

Technical University of Denmark

Biological systems for simultaneous methanation of CO2 and H2 by anaerobic microorganisms

Kougias, Panagiotis G.; Treu, Laura; Angelidaki, Irini

Published in: Book of Abstracts, Sustain 2017

Publication date: 2017

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Kougias, P. G., Treu, L., & Angelidaki, I. (2017). Biological systems for simultaneous methanation of CO2 and H2 by anaerobic microorganisms. In Book of Abstracts, Sustain 2017 [R-15] Technical University of Denmark (DTÚ).

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- · You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Biological systems for simultaneous methanation of CO₂ and H₂ by anaerobic microorganisms

Panagiotis G. Kougias*, Laura Treu, Irini Angelidaki

Department of Environmental Engineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark *Corresponding author email: panak@env.dtu.dk

Biogas upgrading is an emerging technology for fuel production that can be used in transportation sector or substitute natural gas. Nowadays, the biological route for biogas upgrading via hydrogen assisted methanogenesis is gaining increased attention. The success of this process is strongly dependent on the applied environmental parameters (e.g. hydrogen partial pressure) and their subsequent influence on the microbial consortium (e.g. efficiency of syntrophic interactions). This abstract provides a collective synopsis of our previous studies on development of systems for biological upgrading of biogas with H₂. Two different concepts (in-situ and ex-situ biogas upgrading) were developed. For in-situ biogas upgrading, hydrogen was directly injected into the primary or secondary biogas reactor, and hydrogen could be converted to CH₄ together with CO_2 by autochthonous hydrogenotrophic methanogens. It was shown that after the H_2 addition, the CH_4 rate increased by 45%, resulting in an average CH_4 content of approximately 85%, with a maximum of 94%. The increase of the pH to 8.5, due to the CO_2 conversion, was not an inhibitory factor, demonstrating the adaptation of microorganisms to these pH levels. The profiles of the microbial communities prior and after the H₂ addition showed distinct differences. Changes in the archaeal community and more specifically increase in the relative abundance of Methanobrevibacter sp. and Methanoculleus sp. indicated that the methanogenic pathway was clearly shifted from aceticlastic to hydrogenotrophic. For ex-situ biogas upgrading, hydrogen and biogas were together injected into an anaerobic reactor containing enriched cultures that can convert H₂ and CO₂ to CH₄. Results demonstrated that the reactors were able to convert efficiently the injected H₂ and CO₂ to methane. More specifically, the final output content of CH₄ reached 96% at a hydrogen loading rate of 3.6 L/L_{reactor}·d H₂. During stable operational conditions, samples were collected from all reactors for microbial analysis based on high throughput 16S rRNA amplicon sequencing. The massive increase of hydrogenotrophic methanogens, such as Methanothermobacter thermautotrophicus, and syntrophic bacteria demonstrates the selection-effect of H₂ on community composition.