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Abstract 

In this study, we evaluate established and newly developed metrics for predicting glare using 
data from three different research studies. The evaluation covers two different targets: 1. How 
well the user’s perception of glare magnitude correlates to the prediction of the glare metrics? 
2. How well do the glare metrics describe the subjects’ disturbance by glare? We applied 
Spearman correlations, logistic regressions and an accuracy evaluation, based on an ROC-
analysis. The results show that five of the twelve investigated metrics are failing at least one of 
the statistical tests. The other seven metrics CGI, modified DGI, DGP, Ev, average Luminance 
of the image Lavg, UGP and UGR are passing all statistical tests. DGP, CGI, DGI_mod and UGP 
have largest AUC and might be slightly more robust. The accuracy of the predictions of afore 
mentioned seven metrics for the disturbance by glare lies in the range of 75-83% and does not 
confirm findings from other studies stating a poor performance of existing glare metrics. 

Keywords: Daylight, glare, glare perception, user assessments 

1 Introduction and Objectives 

In recent years user assessment studies on daylight-induced visual discomfort for application 
mainly in office buildings have been conducted more extensively [1-5]. These studies are 
proposing different metrics to predict discomfort caused by the luminance distribution in the 
field of view. However, in several cases only minimum changes have been considered in the 
experimental set up as far as the luminous environment is concerned, thereby limiting the 
applicability of the metrics for broader ranges of luminance distribution. The question remains 
how the proposed metrics will perform when the lighting conditions are different from the ones 
in which they were developed.  

For instance, K. Van Den Wymelenberg et al. [5,6] concluded, that the overall performance of 
existing glare metrics is rather poor. They based their conclusions on a Pearson correlation 
between ordinal subjective response and the metric values. Hirning et al [7] found, that existing 
glare metrics generally underestimate the subjective glare response of users in the context of 
open-plan offices in green-buildings (located in Australia). Both studies suggest new metrics 
that attempt to improve their ability to predict glare sensation from subjects. However, an 
underlying question always remains: how do existing, revised and other newly published metrics 
perform in conditions in which they have not been developed? 

In general, the variability between the individual subjects’ perception of visual discomfort has 
been addressed by several authors [2,8,9] and might explain the low levels of correlations found. 
However, there are attempts not trying to explain individual differences in glare perception but 
describing the probability that a subject is being disturbed by glare [2]. This approach will be 
used as one of several evaluation methods in this study. 

The objective of this study is to evaluate established and newly proposed glare prediction 
metrics by using data-sets that were not used to develop the metrics themselves. Several 
statistical analysis methods are here applied to evaluate glare prediction metrics by comparing 
them with the users’ glare ratings emanating from three different research studies. 

2 Investigated glare metrics 

Among the developed metrics for predicting daylight-induced discomfort glare risk, Daylight 
Glare Index (DGI)[1] can be identified as an early attempt to express the magnitude of glare 
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perceived by humans. Although it was developed under artificial light it describes the glare 
magnitude caused of daylight from a window.  

Daylight Glare Probability (DGP) [2], was the first metric developed under real daylight 
conditions where user assessment data were acquired in office like test rooms. Fisekis and 
Davis [4] suggested a modification of the DGI (named here in the following DGImod). K. Van Den 
Wymelenberg et al. [5,6] suggest to use the average luminance in the 40°band (L40°band_avg) and 
the standard deviation of window luminance (Lstd_window) for the evaluation of visual discomfort. 
As an outcome of field-studies in green buildings in Australia, Hirning et. al. propose Unified 
Glare Probability (UGP) [7] for glare analysis in this kind of setting. Tokura et. Al. developed 
the predicted glare sensation vote (pgsv) [17] to describe glare from windows. In this study, we 
investigate a modified version of the pgsv for describing the saturation effect, published by 
Iwata et. al.  [18] (pgsvsat). 

Besides the above-mentioned metrics, photometric quantities such as average luminance in the 
field of view (FOV) Lavg, the average Window luminance Lavg_window and the vertical illuminance 
at eye level Ev will be used for the evaluations. 

Also, two metrics for electric light glare evaluations will be applied in this study: CIE Glare Index 
(CGI) [14,15] and Unified Glare rating (UGR) [16].  

The twelve above-mentioned metrics in bold are investigated in this study and are derived from 
calibrated high dynamic (HDR) fisheye images by evalglare [19] (version 1.31). The glare 
source detection mode was set to the recommended [2] setting to 5-times the task-area 
luminance. 

3 Methodology 

User assessment data and related high dynamic range (HDR) fisheye images from three 
different experiments conducted between 2003 and 2013 are used for this study. For each case, 
twelve glare metrics are calculated from the HDR images. For each case, the glare response 
of the subjects on an ordinal 4-point Likert-scale is available. The scale is the same for each 
study: imperceptible-noticeable-disturbing-intolerable.    

The datasets are split up into different sub-datasets in order to guarantee a reliable statistical 
analysis (see chapter 3.2).  

3.1 Study description 
Experimental data from three different studies are used for this paper.  

The experiments for the study “Ecco-Build” were conducted between 2003 and 2005 in 
Copenhagen (DK) and Freiburg (D). The experiments were conducted in an office-like setup. 
Three different window sizes and three different shading devices (white Venetian blinds, 
specular reflective blinds, foil shading) were used to create different lighting conditions. The 
experimental setup is described in detail in [2]. 348 of the 366 cases were used to develop the 
DGP metric. For comparing the DGP with the other metrics, the development-data are either 
excluded, or the results for the DGP evaluation are displayed in a separate colour.    

The experiments for the study “Quanta” were conducted between 2008 and 2011 in Freiburg 
(D) in the same facility as in “Ecco-Build” and therefore the experimental setup is very similar. 
The main differences are that other shading devices were examined (fabric shading devices), 
the window size was fixed and that both rooms were used for the user assessments and the 
luminance cameras were placed besides the subject. Details are described in [10].  

The “Gaze” study was conducted in 2012 in the same facility in Freiburg (D) and used no 
shading devices and had situations with and without the sun in the field of view. Details are 
described in [3]. An overview over the three studies is shown in table 1 including the number of 
subjects and cases for each study. 
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Table 1 – Overview of the three studies and their experimental setup. 

Name Location Main 
publ. 

Tested façade 
systems 

No. 
Subjects 

No.  
cases  

  Ecco-             
  Build 

Freiburg, 
Germany 
Copenhagen, 
Denmark 

[2] Three window sizes, 
three shading devices, 
two viewing directions 

59 
 
24 

235 
 
131 

  Quanta Freiburg, 
Germany 

[10] Fabrics with and 
without view, venetian 
blinds 

49 188 

  Gaze Freiburg, 
Germany 

[3] Window not shaded 100 100 

Total 232 654 

The entire data-set contains therefore data from five different shading devices plus one widow 
configuration without shading. For a subset of the data (Ecco-Build) also the window size was 
varied for three shading devices. Therefore, the dataset has a large variety of lighting conditions 
(see figure 1).   

 

Figure 1 – Violin plot for the distribution of the vertical lluminance at Eye level Ev. The mean 
value (dot) as well as the standard deviation (vertical line) are displayed as well.  

3.2 Data selection 
The data preparation and selection is adapted to the statistical evaluations. Several constraints 
are considered: 

1. Some of the evaluations derive cut-off-values to be applied to the data later. The cut-
off-point of a metric is defined as the value of the borderline of the metric, dividing “not-
disturbed” from “disturbed”. This process is seen as modelling and therefore the data 
are split up into a dataset for the modelling (in the following called “training-dataset”, 
using 220 cases) and a dataset for the evaluation/comparisons (in the following called 
“testing-dataset”, using 195 cases). The split of the data was done randomly. This data 
selection procedure applies to the accuracy analysis and to the analysis of the 
probability of persons disturbed by glare. 
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2. A large part (348 of the 366 cases) of the Ecco-Build dataset was originally used to 
develop the DGP metric. Therefore, any comparison between the metrics considering 
the DGP is excluding this development-data in order not to bias the results. A combined-
dataset of the three studies excluding this development data is called “non-dev dataset”. 
For the calculation of the cut-off-point (“training-dataset”), the development data are 
included. 

3. For the Spearman correlations on the study data, all data are included in order to see 
the influence of the individual study on the correlation of the metrics. The correlation 
value of the DGP in that case cannot be compared to the other values and is therefore 
marked in grey.       

3.3 Statistical methods 
So far, there exists no single, commonly accepted statistical method to evaluate the 
performance of glare metrics. Already the word “performance” can be interpreted in different 
ways. What are the criteria to decide, if a metric “performs” well? For this study, we concentrate 
on two, in our opinion most important, questions: 

1. How well does the metric describe the entire glare scale? This evaluation seems to be 
the most natural way looking at the data.  

2. How well does the metric describe the probability, that a person is disturbed by glare? 
This kind of approach is a probabilistic one, which has been in use for many years in 
medical diagnostics and which was introduced to the glare evaluation field by [2].  

To answer the first question, K. Van Den Wymelenberg et al. [5,6] applied Pearson’s correlation 
between ordinal subjective responses and the metric values. This statistical method delivers 
reliable results only when the distance between all the ordinal categories are known as to be 
the same. Typically, this is not the case and especially not for the underlying Likert-4-point 
scale of the subjective responses to glare of this study. For the evaluation of ordinal data the 
use of Spearman correlation is appropriate [12]. We apply this kind of evaluation within this 
study. Furthermore, the p-values of the Spearman statistics is evaluated.   

To answer the second question, Rodrigez et. Al. [11] is using an epidemiological approach 
applying diagnostic accuracy methods (Sensitivity, Specificity, Positive Likelihood Ratio, 
Negative Likelihood Ratio, Youden's Index, ROC Square Distance). In [2], the p-values of a 
logistic regression as well as a squared Pearson correlation on the probability data is applied. 
For this study, we decided to apply parts of the diagnostic accuracy method as well as the 
logistic regression and the squared Pearson correlation on the probability.  

The evaluations are explained in 3.31 – 3.3.6: 

3.3.1 Spearman-correlation 
The Spearman rank correlation r is a non-parametric test to measure the strength of the 
relationship between paired data. Differently to the Pearson correlation, the underlying 
independent variables don’t need to be of numerical or equidistant-ordinal nature [12]. The 
higher the value the stronger the correlation between the variables.  

For this study, we derive r and the related p-value. The p-value is also compared to Bonferroni-
corrected significance values. 

3.3.2 Bonferroni correction for the significance-levels 
The Bonferroni-Correction [13] of significance values is in general applied when multiple 
statistical tests of a hypothesis are performed. If a test is applied multiple times, then the 
probability that one of the tests is randomly positive increases. The Bonferroni-correction 
compensates this by adjusting the significance level a by the amount of tests applied. In our 
study we investigate twelve metrics at the same time, therefore the significance levels have to 
be adjusted according to table 2. The adjusted levels from table 2 are used for all statistical 
tests in this study.    
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Table 2 – Bonferroni-adjusted significance levels. 

Significance Level a1 (one test) 𝛼 =
𝛼#
12

 

* 0.05 0.0042 
** 0.01 0.00083 
*** 0.001 0.000083 

 
3.3.3 ROC curve analysis  
The ROC-curve (Receiver Operating Characteristic curve) is a tool to evaluate (diagnostic) tests. 
Usually it is applied in medical studies to evaluate and compare different testing methods, but 
was introduced by [11] to glare evaluations. It is applied to binary, dependent variables. 
Therefore, we converted for our study the subjective, ordinal data on the 4-point-likertscale to 
binary data (not disturbed « disturbed by glare). Several indicators can be derived from this 
curve, but for our study we derived two values: 

1. The cut-off-value of each metric (training 
data). The cut-off-point of a metric is 
defined as the borderline of the metric, 
dividing “not-disturbed” from “disturbed”. 
For our study, the optimum cut-off-point is 
derived by minimizing the distance to the 
upper left corner (Sensitivity=1, 
Specificity=0).  

2. The area under the ROC-curve (AUC): 
The larger the area, the better is the 
prediction of the metric. (applied to the 
non-dev dataset)  

The ROC curve is defined by the sensitivity 
(or also called true positive rate) on the y-
axis and 1-Specificity (also called false 
positive rate) on the x-axis. Each point on 
that curve is calculated by another cut-off-
point.  

Figure 3 – An example of ROC curves for two of the metrics.  

3.3.4 Accuracy analysis 
The accuracy of a metric is defined as the fraction of true predictions of the model out of the 
total amount of cases.  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = +,-.	0,.123+2456
+4+78	376.6

 (1) 

For binary data, this value must be larger than 50%, otherwise a purely random model would 
have a similar prediction rate.  

In this study, the cut-off-values for each metric was first derived from the training dataset, 
including the development data from DGP in order to have a very broad training dataset.  
The accuracy calculation does not include any training data and is applied to the testing dataset. 

3.3.5 Logistic regression 
The logistic regression is a regression method for binary dependent variables. The outcome of 
the regression are the coefficients a and b for the equation (2). For this study, we only evaluate 
the p-values of the logistic regression. 

𝑃 = .:;<=
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3.3.6 Analysis of the probability of being disturbed by glare 
This analysis was introduced to glare analysis in [2]. For this evaluation, the analysed data are 
first sorted by the metric values and then binned into ten bins. The number of bins is set to ten 
based on typical binning numbers when performing a Hosmer-Lemeshow-test [20] on logistic 
regressions. However, the choice of the number of bins is arbitrary and influences the results, 
which is the main reason the Hosmer-Lemeshow test is under discussion [21]. On the other 
hand, the comparison between different metrics (in our case based on r2 values) using this 
method provides an informative assessment of the performance of the metric, since this test is 
intuitively evaluating the probability of users being disturbed by glare and relating it to the metric.  

For each bin, the probability of being disturbed by glare is calculated from the subjective 
response as well as the average metric value. For the resulting binned data (probability of being 
disturbed by glare « average metric) a linear regression is applied and r2 and p are calculated. 

4 Results 

The evaluation of the data aims to determine how different discomfort glare metrics perform 
when they are applied to datasets other than those they emerged from. Unfortunately, as 
mentioned in chapter 3.3, the performance analysis of a glare metric is not uniquely defined. 
Therefore, several methods had to be applied here to answer the main two questions of the 
study:  

1. Ability for a metric to describe the full glare scale: for this, Spearman correlations (and 
their p-values) between the metrics and the glare scale are calculated.  

2. Accuracy or predictive ability of the metric: for this, logistic regressions, accuracy 
analysis and probability correlations are applied to the data-sets.  

4.1 Analysis of glare metrics vs. perceived glare magnitude 
In table 3 and figure 4 the results of the Spearman analysis are shown. Except for the average 
luminance of the window (not significant for the Ecco-Build data set), all other metrics reach 
the ** (“very significant”) or *** (“extremely significant”) significance levels. The levels of 
correlation differ between the studies (highest values for the study “Quanta”, lowest values for 

the study “Ecco-Build”) but 
also between the metrics. The 
level of the correlation values 
gives the first indication of the 
performance of the metrics 
when applied to conditions 
that were not part of the 
metric’s development (so-
called non-dev-data). More 
specifically, the non-dev 
dataset correlations show 
that the highest correlations 
were found for DGP (r=0.485) 
and CGI (r=0.477) whereas 
Ev, L40°band_avg, Lavg, Lavg_win 
and pgsvsat show slightly 
lower correlations (r=0.41-
0.42). The other metrics are 
in-between.  

Looking separately on each 
study-dataset one can see, 
that the ranking between the 

different metrics change (for the Quanta-dataset DGP, Ev, Lavg,and pgsv showed the highest 
correlations, whereas for the Gaze-data-set it is DGI, UGP and UGR).  

Figure 4 – Spearman correlation between metrics and  
       the subjective glare response  
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Table 3 – Spearman correlation evaluation for different data-sets (for Ecco-Build, Quanta and 
Gaze all data are included) 

NOTE The Ecco-Build-dataset contain development data for the DGP, therefore the correlation 
value for the DGP cannot be compared directly with the values from the other metrics. 

As conclusion from the Spearman evaluation it can be said, that the relative differences 
between the correlations of the different metrics are within 15% and the ranking is changing 
when evaluating different data-sets. Therefore, for most of the applied metrics the Spearman 
correlation shows no clear preference of one of the metrics. The only exception is Lavg_window 
which is failing one of the significance tests for one of the data-sets.  

4.2  Analysis of glare metrics vs. probability of being disturbed by glare 
For this analysis, the subjective response data are converted into binary data (not disturbed by 
glare « disturbed by glare). 

Furthermore, the entire data is split into a “training dataset” (for deriving the regression 
coefficients of the logistic regression and the cut-off-points for the accuracy calculation) and 
into a “testing dataset” (details described in chapter 3.2).  

Applying the logistic regression (see table 4), the significance test is failed for three metrics for 
at least one of the data-sets (the average luminance of the 40° band L40°band_avg, the average 
luminance of the window Lavg_window and the standard deviation of the window luminance 
Lstd_window). This means, that a logistic regression model for these metrics is not a good choice 
and therefore it can be assumed that these metrics cannot predict reliably the percentage of 
persons disturbed for any dataset.   

For the accuracy evaluation, the cut-off-point for each metric was derived from the “training 
dataset”, consisting data of all studies. These cut-off-points are used to calculate the accuracy 
of the metrics for the “testing dataset”. The accuracy is defined as fraction of correct predictions 
by the metric for the binary data. Two metrics are failing a minimum prediction threshold of 50% 
for one of the datasets (Lavg_window and Lstd_window, see table 4 and figure 5). The analysis of area 
under the ROC-curve (AUC) show, that there are small differences between the metrics. The 
DGP, CGI, UGP and DGI_mod have the highest values, indicating a slightly better performance. 

It can be concluded from this analysis that besides Lavg_window and Lstd_window the other metrics 
are behaving very similar. L40°band_avg is failing one test. The accuracy levels vary more between 
the studies than between the metrics. The Ecco-Build-study consists of many situations with 
blinds diffusing the light. These situations were rated very differently by the people and 
therefore the noise of the data is larger than for other data-sets, where people were more 
consistently rating. Therefore, the accuracy is also lower for this study. For the combined 
dataset (“testing-non-dev-dataset”), the accuracy of the metrics-predictions is in the range of 
75-83%. 

  Spearman r-value   Level of significance 
  Ecco- 

Build 
Quanta Gaze non-dev-

data 
Ecco- 
Build 

Quanta Gaz
e 

non-dev-
data 

CGI 0.29 0.53 0.41 0.48 *** *** *** *** 
DGI 0.27 0.46 0.43 0.44 *** *** *** *** 
DGI_mod 0.27 0.50 0.41 0.46 *** *** *** *** 
DGP 0.33 0.55 0.38 0.48 *** *** *** *** 
Ev 0.29 0.55 0.38 0.41 *** *** ** *** 
L40°band_avg 0.26 0.53 0.35 0.41 *** *** ** *** 
L_avg 0.26 0.55 0.39 0.42 *** *** *** *** 
L_avg_window 0.08 0.54 0.39 0.42 - *** *** *** 
L_std_window 0.21 0.50 0.40 0.44 *** *** *** *** 
pgsv_sat 0.29 0.55 0.38 0.41 *** *** ** *** 
UGP 0.25 0.49 0.43 0.45 *** *** *** *** 
UGR 0.25 0.49 0.43 0.45 *** *** *** *** 
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Table 4 – Significance test for the logistic regression and accuracy analysis  

 

Figure 5 – Accuracy of the metrics for the three studies. 

The final statistical analysis is comparing the ability of a metric to predict directly the probability 
of persons disturbed by glare. This evaluation does not include data from the DGP-development.  

Table 5 – Squared Pearson correlation between metric and probability of being disturbed  

Metric r2 
Level of 

significance Metric r2 
Level of 

significance 
CGI 0.68 * L_avg 0.77 * 
DGI 0.64 - L_avg_window 0.66 * 
DGI_mod 0.73 * L_std_window 0.65 - 
DGP 0.89 *** pgsv_sat 0.43 - 
Ev 0.84 ** UGP 0.73 * 
L_40°band_avg 0.80 ** UGR 0.73 * 

The data is sorted by the metric value and binned into ten bins (see chapter 3.3.6). For each of 
the bins, the average metric value and for the subjective response the probability of being 
disturbed is calculated. Then, a linear regression is performed. The r2-value itself cannot be 
interpreted absolutely, since the number of bins is influencing this value strongly. But the 
difference between the r2-values of the different metrics and the shape of the regression graphs 
for the different metrics gives an indication about how well a certain metric can be used to 
predict the probability of being disturbed by glare. 

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

CGI
DGI

DGI_mod
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L_40°band_avg
L_avg
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pgsv_sat
UGP
UGR

Accuracy		"Disturbed"
Ecco-Build Quanta GazeDataset:

 Logistic regression -  
level of significance 

Accuracy Disturbed AUC 

 Ecco- 
Build Quanta Gaze Ecco- 

Build Quanta Gaze Non-
Dev 

Non-
Dev 

CGI *** *** *** 0.56 0.76 0.87 0.79 0.83 
DGI ** *** ** 0.58 0.70 0.86 0.74 0.81 
DGI_mod *** *** ** 0.56 0.78 0.86 0.81 0.82 
DGP *** *** ** 0.59 0.74 0.84 0.79 0.83 
Ev *** *** ** 0.60 0.74 0.81 0.78 0.79 
L_40°band_avg *** *** - 0.58 0.76 0.89 0.83 0.78 
L_avg *** *** *** 0.62 0.75 0.84 0.81 0.79 
L_avg_window - *** *** 0.49 0.81 0.86 0.84 0.79 
L_std_window *** - *** 0.49 0.78 0.76 0.78 0.80 
pgsv_sat ** *** * 0.60 0.74 0.81 0.78 0.79 
UGP * *** ** 0.58 0.73 0.86 0.75 0.82 
UGR * *** ** 0.58 0.73 0.86 0.75 0.76 



Wienold, Kuhn, Christoffersen, Sarey Khanie, Andersen:  
COMPARISON OF LUMINANCE BASED METRICS IN DIFFERENT LIGHTING CONDITIONS 

The analysis show (see table 5 and figure 6), that DGP, Ev and L40°band_avg, have higher levels 
for r2 and higher levels of significance than the other metrics. L_avg, UGP, DGI_mod, CGI and 
UGR predict still reasonably the probability of persons disturbed, whereas DGI, pgsv_sat, 
Lavg_window and Lstd_window, are metrics failing the significance test and showing low correlation 
with the probability of being disturbed by glare.   

Figure 6 – Linear regressions between average metric value and probability of being disturbed 
by glare. The data are binned into ten binning groups in order to calculate the probability of 
being disturbed by glare  

5 Conclusions and outlook 

In this paper we evaluated twelve glare metrics regarding their ability to predict the glare 
perception of subjects of three laboratory assessments.  

The analysis shows that five of the twelve investigated metrics fail at least one statistical test 
for at least one of the datasets. The other seven metrics CGI, DGI_mod, DGP, Ev, Lavg, UGP 
and UGR pass all statistical tests. For the Spearman and accuracy evaluations, the difference 
in the performance of these seven metrics is small and therefore no clear superiority or 
inferiority of one of the metrics can be concluded from this. The accuracy of the metrics’ 
predictions is in the range of 75-83%. Therefore, this study cannot confirm in general a poor 
performance of existing glare metrics when applied to different datasets than those they were 
developed with. 

Amongst the seven non-failing metrics, DGP, CGI, DGI_mod and UGP have the largest AUC 
and therefore show a slightly better ability to predict the probability of being disturbed by glare 
than the other metrics. For the linear regression between probability being disturbed by glare 
and value of a respective metric, DGP and EV perform better than the other metrics. 
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From this study it can be concluded, that not all the metrics can predict the glare perception 
with the same reliability when applied to different daylighting conditions and that this needs 
further evaluation. The usage of one of the metrics failing one or more statistical tests should 
be done only with caution. However, given the similarity of the experimental setups and the 
limited geographical variation in this study (two locations within Europe, three studies in total) 
general conclusions regarding robustness of the metrics or recommendations for their usage 
under specific conditions would be premature. Also, proposing robust cut-off-values for the 
metrics would need to be based on broader data-sets. 

A more comprehensive comparison based on additional studies conducted on different 
continents is under preparation and might answer these open questions. 
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