Technical University of Denmark

Deep feature learning for virus detection using a Convolutional Neural Network

Calvo, Diego ; de la Torre, Isabel ; Franco, Manuel Angel; Brunak, Søren; Gonzalez-Izarzugaza, Jose Maria Published in: Book of Abstracts, Sustain 2017

Publication date: 2017

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Calvo, D., de la Torre, I., Franco, M. A., Brunak, S., & Gonzalez-Izarzugaza, J. M. (2017). Deep feature learning for virus detection using a Convolutional Neural Network. In Book of Abstracts, Sustain 2017 [H-6] Technical University of Denmark (DTU).

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

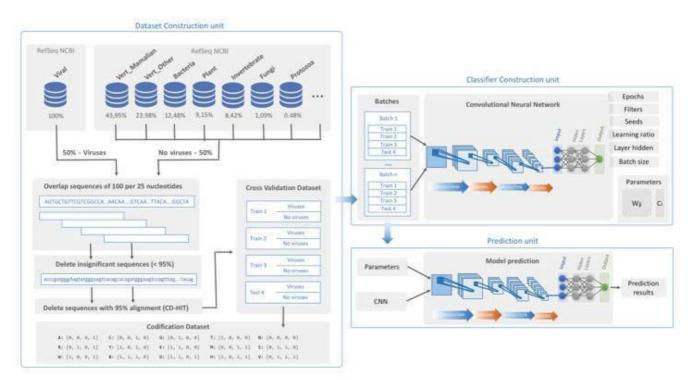
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Deep feature learning for virus detection using a Convolutional Neural Network

Diego Calvo^{1, 2}, Isabel de la Torre², Manuel Angel Franco², Søren Brunak¹, José M.G. Izarzugaza^{*1}


- 1: Department of Bioinformatics, Technical University of Denmark, Kgs. Lyngby, Denmark.
- 2: Department of Signal Theory and Communications, University of Valladolid, Valladolid, Spain.

*Corresponding author e-mail: txema@bioinformatics.dtu.dk

This study is focused on the development of a technology to identify characteristics in nucleotide sequences using deep learning provided by Convolutional Neural Networks. In order to demonstrate the effectiveness of this technology, a classifier has been developed to identify viruses in sequencing reads of 100 nucleotides, a proxy for a real NGS scenario. This classifier is able to search for known virus characteristics and identify potential new viruses that are currently undetected. As it is not necessary to read the complete sequences to recognize a virus, we manage to reduce the time and costs of virus identification.

The used Convolutional Neural Network to develop the classifier has been trained with RefSeq data. The training set was made up of two subsets. The first subset (positive set) includes all the nucleotides sequences of found viruses in the database and the second subset (negative set) is composed by a random selection of all the nucleotide sequences of non-viruses respecting the existing proportion of each found specie.

This training group undergoes is partitioning, overlapping and data cleaning transformations and it has resulted in a training set of 39.807.052 elements of approximately 2.2Gb of storage.

