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Abstract 

Previous studies on inter-unit dispersion around multi-story buildings focused mostly on 

an isolated building. Considering that the presence of upstream building(s) would 

significantly modify the airflow pattern around a downstream building, this study 

intends to investigate the influence of such changed airflow patterns on inter-unit 

dispersion characteristics around a multi-story building due to wind effect. CFD method 

in the framework of Reynolds-averaged Navier-stokes modeling is employed to predict 



the coupled outdoor and indoor airflow field, while the tracer gas technique is adopted 

to simulate the dispersion of infectious agents between units. Based on the predicted 

concentration field, a mass conservation based parameter, namely re-entry ratio, is 

further used to evaluate quantitatively the inter-unit dispersion possibilities and thus 

assess risks along different routes. The presence of upstream building(s) destroys the 

strong impingement of approaching flows but brings a more complex and irregular 

airflow pattern around the downstream multistory buildings, which then lead to a more 

scattered distribution of re-entry ratio values among different units and uncertain 

dispersion routes. These findings imply that the inter-unit transmission patterns are 

subject to surrounding buildings. A building accompanied by several buildings 

ordinarily in an urban environment reveals the importance of the present study. 
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Introduction 

Natural ventilation through windows is a convenient and sustainable ventilation strategy 

to induce air exchange to cool the overheated indoor air and dilute the contaminated air 

in residential buildings (1-3). However, apart from bringing fresh air from outside, this 

approach also causes disagreeable consequences that the outdoor pollutants make their 



incursion into the interior area (4), which include traffic exhaust, dust, and pollen (5), as 

well as airborne transmitted virus, such as severe acute respiratory syndrome (SARS) 

(6). It has been proved that cross transmission between units (so-called inter-unit 

dispersion) is a valid airborne transmission route of infectious diseases (6-8). Thus, 

understanding the mechanisms and routes of cross transmission grows essentially 

significant in operating dispersion and ventilation control approach. 

A substantial body of former researches conducted on the airflow field and 

pollutant dispersions around buildings have built foundation for the present study. On-

site measurements, wind tunnel experiments and numerical simulations have been 

carried out regarding to the inter-unit dispersion. Li et al.(6, 8) identified the inter-unit 

dispersion as an important airborne transmission route after the outbreak of SARS 

epidemic in 2003 in Amoy Gardens housing by CFD method and multi-zone modelling. 

Then, Niu and Tung (9) adopted on-site tracer gas technique to conduct the pollutant 

transportation path through windows which is primary buoyancy effect under single-

side ventilation. They found that the re-entry ratio of gaseous pollutant from a lower 

unit to an immediate upper unit can reach up to 7%, which is equivalent to about 2% 

infectious risk based on the Wells-Riley infection risk assessment model (7). But this 

work was limited to two upper-lower floors. Liu et al. (10, 11) and Wang et al. (12) 

performed wind tunnel experiments to investigate the wind effect on the pollutant 

dispersion around cross shape (#) buildings. It was found that the pollutant could travel 



along both upward and downward direction to re-enter into units, as well as horizontal 

dispersion. However, only a specific geometry of the building was investigated in their 

research. More recently, a wind tunnel experiment with a generic shape multi-story 

building was carried out by Mu et al. (13, 14) to research the inter-unit pollutant 

transmission with tracer gas method, examining the effect of wind direction and source 

location. The re-entry pollutant concentration was calculated under assumed 

circumstances to assess the infection probability of each unit. However, these two wind 

tunnel experiment studies were both limited to an isolated building. Further, the wind 

tunnel tests may not be able to consider the indoor airflow field correctly due to the 

similarity problem.  

Some recent researches (15-17) have shown that CFD approach is specifically 

suitable for investigation of natural ventilation and becomes the most widely used 

model presently. Gao et al and Liu et al (18, 19) investigated the CFD simulations of an 

on-site measurement (9) to quantify the infection risks. Ai et al. (20-23) studied the 

inter-unit dispersion characteristics of gaseous pollutant in and around two hypothetical 

envelope buildings under wind-induced single-side ventilation by CFD method. The 

tracer gas transmission mechanism on the windward and leeward sides was presented 

and compared with that of cross shape (#) buildings. The results showed that inter-unit 

dispersion pattern was highly dependent on the wind direction and the re-entry ratio of 

gaseous pollutant can reach up to 10%. But these previous studies were limited to an 



isolated building with slab-like shape. Recently, Cui et al. (24) numerically calculated 

the inter-unit re-entry ratios of a cylinder shape building under the influence of an 

upstream interfering building. The results showed that the presence of an upstream 

building changed the airflow characteristics and pollutant transportation routes 

dramatically. However, the work by Cui et al. (24) considered only a single upstream 

building and a limited number of source locations on the windward side of the target 

building. 

One of the main purposes of natural ventilation in residential buildings is to 

dilute air pollutant in order to improve the indoor air quality. Many studies have been 

conducted to reveal the natural airflow patterns. However, most former researches on 

the natural ventilation and pollutant dispersion are limited to an isolated building or a 

specific shape of building, which cannot be used for better prediction in actual urban 

environment. Therefore, the present work aims to investigate airflow characteristics and 

pollutant dispersion in a more realistic situation of urban environment. 

The present study focuses on the inter-unit dispersion characteristics of gaseous 

pollutants within a cylinder-like multi-story building under the effect of two upstream 

buildings based on computational fluid dynamics. The upstream buildings with generic 

shape are set to better analyze the real urban environment. The two upstream buildings 

and the target building are intended to represent a basic building group in an actual 



urban environment, which serves to provide the basic airflow fields for the investigation 

of inter-unit dispersion. It has been reported that the buoyancy-driven pollutant 

transmission, investigated in previous studies (9, 18), is unidirectional, namely upward, 

and only important in relatively low wind speed conditions (lower than 0.9 𝑚𝑚/𝑠𝑠 ). 

Therefore, this present study only considers the wind-driven pollutant dispersion, which 

is much more diverse in terms of dispersion routes and re-entry ratios. Given that the 

airflow pattern and pollutant dispersion around buildings should be significantly 

affected when occurring different prevailing wind directions, the approaching wind 

angle is considered as one of the key factors in the research. Tracer gas technique, 

carbon dioxide (𝐶𝐶𝐶𝐶2), is adopted to simulate the gaseous pollutant in the present study, 

owing to the similarity of its aerodynamics characteristics to those of various gaseous 

pollutants and fine particles. The results from this research are expected to be useful in 

understanding the pollutant dispersion mechanism in urban environment and in 

developing effective strategies in control of infectious respiratory diseases. 

CFD methods and model validation 

Turbulence models 

The CFD approach has been commonly used to predict airflow patterns and pollutant 

dispersions in and around buildings. The two-equation Reynolds-averaged Navier-



Strokes (RANS) models with standard 𝑘𝑘 − 𝜀𝜀 turbulence model (25) and its 

modifications (26, 27) maintain the most widely used turbulence model to solve wind 

engineering and atmospheric dispersion problems (28). Turbulence effects in this study 

are taken into consideration by using renormalization group (RNG) 𝑘𝑘 − 𝜀𝜀 model (29), 

and the enhanced wall function is applied to model the airflow in the near-wall regions. 

For incompressible flow, the time-averaged governing equations can be written 

generally as: 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜑𝜑) + ∇ ∙ �𝑢𝑢𝜑𝜑� = ∇ ∙ �Γ𝜑𝜑∇𝜑𝜑� + 𝑆𝑆𝜑𝜑 (1) 

where  𝜑𝜑 represents the scalars: the velocity ingredients 𝑢𝑢 (𝑚𝑚/𝑠𝑠), 𝑣𝑣 (𝑚𝑚/𝑠𝑠), 𝑤𝑤 (𝑚𝑚/𝑠𝑠), the 

turbulent kinetic energy 𝑘𝑘 (𝑚𝑚2/𝑠𝑠2), its dissipation rate 𝜀𝜀 (𝑚𝑚2/𝑠𝑠3), and the mass fraction 

𝑀𝑀𝑖𝑖(𝑔𝑔/𝑚𝑚3); term 𝑢𝑢 (𝑚𝑚/𝑠𝑠) the mean velocity, Γ𝜑𝜑 the effective diffusion coefficient for 

each variate, and 𝑆𝑆𝜑𝜑 the source term.  

The RNG 𝑘𝑘 − 𝜀𝜀 model offers a number of improvements over the standard 𝑘𝑘 − 𝜀𝜀 

model, which presents an authentic interrelation between the turbulence transport and 

Reynolds number by a more precise differential equation. This allows the RNG model 

to have superior performance in predicting the low-Reynolds-number and near-wall 

flows. Further, an additional strain-dependent term, 𝑅𝑅𝜀𝜀, in the transport equation for 𝜀𝜀 

makes the RNG model with high sensitivity over dealing with rapid strain and 



streamline curvature than the standard 𝑘𝑘 − 𝜀𝜀 model. The added term  𝑅𝑅𝜀𝜀 is shown by the 

equation as: 

𝑅𝑅𝜀𝜀 =
𝐶𝐶𝜇𝜇𝜌𝜌𝜂𝜂3(1 − 𝜂𝜂/𝜂𝜂0)

1 + 𝜉𝜉𝜂𝜂3
∙
𝜀𝜀2

𝑘𝑘
 (2) 

where𝐶𝐶𝜇𝜇, 𝜂𝜂0 and 𝜉𝜉 are model constants, and 𝜂𝜂 ≡ 𝑆𝑆𝑘𝑘/𝜀𝜀 where 𝑆𝑆 is the scale of strain rate. 

A more detailed demonstration of the RNG model and its empirical values is offered in 

Fluent (2010). 

The governing equations of numerical models are discretized into algebraic 

equations on a staggered grid system with the finite volume method.  

Description of the wind tunnel experiment 

In the present study, a wind tunnel experiment conducted in the University of Hamburg 

(30) is used to validate the RANS models and near wall functions. Airflow and 

dispersions around a finite array of rectangular building models (CEDVAL B1-1) were 

measured at a reduced scale of 1:200 in the Blasius wind tunnel. The experiment model 

included 3×7 array of buildings with four facing pollutant sources located on the 

leeward side of one target building, the physical configuration of which is shown in Fig. 

1. The high quality experiments were conducted with the boundary layer flow which 



have been validated by full-scale data in the test section before the building model was 

set up. Some locations on five planes were measured in the experiment: four vertical 

planes at 𝑌𝑌 = −𝐻𝐻,𝑌𝑌 = −0.6𝐻𝐻,𝑌𝑌 = −0.4𝐻𝐻, and 𝑌𝑌 = 0, respectively, and a horizontal 

plane at 𝑍𝑍 = 0.5𝐻𝐻. The Laser Droppler Velocimetry (LVD) technique was adopted to 

perform the velocity and turbulence fields, and the Flame Ionization Detector (FID) was 

used to measure the concentration of the pollutant. Noted that 𝑘𝑘 is calculated by the 

measured fluctuating velocities,  𝑘𝑘 = 0.5(𝑢𝑢′2 + 𝑣𝑣′2 + 𝑤𝑤′2). The concentration field is 

presented in a non-dimensional form as:  

𝐾𝐾𝑐𝑐 =
𝐶𝐶𝑙𝑙𝑙𝑙𝑐𝑐𝑙𝑙𝑙𝑙
𝐶𝐶𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠

∙
𝑈𝑈𝑠𝑠𝑠𝑠𝑟𝑟𝐻𝐻2

𝑄𝑄𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠
   (3) 

where 𝐶𝐶𝑙𝑙𝑙𝑙𝑐𝑐𝑙𝑙𝑙𝑙 is the measured tracer gas concentration (ppm) with environment 

background concentration subtracted, 𝐶𝐶𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠 is the tracer gas concentration (ppm) at 

the source, 𝑈𝑈𝑠𝑠𝑠𝑠𝑟𝑟 is the reference wind speed (𝑚𝑚/𝑠𝑠) measured at the height of 0.66𝑚𝑚, 𝐻𝐻 

is the model building height (𝐻𝐻 = 0.125𝑚𝑚) and 𝑄𝑄𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠 is the total source strength 

(𝑚𝑚3/𝑠𝑠). 



 

Fig. 1 Dimensions of building models, the source building and source emissions in wind 

tunnel experiment (30).  
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Fig. 2 Computational domain: top view and side view. 

A computational domain shown in Fig. 2 is constructed to simulate the flow and 

dispersion fields around the building models. This domain size based on the existing 

best practice guideline is spatially large enough to eschew the intervention within the 

flow development, except for the side width which is built upon the wind tunnel width. 

The boundary conditions at the domain’s inlet, lateral sides, celling and outlet are 

summarized in Table 1, where the inlet velocity profile follows a power law, by 

fitting 𝑈𝑈 = 𝑈𝑈𝐻𝐻 ∙ ( 𝑍𝑍
𝑍𝑍𝐻𝐻

)𝛼𝛼, 𝑈𝑈𝐻𝐻 = 6𝑚𝑚/𝑠𝑠, 𝑍𝑍𝐻𝐻 = 0.5𝑚𝑚 and α = 0.21. In addition, the Von 

Karman constant 𝜅𝜅 is 0.4187 and 𝐶𝐶𝜇𝜇 = 0.069 (31, 32). When the dispersion is 

simulated, the tracer gas (𝐶𝐶𝐶𝐶2) is uniformly released from the four source elements (see 

Fig. 1) with a constant velocity of 0.025𝑚𝑚/𝑠𝑠 in the X direction.  

Table 1 

Boundary conditions  



 

A comprehensive mesh test is conducted for the dependence of numerical solutions on 

grid number. Three mesh systems with approximately 5.4, 6.0 and 6.7 million grids of 

structured hexahedra cells are created and compared (see Fig. 3(a)), in which the 

medium one is selected because of the compromise between numerical accuracy and 

cost. The standard wall function and enhanced wall functions were both considered. For 

these two scenarios, the minimum grids widths near the domain ground and building 

walls were 0.005m (𝑦𝑦+ ≈ 35) and 0.0002m (𝑦𝑦+ < 5), resectively. A schematic view of 

the mesh information can be found in Fig. 3(b). Because of the improved resolution of 

the near-wall regions and a better treatment of the near-wall flows, the enhanced wall 

functions provide more accurate velocity fields near the domain ground and in the 

region around the building roof when compared to that given by standard wall functions 

(33). 

Power law type

Domain inlet

Domain outlet

Domain celling

Domain lateral sides

Domain ground Standard wall functions and enhanced wall functions
Building surfaces Non-slip for wall shear streaa
Turbulence model 
coefficients



 

Fig. 3 Comparison of mean velocity profiles using three types of mesh systems at the 

vertical line of 𝑋𝑋 = 0.085𝑚𝑚. 

 

Fig. 3(b) Mesh details for a part of the vertical line of 𝑌𝑌 = 0: the coarser for standard 

wall functions and the finer for the enhanced wall functions. 
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Commercial CFD code ANSYS Fluent 13.0.0 (34) is used to simulate the wind 

tunnel model. Four numerical setting combinations are conducted in the validation 

work, standard 𝑘𝑘 − 𝜀𝜀 model plus standard wall functions; standard 𝑘𝑘 − 𝜀𝜀 model plus 

enhanced wall functions; RNG 𝑘𝑘 − 𝜀𝜀 model plus standard wall functions and RNG 𝑘𝑘 −

𝜀𝜀 model plus enhanced wall functions, respectively. The SIMPLEC algorithm is 

adopted for the pressure-velocity coupling, the pressure interpolation is second order 

accuracy discretization schemes, as well as both the convection and diffusion terms. 

Convergence is supposed to be achieved when all the scalar residuals reached 10−6 and 

the stability of calculation is attained over packs of iterations.  

Comparison between experimental and simulated results 

The comparison of non-dimensional air velocity distribution of X direction along six 

vertical lines between the numerical results and wind tunnel data is shown in Fig. 4. 

Compared to the experiment data, the average deviations of the velocities produced by 

these four numerical combinations are 24.85%, 20.75%, 16.31% and 8.48%, 

respectively. Obviously, the RNG 𝑘𝑘 − 𝜀𝜀 model with enhanced wall function produced 

more accurate airflow results around the target body, except for the slightly larger 

velocities above the roof of target building model (𝑍𝑍 > 0.15 𝑚𝑚). However, this little 

deficiency can be accepted because the airflow distribution over the building roof (𝑍𝑍 >

0.15 𝑚𝑚) is not under the consideration of present study.  



 

 

Fig. 4 X velocity distribution at the six vertical lines: Standard + WF indicates standard 

𝑘𝑘 − 𝜀𝜀 model plus standard wall functions; Standard + EF indicates standard 𝑘𝑘 − 𝜀𝜀 

model plus enhanced wall functions; renormalization group (RNG) + WF indicates 

RNG 𝑘𝑘 − 𝜀𝜀 model plus standard wall functions; RNG + EF indicates RNG 𝑘𝑘 − 𝜀𝜀 model 

plus enhanced wall functions. 
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Based on the RNG 𝑘𝑘 − 𝜀𝜀 model and enhanced wall function, the air pollutants 

are released to predict the concentration field. The turbulent Schmidt number (𝑆𝑆𝑐𝑐𝑡𝑡), 

which is defined as the ratio of turbulent momentum diffusivity to concentration (tracer 

gas) diffusivity, performs an essential influence on the calculation of concentration 

equation in the simulation with RANS models (35). The specific value of 𝑆𝑆𝑐𝑐𝑡𝑡 has a 

significant effect depended on dispersion problems and flow structures and the optimum 

values of this number are distributed in the range of 0.2-1.3 (35, 36). In the present 

study, the value of 0.7 is used and it shows good agreement of concentration field 

between numerical simulation data and wind tunnel results. The non-dimensional 

concentrations of tracer gas 𝐾𝐾𝑐𝑐 at the measured positions are shown in Fig. 5. 

 
Fig. 5 Tracer gas concentration at two horizontal lines: Standard + WF indicates 

standard 𝑘𝑘 − 𝜀𝜀 model plus standard wall functions; Standard + EF indicates standard 

𝑘𝑘 − 𝜀𝜀 model plus enhanced wall functions; renormalization group (RNG) + WF 
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indicates RNG 𝑘𝑘 − 𝜀𝜀 model plus standard wall functions; RNG + EF indicates RNG 

𝑘𝑘 − 𝜀𝜀 model plus enhanced wall functions. 

Overall, this validation justifies the adoption of the selected numerical models 

(RNG 𝑘𝑘 − 𝜀𝜀 model and enhanced wall functions) in the later simulations of the airflow 

distribution and inter-unit dispersion field around the target building. 

Configuration descriptions 

In order to investigate the effect of upstream buildings on the wind-induced inter-unit 

dispersion around a multi-story building in urban environment, a 1:20 reduced scale 

(37) downstream building and two upstream interfering buildings are adopted. The 

building dimensions in the work of Cui et al (24) are used in this present work. Two 

rectangular models without openings are employed as upstream interfering buildings, 

shown in Fig. 6(a). The target building has two independent units on each story with 

opposite window opening directions, shown in Fig. 6(b). The unit dimensions are: width 

(𝐷𝐷𝑋𝑋) ×length (𝐷𝐷𝑌𝑌) ×height (𝐷𝐷𝑍𝑍)= 6𝑚𝑚 × 3𝑚𝑚 × 3𝑚𝑚, and the window: width (𝐷𝐷𝑋𝑋) 

×height (𝐷𝐷𝑍𝑍) = 1𝑚𝑚 × 2𝑚𝑚, in the prototype. The window bottom is 1𝑚𝑚 above the each 

story. The target building has 4 stories, the dimension of which is width (𝐷𝐷𝑋𝑋) ×length 

(𝐷𝐷𝑌𝑌) ×height (𝐷𝐷𝑍𝑍) = 6𝑚𝑚 × 6𝑚𝑚 × 12𝑚𝑚. With the juxtaposition of the two upstream 

buildings, the distances of the three buildings are equal to the width of the building, the 



arrangement is shown in Fig. 7(a). The upstream building in front of the target building 

is named as Building A, and the other is Building B. The distance between two building 

models is smaller than the leeward recirculation length (24). 

In order to reproduce the original full-scale flow, a series of similarity criteria 

including geometry similarity, boundary layer flow similarity and Reynolds 

independence are needed to be achieved. The computational domain for all the cases is 

depended on the best practice guidelines (38), shown in Fig. 7(a), an upstream distance 

of 5𝐷𝐷𝑍𝑍, downstream distance of 15𝐷𝐷𝑍𝑍, lateral distance of 6𝐷𝐷𝑍𝑍 and height of 6𝐷𝐷𝑍𝑍 are 

chosen to simulate the natural ventilation, which is large enough to achieve the accurate 

airflow distribution. The Reynolds number 𝑅𝑅𝑅𝑅 (𝑅𝑅𝑅𝑅 = 𝑉𝑉𝑠𝑠𝑠𝑠𝑟𝑟 ∙ 𝐷𝐷𝑧𝑧/𝜈𝜈 ) at the top of the 

building roof in the present study is 40,000 and is much larger than the recommended 

value, a threshold of 15,000 (39), which means the Reynolds independence is fulfilled.  
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Fig. 6 (a) physical model of upstream buildings; (b) physical model of the target 

building. 

  
Fig. 7 (a) the arrangement and computational domain of three buildings; (b) three wind 

directions. 

The present study selects three wind directions, shown in Fig. 7(b); 𝛽𝛽 is the 

angle between the incident wind direction and perpendicular to the building surface. 

The wind at the inlet of computational domain in an urban environment follows a power 

law profile by the following equations: 

𝑉𝑉𝑧𝑧 = 𝑉𝑉𝑠𝑠𝑠𝑠𝑟𝑟(
𝑍𝑍
𝑍𝑍𝐻𝐻

)𝛼𝛼 = 1.14𝑉𝑉𝑠𝑠𝑠𝑠𝑟𝑟𝑍𝑍0.25 (4) 
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where 𝑍𝑍𝐻𝐻 is the building height (𝑍𝑍𝐻𝐻 = 0.6𝑚𝑚), 𝑉𝑉𝑠𝑠𝑠𝑠𝑟𝑟 is the wind velocity at the height of 

building roof (𝑉𝑉𝑠𝑠𝑠𝑠𝑟𝑟 = 4𝑚𝑚/𝑠𝑠). The turbulence at the inlet boundary is characterized by 

turbulent intensity and length scale, which are 8% and 1m, respectively. A mesh with 

6.0 million grids is employed after a mesh sensitivity test similar to which was 

described in the validation section. Air exchange rate (ACH) of each unit is calculated 

by an integral method:  

𝐴𝐴𝐶𝐶𝐻𝐻 = 3600 ×
0.5∫ |𝑉𝑉𝑥𝑥|𝐴𝐴

0 𝑑𝑑𝐴𝐴
𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅

 (5) 

where 𝑉𝑉𝑥𝑥 (𝑚𝑚/𝑠𝑠) is the velocity component normal to the plane of the openings, 𝐴𝐴 (𝑚𝑚2) 

the area of the window, and 𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅 (𝑚𝑚3) the volume of each unit. The tracer gas 𝐶𝐶𝐶𝐶2 was 

released at a rate of 8 𝑚𝑚𝑔𝑔/𝑠𝑠 in the middle of each unit at the height of 1.6 m. Some 

researchers (9, 21) adopted the re-entry ratio (𝑅𝑅𝑘𝑘) to evaluate the inter-unit pollutant 

dispersion. The re-entry ratio is defined as the fraction of exhaust air from a source unit 

𝑖𝑖 which re-enters into another unit 𝑗𝑗. It can be calculated by the following equation: 

𝑅𝑅𝑘𝑘 = 𝑀𝑀𝑖𝑖−𝑗𝑗
𝑉𝑉𝑉𝑉𝑉𝑉𝑗𝑗(𝐴𝐴𝐶𝐶𝐻𝐻)𝑗𝑗
𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖(𝐴𝐴𝐶𝐶𝐻𝐻)𝑖𝑖

 (6) 



where 𝑀𝑀𝑖𝑖−𝑗𝑗 is mass fraction of concentration that originates from the source unit 

𝑖𝑖 (𝐶𝐶𝑖𝑖 , 𝑘𝑘𝑔𝑔/𝑚𝑚3) and is present in another unit 𝑗𝑗 (𝐶𝐶𝑗𝑗 ,𝑘𝑘𝑔𝑔/𝑚𝑚3), which can be calculated 

as 𝑀𝑀𝑖𝑖−𝑗𝑗 = 𝐶𝐶𝑗𝑗
𝐶𝐶𝑖𝑖

. The concentration in a unit is calculated based on the breathing plane (the 

standing position) at the height of 1.6𝑚𝑚 above the floor. (𝐴𝐴𝐶𝐶𝐻𝐻)𝑖𝑖 is the air exchange rate 

of the source unit and (𝐴𝐴𝐶𝐶𝐻𝐻)𝑗𝑗 is the air exchange rate of the re-entry unit. 

The unit are named as shown in Fig. 6(b), in which W indicates the windward 

side, L the leeward side, and numbers first to fourth story. 

Results and discussion 

Airflow characteristics 

The airflow distribution in and around a building is essential to affect the airborne 

transmission of pollutant between units. For an isolated building encountered by urban 

wind, the wind will deflect over the top, down in front and around the sides. Because of 

the air pushing against the building, much of the windward wall will get relatively high 

pressure and the peak pressure will occur at about 2/3 of the height of the building, 

where is the stagnation zone (the upstream building in Fig. 8(a) is under this situation). 

When influenced by a single upstream building (24), air mainly flows downward near 

the windward side of the downstream building, causing a recirculation zone near the top 



of the leeward side of the upstream building, shown in Fig. 8(a). Comparing to a single 

upstream building, the circumstance under two upstream buildings is different. Fig. 8(b) 

shows the streamlines and mean velocity on the vertical center plane (𝑌𝑌 = 0) of 

buildings under normal wind direction (𝛽𝛽 = 0°). Influenced by two upstream buildings, 

air flows downward near the windward side of the downstream building and causes a 

small recirculation zone closing to the ground. The downward flow and recirculation in 

the near-wall flow implies that the presence of upstream buildings have considerable 

effect on the inter-unit dispersion routes, which may cause pollutants released from the 

ground floor cannot be transported upper ward. Further, under the effect of two 

upstream buildings, the near-wall flow on the windward side of the target building has 

changed, which induces more low-speed areas. 

 
(a) a single upstream building (b) two upstream buildings 

Fig. 8 (a) streamlines and mean velocity on the vertical center plane of a single 

upstream buildings (𝛽𝛽 = 0°); (b) streamlines and mean velocity on the vertical center 

plane of two upstream buildings  (𝛽𝛽 = 0°). 
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Under the wind direction of +45° (𝛽𝛽 = +45°), Fig. 9(a) shows the streamlines 

and mean velocity on the vertical center plane of the target building. In general, the flow 

pattern in the windward side is mainly consisted of primarily upward wind and vertical 

wind , as well as small vortices, while the leeward side is characterized by a strong 

upward airflow and a small reattachment on the top of the roof, which remains similar 

to the basic flow pattern under the situation of an isolated building (21). However, the 

airflow distribution under the wind direction of −45° (𝛽𝛽 = −45°), as shown in Fig. 

9(b), is dissimilar and characterized by the combination of several strong vortices in the 

windward side and a substantially upward airflow in the leeward of the target building. 

When the wind is oblique, the airflow fields are drastically changed because of the 

upstream buildings, inducing a large high-speed zone in the near-wall area, which 

implies that the ventilation of the target building is more effective and pollutants 

disperse more easily under this situation. 

 
(a) vertical center plane under 𝛽𝛽 = +45° (b) vertical center plane under 𝛽𝛽 = −45° 
Fig. 9 Streamlines and mean velocity on the vertical center plane of the target building 

under oblique wind directions. 
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Fig. 10(a) shows the airflow path lines on the horizontal plane at the breathing 

level on the third story of the target building (𝑍𝑍 = 0.37m) with two upstream buildings. 

In general, for an isolated building, air flows separately into lateral sides under normal 

wind direction (𝛽𝛽 = 0°), causing pollutants released from windward unit be diluted 

quickly (20). For a single upstream building (24), two recirculation zones appear on the 

windward side of the target building, shown in Fig. 11(a), which is similar to the present 

study. As mentioned above, a small vortex occurs near the ground on the windward side 

of target building, which indicates that airflow field may present differently in the lower 

area. Fig. 10(b) shows the airflow streamlines and mean velocity field on the horizontal 

plane at the middle of ground floor (𝑍𝑍 = 0.08m), comparing to a single upstream 

building shown in Fig. 11(b), a recirculation zone is formed on the windward side of the 

target building because of the existence of upstream building B. The airflow field near 

the target building is changed due to the asymmetry arrangement of the building group, 

which leads to larger wind speed near the lateral side and diverse pollutant transported 

routes. 



 
(a) 𝛽𝛽 = 0° 𝑍𝑍 = 0.37m (b) 𝛽𝛽 = 0° 𝑍𝑍 = 0.08m 

Fig. 10 Streamlines and mean velocity on horizontal planes of the target building under 

different heights with two upstream buildings. 

 
(a) 𝛽𝛽 = 0° 𝑍𝑍 = 0.37m (b) 𝛽𝛽 = 0° 𝑍𝑍 = 0.08m 
Fig. 11 Streamlines and mean velocity on horizontal planes of the target building under 

different heights with a single upstream building. 
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(a) 𝛽𝛽 = +45° 𝑍𝑍 = 0.37m (b) 𝛽𝛽 = −45° 𝑍𝑍 = 0.37m 

Fig. 12 Streamlines and mean velocity on horizontal planes of the target building with 

oblique wind directions. 

When the wind direction is oblique, the air flow patterns are significantly 

different. Fig. 12(a) shows the airflow streamlines under the wind direction of +45° 

(𝛽𝛽 = +45°). There are two windward and two leeward walls on each building, when the 

wind approaches, it first meets the sharp corners and then flows around the leeward side 

rapidly, which maintains the basic pattern on the building surfaces as that under the 

normal incident wind (40). On the leeward side, the pressure difference leads to two 

low-pressure recirculation zones. With such flow pattern, the pollutant released from the 

windward units is quickly and effectively diluted into the flow stream while the two 

recirculation zones may induce that to re-enter into leeward units. The other wind 

direction (𝛽𝛽 = −45°), as shown in Fig. 12(b), with disparate airflow field, displays 

recirculation zones on both windward and leeward side of the target building, which 
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means more pollutant transportations may be brought on because of the two upstream 

interfering buildings. 

Ventilation 

Table 2 shows the ACH values for each unit under three wind directions. W represents a 

unit on windward side while L on the leeward side. When the wind direction is in 

normal incidence, the presence of upstream interfering buildings significantly improve 

the ACH values of windward side units, comparing to an isolated building (21). 

However, notices should be brought to unit W1 and W2 when comparing the ACH 

values of the present study to that of a single upstream building (W1 is 11.15 and W2 is 

4.36) (24), ACH value of unit W1 reduces about 115%, which indicates that, with one 

more upstream interfering building (Building B), contaminants in unit W1 has less 

chance to be transported outside from window. But in unit W2, the ACH value 

increases about 44%, this can be explained by the small vertex on the windward side of 

the target building which appears abreast unit W1. This near-wall wind fluctuation 

drives indoor and outdoor air exchange in W2 but blocks in W1. On the leeward side, a 

negative effect can be noticed on ACH values comparing to that of an isolated building. 

Table 2 ACH values of each unit under three wind directions. 



 

When the wind directions are oblique (𝛽𝛽 = +45 & − 45°), the ACH values of 

all units are considerably larger than under normal incidence wind direction ( 𝛽𝛽 = 0°). 

However, in both oblique wind directions, the unit L4 shows extremely low ACH value 

in comparison with other units. This may be caused by the low pressure area on the 

leeward side of the target building which forms a relative low-speed zone adjacent to 

unit L4. The low air exchange rate of L4 may induce the concentration of air pollutant 

into the room.  

From the present simulation results, it is obvious that the location of unit has 

essential impact on the characteristics of airflow. With the existence of two upstream 

interfering buildings, the interactions between indoor and outdoor airflow pattern will 

be redistributed, causing diverse wind directions and routes of pollutant transmission. 

The dispersion and re-entry tracer gas 

ACH ( )
W4 23.00 107.34 85.86
W3 4.92 107.55 90.47
W2 7.73 101.71 94.38
W1 5.19 93.16 101.28
L4 0.96 2.98 3.59
L3 0.94 13.88 11.37
L2 3.67 20.64 16.15
L1 4.06 20.05 14.48



Pollutants generated from one unit may re-enter into another unit of a multi-story 

building under wind-induced natural ventilation in urban environment. Especially for a 

densely populated city, like Hong Kong, most residential buildings are high-rise 

cylinder-like buildings, which leads to a high risk of pollutant transportations among 

units of windward and leeward sides. The pollutant transmission patterns are discussed 

in this section. Table 3 presents the re-entry ratio 𝑅𝑅𝑘𝑘 of tracer gas from a source to other 

units under different wind directions, 𝑅𝑅𝑘𝑘 equals 100% means the unit is the source 

location area (with a box in the table). The re-entry ratios equal or larger than 0.10% are 

highlighted. Elaborations of each case are presented below. 

Table 3 Re-entry ratios  𝑅𝑅𝑘𝑘 of each unit with diverse source locations under three wind 

directions. 



 

Under normal wind direction (𝛽𝛽 = 0°) 

On the windward side, the exhaust air from the units re-enters into the leeward units 

with negligible ratios (<0.1%). This basically demonstrates the gaseous pollutants 

generated from windward side, driven by the recirculation flows and large wind velocity 

W4 100.00% 100.00% 100.00% W4 0.00% 0.00% 0.00%
W3 1.46% 0.00% 0.02% W3 0.00% 0.00% 0.00%
W2 0.49% 0.00% 0.01% W2 0.00% 0.00% 0.00%
W1 0.24% 0.00% 0.01% W1 0.00% 0.00% 0.00%
L4 0.00% 0.00% 0.00% L4 100.00% 100.00% 100.00%
L3 0.00% 0.01% 0.02% L3 0.01% 0.16% 0.06%
L2 0.02% 0.01% 0.03% L2 0.01% 0.22% 0.07%
L1 0.02% 0.01% 0.03% L1 0.01% 0.20% 0.06%

W4 0.01% 0.00% 0.00% W4 0.00% 0.00% 0.00%
W3 100.00% 100.00% 100.00% W3 0.00% 0.00% 0.00%
W2 9.74% 0.00% 0.02% W2 0.00% 0.00% 0.00%
W1 1.61% 0.00% 0.02% W1 0.00% 0.00% 0.00%
L4 0.01% 0.00% 0.00% L4 3.17% 0.79% 0.72%
L3 0.01% 0.01% 0.01% L3 100.00% 100.00% 100.00%
L2 0.06% 0.02% 0.01% L2 0.09% 0.04% 0.03%
L1 0.07% 0.02% 0.01% L1 0.05% 0.03% 0.02%

W4 0.00% 0.00% 0.00% W4 0.00% 0.00% 0.00%
W3 0.00% 0.00% 0.01% W3 0.00% 0.00% 0.00%
W2 100.00% 100.00% 100.00% W2 0.00% 0.00% 0.00%
W1 2.27% 0.00% 0.06% W1 0.00% 0.00% 0.00%
L4 0.01% 0.00% 0.00% L4 0.30% 0.15% 0.12%
L3 0.01% 0.02% 0.01% L3 0.79% 2.76% 1.79%
L2 0.04% 0.03% 0.01% L2 100.00% 100.00% 100.00%
L1 0.05% 0.03% 0.01% L1 0.07% 0.03% 0.02%

W4 0.00% 0.00% 0.00% W4 0.00% 0.00% 0.00%
W3 0.00% 0.00% 0.01% W3 0.00% 0.00% 0.00%
W2 0.12% 0.00% 0.04% W2 0.00% 0.00% 0.00%
W1 100.00% 100.00% 100.00% W1 0.00% 0.00% 0.00%
L4 0.01% 0.00% 0.00% L4 0.11% 0.03% 0.02%
L3 0.01% 0.02% 0.01% L3 0.17% 0.19% 0.07%
L2 0.05% 0.03% 0.01% L2 2.11% 1.44% 0.46%
L1 0.05% 0.04% 0.01% L1 100.00% 100.00% 100.00%



on lateral side, directly disperse downstream. From the summary of re-entry ratios, 

more detailed observations can be made. 

Firstly, when the gaseous pollutant is located in the unit W1, which is nearby the 

recirculation zone, 𝑅𝑅𝑘𝑘 of most units are negligible, except for the minute value to W2 

(0.12%). Obviously, the momentum of the downward flow is partially transferred to the 

frontal recirculation and partially to the lateral separations, shown as Fig. 8(b), which 

blocks the pollutant cross transmission.  

Secondly, when the source is located in the unit W2, pollutants are mainly 

transported along the airflow to the unit below, shown in Fig. 8(b), due to the high 

pressure difference between the unit W2 area and the vortex below. The most affected 

unit is W1, which has the 𝑅𝑅𝑘𝑘 value of 2.27%. This value is a significant reduction to 

that under circumstance of a single upstream building, which is 15.16% in Cui’s work. 

The result implies that, the presence of Building B decreases 𝑅𝑅𝑘𝑘 for unit W1, while also 

decreases 𝑅𝑅𝑘𝑘 of leeward units in the target building. This is because the vertical and 

horizontal recirculation zones reduce the pollutant transmission, which results from the 

increment of wind velocity in lateral side of target building. The diluted efficiency of 

gaseous contamination is amplified due to the presence of Building B. 

Thirdly, when the pollutant is released from unit W3, the units below are both 

affected, especially for unit W2, 𝑅𝑅𝑘𝑘 is up to 9.74%. Owing to the recirculation vortex 



behind the roof of Building A, the pollutants released from the unit W3 are transported 

downward predominantly. Comparing to the circumstance of a single upstream 

building, a relative low air velocity area formed near the unit W2, which causes the 

pollutants released from unit W3 to re-enter into W2 massively, larger than 6.76% in 

Cui’s work. However, due to the recirculation vortex, 𝑅𝑅𝑘𝑘 of unit W1 (1.61%) remains 

much less than Cui’s work (8.32%). This result can further illustrate that the existence 

of Building B improves the dilution momentum of the tracer gas in unit W1.  

Finally, when the pollutant source is located in unit W4, all windward units can 

be affected. Comparing to the results of Cui’s work, the values of 𝑅𝑅𝑘𝑘 beneath the source 

units are noticeably smaller, with 1.46%, 0.49% and 0.24% in present work to 5.52%, 

3.92% and 6.46%, respectively, which reduce over 73.5%. The reason for this reduction 

is likely to be the conflict between the dispersion and dilution momentums of the tracer 

gas with airflow complexity among the building blocks. With the presence of Building 

B, the formation of recirculation near ground and the asymmetric vortices on both sides 

of windows allows more tracer gas to disperse in lateral sides. 

Generally, the units on the windward side will be affected when the sources are 

located same side, and the room directly beneath the source unit should be included in 

the high-infection list in the event of a disease out-break, even though the presence of 

Building B reduces the possibility of pollutant inter-unit transmission to a large extent. 



The phenomenon under two upstream buildings shows dissimilar results to that 

with a single upstream building when the source is located windward side. As shown in 

Cui’s work (24), more pollutants released from windward side units re-enter into those 

of leeward. The relatively low re-entry ratios under two upstream buildings comparing 

to a single one can be explained. Because of the presence of Building B, wind velocity 

between building A and B, shown in Fig. 10(b), is much larger than that of a single 

upstream building, with the combined influence of recirculation down in the windward 

side, causing effective pollutant dilutions, which makes the pollutants be barely 

transported to units in the leeward side. 

Pollutants released from leeward side units show differentiable dispersion routes 

from windward side. On the leeward side, the near-wall flow pattern is characterized by 

the combination of dominant upward flow and minute recirculation near ground. Due to 

the airflow pattern in such circumstance, pollutants are transported upward basically, 

which can be observed from the summary of re-entry ratios. When the source is located 

in unit L4, most of the pollutant released, driven by the upward flow, easily disperse 

downstream and barely re-enter into other units. When the pollutants released from unit 

L1, L2 and L3, the tracer gas runs along the airflow patterns and re-enters into units 

above. The unit over the source unit has the largest value of 𝑅𝑅𝑘𝑘 (up to 3.17%) 

comparing to others, which is most likely to get infected. 𝑅𝑅𝑘𝑘 of units below source unit 

is negligible, as well as the units in the windward side.  



Under oblique wind directions (𝛽𝛽 = +45 & − 45°) 

When the wind direction changes from normal to oblique incidence, 𝑅𝑅𝑘𝑘 of most units 

decrease significantly due to the altered airflow pattern. All the windward pollutant 

transmissions are considered negligible under both oblique directions. This result is 

easily made because of the relative large wind velocity on the windward side of target 

building, shown in Fig. 12(a) and (b), which is in good agreement with that under 

circumstance of a single upstream building (24). However, on the leeward side, 

recirculation zones are formed due to the pressure difference, which causes negative 

effect to pollutant transportation. 

Under the wind direction of +45°( 𝛽𝛽 = +45 ), two recirculation zones are 

formed on leeward side of the target building, which leads to the complexity of airflow 

pattern. Pollutants are transported upward basically due to the wind pattern 

characterized by predominant upward flow, except for the scenario of source located in 

unit L4. When the pollutants release from unit L1, L2 and L3, the tracer gas runs along 

the airflow patterns and re-enters into units above. However, when the pollutant is 

released from unit L4, all units below are affected non-negligibly. This is because that 

relative high wind velocity field and two vertices occur on the leeward, which makes 

the pollutant more possible to re-enter into other units. 



Under the wind direction of −45°( 𝛽𝛽 = −45 ), a single recirculation zone is 

formed on leeward side of the target building, which leads to comparatively simple 

airflow pattern. Pollutants are transported upward dominantly as the wind pattern 

characterized by main upward flow. When the pollutants release from unit L1, L2 and 

L3, the tracer gas disperses with the flow patterns and re-enters into units above, while 

when the pollutant is released from unit L4, the pollutants directly dilute downstream 

and do not re-enter into other units. 

Inter-unit infectious risk assessment 

The infectious risk between units can be evaluated by the following equation based on 

the Wells-Riley model (7): 

𝑃𝑃 = 1 − 𝑅𝑅
−𝐶𝐶𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡

𝑄𝑄  (7) 

where 𝑞𝑞 is the quanta generation rate, which represents for infectious source strength 

built upon both the emission rate and the infectivity of the pathogen (41), 𝐼𝐼 represents 

the number of infectors, 𝑝𝑝 represents the pulmonary ventilation rate of a person, 𝜕𝜕 is the 

exposure time, 𝑄𝑄 is the air flow rate for each unit, and 𝐶𝐶𝑑𝑑 is the concentration decay 

coefficient, which equals to mass fraction of concentration (𝑀𝑀𝑖𝑖−𝑗𝑗) as mentioned in 

section 3. When a super infector is spreading in the target building, the inter-unit 

infectious risk can be very high, which is similar to that of the SARS outbreak in Hong 

Kong (8). Assuming the infector exists in the unit, the quanta generation rate is 10,000 



quanta per hour, the pulmonary ventilation of a person is 0.6𝑚𝑚3/ℎ, and the exposure 

time is 8ℎ. The inter-unit infectious risk evaluation is listed in Table 4. Colors are 

marked to different risk levels. 

Table 4 Inter-unit infectious risk under different concentration decay coefficients. 

 

Table 5 calculates the inter-unit infectious probability for each unit under 

different source locations and wind directions with color marks. It can be seen from the 

results that, the infectious risks are in good agreement with re-entry ratio values. The 

infectious risks of all units are much smaller when the wind is in oblique incidence with 

sources located windward side, all results are under level 3, which can be considered 

negligible. However, under other circumstances, the inter-unit infectious risk can reach 

up to 99.99%. In this risk assessment, only one super infector is considered. If a second 

generation infection was produced in the target building, the infectious risk could be 

increased essentially. Thus, the risk of inter-unit dispersion should not be neglected.  

 

Risk level Concentration decay coefficient Inter-unit infectious probability (%)
6 1 100
5 0.1 72.43
4 0.01 12.09
3 0.001 1.28
2 0.0001 0.13
1 0.00001 <0.13



Table 5 Inter-unit infectious risks 𝑃𝑃 of each unit with diverse source locations under 

three wind directions. 

 

Discussion of re-entry ratio and infectious risk 

The re-entry ratio 𝑅𝑅𝑘𝑘 is a parameter which describes the amount of gaseous pollutants 

released from one unit into another. When the source is located in a specific unit, that 

W4 100% 93.67% 96.83% W4 0.00% 0.00% 0.00%
W3 58.44% 0.00% 0.07% W3 0.00% 0.00% 0.00%
W2 17.01% 0.00% 0.03% W2 0.00% 0.00% 0.00%
W1 12.66% 0.00% 0.03% W1 0.00% 0.00% 0.01%
L4 1.35% 0.14% 0.36% L4 100.00% 100.00% 100.00%
L3 1.54% 0.15% 0.43% L3 4.55% 3.40% 1.52%
L2 1.62% 0.15% 0.48% L2 1.17% 3.04% 1.35%
L1 1.60% 0.16% 0.53% L1 1.04% 2.91% 1.28%

W4 0.10% 0.01% 0.01% W4 0.00% 0.00% 0.00%
W3 100.00% 93.64% 96.22% W3 0.00% 0.00% 0.00%
W2 97.61% 0.00% 0.07% W2 0.00% 0.00% 0.00%
W1 60.17% 0.00% 0.07% W1 0.00% 0.00% 0.00%
L4 3.71% 0.24% 0.19% L4 99.99% 54.30% 44.71%
L3 4.41% 0.25% 0.23% L3 100.00% 100.00% 100.00%
L2 4.82% 0.26% 0.26% L2 6.76% 0.54% 0.46%
L1 4.82% 0.27% 0.29% L1 3.72% 0.51% 0.42%

W4 0.02% 0.00% 0.01% W4 0.00% 0.00% 0.00%
W3 0.09% 0.01% 0.03% W3 0.00% 0.00% 0.00%
W2 100.00% 94.57% 95.67% W2 0.00% 0.00% 0.00%
W1 72.62% 0.00% 0.17% W1 0.00% 0.00% 0.00%
L4 2.67% 0.35% 0.15% L4 60.09% 13.92% 9.07%
L3 3.21% 0.38% 0.18% L3 91.88% 44.55% 37.29%
L2 3.56% 0.41% 0.20% L2 100.00% 100.00% 100.00%
L1 3.58% 0.43% 0.22% L1 4.81% 0.44% 0.38%

W4 0.02% 0.00% 0.01% W4 0.00% 0.00% 0.00%
W3 0.10% 0.00% 0.02% W3 0.00% 0.00% 0.00%
W2 4.64% 0.00% 0.13% W2 0.00% 0.00% 0.00%
W1 100.00% 95.84% 94.64% W1 0.02% 0.00% 0.00%
L4 2.88% 0.39% 0.14% L4 29.12% 3.24% 1.65%
L3 3.43% 0.44% 0.17% L3 42.43% 3.96% 1.87%
L2 3.76% 0.49% 0.19% L2 81.75% 18.69% 8.12%
L1 3.74% 0.53% 0.21% L1 100.00% 100.00% 100.00%



the value 𝑅𝑅𝑘𝑘 of another unit grows higher than others represents the total pollutants of 

this unit is larger. While the infectious risk 𝑃𝑃 describes the possibility that people get 

infected when exposing in a specific concentration of air pollutants. The probability 

people get infected grows higher with the value of 𝑃𝑃. The re-entry ratio and infectious 

risk are two different parameters with separate focus points but related mathematically. 

By introducing air exchange rate (𝐴𝐴𝐶𝐶𝐻𝐻), the relation can be written as: 

𝑃𝑃 = 1 − 𝑅𝑅
−𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡
𝑉𝑉(𝐴𝐴𝐶𝐶𝐻𝐻)𝑖𝑖

∙(𝐴𝐴𝐶𝐶𝐻𝐻)𝑖𝑖
(𝐴𝐴𝐶𝐶𝐻𝐻)𝑗𝑗

∙𝑅𝑅𝑘𝑘 (8) 

where (𝐴𝐴𝐶𝐶𝐻𝐻)𝑖𝑖 is the air exchange rate of the source unit 𝑖𝑖 and (𝐴𝐴𝐶𝐶𝐻𝐻)𝑗𝑗 is the re-entry 

unit 𝑗𝑗.  

Some discussions can be made from the equation. Since the terms 𝐼𝐼, 𝑞𝑞, 𝑝𝑝, 𝜕𝜕 and 𝑉𝑉 

are constants under a certain circumstance, the term (𝐴𝐴𝐶𝐶𝐻𝐻)𝑖𝑖
(𝐴𝐴𝐶𝐶𝐻𝐻)𝑗𝑗

 affects the relation between 

𝑃𝑃 and 𝑅𝑅𝑘𝑘 essentially. When a pollutant source location is fixed, the (𝐴𝐴𝐶𝐶𝐻𝐻)𝑖𝑖 is a 

determined value, which makes (𝐴𝐴𝐶𝐶𝐻𝐻)𝑗𝑗 a key factor in this scenario. If the re-entry unit 

has smaller air exchange rate under same situation, people will get infected more easily. 

Taking the unit W3 as an example, when the source is located in unit W4, the 𝑅𝑅𝑘𝑘 of unit 

W3 is 1.46% and the term (𝐴𝐴𝐶𝐶𝐻𝐻)𝑖𝑖
(𝐴𝐴𝐶𝐶𝐻𝐻)𝑗𝑗

 is 467.03%. However, as the term (𝐴𝐴𝐶𝐶𝐻𝐻)𝑖𝑖
(𝐴𝐴𝐶𝐶𝐻𝐻)𝑗𝑗

 is ranging 

from 100% (unit 𝑗𝑗 has same air exchange rate with unit 𝑖𝑖) to extreme large (unit 𝑗𝑗 has 

very small air exchange rate), the inter-unit infectious rate can vary from 17.15% to 

100%.  



In other words, the efficiency of natural ventilation of the re-entry unit 

influences the infectious risk considerably. The infectious risk will increase while the 

ratio of air exchange rate of source unit with re-entry unit drops. Therefore, it is 

necessary to take re-entry ratio and infectious risk into consideration at same time when 

facing inter-unit dispersion problems.  

Conclusions 

Considering the influence of two upstream buildings, this study investigates the inter-

unit dispersion around a multi-story building using CFD method. Re-entry ratios of 

infectious agents between units are analyzed and infectious risk is then assessed. Results 

are widely compared with previous studies that are based on an isolated building or a 

single upstream building. In general, this study leads to the following conclusions.  

The presence of upstream buildings does not necessarily deteriorate the wind 

environment around its downstream building. But it changes the airflow distribution 

greatly and induces a relative low-speed area between upstream buildings and 

downstream building. 

Under a normal incident wind, the addition of a second upstream building 

changes only slightly the ACH values of the units of its downstream building. While 



under oblique wind directions, their presence increases largely the ACH values of its 

downstream building.  

When the wind direction is normal incidence, pollutants are dispersed mainly on 

the same side. The re-entry ratios from a unit to an opposite unit are very small which 

can be considered negligible, as well as the infectious risk. Comparing to a single 

upstream building, the presence of a second upstream building reduces the pollutant re-

entry ratio 𝑅𝑅𝑘𝑘 for most units when the source is located windward side, excluding a 

particular circumstance. While as the sources are located on the leeward side, the re-

entry ratios are not negligible comparing to the situation with a single upstream 

building, which is most likely to infect units immediately above the source units.  

Under oblique wind directions, the main dispersion route of pollutants is altered 

from the windward side to the leeward side. The pollutants released from a windward 

unit disperse quickly to the outdoor wind flow and thus no obvious inter-unit dispersion 

occurs. However, the pollutants released from a leeward unit would transport upwards, 

where the units immediately above the source unit have the relatively high re-entry 

ratios. While the infectious risk shows the similar results.  

This study reveals the inter-unit dispersion and infectious risk condition around 

a multi-story building when considering the presence of two upstream buildings, which 

extends the existing understanding of inter-unit dispersions in built environments. 



However, restricted by the computational resources, this study is still limited to a 

physical model with only three buildings. In addition, this study is performed in the 

framework of steady-state RANS modelling, which cannot reveal the transient 

characteristics of inter-unit dispersion. Improvements in these two aspects are expected 

in future studies. 
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