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ABSTRACT

Raw ensemble forecasts of precipitation amounts and their forecast uncertainty have large errors, espe-

cially in mountainous regions where the modeled topography in the numerical weather prediction model and

real topography differ most. Therefore, statistical postprocessing is typically applied to obtain automatically

corrected weather forecasts. This study applies the nonhomogenous regression framework as a state-of-the-

art ensemble postprocessing technique to predict a full forecast distribution and improves its forecast per-

formance with three statistical refinements. First of all, a novel split-type approach effectively accounts for

unanimous zero precipitation predictions of the global ensemble model of the ECMWF. Additionally, the

statistical model uses a censored logistic distribution to deal with the heavy tails of precipitation amounts.

Finally, it is investigated which are the most suitable link functions for the optimization of regression co-

efficients for the scale parameter. These three refinements are tested for 10 stations in a small area of the

European Alps for lead times from 124 to 1144 h and accumulation periods of 24 and 6 h. Together, they

improve probabilistic forecasts for precipitation amounts as well as the probability of precipitation events

over the default postprocessing method. The improvements are largest for the shorter accumulation periods

and shorter lead times, where the information of unanimous ensemble predictions is more important.

1. Introduction

Physically based ensemble forecasts have become the

standard in operational weather forecasting to capture

atmospheric forecast uncertainty (Leith 1974). Slightly

perturbed initial conditions and/or different model for-

mulations are used to derive an ensemble of numerical

weather predictions. If the different initial conditions

and model formulations reflect the initial condition and

model uncertainty this ensemble should reflect the

forecast uncertainty. However, because not all error

sources can be considered these ensembles are often still

biased and underdispersive (Hamill and Colucci 1998;

Mullen and Buizza 2002; Bauer et al. 2015).

The European Alps represent a region with an ex-

traordinarily complex topography. Unresolved valleys

and mountain ridges cause missing local effects and

distort precipitation patterns and amounts. Most of the
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precipitation is rained out before it reaches inner alpine

valleys, leading to drying ratios of about 35% (Smith

et al. 2003).

Therefore, systematic errors and underdispersion are

very pronounced for this region, as illustrated by the

rank histogram (Hamill and Colucci 1998; Anderson

1996; Talagrand et al. 1997) in Fig. 1. Data used to create

this figure are based on three years of observed pre-

cipitation amounts and ECMWF ensemble forecasts for

multiple stations in this region (see section 3a for de-

tails). The rank histogram in Fig. 1 highlights a strong

bias with a peak at rank 1, where precipitation amounts

are strongly overestimated by the raw ensemble. Addi-

tionally, an underdisperison is visible since observations

are mostly below the lowest and above the highest

member forecast (on rank 1 and 52).

To correct for these errors and to supply automatically

corrected forecasts to weather services, the raw ensem-

ble is often statistically postprocessed. For probabilistic

quantitative precipitation forecasts various non-

parametric (Krzysztofowicz and Sigrest 1999; Hamill

et al. 2015; Zhu and Luo 2015) and parametric

(Roulston and Smith 2003; Gneiting et al. 2005; Raftery

et al. 2005; Sloughter et al. 2007;Wilks 2009) approaches

have been proposed.Wilks (2011) andWilks andHamill

(2007) compared some of these but could not identify

one single best method.

Hence, this study focuses on the widely used strategy

that is known as ensemble model output statistics

(EMOS) or nonhomogeneous regression (NHR) ap-

proach (Gneiting et al. 2005). This approach has been

tested extensively for different variables (e.g., temper-

ature, mean sea level pressure, wind, and precipitation),

andappropriate distributions:Gaussian (Gneiting et al. 2005;

Feldmann et al. 2015), truncated normal (Thorarinsdottir

and Gneiting 2010), gamma (Wilks 1990), generalized

extreme value (GEV; Scheuerer 2014), or censored

Gaussian and logistic (Wilks 2009;Messner et al. 2014a, b;

Stauffer et al. 2017a). Gneiting and Katzfuss (2014) re-

view suitable distributions for certain variables, statistical

ensemble postprocessing, and verification techniques in

general.

Apart from different distributions, various other ex-

tensions have been proposed to improve the classi-

cal NHR such as including neighborhood information

to address displacements errors (Theis et al. 2005;

Ben Bouallègue and Theis 2014; Scheuerer 2014), ac-

counting for spatial forecast correlations (Feldmann et al.

2015), additional covariates covering seasonal or annual

variations (e.g., Stauffer et al. 2017a), or differently

weighted NWP models (e.g., Hemri et al. 2016) to ac-

count for NWP performance differences.

However, almost all of these extensions need to ac-

quire additional input data [e.g., additional grid points

(Scheuerer 2014) or different NWPmodels (Hemri et al.

2016)]. In this study we present and discuss three purely

statistical refinements to improve NHR precipitation

forecasts that do not require any additional input data.

Clearly, these refinements can also be combined with

other extensions such as the ones listed above.

Usually, NHRuses only the (weighted) ensemblemean

and standard deviation as regressor variables. However,

Sloughter et al. (2007), Bentzien and Friederichs (2012),

and Scheuerer (2014) found improvements for pre-

cipitation forecasts by additionally using the fraction of

zero ensemble members. Starting out from this idea, we

argue that for our study area it is not so natural to capture

the influence of this zero fraction by a linear regressor

because in our data unanimous zero precipitation en-

semble predictions (i.e., where none of the members

predicts any precipitation) almost always correspond to

dry anticyclonic situations without any observed pre-

cipitation. To exploit this finding, we propose a split ap-

proach for NHR that switches to a different parameter set

for these unanimous ensemble forecasts and provides

much sharper forecast distributions.

Furthermore, a Gaussian parametric distribution is

not appropriate for precipitation data that have a

physical limit at zero. This limit can be incorporated by

censoring the distribution (Cohen 1959), but the tail of

events with large precipitation amounts is often also

underestimated by the Gaussian distribution. To over-

come this, our second statistical refinement uses a

heavy-tailed distribution that deals with these pre-

cipitation characteristics, similar to Scheuerer (2014) or

Scheuerer and Hamill (2015).

FIG. 1. Rank histogram for 24-h precipitation sums from 124

to148 h based on raw data from the 51-member ECMWF ensemble

forecasts, evaluated for 10 stations located in North Tyrol (Austria)

and South Tyrol (Italy): the x axis denotes the rank (1–52) and the y

axis denotes the observed frequency at this particular rank. Dotted

horizontal line indicates perfect calibration at 0.02.
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Additionally, the nonnegativity of dispersion param-

eter of the distribution has to be ensured in the cause of

the numerical optimization of regression coefficients.

The literature describes two solutions to fulfill this re-

quirement: squaring the optimization value (Gneiting

et al. 2005) or applying a link function to the dispersion

submodel (Messner et al. 2014a). A comparison of these

concepts has not beenmade so far andwill be performed

in this study as the third statistical refinement.

This article is structured as follows. The statistically

motivated refinements are introduced in detail in section

2. Section 3 describes the study area and comparison

setup. Section 4 presents our results, which will be

summarized in section 5 with some concluding remarks.

2. Refinements

In this section we briefly describe the basic NHR

framework, followed by our three statistical re-

finements: split approach for unanimous predictions,

heavy tails, and link functions.

a. Nonhomogeneous regression

NHR defines one type of distributional regression

models (Klein et al. 2015) and was initially developed

for a Gaussian response such as temperature (Gneiting

et al. 2005). Two linear equations correct for the location

part [Eq. (1)] and the scale part [Eq. (2)], respectively.

Typically, the Gaussian parameters for location and

scale (mi, si) are linearly linked to the NWP ensemble

mean (ensi) and ensemble standard deviation (SDens,i)

for each event i:

m
i
5b

0
1b

1
3 ens

i
, (1)

s
i
5 g

0
1g

1
3 SD

ens,i
. (2)

The four coefficients (b0, b1, g0, g1) can be estimated

simultaneously by numerically optimizing the log-

likelihood function:

logLik5 �
N

i51

log[ f (precip
i
)] , (3)

which is defined as the sum over the logarithmic densi-

ties of the probability density function (PDF) f, evalu-

ated at the observed value precipi. In the classical NHR

approach, f is the Gaussian PDF.

Since precipitation data are nonnegatively defined

and skewed to the right, this Gaussian NHR has to be

modified. The simple approach of censoring the distri-

bution at a certain threshold (Cohen 1959) was found to

be effective for precipitation amounts (Messner et al.

2014a; Stauffer et al. 2017a). This threshold is typically

defined at zero for precipitation. One assumes a latent

Gaussian process y, which is allowed to become negative

but is censored at zero to obtain sensible values for

precipitation:

precip
i
5

�
0 y

i
# 0

y
i

y
i
. 0

. (4)

If the latent process becomes positive and far away from

zero, the effect of censoring vanishes and the censored

Gaussian distribution leads to the Gaussian distribution.

The log-likelihood function, which has to be opti-

mized, differs from Eq. (3) by distinguishing between

events on the censoring level (precipi 5 0) and above the

censoring level (precipi . 0):

logLik
i
5

�
log[F(0)] precip

i
5 0

log[f (precip
i
)] precip

i
. 0

, (5)

where F represents the cumulative distribution function

(CDF) and f the PDF, evaluated at the censoring level

zero or the observed value precipi, respectively.

b. Split approach

In the introduction we have already implied the im-

portance of using the fraction of ensemble members be-

ing zero. Scheuerer (2014) already used this information

for probabilistic precipitation forecasts in Germany.

Adding a new regressor variable frac into the location

part of Eq. (1), which accounts for the fraction of K

members without precipitation improved the forecasts.

This fraction is illustrated in Fig. 2 for 10 alpine sta-

tions in North and South Tyrol (see section 3a for

FIG. 2. Frequency of the 51-member ECMWF ensemble fore-

casts containing a certain number of members being zero (0–51),

evaluated for 10 stations located in North Tyrol (Austria) and

South Tyrol (Italy) for 24-h sums from 124 to 148 h: the x axis

denotes the number of members being zero and the y axis denotes

the frequency.
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details) for the used 51-member ECMWF ensemble.

Most frequently all ensemble members unanimously

have precipitation (peak at 0) or all members unani-

mously have no precipitation (peak at 51). Intermediate

numbers of 1–50 members predicting precipitation oc-

cur less frequently. Therefore, if this patternmatches (or

at least correlates with) the (lack of) observed pre-

cipitation in nature, it is possible to improve the fore-

casting skill in the situations with (almost) unanimous

zero predictions from the ensemble.

As an example for a general pattern, Fig. 3 shows the

ensemble mean value against the observed precipitation

amount to be conditional on the fraction of members

forecasting no precipitation. Data are shown for the city

of Innsbruck, Austria, and daily precipitation amounts

within the available data period, given the 51-member

ensemble of the ECMWF. The forecasts of all ensemble

members predicting no precipitation (fraction larger

than 0.99) are unanimous in the sense that no pre-

cipitation has been observed. This figure also illustrates,

that such unanimous cases become imperfect when

looking on lower levels for the fraction of zeros where

precipitation is observed (e.g., fraction larger than 0.1

and smaller than 0.5).

Hence, Fig. 3 suggests that if (nearly) all ensemble

members are zero and frac is (close to) 1, no (or only

little) precipitation occurs and the regression relation-

ship almost collapses. To improve the performance of

the approach of Scheuerer (2014) in our region of in-

terest (section 3a), we propose to use an interaction term

instead, which can also be interpreted as splitting the

data at a certain split level n and will be referred to as

‘‘split approach.’’

This split approach uses a binary variable zi to indicate

whether (almost) all ensemble members are zero:

z
i
5

�
1 if frac

i
$ n

0 otherwise
. (6)

An obvious split level is n5 1 when all ensemble

members unanimously forecast no precipitation. How-

ever, relaxing the split level to lower values might also

be useful (see below).

This new regressor enters the NHR equations as an

interaction term:

m
i
5b

0
1b

1
3 ens

i
3 (12 z

i
)1b

2
3 z

i
, (7)

s
i
5 g

0
1 g

1
3 SD

ens,i
3 (12 z

i
) , (8)

which can be interpreted as follows: the usual censored

NHR with slopes b1 and g1, respectively, is only esti-

mated when a large fraction (12 n) of ensemble mem-

bers predict precipitation (i.e., zi 5 0). Conversely, for

zi 5 1, when (almost) all ensemble members have no

precipitation, the regression collapses to the climato-

logical values for mean mi 5b0 1b2 and standard de-

viation si 5 g0.

Typically, the coefficient b2 will be negative leading to

lower predicted precipitation. Because of the censoring,

the probability for positive precipitation may become

arbitrarily small if b2 becomes increasingly negative. For

this reason si 5 g0 is also kept fixed to avoid that both

mean and standard deviation collapse to zero.

The choice for the ‘‘best’’ split point between the

NHR regression and simple climatological fit is not as

obvious as it may seem. Considering Fig. 2, n5 1 seems

FIG. 3. The 24-h precipitation sums of 148-h ensemble mean ECMWF forecast against

observed precipitation at station Innsbruck. Columns further show cases conditional on the

fraction of the 51 EPS members without precipitation (0–0.02, 0.02–0.1, 0.1–0.5, 0.5–0.99, and

0.99–1). Darker shading of points indicates more events.
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to be sufficient because there are only few observations

with large fractions but below 1. However, from Fig. 3

for station Innsbruck it might also be reasonable to

switch to a lower value of n5 0. 5. This value might even

be lower at different stations and lead times.

c. Heavy tails

Although the censored Gaussian distribution is able

to capture precipitation characteristics (nonnegativity,

many observations at zero), distributions exist that

better describe rare events with large amounts of

precipitation.

We selected the censored logistic distribution, which

has a heavier tail than the Gaussian. The censored lo-

gistic distribution was found to be useful for both short

accumulation periods of 24-h sums (Messner et al.

2014a,b) and longer ones of 6 days (Wilks 2009). Shorter

accumulation periods than 24-h sums show similar

characteristics of precipitation (nonnegativity, observa-

tions at zero) to that of longer accumulation periods,

except for a higher frequency of zero precipitation

events. Clearly, as accumulation periods become much

longer (weekly or monthly) fewer events without pre-

cipitation occur so that the effect of censoring decreases.

Censoring and log-likelihood maximization can then

be performed as before, but using the logistic PDF [Eq.

(9)] and CDF [Eq. (10)] as follows:

f (y,m,s)5
e2(y2m)/s

s3 (11 e2(y2m)/s)2
, (9)

F(y,m,s)5
1

11 e2(y2m)/s
. (10)

Note that in order to be consistent with the censored

NHR framework of Eqs. (7) and (8), s defines the scale

parameter and m defines the location parameter of the

logistic distribution.

Clearly, there might be other suitable distributions

accounting for rare events. Reasonable results for pre-

cipitation data have also been achieved with GEV dis-

tribution (Scheuerer 2014) over Germany, and the

censored shifted Gamma distribution (Scheuerer and

Hamill 2015) over the United States. These two distri-

butions can have an even more pronounced tail than the

censored logistic distribution. The best choice will de-

pend on the region and accumulation period.

d. Link functions

Since the scale parameter in Eq. (8) is nonnegatively

defined, we have to ensure that individual predictions

are kept nonnegative during log-likelihood optimiza-

tion. This can be achieved in two ways: by parameter

constraints for g0, g1 (e.g., squaring these coefficients;

Gneiting et al. 2005), or by using a suitable link function

(e.g., log link; Messner et al. 2014b). We will investigate

differences in forecast skill from using three different

link functions g for the scale submodel:

g(s)5 g
0
1 g

1
3 g(SD

ens
)3 (12 z) . (11)

They are the following:

d quadratic (quad): g(s)5s2 (Gneiting et al. 2005).
d logarithmic (log) g(s)5 log(s) (Messner et al. 2014b).
d identity (id): g(s)5s (Scheuerer 2014).

These three link functions will be applied in conjunction

with our split approach.

3. Data and setup

This section defines the data for our research area and

the comparison setup for the statistical models.

a. Data

As mentioned in the introduction, raw ensemble

forecasts for precipitation amounts suffer from large

bias and dispersion errors (Fig. 1) for our mountainous

region of interest. This region is located in the areas of

North Tyrol (Austria) and South Tyrol (Italy) and em-

bedded in a complex environment of the central Euro-

pean Alps (Fig. 4). It is famous for wine and fruit

growing, where precipitation events and precipitation

amounts can strongly influence the evolution of plant

pathogens (Löpmeier et al. 2012; Carisse et al. 2009).

The ensemble forecasts are from the operational en-

semble prediction system (EPS) of the ECMWF, with a

horizontal grid size of 32 km. Its 51 members are taken

to be exchangeable and yield a discrete forecast distri-

bution. Direct model output is bilinearly interpolated to

10 station sites of interest using the 4 nearest grid points

and precipitation is aggregated over periods of 6 and

24 h, respectively. This low horizontal resolution does

not reflect the real topography, so that the spatial vari-

ability of the raw ensemble is much lower than the ob-

served variability of precipitation patterns (e.g., Stauffer

et al. 2017b).

Observed precipitation amounts are from 10-min

measurements of automated weather stations, which

are owned by the local weather services. Datasets cover

the period from 1 January 2011to 1 January 2014 for the

stations in South Tyrol, and 11 January 2011 to 31 Jan-

uary 2017 for Innsbruck in North Tyrol. These datasets

are also used to calculate the 97% quantiles for high

precipitation amounts. Values range from 12.9 to

22.7mm for 24-h sums, and from 2.9 to 8.7mm for

6-h sums.
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Availability of forecast/observation pairs allows the

analysis of the second forecast day (124 to 148h), ex-

cept for Innsbruck where EPS forecasts are available

to 1144h. All forecasts are from the 0000 UTC run of

the ECMWF EPS.

b. Comparison setup

Table 1 gives an overview about the statistical models

used in this article. To quantify the quality of our new

split approach, we will use a reference model. The ref-

erence approach defines the censored Gaussian NGR

and uses the quadratic link with a parameter constraint

for the estimated scale coefficients (quad), as used by

Gneiting et al. (2005) for temperature forecasts. This

model is extended by using the fraction of members

being zero (quad_frac), as proposed by Scheuerer

(2014). Finally, we use our split approach with the

quadratic-link (quad_split), the logarithmic-link

(log_split), and the identity-link (id_split). Except for the

log-link splitmodel, allmodels use the parameter constraint

of squaring the coefficients in the scale submodel.

The optimization of those models is performed in R

with the package crch, which performs maximum like-

lihood optimization (R Core Team 2016; Messner

et al. 2016).

To have a fair comparison, performance measures are

computed with a tenfold cross validation as in Messner

et al. (2014a). Datasets (individual cases) are divided for

each station and lead time separately into 10 blocks of

approximately the same length by randomly selecting

subsamples. Each block is predicted with models trained

on the remaining nine-tenths of data. Thus independent

forecasts (test data) for the whole period are available to

compute verification measures [e.g., continuous ranked

probability score (CRPS)] for each event. Averages

over these scores are either derived directly on the test

data once, or in case for the evaluation of lead time

performance, a bootstrap approach is used to estimate

the sampling distribution of these averages. Therefore

500 averages are derived for 500 random samples with

replacement of the individual scores.

As already indicated, model performance is evaluated

on the CRPS (Hersbach 2000; Gneiting et al. 2005;

Wilks 2011):

CRPS5
1

n
�
n

i51

ð‘
2‘

[F
i
(x)2H

i
(x2 y

i
)]2 dx , (12)

where Fi defines the forecasted CDF and Hi(x2 yi) the

Heaviside function, which takes the value 0 if x, yi and

1 otherwise. This squared difference between the fore-

casted CDF and the Heaviside function evaluated at the

observed value yi is integrated over the real axis x for

each event, and further averaged over the number of n

events. The CRPS achieves zero at best, and can diverge

to 1‘ in the worst case.

To compare the performance of different statistical

models (Table 1), we further compute the continuous

ranked probability skill score (CRPSS):

CRPSS5 12CRPS
mod

/CRPS
ref
, (13)

where CRPSmod is each model score and CRPSref is our

reference approach. A positive CRPSS indicates better

skill than the reference.

Furthermore, forecasts for probability of precipitation

(PoP; amounts .0mm) and occurrence of high pre-

cipitation amounts (PoP, amounts. climatological 97%

quantile) are analyzed by the Brier score (BS; Brier

1950):

BS5
1

n
�
n

i51

( p
i
2 o

i
)2 , (14)

TABLE 1. Overview of statistical models used for comparison:

zero information describes whether the fraction of members being

zero (frac) or the split approach with the z regressor are used.

Model

name

Zero

information

Link function in

scale submodel

Parameter constraint

on g0, g1

quad — Quadratic Nonnegative

quad_frac frac Quadratic Nonnegative

quad_split z Quadratic Nonnegative

log_split z Logarithmic —

id_split z Identity Nonnegative

FIG. 4. Used stations within the region of interest [Austria

(AUT), Italy (IT), Switzerland (CH), and Germany (GER)]. The

filled circle displays the station at Innsbruck. The dotted grid il-

lustrates the underlying horizontal grid size of the 51-member

ECMWF ensemble forecasts.
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which is a mean squared difference between the forecast

probabilities pi and the binary value of precipitation yes

or no oi. Herein, i defines the index for single events and

n is the number of events used for evaluation. Hence, BS

is between zero (best) and one (worst). For high

precipitation amounts we define the threshold as the

site-specific observed 97% quantile for different accu-

mulation periods. This is performed in order to share the

same climatological event frequency in the study area

instead of choosing a fixed threshold (Hamill and Juras

2006). Additionally, Brier skill scores (BSS) are com-

puted as in Eq. (13) by using BS instead of CRPS.

4. Results

This section is structured as followed: first, we will

briefly compare the statistical models to the raw ensem-

ble, followed by the quantification of our three statistical

refinements against the reference postprocessingmethod.

a. Comparison to raw ensemble forecasts

It is essential that postprocessing has to improve the

raw ensemble forecasts. We therefore perform a brief

ensemble evaluation with the CRPS for the probabilistic

forecasts, and the Brier score to check probability

forecasts for certain thresholds, both described in the

following.

Although the ensemble does not provide a full con-

tinuous probability distribution, it is possible to verify

the empirical CDF following Hersbach (2000). Addi-

tionally, the fraction of ensemble members predicting

precipitation can be used to verify the PoP. Average

CRPS and BS values are summarized in Table 2, which

displays median values taken over the individual cases.

Corresponding skill scores computing a measure for

improvement against the raw ensemble are based on the

values of Table 2 and are provided in Table 3.

Clearly, censored Gaussian and censored logistic

models show lower CRPS values than the raw ensemble,

both improving the raw forecasts by a value of about

26% and 32% (24- and 6-h sums, respectively). The

CRPS is generally smaller for 6-h sums, since smaller

precipitation amounts are observed more frequently

than for 24-h sums.

Regarding the PoP, the raw ensemble could also

clearly be improved by all statistical models. The 24-h

sums obtain a Brier score of 0.42 on median, and 6-h

sums a score of 0.44 on median. Compared to the raw

ensemble, the postprocessed forecasts of all statistical

models improve by about 76% and 80%, respectively.

TABLE 2. Median values of CRPS as a metric for full distribution forecasts, and Brier scores (BS) as metric for the exceedance of two

thresholds of precipitation amounts: 0 mm (BS PoP) and the observed 97% quantile at each forecast site (BS high). Analysis for the raw

ensemble, Gaussian, and logistic models, evaluated separately for different accumulation periods (24; 6 h) of all stations for forecast day 2

(1 24 to 1 48 h).

Type Name

CRPS BS PoP BS high

24 h 6 h 24 h 6 h 24 h 6 h

Raw ensemble EPS 1.6137 0.5870 0.4246 0.4356 0.0198 0.0216

Gaussian models quad 1.2105 0.4065 0.1071 0.0868 0.0188 0.0232

quad_frac 1.2019 0.4006 0.1062 0.0858 0.0187 0.0227

quad_split 1.2091 0.4035 0.1069 0.0868 0.0187 0.0231

log_split 1.1922 0.3984 0.1072 0.0853 0.0183 0.0226

id_split 1.1967 0.3995 0.1059 0.0861 0.0185 0.0230

Logistic models quad 1.1930 0.4003 0.1022 0.0842 0.0189 0.0225

quad_frac 1.1923 0.3992 0.1021 0.0837 0.0190 0.0224

quad_split 1.1928 0.3996 0.1021 0.0842 0.0189 0.0225

log_split 1.1930 0.3987 0.1025 0.0831 0.0188 0.0220

id_split 1.1905 0.3988 0.1014 0.0844 0.0189 0.0223

TABLE 3. Skill scores (in %) for the median verification mea-

sures shown in Table 2: continuous ranked probability skill score

(CRPSS) and Brier skill score (BSS) for the precipitation thresh-

olds of 0mm (BSS PoP) and the 97% quantile (BSS high), shown

for accumulation periods of 24- and 6-h sums. Improvement (skill)

is shown against the raw ensemble, which has no skill against itself.

Type Name

CRPSS BSS PoP BSS high

24 h 6 h 24 h 6 h 24 h 6 h

Raw ensemble EPS 0.0 0.0 0.0 0.0 0.0 0.0

Gaussian models quad 25.0 30.8 75.8 79.5 3.1 3.7

quad_frac 25.5 31.8 76.0 79.7 3.4 5.8

quad_split 25.1 31.3 75.8 79.5 3.3 4.0

log_split 26.1 32.1 75.7 79.9 5.6 5.9

id_split 25.8 31.9 76.0 79.7 4.7 4.5

Logistic models quad 26.1 31.8 76.9 80.1 2.2 6.3

quad_frac 26.1 32.0 76.9 80.2 2.1 7.0

quad_split 26.1 31.9 76.9 80.1 2.3 6.4

log_split 26.1 32.1 76.8 80.4 2.9 8.5

id_split 26.1 32.1 76.8 80.4 2.9 8.5
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As the ensemble probability is given by the fraction of

members being nonzero, the high BS values indicate

that the ensemble strongly overestimates precipitation

occurrence. This also adds to Fig. 2 where 24-h PoP is

forecasted by 100% nonzero members in 62% of the

events (peak at 0). Additionally, the intense peak on

rank 1 in Fig. 1 highlights that a large number of ob-

served values are below the lowest member forecast. If a

large number ofmembers predict precipitation, ensemble

‘‘probabilities’’ for precipitation occurrence become

FIG. 5. CRPSS for censored Gaussian and logistic models (Table 1). Reference is the quad

model without splitting. Results from tenfold cross validation, where each value represents

individual lead times for 10 stations, are shown for different accumulation periods (24 and 6 h)

between 124 and 148 h. Boxplots include the interquartile range (0.25–0.75) shown in gray

boxes, whiskers show the 61.5 times interquartile range, and outliers are shown in solid

circles.

FIG. 6. CRPSS for censored Gaussian and logistic split models using the log link for dif-

ferent split levels. The reference model is split at n5 1. Results from tenfold cross validation,

where each value represents individual lead times for 10 stations, are shown for different

accumulation periods (24 and 6 h) between 124 and 148 h. Boxplots are as in Fig. 5.
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large. As a result, BS values are high if a corresponding

event did not occur.

Brier scores of probability forecasts are lower (better)

for high thresholds for both accumulation periods. Such

events are rare as this threshold is based on the observed

97% quantile. The raw ensemble seems to already cap-

ture these events quite well, which is indicated by the

similar BS as the statistical models (Table 2). Never-

theless, the statistical models improve BS values for 24-h

sums and 6-h sums by about 3% and 6%, respectively

(Table 3). A slightly stronger improvement on 6-h sums

can be seen for the logistic models than for the Gaussian

models, which highlights the importance of the heavy

tailed distribution, further discussed in section 4c.

b. Split approach and split levels

After having shown an improvement against the raw

ensemble particularly in PoP, but also in CRPS and the

high BS threshold, we will in the following focus on the

improvements from the statistical refinements and start

with the split approach.

Figure 5 summarizes CRPSS values for censored

Gaussian and logistic models, relative to our reference

approach where the squared-scale parameter is opti-

mized without additional information of members being

zero (quad). The boxplots represent individual cases

(lead times) for each station, which are between the124-

and 148-h forecast lead times; 24-h sums include 10

CRPSS values, and 6-h sums include 40 CRPSS values.

The forecast skill increases for all split models using

n5 1, which is even more pronounced for the 6-h ac-

cumulation periods. Median values are highest for split

models using the log link and identity link. This pattern

is similar for censored logistic models, especially for 6-h

sums. Additionally, Table 2 displays the smallest median

CRPS values for the log-split models on 6-h sums.

Figure 6 compares different split levels (n5 0. 02,

0. 1, 0. 5) and shows CRPSS in reference to a model with

n5 1. Here only the log link is used but results look

similar for other link functions aswell. A split level of 0.02

is clearly worse but a split level of 0.5 performs almost

equally compared to the reference. This result is the same

for censored Gaussian and censored logistic split models

using the log link.

However, an optimum split level, which can be found

by testing all possible levels on training data, indicated

only a small CRPSS improvement for 6-h sums against

the split level of n5 1 (result not shown). Optimum

values for n range from 0.02 to 0.71 and 0.02 to 1 for

24- and 6-h sums, respectively.

FIG. 7. The PIT analysis for log-link models with (left) censored Gaussian predictions and (right) censored

logistic predictions, respectively. Results from tenfold cross validation over 10 stations and different lead times

(124 to 148 h), are evaluated separately for different accumulation periods (24; 6 h). The bin width is 0.025.
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c. Heavy tails

Calibration is one of the most important properties of

probabilistic forecasts. We therefore compute the

probability integral transform (PIT), which is similar to

rank histograms (Hamill and Colucci 1998; Anderson

1996; Talagrand et al. 1997). It bins the forecasted cu-

mulative probability density function and counts into

which bin the observed value falls. If the model is well

calibrated the bins should all have the same number of

observations.

Figure 7 shows PIT histograms for different accumu-

lation periods. For simplicity, only split log-link models

are shown, since they performed best in terms of 6-h

CRPSS values. The remaining models generate very

similar histograms (results not shown). Both, Gaussian

and logistic models are better calibrated if short accu-

mulation periods are forecasted. Logistic models gen-

erally produce histograms that are more uniformly

distributed.

This improvement by the logistic tail is also quantified

in terms of CRPS and BS values, summarized in Table 2.

Shown are median CRPS and BS values for the second

forecast day (124 to 148h) including all available sta-

tions. Additionally, the BS values are decomposed based

on Murphy and Winkler (1987) for two thresholds. The

BS and its probabilistic attributes of reliability, resolu-

tion, and sharpness are summarized in Table 4 for two

thresholds of precipitation amounts (PoP, high). The BS

values are similar among the models and decrease for

short observation intervals in general. This is related to

the number of zeros, which increases for shorter accu-

mulation periods. Censored logistic models are better

than censoredGaussian ones for PoP. The decomposition

also shows a smaller reliability, slightly larger resolution,

and larger sharpness of censored logistic forecasts. This

logistic tail seems to better represent the observed dis-

tribution, which is indicated by the smaller value of re-

liability. Furthermore, the increased resolution indicates

that the logistic tail better discriminates between pre-

cipitation and no-precipitation events. Hence, the

sharpness is also larger because of this better distinction.

This logistic benefit decreases slightly for high

thresholds of the 0.97 quantile with even fewer events.

Although reliability is still improved, resolution be-

comes worse than for censored Gaussian models. This

indicates that similar probabilities for the high threshold

are forecasted, which is also displayed by the smaller

sharpness. In terms of 24-h sums this also leads to

slightly worse BS values.

TABLE 4. Median values for Brier score and its decomposition for thresholds of precipitation amounts larger than quantiles q0 (0mm)

and q97 of observed amounts for both accumulation periods. Columns show Brier score (BS), reliability (REL), resolution (RES), and

sharpness (SHARP) for accumulation periods of 24 and 6 h. Rows show values for Gaussian and logistic models. Values are based on

a tenfold cross validation including all available forecasts (stations and lead times) for the investigated accumulation periods of forecast

day 2. Binning used in this decomposition is based on 10% intervals.

BS REL RES SHARP

24 h 6 h 24 h 6 h 24 h 6 h 24 h 6 h

Quantile q0

Gaussian models quad 0.1071 0.0868 0.0112 0.0054 0.1265 0.0571 2.9896 1.9146

quad_frac 0.1062 0.0858 0.0092 0.0047 0.1243 0.0567 2.9654 1.9158

quad_split 0.1069 0.0868 0.0110 0.0054 0.1255 0.0572 2.9884 1.8750

log_split 0.1072 0.0853 0.0095 0.0055 0.1261 0.0599 2.9112 1.8708

id_split 0.1059 0.0861 0.0092 0.0051 0.1262 0.0576 2.9842 1.8919

Logistic models quad 0.1022 0.0842 0.0058 0.0037 0.1258 0.0576 3.1275 2.0239

quad_frac 0.1021 0.0837 0.0055 0.0033 0.1262 0.0586 3.1177 2.0231

quad_split 0.1021 0.0842 0.0059 0.0040 0.1259 0.0576 3.1231 2.0112

log_split 0.1025 0.0831 0.0053 0.0039 0.1267 0.0600 3.0413 1.9946

id_split 0.1014 0.0844 0.0054 0.0036 0.1273 0.0586 3.1253 2.0146

Quantile q97

Gaussian models quad 0.0188 0.0232 0.0042 0.0050 0.0133 0.0095 1.1222 1.1190

quad_frac 0.0187 0.0227 0.0045 0.0045 0.0132 0.0098 1.1303 1.0857

quad_split 0.0187 0.0231 0.0042 0.0048 0.0132 0.0095 1.1303 1.1077

log_split 0.0183 0.0226 0.0038 0.0044 0.0124 0.0097 1.0955 1.0956

id_split 0.0185 0.0230 0.0046 0.0047 0.0136 0.0099 1.1284 1.1018

Logistic models quad 0.0189 0.0225 0.0032 0.0043 0.0125 0.0092 1.0220 1.0138

quad_frac 0.0190 0.0224 0.0032 0.0039 0.0121 0.0093 1.0226 0.9654

quad_split 0.0189 0.0225 0.0033 0.0043 0.0125 0.0096 1.0220 1.0053

log_split 0.0188 0.0220 0.0036 0.0037 0.0121 0.0093 1.0357 0.9951

id_split 0.0189 0.0223 0.0036 0.0043 0.0121 0.0093 1.0234 0.9991
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A verification of individual stations and lead times

regarding BSS is illustrated in Fig. 8. A clear skill by the

logistic tail is visible for PoP of 24-h sums. This also

agrees with smaller reliability values of Table 4 and the

visible calibration of Fig. 7. Similarly, the medians show

an improvement for the high threshold (24 h–0.97

quantile) and 6-h sums for both thresholds against the

baseline approach. Regarding the high threshold, indi-

vidual cases show a negative skill for 24-h sums.

Thresholds even higher than the 97 percentile have

not been investigated due to the insufficient number of

events used for binning.

d. Link functions

So far we have seen an improved skill by using split

models and the logistic tail. CRPS differences in the split

models (Fig. 5) might be understood by looking at the

regression fits for different link functions. Figure 9 gives

an example fit for censored logistic models for cases

where the standard deviation of the raw NWP ensemble

model was larger than 0. Results for this example at

Innsbruck for136 h display a general pattern that can be

found for the entire study area. While the linear fits for

the latent mean value (left graphic) do not vary much,

FIG. 8. BSS for censored Gaussian and logistic models (Table 1), shown for (left to right) 6- and 24-h sums. (from

top to bottom) Thresholds for precipitation amounts larger 0mm (q0) and the 97% quantile (q97) are used.

Reference is the censored Gaussian quad model without splitting. Results are from tenfold cross validation, where

each value represents individual lead times for 10 stations, and lead times are between124 and148 h. Boxplots are

as in Fig. 5.
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the fit for the scale parameter (right graphic) highlights

larger differences. If the ensemble was already perfect,

the fitted curves would follow the dashed black line.

Since this is not the case, ensemble mean values are

corrected to lower values (fits below the black line) and

ensemble standard deviations are corrected to higher

values (fits above the black line).

Differences in the predicted scale parameter can be

seen especially for small values of the ensemble stan-

dard deviation (e.g., SDens 5 0. 5), where the log-link

predictions are largest. Furthermore, the log-link model

predicts smallest values of the latent mean value for

small ensemblemean values. If the latentmean becomes

more negative, the scale parameter has to be larger in

order to still capture the observations.

This pattern reverses at a certain point, where the

quad-link produces the largest scale parameters.

e. Lead time performance

Previously shown results are based on forecasts for

day 2 (124 to 148h). To investigate lead time perfor-

mance, the comparison setup is extended on station

Innsbruck where additional interpolated NWP data are

available up to 1144h.

Figure 10 displays CRPSS values for 6-and 24-h sums

from 124 to 1144 h. CRPSS values are shown for the

censored logistic split model using the log link, which

performed best in the previous analysis. To illustrate the

combined performance of all three statistical re-

finements, the skill score reference is the censored

Gaussian model using the quadratic link. The boot-

strapped CRPSS values in Fig. 10 clearly show an im-

provement over all lead times for both accumulation

periods. A stronger decay in forecast performance is

visible after day 2 but the three refinements still improve

the forecast performance up to 1144 h.

These improvements result from a combination of

the three proposed refinements. Also, calibration

evaluated over all lead times is found to be similar to

the 2-day lead time (Fig. 7). As lead time increases,

the number of unanimous ensemble forecasts where

all members have either precipitation or no pre-

cipitation decreases, indicating that the ensemble is

generally less certain about precipitation occurrence

(Fig. 11). As a result the effectiveness of the split

approach also decreases, so that the remaining im-

provements should likely be ascribed to the log-link

and the logistic distribution, where the heavier tail of

FIG. 9. Link functions for censored logistic models showing predictions of location (latent mean) and scale at

Innsbruck, 6-h sum for lead time 136 h: identity link (circle), log link (triangle), quadratic link (cross); x axis

denotes the ensemble mean ens for location models and the ensemble standard deviation SDens for scale models.

The rug bars on the x axis illustrate the raw ensemble values used for fitting.
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the logistic distribution is more pronounced (results

not shown).

5. Summary and conclusions

In this study we set out to investigate the effects of

three refinements to a nonhomogeneous regression

(NHR)model (e.g., Gneiting et al. 2005; Thorarinsdottir

and Gneiting 2010; Messner et al. 2014a; Scheuerer

2014) for precipitation forecasts (24-h and 6-h sums),

and the probability of precipitation exceeding two

thresholds (0mm and 97% quantile of observations).

The initial precipitation forecasts are based on the

global ECMWF ensemble with 32-km horizontal grid

size. Namely, we propose a split approach to exploit

unanimous zero precipitation ensemble predictions,

use a heavy tailed distribution to better describe the tail

behavior of precipitation data, and assess various link

functions to ensure nonnegativity of the predictive var-

iance. A case study on 10 sites in a small study area in the

European Alps shows that especially the split approach

can clearly improve the predictive performance for

6-h sums.

The split approach can exploit the fact that in our

dataset unanimous zero precipitation ensemble pre-

dictions almost always perfectly predict dry events. By

switching to a different model parameter set for these

situations in the statistical models, the forecast per-

formance can clearly be improved. The approach also

allows us to relax ‘‘unanimous’’ to ‘‘majority’’ of en-

semble members, and ‘‘no precipitation’’ to pre-

cipitation not exceeding other thresholds. Such

modifications did not improve results reported here but

might be beneficial for other datasets with different

precipitation climatologies.

Furthermore, using the censored logistic distribution

increases the forecast skill compared to censored

Gaussian models. The pronounced tail of the logistic

distribution is able to better capture rare events and

improved CRPS, calibration in terms of PIT, and BS

values. Regarding the probability of high precipitation

amounts, the logistic models can improve reliability but

showed a lack of resolution. The refinement of a better

parametric representation of the precipitation distribu-

tion might also be accomplished with other distributions

such as the (censored shifted) Gamma or the generalized

FIG. 10. CRPSS for the censored logistic model using the split approach and the log link (log_split) in reference to

the censoredGaussianmodel using the quadratic link without split (quad). Results from tenfold cross validation are

evaluated separately for lead times130 to1144 h for (left) 6-h sums and (right) 24-h sums for Innsbruck. Each lead

time contains 500 bootstrapped CRPSS values. Boxplots are as in Fig. 5.
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extreme value distribution (Wilks 1990; Scheuerer 2014;

Scheuerer and Hamill 2015).

Our third refinement is the investigation of different

link functions for the dispersion submodel in the NHR

approach. Depending on the used forecast distribution,

distribution parameters may require positive values

during numerical optimization. We find notable differ-

ences in forecast skill for different link functions, espe-

cially for short accumulation periods of 6-h sums. The

best performance has been achieved by using the log

link, which optimizes the logarithmic standard deviation

(Messner et al. 2014a). This approach outperformed

simulations where the squared scale (quad) or scale

parameter (id) is estimated. Although all link functions

could correct for the underdispersion of the raw en-

semble, id and quad models often still have too little

uncertainty for smaller ensemble standard deviations,

which occur most frequently. Additionally, the combi-

nation of log-link and the split approach allows us to use

the logarithmic standard deviation as regressor. Other-

wise, the logarithmic standard deviation could not be

used directly due to infinity occurring for unanimous

ensembles (zero standard deviation).

Although general verification has focused on day-2

forecasts, the proposed refinements perform similarly

for lead times 130 to 1144h at one example station.

Combining all three refinements yields an improved

forecast performance compared to the baseline ap-

proach. Nevertheless, for the proposed split approach to

be most effective, there have to be unanimous zero

precipitation forecasts in the ensemble which usually

occur more frequently at shorter lead times, shorter

accumulation periods, and in regions with less pre-

cipitation events in general. Similarly, the used link

function seems to be more influential for cases where

generally smaller precipitation amounts occur. Hence,

differences in link functions are found to be largest for

short accumulation periods where amounts are usually

smaller than for long periods. Conversely, the heavy tail

of the censored logistic distribution is found to be

more important for the longer accumulation periods

(24-h sums), where precipitation amounts are gener-

ally higher.

The proposed refinements are not restricted to the

presented NHR method but can also be combined with

other extensions. Such extensions can cover the con-

sideration of neighboring grid points (Scheuerer 2014),

the use of additional information from high-resolution

models (Hemri et al. 2016), or copula coupling ap-

proaches to ensure spatial correlation between in-

vestigated stations (Feldmann et al. 2015). Clearly, the

effectiveness of all refinements strongly depends on the

dataset and the area of interest. However, as the re-

finements do not require the acquisition of additional

input data from NWP models, they are straightforward

to apply and thus practitioners can easily check whether

they lead to improvements for their data and study area.

The key improvement appears to be the inclusion of

FIG. 11. Frequency of the 51-member ECMWF ensemble unanimously forecasting no

precipitation (unfilled symbols) or precipitation (filled symbols) evaluated at Innsbruck for

accumulation periods of 24 (triangles) and 6 h (circles).
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unanimous zero precipitation forecasts, especially at

short(er) aggregation periods and lead times where the

ensemble is typically more certain. Consequently, the

refinements are expected to be valuable also for high-

resolution ensemble systems.

To summarize the overall forecast performance for

our study area, all statistical models could clearly im-

prove the raw ensemble forecasts. Our results imply that

an untransformed censored logistic assumption is ade-

quate particularly for short accumulation periods (6-h

sums). The split approach improves the forecasts by

using the information of zeros predicted by the raw

ensemble. Results also showed differences in link func-

tions where the logarithmic link performed best. To-

gether, our three statistical refinements provide the

largest benefits for short accumulation periods (6 h) and

short lead times.
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