

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Jan 01, 2018

Computation of Phase Equilibrium and Phase Envelopes

Ritschel, Tobias Kasper Skovborg; Jørgensen, John Bagterp

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Ritschel, T. K. S., & Jørgensen, J. B. (2017). Computation of Phase Equilibrium and Phase Envelopes. DTU
Compute. (DTU Compute-Technical Report-2017, Vol. 11).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/144130842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/computation-of-phase-equilibrium-and-phase-envelopes(bcd25ae4-ccf2-4e20-9279-459271b6ce73).html

Computation of Phase Equilibrium and

Phase Envelopes

Abstract

In this technical report, we describe the computation of phase equilibrium and phase en-

velopes based on expressions for the fugacity coefficients. We derive those expressions from the

residual Gibbs energy. We consider 1) ideal gases and liquids modeled with correlations from

the DIPPR database and 2) nonideal gases and liquids modeled with cubic equations of state.

Next, we derive the equilibrium conditions for an isothermal-isobaric (constant temperature,

constant pressure) vapor-liquid equilibrium process (PT flash), and we present a method for the

computation of phase envelopes. We formulate the involved equations in terms of the fugacity

coefficients. We present expressions for the first-order derivatives. Such derivatives are necessary

in computationally efficient gradient-based methods for solving the vapor-liquid equilibrium

equations and for computing phase envelopes. Finally, we describe a Matlab program that

computes the phase envelope of a mixture. We present the source code and discuss practical

details of the implementation.

Tobias K. S. Ritschel

John Bagterp Jørgensen

DTU Compute Technical Report-2017-11

ISSN: 1601-2321

Technical University of Denmark

Department of Applied Mathematics and Computer Science &

Center for Energy Resources Engineering

Kgs. Lyngby

December 15, 2017

CONTENTS

Contents

1 Introduction 4

1.1 A note on nomenclature . 5

2 Residual Gibbs energy of ideal vapor-liquid mixtures 5

2.1 Gibbs energy of ideal gas mixtures . 6

2.2 Gibbs energy of ideal liquid mixtures . 7

2.3 Residual Gibbs energy of ideal vapor and liquid mixtures 9

2.4 Summary . 9

3 Residual Gibbs energy of nonideal mixtures 9

3.1 Residual Gibbs energy with pressure-explicit equations of state 10

3.2 Cubic equations of state . 11

3.2.1 Solution of cubic equations of state . 12

3.3 Residual Gibbs energy with cubic equations of state 13

3.4 Summary . 13

4 Fugacity and fugacity coefficients 13

4.1 Definition of chemical potential . 14

4.2 Chemical potential of a pure component ideal gas . 14

4.3 Definition of fugacity . 14

4.4 Fugacity coefficients . 15

4.4.1 Ideal gas mixture . 16

4.4.2 Ideal liquid mixture . 16

4.4.3 Nonideal mixture . 17

4.5 Summary . 17

5 Vapor-liquid equilibrium 17

5.1 Equilibrium conditions . 17

5.2 Solution of the equilibrium conditions . 19

5.3 Summary . 19

6 Equilibrium constants 19

6.1 Equilibrium constants . 19

6.1.1 Ideal vapor-liquid mixture . 20

6.2 Summary . 20

7 Vapor-liquid equilibrium of ideal mixtures 20

7.1 Solution of the Rachford-Rice equation . 22

7.2 Summary . 22

2

CONTENTS

8 Computation of phase envelopes 23

8.1 Solution of the isocurve equations . 24

8.2 Computation of initial guess . 24

8.3 Summary . 25

9 Derivatives 26

9.1 Logarithmic fugacity coefficients . 26

9.1.1 Ideal liquid mixture . 26

9.1.2 Nonideal mixture . 27

9.2 Vapor-liquid equilibrium equations . 30

9.3 Ideal vapor-liquid equilibrium equations . 31

9.4 Phase envelope equations . 31

10 An algorithm for computing phase envelopes and an example program 32

10.1 Wilson’s approximation of equilibrium constants . 32

10.2 Cubic interpolation . 32

10.3 Automatic selection of specified variable . 34

10.4 Automatic step size selection . 34

10.5 Algorithm for computing isocurves . 34

10.6 Example program . 34

10.7 Discussion . 44

A Derivative of mixing term 45

B Derivation of the residual Gibbs energy for cubic equations of state 46

C Derivation of the logarithmic fugacity coefficients for cubic equations of state 47

3

1. Introduction

1 Introduction

This technical report is structured in the following way: the purpose of Sections 2-4 is to derive

expressions for the fugacity coefficients which are relevant to the vapor-liquid equilibrium equations

that we present in Section 5 and 7. The vapor-liquid equilibrium equations (and therefore also the

fugacity coefficients) are central in the phase envelope computations that we describe in Section 8.

In the remainder of this section, we give a brief overview of the content of the sections.

We derive expressions for the residual Gibbs energy for ideal gas and liquid mixtures in Section 2

and for nonideal gas and liquid mixtures in Section 3. The residual Gibbs energy of ideal gases is zero

by definition. We obtain the expression for the residual Gibbs energy of ideal liquids directly from

the Gibbs energy of the ideal gas and liquid. We construct expressions for the residual Gibbs energy

of nonideal mixtures from the residual Helmholtz energy. That is because the partial derivative of

Helmholtz energy with respect to volume is negative pressure and because pressure appears explicitly

in cubic equations of state. We do not use the expressions for the residual Gibbs energy in the actual

computations. We only use them to derive expressions for the fugacity coefficients in Section 4.

In Section 4, we first introduce the chemical potential which is the partial derivative of Gibbs

energy with respect to a given mole number. Next, we define the fugacity based on the chemical

potential of the mixture of interest and the chemical potential of a pure component ideal gas. We

then define the fugacity coefficient and derive an expression for the fugacity coefficient based on

the residual Gibbs energy. The fugacity and the chemical potentials are not involved in the actual

computations. They only serve to introduce the relation between the fugacity coefficients and the

residual Gibbs energy.

In Section 5, we derive vapor-liquid equilibrium conditions for an isothermal-isobaric (constant

temperature, constant pressure) vapor-liquid mixture. The second law of thermodynamics states

that the entropy of a closed system is maximal at equilibrium. An isothermal-isobaric system is

not closed, but the combination of the isothermal-isobaric system and its surroundings is. The

condition of maximal entropy of the isothermal-isobaric system and its surroundings is equivalent

to a condition of minimal Gibbs energy for the system alone (Callen, 1985). We therefore formulate

the vapor-liquid equilibrium problem as an optimization problem where the objective function is the

Gibbs energy of the system. The equilibrium conditions are then the first-order optimality conditions

of this optimization problem. We rewrite these first-order optimality conditions in terms of the

fugacity coefficients.

In Section 6, we introduce the equilibrium constants (sometimes called equilibrium ratios) and

use the vapor-liquid equilibrium conditions to derive an expression for the equilibrium constants

based on the fugacity coefficients. In Section 7, we use the fact that the equilibrium constants for an

ideal vapor-liquid mixture are independent of the composition to solve the vapor-liquid equilibrium

problem efficiently.

In section 8, we describe the equations that define what is called the phase envelope. The phase

envelope is a collection of vapor-liquid equilibrium states that have the same vapor fraction, i.e.

the same total moles of vapor as compared to the total moles of both vapor and liquid. The phase

envelope equations are therefore based on the vapor-liquid equilibrium conditions. The method

for phase envelope computations that we present is described by Michelsen and Mollerup (2007,

4

2. Residual Gibbs energy of ideal vapor-liquid mixtures

Chap. 12). The method involves a choice of equilibrium constants, temperature, and pressure as

independent variables, i.e. the variables that are solved for. The method constructs the phase

envelope in a sequential manner for a given specified vapor fraction. It solves the equations for a

specified equilibrium constant, temperature, or pressure. Next, it uses the sensitivities of the solution

to create an initial estimate for solving the equations with a slightly different specified equilibrium

constant, temperature or pressure.

We collect the derivatives of the expressions for the fugacity coefficients, the vapor-liquid equilib-

rium equations, and the phase envelope equations in Section 9.

In Section 10, we describe, in more detail, the algorithm by Michelsen and Mollerup (2007) for

computing the phase envelope. We also describe an example of a Matlab program that implements

the algorithm and computes the phase envelope for a hydrocarbon mixture. We present and discuss

the programs Matlab code.

1.1 A note on nomenclature

In Sections 2-4, we describe thermodynamic properties of either a vapor or a liquid mixture. When

we describe properties of vapor mixtures, e.g. the Gibbs energy of an ideal gas, we denote the

composition (in moles) by a vector, nv. In that case, we denote the mole fraction of component i

by yi. For liquid mixtures, we denote the composition vector nl and the mole fraction xi. When we

describe the properties of nonideal mixtures, and when we define fugacity and fugacity coefficients,

the expressions are the same for both vapor mixtures and liquid mixtures. We therefore denote the

composition by n and the mole fraction by zi.

Later, in Section 5 to 8, we consider mixtures that exist in both a vapor phase and a liquid

phase. Again, the vapor phase has composition nv and mole fraction yi, and the liquid phase has

composition nl and mole fraction xi. But in that case, n will denote the composition of the entire

mixture, i.e. ni = nvi + nli, and zi will be the corresponding mole fraction.

2 Residual Gibbs energy of ideal vapor-liquid mixtures

We derive the Gibbs energy of ideal gas and liquid mixtures from the enthalpy and entropy of those

mixtures. We use the pure component molar enthalpy and entropy of each component in the mixture

to derive expressions for the enthalpy and the entropy of the mixtures. The residual Gibbs energy

of a mixture is, by definition, the Gibbs energy of that mixture minus the Gibbs energy of an ideal

gas at the same state, e.g. temperature, pressure, and composition (in moles). The residual Gibbs

energy of an ideal gas mixture is therefore zero by definition. We use the Gibbs energy of an ideal

gas mixture and an ideal liquid mixture to derive an expression for the residual Gibbs energy of a

liquid mixture.

5

2. Residual Gibbs energy of ideal vapor-liquid mixtures

2.1 Gibbs energy of ideal gas mixtures

We consider an ideal gas mixture of NC components. The molar enthalpy and entropy of the i’th

component at temperature T and pressure P are

higi (T) = higi (T0) +

∫ T

T0

cigP,i(T)dT, (1a)

sigi (T, P) = sigi (T0, P0) +

∫ T

T0

cigP,i(T)

T
dT −R ln

P

P0
. (1b)

The ideal gas enthalpy is independent of pressure. higi (T0) and sigi (T0, P0) are the ideal gas enthalpy

and entropy of formation at reference temperature T0 and P0. cigP,i(T) is the ideal gas heat capacity

at constant pressure. Values of higi (T0) and sigi (T0, P0) and correlations for cigP,i(T) are available in

databases such as the DIPPR database1 (Thomson, 1996). However, terms that involve higi (T0),

sigi (T0, P0), and cigP,i(T) will cancel out in the computations that we describe in this technical report.

The molar gibbs energy of component i is

gigi (T, P) = higi (T)− Tsigi (T, P)

= higi (T0)− Tsigi (T0, P0)−RT lnP0 +

∫ T

T0

cigP,i(T)dT − T
∫ T

T0

cigP,i(T)

T
dT +RT lnP

= Γi(T) +RT lnP, (2)

where we have introduced the auxiliary variable

Γi(T) = higi (T0)− Tsigi (T0, P0)−RT lnP0 +

∫ T

T0

cigP,i(T)dT − T
∫ T

T0

cigP,i(T)

T
dT. (3)

higi (T0), sigi (T0, P0), and cigP,i(T) appear only in the auxiliary variable Γi(T) and it is this variable

that will cancel out in the computations in later sections. The enthalpy and entropy of the ideal gas

mixture are

Hig(T, nv) =
∑
i

nvi h
ig
i (T), (4a)

Sig(T, P, nv) =
∑
i

nvi s
ig
i (T, P)−R

∑
i

nvi ln yi. (4b)

nv is a vector of compositions (in moles). The i’th component, nvi , denotes the number of moles of

component i. yi is the vapor mole fraction of component i: yi = nvi /
(∑

j n
v
j

)
. The sums are over

all components. The second term in the expression for the entropy is a mixing term. The Gibbs

1www.aiche.org/dippr/events-products/801-database

6

2. Residual Gibbs energy of ideal vapor-liquid mixtures

energy of the ideal gas mixture is

Gig(T, P, nv) = Hig(T, nv)− TSig(T, P, nv)

=
∑
i

nvi h
ig
i (T)− T

∑
i

nvi s
ig
i (T, P) +RT

∑
i

nvi ln yi

=
∑
i

nvi g
ig
i (T, P) +RT

∑
i

nvi ln yi

=
∑
i

nvi (Γi(T) +RT lnP) +RT
∑
i

nvi ln yi. (5)

2.2 Gibbs energy of ideal liquid mixtures

The vaporization change in molar enthalpy of component i, ∆hvapi (T), is related to the vaporization

change in molar entropy, ∆svapi (T), by

∆hvapi (T) = T∆svapi (T). (6)

We do not present an expression for ∆svapi (T) because it will cancel out in later expressions. The

molar ideal liquid enthalpy at saturation is

hsati (T) = higi (T)−∆hvapi (T)

= higi (T)− T∆svapi (T). (7)

It is necessary to know the saturation pressure in order to provide expressions for the molar ideal

liquid entropy at saturation. We use the following correlation from the DIPPR database

P sati (T) = exp
(
lnP sati (T)

)
, (8a)

lnP sati (T) = Ai +
Bi
T

+ Ci ln(T) +DiT
Ei . (8b)

Ai, Bi, Ci, Di, and Ei are component-specific parameters. They are also specific to this particular

correlation. The ideal liquid entropy at saturation is

ssati (T) = sigi (T, P sati (T))−∆svapi (T). (9)

The molar ideal liquid Gibbs energy at saturation is

gsati (T) = hsati (T)− Tssati (T)

= higi (T)− T∆svapi (T)− Tsigi (T, P sati (T)) + T∆svapi (T)

= higi (T)− Tsigi (T, P sati (T))

= Γi(T) +RT lnP sati (T). (10)

In order to provide expressions for the molar ideal liquid enthalpy and entropy at pressures, P , that

are different from the saturation pressure, P sati (T), it is necessary to know the liquid volume as

a function of temperature, as well as its first order temperature derivative. We use the following

7

2. Residual Gibbs energy of ideal vapor-liquid mixtures

correlation from the DIPPR database

vli(T) =
B

1+
(

1− T
Ci

)Di

i

Ai
. (11)

Again, Ai, Bi, Ci, and Di are component-specific parameters. They are also specific for this

correlation, i.e. they are different from the parameters in the correlation for the saturation pressure.

The molar ideal liquid enthalpy and entropy are

hidi (T, P) = hsati (T) +

(
vli(T)− T ∂v

l
i

∂T

)
(P − P sati (T)), (12a)

sidi (T, P) = ssati (T)− ∂vli
∂T

(P − P sati (T)). (12b)

Terms that involve the temperature derivative will cancel out in later expressions. The molar ideal

liquid Gibbs energy is

gidi (T, P) = hidi (T, P)− Tsidi (T, P)

= hsati (T) +

(
vli(T)− T ∂v

l
i

∂T

)
(P − P sati (T))− Tssati (T) + T

∂vli
∂T

(P − P sati (T))

= hsati (T)− Tssati (T) + vli(T)(P − P sati (T))

= gsati (T) + vli(T)(P − P sati (T))

= Γi(T) +RT lnP sati (T) + vli(T)(P − P sati (T)). (13)

The ideal liquid mixture enthalpy and entropy are

Hid(T, P, nl) =
∑
i

nlih
id
i (T, P), (14a)

Sid(T, P, nl) =
∑
i

nlis
id
i (T, P)−R

∑
i

nli lnxi. (14b)

nl is a vector of compositions in moles, i.e. nli is the moles of component i. xi = nli/
(∑

j n
l
j

)
is the

liquid mole fraction of component i. The second term in the expression for entropy is a mixing term.

The ideal liquid mixture Gibbs energy is

Gid(T, P, nl) = Hid(T, P, nl)− TSid(T, P, nl)

=
∑
i

nlih
id
i (T, P)− T

∑
i

nlis
id
i (T, P) +RT

∑
i

nli lnxi

=
∑
i

nlig
id
i (T, P) +RT

∑
i

nli lnxi

=
∑
i

nli
(
Γi(T) +RT lnP sati (T) + vli(T)(P − P sati (T))

)
+RT

∑
i

nli lnxi. (15)

8

3. Residual Gibbs energy of nonideal mixtures

2.3 Residual Gibbs energy of ideal vapor and liquid mixtures

The residual Gibbs energy is the difference between the Gibbs energy of the mixture and the Gibbs

energy of the mixture if it was considered to be an ideal gas mixture. The residual Gibbs energy of

an ideal gas mixture is therefore zero:

GR,ig(T, P, nv) = 0 (16)

We use the Gibbs energy of ideal gas mixtures to derive the expression for the residual Gibbs energy

of an ideal liquid mixture. It is the difference between the ideal liquid Gibbs energy and the ideal

gas Gibbs energy evaluated at the same temperature, T , pressure, P , and composition, nl:

GR,id(T, P, nl) = Gid(T, P, nl)−Gig(T, P, nl)

=

(∑
i

nli
(
Γi(T) +RT lnP sati (T) + vli(T)(P − P sati (T))

)
+RT

∑
i

nli lnxi

)

−

(∑
i

nli (Γi(T) +RT lnP) +RT
∑
i

nli lnxi

)

=
∑
i

nli

(
RT ln

P sati (T)

P
+ vli(T)(P − P sati (T))

)
(17)

It is important to note that the ideal gas Gibbs energy is evaluated at the liquid composition, nl, and

not nv in the above expression. That is also the reason that xi appears in place of yi which means

that certain terms cancel out. Unlike the ideal gas heat capacity, cigP,i(T), the saturation pressure,

P sati (T), and the liquid volume, vli(T), are necessary in the computations that we present in this

report.

2.4 Summary

The residual Gibbs energy of ideal gas and liquid mixtures are

GR,ig(T, P, nv) = 0, (18a)

GR,id(T, P, nl) =
∑
i

nli

(
RT ln

P sati (T)

P
+ vli(T)(P − P sati (T))

)
. (18b)

They will be used in expressions for the fugacity coefficients in Section 4.

3 Residual Gibbs energy of nonideal mixtures

In this section, we first present an expression for the residual Gibbs energy of a nonideal mixture

without assuming a specific equation of state. Then we describe cubic equations of state with van der

Waals’ mixing rules. Finally, we present the expression for the residual Gibbs energy of a nonideal

mixture based on a cubic equation of state. The derivation of the expression based on the cubic

equation of state is presented in Appendix B. We will not use the expression for the Gibbs energy

9

3. Residual Gibbs energy of nonideal mixtures

of an ideal gas mixture that was derived in Section 2. Instead, we use the ideal gas law for the ideal

gas mixture.

3.1 Residual Gibbs energy with pressure-explicit equations of state

In this section, we consider a nonideal vapor or liquid mixture. We treat both phases in the same

way. We use the residual Helmholtz energy in the derivation. We will consider the Helmholtz energy

a function of temperature, T , volume, V , and composition (in moles), n. This is only for the sake

of the derivation. Eventually, we describe the residual Gibbs energy as function of temperature, T ,

pressure, P , and mole numbers, n. We omit the superscript v or l on the composition vector because

we treat both phases in the same way. The residual Helmholtz energy is

AR(T, V, n) = A(T, V, n)−Aig(T, V, n). (19)

A(T, V, n) is the Helmholtz energy of the mixture and Aig(T, V, n) is the Helmholtz energy of the

mixture if it was an ideal gas. We use the fact that the volume derivative of Helmholtz energy is

pressure with a negative sign:

∂AR

∂V
(T, V, n) =

∂A

∂V
(T, V, n)− ∂Aig

∂V
(T, V, n)

= −
(
P (T, V, n)− P ig(T, V, n)

)
. (20)

P ig(T, V, n) is obtained from the ideal gas law, i.e. P ig(T, V, n) = NRT/V , where N =
∑
j nj is

the total number of moles in the mixture and R is the gas constant. P (T, V, n) is obtained from an

equation of state. The derivation that we present in this section is therefore best suited to equations

of state that are explicit in pressure. That is the case for the cubic equations of state that we describe

later. We obtain an expression for the residual Helmholtz energy of the nonideal mixture:

AR(T, V, n) = −
∫ V

V=∞

(
P (T, V, n)− NRT

V

)
dV. (21)

The choice of integrating from infinite volume is a matter of convenience. We introduce the com-

pressibility factor, Z = PV
NRT . We use relations between residual properties to derive an expression

for the residual Gibbs energy evaluated at T , P , and n (Michelsen and Mollerup, 2007, Table 6):

GR(T, P, n) = GR(T, V, n)−NRT lnZ

= AR(T, V, n) + PV −NRT −NRT lnZ

= −
∫ V

V=∞

(
P (T, V, n)− NRT

V

)
dV +NRTZ −NRT −NRT lnZ

= −
∫ V

V=∞

(
P (T, V, n)− NRT

V

)
dV +NRT (Z − 1)−NRT lnZ. (22)

The above expression only becomes useful when we substitute a specific equation of state for

P (T, V, n).

10

3. Residual Gibbs energy of nonideal mixtures

3.2 Cubic equations of state

In this section, we describe cubic equation equations of state and van der Waals’ mixing rules. The

cubic equations of state are formulated in terms of the molar volume, v = V/N :

P = P (T, V, n) =
RT

v − bm
− am

(v + εbm)(v + σbm)

=
RT

V/N − bm
− am

(V/N + εbm)(V/N + σbm)
. (23)

The parameters ε and σ are specific for each cubic equation of state. Two of the most popular

cubic equations of state were developed by Soave (1972) and by Peng and Robinson (1976). The

parameters that are specific to each equation of state are shown in Table 1. am and bm are mixing

parameters given by van der Waals’ mixing rules:

am = am(T, n) =
∑
i

∑
j

zizjaij (24a)

bm = bm(n) =
∑
i

zibi (24b)

zi = ni/N is the mole fraction of component i. We define the pure component parameter bi shortly.

The binary parameters aij are

aij = aij(T) = (1− kij)
√
âij . (25)

We assume that the binary interaction parameters, kij , are given constants, i.e. we do not provide

an expression for them. They can either be measured experimentally or predicted with a model. The

parameter âij is the product of the pure component parameters ai and aj :

âij = âij(T) = aiaj . (26)

The pure component parameters ai and bi are

ai = ai(T) = α(Tr,i, ωi)Ψ
R2T 2

c,i

Pc,i
, (27a)

bi = Ω
RTc,i
Pc,i

. (27b)

Tr,i = T/Tc,i is the reduced temperature. Tc,i and Pc,i are the critical temperature and pressure of

component i. ωi is the acentricity factor. We use values from the DIPPR database for the critical

temperature, pressure, and for the acentricity factor. Ψ and Ω are parameters that are specific to

the equation of state. Their values are shown in Table 1. The function, α, is

α(Tr,i, ωi) =
(

1 +m(ωi)(1− T 1/2
r,i)

)2

. (28)

m(ωi) is a polynomium that is specific for each equation of state. Its expression is shown in Table 1.

This concludes the description of the cubic equations of state. Next, we describe how to solve the

11

3. Residual Gibbs energy of nonideal mixtures

Table 1: Parameters in the Soave-Redlich-Kwong (SRK) and the Peng-Robinson (PR) cubic equations
of state.

ε σ Ω Ψ m(ω)

PR 1 +
√

2 1−
√

2 0.07779 0.45724 m(ω) = 0.37464 + 1.54226ω − 0.26992ω2

SRK 1 0 0.08664 0.42748 m(ω) = 0.480 + 1.574ω − 0.176ω2

cubic equation of state of state for the compressibility factor.

3.2.1 Solution of cubic equations of state

We reformulate the cubic equation of state as a polynomium in the compressibility factor Z:

q(Z) = Z3 +

2∑
m=0

dmZ
m = 0. (29)

The polynomial coefficients are

d2 = d2(A,B) = B(ε+ σ − 1)− 1, (30a)

d1 = d1(A,B) = A−B(ε+ σ) +B2(εσ − ε− σ), (30b)

d0 = d0(A,B) = −
(
AB +

(
B2 +B3

)
εσ
)
, (30c)

where A and B are functions of temperature, T , pressure, P , and composition, n:

A = A(T, P, n) =
Pam
R2T 2

, (31a)

B = B(T, P, n) =
Pbm
RT

. (31b)

The compressibility factors are therefore also functions of temperature, T , pressure, P , and compo-

sition, n, i.e. Z = Z(T, P, n). The polynomium q(Z) = q(Z;T, P, n) will have either one or three

roots depending on the given T , P , and n. When it has three roots, the smallest root is the liquid

phase compressibility and the largest root is the vapor phase compressibility. This is essentially what

distinguishes the residual Gibbs energy of the vapor phase from the residual Gibbs energy of the

liquid phase. For given T , P , and n, we use Newton’s method to solve for the compressibility factor:

Zk+1 = Zk − q(Zk)/q′(Zk), (32a)

q′(Zk) = 3Z2
k + 2d2Zk + d1. (32b)

We use the stopping criterium

|q(Zk+1)| < ε, (33)

12

4. Fugacity and fugacity coefficients

for a given tolerance, ε. The initial guess for the Newton iterations depends on whether we are

searching for a vapor root or a liquid root:

Z0 = 1, (Vapor) (34a)

Z0 = B. (Liquid) (34b)

It is important to note that in vapor-liquid equilibrium computations, the vapor and the liquid

phases will have different compositions, nv and nl. It is therefore necessary to solve the polynomium

q(Z;T, P, nv) for the vapor compressibility and q(Z;T, P, nl) for the liquid compressibility. The

compressibilities are not roots of the same polynomium.

3.3 Residual Gibbs energy with cubic equations of state

We insert the cubic equation of state into the expression for the residual Gibbs energy. The evaluation

of the integral is described in Appendix B. The final expression becomes

GR(T, P, n) = −
∫ V

V=∞

(
RT

V/N − bm
− am

(V/N + εbm)(V/N + σbm)
− NRT

V

)
dV

+NRT (Z − 1)−NRT lnZ

= −NRT ln

(
Z −B
Z

)
− N

ε− σ
am
bm

ln

(
Z + εB

Z + σB

)
+NRT (Z − 1)−NRT lnZ

= NRT (Z − 1)−NRT ln(Z −B)− N

ε− σ
am
bm

ln

(
Z + εB

Z + σB

)
. (35)

We reiterate that the above expression describes the residual Gibbs energy of both the vapor phase,

GR,v(T, P, nv), and of the liquid phase, GR,l(T, P, nl). The cubic equation of state is a third order

polynomium, q(Z;T, P, n), in the compressibility factor. The vapor phase compressibility, Zv =

Zv(T, P, nv), is the largest root of q(Zv;T, P, nv) and the liquid phase compressibility factor, Zl =

Zl(T, P, nl), is the smallest root of q(Zl;T, P, nl).

3.4 Summary

The residual Gibbs energy of a nonideal mixture (either a vapor or a liquid mixture) based on a

cubic equation of state is

GR(T, P, n) = NRT (Z − 1)−NRT ln(Z −B)− N

ε− σ
am
bm

ln

(
Z + εB

Z + σB

)
. (36)

4 Fugacity and fugacity coefficients

In this section, we introduce the chemical potential in order to define the fugacity. Next, we

introduce the fugacity coefficients which are the quantities that we will actually use in the vapor-

liquid equilibrium computations. That is, the chemical potentials and the fugacities only serve the

purpose of introducing expressions for the fugacity coefficients.

13

4. Fugacity and fugacity coefficients

4.1 Definition of chemical potential

The chemical potential of component i in a mixture is by definition the partial derivative of the

Gibbs energy of that mixture with respect to mole number i:

µi(T, P, n) =
∂G

∂ni
(T, P, n). (37)

The same definition holds for any mixture, i.e. also for ideal gas and liquid mixtures:

µigi (T, P, n) =
∂Gig

∂nvi
(T, P, nv), (38a)

µidi (T, P, n) =
∂Gid

∂nli
(T, P, nl). (38b)

4.2 Chemical potential of a pure component ideal gas

The definition of the fugacity of component i depends on the chemical potential of a pure component

(pc) ideal gas consisting entirely of component i. The Gibbs energy of such a pure component ideal

gas is

Gpc,igi (T, P, nvi) = nvi g
ig
i (T, P)

= nvi (Γi(T) +RT lnP) . (39)

The chemical potential of that pure component ideal gas is therefore

µpc,igi (T, P, nvi) =
∂Gpc,igi

∂nvi
(T, P, nvi)

= gigi (T, P)

= Γi(T) +RT lnP. (40)

We note that the pure component ideal gas chemical potential is independent of the mole number,

i.e. µpc,igi (T, P, nvi) = µpc,igi (T, P).

4.3 Definition of fugacity

We define the fugacity of a mixture (vapor or liquid) of composition n. First, we recall that the

Gibbs energy of an ideal gas mixture of composition nv (in moles) is

Gig(T, P, nv) =
∑
i

nvi (Γi(T) +RT lnP) +RT
∑
i

nvi ln yi. (41)

Next, we express the ideal gas mixture chemical potential of component i in terms of the chemical

potential of a pure component ideal gas that consists of component i. Because we define fugacity

in the same way for both vapor and liquid mixtures, we use n for the composition instead of nv.

Similarly, we use zi = ni/N , where N =
∑
j nj , for the mole fraction of component i. The i’th

14

4. Fugacity and fugacity coefficients

chemical potential of an ideal gas mixture is

µigi (T, P, n) =
∂Gig

∂nvi
(T, P, n)

= Γi(T) +RT lnP +RT ln zi

= Γi(T) +RT lnP0 +RT ln
ziP

P0

= µpc,igi (T, P0) +RT ln
ziP

P0
. (42)

The differentiation of the first sum in the expression (41) for the Gibbs energy of an ideal gas mixture

is straightforward. We describe the differentiation of the second sum in Appendix A. The fugacity of

component i, fi(T, P, n), is defined such that the above expression is valid for the chemical potential

of mixtures that are not ideal gas mixtures. It is therefore implicitly defined by replacing ziP with

fi(T, P, n) in the above:

µi(T, P, n) = µpc,igi (T, P0) +RT ln
fi(T, P, n)

P0
. (43)

Note that it is still the chemical potential of a pure component ideal gas that appears on the right-

hand side of the above expression. Next, we introduce the fugacity coefficients and use the above

expression to relate the fugacity coefficients to the residual Gibbs energy.

4.4 Fugacity coefficients

In this section, we introduce the fugacity coefficients and relate them to the residual Gibbs energy.

First, we isolate the chemical potential of the pure component ideal gas in (42):

µpc,igi (T, P0) = µigi (T, P, n)−RT ln
ziP

P0
. (44)

Then we substitute the chemical potential of the pure component ideal gas into (43):

µi(T, P, n) = µpc,igi (T, P0) +RT ln
fi(T, P, n)

P0

= µigi (T, P, n)−RT ln
ziP

P0
+RT ln

fi(T, P, n)

P0

= µigi (T, P, n) +RT ln
fi(T, P, n)

ziP
. (45)

We define the fugacity coefficient of component i as

φi(T, P, n) =
fi(T, P, n)

ziP
. (46)

15

4. Fugacity and fugacity coefficients

We substitute the fugacity coefficient into (45), isolate the term that contains the fugacity coefficient,

and use the definition of the chemical potentials:

RT lnφi(T, P, n) = µi(T, P, n)− µigi (T, P, n)

=
∂G

∂ni
(T, P, n)− ∂Gig

∂ni
(T, P, n)

=
∂

∂ni

(
G(T, P, n)−Gig(T, P, n)

)
=
∂GR

∂ni
(T, P, n) (47)

We thus obtain an expression for the logarithm of the fugacity coefficients:

lnφi(T, P, n) =
1

RT

∂GR

∂ni
(T, P, n). (48)

It is only the logarithms of the fugacity coefficients that we use in the vapor-liquid equilibrium

computations. It is therefore not necessary to isolate the fugacity coefficients in the above. Next,

we derive expressions for the logarithmic fugacity coefficients of ideal and nonideal gas and liquid

mixtures.

4.4.1 Ideal gas mixture

The residual Gibbs energy of ideal gas mixtures is zero. The logarithmic fugacity coefficients are

therefore also zero:

lnφigi (T, P, nv) =
1

RT

∂GR,ig

∂ni
(T, P, n)

= 0. (49)

4.4.2 Ideal liquid mixture

The residual Gibbs energy of ideal liquid mixtures is linear in the mole numbers. The differentiation

is therefore straightforward. The logarithmic fugacity coefficients are

lnφidi (T, P, nl) =
1

RT

∂GR,id

∂nli

=
1

RT

(
RT ln

P sati (T)

P
+ vli(T)(P − P sati (T))

)
= ln

P sati (T)

P
+
vli(T)(P − P sati (T))

RT
. (50)

The fugacity coefficients of ideal liquids are therefore independent of the composition, i.e. φidi (T, P, nl) =

φidi (T, P).

16

5. Vapor-liquid equilibrium

4.4.3 Nonideal mixture

We present the derivation of the fugacity coefficients for nonideal mixtures in Appendix C. The final

expression is

lnφi(T, P, n) = (Z − 1)
bi
bm
− ln(Z −B)− 1

ε− σ
1

RTbm

2
∑
j

zjaij − am
bi
bm

 ln

(
Z + εB

Z + σB

)
.

(51)

The above expression applies to both vapor and liquid mixtures. The logarithmic fugacity coefficients

of vapor mixtures, lnφvi (T, P, n
v), use the vapor phase compressibility, Zv = Zv(T, P, nv), which is

the largest root of the cubic equation of state, q(Zv;T, P, nv). The logarithmic fugacity coefficients

of liquid mixtures use the liquid phase compressibility, Zl(T, P, nl), which is the smallest root

of q(Zl;T, P, nl). Furthermore, several of the quantities in the above expression depend on the

composition. It is therefore different values of am(T, n), bm(n), B(T, P, n), and zi that appear in the

expressions for the vapor and liquid logarithmic fugacity coefficients.

4.5 Summary

The expressions for the logarithmic fugacity coefficients are

lnφigi (T, P, nv) = 0, (52a)

lnφidi (T, P, nl) = ln
P sati (T)

P
+
vli(T)(P − P sati (T))

RT
, (52b)

lnφi(T, P, n) = (Z − 1)
bi
bm
− ln(Z −B)− 1

ε− σ
1

RTbm

2
∑
j

zjaij − am
bi
bm

 ln

(
Z + εB

Z + σB

)
.

(52c)

The latter expression applies to both nonideal vapor and liquid mixtures.

5 Vapor-liquid equilibrium

In this section, we formulate the vapor-liquid equilibrium problem as an optimization problem.

We then derive the vapor-liquid equilibrium conditions as the first-order optimality conditions of

this optimization problem. Next, we reformulate the equilibrium conditions in terms of the fugacity

coefficients that we introduced in Section 4. Finally, we use Newton’s method to solve the equilibrium

conditions.

5.1 Equilibrium conditions

We consider a mixture that exists in both a vapor phase (v) and a liquid phase (l). The mixture

contains NC components. The vapor phase has composition nv, and the liquid phase has composition

nl. Both nv and nl are vectors of mole numbers. Both phases have the same temperature, T , and the

same pressure, P . The mixture is isothermal and isobaric, i.e. the temperature and the pressure are

17

5. Vapor-liquid equilibrium

specified constants. The problem is to find the vapor-liquid composition (in moles) at equilibrium.

The condition of equilibrium is that Gibbs energy of the mixture is minimal. We formulate this

condition as the optimization problem

min
nv,nl

Gv(T, P, nv) +Gl(T, P, nl), (53a)

s.t. nvi + nli = ni, i = 1, . . . , NC . (53b)

The total moles of each component, ni, is specified. The constraint ensures that mass is conserved,

i.e. that mass is distributed among the vapor phase and the liquid phase. Because the constraint

is linear, we use it to eliminate the liquid moles, i.e. nl = n − nv. By doing so, we obtain an

unconstrained optimization problem:

min
nv

Gv(T, P, nv) +Gl(T, P, n− nv). (54)

The first-order optimality conditions require that the derivatives of the objective function with respect

to the vapor mole numbers are zero:

∂Gv

∂nvi
(T, P, nv)− ∂Gl

∂nli
(T, P, n− nv) = 0. (55)

We have used that ∂
∂nv

i

(
Gl(T, P, n− nv)

)
= −∂G

l

∂nl
i

(T, P, n− nv). For brevity, we write nl instead of

n− nv in most of the following equations in this section, but it is implicitly understood that nl has

been eliminated. Next, we rewrite the equilibrium conditions in terms of the chemical potentials:

∂Gv

∂nvi
(T, P, nv)− ∂Gl

∂nli
(T, P, nl) = µvi (T, P, n

v)− µli(T, P, nl)

=
(
µvi (T, P, n

v)− µpc,igi (T, P0)
)
−
(
µli(T, P, n

l)− µpc,igi (T, P0)
)
.

(56)

We can obtain an expression for the difference in each parentheses from the definition of the fugacities:

(
µvi (T, P, n

v)− µpc,igi (T, P0)
)
−
(
µli(T, P, n

l)− µpc,igi (T, P0)
)

= RT ln
fvi (T, P, nv)

P0
−RT ln

f li (T, P, n
l)

P0
. (57)

From the definition of the fugacity coefficients, we know that fvi (T, P, nv) = φvi (T, P, n
v)yiP and

f li (T, P, n
l) = φli(T, P, n

l)xiP . We use those expressions to introduce the fugacity coefficients:

RT ln
fvi (T, P, nv)

P0
−RT ln

f li (T, P, n
l)

P0
= RT

(
ln fvi (T, P, nv)− ln f li (T, P, n

l)
)

= RT
(
ln (φvi (T, P, n

v)yiP)− ln
(
φli(T, P, n

l)xiP
))

= RT
(
lnφvi (T, P, n

v) + ln yi − lnφli(T, P, n
l)− lnxi

)
.

(58)

18

6. Equilibrium constants

We recall that we have eliminated the liquid mole numbers, i.e. nl = n−nv. We solve the vapor-liquid

equilibrium problem by solving the following nonlinear equations for the vapor mole numbers, nv:

gi(T, P, n
v) = lnφvi (T, P, n

v) + ln yi − lnφli(T, P, n− nv)− lnxi = 0. (59)

The liquid mole numbers are xi = nli/
(∑

j n
l
j

)
= (ni − nvi)/

(∑
j nj − nvj

)
.

5.2 Solution of the equilibrium conditions

We solve the vapor-liquid equilibrium conditions with Newton’s method:

nv,k+1 = nv,k −
(
∂g

∂nv

)−1

g(T, P, nv,k). (60)

5.3 Summary

The vapor-liquid equilibrium conditions for a vapor-liquid mixture at temperature T , pressure P ,

and total composition n are

gi(T, P, n
v) = lnφvi (T, P, n

v) + ln yi − lnφli(T, P, n− nv)− lnxi = 0. (61)

We solve the above equilibrium conditions for the vapor composition, nv. The liquid mole numbers

are xi = (ni − nvi)/
(∑

j ni − nvi
)

. We solve the vapor-liquid equilibrium equations with Newton’s

method:

nv,k+1 = nv,k −
(
∂g

∂nv

)−1

g(T, P, nv,k). (62)

After solution, the liquid mole numbers are computed by nl = n− nv.

6 Equilibrium constants

In this section, we introduce the equilibrium constants and provide an expression for them in terms of

the logarithmic fugacity coefficients. The equilibrium constants are useful when solving vapor-liquid

equilibrium problems for ideal gas and liquid mixtures. We also use them as independent variables

in the phase envelope computations in Section 8.

6.1 Equilibrium constants

The i’th equilibrium constant (sometimes called the equilibrium ratio) is the ratio between the vapor

mole fraction and the liquid mole fraction of component i:

Ki =
yi
xi
. (63)

19

7. Vapor-liquid equilibrium of ideal mixtures

We can therefore express the equilibrium conditions,

lnφvi (T, P, n
v) + ln yi − lnφli(T, P, n− nv)− lnxi = 0, (64)

in terms of the equilibrium constants:

lnKi + lnφvi (T, P, n
v)− lnφli(T, P, n

l) = 0. (65)

At equilibrium, we can therefore obtain the following expression for the logarithmic equilibrium

constants:

lnKi(T, P, n
v, nl) = lnφli(T, P, n

l)− lnφvi (T, P, n
v). (66)

6.1.1 Ideal vapor-liquid mixture

For an ideal vapor-liquid mixture, the logarithmic equilibrium constants are equal to the logarithmic

fugacity coefficients of the ideal liquid phase:

lnKid
i (T, P, nv, nl) = lnφidi (T, P, nl)− lnφigi (T, P, nv)

= lnφidi (T, P, nl)

= ln
P sati (T)

P
+
vli(T)(P − P sati (T))

RT
(67)

The equilibrium constants are therefore independent of the composition vectors, i.e. Kid
i (T, P, nv, nl) =

Kid
i (T, P). That can be exploited in the ideal vapor-liquid equilibrium computations.

6.2 Summary

The equilibrium constants for ideal and nonideal vapor-liquid mixtures are

lnKid
i (T, P) = ln

P sati (T)

P
+
vli(T)(P − P sati (T))

RT
, (68a)

lnKi(T, P, n
v, nl) = lnφli(T, P, n

l)− lnφvi (T, P, n
v). (68b)

7 Vapor-liquid equilibrium of ideal mixtures

In this section, we exploit the fact that the equilibrium constants of ideal vapor-liquid mixtures,

Kid
i (T, P), are independent of composition. We can therefore solve the vapor-liquid equilibrium by

1) evaluating the equilibrium constants at the specified temperature, T , and pressure, P , 2) solve

for the vapor fraction, and 3) compute the vapor-liquid composition (in moles) from the equilibrium

constants and the vapor fraction. The ideal vapor-liquid equilibrium constants are

Kid
i (T, P) = exp(lnKid

i (T, P)), (69a)

lnKid
i (T, P) = ln

P sati (T)

P
+
vli(T)(P − P sati (T))

RT
. (69b)

20

7. Vapor-liquid equilibrium of ideal mixtures

We express the vapor mole fractions, yi, in terms of the equilibrium constants, Kid
i (T, P), and the

liquid mole fractions, xi:

yi = Kid
i (T, P)xi. (70)

The total moles in the vapor and liquid phases are Nv =
∑
i n

v
i and N l =

∑
i n

l
i. The total moles

in the mixture is N = Nv + N l. The vapor fraction is β = Nv/N and 1 − β = 1 − Nv/N =

(N − Nv)/N = N l/N . The total mole fractions are zi = ni/N . We derive the expressions for xi

from the mass balance:

nvi + nli = ni, (71a)

nvi
N

+
nli
N

=
ni
N
, (71b)

Nv

N

nvi
Nv

+
N l

N

nli
N l

=
ni
N
, (71c)

βyi + (1− β)xi = zi, (71d)

βKid
i (T, P)xi + (1− β)xi = zi, (71e)

(1− β + βKid
i (T, P))xi = zi. (71f)

The liquid mole fraction, xi, is therefore

xi =
zi

1 + β(Kid
i (T, P)− 1)

. (72)

Because we solve for β, y and x will not sum to one during the solution procedure. We therefore

require that both y and x sum to one. When 0 < β ≤ 1, the condition that∑
i

xi = 1, (73)

together with
∑
i zi = 1 implies that ∑

i

yi = 1. (74)

We omit the derivation. It is therefore sufficient to only require that
∑
i xi = 1 for 0 < β ≤ 1. β = 0

implies that xi = zi such that
∑
i xi = 1 is satisfied independent of the equilibrium ratios, Kid

i (T, P).

In that case, we therefore require that ∑
i

yi = 1. (75)

The following condition is equivalent to
∑
i xi = 1 for 0 < β ≤ 1 and to

∑
i yi = 1 for β = 0:∑

i

(yi − xi) = 0. (76)

That is,
∑
i yi = 1 and

∑
i xi = 1 clearly imply that

∑
i(yi − xi) = 0. Because of the way that we

compute yi and xi,
∑
i(yi−xi) also implies that

∑
i yi = 1 and

∑
i xi = 1. We insert the expressions

21

7. Vapor-liquid equilibrium of ideal mixtures

for yi and xi to obtain an equation in β:∑
i

(yi − xi) =
∑
i

(
Kid
i (T, P)− 1

)
xi

=
∑
i

Kid
i (T, P)− 1

1 + β(Kid
i (T, P)− 1)

zi = 0,
(77)

We therefore solve the ideal vapor-liquid equilibrium problem by solving the scalar nonlinear equation,

f(β) =
∑
i

Kid
i (T, P)− 1

1 + β(Kid
i (T, P)− 1)

zi = 0, (78a)

f ′(β) = −
∑
i

(
Kid
i (T, P)− 1

1 + β(Kid
i (T, P)− 1)

)2

zi. (78b)

f(β) = 0 is called the Rachford-Rice equation. Once we have solved the Rachford-Rice equation for

β, we compute the vapor-liquid composition (in moles) by

nvi =
nvi
Nv

Nv

N
N

= yiβN

=
βKid

i (T, P)

1 + β(Kid
i (T, P)− 1)

ni. (79)

Next, we compute the liquid mole numbers by nl = n− nv.

7.1 Solution of the Rachford-Rice equation

We solve the Rachford-Rice equation with Newton’s method:

βk+1 = βk −
f(βk)

f ′(βk)
. (80)

7.2 Summary

We compute the ideal vapor-liquid equilibrium constants with

Kid
i (T, P) = exp(lnKid

i (T, P)), (81a)

lnKid
i (T, P) = ln

P sati (T)

P
+
vli(T)(P − P sati (T))

RT
. (81b)

Next, we solve the Rachford-Rice equation,

f(β) =
∑
i

Kid
i (T, P)− 1

1 + β(Kid
i (T, P)− 1)

zi = 0, (82)

for β using Newton’s method,

βk+1 = βk −
f(βk)

f ′(βk)
, (83)

22

8. Computation of phase envelopes

where the derivative is

f ′(β) = −
∑
i

(
Kid
i (T, P)− 1

1 + β(Kid
i (T, P)− 1)

)2

zi. (84)

We compute the vapor-liquid composition (in moles) by

nvi =
βKid

i (T, P)

1 + β(Kid
i (T, P)− 1)

ni, (85a)

nli = ni − nvi . (85b)

8 Computation of phase envelopes

In this section, we describe the equations that we solve in order to construct the phase envelope,

and we discuss how to solve them. The phase envelope consists of two curves; the bubble-point

curve where β = 0 and the dew-point curve where β = 1. We will consider the more general case

of computing isocurves where β ∈ [0, 1] is constant. In the method that we present in this section,

the logarithmic equilibrium constants, lnKi, the logarithmic temperature, lnT , and the logarithmic

pressure, lnP , are the independent variables, i.e. the variables that we solve for. The vapor mole

fractions, yi, and the liquid mole fractions, xi, are dependent variables that are functions of the

vapor fraction, β, the equilibrium constants, Ki, and the total mole fractions, zi. The vapor fraction,

β, and the vector of total mole fractions, z, are parameters in the problem. We introduce NC + 2

equations that define one point on the isocurve. NC is the number of components in the mixture.

We solve these equations repeatedly in a sequential manner in order to construct the isocurve. The

first NC equations are the vapor-liquid equilibrium conditions formulated in terms of the equilibrium

constants, i.e. (65). We repeat the equilibrium conditions here:

lnKi + lnφvi (T, P, y)− lnφli(T, P, x) = 0. (86)

The mole numbers do not appear explicitly in the expression for the fugacity coefficients. They only ap-

pear implicitly through the mole fractions. We can therefore write lnφvi (T, P, n
v) = lnφvi (T, P, y(nv)) =

lnφvi (T, P, y) where yi = nvi /
(∑

j n
v
j

)
and similarly for the liquid fugacity coefficients. That is why

y and x appear in place of nv and nl in the above equilibrium conditions. However, because y and x

are dependent variables, they will not necessarily sum to one during the solution of the equations.

We therefore treat them as mole numbers when we evaluate the logarithmic fugacity coefficients.

That is, we evaluate the vapor phase logarithmic fugacity coefficients, lnφvi (T, P, y), as lnφvi (T, P, n
v)

where nv = y, and similarly for the liquid fugacity coefficients. Also, because yi and xi are functions

of Ki, we cannot explicitly isolate Ki in the vapor-liquid equilibrium equations above. We compute

yi and xi in the same way that we did for the ideal vapor-liquid equilibrium problem:

xi =
zi

1 + β(Ki − 1)
, (87a)

yi = Kixi. (87b)

23

8. Computation of phase envelopes

However, here we do not use the ideal vapor-liquid equilibrium constants, and the equilibrium

constants are independent variables. The next equation is the Rachford-Rice equation (78a). However,

we implement it in the form, ∑
i

(yi − xi) = 0, (88)

where we do not substitute the expressions for the vapor-liquid mole fractions. That is because we

need to compute yi and xi anyway, in order to evaluate the logarithmic fugacity coefficients. The

Rachford-Rice equation ensures that
∑
i yi = 1 and

∑
i xi = 1 are both satisfied2. In order to define

the last equation, we collect the independent variables in a vector,

X = [lnK; lnT ; lnP] ∈ RNC+2, (89)

where lnK = [lnK1; · · · ; lnKNC
]. The last isocurve equation states that one of the independent

variables should be specified, i.e. the s’th component of X should have the value S:

Xs − S = 0. (90)

That means that we specify either temperature, pressure, or one of the equilibrium constants in

order to compute a point on the isocurve. Michelsen and Mollerup (2007, Chap. 12) discuss different

strategies for selecting the specified variable. The isocurve is constructed by solving the isocurve

equations for a sufficient number of values of S. We write the isocurve equations compactly as

F (X;S) = 0, (91)

where

Fi = lnKi + lnφvi (T, P, y)− lnφli(T, P, x), i = 1, . . . , NC , (92a)

FNC+1 =
∑
i

(yi − xi), (92b)

FNC+2 = Xs − S. (92c)

8.1 Solution of the isocurve equations

As mentioned, we construct the isocurve by solving the isocurve equations for a number of specified

values of the s’th variable. For the m’th value of the specified variable, Sm, we solve the isocurve

equations, F (Xm;Sm) = 0, with Newton’s method:

Xm,k+1 = Xm,k −
(
∂F

∂X

)−1

F (Xm,k;Sm). (93)

8.2 Computation of initial guess

When we have solved the isocurve equations for one value of the specified variable, we want to

compute the sensitivities of the solution in order to compute an initial guess for the subsequent

2It is not immediately obvious that this is true. It is because of the way that we compute yi and xi.

24

8. Computation of phase envelopes

Newton iterations. We differentiate the equation F (X;S) = F (X(S);S) = 0 with respect to S:

∂F

∂X

∂X

∂S
+
∂F

∂S
= 0. (94)

We isolate the sensitivities of X with respect to S:

∂X

∂S
= −

(
∂F

∂X

)−1
∂F

∂S
. (95)

Once we have solved F (Xm;Sm) = 0 for Xm, we can compute an initial guess, Xm+1,0, for the

solution of the isocurve equations for the next value of the specified variable, F (Xm+1;Sm+1) = 0:

Xm+1,0 = Xm +
∂Xm

∂Sm
(Sm+1 − Sm). (96)

8.3 Summary

The isocurve equations (or phase envelope equations if β = 0 or β = 1) are

F (X;S) = 0, (97)

where the independent variables are X = [lnK; lnT ; lnP]. The equations are

Fi = lnKi + lnφvi (T, P, y)− lnφli(T, P, x), i = 1, . . . , NC , (98a)

FNC+1 =
∑
i

(yi − xi), (98b)

FNC+2 = Xs − S, (98c)

where the vapor-liquid mole fractions are dependent variables:

xi =
zi

1 + β(Ki − 1)
, (99a)

yi = Kixi. (99b)

We solve the equations with Newton’s method:

Xm,k+1 = Xm,k −
(
∂F

∂X

)−1

F (Xm,k;Sm). (100)

We compute initial guesses for the Newton iterations with

Xm+1,0 = Xm +
∂Xm

∂Sm
(Sm+1 − Sm), (101)

where the sensitivities are
∂X

∂S
= −

(
∂F

∂X

)−1
∂F

∂S
. (102)

25

9. Derivatives

9 Derivatives

In this section, we provide the derivatives that are necessary to solve the vapor-liquid equilibrium

problem (for both ideal and nonideal mixtures) and to compute the isocurves (i.e. curves where β is

constant). In order to do so, we also provide the derivatives of the logarithmic fugacity coefficients.

9.1 Logarithmic fugacity coefficients

We provide the derivatives of the logarithmic fugacity coefficients for ideal liquids and nonideal

mixtures. The logarithmic fugacity coefficients of ideal gases are zero, and the derivatives are

therefore also zero.

9.1.1 Ideal liquid mixture

The logarithmic fugacity coefficients of an ideal liquid mixture are

lnφidi (T, P) = ln
P sati (T)

P
+
vli(T)(P − P sati (T))

RT
. (103)

The liquid volume is given by the DIPPR correlation,

vli =
B

1+
(

1− T
Ci

)Di

i

Ai
. (104)

The saturation pressure is given by the DIPPR correlation,

P sati = exp
(
lnP sati

)
, (105a)

lnP sati = Ai +
Bi
T

+ Ci ln(T) +DiT
Ei . (105b)

Note that the parameters, Ai, Bi, Ci, and Di in the DIPPR correlation for the saturation pressure

are not the same as those in the DIPPR correlation for the liquid volume. The derivatives of the

logarithmic fugacity coefficients are

∂ lnφidi
∂T

=
∂ lnP sati

∂T
+

1

RT

((
∂vli
∂T
− vli(T)

T

)
(P − P sati (T))− vli(T)

∂P sati

∂T

)
, (106a)

∂ lnφidi
∂P

= − 1

P
+
vli(T)

RT
. (106b)

The derivative of the liquid volume is

∂vli
∂T

= − lnBi
Di

Ci

(
1− T

Ci

)Di−1

vli. (107)

26

9. Derivatives

The derivative of the saturation pressure is

∂ lnP sati

∂T
=

1

T

(
Ci −

Bi
T

+DiEiT
Ei

)
, (108a)

∂P sati

∂T
= P sati (T)

∂ lnP sati

∂T
. (108b)

9.1.2 Nonideal mixture

The logarithmic fugacity coefficients of nonideal mixtures have a complicated expression. We therefore

introduce auxiliary functions such that we can write it as

lnφi = (Z − 1)
bi
bm
− gz −

1

ε− σ
gφ,if. (109)

The auxiliary functions are

f = ln

(
Z + εB

Z + σB

)
, (110a)

gz = ln(Z −B), (110b)

gφ,i =
1

RTbm

2

NC∑
j=1

zjaij − am
bi
bm

 . (110c)

The derivatives of the logarithmic fugacity coefficients are

∂ lnφi
∂T

=
∂Z

∂T

bi
bm
− ∂gz
∂T
− 1

ε− σ

(
∂gφ,i
∂T

f + gφ,i
∂f

∂T

)
, (111a)

∂ lnφi
∂P

=
∂Z

∂P

bi
bm
− ∂gz
∂P
− 1

ε− σ
gφ,i

∂f

∂P
, (111b)

∂ lnφi
∂nk

=
∂Z

∂nk

bi
bm
− (Z − 1)

bi
b2m

∂bm
∂nk

− ∂gz
∂nk

− 1

(ε− σ)

(
∂gφ,i
∂nk

f + gφ,i
∂f

∂nk

)
. (111c)

The derivatives of the auxiliary function f are

∂f

∂T
=
∂f

∂Z

∂Z

∂T
+
∂f

∂B

∂B

∂T
, (112a)

∂f

∂P
=
∂f

∂Z

∂Z

∂P
+
∂f

∂B

∂B

∂P
, (112b)

∂f

∂nk
=
∂f

∂Z

∂Z

∂nk
+
∂f

∂B

∂B

∂nk
, (112c)

where

∂f

∂Z
=

1

Z + εB
− 1

Z + σB
, (113a)

∂f

∂B
=

ε

Z + εB
− σ

Z + σB
. (113b)

27

9. Derivatives

The derivatives of the auxiliary function gz are

∂gz
∂T

=
∂gz
∂Z

∂Z

∂T
+
∂gz
∂B

∂B

∂T
, (114a)

∂gz
∂P

=
∂gz
∂Z

∂Z

∂P
+
∂gz
∂B

∂B

∂P
, (114b)

∂gz
∂nk

=
∂gz
∂Z

∂Z

∂nk
+
∂gz
∂B

∂B

∂nk
, (114c)

where

∂gz
∂Z

=
1

Z −B
, (115a)

∂gz
∂B

= − 1

Z −B
. (115b)

The derivatives of the auxiliary function gφ,i are

∂gφ,i
∂T

=
1

T

 1

Rbm

2

NC∑
j=1

zj
∂aij
∂T
− ∂am

∂T

bi
bm

− gφ,i
 , (116a)

∂gφ,i
∂nk

=
1

bm

 2

N

aik − NC∑
j=1

xjaij

− bi
bm

(
∂am
∂nk

− 1

bm

∂bm
∂nk

)− ∂bm
∂nk

gφ,i +
1

RT

 . (116b)

The compressibility factor, Z, satisfies the cubic polynomium q(Z;T, P, n) = 0. We obtain the

derivatives of the compressibility factor with the inverse function theorem:

∂Z

∂T
= −

(
∂q

∂Z

)−1
∂q

∂T
, (117a)

∂Z

∂P
= −

(
∂q

∂Z

)−1
∂q

∂P
, (117b)

∂Z

∂nk
= −

(
∂q

∂Z

)−1
∂q

∂nk
. (117c)

The derivatives of the polynomium are

∂q

∂Z
= 3Z2 +

2∑
m=1

mdmZ
m−1 (118a)

∂q

∂T
=

2∑
m=0

∂dm
∂T

Zm, (118b)

∂q

∂P
=

2∑
m=0

∂dm
∂P

Zm, (118c)

∂q

∂nk
=

2∑
m=0

∂dm
∂nk

Zm. (118d)

28

9. Derivatives

The derivatives of the polynomial coefficients are

∂dm
∂T

=
∂dm
∂A

∂A

∂T
+
∂dm
∂B

∂B

∂T
, (119a)

∂dm
∂P

=
∂dm
∂A

∂A

∂P
+
∂dm
∂B

∂B

∂P
, (119b)

∂dm
∂nk

=
∂dm
∂A

∂A

∂nk
+
∂dm
∂B

∂B

∂nk
, (119c)

where

∂d2

∂A
= 0, (120a)

∂d2

∂B
= (ε+ σ − 1), (120b)

∂d1

∂A
= 1, (120c)

∂d1

∂B
= −(ε+ σ) + 2(εσ − ε− σ)B, (120d)

∂d0

∂A
= −B, (120e)

∂d0

∂B
= −

(
A+ εσ(2B + 3B2)

)
. (120f)

The derivatives of A are

∂A

∂T
=
∂am
∂T

P

R2T 2
− 2

T
A, (121a)

∂A

∂P
=

am
R2T 2

, (121b)

∂A

∂nk
=
∂am
∂nk

P

R2T 2
. (121c)

The derivatives of B are

∂B

∂T
= −bmP

RT 2
, (122a)

∂B

∂P
=

bm
RT

, (122b)

∂B

∂nk
=
∂bm
∂nk

P

RT
. (122c)

The derivatives of the van der Waals’ mixing parameter am are

∂am
∂T

=

NC∑
i=1

NC∑
j=1

zizj
∂aij
∂T

, (123a)

∂am
∂nk

=
2

N

(
NC∑
i=1

ziaik − am

)
. (123b)

29

9. Derivatives

The derivative of the van der Waals’ mixing parameter bm is

∂bm
∂nk

=
bk − bm
N

. (124)

The derivative of aij is

∂aij
∂T

=
1− kij
2
√
âij

∂âij
∂T

, (125)

where the derivative of âij are

∂âij
∂T

=
∂ai
∂T

aj + ai
∂aj
∂T

. (126)

The derivative of the pure component parameter ai is

∂ai
∂T

=
∂α

∂T
Ψ
R2T 2

c,i

Pc,i
. (127)

The derivative of the function α is

∂α

∂T
= −α m(ωi)√

αTTc,i
. (128)

9.2 Vapor-liquid equilibrium equations

The vapor-liquid equilibrium conditions are

gi(T, P, n
v) = lnφvi (T, P, n

v) + ln yi − lnφli(T, P, n
l) + lnxi, (129)

where the liquid mole numbers are functions of the vapor mole numbers, i.e. nl = n − nv. The

derivatives of gi(T, P, n
v) are

∂gi
∂nvk

=
∂ lnφvi
∂nvk

+
∂ ln yi
∂nvk

+
∂ lnφli
∂nlk

+
∂ lnxi
∂nlk

. (130)

The derivatives of the logarithmic mole fractions are

∂ ln yi
∂nvk

=
δik
nvk
− 1

Nv
, (131a)

∂ lnxi
∂nlk

=
δik
nlk
− 1

N l
. (131b)

δik is one if i = k and zero if i 6= k.

30

9. Derivatives

9.3 Ideal vapor-liquid equilibrium equations

For ideal vapor-liquid mixtures, we solve the Rachford-Rice equation:

f(β) =
∑
i

Kid
i (T, P)− 1

1 + β(Kid
i (T, P)− 1)

zi = 0. (132)

The derivative of the f(β) with respect to the vapor fraction is

f ′(β) = −
∑
i

(
Kid
i (T, P)− 1

1 + β(Kid
i (T, P)− 1)

)2

zi. (133)

9.4 Phase envelope equations

The independent variables in the phase envelope computations are

X = [lnK; lnT ; lnP]. (134)

The isocurve equations (or phase envelope equations if β = 0 or β = 1) are

Fi = lnKi + lnφvi (T, P, y)− lnφli(T, P, x), i = 1, . . . , NC , (135a)

FNC+1 =
∑
i

(yi − xi), (135b)

FNC+2 = Xs − S. (135c)

The vapor-liquid mole fractions are dependent variables given by

xi =
zi

1− β + βKi
, (136a)

yi = Kixi. (136b)

The derivatives of the vapor-liquid mole fractions with respect to the equilibrium constants are

∂xi
∂Kk

=

−βx2

i

zi
i = k,

0 i 6= k,
(137a)

∂yi
∂Kk

=

xi +Ki
∂xi

∂Kk
i = k,

0 i 6= k.
(137b)

The derivatives of the vapor-liquid equilibrium conditions are therefore

∂Fi
∂lnKk

= δik +Kk

(
∂ lnφvi
∂nvk

(T, P, y)
∂yk
∂Kk

− ∂ lnφli
∂nlk

(T, P, x)
∂xk
∂Kk

)
, i = 1, . . . , NC , (138a)

∂Fi
∂lnT

= T

(
∂ lnφvi
∂T

(T, P, y)− ∂ lnφli
∂T

(T, P, x)

)
, i = 1, . . . , NC , (138b)

∂Fi
∂lnP

= P

(
∂ lnφvi
∂P

(T, P, y)− ∂ lnφli
∂P

(T, P, x)

)
, i = 1, . . . , NC . (138c)

31

10. An algorithm for computing phase envelopes and an example program

The derivative of the equation that corresponds to the Rachford-Rice equation are

∂FNC+1

∂Kk
= Kk

(
∂yk
∂Kk

− ∂xk
∂Kk

)
. (139)

The derivatives of the last equation are

∂FNC+2

∂X
= es, (140)

where element s of es is 1 and all other elements are zero. The derivative of the last equation with

respect to the value of the specified variable is

∂FNC+2

∂S
= −1. (141)

10 An algorithm for computing phase envelopes and an ex-

ample program

In this section, we describe an algorithm for computing isocurves, i.e. curves where the vapor

fraction, β, is constant. The algorithm is described by Michelsen and Mollerup (2007, Chap. 12) and

also by Michelsen (1980). It features automatic selection of the specified variable and the step size,

and it uses cubic interpolation to enhance initial guesses for the Newton iterations. The algorithm

sequentially constructs the isocurve. It begins at a point where the equilibrium constants can be

approximated and sequentially computes points on the isocurve until it reaches the critical point.

10.1 Wilson’s approximation of equilibrium constants

We approximate the equilibrium constants at the first point of the isocurve with the approximation

by Wilson (1969):

Ki(T, P) =
Pc,i
P

exp

(
5.373(1 + ωi)

(
1− Tc,i

T

))
. (142)

Tc,i, Pc,i, and ωi are the critical temperature, critical pressure, and the acentric factor. We use values

of those parameters from the DIPPR database. We could potentially also use the ideal vapor-liquid

equilibrium constants that we described in Section 6.

10.2 Cubic interpolation

It is essential to have good initial guesses for the Newton iterations. The algorithm therefore uses

cubic interpolation to improve the estimates we described in Section 8. When we have computed

two points on the isocurve and their sensitivities, we can determine a cubic polynomial for each of

the variables that intersects these points. The polynomial is

pi(S) =
∑
j

ajiS
j . (143)

32

10. An algorithm for computing phase envelopes and an example program

The superscript j on S is a power, and aji are the polynomial coefficients. Once we have solved for

the m’th point on the isocurve, we interpolate the solution curves. We require that the polynomial

and its derivatives intersect Xm and Xm−1 and their derivatives with respect to Sm and Sm−1:

pi(S
m) = Xm

i , (144a)

p′i(S
m) =

∂Xm
i

∂Sm
, (144b)

pi(S
m−1) = Xm−1

i , (144c)

p′i(S
m−1) =

∂Xm−1
i

∂Sm−1
. (144d)

We write the above equations as a linear system of equations

Ma = b. (145)

The system matrix, M , is a 4× 4 matrix that contains powers of Sm and Sm−1:

M =

1 Sm (Sm)

2
(Sm)

3

0 1 2Sm 3 (Sm)
2

1 Sm−1
(
Sm−1

)2 (
Sm−1

)3
0 1 2Sm−1 3

(
Sm−1

)2

 (146)

The matrix a is 4 ×NC + 2 and simply contains the polynomial coefficients aji (row j, column i).

NC + 2 is the number of elements in the vector X. The right-hand side, b, is also a 4×NC + 2 matrix

and each column contains the right-hand sides of (144):

b1i = Xm
i , (147a)

b2i =
∂Xm

i

∂Sm
, (147b)

b3i = Xm−1
i , (147c)

b4i =
∂Xm−1

i

∂Sm−1
. (147d)

Once we have solved the linear system (145) for the polynomial coefficients, we compute the initial

estimate, Xm+1,0, for the subsequent Newton iterations:

Xm+1,0
i = pi(S

m+1). (148)

The matrix M can become ill-conditioned if the difference between Sm and Sm−1 is small, i.e. if the

step is small3. In that case, it can be useful to revert to the linear approximation:

Xm+1,0 = Xm +
∂Xm

∂Sm
(Sm+1 − Sm). (149)

3It is known that the monomial basis can lead to ill-conditioned system matrices in interpolation. It might be
possible to remedy this by choosing another basis, e.g. the Lagrange polynomials.

33

10. An algorithm for computing phase envelopes and an example program

We use the above linear approximation when the condition number of M is larger than 106. We also

use the linear approximation when we do not have two points on the isocurve, e.g. when m = 1.

10.3 Automatic selection of specified variable

In each iteration, we choose the specified variable in subsequent iterations to be the variable whose

sensitivity with respect to the value of the specified variable has the largest absolute value, i.e. we

choose

s̄ = arg min
s

∂Xm
s

∂Sm
(150)

In order to avoid rapid switching between variables, we only switch variables (i.e. set s = s̄) if

∂Xm
s̄ /∂S

m > 1.1 ∂Xm
s /∂S

m. That is, we only switch the specified variable if the sensitivity is 1.1

times larger than the sensitivity of the current specified variable.

10.4 Automatic step size selection

We use a number of heuristics to choose the step size. First, we specify a target number of Newton

iterations, usually 3 or 4. If the Newton iterations require more iterations to converge, we half the

step size. If they require less, we double the step size. We also half the step size if the specified

variable has changed. In order to ensure that we move in the right direction when we switch variables,

we multiply the step size with the sign of the difference between the specified variable in the previous

two iterations. That is, if the specified variable is Xs, then we use the sign of Xm
s −Xm−1

s to decide

whether S should increase or decrease.

10.5 Algorithm for computing isocurves

Algorithm 1 provides an overview of the algorithm that we implement in Section 10.6.

10.6 Example program

We now describe a program that implements Algorithm 1. The program consists of a script and a

number of functions. We use Matlab routines from ThermoLib to compute the logarithmic fugacity

coefficients. ThermoLib is an open-source thermodynamic library created by Ritschel et al. (2017,

2016) and Gaspar et al. (2017). It is available at www.psetools.org. It implements the expressions

for the logarithmic fugacity coefficients that we described in Section 4 and 9.1.2. The names of the

example script and the functions are

• CreatePhaseEnvelope.m

Example script

• ComputeWilsonKFactors.m

Evaluates approximate equilibrium constants

• ComputeIsocurve.m

Constructs an isocurve

34

10. An algorithm for computing phase envelopes and an example program

Algorithm 1: An algorithm for computing isocurves.

Input: T , P , β, z, s
Output: N , {Xm}Nm=1

1 Set m = 1;
2 Set ∆Sm = ∆Smax;
3 while the critical point has not been reached do
4 Solve the isocurve equations F (Xm;Sm) = 0 for Xm;
5 Check whether Xm is close to the critical point, i.e. if | lnKi| < ε for all i;
6 Compute the sensitivities ∂Xm/∂Sm;
7 Set s̄ = arg min

s
∂Xm

s /∂S
m;

8 if ∂Xm
s̄ /∂S

m > 1.1∂Xm
s /∂S

m and s 6= s̄ then
9 Set ∆Sm = 0.5∆Sm;

10 Set s = s̄;

11 end
12 if the number of Newton iterations exceeds the target number of iterations then
13 Set ∆Sm = 0.5∆Sm;
14 else if the number of Newton iterations is below the target number of iterations then
15 Set ∆Sm = 2∆Sm;
16 end
17 Set ∆Sm = min(∆Sm,∆Smax);

18 Compute the new specified variable, Sm+1 = Xm
s + sgn

(
Xm
s −Xm−1

s

)
∆Sm;

19 if m ≥ 2 and s has not changed in this iteration and cond(M) < 106 then
20 Compute Xm+1,0 with cubic interpolation;
21 else
22 Compute Xm+1,0 with the linear approximation;
23 end
24 Increment m by 1;

25 end

35

10. An algorithm for computing phase envelopes and an example program

• IsocurveEquations.m

Evaluates the isorcurve equations (and derivatives) described in Section 8

• CreateFlashOpts.m

Default options for the computations

Listing 1 shows the first part of the example script, CreatePhaseEnvelope.m. First, the script runs

another script, LoadLibrary.m, from ThermoLib. LoadLibrary adds all ThermoLib routines to the

path such that we can run them. Next, we select the Peng-Robinson equation of state, and we

manually specify the binary interaction parameters, kij . We use LoadParams from ThermoLib to

construct a vector of parameters that we need to pass on to other ThermoLib routines. The first

argument to LoadParams is a vector of indices that specifies the components in the mixture. 1, 2, 3,

and 7 refer to methane, ethane, propane, and n-heptane, respectively. 363 is carbon-dioxide (CO2).

We will use the variable NC (number of components) later in the script. Finally, we specify the

composition which is 60% methane, 8% ethane, 5% propane, 25% n-heptane, and 2% CO2.

Listing 1: CreatePhaseEnvelope.m – Initialization

1 %% Create phase diagram

2 clc; clear all; close all;

3

4 % Add ThermoLib

5 run(’C:\ Users\Tobia\Dropbox \3 PhD Nonlinear Model Predictive Control for Oil

↪→ Reservoirs\Projects\ThermodynamicLibrary\ComputeThermoLib\matlab\

↪→ LoadLibrary ’);

6

7 %% Load parameters

8 % Equation of state

9 EoS = ’PR’; % Peng -Robinson

10

11 % Binary interaction parameters

12 kij = [

13 0 0 0 0 0.1200

14 0 0 0 0 0.1500

15 0 0 0 0 0.1500

16 0 0 0 0 0.1500

17 0.1200 0.1500 0.1500 0.1500 0];

18

19 % Load DIPPR parameters

20 params = LoadParams ([1:3, 7, 363], EoS , kij);

21

22 % Number of components

23 NC = params (5);

24

25 % Composition

26 z = [60; 8; 5; 25; 2]./100;

Listing 2 shows the remaining part of CreatePhaseEnvelope.m. This remaining part computes the

bubble-point curve (β = 0) and the dew-point curve (β = 1). First, we use CreateFlashOpts.m

to create a struct called opts that contains default settings for the computations. We discuss

CreateFlashOpts.m later. Next, we select that the pressure of the first point on both isocurves is

36

10. An algorithm for computing phase envelopes and an example program

specified. Pressure is variable number NC + 2. We set the pressure of the first point on both the

bubble-point and the dew-point curves to be 0.005 MPa. We use ComputeIsocurve to compute both

the bubble-point curve and the dew-point curve. We use an initial guess of 88 K for the temperature

of the first point on the bubble-point curve and 250 K for the dew-point curve. In the remaining

part, we extract the temperature and pressure of the isocurves and plot them. Figure 1 shows the

plot of the phase envelope. The phase envelope separates the two-phase region (inside) from the

single-phase regions (outside). We see that the two-phase region extends up to around 18 MPa

and to around 450 K. We also note that at low pressures, the phase envelope extends to very low

temperatures, i.e. around 90 K. That means that it is necessary to bring the mixture to below 90 K

in order to completely liquefy it. That is because the mixture contains a large amount of light gases.

In particular, it contains 60% methane. The bubble-point and the dew-point curves meet at the

critical point. It is marked with a black dot.

Listing 2: CreatePhaseEnvelope.m – Computation of the phase envelope

28 %% Compute phase envelope

29 % Create options structure

30 opts = CreateFlashOpts ();

31

32 % The first specified variable is pressure

33 Idx = NC+2;

34

35 % Initial pressure

36 P0 = 0.005; % MPa

37

38 % Compute the bubble -point curve

39 T0 = 88;

40 b = 0;

41 BubblePointCurve = ComputeIsocurve(T0 , P0 , b, z, Idx , params , opts);

42

43 % Compute the dew -point curve

44 T0 = 250;

45 b = 1;

46 DewPointCurve = ComputeIsocurve(T0, P0 , b, z, Idx , params , opts);

47

48 % Temperature and pressure

49 T = [exp(BubblePointCurve.X(NC+1, :)), exp(DewPointCurve.X(NC+1, end :-1:1))];

50 P = [exp(BubblePointCurve.X(NC+2, :)), exp(DewPointCurve.X(NC+2, end :-1:1))];

51

52 % Critical temperature and pressure (approximate)

53 Tc = exp(BubblePointCurve.X(NC+1, end));

54 Pc = exp(BubblePointCurve.X(NC+2, end));

55

56 % Create figure

57 figure (1);

58 plot(T, P, ’-k’, ’linewidth ’, 2); hold on;

59 plot(Tc , Pc , ’.k’, ’markersize ’, 20); hold off;

60 set(gca , ’fontsize ’, 14);

61 xlabel(’Temperature [K]’);

62 ylabel(’Pressure [MPa]’);

37

10. An algorithm for computing phase envelopes and an example program

0 100 200 300 400 500

Temperature [K]

0

5

10

15

20

P
re

ss
ur

e
[M

P
a]

Figure 1: Phase envelope created with the example script CreatePhaseEnvelope.m.

Before we describe the ComputeIsocurve function, we show the ComputeWilsonKFactors function in

Listing 3. It simply loads the relevant parameters and evaluates the equilibrium constants from (142).

Note that the critical pressures are converted from Pa to MPa. That is required for the expression

to be correct.

Listing 3: ComputeWilsonKFactors.m

1 function K = ComputeWilsonKFactors(T, P, params)

2

3 % Conversion factor

4 Pa2MPa = 1e-6; % MPa to Pa

5

6 % Extract relevant parameters

7 NoSinglePar = params (1);

8 NC = params (5);

9 omega = params(NoSinglePar +1 + 24*NC + (1:NC) + 1);

10 Tc = params(NoSinglePar +1 + 25*NC + (1:NC) + 1);

11 Pc = params(NoSinglePar +1 + 26*NC + (1:NC) + 1)*Pa2MPa;

12

13 % Compute Wilson K factors

14 K = Pc./P.*exp (5.373*(1 + omega).*(1 - Tc./T));

Next, we describe the ComputeIsocurve function. Listing 4 shows the interface of ComputeIsocurve,

the loading of parameters from the struct created with CreateFlashOpts, and the computation of

initial guesses for the equilibrium constants. The function requires specification of temperature,

T, pressure, P, the specified vapor fraction, b, the total composition, z, the index of the specified

variable at the first point, Idx, the ThermoLib parameters, params, and finally, the options, opts.

Listing 4: ComputeIsocurve.m – Computation of an isocurve with β specified

1 function Env = ComputeIsocurve(T, P, b, z, Idx , params , opts)

2 %% Settings

3 % Target number of iterations

4 TargetIter = opts.TargetIter;

5

38

10. An algorithm for computing phase envelopes and an example program

6 % Maximum number of Newton iterations

7 kmax = opts.MaxNewtonIter;

8

9 % Tolerance for the Newton iterations

10 newttol = opts.NewtonTol;

11

12 % Tolerance for the detection of the critical point

13 crittol = opts.CritPointTol;

14

15 % Maximum change in specification

16 maxdS = opts.MaxDeltaSpec;

17

18 % Whether to use polynomial regression or not

19 UseCubicInterpolation = opts.UseCubicInterpolation;

20

21 %% Compute initial guess

22 % Compute approximate equilibrium constants

23 K = ComputeWilsonKFactors(T, P, params);

24

25 % Initial guess for the first point

26 X = log([K; T; P]);

Listing 5 shows the first part of the computations that we carry out for each point on the isocurve.

We solve the isocurve equations that we presented in Section 8 using Newton’s method and we check

whether we are closed to the critical point. The vapor phase and the liquid phase have the same

composition at the critical point. That means that yi = xi such that Ki = yi/xi = 1 and therefore

lnKi = 0. That is how we detect whether we are close to the critical point. We present the function

IsocurveEquations later. It essentially evaluates, F (X;S), ∂F
∂X , and ∂F

∂S .

Listing 5: ComputeIsocurve.m – Solution of isocurve equations

28 %% Compute isocurve

29 % Initial specification

30 S(1) = X(Idx);

31

32 % Initial step

33 dS = maxdS;

34

35 i = 1;

36 CriticalPointReached = false;

37 while(~ CriticalPointReached)

38 % Evaluate function and Jacobian

39 [F, dFdX , dFdS] = IsocurveEquations(X(:, i), b, z, S(i), Idx , params , opts);

40

41 k = 0;

42 Converged = (norm(F) < newttol);

43 Diverged = false;

44 while(~ Converged && ~Diverged)

45 % Increment iteration counter

46 k = k+1;

47

48 % Newton update

39

10. An algorithm for computing phase envelopes and an example program

49 X(:, i) = X(:, i) - dFdX\F;

50

51 % Evaluate function and Jacobian

52 [F, dFdX , dFdS] = IsocurveEquations(X(:, i), b, z, S(i), Idx , params ,

↪→ opts);

53

54 % Check for convergence

55 Converged = (norm(F) < newttol);

56 Diverged = (k >= kmax);

57 end

58

59 % Check if the critical point has been reached

60 CriticalPointReached = (norm(X(1:end -2, i)) < crittol);

Listing 6 shows the remaining part of ComputeIsocurve.m. It computes the sensitivities, ∂X
∂S , and

uses them to select the specified variable. If the specified variable is changed, the step size is decreased.

If the number of Newton iterations are above or below the target iterations, we double or half the step

size, respectively. Next, we ensure that the step size is below the maximum step size, and we use Xm
s

and Xm−1
s to determine whether S should increase or decrease. We use either cubic interpolation or

a linear approximation to compute the initial guess for the subsequent Newton iterations.

Listing 6: ComputeIsocurve.m – Selection of specified variable and step size

62 % Compute sensitivities

63 dXdS(:, i) = -dFdX\dFdS;

64

65 % Update selection variable

66 [~, IdxNew] = max(abs(dXdS(:, i)));

67 SpecifiedVariableUpdated = false;

68 if(abs(dXdS(IdxNew , i)) > 1.1* abs(dXdS(Idx , i)))

69 SpecifiedVariableUpdated = true;

70 dS = 0.5*dS;

71 Idx = IdxNew;

72 end

73

74 % Update the step

75 if(k > TargetIter)

76 dS = dS *0.5;

77 elseif(k < TargetIter)

78 dS = dS*2;

79 end

80

81 % Apply upper bound to step size

82 dS = min(dS, maxdS);

83

84 % New specification

85 if(i > 1)

86 fac = sign(X(Idx , i) - X(Idx , i-1));

87 else

88 fac = 1;

89 end

90 S(i+1) = X(Idx , i) + fac*dS;

91

40

10. An algorithm for computing phase envelopes and an example program

92 if(i > 1 && ~SpecifiedVariableUpdated && UseCubicInterpolation)

93 X(:, i+1) = PolynomialInitialEstimate ...

94 (S(i+1), X(:, i), S(i), dXdS(:, i), X(:, i-1), S(i-1), dXdS(:, i-1),

↪→ opts);

95 else

96 % % New initial estimate

97 X(:, i+1) = LinearInitialEstimate ...

98 (X(:, i), dS, dXdS(:, i));

99 end

100

101 % Display message

102 if(opts.Verbose > 0)

103 fprintf(’(%3d, %d, %2d), (’, i, Idx , k);

104 fprintf(’%7.2f, ’, exp(X(:, i)));

105 fprintf(’)\n’);

106 end

107

108 % Store data

109 Env.X(:, i) = X(:, i);

110 Env.k(i) = k;

111

112 % Increment counter

113 i = i+1;

114 end

115 end

116

117 function Xip1 = PolynomialInitialEstimate(Sip1 , Xi , Si , dXidS , Xim1 , Sim1 ,

↪→ dXim1dS , opts)

118 % Maximum condition number of system matrix in polynomial regression

119 maxcond = opts.MaxCondInterpol;

120

121 % System matrix

122 M = [

123 1, Si, Si ^2, Si^3;

124 0, 1, 2*Si, 3*Si^2;

125 1, Sim1 , Sim1^2, Sim1 ^3;

126 0, 1, 2*Sim1 , 3*Sim1 ^2];

127

128 if(cond(M) < maxcond)

129 % Right -hand side

130 rhs = [Xi ’; dXidS ’; Xim1 ’; dXim1dS ’];

131

132 % Polynomial coefficients

133 a = M\rhs;

134

135 % Extrapolate new initial estimate

136 Xip1 = [1, Sip1 , Sip1^2, Sip1 ^3]*a;

137 else

138 % Step

139 dSip1 = Sip1 - Si;

140

141 % New initial estimate

142 Xip1 = LinearInitialEstimate(Xi, dSip1 , dXidS);

41

10. An algorithm for computing phase envelopes and an example program

143 end

144 end

145

146 function Xip1 = LinearInitialEstimate(Xi, dSip1 , dXidS)

147 % New initial estimate

148 Xip1 = Xi + dXidS*dSip1;

149 end

Listing 7 shows the IsocurveEquations function. It essentially evaluates F (X;S), ∂F
∂X , and ∂F

∂S . We

mostly comment on the usage of the ThermoLib routines. In the phase envelope computations, we

consider pressure in MPa. However, ThermoLib requires pressure to be in Pa. The ThermoLib

routine MixFug computes the logarithmic fugacity coefficients as functions of temperature, pressure,

and composition (in moles). It also computes both first and second order derivatives depending on

the number of requested outputs. In the phase envelope computations, we only require the first

order derivatives so we only request two outputs. Consequently, the second order derivatives are

not computed. As we discussed in Section 4, we need to solve the cubic equation of state in order

to evaluate the logarithmic fugacity coefficients. ThermoLib solves the cubic equation of state with

Newton’s method. We therefore specify both the tolerance (tol) and the maximum number of Newton

iterations (maxit) when we call MixFug. The remainder of IsocurveEquations is a straightforward

implementation of the isocurve equations and their derivatives. It only computes the Jacobian and

the derivatives of F with respect to S if those outputs are requested.

Listing 7: IsocurveEquations.m – Evaluation of the isocurve equations

1 function [F, dFdX , dFdS] = IsocurveEquations(X, b, z, S, Idx , params , opts)

2 % Maximum Newton iterations for the equation of state

3 maxit = opts.MaxEosIter;

4

5 % Tolerance for Newton iterations for the equation of state

6 tol = opts.EosTol;

7

8 % Number of components

9 NC = params (5);

10

11 % Extract variables

12 K = exp(X(1:NC));

13 T = exp(X(NC+1));

14 P = exp(X(NC+2));

15

16 % Mole fractions

17 x = z./(1 - b + b*K);

18 y = K.*x;

19

20 % Conversion factor

21 MPa2Pa = 1e6;

22

23 % Compute fugacities with ThermoLib

24 [lnphiv , dlnphiv] = MixFug(T, P*MPa2Pa , y, 0, params , tol , maxit);

25 [lnphil , dlnphil] = MixFug(T, P*MPa2Pa , x, 1, params , tol , maxit);

26

27 % Temperature derivatives

42

10. An algorithm for computing phase envelopes and an example program

28 dlnphivT = dlnphiv(:, 1);

29 dlnphilT = dlnphil(:, 1);

30

31 % Scale pressure derivatives

32 dlnphivP = dlnphiv(:, 2)*MPa2Pa;

33 dlnphilP = dlnphil(:, 2)*MPa2Pa;

34

35 % Scale composition derivatives

36 dlnphivnv = dlnphiv(:, 3:end);

37 dlnphilnl = dlnphil(:, 3:end);

38

39 %% Evaluate isocurve equations

40 F = zeros(NC+2, 1);

41 F(1:NC) = log(K) + lnphiv - lnphil;

42 F(NC+1) = sum(y - x);

43 F(NC+2) = X(Idx) - S;

44

45 if(nargout > 1)

46 %% Evaluate Jacobian

47 % Derivatives of K values wrt. ln K values

48 dlnKdlnK = eye(NC,NC);

49

50 % Derivatives of mole fractions wrt. ln K values

51 dxdK = -b*x.^2./z;

52 dydK = x + K.*dxdK;

53

54 % Derivatives of fugacities wrt. ln K values

55 dlnphivdlnK = repmat(K’, NC, 1).* dlnphivnv*diag(dydK);

56 dlnphildlnK = repmat(K’, NC, 1).* dlnphilnl*diag(dxdK);

57

58 % Jacobian wrt. ln K values

59 dFdX = zeros(NC+2, NC+2);

60 dFdX (1:NC, 1:NC) = dlnKdlnK + dlnphivdlnK - dlnphildlnK;

61

62 % Jacobian wrt. ln T

63 dFdX (1:NC, NC+1) = T*(dlnphivT - dlnphilT);

64

65 % Jacobian wrt. ln P

66 dFdX (1:NC, NC+2) = P*(dlnphivP - dlnphilP);

67

68 % Jacobian wrt. ln K

69 dFdX(NC+1, 1:NC) = K.*(dydK - dxdK);

70

71 % Jacobian wrt. specified variable (ln K, ln T or ln P)

72 dFdX(NC+2, Idx) = 1;

73

74 if(nargout > 2)

75 %% Derivatives wrt. S

76 dFdS = zeros(NC+2, 1);

77 dFdS(NC+2) = -1;

78 end

79 end

43

10. An algorithm for computing phase envelopes and an example program

For completeness, we show CreateFlashOpts in Listing 8. In our experience, the computations can

be fairly sensitive to some of the parameters. In particular, large values of MaxDeltaSpec can cause

failure to convergence in the Newton iterations. Furthermore, small values of CritPointTol can cause

the algorithm to come too close to or overstep the critical point, again leading to failure to converge.

Verbose can be set to 1 in order to print out information about each iteration. Large values of EosTol

can also cause problems.

Listing 8: CreateFlashOpts.m – Default settings for the computations

1 function opts = CreateFlashOpts ()

2

3 % Settings for Newton iterations

4 opts.MaxNewtonIter = 2e1;

5 opts.NewtonTol = 1e-6;

6

7 % Settings for the solution of the equation of state

8 opts.MaxEosIter = 2e1;

9 opts.EosTol = 1e-10;

10

11 % Target number of iterations (for selecting step size)

12 opts.TargetIter = 4;

13

14 % Maximum change in specification

15 opts.MaxDeltaSpec = 1e-1;

16

17 % Tolerance for the detection of the critical point

18 opts.CritPointTol = 1e-1;

19

20 % Whether to use polynomial regression to generate initial estimates or not

21 opts.UseCubicInterpolation = true;

22

23 % Maximum condition number of system matrix in polynomial regression

24 opts.MaxCondInterpol = 1e6;

25

26 % Set verbosity

27 opts.Verbose = 0;

10.7 Discussion

In this section, we have described a program that computes isocurves, i.e. curves where the vapor

fraction, β, is constant. In order to create the phase envelope, we therefore compute the bubble-point

curve (β = 0) and the dew-point curve (β = 1) separately. Often, we both want to compute the

isocurve of β and 1− β. An example is the phase envelope. Michelsen and Mollerup (2007) suggest

to combine the computations, e.g. such that we 1) compute the bubble-point curve, 2) ”step over”

the critical point, and 3) continue by computing the dew-point curve until a sufficiently low pressure

is reached.

44

1. Derivative of mixing term

A Derivative of mixing term

The expression for the ideal gas mixture entropy (4b) involves a mixing term that contains
∑
i n

v
i ln yi.

We use the derivative of the mixing term when we derive an expression for the chemical potential

of an ideal gas mixture in (42). The derivative of the mixing term can appear to be incorrect at

first sight. Because the derivative of this mixing term is important to the definition of fugacity, we

present the differentiation of
∑
i n

v
i ln yi here such that it is clear that it is correct. The derivative is

∂

∂nvk

(∑
i

nvi ln yi

)
=
∑
i

(
∂nvi
∂nvk

ln yi +
nvi
yi

∂yi
∂nvk

)

=
∑
i

δik ln yi +

∑
j

nvj

 ∂yi
∂nvk

= ln yk +

∑
i

∑
j

nvj

 ∂yi
∂nvk

 . (151)

The derivative of the mole fraction, yi, is

∂yi
∂nvk

=
1∑
j n

v
j

∂nvi
∂nvk

− nvi(∑
j n

v
j

)2

=
1∑
j n

v
j

(δik − yi) . (152)

We insert the above into the double sum in (151):

∑
i

∑
j

nvj

 ∂yi
∂nvk

 =
∑
i

(δik − yi)

= 1−
∑
i

yi

= 0. (153)

The derivative is therefore
∂

∂nvk

(∑
i

nvi ln yi

)
= ln yk, (154)

where it appears as if one has considered ln yi to be independent of all the mole numbers, which is

not the case.

45

2. Derivation of the residual Gibbs energy for cubic equations of state

B Derivation of the residual Gibbs energy for cubic equa-

tions of state

In this section, we evaluate the integral that appears in the expression for the residual Gibbs energy

in (35). First, we split up the integral:

−
∫ V

V=∞

(
RT

V/N − bm
− am

(V/N + εbm)(V/N + σbm)
− NRT

V

)
dV

= −RT
∫ V

V=∞

(
1

V/N − bm
− NRT

V

)
dV + am

∫ V

V=∞

1

(V/N + εbm)(V/N + σbm)
dV. (155)

We compute the antiderivative (or primitive function) of the integrand in the left term:∫ (
1

V/N − bm
− NRT

V

)
dV = N ln

(
1

N
− bm

V

)
. (156)

Next, we evaluate the integral in the left term using the antiderivative:∫ V

V=∞

(
1

V/N − bm
− NRT

V

)
dV = N

(
ln

(
1

N
− bm

V

)
− ln

1

N

)
= N ln

(
1− Nbm

V

)
. (157)

The antiderivative of the integrand in the right term is∫
1

(V/N + εbm)(V/N + σbm)
dV = − N

ε− σ
1

bm
ln

(
V + εNbm
V + σNbm

)
. (158)

The integral in the right term is therefore∫ V

V=∞

1

(V/N + εbm)(V/N + σbm)
dV = − N

ε− σ
1

bm

(
ln

(
V + εNbm
V + σNbm

)
− ln 1

)
= − N

ε− σ
1

bm
ln

(
V + εNbm
V + σNbm

)
. (159)

We now rewrite the two expressions that contain volume such that they contain the compressibility

factor instead. We use that PV = NRTZ such that V = NRTZ/P . We also recall that B =

Pbm/(RT). The one expression is

1− Nbm
V

= 1− Nbm
NRTZ/P

= 1− Pbm
RTZ

= 1− B

Z

=
Z −B
Z

. (160)

46

3. Derivation of the logarithmic fugacity coefficients for cubic equations of state

The other expression is

V + εNbm
V + σNbm

=
NRTZ/P + εNbm
NRTZ/P + σNbm

=
NRT/P

NRT/P

Z + εPbm/(RT)

Z + σPbm/(RT)

=
Z + εB

Z + σB
. (161)

The original integral is therefore

−
∫ V

V=∞

(
RT

V/N − bm
− am

(V/N + εbm)(V/N + σbm)
− NRT

V

)
dV

= −NRT ln

(
Z −B
Z

)
− N

ε− σ
am
bm

ln

(
Z + εB

Z + σB

)
. (162)

We insert the expression for the integral into the expression for the residual Gibbs energy and simplify:

GR(T, P, n) = −
∫ V

V=∞

(
RT

V/N − bm
− am

(V/N + εbm)(V/N + σbm)
− NRT

V

)
dV

+NRT (Z − 1)−NRT lnZ

= −NRT ln

(
Z −B
Z

)
− N

ε− σ
am
bm

ln

(
Z + εB

Z + σB

)
+NRT (Z − 1)−NRT lnZ

= NRT (Z − 1)−NRT ln(Z −B)− N

ε− σ
am
bm

ln

(
Z + εB

Z + σB

)
. (163)

C Derivation of the logarithmic fugacity coefficients for cubic

equations of state

The expression for the i’th logarithmic fugacity coefficient depends on the partial derivative of the

residual Gibbs energy with respect to mole number i:

lnφi(T, P, n) =
1

RT

∂GR

∂ni
. (164)

The residual Gibbs energy (from a cubic equation of state) is

GR(T, P, n) = NRT (Z − 1)−NRT ln(Z −B)− N

ε− σ
am
bm

ln

(
Z + εB

Z + σB

)
. (165)

We consider the molar residual Gibbs energy:

gR(T, P, n) = GR(T, P, n)/N

= RT (Z − 1)−RT ln(Z −B)− 1

ε− σ
am
bm

ln

(
Z + εB

Z + σB

)
. (166)

47

3. Derivation of the logarithmic fugacity coefficients for cubic equations of state

Conversely, the residual Gibbs energy is GR(T, P, n) = NgR(T, P, n), and the expression for the

logarithmic fugacity coefficients is therefore

lnφi(T, P, n) =
1

RT

∂GR

∂ni

=
1

RT

∂

∂ni

(
NgR(T, P, n)

)
=

1

RT

(
gR(T, P, n) +N

∂gR

∂ni

)
. (167)

The remainder of this section will be concerned with finding an expression for ∂gR/∂ni and use

it to derive the expression for the logarithmic fugacity coefficients. First, we use straightforward

differentiation:

∂gR

∂ni
= RT

∂Z

∂ni
−RT 1

Z −B

(
∂Z

∂ni
− ∂B

∂ni

)
− 1

ε− σ

[(
∂am
∂ni

1

bm
− am
b2m

∂bm
∂ni

)
ln

(
Z + εB

Z + σB

)
+
am
bm

∂

∂ni

(
ln

(
Z + εB

Z + σB

)))
. (168)

The derivative of the logarithmic coefficient is

∂

∂ni

(
ln

(
Z + εB

Z + σB

))
=

(
Z + εB

Z + σB

)−1 [
1

Z + σB

(
∂Z

∂ni
+ ε

∂B

∂ni

)
− Z + εB

(Z + σB)2

(
∂Z

∂ni
+ σ

∂B

∂ni

)]
=

1

Z + εB

(
∂Z

∂ni
+ ε

∂B

∂ni

)
− 1

Z + σB

(
∂Z

∂ni
+ σ

∂B

∂ni

)
=

Z + σB

(Z + εB)(Z + σB)

(
∂Z

∂ni
+ ε

∂B

∂ni

)
− Z + εB

(Z + εB)(Z + σB)

(
∂Z

∂ni
+ σ

∂B

∂ni

)
=

(σ − ε)B
(Z + εB)(Z + σB)

∂Z

∂ni
+

(ε− σ)Z

(Z + εB)(Z + σB)

∂B

∂ni

=
ε− σ

(Z + εB)(Z + σB)

(
Z
∂B

∂ni
−B ∂Z

∂ni

)
. (169)

We insert into the expression for ∂gR/∂ni:

∂gR

∂ni
= RT

∂Z

∂ni
−RT 1

Z −B

(
∂Z

∂ni
− ∂B

∂ni

)
− 1

ε− σ

[(
∂am
∂ni

1

bm
− am
b2m

∂bm
∂ni

)
ln

(
Z + εB

Z + σB

)
+
am
bm

ε− σ
(Z + εB)(Z + σB)

(
Z
∂B

∂ni
−B ∂Z

∂ni

))
= RT

∂Z

∂ni
−RT 1

Z −B

(
∂Z

∂ni
− ∂B

∂ni

)
− am
bm

1

(Z + εB)(Z + σB)

(
Z
∂B

∂ni
−B ∂Z

∂ni

)
− 1

ε− σ

(
∂am
∂ni

1

bm
− am
b2m

∂bm
∂ni

)
ln

(
Z + εB

Z + σB

)
. (170)

48

3. Derivation of the logarithmic fugacity coefficients for cubic equations of state

We recall that A = Pam/(R
2T 2) and B = Pbm/(RT) such that A/B = am/(RTbm). We use that

relation to rewrite the three first terms:

RT
∂Z

∂ni
−RT 1

Z −B

(
∂Z

∂ni
− ∂B

∂ni

)
− am
bm

1

(Z + εB)(Z + σB)

(
Z
∂B

∂ni
−B ∂Z

∂ni

)
=

(
RT − RT

Z −B
+
am
bm

B

(Z + εB)(Z + σB)

)
∂Z

∂ni
+

(
RT

Z −B
− am
bm

Z

(Z + εB)(Z + σB)

)
∂B

∂ni

= RT

(
1− 1

Z −B
+
A

B

B

(Z + εB)(Z + σB)

)
∂Z

∂ni
+RT

(
1

Z −B
− A

B

Z

(Z + εB)(Z + σB)

)
∂B

∂ni

= RT

(
1− 1

Z −B
+

A

(Z + εB)(Z + σB)

)
∂Z

∂ni
+RT

(
1

Z −B
− Z

B

A

(Z + εB)(Z + σB)

)
∂B

∂ni
.

(171)

We now show that the expression in the left-most parentheses is zero. We modify the three terms

such that they have the same denominator:

1− 1

Z −B
+

A

(Z + εB)(Z + σB)

=
B(Z + εB)(Z + σB)(Z −B)−B(Z + εB)(Z + σB) +AZ(Z −B)

B(Z + εB)(Z + σB)(Z −B)
. (172)

Next, we write out the terms in the numerator and express it as cubic polynomium in Z:

(Z + εB)(Z + σB)(Z −B)− (Z + εB)(Z + σB) +A(Z −B)

=
[
Z3 + (ε+ σ)BZ2 + εσB2Z −BZ2 − (ε+ σ)B2Z − εσB3

]
−
[
Z2 + (ε+ σ)BZ + εσB2

]
+ [AZ −AB]

= Z3 + ((ε+ σ)B −B − 1)Z2 + (εσB2 − (ε+ σ)B2 − (ε+ σ)B +A)Z + (−εσB3 − εσB2 −AB)

= Z3 + (B(ε+ σ − 1)− 1)Z2 + (A−B(ε+ σ) +B2(εσ − ε− σ))Z + (−(AB + (B2 +B3)εσ))

(173)

This expression is exactly the polynomium from the cubic equation of state, q(Z). The compressibility

factor, Z, must satisfy the cubic equation of state. The above expression is therefore zero, i.e.

q(Z) = 0, and the first term in (171) is therefore also zero. We use this fact to rewrite the expression

in the right-most parentheses in (171). That is, from

1− 1

Z −B
+

A

(Z + εB)(Z + σB)
= 0, (174)

we isolate the term that contains A:

A

(Z + εB)(Z + σB)
=

1

Z −B
− 1. (175)

49

3. Derivation of the logarithmic fugacity coefficients for cubic equations of state

We insert the above into the expression in the right-most parentheses in (171) and simplify:

1

Z −B
− Z

B

A

(Z + εB)(Z + σB)
=

1

Z −B
− Z

B

(
1

Z −B
− 1

)
=

1

Z −B
− Z

B

(
1− (Z −B)

Z −B

)
=
B − Z(1− (Z −B))

B(Z −B)

=
B − Z + Z2 −BZ

B(Z −B)

=
B(1− Z)− Z(1− Z)

B(Z −B)

=
−(Z −B)(1− Z)

B(Z −B)

=
Z − 1

B
. (176)

The expression for ∂gR/∂ni therefore becomes

∂gR

∂ni
= RT

Z − 1

B

∂B

∂ni
− 1

ε− σ
1

bm

(
∂am
∂ni

− am
bm

∂bm
∂ni

)
ln

(
Z + εB

Z + σB

)
. (177)

We write out and simplify the first term:

RT
Z − 1

B

∂B

∂ni
= RT

Z − 1

B

P

RT

∂bm
∂ni

= RT (Z − 1)
1

bm

bi − bm
N

=
RT

N
(Z − 1)

(
bi
bm
− 1

)
. (178)

The final expression for ∂gR/∂ni is thus

∂gR

∂ni
=
RT

N
(Z − 1)

(
bi
bm
− 1

)
− 1

ε− σ
1

bm

(
∂am
∂ni

− am
bm

∂bm
∂ni

)
ln

(
Z + εB

Z + σB

)
. (179)

We are now ready to consider the expression for gR(T, P, n) +N∂gR/∂ni. We insert the expressions

for gR(T, P, n) and ∂gR/∂ni:

gR(T, P, n) +N
∂gR

∂ni
=

[
RT (Z − 1)−RT ln(Z −B)− 1

ε− σ
am
bm

ln

(
Z + εB

Z + σB

)]
+N

[
RT

N
(Z − 1)

(
bi
bm
− 1

)
− 1

ε− σ
1

bm

(
∂am
∂ni

− am
bm

∂bm
∂ni

)
ln

(
Z + εB

Z + σB

)]
= RT (Z − 1)

bi
bm
− 1

ε− σ

(
am
bm

+
N

bm

(
∂am
∂ni

− am
bm

∂bm
∂ni

))
ln

(
Z + εB

Z + σB

)
.

(180)

50

REFERENCES

We write out and simplify the second factor in the second term:

am
bm

+
N

bm

(
∂am
∂ni

− am
bm

∂bm
∂ni

)
=
am
bm

+
N

bm

 2

N

∑
j

zjaij − am

− am
bm

bi − bm
N

=

1

bm

am + 2

∑
j

zjaij − am

− am bi
bm

+ am

=

1

bm

2
∑
j

zjaij − am
bi
bm

 . (181)

The final expression for gR(T, P, n) +N∂gR/∂ni is

gR(T, P, n) +N
∂gR

∂ni
= RT (Z − 1)

bi
bm
− 1

ε− σ
1

bm

2
∑
j

zjaij − am
bi
bm

 ln

(
Z + εB

Z + σB

)
, (182)

and we therefore obtain the following expression for the logarithmic fugacity coefficients:

lnφi(T, P, n) =
1

RT

(
gR(T, P, n) +N

∂gR

∂ni

)

= (Z − 1)
bi
bm
− 1

ε− σ
1

RTbm

2
∑
j

zjaij − am
bi
bm

 ln

(
Z + εB

Z + σB

)
. (183)

References

Callen, H. B., 1985. Thermodynamics and and Introduction to Thermostatistics. John Wiley &

Sons.

Gaspar, J., Ritschel, T. K. S., Jørgensen, J. B., 2017. An efficient and rigorous thermodynamic library

and optimal-control of a cryogenic air separation unit. In: Espuna, A., Graells, M., Puigjaner,

L. (Eds.), 27th European Symposium on Computer Aided Process Engineering - ESCAPE 27.

Barcelona, Spain.

Michelsen, M., Mollerup, J., 2007. Thermodynamic Models: Fundamentals and Computational

Aspects. Tie-Line Publications.

Michelsen, M. L., 1980. Calculation of phase envelopes and critical points for multicomponent

mixtures. Fluid Phase Equilibria 4 (1-2), 1–10.

Peng, D.-Y., Robinson, D. B., 1976. A new two-constant equation of state. Ind. Eng. Chem.

Fundam. 15 (1), 59–64.

Ritschel, T. K. S., Gaspar, J., Capolei, A., Jørgensen, J. B., 2016. An open-source thermodynamic

software library. Tech. Rep. DTU Compute Technical Report-2016-12, Department of Applied

Mathematics and Computer Science, Technical University of Denmark.

51

REFERENCES

Ritschel, T. K. S., Gaspar, J., Jørgensen, J. B., 2017. A thermodynamic library for simulation and

optimization of dynamic processes. In: Proceedings of the 20th World Congress of the International

Federation of Automatic Control.

Soave, G., 1972. Equilibrium constants from a modified redlich-kwong equation of state. Chemical

Engineering Science 27 (6), 1197–1203.

Thomson, G., 1996. The DIPPR R© databases. Int. J. Thermophys. 17 (1), 223–232.

Wilson, G. M., 1969. A modified Redlich-Kwong equation of state, application to general physical

data calculations. In: Proceedings of the 65th National AIChE Meeting. Cleveland, OH.

52

	Introduction
	A note on nomenclature

	Residual Gibbs energy of ideal vapor-liquid mixtures
	Gibbs energy of ideal gas mixtures
	Gibbs energy of ideal liquid mixtures
	Residual Gibbs energy of ideal vapor and liquid mixtures
	Summary

	Residual Gibbs energy of nonideal mixtures
	Residual Gibbs energy with pressure-explicit equations of state
	Cubic equations of state
	Solution of cubic equations of state

	Residual Gibbs energy with cubic equations of state
	Summary

	Fugacity and fugacity coefficients
	Definition of chemical potential
	Chemical potential of a pure component ideal gas
	Definition of fugacity
	Fugacity coefficients
	Ideal gas mixture
	Ideal liquid mixture
	Nonideal mixture

	Summary

	Vapor-liquid equilibrium
	Equilibrium conditions
	Solution of the equilibrium conditions
	Summary

	Equilibrium constants
	Equilibrium constants
	Ideal vapor-liquid mixture

	Summary

	Vapor-liquid equilibrium of ideal mixtures
	Solution of the Rachford-Rice equation
	Summary

	Computation of phase envelopes
	Solution of the isocurve equations
	Computation of initial guess
	Summary

	Derivatives
	Logarithmic fugacity coefficients
	Ideal liquid mixture
	Nonideal mixture

	Vapor-liquid equilibrium equations
	Ideal vapor-liquid equilibrium equations
	Phase envelope equations

	An algorithm for computing phase envelopes and an example program
	Wilson's approximation of equilibrium constants
	Cubic interpolation
	Automatic selection of specified variable
	Automatic step size selection
	Algorithm for computing isocurves
	Example program
	Discussion

	Derivative of mixing term
	Derivation of the residual Gibbs energy for cubic equations of state
	Derivation of the logarithmic fugacity coefficients for cubic equations of state

