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A. Background information B. Hypothesis 

Figure 1:  
Post-translational N-glycan processing 
with nucleotide sugars and several N-
glycosyltransferases anchored in the 
golgi membrane to be targeted for 
improved IgG N-glycan profile. 

Although CHO cells’ strength is the production of similar N-glycans to what is found on glycosylated 
human proteins5, non-engineered CHO cells display a broad variety of 
N-glycans which often includes N-glycan structures, that have an undesired effect on e.g. efficacy, 
antibody-dependent cell cytotoxicity (ADCC) or lectin-mediated clearance of the glycoprotein.  
In this work, we investigate the limitations of targeting up to ten gene targets via multiplexing in a 
Rituximab producing CHO cell line. The targets include N-glycosyltransferases, enzymes involved in 
nucleotide sugar synthesis, N-glycosyltransferase modulation, apoptosis and glutamine synthesis. 

1. KEY MESSAGE 

2. Introduction: N-glycan engineering 

5. Results: Growth, Rituximab titers and secretome 
N-glycosylation 

Bax Bak1 Target 4 B4GalT1 B4GalT2 B4GalT3 B4GalT4 B4GalT5 Target 10 GLUL 

Indel out of frame 
WT sequence 
Phenotype based GLUL-KO (no growth in glutamine-free medium) 

Indel partially in-frame 

A. Growth and Viability in Batch Experiment 
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Figure 3:  
Out of 94 screened clones, 20 clones harbor at least 
one genetic modification after multiplexing with 10 
sgRNA´s (top 14 clones shown here).  

Figure 2:  
Target transcript levels and workflow of cell sorting 
after transfection to enrich transfected cells via GFP or 
generate single cell clones in 384 well format. 

Figure 6:  
The three KO clones 
display hetero-geneous 
titers and productivity, 
where the 4x KO has the 
lowest and the 6x KO 
the highest titer. Within 
the control group, the 
two non-engineered 
clones reveal similar 
t i t e r s a n d s p e c i f i c 
Rituximab productivities.  

Figure 7:  
N-glycan profiles of the 
secretome from (i) a 
non-engineered clone 
ctr 1 and (ii) the 9x KO 
clone with indels in Bax, 
Bak1, GLUL, Target 4, 
B4GalT2, 3, 4 & 5 and 
target 10 (SA = sialic 
acid).  

(ii) 9x KO 

Figure 4: 
Frequency of indel generation after pool level sequencing of the different target regions before (blue) and after (red) 
FACS sorting for GFP-positive cells representing Cas9_2A_GFP expressing populations. The frequency of indel 
generation increased at least one-fold for all sgRNA targets after FACS and range from 1-80%. 

Figure 5:  
The three top-KO clones 
were grown in parallel to 
the parental producer 
cell line and two controls 
w i t h  n o  M i S e q - 
confirmed indels being 
present. Compared to 
the non-engineered 
controls, the KO clones 
show a slower drop in 
viability after 120h of 
cultivation (grey area), 
n=2. 

Combining the chinese hamster ovary (CHO) - K1 draft genome1,2, identified CHO glycosyl-
transferases3 and the power of multiplexing gene knock-outs with CRISPR/Cas94 via co-transfection 
of Cas9 and one single guiding RNA (sgRNA) per target, we generated 20 Rituximab expressing 
CHO-S cell lines differing in amount and combination of insertions or deletions (indels) in the targeted 
genes. Clones harboring 9, 6 and 4 indels were further investigated for growth, Rituximab productivity 
and secretome N-glycosylation.  

Single Cell Cloning  Characterization of: 
•  Genotype: Sequencing of target regions  
•  Phenotype:  
N-glycan profile, growth & viability in 
batch cultivation 
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This resulted in clones with prolonged viabilites, no changes in N-glycan galactose contents but an 
increase of matured and sialylated N-glycan structures in the secretome. Additionally we point out, 
that multiplexing an increasing amount of genes most likely results in clones only revealing a few of 
all possible combinations of the targets and is highly driven by the sgRNA efficiency which can differ 
from each other by factor 4, even after FACS sorting. 
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