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MODELING 

 

 

Jonatan Margalit1 and David R. Fuhrman2 

 

 

Abstract 

 

Large repetitive patterns on the sea bed are commonly observed in sandy areas. The formation of the bed forms have 

been studied extensively in literature using linear stability analyses, commonly conducted analytically and with 

simplifications in the governing equations. This work presents a shallow water equation model that is used to 

numerically simulate the morphodynamics of the water-bed system. The model includes separate formulations for bed 

load and suspended load, featuring bed load correction due to a sloping bed and modelled helical flow effects. 

Horizontal gradients are computed with spectral accuracy, which proves highly efficient for the analysis. Numerical 

linear stability analysis is used to identify the likely emergence of dominant finite sized bed forms, as a function of 

governing parameters. These are then used for interpretation of the results of a long time morphological simulation. 

 

Key words: Bed forms, sediment transport, morphodynamics, linear stability analysis. 

 

 

1. Introduction 

 

In shallow seas, large scale bed forms consisting of non-cohesive material are commonly observed. They 

are typically categorized as sand waves with length O(100 m) and height O(5 m), and sand banks with 

length O(5 km) and height O(30 m). Some of these bed forms have repetitive patterns and seem to be 

actively interacting with the sea flow over the time scale of years. Field studies indicate that large scale bed 

forms are primarily morphologically active due to tidal currents and during storms. Sand waves have 

shown a tendency to migrate at a rate of several meters per year, while sand banks appear more stable with 

much smaller migration. These kinds of bed forms can be observed in a large part of the North Sea, and 

have therefore given rise to extensive studies. Human activity in the offshore environment has increased 

steadily over the years, and it is therefore important to understand the morphology of the sea bed from an 

engineering point of view. The question of how the bed forms emerged in the first place has been the 

subject of various theories. Research indicates that, although some bed forms may be relics from another 

geological period, there are also bed forms that can be explained as the result of a pure instability 

phenomenon of the water-bed system. 

The study of large scale bed forms in shallow seas has given rise to many linear stability analyses that 

attempt to explain and predict field observations. These analyses are commonly conducted analytically and 

therefore require simplifications in the governing equations (Huthnance 1982; de Vriend 1986; de Vriend 

1990; Hulscher et al. 1993; Hulscher 1996). The present work presents a complete two-dimensional 

horizontal (2DH) model that is used to conduct a numerical linear stability analysis, intended to identify the 

likely emergence of dominant finite sized bed forms, as a function of governing parameters. The work will 

establish fast performing 2DH numerical linear stability analyses of bed forms growth rates, utilizing a 

complete numerical model description. The study is both for bed load alone as well as in combination with 

suspended load, and includes modelled secondary current effects. The results are expected to give both 

quantitative and qualitative predictions, which will then be compared with subsequent morphological 

simulations involving the growth and migration of large-scale bed forms in the sea.  
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Figure 1. Definition sketch. 

 

2. Governing Equations 

 

2.1. Hydrodynamics 

 

The hydrodynamics are described by the nonlinear shallow water equations. The wave lengths of the bed 

forms are several orders of magnitude larger than the depth, hence assuming shallow water conditions with 

only the gravitational acceleration in the vertical direction is reasonable. The governing equations for the 

hydrodynamics in conservative form are thus given by the depth averaged continuity equation 
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and the depth-averaged momentum equations 
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where   
T

u vu  is the depth averaged horizontal fluid velocity vector, h  is the water depth, g  is the 

gravitational acceleration,   is the height of the water above 0z  , cf  is the Coriolis frequency, 

  
T

bx by τb  is the bed shear stress vector,   is the water density and   
T

x yS SS  is a body force vector, 

which will be specified later. Horizontal stress terms have been ignored. See Figure 1 for a definition 

sketch. The bed shear stress is modelled using a drag coefficient DC  such that 
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2.1.1. Helical flow 

The helical flow model in this paper is based on the work of Olesen (1987), where a transport equation of 

the bed shear stress angle tan s  is established. By introducing a right-handed streamline coordinate 

system, the transport equation reads  
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where sR  is the local radius of the streamline curvature. The parameter   can be related to the flow 

resistance and for logarithmic flow profiles is calculated by 
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where 0.4   is the Von Karman constant. Inertial effects play a role on the intensity of the helical flow 

and are therefore accounted for by introducing the adaption length s , defined as 
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where s  is a calibration constant. de Vriend (1981) suggests a value of 1.3s   for helical flow intensity, 

however, the bed shear stress has a faster adaption and it is therefore recommended to use a value of 

0.6s  , in that case. 

 

2.2. Sediment transport 

 

2.2.1. Bed load 

The bed load transport is modelled through it's relation to the bed shear stress. The total bed shear stress 

which acts as the total flow resistance is comprised from two contributions, as suggested by Einstein 

(1950): ''b   , where the single prime accounts for skin friction on the grains and the double prime 

accounts for bluff body form drag due to small scale unresolved bed forms such as dunes and ripples. The 

bed load is assumed to be related only to the part of the bed shear stress related to skin friction, hence it is 

modelled from the single prime component. Engelund & Fredsøe (1976) suggest the following relation for 

bed load transport 

 

     35 ' 0.7 1b cq P gd      (8) 

 

where 2.65   is the specific density of sand, d  is the mean grain diameter,    is the Shields parameter 

value associated with skin friction, c  is the Shields parameter value of incipient bed particle motion, and 

P  is representing the probability between zero and unity, that a certain fraction of particles in a single 

layer are in motion. The probability P  is found by 
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where d  is the dynamic coefficient of motion of the sediment, estimated at 0.51. 

A sloping bed affects the bed load transport as the grains are more easily transported downhill than 

uphill. Additionally, a transverse slope will divert the transport direction from the mean current direction. 

For small bed slopes in streamline coordinates, the effect is accounted for by a modification of the bed load 

found by Equation (8) in the following way: 
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where and   is a coefficient estimated from 
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The transverse bed slope effect is similarly accounted for by the equation 
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which also includes the deviation of the bed shear stress direction due to helical motion. The constants  G
and a  are calibration constants estimated here to be 1.25 and -0.5, respectively. 

 

2.2.2. Suspended load 

The suspended load model is based on the Galappatti (1983) and DHI (2013) exhaustive depth-averaged 

solution of the sediment concentration transport equation, which corresponds to 
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where c  is the depth-averaged suspended sediment concentration. For the other terms see the referenced 

literature. The last term on the right-hand side of Equation (13) accounts for the sediment entrainment rate 

at the reference level from which suspended load is considered. The entrainment rate is estimated by 

 

  0 s eE w c c   (14) 

 

where 0  is the bottom value of a unit concentration profile, sw  is the mean fall velocity and ec  is the 

depth averaged concentration in equilibrium conditions calculated from a Rouse profile. 

 

2.3. Bed morphology 

 

Lastly, the rate of bed level change with time is determined by Exner equation 
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where 0.4p   is the bed porosity 

 

 

3. Numerical Methodology 

 

The equations presented in the previous section are solved in Matlab, such that Eqs. (1), (2), (3), (5), (13) 

and (15) form the system of governing equations. Time integration is based on a 2nd order Runge-Kutta 

scheme. Horizontal gradients are computed with spectral accuracy, which proves highly efficient. The flow 

is driven by a body force given by 
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   siny c c mS f U U t    (17) 

 

where cU  is the steady current velocity, mU  is the tidal velocity amplitude and   the tidal frequency. 

 

3.1. Linear perturbation 

 

The linear stability analysis is performed by studying the response of the system to a small perturbation to 

the bed, given by a trigonometric function 
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2
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A
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where A  is the perturbation amplitude and ,x yk k  are the wavenumbers in x  and y , respectively. 

Assuming that the initial time development of such a perturbation with growth rate Ω  and migration 

frequency   is given by  

    Ω, , sin
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the linear response of the bed to this perturbation can be found by fitting the simulation results with the 

derivative of Equation (19), given by 
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In the present analysis, where responses are linear, two perturbations with opposite yk  signs are 

superimposed in order cope with asymmetric flow due to the Coriolis effect. The result of the growth rates 

are presented based on a dimensional analysis which yields a non-dimensional growth rate given by  
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where 0h  is the mean depth. 

 

3.2. Convergence of solution 

 

 
 

Figure 2. Comparison between a finite difference (second-order central difference) scheme (CD) and the spectral 

method (FFT). The left two sub-plots depict the absolute error of the non-dimensional growth rate and computational 

time (left: Bed load alone, center: Bed load and suspension load).  Right: Computation times. The absolute error is 

relative to *Ωe  which is the non-dimensional growth rate found using the spectral method with N = 128. 

 

In order to investigate the rate of convergence, the spectral scheme is compared with a second-order finite 

difference central difference scheme. Figure 2 shows the non-dimensional growth rate and computation 

time vs. the number of grid points N used for discretization in each horizontal dimension, i.e. number of 

grid points per bed wavelength. The absolute error is relative to the error found having the spectral method 

with the highest number of grid points N = 128. The spectral method demonstrates its large advantage over 

the finite difference scheme as the solution is fairly accurate with as few as eight grid points resolving the 

bed wave. The computation time spent using the spectral method is higher than the central difference for a 

given domain size, however the superior accuracy of the solution with a small number of elements 

outweighs this expense. It can be seen that when suspended sediment transport is included, the accuracy is 

reduced compared to the bed load alone. This is due to the vertical integration of the concentration profiles, 

which is only accurate up to second order, thus limiting efficiency of the spectral method. It is however 
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substantially better than all the results produced by the finite difference scheme. Based on this analysis it is 

chosen to conduct all further simulations with the spectral method using N = 16 grid points to resolve the 

bed wave in each direction. 

 

 

4. Results 

 

Table 1 lists the parameters of the studied case, in which the current velocity, depth, resistance and grain 

diameter serve as model inputs, where the zero subscript represents the unperturbed values. For each 

forthcoming figure presenting linear stability contours for the non-dimensional bed growth * , 400 

simulations have been conducted on a HPC cluster for a variety of dimensionless wavenumbers 0 0,  x yk h k h

spanning the range 0 to 0.3. In the following a comparison between a steady current and a unidirectional 

tidal flow is presented, followed by a look at the effects of the bed load bottom slope correction and the 

helical flow model. Lastly, based on the results on the linear stability analysis, the morphological 

development of a bed is presented.  

 
Table 1. Simulation parameters. 

 

 Current 

velocity 

Depth Drag 

coefficient 

Grain 

diameter 

Skin friction 

Shields parameter 

Rouse 

number 

Suspended / 

Bed load ratio 

0U  0h  0DC  d  '
0  0Z  0 0/s bq q  

1 m/s 30 m 0.00459 0.250 mm 0.24 1.05 1 

 

4.1. Steady current vs. tidal current 
 

Linear stability analysis of tidal bed forms is commonly studied by separation of the hydrodynamic and the 

morphological time scales, such that updates of the bed are performed by averaging the sediment transport 

over a full tidal cycle (Huthnance 1982; de Vriend 1990; Hulscher 1996). The Coriolis effect creates an 

asymmetric flow, which usually yields anti-clockwise directed bed forms in the northern hemisphere. 

Zimmerman (1981) links this phenomenon to clockwise circulating residual flow cells around the crests, 

where the upstream velocity is slightly larger than the downstream. As mentioned previously, the doubly-

periodic bed form allows the simulation of both negative and positive yk  wave numbers in a single 

simulation. Figure 3 shows a comparison between two flow conditions. One, where a steady current is used 

( 1cU   m/s and 0mU   m/s), and a second, where an M2 tide with frequency 
41.4053 10    rad/s is 

simulated ( 0cU   m/s and 1mU   m/s) and the growth rate is found by averaging over the tidal period. 

The upper plots show the non-dimensionalized growth rate contours with bed load only, while the lower 

show it for combined bed load and suspended load. The peak ( 0 0,x yk h k h ) positions are marked with a dot 

for a given set, with the peak growth rates *Ω  indicated. Negative contours, i.e. decaying bed forms have 

been omitted from the plots. 

Figure 3 shows that in all four cases the peaks are highest in regions with negative 0yk h  values, i.e. 

fastest growing anti-clockwise directed bed forms. Over half a period, the tidal flow has a lower averaged 

velocity than the steady current case, which manifests itself in the magnitude of the peaks. It can be seen 

that in bed load only simulations there is a factor 2.5 between the two flow conditions, while it is roughly 

factor 3.5 when suspended load is included. The ratio of the peaks between the positive and negative 0yk h  

regions is around 1.3 for the bed load alone and 1.5 including the suspended load. One important attribute 

of the suspended load inclusion is that the growth contours now span a lower range of the wavenumber 

0xk h , while maintaining the 0yk h  range. This suggests that suspended load suppresses the evolution of 

shorter wave lengths and also tends to result in bed forms which are more aligned with the mean flow 

direction. For the bed load alone, the contours in both flow conditions show a similar form and peaks 

located at    0 0, 0.091,  0.115x yk h k h    for steady current and    0 0, 0.079,  0.099x yk h k h    for the tidal 

flow. This corresponds to wave lengths of O(1 km) rotated approximately 38 to the mean current 

direction, i.e. short sand banks. In the cases where suspended load is included a difference in the contour 

shapes is more observable and the peaks are located at    0 0, 0.023,  0.055x yk h k h    for steady current and  
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Figure 3. Steady current vs tidal current. Non-dimensional growth rate 
* 1110  ,  with bed load alone and combined 

with suspended load. Note the different scaling of the axes. 

 

   0 0, 0.023,  0.051x yk h k h    for the tidal flow. This corresponds to wave lengths of O(3 km) rotated 

approximately 23 to the mean current direction, i.e. also characterized as sand banks. 

These results suggest that replacing a tidal flow with a steady current for the obtaining growth rates 

using linear stability analysis seems to be a viable approach. This has also been confirmed through similar 

testing of other cases. In literature, it is common to see studies that disregard the suspended load or include 

it in a total load model. Whichever transport model chosen, it seems that the linear growth rates only differ 

quantitatively while being qualitatively the same. The main advantage of the steady current over the tidal 

current, is a much shorter computational time. 

 

4.2. Bed slope effect 

 

          
 

Figure 4. Effect of bed slope. Non-dimensional growth rate 
* 1110   with bed load alone. Note the different scaling of 

the axes. 
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In this section, the model is used to test how the bottom slope correction of the bed load given by 

Equations (10) and (12) affects the stability of the bed forms. For this the model is simulated with bed load 

only and the helical flow model is deactivated. Figure 4 shows the non-dimensional growth rate contours 

from simulations including and excluding the bed slope correction of the bed load transport. It can be seen 

that the inclusion of the bed slope correction is essential to achieve a closed peak. This numerical solution 

supports the conclusion of de Vriend (1986) that the system is entirely unstable without the slope effect, 

while inclusion of it dampens the growth, mostly of shorter wave-lengths since they have steeper slopes.  

 

4.3. Helical flow effect 

 

 
 

Figure 5. Effect of adaption length in the helical motion model on the unstable growth rate. Non-dimensional growth 

rate 
* 1110   with bed load alone. Note the different scaling of the axes. 

 
In this section, the model is used to study the influence of the helical flow on the stability of the bed forms. 

Although the effect has influence on both the bed and suspended load transports, it is here tested with bed 

load only for simplicity; Qualitatively similar results have been found when suspended load is included. 

Figure 5 shows the effect of setting the adaption length coefficient in the Equation (7) to 0, 0.6,1  .2s  . 

The case with zero adaption length means that essentially the flow responds immediately without any 

adaption to varying flow conditions. This can be seen by the left contour plot where no peak emerges 

within the studied range, and the growth rate increases with increasing wavenumbers. When the adaption 

length is included, as in the center and right plots, the higher wavenumbers become stable (i.e. decaying 

bed forms) and a peak growth mode emerges, while the magnitude of the growth rate is reduced. From a 

physical perspective, the lateral bed slope effect causes the bed load transport vector to veer downslope and 

the helical water motion causes it to veer up-slope. This balance between these two effects is clearly visible 

when sequentially considering the plots from left to right, where the helical flow effect is reduced as the 

contours become more asymmetric. The next plot in this sequence would be the right plot in Figure 4, 

which could represent the case of s   , i.e. no helical flow correction of the bed load transport. The 

sequence shows that with no adaption length, the helical flow is dominating the bed load vector and causes 

enhanced bed form development by carrying sediments from troughs to crests, generating steep slopes and 

shorter wave lengths. The adaption length retards this effect, which is the reason why the growth rate 

magnitude is reduced and peaks appear at lower wavenumbers. Increasing the adaption length also yields 

more asymmetry around 0xk h . This is due to a balance between the Coriolis effect and the helical flow 

effect. Hulscher et al. (1993) adopted a similar approach and used an adaption length coefficient of 0.6. 

Their model was able to show qualitatively how a dominant mode yielding a short-waved bed form nearly 

perpendicular to the mean flow direction could emerge. The current results yield wave lengths on the order 

of 1-3 km and bed form to current angle of 20°– 40°, which as previously mentioned, can be characterized 

as sand banks. 

 

4.4. Morphology 

 

The results of the linear stability analysis are now put to a test in order to see how the model performs 

when the bed is allowed to evolve. Using the flow conditions listed in Table 1, a simulation is performed 
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for a domain size corresponding to the wavenumber of the highest peak in Figure 3 for bed load and steady 

current, i.e.    0 0, 0.091,  0.115x yk h k h   . A normally distributed random bed perturbation with standard 

deviation of 1% of the mean depth is introduced initially, on a 16 16 grid. The initial bed condition is 

depicted in the left of Figure 6. In order to speed up the morphology, the rate of bed level change /bh t   is 

amplified by a factor 10,000. Figure 7 shows the maximum bed level and the root mean square of the bed 

over the simulation period. 

Figure 6 (center) shows the bed in the early morphological stages where it can be seen that linear 

sinusoidal bed forms have emerged with the wavenumbers as predicted by the linear stability analysis. This 

corresponds to the exponential growth stage seen in Figure 7 between 100 – 200 years. This matches very 

well the evolution described by Equation (19). As the bed is allowed to continue morphing it becomes 

nonlinear and reaches an equilibrium stage at the 300 years mark, with shape depicted on Figure 6 (right). 

From this stage on, the bed remains growth neutral and only migrates. It can be seen that the bed form 

appears to be nearly doubly periodic, which can be attributed to the second mode which had a slower 

evolution, thus needing more time to evolve. This mode corresponds very well to the second peak in Figure 

3 (steady current – bed load) in the positive 0yk h  region. 

 

 
 

Figure 6. Bed level evolution for bed load alone simulation. Left: initial randomly perturbed bed. Center: Linear bed 

forms at early stage of development. Right: Fully developed stable bed form.  

 

 
 

Figure 7. Time development of maximum elevation and root mean square of the bed elevation. Results are from a bed 

load alone simulation.   

 

Naturally imposing the domain size and the grid density limits the spectrum of the possible outcomes of 

the previous simulation. This is tested further here for the model, now including the suspended load. The 

domain is now prescribed by the wavenumber set    0 0, 0.023,  0.055x yk h k h   , corresponding to the peak 

in Figure 3 for the total load and steady current. As before the bed is perturbed randomly, while the rate of 

bed level change is amplified by a factor 2000. Figure 8 (left) shows very clearly a linear bed form 

emerging with the expected wavenumber values. On Figure 8 (right) the domain size is doubled in each 

direction. It can now be seen that the bed forms have some discontinuities, but the emerged bed forms have 

the same wavenumber values as predicted by the linear stability analysis, and as depicted on Figure 8 (left).  

The corresponding time development of the bed height is shown in Figure 9, where it can be seen that in 

this case the bed does not reach an equilibrium in terms of growth, and the bed evolution occurs much 

faster than in the bed load alone case, in line with expectations based on the linear stability analysis. 
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Figure 8. Bed level for bed and suspended load simulations. Left: domain with single bed form. Right: domain of twice 

the size showing emergence of two bed forms. 

 

 

 

 
 

Figure 9. Time development of the maximum elevation and root mean square of the bed elevation. Results are from a   

combined bed and suspended load simulation. 

 

 

5. Conclusions 

 

A shallow water model with helical flow effects and sediment transport has been developed in order to 

simulate the sea bed morphodynamics, in a similar fashion as in modern commercial models. The model 

utilizes a spectral method, which proves to be extremely efficient for a desired accuracy on a periodic 

domain. The model has been used to study the effects of bottom slope and helical flow motion on the 

sediment transport, in a numerical linear stability analysis. The simulations were performed with a steady 

current which has been shown to give qualitatively similar results to those obtained in a unidirectional tidal 

flow. Results have shown that suspended load modeling yields quite different results than bed load alone 

on the emergence of bed forms, and is therefore important to consider. It has been demonstrated 

numerically that inclusion of a bottom slope correction of the bed load must be incorporated in order to 

achieve stable results. This is in line with analytical findings in literature. Furthermore, the helical flow, 

which effects the direction of the bed shear stress and hence the sediment transport direction, has a 

significant influence on the characteristics of the emerging bed forms. It counter-balances the Coriolis 

force, such that this balance of the terms can determine if the outcome is symmetric or asymmetric. 

The linear stability analysis yielded dominant bed forms of wave-lengths 1–3 km rotated 20°–40° 

relative to the mean flow direction, which is characteristic of large sand banks. These results were used to 

select a domain size which was then introduced to a small random perturbation for a morphological 

simulation. Both for a bed load alone and with suspended load the simulations yielded the bed forms that 

were predicted by the linear stability analysis. The bed load alone morphology reached equilibrium, such 

that the bed form stopped growing and only migrated, while the bed form computed with suspended load 

did not reach an equilibrium condition. Altogether, the analysis and subsequent morphology simulation 

combine to demonstrate both the initial formation of bed forms from a completely random bed and longer 

term evolution.  By amplifying the morphological growth, decades and centuries of evolution can be 

simulated with the present model in a matter of hours. 
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