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Abstract
The current status of wind power and the energy infrastructure in Denmark is reviewed in this paper. The reasons 
for why Denmark is a world leader in wind power are outlined. The Danish government is aiming to achieve 100% 
renewable energy generation by 2050. A major challenge is balancing load and generation. In addition, the current 
and future solutions of enhancing wind power penetration through optimal use of cross-energy sector flexibility, 
so-called indirect electric energy storage options, are investigated. A conclusion is drawn with a summary of 
experiences and lessons learned in Denmark related to wind power development.
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1  Current status of Danish wind power 
and energy system
Denmark is an international leader in the implementation 
of a renewable, secure and cost-efficient energy system 
using a high share of wind power. In 2016, Denmark 
achieved a wind power penetration of 38%; while supplying 
99.996% of domestic electrical power throughout the year, 
resulting in one of the highest energy security levels 
in Europe [1]. The Danish economy since the 1980s has 
grown by around 80% while maintaining constant energy 
consumption and, at the same time, decreasing CO2 
emission by 34% [2]. Danish knowledge and development 
of green energy has also attracted foreign economic 
investment in renewable energy. In 2017, Apple announced 
the establishment of one of the largest international data 
centers in Western Denmark. The Apple data center will be 
powered by renewable energy and its surplus heating will 
be injected into the local district heating system [3].

In Denmark, the first commercial 30 kW wind turbine was 
installed in 1979. The first offshore wind farm in the world, 11 
turbines of 450 kW each, was built near Vindeby, Denmark, 
in 1991, and recently retired [4]. In 2015, Denmark broke the 
world wind power production record and achieved around 14 
TWh, providing 42.1% of the Danish gross electricity consump-
tion. Denmark is the only European country that consists of 
two synchronous areas, Western Denmark (DK1) and Eastern 
Denmark (DK2), which are connected through the Great Belt 
Power Link (see Fig. 10). In 2015, DK1 and DK2 achieved a wind 
power penetration of 55 and 23%, respectively. Fig. 1 shows 
the Danish onshore and offshore wind power capacity and 
the penetration level of wind power in Danish electricity con-
sumption between 2009 and 2016. The average capacity factor 
of Danish offshore wind turbines can achieve up to 48% [5].

Onshore wind farms still constitute a major percentage 
of the total wind farm installations; however, new onshore 
wind farms are limited in Denmark due to a lack of land. 
New onshore installations are now typically associated 
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with an upgrade of old installations. The higher wind speed, 
more stable wind conditions on the sea and the relatively 
shallow water around Denmark make it more economi-
cally attractive to build offshore wind farms. In 2016, there 
were 13 offshore wind farms with a total capacity of 1.27 
GW in Denmark [6]. Three new offshore wind farms are 
planned to be commissioned by 2021, namely Horns Rev3 
with 406.7 MW, Nearshore 350 MW and Kriegers Flak 600 
MW [4]. The power transmission from offshore to main-
land options are being investigated due to the increasing 
installation capacity of offshore wind farms and the longer 
distance between the wind farms and the grid. One option 
being considered is providing voltage support to the grid 
through high-voltage direct current (HVDC) technology [7].

In 1981, Denmark introduced subsidies for the 
construction and operation of wind turbines to increase 
the competitiveness of renewable energy plants during the 
oil crisis [10]. The support schemes since then have been 
restructured several times to encourage the investment 
and operation of wind power with a lower levelized cost 
of energy (LCOE). In 2014, the Danish subsidy scheme for 
new onshore wind power was renewed. A nominal feed-in 
premium of 250 DKK/MWh is added to the spot price for 
the full load operation of the first 22 000 h [11].

New wind turbine concepts are currently being tested 
in Denmark in order to further reduce the LCOE of wind 
turbines. In 2012, a 3.6-MW two-bladed offshore wind 
turbine owned by a Chinese green energy company, Envision 
Energy, was built in Denmark for testing [12]. By having only 
two blades, the turbine is cheaper to transport and install 
in comparison with three-bladed turbines. The two-bladed 
wind turbine development by Envision Energy reduces the 
construction cost by 20% and increases operation reliability 
by using segmented blades and carbon fiber main shaft 
technologies [13]. Additionally, the segment design allows 
for customization of the blade length by changing the tip 
length to match the prevailing wind speed at specific sites. 
The transformers and converters are also located at the 

tower base which enables easier maintenance of offshore 
wind turbines [14]. Envision Energy in cooperation with the 
Technical University of Denmark (DTU) is also developing 
a superconducting wind generator which was successfully 
tested at DTU and is expected to be installed in Thyborøn, 
Denmark, by 2019 [15, 16]. The consequent-pole rotor with 
superconducting coils is capable of conducting electricity 
more efficiently in comparison with conventional copper 
coil, resulting in a higher torque density and 50% reduction 
in the number of windings. Therefore, a reduced generator 
volume and mass with the same power can be achieved 
resulting in a lower cost of transportation, installation and 
foundation of large wind turbines [17].

In 2016, the Danish wind turbine manufacture company, 
Vestas, installed a multi-rotor wind turbine prototype with 
four 225 kW nacelles on one tower at the Risø campus of DTU, 
as shown in Fig. 2 [18]. The aim of the prototype is to increase 
the wind power output with smaller and lighter size rotors. 
This new prototype, if successful, could reduce the cost of 
transport and installation of wind turbines. In addition, new 
technologies such as the rotor arm structure and turbine 
control system were tested with the Vestas multi-rotor 
turbine. The rotor arms are linked with steel cables in order 
to make the multi-rotor structure more stable. The wind 
turbine exhibits variable speed operation with a full-power 
converter and control mechanism for each turbine [19].

In 2016, a 9-MW offshore turbine was tested at the 
Danish national test center in Østerild for large wind 
turbines. The 9-MW turbine produced 216 MWh in 24 h, a 
new world record [20]. Large and powerful offshore wind 
turbines with optimized rotor-to-generator ratio enables 
less turbines with the same power output and higher 
energy efficiency, therefore decreasing the operational 
and maintenance costs. The Østerild large wind turbine 
test center is a DTU facility and annually receives 50 000 
visitors [21]. Another element of Danish wind farms is 
community ownership with the Middelgrunden offshore 
wind farm; 50% is owned by 8700 Danish local residents 
[22] and the other 50% is owned by the local distribution 
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Fig.  1  Wind power capacity and penetration level in Denmark from 
2009 to 2016 (data from [8, 9])

Fig. 2  Multi-rotor wind turbine at DTU Risø campus, Denmark
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grid operator (DSO). The close collaborations between 
research and product, universities and companies, and 
the awareness and support from citizens provide strong 
incentives for wind power technology development in 
Denmark.

Wind power is characterized by its uncertainty and 
limited prediction, which leads to the inadequacy of 
generation and imbalance between power generation and 
consumption in the grid. In order to integrate more wind 
power into the power system Denmark has developed 
efficient measures to ensure it is secured and balanced. 
Flexibility allows the management of a power system 
to maintain a reliable operation and power balance on 
different time scales, even with variable and uncertain 
generation and consumption [23]. In order to significantly 
increase wind power production, further flexibility to 
keep the system secure and balanced all the time will be 
required.

The flexibility provided by interconnectors to 
neighboring countries helps Denmark to integrate a 
high penetration of wind power. Fig. 3 shows the current 
capacities of interconnectors between DK1 and DK2 to 
Norway, Sweden and Germany, respectively. DK1 has a 
higher capacity of interconnectors than DK2 for more wind 
power penetration. Due to the annual peak load of less than 
6.5 GW in Denmark, the capacity of the interconnectors is 
sufficient to allow for a high fluctuation in wind power and 
to enable the system to balance.

The flexible power generation from conventional power 
plants is another important way of balancing wind power. 
High wind power fluctuations require high ramp rates 
and low minimum loads by conventional power plants in 
order to balance the sudden surplus or deficit of power 
generation, i.e. the net load, which defines the demand 
minus the renewable power generation [24]. A  typical 
Danish coal-fired or biomass fuel power plant can currently 
provide a ramp rate of 4%/min (percentage of full capacity 

in a minute) and a minimum load of 18% (percentage of 
full capacity) [25].

The Danish power system also has a close connection 
with the heating sector through combined heat and power 
(CHP) plants. The use of CHP plants offers a potential 
option for flexibility in integrating wind power in the power 
system by coupling to the heating system. Furthermore, 
CHP plays an important role in the Danish district heating 
(DH) network, where around 70% of DH generation is from 
CHP. Together with heat storage, CHP can provide optimal 
dispatch of their cogeneration of electricity and heat into 
the electricity market, e.g. during a period of high wind 
power and low electricity prices. CHP can decrease the need 
for power generation and meet heat demand through heat 
storage [26]. Additionally, in 2013, the electricity tax was 
significantly reduced, resulting in an incentive to generate 
heat through electric boilers and heat pumps (HPs) [27]. The 
increasing flexibility from the heating sector provides a good 
opportunity for Denmark to accommodate more wind power 
[28]. In 2017, the new highly energy efficient waste-to-energy 
plant Amager Bakke (Amager Hill/Slope) began operation. 
The plant can provide 310-MW power and heat with low 
emissions. The unique architecture of the power plant 
follows a long Danish tradition attempting to create esthetic 
integration with local landmarks. The new waste-to-energy 
power plant is shown in Fig. 4 [29]. Other examples are the 
Avedøre power plant south of Copenhagen and the Energy 
tower (waste-to-energy plant) near the city of Roskilde.

High wind power penetration is driven economically by the 
mature electricity market, Nord Pool, and ancillary services 
procured by the Danish Transmission System Operator 
(TSO). The day-ahead spot market Elspot offers electricity  
trading in Nordic and Baltic countries and prioritizes power 
generation at the lowest cost [30]. Therefore, when there is an 
excess of wind power, Denmark is able to sell the electricity 
to neighboring countries via interconnectors. Similarly, 
when the wind speed is low, inexpensive hydro power can 
be imported from Norway to ensure a reliable operation 
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Fig.  3  Capacity of interconnectors between Denmark and neighbors 
(data from [9])

Fig.  4  The waste-to-energy plant Amager Bakke (Amager Hill/Slope) 
(photo by Christoffer Regild [35])
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of the Danish grid. Ancillary services are procured by the 
Danish TSO in order to keep the grid balanced, e.g. reserves 
which drive the flexibility provided by interconnectors 
and voltage control which drives the flexibility provided 
by central power plants [31, 32]. Furthermore, as wind 
power generation is increasing so are ancillary services 
from wind turbines through control strategies [33]. In 
Denmark, the ongoing project RePlan aims for integration 
of more wind power into the future Danish power system. 
The RePlan project researchers are investigating the 
coordination of ancillary services provided by wind power, 
such as frequency reserve and voltage control [34]. The 
provision of ancillary services from wind power could 
benefit both the TSO with a more secure energy supply  
and the wind farm owner/operators economically [33].

The success of Danish high wind power penetration 
depends on the accurate forecast of power generation. An 
accurate forecast can help the generation units to offer prof-
itable bids in the day-ahead market and also help the TSO 
to schedule reserves to balance the power system. Forecast 
methodology was studied in Denmark from the early 1990s 
and an ‘Operational Planning Tool’ was developed by the 
Danish TSO to forecast wind power generation, as well as CHP 
generation and heat demand [36, 37]. A wind resource simu-
lation tool, WasP, was also developed at the planning stage 
by DTU for estimating the potential wind power resources of 
prospective new wind turbine installations [38]. Additionally, 
using the two-price regulation in the balancing market penal-
izes the forecast error, which can result in a system imbalance 
[39]. All these measures work as incentives to keep the power 
system balanced with high wind power generation.

2  Potential challenges of wind power in 
Denmark
The ongoing development of the Danish wind power sector 
is challenging. An increasing share of wind power potentially 
may increase the imbalance between power generation and 
consumption with the result of lower electricity prices. The 
Danish government energy strategy aims to achieve 50% of 
electricity consumption by wind power in 2020; coal and oil 
burners phased out of the power system by 2030 and electric-
ity and heat supply from renewable energy sources by 2035. 
If all these steps are accomplished, the Danish government 
expects to have a secure, stable and affordable energy system 
completely independent from fossil fuels by 2050 [40].

The increasing wind power penetration in the power 
system may lead to increasing challenges in three cases, 
namely lower wind power than consumption (e.g. deficit 
shown in Fig. 5), higher wind power than consumption (e.g. 
surplus shown in Fig. 5) and system balancing during real 
time (e.g. up- and down-regulating power shown in Fig. 5).

The first challenge is to ensure enough production 
when there is little wind. Fig. 1 shows that 2016 wind power 
capacity increased while the wind power penetration was 
the lowest since 2014, because 2016 was a low wind speed 

year. During the low wind power period, power balancing 
from interconnectors and conventional power plants is 
of great importance. Fig. 6 shows the peak generation of 
power plants in Denmark between 2009 and 2016. The 
weak wind resources in 2016 resulted in peak power 
generation from conventional power plants operating at 
their maximum level since 2014. As a result, the lowest 
cost dispatch in the electricity market  also pushes the 
conventional power plant from a base load to intermediate  
or peak load generation resulting in lower revenues for the 
conventional power plants [28]. An enhanced flexibility  
from conventional power plants, interconnectors and 
demand response measures can be used to ensure suf-
ficient generation as a response to a low wind power 
period.

Another challenge is to ensure wind power profitability 
during higher wind speed periods. Factors influencing prof-
itability include the increasing installation capacity of wind 
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power in North Germany and the resulting internal conges-
tion problem in the German grid. Electricity exports from DK1 
to Germany via the interconnector decreased to an average 
of around 200 MW in 2016 [9, 41]. Fig. 7 shows periods with 
export power less than half of the transmission capacity.

The excess of electricity is a technical and economic 
problem which can result in low or negative spot prices 
for electricity. The spot price could be decreased by the 
increased production of renewable power which has a low 
marginal price, e.g. wind power [42]. Fig. 8 illustrates the 
wind power and power plant generation, consumption and 
spot price during two typical days in Denmark (25 and 26 
December in 2016) with a minimum negative spot price of 
−47.03 USD/MWh. The main reasons for the negative spot 
price were the high wind speed, low power consumption 
and higher cost for conventional power plants to stop oper-
ation or change to heat-only production [43]. The current 
regulation and market for CHP plants limit its flexibility by 
first requiring CHP plants to meet the primary heat demand 
with electricity considered as a byproduct [44]. Therefore, it 
is challenging to make wind power profitable during high 
wind speed and low consumption periods.

The last challenge of increasing wind power penetration 
is fast system balancing during real time, i.e. ancillary ser-
vices. Wind power forecasts are well studied in Denmark; 
however, the wind power production is still variable in real 
time. The load and generation imbalance may result in 
frequency deviations and consequently system insecurity. 
A faster ramp rate from conventional power plants, increas-
ing capacity of interconnectors, flexible power consumption 
and ancillary services from wind farms can further provide 
real-time balancing for the grid.

3  Current flexibility measures of the 
Danish energy system
In recent years, the investigation of the flexibility from the 
cross-sectoral energy system, also known as indirect electric 

energy storage, was undertaken to meet the above-men-
tioned challenges. The forecast error and fluctuation of wind 
power require the flexibility to accommodate a larger share of 
wind power. The current measures have been implemented 
to ensure flexibility at a high level from interconnectors, con-
ventional power plants and integration of the heating sec-
tor, and are discussed below. The current Danish solution 
includes the flexibility from both cross-sectoral energy sys-
tems and power generation of neighboring countries.

3.1  Flexibility from interconnectors

One major reason for successful large scale integration of 
wind power in Denmark is the grid connection to neighbor-
ing countries, i.e. interconnectors, which provides adequate 
capacity to meet Danish energy needs. Denmark’s key advan-
tage is flexibility with its location between other Nordic 
countries and continental Europe, where DK1 and DK2 are 
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connected, respectively. Fig. 9 shows that, from 2014, the total 
capacity of interconnectors has exceeded the Danish peak 
load, leading to adequate capacity for the Danish load.

The link to neighboring power systems provides 
Denmark with more energy security and contributes to a 
cost-effective utilization of excess wind power through the 
electricity market Nord Pool [45]. As illustrated in Fig. 10, 
there are six interconnectors currently used for electricity 
exchange between Denmark and its neighbors, i.e. Norway 
(1), Sweden (3) and Germany (2). The six interconnectors are 
controlled by TSOs in these countries, namely Energinet.
dk (Denmark), Statnett SF (Norway), Svenska Kraftnät 

(Sweden), TenneT TSO GmbH and 50 Hertz (Germany) [46, 
47]. Further information about the live power exchange 
between Denmark and other countries through the 
interconnectors is available in reference [48].

The physical exchange across the interconnectors is 
driven by market integration, i.e. Nord Pool. DK1 and DK2 
joined Nord Pool in 1999 and 2000, respectively [49]. The 
cross-border tariff between Sweden and Denmark ended 
in 2002. Since then, there has been a free electricity market 
between Nordic countries [50].

The interconnectors between Denmark, Germany and 
Sweden utilize both HVDC and high-voltage alternat-
ing current (HVAC) technologies; between Denmark and 
Norway, only HVDC technology is used. Several technolo-
gies are deployed to increase the interconnector’s capacity 
to provide a more flexible transmission system, including 
voltage source converter (VSC)-based HVDC lines. These 
technologies can independently control voltage and power 
as well as reduce the harmonics [51]. The cost of insulated-
gate bipolar transistors, which is the key component of 
VSC, has decreased by 67% during the last 9  years [52]. 
Skagerrak 4, the most recently installed interconnector 
between DK1 and Norway, uses the VSC-based HVDC tech-
nology and is also capable of performing black starts.

3.2  Flexibility from conventional power plants

The increasing Danish wind power penetration requires a 
more flexible backup generation from conventional power 
plants to keep a consistent load generation balance with 
the power surplus and deficit. The flexibility of Danish 
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power plants has been optimized for more than 20 years, 
e.g. ramp rate and minimum load. This flexibility is a result 
of responding to the increasing wind power penetration 
and to the different market regulations. As a result of the 
100% renewable energy goal, fossil fuel is being replaced 
by renewable fuels such as biomass for power plants. An 
example of this is the largest Danish coal fired power plant 
Avedøre Power Station which has converted from coal to 
sustainable wood pellets. It has a total generation capacity 
of 797 MW electric power and 932 MJ/s heat [53].

The increasing flexibility from power plants is shown in 
Table 1. The table compares operational characteristics of 
central power plants of DK1 in 2010 and 2016. During that 
period, there was a decrease in total base load generation, 
a lower total peak generation, a shorter total base load 
period, a lower total minimum generation, a longer total 
minimum generation period and a lower total annual 
generation. Additionally, a steep negative ramp rate is 
required when a sudden surplus of wind power occurs; 
while also requiring a steep positive ramp rate when 
a deficit in power occurs as shown in Fig. 5. The current 
Danish standard ramp rate for coal fired power plants is 
4% (percentage of full capacity in a minute), for open cycle 
gas turbines 3% and for gas fired power plants 9% [54].

Danish coal fired power plants reduce the minimum 
load by decreasing supplemental firing that is associated 
with using expensive auxiliary fuel to stabilize the flame in 
the boiler during the start up [55]. Typically, the boiler maxi-
mum continuous rating (BMCR) can be as low as 15–25%. 
The high ramp rate is often limited by the combustion 
dynamics that can damage equipment. The ramp rate can 
be improved through control systems that control the rate 
of change of energy and vary fuel-to-air ratio [55].

3.3  Flexibility from integration with the 
heating sector

The flexibility from the heating sector is currently related 
to the cogeneration of heat and power in CHP plants. The 
capacity of centralized CHP plants covers around 85% of 
the centralized power plants [56]. Additionally, both the 
electrical and heating sectors are aiming at transferring to 
renewable energy based fuel by 2035. The strong coupling 
between the electric power and the heating sector offers a 
good opportunity to increase wind power penetration.

The flexible production from CHP plants can be achieved 
by optimization of cogeneration through the utilization of 
heat storage. One challenge from increasing wind power 
penetration is the surplus of production as shown in Fig. 5. 
Electricity production can be decreased while the heating 
demand can be satisfied with heat-only production from 

heat storage. During a period when there is a higher heat 
production than demand, heat accumulation can occur. 
Danish CHP plants currently in the central and decentral-
ized DH areas are equipped with a total heat storage of 65 
GWh [57, 58]. The heat storage can only operate for a short 
period of up to 8 h of demand in winter due to its limited 
size [28]. An alternative to cogeneration could be the use of 
seasonal heat storage from solar collectors that has been 
used in four DH plants in Denmark [59].

In 1992, a subsidy was implemented for electricity pro-
duction from natural gas and renewable fueled CHP plants, 
which resulted in more investment in renewable power in the 
heat and electric power system [60]. However, the fixed feed-
in tariffs discourage CHP plants generating electricity as they 
must first meet heat demand. The regulatory framework for 
CHP generation will change in 2018 from being supported by 
feed-in tariffs to reliance solely on the electricity market. All 
centralized CHP plants and most decentralized CHP plants 
are currently part of the electricity market, Nord Pool and can 
sell their electricity generation. This incentive stimulates CHP 
plants to optimize their power and heat dispatch according 
to the variation on the spot price [61]. Additionally, in 2013, 
the electricity tax was significantly reduced, which encour-
aged the electrification of DH generation, i.e. replacing oil and 
natural gas boilers with HPs and electric boilers [62]. Denmark 
currently integrates only around 400 MW electric boilers and 
20 MW HPs for DH supply with the main economic driver 
being the ancillary services for the Danish TSO. The capacities 
of electric boilers and HPs are expected to be 1500 and 900 
MW, respectively, in 2020 [54, 63].

Danish CHP plants are built with separate high pressure 
and intermediate pressure casings with individual bear-
ings and designed for short startup time and quick ramp 
rate. Additionally, the CHP plants are equipped with asym-
metric intermediate-pressure (IP) turbine sections in order 
to extract heat that enables some decoupling of heat and 
power generation with a wide output range [28].

4  Future flexibility measures of the 
energy system
Wind power will continue to increase in the short term and 
cover 50% of domestic electricity consumption in order 
to achieve the long-term goal of 100% renewable energy. 
The increasing fluctuation of wind power generation will 
challenge the system balancing and security. Therefore, it 
is important to enhance the current and future flexibil-
ity of the power system. Denmark is undertaking several 
studies and implementing projects to improve power sys-
tem flexibility.

Table 1  Comparison of operational characteristics of central power plants (data from [9])

Year
Base load  
generation [GW]

Base load 
period [h]

Peak generation 
[GW]

Minimum  
generation [GW]

Minimum  
generation period [h]

Annual  
generation [GWh]

2010 1.5 416 2.98 0.33 16 13062
2016 0.91 409 2 0.023 28 5502
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The EnergyLab Nordhavn project started to test the 
flexibility of the electric power system through electrical 
energy storage as a demand response in 2017. The project 
includes a 460-kWh (630 kW converter) grid connected 
battery with a goal of providing balancing services for a 
Danish residential area in the future [64].

The vehicle to grid (V2G) of electric vehicles (EVs) has also 
been studied [65–67]. In 2016, the world’s first real live test 
of V2G was achieved by using 10 grid-connected EVs in the 
Frederiksberg municipality in Copenhagen. The EVs were 
able to inject back power from the battery of the cars to the 
grid and provided balancing support to the grid, which was 
demonstrated in the ongoing Parker project [68, 69].

4.1  Enhancing flexibility from interconnectors

To respond to the increasing fluctuation from wind power, 
there is an investigation into increasing the capacity of 
interconnectors to neighboring countries. The Danish TSO, 
Energinet, is planning to build new interconnectors to the 
Netherlands, the UK and Germany together with the TSOs 
in each country [70]. The COBRAcable, a 325-km-long 0.7 
GW interconnector between DK1 and the Netherlands, is 
expected to be completed in 2018. The new transmission 
line will contribute to a stronger grid connection between 
DK1 and continental Europe. It will balance the variable 
supply of wind power, provide a backup power in case of 
the failure of other interconnectors and further integrate 
the European electricity market [71]. The Viking Link, a 
760-km-long 1.4 GW interconnector between Denmark 
and the UK, is expected to be operational by 2022. This 
will improve the security and balancing capability of 
the Danish grid and benefit the UK grid by connecting 
it to cheaper electricity production in Nordic countries 
[72]. Options are also being developed to overcome the 
decreasing power exchange between Germany and DK1. 
By 2020, the minimum capacity of its power exchange in a 
day-ahead market will be raised to 1.1 GW and the current 
interconnector will be extended further inside Northern 
Germany [73]. Thus, the total capacity of interconnectors 
to neighboring countries is planned to be expanded by 
around 3.2 GW in the near future. This expansion will 
further reinforce the ability to absorb and integrate more 
wind power in the Danish grid.

The demand for HVDC transmission lines will increase 
in the near future. In comparison to HVAC, HVDC has no 
problem with reactive power or synchronization of voltage 
and frequency. The cost of an HVDC link is also lower 
than an HVAC link. Based on current technologies, the 
cost of HVDC is lower when the distance is longer than 
600 km [74], such as the Viking Link. The HVDC system 
tends to become more cost-effective with higher voltage 
and capacities [75]. The Krigers Flak multi-terminal VSC 
technology is currently under development as a pilot 
project utilizing multi-terminal VSC-based HVDC link to 
connect the asynchronous area between DK2 and Germany 
with offshore wind power integration [76].

4.2  Enhancing flexibility from conventional 
power plants

Due to the increased amount of wind power, conventional 
power plants will be required to further improve on 
parameters such as minimum load and ramp rate. 
According to DONG Energy, a Danish energy company, 
the lower minimum load and quicker ramp rate can be 
achieved by a stepwise optimization approach. The load is 
reduced slowly stepwise until the technical limitation is 
reached. It will require that the power plant is completely 
protected by alarms and warning sensors [77]. The 
operation of conventional power plants tends to shift from 
base load to intermediate and peak load.

4.3  Enhancing flexibility from the heating and 
power sector

In order to meet the year-round heat demand covering both 
the space heating and the domestic hot water sector, CHP 
plants may lead to inflexible power production, especially 
during the surplus period as shown in Fig. 5. In this situation, 
the utilization and bypassing of power turbines will enable 
CHP plants to work at a heat-only mode. Increasing energy 
capacity of heat storage at CHP plants will enable flexible 
power generation and increase flexibility into the power 
system. In addition to the CHP plants, electrical-driven 
heating, such as electric boilers, electric heaters and HPs, 
will all play a more important role in the future DH system. 
In this manner, a significant amount of future heating 
supply will come from wind power and in return address 
the challenge of surplus wind power generation [61].

The electrification of heating is also being studied 
in Denmark. Zong et  al. [78] investigated and tested an 
economic model predictive control strategy for electrical 
heaters in Danish residential buildings [79]. The results 
indicated that as a flexible demand, control of electrical 
heaters could enable wind power integration. Cai et al. [80] 
proposed a framework for integration of electric heaters in 
the demand side of the electric power and heating sectors. 
Examples of different situations that can be addressed 
by this framework are frequency excursion and volatile 
electricity market prices caused by renewable generation. 
A  coordinated optimization of heat and power through 
HPs and CHP plants has demonstrated a reduction in wind 
power curtailment [81]. The electrification of domestic 
consumption during a surplus period technically provides 
flexibility and also increases the value of wind power, e.g. 
decrease the period with a low electricity price [82].

4.4  Enhancing flexibility from the gas and 
power sector

The main focus of this section is on the potential flexibility 
of a power system, including power to gas (P2G) technology 
and gas storage. P2G is an emerging technology that 
converts electricity into hydrogen by means of electrolysis. 
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The hydrogen generated could be further converted to 
methane by using methanation reaction and gas upgrade. 
Electricity supplied from renewable energy, such as wind 
power, could be converted into methane through this 
process with the product considered as a biomethane 
equivalent in quality to natural gas. The biogas can be 
further stored in gas storage in the long term. The P2G 
technology has a large potential in helping to absorb the 
surplus wind power generation and providing long-term 
indirect electrical energy storage. This multi-energy system 
is where the electric power sector, the heating sector and 
natural gas system is coupled. Li et  al. [83] conducted a 
study on optimal power dispatch of P2G in combination 
with CHP plants and storage in a multi-energy system. The 
CO2 for methanation is recycled from the CHP plant and 
used to generate biogas together with the P2G technology. 
The results show that the P2G system can operate during 
a low consumption period with surplus wind power, e.g. 
0–7 h, and decrease the CO2 emission level by capturing the 
emissions from CHP plants.

In Denmark, the newly finished BioCat project demon-
strated the generation of biogas as well as injection into a 
local gas distribution and storage network. The electrolyzer 
is capable of drawing electricity during the low spot price 
periods, which indicates a surplus of wind power. Moreover, 
it provides an ancillary service through frequency regula-
tion to the power system due to its fast response time [84]. 
The ongoing European QualyGridS project is also expected 
to establish a standard test for electrolyzer to perform elec-
trical grid services such as frequency regulation and volt-
age support for both TSO and DSO [85].

4.5  Ongoing Danish projects for cross-energy 
sector flexibility

Table  2 highlights selected Danish projects enhancing 
wind power penetration through using flexibility from an 
integrated multi-energy system.

The EnergyLab Nordhavn project aims to establish a 
real-life integrated energy laboratory in the Copenhagen 
Nordhavn, a city development area. The project includes 
a large share of renewable energy and an optimal inte-
gration of district heating and power through the utiliza-
tion of centralized and decentralized HPs, heat storage 
and heat boosters [86, 89]. DTU as part of this project has 
developed prototypes of heat boosters, HPs and heat stor-
ages which serve as sampled measurements transferred 
to a data warehouse. The EcoGrid 2.0 project demonstrates 

an electricity market for flexible power consumption in 
private homes. It will control 1000 HPs and electric radia-
tors to optimize the electricity consumption on the Danish 
island of Bornholm. It will demonstrate aggregators to link 
the flexibility provided by residential electrical heating. 
The project also aims at coupling the demand response to 
the electricity market to keep the load and generation bal-
anced at all times [90]. The EPIMES (Enhancing wind Power 
Integration through optimal use of cross-sectoral flexibil-
ity in an integrated multi-energy system) project is a joint 
bilateral research project between China and Denmark. The 
aim of the research was to utilize cross-sectoral flexibility 
to address wind power integration challenges in China 
through strong academia–industry collaboration. These 
activities include the development of P2G solutions for the 
city of Zhangjiakou where the 2022 winter Olympics will be 
hosted. The research project will also address local ‘wind 
energy curtailment’ issues, and develop power to heat solu-
tions in an existing smart grid demo site near Beijing [91].

5  Conclusion
Internationally, wind power integration in Denmark is 
recognized as world-class with further research ensuring 
that status continues. Danish wind power technology 
development has received considerable support over 
many years from local government, industries, research 
institutes and the wider community. The increased 
uncertainty and limited predictability of wind power has 
induced new requirements and challenges with power 
system flexibility. The current flexibility solutions rely on 
a combination of adequate capacity of interconnectors, 
optimal dispatch from the heating and power sector, 
flexible operation of conventional power plants and a 
mature electricity market. To achieve the 100% renewable 
energy goal, the current flexibility from integrated 
multi-energy systems will need further development 
and research advances. A  stronger connection with 
neighboring countries is being developed. The flexibility 
of conventional power plants such as the minimum 
load and the ramp rate need to be further improved. 
The electrification of heat generation will also play an 
important role in balancing wind power fluctuation 
and realizing the 100% green target for the power and 
heating systems. Emerging technology with gas systems 
will establish in the long-term electrical energy storage 
and future ancillary services provide power balancing. 
The Danish experience and lessons from their past and 

Table 2  Ongoing Danish projects on enhancing wind power penetration through system flexibility [86–88]

Project name EnergyLab Nordhavn EcoGrid 2.0 EPIMES

Flexibility provider HPs, electric boilers and DH system HPs, electric radiators and  
electricity market

P2G and DH system

Demonstration location Copenhagen Nordhavn Danish island Bornholm Zhangjiakou and  
Beijing, China
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current research projects can be applied elsewhere and 
further improve the development and utilization of 
wind power.
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