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Abstract

Pharmaceutical batch freeze-drying is commonly used to improve the stability of biological therapeutics.
The primary drying step is regulated by the dynamic settings of the adaptable process variables, shelf
temperature Ts and chamber pressure Pc. Mechanistic modelling of the primary drying step leads to the
optimal dynamic combination of these adaptable process variables in function of time. According to Good
Modelling Practices, a Global Sensitivity Analysis (GSA) is essential for appropriate model building. In this
study, both a regression-based and variance-based GSA were conducted on a validated mechanistic primary
drying model to estimate the impact of several model input parameters on two output variables, the product
temperature at the sublimation front Ti and the sublimation rate ṁsub. Ts was identified as most influential
parameter on both Ti and ṁsub, followed by Pc and the dried product mass transfer resistance αRp for Ti and
ṁsub, respectively. The GSA findings were experimentally validated for ṁsub via a Design of Experiments
(DoE) approach. The results indicated that GSA is a very useful tool for the evaluation of the impact of
different process variables on the model outcome, leading to essential process knowledge, without the need
for time-consuming experiments (e.g., DoE).

Keywords: Freeze-drying, Mathematical modelling, Global Sensitivity Analysis

1. Introduction

Biological drug products like therapeutic proteins and vaccines, gain more and more interest within the
pharmaceutical industry [1]. However, the stability of these biopharmaceuticals in aqueous solution is often
limited due to water-mediated degradation pathways. Freeze-drying (lyophilization) is a frequently applied
drying process to improve the stability of these biopharmaceuticals during storage and distribution, despite
the long processing time and high costs [2]. Approximately 50% of the biopharmaceutical drug products
approved by the regulatory authorities (> 300) are freeze-dried formulations [3].
Conventional pharmaceutical freeze-drying of unit doses is a batch-wise process during which all vials of
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the same batch are processed through a sequence of consecutive steps (i.e., freezing, primary drying and
secondary drying) until the dried end product is obtained [4]. The lyophilization process is initiated by grad-
ually chilling the temperature-controlled shelves, which are packed with glass vials containing the aqueous
drug formulation, to circa -45 ◦C, depending on the formulation characteristics. During cooling of the aque-
ous solution, stochastic ice nucleation takes place leading to the formation of ice crystals [5]. These crystals
start growing upon further freezing, leading to a gradual increase in solute concentration in between them.
Freeze-concentration continues until at the eutectic temperature Te a saturated solution is obtained. From
this point onward, water and solutes start to crystallize simultaneously, leading to the formation of a fully
crystalline matrix. Amorphous products behave differently during freeze-concentration as they form a su-
persaturated solution, without any solute crystallization. Due to the gradual increase in viscosity associated
with this supersaturation, ice crystallization slows down until maximum freeze-concentration is achieved at
the glass transition temperature T ′g. At this characteristic temperature, the viscosity has raised to such an
extent that no further freezing occurs [5]. Hence, ice crystallization is interrupted prematurely, explaining
the presence of residual unfrozen water in the amorphous glass. At the end of the freezing step, the shelf
temperature, and consequently the product temperature, reach a value well below Te or T ′g for crystalline
or amorphous products, respectively, resulting in complete solidification of the product. In some cases,
the freezing stage is followed by an annealing step to allow full crystallization of crystalline components or
to enhance the batch uniformity of the ice crystal size [6–8]. Here, the shelf temperature is temporarily
increased to a temperature above T ′g, but below Te and maintained for a few hours before re-establishing the
final freezing temperature. At the start of the primary drying step, the pressure in the drying chamber is
lowered until 5 to 30 Pa, before the shelf temperature is raised to supply energy to promote ice sublimation.
The sublimation front, which separates the ice-free product from the ice crystal matrix, gradually moves
downward until ice sublimation is finished. During the secondary drying stage, the desired residual moisture
level is achieved through desorption of remaining unfrozen water in the amorphous matrix or by the removal
of hydrate water from the crystalline product. At the end of the lyophilization process, after stoppering and
capping under controlled conditions, the aqueous drug formulation is transformed into a dried cake with an
increased shelf life.
The primary drying step during batch-wise freeze-drying is extensively described through mechanistic mod-
elling [9–11]. These models allow the determination of the optimal combination of the adaptable process
variables, i.e., shelf fluid inlet temperature Ts and chamber pressure Pc, in function of the primary drying
time, to achieve a dried product without any signs of cake collapse in a minimum time frame. The ap-
pearance of the dried product is one of the Critical Quality Attributes (CQAs) of freeze-dried products,
as structural loss of the cake is undesirable because of aesthetic purposes and the negative impact on the
reconstitution time [12]. Cake collapse occurs when the product temperature at the sublimation front Ti
exceeds the critical product temperature Ti,crit during the primary drying stage [5]. Ti,crit depends on the
formulation characteristics and is identified as Te or the collapse temperature Tc for crystalline and amor-
phous products, respectively. In general, Tc is a few degrees higher than T ′g because viscous flow is limited
near T ′g due to the sufficiently high viscosity of the amorphous solid [5].
As the mechanistic primary drying models are a mathematical approximation of the sublimation process,
inherently a few assumptions and simplifications are included (e.g., a planar sublimation front and a steady-
state system are assumed). In addition, the model input parameters are often an estimation of the real value,
while other input variables (i.e., the dried product mass transfer resistance Rp and the vial heat transfer
coefficient Kv) are quantified by one global value for the entire batch, despite the inter-vial variability.
Because of these reasons, the computational model output can be correlated with a degree of uncertainty,
which could lead to a deviation from the actual (experimental) primary drying behaviour. This parameter
uncertainty can be included in the model leading to the quantitative estimation of the Risk of Failure (RoF),
i.e., the risk of cake collapse, for each combination of the adaptable process parameters, Ts and Pc [13–17].
This quantitative risk assessment is essential for the construction of the Design Space, defined as the multi-
dimensional combination and interaction of input variables and process parameters leading to the expected
product specifications with a controlled probability [18]. In this way, the optimal combination of Ts and Pc

can be determined to maximize the process efficiency for a specific RoF acceptance level, which is defined
as the chance of batch rejection due to macroscopic cake collapse in one or more vials [17]. The progression
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of primary drying and the corresponding increase in dried layer thickness leads to a continuous change of
dependent process parameters (e.g., Rp). Therefore, the optimal combination of Ts and Pc changes in time,
which results in a dynamic Design Space [11, 17].
The determination of the impact of several process parameters and input variables on the primary drying
behaviour would require a lot of time-consuming experiments, even via a DoE approach. The information
gathered via experimental designs leads to the development of empirical models, which provide some, but
no full physical insight in the primary drying dynamics. Mechanistic modelling can offer an alternative as
it allows the identification of critical process parameters. In this respect, the application of a GSA on the
model is recommended for appropriate model building according to the Good Modelling Practices [19]. A
sensitivity analysis is the study of how the uncertainty in the output of a model (numerical or otherwise) can
be apportioned to different sources of uncertainty in the model input (or model structure, parameters) [20].
In combination with the theoretical and physical background used for the development of the mechanistic
model, a lot of process knowledge is obtained in an efficient way. Other incentives to perform a sensitivity
analysis, can be model calibration, model reduction and prediction of uncertainty [21]. In this study, a
regression-based and variance-based GSA were conducted on a, previously validated, mechanistic primary
drying model to estimate the impact of several model input parameters on two output variables, the product
temperature at the sublimation front Ti and the sublimation rate ṁsub.

2. Materials and methods

2.1. Freeze-drying model

The detailed description of the (validated) mechanistic model describing the primary drying step of a
batch freeze-drying process is given by Mortier et al. [16]. The nominal values of the model input parameters
are listed in table 1, which are equal to the nominal values previously used in a published study regarding
the computation of the dynamic Design Space for an aqueous formulation containing 30 mg/mL sucrose
(Sigma-Aldrich, Saint-Louis, MO, USA) [17]. The coefficients describing Rp for the model formulation were
obtained from literature [22]. Ti,crit, which was assumed to be equal to T ′g of the model formulation, and the
coefficients describing Kv were experimentally determined in the context of the dynamic Design Space study
[17]. The mechanistic primary drying model assumes both a planar sublimation front and a steady-state
system, i.e., the supplied energy was only consumed for ice sublimation.

Table 1: Nominal values of the parameters of the model describing the primary drying step

Parameter Numerical value
Inner radius of 10R vial rv,i 0.011 m
Outer radius of 10R vial rv,orv,o 0.012 m
Radius of the vial neck rv,n 0.0063 m

Radius of the duct of the dryer rd 0.08 m
Kv-coefficient α 11.18 J/(m2sK)
Kv-coefficient β 1.435 J/(m2sKPa)
Kv-coefficient γ 0.04008 1/Pa
Rp-coefficient Rp,0 6.926 104 m/s
Rp-coefficient ARp 9.124 106 1/s
Rp-coefficient BRp 0 1/m

Critical product temperature Ti,crit -32.5 ◦C
Filling volume V 2.5 mL
Density of ice ρice 919.4 kg/m3

Volume fraction of ice ε 0.97
Ratio of the specific heat for water k 1.33

Molecular weight of water M 0.018015 kg/mol
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2.2. Global Sensitivity Analysis (GSA)

A GSA was conducted on two model outputs, i.e., the product temperature at the sublimation front
Ti and the sublimation rate ṁsub. The sensitivity of the parameters was calculated after different primary
drying times, i.e., after 1, 2, 3 and 4 h. Initially, the model is run for different combinations of input
variables based on their uncertainty range, i.e., Monte Carlo simulations. The sample matrix required for
the calculation of the output vector, is generated using the Sobol sampling technique. The number of Monte
Carlo simulation runs has an influence on the sensitivity indices. For this reason, the optimal number of
samples was determined in a first step, before the regression-based and variance-based GSA methods were
conducted.
The parameters involved in the GSA, their uncertainty level and the reason for their inclusion are listed
in table 2. The estimation of the uncertainty level for each parameter and the reason for their inclusion is
previously described [17]. For most factors, the uncertainty was not implemented as a percentage of the
nominal value, as the range is highly dependent on the magnitude of the factor. For these factors (i.e., Ts,
Pc, inner vial radius rv,i and outer vial radius rv,o), the uncertainty was defined by an absolute range, based
on experimental data or data provided by the supplier. In this study, the uncertainty on Ldried was assumed
to be constant. However, it has to be remarked that the uncertainty on Ldried can also be calculated based
on the other (uncertain) model input variables (i.e., error propagation), as previously demonstrated for the
uncertainty analysis [17]. Kv is described in function of Pc via [16]:

Kv = α+
βPc

1 + γPc
(1)

with α (J/(m2sK), β (J/(m2sKPa) and γ (1/Pa) constants describing Kv quantitatively in function of Pc

(Table 1). Rp is described in function of Ldried via [16]:

Rp = Rp,0 +
ARpLdried

1 +BRpLdried
(2)

with Rp,0 (m/s), ARp (1/s) and BRp (1/m) constants describing Rp quantitatively in function of Ldried

(Table 1). The uncertainty on these coefficients is lumped by introducing an uncertainty on the entire
parameter, i.e., αRp and αKv. The uncertainty on rv,i and rv,o is based on data provided by the supplier of
the 10R glass vials (Schott, Müllheim, Germany) used during the experimental validation (Section 2.3). The
filling volume V was included in the analysis because of the inherent error that is made during the filling
stage. Depending on the location of the vial on the shelf, Ts can be higher or lower than the set value. This
error has been experimentally determined for both a constant value of Ts and during a shelf temperature
ramp [17]. The error on Pc is based on the maximum allowed deviation of the feedback pressure control
system of the freeze-dryer.

Table 2: Uncertainty level for the input factors

Factor Uncertainty level Reason of inclusion in GSA
Ldried 5% Error propagation
Rp 20% Based on experimental data
Kv 20% Based on experimental data
rv,i 10−4 m Process variable with inherent error
rv,o 10−4 m Process variable with inherent error
V 10% Process variable with inherent error
Ts 2.5 ◦C Based on experimental data
Pc 1 Pa Process variable with inherent error
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2.2.1. Regression-based sensitivity analysis

The use of the regression-based GSA technique allows the sensitivity ranking to be determined based on
the relative magnitude of the Standardized Regression Coefficients (SRCs). Therefore, the ranking is based
on a linear regression model on the output of the Monte Carlo simulations via least square computation,
not on the original model [23, 24]. For this method, it is assumed that no correlation exists between the
different input factors. The linear regression is evaluated via the model coefficient of determination R2

Y

which is equal to the fraction of variance of the original data, i.e., the results of the Monte Carlo simulation,
explained by the regression model [23]. Ideally, for all regression-based methods, R2

Y is close to 1, meaning
that most of the model output variance is explained by the regression coefficients [24]. A low value for
R2

Y indicates non-linear model behaviour where the SRCs fail to provide an adequate ranking [25]. The
minimum criterion for the linear regression is a value of 0.7 for R2

Y [26, 27].
The disadvantage of the regression-based method is that it is computationally expensive, because many
samples are required. However, after simulation of the model, the analysis is fast and all measures can be
calculated using the same sample and model. The obtained SRCs can only be used to assess the importance
of a given parameter. Moreover, it is difficult to determine the number of samples to obtain valuable results.
The details regarding the calculation of the SRCs are described by Mortier et al. [21].

2.2.2. Variance-based sensitivity analysis

Variance-based methods are very popular nowadays, and the obtained indices are much more informative
compared to the SRCs. These indices are defined from the decomposition of the total output variance into
the contribution of the input factors [20, 24, 28]. Two sensitivity measures are calculated by the variance-
based GSA, i.e., the first order effect Si and the total order effect STi. Si indicates the actual fraction of
variance accounted for by each factor, whereas STi represents the total effect of factor i, i.e., the sum of
the first order effects, higher order effects and all interactions with other factors [25]. Different designs are
known to calculate these sensitivity indices [29, 30]. The design proposed by Saltelli et al. was applied in
this study [31]. The mathematical details regarding the computation of Si and STi are described by Mortier
et al. [21].

2.2.3. Determination of sample size

The Central Limit Theorem (CLT) was used to determine the optimal number of samples N required for
both the regression-based and variance-based GSA, i.e., the number of samples required to achieve a normal
distribution of the composite [32]. Therefore, for an increasing number of base samples (different values
for N), R replicas were taken and the corresponding sensitivity measures were calculated, i.e., the SRCs
for the regression-based technique and Si and STi for the variance-based technique. For each N value, this
leads to R values for each sensitivity measure. The mean and the coefficient of variation CV was calculated.
According to the CLT, R should be at least 30, however, in this contribution 100 replicas were used [32].

2.3. Experimental design methodology

The results of the GSA were experimentally validated via a DoE approach for one specific response, i.e.,
the sublimation rate ṁsub. The parameters used for the GSA were included as factors in the experimental
design (Table 3), except for the vial dimensions rv,i and rv,o, which were kept constant as we did not deem
these variables to provide more scientific insight in this stage. The center points for each factor of the DoE
were derived from the nominal values of the model parameters used for the computation of the dynamic
Design Space for an aqueous 30 mg/mL sucrose formulation (Table 1), except for Ts and Pc, which were
based on the output of this model [17]. The lowest and highest level for the quantitative factors Ts, Pc and V
were based on their corresponding uncertainty level in the GSA (Table 2). Both Rp and Kv were treated as
two level qualitative factors which approach the relative uncertainty of 20% on the nominal value, as included
in the GSA (Table 2). Specifically, the uncertainty on Rp was incorporated in the design by including an
aqueous 30 mg/mL lactose formulation (Fagron, Waregem, Belgium), for which the Rp profile in function
of Ldried was approximately 20% higher compared to the nominal value for the 30 mg/mL sucrose model
formulation [22]. The uncertainty on Kv was incorporated by comparing the sublimation rate for the edge
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vials and center vials. A fractional factorial screening design consisting of 16 experiments, expanded with
two double center points, was constructed using MODDE Pro (Version 11.0.0, Umetrics, Ume̊a, Sweden).
An overview of all individual experiments is given in table 4.
The response ṁsub was gravimetrically determined. The experiments were conducted in a laboratory scale

Table 3: Overview factors DoE with lowest and highest level

Level
Factors - + Unit

Quantitative
Ts −18.5 −13.5 ◦C
Pc 9 11 Pa
V 2.25 2.75 mL

Qualitative
Rp Formulation 1−2
Kv Edge vials - Center vials

Table 4: Overview experiments DoE, the experiments in bold were performed twice (center points)

Experiment number Ts (◦C) Pc (Pa) V (mL) Kv Rp

1 -18.5 9 2.75 Formulation 1 Edge vial
2 -13.5 9 2.25 Formulation 1 Edge vial
3 -18.5 11 2.25 Formulation 1 Edge vial
4 -13.5 11 2.75 Formulation 1 Edge vial
5 -18.5 9 2.25 Formulation 2 Edge vial
6 -13.5 9 2.75 Formulation 2 Edge vial
7 -18.5 11 2.75 Formulation 2 Edge vial
8 -13.5 11 2.25 Formulation 2 Edge vial
9 -18.5 9 2.25 Formulation 1 Center vial
10 -13.5 9 2.75 Formulation 1 Center vial
11 -18.5 11 2.75 Formulation 1 Center vial
12 -13.5 11 2.25 Formulation 1 Center vial
13 -18.5 9 2.75 Formulation 2 Center vial
14 -13.5 9 2.25 Formulation 2 Center vial
15 -18.5 11 2.25 Formulation 2 Center vial
16 -13.5 11 2.75 Formulation 2 Center vial
17 -16 10 2.5 Formulation 1 Edge vial
18 -16 10 2.5 Formulation 2 Edge vial

freeze-dryer Lyobeta 25 (Telstar, Terrassa, Spain) equipped with four shelves, each with a heatable area of
0.16 m2, in the vacuum-tight drying chamber with a volume of 0.2 m3. The system contains a condenser
with 35 kg of ice capacity and a vacuum pump to evacuate the drying chamber. Chamber pressure control
was performed via a Baratron Type 626A capacitance manometer (MKS Instruments, Andover, MA, USA).
Comparative pressure measurements were conducted using a Pirani Type PSG-502-S thermal conductivity
gauge (Inficon, Bad Ragaz, Switzerland). Temperature control of shelf and condenser was based on Pt100
thermal sensors (WIKA Instruments, Klingenberg, Germany) measurements. For each individual experiment
of the DoE, 10 vials were filled with a certain volume of the specified formulation, as defined by the DoE
(Table 4). The vials were placed on a precooled shelf (3 ◦C) in the drying chamber, randomly distributed at
the edge or center of the batch. The batch was expanded with dummy vials containing 2.5 mL of water to
a total of 100 vials. The size and arrangement of the batch was equal to the experimental determination of
Kv [17]. The freezing step for each validation run was equal to the freezing procedure used to determine Rp
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of the model formulation [22]. The shelves were chilled at a rate of 1 ◦C/min until -45 ◦C and maintained at
this temperature for 1 hour. An annealing step was included in the freezing procedure, during which Ts was
increased in 25 minutes until -20 ◦C and kept at this value for 2 hours. After re-establishing the final freezing
temperature of -45 ◦C at a rate of 1 ◦C/min, Ts was kept for another hour at this value, before the condenser
was cooled and the vacuum pump was activated. The settings of Ts and Pc during primary drying were
characteristic for each individual DoE experiment. Primary drying was interrupted after approximately 7 to
8h, to avoid ice sublimation was completely finished. The vials were weighed before and after freeze-drying,
allowing the calculation of the mean value of ṁsub.
MODDE Pro was used for the analysis of the experimental design. A regression model for the response
was calculated via Multiple Linear Regression (MLR). All factors were scaled and centered, which makes
the regression coefficients for the different factors comparable. Each quantitative factor was set to +1 and
−1 for their highest and lowest value, respectively. Qualitative factors require an alternative approach via
a mathematical re-expression (regression coding). A k-level qualitative parameter will be expanded into
k-1 artificial categorical variables. Each expanded term results in one regression coefficient, which in our
case led to one coefficient for level 2 (regular mode). In addition, the level 1 coefficient is equal to the
negative coefficient of the expanded term of level 2 (extended mode). The regression coefficient of a specific
factor represents the quantitative change in response value when this factor is increased from its average
to its high level, keeping all other factors at their average value. The effect of a specific factor is defined
as the quantitative change in response value when this factor is increased from its low to its high level,
keeping all other factors at their average value. Based on these definitions, the effect of a factor is twice the
corresponding coefficient. The constant term is related to the response value at the design center point, with
all factors at their nominal value. For all regression coefficients the 95% confidence interval was calculated.
Factors or interactions between factors were considered significant if the 95% confidence interval of the
corresponding regression coefficient did not contain zero.

3. Results

3.1. Determination of the required number of simulations for the GSA

To determine the number of samples required for the GSA, the convergence of the sensitivity measures
was verified for a base scenario, i.e., the output after 1,800 s. This could be done on a graphical basis, by
visually checking the convergence. However, a more objective evaluation was conducted using a technique
based on CLT [32].
For the regression-based GSA, the coefficient of determination R2

Y should be higher than 0.7. Only when
R2

Y is higher than 0.7, the SRCs can be used to rank the parameters of the mechanistic primary drying
model. It was possible to perform the analysis for both output variables, i.e., Ti and ṁsub, as R2

Y was above
0.7, without the need for a rank transformation. On the left side of figure 1, the mean of the quotient of
two successive SRC values is presented for an increasing number of simulations N for Ti as output variable.
For each parameter, the quotient of two successive SRC values should converge to 1 for an increasing value
of N , therefore, the mean over all parameters should also converge towards one. However, the question
arises for which N the value is close enough to 1. Therefore, a more in-depth method has been used to
objectively determine the optimal number of samples, i.e., CLT. Besides the mean quotient of two successive
SRC values, the R2

Y -value also converges for an increasing number of Monte Carlo simulations (Right part
of figure 1).

In the left part of figure 2, the coefficient of variation CV is plotted in function of the number of base
samples N for Ti as output variable. From the graph it can be concluded that this coefficient decreases for a
higher number of base samples. After 10,000 samples, the solution seems to be converged, but the optimal
number of samples is determined graphically and is not exact. There exists no quantitative method in order
to determine the optimal number. From this figure it is apparent that CV is remarkable higher for V and
Ldried compared to the other parameters. CV in function of N for the sublimation rate ṁsub as output
variable is presented on the right side of figure 2. CV is much higher for this output variable, and moreover,
the behaviour for Ldried is different compared to the other parameters. Based on these results, and given
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the fact that it has no impact on the mean of the SRCs (Figure 3), it was decided to use 10,000 samples for
the regression-based GSA.
The same approach was applied for the variance-based technique. The results for the total sensitivity
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indices STi are presented in figure 4 for the temperature at the sublimation front Ti and the sublimation
rate ṁsub. It should be noted that the actual number of model runs is presented on the x-axis. Dependent
on the formulas used to calculate Si and STi, the actual number of model runs varies according to the set
sample size. Here, the scheme proposed by Saltelli et al. was used [31]. This means that the actual number
of models runs equals (npar+2)Nbase with npar the number of parameters included in the sensitivity analysis
and Nbase the base sample size.
The variance-based sensitivity technique does not require a linear model as input, therefore, the method has
a broader applicability. To have a converged result for the temperature at the sublimation front Ti (Left
part of figure 4), a sample size of 5,000 seems to be needed. The same is valid for the sublimation rate
ṁsub (Right part of figure 4). Therefore, a 500 base samples, i.e., 5,000 divided by npar + 2, were chosen to
perform the further analysis.
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Figure 4: Coefficient of variation CV for the STi in function of the number of base samples N performed on the
primary drying model for Ti (Left) and ṁsub (Right) as output variable of the variance-based GSA

3.2. Gathering process knowledge using graphical tools

Graphical sensitivity analysis tools, which are qualitative techniques (i.e., scatter plots or Contribution
to Sample Mean (CSM)/Contribution to Sample Variance (CSV) plots), are interesting to detect the rela-
tionship between uncertain model inputs and the resulting output [33]. The scatter plots are presented for
two parameters with a different behaviour, after 1 h of simulated process time (Figure 5). From the scatter
plot of Pc it can be concluded that the influence of Pc on Ti is rather limited, as the same value of Ti can
be obtained for each value of the chamber pressure. The effect of αRp on the sublimation rate (Right part
of figure 5) is more pronounced as for lower values of αRp the sublimation rate is higher due to the reduced
product resistance to vapour flow.

3.3. GSA using a regression- and variance-based technique

To rank the parameters it is suggested to perform a regression- or variance-based GSA technique, where
quantitative sensitivity measures are obtained. The GSA was performed for different time steps during the
primary drying process. In figure 6, STi values for the different parameters are presented for different time
steps. Focusing at the results after 1 h for Ti as output variable (Left side of 6), it can be concluded that
Ts is the most influential parameter, followed by Pc. The significance of Ts is important as this is one of
the adaptable process parameters of the freeze-drying process. The other process variable, i.e., Pc, has a
rather limited influence. Looking at the results for the whole drying process, it is obvious that Ts has the
most influence on Ti. The influence of Pc is somewhat decreasing over time. The influence of αRp and αKv

is clearly increasing over time.
On the right side of figure 6, the results for STi with ṁsub as output variable are presented. Again Ts is the
most influential parameter, followed by αRp. The influence of Ts is decreasing and the influence for Pc is
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Figure 5: Scatter plot for the freeze-drying model with N = 10,000 for Pc with Ti as output variable (Left) and
αRp with ṁsub as output variable (Right) after 1 h

increasing, but for the other parameters the value for STi is similar over the whole time range. The results
using the regression-based analysis with the SRCs are similar and not shown.
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Figure 6: STi for the primary drying model with N = 5,000 for Ti (Left) and ṁsub (Right) as output variable at
different time steps

3.4. Analysis of experimental design

The mean sublimation rate ṁsub for the individual experiments of the experimental design (Table 4)
ranged from approximately 0.15 g/h up to 0.27 g/h. For the filling volume of 2.5 mL, assuming an ice mass
of 2.5 g, this would correspond to an estimated primary drying time ranging from approximately 16.67 h to
9.25 h. Evaluation of the raw data indicated that there were no peculiarities in the results: the variability
in ṁsub between the repetitions (i.e., center points) was less than the overall variability for the individual
experiments. The response data were normally distributed, hence, data transformation before regression
analysis was not needed. The regression coefficients, computed via MLR fitting, are displayed for each factor
and factor interaction, including their 95% confidence interval, in the extended coefficient plot in Figure 7.
The position of the vial in the batch, i.e., Kv(Edge vial) and Kv(Center vial), was identified as the factor

with the highest influence on ṁsub, with a regression coefficient of 0.0317 g/h (Figure 7). For a vial situated
at the edge of the shelf, ṁsub increases with 0.0635 g/h compared to a center vial, keeping all other factors
at their average level, hence, decreasing the primary drying time with approximately 27% from 14.53 h to
10.61 h for a 2.5 mL filling volume. The shelf fluid inlet temperature Ts had a positive impact on the response
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Figure 7: Extended coefficient plot: Regression coefficients displayed including 95% confidence interval, with shelf
fluid inlet temperature (Ts), chamber pressure (Pc), filling volume (V ), the expanded model terms related
to the qualitative factor Rp (Rp(For1) and Rp(For2)) and the expanded model terms related to the
qualitative factor Kv (Kv(Edge vial) and Kv(Center vial))

variable (regression coefficient 0.0183 g/h). An increase in Ts from -16 ◦C to -13.5 ◦C, keeping all other
factors at their average level, is associated with a decrease in drying time of approximately 1 h from 12.26 h
to 11.25 h. The difference in dried product mass transfer resistance Rp, represented by the two different
formulations, i.e., Rp(For1) and Rp(For2), was small with a regression coefficient of 0.00524 g/h. Primary
drying of the lactose formulation would take 5% or 38 min longer compared to the sucrose formulation with
a primary drying time of 12.59 h and 11.96 h, respectively, keeping all other factors at their average level.
With a regression coefficient of 0.00382 g/h, the chamber pressure Pc had a very small impact on ṁsub.
An increase of Pc from 10 Pa to 11 Pa, keeping all other factors at their average level, is associated with
a decrease in drying time of approximately 13 min from 12.26 h to 12.04 h. The filling volume V had no
significant impact on the response ṁsub (regression coefficient 0.001003 g/h). In addition, none of the factor
interactions was significant.

4. Discussion

The results of the GSA on the mechanistic primary drying model, i.e., the significance ranking STi

for both Ti and ṁsub, should be interpreted considering the physical basis of the sublimation process. As
one of the adaptable process variables, Ts had the largest impact on both Ti and ṁsub (Figure 6). The
shelves provide the energy transfer to the glass vials which impacts both Ti and ṁsub. Therefore, Ts is the
process parameter with the highest influence on these output variables. The experimental results confirm
the significant impact of Ts on ṁsub (Figure 7). The relative impact of Ts decreases when the primary
drying process progresses (Figure 6) due to the dynamic nature of the optimized cycle as Rp increases
in function of time, requiring a gradual decrease in energy input to avoid cake collapse [17]. The other
adaptable parameter of the primary drying process, Pc, was also identified in the GSA as a factor with a
significant impact, mainly on Ti. Pc directly impacts ṁsub, as the sublimation rate is based on the difference
in vapour pressure at the sublimation front and in the drying chamber. Because of the high accuracy of
the pressure control system of the freeze-dryer, the uncertainty level for Pc is very narrow, i.e., only 1 Pa,
explaining why the impact of Pc on ṁsub is rather limited. Due to the narrow uncertainty range, Pc was
identified as a factor with a very limited impact on the experimental ṁsub. In addition, it should be noted
that Pc influences the conductive energy transfer. An increase in Pc is related to a higher density of gas
molecules in the drying chamber, which enhances the conductive energy transfer from shelf to vial due to
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the suboptimal contact between vial and shelf [34]. The impact of Pc could be more relevant in situations
where Ts becomes closer to Ti, for instance in case of a higher value for V or Rp or in case of a formulation
with a low Ti,crit which requires a limitation of the energy transfer.
The GSA predicted that the impact of αRp on Ti and ṁsub was less pronounced compared to Ts (Figure
6). However the influence of αRp is still significant, especially towards ṁsub. Rp directly impacts ṁsub, as
the sublimation rate is inversely proportional to the resistance of the dried product layer. This is confirmed
by the results of the experimental design, where Rp has a significant, but limited impact. For equal process
conditions, the primary drying step lasts 5% longer for the 30 mg/mL lactose formulation compared to the
30 mg/mL sucrose formulation (Section 3.4). Rp is highly dependent on the formulation characteristics and
the pore size of the dried product layer, which, in turn, depends on the ice crystal size, related to the
degree of supercooling before ice nucleation takes place [22, 35]. Therefore, cycle optimization can only be
performed for a specific freezing regime. The stochastic nature of ice nucleation and the resulting intervial
variability in pore size distribution is countered by including a sufficiently high uncertainty level for Rp.
αKv is the only parameter of which the effect on ṁsub is underestimated by the GSA, compared to the
experimental validation. Based on the experimental design, the position of the vial, at the edge of the shelf
or in the center of the vial pack, is the parameter with the highest influence on ṁsub. These experimental
findings stroke with the difference in Kv between the edge and center vials, due to the additional radiative
heat transfer coming from the surrounding walls and the door [17, 34, 36]. This uneven energy transfer
between both positions is inherent to the design of the pharmaceutical batch freeze-dryer. Therefore, an
appropriate freeze-drying cycle operating strategy is required as a compensation. For this reason, the Kv

parameter was experimentally determined for separate groups. One group consisted of vials completely
surrounded by other vials, i.e., center vials, while the other group contained vials situated at the edge of the
shelf, with at least one side directed towards the door or the walls of the drying chamber, i.e., edge vials
[17]. The dynamic Design Space was computed based on these edge vials, as these vials are the limiting
factor in the prevention of cake collapse due to the additional radiative energy transfer. As compensation
for the center vials with a lower energy input, the optimal primary drying trajectory should be prolonged
before the start of the secondary drying step [17]. It should be noted that the ratio of edge to center vials
decreases considerably during upscaling to industrial scale freeze-driers, however, the edge vials will remain
the limiting factor and the same strategy should be applied.
The computed impact of rv,i, rv,o and V was very limited. Based on the data provided by the supplier, the
uncertainty margin on rv,i and rv,o is very small and the GSA indicates that their impact is negligible. The
experimental design confirmed the low impact of V on ṁsub.
In general, the experimental validation seems to confirm the results of the GSA, with an exception for
αKv. It is important to note that the results of the GSA are highly dependent on the used uncertainty
level. Therefore, the uncertainty ranges for each parameter should be carefully chosen. In addition, the
uncertainty range should also be considered when interpreting the results of the GSA. For the experimental
validation of the GSA, it is equally important to choose an appropriate level for each factor of the design,
correctly reflecting the uncertainty level for each process variable included in the GSA. For quantitative
factors, this can be easily done by adapting the input settings, e.g., Pc can be set at a specific value via the
pressure control system. However, Kv and Rp could only be included in the design as qualitative factors,
which makes it more difficult to approach the quantitative uncertainty range used in the GSA. This might be
the reason why the impact of αKv is underestimated in the GSA compared to the experimental validation.
As the GSA was conducted on a validated model, essential process knowledge can be extracted. The method
allows to determine which uncertain input variables only have a limited influence on the model outcome,
even to such extent their uncertainty could be irrelevant. Also, GSA can identify the parameter for which
a reduction or elimination of the uncertainty would reduce most of the variance on the output and, hence,
lower the risk of cake collapse during primary drying. The experimental DoE was conducted to validate
the GSA on the previously validated primary drying model. Once validated, it is no longer required to
repeat the post DoE in case different nominal values or uncertainty levels would be used for the model
input parameters, e.g., during upscaling or during the optimization of the primary drying cycle for another
formulation. This way, similar information can be obtained in a much shorter time frame compared to the
labor intensive and more expensive DoE approach. However, freeze-drying cycles designed and optimized
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via the mechanistic primary drying model, do require a final experimental validation [17].

5. General conclusion

A GSA has been applied on a, previously validated, mechanistic primary drying model in order to
gain process knowledge. First, the optimal number of samples has been determined by using CLT. For
the regression-based GSA, 10,000 samples was sufficient to obtain converged SRCs. The variance-based
GSA required 500 base samples, corresponding to 5,000 samples ((npar + 2)Nbase). For both methods, the
ranking of the parameters was similar for both output variables of the model, i.e., the temperature at the
sublimation front Ti and the sublimation rate ṁsub. The shelf temperature Ts was identified as the factor
with the highest impact on both output variables. The chamber pressure Pc has a large influence on Ti,
however, the impact on ṁsub is rather limited. The influence of αRp on ṁsub is significant.
The results of the GSA were largely confirmed by the experimental validation via a DoE approach. Only,
the impact of αKv was underestimated by the GSA, as this parameter was included as a qualitative factor
in the experimental design. The level of uncertainty of each process parameter was identified as a major
influence on the significance ranking. Therefore, the uncertainty level of each process parameter should be
determined with reason and not be chosen randomly. In summary, the results indicated that GSA is a very
useful tool for the evaluation of the impact of different process variables on the model outcome, leading to
essential process knowledge, without performing time-consuming experiments.

Acknowledgment

Financial support for this research from the Fund for Scientific Research Flanders (FWO Flanders -
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Nomenclature

α Constant describing Kv in function of Pc (J/(m2sK))

β Constant describing Kv in function of Pc (J/(m2sKPa))

ṁsub Sublimation rate (kg/s)

ε Volume fraction of ice (-)

γ Constant describing Kv in function of Pc (1/Pa)

ρice Density of ice (kg/m3)

ARp Constant describing Rp in function of l (1/s)

BRp Constant describing Rp in function of l (1/m)

CV Coefficient of variation (-)

k Ratio of specific heats (-)

Kv Vial heat transfer coefficient (J/(m2sK))

Ldried Dried layer thickness (m)

M Molecular weight (kg/mol)

N Number of samples (-)

npar Number of parameters
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Pc Chamber pressure (Pa)

R2
Y Model coefficient of determination (-)

Rp Dried product mass transfer resistance (m/s)

rd Equivalent radius corresponding to duct opening between chamber and condenser (m)

Rp,0 Constant describing Rp in function of l (m/s)

rv,i Inner radius of the glass vial (m)

rv,n Equivalent radius corresponding to vial neck opening (m)

rv,o Outer radius of the glass vial (m)

Si First order effect (-)

STi Total order effect (-)

Tc Collapse temperature (K)

Te Eutectic temperature (K)

T ′g Glass transition temperature of the maximum freeze-concentrated formulation (K)

Ti Product temperature at sublimation front (K)

Ts Shelf fluid inlet temperature (K)

Ti,crit Critical product temperature (K)

V Filling volume (mL)
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