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ABSTRACT: Real-time hybrid testing combines testing of physical components with numerical simulations. The concept of the 

method requires that the numerical simulations should be executed in real time. However, for large numerical models including 

nonlinear behavior a combination of computationally costly assembling of the internal forces element by element at each 

equilibrium point and a strict requirement for small time steps to maintain accuracy and stability often prevents real time 

execution. Thus, enhanced numerical capacity is required. In the present study a basis reduction method is used to reformulate 

kinematic nonlinear equations of motion into a sum of constant matrices each multiplied by a reduced coordinate decreasing the 

assembling time. Furthermore the method allows for cutting off some of the higher frequency content not representing real 

physics decreasing the stability requirement for the time step. However, it is important that the chosen basis can represent the 

nonlinearities of the system. If not locking of the system can be a consequence ruining the accuracy of the results. To 

demonstrate the potential of the method in a real time simulation perspective and the importance of choosing a sufficient basis a 

composite beam and a cantilever beam including kinematic nonlinearities and exposed to harmonic loadings are analyzed. To 

reduce locking modes with higher order terms are included. From the analysis it is concluded that the method exhibits 

encouraging potential with respect to real time execution if a sufficient basis is chosen. 

KEY WORDS: Kinematic Nonlinearities, Basis reduction, Real-time simulation, Finite Element Analysis. 

1 INTRODUCTION 

Hybrid testing is a testing method that was developed by 

Japanese scientists in the 1960’s, cf. [1]. If conducted in real-

time in order to include dynamic effects the method is often 

referred to as real-time hybrid testing (RTHT). 

The principle of the method is that the considered structure 

is partitioned into two parts; a physical substructure and an 

analytical substructure. The physical component is a structural 

part that displays complicated or unknown structural behavior 

and therefore has to be tested in a physical test setup. The 

analytical substructure on the other hand is well understood. 

Thus, this part does not have to be tested but can instead be 

modeled numerically and solved by a time integration scheme. 

As only the component displaying complicated behavior has 

to be build and tested physically a full scale test can be 

conducted in more modest physical frames which makes it 

highly economically profitable. 

During the hybrid test an iterative loop is running where the 

response of the numerical model found from the time 

integration is imposed onto the physical substructure through 

servo-hydraulic actuators in a finite number of points. The 

force response from the physical component is then measured 

by the actuators and sent to the numerical model. Together the 

experimental substructure(s), the analytical substructure(s), 

the integration algorithm and the servo-hydraulic actuators are 

integrated through an IT control system to form the real-time 

hybrid simulation system. For further details about the 

principle of Hybrid testing see e.g. [2-3]. 

For RTHT to be successful it is required that servo-

hydraulic actuators are able to impose the displacements 

accurately onto the physical substructure in real time, that the 

communication between the analytical and physical 

substructure has a minimum delay and that the time 

integration is robust, accurate and fast to ensure real time 

execution.  

The requirement that the numerical time integration has to 

be executed in real time limits the size of the nonlinear 

numerical substructures that can be applied in RTHT. Main 

part of the computation time in nonlinear analysis is due to the 

internal nodal forces computed element by element followed 

by an assembling into the global set of equations before each 

time step. When increasing the size of the numerical models 

the assembling time is obviously increased as well. 

Simultaneously, when increasing the size and complexity of 

the models higher frequencies are introduced, which calls for 

smaller time steps in the integration schemes in order to 

maintain stability and accuracy. Decreasing the time steps 

increases the computational time further as the number of 

assemblings of the internal nodal forces within a given 

simulated time interval are increased. Thus, increasing the 

size and complexity of the numerical substructures increases 

the computational time, which work against the real time 

execution requirement. 

Both implicit and explicit algorithms and combinations of 

these are considered among researchers in RTHT context, see 

e.g. [4-10]. In [10] a selection of implicit and explicit 

integration schemes is evaluated in a RTHT setup with 

nonlinear substructures. The study concludes that explicit 

schemes are preferable. These schemes are simpler and do not 

require equilibrium iterations, making them less time 

consuming than implicit algorithms. However, the downside 

of explicit schemes is that smaller time steps are required to 

maintain stability of the system compared to implicit schemes.  

The study in [10] also concludes that due to the 

performance of the time integration schemes the capacity with 

respect to degrees of freedom (dof) in the discretized system 

is very modest if real time execution should be performed. 

Under the given circumstances around 50 dofs in a nonlinear 

context dictates the upper limit. As far as known the 

maximum number of dof’s used in a RTHT with a nonlinear 

analytical substructure is 134, cf. [11]. Thus, a very interesting 
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and important issue related to RTHT is how to improve the 

computational capacity in order to be able to simulate the 

response of large and complex numerical substructures 

including nonlinear effects in real time. 

One way of decreasing the computational time is by using 

reduced order modeling (ROM) reducing the discretized 

nonlinear equations of motion by projecting them onto a 

subspace represented by a reduced basis. This is a simple way 

to reduce the number of dof’s and at the same time to cut off 

some of the higher frequency content contained in the model 

not representing real physics. The latter allows one to increase 

the time steps whereby the assembling frequency of the 

internal nodal forces and thereby the computation time are 

reduced.  

In [12] the concept of ROM is described together with an 

overview and evaluation of the most common used bases for 

kinematic nonlinear structures considering robustness and 

accuracy. From the study it is concluded that linear normal 

modes are among the best performing bases under the given 

circumstances despite the fact that they neglects the nonlinear 

nature of the system.  

In [13] is considered a material nonlinear structure. To 

model the response a reduced basis consisting of a number of 

Ritz vectors encapsulating the material nonlinear response is 

used. The Ritz-basis is derived from a combination of linear 

normal modes and a number of plastic deformation shapes 

found from a static analysis. The basis is introduced into a set 

of linear equation of motion whereby the costly assembling 

every time step is avoided. This enables the authors to model 

the response of a 50-dof nonlinear plastic model with three 

elastic and six plastic modes in real time. However, the plastic 

modes obtained in this way possessed high frequencies which 

had to be decreased artificially by including additional inertia 

to be able to perform real-time simulations. Furthermore, the 

approach is not very suitable for systems with alternately 

increase and decrease in stiffness which is the case for 

kinematic nonlinear structures. 

When using ROM for nonlinear systems the time 

consuming assembling of the nonlinear internal nodal forces 

is still required in every time step before projecting them onto 

the reduced subspace. As an answer to this problem 

researchers in [14] have presented a reduced basis formulation 

(RBF) where the discretized equations of motion by a simple 

mathematical reformulation can be written as a sum of 

stiffness matrix terms that remain constant throughout the 

entire analyses each multiplied by a reduced coordinate in the 

projected subspace. For a subspace consisting of m modes 

1+m+m
2
 constant matrix terms are arranged. This 

reformulation enables a much faster assembling of the 

nonlinear internal nodal forces compared to the usual 

assembling element by element. 

To the best of the present authors’ knowledge no study has 

been performed illustrating the potential of the method in [14] 

in a real-time perspective. Thus, in the present study the RBF 

is used to analyze kinematic nonlinear structures in a real-time 

perspective to illustrate the applicability in nonlinear real time 

analysis. Two examples are considered. The first example 

constitutes a composite beam exposed to harmonic loadings. 

The beam parameters are based on inspiration from a 

composite beam planned to be tested in a RTHT arrangement 

at the Technical University of Denmark (DTU) in the spring 

2014, making the example relevant in that perspective.  

As will be evident to the reader the analysis of the 

composite beam is exposed to the phenomena of locking 

ruining the results. The locking effect is introduced through 

the choice of basis consisting of purely linear modes. To 

reduce the effect of this, modes containing higher order terms 

can be included. This is illustrated in a second example 

considering a simple cantilever beam. 

In section 2 the RBF by [14] is presented together with a 

reduction of the formulation taking symmetry conditions into 

account. In section 3 an approach to include higher order 

terms to the linear normal modes are presented. Finally in 

section 4 and 5 the examples of the composite and cantilever 

beams, respectively, are described, analysed and discussed. In 

section 6 the conclusion is given. 

2 REDUCED BASIS FORMULATION 

In the following section the RBF developed by [14] is used to 

reduce a set of discretized kinematic nonlinear equations of 

motion. Furthermore an improvement of the formulation 

taking into account symmetry conditions is presented. 

2.1 Nonlinear modal equations 

The starting point of the method is the global set of discretized 

nonlinear equations of motion in physical coordinates 

containing n dofs written in matrix notation 

 ( ) ( )t  MV CV g V F  (1) 

where M and C are n x n mass and damping matrices, F(t) a n 

x 1 external load vector which is a function of time and g(V) a 

n x 1 vector containing internal restoring forces. Finally V is a 

n x 1 vector representing the nodal displacement in global 

format where a dot above the vector denotes a time derivative. 

In the given case the discretized system in (1) is based on 

continuum mechanics with Green strain characterizing the 

state of deformation and with the Second Piola-Kirchoff 

stresses as conjugate stress components, cf. Appendix 1. 

In the present only the internal restoring forces, g(V), are 

assumed to be a nonlinear function of the nodal 

displacements. The nonlinear restoring forces consist of a 

constant, linear and a quadratic stiffness matrix contribution in 

V 

 
0 1 2( ) ( ( ) ( , ))  g V K K V K V V V  (2) 

where K
0
 is the constant stiffness matrix known from linear 

elastic theory and K
1
 and K

2
 are linear and quadratic 

functions of the V, respectively, introduced due to the 

kinematic nonlinearities. 

The discretized nonlinear equation of motion in physical 

coordinates can be projected onto a reduced subspace by 

introducing a relation between the physical and reduced 

coordinates given as 

 

1

m

i i

i

s


 V ΦS φ  (3) 

where Ф is a m x m matrix containing m basis’, φi, arranged 

as columns and S a m x 1 vector containing the m reduced 



coordinates, si. The number of reduced basis are usually much 

smaller than the number of dofs, i.e. m << n. 

Projecting the discretized equations in (1) onto the reduced 

subspace represented by (3) yields the general formulation 

 ( ) ( )t  MS CS g S F  (4) 

with the introduced vectors and matrices  
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g S Φ g ΦS

 (5) 

In [14] the nodal restoring forces in (5) are written as a sum 

using the right hand side of (3). This leads to the general 

formulation for the reduced internal nodal forces  

 
0 1 2

1 1 1

 ( ) ( )
m m m

i i ij i j

i i j

s s s
  

   g S K K K S  (6)  

where all matrices appearing in (6) are constants. In Appendix 

2 the formulation of the matrices based on Continuum 

mechanics are presented. 

   As the matrices appearing in (6) are constants these can be 

built before initiating the time integration if keeping the same 

basis throughout the analysis. This allows for a fast 

assembling of the nodal forces in (6) between each time step 

compared to the usual costly assembling of the internal nodal 

forces performed element by element. 

2.2 Symmetry reduction of quadratic sum 

The formulation of the restoring forces in (6) can compacted 

even further by taking advantage of the symmetry of the 

products of the reduced coordinates 

 i j j is s s s  (7) 

By introducing the definition  

 
2* 2 2(1 )ij ij ij ji  K K K  (8) 

The symmetry condition in (7) allows the quadratic sum in (6) 

to be written as  
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This reduces the number of sums by the number 
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corresponding to a relative reduction of magnitude 
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In the limit state this approaches a reduction of magnitude 

 
1

lim 50%
2m

r


   (12) 

3 MODES INCLUDING HIGHER ORDER EFFECTS 

Choosing a reduction basis consisting of linear modes from 

the undeformed stage might causes the nonlinear coupling 

effects of the structure to be locked as these effects are not 

accounted for by the linear normal modes. This will increase 

the stiffness of the system and thereby affect the accuracy of 

the results. To prevent these locking phenomena modes 

containing higher order terms can be included. 

 Considering a linear normal mode i, Фi, an estimate for a 

mode, Фi
h
, representing the higher order terms of the linear 

mode can be found by performing a nonlinear static 

calculation considering an equivalent formulation of the 

eigenvalue problem (EVP). Considering the mass times the 

considered linear mode as an external load and replacing the 

square of the natural frequency by a scaling factor α a 

nonlinear static system of equations can be arranged as 

 ( ) iK Ф MФ Ф  (13) 

By scaling the load factor α such that the solution vector Ф 

deviates slightly from the linear solution a vector estimate for 

the higher order terms of  Фi, can be taken as the difference 

between the linear normal mode and the static solution  

 
h

i i Ф Ф Ф  (14) 

These modes will be applied in the analysis of the cantilever 

beam in section 5. The modes Фi
h
 used in this example case 

are based on solutions where the maximum deviation in a 

discretization point between the linear and nonlinear response, 

Ф and Фi, was around 1%. 

4 ANALYSIS OF COMPOSITE BEAM 

In the following section a composite beam is analysed to 

illustrate the potential of the RBF described in section 2 in a 

real-time perspective. Furthermore the example illustrates the 

consequence of locking introduced if the chosen basis cannot 

represent the nonlinear coupling effects. 

First is presented the description of the composite geometry, 

boundary conditions, general stiffness parameters and loading. 

Next the numerical modeling of the beam and the analysis 

approach is described. In the final section the analysis results 

are presented and discussed. 

4.1 Geometry and boundary conditions of composite beam 

In Figure 1 is sketched the composite beam in the x-z plane. 

The beam is of length L and simply supported at the beam 

ends with the rotation axis arranged in the bottom of the 

composite. The distance Lc marks a part of the beam where a 

section cut is made to increase the effect of the kinematic 

nonlinearities. 



 

Figure 1. Composite beam in x-z plane.  

   In Figure 2 the cross section through section A-A marked in 

Figure 1 is sketched. From the figure the composite is seen to 

be hollow with an exterior height B and a width H. The wall 

thicknesses are t1 and t2 along the height and width 

respectively and the curvature along the edges of the profile is 

r. The introduced section cut is of width h and is placed in the 

flange in a distance t2+r from the outer edge of the web. 

Finally point A marks an edge point at the section cut which 

will be considered in the analysis. 

 

Figure 2. Composite cross section at section A-A. 

In Table 1 are listed the geometry parameters of the composite 

beam. 

Table 1. Geometry parameters of composite beam 

Parameter Magnitude Unit 

L 5 m 

Lc 1 m 

H 0.132 m 

B 0.054 m 

R 0.006 m 

t1, t2 0.002 m 

H 0.004 m 

A 680 mm
2 

4.2 Loading of composite beam 

The beam is loaded by a periodic loading 

 1 1 2 2( ) sin( ) sin( )p t F t F t    (15) 

with F1 and F2 denoting the load amplitudes and ω1 and ω2 the 

load frequencies  

Table 2. Loading parameters for composite beam 

Parameter Magnitude Unit 

F1 2 kN 

F2 1.25 kN 

ω1 5.20 Hz 

ω2 58.20 Hz 

As illustrated in Figure 1 the resultant loads are applied a 

distance L/3 from the beam edges. They are distributed over a 

square area of size (0.4 x H)
2
 at the bottom flange. The load 

parameters are presented in Table 2. The load frequencies 

span the frequency domain of the ten first modes of the 

composite in the undeformed stage. 

4.3 Stiffness parameters 

The composite beam consists of a synthetic matrix material 

reinforced with longitudinal fibers in one direction of the 

beam. In Table 3 are listed the stiffness’s parameters used in 

the analysis with the subscript referring the global direction 

indicated in Figure 1 and Figure 2. The parameters are taken 

from [19]. 

Table 3. Stiffness and material parameters of composite 

Parameter Magnitude Unit 

Ex 23
 

GPa
 

Ey, Ez 8.5
 

GPa
 

G 3
 

GPa 

νxy, νxz   0.230 - 

νyx, νzx 0.085 - 

νyz, νzy 0.230 - 

ρ 1825 kg/m
3 

 

   Ex, Ey, Ez denote the orthotropic moduli of elasticity and G 

denote the orthotropic shear moduli for shear deformation 

assumed equal in all planes, respectively. The term νxy is a 

Poisson ratio characterizing the strain in the y-direction 

produced by the stress in the x-direction. Similar 

interpretations are given for the remaining Poison ratios listed 

in Table 3. Finally ρ denotes the density of the composite. 

   In the given case it is assumed that the fibers are aligned 

parallel with the length of the beam leading to maximum 

stiffness moduli in the x-direction 

4.4 Numerical Modeling 

The composite beam is modeled in a local MATLAB based finite 

element program named BYGFEM. To model the structure the 

10-nodal isoparametric tetrahedral element sketched in Figure 

3 is used. The element can describe displacement fields up to 

2
nd

 order and stress fields up to 1
st
 order correctly. Three 

translations describe the deformation in each node. For a more 

thorough description of the element, see e.g. [15]. 

 

Figure 3. 10-nodal tetrahedral element. 

   To perform the time integration when using the RBF is used 

the central difference method (CDM) which is an explicit 2
nd

 

order method, see e.g. [15]. The reason for picking this 

integration scheme is that it is simple whereas the 

disadvantage is that the time step has to be below a critical 

value in order to prevent instability. To check the accuracy of 

the RBF solution this is compared to a full solution found with 

an implicit Newmark algorithm (NA). 



In Table 4 are listed some of the algorithm parameters used 

in the analysis with tact denoting the actual time simulated, ∆t 

the time step magnitude with the superscript referring to the 

method applied and the algorithm parameters α and β applied 

in the full implicit analysis. The latter two are set equal to a 

magnitude corresponding to unconditionally stability in the 

linear analysis case. Finally ϵ is the equilibrium tolerance. 

Table 4. Algorithm parameters 

Parameter Magnitude Unit 

tact 0.25 s 

∆t
NA 

/ ∆t
CDM

  10
-3

 /  3∙10
-5 

s 

ϵ 10
-3 

- 

γ ½ - 

β ¼ - 

 

   Two different mesh sizes were used in the analysis. In the 

region spanning the section cut of length Lc (cf. Figure 1) the 

mesh density is set to ten times finer than in the remaining 

structure in order to model the curvature at the section cut 

sufficient. A total of 65523 dofs were contained in the model. 

The basis used in the RBF is taken as the lowest 25 linear 

normal modes of the composite in the undeformed stage.  

4.5 Analysis results and discussion 

In Figure 4 is plotted the displacement, uz, in point A (cf. 

Figure 2) in the time interval t ϵ [0, 0.04] sec. The blue curve 

shows the solution obtained with the implicit NA representing 

the full solution. The red curve shows the RBF solution. 

From the figure it is observed that the RBF curve starts to 

deviate significantly from the full model solution already from 

around t = 0.02 seconds. Around this point the RBF curve 

reaches a local maximum whereas the NA response keeps 

increasing rapidly. The behavior of the two curves indicate 

that the RBF solution exhibits a much higher stiffer than the 

NA solution. As indicated previously and as will be 

demonstrated in the example in the next section the increased 

stiffness is introduced through the choice of modes included 

in the model. Due to the kinematic nonlinearities coupling of 

the transverse and axial deformations take place. If the chosen 

modes do not represent these coupling effects sufficiently 

locking will appear increasing the stiffness of the system.  

 
Figure 4. Displacement, uz, at point A in the composite 

beam found using a NA and the RBF, respectively. 

 

One way to overcome the locking phenomena is by 

increasing the number of modes until a sufficiently number of 

modes can represent these nonlinear effects. However, in 

order for the RBF to be performed in real time it is necessary 

to keep the number of modes as few as possible while still 

being able to describe the response as good as possible. 

   In Table 5 is presented how many modes that can be 

contained in the model for different time step magnitudes if 

the RBF should be executed in real time. It should be stressed 

that the results are based on simulations on a standard PC. 

Table 5. Mode limit vs. time step magnitude 

Time step [s] No. of modes 

10
-3 

35 

10
-4 

12 

10
-5

 1 

The table shows a decrease in number of modes as the time 

step is decreased, which should be expected. For a time step 

of magnitude ∆t = 10
-5

 a model approximated by one mode 

only can be executed in real time, whereas by increasing the 

time step to ∆t =10
-4

 sec enables one to describe the response 

with up to 12 modes. Decreasing the time step further to ∆t 

=10
-3

 sec up to 35 modes can be applied. As the time step is 

dictated by the highest frequency of the system through the 

stability requirement, the time step that can be applied is 

restricted by the nature of the considered system. Thus, the 

RBF is most suitable for low frequency ranges as this allows 

for larger time steps.  From the table it is also evident that 25 

modes are way beyond the limit for real time execution for the 

given time step applied analyzing the composite beam. 

However, the example in the next section indicates that by 

using only a few higher order modes the results can be 

improved significantly. 

5 ANALYSIS OF CANTILEVER BEAM 

A cantilever beam exposed to a harmonic loading is analysed 

next. The example serves to illustrate that the locking effect of 

a nonlinear response can be reduced significantly by 

introducing few modes including higher order effects. 

5.1 Geometry, loading & stiffness parameters of cantilever 

The cantilever is of length L and has a cross section of width 

and height w and h, cf. Figure 5. 

 

 
Figure 5. Sketch of cantilever exposed to sinusoidal load 

(left) and it cross section dimensions (right).  

 

It is exposed to a sinusoidal load with amplitude F and 

excitation frequency ω. 

 ( ) sin( )p t F t   (16) 

The cantilever is isotropic and made from steel. The load 

amplitude F is chosen such that the response is significantly 

nonlinear. The frequency, ω, corresponds to 1/25 of the lowest 

natural frequency in the undeformed stage. 

   In Table 6 are presented the beam and load parameters. 



Table 6. Cantilever parameters 

Parameter Magnitude Unit 

E 210
 

GPa
 

ν 0.3
 

GPa 

h, w 1 m 

L 4 m 

F 2 GPa 

ω 2 Hz 

5.2 Numerical modeling 

   The cantilever is modeled with a mesh consisting of four 

elements along the height, twelve elements along the length 

and one element in the width direction with the tetrahedral 

element presented previously. 

   As for the composite beam the response of the cantilever 

beam is analysed numerically using the implicit NA and the 

CDM algorithm for the RBF with the algorithm parameters in 

Table 4.  

    In the present analysis the basis chosen for the RBF 

analysis consists of a varying number of modes. To reduce the 

locking effects linear modes and their corresponding higher 

order modes are included as determined by (13)-(14) using a 

Newton-Raphson algorithm. In Table 7 are listed three 

combinations of modes used. 

Table 7. Modes included in RBF solutions 

Case Linear modes 

no. 

Higher order 

modes no. 

RBF 1 1-4
 

- 

RBF 2 1
 

1 

RBF 3 1, 4 1, 4 

 

In the ‘RBF 1’-case the linear modes 1 to 4 are included 

without higher order terms. These modes constitute bending 

modes in the load direction (mode 1 and 4) whereas mode 2 

and 3 constitute a bending mode opposite to the load direction 

and a torsional load around the beam axis. In the ‘RBF 2’- and 

‘RBF 3’-case only the bending modes in the load plane 

together with their higher order modes are considered. 

5.3 Analysis of Cantilever 

   In Figure 6 is plotted the response of the cross-sectional 

midpoint node at the loaded beam end. The blue curve 

represents NA solution whereas the remaining curves 

represent the RBF solutions. 

 
Figure 6. Deformation of midpoint node at loaded end.  

 

   Considering the full response the deformation it is seen to be 

dominated by a frequency equal to the excitation frequency 

with amplitude around 2 m corresponding to the static 

nonlinear response of the beam if exposed to the load 

amplitude, F. Local oscillations appear with a frequency 

around 50 Hz corresponding to the first linear bending mode 

of the beam. This mode is only slightly excited due to the 

relatively slower load frequency. The response in the ‘RBF 

1’-case identifies a similar locking phenomenon indicated by 

the relatively small global amplitude and the increased local 

frequency response. By including the higher order modes the 

locking effects are seen to be significantly reduced as the 

curves ‘RBF 2’ and ‘RBF 3’ attain amplitudes close to the NA 

solution. The solutions ‘RBF 2’ and ‘RBF 3’ are not fully 

converged, but their results indicate that by adding few 

additional modes with higher order terms the response can 

improved significantly. 

6 CONCLUSION 

It has been demonstrated how to reduce a set of kinematic 

nonlinear equations of motion applying a reduced basis 

formulation (RBF) introduced by [14] making it possible to 

perform fast nodal force assembling. The formulation was 

improved using a symmetry condition reducing the number of 

assembling terms by fifty percent in the limit state. A 

composite beam exposed to a periodic loading was used as 

example to demonstrate the potential of the RBF. The results 

were influenced by locking introduced through the choice of 

included linear modes increasing the stiffness of the model. 

However, by adding a few higher order modes to the basis it 

was shown that the locking could be significantly reduced. 

This was illustrated in a simple example considering a 

cantilever beam. Furthermore it was concluded that time steps 

of magnitude 10
-3 

s, 10
-4

 s and 10
-5

 s allow the simulations to 

be performed in real time with up to around 35, 12 and 1 

mode(s), respectively, on a standard PC. Based on this it is 

concluded that the RBF has potential to perform real time 

simulations if choosing a sufficient basis and if possible to go 

beyond a time step of 10
-5 

sec. 

7 APPENDICES 

In Appendix 1 the Continuum mechanics theory required for a 

finite element formulation is presented. In Appendix 2 the 

discretized equations of motion are derived based on the 

presented Continuum mechanics. Finally in Appendix 3 the 

definitions of the constant matrices in the sum-formulation in 

(6) are presented. 

7.1 Appendix 1 – Generalized Strains and Stresses 

In the present Continuum theory required to arrange the finite 

element formulations is presented. The Green Strain measure 

is chosen to characterize the state of deformation of the 

continuum considered with the conjugate stress given as the 

Second-Piola Kirchoff stress measure. A detailed description 

of the theory can be seen in e.g. [16-17]. 

   The starting point is the general Green strain tensor 
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and its variation  
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Where ij is Kronecker’s delta, F the deformation gradient, 

and D the displacement gradient given as 
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As stated on the right hand side of (19)-(21) the tensors can be 

arranged as column vectors. This formulation is used to 

organize the finite element formulation in the following 

section. 

   The seond Piola-Kirchoff stress measure, S, is related to the 

Green strain tensor, E, through the constitutive relation 

assuming a Saint Venant-Kirchoff material 

 
ij ijkl klS C E  (22) 

where Cijkl is a fourth-order tensor of elastic moduli which are 

constant. It is often computationally convenient to represent 

the stress and strain components as a one-dimensional array. 

These are therefore organized in Voigt notation. For the given 

case considering orthotropic material this is given as, se e.g. 

[18] 
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Introducing the definition in (19)-(20) into the green strain 

tensor in (17) this can be written in Voigt notation as   
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7.2 Appendix 2 – Finite Element Formulation 

In the present appendix the formulation of the element local 

discretized equations of motion are presented. The element 

local variation, u, is interpolated in terms of the end point 

nodal degrees of freedom contained in the vector v as  

 u Nv  (25) 

Where N is the displacement interpolation matrix N for an 

element with m degrees of freedom. With this the vectors dj in 

(18) can be formulated as  
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The corresponding virtual components to (27) is 
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Introducing the notations 
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The nonlinear vector Enonlin in (24) can be written as  
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Where C(v) is a linear function of v. Furthermore by 

introducing the general expression for the linear strains known 

linear elastic theory  
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With B denoting the strain interpolation matrix. The Green 

strain tensor in (24) can then be written in compact form as 
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Due to symmetry of matrices in (33) the virtual Green strains 

on Voigt notation can be found as  
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Now the internal nodal load vector g(v) can be organized from 

the virtual work equation in static context 
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With D denoting the material stiffness matrix. The matrix 

contribution in g(v) are constant terms, terms linear in v and 

terms quadratic in v, respectively. These are defined as 
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The nonlinear equations of motion are found by adding inertia 

and damping terms 

 ( ) ( )t  mv cv g v f  (36) 

With m being the mass matrix, c the damping matrix and f(t) 

the external load vector. 

7.3 Appendix 3 – Formulation of modal matrices 

In the following the expressions for the modal matrices in (6) 

based on the continuum theory presented in Appendix 1 are 

identified. 

   The local element dofs in v and the global dofs V are related 

through the element local topology array L 
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Where the reduced basis formulation in (3) is introduced. 

Introducing this relation into the nonlinear part of the nodal 

forces in (33) and projecting this onto the reduced basis in (3) 

yields the expression 
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From where the local element stiffness’s in reduced 

coordinates are identified as  
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The global stiffnesses in reduced coordinates presented in 

general form in (6) are found by summing over the total 

number of elements (nel)   
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