
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Jan 01, 2018

Fish egg predation by Baltic sprat and herring: do species characteristics and
development stage matter?

Neumann, Viola; Köster, Fritz; Eero, Margit

Published in:
Canadian Journal of Fisheries and Aquatic Sciences

Link to article, DOI:
10.1139/cjfas-2017-0105

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Neumann, V., Köster, F., & Eero, M. (2017). Fish egg predation by Baltic sprat and herring: do species
characteristics and development stage matter? Canadian Journal of Fisheries and Aquatic Sciences. DOI:
10.1139/cjfas-2017-0105

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/144130854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1139/cjfas-2017-0105
http://orbit.dtu.dk/en/publications/fish-egg-predation-by-baltic-sprat-and-herring-do-species-characteristics-and-development-stage-matter(6cb71da2-cd19-4d6a-a407-09cc3c3a952e).html


 

 

Fish egg predation by Baltic sprat and herring: do species characteristics and 1 

development stage matter? 2 

 3 

 4 

Viola Neumann 1*, Friedrich W Köster 1, Margit Eero 1  5 

 6 

 7 

1. Technical University of Denmark, National Institute of Aquatic Resources,  8 

Kemitorvet, Bygning 202, 2800 Kgs. Lyngby, Denmark 9 

 10 

e-mail:  11 

F.W. Köster: fwk@aqua.dtu.dk 12 

M. Eero: mee@aqua.dtu.dk,  13 

 14 

* Corresponding author: ph.: (+ 45) 35 88 33 00 fax: (+ 45) 35 88 33 33 15 

e-mail: vneu@aqua.dtu.dk 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

Page 1 of 38
C

an
. J

. F
is

h.
 A

qu
at

. S
ci

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

D
an

m
ar

ks
 T

ek
ni

sk
e 

In
fo

rm
at

io
ns

ce
nt

er
 -

 D
an

is
h 

T
ec

hn
ic

al
 U

ni
ve

rs
ity

 (
D

T
U

) 
on

 1
2/

19
/1

7
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



 

 

Abstract 25 

Predation of eggs by clupeids has been identified as a major factor contributing to early life 26 

stage mortality of Baltic cod. We used data from ichthyoplankton sampling and clupeid 27 

stomach analyses to investigate whether eggs of other fish species are to a similar extent 28 

subject to predation, and how predation pressure differs between egg development 29 

stages. Cod, sprat and rockling eggs dominated in the ichthyoplankton fraction in herring 30 

and sprat diet, whereas flounder and dab eggs occurred only occasionally. In spring, cod 31 

eggs at advanced development stages were positively and sprat eggs generally negatively 32 

selected by both predators, while fish eggs were non-selectively consumed in summer. 33 

Predation is suggested to account for a large fraction of mortality of cod eggs at older 34 

stages, i.e. those eggs, which have survived the often detrimentally low oxygen 35 

concentration in and below the permanent halocline. The consumption rates of sprat eggs 36 

at all development stages relative to production rates were considerably lower compared 37 

to cod, suggesting that egg predation is of lesser importance for sprat recruitment. 38 

 39 

Keywords: prey selectivity, consumption, recruitment, fish eggs, egg development stages 40 

 41 
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Introduction 49 

Predation on early life stages has been discussed as a major factor controlling recruitment 50 

success of marine fish stocks since decades (e.g. Hunter 1984; Sissenwine 1984). There 51 

is considerable evidence that predation by invertebrates and fish can be a major source of 52 

mortality of pelagic fish eggs and in some cases also of larvae (Heath 1992; Legett and 53 

DeBlois 1994; Hunter 1982; Brownell 1985). Predation pressure may be high especially in 54 

strongly stratified estuarine systems, where early life stages dwell in intermediate water 55 

layers utilized by pelagic fish for foraging, for example in the Central Baltic (Köster and 56 

Möllmann 2000a), the Black Sea (Prodanov et al. 1997) and the Gulf or St. Lawrence 57 

(Swain and Sinclair 2000). However, field studies quantifying the impact of predation are 58 

extremely difficult to design (Bailey and Houde 1989) and results are difficult to interpret 59 

due to uncertainties in the different factors involved, e.g. predator and prey abundance and 60 

fish egg consumption rate by individual  predators (Heath 1992). 61 

 62 

The Bornholm Basin, located in the central Baltic Sea, constitutes a small-scale “model” 63 

ecosystem with strong predator-prey interactions, top-down and bottom-up processes as 64 

well as feedback loops (e.g. Rudstam et al. 1994; Flinkman et al. 1998; Möllmann et al. 65 

2000). Furthermore, it constitutes the single most important spawning area of the Eastern 66 

Baltic cod stock (e.g. Köster et al. 2017) and an important spawning area of sprat (e.g. 67 

Voss et al. 2012). Cod, sprat and herring are key components of the pelagic ecosystem in 68 

this area (e.g. Cardinale and Arrhenius 2000): cod being the main predator of the clupeids 69 

sprat and herring, while both of these planktivore species prey, amongst others, on cod 70 

early life stages (e.g. Köster and Möllmann 2000a), but also on other ichthyoplankton such 71 

as sprat and rockling eggs (Köster and Schnack 1994).  72 
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Previous studies have described the diet compositions of sprat and herring in the Baltic 73 

Sea (e.g. Mӧllmann et al. 2004,) including fish eggs and larvae (Karaseva et al. 2013). 74 

Also, consumption rates of cod eggs (Köster and Möllmann 2000a; Neumann et al. 2014) 75 

and prey selectivity focusing on zooplankton (e.g. Flinkman et al. 1992; Casini et al. 2004; 76 

Bernreuther et al. 2013) have been addressed. However, studies quantifying consumption 77 

of different development stages of eggs of different taxa are so far lacking.  78 

 79 

A stage- rather than size selective predation on cod eggs is suggested for Baltic herring 80 

(Wieland and Köster 1996) and supported by findings in the Irish Sea, where sprat and 81 

herring consumed more plaice eggs in later stages of development (Ellis and Nash 1997; 82 

Segers et al. 2007). In the Baltic Sea, a preference for older egg stages would imply that 83 

the impact of egg predation on recruitment of cod (Köster and Möllmann 2000a; Neumann 84 

et al. 2017) and sprat (Köster and Möllmann 2000b) may be severe, if predation mortality 85 

is mainly acting on the egg stages, which have survived the often detrimental hydrographic 86 

conditions in the central Baltic Sea (Wieland et al. 1994).  87 

In the present study, we investigate the selectivity of fish eggs from different taxa by 88 

clupeid predators, amongst others to validate the hypothesis whether the total abundance 89 

of fish eggs triggers egg predation as suggested by Köster and Möllmann (2000a), or 90 

whether eggs of specific taxa are actively selected from the ichthyoplankton prey field. 91 

Next, we verify whether the active selection of older egg stages, earlier reported for herring 92 

as a predator, also holds for sprat. Finally, we for the first time quantify stage specific 93 

predation pressure on cod and sprat eggs to elaborate on the importance of egg predation 94 

for early life stage survival and ultimately fish stock recruitment. 95 

 96 
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Material and Methods 97 

Data 98 

The key datasets used in this paper include i) fish egg abundances as prey, ii) diet 99 

compositions of herring and sprat as predators, iii) predator abundances and iv) 100 

hydrographic conditions within the Bornholm Basin defined by the 60m depth contour (see 101 

also Fig. S11). The material was derived from altogether 10 surveys, conducted in the 102 

Bornholm Basin in 2004-2008, in May/June (spring) and July/August (summer). Fish egg 103 

abundances and stomach contents of sprat and herring were sampled in locations shown 104 

in Fig. S11 and S21, respectively, with the number of stations given in Table 1.  The details 105 

on sampling gears, catching methods, and processing of samples are described in 106 

Neumann et al. (2014). The data and calculation procedures involved in deriving fish egg 107 

consumption and production rates are described in Neumann et al. (2017). Thus, the 108 

material and methods section here focuses on describing the data and analyses specific to 109 

this paper, while for description of the data and analyses performed in early studies and 110 

further utilized in this paper, the reader is referred to these earlier investigations.  111 

 112 

Availability of fish eggs in the prey field 113 

Ichthyoplankton samples were collected with a Bongo-net with 335 µm mesh size on a 114 

station grid of 10 x 12.5 nm in the central Bornholm Basin in the Baltic Sea (see Neumann 115 

et al. 2017 for further details). The grid consisted of ~45 evenly spaced stations on which 116 

double-oblique Bongo hauls that sampled the entire water column down to ca 5 m above 117 

the seafloor were conducted. To obtain information on the vertical distribution of fish eggs, 118 

tows with a vertically resolving multinet (50 µm mesh size) were conducted on a central 119 

                                                             
1
 Fig. S1 and S2, showing locations of ichthyoplankton and trawl stations, are available in supplementary. 
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station of the grid. As density gradients define the depths where eggs dwell, and these 120 

density gradients do not change much within the basin (Wieland 1995), a station in the 121 

centre of the basin is considered representative of the stratification and abiotic 122 

environment of the deep parts of the basin and thereby vertical distribution of fish eggs. 123 

The collected samples from both gears were preserved in formaldehyde-seawater solution 124 

and later sorted and raised/standardized to obtain horizontal (n*m-2) and vertical (n*m-3; 5 125 

m bins) abundance and distribution from Bongo and multinet samples, respectively. 126 

Identification of developmental stage (Ia, Ib, II, III, IV) of fish eggs was based on 127 

Thompson and Riley (1981). Dead eggs were separated from viable eggs using the criteria 128 

given by Geldmacher and Wieland (1999). 129 

 130 

Fish eggs in clupeid diet 131 

Concurrent to the ichthyoplankton field sampling, trawl hauls targeting clupeid schools 132 

(when present) were conducted in the central Bornholm Basin. In consideration of diurnal 133 

vertical migration and feeding patterns of clupeids (e.g. Köster and Schnack 1994; Nilsson 134 

et al. 2003), only daytime (15 min after sunrise until 15 min before sunset) data were 135 

included. Most of the fish were sampled around or below the permanent halocline located 136 

at ~55–70 m depth in the Bornholm Basin (Carstensen et al. 2014). The halocline 137 

separates low saline surface water from a denser layer with higher salinity, where pelagic 138 

fish concentrate during their daily feeding period (Köster and Schnack 1994). 139 

Clupeid stomachs were sampled applying a length-stratified sampling system. The 140 

stomachs were preserved in 4% borax-buffered formaldehyde seawater solution and later 141 

analysed in the lab. After fractioning stomach contents into major taxonomic groups and 142 

assessing their relative contribution, the ichthyoplankton components of the stomach 143 
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contents were analysed in further detail, including determination of taxa and development 144 

stage. Stomach handling followed the procedures described by Köster (1994) and Köster 145 

and Schnack (1994) and data processing to obtain diet compositions is described in 146 

Neumann et al (2014). 147 

 148 

Data analyses 149 

Selectivity  150 

Station and cruise specific abundances of fish eggs in the diet and in the prey field, by taxa 151 

and development stage, were calculated by allocating Bongo stations within a 6 nm radius 152 

from a trawl station as prey field. The 6 nm radius represents the highest spatial resolution 153 

possible within these data, as it is approximately half of the distance to the next 154 

ichthyoplankton sampling station, at the 10 x 12.5 nm station grid allowing for a unique 155 

allocation of most fish sampling hauls to a specific ichthyoplankton station (Table S12). 156 

The station-specific estimates for different taxa were subsequently averaged for each 157 

cruise, representing seasons and years.  158 

Stations containing no fish eggs in the prey field and in the diet were eliminated. Further, 159 

the stomachs with only unidentified eggs were excluded from the  analyses, which in some 160 

cases resulted in excluding entire stations and no data available for some years (e.g. for 161 

sprat in spring 2005 and 2008). This altogether led to a variable number of stations that 162 

were included in the selectivity analyses (see Fig. S2). 163 

 164 

The log10 transformed Shorigin Index (Berg 1979) was applied to calculate a prey 165 

selectivity index (Sel) per prey category (Table S12),  166 

                                                             
2
 Table S1, showing station specific selectivity indices for cod, sprat and rockling eggs, are available in supplementary. 
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  ��� = log�	 			
%	�
		��	���	��������	����

%	�
		��	���	�����������	���������	����
 167 

where Ni is the numerical percentage of a given item (e.g. fish eggs of a specific taxa). 168 

The prey selectivity indices obtained represent the selection of fish eggs of specific taxa 169 

and development stage from the ichthyoplankton prey field, not taking into account other 170 

prey components, such as zooplankton. The values for the selectivity indices were 171 

categorized into 5 groups: i) prey is strongly selected (≥2.0), ii) prey is selected (<2.0 to 172 

0.50), iii) non-selective feeding (<0.5 to >-0.5), iv) prey is avoided (-0.50 to <-2.0) and v) 173 

prey is strongly avoided (≤-2.0). The occurrence of cases in the data where the prey was 174 

found in the diet but not in the prey field and vice versa, are represented by (+) and (-), 175 

respectively (Table S1; Table S2), but such cases were omitted from the analyses of 176 

average selectivity values.  177 

 178 

Species and stage specific consumption and production rates  179 

Daily consumption rates by herring and sprat populations were determined for each cruise, 180 

based on i) the average amount of fish eggs by taxa and development stage in the diet of 181 

herring and sprat, ii) daily ration estimates from gastric evacuation modelling taking into 182 

account hydrographic conditions and iii) predator population sizes in the spawning area 183 

within the Bornholm Basin (areas enclosed by the 60m depths isobath) estimated from 184 

population model outputs and hydroacoustic measurements. The estimation procedures 185 

are described in Neumann et al. (2017), here deployed for both cod and sprat egg 186 

consumption and on stage specific basis. 187 

The egg production was determined for cod eggs as described by Neumann et al. (2017), 188 

but additionally considering each egg stage separately. This implied applying temperature 189 

dependent stage durations and stage specific egg mortality rates, the latter averaged for 190 
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each sampling date weighted by the stage durations and finally averaged over all sampling 191 

dates. A similar procedure was applied to obtain estimates of sprat egg production.  192 

The cumulative mortality in a stage and the potential impact of predation are dependent on 193 

stage duration. To account for different stage durations (Wieland et al. 1994), daily egg 194 

production rates were compared to daily consumption rates on an egg stage level. This 195 

comparison was confined to those fish egg taxa for which all parameters to calculate daily 196 

production rates (egg stage duration time in relation to ambient temperature) were 197 

available, i.e. cod and sprat.  198 

 199 

Results 200 

Fish eggs in the prey field 201 

In the Bornholm Basin, eggs of cod and sprat (Fig.1) as well as rockling and to a lesser 202 

extent dab and flounder (Table 2) were available as prey for herring and sprat. In spring, 203 

sprat eggs were dominant, i.e. on average around 80 % of the total egg abundance, 204 

followed by cod (~15 %), rockling (>2 %) and flounder (<1 %), and very few dab eggs. In 205 

summer, cod eggs (>85 % in abundance) were the main ichthyoplankton prey species 206 

available, followed by sprat (~5 %), rockling (~8 %) and dab (<1 %) eggs, while founder 207 

eggs were absent. Mean abundance of cod eggs were similar in spring and summer 208 

except for stage Ia, which was more abundant in summer (Fig. 1). Abundance of cod eggs 209 

at stage IV was comparatively low, which is explained by hatching taking place at this 210 

stage. Rockling egg abundances were highly variable, with a maximum in summer 2005, 211 

reaching similar abundances as cod eggs, while no eggs were found in spring 2007 (Table 212 

2). 213 

 214 
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The vertical distribution of fish eggs is species specific, however, over 90 % of all eggs 215 

were distributed in and around the halocline, i.e. the water layer where also the stomach 216 

sampling was conducted. Cod eggs were distributed between ~45 m and 85 m water 217 

depths with a maximum abundance around 60 m in both seasons. Sprat eggs dwell 218 

shallower, between the surface and ~65 m depth with highest abundance around 50-55 m 219 

in spring and slightly shallower in summer (Fig. 2). Rockling eggs were distributed widely 220 

in the water column, with most eggs found around 50-60 m depth. Flounder and dab eggs 221 

occurred mostly in 60-70 m depth, with some dab eggs found down to 80 m depth.  222 

 223 

Fish eggs in the diet 224 

Selectivity of fish eggs  225 

Comparing abundances of fish eggs in the diet and in the prey field showed that in spring, 226 

herring selected cod and in some cases rockling eggs and generally avoided sprat eggs 227 

(Fig. 3). Sprat ingested only a limited amount of fish eggs in 2005 and 2008, with none 228 

being identifiable to species level, and in the remaining years selected cod eggs. In 229 

summer, herring and sprat fed non-selectively on fish eggs of any species, besides herring 230 

avoiding rockling eggs in summer 2004 and 2005. Flounder and dab eggs were rarely 231 

identified in the diet, even when present in the prey field. To address the sensitivity of 232 

these results to the selection of stations and the averaging procedure adopted, station-233 

specific selectivity indices (Table S1) were included in Fig. 3 indicating the lowest and 234 

highest indices for a given cruise. From the lack of overlapping ranges, it can be 235 

concluded, that the main results in terms of positive selection of cod eggs and avoidance 236 

of sprat eggs in spring were robust to the in some cases relatively large variability in 237 

station-specific indices. 238 
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Both herring and sprat positively selected cod eggs at stage III, with the exception of sprat 239 

in summer (Fig. 4). Egg stages IV and partly II were positively selected as well, while 240 

younger cod egg stages were fed upon non-selectively by both predators or even avoided 241 

(Fig. 4). Sprat eggs at earlier development stages were mainly avoided by both sprat and 242 

herring, while none-selective feeding or sometimes positive selection occurred on egg 243 

stage III. Rockling eggs at stage III were also more selected compared to younger stages, 244 

which often were found in the field, but not at all in the stomachs (Table S2). 245 

 246 

Daily ration of fish eggs 247 

Daily rations of cod eggs consumed by herring showed highest values for egg stage III in 248 

all investigated periods. Daily ration of young cod egg stages (Ia-II) were in general higher 249 

in summer than in spring, while the opposite was found for older egg stages (III-IV), with 250 

the exception of 2008 (Fig. 5). Daily rations of sprat eggs were generally low, while those 251 

few eggs consumed by herring in spring 2007 and 2008 were mainly stage III, similar to 252 

cod eggs. For sprat as predator, the daily rations of cod eggs were generally highest for 253 

stage II and III, both in spring and summer, with the exception of summer 2004 with the 254 

highest daily rations of egg stage Ia.  255 

 256 

Fish egg consumption vs. production 257 

The daily cod egg production increased from spring 2004 to 2008, being somewhat higher 258 

in summer than in spring. In spring, egg production was generally higher for sprat 259 

compared to cod (except in 2008). In summer, egg production by sprat was very low 260 

corresponding to the end of the spawning activity (Table 3). Opposite to cod egg 261 

production, predator abundances in spring showed a declining trend from 2004 to 2008. 262 
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Highest total cod egg consumptions by herring was determined for summer 2007 (~63 263 

eggs*109) and spring 2006 (~47 eggs*109) and by sprat for spring 2004 and 2007 (~79 264 

eggs*109). The consumption of sprat eggs was lower compared to cod, despite the high 265 

egg production in spring (Table 3). This is in line with the results from the prey selectivity 266 

investigation, suggesting that cod eggs are generally positively and sprat eggs negatively 267 

selected by both clupeid predators.  268 

Comparison of stage specific cod egg daily production and consumption rates revealed a 269 

limited predation pressure on youngest cod egg stages by both predator species in both 270 

seasons. In contrast, in three spring situations (2004, 2006 and 2007),  consumption of 271 

cod eggs at stage III exceeded production rates, which is also the case for egg stage II in 272 

2004 (Table 3). This indicates high predation mortality on these older egg stages in these 273 

years, while in spring 2008 the overall predation pressure was low and in 2005 moderate 274 

(with <50% of egg stage III production being consumed). Predation pressure on the oldest 275 

eggs stage IV is estimated to be lower than on egg stage III. However, as cod eggs in the 276 

Baltic hatch at stage IV, with development time depending on oxygen concentration at 277 

incubation (Wieland et al 1994), the estimates of daily production rates for stage IV are 278 

more uncertain. In summer, the predation pressure on cod eggs was generally lower; only 279 

in 2007 the estimates of daily consumption rate of cod eggs at stage III exceeded slightly 280 

the level of production, and in 2004 the consumption was estimated to be ~50% of the 281 

production (Table 3). 282 

For sprat eggs, comparing consumption to production rates revealed a considerably lower 283 

predation pressure than on cod eggs in spring, with highest predation pressure in 2006 284 

and 2007, corresponding to 5% of the production of eggs at stage III being consumed, 285 

followed by 4% and 1% in 2004 and 2005 (Table 3). The production of egg stage IV was 286 
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very low in spring 2007, but similar to cod, the egg production estimates in this stage at 287 

which hatching occurs are uncertain. In summer 2004 and 2005, the consumed proportion 288 

of the stage III egg production was relatively high, i.e. <16%, but the production level at 289 

that time is only 5% of that in the main spawning season in spring, rendering this predation 290 

impact on overall egg survival to be limited.  291 

 292 

Discussion 293 

Ichthyoplankton in clupeid diet 294 

Both herring and sprat mainly preyed upon cod and sprat eggs, and to a lesser degree on 295 

rockling eggs, while flounder and dab eggs were present in the diet only in small numbers 296 

confirming earlier results (Köster and Schnack 1994; Köster and Möllmann 2000a). In 297 

contrast to cod eggs, low numbers of cod larvae and fish larvae in general were detected 298 

in herring and sprat diets. This corroborates earlier findings, which explained this by a 299 

limited vertical overlap between the preferred medium-sized to larger larvae inhabiting the 300 

upper water layers above the halocline and the clupeids concentrating in deeper layers 301 

during the daily feeding period (Köster and Schnack 1994). Along these overall patterns, a 302 

high variability in both composition and quantity of ichthyoplankton in sprat and herring diet 303 

is evident (Neumann et al. 2014), both within a cruise as well as between seasons and 304 

years.  305 

 306 

Species selectivity 307 

Cod eggs were generally positively and sprat eggs negatively selected/ avoided in spring, 308 

which could partly be related to the vertical overlap of predator and prey (Neumann et al. 309 

2014) rather than direct prey selectivity from a common prey field. In our data, the catching 310 
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depth of the clupeids matches to a large extent the vertical distribution of cod and sprat 311 

eggs (Fig. 6). However, ideally, one would also need to consider at which depth the 312 

clupeids had actually been feeding prior capturing, which is unfortunately not possible with 313 

present technology. Sprat eggs are usually distributed in the upper part of the halocline 314 

(Fig. 6). Cod eggs float in the central and lower part and below the halocline with 315 

environmental conditions allowing successful egg development, i.e. a salinity of >11psu 316 

and an oxygen concentration of >2 ml l-1 (Nissling 1994; Wieland et al. 1994; Westin et al. 317 

1991). Feeding of clupeids during day time takes place in the same water layer (Hinrichs 318 

1986; Köster and Schnack 1994; Stepputtis et al. 2011), apart from a fraction of clupeids 319 

staying in uppermost water layers also during daytime (Fig. 6).  320 

A consistent positive selectivity of cod eggs and an avoidance of sprat eggs during spring 321 

cruises imply that the hypothesis that the total abundance of fish eggs triggers selectivity 322 

of cod eggs, suggested by Köster and Möllmann (2000a) is not confirmed in this study. If 323 

predation on sprat eggs, which are far more abundant than cod eggs, would trigger 324 

clupeids also to forage on cod eggs, opposite selectivity indices for the two prey species 325 

would not be expected. This expectation is independent of whether the difference in 326 

selectivity is real or caused by different overlap of predator and prey. 327 

The apparent positive selectivity of cod compared to sprat eggs could in principal also be 328 

related to a size difference, i.e. cod eggs being larger than sprat eggs (e. g. Nissling et al. 329 

2003). Earlier studies on cod and plaice eggs in the North Sea showed, that egg size was 330 

correlated with predation mortality (Rijnsdorp and Jaworski 1990). Herring are visual 331 

feeders, at least in situations with sufficient light conditions (e. g. Batty et al. 1990; 332 

Thetmeyer and Kils 1995), selecting for larger items (Dalpadado et al. 2000) with greater 333 

energy content (Leggett and DeBlois 1994) due to their better visibility (Wieland and 334 
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Köster 1996; Zaret and Kerfoot 1975).  335 

In summer, cod eggs were non-selectively consumed, while sprat eggs, in contrast to 336 

spring, were not avoided and in some cases even positively selected (Table S1). This can 337 

be explained by the majority of clupeids being distributed above the cod egg layer dwelling 338 

in water depths were sprat eggs are more abundant (Fig. 6). This supports earlier findings 339 

that depth, in addition to turbidity and time of day, influence prey detection (Baily and 340 

Houde 1989). Rockling eggs were occasionally positively selected by both predators, 341 

which may be related to the oil droplet in the rockling eggs enhancing their visibility 342 

compared to eggs of other species.  343 

Some occasions were encountered when prey was present in the diet but not in the field or 344 

vice versa, which could represent a strong selectivity or avoidance, respectively. These 345 

occasions, possibly also related to sampling issues, were only indicated by “+” or “-“(Table 346 

S1, S2) instead of a quantitative index value. When fish eggs were found in the diet, but 347 

not in the field, the predator may have been feeding in a nearby - albeit not sampled - area 348 

with higher egg abundances before they were caught in the proximity of the reference 349 

ichthyoplankton station. The small-scale vertical predator prey overlap is neither 350 

considered in the selectivity index, due to uncertainties in the exact depth distribution of 351 

clupeids feeding prior to catching. Here our assumption is that clupeids are able to 352 

optimise their vertical position within and around the halocline, the water layer in which 353 

>90% of the fish eggs are distributed. Horizontal small-scale variability in egg abundance 354 

can as well cause a mis-match between predator and prey, however, there is no indication 355 

from the standard ichthyoplankton surveys that such variability is high, i.e. there are hardly 356 

extreme outliers encountered (Neumann et al. 2014). 357 

The determined average selectivity indices and conclusions on selectivity of different egg 358 
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taxa appear to be robust to the deployed data averaging procedure, as the selectivity 359 

patterns from the indices by individual stations were mostly consistent with cruise-specific 360 

average selectivity, despite the in some cases considerable variability between stations 361 

(Fig. 3, Table S1).   362 

 363 

Selectivity of egg development stages 364 

Apart from size, better visibility may also be related to strong pigmentation that occurs 365 

within advanced egg development stages. In fact, Wieland and Köster (1996) 366 

demonstrated that cod egg selectivity by herring was related to better visibility of advanced 367 

egg stages rather than cod egg size. This is supported in the present study, as smaller 368 

sprat and rockling eggs in advanced development stage were in some cases selected 369 

similarly or even more than larger cod eggs at early development stages. 370 

Both predators preferred advanced egg stages of cod, especially development stage III, 371 

but also stage IV and in certain occasions stage II. The relatively higher selectivity of egg 372 

stage III compared to younger stages is also apparent for sprat and rockling eggs. Eggs 373 

change their buoyancy during development (Wieland et al. 2000), resulting in a slightly 374 

deeper distribution of more developed eggs stages, but well within the range of vertical 375 

movement of both sprat and herring during their daily feeding period.  376 

Depending on prey availability and density, herring can switch between different feeding 377 

modes: biting at low prey concentrations; biting, gulping and filtering at intermediate prey 378 

concentrations, and mainly filtering at high prey concentrations (Gibson and Ezzi 1990). 379 

Sprat, in contrast, is known as a strict selective/ particulate feeder that usually do not filter-380 

feed (Bernreuther 2008; Mӧllmann et al. 2004), apart from at low light intensities 381 

(Bernreuther et al. 2013) or high turbidity (Falkenhaug and Dalpadado 2014). Visibility is 382 
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the best explanation for preferring later stages of egg development for both sprat and 383 

herring, which is consistent with previous studies conducted in the Baltic Sea (Bernreuther 384 

et al. 2013; Wieland and Köster 1996) as well as in the North Sea (Thompson and Riley 385 

1981; Segers et al. 2007) and the Irish Sea (Ellis and Nash 1997).  386 

 387 

Impact of predation on egg survival 388 

The predation pressure on cod eggs was found to be considerably higher than on sprat 389 

eggs. This can be explained by a pronounced vertical overlap between cod eggs and both 390 

clupeid predators in spring. The vertical overlap between predator and prey is defined by 391 

hydrographic conditions, with higher impact during stagnation period when insufficient 392 

oxygen concentrations prevent clupeids to dwell in bottom water layers, i.e. below the 393 

water depths of highest cod egg concentrations (Köster and Möllmann 2000a; Köster et al. 394 

2005).  395 

A pronounced difference in the vertical distribution of sprat and herring is not obvious in 396 

spring, as both clupeid species avoid the cold intermediate winter water layers, either 397 

staying in shallow water layers (above 30m) or in and below the halocline (below 50m) 398 

(Fig. 6), with the maximum depth depending on the oxygen concentration in the bottom 399 

water (Orlowski 1999; Stepputtis et al. 2011). In summer, herring tend to stay higher up in 400 

the water column than cod eggs (Fig. 6) exerting a more variable, moderate to high 401 

predation impact. Sprat is even shallower distributed than herring, where its main prey 402 

species, i.e. cladocerans are found (Neumann et al. 2014) explaining the low consumption 403 

of fish eggs in general and cod eggs in particular. Sprat as a predator is generally of less 404 

importance in summer due to lower abundance in the area, having largely left the basin 405 

after spawning.  406 
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 407 

In some occasions the total consumption of cod eggs exceeded egg production rates in 408 

our estimates, e.g. in spring 2004. This discrepancy has also been reported in earlier 409 

studies (Köster and Möllmann 2000a), and is in fact substantially reduced by Neumann et 410 

al. (2017) and in the present study. However, some mismatch still being present in some 411 

occasions indicates either an overestimation of the egg consumption or an 412 

underestimation of the egg production.  413 

A direct measure of uncertainty of these estimates is extremely difficult to obtain, due to 414 

complex calculation procedures involving various steps of data rising and combination of 415 

different types of data and model applications. Thus, sensitivity analyses are considered 416 

the most feasible approach for evaluating the impact of uncertainties involved in the 417 

estimation procedures. These have partly been conducted and discussed by Neumann et 418 

al. (2017) suggesting that the main conclusions from the previous and the present study in 419 

terms of the relatively high predation on cod eggs compared to sprat eggs, with the highest 420 

predation impact on older egg stages, are robust against the uncertainties considered. A 421 

dedicated sensitivity study would be required to quantify the impact of various 422 

uncertainties associated with input data and individual steps in the complex estimation 423 

procedures. This would be useful for defining future focus areas for this type of research, 424 

where possible refinements would be most beneficial in terms of improving the precision of 425 

predation estimates. However, quantifying potential uncertainties would by itself not 426 

improve the estimates of most likely levels of predation pressure possible to obtain 427 

presently, which are in this paper based on state of the art monitoring data and scientific 428 

knowledge and models available guiding the methodological choices and assumptions at 429 

different calculation steps.  430 
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Our results clearly demonstrate that predation impact on sprat eggs is much lower than on 431 

cod eggs, also during main spawning season in spring, confirming earlier results from the 432 

1990’s (Köster and Möllmann 2000b). However, the relative contribution of predation to 433 

total sprat egg mortality is variable and may be at times high (Voss et al. 2012). 434 

Furthermore, the shorter spawning season of sprat in spring-early summer implies that all 435 

spawned eggs are exposed to a relatively higher egg predation in spring compared to 436 

summer, which is not the case for cod. On the other hand, cod egg development time (3 437 

weeks on average at 4 °C, Wieland et al. 1994 or 12 days at 9 °C, Nissling 2004) is longer 438 

than for sprat (~7 days at 9 °C, e. g. Nissling 2004), resulting in a longer time of exposure 439 

to predation. The Bornholm Basin is only one of the main spawning areas of sprat in the 440 

central Baltic, while egg predation in more eastern spawning areas of the Gdansk Deep 441 

and Gotland Basin is even less pronounced than in the Bornholm Basin (Geldmacher 442 

1999). This difference between basins has been explained by a combination of deviating 443 

prey availability and light intensity in the dwelling depth of clupeids during their daily 444 

feeding period reducing the ability to actively select fish eggs (Köster and Möllmann 445 

2000b).   446 

A certain predatory impact by clupeids on rockling egg survival can also not be ruled out, 447 

due to a similar vertical distribution with cod eggs and a similar overall egg development 448 

time, i.e. from spawning to hatching (Battle 1930). As temperature related stage specific 449 

egg development rates are not available for this species, egg production estimates cannot 450 

be calculated and the impact of the predation not determined.  451 

The stage specific predation on older cod egg development stages implies a higher impact 452 

of predation on cod recruitment than formerly thought, as those eggs at later development 453 

stages have already survived two critical phases. The first phase is the fertilisation of eggs, 454 
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which depends on salinity concentrations (Plikshs et al. 1993). Next, egg survival depends 455 

on ambient oxygen levels. In an experimental study on daily egg mortality rates as a 456 

function of temperature (2 to 7 °C) and oxygen concentration (2 to 8 ml O2 l
-1), which 457 

resembles conditions in the central Baltic spawning area of cod, two phases of increased 458 

mortality were found (Wieland et al. 1994); first, during gastrulation (at stage Ib) and before 459 

closure of the blastoporus (transition to stage II), and second, prior to and potentially 460 

initiating hatching at stage IV. Thus eggs at stage II and III have a higher chance of 461 

survival than younger egg stages. Consequently a pronounced predation by sprat and 462 

herring on this egg stage may have a strong impact on egg survival and ultimately on cod 463 

recruitment.  464 

A key message from the present study is that not only specific life stages, but also specific 465 

development stages within a life stage may be much more vulnerable to predation than 466 

others. Investigating prey selectivity by pelagic fish to delineate prey preferences has 467 

proven more difficult than expected, as predators obviously utilise variability in small scale 468 

spatial distribution of the prey to optimise food intake, a process described by Frank and 469 

Leggett (1984) for demersal predators, but difficult to resolve with standard sampling 470 

techniques for pelagic fish. Furthermore, variation in feeding behaviour, e.g. switching 471 

between raptorial and filter feeding depending on prey type, behaviour and density as well 472 

as visibility and hydrographic conditions (Bailey and Houde 1989), render field based 473 

investigations of prey selectivity and preferences of pelagic fish difficult. This suggests that 474 

direct observations or experimental studies are needed to determine prey preferences of 475 

pelagic fish. 476 

 477 
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Figure 1: Egg abundance of cod (a) and sprat (b) at development stages I-IV in the Bornholm Basin with 
water depth of >60 m in spring (left, scale max. 6000 n*109) and summer (right, scale max. 1000 n*109) 

2004-2008.  
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Figure 2: Vertical distribution of fish eggs in the Bornholm Basin as percentages (pct) of eggs at different 
depths, including standard errors, based on average distributions observed in 2004-2008. Standard errors 

are shown only where data from at least 3 samples were available.  
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Figure 3: Shorigin Selectivity Indices for different fish egg taxa consumed by sprat and herring in spring and 
summer 2004-2008. The vertical lines represent the ranges (minimum and maximum) of the values 
determined for individual stations, with the mean (dots) indicating the average prey selectivity.  
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Figure 4. Shorigin Selectivity Indices for different development stages (Ia-IV) of eggs of different taxa 
consumed by sprat and herring in spring and summer. The vertical lines represent the ranges (minimum and 
maximum) of the values determined for individual cruises in different years, with the mean (dots) indicating 

the average prey selectivity.  
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Figure 5: Daily rations at different egg stages (stacked bar) of cod (a) and sprat (b) by individual herring 
and sprat in spring and summer 2004-2008. NA: Eggs could not be identified to species; Black dots: Eggs 

could not be staged and indicate the total numbers of cod (a) or sprat eggs (b).  
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Figure 6: Relative vertical distribution of cod eggs (dark grey area) and sprat eggs (light grey area) as well 
as clupeid predators (black lines) and hydrographic conditions (coloured lines) in spring and summer 2004-

2008. Dotted area: Reproductive volume of cod eggs (≥ 2mll oxygen and ≥11 psu). Vertical dashed line 

(black): Depth range of clupeid catches (with varying depth per station). No data available in 2005 and no 
vertical clupeid abundances in summer 2004. Sprat eggs were absent in summer 2007 and 2008.  
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Table 1: Sampling dates in spring and summer 2004-2008, number of trawl (clupeid 

stomachs) and Bongo (fish eggs) stations in the Bornholm Basin (≥60m water depth) of 

the Baltic Sea as well as total number of herring and sprat stomachs included for the 

analysis of egg consumption (total) and egg selectivity. *1 all eggs were unidentified; *2 no 

eggs ingested by predators but available in the field. 

Number of stomachs 

Cruise data Number of stations Total Selection analysis 

Spring   Trawl Bongo Herring Sprat Herring Sprat 

2-4 June 2004 10 37 169 258 105 85 

29-31 May 2005 10 36 287 234 64 *1 

8-10 June 2006 10 35 262 265 232 189 

28 May- 2 June 2007 12 37 168 314 151 87 

7-9 June 2008 14 36 303 167 303 *1 

Summer       

19-21 July 2004 14 28 415 279 385 92 

22-25 July 2005 13 36 386 211 232 86 

27-30 July 2006 12 37 296 51 22 *2 

2-5 August 2007 19 35 459 291 319 44 

23-27 August 2008 12 35 315 65 225 *2 
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Table 2: Egg abundance (n*109) of rockling, dab and flounder in spring and summer in the 

Bornholm Basin (water depth of >60 m).  

 
spring summer spring summer spring summer 

 year  rockling dab flounder 

2004 29 22 0,1 1 0,11 0 

2005 41 408 2,4 0 0 0 

2006 101 44 2,1 0,2 0 0 

2007 0 14 0 0 0 0 

2008 45 9 1 0,2 0 0 
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Table 3: Daily production and consumption of cod (upper part) and sprat eggs (lower part) by herring and  

sprat populations in spring and summer 2004-2008. NA: eggs could not be identified to stage level.  

daily production  (n*109) abundance consumption (n*109) by herring consumption (n*109) by sprat 

cod eggs predator (n*106) cod eggs 

     

  
 

  
 

 
   

  

      
 

IA IB II III IV 
 

  total Ia Ib II III IV total Ia Ib II III IV 

spring 
    

  herring sprat 
     

  
      

2004 39 24 18 8 7 1205 13907 12,7 0,2 0,5 0,9 10,9 0,2 79,5 0 0 44,9 34,6 0 

2005 46 24 16 7 1 1335 14328 3,7 NA NA NA NA NA only unidentified eggs 

2006 97 55 41 27 6 1420 3357 46,9 2,1 0,5 6,3 37,7 0,4 31,8 0 1,6 0 28,6 1,6 

2007 163 175 104 47 44 768 3486 30,5 2,6 2,7 2,2 21 2 79,3 3,6 1,1 1 52,8 20,9 

2008 202 124 119 56 24 40 214 12,9 0,8 0,3 1,7 9,7 0,5 only unidentified eggs 

summer  

   
 

  
 

  
 

    

  

      2004 74 31 21 9 2 135 480 5,5 0,3 0,7 1,1 3,3 0 7,8 5,5 0,6 0,4 1,3 0 

2005 227 129 113 60 15 55 315 4,5 0,1 0,2 1,5 2,7 0 0,7 0,1 0 0,4 0,2 0 

   2006 293 118 85 40 4 139 91 4,2 1,9 1,1 0,7 0,5 0 0 0 0 0 0 0 

2007 221 93 56 18 2 364 539 62,6 15,9 12 15,9 18,7 0 0,4 0,1 0 0,3 0 0 

2008 227 129 104 51 37 130 381 0,6 0 0 0,1 0,5 0 0 0 0 0 0 0 

sprat eggs 

spring 
     

    
     

  
      

2004 282 546 465 129 37 1205 13907 7,8 1,1 0,4 0,8 5,5 0 0 0 0 0 0 0 

2005 231 505 604 152 12 1335 14328 1,2 NA NA NA NA NA only unidentified eggs 

2006 466 799 675 168 13 1420 3357 7,1 1 0,4 1,8 3,8 0,1 7,8 2,9 0 0 4,9 0 

2007 865 70 2208 405 0 768 3486 23,3 1,3 1,6 0,3 17,5 2,7 2,9 0 0 0 2,9 0 

2008 58 162 175 60 17 40 214 1 0 0 0,3 0,6 0 only unidentified eggs 

summer  
    

    

     

  

      2004 17 33 30 12 2 135 480 2,3 0,2 0,1 0,3 1,5 0,2 3 0,7 1,1 0,8 0,4 0,1 

2005 0 0 1 0 0 55 315 0 0 0 0 0 0 0,1 NA NA NA NA NA 

2006 1 1 1 1 0 139 91 0 0 0 0 0 0 0 0 0 0 0 0 

2007 0 0 0 0 0 364 539 0 0 0 0 0 0 0 0 0 0 0 0 

2008 0 0 0 0 0 130 381 0 0 0 0 0 0 0 0 0 0 0 0 
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