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ARTICLE

Characterization of a membrane-bound
C-glucosyltransferase responsible for carminic acid
biosynthesis in Dactylopius coccus Costa
Rubini Kannangara1,2, Lina Siukstaite1, Jonas Borch-Jensen3, Bjørn Madsen2, Kenneth T. Kongstad 4,

Dan Staerk 4, Mads Bennedsen2, Finn T. Okkels2,6, Silas A. Rasmussen5, Thomas O. Larsen5,

Rasmus J.N. Frandsen5 & Birger Lindberg Møller 1

Carminic acid, a glucosylated anthraquinone found in scale insects like Dactylopius coccus, has

since ancient times been used as a red colorant in various applications. Here we show that a

membrane-bound C-glucosyltransferase, isolated from D. coccus and designated DcUGT2,

catalyzes the glucosylation of flavokermesic acid and kermesic acid into their respective C-

glucosides dcII and carminic acid. DcUGT2 is predicted to be a type I integral endoplasmic

reticulum (ER) membrane protein, containing a cleavable N-terminal signal peptide and a C-

terminal transmembrane helix that anchors the protein to the ER, followed by a short

cytoplasmic tail. DcUGT2 is found to be heavily glycosylated. Truncated DcUGT2 proteins

synthesized in yeast indicate the presence of an internal ER-targeting signal. The cleavable N-

terminal signal peptide is shown to be essential for the activity of DcUGT2, whereas the

transmembrane helix/cytoplasmic domains, although important, are not crucial for its cat-

alytic function.
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Carminic acid (CA) is a natural red pigment found in some
scale insects including the American cochineals (Dactylo-
pius coccus Costa), which are native to tropical and sub-

tropical regions of South America and Mexico. These scale insects
are mostly sessile phloem feeders, living as parasites exclusively
on cacti belonging to the Opuntia genus. In adult females of D.
coccus, CA makes up 14–26% of the dry weight, while for adult
males the yield is insignificant1,2. CA is thought to serve as a
defense compound in the scale insect and has been shown to act
as a potent feeding deterrent to ants3. Some predators that feed
on D. coccus, like the larvae of the coccinellid beetle, Hyperaspis
trifurcata and the Laetilia coccidivora moth, are able to sequester
CA for use in their own defense3,4.

D. coccus, which was used as colorant by the Mayans, Incas,
and Aztecs, has since ancient times been an economically
important insect5. During the Spanish colonial era, the dried
insect powder was exported to Europe where it became an
important commodity. By the early nineteenth century, the
American cochineal was introduced and reared on its cactus host
outside Central and South America. Today Peru is the main
producer of CA from D. coccus6.

CA production is very labor-intensive and involves rearing the
D. coccus insects in large cacti plantations prior to harvesting and
drying the adult females. The pigment is then extracted by boiling
the dried insects in an alkaline solution. After removal of insect
parts, the cochineal extract may be used as colorant. CA is highly
soluble in water and can be used within the broad pH range from
2 to 9, and depending on the acidity or basicity of the solution,
colors from orange to red and violet may be obtained. CA may be
further purified by precipitation with alum under acidic condi-
tions to produce a more intense red aluminum salt called carmine
lake. This carmine lake is essentially water and acid insoluble,
although water-soluble forms have been generated for applica-
tions demanding lower pH7. The CA pigment is widely used as a
colorant in the food, textile, cosmetic, paint, and coating industry.
Some of its beneficial attributes for industrial application include
its high stability to heat and light, resistance to oxidation, non-
carcinogenicity, and non-toxicity to humans upon skin contact or
ingestion7,8.

With the greater awareness about the impact of foods on
human health and wellness, consumers are demanding natural
colors as opposed to those produced synthetically. Many of the
red synthetic colors have been shown to have adverse health
effects. In light of this, CA has gained renewed popularity as a safe
colorant with superior stability.

The biosynthetic pathway of CA in D. coccus has remained
elusive. Based on its molecular structure, CA is classified as an
anthraquinone glucoside. Two biosynthetic pathway routes may
be envisioned for the formation of anthraquinones9. One route
involves formation of the anthraquinone via a polyketide-based
pathway, whereas the other route entails a shikimate-based
pathway. The CA pigment has been proposed to be derived from
a polyketide-based pathway, although no experimental evidence
for such a route has been demonstrated in D. coccus10,11. The
proposed route of biosynthesis starts with a stepwise condensa-
tion of 1 acetate and 7 malonate units to generate a hypothetical
octaketide in a process catalyzed by a putative polyketide synthase
(PKS) (Fig. 1). The octaketide is then cyclized to a presumable
unstable anthrone that may undergo enzymatic or spontaneous
oxidation to form the anthraquinone, flavokermesic acid (FK).
Hydroxylation of FK results in the formation of kermesic acid
(KA) which upon C-glucosylation affords CA. Small amounts of
flavokermesic acid-C-glucosides (dcII) are present in metabolite
extracts of D. coccus, implying that C-glucosylation could occur at
the level of FK12–14.

In parallel with the proposed pathway discussed above, some of
the enzymes catalyzing the synthesis of CA have been hypothe-
sized to originate from a D. coccus endosymbiont10. This
hypothesis is attractive because polyketides are known to be
widely produced in microorganisms and because D. coccus does
not appear to sequester the CA from its Opuntia food/host plant9.
In contrast to the situation in bacteria, fungi, and plants, limited
molecular information on genes and enzymes responsible for
polyketide biosynthesis is available from insects. The studies so
far reported address the polyketide, pederin, which is found in
beetles of Paederus sp. and Paederidus sp. Pederin is produced by
an endosymbiotic bacterium and not by the insects15–19.

In the current study, we characterize the membrane-bound
UDP-glucosyltransferase (UGT), DcUGT2, which is responsible
for catalyzing C-glucosylation of FK and KA to produce dcII and
CA, respectively. The experimental approach involves classical
protein fractionation of a detergent-solubilized D. coccus mem-
brane fraction guided by transcriptomic and proteomics data and
heterologous expression of candidate genes in Saccharomyces
cerevisiae. DcUGT2 is predicted to be an endoplasmic reticulum
(ER)-bound protein with the N-terminal part facing the lumen of
the ER. Prediction analyses indicate that the protein has a clea-
vable signal peptide in the N terminus, a single transmembrane
helix in the C terminus, and three potential N-glycosylation sites.
Activity studies of truncated forms of the DcUGT2 enzyme
suggest that targeting of the protein to the ER is essential for its
activity.

Results
Establishing a D. coccus transcriptome. A D. coccus tran-
scriptomic profile was generated to identify putative UGTs
involved in CA biosynthesis. Copious amounts of CA are present
in adult female cochineals and it was assumed that genes
encoding enzymes involved in the biosynthesis of this red pig-
ment would therefore be highly expressed at this life stage. An
Illumina sequencing analysis with 100-fold coverage of the
polyadenylated RNA isolated from adult female cochineals was
performed to identify putative UGT transcripts belonging to
glycosyltransferase family 1. A total of 100,823,364 reads were
generated with an average length of 89 bp, of which 74,434,099
reads passed the initial quality control. The passed reads were de
novo assembled resulting in 35,154 contigs, representing different
splice forms, partial and full-length transcripts. Annotation based
on Pfam and on protein homology BLAST analyses identified 31
putative UGT candidates, of which four were predicted to be full-
length and the rest partial. The four full-length sequences
(DcUGT1, DcUGT2, DcUGT4, and DcUGT8) were among the 21
highest expressed putative UGT transcripts in adult female D.
coccus insects displaying RPKM (Reads per Kilobase sequence per
Million mapped reads) values of 108, 182, 54, and 10, respectively
(Supplementary Data 1). An attempt to express the four full-
length native DcUGT cDNAs were carried out in S. cerevisiae and
Aspergillus nidulans with and without a C-terminal Strep-tag II
(Strep) epitope. Transformants were confirmed by PCR followed
by DNA sequencing of the amplified product, but no functional
UGT activity could be measured. In this set of experiments, the
UGT activity was monitored in soluble and microsomal protein
extracts from the transformed heterologous hosts and from
untransformed host controls. No product formation was detected
in the liquid chromatography-mass spectrometry (LC-MS) and
thin-layer chromatography (TLC) profiles following incubation
with UDP-glucose or [14C]UDP-glucose, respectively, and using
the putative substrates FK and KA. FK and KA were supplied in
the form of an isolated metabolite fraction from Kermes vermilio,
a scale insect species incapable of producing dcII and CA. The
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lack of a UGT activity prompted us to test for heterologous
protein production after induced expression of the epitope-tagged
DcUGT versions. Western blot analysis of total proteins extracted

from cultured transformants did not uncover any immunor-
eactive proteins. Thus, the absence of heterologous UGT activity
was ascribed to either non-optimal codon usage of the native

S

O HO S-CoA

O OCoA

1×                                           +                7×

Acetyl-CoA Malonyl-CoA

O

S-ACP

OCH3

O

OO

O

O O

Octaketide

3 H2O

HO

OH O CH3

OH

O

OH

Anthrone form of flavokermesic acid

HO

OH O CH3

OH

O

OH

O
Flavokermesic acid (FK)

HO

OH O CH3

OH

O

OH

O

Kermesic acid

[O]

UDP-glucose

UDP

HO

OH O CH3

OH

O

OH

O OH

Glucose

Flavokermesic acid 7-C-glucoside (dcII)

HO

OH O CH3

OH

O

OH

O

Glucose

Carminic acid (CA)

OH

UDP-glucose

UDP

PKS

PKS

Monooxygenase
or

spontaneous

Monooxygenase

UGT

UGT

Monooxygenase [O]

[O]

Fig. 1 Putative carminic acid pathway in Dactylopius coccus. UDP uridine diphosphate, UGT uridine diphosphate glucosyltransferase, PKS polyketide
synthase, CoA coenzyme A, [O] oxidizing agent, ACP acyl carrier protein

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02031-z ARTICLE

NATURE COMMUNICATIONS |8:  1987 |DOI: 10.1038/s41467-017-02031-z |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


DcUGT cDNA sequences, hampered transcription, or an
instability/degradation of the foreign DcUGT transcripts. These
negative results dictated initiation of a biochemical approach.

Isolation of a D. coccus glucosylation activity. A soluble and a
microsomal protein fraction were isolated from fresh adult D.
coccus females and tested for glucosylation activity towards FK
with [14C]UDP-glucose present as the sugar donor (Fig. 2a, b).
An enzyme activity specifically capable of glucosylating FK and
KA was present in the microsomal protein fraction (Fig. 2b). The
observed formation of [14C]CA in reactions supplemented with
FK and in control reactions without added substrate is ascribed to
the presence of carryover of KA bound to the microsomes in spite
of introduction of several washing steps in the isolation proce-
dure. Partial purification of the membrane-bound enzyme activ-
ity, responsible for glucosylating FK and KA, was accomplished
following initial solubilization of the microsomal protein fraction
using reduced Triton X-100 and then separation by anion-
exchange chromatography using Q-Sepharose and application of
a stepwise NaCl gradient (100–500mM) (Supplementary Fig. 1).
Fractions showing FK/KA-specific glucosylation activity were
obtained following elution with 100 and 200 mM NaCl. UGT
enzymes have masses within the range of 50–75 kDa. Based on
the presence of the desired enzyme activity and sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis,
protein fraction 1 was selected for further analysis. In comparison
to other active protein fractions, it contained fewer proteins in the
50 to 75 kDa mass region (Supplementary Fig. 1). We expected
that a reduced number of non-relevant proteins would optimize
identification of the UGT responsible for the observed activity.
Thus, protein fraction 1 was separated by SDS-PAGE and the
proteins migrating in the 50 to 75 kDa region were subjected to

in-gel trypsin digestion, LC-MS/MS-based amino acid sequencing
of the fragments obtained, and database searching (Fig. 2c).
Tryptic peptide sequence hits, with a coverage of 45%, 8%, and
22% corresponding to DcUGT2, DcUGT4, and DcUGT5,
respectively, were found when compared to the transcriptomic
dataset and BLAST searches (Supplementary Data 2).

Heterologous expression of DcUGT genes in yeast. To deter-
mine whether any of the three UGTs found in the D. coccus
membrane protein fraction were able to catalyze glucosylation of
FK and KA in vitro, the three candidate genes were codon
optimized and expressed with a Strep in S. cerevisiae. Prior to this,
the full-length cDNA sequences were obtained for DcUGT5 and
confirmed for DcUGT2 and DcUGT4 from D. coccus by rapid
amplification of cDNA ends (RACE). Five independent yeast
transformants were selected for each UGT construct and micro-
somes were prepared from their cell cultures following galactose-
induced protein expression. Western blot analysis using anti-
Strep antibody detected the DcUGT2-Strep and DcUGT5-Strep
proteins, but not the DcUGT4-Strep protein, indicating that
induced synthesis of two of the three UGT candidates had been
achieved in yeast (Fig. 3). Interestingly, the immunoreactive
DcUGT2-Strep protein migrated with an apparent molecular
mass of approximately 52 kDa which is smaller than its calculated
mass of 58 kDa. In contrast, yeast microsomes containing
DcUGT5-Strep gave rise to three distinct immunoreactive bands,
of which one matched its calculated molecular mass of 59 kDa
(Fig. 3). The two other immunoreactive polypeptides with
lower masses were considered to be degradation products of
the full-length DcUGT5-Strep protein. This profile was observed
for all five transformants carrying the DcUGT5-Strep gene
(Fig. 3).
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Two selected yeast transformants, each carrying DcUGT2-Strep
and DcUGT5-Strep, respectively, were analyzed for their in vitro
glucosylation activity (Figs. 3 and 4b). FK was tested as the
aglucone substrate using the structurally similar anthraquinone,
asperthecin, as a control (Fig. 4a). This showed that only
DcUGT2-Strep was able to catalyze production of radiolabeled
glucosylated FK when incubated with [14C]UDP-glucose and the
FK aglucone. The [14C] product corresponded to the compound
formed with a D. coccus microsomal protein fraction after
incubation with the same substrate, suggesting that DcUGT2 is
the enzyme or at least one of those enzymes responsible for the
FK-specific glucosylation activity observed in D. coccus (Fig. 4b).
Assay products, generated in vitro with D. coccus microsomes,
were treated with viscozyme to assess whether the [14C]FK-
glucoside formed was caused by O- or C-glucosylation (Supple-
mentary Fig. 2). In contrast to the O-glucoside control [14C]
Linamarin, [14C]FK-glucoside was resistant to the viscozyme
treatment and migrated with a similar relative migration (Rf)
value as dcII, indicating that it was a C-glucoside. The D. coccus

microsomal proteins were incapable of glucosylating asperthecin
in vitro, implying that the configuration of functional groups on
the anthraquinone backbone was critical for C-glucosylation to
occur. As observed from the vector control, S. cerevisiae also
possesses endogenous glucosylation activities, yielding a [14C]
product with a similar Rf value as CA in the applied TLC system
(Fig. 4).

In order to distinguish CA from this unknown [14C] product
and to obtain further confirmation of the structures of the
glucosylated products formed, the enzyme-generated products
were analyzed by high-performance liquid chromatography-MS
(HPLC-MS) (Fig. 5). Yeast microsomes harboring DcUGT2-Strep
were incubated with UDP-glucose in the presence of KA and FK
as substrates. This corroborated the ability of DcUGT2-Strep to
glucosylate FK and clearly demonstrated that KA acted as an
acceptor molecule for DcUGT2-Strep when compared with the
negative vector control (Fig. 5). The formed glucosides were
identified as being the C-glucosides dcII and CA based on their
MS fragmentation patterns and comparison with authentic
standards (Fig. 5).

Characterization of DcUGT2. To characterize the kinetic
properties of DcUGT2, yeast microsomal membranes containing
heterologously produced DcUGT2 were solubilized using reduced
Triton X-100 and DcUGT2 was affinity purified by its Strep-tag II
(Supplementary Fig. 3 and Fig. 6). In vitro tests of the isolated
Strep-tagged DcUGT2 showed that its enzymatic activity was lost
upon isolation (Fig. 6). Thus, it was not possible to carry out a
more detailed kinetic study on DcUGT2-Strep because of its
labile nature.

The DcUGT2 transcript from D. coccus encodes a 515-amino
acid long protein that is predicted to be membrane bound as
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mediated by a transmembrane helix positioned in its C-terminal
region and encompassing amino acid residues 469–492 (Fig. 7).
At the N terminal, the first approximately 20 amino acids are
predicted to constitute a cleavable signal peptide which targets the
protein to the ER (Fig. 7). DcUGT2 is presumed to be anchored
to the ER membrane with the N-terminal part facing the ER
lumen and a short C-terminal part exposed to the cytoplasm. This
fits with the membrane orientation of most ER-bound UGTs
which are classified as type I transmembrane proteins20.

With the globular part of the DcUGT2 protein predicted to be
in the ER lumen, an in silico search for potential N-glycosylation
sites was carried out. The search showed that the enzyme contains
three putative asparagines from which N-linkages to sugars may
be established (Fig. 7).

To address whether the native DcUGT2 is a glycoprotein, a
deglycosylation assay was performed on D. coccus microsomes
followed by SDS-PAGE and western blot analysis using a rabbit

polyclonal peptide antibody recognizing the native DcUGT2. In
the untreated microsomes, a single immunoreactive protein with
an apparent mass of 75 kDa was detected, suggesting that
DcUGT2 might be heavily glycosylated (Fig. 8a). As expected,
this immunoreactive protein was not detected in the D. coccus
soluble protein fraction further supporting the notion that
DcUGT2 is ER-bound (Fig. 8a).

After treatment of the D. coccus microsomes with deglycosylat-
ing enzymes over different periods of time, a prominent
immunoreactive protein emerged with an apparent mass of
49 kDa (Fig. 8b). This protein was assumed to be the fully
deglycosylated version of the native DcUGT2, although it did not
migrate on the SDS-PAGE as a protein with a mass of 57 kDa, the
calculated mass based on its amino acid sequence. Such mass
discrepancies are not uncommon for membrane proteins21. It
may be noticed that even after 24 h of treatment, glycosylated
DcUGT2 protein remained present in the microsomes (Fig. 8b).
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Fig. 5 DcUGT2 catalyzes CA and dcII formation in vitro. Yeast microsomes containing (b) pYES-DEST52 vector or (c) DcUGT2-Strep were incubated with
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This observation likely reflects that some of the sugar chains,
linked to DcUGT2, were less exposed.

In comparison to the sequences available in GenBank provided
by the National Center for Biotechnology Information22, the
closest homologous sequence to DcUGT2 is a predicted UDP-
glucuronosyltransferase 2B10 from the pea aphid, Acyrthosiphon
pisum. This UGT shares 46% amino acid sequence identity to
DcUGT2 (Supplementary Fig. 4). It is noteworthy that when
DcUGT2 was compared to the other 30 putative UGTs annotated
in the D. coccus transcriptome, the closest homologous sequence
was DcUGT23 with a shared amino acid identity of 57%. The
assembled transcript encoding DcUGT23, however, lacks a stop
codon, but the translated product of this partial transcript is 515
amino acids and thus assumed to be nearly full-length.

The alignment of DcUGT2 to several other membrane-bound
UGTs shows that the enzyme contains a region between amino
acids 46 and 56 which corresponds to the conserved hydrophobic
motif “LX2-RG-H-X3-VL”, e.g., as described in human
UGT1A623. The “LX2-RG-H-X3-VL” sequence region in

DcUGT2 is 91% identical at the amino acid level to the
corresponding sequence in UGT2B7 from humans (Supplemen-
tary Fig. 4). This motif is critical for the functional and structural
integrity of membrane-bound UGTs20. Donor binding regions 1
and 224 were also identified in DcUGT2 showing 75% and 57%
sequence identity, respectively, to those in UGT2B7 (Supplemen-
tary Fig. 4). DcUGT2 was also found to contain the important
catalytic asparagine residue at position 128. In the sequence
alignment with other membrane-bound UGTs, a histidine residue
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is predominantly observed as a catalytic residue at position
3420,24 (Supplementary Fig. 4). In DcUGT2 an asparagine residue
is found at position 34.

Targeting DcUGT2 to the ER is critical for its activity. The
predicted localization of the main globular part of DcUGT2 in the
ER lumen and its potential N-glycosylation prompted us to
investigate whether such compartmentalization would impact its
catalytic activity. To test this, two truncated Strep-tagged versions
of DcUGT2 were generated and heterologously expressed in yeast.
DcUGT2ΔMD-Strep lacked the predicted transmembrane domain
and associated cytoplasmic tail (amino acid residues 469–515)
while ΔSP-DcUGT2ΔMD-Strep lacked the putative N-terminal
signal peptide (amino acid residues 1–20) as well as the predicted
transmembrane domain and cytoplasmic tail (amino acid resi-
dues 469–515). Western blot analyses of both the soluble protein
and membrane-bound protein fraction isolated from yeast cul-
tures expressing the truncated DcUGT2 proteins showed that
they were synthesized successfully (Fig. 9). The DcUGT2ΔMD-
Strep protein was only present in the microsomal fraction. Four
distinct immunoreactive proteins were detected ranging in masses
from approximately 47 to 58 kDa (Supplementary Fig. 5). Fol-
lowing deglycosylation, the proteins with masses between 50 and
58 kDa disappeared, whereas the immunoreactive protein with
the mass of 47 kDa became more prominent and thus most likely
represented fully deglycosylated DcUGT2ΔMD-Strep. Interest-
ingly, the truncated ΔSP-DcUGT2ΔMD-Strep also appeared in
the microsomal fraction, suggesting that the DcUGT2 protein,
apart from the signal peptide, might contain other internal amino
acid regions that target the protein to the ER (Fig. 9). It should be
noted that the ΔSP-DcUGT2ΔMD-Strep did not appear to be
glycosylated and therefore most likely never entered the ER
lumen but rather was associated with the ER membrane facing
the cytosol or other cellular membrane structures.

In vitro activity assays using yeast microsomes containing the
full-length DcUGT2-Strep, truncated DcUGT2-Strep versions, or
microsomes from yeast harboring the pYES-DEST52 vector
showed that only DcUGT2 versions expressed with the N-
terminal signal peptide were catalytically active when compared
to the vector control (Fig. 10). Although functionally active, the
truncated DcUGT2ΔMD-Strep was not as efficient as DcUGT2-
Strep. The production of CA was reduced by two orders of
magnitude and production of dcII was abolished when compared
with DcUGT2-Strep (Fig. 10). In contrast, the ΔSP-
DcUGT2ΔMD-Strep was completely inactive. We conclude that
targeting of DcUGT2 to the ER lumen is critical for its activity.
The transmembrane domain/cytoplasmic tail are also important
to gain optimal activity but are not crucial.
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Discussion
Although the CA pigment has served as an important red col-
orant throughout history and its origin from cochineal is well
established, no genetic or biochemical information is currently
known about its biosynthesis. Due to the chemical structure of
CA, the general consensus is that a PKS enzyme is involved in its
formation10. The present lack of such biochemically identified
enzymes from animals has raised speculations as to whether an
endosymbiont might be responsible for the CA biosynthesis in
cochineals25. Several Dactylopius species have been shown to
contain a multitude of endosymbiotic bacteria, but whether any
of these organisms are capable of producing CA remain uncer-
tain10,26,27. In Dactylopius, the CA pigment is found throughout
the body of the insect with very high amounts appearing in the
hemolymph3,28. Thus, it has been proposed that specialized
hemocyte cells, which occur in the hemolymph and have special
biosynthetic and secretory function, might be responsible for the
production of CA29–31. In the current study, a membrane-bound
C-glucosyltransferase, DcUGT2, from D. coccus has been isolated
which is capable of forming CA by glucosylation of KA in vitro.
Thus, it is likely that part, if not all, of the biosynthetic pathway
leading to the formation of CA is performed by the cochineal
insect itself. Several taxonomically widespread dye-producing
scale insect species have been shown to contain pigments derived
from an FK backbone, indicating that the pathway for FK
synthesis has emerged from a common ancestor. As the origin of
the anthraquinone backbone of CA is unresolved, the possibility
still exists that the KA aglucone may arise from an endosymbiont.
In this case, the C-glucosylation by the cochineal would then be
considered to be an action of detoxification32. Generally, glyco-
sylation serves to stabilize labile aglycons, to increase their solu-
bility, facilitate compartmentalized storage, and to reduce their
bioactivity/autotoxicity. This is the reason why many plant
defense compounds are stored as glucosides. In some cases, the
sugar moiety is cleaved off to activate and jack-up the efficacy of
the defense system upon demand. In D. coccus, the C-
glucosylation step would be expected to facilitate transport,
packing, and safe storage of CA. CA is envisioned to serve as a
defense compound due to its feeding-deterrent properties
towards ants3. Storage of toxic constituents is a challenge that not
only D. coccus but all organisms need to handle and master if they
want to use them as part of their defense systems towards pre-
dators and pests.

DcUGT2 is predicted to be a type I integral ER membrane
protein. In accordance, it possesses a putative N-terminal clea-
vable signal peptide and a potential C-terminal transmembrane
helix, which enable embedment of the enzyme into the ER
membrane, with the globular part residing in the ER lumen and a
short part exposed to the cytosol. The presence of the putative
signal peptide is essential for obtaining a functional active
DcUGT2 protein as demonstrated by complete obliteration of
glucosylation activity of the truncated DcUGT2 protein devoid of
the putative signal peptide and transmembrane domain/cyto-
plasmic tail, whereas truncated DcUGT2 protein missing only the
transmembrane domain/cytoplasmic tail retained activity. The
yeast-produced ΔSP-DcUGT2ΔMD-Strep protein remained
associated with the membrane protein fraction, indicating that it
had been targeted to the ER or associated with other cellular
membrane structures in the yeast. If the truncated DcUGT2
protein is indeed targeted to the ER without the putative signal
peptide, another unknown ER-targeting signal must be present in
the DcUGT2 protein and clearly not contained within the
transmembrane domain/cytoplasmic tail. Such a signal has, in
fact, been demonstrated to occur within an amino acid stretch,
encompassing residues 140–240 of the human UGT1A6, although
an exact motif was not defined33,34. Expression of UGT1A6

without the sequence encoding the N-terminal signal peptide
showed that the ΔSP-UGT1A6 protein was translocated into and
retained in the ER via this 100 amino acid stretch in mammalian
cells33,34. The amino acid alignment of DcUGT2 to UGT1A6
indeed identified regions of homology between the two proteins
in this 100 amino acid stretch, but whether the ER-targeting
signal is contained within these regions remains to be established
(Supplementary Fig. 4). In addition to being N-glycosylated in an
in vitro transcription–translation system with pancreatic micro-
somal membranes and in vivo when expressed in the Pichia
pastoris yeast, the ΔSP-UGT1A6 protein was also functionally
active and had similar kinetic parameters to UGT1A633,34. It was
therefore concluded that the signal peptide was not essential for
membrane assembly and functional activity of UGT1A6. The
authors also found that when the signal peptide and transmem-
brane domain/cytoplasmic tail were removed, the truncated
UGT1A6 protein remained able to enter the ER and undergo N-
glycosylation in P. pastoris. In contrast, the yeast-produced ΔSP-
DcUGT2ΔMD-Strep protein, although associated with the
membrane fraction, did not seem to enter into the lumen of the
ER, as indicated by the lack of post-translational N-glycosylation.
The native D. coccus DcUGT2 was shown to be subject to heavy
glycosylation. Whether such post-translational modifications are
required for its catalytic activity is uncertain. Physiological con-
ditions like the redox potential of the environment and protein
factors including chaperones present in the ER may be essential
for the glucosylation mechanism of DcUGT2. A fair amount of
evidence point to the functioning of membrane-bound UGTs as
dimers or oligomers in vivo. Proper membrane integration may
be a prerequisite for efficient assembly of the UGT mono-
mers20,35. The dimerization/oligomerization process has been
proposed to greatly increase the metabolic capacity of membrane-
bound UGTs36. Hampered ability of the truncated DcUGT2 to
oligomerize might thus affect the enzyme activity negatively. It is
noteworthy that the yeast-synthesized DcUGT2ΔMD-Strep pro-
tein appeared as distinctly glycosylated as well as non-
glycosylated variants after expression. This could indicate that
some DcUGT2ΔMD-Strep molecules never entered into the ER,
while others entered and were positioned differently along the
secretory pathway where they encountered different N-glycosyl-
transferases. Thus, the impaired enzyme activity might simply
reflect that the heterologously produced DcUGT2ΔMD-Strep was
a mixed population of glycosylated and non-glycosylated variants.
Based on these findings we conclude that targeting DcUGT2 to
the lumen of the ER is essential for the functional activity.

The truncations of the N-terminal signal peptide and of the
transmembrane domain/cytoplasmic tail were initially designed
to generate a soluble functional variant of DcUGT2 suitable for
heterologous production of CA in a prokaryotic host. In light of
the results obtained in the current study, it is reasoned that it
might be necessary to use bacterial strains engineered to perform
post-translational glycosylation and mimic ER conditions in
order to produce CA. Alternative platforms based on the use of
eukaryotic organisms such as yeasts or algae are likely to be more
suitable for CA production.

Methods
Transcriptomic analysis. Frozen adult female D. coccus (0.5 mg) obtained from
Lanzarote, Spain were ground into a fine powder with a mortar and pestle under
liquid nitrogen. Total RNA was subsequently extracted using the RNeasy Mini Kit
(Qiagen) according to the manufacturer’s instructions. Polyadenylated RNA was
converted into cDNA with an oligo-dT primer and a reverse transcriptase (RT2

Easy First Strand Kit, Qiagen). The cDNA samples were sequenced with a total
yield of 5 GB sample−1 (corresponding to 51 million 90-bp reads) by BGI-Shenz-
hen, China using 90-bp paired-end Illumina sequencing technology. Sequenced
paired-end reads were assembled de novo into contigs using the Genomic
Workbench version 5.4 software (CLC bio, Qiagen). Quality-based read trimming
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was performed based on Phred scores, using a modified Mott-trimming algorithm
with a limit of 0.05 and a maximum of 2 ambiguous bases/reads after trimming.
More details about the Mott-trimming algorithm used by CLC bio can be found in
online documentation37. De novo transcriptome assembly was carried out using
the de Bruijn graph algorithm in the CLC bio Genomic Workbench. Settings were a
word size of 20, a bubble size of 50, and a minimum contig length of 200. After
assembly, the reads were mapped back to the contigs with the following mapping
parameters: mismatch cost = 2, insertion cost = 3, deletion cost = 3, length fraction
= 0.5, and similarity fraction = 0.8. Putative genes were identified using the hidden
Markov matrix-based prokaryote gene finder tool in IOGMA v. 10 (Genostar,
Grenoble, France). This approach was regarded to be more simple than using the
eukaryote gene finder tool since only polyadenylated RNA, in which splicing events
are presumed to already have occurred, was analyzed. Annotation of putative UGT
genes was carried using both the nucleotide and translated protein sequences in a
BLAST comparison with the GenBank sequence database (National Center for
Biotechnology Information, NCBI) and by similarity comparison to the
UDPGT (UDP-glucuronosyl and UDP-glucosyltransferase) Pfam protein family
(PF00201)38.

Preparation of protein fractions. Fresh D. coccus insects (3 g) were homogenized
in 120 ml of isolation buffer (350 mM sucrose, 20 mM Tricine (pH 7.9), 10 mM
NaCl, 5 mM DTT, 1 mM PMSF, Complete protease inhibitor cocktail tablets
(Roche) containing 0.3 g polyvinylpolypyrrolidone). The homogenate was filtered
through a nylon cloth (22 µm mesh) and centrifuged (10 min, 10,000×g, 4 °C). The
supernatant was isolated and ultracentrifuged (1 h, 105,000×g, 4 °C), yielding a
soluble and a membrane-bound protein fraction. The soluble protein fraction was
concentrated to 1 ml and buffer-exchanged with 20 mM Tricine (pH 7.9), and
5 mM DTT by using Amicon Ultra centrifugal filter-3K devices (Millipore). The
membrane-bound protein pellet was washed thrice by resuspending the pellet in
60 ml of 20 mM Tricine (pH 7.9), and 5 mM DTT using a marten paintbrush
followed by ultracentrifugation. The membrane-bound protein pellet was finally
resuspended in 1 ml of 20 mM Tricine (pH 7.9), and 5 mM DTT. The soluble
protein fraction and the membrane-bound protein fraction were analyzed for
glucosylation activity.

LC-MS/MS analysis of protein fractions with UGT activity. The membrane-
bound protein fraction isolated from fresh D. coccus insects (10 g), as described
above, was solubilized by adding reduced Triton X-100 to a final concentration of
1% (v v−1), gently stirred (1.5 h, 4 °C), and centrifuged (1 h, 105,000×g, 4 °C). The
supernatant was isolated and applied to a column packed with 2 ml Q-Sepharose
Fast flow (GE Healthcare). The column was washed in 4 ml of buffer A (20 mM
Tricine (pH 7.9), 0.1% (v v−1) reduced Triton X-100, 50 mM NaCl) and proteins
were eluted with 20 mM Tricine (pH 7.9) and 0.1% (v v−1) reduced Triton X-100
using a stepwise NaCl gradient from 100 to 500 mM with 50 mM increments.
Fractions (0.5 ml) were collected, desalted, analyzed by SDS-PAGE, and monitored
for glucosylation activity using the described [14C]glucosylation enzyme assay. A
fraction showing increased FK/KA-specific UGT activity was separated on a 12%
SDS gel and two gel blocks spanning the 50–70 kDa region were excised. The gel
blocks were digested with trypsin after reduction and alkylation according to
Shevchenko et al.39 and eluted with 0.1% trifluoroacetic acid. LC-MS/MS: reverse
phase nano-HPLC was coupled online to a tandem LTQ-orbitrap XL electrospray
mass spectrometer: Chromatographic separation was performed by an EASY-nLC
system (Thermo, Bremen, Germany). The peptides were separated by a two col-
umn system that consisted of a 2 cm trap column of ReproSil-Pur 120 AQ-C18, 3
µm (Dr Maisch GmbH, Ammerbuch Entringen, Germany) packed in 100 µm fused
silica fitted with a kasil plug and connected to the separation column which was
packed to 10 cm in a 75 µm pulled needle fused silica capillary with the same
material as in the trap column. After loading and desalting, the peptides were
separated with a linear gradient from 0 to 32% in solvent B in 60 min and 32 to
100% in solvent B in 5 min at a flow rate of 250 nl min−1. Solvent A was composed
of 0.1% formic acid in water and solvent B was composed of 95% acetonitrile, 0.1%
formic acid, and 5% water. Mass spectra were acquired in the positive ion mode.
Settings were as follows: The electrospray voltage was kept at 2.3 kV with an ion
transfer temperature of 270 °C with active background ion reduction (New
Objective Inc., Woburn MA, USA) gas flow. Data-dependent acquisition was used
for automated switching between MS mode in the orbitrap and MS/MS mode in
the LTQ. Charges of 1,000,000 were accumulated in the LTQ before injection in the
orbitrap in which a parent ion scan from m/z 300–1800 was performed with a
target peak resolution of 60,000 at m/z 400. The five most abundant ions with
charge states above 1 and intensity above 15,000 counts were selected with an
isolation width of 2.5m/z units for MS/MS with collision-induced dissociation in
the LTQ. Charges of 30,000 were accumulated, the normalized collision energy was
set to 35% with activation q = 0.25 and activation time 30 ms. m/z values ±10 p.p.
m. of precursor ions that were selected for MS/MS were subjected to a dynamic
exclusion list for 45 s. LC-MS/MS data were searched with a MASCOT server
(Matrix Science) operated by Proteome Discoverer software (Thermo Scientific)
against the de novo-assembled D. coccus transcriptome database. Carbamido-
methyl was set as fixed modification and deamidation of asparagine and glutamine
residues and oxidation of methionine residues as variable modifications. The
peptide MS and MS/MS tolerances were set to 10 p.p.m. and 0.8 Da, respectively.

The Decoy database was searched for peptide false discovery rate determination.
The expected value was adjusted to match a strict false discovery rate of 1% by the
Target Decoy PSM Validator module of Proteome Discoverer. At least two peptides
were required for identification. Identified protein sequences from the de novo-
assembled D. coccus transcriptome database were subjected to BLAST search
against insect proteins for functional annotation.

Cloning of DcUGT fragments and yeast heterologous expression. Full-length
DcUGT candidates (DcUGT2, DcUGT4, and DcUGT5) were either verified or
obtained by rapid amplification of cDNA ends from polyadenylated RNA of adult
female D. coccus by using the SMARTer RACE 5′/3′ Kit (Clontech). The three
cDNAs and the following constructs thereof were sequenced by Macrogen Inc. The
candidate DcUGTs were codon optimized for S. cerevisiae expression and syn-
thesized with Gateway-compatible attL recombination sites by GenScript. The
synthetic genes were used as templates with specific primers in sequential PCRs to
generate the corresponding Strep-tagged versions. In the first PCR, the candidates
were amplified with the forward primer, attB1: 5′-GGGGACAAGTTTGTA-
CAAAAAAGCAGGCT-3′ and a specific reverse primer. Specific reverse primers
were: 5′-TTATTTTTCGAATTGTGGATGAGACCAAGCAGAATTCTTTTTC
AACTTTTCAGATTTAG-3′ (DcUGT2), 5′-TTATTTTTCGAATTGTGGATGA-
GACCAAGCAGATTTTGTTAACATTCTGAAAAAGATTCT-3′ (DcUGT4), and
5′-TTATTTTTCGAATTGTGGATGAGACCAAGCAGAGTTATCCTTAACT
TTCTTAGTTGGTTT-3′ (DcUGT5). The truncated versions, DcUGT2ΔMD-Strep
lacking the predicted transmembrane domain/cytoplasmic tail and ΔSP-
DcUGT2ΔMD-Strep lacking the putative N-terminal signal peptide and the pre-
dicted transmembrane domain/cytoplasmic tail, were amplified from the synthetic
DcUGT2 gene. Primer sets used in the first PCR were: attB1/MD-Strep: 5′-TTAT
TTTTCGAATTGTGGATGAGACCAAGCAGAGTGCAAAAAGGCACCTG
CAGT-3′ for the amplification of DcUGT2ΔMD-Strep and 5′-CAAGTTTGTA-
CAAAAAAGCAGGCTAAAAATGGCCGAAATCTTGGCTTTATTCC-3′/MD-
Strep for the amplification of ΔSP-DcUGT2ΔMD-Strep. All products from first PCR
were diluted 15 times and used in a second PCR with the forward attB1 primer and
a reverse primer: Strep_attB2: 5′-GGGGACCACTTTGTACAAGAAAGCTGGGT
CTTATTTTTCGAATTGTGGATGAGAC-3′, resulting in C-terminal Strep-tagged
fragments flanked by Gateway-compatible attB sites. These fragments were cloned
into pDONR207 (Invitrogen) and then transferred into destination vector, pYES-
DEST52 (Invitrogen), using Gateway Technology (Invitrogen) according to the
manufacturer’s instructions. Recombinant pYES-DEST52 constructs and pYES-
DEST52 were separately transformed into the Invsc1 yeast strain (Invitrogen) and
positive transformants were verified by PCR. Heterologous protein production was
carried out as described in the pYES-DEST52 manual (Invitrogen). Soluble proteins
and membrane-bound proteins (microsomes) were isolated according to Pompon
et al.40. Yeast cells were harvested from 25-ml cultures by centrifugation (10 min,
7500×g, 4 °C) and washed with 1 ml TEK buffer (50 mM Tris-HCl (pH 7.5), 1 mM
ethylenediaminetetraacetic acid (EDTA) and 100 mM KCl). The cells were sedi-
mented by centrifugation (10 min, 7500×g, 4 °C) followed by resuspension in 1 ml
TES2 buffer (50 mM Tris-HCl (pH 7.5), 1 mM EDTA and 600 mM sorbitol, 1%
(w v−1) bovine serum albumin, 5 mM DTT, and 1 mM PMSF). Yeast cell disrup-
tion was achieved by a 5-min votexing with acid-washed glass beads (425–600 μm;
Sigma-Aldrich) at 4 °C. The supernatant was collected by centrifugation (15 min,
10,000×g, 4 °C) and ultracentrifuged (1 h, 105,000×g, 4 °C), yielding a soluble
protein fraction and a microsomal pellet. The microsomal pellet was subsequently
washed twice by resuspending the pellet in 5 ml TES buffer (50 mM Tris-HCl (pH
7.5), 1 mM EDTA, and 600 mM sorbitol) and once in TEG buffer (50 mM Tris-
HCl (pH 7.5), 1 mM EDTA, and 30% (v v−1) glycerol) using a marten paintbrush
followed by ultracentrifugation in between. The membrane-bound protein pellet
was finally resuspended in 0.5 ml of TEG buffer. Production of heterologous Strep-
tagged protein was verified by western blotting using an anti-Strep antibody
(Qiagen, catalog no. 34850; in a 1:2000 dilution) followed by a secondary horse-
radish peroxidase (HRP)-conjugated antibody (Pierce Biotechnology, catalog no.
1858413; in a dilution of 1:5000) and chemiluminescence detection.

Affinity purification of Strep-tagged DcUGT2. Yeast microsomes containing
Strep-tagged DcUGT2 were isolated from a 250 ml culture, resuspended in 30 ml of
binding buffer (100 mM Tris-HCl (pH 7.5), 150 mM NaCl, and 1 mM EDTA), and
solubilized by adding reduced Triton X-100 to a final concentration of 1% (v v−1)
under gentle stirring (1.5 h, 4 °C). The supernatant was isolated by ultra-
centrifugation (1 h, 105,000×g, 4 °C) and the Strep-tagged DcUGT2 affinity pur-
ified on an equilibrated 5 ml Strep-Tactin column (IBA GmBH), operated by an
ÄKTA explorer 100 FPLC system (GE Life Sciences) and a flow rate of 1 ml min−1.
Column equilibration and washing were according to the manufacturer’s guide-
lines. Protein elution was carried out with a flow rate of 3 ml min−1 using 10
column volumes of binding buffer containing 2.5 mM desthiobiotin in a gradient of
0–100%. Fractions (0.5 ml) were collected, desalted, analyzed by SDS-PAGE, and
monitored for glucosylation activity using the described [14C]glucosylation enzyme
assay.

Enzyme assays and glucoside product detection. Assays were carried out using
either UDP-glucose or [14C]UDP-glucose as the sugar donor. [14C] assays were
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performed in reaction mixtures (total volume: 60 μl) containing 20 mM Tricine
(pH 7.9), 0.2 mM aglucone substrate, 3.3 μM [14C]UDP-glucose (specific activity:
302 Ci mmol−1), and 20 μl protein extract (membrane-bound or soluble protein) in
a final concentration of 0.5 mg ml−1. Following incubation (0.5 h, 30 °C), the
reactions were terminated by adding 180 μl of methanol. Samples were centrifuged
(5 min, 16,000×g, 4 °C) and supernatant was applied to TLC plates (silica gel 60
F254 plates; Merck). Radiolabeled products formed were resolved in dichlor-
omethane:methanol:formic acid (7:2:2, by volume). [14C]-labeled products were
visualized using a STORM 840 PhosphorImager (Molecular Dynamics). Non-
radioactive assays were performed in reaction mixtures (total volume: 60 μl) con-
taining 20 mM Tricine (pH 7.9), kermes metabolite extract (containing both FK/
KA), 1.25 mM UDP-glucose, and 20 μl protein extract (membrane-bound or
soluble protein). After incubation (2 h, 30 °C), the reactions were terminated by
adding 180 μl of methanol and passed through a 0.45 µM hydrophilic low protein
binding spin filter (Millipore). Assay products were detected using two different
LC-HRMS systems. System 1 consisted of an Agilent 1290 HPLC (Santa Clara, CA,
USA), which include a binary pump, a thermostatically controlled column com-
partment maintained at 35 °C, equipped with a Kinetix XB-C18 column
(100 mm × 4.60 mm, 2.6 μm, 100 Å; Phenomenex, Torrance, CA, USA) and a
photodiode-array detector, connected to an Agilent Q-TOF equipped with an
electrospray ionization source operated in negative ionization mode. Separation
was obtained using gradient elution of water–methanol (75:25) (eluent A) and
methanol–water (70:30) (eluent B), both acidified with 5% formic acid. The fol-
lowing elution profile was used, with a flow rate of 0.8 ml min−1 operated at 35 °C:
0–0.5 min, 100% A; 1.5 min, 69% A; 2.5 min, 37% A; 4.5 min, 13% A; 10 min, 0% A;
11 min, 0% A; 12.5 min, 100% A. Retention times were 3.1 min for dcII, 3.2 min for
CA, 5.5 min for FK, and 5.6 min for KA. System 2 consisted of an Agilent
1260 series HPLC system comprising a G1311B quaternary pump with built-in
degasser, a G1329B autosampler, a G1316A thermostatically controlled column
compartment, and a G1315D photodiode-array detector connected to a Bruker
micrOTOF-Q II (Bruker Daltonics Inc., Billerica, MA, USA) equipped with an
electrospray ionization source operated in negative ionization mode. Chromato-
graphic separation was performed at 40 °C on a Phenomenex Luna C18(2) column
(150 × 4.6 mm2, 3 μm, 100 Å), using water–acetonitrile (95:5) (eluent A) and
acetonitrile–water (95:5) (eluent B), both acidified with 0.1% formic acid. The
following gradient elution profile was used at a flow rate of 0.8 ml min−1: 0 min,
100% A; 20 min, 0% A, 22 min, 0% A; 24 min, 100% A. On system 2, retention
times were 9.9 min for dcII, 10.0 min for CA, 14.7 min for FK, and 14.8 min for
KA.

Viscozyme treatment of [14C]-labeled products. [14C]-labeled products, formed
in in vitro enzyme assays, were dried completely under a nitrogen gas flow and
resuspended in 30 μl of 50 mM citrate buffer (pH 4.7). Following addition of 1 μl of
Viscozyme L (0.121 Fungal Beta-Glucanase units; Novozymes), samples were
incubated (3 h, 55 °C) and reactions terminated by adding 90 μl of methanol. The
Viscozyme-treated samples were separated by TLC using the solvent system
dichloromethane:methanol:formic acid (7:2:2, by volume). [14C]-labeled products
were visualized by phosphorimaging. [14C]Linamarin was produced enzymatically
by using a recombinant S-tagged cassava UGT, UGT85K4 (accession no.
AEO45781) synthesized in Escherichia coli. Crude E. coli lysate containing 0.5 μg of
S-tagged UGT85K4 was incubated in an assay mixture of 20 μl composed of
100 mM Tris-HCl (pH 7.5), 3.3 μM [14C]UDP-glucose (specific activity: 302 Ci
mmol−1), and 5 mM acetone cyanohydrin. The reaction was incubated (0.5 h, 30 °
C) and terminated by adding 2 μl 10% (v v−1) acetic acid41. The produced [14C]
Linamarin was dried completely under a nitrogen gas flow prior to Viscozyme
treatment.

Substrates for glucosylation assays. [14C]UDP-glucose supplied by Perkin-
Elmer NEN Radiochemicals was dried under nitrogen and then redissolved in
20 mM Tricine (pH 7.9) before use. UDP-glucose was purchased from Sigma-
Aldrich. FK and dcII were isolated by extracting dried and ground D. coccus with
methanol–water (1:1 (v v−1)) adjusted to pH 3 with formic acid. The extract was
partitioned three times between ethyl acetate and the ethyl acetate phases were
collected, combined, and concentrated in vacuo. The extract was then subjected to
ion-exchange chromatography using a column packed with Sepra NH2 functio-
nalized silica (Phenomenex). The column was equilibrated in acetonitrile–water
(1:1 (v v−1)) containing 10 mM ammonium formate prior to application of the
extract. Subsequently, the column was washed with the equilibration solvent fol-
lowed by elution of FK and dcII with acetonitrile–water (1:1 (v v−1)) adjusted to pH
11 with ammonium hydroxide. Final isolation was achieved on a column packed
with Isolute diol functionalized silica (Biotage), using a stepwise elution gradient
from dichloromethane-to-ethyl acetate-to-methanol, to afford FK and dcII. Their
molecular structures were verified by one-dimensional and two-dimensional
nuclear magnetic resonance. Asperthecin was extracted from A. nidulans with ethyl
acetate + 1% formic acid. The extract was subjected to flash chromatography on a
10 g diol column (Biotage) and eluted stepwise with dichloromethane, ethyl acetate,
and methanol. Final purification of asperthecin was achieved by semipreparative
HPLC using a LUNA(2) C18 column (Phenomenex) that was eluted with a linear
acetonitrile–H2O gradient consisting of A: H2O + 50 p.p.m. trifluoroacetic acid and
B: acetonitrile + 50 p.p.m. trifluoroacetic acid from 20 to 60% B over 20 min. The

isolated asperthecin was verified by comparison to an analytical standard where
both retention time and accurate mass matched that of the standard. A metabolite
fraction containing both KA and FK was isolated from dry K. vermilio insects
obtained from Kremer Pigmente GmbH & Co. KG (Germany). The extraction of
the K. vermilio metabolite fraction was carried out using the same method specified
above for extracting FK and dcII from D. coccus.

Protein deglycosylation. Microsomal proteins from either D. coccus or yeast
synthesizing DcUGT2ΔMD-Strep were deglycosylated using the Enzymatic
Deglycosylation Kit for N-linked and Simple O-linked glycans (Prozyme)
according to the supplier’s instruction. Deglycosylation was monitored by western
blot analysis using either an anti-Strep antibody (Qiagen, catalog no. 34850; in a
dilution of 1:2000) followed by a secondary HRP-conjugated antibody (Pierce
Biotechnology, catalog no. 1858413; in a dilution of 1:5000) or an anti-DcUGT2
antibody (in a 1:1000 dilution) followed by a secondary HRP-conjugated antibody
(Dako, catalog no. P0217; in a dilution of 1:5000) and chemiluminescence detec-
tion. Blocking, antibody probing, and washing of the blots were performed
according to the manufacturers’ instructions. Uncropped images are shown in
Supplementary Fig. 6. The anti-DcUGT2 antibody was obtained by immunizing a
rabbit with the sequence-specific peptide, (NH2)-CEIMFSDPRVLNIRDKKFD-
(COOH), representing residues 110–128 in the DcUGT2 protein, conjugated to
keyhole limpet hemocyanin (Agisera AB). The pre-immune serum (in a 1:1000
dilution) of the immunized rabbit was tested for cross-reactivity towards a crude D.
coccus protein extract to ensure the anti-DcUGT2 antibody specificity (Supple-
mentary Fig. 7).

Data availability. Raw sequencing reads of the D. coccus transcriptome have been
submitted to the Sequence Read Archive (SRA) database at National Center for
Biotechnology Information as a BioSample (sample accession code
SAMN06806158 under experiment accession code SRX2750223). The following
cDNA sequences are deposited at the National Center for Biotechnology Infor-
mation: DcUGT2 (accession code KY860725), DcUGT4 (accession code
KY860726), and DcUGT5 (accession code KY860727). The peak-list file used for
protein identification in MASCOT searches is given in Supplementary Data 3. All
other data are available from the corresponding authors upon reasonable request.
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