Technical University of Denmark

Fish egg predation by Baltic sprat and herring: do species characteristics and development stage matter?

Neumann, Viola; Köster, Fritz; Eero, Margit

Published in: Canadian Journal of Fisheries and Aquatic Sciences

Link to article, DOI: 10.1139/cjfas-2017-0105

Publication date: 2017

Document Version Peer reviewed version

Link back to DTU Orbit

Citation (APA): Neumann, V., Köster, F., & Eero, M. (2017). Fish egg predation by Baltic sprat and herring: do species characteristics and development stage matter? Canadian Journal of Fisheries and Aquatic Sciences. DOI: 10.1139/cjfas-2017-0105

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

1	Fish egg predation by Baltic sprat and herring: do species characteristics and
2	development stage matter?
3	
4	
5	Viola Neumann ¹ *, Friedrich W Köster ¹ , Margit Eero ¹
6	
7	
8	1. Technical University of Denmark, National Institute of Aquatic Resources,
9	Kemitorvet, Bygning 202, 2800 Kgs. Lyngby, Denmark
10	
11	e-mail:
12	F.W. Köster: <u>fwk@aqua.dtu.dk</u>
13	M. Eero: <u>mee@aqua.dtu.dk,</u>
14	
15	* Corresponding author: ph.: (+ 45) 35 88 33 00 fax: (+ 45) 35 88 33 33
16	e-mail: <u>vneu@aqua.dtu.dk</u>
17	
18	
19	
20	
21	
22	
23	
24	

25 Abstract

Predation of eggs by clupeids has been identified as a major factor contributing to early life 26 stage mortality of Baltic cod. We used data from ichthyoplankton sampling and clupeid 27 stomach analyses to investigate whether eggs of other fish species are to a similar extent 28 29 subject to predation, and how predation pressure differs between egg development stages. Cod, sprat and rockling eggs dominated in the ichthyoplankton fraction in herring 30 and sprat diet, whereas flounder and dab eggs occurred only occasionally. In spring, cod 31 eggs at advanced development stages were positively and sprat eggs generally negatively 32 selected by both predators, while fish eggs were non-selectively consumed in summer. 33 Predation is suggested to account for a large fraction of mortality of cod eggs at older 34 stages, i.e. those eggs, which have survived the often detrimentally low oxygen 35 concentration in and below the permanent halocline. The consumption rates of sprat eggs 36 at all development stages relative to production rates were considerably lower compared 37 to cod, suggesting that egg predation is of lesser importance for sprat recruitment. 38

39

41

42

40 Keywords: prey selectivity, consumption, recruitment, fish eggs, egg development stages

- - 43
 - 44
 - 45
 - 46
 - 47
 - 48

49 Introduction

Predation on early life stages has been discussed as a major factor controlling recruitment 50 success of marine fish stocks since decades (e.g. Hunter 1984; Sissenwine 1984). There 51 is considerable evidence that predation by invertebrates and fish can be a major source of 52 53 mortality of pelagic fish eggs and in some cases also of larvae (Heath 1992; Legett and DeBlois 1994; Hunter 1982; Brownell 1985). Predation pressure may be high especially in 54 strongly stratified estuarine systems, where early life stages dwell in intermediate water 55 layers utilized by pelagic fish for foraging, for example in the Central Baltic (Köster and 56 Möllmann 2000a), the Black Sea (Prodanov et al. 1997) and the Gulf or St. Lawrence 57 (Swain and Sinclair 2000). However, field studies guantifying the impact of predation are 58 extremely difficult to design (Bailey and Houde 1989) and results are difficult to interpret 59 due to uncertainties in the different factors involved, e.g. predator and prey abundance and 60 fish egg consumption rate by individual predators (Heath 1992). 61

62

The Bornholm Basin, located in the central Baltic Sea, constitutes a small-scale "model" 63 64 ecosystem with strong predator-prey interactions, top-down and bottom-up processes as well as feedback loops (e.g. Rudstam et al. 1994; Flinkman et al. 1998; Möllmann et al. 65 2000). Furthermore, it constitutes the single most important spawning area of the Eastern 66 Baltic cod stock (e.g. Köster et al. 2017) and an important spawning area of sprat (e.g. 67 Voss et al. 2012). Cod, sprat and herring are key components of the pelagic ecosystem in 68 this area (e.g. Cardinale and Arrhenius 2000): cod being the main predator of the clupeids 69 70 sprat and herring, while both of these planktivore species prey, amongst others, on cod early life stages (e.g. Köster and Möllmann 2000a), but also on other ichthyoplankton such 71 as sprat and rockling eggs (Köster and Schnack 1994). 72

Previous studies have described the diet compositions of sprat and herring in the Baltic Sea (e.g. Möllmann et al. 2004,) including fish eggs and larvae (Karaseva et al. 2013). Also, consumption rates of cod eggs (Köster and Möllmann 2000*a*; Neumann et al. 2014) and prey selectivity focusing on zooplankton (e.g. Flinkman et al. 1992; Casini et al. 2004; Bernreuther et al. 2013) have been addressed. However, studies quantifying consumption of different development stages of eggs of different taxa are so far lacking.

79

A stage- rather than size selective predation on cod eggs is suggested for Baltic herring 80 (Wieland and Köster 1996) and supported by findings in the Irish Sea, where sprat and 81 herring consumed more plaice eggs in later stages of development (Ellis and Nash 1997; 82 Segers et al. 2007). In the Baltic Sea, a preference for older egg stages would imply that 83 the impact of egg predation on recruitment of cod (Köster and Möllmann 2000a: Neumann 84 et al. 2017) and sprat (Köster and Möllmann 2000b) may be severe, if predation mortality 85 is mainly acting on the egg stages, which have survived the often detrimental hydrographic 86 87 conditions in the central Baltic Sea (Wieland et al. 1994).

88 In the present study, we investigate the selectivity of fish eggs from different taxa by clupeid predators, amongst others to validate the hypothesis whether the total abundance 89 of fish eggs triggers egg predation as suggested by Köster and Möllmann (2000a), or 90 whether eggs of specific taxa are actively selected from the ichthyoplankton prey field. 91 Next, we verify whether the active selection of older egg stages, earlier reported for herring 92 as a predator, also holds for sprat. Finally, we for the first time quantify stage specific 93 94 predation pressure on cod and sprat eggs to elaborate on the importance of egg predation for early life stage survival and ultimately fish stock recruitment. 95

96

97 Material and Methods

98 **Data**

99 The key datasets used in this paper include i) fish egg abundances as prey, ii) diet compositions of herring and sprat as predators, iii) predator abundances and iv) 100 101 hydrographic conditions within the Bornholm Basin defined by the 60m depth contour (see also Fig. S1¹). The material was derived from altogether 10 surveys, conducted in the 102 Bornholm Basin in 2004-2008, in May/June (spring) and July/August (summer). Fish egg 103 abundances and stomach contents of sprat and herring were sampled in locations shown 104 in Fig. S1¹ and S2¹, respectively, with the number of stations given in Table 1. The details 105 on sampling gears, catching methods, and processing of samples are described in 106 Neumann et al. (2014). The data and calculation procedures involved in deriving fish egg 107 consumption and production rates are described in Neumann et al. (2017). Thus, the 108 material and methods section here focuses on describing the data and analyses specific to 109 this paper, while for description of the data and analyses performed in early studies and 110 further utilized in this paper, the reader is referred to these earlier investigations. 111

112

113 Availability of fish eggs in the prey field

Ichthyoplankton samples were collected with a Bongo-net with 335 µm mesh size on a station grid of 10 x 12.5 nm in the central Bornholm Basin in the Baltic Sea (see Neumann et al. 2017 for further details). The grid consisted of ~45 evenly spaced stations on which double-oblique Bongo hauls that sampled the entire water column down to ca 5 m above the seafloor were conducted. To obtain information on the vertical distribution of fish eggs, tows with a vertically resolving multinet (50 µm mesh size) were conducted on a central

¹ Fig. S1 and S2, showing locations of ichthyoplankton and trawl stations, are available in supplementary.

station of the grid. As density gradients define the depths where eggs dwell, and these 120 density gradients do not change much within the basin (Wieland 1995), a station in the 121 centre of the basin is considered representative of the stratification and abiotic 122 environment of the deep parts of the basin and thereby vertical distribution of fish eggs. 123 The collected samples from both gears were preserved in formaldehyde-seawater solution 124 and later sorted and raised/standardized to obtain horizontal (n*m⁻²) and vertical (n*m⁻³; 5 125 m bins) abundance and distribution from Bongo and multinet samples, respectively. 126 Identification of developmental stage (Ia, Ib, II, III, IV) of fish eggs was based on 127 Thompson and Riley (1981). Dead eggs were separated from viable eggs using the criteria 128 given by Geldmacher and Wieland (1999). 129

130

131 Fish eggs in clupeid diet

Concurrent to the ichthyoplankton field sampling, trawl hauls targeting clupeid schools 132 (when present) were conducted in the central Bornholm Basin. In consideration of diurnal 133 134 vertical migration and feeding patterns of clupeids (e.g. Köster and Schnack 1994; Nilsson 135 et al. 2003), only daytime (15 min after sunrise until 15 min before sunset) data were included. Most of the fish were sampled around or below the permanent halocline located 136 at ~55-70 m depth in the Bornholm Basin (Carstensen et al. 2014). The halocline 137 separates low saline surface water from a denser layer with higher salinity, where pelagic 138 fish concentrate during their daily feeding period (Köster and Schnack 1994). 139

140 Clupeid stomachs were sampled applying a length-stratified sampling system. The 141 stomachs were preserved in 4% borax-buffered formaldehyde seawater solution and later 142 analysed in the lab. After fractioning stomach contents into major taxonomic groups and 143 assessing their relative contribution, the ichthyoplankton components of the stomach contents were analysed in further detail, including determination of taxa and development
stage. Stomach handling followed the procedures described by Köster (1994) and Köster
and Schnack (1994) and data processing to obtain diet compositions is described in
Neumann et al (2014).

148

149 Data analyses

150 Selectivity

Station and cruise specific abundances of fish eggs in the diet and in the prey field, by taxa 151 and development stage, were calculated by allocating Bongo stations within a 6 nm radius 152 from a trawl station as prey field. The 6 nm radius represents the highest spatial resolution 153 possible within these data, as it is approximately half of the distance to the next 154 ichthyoplankton sampling station, at the 10 x 12.5 nm station grid allowing for a unique 155 allocation of most fish sampling hauls to a specific ichthyoplankton station (Table S1²). 156 157 The station-specific estimates for different taxa were subsequently averaged for each 158 cruise, representing seasons and years.

Stations containing no fish eggs in the prey field and in the diet were eliminated. Further, the stomachs with only unidentified eggs were excluded from the analyses, which in some cases resulted in excluding entire stations and no data available for some years (e.g. for sprat in spring 2005 and 2008). This altogether led to a variable number of stations that were included in the selectivity analyses (see Fig. S2).

164

165 The log10 transformed Shorigin Index (Berg 1979) was applied to calculate a prey 166 selectivity index (*Sel*) per prey category (Table S1²),

² Table S1, showing station specific selectivity indices for cod, sprat and rockling eggs, are available in supplementary.

 $Sel = \log_{10} \frac{\% N_i \text{ in the ingested food}}{\% N_i \text{ in the potentially available food}}$

where N_i is the numerical percentage of a given item (e.g. fish eggs of a specific taxa). 168 The prey selectivity indices obtained represent the selection of fish eggs of specific taxa 169 and development stage from the ichthyoplankton prey field, not taking into account other 170 prey components, such as zooplankton. The values for the selectivity indices were 171 categorized into 5 groups: i) prey is strongly selected (≥2.0), ii) prey is selected (<2.0 to 172 (0.50), iii) non-selective feeding (<0.5 to >-0.5), iv) prev is avoided (-0.50 to <-2.0) and v) 173 174 prev is strongly avoided (\leq -2.0). The occurrence of cases in the data where the prev was found in the diet but not in the prey field and vice versa, are represented by (+) and (-), 175 176 respectively (Table S1; Table S2), but such cases were omitted from the analyses of average selectivity values. 177

178

Can. J. Fish. Aquat. Sci. Downloaded from www.nrcresearchpress.com by Danmarks Tekniske Informationscenter - Danish Technical University (DTU) on 12/19/17 For personal use only. This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record.

179 Species and stage specific consumption and production rates

Daily consumption rates by herring and sprat populations were determined for each cruise. 180 based on i) the average amount of fish eggs by taxa and development stage in the diet of 181 herring and sprat, ii) daily ration estimates from gastric evacuation modelling taking into 182 account hydrographic conditions and iii) predator population sizes in the spawning area 183 within the Bornholm Basin (areas enclosed by the 60m depths isobath) estimated from 184 population model outputs and hydroacoustic measurements. The estimation procedures 185 are described in Neumann et al. (2017), here deployed for both cod and sprat egg 186 187 consumption and on stage specific basis.

The egg production was determined for cod eggs as described by Neumann et al. (2017), but additionally considering each egg stage separately. This implied applying temperature dependent stage durations and stage specific egg mortality rates, the latter averaged for each sampling date weighted by the stage durations and finally averaged over all sampling
dates. A similar procedure was applied to obtain estimates of sprat egg production.

The cumulative mortality in a stage and the potential impact of predation are dependent on stage duration. To account for different stage durations (Wieland et al. 1994), daily egg production rates were compared to daily consumption rates on an egg stage level. This comparison was confined to those fish egg taxa for which all parameters to calculate daily production rates (egg stage duration time in relation to ambient temperature) were available, i.e. cod and sprat.

199

200 Results

201 Fish eggs in the prey field

In the Bornholm Basin, eggs of cod and sprat (Fig.1) as well as rockling and to a lesser 202 extent dab and flounder (Table 2) were available as prev for herring and sprat. In spring, 203 sprat eggs were dominant, i.e. on average around 80 % of the total egg abundance, 204 205 followed by cod (~15 %), rockling (>2 %) and flounder (<1 %), and very few dab eggs. In 206 summer, cod eggs (>85 % in abundance) were the main ichthyoplankton prey species available, followed by sprat (~5 %), rockling (~8 %) and dab (<1 %) eggs, while founder 207 eggs were absent. Mean abundance of cod eggs were similar in spring and summer 208 except for stage la, which was more abundant in summer (Fig. 1). Abundance of cod eggs 209 at stage IV was comparatively low, which is explained by hatching taking place at this 210 stage. Rockling egg abundances were highly variable, with a maximum in summer 2005, 211 212 reaching similar abundances as cod eggs, while no eggs were found in spring 2007 (Table 2). 213

214

The vertical distribution of fish eggs is species specific, however, over 90 % of all eggs 215 were distributed in and around the halocline, i.e. the water layer where also the stomach 216 sampling was conducted. Cod eggs were distributed between ~45 m and 85 m water 217 depths with a maximum abundance around 60 m in both seasons. Sprat eggs dwell 218 219 shallower, between the surface and ~65 m depth with highest abundance around 50-55 m in spring and slightly shallower in summer (Fig. 2). Rockling eggs were distributed widely 220 in the water column, with most eggs found around 50-60 m depth. Flounder and dab eggs 221 occurred mostly in 60-70 m depth, with some dab eggs found down to 80 m depth. 222

223

224 Fish eggs in the diet

225 Selectivity of fish eggs

Comparing abundances of fish eggs in the diet and in the prey field showed that in spring, 226 herring selected cod and in some cases rockling eggs and generally avoided sprat eggs 227 (Fig. 3). Sprat ingested only a limited amount of fish eggs in 2005 and 2008, with none 228 229 being identifiable to species level, and in the remaining years selected cod eggs. In 230 summer, herring and sprat fed non-selectively on fish eggs of any species, besides herring avoiding rockling eggs in summer 2004 and 2005. Flounder and dab eggs were rarely 231 identified in the diet, even when present in the prey field. To address the sensitivity of 232 these results to the selection of stations and the averaging procedure adopted, station-233 specific selectivity indices (Table S1) were included in Fig. 3 indicating the lowest and 234 235 highest indices for a given cruise. From the lack of overlapping ranges, it can be 236 concluded, that the main results in terms of positive selection of cod eggs and avoidance of sprat eggs in spring were robust to the in some cases relatively large variability in 237 station-specific indices. 238

Both herring and sprat positively selected cod eggs at stage III, with the exception of sprat in summer (Fig. 4). Egg stages IV and partly II were positively selected as well, while younger cod egg stages were fed upon non-selectively by both predators or even avoided (Fig. 4). Sprat eggs at earlier development stages were mainly avoided by both sprat and herring, while none-selective feeding or sometimes positive selection occurred on egg stage III. Rockling eggs at stage III were also more selected compared to younger stages, which often were found in the field, but not at all in the stomachs (Table S2).

246

247 Daily ration of fish eggs

Daily rations of cod eggs consumed by herring showed highest values for egg stage III in 248 all investigated periods. Daily ration of young cod egg stages (Ia-II) were in general higher 249 in summer than in spring, while the opposite was found for older egg stages (III-IV), with 250 the exception of 2008 (Fig. 5). Daily rations of sprat eggs were generally low, while those 251 few eggs consumed by herring in spring 2007 and 2008 were mainly stage III, similar to 252 253 cod eggs. For sprat as predator, the daily rations of cod eggs were generally highest for stage II and III, both in spring and summer, with the exception of summer 2004 with the 254 highest daily rations of egg stage la. 255

256

257 Fish egg consumption vs. production

The daily cod egg production increased from spring 2004 to 2008, being somewhat higher in summer than in spring. In spring, egg production was generally higher for sprat compared to cod (except in 2008). In summer, egg production by sprat was very low corresponding to the end of the spawning activity (Table 3). Opposite to cod egg production, predator abundances in spring showed a declining trend from 2004 to 2008. Highest total cod egg consumptions by herring was determined for summer 2007 (~63 eggs*10⁹) and spring 2006 (~47 eggs*10⁹) and by sprat for spring 2004 and 2007 (~79 eggs*10⁹). The consumption of sprat eggs was lower compared to cod, despite the high egg production in spring (Table 3). This is in line with the results from the prey selectivity investigation, suggesting that cod eggs are generally positively and sprat eggs negatively selected by both clupeid predators.

Comparison of stage specific cod egg daily production and consumption rates revealed a 269 limited predation pressure on youngest cod egg stages by both predator species in both 270 seasons. In contrast, in three spring situations (2004, 2006 and 2007), consumption of 271 cod eggs at stage III exceeded production rates, which is also the case for egg stage II in 272 2004 (Table 3). This indicates high predation mortality on these older egg stages in these 273 vears, while in spring 2008 the overall predation pressure was low and in 2005 moderate 274 (with <50% of egg stage III production being consumed). Predation pressure on the oldest 275 276 eggs stage IV is estimated to be lower than on egg stage III. However, as cod eggs in the 277 Baltic hatch at stage IV, with development time depending on oxygen concentration at 278 incubation (Wieland et al 1994), the estimates of daily production rates for stage IV are more uncertain. In summer, the predation pressure on cod eggs was generally lower; only 279 in 2007 the estimates of daily consumption rate of cod eggs at stage III exceeded slightly 280 the level of production, and in 2004 the consumption was estimated to be ~50% of the 281 production (Table 3). 282

For sprat eggs, comparing consumption to production rates revealed a considerably lower predation pressure than on cod eggs in spring, with highest predation pressure in 2006 and 2007, corresponding to 5% of the production of eggs at stage III being consumed, followed by 4% and 1% in 2004 and 2005 (Table 3). The production of egg stage IV was very low in spring 2007, but similar to cod, the egg production estimates in this stage at which hatching occurs are uncertain. In summer 2004 and 2005, the consumed proportion of the stage III egg production was relatively high, i.e. <16%, but the production level at that time is only 5% of that in the main spawning season in spring, rendering this predation impact on overall egg survival to be limited.

292

293 Discussion

294 Ichthyoplankton in clupeid diet

Both herring and sprat mainly preyed upon cod and sprat eggs, and to a lesser degree on 295 rockling eggs, while flounder and dab eggs were present in the diet only in small numbers 296 confirming earlier results (Köster and Schnack 1994; Köster and Möllmann 2000a). In 297 contrast to cod eggs, low numbers of cod larvae and fish larvae in general were detected 298 in herring and sprat diets. This corroborates earlier findings, which explained this by a 299 limited vertical overlap between the preferred medium-sized to larger larvae inhabiting the 300 301 upper water layers above the halocline and the clupeids concentrating in deeper layers during the daily feeding period (Köster and Schnack 1994). Along these overall patterns, a 302 high variability in both composition and quantity of ichthyoplankton in sprat and herring diet 303 is evident (Neumann et al. 2014), both within a cruise as well as between seasons and 304 305 years.

306

307 Species selectivity

Cod eggs were generally positively and sprat eggs negatively selected/ avoided in spring, which could partly be related to the vertical overlap of predator and prey (Neumann et al. 2014) rather than direct prey selectivity from a common prey field. In our data, the catching

depth of the clupeids matches to a large extent the vertical distribution of cod and sprat 311 eggs (Fig. 6). However, ideally, one would also need to consider at which depth the 312 clupeids had actually been feeding prior capturing, which is unfortunately not possible with 313 present technology. Sprat eggs are usually distributed in the upper part of the halocline 314 315 (Fig. 6). Cod eggs float in the central and lower part and below the halocline with environmental conditions allowing successful egg development, i.e. a salinity of >11psu 316 and an oxygen concentration of >2 ml l⁻¹ (Nissling 1994; Wieland et al. 1994; Westin et al. 317 1991). Feeding of clupeids during day time takes place in the same water layer (Hinrichs 318 1986; Köster and Schnack 1994; Stepputtis et al. 2011), apart from a fraction of clupeids 319 staying in uppermost water layers also during daytime (Fig. 6). 320 A consistent positive selectivity of cod eggs and an avoidance of sprat eggs during spring 321 cruises imply that the hypothesis that the total abundance of fish eggs triggers selectivity 322 of cod eggs, suggested by Köster and Möllmann (2000a) is not confirmed in this study. If 323 predation on sprat eggs, which are far more abundant than cod eggs, would trigger 324 325 clupeids also to forage on cod eggs, opposite selectivity indices for the two prey species 326 would not be expected. This expectation is independent of whether the difference in

The apparent positive selectivity of cod compared to sprat eggs could in principal also be 328 related to a size difference, i.e. cod eggs being larger than sprat eggs (e. g. Nissling et al. 329 2003). Earlier studies on cod and plaice eggs in the North Sea showed, that egg size was 330 correlated with predation mortality (Rijnsdorp and Jaworski 1990). Herring are visual 331 332 feeders, at least in situations with sufficient light conditions (e. g. Batty et al. 1990; Thetmever and Kils 1995), selecting for larger items (Dalpadado et al. 2000) with greater 333 energy content (Leggett and DeBlois 1994) due to their better visibility (Wieland and 334

selectivity is real or caused by different overlap of predator and prev.

327

335 Köster 1996; Zaret and Kerfoot 1975).

In summer, cod eggs were non-selectively consumed, while sprat eggs, in contrast to 336 337 spring, were not avoided and in some cases even positively selected (Table S1). This can be explained by the majority of clupeids being distributed above the cod egg layer dwelling 338 339 in water depths were sprat eggs are more abundant (Fig. 6). This supports earlier findings that depth, in addition to turbidity and time of day, influence prey detection (Baily and 340 Houde 1989). Rockling eggs were occasionally positively selected by both predators, 341 which may be related to the oil droplet in the rockling eggs enhancing their visibility 342 compared to eggs of other species. 343

Some occasions were encountered when prey was present in the diet but not in the field or 344 vice versa, which could represent a strong selectivity or avoidance, respectively. These 345 occasions, possibly also related to sampling issues, were only indicated by "+" or "-"(Table 346 S1, S2) instead of a guantitative index value. When fish eggs were found in the diet, but 347 not in the field, the predator may have been feeding in a nearby - albeit not sampled - area 348 349 with higher egg abundances before they were caught in the proximity of the reference 350 ichthyoplankton station. The small-scale vertical predator prey overlap is neither considered in the selectivity index, due to uncertainties in the exact depth distribution of 351 clupeids feeding prior to catching. Here our assumption is that clupeids are able to 352 optimise their vertical position within and around the halocline, the water layer in which 353 >90% of the fish eggs are distributed. Horizontal small-scale variability in egg abundance 354 can as well cause a mis-match between predator and prey, however, there is no indication 355 356 from the standard ichthyoplankton surveys that such variability is high, i.e. there are hardly extreme outliers encountered (Neumann et al. 2014). 357

358 The determined average selectivity indices and conclusions on selectivity of different egg

taxa appear to be robust to the deployed data averaging procedure, as the selectivity patterns from the indices by individual stations were mostly consistent with cruise-specific average selectivity, despite the in some cases considerable variability between stations (Fig. 3, Table S1).

363

364 Selectivity of egg development stages

Apart from size, better visibility may also be related to strong pigmentation that occurs within advanced egg development stages. In fact, Wieland and Köster (1996) demonstrated that cod egg selectivity by herring was related to better visibility of advanced egg stages rather than cod egg size. This is supported in the present study, as smaller sprat and rockling eggs in advanced development stage were in some cases selected similarly or even more than larger cod eggs at early development stages.

Both predators preferred advanced egg stages of cod, especially development stage III, but also stage IV and in certain occasions stage II. The relatively higher selectivity of egg stage III compared to younger stages is also apparent for sprat and rockling eggs. Eggs change their buoyancy during development (Wieland et al. 2000), resulting in a slightly deeper distribution of more developed eggs stages, but well within the range of vertical movement of both sprat and herring during their daily feeding period.

Depending on prey availability and density, herring can switch between different feeding modes: biting at low prey concentrations; biting, gulping and filtering at intermediate prey concentrations, and mainly filtering at high prey concentrations (Gibson and Ezzi 1990). Sprat, in contrast, is known as a strict selective/ particulate feeder that usually do not filterfeed (Bernreuther 2008; Möllmann et al. 2004), apart from at low light intensities (Bernreuther et al. 2013) or high turbidity (Falkenhaug and Dalpadado 2014). Visibility is the best explanation for preferring later stages of egg development for both sprat and herring, which is consistent with previous studies conducted in the Baltic Sea (Bernreuther et al. 2013; Wieland and Köster 1996) as well as in the North Sea (Thompson and Riley 1981; Segers et al. 2007) and the Irish Sea (Ellis and Nash 1997).

387

388 Impact of predation on egg survival

The predation pressure on cod eggs was found to be considerably higher than on sprat eggs. This can be explained by a pronounced vertical overlap between cod eggs and both clupeid predators in spring. The vertical overlap between predator and prey is defined by hydrographic conditions, with higher impact during stagnation period when insufficient oxygen concentrations prevent clupeids to dwell in bottom water layers, i.e. below the water depths of highest cod egg concentrations (Köster and Möllmann 2000a; Köster et al. 2005).

A pronounced difference in the vertical distribution of sprat and herring is not obvious in 396 397 spring, as both clupeid species avoid the cold intermediate winter water layers, either staying in shallow water layers (above 30m) or in and below the halocline (below 50m) 398 (Fig. 6), with the maximum depth depending on the oxygen concentration in the bottom 399 water (Orlowski 1999; Stepputtis et al. 2011). In summer, herring tend to stay higher up in 400 the water column than cod eggs (Fig. 6) exerting a more variable, moderate to high 401 predation impact. Sprat is even shallower distributed than herring, where its main prev 402 species, i.e. cladocerans are found (Neumann et al. 2014) explaining the low consumption 403 404 of fish eggs in general and cod eggs in particular. Sprat as a predator is generally of less importance in summer due to lower abundance in the area, having largely left the basin 405 after spawning. 406

In some occasions the total consumption of cod eggs exceeded egg production rates in our estimates, e.g. in spring 2004. This discrepancy has also been reported in earlier studies (Köster and Möllmann 2000a), and is in fact substantially reduced by Neumann et al. (2017) and in the present study. However, some mismatch still being present in some occasions indicates either an overestimation of the egg consumption or an underestimation of the egg production.

A direct measure of uncertainty of these estimates is extremely difficult to obtain, due to 414 complex calculation procedures involving various steps of data rising and combination of 415 different types of data and model applications. Thus, sensitivity analyses are considered 416 the most feasible approach for evaluating the impact of uncertainties involved in the 417 estimation procedures. These have partly been conducted and discussed by Neumann et 418 al. (2017) suggesting that the main conclusions from the previous and the present study in 419 terms of the relatively high predation on cod eggs compared to sprat eggs, with the highest 420 421 predation impact on older egg stages, are robust against the uncertainties considered. A 422 dedicated sensitivity study would be required to quantify the impact of various 423 uncertainties associated with input data and individual steps in the complex estimation procedures. This would be useful for defining future focus areas for this type of research. 424 where possible refinements would be most beneficial in terms of improving the precision of 425 predation estimates. However, quantifying potential uncertainties would by itself not 426 427 improve the estimates of most likely levels of predation pressure possible to obtain 428 presently, which are in this paper based on state of the art monitoring data and scientific knowledge and models available guiding the methodological choices and assumptions at 429 different calculation steps. 430

431 Our results clearly demonstrate that predation impact on sprat eggs is much lower than on cod eggs, also during main spawning season in spring, confirming earlier results from the 432 433 1990's (Köster and Möllmann 2000b). However, the relative contribution of predation to total sprat egg mortality is variable and may be at times high (Voss et al. 2012). 434 435 Furthermore, the shorter spawning season of sprat in spring-early summer implies that all spawned eqgs are exposed to a relatively higher eqg predation in spring compared to 436 summer, which is not the case for cod. On the other hand, cod egg development time (3) 437 weeks on average at 4 °C, Wieland et al. 1994 or 12 days at 9 °C, Nissling 2004) is longer 438 than for sprat (~7 days at 9 °C, e. g. Nissling 2004), resulting in a longer time of exposure 439 to predation. The Bornholm Basin is only one of the main spawning areas of sprat in the 440 central Baltic, while egg predation in more eastern spawning areas of the Gdansk Deep 441 and Gotland Basin is even less pronounced than in the Bornholm Basin (Geldmacher 442 1999). This difference between basins has been explained by a combination of deviating 443 prey availability and light intensity in the dwelling depth of clupeids during their daily 444 445 feeding period reducing the ability to actively select fish eggs (Köster and Möllmann 446 2000b).

A certain predatory impact by clupeids on rockling egg survival can also not be ruled out, due to a similar vertical distribution with cod eggs and a similar overall egg development time, i.e. from spawning to hatching (Battle 1930). As temperature related stage specific egg development rates are not available for this species, egg production estimates cannot be calculated and the impact of the predation not determined.

The stage specific predation on older cod egg development stages implies a higher impact of predation on cod recruitment than formerly thought, as those eggs at later development stages have already survived two critical phases. The first phase is the fertilisation of eggs,

which depends on salinity concentrations (Plikshs et al. 1993). Next, egg survival depends 455 on ambient oxygen levels. In an experimental study on daily egg mortality rates as a 456 function of temperature (2 to 7 °C) and oxygen concentration (2 to 8 ml O_2 l^{-1}), which 457 resembles conditions in the central Baltic spawning area of cod, two phases of increased 458 459 mortality were found (Wieland et al. 1994); first, during gastrulation (at stage lb) and before closure of the blastoporus (transition to stage II), and second, prior to and potentially 460 initiating hatching at stage IV. Thus eggs at stage II and III have a higher chance of 461 survival than younger egg stages. Consequently a pronounced predation by sprat and 462 herring on this egg stage may have a strong impact on egg survival and ultimately on cod 463 recruitment. 464

A key message from the present study is that not only specific life stages, but also specific 465 development stages within a life stage may be much more vulnerable to predation than 466 others. Investigating prey selectivity by pelagic fish to delineate prey preferences has 467 proven more difficult than expected, as predators obviously utilise variability in small scale 468 469 spatial distribution of the prey to optimise food intake, a process described by Frank and 470 Leggett (1984) for demersal predators, but difficult to resolve with standard sampling techniques for pelagic fish. Furthermore, variation in feeding behaviour, e.g. switching 471 between raptorial and filter feeding depending on prey type, behaviour and density as well 472 as visibility and hydrographic conditions (Bailey and Houde 1989), render field based 473 investigations of prey selectivity and preferences of pelagic fish difficult. This suggests that 474 direct observations or experimental studies are needed to determine prey preferences of 475 pelagic fish. 476

477

478 Acknowledgements

This study is part of the Joint Baltic Sea research and development programme (BONUS, 479 Art 185) projects, integrating spatial processes into ecosystem models for sustainable 480 utilisation of fish resources (INSPIRE) and Biodiversity changes-causes, consequences 481 and management implications (BIO-C3); funded by the European Union's Seventh 482 483 Framework Programme for Research, Technological Development and Demonstration and Innovation Fund Denmark. The authors are grateful to the RV Alkor crew and supporting 484 scientific staff. We would also like to thank Matthias Schaber, Christoph Petereit and 485 anonymous reviewers of earlier versions of this paper whose comments were valuable 486 contributions to this work. 487

488

489 **References**

- Bailey, K.M. and Houde, E.D. 1989. Predation on eggs and larvae of marine fishes and the
 recruitment problem. Adv. Mar. Biol. 25:1-83.
- Battle, H.J. 1930. Spawning periodicity and embryonic death rate of *Enchelyopus cimbrius*(L.) in Passamaquoddy bay. Contrib. Can. Biol. Fish. **5**: 361-380.
- Batty, R.S., Blaxter, J.H.S., and Richard, J.M. 1990. Light intensity and the feeding of
 herring, *Clupea harengus*. Mar. Biol. **107**: 383–388.

Berg, J. 1979. Discussion of Methods of Investigating the Food of Fishes, with Reference
 to a Preliminary Study of the Prey of *Gobiusculus flavescens* (Gobiidae).
 Mar. Biol. **50**: 263-273. doi:10.1007/BF00394208

Bernreuther, M., Herrmann, J.-P., and Temming A. 2008. Laboratory experiments on the
gastric evacuation of juvenile herring (*Clupea harengus* L.). J. Exp. Mar.
Biol. Ecol. **363**: 1-11. doi.org/10.1016/j.jembe.2008.05.012

- 502 Bernreuther, M., Schmidt, J., Stepputtis, D., and Temming, A. 2013. Vertically resolved 503 prey selectivity and competition of Baltic herring *Clupea harengus* and 504 sprat *Sprattus sprattus*. Mar. Ecol. Prog. Ser. **489**: 177–195. 505 doi:10.3354/meps10405
- 506 Brownell, C.L. 1985. Laboratory analysis of cannibalism by larvae of the cape anchovy 507 *Engraulis capensis*. Trans. Am. Fish. Soc. **114**: 512-518.
- Cardinale, M., and Arrhenius, F. 2000. The influence of stock structure and environmental
 conditions on the recruitment process of Baltic cod estimated using a
 generalized additive model. Can. J. Fish. Aquat. Sci. 57: 2402–2409.
 doi: 10.1139/f00-221
- Carstensen, J., Andersen, J., Gustafsson, B.B., Conley, D.J. 2014. Deoxygenation of the
 Baltic Sea during the last century. PNAS 111(15): 5628-5633.
- Casini, M., Cardinale, M., and Arrhenius, F. 2004. Feeding preferences of herring (*Clupea harengus*) and sprat (*Sprattus sprattus*) in the southern Baltic Sea. ICES
 J. Mar. Sci. **61**: 1267–1277. doi:10.1016/j.icesjms.2003.12.011
- Dalpadado, P., Ellertsen, B., Melle, W., and Dommasnes, A. 2000. Food and feeding
 conditions of Norwegian spring-spawning herring (*Clupea harengus*)
 through its feeding migrations. ICES J. Mar. Sci. 57: 843–857.
- Ellis, T., and Nash, R.D.M. 1997. Predation by sprat and herring on pelagic fish eggs in a
 plaice spawning area in the Irish Sea. J. Fish Biol. **50**: 1195–1202.
 doi:10.1111/j.1095-8649.1997.tb01647.x
- Falkenhaug T., and Dalpadado, P. 2014. Diet composition and food selectivity of sprat
 (*Sprattus sprattus*) in Hardangerfjord, Norway, Mar. Biol. Res. 3: 203215. doi:10.1080/17451000.2013.810752

526	Flinkman, J., Vuorinen, I., and Aro, E. 1992. Planktivorous Baltic herring (Clupea
527	harengus) prey selectively on reproducing copepods and cladocerans.
528	Can. J. Fish. Aquat. Sci. 49 : 73-77. 10.1139/f92-008
529	Flinkman, J., Aro, E., Vuorinen, I., and Viitasalo, M. 1998. Changes in northern Baltic
530	zooplankton and herring nutrition from 1980s to 1990s: Top-down and
531	bottom-up processes at work. Mar. Ecol. Prog. Ser. 165 : 127–136.
532	Frank, K.L., and Leggett, W.C. 1984. Selective exploitation of capelin (Mallotus vilosus)
533	eggs by winter flounder (Pseudopleuronectes americanus): caplin egg
534	mortality rates, and contribution of egg energy to the annual growth of
535	flounder. Can. J. Fish. Aquat. Sci. 41 : 1294-1302. 10.1139/f84-158
536	Geldmacher, A., and Wieland, K. 1999. Implications of mechanical deformation and
537	formaldehyde preservation for the identification of stage-specific
538	characteristics of Baltic cod eggs. J. Appl. Ichthyol. 15: 75–79.
538 539	characteristics of Baltic cod eggs. J. Appl. Ichthyol. 15 : 75–79. doi: 10.1046/j.1439-0426.1999.00093.x
539	doi: 10.1046/j.1439-0426.1999.00093.x
539 540	doi: 10.1046/j.1439-0426.1999.00093.x Gibson, R.N., and Ezzi, I.A. 1990. Relative importance of prey size and concentration in
539 540 541	doi: 10.1046/j.1439-0426.1999.00093.x Gibson, R.N., and Ezzi, I.A. 1990. Relative importance of prey size and concentration in determining the feeding behaviour of the herring <i>Clupea harengus</i> . Mar.
539 540 541 542	doi: 10.1046/j.1439-0426.1999.00093.x Gibson, R.N., and Ezzi, I.A. 1990. Relative importance of prey size and concentration in determining the feeding behaviour of the herring <i>Clupea harengus</i> . Mar. Biol. 107 : 357–362.
539 540 541 542 543	 doi: 10.1046/j.1439-0426.1999.00093.x Gibson, R.N., and Ezzi, I.A. 1990. Relative importance of prey size and concentration in determining the feeding behaviour of the herring <i>Clupea harengus</i>. Mar. Biol. 107: 357–362. Heath M.R. 1992. Field investigations of the early life stages of marine fish, Adv. Mar. Biol.
539 540 541 542 543 544	 doi: 10.1046/j.1439-0426.1999.00093.x Gibson, R.N., and Ezzi, I.A. 1990. Relative importance of prey size and concentration in determining the feeding behaviour of the herring <i>Clupea harengus</i>. Mar. Biol. 107: 357–362. Heath M.R. 1992. Field investigations of the early life stages of marine fish, Adv. Mar. Biol. 28: 1-174. doi.org/10.1016/S0065-2881(08)60039-5
539 540 541 542 543 544 545	 doi: 10.1046/j.1439-0426.1999.00093.x Gibson, R.N., and Ezzi, I.A. 1990. Relative importance of prey size and concentration in determining the feeding behaviour of the herring <i>Clupea harengus</i>. Mar. Biol. 107: 357–362. Heath M.R. 1992. Field investigations of the early life stages of marine fish, Adv. Mar. Biol. 28: 1-174. doi.org/10.1016/S0065-2881(08)60039-5 Hinrichs, R. 1986. Nahrungsuntersuchungen und diurnaler Rhythmus der
539 540 541 542 543 544 545 546	 doi: 10.1046/j.1439-0426.1999.00093.x Gibson, R.N., and Ezzi, I.A. 1990. Relative importance of prey size and concentration in determining the feeding behaviour of the herring <i>Clupea harengus</i>. Mar. Biol. 107: 357–362. Heath M.R. 1992. Field investigations of the early life stages of marine fish, Adv. Mar. Biol. 28: 1-174. doi.org/10.1016/S0065-2881(08)60039-5 Hinrichs, R. 1986. Nahrungsuntersuchungen und diurnaler Rhythmus der Nahrungsaufnahme von Hering und Sprott der Ostsee. Fisch.

Hunter, J.R. 1984. Inferences regarding predation on the early life stages of cod and other
fishes. In "The Propagation of Cod" (eds. E. Dahl, D. D. Danielssen, E.
Moksness and P. Solemdal). Flødevigen Rapportseries 1: 533-562.

Karaseva, E.M., Patokina, F.A., and Kalinina, N.A. 2013. Fish Eggs and Larvae in the Diet 553 554 of Herring Clupea harengus membras Linnaeus, 1758 and the Sprat Sprattus sprattus balticus (Schneider, 555 1904) (Clupeidae) in the Southeastern Baltic Biol. 39: 350-356. 556 Sea. Russ. J. Mar. doi:10.1134/S1063074013050040 557

Köster, F.W. 1994. Der Einfluss von Bruträubern auf die Sterblichkeit früher Jugendstadien
 des Dorsches (*Gadus morhua*) und der Sprotte (*Sprattus sprattus*) in der
 zentralen Ostsee. Berichte Institut für Meereskunde, Kiel **261**: 286 pp.

Köster, F.W., and Möllmann, C. 2000a. Trophodynamic control by clupeid predators on
 recruitment success in Baltic cod? ICES J. Mar. Sci. 57: 310–323.
 doi:10.1006/jmsc.1999.0528.

Köster, F.W., and Möllmann, C. 2000b. Egg cannibalism in Baltic sprat *Sprattus sprattus*.
 Mar. Ecol. Prog. Ser. **196**: 269-277. doi:10.3354/meps196269

Köster, F.W., and Schnack, D. 1994. The role of predation on early life stages of cod in the
 Baltic. Dana 10: 179-201.

Köster, F.W., Huwer. B., Hinrichsen, H.-H., Neumann, V., Makarchouk, A., Eero, M., V.
Dewitz, B., Hüssy, K., Tomkiewicz, J., Margonski, P., Temming, A.,
Hermann, J.-P., Oesterwind, D., Dieking, J., Kotterbra, P., and Plikshs,
M. 2017. Eastern Baltic cod recruitment revisited – dynamics and
impacting factors. ICES J. Mar. Sci. **74**: 3–19.

doi.org/10.1093/icesjms/fsw172

573

574	Köster, F.W., Möllmann, C., Hinrichsen, HH., Wieland, K., Tomkiewicz, J., Kraus, G.,
575	Voss, R., Markarchouk, A., MacKenzie, B.R., St.John, M.A., Schnack, D.,
576	Rohlf, N., Linkowski, T., and Beyer, J.E. 2005. Baltic cod recruitment -
577	the impact of climate variability on key processes. ICES J. Mar. Sci.
578	62:1408–1425. doi:10.1016/j.icesjms.2005.05.004
579	Leggett, W.C., and DeBlois, E. 1994. Recruitment in marine fishes: is it regulated by
580	starvation and predation in the egg and larval stages? Neth. J. Sea Res.
581	32 : 119–134. doi.org/10.1016/0077-7579(94)90036-1
582	Möllmann, C., Kornilovs, G., and Sidrevic, L. 2000. Long-term dynamics of main
583	mesozooplankton species in the central Baltic Sea. J Plankton Res. 22:
584	2015–2038. doi.org/10.1093/plankt/22.11.2015
585	Neumann, V., Köster, F.W., Schaber, M., and Eero M. 2014. Recovery in eastern Baltic
586	cod: is increased recruitment caused by decreased predation on early life
587	stages? ICES J. Mar. Sci. 71 : 1382–1392.
588	doi.org/10.1093/icesjms/fsu112.
589	Neumann, V., Schaber, M., Eero, M., Böttcher, U., and Köster, F.W. 2017. Quantifying
590	predation on Baltic cod early life stages. Can. J. Fish. Aquat. Sci. 74:
591	833-842. doi: 10.1139/cjfas-2016-0215
592	Nilsson, L. A. F., Thygesen, U. H., Lundgren, B., Nielsen, B. F., Nielsen, J. R., and Beyer,
593	J. E. 2003. Vertical migration and dispersion of sprat (Sprattus sprattus)
594	and herring (Clupea harengus) schools at dusk in the Baltic Sea. Aquat.
595	Liv. Res. 16 : 317–324.

Nissling, A. 1994. Survival of eggs and yolk sac larvae of Baltic cod (*Gadus morhua*) at
 low oxygen levels in different salinities. ICES Mar. Sci. Symp. **198**: 626–
 631.

Nissling, A. 2004. Effects of temperature on egg and larval survival of cod (*Gadus morhua*)
 and sprat (*Sprattus sprattus*) in the Baltic Sea – implications for stock
 development. Hydrobiologia **514**: 115-123.

602 doi:10.1023/B:hydr.0000018212.88053.aa

Nissling, A., Müller, A., and Hinrichsen, H.-H. 2003. Specific gravity and vertical
distribution of sprat eggs in the Baltic Sea. J. Fish Biol. 63: 280–299.
doi:10.1046/j.1095-8649.2003.00139.

Orlowski, A. 1999. Acoustic studies of spatial gradients in the Baltic: implications for fish
 distribution. ICES J. of Mar. Sci. 56: 561–570.
 doi.org/10.1006/jmsc.1999.0484

Plikshs, M., Kalejs, M., and Grauman, G. 1993. The influence of environmental conditions
 and spawning stock size on the year-class strength of the eastern Baltic
 cod. ICES CM J: 22.

Prodanov, K., Mikhailov, K., Daskalov, G.M., Maxim, C., Chashchin, A., Arkhipov, A.,
Shlyakhov, V., and Ozdamar. E. 1997. Environmental management of
fish resources in the Black Sea and their rational exploitation. GFCM
Studies and Reviews 69: 178 pp.

Rijnsdorf, A.D., and Jaworski, A. 1990. Size-selective mortality in plaice and cod eggs: a
new method in the study of egg mortality. J. Cons. Int. Explor. Mer. 47:
256-263.

Rudstam L.G., Aneer, G., and Hildén, M. 1994. Top-down control in the pelagic Baltic 619 ecosystem. Dana 10: 105-129. 620 Segers, F.H.I.D., Dickey-Collas, M., and Rijnsdorp, A.D. 2007. Prey selection by North 621 Sea herring (Clupea harengus) with special reference to fish eggs. ICES 622 623 J. Mar. Sci. 64: 60–68. doi:10.1093/icesjms/fsl002. Sissenwine, M.P. 1984. Why do fish populations vary? In Exploitation of Marine 624 Communities, pp. 59–94. Ed. by R. M. May. Springer Verlag, Berlin. 366 625 626 pp. Stepputtis, D., Hinrichsen, H-H., Böttcher, U., Götze, E., and Morholz, V. 2011. An 627 example of meso-scale hydrographic features in the central Baltic Sea 628 and their influence on the distribution and vertical migration of sprat, 629 Sprattus sprattus balticus (Schn.). Fish. Oceanogr. 20: 82-88. 630 doi:10.1111/j.1365-2419.2010.00567.x. 631 Swain, D.P., and Sinclair, A.F. 2000. Pelagic Fishes and the Cod Recruitment Dilemma. 632 Can. J. Fish. Aquat. Sci. 57: 1321-1325. doi:10.1139/f00-104. 633 634 Thetmeyer, H., and Kils, U. 1995: To see and not to be seen: the visibility of predator and prey with respect to feeding behaviour. Mar. Ecol. Prog. Ser. 126: 1-8. 635 Thompson, B.M., and Riley, J.D. 1981. Egg and larval development studies in the North 636 Sea cod (Gadus morhua L). Rapp. p.-v. réun. - Cons. int. explor. mer. 637 178: 553-559. 638 Voss, R., Petereit, C., Schmidt, J.O., Lehmann, A., Makarchouk, A., and Hinrichsen, H.-H. 639 640 2012. The spatial dimension of climate-driven temperature change in the Baltic Sea and its implication for cod and sprat early life stage survival. J 641 Mar. Sys. 100: 1-8. doi.org/10.1016/j.jmarsys.2012.03.009 642

Westin, L., and Nissling, A. 1991. Effects of salinity on spermatozoa motility, percentage of
fertilized eggs and egg development of Baltic cod (*Gadus morhua* L.),
and implications for cod stock fluctuations in the Baltic. Mar. Biol. **108**: 59.

Wieland, K., and Köster, F.W. 1996. Size and visibility of Baltic cod eggs with reference to
size-selective and stage-dependent predation mortality. J. Appl. Ichthyol.
12: 83–89. doi: 10.1111/j.1439-0426.1996.tb00067.x

650 Wieland, K., Waller, U., and Schnack, D. 1994. Development of Baltic cod at different 651 levels of temperature and oxygen content. Dana **10**: 163-177.

Wieland, K., Jarre-Teichmann, A., and Horbowa, K. 2000. Changes in the timing of
spawning of Baltic cod: possible causes and implications for recruitment.
ICES J Mar. Sci. 57: 452–464. doi:10.1006/jmsc.1999.0522

Zaret, T.M., and Kerfoot, W.C. 1975: Fish predation on *Bosmina longirostris*: Body-size vs.

visibility selection. Ecology 56: 232-237. doi: 10.2307/1935317

656

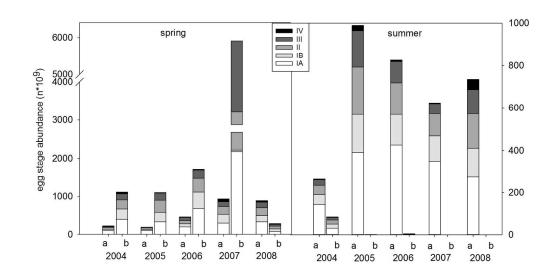
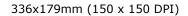



Figure 1: Egg abundance of cod (a) and sprat (b) at development stages I-IV in the Bornholm Basin with water depth of >60 m in spring (left, scale max. $6000 n*10^9$) and summer (right, scale max. $1000 n*10^9$) 2004-2008.

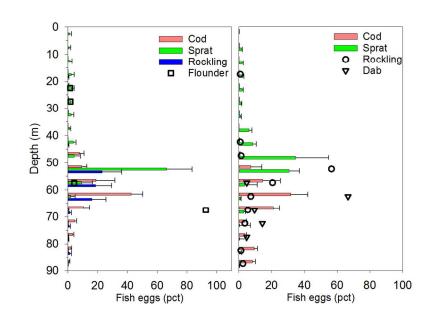


Figure 2: Vertical distribution of fish eggs in the Bornholm Basin as percentages (pct) of eggs at different depths, including standard errors, based on average distributions observed in 2004-2008. Standard errors are shown only where data from at least 3 samples were available.

274x160mm (150 x 150 DPI)

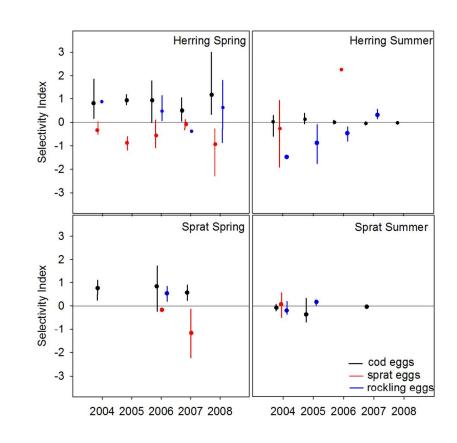


Figure 3: Shorigin Selectivity Indices for different fish egg taxa consumed by sprat and herring in spring and summer 2004-2008. The vertical lines represent the ranges (minimum and maximum) of the values determined for individual stations, with the mean (dots) indicating the average prey selectivity.

209x296mm (150 x 150 DPI)

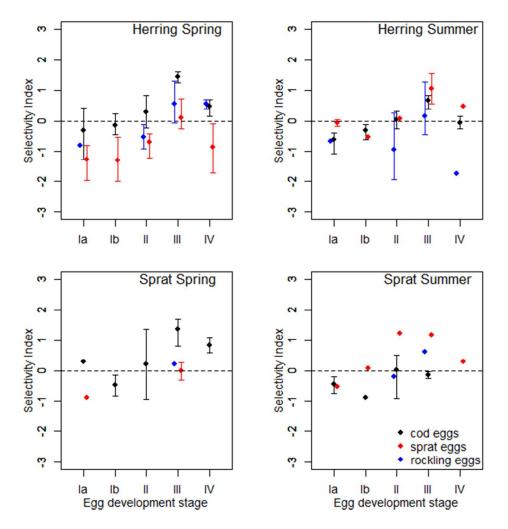


Figure 4. Shorigin Selectivity Indices for different development stages (Ia-IV) of eggs of different taxa consumed by sprat and herring in spring and summer. The vertical lines represent the ranges (minimum and maximum) of the values determined for individual cruises in different years, with the mean (dots) indicating the average prey selectivity.

152x152mm (100 x 100 DPI)

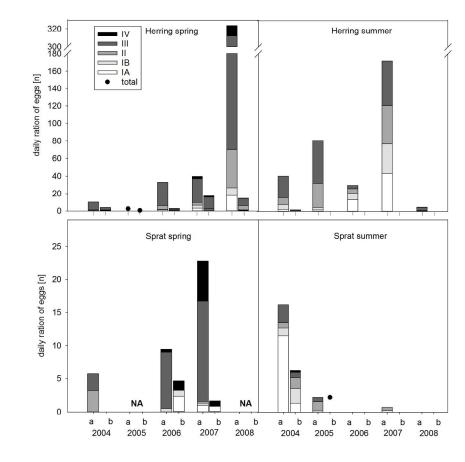


Figure 5: Daily rations at different egg stages (stacked bar) of cod (a) and sprat (b) by individual herring and sprat in spring and summer 2004-2008. NA: Eggs could not be identified to species; Black dots: Eggs could not be staged and indicate the total numbers of cod (a) or sprat eggs (b).

345x447mm (150 x 150 DPI)

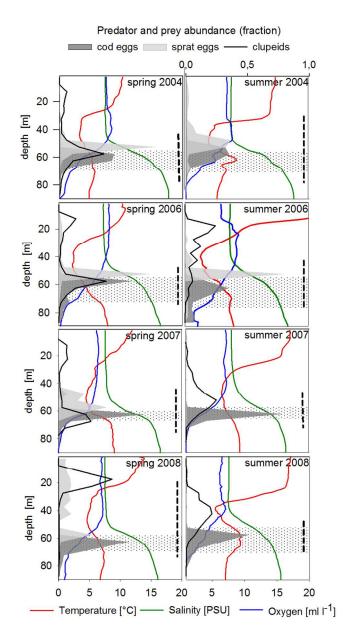


Figure 6: Relative vertical distribution of cod eggs (dark grey area) and sprat eggs (light grey area) as well as clupeid predators (black lines) and hydrographic conditions (coloured lines) in spring and summer 2004-2008. Dotted area: Reproductive volume of cod eggs (≥ 2ml^l oxygen and ≥11 psu). Vertical dashed line (black): Depth range of clupeid catches (with varying depth per station). No data available in 2005 and no vertical clupeid abundances in summer 2004. Sprat eggs were absent in summer 2007 and 2008.

155x291mm (150 x 150 DPI)

_

Table 1: Sampling dates in spring and summer 2004-2008, number of trawl (clupeid stomachs) and Bongo (fish eggs) stations in the Bornholm Basin (\geq 60m water depth) of the Baltic Sea as well as total number of herring and sprat stomachs included for the analysis of egg consumption (total) and egg selectivity. *¹ all eggs were unidentified; *² no eggs ingested by predators but available in the field.

				Ν	umber	of stomach	IS
Cruise data		Number of	of stations	Tot	al	Selection a	analysis
Spring		Trawl	Bongo	Herring	Sprat	Herring	Sprat
	2-4 June 2004	10	37	169	258	105	85
	29-31 May 2005	10	36	287	234	64	*1
	8-10 June 2006	10	35	262	265	232	189
	28 May- 2 June 2007	12	37	168	314	151	87
	7-9 June 2008	14	36	303	167	303	*1
Summer							
	19-21 July 2004	14	28	415	279	385	92
	22-25 July 2005	13	36	386	211	232	86
	27-30 July 2006	12	37	296	51	22	*2
	2-5 August 2007	19	35	459	291	319	44
	23-27 August 2008	12	35	315	65	225	*2

Table 2: Egg abundance $(n*10^9)$ of rockling, dab and flounder in spring and summer in the Bornholm Basin (water depth of >60 m).

		spring	summer	spring	summer	spring	summer
-	year	rockling		dab		flounder	
-	2004	29	22	0,1	1	0,11	0
	2005	41	408	2,4	0	0	0
	2006	101	44	2,1	0,2	0	0
	2007	0	14	0	0	0	0
	2008	45	9	1	0,2	0	0

Table 3: Daily production and consumption of cod (upper part) and sprat eggs (lower part) by herring and sprat populations in spring and summer 2004-2008. NA: eggs could not be identified to stage level.

daily production (n*10 ⁹) abundance consumption (n*10 ⁹) by herring consumption (n*10 ⁹) by spra																			
daily production (n*10 ⁹) abundance					consi	umpti	on (n'	*10 ⁹)	by her	ring	con	sump	otion	(n*10	⁹) by s	sprat			
cod eggs predator (n*10 ⁶)						r (n*10 ⁶)	cod eggs												
	IA	IB	П	Ш	IV			total	la	lb	II	III	IV	total	la	lb	П	Ш	IV
spring						herring	sprat												
2004	39	24	18	8	7	1205	13907	12,7	0,2	0,5	0,9	10,9	0,2	79,5	0	0	44,9	34,6	0
2005	46	24	16	7	1	1335	14328	3,7	NA	NA	NA	NA	NA		only	unide	entifie	d eggs	5
2006	97	55	41	27	6	1420	3357	46,9	2,1	0,5	6,3	37,7	0,4	31,8	0	1,6	0	28,6	1,6
2007	163	175	104	47	44	768	3486	30,5	2,6	2,7	2,2	21	2	79,3	3,6	1,1	1	52,8	20,9
2008	202	124	119	56	24	40	214	12,9	0,8	0,3	1,7	9,7	0,5	(only	unide	entifie	d eggs	5
summer																			
2004	74	31	21	9	2	135	480	5,5	0,3	0,7	1,1	3,3	0	7,8	5,5	0,6	0,4	1,3	0
2005	227	129	113	60	15	55	315	4,5	0,1	0,2	1,5	2,7	0	0,7	0,1	0	0,4	0,2	0
2006	293	118	85	40	4	139	91	4,2	1,9	1,1	0,7	0,5	0	0	0	0	0	0	0
2007	221	93	56	18	2	364	539	62,6	15,9	12	15,9	18,7	0	0,4	0,1	0	0,3	0	0
2008	227	129	104	51	37	130	381	0,6	0	0	0,1	0,5	0	0	0	0	0	0	0
								sprat	eggs										
spring																			
2004	282	546	465	129	37	1205	13907	7,8	1,1	0,4	0,8	5,5	0	0	0	0	0	0	0
2005	231	505	604	152	12	1335	14328	1,2	NA	NA	NA	NA	NA		only	unide	entifie	d eggs	5
2006	466	799	675	168	13	1420	3357	7,1	1	0,4	1,8	3,8	0,1	7,8	2,9	0	0	4,9	0
2007	865	70	2208	405	0	768	3486	23,3	1,3	1,6	0,3	17,5	2,7	2,9	0	0	0	2,9	0
2008	58	162	175	60	17	40	214	1	0	0	0,3	0,6	0		only	unide	entifie	d eggs	5
summer																			
2004	17	33	30	12	2	135	480	2,3	0,2	0,1	0,3	1,5	0,2	3	0,7	1,1	0,8	0,4	0,1
2005	0	0	1	0	0	55	315	0	0	0	0	0	0	0,1	NA	NA	NA	NA	NA
2006	1	1	1	1	0	139	91	0	0	0	0	0	0	0	0	0	0	0	0
2007	0	0	0	0	0	364	539	0	0	0	0	0	0	0	0	0	0	0	0
2008	0	0	0	0	0	130	381	0	0	0	0	0	0	0	0	0	0	0	0

Fish. Aquat. Sci. Downloaded from www.nrcresearchpress.com by Danmarks Tekniske Informationscenter - Danish Technical University (DTU) on 12 nal use only. This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of