ C, when WO<sub>3</sub> was added in the system. As XRD patterns of samples WAS 131 and WAS 126 shown that the mullite diffraction (Fig. 7) can be identified, which indicates that mullite formation temperature is 100  $^{\circ}$ C lower than that required for binary system [19]. It has been reported that mullite formation in reaction sintering couples quartz and Al<sub>2</sub>O<sub>3</sub> is controlled by dissolution–precipitation reactions, where Al<sub>2</sub>O<sub>3</sub> species dissolve into the SiO<sub>2</sub>-rich liquid until a critical Al<sub>2</sub>O<sub>3</sub> concentration is reached [24]. Higher  $Al_2O_3$  concentrations induce random mullite nucleation in the bulk of the  $SiO_2$  -rich phase. It was reported that the presence of  $V_2O_5$  could accelerate the mullite phase formation as  $V_2O_5$  could decrease the viscosity of the  $SiO_2$ -rich liquid [25]. Although the melting point of WO<sub>3</sub> is higher than 1400 °C, the eutectic temperature of  $Al_2O_3$  and WO<sub>3</sub> is lower than 1200 °C [17]. In this case, liquid phase can be formed at 1200 °C by  $Al_2O_3$ -WO<sub>3</sub>, the dissolution of  $Al_2O_3$  benefits the formation of mullite.

In the ternary system, compound  $Al_2W_3O_{12}$  is also determined (as seen in Fig. 7) and it is compatible with  $Al_2O_3$ , mullite,  $WO_3$  and  $SiO_2$  respectively. The compatibility of  $WO_3$ - $Al_2O_3$ - $SiO_2$  is showed in Fig. 8.

3.3 The compatibility of Ta<sub>2</sub>O<sub>5</sub>-WO<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> quaternary system

Based on the compatibility of ternary system, typical samples selected for research the compatibility of quaternary system are listed in Table 5. The XRD analysis results of the samples heated at 1200 °C for 6 hr are also listed. No new quaternary compound was found. From the XRD patterns of sample TWAS1111 located in the central of pyramid, the coexisting of  $Ta_{16}W_{18}O_{94}$ ,  $Ta_2WO_8$ , AlTaO<sub>4</sub>, SiO<sub>2</sub> phases could be identified. The tie-line of SiO<sub>2</sub>-AlTaO<sub>4</sub> established the tetrahedron of  $Ta_{16}W_{18}O_{94}$ -Al<sub>2</sub> $Ta_2WO_8$ -AlTaO<sub>4</sub>-SiO<sub>2</sub>. The  $Ta_{16}W_{18}O_{94}$ , Al<sub>6</sub> $Si_2O_{13}$ , Al<sub>2</sub> $W_3O_{12}$  and Al<sub>2</sub>O<sub>3</sub> were coexisted in the sample TWAS14K8, it indicates the tie-line of  $Ta_{16}W_{18}O_{94}$ -Al<sub>6</sub> $Si_2O_{13}$  and Al<sub>2</sub> $W_3O_{12}$ -Ta<sub>16</sub> $W_{18}O_{94}$ -Al<sub>6</sub> $Si_2O_{13}$ -SiO<sub>2</sub>. The compatibility of  $Ta_2O_5$ -WO<sub>3</sub>-Al<sub>2</sub> $O_3$ -SiO<sub>2</sub> quaternary system is showed in Fig.9.

The solid solution has also been found in ternary system. In the sample TWAS3113, three phases,  $Ta_2O_5$ , AlTaO<sub>4</sub>and SiO<sub>2</sub> were identified, neither the binary nor ternary tungsten oxides

were observed. It indicates that the solid solution of tungsten oxides is present. In binary system, the solubility of WO<sub>3</sub>, SiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> in Ta<sub>2</sub>O<sub>5</sub> is 0-26.7 mol%, 0-25.0 mol% and 0-6.0 mol% respectively. In quaternary system, the oxides formed solid solution with Ta<sub>2</sub>O<sub>5</sub> primarily until the solid solution limit is reached. That explained the XRD patterns of the sample (TWASX52G ) is close to Ta<sub>2</sub>O<sub>5</sub>, , in which only one phase Ta<sub>2</sub>O<sub>5</sub> had been identified (see Fig. 10).

3.4 Liquidus region of Ta<sub>2</sub>O<sub>5</sub>-WO<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> ternary system at 1300 °C and above

Melting incongruently to  $Ta_{22}W_4O_{67}$  plus liquid at about 1580 °C was reported in the region near  $Ta_2O_5$  of  $Ta_2O_5$ -WO<sub>3</sub> binary system[16], The WO<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> binary system has a eutectic temperature at 1190 °C [14]. No eutectic point was reported in  $Ta_2O_5$ -Al<sub>2</sub>O<sub>3</sub> binary system.

The compositions of the samples selected to study the liquidus region at 1300-1500 °C are listed in Table 6. In the experiments, appearance of liquid was judged from the melting behavior of the samples. Although some samples did not melt completely, the characteristic deformation of the samples indicated coexistence of liquid (L) with solid phase (S).

The compositions of the TWA0EB and TWA051 samples are located in the WO<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> binary system. Both samples melted completely at 1300 °C. The ternary sample TWA181 having a composition near this region was also melted. While, liquid present in samples TWA283,TWA285 and TWA151 indicated the liquidus region on the WO<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> line at 1300 °C was set in the compositional range of WO<sub>3</sub> 56.0-83.0 mol%.

As the temperature increases, the liquidus region in the phase diagram is expanded, especially in the samples containing a high concentration of WO<sub>3</sub>. For example, the liquidus region in the  $Ta_2O_5$ -WO<sub>3</sub> system is expanded up to 75.0 mol% WO<sub>3</sub> at 1400 °C.

The liquid regions of the ternary system at 1300-1500 °C are shown in Fig. 11. Comparing

with liquidus region of  $Ta_2O_5$ -WO<sub>3</sub>-SiO<sub>2</sub> system, liquid phase region was expanded around WO<sub>3</sub>, no liquid phase could be identified in high Al<sub>2</sub>O<sub>3</sub> or Ta<sub>2</sub>O<sub>5</sub> regions.

4. Conclusion:

(1) The reactions among oxides of Ta-W-Al-Si (Ta<sub>2</sub>O<sub>5</sub>-WO<sub>3</sub>-SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>) at 1200 °C are investigated. Ta<sub>22</sub>W<sub>4</sub>O<sub>67</sub>, Ta<sub>2</sub>WO<sub>8</sub>, Ta<sub>16</sub>W<sub>18</sub>O<sub>94</sub>, Al<sub>2</sub>W<sub>3</sub>O<sub>12</sub>, AlTaO<sub>4</sub> can be formed by solid reactions. When reaction temperature was increased to 1500 °C, mullitization reaction could be found in binary system. Compatibility of AlTaO<sub>4</sub> and Al<sub>2</sub>W<sub>3</sub>O<sub>12</sub> with each of oxides is demonstrated. Liquid phase formed by Al<sub>2</sub>O<sub>3</sub>-WO<sub>3</sub> in WO<sub>3</sub>-SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> benefits the mullitization reaction and mullite can be formed at 1200 °C in ternary system.

(2) A solid solution with a formula of (1-x)  $Ta_2O_5 \cdot xWO_3$  was identified.  $Al_2O_3$  and  $SiO_2$  could dissolve in the solid solution with a maximum solubility of 25.0%  $SiO_2$  and 6.0%  $Al_2O_3$  respectively.

(3) Liquid phase first appeared in the WO<sub>3</sub>-rich corner of the  $Ta_2O_3$ -WO<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> ternary system at 1300 °C. As the temperature increased, the liquidus area expands towards the Al<sub>2</sub>O<sub>3</sub>- and the Ta<sub>2</sub>O<sub>5</sub>-rich corners. A phase diagram with illustration of the liquidus region was constructed.

#### Acknowledgment

The authors gratefully acknowledge the financial support provided by NDFC, China (51464001) and project of powder material and advance ceramics state key lab (1401). The author would like to thank Dr. Huang Zhenkun for helpful guide, and Dr. Chen for EMPA analysis.

#### References

[1] T. Hirai, G. Pintsuk, J. Link, et al. Cracking failure study of ITER-reference tungsten grade under single pulse thermal shock loads at elevated temperatures, J.Nucl.Mater. 757 (2009) 390-391

[2] R. E. Nygren, R. Raffray, D. Whyte, et al. Making tungsten work-ICFRM-14 session T26 paper 501 Nygren et al. making tungsten work, J.Nucl.Mater. 417(2011) 451-456.

[3] H. Yukawa, T. Nambu, Y. Matsumoto. Ta-W alloy for hydrogen permeable membranes, Mater. Trans. 52(4) (2011) 610-613.

[4] P. Kofstad, J. Krudtaa. High temperature metallographic microscope studies of the initial oxidation of tantalum, Journal of the Less Common Metals. 5(1963) 477-492.

[5] V. B. Voitovich, V. A. Lavrenko, V. M. Adejev, et al. High-temperature oxidation of tantalum of different purity, Oxid. Met. 43(1995) 509-526.

[6] V. A. Avincola, M. Janek, U. Stegmaier, et al. Tantalum oxidation in steam atmosphere, Oxid.Met. 85(2016) 459-487.

[7] A.Bhowmik, H.J.Stone. A study on the influence of Mo, Al and Si additions on the microstructure of annealed dual phase Cr–Ta alloys, J. Mater. Sci. 48(2013) 3283-3293.

[8] O. N. Senkov, G. B. Wilks, J. M. Scott, et al. Mechanical properties of  $Nb_{25}Mo_{25}Ta_{25}W_{25}$ , and  $V_{20} Nb_{20}Mo_{20}Ta_{20}W_{20}$  refractory high entropy alloys, Intermetallics, 19(2011) 698-706.

[9] O. N. Senkov, J. M. Scott, S. V. Senkova, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys Compd. 509(2011) 6043-6048.

[11] O. N. Senkov, S. V. Senkova, D. M. Dimiduk, et al. Oxidation behavior of a refractory NbCrMo<sub>0.5</sub> Ta<sub>0.5</sub>TiZr alloy, J. Mater. Sci. 47(2012) 6522-6534.

[12] J. A. Pask. Stable and metastable equilibria in the system SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>, J. Amer. Chem. Soc. 58 (1975):507-512.

[13] J. A. Pask, A. P. Tomsia. Formation of mullite from sol-gel mixtures and kaolinite, J. Amer.

Chem. Soc. 74 (2010):2367-2373.

[14] M. Imose, A. Ohta, Y. Takano, et al. Low-Temperature Sintering of mullite/yttria-Doped zirconia composites in the mullite-rich region, J. Amer. Chem. Soc. 81(2010) 1050-1052.

[15] H. A. Wriedt. The O-Pu (oxygen-plutonium) system, Bull. Alloy Phase Diagr. 11(1990) 184-202.

[16] J. L. Waring. Phase equilibria in the system aluminum oxide—tungsten oxide, J. Amer. Chem.Soc. 48(1965) 493-493.

[17] M.G.Zuev. Phase ratios in Al<sub>2</sub>O<sub>3</sub>-V<sub>2</sub>O<sub>5</sub>-Ta<sub>2</sub>O<sub>5</sub> system in subsolidus range, Zh. Neorg. Khim.39(1994) 512-513

[18] R. S. Roth, J. L. Waring. Phase equilibria as related to crystal structure in the system niobium pentoxide-tungsten trioxide, J.res.natl.bur.stand, , 70A(1966).

[19] R. S. Roth, J. L. Waring, H. S. Parker. Effect of oxide additions on the polymorphism of tantalum pentoxide. IV. The system Ta<sub>2</sub>O<sub>5</sub>-Ta<sub>2</sub>WO<sub>8</sub>, J. Solid State Chem. 2(1970) 445-461.

[20 H.Y. Wang, Y. H. Chen, Z. J. Bai, et al. Phase relations in the Ta<sub>2</sub>O<sub>5</sub>-WO<sub>3</sub>-SiO<sub>2</sub> system, Int. J. Refract. Met. Hard Mater. 1 (2017) 47–51

[21] S. Schmid, R. L. Withers, J. G. Thompson. The incommensurately modulated(1-x)Ta<sub>2</sub>O<sub>5</sub>·xWO<sub>3</sub>,  $0 \le x$ ,  $\le 0.267$  solid solution, J. Solid State Chem. 99(1992) 226-242. [22]D. A. Reeve, N. Bright. Phase relations in the system CaO-Ta<sub>2</sub>O<sub>5</sub>-SiO<sub>2</sub>, J. Amer. Chem. Soc. 52(1969) 405-409.

[23] D. T. Murphy, V. Fung, S. Schmid. Structural investigation of the incommensurate modulated Ta<sub>2</sub>O<sub>5</sub>· Al<sub>2</sub>O<sub>3</sub> System, Aperiodic Crystals, Springer, Dordrecht, 2013.

[24] S. H. Hong, W. Cermignani, G. L. Messing. Anisotropic grain growth in seeded and

B<sub>2</sub>O<sub>3</sub>-doped diphasic mullite gels, J. Eur. Ceram. Soc. 16(1996):133-141.

[25] L. B. Kong, Y. B. Gan, J. Ma, et al. Mullite phase formation and reaction sequences with the presence of pentoxides, J. Alloys Compd. 351(2003) 264-272.

| Table 1 The sample compositions for binary system at 1200°C |           |                 |            |                  |                                                                                                 |  |  |  |
|-------------------------------------------------------------|-----------|-----------------|------------|------------------|-------------------------------------------------------------------------------------------------|--|--|--|
| C 1 -                                                       | С         | ompositi        | ion (mole) | Dhasa component  |                                                                                                 |  |  |  |
| Sample                                                      | $Ta_2O_5$ | WO <sub>3</sub> | $Al_2O_3$  | SiO <sub>2</sub> | Phase component                                                                                 |  |  |  |
| TW X5                                                       | 33        | 5               | 0          | 0                | $Ta_2O_5(ss)$                                                                                   |  |  |  |
| TW 85                                                       | 8         | 5               | 0          | 0                | Ta <sub>22</sub> W <sub>4</sub> O <sub>67</sub> ,Ta <sub>2</sub> WO <sub>8</sub>                |  |  |  |
| TW 7L                                                       | 7         | 10              | 0          | 0                | $Ta_2WO_8, Ta_{16}W_{18}O_{94}$                                                                 |  |  |  |
| TW 15                                                       | 1         | 5               | 0          | 0                | Ta <sub>16</sub> W <sub>18</sub> O <sub>94</sub> ,WO <sub>3</sub>                               |  |  |  |
| WA 11                                                       | 0         | 1               | 1          | 0                | Al <sub>2</sub> W <sub>3</sub> O <sub>12</sub> ,WO <sub>3</sub> ,Al <sub>2</sub> O <sub>3</sub> |  |  |  |
| TA 11                                                       | 1         | 0               | 1          | 0                | AlTaO4,Ta2O5,Ta0.703O1.65                                                                       |  |  |  |
| WS 11                                                       | 0         | 1               | 0          | 1                | $WO_3$ , $SiO_2$                                                                                |  |  |  |
| AS 11                                                       | 0         | 0               | 1          | 1                | Al <sub>2</sub> O <sub>3</sub> , SiO <sub>2</sub>                                               |  |  |  |

#### 5. Tables and Table captions

Note: X-33 mole proportion, L-10 mole proportion.

)

| Reactions at 1200 °C                                                                        | Reference                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No reaction                                                                                 | [12,13]                                                                                                                                                                                                                                                                                                                                 |
| $Ta_2O_5 + Al_2O_3 \rightarrow 2AlTaO_4$                                                    | [15]                                                                                                                                                                                                                                                                                                                                    |
| $11\text{Ta}_2\text{O}_5 + 4\text{WO}_3 \rightarrow  \text{Ta}_{22}\text{W}_4\text{O}_{67}$ |                                                                                                                                                                                                                                                                                                                                         |
| $Ta_2O_5 + WO_3 \rightarrow Ta_2WO_8$                                                       | [16,17]                                                                                                                                                                                                                                                                                                                                 |
| $8Ta_2O_5 + 18WO_3 \rightarrow Ta_{16}W_{18}O_{94}$                                         |                                                                                                                                                                                                                                                                                                                                         |
| $Ta_2O_5 + SiO_2 \rightarrow Ta_2O_5ss$                                                     | [14]                                                                                                                                                                                                                                                                                                                                    |
| $3WO_3 + Al_2O_3 \rightarrow Al_2W_3O_{12}$                                                 | [14]                                                                                                                                                                                                                                                                                                                                    |
| No reaction                                                                                 | [14]                                                                                                                                                                                                                                                                                                                                    |
|                                                                                             | Reactions at 1200 °C<br>No reaction<br>$Ta_2O_5+Al_2O_3\rightarrow 2AlTaO_4$<br>$11Ta_2O_5 + 4WO_3 \rightarrow Ta_{22}W_4O_{67}$<br>$Ta_2O_5 + WO_3 \rightarrow Ta_2WO_8$<br>$8Ta_2O_5 + 18WO_3 \rightarrow Ta_{16}W_{18}O_{94}$<br>$Ta_2O_5 + SiO_2 \rightarrow Ta_2O_5ss$<br>$3WO_3+Al_2O_3 \rightarrow Al_2W_3O_{12}$<br>No reaction |

#### Table 2 the reactions of binary systems

|                       |         |                         |       | _    |     | -   |         |          |                            |      |     |     |     |
|-----------------------|---------|-------------------------|-------|------|-----|-----|---------|----------|----------------------------|------|-----|-----|-----|
|                       | DDE     |                         |       |      |     |     | Cell pa | arameter |                            |      |     |     |     |
| compound              | PDF     | Picked up from PDF card |       |      |     |     |         |          | Detected value from sample |      |     |     |     |
|                       | number  | a                       | b     | с    | α   | β   | γ       | a        | b                          | с    | α   | β   | γ   |
| $Ta_{16}W_{18}O_{97}$ | 29-1323 | 12.28                   | 12.28 | 3.88 | 90° | 90° | 90°     | 12.23    | 12.23                      | 3.86 | 90° | 90° | 90° |
| $Ta_2WO_8$            | 29-1322 | 16.70                   | 3.88  | 8.86 | 90° | 90° | 90°     | 16.73    | 3.87                       | 8.82 | 90° | 90° | 90° |
| $Ta_{22}W_4O_{67}$    | 29-1325 | 3.84                    | 47.40 | 6.13 | 90° | 90° | 90°     | 3.84     | 47.34                      | 6.09 | 90° | 90° | 90° |
| AlTaO <sub>4</sub>    | 25-1490 | 6.13                    | 7.38  | 8.72 | 90° | 90° | 90°     | 6.11     | 7.35                       | 8.80 | 90° | 90° | 90° |
| $Al_6Si_2O_{13}$      | 15-0776 | 7.55                    | 7.69  | 2.88 | 90° | 90° | 90°     | 7.61     | 7.73                       | 2.87 | 90° | 90° | 90° |
| $Al_2W_3O_{12}$       | 76-1658 | 12.59                   | 9.05  | 9.12 | 90° | 90° | 90°     | 12.50    | 8.97                       | 9.07 | 90° | 90° | 90° |

#### Table 3 The crystal lattice parameters of binary compounds

Chilling and a second

| C       | Composition (mole) |        | Phase component |                  |                                                                                                   |                                                                                                     |
|---------|--------------------|--------|-----------------|------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Sample  | $Ta_2O_5$          | $WO_3$ | $Al_2O_3$       | SiO <sub>2</sub> | 1200 °C                                                                                           | 1500 °C                                                                                             |
| TWA810  | 8                  | 1      | 0               | 0                | $Ta_2O_5$ (ss)                                                                                    |                                                                                                     |
| TWA81H  | 8                  | 1      | 0.3             | 0                | $Ta_2O_5$ (ss)                                                                                    |                                                                                                     |
| TWA421  | 4                  | 2      | 1               | 0                | $\mathrm{Ta}_{22}\mathrm{W}_{4}\mathrm{O}_{67},\mathrm{AlTaO}_{4},\mathrm{Ta}_{2}\mathrm{WO}_{8}$ | Â                                                                                                   |
| TWA331  | 3                  | 3      | 1               | 0                | $Ta_{16}W_{18}O_{94},AlTaO_4,Ta_2WO_8$                                                            |                                                                                                     |
| TWA 113 | 1                  | 1      | 3               | 0                | $Ta_{16}W_{18}O_{94},AlTaO_4,Al_2O_3$                                                             |                                                                                                     |
| TWA189  | 1                  | 8      | 9               | 0                | $Ta_{16}W_{18}O_{94}, Al_2O_3, Al_2W_3O_{12}$                                                     |                                                                                                     |
| TWAG81  | 0.5                | 8      | 1               | 0                | $Ta_{16}W_{18}O_{94}, WO_3, Al_2W_3O_{12}$                                                        |                                                                                                     |
| TWA811  | 8                  | 1      | 1               | 0                | AlTaO <sub>4</sub> ,Ta <sub>2</sub> O <sub>5</sub> (ss)                                           |                                                                                                     |
| TWSX52  | 33                 | 5      | 0               | 2                | Ta <sub>2</sub> O <sub>5</sub> (SS)                                                               |                                                                                                     |
| TWS852  | 8                  | 5      | 0               | 2                | $\mathrm{Ta}_{22}\mathrm{W}_{4}\mathrm{O}_{67},\mathrm{Ta}_{2}\mathrm{WO}_{8},\mathrm{SiO}_{2}$   |                                                                                                     |
| TWS7L4  | 7                  | 10     | 0               | 4                | $Ta_2WO_8$ , $Ta_{16}W_{18}O_{94}$ , $SiO_2$                                                      |                                                                                                     |
| TWS152  | 1                  | 5      | 0               | 2                | Ta <sub>16</sub> W <sub>18</sub> O <sub>94</sub> , WO <sub>3</sub> , SiO <sub>2</sub>             |                                                                                                     |
| TWS X5X | 33                 | 5      | 0               | 33               | $Ta_2O_5$ (SS), SiO <sub>2</sub>                                                                  |                                                                                                     |
| TAS122  | 1                  | 0      | 2               | 2                | Al <sub>2</sub> O <sub>3</sub> ,AlTaO <sub>4</sub> ,SiO <sub>2</sub>                              | $Al_6Si_2O_{13}$ , $AlTaO_4$ , $SiO_2$                                                              |
| TAS 16C | 1                  | 0      | 6               | 12               | Al <sub>2</sub> O <sub>3</sub> ,AlTaO <sub>4</sub> ,SiO <sub>2</sub>                              | Al <sub>6</sub> Si <sub>2</sub> O <sub>13</sub> ,AlTaO <sub>4</sub> ,SiO <sub>2</sub>               |
| TAS214  | 2                  | 0      | 1               | 4                | AlTaO <sub>4</sub> ,Ta <sub>2</sub> O <sub>5</sub> ,SiO <sub>2</sub>                              | AlTaO <sub>4</sub> ,Ta <sub>2</sub> O <sub>5</sub> ,SiO <sub>2</sub>                                |
| TAS141  | 1                  | 0      | 4               | 1                | SiO <sub>2</sub> ,AlTaO <sub>4</sub> ,Al <sub>2</sub> O <sub>3</sub>                              | Al <sub>6</sub> Si <sub>2</sub> O <sub>13</sub> ,AlTaO <sub>4</sub> ,Al <sub>2</sub> O <sub>3</sub> |
| WAS131  | 0                  | 1      | 3               | 1                | $Al_{2}O_{3}, Al_{2}W_{3}O_{12}, Al_{6}Si_{2}O_{13}$                                              |                                                                                                     |
| WAS126  | 0                  | 1      | 2               | 6                | $SiO_2,Al_2W_3O_{12},Al_6Si_2O_{13}$                                                              |                                                                                                     |
| WAS513  | 0                  | 5      | ) 1             | 3                | SiO <sub>2</sub> ,WO <sub>3</sub> ,Al <sub>2</sub> W <sub>3</sub> O <sub>12</sub>                 |                                                                                                     |

Table 4 The sample compositions for ternary system

Note: H-0.3 mole proportion, G-0.5 mole proportion, X-33 mole proportion, L-10 mole proportion, C-12 mole proportion.

|          |                                                                                     |           | -               | -   |                                                                                                                                        |  |
|----------|-------------------------------------------------------------------------------------|-----------|-----------------|-----|----------------------------------------------------------------------------------------------------------------------------------------|--|
| Sampla   | C                                                                                   | Compositi | on (mole)       |     | Dhase comparent                                                                                                                        |  |
| Sample   | $\frac{1}{\text{Ta}_2\text{O}_5 \text{ WO}_3 \text{ Al}_2\text{O}_3 \text{ SiO}_2}$ |           | Phase component |     |                                                                                                                                        |  |
| TWAS1919 | 1                                                                                   | 9         | 1               | 9   | Al <sub>2</sub> W <sub>3</sub> O <sub>12</sub> , Ta <sub>16</sub> W <sub>18</sub> O <sub>94</sub> , WO <sub>3</sub> , SiO <sub>2</sub> |  |
| TWAS1444 | 1                                                                                   | 4         | 4               | 4   | $Al_2W_3O_{12}, Ta_{16}W_{18}O_{94}, Al_6Si_2O_{13}, SiO_2$                                                                            |  |
| TWAS14K8 | 1                                                                                   | 4         | 20              | 8   | $Ta_{16}W_{18}O_{94}, Al_6Si_2O_{13}, Al_2W_3O_{12}, Al_2O_3$                                                                          |  |
| TWAS3113 | 3                                                                                   | 1         | 1               | 3   | Ta <sub>2</sub> O <sub>5</sub> (ss), AlTaO <sub>4</sub> ,SiO <sub>2</sub>                                                              |  |
| TWAS1111 | 1                                                                                   | 1         | 1               | 1   | $Ta_{16}W_{18}O_{94}, Ta_2WO_8, AlTaO_4, SiO_2$                                                                                        |  |
| TWASX52G | 33                                                                                  | 5         | 2               | 0.5 | $Ta_2O_5$ (ss)                                                                                                                         |  |

Table 5 Phase components of quaternary system at 1200 °C

Note: K-20 mole proportion, G-0.5 mole proportion.

CER MAN

|        | Ca    | manasitian (m | a a la ) | Phase component at different temperatures. |      |      |  |  |
|--------|-------|---------------|----------|--------------------------------------------|------|------|--|--|
| Sample | Col   | mposition (n  | nole)    | L = liquid and S = solid                   |      |      |  |  |
|        | Ta2O5 | WO3           | A12O3    | 1300                                       | 1400 | 1500 |  |  |
| TWA181 | 1     | 8             | 1        | L                                          |      |      |  |  |
| TWA283 | 2     | 8             | 3        | L+S                                        |      |      |  |  |
| TWA144 | 1     | 4             | 4        | S                                          |      |      |  |  |
| TWA0EB | 0     | 14            | 11       | L                                          |      |      |  |  |
| TWA051 | 0     | 5             | 1        | L                                          |      |      |  |  |
| TWA285 | 2     | 8             | 5        | L+S                                        |      |      |  |  |
| TWA151 | 1     | 5             | 1        | L+S                                        |      |      |  |  |
| TWA483 | 4     | 8             | 3        |                                            | L+S  |      |  |  |
| TWA486 | 4     | 8             | 6        |                                            | L+S  |      |  |  |
| TWA491 | 4     | 9             | 1        |                                            | L+S  |      |  |  |
| TWA145 | 1     | 4             | 5        |                                            | L+S  |      |  |  |
| TWA1Y1 | 1     | 18            | 1        |                                            | L    |      |  |  |
| TWA553 | 5     | 5             | 3        |                                            |      | L+S  |  |  |
| TWA441 | 4     | 4             | 1        |                                            |      | L+S  |  |  |
| TWA445 | 4     | 4             | 5        |                                            |      | L+S  |  |  |
| TWA236 | 2     | 3             | 6        |                                            |      | S    |  |  |
| TWA583 | 5     | 8             | 3        |                                            |      | L    |  |  |
| TWA587 | 5     | 8             | 7        |                                            |      | L    |  |  |
| TWA471 | 4     | 7             | 1        | 7                                          |      | L    |  |  |

| Table 6 Sam | nle compositio | ons and XRI | ) analysis res      | ault after sint | ering at 130 | 0-1500 °C |
|-------------|----------------|-------------|---------------------|-----------------|--------------|-----------|
| rable 0 Sam | pie compositio | ms and mark | <i>analysis</i> 103 | suit after sint | ering at 150 | 0-1500 C  |

Note: E-14 mole proportion, B-11 mole proportion, Y-18 mole proportion.

iole <sub>F</sub>.

6. Figure captions

Fig. 1 XRD pattern of samples TA 11and WA 11

Fig. 2 BSE and EMPA analysis of typical Ta<sub>2</sub>O<sub>5</sub>-WO<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> sample after reacted 6h at 1200°C

Fig. 3 XRD pattern of sample TWA 811, TWA81H and TWA810

Fig. 4 The phase compatibility and solubility in  $Ta_2O_5\mathchar`-WO_3\mathchar`-Al_2O_3$  system

Fig. 5 XRD pattern of samples TAS 141, TAS214 and TAS122

Fig. 6 The phase compatibility of Ta<sub>2</sub>O<sub>5</sub>-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> system (left1200°C, right 1500°C)

- Fig. 7 XRD pattern of formation of mullite in WO<sub>3-</sub>Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> system at 1200 °C
- Fig. 8 The compatibility of WO<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> ternary system
- Fig. 9 The phase compatibility and solubility in Ta<sub>2</sub>O<sub>5</sub>-WO<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> system
- Fig. 10 XRD pattern of samples TWASX52G
- Fig. 11 Liquidus region of Ta2O5-WO3-Al2O3 ternary system at 1300 °C-1500 °C





| Phase    | Composition (mole%)            |      |                                |  |  |  |  |
|----------|--------------------------------|------|--------------------------------|--|--|--|--|
|          | Ta <sub>2</sub> O <sub>5</sub> | WO3  | Al <sub>2</sub> O <sub>3</sub> |  |  |  |  |
| (1)white | 52.4                           | 47.3 | 0.3                            |  |  |  |  |
| (2)grey  | 30.6                           | 68.3 | 1.1                            |  |  |  |  |
| (3) dark | 47.7                           | 1.2  | 51.1                           |  |  |  |  |













CERTE





CERT



We think that three aspects of the manuscript make it interesting to the research community.

(1) Formation of solid solution among Ta<sub>2</sub>O<sub>3</sub>, WO<sub>3</sub>, Al<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub> is proposed.

(2) The equilibria of ternary systems are constructed, based on these results the subsolidius

equilibrium diagram is established.

(3) The liquid region was experimentally determined in the  $Ta_2O_3$ -WO<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> ternary system

in the temperature range of 1300-1500 °C.

(4) Mullitization can be reacted at 1200 °C in WO<sub>3</sub>-SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> ternary system.