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Abstract  

Bone tissue engineering is considered an alternative approach for conventional strategies 

available to treat bone defects. In this study, we have developed bone scaffolds composed 

of hydroxyapaptite (HAp), gelatin and mesoporous silica, all recognized as promising 

materials in bone tissue engineering due to favorable biocompatibility, osteoconductivity 

and drug delivery potential, respectively. These materials were coupled with conductive 

polypyrrole (PPy) polymers to create a novel bone scaffold for regenerative medicine. 

Conductive and non-conductive scaffolds were made by slurry casting method and loaded 

with a model antibiotic, vancomycin (VCM). Their properties were compared in different 

experiments in which scaffolds containing PPy showed good mechanical properties, 

higher protein adsorption and higher percentage of VCM release over a long duration of 

time compared to non-conductive scaffolds. Osteoblast cells were perfectly immersed 

into the gelatin matrix and remained viable for 14 days. Overall, new conductive 

composite bone scaffolds were created and the obtained results strongly verified the 

applicability of this conductive scaffold in drug delivery, encouraging its further 

development in tissue engineering applications. 
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1. Introduction  

Tissue engineering coupled with drug delivery plays a novel key role in the treatment of 

various diseases through the combination of materials science, biomedical engineering 

and pharmaceutical sciences (Cui et al., 2010; Hu et al., 2014). Tissue engineering can 

create a useful ground in which the new tissue can be regenerated in a short period of time 

with high efficiency. Bone tissue engineering has been extensively studied in recent years 

in order to overcome the bone defects known as a common clinical problem (El-

Ghannam, 2005; Zhou et al., 2014). It introduces new approaches to replace the previous 

methods, such as autografts and allografts, which result in second operation at tissue 

harvest site, high cost, serious infection and morbidity (Amini et al., 2012). The 

engineered bone scaffolds are known as an important approach in repairing the structure 

and physiological function of damaged bone by their porous 3D-structures, which allow 

regenerating the new bone cells and permit nutrient flow via its interconnections, 

increasing the chance of treating bone damage (Hollister, 2005). To achieve this goal, it 

is essential for scaffolds to show suitable osteoconductivity, cell adhesion, degradation, 

bioactivity and low cytotoxicity (Hu et al., 2014; Ronca et al., 2013). As their main 

function, scaffolds afford the initial and temporary mechanical stability of the bones and 

let the cells to proliferate inside the pores to make the new tissue; meanwhile the scaffold 

gradually starts to degrade and create free space for the new cells (Berthiaume et al., 

2011). 

Synthetic hydroxyapatite (HAp) is widely used in bone tissue engineering due to its 

similar chemical composition to the inorganic HAp in bone (Jones R H, 2013). 

Biocompatibility, osteoconductivity, good chemical bone-bonding ability, as well as 

supporting and promoting the bone regenerative process make this ceramic an ideal 
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component of bone scaffolds (Lewandowska-Lancucka et al., 2015; Rezaei and 

Mohammadi, 2013). HAp implant systems prevent bacterial pathogens growth (Carlson 

et al., 2004), while helping to improve osteoblast differentiation. Nevertheless, poor 

mechanical properties and low degradation rate are the main drawbacks, which demand 

other materials, such as polymers, other ceramics, or natural phases to be combined to 

improve the HAp properties (Lewandowska-Lancucka et al., 2015; Rezaei and 

Mohammadi, 2013). 

Silica, for example, with the high potential to induce the mineralization process and 

improve cell viability, can be a supplement for calcium phosphate (CaP) based systems 

to facilitate osteoblast cell regeneration (Fwu-Hsing Liu et al., 2011; Heinemann et al., 

2011; Lewandowska-Lancucka et al., 2015). In addition, mesoporous silica can be 

considered as a drug delivery vehicle with controlled release properties, due to presence 

of silanol groups that facilitate the surface functionalization/coating of the particles 

(Boccardi et al., 2015; Fussell et al., 2014; Heikkila et al., 2010; Kinnari et al., 2011; 

Limnell et al., 2011a; Limnell et al., 2011b; Zhang et al., 2013). The promising 

biocompatibility, thermal and chemical stability, low toxicity,  and promoting osteoblast 

cell activity make mesoporous silica a worthy candidate in bone tissue regeneration 

purposes (Shadjou and Hasanzadeh, 2015).  

Another candidate in bone tissue engineering is gelatin, which has been mostly studied 

and is widely incorporated with CaP compositions (Bigi et al., 2004). Gelatin is known 

as a natural biodegradable polymer with high water solubility and biocompatibility, which 

is able to increase the pore size and improve the workability and mechanical properties 

of the bone cement (Bigi et al., 2004; Shie et al., 2008). In general, natural bone 
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microstructure can be mimicked by a remarkable surface area and interfacial interaction 

between HAp and gelatin (Chiu et al., 2015).  

In biomaterials science, materials with specific properties are used in order to present 

smart behavior in regeneration treatment. For example, polypyrrole (PPy), is a conductive 

polymer which is mostly used in smart biomedical composites together with other 

biomaterials, such as alginate, especially where the conductivity is a major interest of the 

scaffold properties to stimulate the cell proliferation (Sajesh et al., 2013). PPy has a good 

electrical conductivity, which is due to p-type conduction, the electrons inter-chain 

hopping and the anions or cations motion (Balint et al., 2014). It has electric and thermal 

stability, while it suffers from brittleness, poor mechanical and non-biodegradable 

properties (Sajesh et al., 2013; Yu et al., 2013). However, incorporating PPy with other 

materials can be a strategy to overcome these drawbacks. It has been shown that the PPy 

based composite bone scaffolds can be a new generation of scaffolds with high potency 

to create CaP on their surface (Jiang et al., 2005). 

There are studies suggesting a desirable differentiation of the cells in the presence of 

gelatin and HAp, with high alkaline phosphatase (ALP) and osteocalcin activity, and 

suitable ability to carry and release different drugs (Kim et al., 2005; Liu et al., 2009). 

Also, combination of chitosan, gelatin and SiO2 with fibrin coating or alginate and HAp, 

has already been shown acceptable mechanical properties, cell viability, and drug 

delivery properties (Kavya et al., 2013; Yan et al., 2016). Nevertheless, novel 

combination of conductive polymers with drug delivery properties is still missing in the 

previous studies. In addition, in many studies, mechanical strength of the scaffolds is not 

in the cancellous bone range, which has a compressive strength of 2−12 MPa and Young’s 
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modulus (E) of 0.05−0.5 GPa (Nicoll, 2011) , and they only can be used for short term 

drug delivery.  

In this study, we created a new class of composite bone scaffolds for prolonged drug 

delivery, by employing PPy (conductive polymer), gelatin (with remarkable ability to 

induce cell attachment), HAp (as the inorganic component of the bone) and vancomycin 

(VCM; antibiotic drug)-loaded mesoporous silica microparticles (for anti-infection 

effect). This way we hypothesize that the chosen materials may enhance the properties of 

each other and create a novel conductive scaffold to accelerate bone regeneration and 

simultaneously releasing the antibiotic for prolonged release, which excitingly pave new 

ways for the applications and further translation in future clinic setups. 

 

2. Materials and methods 

2.1. Materials 

Gelatin, HAp, PPy and glutaraldehyde solution (25 wt.-% in H2O) were purchased from 

Sigma-Aldrich. Mesoporous silica (SYLOID® 244 FP) was kindly provided by Grace 

Davison, and vancomycin hydrochloride (VCM) was obtained from BioChemica Inc. The 

chemicals NaCl, KCl, NaHCO3, NaSO4, Tris-buffer, glycerophosphate, ascorbic acid, 

dexamethasone, sodium dodecyl sulfate (SDS), dimethylsulfoxide (DMSO), 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) were purchased from Sigma-

Aldrich; K2HPO4·3H2O and CaCl2 were purchased from Merck Millipore. MgCl2·6H2O 

and HCl 1 M were obtained from Riedel-de Haën and VWR, respectively.  Phosphate 

buffered saline (PBS) 10×, fetal bovine serum (FBS), Dulbecco's Modified Eagle 

Medium (DMEM), L-glutamine, non-essential amino acids (NEAA) and penicillin 

streptomycin were purchased from HyClone, USA. Hank's Buffered Salt Solution 
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(HBSS) 10× was obtained from Gibco Life Technologies, CellTiter-Glo reagent was 

purchased from Promega Corporation, USA and the Micro-BCA protein assay kit was 

obtained from Thermo Fisher Scientific.  

 

2.2. Preparation of conductive composite scaffold 

Scaffolds were made by solvent casting method on ice (Shahini et al., 2014). In brief, 

samples were fabricated by adding a mixture of highly viscose HAp and mesoporous 

silica (10% w/v, each) water-base suspension into 2 ml of melted gelatin solution (1 

g/mL) and warmed in a water bath at 60 °C. PPy (0.26% w/v) was dispersed in water, 

sonicated and then added to the HAp-mesoporous silica-gelatin mixture. The suspension 

was then vortexed vigorously to obtain a homogenous slurry. Next, the slurry was casted 

into 24-well plates on an icebox under shaking conditions, followed by immediate 

freezing to −20 °C. Samples were freeze-dried by Heto LyoPro 3000 (Heto-Holten A/S, 

Denmark) at −50°C for 48 h to remove the water and create a porous scaffold. Later, the 

obtained scaffolds were crosslinked by 8% glutaraldehyde in water for 3 h to attach the 

components (HAp, silica and polyppyrrole) on gelatin matrix. Finally, the obtained 

scaffolds were washed with water and ethanol and freeze-dried for 6 h (Figure 1A). Two 

sets of scaffolds were made with this procedure: samples with PPy (+P) and their 

counterparts without PPy (-P). 

 

2.3. Scaffold properties  

The scaffold’s cross-section morphology was examined by scanning electron microscopy 

(SEM; FEI Quanta FEG250). The specific surface area of the scaffolds was evaluated 

with the Brunauer–Emmett–Teller (BET) method using nitrogen sorption at −196 °C 
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(TriStar 3000, Micromeritics Inc.) (Zhang et al., 2013). In addition, the porosity was also 

determined by liquid replacement method. For this, cuboid scaffolds (50−125 mg) were 

immersed in ethanol  (20 mL/sample) and degassed by reducing the pressure within a 

vacuum chamber to allow the ethanol to run through the pores of the scaffolds for 15−20 

min, until no air bubbles could be observed. Finally, the sample weight as immersed was 

recorded. The porosity of scaffolds was calculated by considering the volume of the pores 

(Vpores) and volume of cuboid scaffolds (Vscaffold), following Eqs. 1 and 2 (Shahini et al., 

2014): 

Vpores = m1-m0 / ρEtOH       (1) 

Porosity = (Vpores  / Vscaffold) × 100                           (2) 

where, m0 is the dry weight and m1 is the weight of the samples after the immersion in 

ethanol, while the ρEtOH is the density of the ethanol.   

 

2.4. Physicochemical characterization 

The scaffolds were ball-milled by Pulverisette 7 (Fritsch) at 19g for 10 min with zirconia 

balls (diameter: 10mm), in dry condition, to obtain a fine powder of each type of samples. 

Simultaneous thermogravimetric and differential scanning calorimetry (TG/DSC) 

measurements were done with STA 6000 (PerkinElmer) under a 60 ml/min flow of 

synthetic air using a temperature ramp of 20 °C/min. The chemical structure of the 

scaffolds was studied with Fourier transform infrared (FTIR) spectroscopy, using a 

Vertex 70 spectrometer (Bruker Optics) equipped with a MIRacle horizontal attenuated 

total reflectance accessory (Pike Technologies Inc.). The scans were done using a 

resolution of 4 cm-1.  
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2.5.Mechanical properties 

Mechanical properties of samples were measured and analyzed with a Lloyd LRX (Lloyd 

Instruments) at room temperature. New set of samples were made in a 2.5 mL syringe as 

a mold to obtain a cylindrical shape scaffold. They were lyophilized for 48 h at −50 °C 

and then were cut to 6 mm in diameter and 12 mm in length. The components were 

crosslinked together by 8% glutaraldehyde in water and freeze-dried for 6 h at −50 °C. 

The strength of the samples were tested under vertical force at the cross-section of 

cylinders with 1.5 mm/min speed and 1000 N maximum load, until they fractured. The 

compression strength and elastic modulus of three samples of both types were calculated 

from stress-strain curve plotted by the obtained data from the device (Arifvianto et al., 

2017).   

2.6. Swelling ratio measurements 

Swelling ratio was evaluated in order to examine the water absorption in two different 

types of scaffolds in aqueous solution. In addition, the influence of PPy in swelling ratio 

was studied. The samples were immersed in 1× PBS (pH=7) at 37 °C for 7 days (Sajesh 

et al., 2013) . On each time point (day 1, 4 and 7), each scaffold was taken out of the 

buffer, tapped on the filter paper to remove the water on the surface and weighed to obtain 

the wet weight. The swelling ratio was calculated using Eq. 3 (Sajesh et al., 2013): 

Swelling ratio = (mwet - mdry) / mdry      (3) 

where, the mwet is the weight of samples after the incubation in 1× PBS buffer and mdry 

is the initial weight before immersing in PBS.  

 

2.7. Biomineralization  
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In vitro acellular biomineralization on the surface of the scaffold’s pores was examined 

by immersing the scaffolds in 5 times saturated simulated body fluid (SBF(5)) solution 

containing NaCl, NaHCO3, KCl, K2HPO43H2O, MgCl26H2O, HCl 1 M, CaCl, NaSO4, 

and Tris-buffer at 37 °C for 21 days (Cai et al., 2011). The composition was similar to 

ions concentration in human plasma and it provides a suitable environment to create 

apatite crystals in vitro (Saravanan et al., 2013). At each time point, the samples were 

washed carefully with water and freeze-died. The formation of calcium crystals and their 

morphology were analyzed with a field emission SEM (Hitachi S-4800, Department of 

chemistry). The Ca:P ratios were measured using an Oxford INCA 350 energy-dispersive 

X-ray spectrometer (EDX) connected with the Hitachi S-4800. 

 

2.8. Protein adsorption measurements  

Protein adsorption is the first phenomena after scaffold implantation, which facilitates the 

cell attachment. Therefore, scaffolds need an initial amount of proteins on the surface for 

subsequent cell attachment (Dong et al., 2015). For the protein adsorption study, samples 

were washed with ethanol for 1 h under shaking, followed by further washings with PBS. 

PBS+10% FBS solution was added to each sample and incubated for 4, 14 and 24 h at 

37°C. Afterwards, samples were tapped by filter paper and washed again with PBS to 

eliminate the loosely attached FBS. The adsorbed protein was recovered by 2% SDS and 

the quantitative protein adsorption was detected by Micro-BCA protein assay kit (Thermo 

Scientific), following the protocol provided by the manufacturer (Woo et al., 2007). The 

different sets of scaffolds were treated with FBS in the same way, washed with water, and 

the morphology and protein attachment was analyzed with SEM (FEI Quanta FEG250). 
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2.9. Drug loading and release studies 

Mesoporous silica (Syloid® 244 FP) microparticles (1 g) were dispersed in 5 mg/mL of 

VCM in water for 3 h at room temperature. The drug-loaded mesoporous silica 

suspension was then centrifuged at 4020g for 7 min and the supernatant examined by UV-

Vis spectrophotometer (UV-1600(PC), VWR) to detect unloaded drugs. HAp suspension 

was added to the drug-loaded microparticles in the same ratio as explained in section 2.2, 

and thereafter, they were added to the falcon tubes containing melted gelatin followed by 

adding sonicated PPy and pouring everything in 24-well plates by the slurry casting 

method (Shahini et al., 2014). Next, samples were freeze-dried for 48 h in −50 °C to 

remove the solvent, and afterwards, the components were crosslinked on the gelatin 

matrix with 3 mL of 8% glutaraldehyde in water. The scaffolds were then washed 

carefully10 times (9 times in water and 1 time in ethanol) and freeze-dried for 6 h. About 

1 ml of the supernatant of each step of washing was examined by UV-Vis 

spectrophotometer at the wavelength of 229 nm to check the accumulative release of drug 

during each washing step. The release of VCM from the +P and -P scaffolds (weight 

average 1.7 and 1.5 g, respectively) was tested at 37 °C in 3 mL of PBS at different time 

points for 4 months. At each time point, 1 mL of the medium was taken out of the each 

sample and an equal volume was replaced to maintain the final release volume constant. 

The release of VCM was studied using a UV-Vis spectrophotometer at the wavelength of 

229 nm for each sample in quadruplicate.  

 

2.10. Cell studies 

K7M2WT (ATCC® CRL2836™) osteoblast cells were purchased from ATCC for the in 

vitro studies. Cells were cultured in DMEM medium supplemented with 10% FBS, 1% 
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L-glutamine, 1% NEAA and 1% (100×) penicillin streptomycin (purchased all from 

HyClone). They were kept in incubator (16 BB gas, Heraeus Instruments GmbH) in 

atmosphere of 5% CO2 and 95% relative humidity and passages used were between 9 and 

20 at confluency of ca. 80%. All the scaffolds used for cell studies were sterilized with 

ethanol for 1 h and then treated with UV-radiation for 1.5 h for each side. 

 

2.11. Cell viability  

ATP-luminescent was measured by CellTiter-Glo luminescent cell viability assay 

(Promega Corporation, USA) in order to test the cytotoxicity of scaffold’s degradation by 

extract method for 14 days (Frewin Ch et al., 2016). Prior to the test, scaffolds were 

immersed in DMEM + 10% FBS and antibiotics for each time point (5 time points, 4 

replications) at 37 °C in 5% CO2. Also, the medium (DMEM+10% FBS) was incubated 

in the same condition for 14 days as the blank medium. About 35,000 osteoblast K7M2 

cells were seeded in fresh DMEM + 10% FBS in each well in 96-well plate for 24 h. At 

each time point (day 1, 3, 5, 7 and 14) the medium of each well, containing cells, changed 

with scaffold’s and blank medium and incubated for 48 h. After, each sample (+P. -P and 

blank medium), and positive control containing fresh DMEM + 10% FBS and negative 

control 1% Triton X-100 were washed with buffered salt solution HBSS−HEPES pH 7.4 

and followed by addition of the CellTiter-Glo reagent. The samples were kept in dark on 

the shaker for 2 min and the lysed cells luminescence were measured by Varioskan Flash 

plate reader (ThermoFisher) within 15 min (Mori et al., 2014). 

 

2.12. Cell attachment 
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The cell morphology and attachment on each type of samples was tested by SEM. First, 

the samples were immersed in DMEM +10% FBS for 24 h. About 10 000 cells were then 

counted and added to each well in 24-well plates, followed by medium replacement every 

2 days. At each time point (day 1, 7, 14 and 21), the samples were taken out of the culture 

medium, washed with PBS (pH 7.4) three times and fixed by 2.5% glutaraldehyde in PBS 

at 37 °C for 1 h. Post-fixation of the samples was then performed using 0.5% osmium 

tetroxide in PBS for 1.5 h. Thereafter, different concentrations of ethanol (50, 70, 96 and 

100%) were used to dehydrate the cells. The samples were then coated with gold-

palladium alloy/platinum and analyzed with SEM (FEI Quanta FEG250). 

 

2.13. Statistical analysis 

The results are expressed as mean ± standard deviations (S.D.) of at least three 

independent set of measurements. Statistical analysis was achieved by means of one-way 

analysis of variance (ANOVA) with the level of significance set at probabilities of *p < 

0.05, **p < 0.01, ***p < 0.001, analyzed with OriginPro8.6 software. 

 

3. Results and discussion 

3.1.  Physicochemical characterization of the scaffolds 

The cross-section of the composite scaffolds was studied by SEM in order to investigate 

the structure and morphology of the pores created during the preparation of the scaffolds. 

As it can be seen in Figure 1B, freeze-drying of the casted scaffold created interconnected 

macroporous structures, composed of gelatin as the backbone matrix and nano-HAp (blue 

arrows) and mesoporous silica microparticles (green arrows) embedded on the surface, 

which is also demonstrated in detail with EDX studies in Figures S1–S3. The 
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characteristics of HAp nanoparticles has been already published by the manufacturer, 

Sigma-Aldrich. It has a molecular weight of 502.31 g/mol, particle size of ≤ 200nm and 

specific surface area of ≥ 9.4 m2/g (A.G. Osorio et al., 2011). As we reported previously 

(Kinnari et al., 2011), SYLOID® 244 FP have a particle size of 2.5−3.7 µm, a surface area 

of 311 ± 14 m2/g, a pore volume of 1.42 ± 0.04 cm3/g and an average pore diameter of 

19.0 ± 1.1 nm (Kinnari et al., 2011). In the +P scaffolds containing PPy, we can see the 

web-like PPy (red arrows) in the structure attaching on the matrix. The pore size of the 

scaffolds was analyzed by Image J 1.47v, ranging from 200 to 350 µm with average 

diameter size of 281 µm. Macrosized pores with HAp particles provide good locations 

for cell attachment and bone ingrowth (Sharma et al., 2016). The specific surface area 

and density evaluations showed higher area for the +P scaffolds (5.5 ± 0.1 m2/g) 

compared to the -P counterpart (2.7 ± 0.1 m2/g), while the densities of the +P (0.49 ± 0.05 

g/cm3) and -P (0.48 ± 0.21 g/cm3) samples were quite similar. The porosity value of +P 

was 86.0±1.2 % and for -P was 74.0±2.1 %. The results of the specific surface area and 

porosity indicate that +P samples showed larger pores (higher porosity) with more 

irregular pore walls (larger surface area). Moreover, the web-like fibers of PPy on the 

structure of the scaffolds are suitable locations for the attachment of molecules, cells or 

particles. 

 

3.2. Powder characteristics 

The FTIR spectra obtained from the powdered +P and -P scaffolds are shown in Figure 

1C. The distinct features of the spectra can be assigned in the presence of HAp and 

mesoporous silica in the composite, as the strong absorbance bands related to the 

phosphate groups of HAp were observed at 960, 1030 and 1085 cm-1 (Rehman and 
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Bonfield, 1997) superimposed with the silica ν(Si-O-Si) band at 795 cm-1 and the broad 

band between 1000–1200 cm-1
, indicating Si−O stretching (Lippincott et al., 1958). 

Adjacent band are from the gelatin amide bands around 1640 and 1530 cm-1 with an 

absorbance band at 1345 cm-1 that can be assigned to Ca–COO vibrations, indicating 

chemical binding between the gelatin and HAp (Azami et al., 2010). There is practically 

no discernible difference between the spectra of +P and -P scaffolds, as the possible PPy 

related bands are masked by the gelatin bands.  

Thermal analysis was performed to study the influence of PPy on thermal properties of 

the scaffolds (Figure 1D). The results of the TGA and DSC scans are shown in Figure 

1D, which show similar behavior of both +P and -P scaffolds. The TGA/DSC curves 

show in both samples an initial weight loss accompanied by an endotherm, due to the 

drying of the sample. The TGA curves continue by the degradation and burning of the 

organic components, associated with the respective broad DSC endo- and exotherms for 

the thermal events. Total mass loss can be observed at 800−900 °C, which is 53.2 ± 0.5 

w-% and 53.6 ± 0.2 w-% for +P and –P, respectively, showing that the addition of PPy 

does not change the behavior of the scaffold under the temperature ramp.  

 

3.3. Mechanical properties 

Lloyd instrument was used in order to measure and analyze the (E) of the +P and -P 

scaffolds, by forcing the load (1000 N maximum) to the base surface area until the 

scaffolds were broken. Mechanical strength is one of the important factors in bone tissue 

engineering due to the bone function in human body, and this parameter indicates the 

force threshold which can be applied on the scaffolds before fracture. E value was 

calculated from the slope of linear stress-strain curve (Figure 2). Figure 2A shows that 
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both scaffolds had quite similar mechanical characteristics. The -P scaffolds showed 8 

MPa compression strength and Young’s modulus of 0.125 GPa, and the +P scaffolds 

showed almost the same values of 7 MPa compression strength with Young’s modulus of 

0.11 GPa, which was due to the low mechanical properties of PPy polymer. In addition, 

+P samples were more porous and less dense, which decreased the compression strength. 

In general, PPy did not decrease the compression strength of the composite scaffold and 

the combination of the materials showed a similar behaviour as reported in cancellous 

bone property (Nicoll, 2011), which is due to the crosslinking function of glutaraldehyde 

(8%) used for the amine-aldehyde reaction and the stability enhancement.  

 

3.4. Swelling ratio studies 

Swelling ability is an important factor in bone tissue engineering. Scaffolds need to be 

able to adsorb body fluids and make a proper place for nutrient flow and waste removal 

(Venkatesan et al., 2012). Therefore, the PBS absorption of the +P and -P sample were 

evaluated at 37 °C during 7 days (Sajesh et al., 2013). As shown in Figure 2B, after 24 h 

of immersion in the buffer, the scaffolds absorbed water more than their initial weight 

and the swelling ratio increased to higher than 100%. Both samples showed an increase 

in swelling ratio in 7 days. These results suggest a high hydrophilic behavior of the 

scaffolds, which is an important property for absorbing water to increase the size of the 

structure (pores), without changing the morphology. Here, the stability of the scaffold is 

due to the HAp particles (Im et al., 2012). Swelling can facilitate the migration and 

infiltration of the cells, as well as the diffusion of the nutrients (Saravanan et al., 2013; 

Sharma et al., 2016). However, the results also indicate that the scaffold containing PPy 

in its structure had slightly lower swelling ratio compare to the -P samples, which is 
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probably due to the hydrophobicity of this polymer (Sajesh et al., 2013), and also due to 

the fact that +P scaffolds have high porosity, thus there is less mass to swell in a constant 

volume. Silica particles are hydrophilic as a result of the silanol groups on its surface 

(Kinnari et al., 2011). Also, gelatin as a reversible or thermoplastic polymer, which is 

hydrophilic, has high tendency to swell in higher temperature, while apatite shows lower 

water uptake due to HAp ceramic nature, making the structure more stable. The 

interaction between gelatin and HAp make a bond with appropriate swelling and stability 

properties at the same time (Bundela and Bajpai, 2008; Sharma et al., 2016). 

 

3.5. Biomineralization  

CaP crystals [Ca3(PO4)2] can facilitate the attachment of the osteoblast cells on the 

scaffold and trigger their differentiation (Saravanan et al., 2013). In this test, acellular 

biomineralization capability of scaffolds was carried out in vitro over 21 days in SBF(5). 

Scaffolds containing hydroxyapatite provide easy nucleation sites for the formation of 

new spherical crystals (Saravanan et al., 2013). The very first crystals of CaP were 

detected on day 7 in +P samples, and over time more crystals were observed on the surface 

of the scaffolds (Figure 3). On days 10 and 14, both samples (+P and -P) were covered 

by multiple layers of CaP, which was also confirmed by the main peaks of Ca and P 

detected by EDX analysis (Figure 3). Although CaP almost coats the entire surface, there 

were still some pores visible on the surface of the scaffolds. These non-confluent layers 

eventually merged and completely covered the surface on day 21 for both types of 

samples, as shown in Figure 3.  

The Ca:P ratio was evaluated also by SEM−EDX, showing values of 1.25−1.4 for both 

types of scaffolds, while the control (samples before immersion into SBF(5)) had a Ca:P 

ratio of 1.7. This range of ratio belongs to different type of CaP compositions. 
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Octocalcium phosphate have Ca:P ratio of 1.33, precipitated hydroxyapatite Ca:P ratio is 

1.33–1.67 and precipitated amorphous calcium phosphate (ACP) Ca:P ratio is 0.67–1.50 

. The metastable compositions of Ca:P, ACP for example, is an intermediate that can 

change to the more stable composition of apatite and reach a Ca:P ratio of 1.67 (Habraken 

et al., 2016; Zhao et al., 2011). As shown in Figure 3, Ca, P and Si were the main peaks 

in spectrum of control samples for +P and −P scaffolds. Compared to -P scaffolds, the Si 

peak decreased for +P samples in day 7, while the Ca and P peaks increased. These results 

are in line with our observation in SEM study and confirm the ability of our fabricated 

conductive scaffold to form apatite in a short time period as compared to the non-

conductive scaffold. The Si peak completely disappeared at day 10 as the apatite layer 

coated the surface of the pores. The formation of CaP crystals indicates the surface 

bioactivity of both scaffolds and their ability to absorb PO4
3− and Ca2+ due to the electrical 

charges of the surface. Moreover, the silanol groups of the mesoporous silica 

microparticles can attract Ca2+ and create a positive layer on the surface, which can then 

adsorb PO4
3- and make the apatite to grow (Yazdimamaghani et al., 2015).  

 

3.6. Protein adsorption 

Protein adsorption is a crucial step that occurs right after the implantation of scaffolds 

into the biological environment, when the proteins give signals to the cells’ integrin and 

facilitate cell attachment to the scaffolds’ surface (Chang and Wang, 2011). FBS 

adsorption was investigated at three time points during 24 h by BCA assay (quantitative) 

and SEM (qualitative) to screen the amount and morphology of the proteins on the surface 

of the pores. As shown in Figure 4A, +P samples showed higher protein adsorption 

capacity (70 µg) than -P samples (50 µg). This result can also be observed in SEM images 

in Figure 4B in which bigger protein aggregations are attached on the +P scaffolds 
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matrix, while only protein fibers can be observed on -P samples. This can be due to the 

rougher surface of +P samples, which is caused by PPy web-like fibers. In PBS buffer, 

the adsorption process took place at pH 7.4, which was higher than the isoelectric point 

of BSA (4.8), the main protein of FBS serum. As a consequence, BSA has a negative 

charge in the physiologic pH of the human body. Therefore, it can be absorbed on the 

positive chains of PPy. Overall, PPy created a high porosity, and therefore, high surface 

for proteins to be adsorbed, and also created the suitable charges on the pores to attract 

more proteins (Azioune et al., 2002), which led to higher cell attachment. 

 

3.7. Drug release 

The release of a model antibiotic drug, VCM, from the conductive and non-conductive 

scaffolds was measured during 4 months. First, it was observed that the mesoporous silica 

microparticles were loaded with 6.3% of the drug. During the fabrication of the scaffolds, 

where130 µg/ml of drug was lost during crosslinking process and washing steps. At the 

end, scaffolds were loaded with 2.019 ± 0.1% (+P) and 2.4 ± 0.15% (−P) of drug based 

on scaffolds weight.  

The cumulative release of VCM from both +P and -P composite scaffolds was studied 

during 4 months in PBS, as shown in Figure 5. No rapid or significant burst release was 

observed for both types of scaffolds. After 20 days, the composite scaffolds started to 

reach to a release plateau until almost 80% drug release for +P and 50% for -P scaffolds. 

A higher drug release was observed for the +P samples, which can be due to higher 

surface area and porosity that the web-like fibers provides (Luo and Cui, 2009; Schnieders 

et al., 2011). In addition, VCM is a polycationic antibiotic, which might be detached from 

the positive charges of PPy chains in the +P samples (Azioune et al., 2002; Williams and 

Domen, 1990). As was mentioned in section 3.1, the pore size of the mesoporous silica 
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microparticles (SYLOID® 244 FP) was measured by the BET method, showing an 

average pore diameter size of 19 nm. Limnell et al. reported that the microparticles 

showed faster release of indomethacin compare to MCM-41 silica due to their large pore 

size (Limnell et al., 2011b). In addition, Figure 1B shows the mesoporous silica 

microparticles embedded on the gelatin matrix, suggesting that the loaded VCM might be 

trapped in the gelatin matrix. This also explains why the VCM was not completely 

released. Overall, these scaffold systems were able to avoid the burst release of VCM and 

extended the time of the release in PBS buffer due to the important role of the gelatin 

matrix in controlling the drug release.  

 

3.8. Cell viability  

Cell viability was tested with ATP luminescence assay for +P and −P composite scaffolds, 

and incubated with blank medium during two weeks to check the biocompatibility of 

scaffolds. The luminescence of the lysed cells in incubated mediums was measured and 

compared with luminescence of the lysed cells in fresh medium as a positive control 

(Figure 6). As shown, the scaffold extracted medium did not affect the osteoblast cell 

viability during 14 days compared to the blank medium. Although we can see a decline 

in the cell viability after day 5, the medium which has been extracted from the incubated 

scaffolds did not show toxicity and the cells were viable as in the blank medium. This 

suggests that the degradation of the scaffolds did not hinder the cell proliferation and PPy 

fibers on the matrix did not have any toxic effect on the biocompatibility of the composite 

scaffolds. The viability of the cells remained almost same for both types of scaffolds with 

no significant differences. The results prove the fact that conductive polymer of PPy did 

not show toxicity in +P composite scaffold in the vicinity of osteoblast cells 
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3.9. Cell attachment 

Cell morphology was investigated in vitro in normal medium (non-osteogenic) during 21 

days. Figure 7 shows the interactions of the osteoblast cells and the scaffolds matrices. 

In day 1, cells started to attach on the gelatin matrix and high cell infiltration was observed 

in day 7, as the cells were seen inside the matrix instead of being attached on the surface 

of the scaffolds. As the gelatin tended to swell in the medium, the structure became bigger 

in size and the cells inclined into the scaffolds. The cell infiltration has also been reported 

in hydrogel matrices in some studies (Annabi et al., 2009; Ji et al., 2011). The swelling 

ability of the hydrophilic gelatin assisted the cells to adhere onto the surface of the 

scaffolds and allowed them to enter inside the scaffolds. Overall, the conductive 

composite showed good biocompatibility and provided an appropriate environment for 

the attachment, growth and proliferation of the osteoblast cells.  

 

4. Conclusion 

 

We have shown here that the scaffolds composed of PPy, gelatin, HAp and VCM-loaded 

mesoporous silica microparticles exhibited suitable mechanical properties close to bone 

ones. These novel scaffolds showed compressive strength close to non-conductive 

scaffolds without decreasing the Young's modulus. The porosity and high surface area of 

+P affected the protein adsorption and prolonged the VCM release over time. Web-like 

fibers of PPy on the gelatin matrix played an important role in the surface charge, which 

can affect the release of the drug and adsorption of the proteins. In addition, the 

conductive composite scaffolds promoted the biomineralization and induced the 

formation of CaP crystals faster than the non-conductive composites. The swelling of 

gelatin allowed the matrix of the scaffold to be expanded in the stimulated body fluid or 

cell medium, which makes enough space for the cells to attach and infiltrate into the 
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gelatin. Osteoblast cells were perfectly immersed in the conductive gelatin matrix and 

stayed viable for 14 days. Overall, we demonstrated that PPy could be used in bone tissue 

engineering without any toxic effect on osteoblast cells, while retaining essential 

properties like mechanical strength and create the conductive structure with a potential to 

release drugs during 4 months from a conductive bone scaffold.  
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FIGURE CAPTIONS 
 

Figure 1. (A) Schematic representation of the procedure to fabricate conductive 

scaffolds. Slurry casting method followed by freeze-drying for 48 h and crosslinking with 

8% glutaraldehyde. The samples were washed by distilled water and ethanol to remove 

the remained glutaraldehyde and then dried by freeze-drying method for 6h at −50°C. (B) 

Cross-section SEM images of +P scaffolds, demonstrating interconnected pores. Arrows 

in the magnified image show web-like PPy (red) attached to the gelatin matrix on the 

scaffold. Green arrows are showing mesoporous silica microparticles and blue arrows 

indicate the HAp. (C) FTIR spectra of ball-milled +P and -P scaffolds. Green lines 

correspond to the stretches of Si-O-Si and Si-O bonds responsible for mesoporous silica 

microparticles, blue line shows the PO4 bending of HAp, and orange line shows the bonds 

that correspond to gelatin and yellow line of gelatin and HAp Ca-COO bond. (D) 

TGA/DSC graphs in synthetic air at 20 °C/min for +P and -P samples.  
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Figure 2. (A) Stress-strain curve of +P and -P samples. (B) Water adsorption during 7 

days with over 100% of weight increase for +P and -P samples. Errors bars represent 

mean ± S.D (n = 3). Statistical analysis was made by one-way analysis of variance 

(ANOVA) with the level of significance set at the probability of **p < 0.01. 
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Figure 3. SEM images of CaP localization on the pores of +P and -P samples after 7, 10, 

14 and 21 days of immersion in SBF (5). First CaP crystals can be seen on day 7 in +P 

samples, while the -P surface showed no crystal formation. After 10 days, samples were 

covered by non-confluent multilayers of CaP. These layers became confluent over time 

until day 21, which resulted in multilayered confluent CaP coating. Scale bares are 20 

µm. Energy-dispersive X-ray spectroscopy (EDX) on the right side of each SEM image 

shows the main peaks of Ca and P.  The Si peak disappeared from day 10 onwards due to 

the whole coverage of CaP on the pores of the scaffolds.  
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Figure 4. FBS proteins adsorption during 24 h. (A) Quantitative FBS concentration after 

4, 14 and 24 h of incubation in PBS+10% FBS solution at 37 °C. Errors bars represent 

mean ± S.D (n = 3). Statistical analysis was made by one-way analysis of variance 

(ANOVA) with the level of significance set at probabilities of *p < 0.05 and **p < 0.01. 

(B) SEM imaging of scaffolds after 4, 14 and 24 h of incubation in PBS+10% FBS 
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solution at 37 °C, showing the morphology of the attached proteins on the pores. Scale 

bars are 50 µm.  

 

 

Figure 5. The cumulative release of VCM from +P and -P scaffolds (n = 4) immersed in 

PBS pH 7.4 for 4 months at 37 °C. The +P samples released almost 80% of VCM, while 

the maximum release for -P samples was around 50%. Statistical analysis was made by 
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one-way analysis of variance (ANOVA) with the level of significance set at the 

probability of *p < 0.05. 

 
 

Figure 6. The viability of osteoblast cells in medium extracted from +P and −P scaffolds, 

and incubated with blank medium for two weeks compared with fresh medium (positive 

control) and Triton X-100 (negative control), which is represented by measuring ATP 

luminescence. Errors bars represent mean ± S.D (n = 4). Statistical analysis was achieved 

by means of one-way analysis of variance (ANOVA) with the level of significance set at 

probabilities of *p < 0.05, **p < 0.01 and ***p < 0.001.  ACCEPTED M
ANUSCRIP

T
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Figure 7. Cell infiltration after 1, 7, 14 and 21 days of immersing the scaffolds (+P and 

−P samples) in normal medium with 10% FBS. The cells on +P samples in day 7 spread 

on the matrix with elongated shape. Arrows show the cells that are covered by crystals 

produced in the medium. Scale bars are 20 µm. 
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