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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.

© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the Scientific Committee of The 15th International Symposium on District Heating and 
Cooling.
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Abstract

Experiments with a stiff pile subjected to extreme wave forces typical of offshore wind farm storm conditions are considered. The
exceedance probability curves of the nondimensional force peaks and crest heights are analysed. The average force time history
normalised with their peak values are compared across the sea states. It is found that the force shapes show a clear similarity when
grouped after the values of the normalised peak force, F/(ρghR2), normalised depth h/(gT 2

p) and presented in a normalised time
scale t/Ta. For the largest force events, slamming can be seen as a distinct ’hat’ on top of the smoother underlying force curve.

The force shapes are numerically reproduced using a design force model, NewForce, which is introduced here for the first time
to both first and second order in wave steepness. For force shapes which are not asymmetric, the NewForce model compares well
to the average shapes. For more nonlinear wave shapes, higher order terms has to be considered in order for the NewForce model
to be able to predict the expected shapes.
c� 2016 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of SINTEF Energi AS.
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1. Introduction

In today’s design of offshore wind turbines, the extreme waves are based on probability distributions from mea-
surements and hindcast models. In the dynamic analysis, the extreme waves are often calculated by stream function
wave theory embedded into a linear irregular time series. The wave period of the stream function wave should ac-
cording to [9] be the period inside a predefined interval as function of the wave height, which gives the largest load.
The wave force is typically calculated by Morison’s equation. Instead of stream function waves, NewWave theory,
[1,11,17], can also be used to calculate the extreme waves. The NewWave is a deterministic design wave, where the
crest amplitude is predefined and the time history of the crest is described by the autocorrelation function of the wave
spectrum, assuming the surface elevation to be a linear random Gaussian process.

The NewWave has been validated to experimental data and real measurements in a number of studies, cf. [3,8,
15,18,19]. Whittaker et al., [19], showed that NewWave theory compares well to the linearised average shape of the
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largest waves during a storm for nondimensional wave numbers down to kh = 0.4, with k being the wave number and
h the water depth. Further, a second-order corrected NewWave profile compared resonable to the average measured
wave profile.

However, as will be shown in this paper, it is not always the wave with the largest wave height or crest height,
which results in the largest wave force. Instead, the largest force could be due to a wave with a smaller wave height
and amplitude but with a very steep wave crest. Less uncertainty on the extreme wave force would thus be obtained if
based on probability distributions of the force itself instead of wave height.

For nonlinear regular waves, Paulsen et al. [12] found a similarity in the temporal development of the normalised
force time histories, F/Fmax as function of H/Hmax, where H is the wave height and Hmax is the maximum wave
height at the given nondimensional depth from the wave breaking criterion of [20]. Further, the force peak value,
Fmax/(ρghR2) was found to increase with H/Hmax but was independent of the nondimenisonal water depth kh. Here ρ
is the density of water, g the gravity and R the radius of the monopile.

In the present paper it is investigated if a similar correlation can be found for experimental measured extreme
response forces on a monopile foundation from irregular waves, and whether these forces can be predicted numerically
if only information about the water depths, the significant wave heights, Hs and peak wave periods, Tp, of the wave
realizations are known. To do this the NewForce model is introduced here for the first time. It can be seen as a design
force in same way as the NewWave theory for the free surface elevation. The model is compared to second order
FORM analysis in [6].

The paper opens with an outset of the analysis and a presentation of the NewForce model. Next the model test
considered in the analysis are introduced and exceedance probability curves of the nondimensional crest heights of
the free surface elevation and force peaks are presented for the different sea states. Based on the probability curves,
the forces shapes conditional to a given normalised force peak level are compared across a the different sea states and
a relation between the shapes are found. The force shapes are further compared to the NewForce model. The paper
ends with a summary and discussion.

2. Outset of the analysis

In Offshore Engineering, design wave loads are often derived with basis in a certain design wave height and
subsequent application of a wave theory and a force model. However, as the peak force is not just a function of wave
height but also depends on e.g. the wave front slope, the resulting design load is associated with uncertainty. Some of
this uncertainty can be by-passed if the force statistics of the given structure is known. In that case, the design loads
for a static design are readily available. However, in order to run dynamic calculations, information about the force
variation in space and time is also necessary. The present paper seeks to provide these two pieces of information by
analysis of experimental measurements on a monopile. We will use the word shape as an alternative denotation of
time history throughout.

Consider a monopile of radius R at depth h, subjected to a JONSWAP sea state with significant wave height Hs,
peak period Tp and peak enhancement factor γ. We further denote the water density by ρ, gravity by g and the water
viscosity by ν. A given realization of the sea state can be characterized by a set of stochastic variables {x j}, and for
such a realization the force time series can be expressed by
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The force peaks may be sorted in increasing order to estimate the associated probability distribution, which may be
expressed as a function of the same parameters
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where the time and stochastic variables {x j} are now removed.
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For a given value of Fi, the expected force history can be determined by ensemble averaging. This expected time
history can thus be expressed by

F
Fi
= f2
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In the present paper we estimate the shape of f1 and f2 based on an experimental data set from the DeRisk project
[2]. The data set covers a limited parameter set relevant for offshore wind turbine monopiles in storm conditions,
and we therefore reduce the parameter space accordingly. First, the peak enhancement parameter γ is expressed as
a function of Hs and Tp (see [9]). Next, since the tests were carried out with a fixed pile diameter, the influence of
R/gT 2

p is neglected. Since the sea states studied are all storm sea states, all the wave episodes considered are to good
approximation in the long wave regime. Further, the Reynolds number dependence through ν is ignored along with
any other scale effects from e.g. aeration. This leads to the simplified dependencies
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Here, the functional dependencies have further been modified such that the force levels are normalized with Hs instead
of h in the denominator to accommodate the expected linear behaviour and where time in f2 is normalized with a new
time scale Ta, which will be defined later in terms of γ and Tp. The role of the present work is thus to investigate the
functional dependencies of ( f1, f2) to the wave parameters by analysis of experimental results. Further, the shape of
f2 is compared to the NewForce signal to investigate how well the NewForce model can reproduce the shape.

3. The NewForce model

The NewWave theory was derived by [1,11,17]. Given a power spectrum of free surface elevation S η, the NewWave
theory establishes the expected time history of free surface elevation around a peak as
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αη
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where αη is the crest height and σ2
η = η

2 =
� ∞

ω=0 S η(ω) dω. It is thus a linear theory and the associated linear force
history can be derived through its linear transfer function. Assuming that the wave force is inertia-dominated, thus
neglecting the drag-contribution, this transfer function can be obtained through the Morison equation

Γ(ω) = iρπR2CMω
2/k (7)

and involves a phase shift of π/2 through the i-factor. Further, CM is the inertia coefficient and k the wave number.
The inline force for the NewWave free surface history (6) is thus
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The NewForce model takes basis in the linear force spectrum S F(ω) = |Γ(ω)|2S η(ω). We re-apply the principle of
NewWave to obtain the expected force history around a force peak from the linear force spectrum:
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Here αF is the force peak value and σ2
F is the integrated force spectrum. Due to its linear origin, the NewForce signal

is symmetric around the peak. The associated time history of the free surface elevation is obtained by division with
the force transfer function Γ(ω) as

η
(1)
NewForce =

αF

σ2
F

∑

j
Re
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Γ∗(ω j)S η(ω j)∆ω exp
(

i
(

ω j(t − t0) − k j(x − x0)
))}

, (10)

where Γ∗ is the complex conjugate of Γ.
We note that the free surface elevation history associated with the NewForce model differs from the classical

NewWave theory by a phase shift of π/2 of all the wave components and multiplication by the linear force transfer
function inside the sum. The wave time history that produces a given force with largest probability is thus different
from a simple phase shift of π/2 of the classical NewWave signal. The NewForce signal principle can readily be
applied to other quantities of interest such as e.g. overturning moment as long as this can be expressed through a
linear transfer function applied to the free surface elevation signal.

The NewForce signal is only first-order accurate, but the second order contribution can easily be added by 1)
calculation of the second-order components of the incident wave field and kinematics by the the second order wave
theory of [16] and 2) by adding the second-order contributions from the slender-body force model that goes beyond
linear theory. In the analysis it is decided only to use Morison equation up to second order to be consistent with the
used wave theory
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One reason for this, besides mathematical strictness, is that we will apply fully nonlinear wave kinematics in future
work and therefore wish to work with a strictly linear, strictly second-order and fully nonlinear model. In (11) u and
w are the horizontal and vertical particle velocities and ut =

∂u
∂t the horizontal acceleration. Subscripts x and z means

that the variables are differentiated with respect to these coordinates. The nonlinear Rainey terms, [13]-[14], are also
included to second order in (11), third term. For the drag and inertia coefficients the generic values CD = 1 and
CM = 2 have been used troughout. It should be noted that while the first-order NewForce (and NewWave) models is
the most likely realization of a linear event of given peak amplitude, the second-order versions constructed by simple
add-on of the second-order tems differ slightly from the most likely second-order event. For free surface elevation
[10] derives expressions for the most likely second-order events while [6] calculate the most likely second-order force
and free surface events by a first-order reliability method.

4. The model tests

The model tests were conducted at DHI Denmark, as part of the DeRisk-project (2015-2019, [2]). The domain
was 18x20m and both uni-and multidirectional wave realizations based on JONSWAP-spectra were considered. The
experiment was Froude-scaled with a scaling factor of 1:50.

Two water depths of h = 0.66m and h = 0.4m, 33 m and 20 m in full scale, with a flat sea bed were considered.
The stiff pile had a diameter of D = 0.14m, 7 m in full scale, and was fixed at the bed and top. In the following, if
nothing else is stated, all data are given in full scale. The scale effects of the model tests which exist for the impact
pressures, impact forces and viscous loads are therefore omitted in the present study. However, for inertia dominated
impacts, the scale effects are usually considered small.

The free surface elevations considered in the analysis were measured 0.1m (lab scale) in front of the pile. Both the
forces in the inline and transverse wave direction were measured by force transducers, however in this analysis only
the inline force is considered.
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The force transducers were excited when large waves hit the structure. To ensure that this excitation is not part
of the analysed force-signal, the excitation was filtered out using a low pass filter. Considering the force spectrum
of figure 1 the spectrum contains energy around 0.1 Hz due to the wave signal but the signal also contains peaks for
frequencies larger than 3 Hz, which is much higher than the wave frequencies. Frequencies higher than 2.5 Hz are
therefore disregarded in the analysis. Also in figure 1, a force signal before and after the filtering is seen. It is easy to
see that the force is smoothened after the filtering, but it is also seen that the slamming force (the peak of the force at
time t ∼ 7760s) is maintained.

4.1. The sea states

In the present paper only the uni-directional waves are analyzed. Five sea states on a water depth of 33 m and
six sea states on a water depth of 20 m are considered. The lengths of the time series are 6 hours. The sea states
are presented in table 1, where the significant wave height, peak wave period and water depth are listed. Figure 2
from [4] shows the steepness of the waves H/(gT 2) as function of the nondimensional water depth h/(gT 2). The
larger H/(gT 2), the more steep the waves of the sea state. Similarly, smaller values of h/(gT 2), corresponds to more
shallow depth conditions. For the considered sea states the steepness and nondimensional water depths are based on
the significant wave height, Hs and peak wave period, Tp, also stated in the figure.

It is clear that none of the sea states can be described accurately with linear wave theory. Further the sea states
are grouped after their h/(gT 2

p)-value, indicated with black circles. Three groups are defined with the average values
h/(gT 2

p) = 0.9 , 0.014 and 0.024. The color of each sea state is repeated through out the paper.

Table 1: Significant wave height, peak wave period and water depth of the considered wave realizations.

Test Hs Tp h
(m) (s) (m)

9 7.5 12 33
10 7.5 15 33
11 9.5 12 33
12 9.5 15. 33
13 11.0 15 33
20 5.8 12 20
21 5.8 15 20
22 6.8 12 20
23 6.8 15 20
24 7.5 15 20
25 5.8 9 20

5. Results

5.1. Exceedance probability distributions of the free surface elevation and force signals

In the following the functional dependencies of f1 and f2, (4)-(5), are investigated. In figure 3 the exceedance
probability curves of the crest height and force peaks for all wave realizations are shown. The crest heights and force
peaks are the largest value in between two neighbouring zero-down-crossings of the free surface elevations, which are
sorted in increasing order. The probability of exceedance is here calculated as

P = 1 − i−1
N , i = 1, 2, 3, ...,N, (12)

where N is the number of waves in the time series. The crest heights and the force peaks are nondimenionalised as
η/HS and F/(ρgHsR2).

The curves in figure 3 are not fully identical. As the probability of exceedance decreases the difference between
the curves increases. Furthermore, the relative difference between the smallest and largest crest height for the lowest
exceedance probability is smaller than the difference between the smallest and largest force peaks. Thus, the expected
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Fig. 1: The power spectrum and the time series of the measured force
signal in full scale. Frequencies above 2.4 Hz are filtered out in the force-
signal.
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Fig. 2: Figure from [4] used to classify the sea states, based on Hs and
Tp. � h = 33m, △ h = 20m. The black circles indicate the three groups
the sea states are divided into as function of h/(gT 2

p).

linear behaviour of the crest heights and force peaks being proportional to the wave height does not hold for these sea
states.

This means that the waves, as expected, are nonlinear and that their dependence to h/(gT 2
p) cannot be ignored. For

the further analysis, we therefore change the normalisation to F/(ρghR2) and η/h to make it independent of Hs. This
way, events of same wave height or force level can be picked from sea states of different significant wave height and
be compared. The associated exceedance probability curves are shown in figure 4. The difference between the curves
are larger relative to figure 3 where the linear force dependence to Hs was included in the normalization.

The closer the sea states are to the wave breaking limit, cf. figure 2, the larger the force-peaks are for same
probability value since the shape of the surface elevations become more steep the closer the waves are to breaking
resulting in larger forces.

For some of the exceedance probability curves of the crest heights the tangents of the curves for the smallest
probabilities is almost vertical, for example the sea state with Hs = 7.1m and Tp = 12.4s. If the largest crest height is
left out of account, the values of the five second largest crest heights are almost identical. It could look like a breaking
limit for which the crest height can not be larger. Comparing the time series of the force and free surface elevation,
the force peaks corresponding to the largest five crest heights η/h are represented within the eight largest force values,
F/(gρhR2). This indicates that the waves are or are close to breaking and that the forces are due to wave slamming.

As shown in (4) the probability distributions are functions of Hs/(gT 2
p) and h/(gT 2

p) but the ordering in magnitude
is not coinciding. To illustrate this, nine peaks nearest different force values F/(ρghR2) are considered for all sea
states in figure 5. Nine force peaks nearest F/(ρghR2) = 1.0 and F/(ρghR2) = 1.3 are indicated with red and black
asterisks, respectively. In the figure the corresponding crest heights for the same waves are also indicated with red
and black asterisks. It is seen that there is large variation in these crest values, but also there is a tendency that that
the variation is smaller for the sea states where the considered force values, F/(ρghR2) = 1.0 and F/(ρghR2) = 1.3,
are near the extreme force values. This could indicate that for the extreme forces of a sea state, the number of shapes
which can result in these forces are reduced. In figure 6 the relation between the wave height and period of the waves
resulting in these peaks are compared to the breaking criteria of [7]
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Hb

L0
= A
(

1 − exp
(

−1.5π
h
L0

))

. (13)

Here L0 is the deep water wave length and Hb the limiting wave height. For irregular waves breaking occur for
0.12 < A < 0.18. For linear waves, L0 = gT 2/(2π) and the nondimensional values Hb

L0
and h

L0
therefore correspond to

the nondimensional values H
(gT 2) and h

(gT 2) on figure 2. A trend between the force values and the wave heights is seen.
All the waves lie on a curve almost parallel to the breaking limits, and as the force value F/(gρhR2) increases, the
waves are closer to breaking.

5.2. The averaged force shape

In the following it is investigated if a similarity of the force shapes with same force value F/(ρghR2) but different
exceedance probability can be found. Irregular wave realizations are a stochastic process. In previous studies, where
the NewWave is compared to extreme wave events in measured and calculated wave realizations, [8]-[19], the extreme
waves are the average of a given number of the waves with largest crest height in the wave realization. The same
approach is used in the present analysis, but on different levels of crest heights and force peak values.

In figure 7, the nine force shapes of the nine force peaks nearest F/(ρghR2) = 1.0 and F/(ρghR2) = 1.3 are shown
for the sea state with Hs = 10.3 m, Tp = 15.1 s and h = 33 m together with the average force time series, FA. The
force peaks are centered at time t = 0 s. Before averaging the force shapes the forces are normalised with their peak
values.
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The standard deviations of the nine force shapes for each sea state are also shown. The variation is zero at t = 0
and increases away from the force peaks. However, from the zero-upcrossing in front of the peak to the through after
the peak the nine forces show a strong similarity.

In figure 8 the average force shapes of the force peaks with the force value F/(ρghR2) =(0.8, 1.0, 1.2, 1.3, 1.6) are
shown for all sea states. The force shapes are grouped after the values of h/(gTp)2 of their corresponding sea states,
as shown in figure 2. The time is normalised with the scale Ta, which is the time from the force peak to the trough
after the force peak of the linear NewForce signal for the same Tp-value. Thus, Ta is function of Tp and γ.

Below the force-shapes, the standard deviations of the average force shapes are shown. Generally, the shapes of
the forces in each group match quite well and becomes more uniform as F/(ρghR2) increases.

The amplitude of the trough in front of the peak increases with increasing h/(gT 2
p)-value and decreases with in-

creasing F/(ρghR2)-value. In the analysis it was tried to find a time-scale which would give all forces the same
nondimensional period. However, as seen in the figures, we did not manage to find such a time scale, and the time,
t/Ta, from the peak to the trough after the peak increases with increasing h/(gT 2

p). Still, we observe that the nondi-
mensional time from the zero-upcrossing in front of the force peak to the through after the peak is almost identical for
all forces for same h/(gT 2

p)-value when using this time normalization.
The secondary load cycle is seen for the smallest force-values F/(ρghR2) ≥ 1.2. It could look like the secondary

load cycle force for h/(gT 2
p) =0.009 occurs for smaller F/(ρghR2)-values compared to the other h/(gT 2

p)-values. This
illustrates, that nonlinearity increases with decreasing water depth.

Considering the standard deviation, the deviation decreases as F/(ρghR2) increases. The standard deviation is zero
at t = 0 s, since all forces are normalized with their force peaks. The deviation increases on both sides of t = 0s to
approximately the time of occurrence of the troughs, showing that the average forces are most uniform around the
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force-crest. This is in accordance with the theory of NewWave, [17], where it is shown that as the crest height of
the NewWave increases the standard deviation remains constant meaning that the surface elevation becomes more
deterministic.

It is important to note that for smaller F/(ρghR2)-values the standard deviation increases. The above observations
indicating that the shapes of the normalized forces are a function of h/(gT 2

p), t/Ta and F/(ρghR2) are therefore only
good approximations for roughly F/(ρghR2) > 0.8 in the present parameter range.

5.3. Comparison to the NewForce model

The NewForce model and the Morison equation are engineering tools, to calculate the wave forces. They are
suited for application, as they are simple and easily calculated. In this section it is investigated how well the different
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Fig. 7: The nine force shapes, F(t), and the corresponding average force, FA together with the standard deviation σ of the nine forces for the sea
state with Hs = 6.8m, Tp = 15m and h = 20m.

force shapes presented in figure 8 can be predicted by the NewForce model extended to second order. The approach
explained in section 3 is used to calculate the second order NewForce signals, F(1)+(2)

NewForce = F(1)
NewForce + F(2)

NewForce.
Two examples with different F/(ρghR2)-value are shown in figure 9 for the sea state with Hs = 11m, Tp = 15s and

h = 33m. For comparison, the first and second order free surface elevations, ηNewForce based on the NewForce signals
are also shown.

Since extreme sea states are considered, some of the average force-shapes includes slamming, which is easy to
identify, as the force contains a ”hat” on top of the peak. This is seen in the average force in figure 9b. However, the
wave slamming is not included in the NewForce model, and the slamming part of force-shape is therefore disregarded
when compared to the NewForce signal. To account for this in the analysis, the average force shape around the crest
is approximated by a fourth order polynomial, and the maximum value of this polynomial is instead used as target
peak-value for the NewForce signal, α in (9).
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Fig. 8: The average force shape as function of h/(gT 2
p) and F/(ρghR2. The color of each sea state corresponds to the colors in figure 2.
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Fig. 9: The average force for the sea state with Hs = 10.3m, Tp = 15.1s, h = 33m and h/(gT 2
p) = 0.014 for two force values, and the corresponding

NewForce signal and surface elevation based on the NewForce model.

Comparing the first and second order NewForce signals, the second order NewForce signal compares better to
the average force signal. The trough in front of the peak is lifted upward and the force-crest becomes more narrow.
This supports the finding that the time scale of the local force peak is not linear. It is therefore only the second order
NewForce signal which is used in the following analysis. It is further seen that the NewForce signal and the average
force compares best for the smallest force peak value, F/(ρghR2) = 1.0, where the NewForce signal is inside the
grey area indicating F ± σ, with σ being the standard deviation. For F/(ρghR2) = 1.3 the NewForce signal does not
capture the asymmetry of the force shape, i.e. the force is more steep after the peak compared to in front of the peak.
Higher-order terms are necessary to include such nonlinear effects.

The average force shapes of figure 8 are repeated in figure 10, but now they are compared to the corresponding
second order NewForce signals. The NewForce signals for each h/(gTp) and F/(ρghR2) value are very similar and
lie on top of each other for some situations. For the smallest force value, F/(ρghR2) = 0.8, the NewForce signals
compare very well to the average force shapes. However, as the force value increases, the differences between the
average force shape and the NewForce signal increases. The dissimilarities are largest for the wave realizations in
most shallow water, h/(gT 2

p) = 0.009 and occur for smaller force values compared to the two other groups of h/(gT 2
p).

This is a consequence of the stronger nonlinearity in shallow water, where accuracy of a second order model must
decrease. The more shallow the more asymmetric the wave shapes become. The NewForce signal is more symmetric
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around its crest value. This also explains why the crest of the NewForce signal is more steep in front of the peak
compared to the average force, while after the peak, the average force is more steep.

The comparison indicates that it is possible to define limits based on h/(gTp) and F/(ρghR2), for which the expected
force shape for a given sea state can be represented by the NewForce model extended to second order.
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Fig. 10: The average force shape (full line) and the corresponding second force NewForce (dasped line) as function of h/(gT 2
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F/(ρghR2. The color of each sea state corresponds to the colors in figure 2.
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6. Summary and discussion

Analysis of extreme wave forces based on experiments with a stiff pile has been presented. As the force-peaks are
not only function of the wave height but also depends on e.g. the wave front slope, it is associated with uncertainties
to base the design load on a design wave height only. The outset of the analysis was therefore to investigate if the
force time history of extreme wave forces could be predicted directly based on force statistics, without having any
information of the wave height and wave period resulting the specific force-value.

In the paper the NewForce model has been presented for the first time. In the NewForce model the NewWave
theory principle is re-applied to obtain the expected force history around a force peak from the linear force spectrum.

The functional dependencies of the exceedance probability curves of the measured inline force and the normalised
force shapes was investigated. It was found that the probability distributions of the force peaks are functions of both
Hs/(gT 2

p) and h/(gT 2
p). For a given force value, the corresponding waves group around a curve parallel to the breaking

limits of [7].
The normalised force shape was found to be function of F/(ρghR2), h/(gT 2

p) and t/Ta with good similarity for
F/(ρghR2) > 0.8. Further, the second order NewForce model proved to predict the force shapes of moderate nonlinear
waves well. The performance was found to be best for the larger values of h/(gT 2

a ), agreeing with the general decrease
of nonlinearity towards larger depth. Thus, based on h/(gTp) and F/(ρghR2), limits can be defined, for which the
expected force shape for a given sea state can be represented by second order NewForce model.

The presented analysis demonstrates that it is possible to estimate the exceedance probability curves of the force
peaks and the associated force shapes from the normalised sea state parameters Hs/(gT 2

p), h/(gT 2
p), and that the

second-order NewForce model provides a good estimate of the expected force shape for waves of moderate non-
linearity. The extension to multidirectional wave realizations is straightforward and should be investigated in future
work. While the present work addresses the linear expected event and adds the second-order terms, a direct determina-
tion of the most likely second-order event for a given force can be obtained by application of a First-Order Reliability
Method (FORM). Such an investigation is presented by Ghadirian et al. [6] with comparison to the same data set and
treatment of directional waves.

Slamming loads could be observed for the largest force levels as a distinct ’hat’ on top of the smoother underlying
force curve. While these seem beyond a simple slender-body force model, improved prediction of the force shapes of
more nonlinear waves may be obtained by incorporating a wave model more accurate than second order. This could
be the fully nonlinear wave model, OceanWave3D, [5] and is planned for future work.
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