Technical University of Denmark

CHO glyco-engineering using CRISPR/Cas9 multiplexing for protein production with homogeneous N-glycan profiles

Amann, Thomas; Hansen, Anders Holmgaard; Pristovsek, Nusa; Singh, Ankita; Min Lee, Gyun; Andersen, Mikael Rørdam; Kildegaard, Helene Faustrup

Publication date: 2017

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Amann, T., Hansen, A. H., Pristovsek, N., Singh, A., Min Lee, G., Andersen, M. R., & Kildegaard, H. F. (2017). CHO glyco-engineering using CRISPR/Cas9 multiplexing for protein production with homogeneous N-glycan profiles. Poster session presented at 25th ESACT Meeting 2017, Lausanne, Switzerland.

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

CHO-glyco-engineering using CRISPR/Cas9 multiplexing for protein production with homogeneous N-glycan profiles

Thomas Amann^{1*}, Anders H. Hansen¹, Nuša Pristovšek¹, Ankita Singh¹, Gyun M. Lee^{1,2}, Mikael R. Andersen³, Helene F. Kildegaard¹

The Novo Nordisk Foundation **Center for Biosustainability**

PO315

¹The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark ²Korea Advanced Institute of Science and Technology, Department of Biological Sciences, Daejon, South Korea ³Institute for Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark *Correspondance: thoam@biosustain.dtu.dk

1. KEY MESSAGE

Combining the chinese hamster ovary (CHO) - K1 draft genome^{1,2}, identified CHO glycosyltransferases³ and the power of multiplexing gene knock-outs with CRISPR/Cas9⁴ via co-transfection of Cas9 and one single guiding RNA (sgRNA) per target, we generated 20 Rituximab expressing CHO-S cell lines differing in amount and combination of insertions or deletions (indels) in the targeted genes. Clones harboring 9, 6 and 4 indels were further investigated for growth, Rituximab productivity and secretome *N*-glycosylation.

This resulted in clones with prolonged viabilites, no changes in N-glycan galactose contents but an increase of matured and sialylated N-glycan structures in the secretome. Additionally we point out, that multiplexing an increasing amount of genes most likely results in clones only revealing a few of all possible combinations of the targets and is highly driven by the sgRNA efficiency which can differ from each other by factor 4, even after FACS sorting.

2. Introduction: *N*-glycan engineering

A. Background information

Although CHO cells' strength is the production of similar N-glycans to what is found on glycosylated human proteins⁵, non-engineered CHO cells display a broad variety of N-glycans which often includes N-glycan structures, that have an undesired effect on e.g. efficacy, antibody-dependent cell cytotoxicity (ADCC) or lectin-mediated clearance of the glycoprotein. In this work, we investigate the limitations of targeting up to ten gene targets via multiplexing in a Rituximab producing CHO cell line. The targets include N-glycosyltransferases, enzymes involved in nucleotide sugar synthesis, N-glycosyltransferase modulation, apoptosis and glutamine synthesis.

References:

1. Xu, X. et al. Nat. Biotechnol. 29,735–741(2011) 2. Lewis, N.E. et al. Nat. Biotechnol. 31,759–765(2013) 3. Yang, Z. et al. Nat. Biotechnol. 33, 2014–2017 (2015) 4. Grav LM et al. Biotechnol. J. 10 (9), 1446-1456 (2015) 5. Walsh, G. Drug Discov. Today 15,773–780(2010)

Acknowledgement: Special thanks to Nachon C. Petersen for assistance with FACS experiments, Helle M. Petersen for Rituximab titer analysis & purification and Zulfiya Sukhova for preparing the MiSeq libraries.