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Preface 

This thesis is submitted to the Technical University of Denmark, National Veterinary 

Institute (DTU Vet), as part of the requirements to obtain the degree as doctor of philosophy 

(Ph.D).  

The work was conducted partly at DTU Vet, Frederiksberg, Denmark in the Division of 

Immunology and Vaccinology and partly at the University of Illinois Urbana-Champaign, 

Illinois, United States in the Department of Animal Sciences. The work was conducted from 

October 2014 to September 2017.  

 

In this thesis three papers are included in the result section; 1 published and 2 manuscripts 

in preparation. Prior to the papers themselves, a combined summary of the major findings is 

briefly presented. A few additional findings relevant for the interpretations are included as 

well.   

Additionally, the thesis is comprised of an introduction, a discussion, a conclusion, and 

perspectives for the work. Together, these chapters introduce topics relevant for the data 

presented in the papers, discuss the data in relation to the literature, and describe the future 

directions for the work.  
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Summary 

The immune system plays a crucial role in cancer development and progression. Cancer 

immunoediting encompasses three phases: elimination, equilibrium, and escape; together, 

describing the complex interplay between tumor and immune cells. Specifically, the immune 

system both protects against cancer but also generates a selective pressure, which may lead 

to selection of tumor cell variants with reduced immunogenicity; thereby, increasing the risk 

of tumor escape. Cancer immunotherapy includes treatment strategies aimed at activating 

anti-tumor immune responses or inhibiting suppressive and tumor-favorable immune 

mechanisms. One of the promising arms of cancer immunotherapy is peptide-based 

therapeutic vaccines; yet, no such vaccine has been approved for use in human oncology. For 

many years, mouse models have provided invaluable understanding of complex 

immunological pathways; however, the majority of preclinical results are lost in translation 

from mice to humans. In particular, the success rate when translating therapeutic cancer 

vaccines has been extremely low; thus leaving room for improvement.  

The overall aim of this Ph.D. project was to investigate the potential for the pig as a large 

animal model for cancer immunology research and preclinical testing of cancer 

immunotherapies. We hypothesized that a physiologically relevant model with high degree of 

homology with humans can provide a crucial link between murine studies and human 

patients. This may increase the success rate when translating preclinical findings in the 

future.   

As T cells are important mediators of anti-tumor immune responses, we first developed an 

immunization protocol allowing the induction of a cytotoxic T lymphocyte (CTL) response and 

evaluation of the effect of vaccine antigen dose. Göttingen minipigs received intraperitoneal 

(i.p.) injections with tetanus toxoid, an exogenous model antigen, formulated in CAF09 

adjuvant. We demonstrate induction of a polyfunctional CTL response upon low antigen dose 

immunization, while a CAF09-formulated high antigen dose generates antigen-specific IgG 

antibodies.  

Summary
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Secondly, we investigated the effect of antigen dose, when immunizing Göttingen minipigs 

against Indoleamine 2,3-dioxygenase (IDO); an endogenous target relevant for cancer 

immunotherapeutic purposes. By repeated i.p. administration of CAF09-adjuvanted IDO-

derived peptides, we show a vaccine-induced break in the peripheral tolerance towards IDO 

and the establishment of an antigen-specific cell-mediated immune (CMI) response. When 

comparing the different CAF09-formulated antigen doses, we demonstrate the induction of a 

CMI-dominant response upon exposure to a low endogenous peptide dose. In contrast, a 

mixed CMI and humoral immune response could be shown following repeated high peptide 

dose immunization. Together, our data underline the importance of correctly determining the 

first-in-human vaccine antigen dose, which may be more accurately predicted in a large 

animal like the pig.    

Finally, we performed a T-cell focused immunological characterization of the novel transgenic 

Oncopig model. Following injection with an adenoviral vector Cre-recombinase (AdCre), these 

animals develop sarcomas at the injection site resulting from expression of two mutant 

transgenes: KRASG12D and TP53R167H. We demonstrate pronounced T-cell infiltration to the 

tumor site with a specific enrichment in both regulatory and cytotoxic subsets when 

compared to peripheral blood. Thus, Oncopig subcutaneous tumors can be classified as hot in 

accordance with the Immunoscore classification.  

In an in vitro setup, we show immune-mediated specific lysis of autologous tumor cells, 

underlining the capacity of the Oncopig immune system to mount a cytotoxic anti-tumor 

response. Using the results from RNA-seq analysis, we propose a potential mechanism for in 

vivo inhibition of anti-tumor cytotoxicity based on elevated expression of the 

immunosuppressive genes IDO1, CTLA4, and PDL1 within Oncopig leiomyosarcomas. As a 

high rate of spontaneous regression of subcutaneous tumors occurs over time, we speculate 

that the anti-tumor immune responses become dominant at the later stages post AdCre 

injection; eventually leading to tumor elimination. Combined, our data support that the 

Oncopig provides a crucial platform for studying anti-tumor immune responses in a large in 

vivo system, although the model currently only allows preclinical testing of therapeutics 

against the early stages of cancer.  

Summary
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Dansk sammendrag 

Immunsystemet spiller en vigtig rolle i cancer udvikling og progression. Begrebet cancer 

immunoediting omfatter tre faser: eliminering, ligevægt og flugt. Tilsammen beskriver disse 

faser det komplekse samspil mellem immunceller og tumor: Immunsystemet kan nemlig 

både beskytte mod cancer, men også danne et selektivt pres, hvorved der sker en selektion af 

tumor varianter med reduceret immunogenicitet. Derved er risikoen for tumor flugt øget. 

Cancer immunterapi omfatter behandlingsformer rettet mod aktivering af anti-tumor 

immunresponser eller hæmning af suppressive og tumor-favorable immunmekanismer. Et af 

de lovende områder indenfor cancer immunterapi er peptid-baseret terapeutiske vacciner, 

dog er en sådan vaccine endnu ikke godkendt til behandling af patienter. I mange år har 

musemodeller medvirket til en uvurderlig forståelse af komplekse immun signaleringsveje, 

men størstedelen af de prækliniske resultater mistes i translationen fra mus til mennesker. 

Der er især en utrolig lav succesrate, når terapeutiske cancer vacciner oversættes til humant 

brug, hvilket understreger, at der er plads til forbedringer.    

Det overordnede formål med dette Ph.D. projekt er at undersøge potentialet for grisen som en 

stor dyremodel for cancer immunologi forskning samt præklinisk testning af cancer 

immunterapier. Vores hypotese er, at en fysiologisk relevant dyremodel med stor homologi til 

mennesker kan fungere som et værdifuldt led mellem musestudier og humane patienter. 

Dette kan muligvis øge den fremtidige succesrate, når prækliniske resultater skal oversættes 

til klinikken. Siden T celler er vigtige spillere i eksekveringen af et anti-tumor 

immunrespons, starter vi med at etablere en immunisering protokol, der tillader induktion af 

et cytotoksisk T lymfocyt (CTL) respons samt undersøger effekten af vaccine antigen dosis. 

Göttingen minigrise modtog intraperitoneale (i.p.) injektioner med tetanus toxoid, et 

eksogent model antigen, formuleret i CAF09 adjuvant. Vi demonstrerer induktion af et 

polyfunktionelt CTL respons efter immunisering med en lav antigen dosis, hvorimod en 

CAF09-formuleret høj antigen dosis genererede antigen-specifikke IgG antistoffer.   

Dansk sammendrag
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Derefter undersøger vi effekten af antigen dosis, når Göttingen minigrise immuniseres mod 

Indoleamine 2,3-dioxygenase (IDO), et endogent protein, som er relevant for cancer 

immunterapeutiske formål. Efter gentagne i.p. immuniseringer med CAF09-formuleret IDO 

peptider påviser vi et vaccine-induceret brud i den perifere tolerance mod IDO samt 

demonstrerer etableringen af et antigen-specifikt cellemedieret immun (CMI) respons. Ved 

sammenligning af de forskellige CAF09-formulerede antigen doser kan vi vise induktion af et 

CMI-dominant respons ved immunisering med lav dosis endogene peptider, hvorimod et 

blandet CMI og humoralt immune respons kunne påvises efter gentagne immuniseringer 

med CAF09-formuleret høj antigen dosis. Vores data understreger vigtigheden af korrekt 

bestemmelse af den ”først-i-menneske” vaccine antigen dosis, hvilket potentielt kan 

forudsiges mere præcist i en stor dyremodel som grisen. Til slut laver vi en T-celle fokuseret 

immunologisk karakterisering af den nye transgene Oncopig model. Efter injektion med en 

adenoviral vector Cre-recombinase (AdCre) danner disse grise sarkomer lokalt ved 

injektionsstedet som et resultat af ekspression af de to muterede transgener: KRASG12D og 

TP53R167H. Vi demonstrerer udtalt T celle filtration til tumoren med specifik øgning i 

mængden af regulatoriske og cytotoksiske populationer sammenlignet med perifert blod. 

Derved kan Oncopig subkutane tumorer i henhold til Immunoscore klassificeringen betegnes 

som hot. I en in vitro opsætning viser vi immunmedieret specifik lysis af autologe tumor 

celler, hvilket understreger kapaciteten af Oncopig modellens immunsystem til at generere et 

cytotoksisk anti-tumor respons. Ved RNA-seq analyse foreslår vi en mulig mekanisme for in 

vivo hæmning af den påviste anti-tumor cytotoksisitet baseret på øget ekspression af de 

immunsupprimerende gener IDO1, CTLA4 samt PDL1 i Oncopig leiomyosakomer. Grundet 

en høj rate af spontan regression af subkutane tumorer over tid spekulerer vi i, at anti-tumor 

immunresponser bliver dominante på de sene stadier efter AdCre injektion, hvilket kan 

resultere i eliminering af tumor. Vores data støtter, at Oncopig modellen er en værdifuld 

platform til undersøgelse af anti-tumor immunresponser i et stort in vivo system, selvom 

modellen på nuværende tidspunkt kun tillader præklinisk testning af terapier rettet mod de 

tidligere stadier af cancer.  
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CHAPTER I. Introduction  

Cancer and the Immune System 

Cancer Immunoediting  

Cancer has recently surpassed cardiovascular disease as the leading cause of death 

worldwide1. The increasing necessity to address the unmet therapeutic needs of cancer has 

driven research into fields such as how the immune system influences cancer development 

and progression. The term immunosurveillance has traditionally been used to describe how 

the immune system can protect the host from tumor development2. However, as 

immunocompetent individuals still develop tumors, the hypothesis of immunosurveillance 

being a fully protective mechanism is challenged3. It has become well-recognized that the 

interplay between tumor cells and the immune system is extremely complex, and the ability 

of tumor cells to avoid immune destruction has been included as an official hallmark of 

cancer4. Cancer immunoediting describes the complex interplay, in which the immune system 

not only protects against cancer but also induces tumor-sculpting mechanisms leading to 

reduced immunogenicity of tumor cell variants5,6. The concept of cancer immunoediting is 

composed of three phases, namely elimination, equilibrium and escape7,8 (Figure 1). The 

kinetics, by which each of the three cancer immunoediting steps occurs, is speculated to differ 

between tumors; with aggressive tumors accelerating faster through these phases8,9. 

The elimination phase encompasses the original concept of immunosurveillance, where the 

innate and the adaptive immune system collaborate to destroy the developing tumor6,10 

(Figure 1A). Although more work is needed to fully elucidate the mechanisms behind this 

anti-tumor immunity, it is known to be partly mediated by release of cytotoxic granules from 

CD8+ T cells and Natural Killer (NK) cells, in addition to cytokine release from CD4+ T cells 

and Natural Killer T (NKT) cells11 (Figure 1A).  
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Figure 1. Cancer immunoediting: from immunosurveillance to tumor escape. (A) In the 

elimination phase, the immune system is in control and provides anti-tumor activity by direct delivery of 

cytotoxic granules from CD8+ T cells and NK cells. Moreover, cytokines are released from CD4+ T cells and 

NKT T cells. (B) During the equilibrium phase, tumor cell variants with reduced immunogenicity expand, 

while the immune system continues to attack and destroy other tumor cells. (C) The tumor variant with 

reduced immunogenicity continues to expand and gives rise to additional variants as well. At this stage, the 

immune system is no longer capable of recognizing the tumor cells; thus, resulting in tumor escape. (D) 

Several changes occur during the process of cancer immunoediting. Towards the escape phase, the 

expression of MHC class I molecules on the surface of tumor cells is reduced. Also, the processing of antigen 

might be defect and the tumor cell recognition will be reduced. Figure from11. Abbreviations: NK cell, 

natural killer cell; NKT cell, natural killer T cell; MHC, Major Histocompatibility Complex.  

A more detailed mechanism behind the elimination phase has been proposed by Dunn et al 

(2002)6. In brief, the tumor becomes invasive when reaching a size which requires a distinct 

blood supply; controlled in part by the production of angiogenic proteins. Such invasive 

growth results in small disruptions in the adjacent tissue; thereby, inducing inflammation, 

which leads to intratumoral infiltration of innate immune cells like dendritic cells (DCs), NK 

cells, NKT cells, γδ T cells, and macrophages. Upon recognition of tumor cells, these innate 

immune subsets produce IFN-γ which can induce tumor cell death by anti-proliferative and 

apoptotic mechanisms. Moreover, these innate immune cells produce chemokines with the 

capacity to limit blood vessel formation. Tumor cell debris can then be taken up by DCs, 

which migrate to the draining lymph node and induce tumor-specific CD4+ T helper cells and 
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tumor-specific CD8+ T cells. Finally, these activated T cells home to the tumor, where the 

CD8+ T cells in particular mediate anti-tumor activities6. If the immune system succeeds in 

completing this phase, the host is cleared of cancer with no clinical symptoms or progression 

to the additional editing stages6,10.  

However as well as protecting the host, anti-tumor immunity can also induce tumor-sculpting 

mechanisms resulting in tumor editing under Darwinian selective pressure5,8,12,13. 

Consequently, tumor cell variants with increased capacity to avoid immune recognition can 

develop; thereby, entering the equilibrium phase (Figure 1B). This is a dynamic equilibrium 

which might last for several years and is believed to be the longest of the three phases6,8,14. 

Several underlying molecular mechanisms which may contribute to reduced immunogenicity 

of cancer cells during the equilibrium phase have been suggested both at the genetic and the 

epigenetic level. In particular, increased genetic instability, reduced Major Histocompatibility 

Complex (MHC) class I expression, and defective antigen processing have been implicated in 

reducing tumor immunogenicity and facilitating tumor escape8,10,15–22 (Figure 1D). Enhanced 

secretion of immunosuppressive cytokines by tumor cells, increased induction of regulatory T 

cells (Tregs), and tumor insensitivity towards IFN-γ have also been reported as important 

factors23–26.   

After a prolonged sub-optimal immune response, selected tumor cell variants with reduced 

immunogenicity can become insensitive to immune recognition; consequently, resulting in 

uncontrolled tumor growth. This is referred to as the escape phase6–8,27 (Figure 1C). The 

tumor is now capable of growing in a fully immunocompetent environment, although the 

degree of immune cell infiltration still affects the patient’s prognosis28–30. Specifically, the 

density, location, and the functional orientation of these intratumoral immune cells are 

crucial measurements in predicting prognosis and response to therapy31–34. Together, these 

factors are referred to as the immune contexture and form the basis of the Immunoscore; a 

novel approach for staging cancer patients30,33. Using this strategy, human tumors are 

classified as hot or cold depending on the degree and nature of intratumoral immune cell 

infiltrates35,36. Currently, the Immunoscore functions as a prognostic tool for colorectal cancer 

patients only; however, the broader applicability for this approach still remains to be 
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validated in many cancer types36. In general, more work is still needed to fully understand 

the complex interplay between cancer and the immune system. 

 

T Cells in Cancer   

T cells are key players in mediating anti-cancer immunity37–39. However, T cells are clonally 

selected to prevent autoimmunity by deletion of self-specific T cells; a process referred to as 

central tolerance40,41. Thus, a major challenge with establishing an anti-cancer immune 

response is the endogenous nature of the antigens, and the induction of an anti-tumor T-cell 

response is fully dependent on the T-cell repertoire remaining after the induction of the 

central tolerance42.  

The T-cell receptor (TCR) is essential for T-cell recognition of antigens, including tumor 

antigens. The TCR is a multi-subunit complex consisting of co-receptors (CD4, CD8, or both) 

in addition to the αβ chains or the less conventional γδ chains43,44. Upon ligation of the TCR, 

signaling events are mediated through another important component of the TCR, namely the 

CD3 molecule45. CD4+ T cells become activated by interaction with exogenously-derived 

peptides presented in the context of the MHC class II molecule expressed on antigen 

presenting cells46. The MHC class II molecule has an open-ended peptide binding groove, 

which allows binding of long peptides usually 12-25 amino acid residues or even whole 

proteins47–49. In contrast, both ends of the MHC class I binding groove are closed; thus, 

allowing only short peptides of approximately 8-12 amino acid residues to be presented50–52. 

The MHC class I molecule is expressed by all nucleated cells and presents endogenously-

derived peptides to CD8+ T cells53–55. Importantly, the mechanism referred to as cross-

presentation allows certain DC subsets to present exogenously-derived peptides in complex 

with MHC class I56,57; thereby, enabling the induction of a cytotoxic T lymphocyte (CTL) 

response towards antigens not expressed by DCs, such as those on tumors.  

In humans, T-cell reactivity towards a tumor-associated antigen (TAA) was first 

demonstrated towards the protein encoded by the melanoma antigen-encoding gene58. This 
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underlines that tumor cells can indeed be targets of CTL immunity. Despite several cancers 

displaying an enrichment of both CD4+ and CD8+ tumor infiltrating lymphocytes (TILs), very 

little is currently known about why only certain tumors become heavily infiltrated9. Amongst 

other factors, chromosomal instability, mutational load, TIL proliferation, and attraction of T 

cells to the tumor site itself are thought to influence the degree of intratumoral T cells59–61. 

An abundant T-cell infiltrate is associated with increased survival in melanoma patients62, 

and the presence of CD3+ TILs, CD8+ TILs as well as a high CD8/FoxP3 T-cell ratio appear to 

have a positive impact on patient survival in several cancer types63–65. Notably, these TILs 

need to be proliferating in order to correlate with good prognosis66. Thus, the presence of TILs 

alone is not sufficient to provide anti-tumor immunity, as for instance CD8+ TILs have been 

shown to express surface markers associated with T-cell exhaustion67–69. This indicates that 

the T cells within the tumor might not necessarily be functionally active.   

In addition, the memory stage of the CD8+ TILs is also important. Central memory CD8+ T 

cells are reported to be superior in providing anti-tumor immunity when compared to CD8+ T 

cells displaying an effector memory phenotype70. Moreover, the actual location of the T cells 

within the tumor, as suggested by the Immunoscore, is also an important prognostic factor. 

This is clearly shown in colorectal cancer patients, where the presence of CD8+ T cells within 

the tumor nest correlates with better survival when compared to patients displaying CD8+ T-

cell infiltration to the stroma or the invasive margin of the tumor71. Although prognostic 

correlates for CD4+ T cells are less clear, a high representation of Tregs as determined by 

CD4, CD25, and FoxP3 expression, has been shown to correlate with poor prognosis and 

response to therapy72,73. When compared to CD8+ T cells, the CD4+ T-cell compartment 

appears to be more plastic and play dual roles; directly shown by the ability of CD4+ T cells to 

shift between pro-tumorigenic and anti-tumorigenic stages74,75. Although CD8+ T cells are 

usually referred to as anti-tumorigenic, suppressive CD8+ T cells can be readily detected in 

tumors76,77. This underlies the complex nature and plasticity of the T-cell pool in general. 
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Therapeutic Cancer Vaccines 

Treatment strategies involving the induction of anti-cancer immune responses or inhibition 

of suppressive immune mechanisms are referred to as cancer immunotherapy. In 1992, bolus 

injection with interleukin 2 was approved by the U.S. Food and Drug Administration (FDA) 

as the first cancer immunotherapy for use in human oncology78. In 2013, cancer 

immunotherapy was awarded breakthrough of the year79, and the field has received extensive 

attention ever since.  

One arm of cancer immunotherapy is therapeutic vaccines. Especially based on results in 

murine models showing a crucial therapeutic role for cytotoxic CD8+ T cells in cancer, the 

majority of the therapeutic vaccines are aimed at activating this immune cell population80. To 

date, the prostate cancer vaccine Provenge® (Sipuleucel-T)81 is the only therapeutic cancer 

vaccine approved for human use. Therapeutic cancer vaccines encompassing selected 

peptides, often CD8+ T-cell epitopes, have intriguing potential82. Many clinical trials 

involving peptide-based therapeutic vaccines have been performed83, but none has currently 

been approved by the U.S. FDA or the European Medicines Agency84–86. Table 1 outlines some 

of the main advantages and disadvantages of using peptide-based therapeutic vaccines. 

Advantages Disadvantages  

Readily synthesized, cost-effective  

Off-the-shelf reagent   

Stable under many storage conditions   

Safe, very low toxicity   

Effectively induce T-cell responses  

Enable direct monitoring of the induced response 

Defined epitopes, reduced risk of autoimmunity 

Repeated boosting injections feasible 

MHC class I restriction 

Short peptides do not need processing; risk of 

tolerance induction 

Peptidases can rapidly degrade the peptides 

Peptides with low binding affinity to MHC might be 

poorly immunogenic 

Low magnitude of the immune response 

Risk of induced immune response being transient 

Table 1. Advantages and disadvantages of peptide-based therapeutic vaccines. Table modified from38.   
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The first benefit of peptide-based vaccines compared to many cancer treatments is that they 

do not rely on blood or biopsy sampling prior to treatment87. This is in contrast to labor-

intensive therapies such as Provenge®, which involves leukapheresis of peripheral blood and 

subsequent intravenous re-infusion of ex vivo generated DCs81. Peptide-based therapeutic 

vaccines are cost-effective and easy to produce, as the peptides simply need to be synthesized 

and formulated in an adjuvant system. Moreover, peptides are fairly stable under many 

storage conditions. This, in addition to the before-mentioned advantages, makes several 

rounds of injection feasible (Table 1). Although targeting an endogenous protein poses the 

risk of autoimmune development88,89, peptide-based therapeutic vaccines have generally 

shown low or no toxicity in human patients90,91. Therefore, the approach is acknowledged as 

relatively safe; in particular in situations where defined TAA-derived epitopes are used as 

targets (Table 1). Therapeutic cancer vaccines have efficiently generated antigen-specific T-

cell responses towards TAAs92–96, and due to the development of several MHC-based 

technologies detecting antigen-specific T cells97, the vaccine-induced immune response of the 

patient can be monitored over time. 

A crucial limitation to broadly distributing the use of peptide-based therapeutic vaccines is 

the MHC class I restriction80,82 (Table 1). As the peptides are designed to specifically bind to 

certain MHC class I alleles, the group of patients eligible for receiving a given vaccine is fully 

dependent on their MHC class I profile. Moreover, endogenous peptides, in particular those 

with low binding affinity towards the MHC class I molecule, might be poorly immunogenic 

(Table 1). Consequently, the endogenously-derived TAA peptides need to be presented to the 

immune system under immunogenic rather than tolerogenic conditions98. To facilitate such 

immune activation, vaccines often consists of an adjuvant with different kinds of immune 

modulators in addition to their antigenic target99,100. Both short peptides, solely comprising 

one or several minimal epitopes93,101–103, and long synthetic peptides, comprising a number of 

epitopes and potentially also some MHC class II-binding peptides104–106, have been used in 

therapeutic vaccines. However, as short peptides do not need antigen processing prior to 

binding to MHC class I molecules; they might be presented by non-professional antigen 

presenting cells and trigger tolerance or T-cell anergy38. As a result, immunization with short 
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peptides might not result in immune activation107,108 (Table 1). Another challenge for peptide-

based therapeutic vaccines is the risk of the peptides being rapidly degraded by peptidases 

upon injection (Table 1). This further underlines the importance of both the peptide 

formulation and the vaccine delivery itself. Lastly, the magnitude of the immune response 

generated upon administration of peptide-based therapeutic vaccines is often fairly low, 

transient, and might not result in clinical benefit for the patient38 (Table 1). Although more 

work is needed, the ability of therapeutic vaccines to induce anti-tumor immune responses 

underlines their potential as a future treatment strategy.   

 

Indoleamine 2,3-dioxygenase as a Vaccine Target 

A promising target within cancer immunotherapy is the intracellular enzyme Indoleamine 

2,3-dioxygenase (IDO)109. In addition to the classical IDO1 enzyme, IDO2 has been 

discovered. This enzyme shares the critical catalytic residues and a 43% sequence similarity 

with IDO1110–112.  As IDO2 is much less studied113, The protein IDO1 will from this point 

onwards simply be referred to as IDO. Overall, the function of IDO is to induce tolerance and 

regulate immune responses. Specifically, IDO catalyzes the first and rate-limiting step in the 

breakdown of the essential amino acid tryptophan114–116 (Figure 2).    

Figure 2. IDO catalyzes the conversion of tryptophan to kynurenine. The intracellular enzyme IDO 

catalyzes the breakdown of the amino acid tryptophan to kynurenine and other metabolites; thereby, 

depleting the level of tryptophan available in the tumor microenvironment. Figure modified from114. 

Abbreviations: IDO, Indoleamine 2,3-dioxygenase; TDO, Tryptophan-2,3-dioxygenase.  
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In several human cancers, an overexpression of IDO1 or an accumulation of IDO+ cells have 

been reported, which is usually associated with a worse prognostic outcome117–120. For 

instance, an increased level of IDO in colorectal cancer patients has been shown to correlate 

with liver metastasis and reduced intratumoral T-cell infiltration118. IDO can be produced by 

the tumor cells themselves121 as well as innate cells like tumor-associated macrophages and 

myeloid-derived suppressor cells (MDSCs)122,123. It has recently been suggested that local IDO 

production in the tumor microenvironment contributes to recruitment of MDSCs and 

enhances their suppressor function113. Also, DCs can be induced to express IDO upon 

exposure to IFN-γ124–126. Moreover, CD4+ T cells can trigger IDO activity in DCs by ligation of 

the CD80/CD86 molecules127. In the tumor microenvironment, IDO plays an 

immunosuppressive role and contributes to tumor escape by affecting T-cell function and 

survival128–131. In particular, IDO reduces CD8+ effector T cell-mediated cytotoxicity132,133. The 

first proposed mechanism for this relies on effector T cells being very sensitive to tryptophan 

starvation. Therefore, the IDO-mediated intratumoral depletion of tryptophan results in 

inhibition of T-cell proliferation, induction of cell cycle arrest, and increased T-cell 

susceptibility to the apoptotic pathway125,134–136. The other proposed mechanism, by which 

IDO can suppress T-cell function and proliferation, is by an accumulation of toxic tryptophan-

derived catabolites137,138. Further, IDO-producing DCs have been shown to induce conversion 

of CD4+ T cells to Tregs rather than to the inflammatory Th17 cells139–141. In addition, IDO 

can affect NK cells by inducing downregulation of their activating receptors, which makes 

them more prone to apoptosis114.   

In terms of IDO as a target for immunotherapeutic purposes, several clinical trials have 

analyzed different IDO-inhibiting compounds142. The tryptophan analogue 1-methyl-

tryptophan (1MT), which inhibits the enzymatic activity of IDO, has been heavily studied in 

mouse models114. Administration of 1MT has shown to potentiate the effect of chemotherapy; 

subsequently resulting in regression of established tumors in mouse models128,143. When it 

comes to T-cell reactivity, IDO-derived peptides have been demonstrated as epitopes for both 

CD4+ and CD8+ T cells144–147. Despite this, only four registered clinical trials involve a 

peptide-based therapeutic vaccine targeting IDO (Table 2). 
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The first of these trials listed, NCT03047928, is a phase I/II trial yet to recruit patients. This 

trial involves a combination therapy with administration of Nivolumab, a monoclonal 

antibody against the programmed cell death protein 1 (PD-1), and a vaccine consisting of one 

long programmed death-ligand 1 (PD-L1)-derived peptide and one long IDO-derived peptide; 

formulated together in the Montanide ISA-51 adjuvant.  

NCT01543464 is a phase II trial, which has been terminated due to diminished recruitment. 

However, the planned setup was a vaccine consisting of a short IDO-derived peptide together 

with a survivin-derived peptide formulated in Montanide ISA-51 and administered together 

with granulocyte-macrophage colony-stimulating factor (GM-CSF), the toll-like receptor 

(TLR)-7 agonist Imiquimod, and the chemotherapy drug Temozolomide.  

The NCT01219348 phase I trial has been successfully completed. Here, non-small cell-lung 

cancer patients have been treated with a short IDO-derived peptide formulated in Montanide 

ISA-51 and delivered together with Imiquimod. The treatment has been demonstrated to be 

well-tolerated with low toxicity and successfully induced antigen-specific CD8+ T-cell 

responses148.  

Cancer Status Phase Adjuvant Combination Trial ID 

Metastatic 

melanoma 

Not yet 

recruiting 

I / II Montanide ISA-51 Nivolumab, PD-L1 

peptide 

NCT03047928 

MM Terminated II Montanide ISA-51 GM-CSF, 

Temozolomide  

Imiquimod 

NCT01543464 

NSCL Completed I Montanide ISA-51 Imiquimod NCT01219348 

MM with 

metastasis 

Completed I Montanide ISA-51 Ipilimumab NCT02077114 

Table 2. Overview of clinical trials testing an IDO-targeting peptide-based therapeutic vaccine. Data 

obtained from142.  Combination indicates administration of other treatments in combination with the 

vaccine. Abbreviations: GM-CSF, granulocyte-macrophage colony-stimulating factor; MM, malignant 

melanoma; NSCL, non-small cell lung cancer; PD-L1, programmed death-ligand 1; TLR, toll-like receptor.   
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Lastly, NCT02077114 is a phase I trial, where malignant melanoma patients with metastatic 

lesions have been treated with a long IDO-derived peptide formulated in Montanide ISA-51 

and administrated together with Ipilimumab, a monoclonal antibody against the cytotoxic T-

lymphocyte-associated protein 4  (CTLA-4)149. Again, the IDO-derived peptide vaccine has 

shown minimal toxicity. No clinical benefit has been observed upon combination therapy with 

Ipilimumab, although IDO-reactive T cells have been induced following treatment149.  

Together, these trials support that IDO-specific T cells can be activated upon peptide-based 

therapeutic immunization; however, the clinical benefit to the patients generally remain 

limited. These studies show there is potential, although more research is needed. One of the 

important things to consider is the choice of animal model for preclinical testing.  

  

Mouse Models of Cancer Immunology  

For many years, mice have been the most commonly used animal model for immunological 

research and have provided understanding of complex immunological pathways150–153. This in 

part owes to mice displaying reduced genetic variation, short generation intervals, easy 

maintenance, and the large number of commercially available reagents150,154. In cancer 

immunology, the most widely used mouse models involve inoculation of histocompatible 

tumor cell lines into recipient mice; often of C57B/6 or BALB/c background152,155,156. These 

syngeneic tumor models offer several advantages including reproducible tumor growth and 

simplicity in measuring tumor development over time, especially if the tumor cells are 

inoculated subcutaneously151,152,157. However, the tumor cell lines tend to grow aggressively 

post injection, which causes studies to be terminated within relatively short time due to 

ethical considerations. Furthermore, the tumor cell lines differ in their intrinsic 

immunogenicity; therefore, the resulting tumor microenvironment often does not represent 

what is seen in human patients158,159.  
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Syngeneic mouse models are immunocompetent, albeit they do not offer the opportunity for 

testing human targets. For this reason, syngeneic models are increasingly replaced by 

genetically engineered mouse (GEM) models, human xenograft, and patient-derived 

xenograft (PDX) models157. An almost unlimited number of GEM models exist, but the 

general idea for cancer research purposes is to delete, mutate, or overexpress genes known to 

be crucial for cellular transformation and malignancy160. The GEM models are very useful for 

studying the effect of a certain mutation and how it affects tumor progression in an 

immunocompetent host160–163. Despite this, GEM models often still fail in mimicking the 

complexity of human tumors160.  

Another alternative are xenograft models which involve the transplantation of human cancer 

cell lines, or patient-derived tumor cells in the case of PDX models, into immunodeficient 

mice164–166. Although these models offer a promising system for evaluating human 

personalized anti-cancer therapies, they are fairly expensive, labor-intensive, and time-

consuming167,168. Also, the arising tumor is not exposed to any immune-mediated pressure 

due to the lack of an endogenous immune system. To try and accommodate the limitations in 

using an immunodeficient host, humanized mice have been developed. These mice are either 

genetically engineered to carry human genes162 or were developed by engraftment of human 

immune cells into an immunodeficient host169–172. As humanized mice are often on the  Il2rg-/- 

background, they lack both lymph nodes and Peyer's patches173–175. Furthermore, humanized 

mice are challenged in their capacity to restore MHC class I and II-selecting elements, which 

are crucial for shaping the T-cell repertoire176. It is becoming increasingly recognized that 

mice often poorly mimic human diseases, including cancer177,178. Table 3 outlines some of the 

limitations in using mouse models for cancer research.  
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Difference between mice and humans  Limitation to cancer research 

Body size, life-span, and number of cell 

divisions 

Humans are approximately 3,000 bigger, live 30-50 times 

longer, and human cells undergo ~105 more cell divisions 

Tissue architecture Surgical procedural training in mice is not possible  

Basal metabolic rate The murine basal metabolic rate is about seven times higher. 

Altered levels of by-products like endogenous oxidants and 

mutagens arise, which might affect cancer susceptibility  

Risk of spontaneous cancer development Murine cells have increased genetic instability and a lower 

threshold for development of genetic and epigenetic changes. 

Telomerase expression Human somatic cells  suppress telomerase expression, which 

is then reactivated during cancer development 

Table 3. Limitations to the use of mouse models for human cancer research. Some of the important 

differences between mice and humans are outlined together with the limitation associated with this. 

References154,179–186.  

 

It is well-recognized that animal models need to be fully immunocompetent in order to 

properly mimic human immune responses157,187. Despite some mouse models being 

immunocompetent, they often still display a very narrow MHC class I representation due to 

inbreeding. Consequently, this might result in unrepresentative results when compared to 

outbred animals and humans150. This in addition to the limitations outlined in table 3 have 

driven the field of cancer immunology towards alternative models. Our expertise lies within 

the field of porcine models; however, alternative large animal models will also be introduced 

in the next paragraphs. 
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Large Animal Models of Cancer Immunology 

Canine Models  

As cancer in dogs occurs spontaneously and displays similar characteristics to human 

disease, canine models are becoming more widely used in preclinical cancer research188–190. In 

reflection of this, the National Cancer Institute has recently launched a ‘Comparative 

Oncology Program’ designing, sponsoring, and executing trials in dogs in order to test novels 

anti-cancer drugs prior to human clinical trials191. There are several advantages unique to 

the canine models. Since dogs are companion animals, they often live together with humans; 

therefore, they are exposed to some of the same environmental risk factors and might to a 

certain extent have a diet similar to humans192,193. As with humans, a correlation between 

spontaneous tumor incidence and age is found in dogs194. From an evolutionally point of view, 

dogs are more closely related to humans than are mice195,196. The high degree of homology in 

the human and canine genome makes analysis of DNA damage as well as epigenetic changes 

during tumor development and progression possible in outbred dogs195,197,198.  

The canine immune system shows a close homology to the human counterpart199–201. Since 

canine tumors in dogs arise in an immunocompetent host, canine models enable the design of 

experiments which elucidate the complex interplay between cancer cells and the immune 

system. Using human antibodies towards T-cell markers it is now possible to distinguish 

canine activated T cells and central memory T cells by flow cytometry201; thus, providing an 

important tool for vaccine research purposes. Despite being limited in scope to date, some 

studies have evaluated tumor immune cell infiltrates in canine cancer models. Flow 

cytometric analysis has shown the presence of both CD4+ and CD8+ TILs within canine 

mammary tumors202. Another study using dogs with metastatic lesions showed an increased 

CD4/CD8 T-cell ratio, which also correlated with decreased survival rate202. In studies of 

canine B cell lymphoma, a worse prognosis was found in dogs with increased representation 

of tumor-associated macrophages, MDSCs, and Tregs203–205, and CTL-mediated killing of 

autologous lymphoma cells has been demonstrated in vitro204.  
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For immunotherapy purposes, canine tumor models offer a very powerful research tool. As 

monoclonal antibodies blocking CTLA-4, PD-1, and PD-L1 have shown impressive results in 

the clinic, it is desirable to have a preclinical animal model expressing these molecules. 

CTLA-4, PD-1, and PD-L1 expression have all been shown in canine tumors206,207. In fact, the 

PD-1/PD-L1 pathway in dogs is associated with T-cell exhaustion, as often reported for 

humans207. Due to limitations in commercially available canine reagents, detailed studies 

with checkpoint inhibitors in dogs are yet to be performed194. Although further investigation 

is needed, chimeric antigen receptor (CAR) T cells have shown promising results in dogs as a 

proof-of-concept208,209. Therefore, dogs might in the future serve as an important model in 

elucidating the adverse events often observed upon CAR T-cell therapy210.  

In terms of cancer vaccine trials in dogs, whole tumor cell lysate vaccines have been tested 

either as combination therapy or stand-alone treatment211–213. In 2007, a xenogeneic DNA 

vaccine (Oncept®) targeting the human tyrosinase protein was the first therapeutic vaccine to 

be approved for treatment of canine oral melanoma214,215. In addition, canine vaccine trials 

targeting the telomerase reverse transcriptase, heat-shock proteins, and the human vascular 

endothelial growth factor protein have been performed196,214,216. Notably, these trials all share 

the aim of treating cancer in dogs rather than using the canine tumor models as a link 

between rodent studies and human clinical trials. However, a DC-based vaccine in 

combination with IFN-γ administration has been demonstrated to improve the clinical 

outcome in tumor-bearing dogs; thereby, supporting the use of canine models for preclinical 

testing of human anti-cancer therapies217.  

Despite the many benefits of canine cancer models, their use for therapeutic cancer vaccine 

development has a number of important drawbacks. The low number of known canine tumor 

antigens216, the increasing ethical regulation of experiments on companion animals193, and 

the limited number of commercially available reagents undeniably make canine translational 

research more difficult194. Although dogs are more outbred than mice, modern dog breeds are 

the results of line inbreeding; thus, questioning whether canine models can properly mimic 

human heterogeneity154. Therefore, while canine models provide some important advantages 

over murine models, there is still a need for alternative large animal cancer models   
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Non-Human Primate Models 

Amongst all animals, non-human primates are the ones most closely mirroring human 

genetic composition, immune system, and physiology218–221. Hence, these animals offer a 

unique opportunity to study complex immune mechanisms and enhance the knowledge of 

several human diseases. In particular, non-human primates have been invaluable as models 

for understanding infectious diseases like acquired immune deficiency syndrome, malaria, 

and hepatitis C infection219,222,223. This especially owes to the fact that only closely related 

species share similar pathogen susceptibilities221. However, while humans and non-human 

primates share many immunological similarities, crucial differences do exist between the two 

species224. Humans express six MHC class I genes, whereas up to 22 active MHC class I 

genes have been shown in rhesus macaques225; thus, challenging the relevance for testing T 

cell-based assays in non-human primates.  

Regarding cancer, only one study has reported the development of a non-human primate 

model for the design of a cancer vaccine; against the virus causing Kaposi sarcomas in 

humans226. In general, the number of studies using non-human primates as a tumor model is 

very limited and includes mainly a few case studies154. One of the reasons for the dearth of 

non-human primate cancer models is that the incidence of tumor susceptibility between 

humans and non-human primates has been demonstrated to be rather different218. While the 

exact rate of spontaneous cancer in wild non-human primate populations remains unknown, 

experimental models display a very low cancer incidence; thus, questioning their relevance as 

a translational tumor model for human cancer research194,227.  

It can be speculated that differences in cancer incidence might be caused by the different 

exposure to environmental risk factors, variations in life-span, and of course genetic 

differences existing between humans and non-human primates218. However, a detailed 

analysis of genes involved in human cancer showed that the same genes are not only present, 

but also highly conserved in chimpanzees218; thus, suggesting that similar mechanisms of 

oncogenesis exist in the two species. On the other hand, differences in epigenetic profiles, for 

instance DNA methylation, patterns are reported for humans and non-human primates228. 
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Additional limitations to non-human primate cancer models exist, including high cost, 

housing challenges, ethical regulation, breeding difficulties, as well as a limited number of 

commercially available reagents194. These provide significant challenges to the broader use of 

non-human primates as a model in cancer immunology research.   

 

Porcine Models  

Pigs are valuable models for studying immune responses towards infections229–231. Moreover, 

porcine models are becoming increasingly used for human biomedical research and as unique 

research tools for surgical procedural training232–234. The advancement in using porcine 

models is due to the high degree of homology in anatomy, physiology, size, cell biology, key 

metabolizing enzymes, genetics, and epigenetics between pigs and humans235–245. In addition, 

the life-span of the pig also offers an opportunity to monitor and characterize disease 

development and progression over a human-relevant amount of time154,237,246. Importantly for 

cancer research, porcine somatic cells, as with human cells, suppress telomerase activity in 

most tissues, which is then reactivated during tumorigenesis186,247. Although mice are closer 

to humans phylogenetically, pigs and humans share a higher similarity in protein 

structure248. A detailed comparison of immune related genes across several species revealed 

that pigs are more closely related to humans at the immunome level than are mice229. In 

addition, the number of species-unique immune related genes is considerably lower in pigs 

than in mice229.  

 

Overall, the porcine immune system comprises the same immune cell populations as 

demonstrated in humans231,249. However, some important differences do exist between the 

porcine and the human immune system.  Porcine peripheral blood comprises a large number 

of γδ T cells; sometimes representing up to 50% of the total blood lymphocyte population in 

young animals250. In contrast, the representation of γδ T cells in human peripheral blood 

sampled across the world is less than 10%251. Although the functional properties of γδ T cells 

are not fully understood, it is suggested that these cells display both cytolytic activity and 
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capacity to perform antigen presentation252. In addition, the porcine T-cell pool comprises a 

large proportion of CD4+ T cells co-expressing the CD8α homodimer in peripheral 

tissues253,254. In pigs, these CD4+CD8α+ T cells are defined as an activated/memory CD4+ T-

cell population recognizing antigens in the context of MHC class II252,255. As this CD4+ T-cell 

population expresses the CD8α+ homodimer, expression of the CD8β molecule is commonly 

used to define porcine CTLs249,252. The porcine Treg population expresses markers similar to 

the human population; namely CD4, CD25, and FoxP3252,256. Although there is a high degree 

of homology and conserved structural motifs between humans and pigs, recent findings 

indicate that some inflammasome-related pathways do differ between the two species upon 

infection248. 

 

Although pigs have provided valuable findings in infectious diseases, porcine models have 

had limited use thus far in experimental oncology. The two most common cancer types found 

in pigs are lymphosarcoma and melanoma257. Porcine skin is very similar to human skin both 

in terms of morphology and functional characteristics258; thus, providing a unique model for 

studying skin cancers like melanoma. For many years, the Sinclair minipig and the 

melanoblastoma-bearing Libechov minipig (MeLiM) model have been the two most commonly 

used porcine spontaneous melanoma models, although the underlying genetic changes 

resulting in the melanoma development are not well-understood257,259.  Despite this, a study 

in the MeLiM model has contributed to a better understanding of melanoma progression and 

identification of a potential marker of malignancy in human melanoma260. In recent years, 

porcine severe combined immunodeficiency (SCID) models have also been developed261–266. As 

in the rodent equivalents, porcine SCID animals lack T and B cells; hence allowing them to 

be used for xenotransplantation studies including engraftment of human tumor and immune 

cells.  

 

To expand the use of pigs in experimental oncology, several genetically modified porcine 

models for human cancer have now been developed (Table 4). By overexpressing the human 

GLI2 gene, it was possible to develop a model with basal cell carcinoma-like lesions267. In 
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addition, colorectal cancer268,269 and breast cancer270,271 models were developed; although 

these animals either lacked in vivo tumor development or showed issues with lethality (Table 

4). Modification of either the tumor suppressor gene TP53 or the oncogene KRAS has enabled 

the development of porcine models giving rise to various cancer types (Table 4). Mutational 

silencing of the TP53 tumor suppressive pathway is observed in approximately 33% of human 

cancers272. Such mutations in the TP53 gene are often associated with increased cell 

proliferation, survival, invasiveness, as well as metastasis273. The porcine models express the 

TP53R167H dominant negative mutation, which is equivalent to the frequently observed 

TP53R175H mutation in humans272,274. Upon expression of TP53R167H, the pigs develop both 

lymphoma and osterogenic tumors275 (Table 4).  
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Cancer type Target genes Genetic modifications and clinical pathology References 

Basal cell 

carcinoma 

GLI2 Constitutive human transgene expression. Basal cell 

carcinoma-like lesions. 

267 

 

Colorectal cancer APC Truncating mutation resulting in premature stop 

codon. Dysplastic adenomas in the large intestine 

(precancerous lesions).  

268 

 APC TALEN-mediated knockout. No in vivo tumor 

development tested.  

269 

 

Breast cancer V-H-Ras Transgenesis. V-H-Ras transgene. No tumor 

development. 

270 

 BRCA1 Loss of exon 11 by rAAV-mediated gene targeting.  

Lethal with animals dead at day 18. 

271 

Various cancers TP53 TP53R167H. Dominant negative allele by gene targeting 

vector DNA. Inducible transgene overexpression. 

Tumor histopathology to be determined 

276 

 TP53 TP53R167H. Dominant negative allele by rAAV-

mediated gene targeting. Lymphoma and osterogenic 

tumors.  

274 

 KRAS Floxed KRASG12D. Oncogenic activation. Inducible 

transgene overexpression. Tumor histopathology to be 

determined.  

275 

 KRAS & TP53 Floxed, bicistronic KRASG12D cDNA and TP53R167H 

cDNA. Oncogenic activation and dominant negative 

allele, respectively. Inducible transgene 

overexpression. Mesenchymal tumor formation 

272 

Table 4. Genetically modified porcine models for cancer research. Inspired from237,257. Abbreviations: rAAV, 

recombinant adeno-associated virus; TALEN, transcription activator-like effector nucleases.  
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Furthermore, the RAS gene is mutated in approximately 25% of all human cancers; with 

KRAS being the most commonly mutated isoform272. The RAS protein is a GTPase driving 

cellular proliferation and oncogenic RAS especially promotes pro-growth, pro-angiogenic, and 

anti-apoptotic signals277. Specifically for KRASG12D, this oncogenic activating mutation 

promotes metastasis in human pancreatic cancer in part by downregulation of E-cadherin278. 

Although histopathology is yet to be determined, a porcine model with inducible KRASG12D 

has been developed275 (Table 4). Upon xenotransplantation, in vitro transformed porcine 

mesenchymal stem cells expressing both the TP53R167H mutation and the KRASG12D mutation 

have successfully established tumors in immunodeficient mice279. However, the only 

transgenic pig combining both the TP53R167H dominant negative mutation and the KRASG12D 

oncogenic activating mutation is a model known as the Oncopig272. To generate this model, 

porcine oocytes received the adenoviral vector Cre-recombinase (AdCre)-inducible expression 

construct (displayed in Figure 3) by somatic nuclear transfer.  

 

 

Figure 3. The AdCre-inducible vector encodes two mutated transgenes in the Oncopig model.  

Each cell in the transgenic Oncopig has the vector encoding KRASG12D and TP53R167H. Upon exposure to 

AdCre, these two transgenes will be expressed; subsequently resulting in tumor formation at the site of 

AdCre injection. Figure from272. Abbreviations: AdCre, adenoviral vector Cre-recombinase; IRES, internal 

ribosome entry site. 
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The expression of the two mutations is under control of the CAG promoter. Due to the 

internal ribosome entry site (IRES) element, bicistronic expression of the mutated 

transgenes, KRASG12D and TP53R167H, is possible (Figure 3). Since every cell in the Oncopig 

has this expression construct, the model enables induction of a broad range of cancer types 

upon exposure to AdCre272.  

For immunological purposes, knowledge regarding the swine leukocyte antigen (SLA), the 

porcine MHC molecule, is crucial. The original Oncopig male used to breed these offspring 

was homozygous for SLA-2*03:01, a SLA class I allele, and the transgenes (KRASG12D and 

TP53R167H) (Lawrence B. Schook, personal communication). For this reason, the F1 animals 

used for experiments are transgene heterozygous and express the SLA-2*03:01 allele, which 

can be used for vaccine design and T-cell assays. In vivo induction of sarcomas with regional 

leiomyosarcomas has been shown upon intramuscular, testicular, and subcutaneous injection 

of AdCre to Oncopigs272.  

Successful in vitro transformation of eleven different Oncopig cell lines have been 

established, as described in detail elsewhere154. In addition, in vivo Oncopig models for 

hepatocellular carcinoma280 and pancreatic ductal adenocarcinoma (Principe et al, 2017, 

Nature Communication, in review) have recently been validated. Despite 

immunohistochemistry detection of infiltrating CD3+ T cells in Oncopig hepatocellular 

carcinoma280, no prior immunological research has been performed in the model. Knowledge 

regarding the immunological landscape of Oncopig tumors is crucial in order to determine, 

whether the model may serve as a relevant platform for studying anti-tumor immune 

responses and for preclinical testing of immunotherapies.  
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CHAPTER II. Purpose and Research Goals 

The field of cancer immunotherapy has shown impressive results; however, a large fraction of 

the promising preclinical results obtained in rodent models are lost in the translation to 

human patients. From this, we hypothesized that the success rate when translating clinical 

trials can be increased by using an intermediate large animal model; thus, providing a link 

between murine studies and human patients. Therefore, the overall aim of this Ph.D. project 

was to investigate the potential for pigs as large animal models for studying anti-tumor 

immune responses and for preclinical testing of cancer immunotherapies. 

 

Specifically, the research goals of this series of studies were:  

1. To design an immunization strategy allowing the induction of an antigen-specific CTL 

response in pigs 

2. To investigate if it is possible to break peripheral tolerance towards IDO, an important 

target in cancer immunotherapy, by immunizing pigs with cationic adjuvant 

formulation 09 (CAF09)-formulated porcine IDO-derived peptides.   

3. To determine if the vaccine antigen dose influences the type immune response 

generated in pigs following immunization. 

4. To establish protocols allowing characterization of the immunological landscape of 

Oncopig tumors with respect to T cells in particular.  

5. To evaluate if endogenous anti-tumor immune responses are present in the Oncopig 

model.  
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CHAPTER III. The Major Findings 

Summary of Results 

Since the majority of findings obtained in animal models are lost in translation to clinical 

cancer trials178, we investigated the potential for the pig as large preclinical animal model for 

studying anti-tumor immune responses. Using tetanus toxoid (TT) as a model antigen 

formulated in CAF09 adjuvant, we established an intraperitoneal (i.p.) immunization 

protocol allowing the induction of a CTL response in Göttingen minipigs (Paper I). 

Furthermore, we compared three different antigen doses (1µg, 10µg, and 100µg) and 

evaluated their potential influence on the vaccine-induced immune response. Generation of a 

CTL response was inversely correlated with the CAF09-formulated antigen dose following 

three immunizations. The induction of a polyfunctional T-cell response was found only upon  

low antigen dose immunization, while antigen-specific IgG antibodies developed in response 

to administration of a high dose TT protein.  

Next, we investigated the effect of antigen dose for an endogenous protein. We showed that 

repeated i.p. delivery of CAF09-formulated long IDO-derived peptides to Göttingen minipigs 

successfully broke peripheral tolerance towards this endogenous target relevant for cancer 

immunotherapy (Paper II). An antigen-specific cell-mediated immune (CMI) response was 

established across all groups (1 µg, 10µg, and 100µg antigen dose) with no difference in the 

level of IFN-γ producing cells. IDO-specific IgG antibodies were produced predominantly in 

response to a CAF09-adjuvanted high peptide dose. Together, low antigen dose immunization 

against an endogenous target induced a CMI-dominant response, whereas a high antigen 

dose formulated in CAF09 adjuvant generated a mixed CMI and humoral immune response.  

To investigate potential killing of IDO+ cells following immunization, we performed a 

fluorescence-based in vivo cytotoxicity assay. Although some animals showed a tendency 

towards target-specific lysis following re-infusion of IDO-pulsed cells, no convincing in vivo 

reactivity was demonstrated. However, this assay is the first of its kind in a porcine model 
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and may serve as an important tool for monitoring and tracking immunological responses in 

vivo.  

Finally, we investigated the potential for the transgenic Oncopig for studying anti-tumor 

immune responses (Paper III). We characterized the immunological landscape of Oncopig 

tumors (induced following AdCre injection) and demonstrated pronounced T-cell infiltration 

which was independent of tumor site. The existence of a tumor did not seem to alter the 

systemic immune landscape, as no difference in the composition of immune cells in peripheral 

blood was observed between tumor-bearing pigs and healthy controls. The intratumoral T-cell 

compartment showed enrichment of both FoxP3-expressing T cells and cytotoxic CD8β+ T 

cells when compared to peripheral blood. Pronounced perforin and granzyme B expression 

were demonstrated in the tumors; further underlining the presence of cytotoxic intratumoral 

immune cells. To determine if the Oncopig immune system poses the ability to target and 

lyse tumor cells, we adapted our fluorescence-based cytotoxicity assay for in vitro use. By co-

culturing immune effector cells with labeled control cells and tumor target isolates, we 

showed tumor-specific killing in an effector:target cell ratio dependent manner. Finally, RNA-

seq analysis revealed elevated expression of IDO1, CTLA4, and PDL1 in Oncopig 

leiomyosarcoma tumors. This suggested a potential mechanism for in vivo inhibition of anti-

tumor immunity at the early time points post AdCre injection. 

Long term studies revealed spontaneous regression of most Oncopig tumors. From this, it can 

be speculated that there is equilibrium between immune activation (intratumoral cytotoxic 

cells) and suppression (FoxP3+ T cells and elevated expression of IDO1, CTLA4, and PDL1) at 

the early time points post AdCre injection, while anti-tumor immune responses become 

dominant over time. Combined, our data support that pigs, and in particular the Oncopig, 

provide an important platform for studying anti-tumor immune responses. With more in-

depth understanding of how this anti-tumor immunity and spontaneous regression are 

mediated, the model may serve as a large and physiologically relevant animal model for 

evaluation of future preclinical cancer immunotherapies.   
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a b s t r a c t

The relationship between the antigen dose and the quality of an immune response generated upon
immunization is poorly understood. However, findings show that the immune system is indeed influ-
enced by the antigen dose; hence underlining the importance of correctly determining which dose to
use in order to generate a certain type of immune response.
To investigate this area further, we used Göttingen minipigs as an animal model especially due to the

similar body size and high degree of immunome similarity between humans and pigs. In this study, we
show that both a humoral and a cell-mediated immune (CMI) response can be generated following
intraperitoneal immunization with tetanus toxoid (TT) formulated in the CAF09 liposomal adjuvant.
Importantly, a low antigen dose induced more TT-specific polyfunctional T cells, whereas antigen-
specific IgG production was observed upon high-dose immunization. Independent of antigen dose,
intraperitoneal administration of antigen increased the amount of TT-specific cytotoxic CD8b+ T cells
within the cytokine-producing T-cell pool when compared to the non-cytokine producing T-cell compart-
ment.
Taken together, these results demonstrate that a full protein formulated in the CAF09 adjuvant and

administered to pigs via the intraperitoneal route effectively generates a cytotoxic T-cell response.
Moreover, we confirm the inverse relationship between the antigen dose and the induction of polyfunc-
tional T cells in a large animal model. These finding can have implications for the design of upcoming vac-
cine trials aiming at establishing a cytotoxic T-cell response.
� 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Vaccines can contain different amounts of target antigen; how-
ever, it is not well known how the antigen dose influences the
quality of a resulting immune response. Relatively few studies
directly investigate this, although an inverse relationship between
antigen dose and the duration of delayed type hypersensitivity has
been proposed [1]. Also, it has been hypothesized that more T cells

and antigen are required for Th2 than Th1 responses [2]. Recent
findings further support an inverse relationship between the anti-
gen dose and the induction of CD4+ T-cell polyfunctionality and
functional avidity in both mice and humans [3–5].

Given that the antigen dose can influence the immune response,
correctly determining the first-in-human dose based on preclinical
animal studies becomes even more crucial, and translating findings
from preclinical vaccine research is dependent on animal models
reliably mimicking human patients. Previously, the body weight
of the animal alone has been used for extrapolation; but due to
resulting unsuccessful clinical trials, using the body surface area
(BSA) of the animal has been a suggested approach [6]. However,
the BSA method still shows extreme inaccuracy [7]; suggesting
the need for further improvement in strategies converting animal

http://dx.doi.org/10.1016/j.vaccine.2017.08.057
0264-410X/� 2017 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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doses to human equivalents in order to reliably study the effect of
antigen dose on the immune response.

In contrast to rodents; the porcine metabolic rate, important
metabolic enzymes, and the immunome closely resemble the
human counterparts [8–11]. Moreover, pigs are fully immune com-
petent and display high MHC-allelic diversity with the number of
known porcine MHC class I alleles continuously expanding due
to an improved detection method [12]. For vaccine research to be
reliably translated to humans, it is crucial to perform the preclini-
cal tests in an animal model with a fully competent immune sys-
tem [13,14]; further supporting the potential in using pigs as a
large animal model in the interphase from early rodent work to
clinical trials in humans.

In this study, we hypothesised that a cytotoxic immune
response can be generated in pigs following intraperitoneal (i.p.)
immunization. Moreover, we hypothesized that the quality of the
resulting immune response is influenced by the antigen dose. Teta-
nus toxoid (TT) was used as a model antigen and formulated in
CAF09; a dimethyldioctadecylammonium bromide liposomal adju-
vant with synthetic monomycolyl glycerol and the TLR3 agonist
poly I:C as immune modulators [15]. We i.p. administered 10-
fold titrations of the full TT protein to Göttingen minipigs and
investigated effects of antigen dose on the humoral and cell-
mediated immune (CMI) response to further evaluate the potential
of pigs for translational vaccine research.

2. Materials and methods

2.1. Pigs

Fifteen Göttingen minipigs aged �2 to 4.5 months and derived
from four different litters were purchased from Ellegaard A/S (Sorø,
Denmark), housed at the National Veterinary Institute, Technical
University of Denmark (Frederiksberg C, Denmark) and random-
ized into three groups based on sex, litter, and weight (n = 5). Ani-
mal procedures were carried out in accordance with both national
and international guidelines, and all procedures comply with the
ARRIVE guidelines. The institutional committee as well as the Dan-
ish Animal Experiments’ Inspectorate (Ethical approval ID: 2012
�15�2934�00557) approved all procedures.

2.2. Immunizations

Animals received either 1 µg, 10 µg, or 100 µg of purified TT
(State Serum Institute, batch: T 262-01) formulated in the CAF09
adjuvant as previously described [15]. The CAF09 adjuvant was
kindly provided by Dennis Christensen (Statens Serum Institut,
Copenhagen, Denmark). Each immunization was comprised of
1 ml CAF09 and 1 ml TT diluted in 10 mM Tris buffer. Immuniza-
tions were delivered via the intraperitoneal (i.p.) route using an
18G � 200 needle; no anaesthesia was used. Animals were primed
and subsequently boosted twice with two week intervals (Supp.
Table 1).

2.3. Cell isolation

Blood was collected into sodium heparinized vacutainer tubes
(BD Diagnostics, catalogue number (cat.): 362753) and purified
using SepMate tubes (StemCell Technologies, cat.: 85450) accord-
ing to manufacturer’s protocol. In brief, the blood was diluted in
PBS/2%FBS (ThermoFischer Scientific, cat.: 10082147) and sepa-
rated using Lymphoprep (StemCell Technologies, cat.: 07851). Fol-
lowing separation, the cells were counted using the Nucleocounter
NC-200 (Chemometec, Allerød, Denmark).

2.4. IFN-c ELISpot

MultiScreenHTS IP Filter Plates (Merck Millipore, cat.:
MSIPS4510) were pre-wet in 35% ethanol (v/v in sterile milliQ
water) and coated with 5 µg/ml mouse anti-swine IFN-c antibody
(ThermoFischer Scientific, cat.: MP700) overnight at 4 �C. The
plates were blocked with AIM VTM media (ThermoFischer Scientific,
cat.: 12055091), no serum, for at least one hour at 37 �C. To each
well, 2 � 105 freshly isolated PBMCs were added and incubated
for 20 h at 37 �C in the presence of 1.5 µg/ml TT, 1.5 µg/ml staphy-
lococcal enterotoxin B (SEB) (Sigma Aldrich, cat.: S4881) as positive
control, or media alone. Biotin Mouse Anti-Pig IFN-c (BD Bio-
sciences, cat.: 559958) was used at 1 µg/ml for detection with incu-
bation for 1 h at room temperature (RT). Streptavidine-Alkaline
Phophatase conjugate (Sigma Aldrich, cat.: 11 089 161 001) was
diluted 1:2000 and added to the plates with incubation on a shak-
ing table for 1 h at RT. Finally, 100 µl/well of BCIP�/NBT Liquid Sub-
strate System (Sigma Aldrich, cat.: B1911) was added and spot
development was terminated after five minutes. The plates were
allowed to air-dry in the dark. The AID EliSpot Reader version 6.0
(Autoimmun Diagnostika GmbH, Strassberg, Germany) was used
for analysis. Data is shown with subtraction of the background
levels of spot forming cells (SFCs) from culturing with media alone.

2.5. IgG ELISA

The 96-well polysorp plate (ThermoFischer Scientific, cat.:
475094) was coated with 0.125 µg/ml TT and incubated overnight
at 4 �C. Serum samples, diluted 1:10,000, were added to the plate
with incubation on a shaking table for 1 h at RT. Biotinylated goat
anti-pig IgG (Bio-Rad, cat.: AAI41), was diluted 1:20,000 and used
as secondary antibody with incubation on a shaking table for 1 h at
RT. HRP-conjugated streptavidin (ThermoFischer Scientific, cat.:
N100) diluted 1:8000 was added; the plate was incubated on a
shaking table for 1 h at RT. Finally, tetramethylbenzidine (Kem-
En-Tec, cat.: 4380 L) was added and the reaction was terminated
with 0.5 M sulfuric acid after five min at RT. A microplate reader
(ThermoFischer Scientific) was used to determine the absorbance
at 450 nm; corrections for unspecific background were done by
subtraction of the signal at 650 nm.

2.6. Flow cytometry

Antibodies were used at pre-determined concentrations (details
in Supp. Table 2). PBMCs were stimulated for 16 h with 2 µg/ml TT,
media alone, or 1 µg/ml SEB as a positive control, followed by 6 h
culturing in the presence of 10 µg/ml Brefeldin A (Sigma-Aldrich,
cat.: B7651-5MG). Cells were surface stained for 30 min at 4 �C
with antibodies against CD3 and CD8b in combination with a
live/dead stain. Fixation/Permeabilization Solution Kit (BD
Biosciences, cat.: 554714) was used according to manufacturer’s
protocol. Intracellular cytokine staining was conducted using
antibodies against IFN-c, TNF-a, and perforin for 30 min at 4 �C.
Samples were acquired on an LSRFortessa (BD Bioscience) flow
cytometer, and 200,000 viable CD3+ cells were recorded for
analysis. Data was analysed using FlowJo Data Analysis Software
version 10.

2.7. Statistical analysis

Despite low numbers of animals, the data were analysed by
parametric analyses as non-baseline data passed the Shapiro-
Wilk normality test and presumably represent normally dis-
tributed populations. Results are thus shown as the mean or the
mean ± SEM and statistical comparisons were performed using
either paired or unpaired Student’s t-test. GraphPad Prism version
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7.00 for Windows (California, United States) was used for statisti-
cal analysis. P < 0.05 (⁄) was considered significant, and P < 0.005
(⁄⁄), P < 0.001 (⁄⁄⁄), and P < 0.0001 (⁄⁄⁄⁄) are indicated.

3. Results

3.1. Immunization with a low antigen dose drives a CMI response

We firstly evaluated the amount of IFN-c produced during the
immunization trial. Prior to immunization, all animals were TT
naïve as demonstrated by the lack of IFN-c SFCs at day 0
(Fig. 1A). A quantification of the IFN-c SFCs in response to
CAF09-formulated TT revealed that a CMI response was generated
in all the groups already at day 27 (Fig. 1B). The immune response
in each group was enhanced by an additional immunization as
indicated by the presence of more IFN-c SFCs at day 41; most pro-
nounced in the 1 µg and 10 µg group (Fig. 1B). Additionally, we
investigated whether several rounds of i.p. immunization induced
a humoral immune response. No TT-specific IgG antibodies were
detected in serum samples prior to the first immunization in any
of the groups (Fig. 1C). Two immunizations were sufficient to gen-
erate TT-specific IgG antibodies only in the 100 µg dose group;
however, all groups displayed a humoral response to TT following
three injections (Fig. 1C). A comparison of the three immunization
groups revealed that animals receiving 1 µg TT produced a stronger
TT-specific IFN-c response when compared to animals receiving
100 µg TT (Fig. 1D). In contrast, immunization with a high antigen
dose induced a stronger humoral immune response (Fig. 1E).

3.2. T-cell-derived IFN-c is enhanced by immunization with a low
antigen dose

Having established that the dose of immunizing antigen
affected the subsequent IFN-c responses detected by ex vivo IFN-
c ELISpot, we further investigated the effect of antigen dose
directly on T cells. The capacity of T cells to produce IFN-c against
TT following in vitro re-stimulation at day 41 was determined by
flow cytometry; a representative gating strategy is depicted in
Supp. Fig. 1.

Although numbers of IFN-c+ TT-specific T cells were small, the
flow cytometric plots clearly indicated that T cells derived from
the 1 µg, and somewhat also the 10 µg group, were IFN-c+ while
animals receiving 100 µg of CAF09-formulated TT did not seem
to respond (Fig. 2A). This was substantiated by a statistically signif-
icant higher percentage of T cells producing IFN-c against TT in
animals receiving 1 µg of antigen compared to 100 µg immunized
pigs (Fig. 2B). Interestingly, a titration effect could be observed
across the groups (Fig. 2B); thus suggesting an inverse relationship
between the percentage of IFN-c+ T cells and the CAF09-
formulated antigen dose. Analysis of the CD3� population did not
reveal IFN-c producing cells in response to TT (data not shown).

3.3. TT-specific cytotoxic CD8b+ T cells are increased within the IFN-c+

T-cell population

Given that the antigen dose when formulated in CAF09 is inver-
sely correlated with the amount of IFN-c responsive T cells, we fur-
ther investigated whether the phenotype of the T cells was also
affected by the antigen dose. The CD8b marker was used to distin-
guish between cytotoxic and helper T cells as previously described
[16]. The ratio between CD8b+ and CD8b� T cells was evaluated in
both the IFN-c� and the IFN-c+ T-cell population for all groups
(Fig. 3A–C). When quantifying the ratios, a significant increase in
CD8b+ T cells was detected in the IFN-c+ T-cell population for both
the 1 µg (Fig. 3D) and the 10 µg group (Fig. 3E). In the high dose

group, four out of five animals also showed a tendency towards
an increase in CD8b+ T cells within the IFN-c+ T-cell population
(Fig. 3F). Taken together, these results demonstrate that the TT-
specific CTLs are increased within the IFN-c+ T-cell population
independently of the antigen dose formulated in CAF09.

3.4. TNF-a+ T cells are slightly increased when immunizing with a low
antigen dose

In addition to IFN-c, TNF-a is an important effector molecule
produced by cytotoxic CD8+ T cells [17]. For this reason, we inves-
tigated whether TNF-a was also affected by the antigen dose. The
ability of T cells to produce TNF-a in response to TT was again eval-
uated using flow cytometry; a representative gating strategy is
outlined in Supp. Fig. 1. Across all groups and in all individual ani-
mals, TNF-a-producing T cells were readily detectable (Fig. 4A).
When comparing the percentage of TNF-a+ T cells, no difference
could be observed between the 1 µg and the 10 µg groups, while
four out of five pigs in the 100 µg group were non-responders
(Fig. 4B). Although non-significant, a trend towards an inverse rela-
tionship between CAF09-formulated antigen dose and the ability of
T cells to produce TNF-a could thus be observed (Fig. 4B).

3.5. TT-specific cytotoxic CD8b+ T cells are increased within the TNF-a+

T-cell population

Since the cytokine-producing T-cell population was shifted
towards a cytotoxic phenotype when measuring IFN-c (Fig. 3),
we speculated whether this would also be the case for TNF-a.
The relationship between cytotoxic and helper T cells, as deter-
mined by the expression of the CD8b molecule, was determined
within the TNF-a-producing and TNF-a� T-cell population
(Fig. 5A–C). An increase in the amount of CD8b+ T cells in the
TNF-a+ population was observed for all groups, when comparing
to the TNF-a� population (Fig. 5A–C). This observation was clearly
supported by a statistical analysis of the CD8b+/CD8b� ratio in the
TNF-a-producing and non-producing T-cell population. Here, a sig-
nificant increase in cytotoxic CD8b+ T cells within the TNF-a+ T-cell
population was demonstrated for all the groups (Fig. 5D–F).
Together, these results show a specific increase in CTLs within
TNF-a+ T-cell population independent of the CAF09-formulated
antigen dose.

Moreover, perforin has been reported to be an important effec-
tor molecule for CTLs [18]. Therefore, we also investigated the
effect of antigen dose on the ability of CTLs to produce perforin
in response to TT. A substantial population of perforin+CD8b+ T
cells was detected in all animals (Supp. Fig. 2A). Despite this, no
difference was observed when comparing the percentage of per-
forin+CD8b+ T cells across the groups (Supp. Fig. 2B); hence show-
ing that the production of perforin is independent of the antigen
dose when administered in CAF09 adjuvant.

3.6. Low antigen dose induces more TT-specific polyfunctional T cells

The ability to induce polyfunctional CD4+ T cells in humans has
been shown to be inversely correlated with antigen dose following
intramuscular (i.m.) immunization [4]. Therefore, we investigated
whether an i.p. administration route had similar effect on the abil-
ity to induce polyfunctional T cells in response to CAF09-
adjuvanted TT. Flow cytometric analysis of re-stimulated PBMCs
harvested at day 41 was performed using a gating strategy as
depicted in Supp. Fig. 1. T cells producing both TNF-a and IFN-c
were detected in both the 1 µg and the 10 µg group; however, this
population of double-cytokine-positive T cells appeared to be
mostly absent in the high dose group (Fig. 6A). When quantifying
the percentage of TNF-a+IFN-c+ T cells across the three groups, a
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Fig. 1. Immunization with a low antigen dose preferentially drives a CMI response. Göttingen minipigs were intraperitoneally immunized with either 1 µg, 10 µg, or 100 µg of
tetanus toxoid formulated in the CAF09 adjuvant. Immunizations were administered three times with two weeks in between. All animals were blood sampled prior to each
immunization and two weeks post the last injection. (A) IFN-c ELISpot images at day 0 and 41 from one representative animal in each group in response to tetanus toxoid. (B)
Quantification of IFN-c ELISpot responses against tetanus toxoid from animals receiving 1 µg (black circles), 10 µg (grey circles), or 100 µg (white circles). Open squares
indicate the representative animal shown in (A). Data is presented as spot forming cells (SFCs) per 2 � 105 PBMCs with indication of the mean. (C) ELISA-based detection of
anti-tetanus IgG in serum samples from animals immunized with 1 µg (black circles), 10 µg (grey circles), or 100 µg (white circles). Data is shown as OD values with indication
of the mean. (D) Comparison of IFN-c SFCs in response to tetanus toxoid across all groups and for each time point. Data is shown as mean ± SEM. (E) Comparison of the anti-
tetanus IgG production across all groups and for each time point. Data is shown as mean ± SEM. Statistical evaluation by paired student’s t-test (B and C) or unpaired student’s
t-test (D and E), (n = 5).
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clear titration effect could be observed with a low dose specifically
inducing more polyfunctional T cells (Fig. 6B). It should be noted
that only the 1 µg group clearly demonstrated a population com-
prising IFN-c+ single-producing T cells (Fig. 6A).

4. Discussion and conclusions

During this study, we showed the induction of a CTL response
when administrating CAF09-formulated TT via the i.p. route in
Göttingen minipigs. A low antigen dose resulted in a predominant

CMI response, whereas a high dose favoured TT-specific IgG pro-
duction. Previously, TT has been used as a model antigen in pigs
[19], and a study reported the animals to be antigen naïve prior
to immunization [20]. Our data confirmed this; hence showing that
the anti-TT response was indeed vaccine-induced.

Our observed cell- and antibody-mediated responses are not
surprising, as the anti-TT response has been reported to be a mix-
ture between Th1 and Th2 [21,22]. Humans i.m. immunized
against alum-adjuvanted TT showed a strong CD4+ T-cell response
[23], whereas we demonstrated an increased amount of CTLs

Fig. 2. Flow cytometry corroborates the inverse relationship between antigen dose and the percentage of IFN-c+ T cells. PBMCs purified at day 41 were stimulated in vitro
with tetanus toxoid and IFN-c production was determined by flow cytometry. Analysis included pre-gating on single, viable CD3+ cells. (A) Flow cytometric plots showing
IFN-c+CD3+ cells in the 1 µg (upper panel), 10 µg (middle panel), and 100 µg group (lower panel). Individual animals in each group are shown and horizontally aligned. (B)
Percentage of IFN-c-producing T cells across all groups with indication of the mean. Numbers indicate the percentage of IFN-c+ T cells as a proportion of total T cells. The
background level of IFN-c-producing T cells in response to media alone were at least 2-fold lower when compared to stimulation with TT or �0.03%, while in average 0.36% of
the T cells produced IFN-c in response to the positive SEB stimulation. Statistical evaluation in (B) by unpaired student’s t-test, (n = 5).

Fig. 3. Tetanus-specific cytotoxic CD8b+ T cells are increased within the IFN-c+ T-cell population. PBMCs were harvested at day 41 stimulated in vitro with tetanus toxoid. By
flow cytometry, CD8b expression was individually determined in both the IFN-c� and the IFN-c+ T-cell population. Pie charts from animals immunized with either 1 µg (A),
10 µg (B), or 100 µg (C) tetanus toxoid showing the distribution of CD8b� (grey) and CD8b+ T cells (black) in both the IFN-c� (upper panel) and the IFN-c+ (lower panel) T-cell
population. Individual animals in each group are shown. The CD8b+/CD8b� ratio in both the IFN-c� (squares) and the IFN-c+ T-cell subsets (triangles) of animals immunized
with 1 µg (D), 10 µg (E), or 100 µg (F) of tetanus toxoid are shown with indication of the mean. Statistical evaluation in D, E, and F by paired student’s t-test (n = 5).
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within the pools of IFN-c and TNF-a producing T-cells. This dis-
crepancy likely reflects the differences in adjuvants and delivery
route. It is well known that the immune response generated upon
vaccination differs depending on which TLR is activated [24,25]
and i.p. administration of cationic liposomes like CAF09 is superior
in generating strong CTL responses when compared to subcuta-
neous (s.c.) and i.m. injection in mice [26]. Establishment of a
CTL response against a full protein is dependent on cross-
presentation by dendritic cells (DCs); the process by which extra-

cellular antigen is taken up and presented in the context of MHC
class I [27,28]. Specifically for i.p. immunizations in mice, vaccine
self-drainage to lymphoid organs was shown to efficiently provide
antigen to cross-presenting DCs [26]. Upon i.p. immunization in
pigs, self-drainage might also play an important role; thus enabling
DCs to effectively prime naïve CD8+ T cells and induce a strong CTL
response. Hence, the observed inverse relationship between anti-
gen dose and the induction of a polyfunctional CMI response might
be differently affected with the use of a different adjuvant system

Fig. 4. Lowering the antigen dose tends to trigger a higher percentage of TNF-a+ T cells. PBMCs were purified at day 41 and stimulated in vitrowith tetanus toxoid. Production
of TNF-a was determined by flow cytometry, and pre-gating included selection of single, viable CD3+ cells. (A) Flow cytometric plots showing TNF-a+CD3+ cells in the 1 µg
(upper panel), 10 µg (middle panel), and 100 µg group (lower panel). Individual animals in each group are shown and horizontally aligned. (B) Amount of TNF-a-producing T
cells across all groups with indication of the mean. Numbers indicate percentage of TNF-a+ T cells as a proportion of total T cells. The background level of TNF-a-producing T
cells in response to media alone were at least 2-fold lower when compared to stimulation with TT or �0.06%, while in average 0.98% of the T cells produced TNF-a in response
to the positive SEB stimulation. Statistical evaluation in (B) by unpaired student’s t-test, (n = 5).

Fig. 5. The TNF-a+ T-cell population comprises an increased representation of cytotoxic CD8b+ T cells. PBMCs were purified at day 41 and stimulated in vitro with tetanus
toxoid. Flow cytometry analysis included pre-gating on single, viable CD3+ cells, and the CD8b expression was then individually determined in both the TNF-a� and the TNF-
a+ T-cell subset. Pie charts from animals immunized with either 1 µg (A), 10 µg (B), or 100 µg (C) of tetanus toxoid showing the distribution of CD8b� (grey) and CD8b+ T cells
(black) in both the TNF-a� (upper panel) and the TNF-a+ (lower panel) T-cell population. Individual animals in each group are shown. The CD8b+/CD8b� ratio in both the TNF-
a� and the TNF-a+ T-cell subset from animals immunized with 1 µg (D), 10 µg (E), or 100 µg (F) of tetanus toxoid are shown with indication of the mean. Statistical evaluation
in D, E, and F by paired student’s t-test (n = 5).
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comprising other TLR agonists than poly I:C or the use of other
delivery routes.

The antigen dose has previously been shown to influence the
immune response following immunization [29,30]. In both mice
and humans, immunization with a low dose protein induced high
frequencies of CD4+ T cells producing IL-2, IFN-c, and TNF-a
[3,4]. In contrast, our data showed a specific increase in CTLs
within the cytokine-producing T-cell pool. Notably, the studies
reporting a specific induction of polyfunctional CD4+ T cells were
in response to Mycobacterium tuberculosis-derived antigens [3,4],
and protection against this bacteria is known to be dependent on
a CD4+ T-cell response [31–34]. Overall, these studies and our data
all support an inverse relationship between CAF09-formulated
antigen dose and the induction of polyfunctional T cells.

Moreover, the antigen dose has been reported to influence the
avidity and quality of CTLs [35–37]. In addition, the expression
level of inhibitory receptors like PD-1 and CTLA-4 on CD4+ T cells
was found to be decreased, when mice were immunized with a
low antigen dose [5]; Future studies should evaluate the effect of
antigen dose on both the quality and the activation/memory stage
of the TT-reactive T cells in pigs in order to select the optimal strat-
egy for establishment of a vaccine-induced cytotoxic immune
response. In conclusion, our results showed that it is possible to
induce a CTL response by i.p. delivering a CAF09-formulated pro-
tein in pigs. Moreover, we confirmed the inverse relationship
between the antigen dose and the induction of polyfunctional T
cells previously demonstrated in mice and humans. The T-cell sub-
sets affected might differ depending on the antigen in question;
however, the antigen dose clearly affects the immune response
induced by immunization. Therefore, correctly determining the
first-in-human dose becomes even more important. Due to its sim-
ilarities in both metabolism and immunome with humans, we
believe that pigs can serve as an important animal model for pre-
clinical optimization of vaccine doses.
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Abstract  

The relationship between antigen dose and the immune response remains poorly understood especially 

for endogenous proteins. Since the antigen dose of an exogenous protein has been demonstrated to 

affect the immune response, we set to determine whether repeated immunization with different peptide 

doses of an endogenous and cancer-relevant target influences the immune response. Due to the high 

degree of homology with humans, we used Göttingen minipigs as a large animal model and immunized 

against Indoleamine 2,3-dioxygenase (IDO); a promising cancer immunotherapeutic target. Three 

different doses of porcine IDO-derived 30-31mer peptides formulated in CAF09 liposomal adjuvant 

were administered via the intraperitoneal route. Following repeated immunization, IDO-specific IFN-γ 

producing cells were readily detectable across all groups; thus, demonstrating a break in peripheral 

tolerance towards IDO. Interestingly, a CAF09-formulated low antigen dose predominantly induced an 

antigen-specific cell-mediated immune (CMI) response, while a mixed CMI and humoral immune 

response was observed upon high peptide dose immunization. Using an in vivo cytoxicity assay, a trend 

towards target-specific lysis following re-infusion of IDO-pulsed cells was demonstrated in a few 

animals. However, no general tendency towards IDO-specific cytoxicity could be observed; thus, 

supporting that immunization as a stand-alone treatment may not be sufficient to induce lysis of an 

endogenous target in vivo. Together, our data show that repeated immunization with CAF09-

formulated peptides can break peripheral tolerance towards IDO in a large and physiologically relevant 

animal model. In addition, our data underline the importance of the vaccine antigen dose and supports 

that the pig may serve as a large preclinical model for cancer vaccine research. 
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1. Introduction 

The potential for immunological control of cancer is an intensely investigated topic. In 2013, cancer 

immunotherapy was awarded breakthrough of the year [1], and peptide-based therapeutic vaccines are 

one of the promising arms within the field. Several clinical trials have been performed [2]; however, no 

peptide-based therapeutic vaccine has yet received approval by the U.S. Food and Drug Administration 

or the European Medicines Agency [3–5]. A major challenge to cancer vaccine development is the 

immunological tolerance existing towards endogenous tumor-associated antigens. As the majority of 

self-reactive T cells undergoes clonal deletion in the thymus to avoid autoimmunity [6, 7], the 

induction of an anti-tumor cell-mediated immune (CMI) response relies on the T-cell repertoire 

remaining post the induction of central tolerance [8].   

A promising target within cancer immunotherapy is Indoleamine 2,3-dioxygenase (IDO). This 

intracellular enzyme regulates immune responses and induces tolerance by catalyzing the first rate-

limiting step in the breakdown of tryptophan [9–11]; an essential amino acid for effector T cells [12, 

13]. The lack of tryptophan locally in the tumor microenvironment and the accumulation of 

downstream metabolites block T-cell proliferation, polarize CD4
+
 T cells towards a regulatory 

phenotype, and render T cells susceptible to the apoptotic pathway [14–16]. In several human cancers, 

an overexpression of IDO or an accumulation of IDO
+
 cells have been linked to poor patient prognosis 

[12, 17–19]. In terms of T-cell reactivity, both IDO-specific CD4
+
 and CD8

+
 T cells have been 

demonstrated [20–23].  

The majority of preclinical vaccine research has been performed in rodent models; however, it is 

becoming increasingly recognized that mice often poorly mimic human diseases [24, 25]. In contrast, 

the porcine and the human immune systems are far more analogous [26]. The homology in size, 

anatomy, physiology, genetics, epigenetics, pathology, and metabolism with humans [27] underlines 

the potential for the pig as a large animal model for studying human diseases.  

The porcine major histocompatibility molecule (MHC) is referred to as swine leukocyte antigen (SLA). 

Based on a next-generation sequencing (NGS) approach [28], Göttingen minipigs expressing the SLA-

2*03:01 allele were selected for the vaccine trial. Synthetic 30-31mer IDO-derived peptides comprising 

in silico predicted SLA-2*03:01-binding 8-11mer peptides, potential CD8
+
 T-cell epitopes, were 
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designed. Göttingen minipigs were immunized via the intraperitoneal (i.p.) route with the 30-31mer 

IDO-derived peptides formulated in CAF09; a dimethyldioctadecylammonium bromide liposomal 

adjuvant comprising synthetic monomycolyl glycerol and the TLR3 agonist poly I:C [29]. Using this 

immunization strategy, we show a break in peripheral tolerance and establishment of an IDO-specific 

immune response in this large animal model. While a CAF09-formulated high peptide dose generated a 

mixed CMI and humoral immune response towards IDO, immunization with a low peptide dose 

induced an antigen-specific CMI-dominant response. Combined, these data demonstrate the importance 

of peptide dose and suggest that the pig may serve as a physiologically relevant large animal model for 

preclinical cancer vaccine research.   

 

2. Methods 

2.1 Animals  

Fifteen Göttingen minipigs were purchased from Ellegaard A/S (Denmark), maintained at the National 

Veterinary Institute, Technical University of Denmark, and randomized into groups based on SLA-

class I allele profile, sex, litter, and weight (n=5). All animal procedures were approved by the 

institutional committee and the Danish Animal Experiments’ Inspectorate (Ethical approval ID: 

2012−15−2934−00557). All procedures comply with the ARRIVE guidelines.  

 

2.2 NGS-based SLA-typing  

RNA extraction and subsequent generation of cDNA were performed as previously described [30]. The 

SLA-profile of each animal was determined using a NGS-based approach described elsewhere [28]. 

Four of the fifteen animals included in the study did not conclusively express the SLA-2*03:01-allele 

and were distributed into each of the immunization groups (two in the high peptide dose group).  

 

2.3 Peptide library design 

The Uniprot database (http://www.uniprot.org/uniprot/F6K2E8) was used to obtain the porcine IDO 

protein sequence. Using the NetMHCcons1.1 server [31], 8-11mer potential SLA-2*03:01-binding 

peptides were identified within the IDO sequence; a total of ten peptides were synthesized and referred 
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to as peptide 1-10 (Table 1). Four long 30-31mer peptides; referred to as IDO1, IDO2, IDO3, and 

IDO4, were selected for immunization (Table 1); each comprising at least two SLA-2*03:01-predicted 

binders (peptide 1-10). The peptides were purchased (Pepscan, Presto BV) and contained a free acid at 

the C-terminal as well as a free amine at the N-terminal. All peptides were dissolved to a concentration 

of 5 mg/ml in sterile DMSO followed by five min sonication.  

 

2.4 Peptide-MHC affinity ELISA  

The ability of peptide 1-10 to form peptide-MHC complexes with SLA-2*03:01 was evaluated as 

previously described [32]. Briefly, seven-point 5-fold titration dilutions of each peptide starting from a 

final concentration of 16.7 µM were folded for 48 hours with SLA-2*03:01 heavy (final concentration 

2 nM) and β2m light chains (final concentration 15 nM) generated in E. coli for determination of the 

KD value. An 11-point 2-fold dilution standard curve using a pre-folded human HLA-A2 in complex 

with β2m and the peptide FLPSDYFPSV [33] was included to calculate the absolute sample complex 

concentrations. 

 

2.5 Immunizations 

Animals were immunized with either 1 µg, 10 µg, or 100 µg of each immunization peptide (IDO1, 

IDO2, IDO3, and IDO4) formulated in CAF09 adjuvant as previously described [29]; the adjuvant was 

kindly provided by Dennis Christensen from Statens Serum Institut, Denmark. For each injection, 

animals received 2 ml immunization comprised of 1 ml CAF09 and 1 ml of peptide pool diluted in 10 

mM Tris buffer. A total of nine immunizations were performed, distributed at day 0, 14, 27, 41, 70, 83, 

97, 173, and 186. All injections were delivered via the i.p. route; no anesthesia was used. At day 70, 83, 

and 97; tetanus toxoid (TT) was mixed into the vaccine formulation in similar concentration as the IDO 

peptides for each group. An experimental outline can be found in Supplementary table 1.  

 

2.6 Peripheral blood mononuclear cell isolation 

Animals were blood sampled using sodium heparinized vacutainer tubes (BD Diagnostics), and 

peripheral blood mononuclear cells (PBMCs) were purified using SepMate tubes (StemCell 

Technologies) according to manufacturer’s protocol. Briefly, the blood was diluted 1:1 in PBS/2%FBS 

(Thermo Fischer Scientific) and separated using Lymphoprep (StemCell Technologies). If necessary, 
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red blood cells were lysed using an in-house made lysis buffer. The cells were counted using the 

Nucleocounter NC-200 (Chemometec).  

 

2.7 IFN-γ ELISpot   

IFN-γ ELISpot responses were evaluated from day 0 to 111 (Supplementary table 1). The general 

assays details have been described elsewhere [34]. In brief, the plates were coated with 5 µg/ml mouse 

anti-swine IFN-γ antibody (Thermo Fischer Scientific). AIM V
TM

 media (Thermo Fischer Scientific) 

was used for blocking, and 1x10
5
-2x10

5
 PBMCs were added to each well with incubation in the 

presence of 1.5 µg/ml IDO1-IDO4, 1.5 µg/ml staphylococcal enterotoxin B (SEB) (Sigma Aldrich) as 

positive control, or media alone. Biotin mouse anti-pig IFN-γ antibody (BD Biosciences) was used at 

1µg/ml.  Streptavidine-alkaline phophatase conjugate (Sigma Aldrich) was diluted 1:2000. Each well 

received 100µl BCIP
®
/NBT liquid substrate system (Sigma Aldrich) and spot development was 

terminated after five min. The AID EliSpot Reader version 6.0 (Autoimmun Diagnostika GmbH) was 

used for analysis. Data is shown as spot forming cells (SFCs) per 2x10
5
 PBMCs

 
with subtraction of the 

background IFN-γ spot numbers from PBMCs cultured with media alone. 

 

2.8 IgG ELISA  

The presence of antigen-specific IgG antibodies was evaluated in serum samples from day 0 to 111 

(Supplementary table 1) using an indirect ELISA as described elsewhere [34]. Briefly, the plates were 

coated with 1 µg/ml of IDO1, IDO2, IDO3, and IDO4. Serum samples were diluted 1:40 and incubated 

with biotinylated goat anti-pig IgG (Bio-Rad); diluted 1:20,000. HRP-conjugated streptavidin (Thermo 

Fischer Scientific), diluted 1:8000, was added followed by addition of tetramethylbenzidine (Kem-En-

Tec) for 5-10 min. The reaction was terminated with 0.5 M sulfuric acid. The absorbance at 450 nm 

was determined using a microplate reader (Thermo Fischer Scientific); corrections for non-specific 

background were done by subtraction of the 650 nm signal.  
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2.9 In vivo cytotoxicity  

Animals were immunized nine times prior to performing an in vivo cytotoxicity assay. Freshly isolated 

PBMCs were washed twice in PBS to remove any serum and counted using the Nucleocounter NC-

200. A total of 15x10
7
 cells per animal were isolated and split into two groups. Target cells were 

labeled with Cell Proliferation Dye eFluor450
®
 (TermoFischer Scientific) and the control cells with 

Cell Proliferation Dye eFluor670
®
 (Thermo Fischer Scientific) according to manufacturer’s protocol. 

Dyes have previously been swapped to make sure no dye-specific effect occurs. The control and target 

cells were cultured overnight at 37°C, 5% CO2. Target cells were pulsed with a pool of peptide 1-10 

(10 µg/ml of each peptide) for 1 hour at 37°C, 5% CO2. Control cells remained non-pulsed. Correct 

labelling was evaluated using flow cytometry prior to intravenous (i.v.) re-infusion. The animals were 

fasted from the day before and anaesthetized using an intramuscular injection with 1 ml/10-15kg of 

Zoletil mix (tiletamine 12.5 mg/ml, zolazepam 12.5 mg/ml, xylazin 12.5 mg/ml, ketamine 12.5 mg/ml, 

and butorphanol 2.5 mg/ml). For i.v. administration, a 22GA 0.9 x 25 mm venflon (BD Bioscience) 

was inserted in the ear vein and flushed with 2 ml sterile PBS. A 1:1 mixture of target and control cells, 

resuspended in approximately 1.8 ml PBS, was injected followed by flushing with 4 ml sterile PBS. 

Animals were blood sampled by venipuncture from the jugular vein 10 min post administration of the 

cells, and PBMCs were isolated as already described. Isolated PBMCs were acquired using an 

LSRFortessa (BD Bioscience), and the ratio between target and control cells was compared at 10 min 

(baseline samples) and 24 hours post injection. Data were analyzed using FlowJo Data Analysis 

Software version 10. Cells from one animal in the 1 µg group were not stained properly prior to 

injection and left out of analysis.  

 

2.10 Statistical analysis  

Despite low numbers of animals, the data were analysed by parametric analyses as 85-100% of datasets 

showing a significant difference to baseline data passed the Shapiro-Wilk normality test. Thus, results 

are shown as the mean ± SEM. Statistical comparisons were performed using either paired or unpaired 

Student’s t-test, and GraphPad Prism version 7.00 for Windows (California, United States) was used 

for all statistical analysis. P<0.05 (*) was considered significant, and P<0.005 (**) is indicated.  
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3. Results     

3.1 The immunization peptides encompass potential CD8
+
 T-cell epitopes with the ability to form 

peptide-MHC complexes with SLA-2*03:01 

Immunization with long synthetic peptides has been shown to generate more efficient and long-lasting 

cytotoxic T lymphocyte (CTL) responses when compared to immunization with a minimal CTL 

epitope alone [35–38]. For this reason, the selected immunization peptides were naturally occurring 30-

31mers containing in silico predicted 8-11mer SLA-2*03:01-binding peptides. Ten peptides were 

predicted as either strong binders (%rank ≤ 0.50%) or weak binders (%rank ≤ 2.00%) (Table 1). The 

capacity of the ten peptides to form peptide-MHC complexes with SLA-2*03:01 was investigated 

using a peptide-MHC affinity ELISA. KD values, indicative of the peptide-MHC binding affinity, were 

ranging from 448 nM to 25,457 nM (Table 1). In detail, 40% of the predicted strong binders had a KD 

value < 500 nM, while 20% of the predicted weak binders had a KD value < 5,000 nM. As different 

MHC class I alleles bind peptides with different size, affinity, and immunogenicity [39], we did not 

attempt to conclude on the hierarchy of the peptides based on the KD values. Nevertheless, seven of the 

ten predicted peptides showed complex formation with SLA-2*03:01 (Table 1); thereby, the peptides 

may be presented to CD8
+
 T cells in vivo. 

 

3.2 Repeated i.p. immunization with CAF09-formulated long IDO-derived peptides induces an 

antigen-specific CMI response  

We firstly evaluated if repeated i.p. immunization with CAF09-formulated peptides was sufficient to 

break peripheral tolerance and induce an antigen-specific CMI response. Following seven 

immunizations, animals immunized with 1 µg CAF09-adjuvanted peptides displayed significant IFN-γ 

production in response to all four peptides (IDO1-4) when compared to baseline samples (Fig. 1a-d, 

left panel). An intermediate peptide dose showed some sporadic, yet not significant, responses when 

compared to baseline samples (Fig. 1a-d, middle panel). As for the low dose group, animals 

immunized with a CAF09-formulated high peptide dose displayed IDO-specific IFN-γ
+
 cells in 

response to re-stimulation with all four peptides (Fig. 1a-d, right panel).  
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3.3 The magnitude of the CMI response is independent of CAF09-formulated peptide dose 

As both low and high antigen dose significantly induced IFN-γ
+
 cells in response to IDO-derived 

peptides when compared to baseline samples (Fig. 1), we evaluated whether the level of IFN-γ SFCs 

differed between the groups. No statistical significant difference could be observed between the levels 

of IFN-γ-responsive cells towards any of the four peptides (Fig. 2), and the kinetics, by which the 

responses developed, was also rather similar between the groups (Fig. 2). Together, the magnitude of 

the anti-IDO CMI response generated upon repeated i.p. immunization was independent of the CAF09-

formulated peptide dose. The addition of TT in the immunization protocol did not affect the CMI 

response generated towards IDO, as the magnitude of the IFN-γ response was already increasing at day 

70 (prior to the first TT injection). 

 

3.4 A CAF09-formulated high peptide dose induces antigen-specific IgG antibodies 

We have recently shown that a high exogenous antigen dose formulated in CAF09 adjuvant induces 

antigen-specific IgG antibodies in Göttingen minipigs [34]. Using an indirect ELISA, we evaluated if 

the amount of IDO-specific IgG antibodies generated upon immunization was also affected by the 

antigen dose. When compared to the seronegative baseline samples, immunization with a CAF09-

formulated low peptide dose did not induce any sustained humoral immune response (Fig. 3a-d, left 

panel). Significant IgG-production was observed in the intermediate dose group only in response to 

IDO3 and IDO4 (Fig. 3a-d, middle panel). Upon repeated immunization with a CAF09-formulated 

high peptide dose, a humoral immune response was demonstrated for all the peptides; however, only 

anti-IDO2 and anti-IDO4 IgG production were statistically significant when compared to baseline 

samples (Fig. 3a-d, right panel).  

 

3.5 The magnitude of the IDO-specific humoral immune response correlates with peptide dose  

As expected, no difference in the baseline levels of IgG antibodies was observed across the groups 

(Fig. 4). Repeated immunization with a CAF09-adjuvanted high peptide dose significantly induced 

more IDO-specific IgG antibodies towards all four peptides when compared to the 1 µg group (Fig. 4). 

Animals in the intermediate peptide dose group were superior in generating antigen-specific IgG 

antibodies, when compared to the low peptide dose group, for IDO3 and IDO4 only (Fig. 4). 

Combined, our data demonstrate that the vaccine-induced humoral immune response correlates with 
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the dose of an endogenous peptide formulated in CAF09 adjuvant. Again, no adjuvant effect of TT was 

observed.  

 

3.6 Re-infusion of fluorescently labeled IDO-pulsed cells does not reveal target-specific lysis  

In order to evaluate the quality of the CMI response, we developed a porcine in vivo cytotoxicity assay 

directly measuring the capacity of immune-mediated target cell lysis. The assay was based on re-

infusion of fluorescently labeled autologous control and target cells. For all groups, control and target 

cell populations were detectable in the baseline blood samples withdrawn 10 min post re-infusion 

(Fig.5a, upper panel). However, the control and target cell populations were more pronounced 24 hours 

post injection (Fig. 5a, lower panel); suggesting that 10 min might not be the optimal time point for 

baseline sampling. The ratio between control and target cells was used to assess potential killing of 

IDO-pulsed cells. A few animals displayed an increase in control:target cell ratio 24 hours post i.v. 

injection, although the overall trend did not reveal in vivo specific lysis of IDO-pulsed cells (Fig.5b-d).    

 

4. Discussion  

In this study, we showed that it is possible to break peripheral tolerance towards an endogenous antigen 

in Göttingen minipigs by repeated i.p. immunizations with CAF09-formulated peptides. All animals 

were antigen-naïve prior to the first injection, as no pronounced antigen-specific CMI or humoral 

immune response was detectable in baseline samples. Hence, the observed anti-IDO immune response 

was vaccine-induced.  

In outbred pigs, we have previously shown induction of a weak, yet detectable, CMI response towards 

CAF09-formulated IDO-derived peptides following two subcutaneous immunizations [30]. However, 

the responses appeared rather transient; thus, we set to optimize our immunization strategy. Since 

murine studies have shown that i.p. delivery of a CAF09-formulated antigen is superior in generating a 

CTL response when compared to subcutaneous injection [40], we repeatedly immunized Göttingen 

minipigs via the i.p. route. While the peptide pool in the previous study contained 20mer overlapping 

IDO-derived peptides [30], our four immunization peptides (Table 1) were specifically designed to 
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contain potential CD8
+
 T cell epitopes, as this T-cell subset is a key mediator of anti-tumor immune 

responses [41].  

In this current study, we showed peptide-MHC class I complex formation for 70% of the predicted 

SLA-2*03:01-binding peptides. Despite this, the in vivo processing of the 30-31mer immunization 

peptides remains unknown. Therefore, the immunization peptides might encompass CD4
+
 T-cell 

epitopes, and the IFN-γ produced in the PBMC cultures could originate from CD8
+
 T cells, CD4

+
 T 

cells, and/or CD4
+
CD8α

+
 T cells. Since activation of natural killer cells or γδ T cells is independent of 

peptide presentation by MHC molecules [42, 43], the IFN-γ response to our immunization strategy with 

long synthetic peptides is unlikely to depend on these cells. Importantly, we have recently shown, in 

the same animals, that repeated immunization with CAF09-adjuvanted full-length exogenous protein 

via the i.p. route generated a CTL response rather than a T helper cell response [34]. This, in 

conjunction with the demonstrated peptide-SLA-2*03:01 complex formation, suggests that IDO-

specific cytotoxic CD8
+
 T cells are activated using this immunization strategy. However, numbers of 

IDO-specific CD8
+
 T cells were too few to analyze by phenotypic characterization or SLA-peptide 

tetramers in flow cytometry.  

In humans, peptide-based therapeutic immunization has shown successful induction of anti-tumor 

immune responses, but the magnitude of the response is often low, transient, and might not correlate 

with clinical benefit [44].  We performed an in vivo porcine cytotoxicity assay to evaluate the quality of 

the induced anti-IDO CMI response. Comparison of the relationship between control and target cells at 

baseline (10 min) and 24 hours post re-infusion did not show convincing in vivo cytotoxicity towards 

IDO-pulsed target cells, although a few animals displayed potential target-specific lysis. The baseline 

blood sample for in vivo cytotoxicity assays is commonly withdrawn 10 min post i.v. injection in 

smaller animals [45]. To our knowledge, this assay has never been performed in a large animal like the 

pig. Thus, we speculate a potential delay in the lungs, which is not an uncommon phenomenon upon 

i.v. administration of cells [46, 47]. Consequently, 10 min might be too early for withdrawal of the 

baseline sample. Further studies should evaluate different time points for the baseline, before any 

conclusions can be made regarding the impact of antigen dose on the in vivo quality of the CMI 

response.    
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Surprisingly few studies evaluate the influence of antigen dose on the immune response, but the 

majority have suggested that low antigen dose favors a Th1 response, whereas a Th2 response is 

induced upon exposure to a high antigen dose [48–50]. Specifically, the number of responsive CD4
+
 T 

cells in conjunction with the antigen dose was suggested to determine the Th1/Th2 nature of the 

immune response [51, 52]. Moreover, an inverse relationship between antigen dose and the induction 

of a polyfunctional CD4
+
 T-cell response has been demonstrated in mice and humans [53–55]. We 

recently evaluated the TT-specific immune response in the same animals and demonstrated induction 

of a humoral immune response upon a CAF09-formulated high antigen dose, while a low antigen dose 

induced a polyfunctional CTL response [34]. To our knowledge, our IDO-immunization trial is the first 

study evaluating the dose effect of an endogenous vaccine antigen in a large animal model. 

Interestingly, our findings support that repeated immunization with low dose endogenous peptides 

specifically induces a CMI-dominant response. Combined, our data show the importance of vaccine 

antigen dose and suggest that the pig may serve as a valuable large animal model for future preclinical 

testing of cancer immunotherapies.   

Acknowledgements  

The authors would like to thank Dennis Christensen at the State Serum Institute, Copenhagen, 

Denmark for kindly providing the CAF09 adjuvant. Moreover, the authors would also likely to thank 

the animal facility staff at the National Veterinary Institute, Technical University of Denmark; in 

particular Hans Skaaning, Maja Rosendahl, and Jørgen Olesen. Lastly, Chris Juul Hedegaard is 

acknowledged for assisting during immunizations. 

Conflict of interest  

The authors have no conflicts of interest to declare. 

Authors and Contributors  

Experimental design: NHO, TMF, and GJ. Experimental work: NHO, TMF, and JTJ. Data analysis and 

interpretation: NHO, MLS, MR, and GJ. Manuscript and figure preparation: NHO. Manuscript 

revision: NHO, TMF, JTJ, MLS, MR, SB, MHA and GJ. All the authors approved the final manuscript.  

  

Overgaard et al. (2017) Manuscript in preparation



 

 

References  

 1. Couzin-Frankel J (2013) Breakthrough of the year 2013. Cancer immunotherapy. Science 

342:1432–3. doi: 10.1126/science.342.6165.1432 

2. Melero I, Gaudernack G, Gerritsen W, et al. (2014) Therapeutic vaccines for cancer: an overview of 

clinical trials. Nat Rev Clin Oncol 11:509–24. doi: 10.1038/nrclinonc.2014.111 

3. European Medicines Agency. http://www.ema.europa.eu/ema/. Accessed 12 Jul 2017 

4. U S Food and Drug Administration Home Page. https://www.fda.gov/. Accessed 12 Jul 2017 

5. Wong KK, Li WA, Mooney DJ, Dranoff G (2016) Advances in Therapeutic Cancer Vaccines. Adv 

Immunol 130:191–249. doi: 10.1016/bs.ai.2015.12.001 

6. Klein L, Hinterberger M, Wirnsberger G, Kyewski B (2009) Antigen presentation in the thymus for 

positive selection and central tolerance induction. Nat Rev Immunol 9:833–44. doi: 

10.1038/nri2669 

7. Abramson J, Giraud M, Benoist C, Mathis D (2010) Aire’s partners in the molecular control of 

immunological tolerance. Cell 140:123–35. doi: 10.1016/j.cell.2009.12.030 

8. Melief CJM, van Hall T, Arens R, et al. (2015) Therapeutic cancer vaccines. J Clin Invest 125:3401–

12. doi: 10.1172/JCI80009 

9. Löb S, Königsrainer A, Rammensee H-G, et al. (2009) Inhibitors of indoleamine-2,3-dioxygenase 

for cancer therapy: can we see the wood for the trees? Nat Rev Cancer 9:445–52. doi: 

10.1038/nrc2639 

10. Moffett JR, Namboodiri MA (2003) Tryptophan and the immune response. Immunol Cell Biol 

81:247–65. doi: 10.1046/j.1440-1711.2003.t01-1-01177.x 

11. Soliman H, Mediavilla-Varela M, Antonia S (2010) Indoleamine 2,3-Dioxygenase: is it an immune 

suppressor? Cancer J 16:354–359. doi: 10.1097/PPO.0b013e3181eb3343 

12. Brochez L, Chevolet I, Kruse V (2017) The rationale of indoleamine 2,3-dioxygenase inhibition for 

Overgaard et al. (2017) Manuscript in preparation



 

 

cancer therapy. Eur J Cancer 76:167–182. doi: 10.1016/j.ejca.2017.01.011 

13. Liu X, Newton RC, Friedman SM, Scherle PA (2009) Indoleamine 2,3-dioxygenase, an emerging 

target for anti-cancer therapy. Curr Cancer Drug Targets 9:938–52. doi: 

10.2174/156800909790192374 

14. Munn DH, Sharma MD, Baban B, et al. (2005) GCN2 Kinase in T Cells Mediates Proliferative 

Arrest and Anergy Induction in Response to Indoleamine 2,3-Dioxygenase. Immunity 22:633–

642. doi: 10.1016/j.immuni.2005.03.013 

15. Lee GK, Park HJ, Macleod M, et al. (2002) Tryptophan deprivation sensitizes activated T cells to 

apoptosis prior to cell division. Immunology 107:452–60. doi: 10.1046/j.1365-2567.2002.01526.x 

16. Munn DH, Sharma MD, Hou D, et al. (2004) Expression of indoleamine 2,3-dioxygenase by 

plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 114:280–90. doi: 

10.1172/JCI21583 

17. Uyttenhove C, Pilotte L, Théate I, et al. (2003) Evidence for a tumoral immune resistance 

mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9:1269–

74. doi: 10.1038/nm934 

18. Brandacher G, Perathoner A, Ladurner R, et al. (2006) Prognostic value of indoleamine 2,3-

dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. Clin Cancer Res 

12:1144–51. doi: 10.1158/1078-0432.CCR-05-1966 

19. Pan K, Wang H, Chen M, et al. (2008) Expression and prognosis role of indoleamine 2,3-

dioxygenase in hepatocellular carcinoma. J Cancer Res Clin Oncol 134:1247–53. doi: 

10.1007/s00432-008-0395-1 

20. Sørensen RB, Berge-Hansen L, Junker N, et al. (2009) The immune system strikes back: cellular 

immune responses against indoleamine 2,3-dioxygenase. PLoS One 4:e6910. doi: 

10.1371/journal.pone.0006910 

21. Munir S, Larsen SK, Iversen TZ, et al. (2012) Natural CD4+ T-cell responses against indoleamine 

2,3-dioxygenase. PLoS One 7:e34568. doi: 10.1371/journal.pone.0034568 

Overgaard et al. (2017) Manuscript in preparation



 

 

22. Andersen MH (2012) The specific targeting of immune regulation: T-cell responses against 

Indoleamine 2,3-dioxygenase. Cancer Immunol Immunother 61:1289–97. doi: 10.1007/s00262-

012-1234-4 

23. Sørensen RB, Hadrup SR, Svane IM, et al. (2011) Indoleamine 2,3-dioxygenase specific, cytotoxic 

T cells as immune regulators. Blood 117:2200–10. doi: 10.1182/blood-2010-06-288498 

24. Seok J, Warren HS, Cuenca AG, et al. (2013) Genomic responses in mouse models poorly mimic 

human inflammatory diseases. Proc Natl Acad Sci U S A 110:3507–12. doi: 

10.1073/pnas.1222878110 

25. Mak IWY, Evaniew N, Ghert M (2014) Lost in translation : animal models and clinical trials in 

cancer treatment. Am J Transl Res 6:114–118. doi: AJTR1312010 

26. Dawson HD, Loveland JE, Pascal G, et al. (2013) Structural and functional annotation of the 

porcine immunome. BMC Genomics 14:332. doi: 10.1186/1471-2164-14-332 

27. Schachtschneider KMKM, Schwind RMRM, Newson J, et al. (2017) The Oncopig Cancer Model: 

An Innovative Large Animal Translational Oncology Platform. Front Oncol 7:190. doi: 

10.3389/FONC.2017.00190 

28. Sørensen MR, Ilsøe M, Strube ML, et al. (2017) Sequence-Based Genotyping of Expressed Swine 

Leukocyte Antigen Class I Alleles by Next-Generation Sequencing Reveal Novel Swine 

Leukocyte Antigen Class I Haplotypes and Alleles in Belgian, Danish, and Kenyan Fattening Pigs 

and Göttingen Minipigs. Front Immunol 8:701. doi: 10.3389/fimmu.2017.00701 

29. Korsholm KS, Hansen J, Karlsen K, et al. (2014) Induction of CD8+ T-cell responses against 

subunit antigens by the novel cationic liposomal CAF09 adjuvant. Vaccine 32:3927–35. doi: 

10.1016/j.vaccine.2014.05.050 

30. Overgaard NH, Frøsig TM, Welner S, et al. (2015) Establishing the pig as a large animal model for 

vaccine development against human cancer. Front Genet 6:286. doi: 10.3389/fgene.2015.00286 

31. Karosiene E, Lundegaard C, Lund O, Nielsen M (2012) NetMHCcons: a consensus method for the 

major histocompatibility complex class I predictions. Immunogenetics 64:177–86. doi: 

Overgaard et al. (2017) Manuscript in preparation



 

 

10.1007/s00251-011-0579-8 

32. Pedersen LE, Harndahl M, Nielsen M, et al. (2012) Identification of peptides from foot-and-mouth 

disease virus structural proteins bound by class I swine leukocyte antigen (SLA) alleles, SLA-

1*0401 and SLA-2*0401. Anim Genet 44:251–8. doi: 10.1111/j.1365-2052.2012.02400.x 

33. Kast WM, Brandt RM, Sidney J, et al. (1994) Role of HLA-A motifs in identification of potential 

CTL epitopes in human papillomavirus type 16 E6 and E7 proteins. J Immunol 152:3904–12. doi: 

http://www.jimmunol.org/content/152/8/3904 

34. Overgaard NH, Frøsig TM, Jakobsen JT, et al. (2017) Low antigen dose formulated in CAF09 

adjuvant Favours a cytotoxic T-cell response following intraperitoneal immunization in Göttingen 

minipigs. Vaccine 35:5629–5636. doi: 10.1016/j.vaccine.2017.08.057 

35. Zwaveling S, Ferreira Mota SC, Nouta J, et al. (2002) Established human papillomavirus type 16-

expressing tumors are effectively eradicated following vaccination with long peptides. J Immunol 

169:350–8. 

36. Faure F, Mantegazza A, Sadaka C, et al. (2009) Long-lasting cross-presentation of tumor antigen in 

human DC. Eur J Immunol 39:380–90. doi: 10.1002/eji.200838669 

37. Bijker MS, van den Eeden SJF, Franken KL, et al. (2007) CD8+ CTL priming by exact peptide 

epitopes in incomplete Freund’s adjuvant induces a vanishing CTL response, whereas long 

peptides induce sustained CTL reactivity. J Immunol 179:5033–40. doi: 

https://doi.org/10.4049/jimmunol.179.8.5033 

38. Zom GG, Khan S, Britten CM, et al. (2014) Efficient induction of antitumor immunity by synthetic 

toll-like receptor ligand-peptide conjugates. Cancer Immunol Res 2:756–64. doi: 10.1158/2326-

6066.CIR-13-0223 

39. Paul S, Weiskopf D, Angelo MA, et al. (2013) HLA Class I Alleles Are Associated with Peptide-

Binding Repertoires of Different Size, Affinity, and Immunogenicity. J Immunol 191:5831–5839. 

doi: 10.4049/jimmunol.1302101 

40. Schmidt ST, Khadke S, Korsholm KS, et al. (2016) The administration route is decisive for the 

Overgaard et al. (2017) Manuscript in preparation



 

 

ability of the vaccine adjuvant CAF09 to induce antigen-specific CD8(+) T-cell responses: The 

immunological consequences of the biodistribution profile. J Control Release 239:107–17. doi: 

10.1016/j.jconrel.2016.08.034 

41. Dunn GP, Bruce AT, Ikeda H, et al. (2002) Cancer immunoediting: from immunosurveillance to 

tumor escape. Nat Immunol 3:991–8. doi: 10.1038/ni1102-991 

42. Newman KC, Riley EM (2007) Whatever turns you on: accessory-cell-dependent activation of NK 

cells by pathogens. Nat Rev Immunol 7:279–91. doi: 10.1038/nri2057 

43. Chien Y, Konigshofer Y (2007) Antigen recognition by gammadelta T cells. Immunol Rev 215:46–

58. doi: 10.1111/j.1600-065X.2006.00470.x 

44. Slingluff CL Jr. (2011) The Present and Future of Peptide Vaccines for Cancer: Single or Multiple, 

Long or Short, Alone or in Combination? Cancer J 17:343–350. doi: 

10.1097/PPO.0b013e318233e5b2.The 

45. Nieuwenhuis I, Beenhakker N, Bogers WMJM, et al. (2010) No difference in Gag and Env 

immune-response profiles between vaccinated and non-vaccinated rhesus macaques that control 

immunodeficiency virus replication. J Gen Virol 91:2974–84. doi: 10.1099/vir.0.022772-0 

46. Leibacher J, Henschler R (2016) Biodistribution, migration and homing of systemically applied 

mesenchymal stem/stromal cells. Stem Cell Res Ther 7:7. doi: 10.1186/s13287-015-0271-2 

47. Lee RH, Pulin AA, Seo MJ, et al. (2009) Intravenous hMSCs improve myocardial infarction in 

mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-

6. Cell Stem Cell 5:54–63. doi: 10.1016/j.stem.2009.05.003 

48. Bretscher PA (1994) Prospects for Low Dose BCG Vaccination against Tuberculosis. 

Immunobiology 191:548–554. doi: 10.1016/S0171-2985(11)80461-4 

49. Buddle BM, de Lisle GW, Pfeffer A, Aldwell FE (1995) Immunological responses and protection 

against Mycobacterium bovis in calves vaccinated with a low dose of BCG. Vaccine 13:1123–30. 

doi: https://doi.org/10.1016/0264-410X(94)00055-R 

Overgaard et al. (2017) Manuscript in preparation



 

 

50. Clerici M, Clark EA, Polacino P, et al. (1994) T-cell proliferation to subinfectious SIV correlates 

with lack of infection after challenge of macaques. AIDS 8:1391–5. doi: 10.1097/00002030-

199410000-00004 

51. Rudulier CD, McKinstry KK, Al-Yassin GA, et al. (2014) The number of responding CD4 T cells 

and the dose of antigen conjointly determine the TH1/TH2 phenotype by modulating B7/CD28 

interactions. J Immunol 192:5140–50. doi: 10.4049/jimmunol.1301691 

52. Ismail N, Bretscher PA (2001) More antigen-dependent CD4(+) T cell / CD4(+) T cell interactions 

are required for the primary generation of Th2 than of Th1 cells. Eur J Immunol 31:1765–71. 

53. Aagaard C, Hoang TTKT, Izzo A, et al. (2009) Protection and polyfunctional T cells induced by 

Ag85B-TB10.4/IC31 against Mycobacterium tuberculosis is highly dependent on the antigen 

dose. PLoS One 4:e5930. doi: 10.1371/journal.pone.0005930 

54. Luabeya AKK, Kagina BMNN, Tameris MD, et al. (2015) First-in-human trial of the post-exposure 

tuberculosis vaccine H56:IC31 in Mycobacterium tuberculosis infected and non-infected healthy 

adults. Vaccine 33:4130–40. doi: 10.1016/j.vaccine.2015.06.051 

55. Billeskov R, Wang Y, Solaymani-Mohammadi S, et al. (2017) Low Antigen Dose in Adjuvant-

Based Vaccination Selectively Induces CD4 T Cells with Enhanced Functional Avidity and 

Protective Efficacy. J Immunol 198:3494–3506. doi: 10.4049/jimmunol.1600965 

 

Overgaard et al. (2017) Manuscript in preparation



T
a
b

le
 1

 T
h

e 
im

m
u

n
iz

a
ti

o
n

 l
ib

ra
ry

 c
o
n

si
st

s 
o
f 

fo
u

r 
lo

n
g
 I

D
O

-d
er

iv
ed

 p
ep

ti
d

es
 c

o
m

p
ri

si
n

g
 p

o
te

n
ti

a
l 

C
D

8
+
 T

-c
el

l 
ep

it
o

p
es

. 
G

ö
tt

in
g

en
 m

in
ip

ig
s 

w
er

e 
im

m
u
n
iz

ed
 w

it
h
 f

o
u
r 

ID
O

-d
er

iv
ed

 3
0
-3

1
m

er
 p

ep
ti

d
es

 (
re

fe
rr

ed
 t

o
 a

s 
ID

O
1
, 

ID
O

2
, 

ID
O

3
, 

an
d

 I
D

O
4

).
 E

ac
h

 i
m

m
u

n
iz

at
io

n
 p

ep
ti

d
e 

w
as

 

d
es

ig
n
ed

 t
o
 c

o
n
ta

in
 e

it
h
er

 p
o
te

n
ti

al
 s

tr
o

n
g
 b

in
d
er

s 
(S

B
) 

an
d
/o

r 
p
o
te

n
ti

al
 w

ea
k
 b

in
d
er

s 
(W

B
) 

b
as

ed
 o

n
 N

et
M

H
C

co
n

s1
.1

 p
re

d
ic

ti
o

n
 t

o
w

ar
d
s 

th
e 

S
L

A
-2

*
0
3
:0

1
 a

ll
el

e 
w

it
h
 i

n
d

ic
at

io
n
 o

f 
th

e 
%

ra
n
k
 s

co
re

. 
T

h
e 

lo
ca

ti
o
n
 o

f 
ea

ch
 8

-1
1
m

er
 p

ep
ti

d
e 

w
it

h
in

 t
h

e 
g

iv
en

 i
m

m
u

n
iz

at
io

n
 p

ep
ti

d
e 

is
 i

n
d

ic
at

ed
. 

P
ep

ti
d
e 

2
 i

s 
p
ar

t 
o
f 

b
o
th

 I
D

O
1
 a

n
d
 I

D
O

2
; 

h
en

ce
 l

is
te

d
 t

w
ic

e.
 T

h
e 

K
D
 v

al
u
es

 w
er

e 
o
b
ta

in
ed

 u
si

n
g
 a

 p
ep

ti
d

e-
M

H
C

 a
ff

in
it

y
 E

L
IS

A
 w

it
h

 r
ec

o
m

b
in

an
t 

S
L

A
-2

*
0
3
:0

1
. 
A

b
b
re

v
ia

ti
o
n
: 

N
D

 =
 n

o
t 

d
et

er
m

in
ed

. 

 
 

 
 

 

P
ep

ti
d

e
 

S
eq

u
en

ce
 

L
en

g
th

 
%

R
a
n

k
 

P
r
ed

ic
te

d
 b

in
d

er
 

K
D

 (
n

M
) 

 

ID
O

1
 

M
A
L
D
W
W
S
P
M
D
N
S
W
K
I
F
E
E
Y
H
I
D
E
D
L
G
F
A
L
P
 

3
0
 a

a 
- 

- 
- 

P
ep

ti
d
e 

1
 

A
L
D
W
W
S
P
M
 

8
 a

a 
0
.5

0
 

S
B

 
N

/D
 

P
ep

ti
d
e 

2
 

H
I
D
E
D
L
G
F
A
L
 

1
0
 a

a 
0
.1

7
 

S
B

 
9
0
9
 

ID
O

2
  

N
S
W
K
I
F
E
E
Y
H
I
D
E
D
L
G
F
A
L
P
N
P
L
E
E
L
P
H
P
Y
 

3
0
 a

a 
- 

- 
- 

P
ep

ti
d
e 

2
 

H
I
D
E
D
L
G
F
A
L
 

1
0
 a

a 
0
.1

7
 

S
B

 
9
0
9
 

P
ep

ti
d
e 

3
 

A
L
P
N
P
L
E
E
L
 

9
 a

a 
1
.5

0
 

W
B

 
 2

5
4
5
7
 

ID
O

3
 

L
L
D
I
T
S
S
L
H
K
A
L
E
V
F
H
Q
I
H
E
Y
V
D
P
K
L
F
F
N
V
L
 

3
1
 a

a 
- 

- 
- 

P
ep

ti
d
e 

4
 

L
L
D
I
T
S
S
L
 

8
 a

a 
0
.5

0
 

S
B

 
N

/D
 

P
ep

ti
d
e 

5
 

Y
V
D
P
K
L
F
F
 

8
 a

a 
0
.8

0
 

W
B

 
1
7
7
4
6
 

P
ep

ti
d
e 

6
 

Y
V
D
P
K
L
F
F
N
 

9
 a

a 
2
.0

0
 

W
B

 
4
7
2
9
 

P
ep

ti
d
e 

7
 

Y
V
D
P
K
L
F
F
N
V

 
1
0
 a

a 
0
.1

2
  

S
B

 
4
4
8
 

P
ep

ti
d
e 

8
 

Y
V
D
P
K
L
F
F
N
V
L
 
 
 

1
1
 a

a 
0
.0

7
 

S
B

 
4
6
8
 

ID
O

4
 

G
S
A
A
G
F
L
Q
E
M
R
T
Y
M
P
P
A
H
R
N
F
L
H
S
L
E
S
G
P
S
 

3
0
 a

a 
- 

- 
- 

P
ep

ti
d
e 

9
 

F
L
Q
E
M
R
T
Y
M
 

9
 a

a 
2
.0

0
 

W
B

 
N

/D
 

 P
ep

ti
d
e 

1
0
 

Y
M
P
P
A
H
R
N
F
L
 

1
0
 a

a 
0
.8

0
 

W
B

 
6
9
1
8
 

Table 1 Overgaard et al. (2017) Manuscript in preparation



Fig. 1 Intraperitoneal administration of both a low and high dose IDO-derived peptides induces a 

cell-mediated immune response. Göttingen minipigs were i.p. immunized with IDO-derived peptides 

formulated in CAF09 adjuvant. IFN-γ ELISpot responses at the indicated time points from animals 

receiving either 1 µg (black bars), 10 µg (grey bars), or 100 µg (white spotted bars) of IDO1 (a), IDO2 

(b), IDO3 (c), or IDO4 (d) are shown. Background values are subtracted, and the data is shown as 

number of IFN-γ spot forming cells (SFCs) per 2x10
5
 PBMCs; bars represent mean values ±SEM, 

(n=5). Statistical analysis on non-transformed data by paired Student’s t-test. 
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Fig. 2 The level of IDO-specific IFN-γ SFCs is independent of the antigen dose. Göttingen minipigs 

were immunized i.p. with IDO-derived peptides formulated in CAF09 adjuvant. The level of IFN-γ 

SFCs in response to IDO1, IDO2, IDO3, and IDO4 were evaluated across the treatment groups. 

Animals receiving 1 µg (black bars), 10 µg (grey bars), or 100 µg antigen (white spotted bars) were 

compared. Data is shown as IFN-γ SFCs per 2x10
5
 PBMCs. Background values were subtracted. Bars 

represent mean values ±SEM, (n=5). Statistical analysis on non-transformed data by unpaired 

Student’s t-test.   
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Fig. 3 Immunization with a high peptide dose generates IDO-specific IgG antibodies Göttingen 

minipigs were i.p. immunized with IDO-derived peptides formulated in CAF09 adjuvant. Antigen-

specific IgG antibodies were evaluated in serum samples using an indirect ELISA. Anti-IDO IgG 

responses towards IDO1 (a), IDO2 (b), IDO3 (c), and IDO4 (d) are shown from animals receiving 1 µg 

(black bars), 10 µg (grey bars), or 100 µg antigen (white spotted bars). Data is shown as optical density 

(OD) values; bars represent mean values ±SEM, (n=5). Statistical analysis by paired Student’s t-test. 
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Fig. 4 The level of vaccine-induced antigen-specific humoral immune response correlates with the 

CAF09-formulated peptide dose. Göttingen minipigs were i.p. immunized with IDO-derived peptides 

formulated in CAF09 adjuvant. The level of IgG antibodies towards IDO1, IDO2, IDO3, and IDO4 in 

serum samples was evaluated across groups.  Animals immunized with 1 µg (black bars), 10 µg (grey 

bars), or 100 µg (white spotted bars) were compared. Data is shown as optical density values; bars 

represent mean values ±SEM, (n=5). Statistical analysis by unpaired Student’s t-test.  
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Fig. 5 Fluorescently labeled IDO-pulsed target cells are detectable but not specifically lysed 

following intravenous re-infusion to immunized donor animals. PBMCs were purified from all 

animals following nine rounds of immunization. Control cells remained non-pulsed (eFluor670-

labeled) and target cells were pulsed with a pool of peptide 1-10 (eFluor450-labeled). A 1:1 mixture of 

control:target cells were intravenously re-infused into each donor animal for evaluation of in vivo 

cytotoxicity towards IDO-presenting cells. (a) The relationship between control and target cells was 

determined using flow cytometry on samples obtained 10 min post injection (baseline) and 24 hours 

post injection. Representative animals are shown. The control:target cell ratio was evaluated in animals 

immunized with 1 µg (b), 10 µg (c), and 100 µg (d) antigen. 
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Outline of immunization trial 

Day Treatment ELISpot IgG ELISA 

0 IDO immunization X X 

14 IDO immunization X - 

27 IDO immunization X X 

41 IDO immunization X - 

55 - - X 

70 IDO + TT immunization X X 

83 IDO + TT immunization X - 

97 IDO + TT immunization X X 

111 - X X 

 

173 IDO immunization - - 

186 IDO immunization - - 

195 - - - 

200-203 In vivo cytotoxicity - - 

 

Supplementary table 1 Outline of the immunization trial Göttingen minipigs 

were randomized into three groups and immunized seven times with either 1 µg, 10 

µg, or 100 µg of IDO1-4, (n=5). The peptides were formulated in CAF09 adjuvant 

and delivered via the intraperitoneal route. The immunizations were performed with 

two week intervals; however, a resting period was included both after the 4
th

. 

Tetanus toxoid was included in the immunizations at day 70, 83, and 97. ELISpot 

(purified PBMCs) and IgG ELISA (serum samples) were performed at the indicated 

time points. Finally, two additional immunizations were performed prior to an in 

vivo cytotoxicity assay. Abbreviations: TT, tetanus toxoid. 
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Abstract  

In recent years, immunotherapy has shown considerable promise in the management of several 

malignancies. However, the majority of preclinical studies have been conducted in rodents, the 

results of which often translate poorly to patients given the substantial differences between 

murine and human immunology. As the porcine immune system is far more analogous to that of 

humans, we set to determine whether pigs may serve as a supplementary preclinical model for 

testing such therapies. We have generated a large animal model, the Oncopig, with inducible 

tumor formation resulting from concomitant KRAS
G12D

 and TP53
R167H

 mutations under control of 

an adenoviral vector Cre-recombinase (AdCre). Following injection of AdCre, the transgenic 

Oncopig cells express the mutated transgenes, which results in tumor formation at the site of 

AdCre exposure. The objective of this study was to characterize the tumor microenvironment in 

this novel animal model with respect to T-cell responses in particular and to elucidate the 

potential use of Oncopigs for the preclinical testing of cancer immunotherapies. We observed 

pronounced T-cell infiltration to the tumors with a strong CD8β
+
 predominance. Additionally, 

these intratumoral T cells were found to have increased expression of the cytotoxic marker 

perforin when compared to the circulating T-cell pool. Similarly, there was robust granzyme B 

staining localizing to the tumors; affirming the presence of cytotoxic immune cells within the 

tumor. In addition, the tumor displayed enrichment in regulatory cells as demonstrated by 

increased levels of FoxP3-expressing T cells when compared to peripheral blood. To investigate 

the immunogenicity of the tumor cells themselves, we developed a fluorescence-based in vitro 

porcine cytotoxicity assay and demonstrated pronounced killing of autologous tumor cells in an 

effector:target cell dependent manner. By RNA-seq analysis, we showed increased gene 

expression of Indoleamine 2,3-dioxygenase 1 (IDO1), Cytotoxic T-lymphocyte-associated 

protein 4 (CTLA4), and Programmed death-ligand 1 (PDL1) in Oncopig tumors, suggesting an in 

vivo suppression of T-cell effector functions. Combined, these results demonstrate the propensity 

of the porcine immune system to recognize and mount a cytotoxic response against tumor cells in 

vitro, and suggest that the Oncopig may serve as a valuable model for future preclinical testing of 

immunotherapies aimed at reactivating this tumor-directed cytotoxicity in vivo. 
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1. Introduction   

For decades, preclinical studies pertaining to novel cancer therapies have relied on animal models 

of disease. Traditionally, rodents have been the gold standard for cancer research providing 

invaluable insights into the interplay between the immune system and tumor cells. However, 

despite these numerous advances, mice often fail to fully recapitulate human cancers, and many 

promising preclinical therapies have failed to have similar success in the clinic (1,2). Beyond the 

differences in disease pathogenesis and progression between rodents and humans (3–5), due to 

size constraints rodents often do not allow for the investigation of new surgical interventions 

(4,6). In light of the numerous obstacles presented by rodent models of disease, alternative model 

systems have been proposed, including zebrafish (7,8), cats (9), dogs (9–14), and pigs (15–22). 

Due to homology in physiology, anatomy, size, genetics, metabolism, life span, and immunome 

between humans and pigs (15,23–25), a porcine model may be extremely relevant for preclinical 

testing of cancer treatments. Further, in contrast to murine cells, both porcine and human somatic 

cells demonstrate suppressed telomerase expression in most tissues that is reactivated during 

cancer development (26,27). For this reason, induction of oncogenesis in humans and pigs 

generally requires a greater number of genetic defects than in mice (3,6). To determine the 

relevance of the pig as a platform for immunotherapy, we employed the Oncopig model with 

inducible oncogenic RAS and dominant-negative P53 (28). Upon exposure to an adenoviral 

vector Cre-recombinase (AdCre), the infected cells of the transgenic Oncopig acquire two driver 

mutations: KRAS
G12D

 and TP53
R167H

; two of the most common genetic abnormalities in human 

cancer (28,29).  

The ability of tumor cells to avoid immune destruction has been included as a hallmark of 

tumorigenesis (30). To this end, immune checkpoint inhibitors have shown tremendous promise 

in the clinic (31–33). However, when predicting patient responsiveness to such immunotherapies, 

the number and types of intratumoral immune cells are a key factors (34–37). The Immunoscore 

suggests a new classification of cancer, where the tumor microenvironment plays an important 

role, and the relationship between intratumoral immune cells and patient prognosis is taken into 

account (38–40). This new approach currently serves as a prognostic tool for colorectal cancer; 

however, the universal applicability of the Immunoscore as a prognostic strategy in various 

cancer types remains to be fully validated (41). Given the importance of the intratumoral immune 
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cells in both prognosis and response to therapy, we performed a characterization of the 

immunological landscape in Oncopig tumors in order to evaluate the applicability of the model 

for studying anti-tumor immune responses and for future testing of immunotherapies in a large 

and relevant in vivo system. 

 

2. Materials and Methods  

2.1 Pigs 

The KRAS
G12D 

and TP53
R167H

 floxed Oncopigs (28) were neither sex- nor age-matched, and all 

animals were housed at the University of Illinois, Urbana-Champaign, United States. F1 animals 

homozygous for the transgenes were used for experiments. All animal experiments were carried 

out in accordance with both national and international guidelines. The University of Illinois 

Institutional Animal Care and Use Committee (IACUC; Protocol number 14126) approved all 

procedures. 

 

2.2 AdCre injections for tumor induction 

All animals were anesthetized using an intramuscular (i.m.) injection of Telazol
®
-Ketamine-

Xylazine, 1 ml/50 lbs. The AdCre (Ad5CMVCre-eGFP, Gene Transfer Vector Core, University 

of Iowa, batch: Ad3500 or Ad3743, catalogue number (cat.): VVC-U of Iowa-1174) was used for 

triggering tumors in vivo, and the preparation was previously described elsewhere (28,42). 

Briefly, AdCre was diluted with minimal essential medium (Corning, cat.: 50-011) containing 2 

M calcium chloride resulting in a final concentration of calcium chloride of 0.01 M. Following 

dilution, the final concentration of AdCre ranged from 1x10
9
 to 2x10

9
 PFU/ml. The mixture was 

allowed to incubate at room temperature (RT) for 15 min prior to injection.  For all subcutaneous 

(s.c.) injections, a total volume of 1 ml AdCre was injected. For i.m. injections, animals received 

0.5 ml or 1 ml. All AdCre injections were carried out using a 21 gauge needle and completed 

within 45 min from the time of incubation. Animals were monitored every second day, and tumor 

measurements was carried out using a caliper. All animals were euthanized 7-21 days post AdCre 

injection.  
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2.3 Immunohistochemistry (IHC) 

Tissues were fixed in 10% formalin and paraffin-embedded. Slides were sectioned at 4 µm 

interval and all subsequent steps were carried out at RT. Heat-induced epitope retrieval was 

carried out using a Menarini Access Retrieval Unit  with a sodium citrate buffer (pH 6) for 1 min 

40 sec at 125°C, full pressure. The slides were then loaded onto a Dako Autostainer and rinsed 

with a Tris/Tween buffer (pH 7.5) prior to treatment with Dako Real TM Peroxidase blocking 

solution (Agilent Technologies, cat.: S202386-2) for 5 min followed by buffer rinse (Tris/Tween, 

pH 7.5) for an additional 5 min. Slides were then treated with the primary antibody: Polyclonal 

Rabbit Anti-Human CD3 (Agilent Technologies, cat.: A045201-2) diluted in Dako universal 

diluent (Agilent Technologies, cat.: S080981-2) and stained for 30 min. Two rounds of 5 min 

buffer rinse (Tris/Tween, pH 7.5) were carried out prior to secondary staining with Dako 

EnVision+ System-HRP Labelled Polymer Anti rabbit (Agilent Technoligies, cat.: K400211-2) 

for 30 min. The slides were then rinsed twice (Tris/Tween, pH 7.5) and treated with 3,3’-

diaminobenzidine (DAB)+ substrate-chromogen system (Agilent Technologies, cat.: K346889-2) 

for 10 min. Finally, the slides were washed thrice in H2O and counterstained with Gills 

Haematoxylin (Sigma-Aldrich, cat.: GHS1128) for 27 sec followed by additional wash in H2O.    

  

2.4 Immunofluorescence 

Tissues were fixed in 10% formalin, embedded in paraffin, and sectioned at 4 μm intervals. For 

immunofluorescence, slides were heated in a pressure cooker using DAKO Target Retrieval 

Solution (Agilent Technologies, cat.: S170084-2), blocked for 1 hour at RT with Innovex 

Background Buster (Innovex, cat.: NB306) with 5% Fc Receptor Block (Innovex, cat.: NB309), 

and incubated with primary antibodies against CD3 (Santa Cruz Biotech, cat.: sc-20047), CD8α 

(Santa Cruz Biotech, cat.: sc-7188), or Granzyme B (abcam, cat.: ab134933) at 1:100-200 

overnight at 4°C. Slides were mounted in a DAPI containing medium (Santa Cruz) and visualized 

using either Alexa Fluor 488 (abcam, cat.: ab150113) or Alexa Fluor 594 (abcam, cat.: 

ab150080) conjugated secondary antibodies.  
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2.5 Cell isolation 

Animals were blood sampled into BD sodium heparinized vacutainer tubes (BD Diagnostics, cat.: 

362753) and purified using SepMate tubes (StemCell Technologies, cat.: 85450) according to 

manufacturer’s protocol. Briefly, sodium heparinized blood was diluted 1:1 in PBS/2%FBS 

(ThermoFischer Scientific, cat.: 10082147) prior to separation using Lymphoprep (StemCell 

Technologies, cat.: 07851) with centrifugation settings at 1200 G for 20 min at 4°C. Cells were 

subsequently washed twice and counted using a hemocytometer. Viable cells were distinguished 

from dead cells using Trypan blue (Sigma-Aldrich, cat.: T0887). For isolation of cancer cells 

from in vivo-induced tumors; a 1 cm
3
 tumor biopsy was harvested and cut into small pieces 

before incubation in pre-heated RPMI-1640 containing 2% FBS, 3 mg/ml Collagenase D (Sigma-

Aldrich, cat.: COLLD-RO), 5 µg/ml DNase I (Sigma-Aldrich, cat.: 11284932001), and 1 µg/ml 

Dispase II (Sigma-Aldrich, cat.: 04942078001) for 90 min at 37°C. Samples were vortexed every 

30 minutes to facilitate digestion. Cells were then passed twice through a 70 µm cell strainer to 

obtain a single cell suspension. Processing was completed within 6 hours for all cells. Cells were 

counted using the Nucleocounter NC-200 (Chemometec, Allerød, Denmark) and 10
7
 cells per 

vial of PBMCs or tumor cells were cryopreserved for subsequent analysis. FBS/10%DMSO was 

used as freezing medium, and every vial was placed in a Mr. Frosty freezing container at -80°C 

within three minutes of exposure to DMSO. The vials were transferred to liquid nitrogen 24 h 

later for long term storage.   

  

2.6 Flow cytometry 

Antibodies were used at pre-determined optimal concentrations (Supplementary Table 1). 

Cryopreserved PBMCs and tumor cell suspensions were thawed in RPMI-1640/20%FBS and 

subsequently washed twice in PBS/0.5%FBS. The median viability post thawing was 91.7% as 

determined by the Nucleocounter NC-200, and ~4x10
6
 cells per sample were stained for flow 

cytometry. The samples were then surface stained for 30 min at 4°C with a combination of anti-

CD3, anti-CD4, anti-CD8α, anti-CD8β antibodies, and a live/dead stain allowing viable cells to 

be distinguished from dead cells. For detection of FoxP3, cells were fixed post surface staining 

using the Anti-Mouse/Rat Foxp3 Staining Set (ThermoFischer Scientific, cat.: 72-5775-40) 

according to manufacturer’s protocol. Cells were then incubated with anti-FoxP3 antibody for 30 
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min at 4°C.  For intracellular cytokine staining, samples were first cultured for 16 hours at 37°C, 

5% CO2 in RPMI-1640/10%FBS medium; serum was pretested in cell stimulation assays prior to 

use. As a positive control, 1 µg/ml PHA (Sigma-Aldrich, cat.: L4144) was used for stimulation. 

To block cytokine secretion, cells were then cultured for additional 6 hours in the presence of 10 

µg/ml Brefeldin A (Sigma-Aldrich, cat.: B7651-5MG). Following surface stain with antibodies 

listed in Supplementary Table 1, cells were then fixed using the Fixation/Permeabilization 

Solution Kit (BD Biosciences, cat.: 554714) according to manufacturer’s protocol and stained 

with a mixture of anti-IFN-γ, anti-TNF-α, and anti-perforin antibodies for 30 min at 4°C. To 

detect KRAS
G12D

 by flow cytometry, the Fixation/Permeabilization Solution Kit was used 

directly with no pre-culturing in the presence of Brefeldin A. For all staining procedures, 

fluorescence minus one controls were included. Samples were acquired using an LSR II (BD 

Biosciences, Albertslund, Denmark) or an LSRFortessa (BD Bioscience, Albertslund, Denmark) 

flow cytometer, and the PMT voltages were adjusted based on a mixture of unstained cells 

resulting in a mean auto fluorescence intensity of ~10
2
 for all fluorochromes. The data were 

analyzed using either FCS Express version 6 (De Novo Software) or FlowJo Data Analysis 

Software version 10. The analysis was performed on viable, single cells (lymphocytes or tumor 

cells) with the gating strategy being indicated in each figure legend. Examples of the gating 

strategies used for analysis are shown (Fig. S1 & Fig. S2A-B). For all samples, a minimum of 

200,000 T cells were recorded for analysis.   

 

2.7 In vitro cytotoxicity  

Freshly isolated PBMCs and tumor cells were washed twice with PBS to remove any serum and 

counted using the hemocytometer and Trypan Blue. Effector cells (PBMCs) remained unlabeled. 

Control cells (PBMCs) and target cells (isolated tumor cells) were labeled with 10 µM 

eFluor450
®
 and 5 µM eFluor670

®
 Cell Proliferation Dye (eBioscience, cat.: 65-0842-85 and 65-

0840-85), respectively, according to manufacturer’s protocol. Briefly, cells were labeled for 10 

min at 37°C in the dark and labeling was stopped by adding four-five volumes of cold RPMI-

1640/10%FBS. The cells were then incubated on ice for 5 min covered in the dark followed by 

three washing steps with RPMI-1640/10%FBS. For culturing, a titration of effector:target cell 

ratio was carried out as follows: 0:1, 0.5:1, 1:1, and 2:1; culturing conditions were 37°C, 5% CO2. 
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Samples were harvested at 10 min and 24 hours post co-culturing, fixed immediately with a 

4%PFA solution (Fischer Scientific, cat.: 199431LT) to eliminate additional killing or cell 

turnover. Samples were washed twice in PBS/0.5%FBS and acquired using an LSR II (BD 

Biosciences) flow cytometer and data were analyzed using FCS Express version 6 (De Novo 

Software). PMT voltages were once again adjusted according to an unstained sample; the mean 

auto fluorescence value for each fluorochrome was adjusted to approximately 10
2
. For each 

sample, ~1.5x10
6
 cells were acquired for analysis. Percentage of specific killing was determined 

by comparing the percentage change in ratio between control and target cell populations at 

baseline and 24 hours post co-culture. For each individual animal, data were normalized to 

background levels of killing/cell turnover from wells with no effector cells added. 

 

2.8 RNA-seq analysis 

Previously produced RNA-seq datasets for Oncopig primary hepatocyte cell lines (n=3), 

transformed hepatocyte (hepatocellular carcinoma (HCC)) cell lines (n=3), primary fibroblast 

cell lines (n=8), and transformed fibroblast (soft-tissue sarcoma) cell lines (n=4) were 

downloaded from the ENA database (www.ebi.ac.uk/ena) under accession number PRJEB8646 

(43,44). In addition, previously produced Oncopig skeletal muscle (n=3) and leiomyosarcoma 

tumor (n=4) RNA-seq datasets were downloaded from the ArrayExpress database 

(www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-3382 (28). Raw reads were 

trimmed, aligned to the swine reference genome (45), and assessed for differential gene 

expression as previously described (28,43,44)    

 

2.9. Statistical analysis  

Despite low numbers of animals, the data were analysed by parametric analyses as 80% of 

datasets showing a significant difference to baseline data passed the Shapiro-Wilk normality test. 

Results are shown as the mean ± SEM. Statistical comparisons of mean values were conducted 

using either paired or unpaired Student’s t-test depending on the experimental setup. All 

statistical analysis was carried out using GraphPad Prism version 7.00 for Windows (California, 

United States). P<0.05 (*) was considered significant. P<0.005 (**) and P<0.001 (***) are 
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indicated. In order to take the false discovery rate into account, q-values rather than p-values 

were used for RNA-seq analysis (44,46). A q-value < 0.05 was considered significant.  

 

3. Results  

3.1 AdCre injection results in KRAS
G12D

 expression and formation of tumors, which are 

heavily infiltrated by T cells 

To confirm tumorigenesis in this porcine model, Oncopigs were s.c. injected with AdCre, 

whereupon a tumor could be excised 7-21 days post injection (Fig. 1A-B). The tumor was 

localized to the s.c. tissue and did not invade the adjacent areas (Fig. 1B). Since the CAG 

promoter controls the expression of the two mutated transgenes, KRAS
G12D

 and TP53
R167H

, 

showing the gene product of one or the other transgene is sufficient to confirm successful 

transformation. Therefore, the presence of KRAS
G12D

 was shown at the protein level using 

intracellular flow cytometry staining of single-cell suspensions obtained from tumor biopsies 

(Fig. 1C). Having confirmed the ability to induce tumors in the Oncopig, we then examined for 

the presence of intratumoral T cells. Tumor sections obtained from Oncopigs injected with 

AdCre at two different sites, s.c. and i.m., were stained for the common T-cell marker, CD3, and 

analyzed using IHC. Independent of the site of AdCre administration, CD3
+
 cells were found to 

heavily infiltrate the tumors (Fig. 1D-G). Lymph node sections were used as positive controls to 

validate the CD3
+
 staining (Fig. S3A-B). Since the site of AdCre administration did not affect the 

T-cell infiltration, s.c. tumors were used for the remaining parts of the study.  

 

3.2 Comparison of circulating and intratumoral T cells reveals a preferential infiltration of 

CD8β
+
 T cells to the tumor site 

Given that T cells do infiltrate the tumors as shown by IHC, the next step was to address which 

T-cell subsets were present and whether the intratumoral T-cell pool differed from the circulating 

counterpart. Using flow cytometry, T-cell infiltration was confirmed in the tumor and in 

peripheral blood (Fig. 2A) with subsets of CD4
+
 T cells (Fig. 2B), CD8β

+
 T cells (Fig. 2C), and 

CD4
+
CD8α

+
 T cells (Fig. 2D) being readily detectable. Quantification of the percentage of total 
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T cells revealed no difference between peripheral blood and tumor cell isolates (Fig. 2E), 

indicating that the PBMCs and tumor cell suspensions encompass similar T cells levels. A 

quantification of the different subsets revealed that the amount of CD4
+
 T cells, as a percentage 

of total CD3
+
 cells, was similar in the tumor and in peripheral blood (Fig. 2F). An increased 

percentage of CD8β
+
 T cells was found at the tumor site (mean values: 39.7% in contrast to 

13.3% for the PBMC samples) (Fig. 2G), indicating a specific infiltration of cytotoxic T cells to 

the tumor. In contrast to other species, pigs comprise a substantial CD4
+
CD8

+
 T-cell population 

(47); and the vast majority of this subset expresses the CD8α homodimer; a characteristic now 

associated with activation of porcine CD4
+
 T cells (48). On the other hand, the expression of the 

CD8α/CD8β heterodimer is linked to conventional cytolytic CD8
+
 T cells (49). As expected, we 

observed a pronounced proportion of the circulating CD4
+ 

T cells that expressed the CD8α
+
 

molecule (Fig. 2H). This T-cell subset was also present in the tumor microenvironment; although 

there was an almost three-fold decrease when compared to peripheral blood (mean values: 9.4% 

versus 26.2%) (Fig. 2H).  

 

3.3 The tumor microenvironment of Oncopigs contains cytotoxic immune cells. 

To further investigate the nature of the intratumoral T-cell subsets in more detail, PBMCs and 

tumor samples were investigated for the presence of T cells positive for perforin, TNF-α, and 

IFN-γ. Using flow cytometry, perforin-producing T cells were observed both in peripheral blood 

and within the tumor itself (Fig. 3A), while T cells producing TNF-α or IFN-γ were not 

detectable without further stimulation. CD4
+
 T cells, as expected, barely produced any perforin 

(Fig. 3B); however, a prominent CD8β
+
perforin

+
 T-cell population was detected in both 

peripheral blood and in the tumor (Fig. 3C). When comparing the percentages between the two 

sites, a greater than four-fold increase in total perforin-producing T cells was observed in the 

tumor samples over peripheral blood samples (mean values: 26.9% versus 5.8%) (Fig. 3D). The 

very limited, yet still detectable, amount of perforin produced by the CD4
+
 T cells (Fig. 3B) most 

likely originated from the CD4
+
CD8α

+
 subset, which, using this gating strategy, was not 

excluded from the analysis (Fig. S1 versus Fig. S2). No difference however, was observed in 

perforin
+
CD4

+
 T cells between the PBMC and the tumor samples (Fig. 3E). Interestingly, an 

almost three-fold increase in the percentage of CD8β
+
perforin

+
 T cells was found in the tumor 
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when compared to the PBMC samples (Fig. 3F); indicating a substantial cytotoxic infiltration to 

the tumor. To further investigate this observation, immunofluorescence on formalin-fixed tumor 

sections was performed. First, the pronounced infiltration of CD3
+
 cells previously observed 

(Fig. 1F) was confirmed (Fig. 3G). Secondly, co-localization of the CD3 and the CD8α marker 

within the tumor was demonstrated, and the number of infiltrates was found to be substantial 

(Fig. 3H). Importantly, and to confirm the presence of cytotoxic immune cells, we examined the 

tumor for expression of granzyme B by immunofluorescence. DAPI was used as a counterstain, 

and a considerable amount of intratumoral granzyme B
+
 cells were visualized (Fig. 3I); thereby, 

confirming the presence of cytotoxic cells within the tumor. Importantly, the percentage of CD4
+
, 

CD8β
+
, and CD8β

+
perforin

+
 T cells in PBMCs obtained from tumor bearing and non-tumor 

bearing pigs did not reveal any difference (Fig. S4A-C). An estimate of NK cell representation 

(CD3
-
CD4

-
CD8α

+
) revealed no significant differences between the NK cell percentage in 

PBMCs and intratumoral cell isolates (mean values: 8.7 versus 7.0, Fig. S5).  

 

3.4 Oncopig tumors display increased levels of FoxP3
+
 T cells 

Tumor microenvironments often contain a mixture of immune cells. In addition to the cytotoxic 

subsets, which were already shown to be present, we looked for various regulatory T cells (Tregs) 

by flow cytometric detection of the FoxP3 marker. A pronounced population of T cells 

expressing FoxP3 was readily detected in both peripheral blood and within the tumor (Fig. 4A). 

When comparing the two sites, an elevated representation of FoxP3
+
 T cells was found within the 

tumor (Fig. 4B), suggesting an intratumoral regulatory compartment. Similar percentages of 

CD4
+
CD8α

-
FoxP3

+
 T cells were found when comparing the PBMC and the tumor samples (mean 

values: 10.1% and 12.9%) (Fig.4C). Although not significant due to a high animal to animal 

variation, a strong tendency towards an increased amount of CD4
+
CD8α

+
FoxP3

+
 T cells in the 

tumor was observed when compared to peripheral blood (mean values: 16.0% and 2.1%) (Fig. 

4D). In contrast, the circulating T-cell pool was comprised of a slightly higher amount of 

potential regulatory CD4
-
CD8α

+
FoxP3

+
 T cells; although the percentages were low in general 

(Fig. 4E). 
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3.5 Autologous tumor cells are specifically killed by immune cells 

In addition to the regulatory cells, the tumor microenvironment of Oncopigs indeed comprised 

cytotoxic immune cells as determined by both flow cytometry and immunofluorescence. 

However, these data do not directly demonstrate an endogenous anti-cancer immune response. To 

investigate the capacity of the Oncopig immune system to lyse autologous tumor cells, we 

developed an in vitro fluorescence-based cytotoxicity assay. Isolated effector cells (non-labeled 

PBMCs) were co-cultured with either autologous targets (eFluor-450-labeled tumor cells) or 

autologous control cells (eFluor-670-labeled PBMCs); dyes were previously swapped to rule out 

any dye-specific bias (data not shown). PBMCs were used as control cells, since both healthy, 

adjacent skin and muscle cells isolated from the same site as the tumor did not allow a clear 

fluorescence separation.  

Prior to assay initiation, correct labeling was verified for both control and target cells (Fig 5A). A 

2-fold titration of the effector:target cell ratio was performed ranging from 0:1 – 2:1. Samples 

harvested 10 min post co-culture showed the baseline distribution of control and target cells (Fig. 

5B, left plot). Notably, culture wells containing effector:control cells and effector:target cells 

were mixed only at the time of harvesting; samples were then fixed to stop potential additional 

killing or cell turn over and acquired straight away on the flow cytometer. To determine potential 

lysis of the tumor cells, samples were harvested 24 hours post co-culture and compared to the 10 

min baseline samples (Fig. 5B, right plot). The percentage of specific tumor cell killing was 

quantified and each sample was normalized to its 0:1 effector:target control sample. Interestingly, 

a significant percentage of specific tumor cell killing was observed in an effector:target cell ratio 

dependent manner (Fig. 5C), thereby, for the first time directly showing an endogenous porcine 

anti-cancer immune response in the Oncopig model.  

 

3.6. Oncopig tumors display elevated IDO1, CTLA4, and PDL1 expression levels 

Indoleamine 2,3-dioxygenase 1 (IDO1), Cytotoxic T-lymphocyte-associated protein 4 (CTLA4), 

and Programmed death-ligand 1 (PDL1) encode for proteins that are activated during tumor 

development in humans and play a role in suppressing immune responses, ultimately helping 

malignant cells escape T-cell mediated killing. In order to determine if these genes are 
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upregulated in Oncopig tumors, expression levels were investigated using previously produced 

Oncopig RNA-seq datasets (28,43,44). As expected, increased expression of IDO1, CTLA4, and 

PDL1 was observed in Oncopig leiomyosarcoma tumors relative to control muscle samples 

(Table 1). No increased expression was observed in Oncopig transformed compared to primary 

cell lines, indicating the increased expression observed in Oncopig tumors is not simply a result 

of cellular transformation (Supplementary Table 2). 

 

 4. Discussion  

Though valuable, mice have several inherent limitations in cancer research. In addition to size 

and anatomical constraints, inbred rodents also do not fully mimic the diversity seen in human 

patients. Therefore, to establish a more relevant disease model, we performed our studies in the 

Oncopig; increasing diversity by using non-sex- and non-age-matched animals and restricting the 

use of littermates. Given the substantial homology between the porcine and human immune 

system (24), the fully immunocompetent Oncopig model may be an excellent platform studying 

anti-tumor immune responses and for preclinical investigation of cancer immunotherapies. 

To begin to assess the validity of the Oncopig model, we induced mutant transgene expression 

and tumor formation by s.c. delivery of AdCre. The resulting tumor microenvironment was 

heavily infiltrated by T cells displaying either a cytotoxic or regulatory phenotype. Theoretically, 

the increase in percentages of a certain cell subset within the tumor could result from either a 

consistent infiltration of these cells over time, intranodal proliferation, or efflux of other T-cell 

subsets from the tumor. For this reason, we do not conclude on exact numbers but report 

important differences in the representation of various T-cell subsets between the tumor and 

peripheral blood.  

Although anti-tumor immune responses are often evaluated using IFN-γ as readout, granzyme B 

and perforin release are two highly specific measures of anti-tumor cytotoxicity (50–54). We 

observed pronounced intratumoral granzyme B production and increased levels of perforin-

producing T cells. Combined, the data support a broad cytotoxic response to induced tumors. 

Nevertheless, the presence of the tumor indicates an intratumoral regulation of these cytotoxic 

cells. 
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We observed a robust subpopulation of T cells expressing FoxP3, both systemically as well as in 

the induced tumors. Recent findings suggest that human T helper cells can transiently upregulate 

FoxP3 upon activation, though only the T cells stably expressing FoxP3 were found to exhibit a 

suppressive nature (55). Therefore, the detection of FoxP3 in various intratumoral T-cell subsets 

in the Oncopig might indicate the presence of newly activated T cells. However, it is well 

established that FoxP3 is required for the development and maintenance of suppressive 

regulatory T cells (56,57). Moreover, FoxP3 has been suggested as an exclusive marker for the 

CD4
+
CD25

+
 Treg lineage in mice (58), and a suppressive CD8α

+
CD25

+
FoxP3

+
 T-cell subset has 

recently been observed in both mice and humans (59). Together, the significant infiltration of 

FoxP3-expresssing T cells to the tumor site in conjunction with the evident tumor mass suggest a 

regulatory role for this these immune cells in Oncopig tumors.  

Although we show pronounced T-cell infiltration to the tumors, the anti-tumor immune responses 

demonstrated in our in vitro cytotoxicity could be mediated by other immune cell subsets present 

in the PBMC culture. Potential other subsets, which might mediate the anti-tumor response, 

include NK cells, γδ T cells, and NKT cells. In fact, porcine NK cells have been shown to display 

anti-tumor activities against a human cancer cell line (60); however, we did not observe in vivo 

specific NK cell infiltration to the tumor site. As T cells are key players in mediating anti-tumor 

immune responses (61–63), the significant T-cell infiltration to Oncopig tumors suggests a role 

for this immune cell subset in facilitating tumor-specific lysis. 

In addition to the observed immune cell infiltration and anti-tumor immunity, increased 

expression of three genes involved in immune suppression (IDO1, CTLA4, and PDL1) was 

observed in Oncopig tumors but not in cell lines transformed in vitro. The lack of elevated 

expression in vitro indicates these genes are not simply upregulated as a result of cellular 

transformation, but rather in response to signals from the in vivo tumor microenvironment. The 

increased expression of IDO1, CTLA4, and PDL1 in Oncopig tumors indicates suppression of T 

cells in vivo. Although we showed the capacity of the Oncopig immune system to mediate tumor-

specific lysis in vitro, elevated expression of the immunosuppressive genes in conjunction with 

infiltration of regulatory T cells may explain the lack of evident in vivo anti-tumor cytotoxicity.  

In conclusion, we performed an immunological characterization of Oncopig tumors, which 

revealed an intratumoral enrichment of cytotoxic and regulatory T cells. Moreover, we for the 

Overgaard et al. (2017) Manuscript in preparation



 
 

first time showed in vitro anti-tumor immune responses in this large animal model, and propose a 

potential mechanism for in vivo suppression of anti-tumor immune responses based on elevated 

expression levels of IDO1, CTLA4, and PDL1. We believe that the Oncopig with its fully 

competent immune system and high degree of homology with humans provides a crucial 

platform for studying anti-tumor immune responses and potentially for future preclinical testing 

of immunotherapies.  
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Figure 1. Oncopig tumors are heavily infiltrated by T cells.  The KRAS
G12D 

and TP53
R167H

 floxed 

Oncopigs were subcutaneously injected with AdCre to induce tumorigenesis. (A) Representative image 

of subcutaneous tumor formation in Oncopigs 7-21 days post subcutaneous injection of AdCre (n=6.) 

(B) Cross-section of the subcutaneously formed tumor. Representative image is shown (n=6). (C) 

Representative intracellular flow cytometric plot of KRAS
G12D 

expression
 
in isolated tumor cells (white) 

with FMO control indicated (grey). Oncopigs were subcutaneously (D, F) or intramuscularly (E, G) 

injected with AdCre and tumor sections were harvested 20 days post injection. Representative 

immunohistochemistry images with detection of CD3
+
 cells at x10- (D, E) and x40- (F, G) 

magnification are shown (n=3).   
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Figure 2. CD8β
+
 T cells specifically infiltrate the established tumors. Oncopigs were 

subcutaneously injected with AdCre. PBMCs and tumor tissue were harvested 7-21 days post injection. 

Representative flow cytometric overlay plots from peripheral blood (upper) and tumor (lower) samples 

detecting total T cells (A), CD4
+
 T cells (B), CD8β

+
 T cells (C), and CD8α expression in CD4

+
 T cells 

(D). (E) Numbers represent CD3
+
 cells as a percentage of live cells. (F) Percentage of CD4

+
 cells in 

live, CD3
+
-gated cells. (G) Percentage of CD8β

+
 cells in live, CD3

+
-gated cells. (H) Percentage of 

CD8α
+
 cells in live, CD3

+
CD4

+
-gated cells. Bars represent mean values ± SEM and data are from two 

independent experiments (n=4-5). Statistical evaluation in (E), (F), (G), and (H) by unpaired Student’s 

t-test.  
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Figure 3. The tumor microenvironment is infiltrated by perforin+ and granzyme B+ immune cells. 

Oncopigs were subcutaneously injected with AdCre to induce tumor formation. PBMCs and tumor samples 

were harvested 7-21 days post injection. (A) Representative flow cytometric overlay plots from peripheral 

blood (upper) and tumor (lower) samples detecting perforin expression in total T cells (A), in CD4+ T cells 

(B), and in CD8β+ T cells (C). (D) Numbers represent perforin+ cells as a percentage of live CD3+-gated 

cells. (E) Percentage of perforin+ cells in live, CD3+CD4+-gated cells. (F) Perforin+ cells as a percentage of 

live, CD3+CD8β+-gated cells. Bars represent mean values ± SEM and data are from two independent 

experiments (n=4-5). Statistical evaluation in (D), (E), and (F) by unpaired Student’s t-test. (G) Detection 

of CD3+ cells (green) in a tumor cross-section by immunofluorescence. (H) Immunofluorescence image 

detecting co-localization of CD3+ (green) and CD8α+ (red) cells in the tumor. (I) Detection of granzyme B+ 

cells (red) in a tumor cross-section. DAPI (blue) used as nuclear counterstain for all immunofluorescence 

images. 
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Figure 4. Oncopig tumors display elevated levels of FoxP3
+
 T cells. Oncopigs were subcutaneously 

injected with AdCre. Peripheral blood and tumor samples were harvested 7-21 days post injection and 

analyzed for expression of FoxP3 by flow cytometry. (A) Representative flow cytometric plots from 

peripheral blood (left) and tumor (right) detecting total FoxP3
+
 T cells. (B) Percentage of FoxP3

+
 cells 

in live, CD3
+
-gated cells. (C) Percentage of FoxP3

+
 cells in live, CD4

+
CD8α

-
-gated T cells. (D) 

Percentage of FoxP3
+
 cells in live, CD4

+
CD8α

+
-gated T cells. (E) Percentage of FoxP3

+
 cells in live, 

CD4
-
CD8α

+
-gated T cells. All bars represent mean values ± SEM and data are from one experiment 

(n=5). Statistical evaluation in (B), (C), (D), and (E) by paired Student’s t-test.    
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Figure 5. The Oncopig immune system specifically lyses autologous tumor cells in vitro. Oncopigs 

were subcutaneously injected with AdCre to induce tumor formation. Following tumor development 

(7-21 days post injection), tumor cells and PBMCs were harvested. (A) Isolated effector cells remained 

unlabeled with control cells and tumor cells being labeled with eFluor670 or eFluor450, respectively. 

(B) Representative flow cytometric plots of control and tumor cells at 10 min (baseline, left) and 24 

hours (right) post co-culture. (C) Numbers show percentage specific killing of tumor cells; data was 

normalized to adjust for cell turnover in no-effector cells control cultures. A titration of the effector (E) 

to target (T) cell ratio is shown. Data are from four independent experiments and the data are pooled 

(n=8). Bars represent mean values ±SEM. Statistical evaluation in (C) by paired Student’s t-test. 
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Table 1. Elevated IDO1, CTLA4, and PDL1 expression in Oncopig tumors. Expression 

values are given as fragments per kilobase of transcript per million mapped reads (FPKM). q-

value < 0.05 is considered significant. Abbreviations: CTLA4, Cytotoxic T-lymphocyte-

associated protein 4; IDO1, Indoleamine 2,3-dioxygenase 1; PDL1, Programmed death-ligand 

1.    

 

Gene 
Skeletal Muscle 

(FPKM) 
Leiomyosarcoma 

(FPKM) 
Log2 fold 
change p-value q-value Significant 

IDO1 0.488057 3.80091 2.96122 5.00E-05 0.000233877 yes 

CTLA4 0.133311 1.01914 2.93448 5.00E-05 0.000233877 yes 

PDL1 0.343398 1.08631 1.66148 0.00075 0.00276049 yes 

Table 1 Overgaard et al. (2017) Manuscript in preparation



 

              Antibodies used for flow cytometry   

Marker Conjugate Isotype Clone Supplier 

CD3 Unconjugated Mouse IgG1 PPT3 Southern Biotech                      

(cat.:  4510-01)  

CD3 FITC Mouse IgG1 PPT3 Southern Biotech                       

(cat.:  4510-02) 

CD4 FITC Mouse IgG2b 74-12-4 BD Biosciences                        

(cat.:  559585) 

CD4 PE-Cy7 Mouse IgG2b 74-12-4 BD Biosciences                        

(cat.:  561473) 

CD4 PerCP-Cy5.5 Mouse IgG2b 74-12-4 BD Biosciences                         

(cat.: 561474) 

CD8α AF647 Mouse 

IgG2aκ 

76-2-11 BD Biosciences                          

(cat.:  561475) 

CD8α PE Mouse 

IgG2aκ 

76-2-11 BD Biosciences                          

(cat.:  559584) 

CD8β Unconjugated Mouse IgG2a PG164A Washington State University    

(cat.:  PG2020) 

Live/Dead Aqua N/A N/A Thermo Fischer Scientific         

(cat.:  L34957) 

IFN-γ AF647 Mouse IgG1 CC302 Serotec                                      

(cat.:  MCA1783A647) 

TNF-α PerCP-Cy5.5 Mouse IgG1κ MAb11 Biolegend                                  

(cat.:  502926) 

Perforin PE Mouse 

IgG2bκ 

dG9 Biolegend                                   

(cat.:  308106) 

FoxP3 PE Rat IgG2aκ FJK-16s eBioscience                                  

(cat.:  12-5773-82) 

IgG2a goat 

anti-mouse 

PE-Cy7 Goat IgG N/A Southern Biotech                                      

(cat.:  1080-17)  

IgG1 rat    

anti-mouse 

BV421 Rat LOU  N/A BD Biosciences                           

(cat.:  562580) 
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Supplementary Figure 3. CD3
+
 cells in Oncopig lymph nodes.   Submandibular lymph nodes were 

harvested from tumor-bearing Oncopigs and analyzed for the presence of T cells by 

immunohistochemistry. Representative immunohistochemistry images with detection of CD3
+
 cells at 

x10- (A) and x63- (B) magnification are shown (n=5). 
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Supplementary Figure 4. The presence of a tumor does not alter the systemic T-cell 

compartment. Peripheral blood samples from tumor-bearing and healthy controls (non-tumor-bearing) 

were harvested for comparison of their T-cell compartments. (A) CD4
+
 T cells as a percentage of total 

live, CD3
+
 cells. (B) Percentage of CD8β

+
 T cells as a proportion of total live, CD3

+
 cells. (C) 

Percentage of perforin
+
 cells as a proportion of live, CD3

+
CD8β

+
 cells. Bars represent mean ± SEM 

and data are from one experiment (n=3). Statistical evaluation by unpaired Student’s t-test. 
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Supplementary Figure 5. Natural killer cells are present but do not specifically infiltrate Oncopig 

tumors. Peripheral blood samples and tumor cell isolates were harvested for flow cytometric detection 

of Natural Killer (NK) cells. Numbers represent CD3
-
CD4

-
CD8α

+
 cells as a proportion of live cells. 

Bars represent mean ± SEM and data are from one experiment (n=3). Statistical evaluation by paired 

Student’s t-test. 
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Additional Findings 

For vaccine studies where multiple immunizations are to be administered, the size of the 

tumor is important. The induced tumor needs to be sufficiently established to observe an 

effect on tumor growth, but if the growth rate is too aggressive it is not possible to test any 

therapies. For this reason, we set to determine the optimal concentration of AdCre for tumor 

induction. As dictated by ethical regulations, each animal received six injections with AdCre; 

three subcutaneous and three intramuscular injections using a two-fold titration of AdCre 

dose ranging from 2.5x108 – 1.0x109 plaque forming units (PFU). Tumor sizes were 

determined using ultrasound measurements (Figure 4). 

Figure 4. Ultrasound measurements of intramuscular tumor sizes. Oncopigs were injected with 

three different doses plaque forming units (PFU) of AdCre. Ultrasound images of intramuscular tumors 

from one animal at day 16 post AdCre injection is shown. 

When comparing the different doses, no difference in tumor growth was observed between 

low, intermediate, and high AdCre dose groups either in the subcutaneous or in the 

intramuscular tissue (Figure 5A-B). The subcutaneous tumors masses appeared to have a 

slightly less aggressive growth rate (Figure 5A) when compared to intramuscular tumors 

(Figure 5B). Strikingly, spontaneous clearance of both subcutaneous and intramuscular 

tumors was observed over time for all the animals included here (Figure 5).  

Intramuscular, 2.5x10
8
 Intramuscular, 5x10

8
 Intramuscular, 1x10

9
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Figure 5. Tumor growth in subcutaneous and intramuscular tumors induced by different doses 

of AdCre. Animals were injected at six different sites with three different doses of AdCre ranging from 

2.5x108 – 1.0x109 PFUs. Three sites received a subcutaneous injection and three sites received an 

intramuscular injection. Data show ultrasound measurements of subcutaneous (A) and intramuscular (B) 

tumor sizes. One animal has been left out of the high dose subcutaneous group due to no initial tumor 

formation at this particular site only (n=3-4).  
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While all other conditions show data from four animals, the high dose subcutaneous group 

only shows data from three. The fourth animal in this group was left out of analysis. Since 

the same animal developed tumors at the five other injection sites, we have no reason to 

believe that this lack of tumor formation was dose-related. In contrast, we believe that a 

technical error occurred during the injection of AdCre; thereby, justifying that this animal 

was removed from analysis of the high dose subcutaneous group.  

In order to investigate whether the spontaneous regression over time resulted from lack of 

vascularization and subsequent necrosis, fine-needle aspiration of subcutaneous tumor 

samples were obtained 17 days post AdCre injection (n=8). Samples were sent for 

Haemotoxylin and Eosin staining followed by blind pathological assessment at the Veterinary 

Diagnostic Laboratory, University of Illinois, United States. The interpretations are shown in 

Table 5.  

Tumor interpretation Necrosis Suspected lymphocytic inflammation 

Sarcoma Not detected No 

Sarcoma Not detected Yes  

Sarcoma Not detected  No  

Sarcoma Not detected Yes 

Sarcoma Not detected No  

Sarcoma Not detected No 

Suspected sarcoma Yes  Yes. Potential suppurative inflammation  

Suspected sarcoma Yes Yes 

Table 5. Clinical pathology results from fine-needle aspirations of subcutaneous tumors obtained 17 days 

post AdCre injection (n=8).   
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Based on the pathological analysis, the tumors induced upon subcutaneous administration of 

AdCre were sarcomas (Table 5). Of the tumor biopsies tested, only two out of eight displayed 

evidence of necrosis, whereas half of them were suspected to have lymphocytic inflammation 

(Table 5); indicating that the tumor regression was probably not due to lack of 

vascularization. The lymphocytic inflammation is only referred to as suspected, since the 

observed increase in lymphocytes theoretically could result from the involvement of a 

peripheral lymph node or blood contamination during the process of fine-needle aspiration.  
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CHAPTER IV. General Discussion 

In our series of studies we evaluate the potential for pigs as a large animal model for 

studying anti-tumor immune responses and for preclinical testing of immunotherapies 

against human cancer. The topics already discussed in Paper I-III will not be repeated here. 

Instead, a more general evaluation of pigs as cancer models, and Oncopigs in particular, 

follows.  

As outlined in the introduction of this thesis, large animal models other than pigs exist. To 

date, canine models in particular have shown promise as immunotherapeutic models206,207. 

Despite this, the porcine immune system remains better characterized281, as exemplified by 

comparison of NK cells between the two models. Porcine NK cells are well-described and 

express CD8α and NKp46282,283; the latter being a typical human NK cell marker284,285. In 

contrast, characterization of canine NK cells is more complicated194. Expression of NKp46 has 

been shown upon activation in a canine immune cell subset with phenotypic and functional 

characteristic of NK cells286,287. However, it remains to be fully evaluated whether these cells 

correspond to the human NK cell population. Overall, the porcine immunome shares 

substantial homology with the human counterpart229; thus, providing an important platform 

for translational immunology research.   

With the exception of our previous proof-of-concept vaccine trial288, there is to our knowledge 

no previous in vivo study using pigs as a model for cancer immunotherapy. The vaccine 

approach in our first trial was very different, as we immunized outbred pigs only twice and 

with 20mer overlapping peptides covering the entire IDO sequence. In this first study, the 

peptides were formulated in different adjuvant systems including, amongst others, CAF09. 

As determined by IFN-γ release, we showed induction of a weak immune response towards 

IDO following subcutaneous delivery of CAF09-formulated peptides in outbred pigs, although 

the response appeared to be rather transient288. Recent murine studies have shown that 

immunization of CAF09-formulated antigen via the i.p. route is superior in generating an 

antigen-specific CTL response when compared to subcutaneous administration289. 
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Consequently, we altered our approach and established an i.p. immunization protocol with 

repeated administration of IDO-derived peptides.  

Our results demonstrated that it was possible to break peripheral tolerance against an 

endogenous antigen relevant to human cancer (Paper II). Furthermore, we showed how the 

CAF09-formulated antigen dose affected the type of immune response generated upon 

repeated immunization (Paper I and Paper II). It is well-established that the tumor 

microenvironment possesses the ability to shape and limit the function of TILs9. Specifically, 

intratumoral T cells can be affected by secretion of inhibitory cytokines, limitation in nutrient 

availability as a result of metabolic competition, reduction of oxygen levels, as well as 

increase in lactate production290–293. Consequently, testing our vaccine strategy in a tumor 

model rather than healthy animals as we have done so far is an obvious next step. Since we 

showed increased expression of IDO1 in Oncopig leiomyosarcoma tumors (Paper III), this 

model may provide a relevant platform for evaluating clinical benefit of IDO-targeted 

therapies including therapeutic immunization. 

The various different large animal models presented in the introduction of this thesis each 

have advantages and disadvantages. Since cancer is not one disease and different tumor 

types require specific treatment strategies294, a ‘one size fits all’ universal animal model for 

preclinical testing does not seem realistic. In our studies, pathological analysis of fine-needle 

aspiration samples obtained from subcutaneous Oncopig tumors were all blindly interpreted 

as sarcomas (Table 5); thereby, confirming previous results following subcutaneous injection 

of AdCre272. Recent RNA-seq analysis revealed that transcriptional characteristics of human 

sarcomas are recapitulated in Oncopig sarcomas295, which supports the relevance of using 

Oncopigs for human sarcoma research.   

Investigation of the immunological landscape of Oncopig tumors revealed pronounced T-cell 

infiltration with a mixed phenotype. Interestingly, we demonstrated immune-mediated 

tumor-specific killing in vitro in an effector:target cell ratio dependent manner. In paper III, 

all the studies investigating the anti-tumor immune responses were performed with tumor 

material obtained at day 7-21 post AdCre injection. As shown in Figure 5, this range covers 
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the peak in tumor mass; however, long-term studies revealed spontaneous regression of 

subcutaneous and intramuscular tumors (Figure 5). This currently limits the model to 

investigating mechanism of tumor killing or preclinical testing of therapeutics against the 

early stages of cancer.  

Theoretically, the spontaneous Oncopig tumor regression could be non-immune mediated. 

Necrosis can be observed in aggressive tumors due to the absence of vascular support296,297; 

thus, we needed to rule out that the tumor clearance was simply the result of a necrotic 

tumor. Pathological analysis of fine-needle aspiration samples obtained from subcutaneous 

tumors 17 days post AdCre injection revealed that only 25% of the tumors demonstrated 

evidence of necrosis (Table 5). Thus while the spontaneous regression might partly be the 

result of necrosis, it is unlikely to fully explain the high rate of tumor clearance over time.  

Our demonstrated tumor cell-directed in vitro cytoxicity supports the hypothesis that the 

tumor regression is likely to be immune mediated (Paper III). We attempted to evaluate the 

effect of tumor development in pigs receiving immunosuppressive treatment. Rather than 

administering chemotherapeutic drugs, we orally administered prednisone to pigs at 

different time points before, during, and after AdCre injection. However, the 

immunosuppressant treatment did not alter the rate of tumor regression or the systemic 

immune response (unpublished data). The lack of response to this mild immunosuppressive 

treatment is likely due to pigs being largely corticosteroid resistant298. Although future 

studies should fully determine which immune cell subsets are involved, the significant T-cell 

infiltration suggests a role for T cells in Oncopig tumor clearance in vivo. 

Despite the abundant T-cell infiltration, Oncopig anti-tumor immune responses seem to be 

inhibited by an immunosuppressive tumor microenvironment at the early time points post 

AdCre exposure; as indicated by the observation that the tumor mass peaks between days 6-

20 (Figure 5). Important mediators of immunosuppression include the proteins encoded by 

IDO1128–133, CTLA4299–301, and PDL1302–304. Elevated expression of these genes, which all 

impair T-cell effector functions, was demonstrated in Oncopig leiomyosarcoma tumor 

materials obtained at day 20 post AdCre injection (Paper III). Based on these data in 
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conjunction with Figure 5, it can be speculated that Oncopig subcutaneous tumors do not 

reach the escape phase potentially due to downregulation of IDO1, CTLA4, and PDL1 gene 

expression over time. If so, this might allow reactivation of T-cell cytotoxicity in vivo; 

eventually leading to tumor clearance.  

Many organs and tissues are not just passive recipients of infiltrating immune cells305; thus, 

some of the T cells within Oncopig tumors might derive from a resident T-cell compartment 

rather than from infiltrating T cells. The in vitro killing assay showed a certain percentage of 

tumor lysis in the absence of added PBMC (no effector cell control wells). This killing could 

result from either resident or infiltrating T cells being able to exhibit their effector functions 

in vitro. Interestingly, the tumor material used for the in vitro cytoxicity assay was obtained 

at time points at which RNA-seq data demonstrated elevated expression levels of the 

immunosuppressive genes IDO1, CTLA4, and PD-L1 (Paper III). Therefore, the T cells 

present in the tumor cell isolates are not likely to exhibit effector functions in vivo at this 

time post AdCre injection due to the expression of these immunosuppressive genes. 

Nevertheless, they may be able to exhibit effector functions in vitro following the tumor 

digest, which would explain the rate of background killing. However, increase in tumor-

specific lysis observed in vitro with a high ratio of added PBMC effectors (Paper III) clearly 

suggests that the added peripheral immune cells also play a role in mediating the tumor 

killing.   

Spontaneous regression of human tumors is most commonly seen in neuroblastoma, renal cell 

carcinoma, lymphomas, and melanoma306. However, complete histological regression of 

human melanoma lesions is a rare occurrence limited to relatively few case studies307. In 

contrast, lesions of porcine melanoma models display a high tendency of spontaneous 

regression with the MeLiM model showing complete clearance in up to 96% of the cases308,309. 

The onset of spontaneous regression also appears earlier in pigs than in humans310. The first 

genome-wide time-dependent analysis elucidating some of the molecular mechanisms 

underlying spontaneous tumor regression in the MeLiM model demonstrated upregulation of 

several immune-related genes310. The initial process of spontaneous regression of melanoma 
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lesions included pronounced lymphocyte infiltration310, which is in line with our results 

demonstrating a significant T-cell enrichment in Oncopig tumors (Paper III).  

Having shown that T cells may play a role in spontaneous regression of Oncopig tumors, a 

critical next step is to elucidate potential T-cell targets within the tumors. Based on genomic 

data, the cancer antigenome has been defined and encompasses two main classes of tumor-

specific antigens: self-antigens and neoantigens311. The IDO1 gene encodes a non-mutated 

self-antigen, whereas the driver mutations KRASG12D and TP53R167H in Oncopigs give rise to 

neoantigens. As only self-reactive T cells are deleted in the thymus, T cells reactive towards 

neoantigens are not subject to peripheral tolerance312. As we have shown pronounced 

KRASG12D expression in tumors (Paper III), it can be speculated that this neoantigen is a T-

cell target in Oncopigs. In a human colorectal cancer patient, CD8+ T-cell reactivity towards 

KRASG12D has been demonstrated313. However, targeting several passenger mutations, rather 

than a single driver mutation, is increasingly considered a more effective therapeutic 

approach311. One of the suggested reasons for this includes the much lower frequency of 

driver mutations, when compared to passenger mutations, presented on the surface of tumor 

cells314. As observed in the colorectal cancer patient displaying KRASG12D T-cell reactivity, 

loss of the MHC class I allele presenting this neoantigen provides the tumor with an efficient 

escape mechanism313. In addition to a putative reduction in IDO1, CTLA4, and PDL1 

expression over time, it can be speculated that the MHC class I allele(s) presenting mutated 

neoantigens remains highly expressed on the surface of Oncopigs tumor cells. Recent findings 

clearly show that clonal neoantigens, when compared to sub-clonal ones, are superior targets 

for inducing anti-tumor immunity315. Consequently, evaluating the heterogeneity of the 

neoantigen repertoire in Oncopig tumors might improve our understanding of potential T-cell 

targets. 

Although interesting from an immunological point of view, the spontaneous tumor 

regressions demonstrated in Figure 5 raise concerns with regards to long-term treatment 

studies in Oncopigs. However, in a separate experiment we restricted administration of 

AdCre to the main pancreatic duct, which sufficiently induced a tumor with morphological 

features consistent with human pancreatic ductal adenoma carcinoma (Principe et al, 2017, 
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Nature Communications, in review). This tumor showed no signs of regression, but was 

present even one year post AdCre injection. Furthermore, subcutaneous injection with an 

established hepatocellular carcinoma cell line showed no signs of regression 46 days post 

injection280. Together, these data underline that long-term tumorigenesis is indeed possible in 

the Oncopig model. 

In general, tissue- and cell-specific differences between tumors do exist316. In reflection of 

this, the ability to induce tumors at basically any site in the Oncopig upon exposure to AdCre 

or by injection of an autologous tumor cell line is a clear advantage of the model. Since 

establishment of persistent tumors is possible in the model as mentioned above, a strict 

breeding scheme selecting animals with reduced anti-tumor immune responses might be a 

way to overcome the high rate of spontaneous tumor regression, especially if anti-tumor 

immunity is linked to expression of particular MHC class I alleles. 

Combined, we provide evidence of anti-tumor immunity in the physiologically relevant 

Oncopig model; suggesting that it may serve as an invaluable platform for studying immune 

response to cancer. The elevated expression of three relevant immunotherapeutic targets 

(IDO1, CTLA4, and PDL1) further supports the potential for the Oncopig as a preclinical 

model, especially if a strict selective breeding scheme is established.   
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CHAPTER V. Conclusion 

In our series of studies, we established an immunization protocol, where repeated i.p. 

injections with CAF09-formulated antigens induced both a CMI and humoral immune 

response in Göttingen minipigs. Using a low dose exogenous antigen, we showed induction of 

a cytotoxic and polyfunctional T-cell response, while a high antigen dose induced antigen-

specific IgG antibodies. Although in vivo cytotoxicity towards IDO-pulsed target cells could 

not be demonstrated, our immunization protocol was sufficient to break the peripheral 

tolerance towards porcine IDO. For this endogenous target, we showed an inverse 

relationship between peptide dose and the induction of a CMI-dominant response. In 

contrast, a CAF09-formulated high peptide dose generated a mixed IDO-specific CMI and 

humoral immune response. Combined, these data underline the importance of antigen dose 

when designing vaccines strategies.  

In the Oncopig model, we show pronounced intratumoral T-cell infiltration with enrichment 

of both Tregs and CTLs when compared to peripheral blood. Thus, Oncopig tumors can be 

classified as hot tumors in accordance with the Immunoscore classification. Moreover, we 

demonstrated elevated expression of the immunosuppressive genes IDO1, CTLA4, and PDL1. 

By adapting our cytotoxicity assay for in vitro use, we proved that the Oncopig immune 

system is capable of specifically lysing tumor cell isolates. However, long-term studies 

revealed a high rate of spontaneous regression of most Oncopig tumors. From this, it can be 

speculated that there is immune equilibrium, as indicated by the mixed regulatory and 

cytotoxic response, at the early time points post AdCre injection, while anti-tumor immune 

responses become dominant over time; eventually leading to tumor clearance. Together, our 

data support that the Oncopig provides an invaluable platform for investigating anti-tumor 

immune responses in a large and physiologically relevant model. Given that the rate of 

spontaneous regression can be reduced, for instance by selective breeding, the Oncopig is a 

promising model for preclinical testing of cancer immunotherapies.   
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CHAPTER VI. Perspectives 

The use of pigs as a large animal model for studying anti-tumor immune responses and for 

preclinical testing of immunotherapies has intriguing potential. However, several aspects 

need to be elucidated further. Some of the specific questions are evaluated below. 

 

How do pigs respond to checkpoint inhibition?  

Although therapeutic cancer vaccines are promising, the response rate in patients receiving 

these types of vaccines is often low317. We showed a break in the peripheral tolerance towards 

IDO following repeated immunization, but the lack of in vivo cytotoxicity towards IDO-pulsed 

target cells supports that combination therapies, rather than immunization as a stand-alone 

treatment, is needed. The monoclonal antibodies targeting either CTLA-4 or PD-1 have 

shown impressive results in the clinic318–322, and it will be interesting to test checkpoint 

inhibitors either alone or in combination with a therapeutic vaccine in the Oncopig model.  

 

Which immune cells mediate the anti-tumor cytoxicity in Oncopigs? 

Although we have strong indications of T-cell involvement in Oncopig anti-tumor immunity, 

there is a need for a thorough investigation determining exactly, which immune cells subsets 

are involved. While αβ T cells have received a lot of attention, γδ T cells have been much less 

studied, although they have been demonstrated to have implications in cancer323. As γδ T 

cells represent a major T-cell population in pigs, it will be important to determine whether 

this immune cell subset plays a role in the elimination of Oncopig tumors. The memory stage 

of the various T-cell subsets within Oncopig tumors might also play a role as suggested for 

human cancer patients29,324. Hence, evaluation of T-cell memory is also needed. 
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What is the neoepitope landscape of Oncopig tumors and does it encompass T-cell targets?  

Somatic mutations often result in tumor cells becoming less similar to self. For this reason, a 

high mutational load increases the likelihood of the tumor being recognized by the immune 

system325–327. The recognition of these foreign epitopes, referred to as neoepitopes, is a critical 

factor for tumor control311,327–331. In a recent study, melanoma patients were treated with a 

personal neoantigen vaccine, which was shown to be safe, effective, and induce polyfunctional 

T cells332. Thus, targeting neoantigens is an intriguing approach. Exploration of the Oncopig 

neoepitope landscape will determine, if the model can be used for preclinical testing of this 

kind of vaccines. Also, it might increase our understanding of the effective anti-tumor 

immunity in the Oncopig.   
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