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Summary
To achieve a sustainable waste management system, domain experts and environ-
mental scientists require domain-specific software tools for modeling and evaluating
waste management systems. Conventional software tools for this purpose lack the
extensibility to adapt to new requirements. This poses a challenge for the domain
experts and the environmental scientists, who need to integrate new and changing
technologies, new research results, and new legal requirements into their existing
waste management models. Therefore, they require modeling and computational
tools that can easily be extended to cope with these new requirements in a formal
and rigorous way.

In this thesis, we address these challenges by proposing a domain specific lan-
guage (DSL) for modeling and evaluating the sustainability of waste management
systems. This DSL is built on top of flow-based programming (FBP). The basic con-
cept of flow-based programming is a network of processing units exchanging data.
This model of computation is very well suited to waste management systems, as it
can be understood as a network of waste processes exchanging waste.

Analysis techniques, such as life cycle inventory (LCI), life cycle assessment (LCA)
and/or cost computations, which can help to analyse the sustainability of waste man-
agement systems, can be understood as crosscutting concerns. Thus, in this thesis, we
extend the flow-based programming core with aspects. We have defined an aspect-
oriented, flow-based language called AOC#FBP with atomic processes written in C#
and a compiler to C#FBP.

However, to address the problem of extensibility, we have replaced C# with the
possibility of using a domain-specific language. This means, we introduce the con-
cept of domain-specific, aspect-oriented, flow-based languages. Instead of working in
a fixed domain for waste management, we use domain-specific languages to make
the core of the aspect-oriented flow-based language work together with different ver-
sions of the waste management and analysis domains.

As an example of a domain-specific language, we have defined a domain-specific
language for waste management systems. Atomic processes and aspects are then
defined in these domain-specific languages, while their composition and crosscut-
ting concerns are described using the aspect-oriented flow-based core language. A
declarative language is used to classify these processes and validate their composi-
tions according to the validation rules of their domains.

To facilitate the development process of these languages, we propose a system-
atic model-driven approach, inspired by the model-driven architecture of the Object
Management Group. We have designed a metamodeling framework that provides
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the means of interconnecting a set of domain-specific languages through FBP as a
model integration language.

We have constructed the proposed domain-specific language for modeling waste
management systems by extending this metamodel. We have developed an IDE for
domain-experts to model and execute atomic waste processes and that can compile
these processes to a DLL that can be used in DTU Environment’s EASETECH appli-
cation. To evaluate our work, we use the proposed language to model a set of unit
processes, which are the building blocks of waste management systems.



Resumé
For at kunne udvikle bæredygtige affaldshåndteringssystemer har domæneeksperter
og miljøforskere brug for domænespecifikke softwareværktøjer til modellering og
evaluering af affaldshåndteringssystemer. De konventionelle softwareværktøjer, som
bruges til dette formål, mangler mulighederne for udvidelse og tilpasning til nye
krav.

Dette er en udfordring for domæneeksperter og miljøforskere, som har brug for at
kunne integrere nye og skiftende teknologier, nye forskningsresultater og skiftende
lovkrav i deres modeller til affaldshåndtering. De har derfor brug for modellerings-
og beregningsværktøjer, som nemt kan udvides til at kunne håndtere de nye krav på
en formel og systematisk måde.

I denne afhandling adresserer vi denne udfordring ved at foreslå et domæne-
specifikt sprog (DSL) til modellering og evaluering af affaldshåndteringssystemers
bæredygtighed. Dette DSL er baseret på flow-baseret programmering (FBP). Flow-
baseret programmering bygger på et netværk af processenheder, som udveksler data.
Denne beregningsmodel er meget velegnet til at modellere affaldshåndteringssyste-
mer, som kan forstås som et netværk af affaldsprocesser, som udveksler affald.

Analyseteknikker, såsom Life Cycle Inventory (LCI), Life Cycle Assesment (LCA)
eller udgiftsberegninger, som kan bruges til at analysere bæredygtigheden af affald-
shåndteringssystemer, kan forestås som tværgående aspekter. Derfor udvider vi i
denne afhandling den flow-baserede programmeringskerne med aspekter til et aspekt-
orienteret, flow-baseret sprog (AOFBP). Vi har defineret et aspekt-orienteret, flow-
baseret sprog kaldt AOC#FBP med atomare processer skrevet i C# og har bygget en
oversætter til C#FBP.

Med henblik på at adressere problemet med udvidelsesforberedthed har vi er-
stattet C# med muligheden for at bruge et domænespecifikt sprog. Det vil sige, vi
introducerer domænespecifikke, aspekt-orienterede, flow-baserede sprog (DSFBL).

Som et eksempel på et domænespecifikt sprog har vi defineret et domænespeci-
fikt sprog til at beskrive affaldshåndteringssystemer. Atomare processer og aspek-
ter defineres derefter i disse domænespecifikke sprog, hvorimod deres komposition
og aspekter beskrives ved brug af den aspekt-orienterede, flow-baserede kerne. Et
deklarativ sprog bruges til at klassificere processerne og til at validere kompositionen
baseret på domænespecifikke valideringsregler.

For at gøre det nemmere at udvikle disse sprog foreslår vi en systematisk, model-
baseret metode inspireret af Object Management Groups modelbaserede arkitektur.
Vi har udviklet en metamodelleringsramme, som gør det muligt at forbinde forskel-
lige domænespecifikke sprog gennem FBP som modelintegreringssprog.
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Vi har konstrueret det foreslåede domænespecifikke sprog til at modellere af-
faldshåndteringssystemer ved a udvide metamodellen. Vi har udviklet en IDE til
domæneeksperter, hvor de kan modellere og eksekvere atomare affaldsprocesser, og
som kan oversætte processerne til en DLL, som kan bruges i DTU Miljøs Easetech pro-
gram. Med henblik på at evaluere vores arbejde bruger vi det foreslåede sprog til at
modellere nogle atomare affaldshåndteringsprocesser, som kan bruges som byggek-
lodser til større affaldshåndteringssystemer.



Preface
This thesis was prepared at the Department of Applied Mathematics and Computer
Science (DTU Compute) at the Technical University of Denmark in fulfilment of the
requirements for acquiring a Ph.D. degree in computer science. The project was part
of the integrated resource management and recovery (IRMAR) project funded by the
Danish Council for Strategic Research and coordinated by the Department of Envi-
ronmental Engineering (DTU Environment).

This work was supervised by Associate Professor Hubert Baumeister from DTU Com-
pute and co-supervised by Dr. Anders Damgaard from DTU Environment.

This thesis introduces a paradigm called aspect-oriented flow-based programming
and proposes a model-driven approach for developing domain-specific languages
on the basis of this paradigm. It utilizes the proposed approach to design a domain-
specific language for modeling waste management system.

Kongens Lyngby, October 3, 2016

Bahram Zarrin



vi



Acknowledgements
First and foremost, I would like to express my sincere gratitude to my advisors Prof.
Hubert Baumeister and Dr. Anders Damgaard. A special thank to Hubert for the
continuous support of my study and research, for his patience, motivation, and his
valuable suggestions and guidance. It was his encouragement and visionary ideas
that helped me through the hard times, and which finally led to this dissertation. I
would like to thank Anders for his invaluable support during the requirement en-
gineering phase and for helping me to understand the environmental engineering
concepts related to the project.

I would also like to thank my committee members Prof. Martin Wirsing, Prof.
Peter D. Mosses and Prof. Ekkart Kindler for reviewing the thesis and providing
invaluable comments and suggestions during the defense.

A giant thank to my colleagues from software engineering group at DTU Com-
pute, especially Ekkart Kindler, Vlad Acretoaie, Linh Vu Hong, Dilshan Manuranga,
I will always have good memories of our interesting discussions during lunches and
the coffee breaks.

My sincere thanks also goes to Prof. Hessam Sarjoughian who provided me an
opportunity to join the Integrative Modeling And Simulation Group at Arizona State
University (ACIMS) for my external research. His in-depth suggestions have been of
significant help in this work. Many thanks to the people at the ACIMS group for the
collaboration and hospitality: Abdurrahman Alshareef, Soroosh Gholami, Yonglin
Lei.

I am also thankful to all members of the Solid Waste Research group at DTU En-
vironment for their valuable feedbacks throughout the project and many stimulating
discussions: Prof. Thomas Fruergaard Astrup, Line Brogaard, Julie Clavreul, Davide
Tonini, Hiroko Yoshida.

Finally, I would like to thank my brothers and my sister for all their love, support
and encouragement, despite the difficulties of living so far away from each other. My
parents, Morad Zarrin and Taqi Dehghan, who raised me with the love of science and
who did everything to support me on my journey. I would also like to thank Shahrzad
for her loving, faithful and encouraging support throughout these years.



viii



Contents
Summary i

Resumé iii

Preface v

Acknowledgements vii

Contents ix

List of Papers xiii

List of Acronyms xv

1 Introduction 1
1.1 Sustainable Waste Management Systems . . . . . . . . . . . . . . . . . . 1
1.2 Challenges in Evaluating the Sustainability of these Systems . . . . . . 4
1.3 Aspect Oriented Flow-Based Modeling Paradigm . . . . . . . . . . . . 6
1.4 Domain-Specific Language for Modeling Waste Management Systems 8
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Integrated Framework to Specify Domain-Specific Languages 13
2.1 Model Driven Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Domain-Specific Modeling Languages . . . . . . . . . . . . . . . . . . . 14
2.3 Semantics Specifications of Modeling Languages . . . . . . . . . . . . . 16
2.4 Formal Approaches for Semantics Specifications of Modeling Languages 18
2.5 FORMULA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 ForSpec Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Extending ForSpec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.8 Integration With Microsoft DSL Tools . . . . . . . . . . . . . . . . . . . 33
2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Waste Management Modeling 43
3.1 Waste Management Modeling . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Mathematical Model of the Waste-Management Domain . . . . . . . . 46
3.3 Modeling Paradigm for Waste Management . . . . . . . . . . . . . . . . 58
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



x Contents

4 Aspect Oriented Flow-based Programming 61
4.1 Flow-Based Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Related Modeling Approaches to Flow-Based Programming . . . . . . 66
4.3 Aspect-Oriented Programming . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 Cross-Cutting Problem in FBP . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5 Extending FBP with Aspect-Oriented Concepts . . . . . . . . . . . . . . 71
4.6 Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Domain-Specific Flow-based Languages 87
5.1 Domain-Specific Flow-Based Languages . . . . . . . . . . . . . . . . . . 87
5.2 Metamodeling Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3 Concrete Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4 Structural Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5 Behavioral Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6 Domain-Specific Language for Modeling Waste Management Systems 133
6.1 Realization of Waste Management Concepts . . . . . . . . . . . . . . . . 133
6.2 Formal Specification of Waste-Management Domain . . . . . . . . . . . 134
6.3 Domain-Specific Language for Specifying Unit Processes . . . . . . . . 140
6.4 Domain-Specific Language For Specifying Composite Waste Processes 166
6.5 Constraint Language to Classify and Validate Waste Processes . . . . . 173
6.6 Concrete Syntax For the Proposed DSL . . . . . . . . . . . . . . . . . . 174
6.7 A Tool Support for the Proposed DSL . . . . . . . . . . . . . . . . . . . 177
6.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7 Case Studies 189
7.1 Specifying the Catalogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.2 Case Studies for Material Flow Analysis . . . . . . . . . . . . . . . . . . 193
7.3 Case Studies for Life Cycle Assessment . . . . . . . . . . . . . . . . . . 206
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

8 Conclusion 213
8.1 Contributions and Novelties . . . . . . . . . . . . . . . . . . . . . . . . . 213
8.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

A Detailed Explanation of FORMULA and ForSpec 219
A.1 FORMULA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
A.2 ForSpec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

B ForSpec Specifications of Metamodeling Framework for DSFBLs 227



Contents xi

B.1 Abstract Syntax of the Metamodels . . . . . . . . . . . . . . . . . . . . . 227
B.2 Behavioral Semantics of DSFBLNetwork . . . . . . . . . . . . . . . . . . 231

C ForSpec Specifications of the Proposed DSL for Waste-Management 245
C.1 ForSpec Specifications of Waste-Management Domain . . . . . . . . . . 245
C.2 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

D ForSpec Specifications of the Case Studies 273

Bibliography 281



xii



List of Papers
The thesis is based on the following articles that have been published as part of the
studies during 2013–2016.

1. An Approach for Activity-Based DEVS Model Specification. Alshareef, Ab-
durrahman; Sarjoughian, Hessam S.; Zarrin, Bahram. Proceedings of the 2016
Spring Simulation Multiconference - TMS/DEVS Symposium on Theory of Mod-
eling and Simulation, TMS/DEVS 2016. The Society for Modeling and Simula-
tion International, USA, 2016.

2. Towards Domain-Specific Flow-Based Languages. Zarrin, Bahram; Baumeis-
ter, Hubert; Sarjoughian, Hessam. DTU Compute Technical Report-2016-11,
Technical University of Denmark, Denmark 2016.

3. Capabilities for Modelling of Conversion Processes In Life Cycle Assess-
ment. Damgaard, Anders; Zarrin, Bahram; Tonini, Davide; Baumeister, Hu-
bert; Astrup, Thomas Fruergaard. 2015. Sardinia 2015 - 15th International
Waste Management and Landfill Symposium, Cagliari, Italy, 2015.

4. Towards Separation of Concerns in Flow-Based Programming. Zarrin, Bahram;
Baumeister, Hubert. Proceedings of the 14th International Conference on Mod-
ularity (Modularity ’15). Association for Computing Machinery (ACM), USA,
2015.

5. Design of a Domain-Specific Language for Material Flow Analysis using Mi-
crosoft DSL Tools: An Experience Paper. Zarrin, Bahram; Baumeister, Hu-
bert. Proceedings of the 14th Workshop on Domain-Specific Modeling (DSM
’14). Association for Computing Machinery (ACM), USA, 2014.



xiv



Acronyms
AOFBP aspect-oriented flow-based programming.

AOP aspect-oriented programming.

ASM abstract state machines.

ASML abstract state machine language.

BFD block flow diagram.

CIM computational-independent model.

CLP constraint logic programming.

DSFBL domain-specific flow-based language.

DSL domain-specific language.

DSML domain-specific modeling language.

FBP flow-based programming.

FIFO first-in-first-out.

GME Generic Modeling Environment.

GPML general-purpose modeling language.

IP information packet.

IRMAR integrated resource management and recovery.

KPN Kahn process networks.

LCA life-cycle assessment.

LCI life-cycle inventory.

LCIA Life cycle impact assessment.



xvi List of Acronyms

MDA model-driven architecture.

MDE model-driven engineering.

MEL membership equational logic.

MFA material-flow analysis.

MFN material-flow network.

MOF meta object facility.

MSOS modular structural operational semantics.

OCL object constraint language.

OMG Object Management Group.

PIM platform-independent model.

PSM platform-specific model.

SMT satisfiability modulo theories.

SOS structural operational semantics.

VMSDK Visualization and Modeling Software Development Kit.



CHAPTER 1
Introduction

In this chapter, we give an introduction to the context of the work presented in this
thesis. We start by giving a brief introduction to sustainable waste management sys-
tems along with a discussion regarding some of the core concepts including waste
processes, sustainability aspects and life cycle assessment. We also discuss some of
the challenges of domain experts and environmental scientist regarding the evalua-
tion of these systems. Afterwards, we present the hypothesis and the research goals
of this study. We propose aspect-oriented flow-based programming as a modeling
paradigm for waste management systems, and we give an introduction to a model-
driven approach for developing a domain-specific language for waste management
on the basis of this paradigm. We conclude the chapter with an outline of the thesis.

1.1 Sustainable Waste Management Systems

The primary goals of waste management are to address the human well-being, en-
vironmental impacts, and financial concerns related to the disposal of waste [Wil07;
HYJ06]. Due to the rise of the global population, shortage of some vital resources
(e.g. water, food, oil, gas), changes in waste composition, and the increase of envi-
ronmental awareness around the world [MF13], the focus of waste management is
reduction of resource consumption and recovering substances from waste [Afr+10].
To realize these goals, the concept of integrated sustainable waste management has
been developed [KA99; KAS01; Con09; SWR10].

Integrated waste management system means a system that utilizes a set of col-
lection and treatment options at different community scales (e.g. household, neigh-
borhood, city), involves all stakeholders, and considers the interactions between the
waste management systems and other systems [KAS01; AIS04]. Additionally, sus-
tainable waste management means a system that is environmentally friendly, eco-
nomically reasonable, technologically correct, and socially suitable for a particular
region and its individual conditions. Furthermore, it should be able to maintain it-
self over time without reducing the resources it needs.

In fact, sustainable and integrated are two sides of the same coin [KA99]. For in-
stance, utilizing different treatment and collection options at various society scales
(e.g. household, neighborhood, city) can build up a system that is adaptable to lo-
cal circumstances, e.g. physical, social, economic, etc. Involving stakeholders leads
to developing a feeling of responsibility of obtaining the goals of the system. Inte-
grating waste management with other systems in a city or region such as drainage,
agriculture, tree nurseries, energy, etc. can also improve sustainability. For example,
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compost made from urban organic waste which is then applied in urban agriculture
can close the cycle of the system within the city. Furthermore, it reduces the import
of materials from outside and reduces concurrent burdens on the environment from
transportation, manufacturing of chemical fertilizers, etc. If solid waste is properly
collected, residents will not so easily throw it in drains anymore thus improving the
drainage system in a city [VA00; KA99]. It is necessary to optimize the benefits of
integration and minimize the undesirable effects of non-integration.

Integrated sustainable waste management has three essential dimensions as il-
lustrated in Figure 1.1. The first dimension is waste system processes, which are the
different stages in the flow of materials from the mining stage towards final treatment
and disposal i.e. from cradle to grave. As presented in Figure 1.2, a waste process
within waste management systems takes wastes (such as solid-waste and process
chemicals) as input and generates secondary wastes and recyclable products as the
output. During the process, it releases emissions into different environments (air, wa-
ter, and soil) and it consumes different amounts of energy carriers such as electricity,
coal, oil or heat or other resources to complete the process. It may produce heat (e.g.
heat produced by incinerating the waste), electricity, hydrogen or biogas. The follow-
ing are examples of these processes within the waste management domain [Kir+06].

• Collection/ Transportation collects and transports waste from a waste generating
source to a waste treatment facilities.

• Material Recycling recycles reusable materials from the waste, such as paper,
glass, ferrous, and non-ferrous metals, and plastic etc.

Waste system elements 

Other 
systems

Indicator Aspects
Technical, Operational, Environmental, Financial, Economical, Social, 

Institutional, Administrative, Policy/Legal

Stakeholders 
City council, Central/Prov. Government, Private sector formal & informal, Donor 

agencies

Generation & 
Seperation

Collection
Transfer & 
Transport

Disposal &
Treatment

RecyclingReuse Reduction Recovery

 Process time 

Figure 1.1: Dimension of integrated sustainable waste management systems [KAS01;
Con09; SWR10].
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Waste Process

Emissions to environment (air, water, soil)

Waste Inputs Waste Outputs

Resources Energy

Figure 1.2: Model of waste processes.

• Material Recovery is the process of separating and preparing the recyclable ma-
terials for marketing to the end-users.

• Composting is the process of decomposition of organic waste that yields com-
post, which is very rich in nutrients and makes soil easier to cultivate.

• Use-on-land handles the composted or digested waste from biotechnologies with
the aim of increasing the organic matter and nutrients in the soil.

• Incineration processes involved in the combustion of waste materials and con-
verts the waste to energy, ash, and gas.

• Material and Energy Utilization is the process of recovering resources and energy
from the output of other processes.

• Air Pollution Control process mainly handles the air-pollution residue from ther-
mal treatment (incineration).

• Mineral and Mixed landfill are the processes that handle mineral and mixed waste.
The first is mainly used to dump secondary chemical waste from e.g. incinera-
tion process. The second is used to dump all other wastes e.g. residue waste or
secondary waste from processes such as composting process.

Accordingly, a waste management system can be defined as a composite of several
of these processes that specify the flow of materials within a particular city or region.
A waste management plan is part of an integrated material management strategy in
which the city plans and decides the flow of materials. Furthermore, the processes
are specific strategies to cope with specific materials after they have been considered
as waste.

The second dimension is stakeholders. It is essential to consider the roles, in-
terests, and the current power structures in waste management in order to obtain
sustainability. Practice has shown that co-operation and co-ordination between the
different stakeholders e.g. a city council, provincial government, the private sector,
or donor agencies, will improve the sustainability of a waste management system, by
implementing changes in administration and sharing of financial liabilities. Whereas
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neglecting particular activities or groups will lead to decreased sustainability of the
system such as adverse impacts on public health or increased unemployment [VA00].

The third dimension is sustainability aspects or views that are provided in order
to assess a new or an expanded system; financial, environmental, political/legal, in-
stitutional, and social aspects. These aspects provide a set of decision support tools
for municipal managers and stakeholders to understand and study the state of the
system. It should be noted that both the stakeholders and the system elements are the
objects of assessment, while the aspects are the different views to evaluate the stake-
holders and system elements. The aspects are thus a cross-cutting dimension [VA00].

One of the essential and widely used sustainability aspects in the evaluation of
waste management systems is the environmental aspect, which is considered one of
the most effective methodologies for identifying and assessing the different options
for waste management systems. Life-cycle assessment (LCA) is a significant method
for quantifying this aspect of the system being studied. LCA is an approach for in-
specting the environmental impacts related to a product, process, or service“from
cradle to grave” from the production of the raw materials to their final disposal as
waste products. Conducting a life cycle assessment on waste management systems
covers all impacts related to waste management. It includes all the processes in the
system (e.g. composting) as well as the upstream processes (located towards the
cradle of the stream, e.g. waste sources, electricity, and fuel generation) and down-
stream processes (located towards the grave of the stream, e.g. recycled plastic substi-
tuting for virgin production of waste). This makes the evaluation of different waste
systems with the various patterns of resource consumption or production and vary-
ing levels of material recovery possible. To compute LCA, life-cycle inventory (LCI)
which is the data collection portion of LCA should be calculated. LCI is the simple ac-
counting of all substance exchanges involved in the system under study. It includes
tracking all the flows in and out of the given system, such as raw materials, energy
(e.g. electricity & heat), water, and emissions to air, water and land by a particular
substance.

1.2 Challenges in Evaluating the Sustainability of these Systems

To achieve an integrated sustainable waste management system, policymakers, do-
main experts, and environmental scientists require domain-specific software tools for
modeling and evaluating waste management systems. Although there are a number
of general-purpose LCA tools, e.g. GaBi [GaB15], SimaPro [Sim15], and material flow
analysis tools, e.g. STAN [CR08], Umberto [SB97], [WPK06], that provide the basic
capabilities required for environmental assessment of waste management systems,
practice has shown that this is a onerous task. The modelers have to spend a con-
siderable amount of time understanding the tools in order to develop their models.
Furthermore, some waste management technologies require waste specific calcula-
tions as their impacts depend on the properties of how the different waste fractions
(e.g. food waste, dirty papers, plastics) treated.
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A review of 222 published LCA studies of waste management systems [Lau+14]
reported that in about half of the studies, practitioners preferred to utilize domain-
specific LCA tools for waste management over generic LCA tools. This result indi-
cates the high demand for domain-specific tools from the experts of this domain. The
Department of Environmental Engineering at the Technical University of Denmark
(DTU Environment) started the development of a tool designed for the LCA of waste
management systems, called EASEWASTE [Chr+07]. The purpose of EASEWASTE is
to provide inventories of waste management technologies to users, which can be used
in LCA modeling. They also developed a new software called EASETECH [Cla+14],
in collaboration with the Department of Applied Mathematics and Computer Science
at DTU (DTU Compute), as a step towards modeling integrated sustainable waste
management systems. At the moment, it supports modeling of a wider domain of
environmental engineering and is currently used by domain experts and researchers
from both academia and industries to model solid-waste treatment [Lau+14], waste-
water treatment [Fan+16], sludge treatment [Zha+15], and renewable energy tech-
nologies [Ber+15]. Using a toolbox of processes, EASETECH allows modeling of a
range of different environmental technologies from a systems perspective. These
processes represent the elements of integrated waste management systems, and a
combination of them model a waste management system. They can be either a unit
process or a composite process based on several of these processes. This hierarchical
process composition allows integrating models of different systems which is essen-
tial for an integrated assessment.

The lack of extensibility for defining new unit processes (system elements) and
evaluation aspects in conventional software tools for the modeling of waste manage-
ment systems, is a challenge for the domain experts and the environmental scien-
tists. On the one hand, due to the development of new chemicals and substances
used in the production of goods that lead to changes in waste composition, they reg-
ularly need to model new strategies and technologies in order to cope with specific
materials within waste composition. On the other hand, they need to evaluate the
waste management system under study from different aspects, e.g. financially, en-
vironmentally, socially, etc. Accordingly, they require modeling and computational
tools that provide the means for them to directly extend the tools to fulfill their new
requirements, e.g. unit processes, evaluation aspects, in a formal and rigorous way.
Since the conventional tools, e.g. EASEWASTE and EASETECH, are developed based
on general-purpose languages such as C++ and C#, it requires a software developer
to extend the tool with the new requirements.

Furthermore, the domain experts and policymakers sometimes need to evaluate a
broader scope of a waste management system in order to understand how the system
interacts with the other systems, e.g. solid waste management system with wastew-
ater management system, waste management systems of other cities in a country.
To achieve this, they are faced with the problem of integrating models which is not a
straightforward task, particularly when the system under study is more complex; the
more complex a system is, the more error-proven is the model. Therefore, they re-
quire a systematic approach for integrating, validating, and verifying these systems.
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1.3 Aspect Oriented Flow-Based Modeling Paradigm

In this thesis, our hypothesis is that by utilizing a proper combination of flow-based
programming (FBP), domain-specific languages (DSLs), and aspect-oriented program-
ming (AOP) we can address the challenges mentioned by providing a framework
for domain experts, stakeholders, and policymakers to evaluate waste management
systems. Firstly, we believe that FBP is the right paradigm for modeling integrated
waste management systems since the nature of waste management systems requires
a modeling paradigm that supports flow and processes as the first-citizen classes.
For example, block flow diagrams (BFDs) are one of the commonly used diagrams
in process engineering to design industrial facilities such as chemical plants, natu-
ral gas processing plants, waste management plants. This type of diagram, which
is a schematic representation of the overall system, utilizes block or rectangles to
represent a unit operation or groups of unit operations and represents the material
transfers between the units as arrows. Similarly, FBP models software systems as
a network of processes which run asynchronously and exchange data across prede-
fined ports (inputs and outputs). Therefore, a BFD of a waste management system
can be represented as a FBP network, in which the processes of the network model
unit operations and the connections of the network represent the material flow be-
tween them. Furthermore, to support integration, the paradigm should also support
hierarchic composition of the systems. This is supported in FBP with the aid of sub-
networks. Therefore, FBP can provide the model integration language for composing
processes from homogeneous or heterogeneous domains.

Secondly, DSLs are specialized languages for a particular application area, which
use the concepts and notations established in the field. Therefore, they allow domain
experts, who are usually non-programmers, to directly employ their domain knowl-
edge about what a system under development should do. Consequently, using FBP
as a modeling paradigm and employing DSLs to specify the primitive processes in
FBP can address the extensibility issues, and enable the domain experts to define
new unit processes or assessment aspects directly. FBP is language independent,
which means that the composite and primitive processes in FBP are not dependent
on any particular language. Therefore, FBP is considered a coordination language
rather than a programming language. This allows, for example, two processes from
different domains which are specified within different DSLs to be integrated and
coordinated with the help of a composite process in a FBP network.

Thirdly, as we discussed earlier, assessment aspects are crosscutting dimensions.
Therefore, AOP can improve the modularity of the specifications of waste manage-
ment systems and the specification of the assessment aspects. Furthermore, it pro-
vides a mechanism for defining the evaluation aspects, e.g. environmental, econom-
ical, and social, in a modular way and it improves the reusability of these concerns.

To utilize FBP as the modeling paradigm for modeling waste management sys-
tems, we have the following challenges to address: The first challenge is that FBP
does not provide mechanisms for modularizing crosscutting concerns. This defi-
ciency leads to tangled and scattered process definitions. On the one hand, one pro-
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cess addresses several concerns. On the other hand, the implementation of a single
concern is scattered through several places in the other process definitions. Compu-
tation of LCA is an example of these concerns. To calculate LCA, the LCI of the entire
system should be calculated and based on that LCA can be computed. Figure 1.3(a)
presents a composite waste process modeled as an FBP network. As illustrated in
Figure 1.3(b), to add an LCI computation to the waste processes, each unit process
should be wrapped by a composite process, which utilizes an LCI process to calcu-
late the LCI of the unit process. Afterwards, an aggregator process should be added
to each composite process in order to calculate the accumulated LCI, which should
be exposed to the parent process as a LCI computation. This implementation of LCI
computation cross-cuts across the hierarchy of the waste processes and FBP can not
modularize this concern.

As presented in Figure 1.4, FBP generally is not able to modularize the compu-
tations correctly, which requires data-flow from child processes to parent processes
(across process hierarchies). As mentioned, improving the modularity of FBP for
these concerns allows us to evaluate the waste processes in different aspects, e.g. en-
vironmental, economical aspects, social aspects, without changing the FBP network
of the waste processes.

To address this, we advocate aspect-oriented concepts as a complementary mech-
anism to FBP, and we propose an aspect-oriented extension to FBP called aspect-
oriented flow-based programming (AOFBP). Although the primary purpose of in-
troducing this extension is to improve the modularity of the specifications of the
assessment aspects, this extension is generic enough to be employed for the FBP ap-
plications.

The other challenge is that FBP does not provide any mechanism to define con-
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Figure 1.3: Adding life cycle assessment to a waste scenario.
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Figure 1.4: Crosscutting computation networks.

straints on the composition of the waste processes. This permits a modeler to com-
pose a system which is not valid in the domain of waste management. We need to
provide a mechanism to incorporate the domain-knowledge of waste management
in defining FBP network for waste systems or processes.

1.4 Domain-Specific Language for Modeling Waste Management
Systems

To realize our hypothesis, we introduce the concept of domain-specific flow-based
languages (DSFBLs) which provide the means to specify domain-specific languages
on the basis of the AOFBP paradigm. These languages utilize domain-specific lan-
guages to define the unit processes in FBP and employ a declarative language to clas-
sify the processes and validate their compositions according to the validation rules
of their domains. In order to facilitate the development process of these languages,
we propose a systematic model-driven approach inspired by the model-driven ar-
chitecture (MDA) of the Object Management Group (OMG). To this end, we design
and develop a metamodeling framework, as illustrated in Figure 1.5, to facilitate the
model integration and validation of different systems from homogeneous or hetero-
geneous domains (e.g. solid waste management, wastewater treatment management,
energy systems).

This framework relies on existing technologies, including Microsoft DSL tools,
FORMULA, ForSpec, and C#FBP, which are presented in gray in the figure. At the top
level of this hierarchy, there is a framework to specify the syntax and the semantics of
domain-specific languages. The motivation of proposing this framework initiated by
the lack of supporting a formal approach by DSL Tools for specifying the semantics
of the domain-specific language proposed in our experience paper [ZB14]. In this
thesis, we combine DSL Tools and an extended version of ForSpec [Sim+13a], a logic-
based specification language which is an extension of FORMULA [JS09] developed at
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Figure 1.5: Overview of the thesis (the contributions of this thesis rely on the existing
technologies presented as boxes with gray color).

Microsoft Research, under the Visual Studio umbrella to formally specify the syntax
and the semantics of domain-specific languages. We utilize this framework to define
the metamodel of domain-specific languages on the basis of an aspect-oriented flow-
based paradigm. This metamodel is domain-neutral and it should be extended in
order to be tailored to a particular domain, e.g. waste management. Therefore, it
provides means to interconnect a set of domain-specific languages, which each of
them defines processes and technologies for a particular domain through FBP as a
model integration language.

In this thesis, we propose a domain-specific flow-based language for modeling
and assessing waste management systems by extending this metamodel. To achieve
this goal, we provide a mathematical model of the waste management field to un-
derstand the domain and avoid ambiguities in the specifications of its core concepts.
This mathematical model lays the foundation of the metamodel and the semantics of
the desired modeling language. We construct the DSFBL by extending the domain-
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neutral metamodel and its abstract semantics by realizing the mentioned mathemat-
ical models using ForSpec.

We use DSL Tools to specify the concrete syntax and ForSpec to specify the behav-
ioral semantics and validation constraints of this metamodel. Since ForSpec specifica-
tions are executable, the semantic specifications of these languages can execute and
validate their model instances. Furthermore, the proposed aspect-oriented extension
of FBP which is a platform specific implementation of AOFBP can be considered as
a target platform to execute the model instances.

Additionally, we develop a customized Visual Studio IDE for domain-experts to
model and execute atomic waste processes. This tool can compile these processes into
a DLL that can be used in DTU Environment’s EASETECH application. To evaluate
our work, we use the proposed language to model a set of unit processes, which are
the building blocks of waste management systems.

This thesis has the following contributions:

1. Extend ForSpec with new constructs to specify more complicated specifications
and integrate it with Microsoft DSL tools.

2. Address separation of concerns in flow-based programming and propose an
aspect-oriented extension paradigm.

3. Provide the formal specification of the syntax and semantics of flow-based pro-
gramming.

4. Introduce the concepts of domain-specific flow-based languages and propose
a formal language and framework to specify these languages.

5. Design and develop a domain-specific language for waste management model-
ing.

6. Develop a support tool for the proposed domain-specific language.

1.5 Thesis Outline

This thesis is organized into eight chapters as follows.

• Chapter 2 : Integrated Framework to Specify Domain-Specific Languages
In this chapter, we propose an integrated framework to design domain-specific
languages. The idea for this stems from the lack of support for a formal ap-
proach by DSL Tools for specifying the semantics of the DSL proposed in our
experience paper [ZB14]. We use this framework to design and develop the
metamodeling framework and the proposed DSL for modeling waste manage-
ment systems.
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• Chapter 3 : Waste Management Modeling
In this chapter, we give a brief introduction to waste-management modeling, in-
cluding the main concepts and challenges. We discuss the requirements of de-
signing a domain-specific language for this domain and we propose flow-based
programming as the programming paradigm for the domain-specific language.

• Chapter 4 : AOFBP
In this chapter, we propose applying aspect-oriented concepts as a comple-
mentary mechanism to flow-based programming and we show how this ex-
tension increases the modularity for FBP. We use this extension as the compu-
tation model of the proposed domain-specific language for waste management.
Firstly, we introduce the key concepts of AOP, and afterwards we present the
shortcomings of FBP with respect to cross-cutting concerns, via some exam-
ples. Finally, we present the design and implementation of AOFBP, an aspect-
oriented extension to FBP and illustrate through examples how it solves the de-
ficiencies mentioned above. This chapter is the extended version of “Towards
Separation of Concerns in Flow-based Programming” [ZB15].

• Chapter 5 : Domain-Specific Flow-based Languages
In this chapter, we introduce the concept of DSFBLs which allows domain ex-
perts to use flow-based languages adapted to a particular problem domain. We
also propose a metamodeling framework that can be used to develop these lan-
guages. As we discussed earlier, the domain-specific language for modeling
waste management can be considered as a DSFBL and it can be developed by
using this framework. This chapter is the extended version of our work pre-
sented in “Towards Domain-Specific Flow-based Languages” [ZBS16].

• Chapter 6 : Domain-Specific Language for Modeling Waste Management Sys-
tems
In this chapter, we design a DSFBL for the domain of waste management on
the basis of the framework presented in Chapter 5. The earlier version of this
DSL is published in “Design of a Domain-Specific Language for Material Flow
Analysis Using Microsoft DSL Tools: An Experience Paper” [ZB14].

• Chapter 7: Case Studies
In this chapter, we evaluate, via a set of case studies chosen from the require-
ment engineering phase of designing EASETECH and EASEWASTE software [Cla13]

• Chapter 8 : Conclusion
In this chapter, we conclude the thesis and discuss future work.
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CHAPTER 2
Integrated Framework to
Specify Domain-Specific

Languages
In this chapter, we propose a framework that can be used by DSL designers to imple-
ment their desired domain-specific languages. This framework relies on Microsoft
DSL Tools and an extension of ForSpec [Sim+13a]. We combine these technologies
under the umbrella of Microsoft Visual Studio IDE to specify the syntax and seman-
tics of modeling languages. In this framework we use Microsoft DSL Tools to de-
fine the syntax of the DSLs and an extended version of ForSpec is used to define
their semantics. In the following, we give a brief introduction to model-driven en-
gineering (MDE) along with a discussion regarding some of the core concepts, in-
cluding domain-specific modeling languages, metamodeling, and model-driven ar-
chitecture. We also discuss some of the techniques, approaches, and existing formal
languages for specifying the semantics of domain-specific languages. Afterwards,
we give a brief introduction on MS DSL-tools, FORMULA, ForSpec, and our exten-
sion of ForSpec. Finally, we propose our framework to designing domain-specific
languages,illustrated via an example.

2.1 Model Driven Engineering

Model-driven engineering is a software development methodology that evolved as a
paradigm shift from the object-oriented paradigm, which is on the basis of everything
is an object, into the model engineering paradigm that is on the basis of everything
is a model [Béz06]. The primary goals of MDE are to raise the level of abstraction
in program specification and increase automation in application development. The
first is achieved by using models at the different levels of abstraction for developing
software systems and the second is reached by using code generation and model
transformations.The MDE approach promotes the use of models as first-class entities
that need to be constructed, maintained, executed, and mapped into other models or
artifacts by model transformations.

Quality is an important aspect of any software engineering approach and MDE
is no exception. MDE provides different techniques to check and ensure the quality
of the models, e.g. model validation and model checking. In addition, MDE also has
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two more important aspects which are architecture design and code generation. A vi-
sion on MDE methodology is the OMG’s model-driven architecture (MDA) [MDA01]
that is a strategy and set of standards for developing software systems on the basis
of model manipulation and model transformations. MDA focuses on both interop-
erability and portability of systems, and to this end, it defines three different view-
points. Each viewpoint is a representation of a system under study in a certain view
or aspect. This means that for each viewpoint there is a corresponding model:

• Computational-independent model (CIM) specifies the system context and its
requirements.

• Platform-independent model (PIM) is a computation-dependent model, but it
does not determine the characteristics of the computer platform of the system.

• Platform-specific model (PSM) provides the specification for the entire systems.

The main aim of proposing these viewpoints is to shift the developers’ focus
from developing systems by platform-specific models to developing the systems by
computational-independent and platform-independent models and utilize model trans-
formation to finalize the specification of the whole software system.

In this chapter, we mostly discuss the concepts and the standards of MDE that
are related to language engineering and we do not consider the other applications i.e.
model-driven software development. Further information about MDE can be found
at [Béz06]

2.2 Domain-Specific Modeling Languages

In the MDE approach, models are the first-class entities that define a software sys-
tem. They are defined with the aid of modeling languages which offer developers
modeling concepts and notations to capture the structural and behavioral aspects
of their systems. Modeling languages are classified as general-purpose modeling
languages (GPMLs) or domain-specific modeling languages (DSMLs). GPMLs, e.g.
Unified Modeling Language (UML), are used to model systems in a wide range of
domains and they provide large sets of constructs and notations to model and specify
any kind of system as understood by the system engineering discipline e.g. software
systems. Whereas DSMLs are often tailored to a particular problem domain and are
at a higher level of abstraction than GPMLs. Therefore, domain experts can specify
and reason about the system being studied by employing intuitive notations closer to
the concepts of the problem domain and at the right level of abstraction. DSMLs not
only increases the productivity of the domain experts to specify a problem domain
in a manageable and analyzable way, but also improves the readability and under-
standability of the problem specifications as well. Furthermore, DSMLs are utilizing
the domain rules as constraints to disallow the specification of illegal or incorrect
models in the problem domain.
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Modeling languages, regardless of their general or domain-specific nature, are
formally defined [Cla+01; Che+05] as a five-tuple:

L = ⟨A, C, S, MC , MS⟩ (2.1)

where

• A is the abstract syntax of the language.

• C is the concrete syntax of the language.

• S is the semantic domain of the language.

• MC is the mapping from concrete syntax to the abstract syntax.

• MS is the mapping from abstract syntax to the semantic domain.

The abstract syntax (A) defines the language concepts, their relationships, and
well-formlessness rules that state how the concepts may be legally combined. It is
important to highlight that the abstract syntax of a language is independent of the
concrete syntax (C) of the language. The syntax only defines the form and structure
of concepts in a language without dealing with their presentation or meaning.

The concrete syntax (C) defines the notations that are used for representing pro-
grams or models. There are two main types of concrete syntax; textual syntax and
graphical syntax. A textual syntax presents a model or program in a structured
textual form which typically consists of a mixture of declarations and expressions.
A significant advantage to them is their ability to capture complex expressions. A
graphical syntax presents a model or program as a diagram consisting of a number
of graphical icons and arrows that represent the model elements and their relation-
ships. The main benefit of these is their ability of expressing a large amount of details
in an understandable and intuitive form.

The syntactic mapping, MC : C → A, provides a realization of the abstract syntax,
by mapping the elements of the concrete syntax to corresponding elements of the
abstract syntax.

Abstract syntax and concrete syntax do not provide any information about what
the concepts in a language actually mean. Therefore, defining the semantics of a
language is important in order to be clear about what the language describes and
means. If the language semantics are not defined clearly and precisely, the language
will be open to incorrect use and misinterpretation. Therefore it is essential to capture
the semantics in a way that is precise and useful to the user of the language. The
semantics of a language are defined by choosing a semantic domain S and defining
a semantic mapping MS : A → S which relates the concepts and terms of its abstract
syntax to corresponding elements of the semantic domain. The semantic domain and
the semantic mapping can be defined by different approaches. We will discuss some
of them in detail in Section 2.3.
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2.2.1 Model Driven Language Development

Modeling languages are artifacts of the model-driven approach to language engineer-
ing. In this approach, the abstract syntax of a modeling language is specified using
another model, called metamodel, which describes the syntactic elements and the re-
lationships existing between those elements. OMG proposed a four-level metamod-
eling framework to develop modeling languages. In each level, except the bottom
level (M0), there is a model that specifies a set of other models at the lower level. The
bottom layer of this hierarchy (M0) is the real system, e.g. a vending machine. At
the higher level (M1), a model e.g UML class diagram, represents this system. This
model conforms to its metamodel defined at the upper level (M2). In the same way,
this model, e.g. metamodel of UML class diagram, conforms to another model at the
highest level (M3) called meta-metamodel. This meta-metamodel usually conforms to
itself and the metamodeling hierarchy stops at this level. The OMG’s meta object facil-
ity (MOF) [MOF06], which is a self-descriptive meta-language to define metamodels,
is located on this level.

Modeling languages also are used to transfer a model, which conforms to a meta-
model, into another model, which conforms to another metamodel. These languages
are called model transformation languages and they can be categorized as model to
model (M2M), which transforms a model to another model e.g. ATL [Jou+08], or
model to text (M2T) [MOF08] such as RFP [OMG07] which generates code from the
model e.g. Java code.

At the moment, this framework allows language designers to deal mostly with
syntactic and transformation specification issues, but it does not provide any stan-
dard and rigorous support that describe the semantics of modeling languages, which
is often given in natural language. This hampers the efficient development of model
execution such as debugging, simulation, and verification. Providing means to de-
fine the semantics of modeling languages formally is still a challenging problem
in model-driven language development [Bry+11; GRS09]. In the following section
we discuss the semantic specifications of domain-specific languages in detail and
present the existing approaches and techniques.

2.3 Semantics Specifications of Modeling Languages

Traditional programming languages have two levels of semantics which are static se-
mantics and dynamic semantics [Mos06]. The first specifies those properties of its pro-
grams that are verifiable at compile-time, which is also known as the well-formedness
rules of the language i.e. static type checking, scoping, and naming of variables. The
second describes the dynamic aspect and run-time behavior of its programs, such as
variable binding, and evaluating the expressions. Therefore, a program accepted by
the concrete syntax of the language, its static semantics are used to check the well-
formedness of the program, and its dynamic semantics provide a model of program
executions.
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There are several approaches to representing behavioral semantics of languages
and they fall roughly into the following groups:

• Operational semantics describe the behavior of a language as computational
steps, in which the execution of these steps results in the semantics of the lan-
guage. In this approach, a transition system, e.g. the abstract machine which
has a set of discrete states and a set of transition rules, is used as a mathematical
foundation to define the language semantics. The transition system performs
the sequence of actions described by the programs of this language by passing
through a sequence of the states. Therefore it is more suitable to specify inter-
preters or simulators for the language. There are different approaches to opera-
tional semantics of which the most important are structural operational seman-
tics (SOS) [Plo04], modular structural operational semantics (MSOS) [Mos04],
and abstract state machines (ASM) [BS03]. SOS provides a good compromise
between simplicity and applicability and has been widely used in program
analysis and formal verification [Mos06]. The semantic specifications of this
approach have rather poor modularity since the semantic components of the
transition rules are made explicitly to every rule, and it needs a reformulation
to add new components. MSOS addresses this problem, and it provides mod-
ularity for SOS. ASM provides means for describing and executing systems at
a very abstract level. Therefore, it offers a formal method for defining the op-
erational semantics of a language. In this approach, the operational semantics
are specified as a finite or infinite sequence of updated states, starting from an
initial state. States are non-empty sets with transition functions and relations.
The updates are specified by a set of rules that describe the modification func-
tions to transit from one state to another state. A state transition is executed by
firing a set of rules in one computational step.

• Denotational semantics describes the semantics of a language as a translation
into some (partial) function space usually defined in a set/category theory. The
meaning of a program is a (partial) mathematical function from syntactic do-
main to semantic domain (a domain with well-defined semantics, e.g. usually
a mathematical domain). The steps taken to calculate the output are unimpor-
tant; it is the relation of input to output that matters. Denotational semantics
are also called extensional semantics because only the relation between input
and output matters [GDT14].

• Axiomatic semantics in contrast to the approaches above, specifies the seman-
tics of a language in terms of logical specifications that should be satisfied. It
employs the logic predicates that hold before the execution of the statements
and the ones that hold the execution [Sco00]. The main structure of axiomatic
semantics is a Hoare triple [Hoa69] that, for each statement, it defines the rela-
tion between the pre-state and the post-state of executing the statement. Logic
models are sometimes given over which these formulas are interpreted – the ef-
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fect of a program in these models is the interpretation of the formula – usually a
relation. A meaning of a well-formed program is a logical proposition [GDT14].

• Action semantics is a hybrid framework, invented by Peter D. Mosses in the
1990s [Mos92], that incorporates the best features of the above mentioned for-
mal semantics in order to gain a more pragmatic method and comprehensi-
ble semantics. Action semantics describe the semantics of a programming lan-
guage by mapping its syntactic terms to so-called actions, which are expressed
by using a fixed action notion consisting of various primitives and combinators.
This notation provides direct support for defining the fundamental concepts
of programming languages including control flow, data flow, scopes of bind-
ings, side-effects, procedural abstraction, and (asynchronous) communication
between concurrent process [Mos92; Mos96; Mos93].

In contrast to traditional programming languages, modeling languages are spec-
ified with the aid of metamodels, which describe graph structures, therefore instead
of static semantics, they have structural semantics [Che+05]. Similar to static semantics,
they define the well-formedness rules of the modeling language, which categorize
the model instances into well-formed or ill-formed models. Their behavioral semantics
declares the dynamic behavior of modeling languages as a mapping of the language’s
instances into a semantic domain that is rich enough for capturing essential aspects
of the execution behavior of the modeling language [CSN08]. While the behavioral
semantics of general-purpose languages are interpreted over a well-known semantic
domain, the domain-specific languages may have several semantic domains.

2.4 Formal Approaches for Semantics Specifications of Modeling
Languages

Informal or incomplete specification of the semantics of a modeling language makes
it difficult to understand its semantics precisely. Consequently, it can cause a seman-
tic mismatch between design models and tools supporting the analysis of models of
the language [GRS09]. Formal methods provide the required rigidity and precision
for semantic specifications [GRS09]. They provide an unambiguous and precise spec-
ification of the language and aid reasoning about the properties of the language by
utilizing the tools of mathematical logic. In addition, formal specifications can facili-
tate an automated generation of language editors, interpreters, compilers, debuggers
and other related tools. A number of formal approaches have been proposed for spec-
ifying the semantics of modeling languages. They can be classified into rewriting,
weaving, and translational approaches.

In the rewriting approaches [Eng+00; Var02; Kar+03; ASK04; DVA04; Erm+05;
Bal+07; Wac08], the behavior of a modeling language is specified by a set of rewrit-
ing rules, which define a mapping from the left-hand side of the rule to its right-hand
side. Matching a specification phrase with the left-hand side of a rule triggers sub-
stituting it with the right-hand side of the rule. Substituting ends when there are no
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more applicable rules. The advantage of this approach is that the behavioral specifi-
cation is directly defined in terms of the metamodel. This approach is more suitable
for modeling languages where their behavior can be specified in the operational se-
mantic style.

In the weaving approaches [Sun+01; MFJ05; Mon07; SF07; GRS09; Duc+09; SE09;
May+13], inspired from the UML action semantics [Sem01; fUM08], the behavioral
semantics of a modeling language are specified directly in the metamodel of the
underlying language by attaching operations to the meta-classes and employing a
meta-language, e.g. xOCL [Mon07], QVT [QVT08], fUML [fUM08], for the behav-
ioral specification of these operations. This meta-language is usually the last set of
primitive actions, e.g. assignment, declaration, conditions, loops, and object manip-
ulations, to specify the behavior of the language. The advantage of this approach is
that syntactical and semantical specifications of the language are encapsulated. Its
main drawback is that some of these meta-languages are the simplified version of tra-
ditional programming languages. Therefore the semantic specifications written with
this language have the same complexity as the specification written in a conventional
programming language [GRS09].

In the translational approaches [EJ01; Che+05; Di +06; Rom+07; Hah08; GRS09;
SW09; Sim+12; Sim+13a; Sim14], the semantics of a modeling language are speci-
fied as a mapping from the metamodel of the underlying language to a metamodel
of another language which already has a well-known semantics, e.g. abstract state
machines [Gur95]. The benefit of this approach is that the available tools of the tar-
get language can be used for performing formal analysis. Its disadvantage is that
the DSL designer should have knowledge of the target language in order to specify
and understand the semantics of the underlying language. The approach utilized in
this thesis is the continuation of [BJ09; Sim+12; Sim+13a; Sim14], in which the meta-
model of the underlying modeling language is translated into a formal specification
language and its behavioral semantics are specified using the constructs of the specifi-
cation language. Therefore, in the following, we discuss some of the most important
specification languages that have been used for specifying the semantics of DSMLs
in current literature.

2.4.1 Rewriting logic

Rewriting logic [Mes10] is a computational, logical and semantic platform which
can express both the static and dynamic semantics of programming languages and
concurrent computing systems with great generality for logical deduction. Maude
[Cla+07; Cla+02] is a common example of specification languages based on rewriting
logic.

Maude is an implementation of rewriting logic which supports both declarative
programming and an execution of specifications. It is a high-level language and a
high-performance system which also supports equational programming and speci-
fication due to its sub-language of functional modules and theories. The equational
theory employed in Maude is the membership equational logic (MEL). MEL is a gen-
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eralization of order-sorted logic (e.g. type of many-sorted logic which, in turn, is a
type of unsorted logic), where the equational logic provides sorts, sub-sorts, and op-
erator overloading. The leveraged equational logic is partially definable by member-
ship and equality conditions. Maude extends MEL through a systematic exploitation
of reflection (in terms of capability for object-level expression of the rewriting logic’s
meta-level). This leads Maude to provide highly powerful meta-programming capa-
bilities such as user-defined module operations and declarative strategies to guide
the deduction process. Maude also provides tools for model checking and running
real-time simulations, and it can be used for the specification of the various seman-
tics of DSMLs (e.g. structural, operational, and denotational semantics). Maude has
been used for different purposes in several research works on the current state of
the art such as developing the algebraic semantics of the MOF [BM08], specifying
the static semantics of models, and metamodels [Rom+07], describing the addition
of operational semantics to models of DSLs [RV07], a formal verification tool for
graph rewriting transformations [Riv+09], describing semantics of real-time domain-
specific visual languages [RDV10], and specifying and checking model conformance
using object constraint language (OCL) constraints [ER10; Rus11].

2.4.2 Abstract State Machine

ASM (also known as dynamic or evolving algebras) [Gur95; BS12] are formal specifi-
cation methods which provide the capability to describe the semantics of sequential
and non-sequential programming languages. It is based on the definition of states
and updates, where each computation is specified as a finite or infinite sequence of
updated states, starting with the initial state. The states are a kind of generic first-
order structures (e.g. non-empty sets with functions and relations) which begin to
be changed according to update operations. States are composed of a static and a dy-
namic part. The dynamic part contains, e.g. dynamic functions whose computations
change depending on the state. The value of static functions never change, even if
the state changes.

Abstract state machine language (ASML) [GRS05] and the open source XASM
language [Anl00] are the examples of specification languages implementing the ASM
concepts.

ASM is a formal method of writing operational semantics. It is executable and
provides the capability for explicit-state model checking. ASM also has a confor-
mance checker which enables comparison of the implementations to the specifica-
tions by automated testing.

2.4.3 Constraint Logic

Constraint logic programming (CLP) [JL87; Frü+92] is the combination of the declar-
ativity of logic programming and the efficiency of constraint solving. Examples of
specification languages based on CLP include Alloy [Jac12; Jac02] and FORMULLA
[Jac+10a].
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Alloy is a specification language based on constraint logic programming and first-
order relational logic over first-order (flat) relational structures. It can describe struc-
tural properties by offering a declaration syntax which is compatible with the graph-
ical object models. The Alloy’s declaration syntax is also compatible with a set-based
formula syntax which can efficiently describe complex constraints while performing
a fully automatic semantic analysis. The specifications in Alloy include atom descrip-
tions (i.e. a set of signatures which describe atoms), operational descriptions (i.e. a
set of functions and predicates which specify the allowed operations over relational
structures), and assertions. Using the Alloy’s analyzer tool, the aforementioned spec-
ifications can be analyzed and reduced to satisfiability (SAT) formulas. In the next
step, Alloy invokes the Kodkod constraint solver [TJ07] to solve the SAT-formulas.
Alloy benefits the advantages such as executability and model-finding support. The
main drawback of Alloy is the missing support for infinite domains. The reason is
that Alloy maps numbers as atoms and this limits the scope for their evaluations.

Many researchers have used Alloy in their research work. They use Alloy par-
ticularly for graph transformations through specifying the operational semantics as
graph transformations and then executing and analyzing them in the Alloy frame-
work. Examples of such work are proposed in [BS06], [Dem+09], [Ana+07], and
[Tae04].

FORMULA is another specification language based on CLP. Specifications in
FORMULA are organized in two main modules called domain and model. A domain
module includes a set of algebraic data types and inference rules, while a model in-
cludes a set of initial facts related to a particular domain. In other words, the facts
specified within a model are the instances of the defined algebraic datatypes within
the related domain. Accordingly, given a model and its related domain, FORMULA
is able to deduce a set of final facts which provide the minimum fixed-point solution
for the initial specifications in the model. With this aspect, FORMULA’s specifica-
tions are executable. FORMULA leveraging Microsoft’s Z3 (e.g. a satisfiability mod-
ulo theories (SMT) solver) [DB08], therefore, for any given partial model i.e. a model
with some underspecified facts and a set of constraints, it can search for a solution i.e.
a completion of the model, where all the constraints are satisfied. If such a solution
is not feasible, it returns “unsatisfiable” which indicates that the expected solution
does not exist. The domains in FORMULA are composed of data types and rules.
FORMULA benefits from some important features; for example, bounded model
checking is supported, model finding tools are provided, and finally FORMULA pro-
vides metamodels and straightforward representation of models. FORMULA has
been used in several research works such as [JS09; JPS09] to specify the structural
semantics of DSMLs. In addition, some core components of Windows 8.0, e.g. the
USB 3.0 stack, were built using DSLs specified with this language [Jac14].

ForSpec is an extended version of FORMULA, proposed by Gabor Simko [Sim+13a;
Sim14] to support the structural and behavioral semantics specifications of modeling
languages for cyber-physical systems. ForSpec extends FORMULA with goal-driven
and functional terms, semantic functions and semantic equations to provide support
for operational, denotational and translational style specifications. ForSpec also has
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been used to specify the denotational semantics of a bond graph language, which is
a physical modeling language [Sim+13a; Sim+12], and to specify the structural and
behavioral semantics of a cyber-physical system modeling language [Sim+13b].

When comparing the aforementioned specification languages, all of the languages
to some extent are executable and analyzable (meaning that they have well-known
behavioral semantics and tool support to interpret this behavior), which is an im-
portant aspect of specification languages. Therefore, they are suitable to specify the
operational semantics of modeling languages and support bounded model check-
ing. Among them, ASM is not able to specify structural and denotational semantics.
Therefore it does not offer model conformance checking as well. Furthermore, ASM
and Maude the lack of support for finding well-formed models that satisfy particu-
lar structural and behavioral properties in an automated way. In other words, they
do not support model finding. As a result, FORMULA and Alloy are the right can-
didates to address most of requirements and features for specifying modeling lan-
guages including various semantic specification styles, e.g. structural, denotational,
and operational semantics, model conformance checking, bounded model checking,
and model finding. Since FORMULA provides better modularization and compo-
sition for the specifications [Jac14] and also it relies on Microsoft technologies such
as Microsoft C# and Z3, it would be a better candidate. On another hand, ForSpec
extends FORMULA with a set of constructs to improve the semantic specifications,
we therefore choose to use ForSpec as the formal specification language in this work.

In the following sections, we only describe the notations of FORMULA and For-
Spec that are used in the thesis. A more detailed description of these languages can
be found in [JBS11; Jac+10b; Sim+13b].

2.5 FORMULA

Each program in FORMULA consists of several constructs called “module”s. Dif-
ferent kinds of modules are defined in this language, of which the most important
ones are “domain”, “model”, and “transform”. The domain module is a blueprint
for a set of models which are composed of type definitions, data constructors, rules,
and queries. The “DirectedGraph” domain presented in Example 1 formalizes the
metamodel of a simple directed graph language. Two data types called “Node” and
“Edge” are used to specify the elements of the graph, and also a union type called
“Element” is used to refer to these elements.

Example 1: A metamodel to specify a simple graph language.

domain DirectedGraph
{
Node ::= new ( label : String ).
Edge ::= new ( src : Node, dst : Node ).
Element ::= Node + Edge.
conforms no { n.label | n : Node , m : Node , n.label = m.label , m != n }.
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}

A query called “conforms” defined at the end of the domain definition guarantees
the uniqueness of the node’s labels in a graph. Queries are Boolean expressions that
use the same constraint logic expressions as rules. Queries can also be defined as
conjunctions, disjunctions, and negations of other queries. The “conforms” keyword
denotes a special query that is used to distinguish between the well-formed models
and ill-formed models of the domain.

The other module called “model” is a model of a domain that consists of a set
of facts that are defined through the data constructors of the domain. Example 2
represents a model of the DirectedGraph domain.

Example 2: A model of the DirectedGraph domain.

model simple_graph of DirectedGraph
{
node1 is Node ( "a" ).
node2 is Node ( "b" ).
node3 is Node ( "c" ).
node4 is Node ( "d" ).
edge1 is Edge ( node1 , node2 ).
edge2 is Edge ( node2 , node3 ).
edge3 is Edge ( node3 , node4 ).
edge4 is Edge ( node1 , node2 ).
}

Domain composition is supported by the “extends” and “includes” keywords.
Both denote the inheritance of all types (data constructors and rules). While “A ex-
tends B” ensures that all the well-formed models of A are well-formed models of B,
“A includes B” may contain well-formed models in A, which are ill-formed models
of B. The domains represented in Example 3 formalize the metamodels of a directed
acyclic graph and a tree languages. These domains illustrate how domains can be
extended and, particularly, how queries can be used in domains to specify the struc-
tural semantics of these simple languages.

Example 3: A domain to formalize directed-acyclic graph and tree.

domain DAG extends DirectedGraph
{
Path ::= ( Node , Node ).
Path ( u , w ) :- Edge ( u , w ) ; Edge ( u , v ) , Path ( v , w ).
conforms no Path ( u , u ).
}
domain Tree extends DAG
{
conforms no { w | Edge ( u , w ) , Edge ( v , w ) , u != v }.
}
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FORMULA supports relational constraints, such as equality of ground terms, and
arithmetic constraints over real and integer data types. A special data type called Data
in FORMULA refers to all the data types defined in the domain. The special symbol
“_” denotes an anonymous variable that cannot be referenced anywhere else.

FORMULA also supports model transformation using transform modules. This
module consists of rules for deriving initial facts in an output model from initial
and derived facts in an input model as well as input parameters. The rules are the
same as they are in domains, except that the left-hand side contains facts in the out-
put model and the right-hand side contains facts from the input and output models.
The transform modules can also contain data constructors and type declarations for
transform-local derived facts and union types. Example 4 transforms a given graph to
a complete graph by adding all the possible edges between the given graph’s nodes.

Example 4: Transforming a given graph to a complete graph.

transform Complete ( GraphIn :: DAG )
returns ( GraphOut :: DAG )
{
GraphOut.Node ( x ) :- GraphIn.Node ( x ).
GraphOut.Edge ( x , y ) :- GraphIn.Node ( x ) , GraphIn.Node ( y ) , x != y.
}

Name-spaces are used for handling multiple definitions with the same name in
different ancestor domains. For example, domain “GraphIn :: DAG” uses the name
GraphIn for referring to elements of DAG. We can refer to the elements of GraphIn
by inserting a dotted qualification “GraphIn.” in front of the type identifiers defined
in the domain.

2.6 ForSpec Language

ForSpec extends FORMULA with functional terms, semantic functions and seman-
tic equations. In the following, we briefly introduce these extensions. For a more
detailed description of the language see [Sim14].

2.6.1 Functional terms
Functions are very important in order to define computations within any system. De-
spite this, a set of function that mostly define the type of the relations between the
data types (e.g. one-to-one, one-to-many, and etc.) defined within a domain, FOR-
MULA does not provide means to specify a function, e.g. a function to sum up two
numbers, as we know it in other programming languages. The following specifica-
tion is the conventional way to define a function called Add. In this example, two
data types “Add” and “Add_triger” are defined. The first data type specifies the
input parameters and the output parameter of the function as a three-tuple. The sec-
ond data type specifies only the input arguments of the function. In addition, a rule
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is defined to specify the computation. This rule has a predicate to check if the func-
tion should be computed. These specifications will be more complicated if a function
needs to use another function to do a part of its computation.

domain Equation
{
Add ::= (Integer, Integer, Integer).
Add_trigger ::= (Integer, Integer).
Add (x, y, z) :- z = x + y, Add_trigger (x, y).

}

ForSpec addresses this deficiency by introducing functional terms. The function
mentioned above can be defined in ForSpec as follows:

domain Equation
{
Add ::= [Integer, Integer ⇒ Integer].
Add (x, y) ⇒ (z) :- z = x + y.

}

Given these specifications, ForSpec automatically generates the required data types
and adds the required predicates to trigger the related rules. Therefore, the above
specification will be converted into the following specifications by the ForSpec com-
piler (# is a reserved character in ForSpec which is used by its compiler).

Add ::= (Integer, Integer, Integer).
#Add ::= (Integer, Integer).
Add (x, y, z) :- z = x + y, #Add (x, y).

2.6.2 Semantic functions

ForSpec introduces syntactic elements for defining semantic functions. The following
example specifies a simple equation language and provides its denotational seman-
tics by using a semantic function and a set of semantic equations.

Exp ::= Plus + Mult + Minus + Real.
Mult ::= new ( lhs : Exp , rhs : Exp ).
Plus ::= new ( lhs : Exp , rhs : Exp ).
Minus ::= new ( lhs : Exp , rhs : Exp ).
E : Exp → Real.
E JPlusK = addition where addition = E JPlus.lhsK + E JPlus.rhsK.
E JMultK = multiplication where multiplication = E JMult.lhsK * E JMult.rhsK.
E JMinusK = subtraction where subtraction = E JMinus.lhsK - E JMinus.rhsK.
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The semantic function first declares a data type of the same name. Secondly, it
creates rules for extracting information from the semantic functions. For example,
the semantic function “E : Exp − > Real” declares a data type equivalent to “E ::=
[Exp => Real]”, and the generated rules extract every possible instant of the Exp over
which the function ranges in a concrete model [Sim14]

2.6.3 Union Type Extension
Union types are supported well in ForSpec. This allows extending the existing union
type declarations with additional data types. This is essential in the modular devel-
opment of modeling languages, since it facilitates the language composition [JS09].
The following example specifies a simple language for defining arithmetic equations:

Example 5: Union type example

domain Equations
{
Exp ::= Real + Operation.
Operation ::= BinOp + UniOp.
UniOp ::= Neg.
Neg ::= new (any Exp).
BinOp ::= Plus + Minus + Mult.
Plus ::= new (any Exp, any Exp).
Minus ::= new (any Exp, any Exp).
Mult ::= new (any Exp, any Exp).

}

If we need to reuse this language and extend it to support relational expressions, the
extended domain can be specified in ForSpec as follows:

Example 6: Example domain AdvancedEquations

domain AdvancedEquations extends Equations
{
Exp += Boolean.
BinOp + = LT + LET + GT + GET + EQ + NotEQ.
LT ::= new (any Exp, any Exp).
LET ::= new (any Exp, any Exp).
GT ::= new (any Exp, any Exp).
GET ::= new (any Exp, any Exp).
EQ ::= new (any Exp, any Exp).
NotEQ ::= new (any Exp, any Exp).
UniOp += Not.
Not ::= new (any Exp).

}
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As presented in this example, we can extend Exp, BinOp, and UniOp data types in
the base domain with the new data types introduced in the extended domain. This
is a useful feature in ForSpec which can help avoid code duplication by using union
type extension.

2.7 Extending ForSpec

ForSpec provides essential means for the structural and behavioral specifications of
DSMLs. However, it has some limitations in specifying some parts of the work pre-
sented in this thesis. In this section, we address these limitations and extend ForSpec
to support these deficiencies.

2.7.1 List Data Type

ForSpec does not support List data types explicitly. This data type is essential to
describe the semantic specification of the domain-specific language for waste man-
agement, i.e. fraction, material, LCI. Example 7 shows how a list can be defined at
the moment in ForSpec. It specifies a domain which includes a type called Substance
and a list called SubstanceList. The elements of the list are the type of Substance. A
model is defined as an instance of this domain, and it describes three substances and
one list that includes them.

Example 7: Defining a list structure in ForSpec and FORMULA.

domain Material
{
Substance ::= new ( name : String , value : Real ).
SubstanceList ::= new ( hd : Substance , tail : {SubstanceList + Nil}).

}
model material of Material
{
CO is Substance ("CO", 0.23).
H2 is Substance ("H2", 2.44).
CH4 is Substance ("CH4", 1.03).
SubstanceList (CO, SubstanceList(H2, SubstanceList(CH4, Nil))).

}

Although we are able to define a list structure implicitly as above, this will require
more effort when we need to apply operations on the lists, e.g. add elements, or
remove elements. To this end, we extend ForSpec syntax to support List as a primitive
data type as follows:

1 <list-def> ::= <id> '::=' new list '<' <id> '>' | list '<' <id> '>'

Example 8 presents the same specification as Example 7 but using our explicit list
construct.
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Example 8: Defining a list structure in the extended version of ForSpec.

domain Material
{
Substance ::= new ( name : String , value : Real ).
SubstanceList ::= list < Substance >.

}
model material of Material
{
CO is Substance ("CO", 0.23).
H2 is Substance ("H2", 2.44).
CH4 is Substance ("CH4", 1.03).
SubstanceList <CO, H2, CH4>

}

The extension provides a syntactic sugar to explicitly define a list data type in For-
Spec, and it transfers the list data type in Example 8 to the equivalent specification in
Example 7. Therefore, head and tail of a list can be obtained by accessing the struc-
tural fields of the list, e.g. “hd” and “tail”. We also extend the built-in functions of
ForSpec with some list operation functions as follows:

• append (list1, list2): this function appends list1 and list2 and returns the result
as a list.

• count (list): this function counts the number of elements in the list.

• isin (element , list): this function indicates whether or not the list contains
the given element. It can also provide information on whether or not the list
contains an item with the value of a particular field of the item matches with
the given element. The syntax to do this is isin(element, list[field_name]). The
following specifications count the number of SubstanceList that contains a Sub-
stance named “CO” in the model.

Example 9: Using isin list operator in the extended version of ForSpec.

NoSubstanceListForCO ::= new ( Integer ).
NoSubstanceListForCO ( n ) :-
n = count ( { sl | sl is SubstanceList , isin ("CO", sl[name]) } ).

2.7.2 Set Comprehensions
Set comprehensions in ForSpec are defined as {head | body}, and they are used by
built-in functions count and toList. Count computes the number of elements in the set
and toList stores the items in the set in a list data structure as presented earlier. We
extend the toList function to accept the data type of the list as the arguments. The
extended function stores the elements of the set comprehension in an instance of the
given list, and it uses constant value Nil to represents the end of the list. For example,
the following example specifies a list of all the substances which have positive values.
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PositiveSubstance ::= new ( SubstanceList ).
PositiveSubstance (sl) :-
sl = toList ( SubstanceList , { s | s is Substance , s.value > 0 } ).

Furthermore, we also extend ForSpec by providing syntax to iterate the list ele-
ments within set comprehensions. This extension allows ForSpec to support some
list operations, e.g. filter(), map(), and reduce(), which are quite useful in functional
programming. Example 10 defines a function that rescales a SubstanceList. It maps
each element of a given SubstanceList to the rescaled element in the list, called result.
The list iterator is defined as e <- sl where sl is the given list, and e is a variable
representing an element of the list.

Example 10: Defining iterators within comprehensions.

RescaleSubstanceList ::= [ SubstanceList , Integer ⇒ SubstanceList ].
RescaleSubstanceList ( sl , n ) ⇒ ( result ) :-
result = toList (SubstanceList, {Substance(e.name, e.value * n) | e← sl}).

Given the specifications in Example 10, the extension automatically generates a
data type called #iterator and the required rules to iterate the list elements. Therefore,
the following specifications present the ForSpec translation of Example 10.

RescaleSubstanceList ::= [ SubstanceList , Integer ⇒ SubstanceList ].
RescaleSubstanceList ( sl , n ) ⇒ ( result ) :-
result = toList(SubstanceList, {Substance(e.name, e.value * n) | #iterator_0x0
(e , _)}).

#iterator_0x0 ::= new ( value : Substance , seq : SubstanceList ).
#iterator_0x0 ( sl.hd , sl.tail ) :- #iterator_0x0 ( _ , sl ) , sl != Nil.
#iterator_0x0 ( sl.hd , sl.tail) :- #RescaleSubstanceList ( sl , _).

We also provide support for union and intersection operators for the set compre-
hensions. The following example specifies a function that merges two substance lists.

Example 11: Union of comprehensions.

MergeSubstanceList ::= [SubstanceList , SubstanceList ⇒ SubstanceList +
{Nil}].
MergeSubstanceList ( l1 , l2 ) ⇒ ( l3 ) :-
l3 = toList ( SubstanceList ,
{ Substance ( e1.name , e1.value + e2.value ) | e1← l1 , e2← l2 , e1.name
= e2.name}
union { e1 | e1← l1 , e1.name /∈ l2[name] }
union { e2 | e2← l2 , e2.name /∈ l1[name] } ).
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2.7.3 Reduce Function
In functional programming, reduce refers to a function that operates on a list or any
recursive data structure to collapse or accumulate its elements into a single element
or value by applying the same computation to each element. In this work, we extend
ForSpec to be able to specify the reduce function. The following presents the syntax
for specifying a reduce function:

1 <reduce-def> ::= <reduce-id> '::=' [ <list-id> '>>' <function-id> '>>' <type-id> ]

Where reduce-id is the identifier for the function; list-id is the identifier of the list
which the reduce function is defined; function-id specifies the binary function that
accumulates the list elements and the type-id specifies the type of single value.

The following example defines a reduce function called MergeSubstanceLists to ag-
gregate the substances of a list of SubstanceList:

Example 12: Defining a reduce function.

SubstanceLists ::= list < SubstanceList >.
MergeSubstanceLists ::= [SubstanceLists >> MergeSubstanceList >>
SubstanceList].

Example 13 defines a reduce function called Sum to calculate the sum of the num-
bers in the given list:

Example 13: Defining a reduce function for sum of real numbers.

NumberList ::= list <Real>.
Add ::= [ Real , Real ⇒ Real ].
Add ( x , y ) ⇒ ( z ) :- z = x + y.
Sum ::= [ NumberList >> Add >> Real].

Example 14 presents the ForSpec translation of Example 13. A data type called
#XSum and the related rules are automatically generated to provide the computation
of the reduce function.

Example 14: Translation of a reduce function for sum of real numbers into ForSpec.

NumberList ::= (hd:Real, tail:NumberList + {Nil}).
Add ::= (Real, Real, Real).
#Add ::= (Real, Real).
Sum ::= (NumberList, Real).
#Sum ::= (NumberList).
#XSum ::= (NumberList, Real, NumberList).

Add ( x , y , z ) :-
#Add ( x , y ),
z = ( x + y ).

Sum ( l , xs ) :-
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#Sum ( l ) ,
#XSum ( l , xs , xt ),
xt = Nil.

#XSum ( l , s , t ):-
#XSum ( l , xs , xt ),
xt! = Nil,
t = xt.tail,
Add ( xs , xt.hd , s )

; #Sum ( l ),
l! = Nil,
s = l.hd,
t=l.tail.

#Add ( xs , xt.hd ) :-
#XSum ( l , xs , xt ),
xt ! = Nil,
t = xt.tail.

2.7.4 Typed Union Type
FORMULA and ForSpec allow us to freely combine different types e.g. built-in types,
composite types, and union types. The current limitation is that they do not provide
any mechanism to define constraints on the components of a union type. This is es-
sential when a union type should be extended from other domain modules by using
union type extension, since any arbitrary types can be added to the components of
the union type. For instance, in Example 5 the BinOp union type can be extended
in the extended domain by any type, which may not be a binary operation anymore.
Therefore, we need to specify that any binary operator should have at least a left and
right fields of type Exp. To support this, we introduce a new built-in type to ForSpec
that allows defining a type for the union types. This data type can be considered as
the equivalent of interfaces in object oriented paradigm.

The following is the syntax for defining a typed union type:
1 <typed-union-def> ::= <id> ':;=' new (<fields>) | (<fields>).

The syntax to define a typed union is the same as the syntax to define a composite
type. The main difference is using “:;=” instead of “::=”. This helps us to distinguish
between the definition of these two built-in types. A typed union is a particular union
type which can declare the new keyword and a set of named fields. It enforces a set
of type checking rules to ensure that all of the components of the typed union match
this common declaration. The rules of the type checking is as follows:

• If the typed union has the new keyword in its definition, then all of its compo-
nents should have the new keyword in their declaration.

• All the fields defined in the typed union definition should have a unique name.
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• For each field specified in the typed union declaration, all the components of
the typed union should have the same field with the same type (not necessarily
the same order) in their declaration.

Union type extension “+=” can be used to add a type component to a typed union
type. It can be used both within the same domain that contains the declaration or
within other domains modules extending the domain.

A typed union type cannot be used to generate a fact either via rules or construc-
tors within a model of a domain. But its signature can be used as a composite type
to match the facts of the type of its components in the knowledge base of the For-
Spec interpreter. There is a difference between matching a composite type and a
typed union type. For the composite type, the matching is done by comparing the
arguments of the fact and matching terms in the sequence, and comparing the type
of the fact with the type of matching term. While in the typed union the argument
matching is done according to the name of the fields and not their position in the
constructor (same fields should have the same value and the type matching is done
according to the type of component.

The following example utilizes a typed union type to define an interface for a type
of Component. This type has been extended with a type of Network using a union type
extension operator in another domain called “Network”. The typed union type is
also used to match the facts of the type of Component to check if they have ports with
duplicated name.

domain Core
{
InPort ::= new ( id : String , type : String ).
OutPort ::= new ( id : String , type : String ).
Port ::= InPort + OutPort.
PortList ::= list < Port >.
Component :;= new ( id : String , ports : PortList ).
...
InvalidComponent ::= ( String ).
InvalidComponent ( id ) :-
Component ( id , ports ),
no { x | x← ports , y← ports , x != y , x.id = y.id }.

}
domain Network extends Core
{
Component += Network.
Network ::= new ( id : String , ports : PortList, ... ).
...
}
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2.8 Integration With Microsoft DSL Tools

The Visualization and Modeling Software Development Kit (VMSDK) is a metamod-
eling framework to build powerful domain-specific languages that can be integrated
into Microsoft Visual Studio. The core of VMSDK is a DSL definition diagram for
specifying both the metamodel and the graphical notations of a domain-specific lan-
guage. The definition diagram is used by the framework to generate a graphic editor
for the DSL, so that modelers can edit and view the whole or parts of the model,
serialization objects which store the models in XML format, model transformation
commands, mechanisms for generating code or other artifacts from the model by
using text templates, customized Visual Studio Shell, and APIs to interact with the
shell [Mic14].

The motivation for integrating Microsoft DSL Tools and our extension of ForSpec
was initiated by the lack of support for a formal approach by DSL Tools for speci-
fying the semantics of the domain-specific language proposed in our experience pa-
per [ZB14]. This part of our thesis work is inspired by the approach presented at
[Sim+13a; Lin+15]. The authors utilize FORMULA for specifying the semantics of
DSMLs, and they provide a transformation tool to convert metamodels and models
specified within Generic Modeling Environment (GME) [Léd+01] to FORMULA for
analyzing the semantics of the models. The drawback of their approach is switching
between different programming tools and development environments. In this the-

Figure 2.1: ForSpec code editor and command line window.
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sis, we combine the aforementioned technologies under the umbrella of Microsoft
Visual Studio IDE to facilitate the development of DSMLs within a single environ-
ment. Furthermore, we employ our extension of ForSpec instead of FORMULA that
offers better support, as explained earlier, for semantic specifications. We also de-
veloped some language tools (presented in Figure 2.1), as Visual Studio’s extensions
for ForSpec, such as code editor, command window, and LATEXgenerator for pretty-
printing specifications, which has been used to generate the specifications presented
in this thesis.

We use a simple example to explain the integration of these tools. Figure 2.2
presents the metamodel of a simple data-flow language. This language is composed
of input, output, constant, and three binary operators including sum, multiply, and
subtract. By this simple language, a modeler can specify the computation of a simple
arithmetic expression, e.g. Z = 5 ∗ X + 6 ∗ Y . In the following, we briefly introduce
MS DSL Tools and specify the metamodel and concrete syntax of this language. Af-
terwards, we explain our approach for transferring the metamodel and the models
of this language to ForSpec specification. At the end, we provide an operational se-
mantics of this language.

2.8.1 Defining the Proposed DSL

The DSL definition diagram for the proposed DSL in Visual Studio is illustrated in
Figure 2.3. The diagram has two swim lanes, one of which is used to show the do-
main classes and their relationships (abstract syntax) and the other of which is used
to show the diagram notations (concrete syntax). The domain classes are used to de-
fine the model elements and the domain relationships are used to define the relation-
ships between the elements. The appearance of the model elements in the diagram
is defined by using shape classes and connectors.

Expression

SubtractMultipleSum

Binary Operator
Constant

Value : Real

Input

Value : Real
Output

DataFlowGraph

Name

Element

Name : String0 - n

1 exp

1 right1 left

Figure 2.2: Metamodel of a simple data flow language.
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Figure 2.3: DSL definition diagram for a simple data flow language.
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Domain classes can be defined as abstract or non-abstract classes, and they can
be inherited from each other to define the model elements. Model elements can be
linked to each other by using relationships. These links are binary and they precisely
connect two elements of the model, while each element of the model can be linked
to multiple elements. There are two different kinds of domain relationships; embed-
ding relationships and reference relationships.

Reference relationships are used to describe non-embedding relationships between
the elements of the model. This kind of relationship is used to allow the elements to
be connected to each other in the generated diagram of the model. Reference relation-
ships are displayed in the DSL diagram as dotted lines. Embedding relationships are
used to illustrate containment or ownership between the elements. Every model ele-
ment is the target of one embedding link, except for the abstract elements and the root
element of the model. Embedding relationships are displayed in the DSL diagram
as solid lines.

As presented in Figure 2.3, a domain class called DataFlowGraph is used as the
root element of the diagram representing the language. An embedded relationship,
representing the composite relationship in the metamodel, is defined from the root
element to an abstract domain class called Element, which is the base class of all of
the model elements. According to the metamodel presented in Figure 2.2, the other
domain classes are defined and inherited from the Element class. The left and right re-
lationship of the binary operators and the exp relationship of the output elements are
defined as reference relationships, which provide connectivity between the model el-
ements. Finally, for all of the non-abstract domain classes, which should appear as an
element in the DSL diagram, a shape class is defined to describe the concrete syntax
of the element in the model diagram.

2.8.2 Generating ForSpec Specifications

VMSDK generates code for domain classes, connectors, shapes, diagram editor, model
explorer, validations, and other artifacts based on the DSL definition file (.dsl). The
code generation is done by using a set of text templates files (.tt) located in a folder,
within a DSL project, called Generated Code.

We use the same method to generate ForSpec specifications for the metamodel
specified within the DSL definition file and its corresponding models. To this end,
we extend the DSL project template to include two additional text template files in the
Generated Code folder, for whenever DSL developers create a new DSL project. These
text template files, along with the other templates located in the folder, regenerate
the required code automatically whenever the DSL definition file is changed. One of
these files is used to generate the ForSpec specification for the metamodel of the DSL.
This template directly generates a ForSpec file (.4sp) which contains a domain module
equivalent to the metamodel. Therefore, the specifications are available at the design
time of the DSL, and the DSL developer can extend these specifications with the DSL
semantics. The following ForSpec specification is generated for the metamodel of the
language defined in the DSL definition diagram presented in Figure 2.3.



2.8 Integration With Microsoft DSL Tools 37

domain SimpleLanguage
{

/// Domain Classes.

DataFlowGraph ::= new (Elements: ElementList).
Element :;= new (name: String).
Element += Output + Expression.
Input ::= new (value: Single, name: String).
Output ::= new (name: String, Expression: Expression).
Constant ::= new (value: Single, name: String).
Expression :;= new (name: String).
Expression += Input + Constant + BinaryOperator.
BinaryOperator :;= new (name: String, Left: Expression, Right: Expression).
BinaryOperator += Sum + Multiple + Subtract.
Sum ::= new (name: String, Left: Expression, Right: Expression).
Multiple ::= new (name: String, Left: Expression, Right: Expression).
Subtract ::= new (name: String, Left: Expression, Right: Expression).

/// Domain Enumerations

/// Domain Relationships.

ElementList ::= list < Element >.
}

The ForSpec specification is generated according to the following procedures: For
each non-abstract domain class ( e.g. Sum), a data type with the same name will
be generated. The parameters of the data type include all the domain properties
explicitly defined for the domain class and its base classes (e.g. name are defined
in the Element domain class). In addition, for each domain relationship with which
their source is associated, the domain class or its base classes (e.g. the Left and Right
domain relationship associated to the BinaryOperator), a parameter will be generated.
The type of parameter is defined according to the multiplicity of the relationship.
For one to one relationships, the type is the same as the type of the domain class
associated with the target of the relationship. For the one to many relationships, the
type is defined as a list of the type of the domain class targeting the relationship. For
each abstract class (e.g. Element), depending on its domain properties, a union type
or a typed union type is generated. The first is generated if the class does not have
any domain property. The later is generated if the class or its base class has one or
more domain properties. In both cases, the classes inherited from the abstract class
are added to the union definition.

The other template is used for generating ForSpec specifications for the model
instances of the DSL. To this end, it generates, e.g. C#, VB, code for an adapter that
can transfer the model instances of the DSL to ForSpec. This adapter can be used
by applications or within another text template file in Visual Studio IDE. Figure 2.4
illustrates a concrete model of the language, designed with the diagram editor of the
language, to model Z = 6 ∗ Y + 5 ∗ X . The following specifications are produced for
this model by the adapter generated for the language.
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Figure 2.4: A a model to compute Z = 6 ∗ Y + 5 ∗ X .

model simple_exp of SimpleLanguage
{
Constant1 is Constant (5, "Constant1").
Constant2 is Constant (6, "Constant2").
X is Input (5, "X").
Y is Input (2, "Y").
Multiple1 is Multiple ("Multiple1", Constant1 , X ).
Multiple2 is Multiple ("Multiple2", Constant2 , Y).
Sum1 is Sum ("Sum1", Multiple2, Multiple1).
Z is Output ("Z", Sum1).
DataFlowGraph (ElementList<Constant1, Constant2, Y, Multiple1, X, Sum1,

Multiple2, Z>).
}

To make this language executable, we extend the domain with the semantic speci-
fications. For this example, we first define a semantic domain for the language, which
has a data type and the required functions over this data type. Then, we use denota-
tional semantics to specify the mapping from the syntactic elements to the semantic
elements. Although we could use integer as the semantic domain here, we choose to
use a simple semantic domain to show the general approach.

domain ExecutableSimpleLanguage extends SimpleLanguage
{

// Semantic domain :

SD ::= Mult + Add + Sub + Val.
Val ::= new (Integer).
Mult ::=[ Val , Val ⇒ Val ].
Mult ( Val ( a ) , Val ( b ) ) ⇒ ( Val ( c ) ) :- c = a * b.
Add ::=[ Val , Val ⇒ Val ].
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Add ( Val ( a ) , Val ( b ) ) ⇒ ( Val ( c ) ) :- c = a + b.
Sub ::= [ Val , Val ⇒ Val ].
Sub ( Val ( a ) , Val ( b ) ) ⇒ ( Val ( c ) ) :- c = a - b.

// Semantics functions :

G : DataFlowGraph → SD.
E : Element → SD.

G JDataFlowGraphK = value where
e← DataFlowGraph.Elements , e : Output , E JeK = value.

E JConstantK = Val (Constant.value).
E JInputK = Val (Input.value).

E JOutputK = value where
E JOutput.ExpressionK = value.

E JSumK = value where
E JSum.LeftK = l , E JSum.RightK = r , Add ( l , r ) ⇒ (value).

E JSubtractK = value where
E JSubtract.LeftK = l , E JSubtract.RightK = r , Sub ( l , r ) ⇒ (value).

E JMultipleK = value where
E JMultiple.LeftK = l , E JMultiple.RightK = r , Mult ( l , r ) ⇒ (value).

}

According to the given semantics and the metamodel, we can execute the given
model in ForSpec. The following are the execution traces to deduce the final facts
from the initial facts given in the model. The result of the expression specified in
the model is computed by the semantic function G which is evaluated to 37 for the
expression.

model simple_exp_fp of ExecutableSimpleLanguage
{
#Add__0x0 is #Add(Val(12), Val(25)).
#compr_107#1__0x1 is #compr_107#1(TRUE, Val(5), Val(5)).
#compr_107#1__0x2 is #compr_107#1(TRUE, Val(6), Val(2)).
#compr_108#1__0x3 is #compr_108#1(TRUE, Val(12), Val(25)).
#Mult__0x4 is #Mult(Val(5), Val(5)).
#Mult__0x5 is #Mult(Val(6), Val(2)).
Add__0x6 is Add(Val(12), Val(25), Val(37)).
Constant__0x7 is Constant(5, "Constant1").
Constant__0x8 is Constant(6, "Constant2").
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DataFlowGraph__0x9 is DataFlowGraph(ElementList(Constant(5, "Constant1"),
ElementList(Constant(6, "Constant2"), ElementList(Input(2, :"Y"),
ElementList(Multiple("Multiple1", Constant(5, "Constant1"), Input(5, "X")),
ElementList(Input(5, "X"), ElementList(Sum("Sum1", :Multiple("Multiple2",
Constant(6, "Constant2"), Input(2, "Y")), Multiple("Multiple1", Constant(5,
"Constant1"), Input(5, "X"))), :ElementList(Multiple("Multiple2",
Constant(6, "Constant2"), Input(2, "Y")), ElementList(Output("Z",
Sum("Sum1", Multiple("Multiple2", Constant(6, :"Constant2"), Input(2,
"Y")), Multiple("Multiple1", Constant(5, "Constant1"), Input(5, "X")))),
Nil))))))))).
E__0xa is E(Constant(5, "Constant1"), Val(5)).
E__0xb is E(Constant(6, "Constant2"), Val(6)).
E__0xc is E(Input(2, "Y"), Val(2)).
E__0xd is E(Input(5, "X"), Val(5)).
E__0xe is E(Multiple("Multiple1", Constant(5, "Constant1"), Input(5, "X")),

Val(25)).
E__0xf is E(Multiple("Multiple2", Constant(6, "Constant2"), Input(2, "Y")),

Val(12)).
E__0x10 is E(Output("Z", Sum("Sum1", Multiple("Multiple2", Constant(6,

"Constant2"), Input(2, "Y")), Multiple("Multiple1", Constant(5,
:"Constant1"), Input(5, "X")))), Val(37)).
E__0x11 is E(Sum("Sum1", Multiple("Multiple2", Constant(6, "Constant2"),

Input(2, "Y")), Multiple("Multiple1", Constant(5, "Constant1"), :Input(5,
"X"))), Val(37)).

ExecutableSimpleLanguage1_conforms__0x12 is
ExecutableSimpleLanguage1.conforms.

G__0x13 is G(DataFlowGraph(ElementList(Constant(5, "Constant1"),
ElementList(Constant(6, "Constant2"), ElementList(Input(2, "Y"),
:ElementList(Multiple("Multiple1", Constant(5, "Constant1"), Input(5, "X")),
ElementList(Input(5, "X"), ElementList(Sum("Sum1", Multiple("Multiple2",
:Constant(6, "Constant2"), Input(2, "Y")), Multiple("Multiple1",
Constant(5, "Constant1"), Input(5, "X"))), ElementList(Multiple("Multiple2",
:Constant(6, "Constant2"), Input(2, "Y")), ElementList(Output("Z",
Sum("Sum1", Multiple("Multiple2", Constant(6, "Constant2"), Input(2,
"Y")), :Multiple("Multiple1", Constant(5, "Constant1"), Input(5, "X")))),
Nil))))))))), Val(37)).
Input__0x14 is Input(2, "Y").
Input__0x15 is Input(5, "X").
Mult__0x16 is Mult(Val(5), Val(5), Val(25)).
Mult__0x17 is Mult(Val(6), Val(2), Val(12)).
Multiple__0x18 is Multiple("Multiple1", Constant(5, "Constant1"), Input(5,

"X")).
Multiple__0x19 is Multiple("Multiple2", Constant(6, "Constant2"), Input(2,

"Y")).
Output__0x1a is Output("Z", Sum("Sum1", Multiple("Multiple2", Constant(6,

"Constant2"), Input(2, "Y")), Multiple("Multiple1", :Constant(5,
"Constant1"), Input(5, "X")))).
simple_exp_conforms__0x1b is simple_exp.conforms.
SimpleLanguage_conforms__0x1c is SimpleLanguage.conforms.
Sum__0x1d is Sum("Sum1", Multiple("Multiple2", Constant(6, "Constant2"),

Input(2, "Y")), Multiple("Multiple1", Constant(5, "Constant1"), :Input(5,
"X"))).
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Val__0x1e is Val(12).
Val__0x1f is Val(2).
Val__0x20 is Val(25).
Val__0x21 is Val(37).
Val__0x22 is Val(5).
Val__0x23 is Val(6).

}

2.9 Summary

In this chapter, we gave an introduction to the fundamental concepts of model-driven
engineering, domain-specific languages, and some existing formal approaches for
specifying the semantics of modeling languages including FORMULA and ForSpec.
Afterwards, we extended ForSpec with list data types, union operators, iterators,
map and reduce functions, typed union datatype which help to write more compli-
cated specifications within the language. We combined ForSpec with Microsoft DSL
tools under the umbrella of Microsoft Visual Studio IDE. The DSL designers utilize
DSL tools to define the concrete syntax of the DSL and use ForSpec to specify the
semantics of the DSL formally. Since we developed this framework based on exist-
ing technologies and languages, the users do not need to learn new programming
languages or tools to develop DSLs. In the following chapters, we use this frame-
work for developing the modeling framework and the domain-specific language for
modeling waste management systems.
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CHAPTER 3
Waste Management

Modeling
In this chapter, we give a brief introduction to waste-management modeling includ-
ing its main concepts and challenges. We provide a mathematical model of the waste
management field in order to understand the domain and avoid ambiguities in the
specifications of its core concepts. This mathematical model lays the foundation of
the metamodel and the semantics domain of the desired domain-specific modeling
language.

3.1 Waste Management Modeling

Modeling waste management systems can help develop more sustainable waste man-
agement systems. Sustainable waste management means waste management sys-
tems that are environmentally friendly, economically reasonable, and socially suit-
able for a particular region and its individual conditions. Based on this model, a
municipality or organization can continuously improve and observe their waste man-
agement systems [McD01].

As presented in Figure 3.1, the waste process within waste management systems
takes wastes (such as solid-waste and process chemicals) as input and generates sec-
ondary wastes (e.g. incineration and composting residues) or recyclable products
as the output. During the process, it releases emissions into different environments
(air, water, and soil) and it consumes energy such as electricity, coal, oil or heat and
other resources to complete the process. On the other hand, it can also produce heat

Waste Process

Emissions to environment (air, water, soil)

Waste Inputs Waste Outputs

Resources Energy

Figure 3.1: Model of waste processes.
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(e.g. heat produced by incinerating the waste), electricity, hydrogen or biogas. As
we mentioned in Section 1.1, examples of these waste processes are collection, trans-
portations, recycling, composting, incineration, landfilling, and etc.

A waste management system in any city or municipality can be defined as a com-
position of these processes. This can be modeled as a directed graph of waste pro-
cesses as shown in Figure 3.2. Each waste process can be either a unit process, which
is defined as “the basic building blocks within the system boundaries” [Ast+97], or
a composite process (Figure 3.3). It should be noted that these processes are not al-
lowed to be coupled together arbitrarily.

Each kind of the waste processes can be accomplished by utilizing different tech-
nologies while achieving the same goal. Which technologies should be used,depends
on the country, region, and the policy makers. The variety of these technologies and
the different possible combinations of these processes make it challenging to find the
best alternative waste management system to satisfy the specific requirements of a
given region or industry. Therefore, evaluating the waste systems is the primary goal
of waste-management modeling that can be realized by analyzing the material flow
and the life cycle impact of these systems. More evaluation aspects can be considered
in designing waste managements systems e.g. financial aspects, society aspects, but
in this thesis, we limit the scope to model and evaluate the material flow and life cycle
assessment of these systems. In the following sections, we give a brief introduction
to these aspects and later we provide the mathematical model for them.

Use on land
Transport

30 km
Addition 
of water

Heat &power
gas engine

Anaerobic
digestion

Transport
10 kmCollection

Material
generation

Figure 3.2: An example of waste management system.
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WP2

WP4
Waste OutputWaste Input

WP5

Figure 3.3: A waste system as a composite of waste processes.
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3.1.1 Material-Flow Analysis

The objective of using material-flow analysis (MFA) is to evaluate material flows be-
tween inputs and outputs of a certain system or process. One of the methods used
commonly to do MFA is material-flow networks (MFNs) which were introduced
many years ago and have been used regularly for LCA [LS10a]. A material-flow
network for a process can be defined as a set of inputs, outputs, transformers and
transitions and it can be modeled as a directed graph in which inputs, outputs, and
transformers are the nodes and transitions are their edges. Transformers can change
the material specifications, while transitions only transfer a specific amount of mate-
rial from a source node to a target node.

3.1.2 Life Cycle Assessment

LCA is an approach for inspecting environmental impacts (e.g. climate change, strato-
spheric ozone depletion, human toxicity, cancer effect, and many others) related to
a product, process, or service “from cradle to grave” from the production of the raw
materials to their final disposal as waste. It considers issues that are not recognizable
by other environmental management tools, such as statutory environmental impact
assessments.

The first phase of LCA [Ast+97] is defining the goal and the scope of the study.
The goal should clarify the reasons for carrying out the study e.g. to understand the
environmental impacts of a product, to compare one product or service to another,
or to provide information to the customers of a service or product. The scope of the
study specifies the system boundaries and the processes in the life cycle of the prod-
uct or service that need to be included or excluded from the assessment e.g. the bor-
der lines of the system and nature, the geographical scope, and the time boundaries.
Furthermore, the functional unit, a key element of LCA study, should be defined in
this phase. The functional unit e.g. delivering one gigawatt hour of electricity or one
billion gallons of drinking water is the measuring unit for comparing the service or
product under study with its alternatives.

The second phase of LCA is to calculate the life-cycle inventory (LCI) for the sys-
tem under study. The LCI inspects every phase of the life-cycle, from the mining of
raw materials, through production, dissemination, use, possible recycling, and final
disposal. Before calculating LCI, the unit processes e.g. an environmental technol-
ogy or facility within the system, according to the system boundary specified in the
last phase, should be identified. For each unit process, which is defined as “the ba-
sic building blocks within the system boundaries” [Ast+97], the inputs (in terms of
raw materials and energy) and outputs (in terms of emissions to air, water and as
solid waste) are computed and related to the functional unit in order to aggregate
the results over the life cycle.

The last phase of the study is reaching conclusions and recommendations accord-
ing to the aim of the study. This can be achieved by Life cycle impact assessment
(LCIA) which quantifies the impact of the product or the system under study. To
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this end, the LCI computed in the last phase should be converted into their impact
on the environment. The sum of these impact indicators then denote the overall en-
vironmental effect of the life cycle of the product or process.

Although LCA initially was proposed for the assessment of a product’s life cycle,
it can also be used for assessing the environmental impact of waste management sys-
tems. The only difference is the assessment time frame which starts from the moment
waste is generated until its final disposal. Conducting LCA on waste management
systems covers all impacts related to waste management, including all the processes
in the system, as well as the upstream processes (located towards the cradle of the
stream, e.g. waste sources, electricity, and fuel generation) and downstream pro-
cesses (located towards the grave of the stream, e.g. recycled plastic substituting for
virgin production of waste). Therefore, using LCA makes the evaluation of different
waste systems, with the various patterns of resource consumption or production and
varying levels of material recovery, possible. This can help planners and waste man-
agers design more sustainable waste management systems for the future [ÖYD06;
WFH95].

3.2 Mathematical Model of the Waste-Management Domain

In this section, we formally define the main concepts of the waste-management do-
main by providing the mathematical model of these concepts. These models lay the
foundation of the metamodel and the semantics domain of the domain-specific mod-
eling language for this domain. We first define waste material and then we give the
formal definition of waste processes, followed by life cycle assessment definition.

3.2.1 Material
Waste is defined as unwanted, unusable, or worthless materials. Therefore, the term
”waste” is usually subjective and inaccurate. What is a waste to a person or a system
is not necessarily waste for another person or within another system’s boundaries.
Accordingly, we use the term “material” instead of “waste material” in this thesis.
This especially makes it easier to integrate and specify the material flow between
different systems within different domains. We define material as a composition of
material fractions, e.g. paper, plastic. Similarly, we define a material fraction as a
composite of different substances, e.g. water content, carbon fossil, methane, ash.
We let FN and SN be the set of fraction names and substance names, for example:

SN = {Water (kg), C fossil (kg), Ca (kg), Cl (kg), F (kg), H (kg), K (kg), P (kg), Al (kg), ...}
FN = {Vegetable food waste, Animal food waste, Magazines, Office paper, ...}

(3.1)
We define a material fraction as f : SN 9 R, a partial function from substance

names to its relevant amount of the substance in a fraction. The measuring units
for the amount of substances within SN are predefined by a partial function from
substance names to their default unit names, for example kilograms. Since we do
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not change the measuring units for the amount of the substances, we do not specify
them in the following mathematical model. Therefore, the amount of substances in
these formulas are based on the default units specified for them.

We present the set of all material fractions as F = {f | f : SN 9 R}, and we
define the following arithmetic operators over material fractions:

As a result, the addition (+) operator merges two different material fractions in
a new material fraction. For each substance, if the substance exists in both material
fractions, it appears in the results as the addition of the amounts of substance in both
fractions. Otherwise, it appears in the result without any changes.

+ : F × F → F
∀ f, f ′ ∈ F and sn ∈ SN :

(f + f ′)(sn) =


f(sn) + f ′(sn), sn ∈ dom(f) ∧ sn ∈ dom(f ′)
f(sn), sn ∈ dom(f) ∧ sn /∈ dom(f ′)
f ′(sn), sn /∈ dom(f) ∧ sn ∈ dom(f ′)
⊥, else

(3.2)

The subtraction (−) operator subtracts a material fraction from another material
fraction. For each substance, if the substance exists in both material fractions, it ap-
pears in the result as the substance amount in the left material fraction minus the
substance amount in the right material fraction. If the substance exists in the left ma-
terial fraction, it appears in the result without any changes. Otherwise, it appears in
the result as a minus amount. The minus amount of a substance indicates that the
amount will be deducted from the available resources or the resources outside of the
system under study.

− : F × F → F
∀ f, f ′ ∈ F and sn ∈ SN :

(f − f ′)(sn) =


f(sn) − f ′(sn), sn ∈ dom(f) ∧ sn ∈ dom(f ′)
f(sn), sn ∈ dom(f) ∧ sn /∈ dom(f ′)
−f ′(sn), sn /∈ dom(f) ∧ sn ∈ dom(f ′)
⊥, else

(3.3)

The multiplication (∗) operator rescales a material fraction. For each substance
in the material fraction, the substance appears in the result with x times its original
amount.

∗ : F × R → F
∀ f ∈ F, x ∈ R, sn ∈ SN :

(f ∗ x)(sn) =

{
f(sn) ∗ x, sn ∈ dom(f)
⊥, else

(3.4)
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Another operator called filter, which is presented as ”|”, filters the substances of
a material fraction. The result is a material fraction with only one substance which
has a same name as the right operator.

|: F × SN → F
∀ f ∈ F and sn, sn′ ∈ SN :

(f |sn′)(sn) =

{
f(sn′), sn, sn′ ∈ dom(f) ∧ sn = sn′

⊥, else

(3.5)

According to these definitions, we define a material as a partial function from frac-
tion name to material fractions, m : FN 9 F . For example, the following represents
a material which has two material fractions:

m’ = {Green glass 7→ {Ash 7→ 2.415, Ca 7→ 0.1666, K 7→ 0.01872, Na 7→ 0.06013, ...},
Brown glass 7→ {Ash 7→ 2.375, Ca 7→ 0.1587, K 7→ 0.01665, Na 7→ 0.06199, ...}}.

(3.6)
We present the set of materials as M = {m | m : FN 9 F}. According to this

definition and the arithmetic operators defined over material fractions, we define the
following arithmetic operators on materials:

The addition (+), the subtraction (−), and the multiplication (∗) operators, respec-
tively, merge two different materials, subtracts a material from another material, and
rescales a material as follows:

+ : M × M → M
∀ m, m′ ∈ M and fn ∈ FN :

(m + m′)(fn) =


m(fn) + m′(fn), fn ∈ dom(m) ∧ fn ∈ dom(m′)
m(fn), fn ∈ dom(m) ∧ fn /∈ dom(m′)
m′(fn), fn /∈ dom(m) ∧ fn ∈ dom(m′)
⊥, else

(3.7)

− : M × M → M
∀ m, m′ ∈ M and fn ∈ FN :

(m − m′)(fn) =


m(fn) − m′(fn), fn ∈ dom(m) ∧ fn ∈ dom(m′)
m(fn), fn ∈ dom(m) ∧ fn /∈ dom(m′)
−m′(fn), fn /∈ dom(m) ∧ fn ∈ dom(m′)
⊥, else

(3.8)

∗ : M × R → M
∀ m ∈ M, x ∈ R, fn ∈ FN :

(m ∗ x)(fn) =

{
m(fn) ∗ x, fn ∈ dom(m)
⊥, else

(3.9)
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The filter operator (|) is similarly defined in order to create filters on fractions
or substances of a material. This operator is used to extract specific substances or
specific fractions from a material.

|: M × FN → M
∀ m ∈ M and fn, fn′ ∈ FN :

(m |fn′)(fn) =

{
m(fn′), fn, fn′ ∈ dom(m) ∧ fn = fn′

⊥, else

(3.10)

|: M × SN → M
∀ m ∈ M , fn ∈ FN, sn ∈ SN :

(m |sn)(fn) =

{
m(fn) |sn, fn ∈ dom(m) ∧ sn ∈ dom(m(fn))
⊥, else

(3.11)

We also define the following operators in order to calculate the total weight of the
material and the total amount of a particular substance within all the fractions of the
given material:

weight : M → R
∀ m ∈ M :
weight(m) =

∑
fn∈dom(m)

( ∑
sn∈dom(fn)∧unit(sn)=kg

m(fn)(sn)
) (3.12)

amount : M × SN → R
∀ m ∈ M, sn ∈ SN :
amount(m, sn) =

∑
fn∈dom(m|sn)

m(fn)(sn)
(3.13)

3.2.2 Life Cycle Assessment
Previously, we explained the different phases of a life-cycle assessment study includ-
ing defining the goals and the scope of the study, specifying the life-cycle inventory,
and assessing the environmental impacts of the system under study. In the following,
we provide the mathematical models of these concepts.

3.2.2.1 Life Cycle Inventory

The life-cycle inventory analysis aims to quantify energy and raw material require-
ments, atmospheric emissions, waterborne emissions, and other releases for the en-
tire life cycle of a process [IC94]. To compute the LCI, all the inputs and outputs
exchanges of a unit process with environments should be recorded. We define ele-
mentary flows as follows:

ef = (id, comp, unit) (3.14)
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Where, id is the name or identifier of the elementary flow, comp is the name of the
compartment (e.g. air, soil, water, resources) which the unit process exchanges the
elementary flow, and unit is the unit of the amount of the exchange. We present the
set of all the elementary flows as EF = {ef | ef = (id, comp, unit)}. The following is
an example of an elementary flow:

ef = (”Carbon monoxide”, air, kg) (3.15)

Based on the definition of elementary flows, we can define the life cycle inventory
as a partial function from elementary flows to the amount of exchanges between the
unit process and the related compartments as follows:

lci : EF 9 R (3.16)

The positive amounts mean that releasing emissions to the related compartment or
generating energy or resources, and the negative amounts mean consuming energy
or resources. For example, the following LCI specifies the elementary exchanges re-
lated to moving 1 kg of goods 1 km in a truck with a weight < 7.5t:

lci = {(”Nitrogen oxides”, air, kg) 7→ 5.48e−7,
(”Sulfur dioxide”, air, kg) 7→ 3.5e−9,
(”Carbon monoxide”, air, kg) 7→ 2.09e−8,
(”Carbon dioxide”, air, kg) 7→ 0.000107,
...}

(3.17)

We present the set of all the life-cycle inventories as LCI = {lci | lci : EF 9 R},
and we define the following operations which are required to calculate the entire life
cycle inventory of a waste system as follows:

+ : LCI × LCI → LCI
∀ lci, lci′ ∈ LCI and ef ∈ EF :

(lci + lci′)(ef) =


lci(ef) + lci′(ef), ef ∈ dom(lci) ∧ ef ∈ dom(lci′)
lci(ef), ef ∈ dom(lci) ∧ ef /∈ dom(lci′)
lci′(ef), ef /∈ dom(lci) ∧ ef ∈ dom(lci′)
⊥, else

(3.18)

− : LCI × LCI → LCI
∀ lci, lci′ ∈ LCI and ef ∈ EF :

(lci − lci′)(ef) =


lci(ef) − lci′(ef), ef ∈ dom(lci) ∧ ef ∈ dom(lci′)
lci(ef), ef ∈ dom(lci) ∧ ef /∈ dom(lci′)
−lci′(ef), ef /∈ dom(lci) ∧ ef ∈ dom(lci′)
⊥, else

(3.19)



3.2 Mathematical Model of the Waste-Management Domain 51

∗ : LCI × R → LCI
∀ lci ∈ LCI, x ∈ R and ef ∈ EF :

(lci ∗ x)(ef) =

{
lci(ef) ∗ x, ef ∈ dom(lci)
⊥, else

(3.20)

A unit process may also utilize other processes that are not directly related to the
unit process but consist of emissions and resources associated with the procurement
of a material or energy e.g. extraction of coal, transport of coal to a power plant, dis-
posal of ash residue. In this thesis, we are also interested in considering the life cycle
inventory of these processes and including them in the LCI computations. We call
these processes external processes, and we present the set of all the external processes
as EP. We define the set of EP inductively by the following rules:

1. ∀ ex ∈ LCI, (ex, ∅) ∈ EP.

2. If ex ∈ LCI and exExternal : EP 9 R, then (ex, exExternal) ∈ EP

Where

• ex is the life cycle inventory associated directly to the external process.

• exExternal specifies the contribution of the other external processes in this external
process. This allows including the life cycle inventory of the other external
processes related to the given external process.

The amount associated with elementary exchanges in ex or the external processes in
exExternal are related to the production of one functional unit of material or energy (e.g.
the production of 1 kg ammonia, or 1 kWh of electricity, by the consumer, based on
coal power). For example, the following external process specifies the combustion of
1 liter diesel oil in a small truck, e.g. a waste collection truck, driving in urban areas.
It also includes the emissions related to the production of diesel oil.

diesel_oil_combustion = {(”Cadmium”, air, kg) 7→ 8.4e−9,
(”Carbon dioxide”, air, kg) 7→ 2.63,
(”Mercury”, air, kg) 7→ 8.4e−10,
(”Nickel”, air, kg) 7→ 8.4e−7,
(”Nitrogen oxides”, air, kg) 7→ 0.0243}

diesel_oil_production = ({(”Acetic acid”, water, kg) 7→ 5.305e−7,
(”Aluminium”, soil, kg) 7→ 1.219e−7,
(”Mercury”, air, kg) 7→ 3.305e−9,
(”Nickel”, air, kg) 7→ 1.953e−7,
(”Nitrogen oxides”, air, kg) 7→ 0.0008782}, ∅)

combustion_of_1_liter_diesel = (diesel_oil_combustion, {diesel_oil_production 7→ 0.845})
(3.21)
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The following function accumulates both the elementary exchanges associated
directly with the given external process and the elementary exchanges related to the
associated external processes to the given external process. The result is an LCI re-
lated to utilizing the given external process in the production of one functional unit
of material or energy. We inductively define Accumulate : EP → LCI on the structure
of EP as follows:

1. ∀ ex ∈ LCI :
Accumulate((ex, ∅)) = ex

2. ∀ ex ∈ LCI, exExternal : EP 9 R :
Accumulate((ex, exExternal)) = ex +

∑
ep∈dom(exExternal)

exExternal(ep) ∗ Accumulate(ep)

For example, the following is the result of Accumulate function for the external process
presented in Equation 3.21:

Accumulate(combustion_of_1_liter_diesel) = {(”Cadmium”, air, kg) 7→ 8.4e−9,
(”Carbon dioxide”, air, kg) 7→ 2.63,
(”Mercury”, air, kg) 7→ 8.4e−10 + 0.845 ∗ 3.305e−9,
(”Nickel”, air, kg) 7→ 8.4e−7 + 0.845 ∗ 1.953e−7,
(”Nitrogen oxides”, air, kg) 7→ 0.0243 + 0.845 ∗ 0.0008782,
(”Acetic acid”, water, kg) 7→ 0.845 ∗ 5.305e−7,
(”Aluminium”, soil, kg) 7→ 0.845 ∗ 1.219e−7}

(3.22)

3.2.2.2 Life Cycle Impact Assessment

Life cycle impact assessment (LCIA) is a process of characterizing and assessing the
effects of the resource requirements and environmental emissions, e.g. atmospheric
and waterborne emissions and solid wastes identified in the LCI analysis [IC94].
LCIA methods are used to evaluate the LCI according to the goals of the LCA study.
An LCIA method is comprised of several elements: the first element is a set of impact
categories, e.g. global warming, human health damage, etc. which are indicators that
quantify the contributions of different inputs and emissions (elementary flows) to the
impact categories. Each impact category associates a score called “characterization
factors” to elementary flows that contribute to the impact category. Accordingly, we
define an impact category as a partial function from elementary flows to the associ-
ated characterization factors, ic : EF 9 R. For example, the following specifies the
impact categories for “IPCC 2007, climate change, GWP 20a” and “Human toxicity
w/o LT”:
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IPCC_2007 = {
(”Ethane, 1-chloro-1,1-difluoro-, HCFC-142b”, air, kg) 7→ 5400,
(”Methane, tetrachloro-, R-10”, air, kg) 7→ 2700,
(”Ethane, 1,2-dichloro-1,1,2,2-tetrafluoro-, CFC-114”, air, kg) 7→ 8040,
(”Ethane, 2-chloro-1,1,1,2-tetrafluoro-, HCFC-124”, air, kg) 7→ 2070,
(”Methane, monochloro-, R-40”, air, kg) 7→ 45}

Human toxicity w/o LT = {
(”Cadmium”, air, kg) 7→ 0.0002168,
(”Mercury”, air, kg) 7→ 0.8349,
(”Nickel”, air, kg) 7→ 2.664e−6,
(”Dinitrogen monoxide”, air, kg) 7→ 296,
(”Xylene”, air, kg) 7→ 3}

(3.23)

The second element of the LCIA method is “normalization” that relates the mag-
nitude of the impacts in the different categories to reference values, i.e. the total
contribution to an impact category by a nation. And the third element is “weighting”
that aims to convert and aggregate indicator results of different impact categories
included in the LCIA method yielded a single result.

Based on these definitions, we define LCIA method as follows:

lciamethod = (IC, nf, wf) (3.24)
Where IC ⊂ {ic | ic : EF 9 R} is the set of impact categories; nf : IC 9 R

associates normalization factor to each impact category, and wf : IC 9 R associates
weighting factor to each impact category. The following example specifies an LCIA
method called“ILCD-2013 NR” :

ILCD-2013 NR = ({Human toxicity w/o LT, IPCC_2007},
{Human toxicity w/o LT 7→ 0.0011, IPCC_2007 7→ 8096},
{Human toxicity w/o LT 7→ 1, IPCC_2007 7→ 1})

(3.25)

In the following, we explain the computation of LCIA from the LCI of the given
process on the basis of an LCIA method.

3.2.2.3 LCIA

The LCIA is computed for each impact category included in the LCIA method, and
it can be calculated separately for each elementary flow or the whole process.

LCIA per elementary flow:

lcia : LCI × IC → EF → R
∀ lci ∈ LCI and ic ∈ IC and ef ∈ EF :

lcia(lci, ic)(ef) =

{
lci(ef) ∗ ic(ef), ef ∈ dom(lci) ∧ ef ∈ dom(ic)
⊥, else

(3.26)
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LCIA for a process:

lcia : LCI × IC → R
∀ lci ∈ LCI and ic ∈ IC :
lcia(lci, ic) =

∑
ef∈dom(ic)∧
ef∈dom(lci)

lci(ef) ∗ ic(ef) (3.27)

The LCIA for the example presented in Equation 3.22 and the impact category
Human toxicity w/o LT is computed as follows:

lcia(diesel_oil_combustion, Human toxicity w/o LT) = {
(”Cadmium”, air, kg) 7→ 8.4e−9 ∗ 0.0002168,
(”Mercury”, air, kg) 7→ (8.4e−10 + 0.845 ∗ 3.305e−9) ∗ 0.8349,
(”Nickel”, air, kg) 7→ (8.4e−7 + 0.845 ∗ 1.953e−7) ∗ 2.664e−6}

lcia(diesel_oil_combustion, Human toxicity w/o LT) =
8.4e−9 ∗ 0.0002168 + (8.4e−10 + 0.845 ∗ 3.305e−9) ∗ 0.8349+
(8.4e−7 + 0.845 ∗ 1.953e−7) ∗ 2.664e−6

(3.28)

3.2.2.4 Normalized LCIA

Similar to the LCIA, the normalized LCIA is also computed for each impact category
included in the LCIA method, and it can be calculated separately for each elementary
flow or the whole process. Normalized LCIA is calculated based on the LCIA.

Normalized LCIA per elementary flow:

lciaN : LCI × IC → EF → R
∀ lci ∈ LCI and ic ∈ IC and ef ∈ EF :

lciaN (lci, ic)(ef) =

{
lcia(lci, ic)(ef)/nf(ic), ef ∈ dom(lcia(lci, ic)(ef))
⊥, else

(3.29)

Normalized LCIA for a process:

lciaN : LCI × IC → R
∀ lci ∈ LCI and ic ∈ IC :
lciaN (lci, ic) = lcia(lci, ic)/nf(ic)

(3.30)

3.2.2.5 Weighted LCIA

The weighted LCIA is calculated based on normalized LCIA.
Weighted LCIA per elementary flow:

lciaW : LCI × IC → EF → R
∀ lci ∈ LCI and ic ∈ IC and ef ∈ EF :

lciaW (lci, ic)(ef) =

{
lciaN (lci, ic)(ef) ∗ wf(ic), ef ∈ dom(lciaN (lci, ic)(ef))
⊥, else

(3.31)
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Weighted LCIA for a process:

lciaW : LCI × IC → R
∀ lci ∈ LCI and ic ∈ IC :
lciaW (lci, ic) = lciaN (lci, ic) ∗ wf(ic)

(3.32)

Weighted LCIA as a single result for the LCIA method is calculated as follows:

lcia : LCI → R
∀ lci ∈ LCI :
lcia(lci) =

∑
ic∈IC

lciaW (lci, ic)
(3.33)

3.2.3 Waste Processes

As we discussed earlier, processes in waste management are either unit processes or
composite processes. In this section, we define the unit processes and afterwards we
give a definition for the composite processes.

3.2.3.1 Unit Process

An unit process is defined as follows:

punit = (I, O, P, λ, exi, exp) (3.34)

Where:

• I and O are the sets of input and output ports.

• P is the set of parameters, where each parameter is a triple of (key, value, type).

• λ : (I 7→ M) × P 7→ (O 7→ M) is the output function that specifies how the
input materials are converted into outputs.

• exi is the set of elementary exchanges related to the material given as input to
the process (input specific). This includes the elementary exchanges related
to dealing the processes in upstream (e.g. extraction, production, and use of
material) and downstream (e.g. landfill) with the given material. We define exi
as follows:

exi = (iex, iexExt)
iex : SN 9 EF × R
iexExt : SN 9 EP × R

(3.35)

Which is a tuple of two partial functions that map the substances of the input
material to elementary exchanges and the exchange amount or external pro-
cesses with the contribution amount. In order to access the arguments of these
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functions, we also define the following projection functions:

efiex : EF × R 9 EF, efiex(ef, n) = ef
valueiex : EF × R 9 R, valueiex(ef, n) = n
epiex : EP × R 9 EP, epiex(ep, n) = ep
valueiex : EP × R 9 R, valueiex(ep, n) = n

(3.36)

• exp is the elementary exchanges related to the process (process specific). We
define exp as follows:

exp = (pex, pexExt)
pex : EF 9 SN × R
pexExt : EP 9 SN × R

(3.37)

Where pex specifies the elementary exchanges directly related to the waste pro-
cess, and pexExt defines the exchanges related to the external processes utilized
by the waste process. In both pex, pexExt the amount is associated with a waste
property such as “Total wet weight” or a substance name. This specifies the
dependency of the amount of the exchange to the amount of the specified prop-
erty of the waste in the given waste material. We define the following projection
functions to access the arguments of pex, pexExt:

snpex : SN × R 9 SN, snpex(sn, n) = sn
valuepex : SN × R 9 R, valuepex(sn, n) = n (3.38)

The following example specifies a waste transportation process with a small truck
for the distance of 100 km. This process has one input and one output. During the
waste transportation process the amount and composition of the waste material does
not change, therefore the λ function returns the input value as the output value. The
elementary exchanges related to this process are associated with the combustion of
diesel oil in the truck in order to transport the waste for 100 km. We specify these
exchanges by using the external process we defined in Equation 3.21. We assume
that the truck’s consumption is 1 liters per 10 km. Therefore, it consumes 10 liters for
100 km. Accordingly, we can define the process as follows:

pwaste_transportation = ({x}, {y}, {∅}, {(x 7→ m, {∅}) 7→ (y 7→ m)},
({∅}, {∅}), ({∅}, {combustion_of_1_liter_diesel 7→ (Total wet weight, 10)})) (3.39)

Based on these definitions for an unit process punit ∈ Punit we can compute the
input-specific LCI of the unit process and the given waste material m as input as
follows:
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lciInput specific : PAtomic × M → LCI
∀ p ∈ Punit, m ∈ M :
lciInput specific(p, m) =∑
sn∈dom(p.iex)

efiex(p.iex(sn)) 7→ valueiex(p.iex(sn)) ∗ amount(m, sn)+∑
sn∈dom(p.iexExt)

Accumulate(epiex(p.iexExt(sn))) ∗ valueiex(p.iexExt(sn)) ∗ amount(m, sn)

(3.40)
Accordingly, we can compute the process-specific LCI of the unit process p and

the given waste material m as input as follows:

lciProcess specific : Punit × M → LCI
∀ p ∈ PAtomic, m ∈ M :
lciProcess specific(p, m) =∑
ef∈dom(p.pex)

ef 7→ valuepex(p.pex(ef)) ∗ amount(m, snpex(p.pex(ef))+∑
ep∈dom(p.pexExt)

Accumulate(ep) ∗ valuepex(p.pexExt(ep)) ∗ amount(m, snpex(p.pexExt(ep)))

(3.41)
Finally, we can calculate the characterized, normalized, and weighted LCIA for

the unit process based on the lciInput specific, lciProcess specific, or the total LCI, which is cal-
culated as lciTotal = lciInput specific + lciProcess specific.

3.2.3.2 Composite Process

We define composite processes, which can model waste systems, as follows:

pcomposite = (I, O, P, λ, sp, mf) (3.42)

Where:

• I and O are the sets of input and output ports.

• P is the set of parameters, where each parameter is a triple of (key, value, type).

• λ : (I 7→ M) × P 7→ (O 7→ M) is the output function that specifies how the
input materials are converted into the outputs.

• sp specifies the sub-processes of the composite process which can be unit or
composite processes. This parameter is defined as, sp : Id 9 Punit ∪ Pcomposite, a
partial function from the process identifiers to the unit or composite process.
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• mf specifies the material flows between these processes. mf is defined as, mf :
(ProcessId×PortId)∪I 9 (ProcessId×PortId)∪O, which is a partial function from
the source of the flows to the target of the flows. The source of the flows is either
a tuple of process and port identifiers or an input port of the composite process.
And the target of the flows is either a tuple of process and port identifiers or an
output port of the composite process.

Similar to the unit processes, LCI process specific and input specific of the com-
posite processes can be calculated as follows:

lciInput specific : Pcomposite × M → LCI
∀ p ∈ Pcomposite, m ∈ M :
lciInput specific(p, m) =

∑
sp’∈rng(p.sp)

lciInput specific(sp’, m)
(3.43)

lciProcess specific : Pcomposite × M → LCI
∀ p ∈ Pcomposite, m ∈ M :
lciProcess specific(p, m) =

∑
sp’∈rng(p.sp)

lciProcess specific(sp’, m)
(3.44)

And based on these calculations, we can calculate the characterized, normalized,
and weighted LCIA of the composite processes.

3.3 Modeling Paradigm for Waste Management

One of the important design decision in developing a programming or modeling
language is choosing a proper paradigm for the language being designed. For ex-
ample, we need to decide whether the language should be an object oriented pro-
gramming language such as Smalltalk or a functional programming language such
as Haskell. Accordingly, we need to choose a proper modeling paradigm for the
proposed domain-specific language in this thesis.

The nature of waste management systems require a modeling paradigm that sup-
ports flow and processes as the first-citizen classes. One of the most commonly used
modeling tools in process engineering to design industrial facilities, such as chem-
ical plants, natural gas processing plants, waste management plants is block flow
diagram (BFD). A BFD is a schematic representation of the overall system. It utilizes
block or rectangles to represent a unit operation or groups of unit operations and
represents the material transfers between the units as arrows [TS13].

Similarly, flow-based programming (FBP) decomposes a software system into a
set of processes and the flows between them. It models a system as a network of
processes which run asynchronously and exchange data across predefined ports (in-
puts and outputs). This paradigm is very well suited to waste management systems,
which can be understood as a network of waste processes exchanging waste. For ex-
ample, a BFD of a waste management system can be represented as a FBP network, in
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which the atomic processes of the network model unit processes and the connections
of the network represent the material flow between them.

Furthermore, evaluation aspects such as life cycle inventory (LCI), life cycle as-
sessment (LCA), or cost computations, which can help to analyze the sustainability
of waste management systems, can be understood as crosscutting concerns. Thus, in
this thesis, we extend the flow-based programming core with aspects and we propose
this paradigm as the modeling paradigm for waste management.

3.4 Summary

In this chapter, we gave a brief introduction to the key concepts of waste management
domain including the material flow analysis and life cycle assessment. We provided
the mathematical model of the waste management field to understand the domain
and avoid ambiguities in the specifications of its core concepts. This mathematical
model lays the foundation of the metamodel and the semantics domain of the desired
domain-specific modeling language. We also chose the proper modeling paradigm
for waste management domain.
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CHAPTER 4
Aspect Oriented Flow-based

Programming
In this chapter, we propose to apply aspect-oriented concepts as a complementary
mechanism to flow-based programming, and we show how this extension increases
the modularity for FBP. We use this extension as the modeling paradigm of the pro-
posed domain-specific language for waste management. We first introduce the key
concepts of aspect-oriented programming, and afterwards we present the shortcom-
ings of FBP with respect to cross-cutting concern modularization via some examples.
Finally, we present the design and implementation of aspect-oriented flow-based pro-
gramming (AOFBP), an aspect-oriented extension to FBP, and illustrate through ex-
amples how it solves the deficiencies mentioned above.

4.1 Flow-Based Programming

Flow-based programming (FBP) decomposes an expensive computation into a di-
rected graph with processing nodes that communicate via message passing. Each
processing node computes part of the main computation, and the edges between the
nodes represent data-flow dependencies between them. The arrival of data triggers
the computation in the node, and parallelism is realized when nodes can operate con-
currently. Processing nodes in the network are instances of components which are
either atomic or composites. The atomic components are defined using non-visual
languages and their instances can be connected in a sub-network to define a compos-
ite process. This helps FBP support a hierarchic structure of processes that reduce
the complexity in the network’s level and it provides encapsulation for process defi-
nitions [Mor10].

FBP not only improves the performance of the developed applications based on
this paradigm, but also their modularity. It can reduce the coupling between different
parts of the applications, by subdividing the computation into nodes of a graph that
communicate via message passing. This makes it easier to maintain and evolve each
part of the network independently, and also it serves as an essential first step toward
migrating such applications to run in a more distributed setting such as a cloud-based
environment.

FBP does not rely on providing any concrete syntax, rather, it indicates the fol-
lowing mandatory primitives:
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• Components: The components are the building blocks for creating a FBP ap-
plication. They are classes written in programming languages such as C++,
Java, C#,etc. that implement specific interfaces, e.g. input, output, parameters,
to support FBP protocols. They can also be defined as a network of the other
predefined components, in which case they are called network. For example, a
component with one input port and no output port can be defined to write the
input data into a specific file.

• Processes: The processes are instances of the FBP components which can be
connected and configured within a network. Therefore, they must be clearly
specified, through clarification of a component’s name and allocation of a unique
name for the processes. This way, the processes in the system can be distin-
guished from each other.

• Connections: The connections between processes in the program must be speci-
fied through connection declarations which generally include information such
as the names of the source and target processes (i.e. the names given in the pro-
cesses declarations) as well as the source port and the destination port. Each
process might have several ports, specified by the components, and every port
is attached to a single connection. The port’s name is a common name which
is referred by both the component and the network definition. The source port
and the destination port belong to the sending process and the receiving pro-
cess respectively.

• Configuration: The processes should be configured (i.e. parametrized) in ad-
vance. But this is not necessary for all processes. As an example, we can men-
tion a process which reads data sets from a file. For such a process, it is not
appropriate to hard code the file name in the component, since it requires to
modify the code for each different files. Instead, we obviously can parametrize
the component for the file name as a runtime input argument. We must also
note that FBP does not provide a separate mechanism to specify the configu-
ration parameters for the processes. Rather, the component designer should
specify what configuration parameters are expected by the component and ac-
cordingly for each of the parameters, the designer must define a single input
port in the component. Configuration statements are needed to get the values
of such parameters. In summary, configuration statements contain information
such as parameters values, the corresponding process name and the name of
the input ports which receives the parameters values.

As we already mentioned, FBP does not specify the concrete syntax for the afore-
mentioned primitives. But the FBP-based languages such as DFDM and JavaFBP can
provide specific syntax for those primitives. DFDM proposes a special FBP language
and JavaFBP implements the FBP’s primitives by using set of Java methods. FBP-
based languages can naturally support visual representation of the processes rather
than textual codes, since the processes and the connections of a FBP program can
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be interpreted as nodes and edges of a directed graph. In order to apply the FBP’s
primitives to a language, it is required to follow some rules and strict guidelines such
as following:

• An output port must be connected to only a single input port. It is not allowed
to connect an output port to multiple input ports (i.e. one-to-many connections
are not allowed).

• It is mandatory to make all the output ports connected, but this is not necessary
for the output ports which are declared as optional ports in the component’s
specifications.

• An input port might be unconnected.

• Multiple output ports are allowed to be connected to a single input port (i.e.
many-to-one connections are allowed).

Connecting the processes using the aforementioned FBP primitives might be called
a data-flow network. In fact, in such network of processes, the data flows from the
data sources to the data sinks through the intermediate processes .

As an example, we present a simple network of four processes in Figure 4.1, which
shows the main primitives of FBP networks. The rounded rectangles are instances of
processes that are defined in the process libraries either as component implemented
in specific languages or as composite processes defined by a sub-network of pro-
cesses. They are connected through their ports by means of connections that are
presented as directed solid lines in the network.

4.1.1 Hierarchical Network
In order to create data-flow networks, one possible approach is to use hierarchical de-
composition which means that we can build a component containing several other
components of which there is single or multiple instances of each nested in the main
component. In FBP terminology, such a main component is called a “subnet”. The
subnet’s ports are assigned to the ports of the nested components. The internal inter-
connections of a subnet are completely transparent to the external users (i.e. other
external normal or subnet components in the system). In fact, regardless of the sub-
components, a subnet component behaves like a normal component in the network.
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Figure 4.1: An FBP diagram including several processing nodes.
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4.1.2 Message Passing and Information Packet

In the FBP development approach, an application is viewed as a network of processes
that run asynchronously and communicate messages through named ports. In order
to do this, the API, generally provides statements for both receiving messages and
sending messages from input ports and to output ports respectively. Asynchronous
messaging means that the sender process does not wait to receive the sending mes-
sage in the input port of the target process. This has been done in FBP by implement-
ing bounded buffers in the input ports of the processes. Accordingly, the incoming
messages are buffered in the queues of the input ports and will wait to be processed
by the target’s API using the first-in-first-out (FIFO) order. The buffer’s capacity is
limited to queue a fixed number of messages or it is bounded by a fixed amount of
memory. Thus, the sender will be blocked when the the receiver’s buffer is full (i.e.
the sender must wait for the target’s process to perform a receive). On the other hand,
the receiver blocks when the buffer is empty. In fact, the receiver can proceed with
the processing of the incoming messages as long as data is available in the FIFO buffer.
Moreover, the processes can close their output ports in order to inform their receivers
that no more data is available. In response, when receiver’s buffer becomes empty, a
blocking receive statement returns and indicates the end of data. Furthermore, upon
terminating a process, all of its output ports will automatically be closed. This al-
lows the downstream processes to stop waiting to receive data from the terminated
process.

In FBP terminology, a message is described as an information packet (IP) where
the IP can be considered a container for a piece of information or a chunk of data. The
IP does not provide any prescription regarding the granularity of the data chunks or
permitted data types. However, the size of IPs impacts the overall performance of
the system in terms of parallel scheduling and communication overhead. For large
IPs (i.e. IPs containing many data), parallel scheduling might be infeasible. Rather, it
might result in a strictly sequential scheduling of serially connected processes. On the
other hand, smaller IPs (in relation to the overall data), facilitate parallel scheduling
of the processes with the cost of increasing the communication overhead.

We must note that IPs in data-flow networks cannot be lost. Upon creation of an
IP, it is owned by the corresponding process (i.e. the process which creates the IP).
The owner then makes a decision to pass the IP to another process through an output
port. Similarly in the receiver side, once an IP arrives at a destination, the receiver
process becomes the owner of the entered IP and consequently it will decide either to
process or dispose (i.e. dropping) the package. The dropping is also performed using
a special statement. Before terminating or deactivating a process, the process itself
automatically checks whether it still owns an IP or not and if the former happens, the
process issues either a warning or error message to the user (depending on the FBP’s
implementation strategy).

As we already discussed, the configuration can be provided by the process param-
etrization. For each process, the configuration data are expected to be received through
some specific ports of the process where a single IP containing the data for parame-
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ters is created and bound to each statement’s port. These type of IPs which indicate
the input parameters for the configuration statements are called initial information
packets (IIPs). The component will receive this information once at the beginning of
the program in those specific ports and afterwards these ports will automatically be
closed. We must also note that in the case that multiple output ports are connected
to a single input port, it is not feasible to determine how different streams of IPs will
be merged. But it can be guaranteed that the IPs of each stream in the queue will be
processed in FIFO order.

4.1.3 Scheduling
Depending on which processes in FBP program get scheduled, there are certain rules
which must be followed regardless of the underlying concurrency implementation.
The following are the possible states of each process at a time:

• The process is not initiated.

• The process is activated.

• The process is suspended on send.

• The process suspended on receive.

• The process is inactivated.

• The process is terminated.

All processes in a data-flow network begin with the “not initiated” state. The
“not initiated” state for each process changes to the “activated” state whenever the
process receives an entry in one of its input ports (note that this does not include
the IIP ports). For processes without input ports, this happens immediately (i.e. the
states automatically changes from “not initiated” to “activated”). When the state of a
process is “activated”, it means that the process is ready to run. It must also be taken
into account that the entry points for each process might be called eventually by the
driver.

We already discussed that when an input buffer is full it notifies the correspond-
ing output port of the sender process. As result that output port will be blocked until
the input buffer of the destination process becomes available. The output port of such
sending process can be blocked by changing the state of process to “suspended on
send”. This state again changes to “activated” and the process continues the execu-
tion whenever the connection’s buffer (i.e. the input buffer of the destination process)
provides available space for new messages. In a similar manner, when a receiver pro-
cess performs a receive on an empty connection (i.e. an empty input buffer), the pro-
cess’s state automatically changes to “suspended on receive”. It must also be taken
into account that process itself does not have a mechanism to check the emptiness of
the connection without performing a receive operation. Furthermore, processes do
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not have capability to wait for arriving data from any input port and receive IPs from
available connections (i.e. input ports with available IPs in the buffer).

The state of a process may change to either “terminated” or “deactivated” when-
ever the process leaves its component’s code by a return statement. The process termi-
nation happens when all input ports of the process are closed. The state “terminated”
is the final state of a process but in the state “inactivated”, the process still sees the
possibility to receive IPs in some of its input ports, its state can be changed again to
“activated”. However, for an inactivated process, if all its input ports get closed, the
processes will certainly terminate. Furthermore, a process may never be activated.
This happens when none of the input ports receive IPs. As an example of such a case,
we can mention a component which aims to count the number of arrived IPs. This
component might not receive any IPs in its input port and consequently it can per-
form nothing. But in such a case, the component should output zero as the result. In
most cases, it is desirable to activate processes at least once. Such components can be
specially configured with “must-run” attribute. So the scheduler knows the special
requirements of those components and activates them even if no IPs arrive in their
input ports.

4.2 Related Modeling Approaches to Flow-Based Programming

Flow-based programming (FBP) was first introduced in the early 1970s by J. Paul
Rodker Morrison [Mor78] and it has recently become an active topic again in com-
puting science [Mor10; IBM14; PyF14; DSP14; NoF14; Pyp14; ZHD15]. The term
“flow-based parallelism” is coined in [Che13; CJ13] after Morrison’s flow-based pro-
gramming [Mor10]. This encompasses different parallelism paradigms including
pipeline [TM04], wavefront [Anv+02], and event-based coordination [TM04]. In the
following sections, we explain in detail some of the most related models to FBP.

4.2.1 Kahn Process Networks
Kahn process networks (KPN) [KM76], proposed by Kahn and MacQueen, is a data-
network model containing a set of processes and connections among processes. Each
process may include several input and output ports in order to receive or send data.
However, FBP differs from KPN in some aspects such as following:

• Each output port is only permitted to connect to a single input port. Similarly,
each input port is only permitted to receive data from a single output port. This
results in a completely deterministic input-output behavior in KPN model since
(in contrast to FBP) the sequence of multiple data coming from different outputs
does not depend on timing.

• Unlike FBP, KPN provides concrete syntax. In fact in KPN, there is no sepa-
ration between the component definition language and the network definition
language. Unlike FBP, KPN does not intend to create components using dif-
ferent languages and use another different programming language to develop
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network connections among the components (i.e. a pure KPN program only
uses a single implementation language).

• Unlike FBP, KPN provides the capability to support dynamic reconfiguration
of running networks. For example, a KPN’s process can decide to replace itself
with another single or multiple new processes while the number and types of
ports can remain unchanged. Furthermore, a KPN’s process is even able to
dynamically remove itself.

• KPN differs from FBP in terms of scheduling strategy. FBP employs data-driven
scheduling while KPN uses demand-driven scheduling. In FBP data-driven ap-
proach: the data-source processes (i.e. the process without input ports) are ac-
tivated at the beginning. The processes with input ports are activated as soon
as they receive data in their input ports and the processes with input ports will
never get activated if they do not receive data and they are not declared with a
”must-run” attribute. The scheduling strategy in KPN is completely different.
The data-sink processes (i.e. processes without output ports) are activated at
the beginning. As soon as a data-sink process starts to perform a receive from
an input connection, the associated connection is marked as ”hungry” and con-
sequently, the related sender process becomes activated. The demand for data
is propagated through network until the sender processes can produce data.
This means that in demand-driven scheduling (in contrast to the data-driven
scheduling), a data source process might not be activated with the lack of de-
mand for its data.

KPN proposes the following two execution methods:

• Coroutine mode of execution (CME): In this method, processes are implemented
as coroutines. Lets assume that process B (a middle process) has been activated
through a hungry connection, linked to process A (a consumer process). The
activated processes (like process B) might perform receive operations in one
of their input ports. In such a case, for process B, the control is dynamically
transferred from the active process (process B) to the process associated with
the producing connection (process C, which is a producer process). As soon
as the producing process (process C) produces a datum on the connection, the
control is transferred back to the former process (process B). This means that
a consumer process (like process A) can receive the datum directly from the
producer process (like process C) without buffering data in middle processes
(like process B). The connection capacity in CME is zero while the minimum
connection capacity for FBP is one.

• Parallel mode of execution (PME): This method implements the processes based
on the real concurrency approaches such as operating system processes or multi-
thread parallel processing systems. This way allows the processes to be exe-
cuted in parallel instead of being interleaved. PME allows connection buffering.
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The producing processes can proceed with the data production as long as their
associated buffers have space for new data. The connection capacity in PME
is called ”anticipation coefficient”, since the producer processes anticipates the
amount of requested data items by the consumer processes. If the consumer
process does not request more data items, the data items are produced unavail-
ingly.

4.2.2 Pipes and Filters

Pipes and Filters (PAF) is an architectural pattern which was proposed by Shaw and
Garlan [SG96]. In PAF, a system is viewed as a graph of individual components,
which are interconnected through connectors that define communication rules among
these components. In PAF architecture, each component in the system has a set of
input and output ports. Components read data streams from their input ports and
then they can perform some analysis and transformation on the data. The compo-
nents finally send their processing results to their output ports. Using this way, each
component behaves like a data-filer which analyzes and changes the input data and
sends the modified data to the component’s output. Thus, components are called “Fil-
ters” and the connectors among the filters are called “Pipes” since the data streams
flow among the filters through connectors. We must also take into account that filters
typically do not share their states. This means that filters know nothing about each
other. PAF does not go into more detail to accommodate the proposed architecture
for a lot of systems. With respect to this, FBP can be considered as an instantiation of
PAF where connections are the pipes and processes are the filters. Furthermore, KPN
can also be considered as an equal match for the PAF. Thus, PAF might be considered
as a generic term/model for many other specific concepts.

4.2.3 Active Object

Active-object (AO) is a design pattern which is proposed by Lavender and Schmidt
[LS96]. The proposed pattern demonstrates how an asynchronous call method can
be implemented. It defines two main methods which are called “caller” and “callee”,
which run in different threads. When a method is invoked, it must immediately be
returned to the caller in other thread while the request is under process. In order to
prevent the client from being involved with complexity a proxy, containing available
methods, is provided. The proxy assigns the client’s request to a scheduler. The
scheduler, in turn, places the requests into a queue which is called “activation queue”.
The activation-queue is a bounded buffer containing the requests which are waiting
to be processed.

A scheduler in another thread retrieves the requests from the activation-queue
and carefully assigns a relevant “servant”, which includes the actual logic that is
requested to be performed. The processing results can be returned to the client using
an object called “future object”. On invocation of a method, the corresponding proxy
would be responsible to create and return the future-object to the client. In fact, the
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proxy sends a reference of the future-object along with the request to the servant. The
servant puts the results of the performed computation in the future-object which is
returned to the client by proxy. Finally, the client retrieve the computation results
from the future-object.

FBP and active-object models provide some similarities as follows:

• Active-objects are similar to FBP processes since AOs are executed in different
threads and each AO has its own local state.

• Proxies are similar to FBP’s output ports since they provide interfaces to the
AOs with non-blocking methods.

• Activation queues are similar to FBP’s connections since they contain bounded
buffers to maintain waiting requests.

However, AO differs from FBP mainly because of the servants’ behaviors The ser-
vants do not perform the receive operation. Rather, they get called by proxies when-
ever a request is available. Contrary to the meaning of a term of “active object”, AOs
show rather passive behaviors Furthermore, AO can be used to implement a concept
similar to FBP though considering active objects as processes and providing connec-
tions by using proxies. The resulted model can extend FBP by providing capability
to create more complex interactions among the processes through the definition of
proxy-based complex interfaces. However, this might increase the coupling degree
among the active objects.

4.2.4 Flow Model

Another related model is the flow-model (flowthing-model), which was introduced
by Al-Fedaghi [Fed08], and it has been used since in several applications, including
communication and engineering requirement analysis[Fed15; Fed09; FA14]. FM pro-
motes model-oriented methodology to flow-based paradigm. Unlike FBP that only
focuses on the flow of information, the major focus of FM is on conceptual movement
and states of things that are called “flowthings”. For example, people, goods, ideas,
data, information,etc. are flowthings, which move through spheres, e.g. places, orga-
nizations, machines, etc. The spheres are called “flowsystem” in FM, and they have
five stages in order to process a flowthing, which are; transfer (input, output), process,
creation, release, arrival, and acceptance. [Fed08]. These stages may have different
names according to different domains, e.g. in a raw material sphere a stage is called
transportation, while in an information sphere, the same stage may be called commu-
nication. These stages can be considered as input-process-output (IPO) model that
has been used in FBP. Unlike FBP, the FM opens the black boxes by decomposing
the flow-systems into several specific atomics and mutually exclusive compartments,
and it specifies flows within a system or a subsystem. FM refers to flow as the exclu-
sive transformation of a flowthing passing among these stages.
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4.3 Aspect-Oriented Programming

Cross-cutting concerns are features of a software system that do not fit the domi-
nant decomposition of the system into modules. For example, in traditional object-
oriented programming, we decompose the software system into a hierarchy of classes.
A cross-cutting concern is one which appears in a significant number of classes across
this hierarchy, e.g. security, logging. It has been hypothesized that for any suffi-
ciently large software system, no matter what dominant decomposition is chosen,
some concerns will cut across this decomposition [MMT04].

Aspect-oriented programming, introduced by Gregor Kiczales et al [Kic+97], is a
programming paradigm that focuses on these concerns. It aims to solve cross-cutting
problems by introducing the concept of separation of concerns across different mod-
ules in a software system, in which concerns can be implemented in a modular and
well-localized way. AOP solves this issue by introducing a new unit, which allows
the programmer to express these concerns in separate modules called aspects. An
aspect is a modular unit that implements a cross-cutting concern. It defines a behav-
ior called advice and a specification called pointcut that expresses when, where, and
how to invoke the advice. This specification specifies a set of well-defined places
in the structure or execution flow of a program where the advice can be invoked.
These places are called join points. Therefore, a pointcut allows us to execute behav-
ior at many places in a program by one expression. Although AOP has been mostly
applied to object-oriented programming paradigms, it can be applied to the other
programming paradigms as well [SVJ03; SDV06; Paw+01; CM07].

4.4 Cross-Cutting Problem in FBP

Flow-based programming, like any other programming paradigm, decomposes soft-
ware systems into processes. However there are concerns in software systems, which
do not fit in this dominant decomposition. In order to improve the modularity of
these concerns, we propose to extend FBP with aspect-oriented [Fil+04] approach
that introduces a set of new concepts and mechanisms to modularize cross-cutting
concerns. In Section 1.3, we showed that LCI computation of waste processes can not
be well modularized in FBP, to motivate the need for mechanisms for cross-cutting
modularity, we also present another example, which is well-known concern in AOP,
as follows.

4.4.1 Logging

Logging of program actions is one of the well-known cross-cutting concerns in AOP.
This is often useful when one wants to trace the execution of the processes on their
entry or exit points.

Figure 4.2(a) presents an application modeled as a composite process which has
three atomic processes; P1, P2, and P3 (P2 and P3 are child processes of the composite
process in the network). In order to add the logging concern to this application and
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log the entry points of the processes (e.g. the data arrived on the input ports of the
processes), a logging process should be added to the entry point of each process and
sub process in the application network. To this end, each atomic process P1, P2, and
P3 should be replaced by a composite processes. These composite processes have a
logging process and the related process in its network and are connected to the copy
of the process inputs. A logging process should also be added to the entry point of
each non-atomic process of the original network.

The extended version of the application, supporting this concern, is presented
in Figure 4.2(b). This shows that the implementation of the logging concern is scat-
tered among the processes, and that this concern cannot be modularized as a single
process.

a)

P2P1 P3

Log

P2

Log

P1

Log

P3

Log

b)

Log

Figure 4.2: Adding the logging concern to a FBP network.

4.5 Extending FBP with Aspect-Oriented Concepts

FBP does not provide mechanisms for modularizing cross-cutting concerns. This de-
ficiency leads to tangled and scattered process definitions. On the one hand, one pro-
cess addresses several concerns. On the other hand, the implementation of a single
concern is scattered through many places in the other process definitions. In this sec-
tion, we propose to apply aspect-oriented concepts as a complementary mechanism
to FBP and present the design and implementation of our aspect-oriented extension
to FBP, which we call aspect-oriented flow-based programming (AOFBP). In the fol-
lowing, we present the basic concepts of the AOFBP and we will elaborate on the join
point model, the pointcut language, and advice in AOFBP.

The separation of a concern makes it possible to modify its definition without
modifying all the compositions (independent extensibility) and also it helps to reuse
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the concern in other compositions as well. The main point here is not that the con-
cerns addressed in Section 4.4 should always be separated or they cannot be imple-
mented by the standard constructs of FBP, but more that their cross-cutting nature
requires new modularization mechanisms, which is not provided by FBP. Extending
FBP with these mechanisms helps process designers to make better design decisions
regarding what to consider as core processes and which cross-cutting concerns to
separate in well-modularized modules.

4.5.1 Join Point Model and Pointcut Language
In AOFBP, join points are atomic or composite processes in an FBP network which
can be modified by cross-cutting functionalities. Pointcuts are means to determine
the join points. The AOFBP pointcut designators allow one to select different types
of processes among different levels of process hierarchy in an FBP network as pre-
sented in Figure 4.3. In the following, we explain the different types of designators
supported by the pointcut language of AOFBP. We use the FBP network illustrated
in Figure 4.4 as an example to explain some of these designators. The grammar of
the pointcut language is presented in Grammar 4.1.

The attributes of a process have been used as predicates to choose relevant join
points. The procType designator is defined to refer to processes by matching their
component names. This designator takes a string argument, which allows the string
pattern to match the component’s name of the process. The isComposite designator is

P2P1 P3 P4 P5

aspect

A

pointcut

Figure 4.3: Join points in AOFBP are atomic or composite processes among the hier-
archy of FBP networks.

P3 : pt
P1: pre

P4 : foo
P5 : foo 

P2 : foo

Figure 4.4: An example of FBP networks.
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1 <PortDesignator> ::= inPort (<String>,<String>,<String>)
2 |outPort (<String> , <String> , <String>)
3 |port (<String> , <String> , <String>)
4 <LevelDesignator> ::= level (<String>)
5 <ContextDesignator> ::= child (<PointcutExp> , <String>)
6 |parent (<PointcutExp> , <String>)
7 <ConDesignator> ::= inCon (<PointcutExp> , <String>)
8 |outCon (<PointcutExp> , <String>)
9 <Designator> ::= procType (<String>)

10 |<PortDesignator>|<LevelDesignator>
11 |<ContextDesignator>|<ConDesignator>
12 <ParExpr> ::= (<PointcutExp>)
13 <UnNot> ::= ^<PointcutExp>
14 <BinAnd> ::= <PointcutExp> & <PointcutExp>
15 <BinOr> ::= <PointcutExp> `|' <PointcutExp>
16 <BinExpr> ::= <BinAnd>|<BinOr>
17 <PointcutExp> ::= <Designator>
18 |<Identifier>|<ParExpr>|<UnNot>|<BinExpr>

Grammar 4.1: The grammar to define pointcuts in AOFBP.

defined to select either composite processes or atomic processes only. For example,
procType("*foo") selects P2, P4, and P5 processes within the FBP network.

The pointcut language also provides means to query the input and output ports
of processes. Two designators, inPort and outPort, are provided for these purposes.
They accept three arguments, the first two are string patterns which match the name
and the type of the ports, the last argument provides constraint on the number of
ports that should match the first two patterns. For instance, inPort("*","*foo","2..*
"), matches those processes with at least two input ports with any name, but their
type name should end with “foo”. This selects a P4 process within the FBP network
provided that the type of its ports match ”*foo”. A more generic designator is defined
to provide constraint on process ports regardless of whether they are input or output
ports. This is called port and it has the same signatures as the other ports’ designators.

Querying processes based on their level in an FBP network are also supported
by the AOFBP pointcut language. This can be specified by using a level designator
which has one argument to match the desired level. This argument, which is the same
as the third argument of port designators, is a string pattern to define a range. The
value for this argument can be a number, a list of numbers separated by “,”, or a range
“min..max” (min and max can be either a number or the wildcard “*”). For example,
level("1..3"), specifies the processes which are located in the first top three levels of
process hierarchies. The top level is one in this sequence. The pointcuts can be com-
bined by operators such as the union “|”, intersect “&”, and “not” operators, to select
different types of processes. We call the combined pointcuts a pointcut expression.
For example, the following pointcut selects P2 and P4 processes which are located at
second level of the hierarchy within the FBP network and their component’s names
end with ”foo”.
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1 procType("*foo") & level("2..3")

Selecting processes based on their parent or their child processes is supported in
AOFBP by parent and child designators. They have two arguments; firstly, a pointcut
expression to specify the desired child or parent processes, secondly, the depth of the
search through a process hierarchy. Consequently, the pointcut language provides
a means to select processes based on the processes which are connected to them.
The inCon and outCon specify the processes connected to input or output ports of the
desired process. Similarly, they have two arguments. The first argument is a pointcut
expression to determine the desired connected processes and the second defines the
length of this connection in terms of the number of processes between these two
processes.

The following example specifies the processes that their component’s names end
with “foo”, they have two input ports, and they also have an incoming connection
with path length of two to four from the processes, which their component’s names
either end with “foo” or start with “pre”. This pointcut only selected P4 process
within the FBP network illustrated in Figure 4.4.

1 procType("*foo") & inPort("*","*","2") & inCon(procType("*foo") | procType("pre*") ,"
2..4")

The pointcuts always expose the selected processes as the context to the advice which
is defined for them. We explain advice in AOFBP in the following section.

4.5.2 Advice
The advice in AOFBP is either an atomic process or a composite process which is
executed at the join points specified by the desired pointcut. Modeling advice as
processes improves the reusability of advice. For example, the “Log” process pre-
sented in Figure 4.2 can be considered as advice. Therefore, it can be defined as an
FBP process which is an instance of an atomic FBP component (implemented in e.g.
C#) that writes all the data arriving on its input port into a particular file specified
by a parameter. This parameter can be set to the desired value for the advice pro-
cess. Therefore, instead of hard coding the file name within the implementation of
the component, the related parameter is initialized for the advice process.

Like most of the aspect-oriented languages, AOFBP also supports different types
of advice. Based on the execution order at join points, they can be categorized as
before, after, and around advice. For the before advice, the advice process is executed
before the process at the join point (the process selected by the pointcut). It has access
to all the input ports of the process. Similarly, for the after advice, the process will
be executed after the execution of the process at the join point and the advice only
has access to the process output ports. For the around advice, the process at the join
point will be executed instead of the process at the join point and the advice process
has access to both input and output ports of the process at the join point.
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In addition, AOFBP classifies advice based on their impact on the process at the
join point as follows:

• Observers Figure 4.5(a). This advice only observes the inputs and outputs of
the process and they do not have any impact on the input and output values and
behavior of the process. For instance, the logger example can be implemented
by this kind of advice.

• Adapters Figure 4.5(b). This advice can change the input and output values
of the process as well as its behavior. For example, for an around advice, the
process at the join point will be replaced by the process defined by the advice.
Therefore, the process should have the same ports as the process at the join
points. This allows us in the around advice to skip the execution of the process
at the join point or to resume the execution of the process by adding an instance
of the process to the advice network. In addition to observer advice, this advice
category can change the behavior of the process at the join point as well.

• Collectors Figure 4.5(c). This type of advice is only defined for composite pro-
cesses. Therefore, the related pointcut should target the composite processes
by having the isComposite designator in the pointcut expression. This advice
collects or aggregates the values of specific outputs from child processes (only
the top level) of the composite process. They can add one or several extra out-
put ports in order to return the result of this operation. It does not change the
behavior of the processes. Computing the LCI for the composite processes can
be defined by this kind of advice.

All types of AOFBP advice can add new input or output ports to the processes.
The only limitation is that they cannot remove any ports from the processes. Adding
a new input port to the process at the join point allows the advice to access more
information required to execute the advice. This provides the same thing that the
introduction rule does in AOP [Fil+04], which adds methods, properties, etc. to the
structures specified by the join points. Adding a new output to a process allows us
to support new computation aspects for the process at the join point without any
modification of that process. Removing ports from the processes, however, changes
the data flow of the network, which, at the moment, is not supported by AOFBP. The
effect of removing ports can be simulated by ignoring the input port of the advice
network by not connecting the port of the advice network to the internal processes
of the network.

4.5.3 Weaving
AOFBP utilizes a weaver to apply the cross-cutting concerns in FBP networks. In
FBP, the engine which determines when to execute a process in a network is called
the “Scheduler”. Processes in FBP have different run states. These are “not yet ini-
tiated”, “terminated”, “active”, and “inactive”. The weaver evaluates the registered
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Figure 4.5: a) Advice composition for observer. b) advice composition for adapter. c)
advice composition for collector.

pointcuts whenever the scheduler wants to execute a process which is not initiated
yet. If the process matches any of the desired pointcuts, the weaver will apply the
defined advice to the process.

This adaptation is done by replacing the process at hand (P ) with a composite
process as illustrated in Figure 4.5. For the observer advice, the process P will be
replaced by a composite process which forwards a copy of all the IPs transferring
through the input or output ports of the process (P ) to the (atomic or composite)
process defined for the related advice (A), cf. Figure 4.5(a). For an adapter advice,
process P will be replaced by a composite process where the advice process A will
be located before or after the process P , according to the type of the advice. If the
advice is the “around” advice, the composite process only contains the process “A”,
Figure 4.5(b,c). The weaver applies the “collector” advice differently. It will add the
advice process A to the context of the composite process at hand, and then it will
build up connections from all the desired output ports of the child processes to the
advice process, cf. Figure 4.5(d).

After building up the composite process which is going to replace the process at
hand, i.e. P , and reconnecting all the related connections, the weaver will delegate
the execution of the composite process to the scheduler of the FBP engine. This favors
reuse and makes the implementation of the weaver simpler and easier.

The weaver handles the aspect ordering and aspect interaction problems as well.
When several pieces of advice match the same process, the aspect weaver executes
them in the following order: adapters, observers, collectors. Since the adapters can
change the inputs and outputs of the process, they should be executed before the ob-
servers to make the changes visible to them. In the same way, adapters and observers
can add ports to the process. Therefore they should be executed earlier to prepare
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these ports for the collectors.
If pieces of advice with the same type share a join point, they are assumed to be

independent processes and execute concurrently. At the moment AOFBP does not
support dependencies between aspects. We intend to extend AOFBP with constructs
to support these types of dependencies.

4.6 Tool Support

AOFBP can be implemented as an extension for any FBP implementation such as
JavaFBP, C#FBP, CppFBP, etc. As proof of concept, we have implemented AOC#FBP
based on C#FBP to support the AOFBP concepts discussed in our work.

The architecture of AOC#FBP is presented in Figure 4.6. This architecture can be
reused for other FBP engines as well. The implementation extends an FBP scheduler
with an aspect weaver that builds a wrapper around the FBP scheduler. The sched-
uler calls the AOFBP weaver, whenever it is going to initiate a process, to check if
there are any advice that can be applied to the process at hand. To this end, it passes
the meta-data of the current process to the aspect weaver. The weaver examines all
the registered pointcuts to determine if there is any advice which should be applied
to the process. Since the process will be initiated only once during their runtime life
cycle, the adaptations will be applied only once to the process.

4.6.1 C#FBP
C#FBP, like other FBP implementations, provides the means to define an FBP appli-
cation. The main parts of the framework are Components, Networks, and the Scheduler.

AOFBP# Engine

Aspect files

Aspect files

AOFBP# Scheduler

AOFBP# 
Weaver

C#FBP 
Scheduler

C#FBP Components

C#

AOFBP#
Aspects

C#FBP
Networks

Aspect filesAspect files

Aspect files
Network 

files

C#FBP Engine

Figure 4.6: General architecture for AOFBP extensions.
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Example 15: A component for generating some data implemented in C#FBP.

1 [InPort("COUNT")]
2 [OutPort("OUT")]
3 public class GenerateTestData : Component
4 {
5 OutputPort _outport;
6 IInputPort _count;
7 public override void OpenPorts()
8 {
9 _outport = OpenOutput("OUT");

10 _count = OpenInput("COUNT");
11 }
12 public override void Execute()
13 {
14 Packet ctp = _count.Receive();
15 string param = ctp.Content.ToString();
16 Int32 ct = Int32.Parse(param);
17 Drop(ctp);
18 _count.Close();
19

20 for (int i = ct; i > 0; i--)
21 {
22 var packet_str = string.Format ("Simple Packet {0}",i);
23 Packet p = Create(packet_str);
24 _outport.Send(p);
25 }
26 }
27 }

Components are the atomic processes which can be instantiated in FBP networks.
To define a component in C#FBP, developers need to inherit a class from the Compo-
nent base class, which provides all the required interfaces (such as “execute”, “initial-
ize”, and “openPorts”) for a component, and implements the component behavior by
using the C# language. For instance, the implementation of two components called
“GenerateTestData” and “WriteText” are presented in Example 15 and 16. The first
component generates a certain number of packets specified by the packet received
for its input port called “COUNT”. The other component has an array of input ports
named “IN”, and it writes all the packet data received on these ports into a file spec-
ified by another packet received at an input port called “DESTINATION”.

In FBP, the components are the main ingredients of creating a network, and their
instances in a network are called “process”. In order to create a network in C#FBP, a
class should be derived from the Network base class, which provides all the required
interfaces, and the developers need to define the processes, connections, and the
ports of the network by overriding “Define” method of the base class. For example,
the network presented in Example 17 defines two processes to generate 60 packets
and write them to a file called “logfile.txt”.

Scheduler is responsible for executing the right processes at the right time. It can
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be considered as the FBP engine which takes care of the execution of the processes
in a network.

Example 16: A component for writing data into a file implemented in C#FBP.

1 [InPort("DESTINATION")]
2 [InPort("IN", arrayPort = true)]
3 public class WriteText : Component
4 {
5 IInputPort[] _inportArray;
6 IInputPort _destination;
7 public override void OpenPorts()
8 {
9 _inportArray = OpenInputArray("IN");

10 _destination = OpenInput("DESTINATION");
11 }
12 public override void Execute()
13 {
14 Packet wp = _destination.Receive();
15 if (wp == null || !(wp.Content is String))
16 FlowError.Complain("Destination is not specified: " + Name);
17 _destination.Close();
18 TextWriter tw = new StreamWriter(wp.Content as string);
19 Drop(wp);
20 int no = _inportArray.Length;
21 Packet p;
22 for (int i = 0; i < no; i++)
23 while ((p = _inportArray[i].Receive()) != null)
24 {
25 tw.WriteLine(p.Content);
26 Drop(p);
27 }
28 tw.Close();
29 }
30 }

Example 17: A simple FBP network implemented in C#FBP.

1 public class SimpleNetwork : Network
2 {
3 public override void Define()
4 {
5 Process ("Generate", typeof(GenerateTestData));
6 Process("Write", typeof(WriteText));
7 Connect(Process("Generate"), Port("OUT"), Process("Write"), Port("IN"));
8 Initialize ("60", Process ("Generate"), Port ("COUNT"));
9 Initialize ("logfile.txt", Process ("Write"), Port ("DESTINATION"));

10 }
11 }
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4.6.2 AOC#FBP
In order to support aspects in FBP, a base class for aspects has been defined. This class
provides all the required interfaces to define an aspect, such as advice and pointcuts.
The instances of this class will be loaded in the aspect repository of the AOFBP weaver.
The weaver will examine this repository to match the pointcuts of these aspects with
the meta-data of the current process.

In order to make the development of applications based on AOC#FBP easier for
the developers, a language has been implemented to describe networks and aspects.
As presented in Figure 4.6, the network and the aspect files which are defined by this
language will be compiled to the network and aspect objects that will be interpreted
by the C#FBP scheduler and the AOC#FBP weaver.

4.6.2.1 Defining Networks

The community working on Flow-based programming (FBP), flowbased.org [Com16],
have provided a standard language for easy graph definition of FBP networks. This
can help the developers and the users of the different FBP frameworks to collaborate
and share tools and best practices. In the same manner, we decide to use the same
language to specify the FBP networks. This language defines a network as a list of
connections which are separated by “;”. A connection defines a flow from a specific
port of a process expression to a specific port of another process expression. For ex-
ample, Generate()OUT -> IN Write() defines a connection between OUT port and IN ports
of the processes. A connection can also be defined to send data packets, such as con-
stant values and process attributes, to a specific port of a process or an output port
of the network. For example, 60 -> COUNT Generate () initializes the COUNT port of the
process with the value of 60. A process expression in a connection can be a process

1 <Attribute> ::= name |type |parent
2 <PortFilter> ::= in (<String> , <String>)
3 |out (<String> , <String>)
4 <PortCtor> ::= <Identifier> (<Type>)
5 <ProcRef> ::= <Identifier>()
6 <Param> ::= <Identifier> = <Value>
7 <ParamList> ::= <ParamList> , <Param> | <Param>
8 <ProcCtor> ::= <Identifier> (<ComponentID>)
9 |<Identifier> (<ComponentID> : <ParamList>)

10 <ProcExp> ::= <ProcRef> |<ProcCtor> |<Connection> |this
11 <Value> ::= <ProcExp> [<Attribute>] |<Number> |<String> |<Object>
12 <InExp> ::= <Identifier> <ProcExp> |<PortCtor>
13 <OutExp> ::= <ProcExp> <Identifier>
14 |<ProcExp> <PortFilter> |<PortCtor> |<Value>
15 <Connection> ::= <OutExp> -> <InExp>
16 <Network> ::= <Network> ; <Connection> | <Connection>
17 <NetworkDef> ::= network <ComponentID> <Network> end

Grammar 4.2: The grammar to define networks in AOFBP.
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constructor to instantiate a new instance of a component or it can be a process refer-
ence to refer to a process instance defined earlier. For instance, the network presented
in the Example 17 can be specified as follows:

1 network SimpleNetwork
2 60 -> COUNT Generate (GenerateTestData);
3 "logfile.txt" -> DESTINATION Write(WriteText);
4 Generate() OUT -> IN Write();
5 end

Furthermore, a connection can be used as a process expression to allow a cas-
cade definition of connections. For example, P1(Com1)Y -> Z P2(Com2)K -> R P3(Com3)
constructs three processes (P1, P2, P3) and connects their ports (Y, Z, K, R ) together
as P1()Y -> Z P2(), P2()K -> R P3(). A network can be defined as a sub-network (com-
posite component) by assigning it a unique identifier. New networks are created as
copies of this network by referring to this identifier. In order to support sub-network
definition, the language provides means to create input or output ports for the sub-
network as well. A port constructor, which takes the type of port, can be used alone
(without any process expression) on the left or right side of “->” or in a connection
statement to define input or output ports for the network. A specific identifier called
“this” is reserved to refer to the network instance and its meta-data. This identifier
can be used in order to refer to the attributes and input and output ports of the net-
work. A special construct called “PortFilter” has been defined to connect a set of
ports of a process (or the network by using “this” as process), which can be specified
based on the name and the type of the ports, to an array port [Mor10] of a process or
an output port of the network.

4.6.2.2 Defining Aspects

The aspect definition in AOC#FBP, includes specifying the pointcuts and the related
advice. The aspects can be defined by the syntax presented in Grammar 4.3. An as-

1 <NamedPortFilter> ::= <PortFilter> as <Identifier>
2 <PortFilterList> ::= <PortFilterList> , <NamedPortFilter> |<NamedPortFilter>
3 <AdviceType> ::= before |after |around
4 <Collector> ::= collector <Identifier> (<PortFilterList>) : <PointcutExp> <Network>

end
5 <Observer> ::= observer <Identifier> <AdviceType> : <PointcutExp> <Network> end
6 <Adapter> ::= adapter <Identifier> <AdviceType> : <PointcutExp> <Network> end
7 <AdviceDef> ::= <Observer>|<Adapter>|<Collector>
8 <PointCutDef> ::= pointcut <Identifier> : <PointcutExp>
9 <Statement> ::= <PointCutDef>|<AdviceDef>

10 <StatementList> ::= <StatementList> ; <Statement> |<Statement>
11 <Aspect> ::= aspect <Identifier> <StatementList> end

Grammar 4.3: The grammar to define aspects in AOFBP.
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pect consists of a set of statements. Each statement can be either a pointcut or advice
definition. A pointcut can be expressed by using the pointcut language defined by
Grammar 4.1, which supports all the designators proposed for AOFBP. An advice
can be defined by three constructs provided by the grammar.

Observer and adapter advice share the same syntax, except the keywords at the
beginning of the advice definition. They can be defined by an identifier, advice type
(before, after and around), a pointcut, and advice body, which is a network and can be
specified by the syntax presented at Grammar 4.2. The collector advice has a different
syntax than the others, and it can be defined by an identifier, a pointcut, the advice
body, and a list of “PortFilter” constructs. This list specifies the set of the ports of the
child processes that are collected by the advice.

In the following example, a pointcut called p1 has been defined explicitly in the
aspect body and it can be referenced in the desired advice. An adapter advice called
a1 has been defined to be applied before the pointcut p1. As presented in the exam-
ple, the advice defines a network by using the AOFBP network language and it will
replace the processes specified by the pointcut, in the defined network.

1 aspect aspect_1
2 pointcut p1: procType("*foo") & ^isComposite ;
3 adapter a1 before : p1
4 this X -> Y P1() Z -> X this;
5 end;
6 end

The advice uses “this” to refer to the process exposed by the pointcut. “this X”
and “X this” refers to the input port of the process at hand which is called “X” and
the output port of the process which is called “X” as well.

AOFBP advice can access different ports of the captured process based on their
type (before, after, and around). The before advice can only access the input ports of
the process. Their input and output ports have the same name and type as the input
ports of the process. The after advice can only access the output ports of the process.
Its input and output ports have the same name and type as the output ports of the
process. The around advice has the same ports as the exposed process.

4.7 Examples

4.7.1 Costing
The following example adds the costing feature as an aspect to waste processes. The
pointcut p1 identifies all the processes in the network. Observer advice is defined
in order to be applied to the atomic processes, and it introduces a new input and
output port for the processes. The input port is called “unitcost” and it has the data
type of “real”, and the output port is called “totalcost”, which has the same data type.
The advice defines a network with one process of type “costing”, and it connects the
new input port (unit cost) and all the waste input ports of the process to the costing
component. This component calculates the total cost of running the process based on
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the amount of waste and the unit cost. The output port of the component is connected
to a new output port called “totalcost”. This advice will calculate the running cost of
the atomic waste processes in the network. To calculate the total cost of the network,
a collector advice has been used in the aspect, which only applies to the composite
processes. This advice connects all the output ports of the child processes, which
are called “totalcost” and their type is “real”, to the array input port (“values”) of an
instance of a component called “aggregation”. This component accumulates the total
cost of the child processes and as a result, it calculates the total cost of the composite
processes. The result is passed to the output port called “totalcost”. Since the output
port has the same name as the port which will be collected by the advice, the advice
recursively calculates the total cost of the whole network.

1 aspect costing_aspect
2 pointcut p1: inPort("*","waste","1..*");
3 observer process_cost () before : p1 & ^isComposite
4 unitcost (real) -> UC CP(costing);
5 this in("*","waste") -> WASTE_IN CP();
6 CP() total -> totalcost (real)
7 end;
8 collector composite_cost(out("totalcost","real") as cost_array): p1 & isComposite
9 cost_array -> values AP(aggregation);

10 AP() result -> totalcost (real)
11 end
12 end

4.7.2 Logging

The logging aspect has been implemented in AOFBP as follows:
1 aspect logging
2 pointcut all_processes: procType("*");
3 observer logger before: all_processes
4 this in("*","*") -> arguments L(Logger : name= this [name], type= this [type])
5 end
6 end

In this implementation, a pointcut called “all_processes” has been defined to spec-
ify the processes that should be logged. The pointcut selects all the processes regard-
less what name and type they have or at which level in the network they are located.
An observer advice has been defined to be applied to the processes exposed by the
pointcut. The advice utilizes a component called “Logger” to log the information.
The component has two arguments “name” and “type”, which specify the name and
type of the process to be logged, and it also has one input port array called “argu-
ments”. This is provided in order to log all the values of the input ports of the pro-
cess. The advice defines a network by constructing an instance of the component
and providing the process name and type as the initialization parameters. Finally, it
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connects all the input ports of the exposed processes to the array port of the process
called “arguments”.

Whenever a process that matches the pointcut is to be initialized, the advice will
create an instance of the logger component and initialize it with the proper param-
eters and connections. The logger component logs the information as soon as the
arguments port receives data.

4.7.3 Life Cycle Assessment

The life cycle assessment for waste management processes has been implemented
as an aspect in AOFBP. In order to calculate the LCI of a waste scenario, the LCI
of each atomic process is calculated first. Afterwards, the total LCI of the scenario
is calculated by accumulating the LCI of these atomic processes. To this end, two
different types of advice have been proposed.

The first type of advice is an observer which calculates the LCI of the atomic pro-
cesses. The advice defines a network with a process instance of a component called
“LCIComponent”. This component computes the LCI of a process based on the name
and type of the process and the amount of waste. The component loads the infor-
mation regarding the elementary exchanges and the emissions to the environment
of the process from an XML file by using the name and type of process as the key.
Based on this information, it calculates the LCI of the process for the specific amount
of waste which is provided through the array input port called “WASTE_IN”. The
LCI component sends the result to an output port called “LCI”. The advice creates
a new instance of the component and initializes it with the name and type of the ex-
posed process. It then connects all the waste input ports of the exposed process to
the “WASTE_IN” port. As a result, it forwards the LCI computation from the LCI
port of the component to an newly created port called “LCI”.

1 aspect LCI
2 pointcut p: inPort("*","waste","1..*");
3 observer process_LCI () before : p & ^isComposite
4 this in("*","waste") -> WASTE_IN LCI_process( LCIComponent: p_name= this [name],

p_type = this [type]);
5 LCI_process() LCI -> LCI (LCI)
6 end;
7 collector composite_LCI(out("LCI","LCI") as inventory): p & isComposite
8 inventory -> values AP(aggregation);
9 AP() result -> LCI (LCI)

10 end
11 end

The other advice is a collector which calculates the total LCI of a composite pro-
cess. The advice collects the values of the LCI output ports of its child processes and
uses an aggregation component to accumulate the LCI values. Since it forwards the
results to a newly created output port called “LCI”, the advice will calculate recur-
sively the LCI of the whole waste scenario.
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4.8 Summary

In this chapter we addressed the cross-cutting concerns in FBP by providing some ex-
amples. Separation of concerns in FBP helps to improve the modularity and maintain-
ability of FBP applications. To this end, we proposed an aspect-oriented approach to
FBP called AOFBP to support aspect-oriented concepts in FBP.

We used the AspectJ approach to model join points in AOFBP because processes
in an FBP network are atomic processes which have predefined interfaces (type, input
ports, output ports). Unlike the method signatures in AspectJ, they are more stable.
While this can reduce join point fragility [GK01], it does not help with type checking
and aspect modularity. Therefore, we also considered newer approaches such as join
point types and join point interfaces [ITB11]. However, we found two difficulties:
The first is selecting the desired child processes and their ports within a composite
process for the collector advice. This creates a dependency from aspects to pointcuts.
The second is that AOFBP advice can modify the interface of the process at the join
points and it also can have effects on the pointcuts. Furthermore, it makes static type
checking difficult as well. These challenges in AOFBP will be addressed in future
work.

Based on a language to describe AOFBP networks and aspects as well, we pre-
sented a generic architecture for developing AOFBP extensions based on any FBP
framework. As a prototype we developed AOC#FBP as an extension for C#FBP.

Although several FBP extensions (e.g. JavaFBP, C#FBP) are available to imple-
ment an FBP application in different programming languages (e.g. Java, C#), the
existing AOP extensions such as AspectJ are not the right tools to address the cross-
cutting concerns in FBP. On the one hand, if the FBP developers use the existing
AOP languages (like AspectJ), they have to define the join points and the advice for
the specific FBP scheduler. This creates a tight dependency between the FBP appli-
cation and the FBP extension, which is in contrast to language-independence and
modularity of FBP. On the other hand, advice in AOFBP are not function calls, but
FBP processes, which run asynchronously. Therefore, the weaver initializes the ad-
vice processes (connections and ports) in the join points. Furthermore, FBP models
applications at a higher level of abstraction and the separation of concerns should be
addressed at the same level.
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CHAPTER 5
Domain-Specific Flow-based

Languages
In this chapter, we introduce the concept of domain-specific flow-based languages
(DSFBL) which allow domain experts to use flow-based languages adapted to a par-
ticular problem domain. We also propose a metamodeling framework that can be
used to develop these languages. As we discussed earlier, the domain-specific lan-
guage for modeling waste management can be considered a DSFBL, and it can be
specified based on the metamodeling language introduced in this chapter.

5.1 Domain-Specific Flow-Based Languages

In Section 4.1, we introduced flow-based languages [Mor10; CJ13], e.g. Pypes [Pyp14],
NoFlo [NoF14], DSPatch [DSP14], which utilize two types of models in order to define
an application; atomic processes and composite processes. Atomic processes are de-
fined using general-purpose languages (GPL) such as Java, C++, C#, while composite
processes are defined by connecting the instances of atomic or composite processes.
The atomic and composite processes are stored in the process library. An applica-
tion is defined as a composite process. Additionally, these languages use a language
with well-known semantics to describe and execute the composite processes. This
language is also generic and does not have any domain knowledge. Based on these
definitions, although a software developer can develop a set of atomic process li-
braries for a specific domain for domain experts, these libraries can not be considered
a DSL due to the following reasons: Firstly, it is challenging for domain experts to
use GPL to define an atomic process. Secondly, although the language for express-
ing the composite processes or applications has a simple syntax that can be used by
domain experts, it does not provide any validation or verification of the composition
of the processes in a network. This makes the debugging and the maintenance of
the application more difficult, especially when the number of the processes in the
network increase.

To address these issues, we introduce domain-specific flow-based languages that,
on one hand, allow domain experts to define atomic processes by themselves, and on
the other hand, provide a mechanism with which to validate the composite processes
according to a specific domain. The definition of these languages is given as follows:

DSFBL = ⟨Amm, Acs, AS , Tmm, Cmm, Ccs, CS⟩ (5.1)
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Where:

• Amm is the metamodel of the DSL to be used by domain experts to design
atomic processes.

• AS is the behavioral specification, or semantics, of the DSL given by Amm.

• Acs is the concrete syntax of the DSL and is conforming to the metamodel given
by Amm. The concrete syntax can be graphical or textual.

• Cmm is the metamodel of the composite language. In this thesis, we use the
composite language of AOFBP presented in the Chapter 4.

• CS defines the semantics of the composite language.

• Ccs is the concrete syntax of the composite language.

• Tmm is the metamodel of a constraint language which defines the domain on-
tology and constraints of the atomic and composites processes.

In DSFBLs, a DSL i.e. a triple (Amm, Acs, As), is used instead of a GPL to define
atomic processes. The DSL designer defines the syntax and semantics of this DSL
and the domain experts use this language to define the atomic processes.

A second language i.e. Tmm, also designed by the designer of the DSL, is used to
express the domain constraints on atomic and composite process definitions. In this
thesis, we use a simple declarative language that, on one hand classifies all the dif-
ferent types of processes that exist in the domain, and on the other hand, defines the
requirements and constraints of each process type. A process type can be considered
an abstract definition of a process which defines inputs, outputs, and the parame-
ters of the process, plus the composition constraint for these process types i.e. the
process cannot be carried out before, after, or within other processes. Each atomic
or composite process in the process library should be associated with a process type.
This means that the process realizes the associated process type in the domain and
it should be validated according to the requirements and constraints of the process
type. If two processes (composite or atomic) are associated with the same process
type, this means that these processes are equivalent and that they can be exchanged.

We use the syntax and the computation model of AOFBP as the composite lan-
guage Cmm and its semantics CS . This makes it easier for the DSFBLs’ designers
to modularize any cross-cutting concerns within the language. To this end, this the-
sis provides a formal specification of AOFBP and we utilize this specification in the
given framework. We use ForSpec to specify the metamodel, structural and behav-
ioral semantics of AOFBP.

In the following sections we describe a metamodeling language and a systematic
approach for designing and developing DSFBLs.
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5.2 Metamodeling Framework

Figure 5.1 presents the set of metamodels which are used in the proposed framework
for specifying DSFBLs as an UML diagram. These metamodels are domain neutral
and they should be extended by the DSL designer in order to be tailored to a specific
domain. In the following, we give an overview of each metamodel, and then we
provide the syntax, the structural and behavioral semantics of the metamodels in
ForSpec.
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Figure 5.1: The metamodel for specifying domain-specific flow-based languages.
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At the core of the framework, there is a package called “DSFBLCore”. This pack-
age provides the set of DesignElements required to design a DSFBL. An abstract meta-
model called Component is used to represent the component model. This element
has a set of ModelElement which are InPort and OutPort, and parameter definitions
(ParameterDef ) to describe the interface of the component models. Additionally, it
has a reference to a ComponentClassifier which classifies the component model, i.e. by
associating the model to a particular type of processes in a domain. Ports and param-
eter definitions have a reference to DataType which is an abstract element for defining
the required data-types for the models. Component and DataType elements are the ex-
tension points of the metamodel and they provide means to incorporate different
domains within the framework. We provide parameter definitions as primitive and
composite data types. PrimitiveParameter is proposed to define parameters with prim-
itive data types, e.g. string, integer, etc. and DataTableParameter is proposed to define
a two-dimensional list structure, where each item of the list has a list of named values
called DataColumn. We called these structures DataTables and DataColumns since the
domain experts are more familiar with these terms.

A package called “DSFBLNetwork” contains the metamodel of the integration
language which supports hierarchical composition of the atomic or composite mod-
els. As presented in the UML diagram, we extend the composite language from the
core language. In this metamodel, a Network is defined as an extension of Compo-
nent. Therefore, it has the set of ports and parameter definitions we described earlier.
Additionally, it has a set of Process and Connection elements classified as NetworkEle-
ments. Processes are the computational nodes of the network and they are the proxy
models of the components. They specify a unique name and parameter values of the
components within a network. Tool support is required to generate a proper process
as a proxy of a component. The InChannels, OutChannels, and Parameters of a process
should correspond to the InPorts, OutPorts, and ParameterDef s of the referenced com-
ponent. Channels are ports that are associated with the processes of a network or the
network itself. They uniquely specify the ports of a network. Connections are model
elements that provide message passing from an OutChannel to an InChannel.

The third package called “DSFBLConstraint” contains a metamodel for classify-
ing the different kind of processes of the given domain. This provides a declarative
language to specify the structural requirements and the topological validation rules
of a certain process in the domain. A classifier called DomainProcessType is proposed
to define a process type within the domain. This has a set of StructuralConstraint and
TopologicalConstraint. There are three kinds of structural constraints; HasPort specifies
that the process should have a certain port, HasParameter expresses that the process
should have a certain parameter, HasMorePort specifies that the ports of the process
are not limited to the ports which are specified by means of HasPort constraints. The
topological rules can be specified by means of four constraints. IsBefore and IsAfter
constraints are defined to specify the execution order of the given process according
to the other processes. Include and Exclude constraints, which are only applicable to
the composite processes, define constraints that a certain process should be included
in or excluded from the child processes of the given composite process. The domain
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process types can inherit from another domain process type. This provides a mech-
anism to inherit the constraints defined for another process type, as well as allowing
the classification of the components in the component library.

The last package called “DSFBLAspect” contains the metamodel of a simplified
version of the aspect-oriented language introduced in the last chapter (AOFBP). This
language provides mechanisms to specify the cross-cutting concerns in the FBP net-
work in a modular way. An element called Aspect extends DesignElement from the
core language. This allows us to modularize the cross-cutting concerns, i.e. life cy-
cle assessment, which are common in the different domains. Each aspect has a set
of advice that can be specified by Advice element. As we showed in the last chapter,
there are three kinds of advice in AOFBP and all are supported in this metamodel by
means of Observer, Adapter, and Collector elements. The first two advice, have an ad-
vice type which can be one of the following; Before, After and Around. The last advice
has a set of PortFilter that allow us to select the desired ports to stream data from and
should be transferred to the collector advice. Additionally, each advice has a point-
cut that specifies the join-points. In this metamodel we choose to consider Component
and DomainProcessType as join-point interfaces, thereby we specify the pointcut by a
set of ComponentDesignator and DomainProcessDesignator. Each advice has a Process
which should be replaced by the process at the join point.

In the following section, we provide the concrete syntax and the formal specifica-
tion for the structural and behavioral semantics of the metamodels presented above.

5.3 Concrete Syntax

In this section, we define the concrete syntax of the proposed metamodels for spec-
ifying DSFBL within our integrated framework as presented in Section 2.8. To this
end, we define a DSL definition diagram for each metamodel. As we discussed in
Section 2.8, our integrated framework transfers the specification of the metamodel
described in the DSL definition diagram to the ForSpec specification and generates
the related domain for the abstract syntax of the DSL in the ForSpec file. Addition-
ally, it generates code for the domain classes to provide a mechanism to transfer the
model instances of the metamodel to model specifications in ForSpec.

DSL Tools provides DSLLibrary projects to share a set of domain classes with the
other DSL projects. This helps us to implement the proposed framework presented
in this chapter in a modular way. Therefore, we define the metamodel of the core lan-
guage as a DSLLibrary project to provide the base domain classes for the languages
which extend DSFBLCore metamodel. The DSL definition for the metamodel is pre-
sented in Figure 5.2. This library should be imported into the DSL project of the
other languages e.g. network language, to define the concrete syntax for the lan-
guage. Since this language is abstract, we do not associate any notation to the model
elements of this language.

We import this library into the DSL project for the network language and we ex-
tend the domain classes according to the DSFBLNetwork metamodel. Finally, as
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Figure 5.2: DSL definition of the DSFBLCore in MS DSL Tools.
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Figure 5.3: DSL definition of the DSFBLNetwork MS DSL Tools.
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Table 5.1: Graphical notations for specifying the network language.

Notation Description

InPort

OutPort

Process

Process with
parameters

Process input
port

Process output
port

Connection

Figure 5.4: An example of a network specified with the concrete syntax.
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Figure 5.5: DSL definition of the DSFBLConstraint in MS DSL Tools.
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Table 5.2: Graphical notations for specifying the domain process types.

Notation Description

A domain process type with
constraints on the input ports,
output ports, and parameters

Inherit, e.g. ProcessType B
inherits from Process Type A.

Include, e.g. ProcessType B
must include ProcessType A.

Exclude, e.g. ProcessType B
must not contain ProcessType A.

Is after, e.g. ProcessType B must
be performed before

ProcessType A.

Is before, e.g. ProcessType B
must be performed after

ProcessType A.

presented in Figure 5.3, we map the domain classes to the shape classes in order to
provide the concrete syntax for the language. Table 5.1 presents the graphical no-
tations for specifying the network models. An example of using this notation in a
waste process diagram is presented in Figure 5.4.

We specify the concrete syntax of the constraint language in the same approach.
The DSL definition of the language is presented in Figure 5.5. This describes the
metamodel of the language within DSL tools and provides mapping between the
elements of the metamodel and the elements of the diagram. Table 5.2 presents the
graphical notation of the constraint language, and Figure 5.6 illustrates an instance
of this language.

Since graphical notions are not a good choice to specify the aspects due to the com-
plexity of this language, we decided to use the concrete syntax which we proposed
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Figure 5.6: An example of specifying domain process types with the concrete syntax.

for AOFBP in Chapter 4.
To present the structural and behavioral semantics of the metamodels, we need to

specify the abstract syntax of the metamodels in ForSpec. This can be done automat-
ically within our integrated framework presented in Section 2.8. We map each meta-
model presented in this chapter to a domain with the same name in ForSpec. The
translated ForSpec specifications of these metamodels are presented in Appendix B.
The ForSpec specifications presented, in the following sections, for the structural and
behavioral semantics of these languages are based on these specifications.

5.4 Structural Semantics

The structural semantics of a language can be given by providing a set of validation
rules in the domain. To this end, we define a domain which includes a set of data
types for specifying the validation rules. This data type can be included in other
domains to provide the structural semantics of the given language. We provide the
mechanism to show the facts of this domain as the validation results of the given
model to the modeler within the integrated framework.

domain Validation
{
ResourceKey ::= new (key: String, url: String).
Message ::= String + ResourceKey.
Error ::= new (element: Data, message: Message).
Warning ::= new (element: Data, message: Message).
ValidationResult ::= Error + Warning.

}

The domain contains two data types called Error and Warning to specify the valida-
tion result. Finding anError makes the validation fail, while Warning are considered
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alerts. Both data types have the arguments of model and message. The first argument
refers to the element of the model which is subjected to the validation result and
the second argument provides a description of this validation. The description can
be given by either a string or by providing a resource key within a resource dictio-
nary file. This provides the means to localize the validation messages for different
domains by using different resource files.

5.4.1 DSFBLCore
The structural semantics of this metamodel are given by providing the rules to check
that the named elements, such as Component, Port, ComponentClassifer, have a unique
name. The following specifications can verify this:

...
Validate the components.

Error (X, "The component should have a unique name") :-
X is Component,
Y is Component,
X != Y, X.name = Y.name.

Validate the classifiers.

Error (X, "The classifier should have a unique name") :-
X is ComponentClassifier,
Y is ComponentClassifier,
X != Y, X.name = Y.name.

Validate the ports.

Error (X, "The port should have a unique name") :-
Component (_, elements, _),
X← elements, Y← elements,
X: Port, Y: Port, X != Y, X.name = Y.name.

Validate the parameters.

Error (X, "The parameter should have a unique name") :-
Component (_, elements, _),
X← elements, Y← elements,
X: ParameterDef, Y: ParameterDef, X != Y, X.name = Y.name.
...

}

Since we use String data types for specifying the name of the references to DataType
and ComponentClassifier elements, we therefore need to validate these reference names
by matching these elements with the given names.

...
Validate the component’s classifier.

Error (X, "The component should have a valid classifier") :-
X is Component,
no ComponentClassifier (X.classifier).
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Validate the data type of ports.

Error (port, "The port should have a valid data type") :-
Component (_, elements, _),
port← elements, port: Port,
type = rflFindType (port.datatype),
type != Nil,
rflIsSubtype(type, DataType) = FALSE

; Component (_, elements, _),
port← elements, port: Port,
rflFindType (port.datatype) = Nil.

Validate the data type of parameters.

Error (param, "The parameter should have a valid data type") :-
Component (_, elements, _),
param← elements, param: PrimitiveParameter,
type = rflFindType (param.type),
type != Nil, rflIsSubtype(type, DataType) = FALSE

; Component (_, elements, _),
param← elements, param: PrimitiveParameter,
rflFindType (param.type) = Nil.

; Component (_, elements, _),
param← elements, param: DataTableParameter,
datacolumn← param.columns,
type = rflFindType (datacolumn.type),
type != Nil, rflIsSubtype(type, DataType) = FALSE

; Component (_, elements, _),
param← elements, param: DataTableParameter,
datacolumn← param.columns,
rflFindType (datacolumn.type) = Nil.

Validate the data columns of the data tables.

Error (param, "The data table should have unique data-columns") :-
Component (_, elements, _),
param← elements, param: DataTableParameter,
datacolumn← param.columns,
datacolumn' <- param.columns,
datacolumn.name = datacolumn'.name,
datacolumn != datacolumn'.

conforms no Error (_, _).
}

In the above specification, the built-in reflection functions rflFindType and rflIsSub-
type are used to validate the data type associated with the ports and the parameter
definitions. The first function returns a data type associated with the given name.
If a data type with the given name is not defined in the domain, it returns Nil. The
second function specifies whether the first given data type is a subtype of the second
data type or not. At the end of the domain we use conforms to determine that the
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model can not contain any Error fact.

5.4.2 DSFBLNetwork
We apply the same approach for specifying the structural semantics of the “DSF-
BLNetwork”. The following rules define the well-formedness of a network model.
Each process in a network should have a unique name:

Error (X, "The process should have a unique name") :-
Network (_, _, _, elements),
X← elements, Y← elements,
X: Process, Y: Process, X != Y, X.name = Y.name.

The component names referenced by the processes of a network should exist
within the components of the model:

Error (process, "The process has an invalid Component") :-
Network (_, _, _, elements),
process← elements, process: Process,
no Component (process.component, _, _).

The parameters of a process in a network should correspond to the parameters
defined for the component which is referenced by the process:

Error (process, "The process has an invalid parameter") :-
Network (_, _, _, elements),
process← elements, process: Process,
param← process.parameters,
Component (process.component, com_elements, _),
no {e | e← com_elements, e: ParameterDef, e.name = param.name}.

The following rules validate the well-formedness of the connection elements of
the model. The source and target channels of each connection should refer to a valid
process name if they are not associated with the network itself:

Error (conn, "The connection has invalid process") :-
Network (_, _, _, elements),
conn← elements, conn: Connection,
conn.source.process != Nil,
no {e | e← elements, e: Process, e.name = conn.source.process}.

; Network (_, _, _, elements),
conn← elements, conn: Connection,
conn.target.process != Nil,
no {e | e← elements, e: Process, e.name = conn.target.process}.

The ports of the channels associated with the processes must match the defined
ports of the corresponding component associated to the process:
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Error (conn, "The connection has invalid port") :-
Network (_, _, _, elements),
conn← elements, conn: Connection,
conn.source.process != Nil,
process← elements, process: Process,
process.name = conn.source.process,
Component (process.component, com_elements, _),
no {e | e← com_elements, e: OutPort, e.name = conn.source.port}

; Network (_, _, _, elements),
conn← elements, conn: Connection,
conn.target.process != Nil,
process← elements, process: Process,
process.name = conn.target.process,
Component (process.component, com_elements, _),
no {e | e← com_elements, e: InPort, e.name = conn.target.port}.

The ports of the channels associated with a network must match the defined ports
of the network:

Error (conn, "The connection has invalid port") :-
Network (_, com_elements, _, net_elements),
conn← net_elements, conn: Connection,
conn.source.process = Nil,
no {e | e← com_elements, e: InPort, e.name = conn.source.port}

; Network (_, com_elements, _, net_elements),
conn← net_elements, conn: Connection,
conn.target.process = Nil,
no {e | e← com_elements, e: OutPort, e.name = conn.target.port}

The ports associated with the source and target channels of a connection should
have a same data type. In order to validate this, we first need to define the following
function in order to determine the type of a port associated to a channel:

ChannelDataType ::= [Network, Channel ⇒ String].
ChannelDataType (network, channel) ⇒ (type) :-
channel.process = Nil,
port← network.elements, port: Port,
port.name = channel.port, type= port.type

; channel.process != Nil,
process← network.networkelements, process: Process,
process.name = channel.process,
Component (process.component, com_elements, _),
port← com_elements, port: Port,
port.name = channel.port, type= port.type.

Then we use this function to match the data type of the source and target channels
of each connection in a network:
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Error (conn, "The data type of source and target of the connection are not
compatible") :-
net is Network,
conn← net.networkelements, conn: Connection,
ChannelDataType (net, conn.source) ⇒ (source_type),
ChannelDataType (net, conn.target) ⇒ (target_type),
source_type != target_type.

Finally, we check that the model should not have any fact of type Error.

5.4.3 DSFBLConstraint

We apply the same approach to specify the structural semantics of the “DSFBLCon-
straint”. The following rules specify the well-formedness of this language. Each
DomainProcessType should have a unique name in the model:

Error (X, "The domain process type should have a unique name.") :-
X is DomainProcessType, Y is DomainProcessType,
X.name = Y.name, X != Y.

The naming reference to the base DomainProcessType should be valid:

Error (X, "The basetype of the domain process type does not exist.") :-
X is DomainProcessType, X.basetype != Nil,
no DomainProcessType (X.basetype, _, _).

DomainProcessTypes are not allowed to inherit from themselves:

Error (X, "The domain process type has an invalid basetype.") :-
X is DomainProcessType, X.name = X.basetype.

In order to validate the well-formedness of the constraints defined for a Domain-
ProcessType, we need to define the semantic rules for inheritance in this language.
Informally we can define the semantic as follows; If a DomainProcessType called X in-
herits from a DomainProcessType called Y, then X should enforce the same constraints
as its base type Y. To formalize this rule in ForSpec, we define a composite type
called ProcessTypeHasConstraint which assigns a DomainProcessConstraint to a refer-
ence name of type DomainProcessType:

ProcessTypeHasConstraint ::= new (String, DomainProcessConstraint).

For each DomainProcessType, we add all of the constraints which are defined for
the DomainProcessType:
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ProcessTypeHasConstraint (typename, constraint) :-
DomainProcessType (typename, constraints, _),
constraint← constraints.

If a DomainProcessType is inherited from another DomainProcessType, then we as-
sign all the constraints which are defined for the base type to the derived type as
well:

ProcessTypeHasConstraint (typename, constraint) :-
ProcessTypeHasConstraint (basetype, constraint),
DomainProcessType (typename, _, basetype).

If the base type itself is derived from another DomainProcessType, then we assign
all the constraints which are defined for this base type to the derived type, i.e. if X is
inherited from Y and Y is inherited from Z, then we assign the constraints of Z to X
as well:

ProcessTypeHasConstraint (typename, constraint) :-
DomainProcessType (typename, _, basetype),
DomainProcessType (basetype, _, basetype'),
ProcessTypeHasConstraint (basetype', constraint).

On the basis of these rules of inheriting the constraints, we define two auxiliary
rules IsPrior and IsPosterior:

IsPrior ::=new (String, String).
IsPosterior ::=new (String, String).

IsPrior (X, Y) means that X should be done before Y, and IsPosterior (X, Y) means
that X should be done after Y. We use these rules to define the well-formedness of
IsBefore and IsAfter constraints. To this end, for each IsBefore constraint assigned to
each DomainProcessType we generate IsPrior fact as follows:

IsPrior (X, Y) :-
ProcessTypeHasConstraint (X, IsBefore (Y,_)).

We also know that; if X should be done before Y; Y should be done before Z; then
X should be done before Z as well:

IsPrior (X, Z) :-
IsPrior (X,Y),
IsPrior (Y,Z).

We define the same rules for IsAfter constraint as follows:
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IsPosterior (X,Y) :-
ProcessTypeHasConstraint (X, IsAfter (Y,_)).

IsPosterior (X,Z) :-
IsPosterior (X,Y),
IsPosterior (Y,Z).

We also define another auxiliary rule called IsDependent in order to define the
well-formedness rules for Include and Exclude constraints. We write IsDependent (X,
Y) if the process of type X includes the process of type Y. This can also be extended
as; if the process of type X includes the process of type Y, and the process of type
Y includes the process of type Z, then the process of type X includes the process of
type Z as well. Therefore we can define the following rules:

IsDependent ::=new (String, String).
IsDependent (X, Y) :-

ProcessTypeHasConstraint (X, Include (Y,_)).
IsDependent (X, Z) :-

IsDependent (X, Y),
IsDependent (Y, Z).

Based on these rules, we define the well-formedness of the TopologicalConstraints
as follows:

Error (X, "The domain process type has an invalid topological constraint.")
:-

IsPrior (X, X)
; IsPosterior (X, X)
; IsPrior (X, Y), IsPosterior (X, Y)
; IsDependent (X, X)
; ProcessTypeHasConstraint (X, Exclude (X,_))
; IsDependent (X, Y),

ProcessTypeHasConstraint (X, Exclude (Y,_)).

The well-formedness of the StructuralConstraints should also be done by validat-
ing the well-formedness of Ports and ParameterDef s. This can be done using the same
method we presented for “DSFBLCore”, therefore we omit these specifications for
reasons of brevity.

5.4.4 DSFBLAspect
We apply the same approach to specify the structural semantics of the “DSFBLAspect”.
The following rules specify the structural semantics of this language. Each Aspect de-
fined in the model should have a unique name:

Error (X, "The aspect should have a unique name.") :-
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X is Aspect, Y is Aspect,
X.name = Y.name, X != Y.

Each Advice should have a unique name among of the advice defined for an As-
pect.

Error (advice, "The advice has a duplicated name.") :-
Aspect (_, advicelist),
advice← advicelist, advice' <- advicelist,
advice.name = advice'.name, advice != advice'.

The pointcut associated with the advice should have valid specifications.

Error (advice, "The advice has an invalid pointcut.") :-
Aspect (_, advicelist), advice← advicelist,
advice.pointcut.name = "", advice.pointcut.type = "".

The point filters associated to a Collector should have a valid specifications.

Error (advice, "The collector has an invalid port filter.") :-
Aspect (_, advicelist), advice← advicelist, advice: Collector,
portfilter← advice.portfilters,
portfilter.name = "", portfilter.type = "".

We also need to validate the well-formedness of the Process that is associated to
each advice. This can be done as we presented for the “DSFBLNetwork” domain.

5.5 Behavioral Semantics

In this section, we provide the behavioral semantic specifications of the proposed
metamodels in our framework. To this end, we first specify the behavioral semantics
of “DSFBLCore” and “DSFBLNetwork”and afterwards, we provide the behavioral
semantic specifications of “DSFBLAspec” and “DSFBLConstraint”.

5.5.1 DSFBLCore
Components are reactive systems that produce outputs once they receive data on
their input channels. A component can be in one of the following states at any
time; not-started, active, inactive, terminated, suspended-on-send,or suspended-on-
receive. It starts in the not-started state, which means that the component is not ini-
tialized yet, and it requires initialization once it is activated. As soon as a data-packet
arrives at any input port of a component, its state changes to active, which means the
component is ready to execute. This means that the entry point of the component
will be triggered by the scheduler. If a component does not have any input ports,
then its state changes to active immediately. After the component leaves its entry
point, its state may change to either inactive or terminated. Inactive means that the
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Figure 5.7: The run-time models of DSFBLCore and DSFBLNetwork.

component is done with execution and it can be activated again once new data ar-
rives on its input ports. If a component is in an inactive state and all of its input ports
are closed, then its state will change to terminated. This means that it can not be acti-
vated anymore. When an output channel of a component is full, and the component
sends more data to this channel, its state changes to the suspended-on-send state. It
will remain in the same state until the channel receives more data. In the same man-
ner, the state of a component will change to suspend-on-receive if the component is
demanding to receive data on an empty channel.

In our framework, the communication between a component with its channels
is done through a set of IOActions. This helps to abstract away the complexity of
handling the connection related issues, i.e. the channel’s capacity constraints from
the component and delegate it to the scheduler. Furthermore, it allows extending the
communication between the scheduler and the components by introducing a new
type of actions, i.e. time-related actions. We can formalize IOAction and its related
data types as the following domain:

domain DSFBLIO
{
IOActionList ::= new list<IOAction>.
IOAction ::= DataAction + ClosePort.
DataAction ::= Read + Write + Drop.
ClosePort ::= new (portid: String).
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Read ::= (portid: String, data: DataPacket).
Write ::= new (portid: String, data: DataPacket).
Drop ::= new (portid: String, data:DataPacket).
DataPacket ::= (data: Data, type: String).
DataPacketList ::= list <DataPacket>.

}

As presented in Figure 5.7, IOAction data type is defined in a package called “DSF-
BLIO”. There are two type of IOActions which are ClosePort and DataActions. A com-
ponent can receive or send a ClosePort action. It receives this action when one of its
input ports should be closed and it sends this action when one of its output ports
should be closed. If a port is closed, it can not receive or send data. DataActions are
Read, Write, and Drop actions. A component receives a Read action for each DataPacket
available in the buffer of the related input channels, and it can send Write and Drop
actions to write a DataPacket to its output channels, or remove a DataPacket from its
input channels.

In order to define the behavioral semantics of the components, we must first for-
malize the execution environment of the components, and then we provide the mech-
anisms to map a component from the design time environment to the execution en-
vironment. Afterwards, we provide the mechanism to trigger the entry point of a
component.

The execution environment of components is presented in Figure 5.7. An abstract
class called ComponentState is used to specify the execution environment. This is com-
prised of a reference to the corresponding component, a PrimaryState and a set of
StateVars including ParameterValues, and an instance name to store the actual status
of a component. Instance-id is an auto-generated unique identifier that specifies this
particular instance of the component. StateVars are the dynamic structures of the
component which need to be stored. The PrimaryState indicates the execution state
of the component as we discussed earlier. We can formalize the execution environ-
ment as the following data types:

domain DSFBLCoreRuntime extends DSFBLCore, DSFBLIO
{
Environment ::= ComponentState.
ComponentState :;= new (instanceid: String, component: Component,

primary_state: PrimaryState,
statevars: StateVarList + {Nil}).

PrimaryState ::= { NotStarted, Active, Inactive,
Suspended_on_receive, Suspended_on_send, Terminated}.

StateVarList ::= list <StateVar>.
StateVar ::= ParameterValue.
ParameterValue ::= new (name: String, Value: DataObj).
ParameterValueList ::= list <ParameterValue>.

}
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As we mentioned earlier, the only components in a network that will be activated
are the ones that either receive data on their input ports or do not have any input
ports. Therefore, there are some components which will never be activated and, con-
sequently, initializing these components is useless. Thereby, we instantiate the com-
ponents first and we only initialize them when they need to be activated. To this end,
we define the following functions:

Instantiate ::= [Component, ParameterValueList + {Nil} ⇒ Environment].
Initialize ::= [Environment ⇒ Environment].
Execute ::= [Environment, IOActionList + {Nil}, Integer
⇒ Environment, IOActionList + {Nil}, Integer].

UpdatePrimaryState ::= [ComponentState, PrimaryState ⇒ ComponentState].

Instantiate function maps a design time element of Component to a run-time ele-
ment of Environment. This function only instantiates the given component by gen-
erating a unique Instance-id and returns it within an initialized environment. This
function does not load the component. The Initialize function maps an initialized en-
vironment which only contains instantiation information, e.g. instance-id, to other
environments which contain the information of the component in the initialized state.
This function loads the component by initializing all the elements of the component.
The function called UpdatePrimaryState updates the primary state of a component.
Execute is the function that specifies the entry point of a component. When the com-
ponent is in the active state, the scheduler will call this function. This function has
three input arguments which are types of Environment, IOActionList, and Integer. The
first parameter specifies the current state of the component at which it can be the ini-
tialized environment generated by calling the Initialize function or the environment
produced by the last call to this function. The second argument specifies a list of IOAc-
tions generated according to the current state of the input channels of the component,
and the last arguments indicate the activation-id. Since a component can be activated
multiple times, in order to distinguish the different execution traces of the execution
function, we assign a unique id to each execution. The function as output returns:
the updated state of the component, a list of IOActions that should be applied on the
input channels or output channels of the component, and the activation-id which
should be the same as the activation-id given as the input argument.

The FBP scheduler calls the Execute function of the component to produce the out-
puts. The function does not have direct access to the channels. Instead, it receives and
generates actions to be applied to the channels. This allows the component to gen-
erate as many actions as required each time it gets activated and the scheduler even-
tually applies these actions to the channels by considering the capacity constraint of
the bounded channels.

In the following, as an example, we specify the behavioral semantics of a compo-
nent which later on we use to specify the behavioral semantics of DSFBLAspect. This
component, called FlowOperator, provides support for merging and splitting the flow
of a network. In the Network language, we do not allow a channel to participate in
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more than one connection, therefore an explicit component FlowOperator should be
used for splitting or merging data-flows in a network. We especially need this to
weave the processes associated with the observer and collector advice. The UML
diagram of this component is presented in Figure 5.7. This component has a Flow-
OperatorType which specify the type of operation on the flow which are Split, Merge,
and MergeAll. Split and merge operators are used to split and merge the flow. The
difference between Merge and MergeAll is; the former produces outputs as soon as
any of its input ports receive data, while the latter generates the outputs when all
the input ports receive data. The following functions specify the instantiation and
initialization of the component:

Instantiate (operator, params) ⇒ (env) :-
operator: FlowOperator,
instance_no = count ({ X | Instantiate (X, _, _), X: FlowOperator }),
instanceid = strJoin (operator.name, instance_no),
env = FlowOperatorState (instanceid, operator, NotStarted, Nil).

The component is initialized by changing the primary state of the component to
Active.

Initialize (env) ⇒ (env') :-
env: FlowOperatorState,
env' = FlowOperatorState (env.instanceid, env.operator, Active, Nil).

The Execute function formalize the execution rules for FlowOperator component as
follows:

Execute (env, in_actions, actid) ⇒ (env', out_actions, actid) :-
Execution rules for Split operator.

env: FlowOperatorState,
env.component.type = Split,
GenerateActions (env, in_actions) ⇒ (out_actions),
UpdatePrimaryState (env, Inactive) ⇒ (env')

Execution rules for Merge operator.

; env: FlowOperatorState,
env.component.type = Merge,
GenerateActions (env, in_actions) ⇒ (out_actions),
UpdatePrimaryState (env, Inactive) ⇒ (env')

Execution rules for MergeAll operator, when data is missing for some of its input ports.

; env: FlowOperatorState,
env.component.type = MergeAll,
no {port | port← env.component.elements, port:InPort,
port.name /∈ in_actions[portid]},
GenerateActions (env, in_actions) ⇒ (out_actions),
UpdatePrimaryState (env, Inactive) ⇒ (env')
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Execution rules for MergeAll operator, when all of its input ports have data.

; env: FlowOperatorState,
env.component.type = MergeAll,
count ({port | port← env.component.elements, port:InPort,
port.name /∈ in_actions[portid]}) > 0 ,
out_actions = Nil,
UpdatePrimaryState (env, Suspended_on_receive) ⇒ (env').

The execute function generates the output actions for the output ports of the com-
ponent by calling the GenerateActions function, and afterwards changes the primary
state of the component to Inactive.

GenerateActions ::= [FlowOperatorState, IOActionList ⇒ IOActionList].
GenerateActions (env, in_actions) ⇒ (out_actions) :-

out_actions = toList (IOActionList, Nil,
{Write (port.name, act.data)| act← in_actions, act: Read,
port← env.component.elements, port:OutPort} union
{Drop (act.name, act.data)| act← in_actions, act: Read} union,
{Close (port.name)| act← in_actions, act: Close,
port← env.component.elements, port:OutPort}).

5.5.2 DSFBLNetwork
In this section, we provide the behavioral semantics of a Network according to the
runtime protocol implemented for the C# implementation of FBP (C#FBP). For rea-
sons of brevity, we only provide the important parts of the specifications here. The
complete specifications can be found in Appendix B.2. As presented in Figure 5.7,
we extend the execution environment of a Network from the execution environment
of Component. A NetworkState is representation of a Network in run-time environment.
This extends ComponentState with two more state variables which are ConnectionState
and ProcessState. These are necessary to store the run-time environment of a network.
ProcessState is used to store the execution state of the processes of a network within
a ComponentState. ConnectionState is used to store the state of the connections of the
network. This stores the state of its channels by utilizing twoChannelStates. Each
ChannelState is comprised of the following; a buffer, which is a FIFO list to store the
data packets arriving in the associated channel, a referencing name for the associ-
ated port called portid, the instanceid of the process associated with the channel, and
capacity to specify the buffer’s size of the channel.

In the previous section, we provided three abstract functions to specify the op-
erational semantics of the components in our framework. Since we extend Network
from Component, in order to specify the operational semantics for networks, we need
to specify the operational rules for these functions as follows:

Instantiate (component, params) ⇒ (env) :-
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component: Network,
statevars = params,
net_instance_no = count ({ X | Instantiate (X, _, _), X: Network }),
instanceid = strJoin (component.name, net_instance_no),
env = NetworkState (instanceid, component, NotStarted, statevars).

In order to instantiate a network, we first need to generate an instance id by con-
catenating the component name and the number of times that the Instantiate func-
tion has been triggered for components of type Network. Afterwards, we construct a
NetworkState as the initial environment with the following arguments; the generated
instance-id, the given component, NotStarted as the primary state, and the list of the
given parameter’s values as the state variables.

We initialize a network by initializing the processes and connections of the net-
work. To this end, first, we initialize the network processes by calling IntializeProcesses
function. Afterwards, we initialize the network’s connections by utilizing a function
called IntializeConnections. At the end, we generate a new NetworkState as the updated
environment and we set the primary state of the network to Active. We specify this
function as follows:

Initialize (env) ⇒ (env''') :-
env: NetworkState,
IntializeProcesses (env) ⇒ (env'),
IntializeConnections (env') ⇒ (env''),
env''' = NetworkState (env.instanceid, env.component, Active,

env''.statevars).

After we map the design-time elements of the network language to the elements
of the execution environment, we are ready to specify the big-steps and the small-
steps of the behavioral semantics for the network language. To this end, we specify
the execution rules for Execute function for the network language as three big-steps.
Firstly, we apply the input IOActions to the associated input channels of the network.
This maps the given execution environment env to an updated environment env’. Af-
terwards, we call the ExecuteProcesses function which maps the updated environment
env’ to the final environment env”. This executes the network through several small-
step execution rules and it ends when there are no more active processes in the net-
work. Finally, we call a function called WriteActions to generate the output actions
according to the state of the input and output channels of the network.

We formalize the Execute function as follows and we specify the other functions
afterwards:

Execute (env, in_actions, actid) ⇒ (env'', out_actions, actid) :-
env: NetworkState,

Read the input actions and load the data on the input ports of the network.

LoadActions (env, in_actions) ⇒ (env'),
Execute the processes in the network, until all input channels are empty.

ExecuteProcesses (env', actid) ⇒ (env''),
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Convert the output channels of the network to IOAction list as the output.

WriteActions (env'', in_actions) ⇒ (out_actions).

We utilize LoadActions function to load the input data to the input channels of
the network. To this end, we iterate the connections of the network and we apply
the given input actions to the network input channels. Finally, we update the envi-
ronment with the updated channels. After loading the data into the input channels
of the network, the connections of the network should be executed to transfer the
data-packets from the source channels to the target channels of the connections. This
activates the processes connected to the target channels. The next step is to execute
these active processes and update their output channels accordingly. This can be
done by repeating these steps. ExecuteProcesses formalizes these rules as a big-step,
which maps the updated environment from the last step to the final environment
of executing the network. This function calls itself until no more processes can be
executed. It also uses a new activation id for each execution trace. We specify this
function as follows:

ExecuteProcesses ::= [NetworkState, Integer ⇒ NetworkState, Integer].
ExecuteProcesses (env, actid) ⇒ (env''', actid) :-

Execute the connection of the network.

ExecuteConnections (env) ⇒ (env'),
Extracts the active processes in the network.

active_processes = toList(ProcessStateList, Nil,
{proc_state | proc_state← env'.statevars,
proc_state: ProcessState,
proc_state.primary_state = Active}),

Verifies if there are any active process in the network.

active_processes != Nil,
Execute the active processes.

ExecuteActiveProcesses (active_processes, env', actid)
⇒ (env'', actid),

Repeat these steps with the updated environment.

ExecuteProcesses (env'', new_actid)
⇒ (env''', new_actid),
new_actid = actid+1

; active_processes = toList(ProcessStateList, Nil,
{proc_state | proc_state← env.statevars,
proc_state: ProcessState,
proc_state.primary_state = Active}),
active_processes = Nil,
UpdatePrimaryState (env, Inactive) ⇒ (env''').

ExecuteConnections formalize the execution rules for the connections of a network
as two small-steps which are propagating the connections and updating the process
states of the network.
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ExecuteConnections ::= [NetworkState ⇒ NetworkState].
ExecuteConnections (env) ⇒ (env'') :-

PropagateConnections (env) ⇒ (env'),
UpdateProcessStates (env') ⇒ (env'').

PropagateConnections propagates each connection in the given network by transfer-
ring the data-packets from the source channels to the target channels of the connec-
tion and it returns the updated environment. After propagating the connections, we
need to update the state of the network’s processes. To this end, we update the state
of each process by calling UpdateProcessState which updates the state of the network
processes according to the following rules:

• If the state of the process is NotStarted and the buffer of at least one of its input
channels is not empty, initialize the process.

• If the state of the process is Inactive and the buffer of at least one of its input
channels is not empty, update the process state to Active.

• If the state of the process is Suspended_on_receive and the buffer of at least one
of its input channels is not empty, update the process state to Active.

• If the process has unconsumed data-packets on at least one of its output chan-
nels, update the process state to Suspended_on_send.

• If the state of the process is Suspended_on_send and the process has no uncon-
sumed data-packets on all of its output channels, update the process state to
Active.

• If all the input channels of the process are closed, update the process state to
Terminated.

• Otherwise, keep the state of the process.

ExecuteActiveProcesses executes a list of active processes and returns the updated
environment. We can execute a process within four small-steps; generating the in-
put actions based on the current state of the input channels of the process, calling
the Execute function for the component associated to the process to obtain the out-
put actions, update the network environment with the updated state of the process,
and finally updating the process channels by applying the output actions and ob-
taining the updated execution environment. ExecuteProcess formalizes these rules as
follows:

ExecuteProcess ::= [ NetworkState, ProcessState, Integer
⇒ NetworkState, Integer].
ExecuteProcess (env, proc_state, actid) ⇒ (env'', actid) :-

Generate the IO actions based on the state of the process input channels.

GenerateActions (env, proc_state.state.instanceid)
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⇒ (in_actions),
Execute the process.

Execute (proc_state.state, in_actions, actid)
⇒ (state', out_actions, actid),

Update the environment

UpdateStateVar (env, proc_state.state, state')
⇒ (env'),

Apply the outputs to the channels.

ApplyActions (env', proc_state.state.instanceid, out_actions)
⇒ (env'').

GenerateActions function generates a list of IOAction based on the state of the in-
put channels of the process with the given instance-id of the given environment. This
function is called before executing an active process within a network. This generates
a Read action for each data-packet available in the buffer of the input channel associ-
ated to the process. It also generates Close action for any input channels of the process
which are in close state.

GenerateActions ::= [NetworkState, String ⇒ IOActionList + {Nil}].
GenerateActions (env, instid) ⇒ (actions) :-

actions = toList(IOActionList, Nil,
{act | conn← env.statevars, conn: ConnectionState,
conn.out.procid = instid,
packet← conn.out.buffer,
act = Read (conn.out.portid, packet)} union
{act | conn← env.statevars, conn: ConnectionState,
conn.out.procid = instid,
conn.out.is_closed = TRUE,
act = Close (conn.out.portid)}).

ApplyActions function updates the environment by applying the list of the given
actions on the channels associated to a process with the given instance-id. This func-
tion is called after executing an active process within a network. The function utilizes
another function called UpdateChannel for applying the IOActions on the buffer of the
related channels as follows:

UpdateChannel ::= [ChannelState, String, IOActionList ⇒ ChannelState].
UpdateChannel
(ChannelState (proc_id, portid, buffer, isclosed), instid, actions)
⇒ ( ChannelState (proc_id, portid, buffer', isclosed)) :-

If the channels are not empty, the updated buffer of the channel will be calculated
by appending the data-packet associated to each Write action in the action list, to the
list of the data-packets available in the channel’s buffer, excluding the data-packets
associated to the Drop actions in the action list.
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new_datapackets= toList (DataPacketList, Nil,
{act.data | act← actions, act: Write, act.portid = portid}),
current_datapackets= toList (DataPacketList, Nil,
{data | data← buffer, not isin(Drop (portid, data), actions)}),
buffer'= append (current_datapackets, new_datapackets),
proc_id = instid, buffer != Nil, actions != Nil

If the channels are empty, the updated buffer of the channel will be calculated
by inserting the data-packet associated to each Write action in the action list into the
channel’s buffer.

; buffer'= toList (DataPacketList, Nil,
{act.data | act← actions, act: Write, act.portid = portid }),
proc_id = instid, buffer = Nil, actions != Nil

If the given process instance-id does not match the instance id associated to the
channel, no update will be required.

; buffer' = buffer, proc_id != instid

WriteActions function generates a list of IOAction which is the output of the execu-
tion of the given network. Therefore, it generates three kinds of IOActions as follows:

WriteActions ::= [NetworkState, IOActionList ⇒ IOActionList + {Nil}].
WriteActions (env, in_actions) ⇒ (actions) :-

For each data-packet available in the buffer of the network’s output channels, gen-
erate a Write action:

actions = toList(IOActionList, Nil,
{act | conn← env.statevars, conn: ConnectionState,
conn.out.procid = env.instanceid,
packet← conn.out.buffer,
act = Write (conn.out.portid, packet)} union

For each output channel of the network which is in closed state, generate a Close
action:

{act | conn← env.statevars, conn: ConnectionState,
conn.out.procid = env.instanceid,
conn.out.is_closed = TRUE,
act = Close (conn.out.portid)} union

For each data-packet which is associated to the Read actions within the given input
actions, but not available in the buffer of the network’s input channels, generate a
Drop action:
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{act | act' <- in_actions, act':Read,
no {conn | conn← env.statevars, conn: ConnectionState,
conn.in.procid = env.instanceid, isin (act'.data, conn.in.buffer)},
act = Drop (act'.portid, act'.data)}).

5.5.3 DSFBLAspect
In Section 4.5.3, we informally described the behavioral semantic of AOFBP. In this
section, we specify the operational semantics of the aspect language in ForSpec. To
this end, we define a domain called “DSFBLAspectRuntime”, and we extend it from
“DSFBLNetworkRuntime”,“DSFBLAspect” as follows:

domain DSFBLAspectRuntime extends DSFBLNetworkRuntime, DSFBLAspect
{

Define datatype to specify the runtime state of the process at the join point.

JoinPointEnvironment ::= new (Environment).
StateVar += JoinPointEnvironment.

Component to define split, merge operator within a network.

FlowOperatorType ::= {Split, MergeAll, Merge}.
FlowOperator ::= new (name: String, elements: ModelElementList,

classifier: String + {Nil}, type: FlowOperatorType).
Component += FlowOperator.

Define the runtime datatypes required to execute the flow operators.

FlowOperatorState ::= new (instanceid: String, component: FlowOperator,
primary_state: PrimaryState, statevars: StateVarList + {Nil}).

ComponentState += FlowOperatorState.

As presented in Figure 5.7, we introduce a data type called JoinPointEnvironment
to specify the execution environment of the join point process. This allows an advice
to have read-only access to the data of the join point process. As we explained in
Section 4.5.3, AOFBP utilizes a dynamic weaver to apply the cross-cutting concerns
in FBP networks. The dynamic weaver modifies the in-memory representation of
the network inside the engine. The AOFBP weaver evaluates the registered pointcuts
whenever the scheduler wants to execute a process which has not been initiated yet.
Therefore, in this section we override the Initialize function defined for initializing a
network in “DSFBLNetworkRuntime” domain. We apply the aspects to a network in
two steps. First we apply the aspects to the processes of the network, afterward we
apply the aspects to the network itself. We apply the first steps during instantiation
of the network’s processes as follows:

InstantiateProcess ::= [Process ⇒ ProcessState].
InstantiateProcess (process) ⇒ (process_state) :-

component is Component, component.name = process.component,
params = toList(ParameterValueList, Nil,
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{ParameterValue (param.name, param.value)
| param← process.parameters }),
Instantiate (component, params) ⇒ (env),
ApplyAspects (env, env'),
process_state = ProcessState (process.name, env').

We call a function called ApplyAspect at the end of the process of network’s initial-
ization as follows:

Initialize ::= [Environment ⇒ Environment].
Initialize (env) ⇒ (env'''') :-

env: DSFBLAspect.NetworkState,
IntializeProcesses (env) ⇒ (env'),
IntializeConnections (env') ⇒ (env''),
UpdatePrimaryState (env'', Active) ⇒ (env''')
ApplyAspects (env''', env'''').

We formalize the execution rules of the dynamic weaver of AOFBP as ApplyAspects
function. We first try to match the given process with the associated pointcut of the
advice defined within the aspects. If we find any match, we would weave the advice
at the join point.

ApplyAspects ::= [Environment ⇒ Environment].
ApplyAspects (env) ⇒ (env') :-

MatchJoinpoint (env) ⇒ (advice_list),
advice_list != Nil,
Weave (env, advice_list) ⇒ (env')

If no advice found, then we would return the same environment.

; MatchJoinpoint (env) ⇒ (Nil),
env' = env.

We formalize the pointcut matching rules with MatchJoinpoint function as fol-
lows:

MatchJoinpoint ::= [Environment ⇒ AdviceList + {Nil}].
MatchJoinpoint (env) ⇒ (advice_list) :-

advice_list = toList(AdviceList, Nil,
Matches the join point with the \textit{ComponentDesignator}.

{ advice | Aspect (_, advice_list), advice← advice_list,
advice.pointcut: ComponentDesignator,
component_type = rflGetType (env.component),
strMatch (advice.pointcut.name, env.component.name),
strMatch (advice.pointcut.type, component_type)} union

Matches the join point with the \textit{DomainProcessDesignator}.
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{ advice | Aspect (_, advice_list), advice← advice_list,
advice.pointcut: DomainProcessDesignator,
strMatch (advice.pointcut.name, env.component.name),
strMatch (advice.pointcut.type, env.component.classifier)
}).

The following function formalizes the execution rules for weaving the given join
point with the list of advice.

Weave ::= [Environment, AdviceList ⇒ Environment].
Weave (env, advice_list) ⇒ (env'') :-

If the given join point is not a Network, initialize a new network containing the
given processes and apply the adoptions to the network.

not env: NetworkState,
IntializeAdviceNetwork (env) ⇒ (env'),
ApplyAdvice (env ,env', advice_list) ⇒ (env'')

If the given join point is a Network and it is Active, apply the adoptions to the
network.

; env: NetworkState,
env.primary_state = Active,
ApplyAdvice (env, env, advice_list) ⇒ (env'').

If the given join point is a Network and it is not Active, initialize the network.

; env: NetworkState,
env.primary_state != Active,
Initialize (env) ⇒ (env'').

The following function formalizes the rules for replacing a join point, which is a
component, to a network, which contains the given component as follows:

IntializeAdviceNetwork ::= [ComponentState ⇒ NetworkState].
IntializeAdviceNetwork (env) ⇒ (env') :-

Create a network component with the same ports and parameters defined for the
component and then instantiate it:

net = Network ("advice_net", env.component.elements,
env.component.classifier, net_elements),
params = toList (ParameterValueList, Nil,
{ param | param← env.statevars }),
Instantiate (net, params) ⇒ (net_env),
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Generate run-time connections to connect the in-ports (out-ports) of the compo-
nent to the in-ports (out-ports) of the network:

net_connections = toList (StateVarList, Nil,
{ConnectionState (
ChannelState (net.instanceid, port.name, Nil, FALSE, port.capacity),
ChannelState (env.instanceid, port.name, Nil, FALSE, port.capacity))
|port← env.component.elements, port: InPort} union
{ConnectionState (
ChannelState (env.instanceid, port.name, Nil, FALSE, port.capacity),
ChannelState (net.instanceid, port.name, Nil, FALSE, port.capacity))
| port← env.component.elements, port: OutPort}),

Update the environment and return it.

statevars = append (env, net_connections),
AppendStateVars (net_env, statevars) ⇒ (env').

The following function applies the associated advice to the given join point. On
the basis of the type of advice, it will call the related function to apply the adaption
as follows:

ApplyAdvice ::= [ComponentState, Environment, AdviceList + {Nil}
⇒ Environment].

ApplyAdvice (joinpoint_env, env, advice_list) ⇒ (env'') :-
Apply adapter advice.

advice_list != Nil,
advice_list.hd.advice: Adapter,
ApplyAdaptor (joinpoint_env, env, advice_list.hd) ⇒ (env'),
ApplyAdvice (joinpoint_env, env', advice_list.tail) ⇒(env'')

Apply observer advice.

; advice_list != Nil,
advice_list.hd.advice: Observer,
ApplyObserver (joinpoint_env, env, advice_list.hd) ⇒ (env'),
ApplyAdvice (joinpoint_env, env', advice_list.tail) ⇒(env'')

Apply collector advice.

; advice_list != Nil,
advice_list.hd.advice: Collector,
ApplyCollector (joinpoint_env, env, advice_list.hd) ⇒ (env'),
ApplyAdvice (joinpoint_env, env', advice_list.tail) ⇒(env'')

; advice_list = Nil,
env'' = env.

In order to formalize the execution rules to apply different kinds of advice, we
define the following auxiliary functions. IntializeAdvice is a function which initializes
the adoption process associated to the advice:
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IntializeAdvice ::= [ComponentState, Environment, Advice ⇒ Environment].
IntializeAdvice (joinpoint_env, env, advice ) ⇒ (proc_env') :-

InstantiateProcess (advice.process)
⇒ (proc_state),
AppendStateVar (proc_state.state, JoinPointEnvironment (joinpoint_env))
⇒ (proc_env').

UpdateNetworkInterface formalizes the execution rules to update the interface of
the network which hosts the advice. As we mentioned earlier, AOFBP advice can
add new ports to the join point processes, therefore we need to add these ports to the
network and connect them to the corresponding ports of the advice as follows:

UpdateNetworkInterface ::= [Environment, ComponentState ⇒ Environment].
UpdateNetworkInterface (env, advice_proc_env) ⇒ (env') :-

net = env.component,
newports= toList (ModelElementList, Nil,
{port | port← advice_proc_env.component.elements, port: OutPort}),
elements' = append (newports, net.elements),
updated_net = Network (net.name, elements',
net.classifier, net.networkelements),
new_connections = toList (StateVarList, Nil,
{ConnectionState (
ChannelState (advice_proc_env.instanceid, port.name,
Nil, FALSE, port.capacity),
ChannelState (env.instanceid, port.name,
Nil, FALSE, port.capacity))
| port← advice_proc_env.component.elements,
port: OutPort, port /∈ net.elements}),

statevars' = new_connections union env.statevars,
env' = NetworkState (env.instanceid, updated_net, env.primary_state,
statevars').

In the following, we formalize the execution rules to apply the different kind of
advice i.e. adapters, observers and collectors. For brevity, we only provide the spec-
ification for Before advice. The other types of advice such as After and Around can be
specified in the same manner. As we explained in Section 4.5.3, for the adapter ad-
vice, the join point process will be replaced by a composite process where the advice
process will be located before or after the join point process according to the type of
advice. ApplyAdaptor function formalizes these rules as follows:

ApplyAdaptor ::= [ComponentState, Environment, Advice ⇒ Environment].
ApplyAdaptor (joinpoint_env, env, advice ) ⇒ (env'') :-

Initialize the process associated to the advice:
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advice.type = Before,
IntializeAdvice (joinpoint_env, env, advice ) ⇒ (advice_proc_env),

Connects the input ports of the advice process to the input ports of the hosting
network:

advice_instid = advice_proc_env.instanceid,
env_instid = env.instanceid,
connections = toList (StateVarList, Nil,
{ConnectionState (
ChannelState (src, src_port, Nil, FALSE, src_capacity),
ChannelState (dst, dst_port, Nil, FALSE, dst_capacity))
| port← advice_proc_env.component.elements, port: InPort,
port ∈ env.component.elements,
src = env_instid, src_port = port.name,
src_capacity = port.capacity,
dst = advice_instid, dst_port = port.name,
dst_capacity = port.capacity
} union

Connects the output ports of the advice process to the corresponding input ports
of the join point process:

{ConnectionState (
ChannelState (src, src_port, Nil, FALSE, src_capacity),
ChannelState (dst, dst_port, Nil, FALSE, dst_capacity))
| port← advice_proc_env.component.elements, port: OutPort,
port ∈ env.component.elements,
conn← env.statevars, conn: ConnectionState,
conn.in.procid = env_instid, conn.in.portid = port.name,
src = advice_instid, src_port = port.name,
src_capacity = port.capacity,
dst =conn.out.procid , dst_port = conn.out.portid,
dst_capacity = con.out.capacity
} union

Remove the connection between the input ports of the network with the process
at the join point:

{conn | conn← env.statevars, conn: ConnectionState,
conn.in.procid = env_instid,
conn.in.port /∈ advice_proc_env.component.elements
} union
{conn | conn← env.statevars, conn: ConnectionState,
conn.in.procid != env_instid }),

Update the environment and the network interface as we explained explained:
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other_statevars = toList (StateVarList, Nil,
{sv |sv← env.statevars, not sv: ConnectionState}),
statevars' = append (append(other_statevars, connections),
ProcessState (advice.process.proc_name, advice_proc_env)),
UpdateStateVars (env, statevars') ⇒ (env'),
UpdateNetworkInterface (env', advice_proc_env) ⇒ (env'')

For the observer advice, the join point process will be replaced by a network pro-
cess which forwards a copy of all the data-packets transferring through the input or
output ports of the join point process to the advice process. ApplyObserver function
formalizes these rules as follows:

ApplyObserver ::= [ComponentState, Environment, Advice ⇒ Environment].
ApplyObserver (joinpoint_env, env, advice ) ⇒ (env''') :-

advice.type = Before,

Initialize the process associated to the advice:

IntializeAdvice (joinpoint_env, env, advice ) ⇒ (advice_proc_env),
advice_ports = toList (PortList, Nil,
{port | port← advice.elements, port: InPort}),

Connect all the input ports of the advice process to the input ports of the network
via splitter components:

ConnectAdvicePorts (env, advice_ports, advice_proc_env) ⇒ (env'),

Update the environment and the network interface as we explained earlier:

AppendStateVar (env',ProcessState (advice.process.name,
advice_proc_env)) ⇒ (env''),
UpdateNetworkInterface (env'', advice_proc_env) ⇒ (env''')

ConnectAdvicePorts is a function which connects each port of the advice process
to the corresponding port of the join point process via splitter components. For each
port in the given list, the function first adds a splitter component to the network and
connects it according to the corresponding port by using a function called AddSpliter-
ToPort. Afterwards, it adds a port to the splitter and connects the new port to the
corresponding port of the advice process via a connection. Since multiple advice can
be applied on the join point process, for each splitter connected to a port, we add an
output port with the same name as the instance-id associated to the advice process.

ConnectAdvicePorts ::= [Environment, PortList + {Nil}, ComponentState
⇒ Environment].

ConnectAdvicePorts (env, ports, advice_env) ⇒ (env'''') :-
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ports != Nil,
Add a splitter to the network and connect it to the port.

AddSpliterToPort (env, ports.hd, env.instanceid)
⇒ (env', splitter_state),

Add a new port to the splitter.

newport = OutPort (advice_env.instanceid, ports.hd.datatype,
port.hd.capacity),
AddPort (splitter_state.state, newport) ⇒ (splitter_env'),

Connect the port to the corresponding port of the advice process.

splitter_to_advice_conn = ConnectionState (
ChannelState (splitter_state.state.instanceid, newport.name,
Nil, FALSE, newport.capacity),
ChannelState (advice_env.instanceid, ports.hd.name,
Nil, FALSE, ports.hd.capacity)),

Update the environment.

UpdateStateVar (env', splitter_state,
ProcessState (splitter_state.proc_name, splitter_env')) ⇒ (env''),
AppendStateVar (env'', splitter_to_advice_conn) ⇒ (env'''),

Connects the other ports remained in the port list.

ConnectAdvicePorts (env''', ports.tail, advice_env) ⇒ (env'''')
; ports = Nil, env''''= env.

The following function adds a splitter to a given port of a given process. We
formalize the execution rules of the function as follows:

AddSpliterToPort ::= [Environment, Port, String ⇒ Environment, StateVar].
AddSpliterToPort (env, port, instanceid) ⇒ (env''', splitter_state) :-

splitter_name = strJoin (splitter_", strJoin (instanceid, port.name)),

Verify that the given port is not already connected to an auto-generated splitter:

no {splitter | splitter← env.statevars, splitter: ProcessState,
splittername = splitter_name},

Initialize the input and output ports of the splitter:

elements = ModelElementList (
InPort (port.name, port.datatype, port.capacity),
ModelElementList (
OutPort (port.name, port.datatype, port.capacity),Nil),

Initialize the splitter component:

splitter = FlowOperator (splitter_name, elements, Nil, Split),

Instantiate the splitter component:



124 5 Domain-Specific Flow-based Languages

Instantiate (splitter, Nil) ⇒ (splitter_env),

Connect the given port of the given process to the input port of the splitter:

port_to_splitter_conn = ConnectionState (
ChannelState (instanceid, port.name, Nil, FALSE, port.capacity),
ChannelState (splitter_env.instanceid, port.name,
Nil, FALSE, port.capacity)),
port_to_proc_conn← env.statevars,
port_to_proc_conn: ConnectionState,
port_to_proc_conn.in.procid = instanceid,
port_to_proc_conn.in.portid = port.name,

Connect the output port of the splitter to the input port of the process which was
connected to the given port:

splitter_to_proc_conn = ConnectionState (
ChannelState (splitter_env.instanceid, port.name,
Nil, FALSE, port.capacity),
ChannelState (port_to_proc_conn.out.procid,
port_to_proc_conn.out.portid,
Nil, FALSE, port_to_proc_conn.out.capacity)),

Update the environment:

splitter_state = ProcessState (splitter_name , splitter_env)
AppendStateVar (env, splitter_state ) ⇒ (env'),
AppendStateVar (env', port_to_splitter_conn) ⇒ (env''),
UpdateStateVar (env'', port_to_proc_conn, splitter_to_proc_conn)
⇒ (env''')

If the given port is already connected to a splitter, return the same environment
and the component-state of the splitter:

; splitter← env.statevars, splitter: ProcessState,
splittername = splitter_name,
env''' = env, splitter_state = splitter

The weaver applies the collector advice differently. It will add the advice process
to the context of the join point process, which is a network, and then it will build up
connections from all the desired output ports of the network’s processes which match
the port-filter patterns to the advice process. ApplyCollector function formalizes these
execution rules as follows:
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ApplyCollector ::= [ComponentState, Environment, Advice ⇒ Environment].
ApplyCollector (joinpoint_env, env, advice ) ⇒ (env''') :-

Initialize the advice process.

IntializeAdvice (joinpoint_env, env, advice ) ⇒ (advice_proc_env),
Match the ports of the network’s processes, and adds the required connections between these ports and the advice
process.

ApplyPortFilters (env, advice.portfilters, advice_proc_env) ⇒ (env'),
Update the environment and the interface of the network.

AppendStateVar (env',ProcessState (advice.process.name,
advice_proc_env)) ⇒ (env''),
UpdateNetworkInterface (env'', advice_proc_env) ⇒ (env''').

}

The following function iterates through the port-filters associated to the advice
and matches them with the ports of the processes in the network:

ApplyPortFilters ::= [Environment, PortFilterList + {Nil}, ComponentState
⇒ Environment].

ApplyPortFilters (env, filters, advice_env) ⇒ (env'') :-
filters != Nil,
ApplyPortFilter (env, filters.hd, advice_env) ⇒ (env'),
ApplyPortFilters (env', filters.tail, advice_env) ⇒ (env'')

; filters = Nil, env'' = env.

This function matches given port-filter with the ports of the processes in the net-
work. If the port-filter specification and a process in the network match, it adds the
required connections between these ports and the advice process. The execution
rules of this function are formalized as follows:

ApplyPortFilter ::= [Environment, PortFilter, ComponentState
⇒ Environment].

ApplyPortFilter (env, filter, advice_env) ⇒ (env'''') :-

If the given port-filter matches with the output ports of each process in the net-
work, add the channel to the channel list:

channels =toList (ChanneStateList, Nil,
{ChannelState (proc_state.state.instanceid, port.name,
Nil, FALSE, port.capacity)
| proc_state← env.statevars, proc_state : ProcessState,
port← proc_state.state.component.elements, port:OutPort,
strMatch (port.name, filter.name), port.datatype = filter.type)}),
channels != Nil,

For those ports participating in a connection within the network, add a splitter
component to the port:
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AddSpliterIfRequired (env, filter, advice_env, channels)
⇒ (env', channels'),

Generate a list of input ports which will be added as input ports to the merger
component later:

inpurts = toList (ModelElementList, Nil,
{InPort (channel.procid, filter.outport.datatype, channel.capacity)
| channel← channels'}),

Generate a new FlowOperator component of type MergeAll:

merger_name = strJoin ("merger_",
strJoin (advice_env.instanceid, filter.outport.name)),

Construct the ports for the merger.

elements = ModelElementList (filter.outport, inpurts),
Construct the merger component

merger = FlowOperator (merger_name, elements, Nil, MergeAll),
Instantiate the component

Instantiate (merger, Nil) ⇒ (merger_env),

Generate the required connections between the output port of the merger and the
input port of the advice process:

merger_to_advice_conn = ConnectionState (
ChannelState (merger_env.instanceid, filter.outport.name,
Nil, FALSE, filter.outport.capacity),
ChannelState (advice_env.instanceid, filter.outport.name,
Nil, FALSE, filter.outport.capacity)),

Generate the required connections between the output port of the processes and
the input port of merger component:

processes_to_merger_connections = toList (ConnectionState, Nil,
{ConnectionState (
ChannelState (channel.procid, channel.portid,
Nil, FALSE, channel.capacity),
ChannelState (merger_env.instanceid, channel.procid,
Nil, FALSE, channel.capacity))
| channel← channels}),

Update the environment:
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merger_state = ProcessState (merger_name , merger_env)
AppendStateVar (env', merger_state ) ⇒ (env''),
AppendStateVar (env'', merger_to_advice_conn) ⇒ (env'''),
AppendStateVars (env''', processes_to_merger_connections)
⇒ (env'''').

For performance issues, we do not need to add splitter for all the ports which
match the given port-filter. Since some of them can be defined by applying the other
advice to the process, they do not participate with any connection and it is not nec-
essary to connect them to the advice process through a splitter component. The fol-
lowing function formalizes the execution rules to add a splitter to a port as follows:

AddSpliterIfRequired ::= [Environment, PortFilter, ComponentState,
ChanneStateList + {Nil} ⇒ Environment, ChanneStateList].

AddSpliterIfRequired (env, filter, advice_env, channels)
⇒ (env''', channels') :-
channels != Nil,
conn← env.statevars, conn: ConnectionState, conn.in = channels.hd,
outport = OutPort (channels.hd.portid, filter.outportdatatype,
channel.hd.capacity),
AddSpliterToPort (env, outport, channel.hd.procid)
⇒ (env', splitter_state),
newport = OutPort (advice_env.instanceid,
filter.outportdatatype, channel.hd.capacity),
AddPort (splitter_state.state, newport) ⇒ (splitter_env'),
UpdateStateVar (env', splitter_state,
ProcessState (splitter_state.proc_name, splitter_env')) ⇒ (env''),
channel' = ChannelState (splitter_state.state.instanceid,
advice_env.instanceid, Nil, FALSE, channels.hd.capacity),
AddSpliterIfRequired (env'', filter, channels.tail)
⇒ (env''', channels_tail'),
channels' = channels_tail' union channel'

; channels != Nil,
no {conn← env.statevars, conn: ConnectionState,
conn.in = channels.hd},
AddSpliterIfRequired (env, filter, channels.tail)
⇒ (env''', channels_tail'),
channels' = channels_tail' union channels.hd

; channels = Nil, env''' = env, channels' = channels.

After building up the network which is going to replace the join point process
at hand and reconnecting all the related connections, the weaver will delegate the
execution of the composite process to the scheduler of the AOFBP engine, which
eventually executes the process.
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5.5.4 DSFBLConstraint
In this section we provide the semantic specification of the “DSFBLConstraint” lan-
guage. The informal semantics of this language is used to validate a model of “DSF-
BLNetwork” against the constraints defined in a model of “DSFBLConstraint”. There-
fore, we provide a translational semantic specification style for this language, which
is a straightforward semantic specification styles in ForSpec [Sim14]. We use For-
Spec as a rewriting system between different metamodels or domains. To this end,
we need at least two domains that specify the metamodel of the source and target lan-
guages and the transformation rules to translate a model of the source language to a
model of the target language. In this case, the source languages are “DSFBLNetwork”
and “DSFBLConstraint”, and the target language is “Validation” which contains the
validation errors regarding the violated constraints. We formalize the transformation
rules as follows:

transform ValidateConstraint (network:: DSFBLNetwork,
constraints:: DSFBLConstraint)
returns (result :: Validation)

{

For each component in the given model network, the associated classifier of the
component should exist in the given model constraints:

result.Error (component, "The component has an invalid classifier.") :-
component is network.Component,
no constraints.DomainProcessType (component.classifier, _, _).

If the classifier associated to the component has a HasPort constraint, the compo-
nent should have the port specified by the constraint:

result.Error (component, "The component has a missing port.") :-
component is network.Component,
constraints.ProcessTypeHasConstraint (component.classifier,
constraint),
constraint: HasPort,
constraint.port /∈ component.elements.

If the classifier associated to the component has a HasParameter constraint, the
component should have the parameter specified by the constraint:

result.Error (component, "The component has a missing parameter.") :-
component is network.Component,
constraints.ProcessTypeHasConstraint (component.classifier,
constraint),
constraint: HasParameter,
constraint.parameterdef /∈ component.elements.
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If the classifier associated to the component has HasMorePort (FALSE) constraint,
the component should not have any extra port more than the ports specified by the
HasPort constraint:

result.Error (component, "The component has an invalid port.") :-
component is network.Component,
constraints.ProcessTypeHasConstraint (component.classifier,
HasMorePort (FALSE)),
{port | port← component.elements, port: Port,
no constraints.ProcessTypeHasConstraint (component.classifier,
HasPort (port))}.

In order to specify the execution rules to validate the topological constraints, first
we introduce two auxiliary functions as follows; IsBefore is an auxiliary function that
checks if a component associated to the first classifier is located in direct or indi-
rect connections path, before another component associated to the second classifier
within the given network:

IsBefore ::= [Network, String, String, Boolean ⇒ Boolean]
IsBefore (network, p, p', is_direct) ⇒ (TRUE) :-

conn← network.networkelements, conn: connection,
GetClassifier (net.networkelements, conn.source.process) ⇒ (p),
GetClassifier (net.networkelements, conn.target.process) ⇒ (p')

; is_direct = TRUE,
conn← network.networkelements, conn: connection,
GetClassifier (net.networkelements, conn.source.process) ⇒ (q),
GetClassifier (net.networkelements, conn.target.process) ⇒ (p'),
IsBefore (network, p, q) ⇒ (TRUE).

IncludeProcessType is an auxiliary function which searches for a component asso-
ciated to the given classifier within the processes of the given network and its sub
networks:

IncludeProcessType ::= [Network, String ⇒ Boolean]
IncludeProcessType (network, classifier) ⇒ (TRUE) :-

proc← network.networkelements, proc: Process,
proc.component.classifier = classifier

; proc← network.networkelements, proc: Process,
proc.component: Network
IncludeProcessType (proc.component, classifier) ⇒ (TRUE).

If the classifier associated to the component, which is a network, has an Include
constraint with true value for its IsDirect field, the network should contain at least one
process with a component associated to the classifier specified by the constraint:
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result.Error (net, "The network has a missing process.") :-
net is network.Network,
constraints.ProcessTypeHasConstraint (net.classifier, constraint),
constraint: Include, constraint.IsDirect = TRUE,
no {process | process← net.networkelements, process: Process,
process.component.classifier = constraint.processtype}

If the classifier associated to the component, which is a network, has a Exclude con-
straint with true value for its IsDirect field, the network should not contain a process
with a component associated to the classifier specified by the the constraint:

result.Error (net, "The network contains an invalid process.") :-
net is network.Network,
constraints.ProcessTypeHasConstraint (net.classifier, constraint),
constraint: Exclude, constraint.IsDirect = TRUE,
process← net.networkelements, process: Process,
process.component.classifier = constraint.processtype

If the classifier associated to the component, which is a network, has a Exclude con-
straint with false value for its IsDirect field, the network and its sub-networks should
not contain a process with a component associated to the classifier specified by the
the constraint:

result.Error (net, "The network contains an invalid process.") :-
net is network.Network,
constraints.ProcessTypeHasConstraint (net.classifier, constraint),
constraint: Exclude, constraint.IsDirect = FALSE,
IncludeProcessType (net, constraint.processtype) ⇒ (TRUE)

If the classifier associated to the component, which is a network, has a Include
constraint with false value for its IsDirect field, the network or its sub-networks should
contain at least one process with a component associated to the classifier specified by
the the constraint:

result.Error (net, "The network has a missing process.") :-
net is network.Network,
constraints.ProcessTypeHasConstraint (net.classifier, constraint),
constraint: Include, constraint.IsDirect = FALSE,
no IncludeProcessType (net, constraint.processtype) ⇒ (TRUE).

For each component in all the networks of the given model, the classifier asso-
ciated to the component has IsBefore constraint, the network should not have a con-
nection (direct or indirect depending on the value of the related field) targeting the
component and sourcing another component associated to the classifier specified by
the constraint:
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result.Error (net, "The network contains an invalid flow.") :-
component is network.Component, net is network.Network, net != component,
proc← net.networkelements, proc: Process, proc.component = component,
proc' <- net.networkelements, proc': Process, proc != proc',
classifier = component.classifier, classifier' = proc'.component.classifier
classifier != classifier',
constraints.ProcessTypeHasConstraint (classifier, constraint),
constraint: IsBefore, constraint.processtype = classifier',
IsBefore (net, classifier', classifier, constraint.IsDirect) ⇒ (TRUE).

For each component in all the networks in the given model, if the classifier asso-
ciated to the component has IsAfter constraint, the network should not have a con-
nection (direct or indirect depending on the value of the related field) sourcing the
component and targeting another component associated to the classifier specified by
the constraint:

result.Error (net, "The network contains an invalid flow.") :-
component is network.Component, net is network.Network, net != component,
proc← net.networkelements, proc: Process, proc.component = component,
proc' <- net.networkelements, proc': Process, proc != proc',
classifier = component.classifier, classifier' = proc'.component.classifier
classifier != classifier',
constraints.ProcessTypeHasConstraint (classifier, constraint),
constraint: IsAfter, constraint.processtype = classifier',
IsBefore (net, classifier, classifier', constraint.IsDirect) ⇒ (TRUE).

}

Finally after the transformation, if there is no Error within the produced model,
then all the constrains enforced to the components are satisfied.

5.6 Summary

In this chapter, we introduced the concept of domain-specific flow-based languages
and we described their specifications and the requirements of designing a DSFBL. We
also introduced a metamodeling language to specify the different constructs of these
DSLs. We formalized the metamodel, structural semantics, behavioral semantics of
the languages utilized by the framework within ForSpec including FBP and AOFBP.
We also provided a mechanism to validate the composite processes by introducing a
constraint specification language that can classify the different types of processes in
the domain. We specified the behavioral semantics of the FBP network presented in
this chapter according to the runtime protocol implemented for the C# implementa-
tion of FBP (C#FBP). We validated the ForSpec specifications given in this chapter by
modeling the test cases developed for C#FBP within the network language proposed
in this chapter. In the next Chapter, we develop the domain-specific language for
waste management on the basis of this framework. This can also be considered as a
case study to evaluate the framework.
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CHAPTER 6
Domain-Specific Language

for Modeling Waste
Management Systems

In this chapter, we propose a domain-specific flow-based language (DSFBL) for mod-
eling and evaluating waste management systems on the basis of the metamodeling
framework presented in Chapter 5. We extend DSFBLCore and DSFBLNetwork meta-
models to develop domain-specific languages for specifying unit processes and com-
posite processes of waste management systems. We specify the sustainability aspects,
e.g. life cycle assessment, as aspects by instantiating DSFBLAspect metamodel. We
also provide the concrete syntax and tool support for this language.

6.1 Realization of Waste Management Concepts

We provided a mathematical model for the domain concepts of waste management
in Section 3.2. This mathematical model lays the foundation of the proposed DSFBL
for waste management. In this chapter, we realize this mathematical model by utiliz-
ing the presented framework for developing DSFBLs. We realize waste management
datatypes such as fractions, material, elementary exchanges, life cycle inventory, as
a set of domain modules in ForSpec. We use these domains as the domain-specific
datatypes and the semantics domain for the proposed language. To realize the waste
unit processes, we propose a domain-specific language for specifying the unit pro-
cesses of waste management domain by extending the DSFBLCore metamodel. We
realize the composite waste processes by extending the DSFBLNetwork metamodel
presented in the framework to support the domain-specific data types and waste unit
processes specified by the proposed DSL. We utilize the aspect-oriented mechanism
provided by the framework to define the life-cycle assessment of the waste processes
and we classify the waste processes using the constraint language exposed by the
framework.

In the following sections, we first specify the definition of materials, life-cycle
inventory, and external processes in ForSpec. Then, we propose a domain-specific
language for specifying the material flow and the elementary flow exchanges of the
unit processes of the waste management domain. Afterwards, we propose the com-
posite language and the aspect-oriented specifications for evaluating the life cycle



134 6 Domain-Specific Language for Modeling Waste Management Systems

assessment.

6.2 Formal Specification of Waste-Management Domain

In this section, we realize the waste management datatypes, e.g. fractions, material,
elementary exchanges, life cycle inventory, according to the mathematical model pre-
sented in Section 3.2. The specification presented in this section is limited to the the
parts of the mathematical model which are essential to understanding the rest of this
thesis, the full specifications are available in Appendix C.1.

6.2.1 Material
We realize the given definition of Material in Section 3.2.1 as the following data types
in ForSpec:

domain Material
{
SubstanceValue ::= new (name: String, value: Real).
SubstanceValueList ::= list < SubstanceValue >.
Fraction ::=new (name: String, value: SubstanceValueList).
FractionList ::= list < Fraction >.
Material ::= new (value: FractionList).
MaterialList ::=list < Material >.

}

We formalize material fractions as a list of SubstanceValue, which specify a sub-
stance name and the associated amount of the substance within a material fraction,
and material as a list of material fractions. We also formalize the operations for these
data types presented in Section 3.2.1. For each operation, e.g. addition, subtraction,
multiplication, filter, we define a ForSpec function to perform the operation. For
example, the addition (+) operator for merging two different material fractions is
formalized as follows in ForSpec:

MergeFraction ::= [Fraction, Fraction ⇒ Fraction].
MergeFraction (f, f') ⇒ (Fraction(f.name, sl)) :-

MergeSubstanceValueList (f.value, f'.value) ⇒ (sl).

The function utilizes another function called MergeSubstanceValueList to merge the
substances of the given fractions. Similarly, the merge function for materials also can
be formalized as follows:

MergeMaterial ::= [Material, Material ⇒ Material].
MergeMaterial (m, m') ⇒ (Material (fl)) :-

MergeFractionList (m.value, m'.value) ⇒ (fl).
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This function also uses MergeFractionList function to merge the fractions of the
given materials. We formalize this function as follows:

MergeFractionList ::= [FractionList, FractionList ⇒ FractionList].
MergeFractionList (fl,fl') ⇒ (fl'') :-

fl''= toList(FractionList,Nil,
{f''| f← fl, f' <- fl', f.name = f'.name,
MergeFraction(f,f') ⇒ (f'')}
union {f | f← fl, isin(f.name, fl'[name]) = FALSE}
union {f'| f' <- fl', isin(f'.name, fl[name]) = FALSE}).

Accordingly, we define SumFraction and SumMaterial as reduce functions as fol-
lows:

SumFraction ::= [FractionList >> MergeFraction >> Fraction].

The function reduces the given list of fractions to a fraction by merging the ele-
ments of the list using MergeFraction function.

SumMaterial ::= [MaterialList >> MergeMaterial >> Material].

The function reduces the given list of materials to a material by merging the ele-
ments of the list using the MergeMaterial function. We also define the following data
types to specify the material catalogs. This allows the modeler to define the ratio of
different substances within a fraction. We utilize this to generate material for simu-
lation of the waste processes:

MaterialFraction ::= new (name: String, value: SubstanceValueList).

Although we use the SubstanceValueList to specify the amount of substances, it
should be noted that the amount of substances are in percentage and are not the
actual values. During the material generation process, we convert these values to the
actual values.

6.2.2 Life Cycle Inventory
We formalize the given definition for life-cycle inventory (LCI) in Section 3.2.2.1 as
the following data types in ForSpec:

domain LifeCycleCore
{
Unit ::= new (String).
Environment ::= new (String).
ElementaryFlow ::= new (id: String, env: String, unit: String).
ElementaryExchange ::= new (ef: String, amount: Real).
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The domain called “LifeCycleCore” formalizes the data types required to define
elementary flows, elementary exchanges, life-cycle inventory, and external processes.
Additionally, the models of this domain can be considered as the catalogs which can
be exported or imported from other LCI tools. We define LCI as a list of ElementaryEx-
changes as follows:

LCI ::= list <ElementaryExchange> .
LCIList ::= list <LCI>.
ProcessLCI ::= new (process: String,

input_specific: LCI,
process_specific: LCI,
total: LCI,
sub_processes_lci: ProcessLCIList).

ProcessLCIList ::= list <ProcessLCI>.

We also define ProcessLCI to specify the input-specific, process-specific, and the
accumulated LCI associated to a process. This includes the LCI information of the
sub-processes or the external processes associated to the process. This data type
helps to trace back the LCI associated to a waste system, which is essential in order
for the system to be analyzed by domain experts. We formalize external processes,
discussed in Section 3.2.2.1, as a composite data type in ForSpec called ExternalProcess
as follows:

ExternalProcess ::= new (id: String, lci: LCI,
ext_proc_list: ExternalProcessExchangeList + {Nil}).

ExternalProcessExchange ::= new (epid: String, amount: Real).
ExternalProcessExchangeList ::= list <ExternalProcessExchange>.

}

We extend this domain by another domain called “LifeCycleInventory” to formal-
ize the required operations such as addition, subtraction, multiplication for life-cycle
inventory according to the mathematical model presented in Section 3.2.2.1. For ex-
ample, the addition operator for LCI is formalized in ForSpec as follows:

domain LifeCycleInventory extends LifeCycleCore
{
MergeLCI ::= [LCI + {Nil}, LCI + {Nil} ⇒ LCI].
MergeLCI (lci, lci') ⇒ (lci'') :-

lci = Nil, lci'' = lci'
; lci' = Nil, lci'' = lci
; lci' != Nil, lci != Nil,

lci'' = toList (LCI, Nil,
{ex''| ex← lci, ex' <- lci', ex.ef = ex'.ef,
ex''= ElementaryExchange (ex.ef, amount),
amount = ex.amount + ex'.amount}
union {ex | ex← lci, isin(ex.ef, lci'[ex.ef]) = FALSE}
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union {ex'| ex' <- lci', isin(ex'.ef, lci[ex'.ef]) = FALSE}).

Accordingly, SumLCI is defined as a reduce function to merge the given list of
LCIs to a LCI by using MergeLCI function:

SumLCI ::= [LCIList >> MergeLCI >> LCI].

The multiplication operator is also formalized by means of RescaleLCI function
which rescales the amounts associated to the elementary exchanges of the given LCI:

RescaleLCI ::= [LCI, Real ⇒ LCI].
RescaleLCI (lci, x) ⇒ (lci') :-

lci' = toList (LCI, Nil,
{ex''| ex← lci, ex''= ElementaryExchange (ex.ef, amount),
amount = ex.amount * x }).

We define Accumulate function to compute the LCI associated to the external pro-
cesses. This utilizes the auxiliary function AccumulateEPE as follows:

Accumulate ::= [ExternalProcess ⇒ LCI].
Accumulate (ep) ⇒ (lci'') :-

AccumulateEPE (ep.ext_proc_list) ⇒ (lci'),
MergeLCI (ep.lci, lci') ⇒ (lci'').

AccumulateEPE ::= [ExternalProcessExchangeList + {Nil} ⇒ LCI + {Nil}].
AccumulateEPE (epl) ⇒ (result) :-

epl != Nil,
ep is ExternalProcess, ep.id = epl.hd.epid,
Accumulate (ep) ⇒ (lci'),
RescaleLCI (lci', epl.hd.amount) ⇒ (lci''),
AccumulateEPE (epl.tail) ⇒ (lcirest),
MergeLCI (lci'', lcirest) ⇒ (result)

; epl = Nil, result= Nil.
}

6.2.3 Life Cycle Assessment
In this section, we formalize the specifications for life-cycle assessment as we dis-
cussed in Section 3.2.2.2. We define a domain called “LifeCycleAssessment”, and we
extend it from “LifeCycleInventory” domain. This domain includes the data types
required to specify impact-factor, impact-category, LCIA method, and elementary
impact as follows:

domain LifeCycleAssessment extends LifeCycleInventory
{
ImpactFactor ::= new (ef: String, factor: Real).
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ImpactFactorList ::= list <ImpactFactor>.
ImpactCategory ::= new (id: String, normalization_factor: Real,

weighting_factor: Real, impact_factors: ImpactFactorList).
LCIAMethod ::= list <ImpactCategory>.
ElementaryImpact ::= new (ef: String, impact: Real).
ElementaryImpactList ::= list <ElementaryImpact>.

We formalize the computation of characterized LCIA per elementary flow, accord-
ing to Equation 3.26 as follows:

CharacterizedLCIA_PerElementary ::= [LCI, ImpactCategory
⇒ ElementaryImpactList].

CharacterizedLCIA_PerElementary (lci, ic) ⇒ (result) :-
result = toList (ElementaryImpactList, Nil,
{ElementaryImpact (ef, amount) | ex← lci, if← ic.impact_factors,
ex.ef = if.ef, ef = ex.ef, amount = ex.amount * if.factor
}).

We formalize the computation of characterized LCIA for a process, according to
Equation 3.27 as follows:

CharacterizedLCIA_Total ::= [LCI, ImpactCategory ⇒ REAL].
CharacterizedLCIA_Total (lci, ic) ⇒ (result) :-

amount_list = toList (NumberList, Nil,
{amount | ex← lci, if← ic.impact_factors, ex.ef = if.ef, ef = ex.ef,
amount = ex.amount * if.factor}),
Sum (amount_list) ⇒ (result).

We formalize the computation of normalized LCIA per elementary flow, accord-
ing to Equation 3.29 as follows:

NormalizedLCIA_PerElementary ::= [LCI, ImpactCategory
⇒ ElementaryImpactList].

NormalizedLCIA_PerElementary (lci, ic) ⇒ (result) :-
result= toList (ElementaryImpactList, Nil,
{ElementaryImpact (ef, normalized_amount) | ex← lci,
if← ic.impact_factors,
ex.ef = if.ef, ef = ex.ef, amount = ex.amount * if.factor,
normalized_amount = amount / ic.normalization_factor}).

We formalize the computation of normalized LCIA for a process, according to
Equation 3.30 as follows:

NormalizedLCIA_Total ::= [LCI, ImpactCategory ⇒ REAL].
NormalizedLCIA_Total (lci, ic) ⇒ (result) :-

amount_list = toList (NumberList, Nil,
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{normalized_amount | ex← lci, if← ic.impact_factors,
ex.ef = if.ef, ef = ex.ef,
amount = ex.amount * if.factor,
normalized_amount = amount / ic.normalization_factor}),
Sum (amount_list) ⇒ (result).

We formalize the computation of weighted LCIA per elementary flow, according
to Equation 3.31 as follows:

WeightedLCIA_PerElementary ::= [LCI, ImpactCategory
⇒ ElementaryImpactList].

WeightedLCIA_PerElementary (lci, ic) ⇒ (result) :-
result= toList (ElementaryImpactList, Nil,
{ElementaryImpact (ef, weighted_amount) | ex← lci, if← ic.impact_factors,
ex.ef = if.ef,ef = ex.ef, amount = ex.amount * if.factor,
normalized_amount = amount / ic.normalization_factor,
weighted_amount = normalized_amount * ic.weighting_factor}).

We formalize the computation of weighted LCIA for a process, according to Equa-
tion 3.33 as follows:

WeightedLCIA_Total ::= [LCI, ImpactCategory ⇒ Real].
WeightedLCIA_Total (lci, ic) ⇒ (result) :-

amount_list = toList (NumberList, Nil,
{weighted_amount | ex← lci, if← ic.impact_factors,
ex.ef = if.ef, ef = ex.ef,
amount = ex.amount * if.factor,
normalized_amount = amount / ic.normalization_factor,
weighted_amount = normalized_amount * ic.weighting_factor}),
Sum (amount_list) ⇒ (result).

We also define ImpactCategoryAssessment and LCIAMethodAssessment data types.
The first specifies the impact assessment result including characterized, normalized,
weighted, and total score according to a certain impact category. The second specifies
the impact assessment result on the basis of a certain LCIA method. These are useful
in order to specify the life-cycle-impact assessment of a certain process according to
a certain LCIA method. Accordingly, we define a data type called ProcessLCIA to
specify the input-specific, process-specific, and the accumulated LCIA of a certain
process according to a certain method. This also specifies the individual LCIA of the
sub-processes or external processes used within the process:

ImpactCategoryAssessment ::= new (impact_category: String,
normalized: ElementaryImpactList,
characterized: ElementaryImpactList,
weighted: ElementaryImpactList,
score: Real).
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LCIAMethodAssessment ::= list <ImpactCategoryAssessment>.
ProcessLCIA ::= new (process: String,

input_specific: LCIAMethodAssessment,
process_specific: LCIAMethodAssessment,
total: LCIAMethodAssessment,
sub_processes_lcia: ProcessLCIAList).

ProcessLCIAList ::= list <ProcessLCIA>.
}

6.3 Domain-Specific Language for Specifying Unit Processes

In this section, we design a domain-specific language for specifying the unit pro-
cesses of waste management domain. According to the definition in Section 3.2.3.1,
the proposed DSL should provide means to determine the material-flows between
inputs and outputs of a waste process, and the emissions to the environments includ-
ing input-specific and process-specific elementary exchanges. We define the material-
flow network of a process as a set of inputs, outputs, transformers, and transitions.
This can be modeled as a directed graph so that inputs, outputs, and transformers
are the nodes, and transitions are its edges. In this model, transformers change the
composition of material while transitions only transfer a specific amount of material
between the transformers.

The metamodel of this DSL is presented in Figure 6.1. We need to extend the
metamodel of this language from the metamodel of the core language, DSFBLCore,
proposed in the framework. To this end, we extend the root element of the model
called WasteProcess from Component element of the core-language. This provides in-
puts, outputs, and the parameter definition elements for a WasteProcess model. In
addition, the model has a set of LinkableElement and a set of LinkElement. LinkableEle-
ment which is a super class of InPort and OutPort is defined in the core-language. We
use this element in the metamodel to be able to connect the ports to the other ele-
ments of the model. LinkElement is an abstract element that transfers materials from
its source element to its target element. We extend two elements called Transformer
and Transition from these elements to define the graph for the material-flow network.
Transformers are the nodes of this graph while Transitions are its edges. Different
types of transformers are defined in order to specify the required transformation of
the flowing material. These transformers are Distributor, Hub, FractionTransformer,
SubstanceTransformer, SubstanceGenerator, FractionGenerator.

The Distributors are either FractionDistributors (FD) or SubstanceDistributors (SD).
In the same manner, Hubs are also either FractionHubs (FH) or SubstanceHubs (SH). FD
operators are defined to extract a specific material fraction from the given material,
while SD operators are proposed to extract a specific substance from the material.
Distributor operators can be directly used in a material-flow model, or they can be
hosted on a Hub. Hubs (FHs and SHs) are defined in the metamodel to be used in
the material process wherever various substances or fractions are to be extracted and
distributed from the given material. FractionTransformer and SubstanceTransformer are
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Figure 6.1: Metamodel of domain-specific language for waste processes.

defined to transform a specific fraction or substance to another fraction or substance
within the given material. They have from, to, and amount fields to specify the name
of the fraction or substance which is going to be transformed, the new name of the
fraction or substance after the transformation, and the factor to rescale the fraction or
the substance. If the value for the from field is “Nil”; the FractionTransformer merges
all the fractions within the given material to a new fraction with the given new name
and amount; and SubstanceTransformer merges all the substances within each frac-
tion to a new substance within the same fraction and the given name and amount.
SubstanceGenerator adds a new substance with the given name and amount to the
given fraction of the material. If the fraction field is “Nil”, it adds the substance to
each fraction of the given material. FractionGenerator adds a new fraction with the
given name to the given material. MaterialGenerator generates material according to
the given amount, list and the ratio of the given fractions, and the material fractions
specified in the material catalogs. These transformers can be combined to create a
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CompositeTransformer, which is a composite of transformers. This allows the ability to
provide reusable transformers and encapsulates the complexity of the network flow.
Furthermore, this also allows having nested iterations and provides a mechanism to
iterate a sequence of transformers and transitions through a single iteration.

Transitions connect two elements in the model and transfer materials from their
source elements to their target elements if the condition associated with them can
be evaluated to be true. Two different types of transitions are defined in the model,
which are MaterialFlows (MF) and ResiduesFlow (RF). The first operator transfers a por-
tion of the material from the source element to the target element, while the other flow
operator transfers the residue material of the source element to the target element.

Transitions and Transformers can have an iterator, which allows us to apply the rel-
evant operation, associated with a transition or transformer, iteratively to the given
material for a finite time. These iterators provide a way to traverse a list or set, or it
can be used to generate a sequence of numbers. NumericIterator provides a numeric
loop. It has a name that indicates the name of the iterator variable, which its value
starts from the min to the max value. The iterator variable can be used within the
expressions related to the transformer or transition. FractionIterator iterates over the
fractions of the given material and its iterator variable has the type of fraction. Sub-
stanceIterator iterates through the substances of a specific fraction within the given
material. ListIterator iterates through the elements of a list which is given in the pa-
rameters of the process.

FeedbackPort specifies the output ports, which may be used to participate in a feed-
back loop. This can be used to model waste processes that may recover material or
energy during the process. To this end, the modeler can specify the circumstances to
terminate the feedback loop as a Boolean expression. If the condition holds, a Close
IOAction will be generated for the port.

The metamodel also contains elements to specify the process specific and the in-
put specific elementary exchanges to an environment. The first can be specified by
ProcessExchanges element, which has a set of ExchangeInterface to specify the amount
of the elementary exchanges to the environment per atomic unit of the given sub-
stance. The second can be specified by transferring the materials subjected to the
emissions to a special output port called EmissionsToEnvironment via any transition
elements. This output is associated with a set of ExchangeInterface, which specify how
the given material exchanges emissions to different environments. EmissionsToEnvi-
ronment is a special output port and the model should contain exactly one instance
of this port called LCI with ProcessLCI data type.

6.3.1 Expression language
In order to specify the arithmetic, boolean, and string expressions associated with
the elements of the proposed metamodel, e.g. Aexp, Bexp, and Strexp associated to
MaterialFlow. We define an expression language as follows:

domain Expression includes Material
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{
Param ::= new (name: String).
Term ::= Real + Param.
Exp ::= new (exp: Aexp).
UnPlus ::= new (exp: Aexp).
UnMinus ::= new (exp: Aexp).
UnAexp ::= UnPlus + UnMinus + Exp.
Div ::= new (left: Aexp, right: Aexp).
Mult ::= new (left: Aexp, right: Aexp).
Minus ::= new (left: Aexp, right: Aexp).
Plus ::= new (left: Aexp, right: Aexp).
BinAexp ::= Div + Mult + Minus + Plus.

The expression language provides the means to specify arithmetic, boolean, and
string expressions including access to the parameter of the process and utilizing the
following functions:

FunctionCall ::= TotalWeight + TotalFractionWeight + Amount
+ Field + TotalWetWeight + SQRT + Power + TotalSubstanceWeight.

SQRT ::= new (Aexp).
Power ::= new (Aexp, Aexp).
TotalWeight ::= new (material: Materialexp).
TotalWetWeight ::= new (material: Materialexp).
TotalFractionWeight ::= new (material: Materialexp, fraction: Strexp).
TotalSubstanceWeight ::= new (material: Materialexp, substance: Strexp).
Amount ::= new (material: Materialexp, fraction: Strexp, substance: Strexp).
Field ::= new (row: LookUp + Param , column: Strexp).
LookUp ::= new (table: Param, column: Strexp, match: Expression).
Aexp ::= Term + UnAexp + BinAexp + FunctionCall.

TotalWeight returns the total weight of the given material: TotalWetWeight returns
the total wet weight of the given material, which is sum of “TS” (total solid) and
“Water”,TotalFractionWeight returns the total weight of a specific fraction of the given
material, TotalSubstanceWeight returns the total weight of a specific substance within
all the fractions of the given material, Amount returns the amount of a specific sub-
stance of the given material within a certain fraction. In addition, two more functions
called Field and LookUp are provided to retrieve data from the parameters which are
defined as DataTables. LookUp searches through the given column of the given data
table to find a row that matches the given value. If the value can be matched within
the given column, it returns the row. If not, it will search for a constant value of De-
fault within the given column and it will return the row. Field function returns the
value of the given column of the row. The following data types provide the means
to specify a Boolean expression:

GT ::= new (right: Expression, left: Expression).
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LT ::= new (right: Expression, left: Expression).
LE ::= new (right: Expression, left: Expression).
EQ ::= new (right: Expression, left: Expression).
NotEq ::= new (right: Expression, left: Expression).
GE ::= new (right: Expression, left: Expression).
BinBexp ::= GT + LT + LE + EQ + NotEq + GE.
Neg ::= new (exp: Bexp).
And ::= new (right: Bexp, left: Bexp).
Or ::= new (left: Bexp, right: Bexp).
Bexp ::= BinBexp + Neg + FALSE + And + TRUE + Or + Param + Field.

The following data types provide the means to specify a string expression:

ToString ::= new (exp: Expression + Fraction + SubstanceValue).
Concat ::= new (left: Strexp, right: Strexp).
Strexp ::= String + ToString + Concat + Param + Field.

The following data types provide the means to specify a material expression:

Input.
ProcessInput ::= (port: Strexp).
TotalProcessInput.
Materialexp ::= ProcessInput + TotalProcessInput + Input + Param.

Input returns the input material of the transformer at hand; ProcessInput returns
the input material of the specific port of the current waste process; TotalProcessInput
returns the total input material of the current waste process. And finally expression
is defined as a follows:

Peran ::= new (exp: Expression).
Expression ::= Aexp + Bexp + Peran.

}

6.3.2 Abstract Syntax
In order to formalize the metamodel of the proposed DSL within ForSpec, we define
a domain called “AtomicWasteProcess” and extend it from “DSFBLCore” and “Ex-
pression”. We extend Component, OutPort, and LinkableElement, as we discussed, by
using the union extension operator as follows:

domain AtomicWasteProcess extends DSFBLCore, Expression
{

LinkableElement += Transformer.
OutPort += EmissionsToEnvironment + FeedbackPort.
Component += WasteProcess.
FeedbackPort ::= new (name: String, datatype: String,
closing_condition: Bexp).
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We formalize the transformation elements of the proposed metamodel as the fol-
lowing data types:

ListIterator ::= new (name: String, param: Strexp).
FractionIterator ::= new (name: string, material: Materialexp).
SubstanceIterator ::=new (name: String, fraction: Strexp,

material: Materialexp).
NumericIterator ::= new (name: String, min: Aexp, max: Aexp).
Iterator ::= NumericIterator + SubstanceIterator + ListIterator +

FractionIterator.
SubstanceHub ::= new (name: String, deg: Aexp, iterator: Iterator + {Nil}).
SubstanceDistributor ::= new (name: String, hb: String + {Nil}, deg: Aexp,

substance: Strexp, iterator: Iterator + {Nil}).
FractionHub ::= new (name: String, deg: Aexp, iterator: Iterator + {Nil}).
FractionDistributor ::= new (name: String, hb: String + {Nil}, deg: Aexp,

fraction: Strexp, iterator: Iterator + {Nil}).
MaterialDistributor ::= new (name: String, deg: Aexp,

iterator: Iterator + {Nil}).
Distributor ::= SubstanceDistributor + FractionDistributor +

MaterialDistributor.
Hub ::= SubstanceHub + FractionHub.
SubstanceTransformer ::= new ( name: String, from: Strexp, to: Strexp,

amount: Aexp, iterator: Iterator + {Nil}).
FractionTransformer ::= new (name: String, from: Strexp, to: Strexp,

amount: Aexp, iterator: Iterator + {Nil}).
SubstanceGenerator ::= new (name: String, substance: Strexp, fraction:

Strexp +{Nil}, amount: Aexp, iterator: Iterator + {Nil}).
FractionGenerator ::= new (name: String, fraction: Strexp,

iterator: Iterator + {Nil}).
FractionValue ::= new (name: String, value: Real).
FractionValueList ::= list <FractionValue>.
MaterialGenerator ::= new (name: String, amount: Aexp,

input_method: FractionValueList + Param + Material,
iterator: Iterator + {Nil}).

Transformer ::= Distributor + Hub + SubstanceTransformer +
FractionGenerator + FractionTransformer + SubstanceGenerator +
MaterialGenerator + CompositeTransformer.
StringList ::= list < String >.
CompositeTransformer ::= new (name: String, transformers: StringList ,
iterator: Iterator + {Nil}).
TransformerList ::= list < Transformer >.

We formalize composite transformers as a composite types of CompositeTransformer,
which has a list of string that specifies the name of its transformers. In order to
support manual material generation and parametrize the fraction list associated to
MaterialGeneration, we specify the input method of this element as a union type of
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input_method: FractionValueList + Param + Material. This allows the mod-
eler, to either generate material on the basis of the ratio of the fraction specified in the
material catalogs or use the given material as input. We also allow parametrization
for the input_method of the material generation, and exchanges of EmissionsToEnvi-
ronment and WasteProcess elements. Furthermore, it also allows the modeler to specify
this as a parameter. We formalize the transition elements of the proposed metamodel
as the following data types:

LinkableElementList ::= list < LinkableElement >.
ResiduesFlow ::= new (source: String, target: String, condition: Bexp,

iterator: Iterator + {Nil}).
MaterialFlow ::= new (source: String, target: String, condition: Bexp,

amount: Aexp, iterator: Iterator + {Nil}).
Transition ::= ResiduesFlow + MaterialFlow.
LinkElement ::= Transition.
LinkElementList ::= list < LinkElement >.

We formalize the process specific and the input specific elementary exchanges for
a process as the following data types:

ExchangeInterface ::= new (substance: String, exchange: String,
amount: Aexp).

ExchangeInterfaceList ::= list < ExchangeInterface >.
EmissionsToEnvironment ::= new (name: String, type: String,

exchanges: ExchangeInterfaceList + Param + {Nil}).

And finally, we formalize the definition of a waste process, which is an extension
of Component, as follows:

WasteProcess ::= new (name: String, elements: ModelElementList,
classifier: String + Nil, transformers: LinkableElementList + {Nil},
transitions: LinkElementList, exchanges: ExchangeInterfaceList +
Param + {Nil}).

}

In order to find the container of a transformer, which can be a composite trans-
former, we define the following function:

GetContainer ::= [Transformer, LinkableElementList
⇒ CompositeTransformer + {Nil}].

GetContainer (transformer, elements) ⇒ (container) :-
t← elements, t: CompositeTransformer,
transformer.name ∈ t.transformers, container = t

; no {t | t← elements, t: CompositeTransformer,
transformer.name ∈ t.transformers},
container = Nil.
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6.3.3 Structural Semantics
The structural semantics of the DSL can be expressed by ForSpec as explained in [Sim14].
We formalize the well-formedness rules for the waste processes by defining a set of
rules as follows. Each transformer in a model should have a unique name:

Error (X, "The transformer should have a unique name") :-
WasteProcess (_, _, _, transformers, _, _),
X← transformers, Y← transformers,
X != Y, X.name = Y.name.

The transformers and ports of a model should not share the same name:

Error (X, "The transformer should have a unique name") :-
WasteProcess (_, elements, _, transformers, _, _),
X← transformers, Y← elements, Y: Port,
X.name = Y.name.

The CompositeTransformers should have valid transformers:

Error (X, "The composite transformer has an invalid transformer") :-
WasteProcess (_, elements, _, transformers, _, _),
X← transformers, X: CompositeTransformer,
transformer_name← X.transformers,
no {t | t← transformers, t.name = transformer_name}.

The SubstanceDistributors should have a valid SubstanceHub:

Error (X, "The substance distributor has an invalid Hub") :-
WasteProcess (_, elements, _, transformers, _, _),
X← transformers, X: SubstanceDistributor, X.hb != Nil,
no {hub | hub← transformers, hub: SubstanceHub, hub.name = X.hb}.

The FractionDistributors should have a valid FractionHub:

Error (X, "The fraction distributor has an invalid Hub") :-
WasteProcess (_, elements, _, transformers, _, _),
X← transformers, X: FractionDistributor, X.hb != Nil,
no {hub | hub← transformers, hub: FractionHub, hub.name = X.hb}.

Only Transformer and InPort elements are allowed to be used as the source element
of MaterialFlows:

Error (X, "The material flow has invalid source") :-
WasteProcess (_, elements, _, transformers, transitions, _),
valid_sources = toList( String, Nil,
{t.name | t← transformers} union {e.name |e← elements, e: InPort}),
X← transitions, X: MaterialFlow, X.source /∈ valid_sources.
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Only Transformer and OutPort elements are allowed to be used as the target ele-
ments of the MaterialFlows:

Error (X, "The material flow has invalid target") :-
WasteProcess (_, elements, _, transformers, transitions, _),
valid_targets = toList( String, Nil,
{t.name | t← transformers, not t: MaterialGenerator}
union {e.name |e← elements, e: OutPort}),
X← transitions, X: MaterialFlow, X.target /∈ valid_targets.

Only Distributor, Hub, and CompositeTransformer elements are allowed to be used
as the source element of the ResiduesFlows:

Error (X, "The residues flow has invalid source") :-
WasteProcess (_, elements, _, transformers, transitions, _),
valid_sources = toList( String, Nil,
{t.name | t← transformers, t: Distributor} union
{t.name |t← transformers, t: Hub} union
{t.name |t← transformers, t: CompositeTransformer}),
X← transitions, X: ResiduesFlow, X.source /∈ valid_sources.

Only Transformer and OutPort elements are allowed to be used as the target ele-
ment of the ResiduesFlows:

Error (X, "The residues flow has invalid target") :-
WasteProcess (_, elements, _, transformers, transitions, _),
valid_targets = toList( String, Nil,
{t.name | t← transformers, not t: MaterialGenerator}
union {e.name |e← elements, e: OutPort}),
X← transitions, X: ResiduesFlow, X.target /∈ valid_targets.

A Transition can not have the same element as its source and target:

Error (X, "The transition has invalid source and target") :-
WasteProcess (_, elements, _, transformers, transitions, _),
X← transitions, X.source = X.target.

A Transition can not connect the elements from different containers:

Error (X, "The transition has invalid source and target") :-
WasteProcess (_, elements, _, transformers, transitions, _),
X← transitions,
GetContainer (X.source, transformers) ⇒ (container),
GetContainer (X.target, transformers) ⇒ (container'),
container != container'.
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In order to validate the well-formedness of the flows of the material network of
a waste process, we define an auxiliary rule called Flow and Dependency. For each
transition in the model, we generate a Flow as follows:

Flow ::= (String, String).
Flow (source, target) :-

WasteProcess (_, _, _, _, transitions, _), transition← transitions,
source = transition.source, target = transition.target.

Flow (X, Z) :-
Flow (X, Y), Flow (Y, Z).

The material network of a waste process should not have a loop:

Error (X, "The material flow has a loop.") :-
Flow (X, X).

Each InPort element of the model should be involved in the network flow:

Error (X, "The port does not have a valid flow.") :-
WasteProcess (_, elements, _, transformers, transitions, _),
X← elements, X: InPort,
Flow (X.name, _).

Each OutPort element of the model should be involved in the network flow:

Error (X, "The port does not have a valid flow.") :-
WasteProcess (_, elements, _, transformers, transitions, _),
X← elements, X: OutPort,
Flow (_, X.name).

All the port elements associated to a waste process should be the type of Material:

Error (X, "The port has invalid data type.") :-
WasteProcess (_, elements, _, transformers, transitions, _),
X← elements, X: Port, not X:EmissionsToEnvironment, X.type != "Material".

A waste process has, at most, one EmissionsToEnvironment port:

Error (X, "The process should have at most one EmissionsToEnvironment port.")
:-

WasteProcess (_, elements, _, transformers, transitions, _),
count ({X | X← elements, X: EmissionsToEnvironment}) > 1.

For each CompositeTransformer in the model, we generate a Dependency as fol-
lows:
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Dependency ::= (String, String).
Dependency (source, target) :-

WasteProcess (_, _, _, transformers, _, _), transformer← transformers,
transformer: CompositeTransformer,
sub_transformer← transformer.transformers,
source = transformer.name, target = sub_transformer.

Dependency (X, Z) :-
Dependency (X, Y), Dependency (Y, Z).

Composite transformers can not have circular dependency on themselves:

Dependency (X, "The composite transformer has circular dependency.") :-
Dependency (X, X).

6.3.4 Semantic Specification
In this section, we provide the denotational semantics of the proposed DSL. In order
to understand the semantics of the DSL better and avoid ambiguities, we later realize
these specification by providing the operational semantics of the language in ForSpec.
A formal definition of a waste process (P ) is presented as follows:

P = (I, T, E, O, Q) (6.1)

Where I and O are the set of inputs and the set of outputs. T is the set of transition
elements which can change the quantity of a material. E is the set of transformer
elements which can change the content of a material, and Q is the set of parameters
which are a pair of key k and values v.

Transition elements are directed arcs and they connect the transformers to each
other and transfer materials between them. We identify the two ends of a transition
t ∈ T by writing ↑ t as the source of the transition and ↓ t as the target of transition,
with the understanding that material moves from ↑ t to ↓ t, ↑ t ∈ I ∪ E, ↓ t ∈ E ∪ O
and ↑ t ̸=↓ t.

According to the metamodel defined for the DSL, different material transformers
are defined. Therefore, the set E of transformers is the disjoint union (denoted ⊎ )
of ten sets: the set EFD of fraction distributors, the set ESD of substance distributors,
the set EFH of fraction hubs, the set ESH of substance hubs, the set EMD of material
distributors, the set EMG of material generators, the set EFG of fraction generators, the
set ESG of substance generators, the set EFT of fraction transformers, the set EST of
substance transformers, and the set ECT of composite transformers:

E = EFH ⊎ ESH ⊎ EFD ⊎ ESD ⊎ EMD ⊎ EMG ⊎ EFG ⊎ ESG ⊎ EFT ⊎ EST ⊎ ECT (6.2)

The set of outputs O are also in the disjoint union of material outputs OM, feed-
back outputs Ofb, and emissions to environment outputs OE2E:

O = OM ⊎ Ofb ⊎ OE2E (6.3)
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The following functions are defined in order to assign different attributes to dif-
ferent kinds of transformers:

• deg : EFH ∪ ESH ∪ EFD ∪ ESD ∪ EMD → Aexp, is a function that assigns an arith-
metic expression as a degradation value to e ∈ E.

• substance : ESD ∪ ESG → Strexp, is a function that assigns a substance name to
each substance distributor and substance generator.

• fraction : EFD ∪ EFG ∪ ESG → Strexp, is a function that assigns a fraction name
to the elements.

• hb : EFD ⊎ ESD 9 FH ⊎ SH, is a partial function which specifies the hub that
uses the given distributor as a port.

• sd : ESH → P(ESD), is a function that assigns a set of substance distributors as
ports to each substance hub in ESH.

• fd : EFH → P(EFD), is a function that assigns a set of fraction distributors as
ports to each fraction hub in EFH.

• from : EFT → Strexp, is a function that assigns the source fraction name to each
fraction transformer in EFT.

• to : EFT → Strexp, is a function that assigns the target fraction name to each
fraction transformer in EFT.

• from : EST → Strexp, is a function that assigns the source substance name to
each substance transformer in EST.

• to : EST → Strexp, is a function that assigns the target substance name to each
substance transformer in EST.

• amount : EFT ∪ EMG ∪ EST ∪ ESG → Aexp is a function that assigns an arithmetic
expression as an amount to these elements.

• fractions : EMG → (FN → R), is a function that assigns the list of fractions
and their contribution amounts in the material which should be generated. The
contribution amount is in percentage.

• exchanges : OE2E → (SN × EF → Aexp), is a function that assigns the list of
exchange interfaces to the emissions to environment ports.

• transformers : ECT → P(E), is a function that specifies the list of transformers
associated to a composite transformer.

• outputTransformers : ECT → P(E)), is a function that finds the transformers
in a composite transform, which do not have outgoing transitions. These trans-
formers are considered as the output elements of a composite transformer.
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• container : E → ECT ∪ ⊥, is a function that specifies the container of a trans-
former, which can be either a composite transformer or ⊥.

We define the set R of iterators is the disjoint union of four sets: the set RF of
fraction iterators, RS of substance iterators, RN of numeric iterators, and the set RL of
list iterators:

R = RF ⊎ RS ⊎ RN ⊎ RL (6.4)

We define iterators as a triple of name k, current value hd, and the remind sequence
of the value tail. We define a function called next to update the current value of the
iterator to the first element of the sequence and keep the rest of the sequence as tail. It
returns ⊥, if the end of sequence is reached. The sequence for the numeric iterators is
a range from min to max, for the fraction iterators is a list of material fractions, and for
the substance iterators is a list of substances. A function, iterator : T ∪ E → R ∪ ⊥,
is defined to assign an iterator to the transitions and transformers. If no iterator has
been assigned to the element, it returns ⊥. According to the metamodel, the set T of
transitions is the disjoint union of two sets: the set TMF of material flows, and the set
TRF of residues flows:

T = TMF ⊎ TRF (6.5)

A function, amount : TMF → Aexp, is defined to assign an arithmetic expression as
an amount to the material flows. This value specifies the percentage amount of the
material which the flow transfers from its source to its target. This value is undefined
for residue flows. A function, condition : T → Bexp, is defined to assign a Boolean
value expression as the transition guard to the transitions. If this value evaluates to
false, the transition will not be executed.

The following auxiliary functions are defined in order to define the semantics of
the transformer elements:

• generateMaterial : R× (FN → R) → M , is a function that generates material
for the given amount and fractions.

• addFraction : M × FN → M , is a function that adds an empty fraction with
the given name to the given material.

• transformFraction : M × FN × FN × R → M , is a function that changes the
name and rescales the amount of the given fraction within the given material.

• transformSubstance : M × SN × SN ×R → M , is a function that changes the
name and rescales the amount of the given substance within the given material.

• addSubstance : M × FN × SN × R → M , is a function that adds a substance
with the given name and the given amount to (all or) specific fraction(s) of the
given material.
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• generateLCI : M ×(SN ×EF → Aexp) → LCI , is a function that computes the
elementary exchanges for the given material on the basis of the given exchange
interface.

We define σ as a store function that maps parameters to their values, where ⊥
denotes an undefined value, key → M ∪F ∪S ∪R∪Boolean∪String∪⊥. Furthermore,
we have a store update function denoted σ [k → v] returns a new environment, where
variable k equals v, and the rest of the store is the same as before. If k → ⊥, we define
k as a new parameter and we map it to the given value. In order to give semantics
to the DSL, the following semantic functions for each syntactic category in process P
for given material input I0 : I → M are defined as follows:

• IJ_K : I × (I → M) → M , determines the material value of an input element.

• OJ_Kσ : O × (I → M) → M ∪ LCI, determines the material value or the LCI
value of an output element.

• QJ_Kσ : Q × (I → M) → σ, loads the parameters and their associated values to
the given environment.

• EJ_Kσ : E × M × (I → M) → M , calculates the transformed material by a
transformer in a single iteration for the given material M as the material input
for the element.

• EJ_K+σ : E × R × M × (I → M) → M , calculates the transformed material by
a transformer for the complete iterations associated with the transformer.

• EJ_K∗σ : E ×(I → M) → M , initiates the computation of the transformed mate-
rial by a transformer for the complete iterations associated to the transformer.

• T J_Kσ : T × M × (I → M) → M , calculates the material value transferred by
a material transition in a single iteration for the given material M as the input
material of the element.

• T J_K+σ : T × R × M × (I → M) → M , calculates the material value trans-
ferred by a material transition for the complete iterations associated with the
transition.

• T J_K∗σ : T × (I → M) → M , initiates the computation of the material value
transferred by a material transition for the complete iterations associated with
the transition.

• AJ_Kσ : Aexp × (I → M) → R, evaluates an arithmetic expression to a real
number.

• BJ_Kσ : Bexp × (I → M) → Boolean, evaluates the given Boolean expression.

• SJ_Kσ : Strexp × (I → M) → String, evaluates the given string expression.
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• MJ_Kσ : Materialexp × (I → M) → M, evaluates the given material expres-
sion.

• J_Kσ : Exp × (I → M) → Boolean + R + String, evaluates the given expression.

Two more semantic functions EJ_Kin and EJ_Kout need to be defined in order to cal-
culate EJ_K. The first function evaluates the total material transferred into a material
transformer by a set of transitions. The second function calculates the total material
transferred out of a transformer through a set of transitions. Based on these semantic
functions, we can define the semantic equations as follows:

For each parameter (q ∈ Q), we add the parameter with the associated value to
the store and we update the environment:

QJqKσ(I0) = σ [q.k → q.v] (6.6)

For each input (i ∈ I), the evaluated material is the value assigned to i in the given
material input.

IJiK(I0) = I0(i) (6.7)
The semantic function T J_K∗ for each t ∈ T is defined as follows:

T JtK∗σ(I0) =

{
T JtK+σ(r, m, I0), iterator(t) = r ∧ r ∈ R

T JtKσ(m, I0), iterator(t) = ⊥

Where m =

{
IJ↑ tK(I0), ↑ t ∈ I

EJ↑ tK∗σ(I0), ↑ t ∈ E

(6.8)

If the transition has an iterator, then the semantic function T J_K+ for each transition
is defined as follows:

T JtK+σ(r, m, I0) =

{
⊥, r = ⊥
T JtK+σ(r′, m, I0) + T JtKσ′(m, I0), r ̸= ⊥

Where r′ = next(r), σ′ = σ [r.k → r.hd]
(6.9)

The function accumulates the material transferred by the transition to the target in
each iteration, which means that the transitions transfer the accumulated material
during their iterations to the element at their target. This material value of each iter-
ation, for the material transitions MF, is the percentage of the transformed material
specified by its source element, while the value of the residues flows RF is the sub-
traction of the transformed material and the total material output of its source:

T JmfKσ(m, I0) =

{
AJamount(mf)Kσ(I0)

100 ∗ m, BJcondition(mf)Kσ(I0)
⊥, else

(6.10)

T JrfKσ(m, I0) =

{
m − EJ↑rfKoutσ(I0) BJcondition(rf)Kσ(I0)
⊥, else

(6.11)
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The total material input, EJ_Kin, of each material transformer, if the transformer is
a distributor and it belongs to a hub, is the material value of its hub EJ_K∗, otherwise
it is the sum of all the material transferred to the transformer by the transitions.

EJeKinσ(I0) =


EJhb(e)K∗σ(I0), e ∈ EFD ∪ ESD ∧ hb(e) ̸= ⊥
generateMaterial(AJamount(e)K∗σ(I0), fractions(e)), e ∈ EMG

σ(container (e)), container (e) ̸= ⊥ ∧ ∀ t ∈ T ⇒↓ t ̸= e∑
t∈T ∧↓t=e

T JtK∗σ(I0), else

(6.12)
The total material output, EJ_Kout, for each material distributor, fraction distribu-

tor, substance distributor, and composite transformer is defined as follows:

EJfdKoutσ(I0) =
∑

t∈TMF∧↑t=fd

T JtK∗σ(I0)

EJsdKoutσ(I0) =
∑

t∈TMF∧↑t=sd

T JtK∗σ(I0)

EJmdKoutσ(I0) =
∑

t∈TMF∧↑t=md

T JtK∗σ(I0)

EJctKoutσ(I0) =
∑

t∈TMF∧↑t=ct

T JtK∗σ(I0)

(6.13)

The total material output, EJ_Kout, for each fraction hub or substance hub is the
sum of material outputs of their distributors;

EJfhKoutσ(I0) =
∑

fd∈fd(fh)
EJfdKoutσ(I0)

EJshKoutσ(I0) =
∑

sd∈sd(sh)
EJsdKoutσ(I0) (6.14)

The semantic function EJ_K∗ for each e ∈ E is defined as follows:

EJeK∗σ(I0) =

{
EJeK+σ(r, m, I0), iterator(e) = r ∧ r ∈ R

EJeKσ(m, I0), iterator(e) = ⊥
Where m = EJeKinσ(I0), e ∈ E

(6.15)

If the transformer has an iterator, then the semantic function EJ_K+ for each trans-
former is defined as follows:

EJeK+σ(r, m, I0) =

{
m, r = ⊥
EJeK+σ(r′, EJeKσ′(m, I0), I0), r ̸= ⊥

Where r′ = next(r), σ′ = σ [r.k → r.hd]
(6.16)

The function computes the transformation of each iteration on the basis of the mate-
rial computed from the previous iteration. In another words, the transformed mate-
rial in each iteration will be the input material for the next iteration. This chain starts
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with the initial material, which is the total input of the element, given in the semantic
function EJ_K∗. The semantic equations for the material transformers in each single
iteration are defined as follows:

EJfhKσ(m, I0) = 100−AJdeg(fh)Kσ(I0)
100 ∗ m

EJfdKσ(m, I0) = m|SJfraction(fd)Kσ(I0) ∗ 100−AJdeg(fd)Kσ(I0)
100

EJshKσ(m, I0) = 100−AJdeg(sh)Kσ(I0)
100 ∗ m

EJsdKσ(m, I0) = m|SJsubstance(sd)Kσ(I0) ∗ 100−AJdeg(sd)Kσ(I0)
100

EJmdKσ(m, I0) = 100−AJdeg(md)Kσ(I0)
100 ∗ m

EJfgKσ(m, I0) = addFraction(m, SJfraction(fg)Kσ(I0))
EJftKσ(m, I0) = transformFraction(m, SJfrom(ft)Kσ(I0), SJto(ft)Kσ(I0),

AJamount(fg)Kσ(I0))
EJsgKσ(m, I0) = addSubstance(m, SJfraction(sg)Kσ(I0), SJsubstance(sg)Kσ(I0),

AJamount(sg)Kσ(I0))
EJstKσ(m, I0) = transformSubstance(m, SJfrom(st)Kσ(I0), SJto(st)Kσ(I0),

AJamount(st)Kσ(I0))
EJctKσ(I0) =

∑
e∈outputTransformers(ct)

EJeK∗σ′(I0)

Where σ′ = σ [ct → m]
(6.17)

The semantic equations for the arithmetic expressions are defined as follows:

AJplusKσ(I0) = AJplus.leftKσ(I0) + AJplus.rightKσ(I0)
AJminusKσ(I0) = AJminus.leftKσ(I0) − AJminus.rightKσ(I0)
AJmultKσ(I0) = AJmult.leftKσ(I0) ∗ AJmult.rightKσ(I0)
AJdivKσ(I0) = AJdiv.leftKσ(I0)/AJdiv.rightKσ(I0)
AJunminusKσ(I0) = −AJunminus.expKσ(I0)
AJrealKσ(I0) = R
AJparamKσ(I0) = σ(param.name)
AJTotalWeightKσ(I0) = TotalWeight(MJTotalWeight.materialKσ(I0))
AJTotalFractionWeightKσ(I0) =
TotalFractionWeight(MJTotalFractionWeight.materialKσ(I0),

SJTotalFractionWeight.fractionKσ(I0))
AJTotalSubstanceWeightKσ(I0) =
TotalSubstanceWeight(MJTotalSubstanceWeight.materialKσ(I0),

SJTotalSubstanceWeight.substanceKσ(I0))
AJAmountKσ(I0) =
Amount(MJAmount.materialKσ(I0),

SJAmount.fractionKσ(I0), SJAmount.substanceKσ(I0))

(6.18)

The semantic equations for the Boolean expressions are defined as follows:
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BJGTKσ(I0) = JGT.leftKσ(I0) > JGT.rightKσ(I0)
BJLTKσ(I0) = JLT.leftKσ(I0) < JLT.rightKσ(I0)
BJLEKσ(I0) = JLE.leftKσ(I0) ≤ JLE.rightKσ(I0)
BJEQKσ(I0) = JEQ.leftKσ(I0) = JEQ.rightKσ(I0)
BJNotEqKσ(I0) = JNotEq.leftKσ(I0) ̸= JNotEq.rightKσ(I0)
BJGEKσ(I0) = JGE.leftKσ(I0) ≥ JGE.rightKσ(I0)
BJNegKσ(I0) = ¬BJNeg.expKσ(I0)
BJAndKσ(I0) = BJAnd.leftKσ(I0) ∧ BJAnd.rightKσ(I0)
BJOrKσ(I0) = BJOr.leftKσ(I0) ∨ BJOr.rightKσ(I0)
BJparamKσ(I0) = σ(param.name)
BJTRUEKσ(I0) = True
BJFALSEKσ(I0) = False

(6.19)

The semantic equations for the material expressions are defined as follows:

MJInputKσ(I0) = GetCurrentTransformerMaterialInput(I0)
MJTotalProcessInputKσ(I0) = GetTotalProcessInpute(I0)
MJProcessInputKσ(I0) = GetMaterialProcessInput(SJProcessInput.portKσ(I0), I0)
MJparamKσ(I0) = σ(param.name))

(6.20)
The semantic equations for the string expressions are defined as follows:

SJToStringKσ(I0) =

{
ToString(JToString.expKσ(I0)), ToString.exp ∈ Exp
ToString.exp.name, ToString.exp /∈ Exp

SJConcatKσ(I0) = Concat(SJConcat.leftKσ(I0), SJConcat.rightKσ(I0))
SJparamKσ(I0) = σ(param.name))

(6.21)
The semantic equations for expressions are defined as follows:

JeKσ(I0) =


AJeKσ(I0), e ∈ Aexp
BJeKσ(I0), e ∈ Bexp
SJeKσ(I0), e ∈ Strexp

(6.22)

The semantic function for output elements is defined as follows:

OJoKσ(I0) =


generateLCI(

∑
t∈T ∧↓t=o

T JtKσ(I0), exchanges(o)), o ∈ OE2E

∑
t∈T ∧↓t=o

T JtKσ(I0), o /∈ OE2E

(6.23)

Based on these semantics functions, we can give semantics to a waste process P
as well. Since the purpose of waste process is to calculate the outputs of the process
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based on given inputs, then the semantic function for a process P and given input,
I0 : I → M , is defined as follows:

PJ_K : P × (I → M) → (O → M ∪ LCI)
PJpK(I0) = λo : O.OJoKσ(I0)
Where σ = λq : Q.σ [q.k → q.v]

(6.24)

6.3.5 Operational Semantics
We implement the behavioral semantic of the proposed DSL in ForSpec on the basis
of the denotational semantic specifications presented in the Section 6.3.4. Since we
provided the operational semantics for the core and network languages, we choose to
provide the same specification style for specifying the behavioral semantic of the pro-
posed DSL as well. For brevity, we only provide the specifications for a subset of the
language’s elements here including InPorts, OutPorts, Distributors, CompositeTrans-
formers, and MaterialFlows the complete specifications can be found in Appendix C.2.

In order to implement the operational semantics of the DSL, we define a domain
called “AtomicWasteProcessRuntime” and we extend it from “AtomicWasteProcess”,
“DSFBLCoreRuntime”, “DSFBLIO”,“Material”, and “LifeCycleInventory” as follows:

domain AtomicWasteProcessRuntime extends AtomicWasteProcess, DSFBLIO,
DSFBLCoreRuntime, LifeCycleInventory, Material

{
ComponentState += WasteProcessState.
WasteProcessState ::= new (instanceid: String, component: WasteProcess,
primary_state: PrimaryState, statevars: StateVarList + {Nil}).
InputMaterial ::= new (name: String, value: Material).
StateVar += InputMaterial.

We introduce a data type called “WasteProcessState” as the run-time representa-
tion of waste processes. We also define a state variable called InputMaterial to store
the input material associated with the input ports or other elements. As usual, we
define the following functions to specify the instantiation and initialization of the
atomic-waste processes:

Instantiate (atomic_waste_proc, params) ⇒ (env) :-
atomic_waste_proc: WasteProcess,
statevars = params,
waste_proc_instance_no = count ({ X | Instantiate (X, _, _),
X: WasteProcess}),
instanceid = strJoin (atomic_waste_proc.name, waste_proc_instance_no),
count ({port |port← atomic_waste_proc.elements, port: InPort}) > 0,

env = WasteProcessState (instanceid, atomic_waste_proc, NotStarted,
statevars)
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If the process does not have any input ports, we set its execution state to Active.

; atomic_waste_proc: WasteProcess,
statevars = params,
waste_proc_instance_no = count ({ X | Instantiate (X, _, _),
X: WasteProcess}),
instanceid = strJoin (atomic_waste_proc.name, waste_proc_instance_no),
no {port |port← atomic_waste_proc.elements, port: InPort},
env = WasteProcessState (instanceid, atomic_waste_proc, Active, statevars).

To initialize the component, we only update its state to Active as follows:

Initialize (env) ⇒ (env') :-
env: WasteProcessState,
env' = WasteProcessState (env.instanceid, env.component,
Active, env.statevars).

In order to execute the component, we first check whether or not data is avail-
able for all the input ports of the component by calling an auxiliary function called
AllPortsAreActive. If it returns true, we load the material input for each port to the en-
vironment, then we generate all the output actions by calling another function called
GenerateOutputs and we update the state of the component to Inactive as follows:

Execute (env, in_actions, actid) ⇒ (env'', out_actions, actid) :-
env: WasteProcessState,
AllPortsAreActive (in_actions, env) ⇒ (TRUE),
statevars = toList (StateVarList, Nil,
{ InputMaterial (port.name, data.data) |
port← env.component.elements, port: InPort,
ReadPortInput (port.name, env, in_actions) ⇒ (data)}),
AppendStateVars (env, statevars) ⇒ (env')
GenerateOutputs (in_actions, env') ⇒ (out_actions),
env'' = WasteProcessState (env.instanceid, env.component,
Inactive, env'.statevars)

If data is not available for all the input ports of the process, update the execution
state of the component to Suspended_on_receive and finish the execution:

; env: WasteProcessState,
no AllPortsAreActive (in_actions, env) ⇒ (TRUE),
env'' = WasteProcessState (env.instanceid, env.component,
Suspended_on_receive, env.statevars).

GenerateOutputs formalizes the execution rules of the semantic function OJ_K as
follows:
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GenerateOutputs ::= [IOActionList, WasteProcessState ⇒ IOActionList].
GenerateOutputs (in_actions, env) ⇒ (out_actions) :-

data_actions = toList (IOActionList, Nil,

For each input port, read the first data-packet by calling ReadPortInput and drop
it by generating a Drop action as an output action:

{Drop (port.name, data)| port← env.component.elements,
port: InPort, ReadPortInput (port.name, env, in_actions) ⇒ (data)} union

For each output port, compute the total material flowing to the port from the
network and generate Write action for the material as output:

{Write (port.name, data)| port← env.component.elements,
port: OutPort, not port: EmissionsToEnvironment,
TotalInputValue (port, env) ⇒ (material),
data = DataPacket (material, "Material")} union

For each FeedbackPort, if the closing_condition evaluates to true, generate an Close
IOAction:

{Close (port.name)| port← env.component.elements,
port: FeedbackPort,
TotalInputValue (port, env) ⇒ (material),
EvaluateBexp (port.closing_condition, material, env)
⇒ (TRUE)} union

For each EmissionsToEnvironment output port; compute the input-specific LCI by
calculating the total material flowing to the port from the network and convert it to
elementary exchanges by calling ConvertToEmissions function; compute the process-
specific LCI by calculating the total material input of the process and converting it
to elementary exchanges accordingly, compute the accumulated LCI, generate a Pro-
cessLCI and produce Write action for the result as output:

{Write (port.name, data)| port← env.component.elements,
port: EmissionsToEnvironment,
TotalInputValue (port, env) ⇒ (material),
ConvertToEmissions (material, port.exchanges, env) ⇒ (input_specific_lci),
ProcessMaterialInput (env) ⇒ (total_process_input),
ConvertToEmissions (total_process_input, env.component.exchanges,
env) ⇒ (proc_specific_lci),
SumLCI (LCI (input_specific_lci, LCI (proc_specific_lci, Nil))) ⇒ (total),
process_lci = ProcessLCI (env.component.name, input_specific_lci,
input_specific_lci, total, Nil),
data = DataPacket (process_lci, "ProcessLCI")}),
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Finally, if there is any Close action within the received actions, generate Close ac-
tion to close all the output ports of the process:

GenerateActions (in_actions, env) ⇒ (close_actions),
out_actions = append (data_actions, close_actions).

TotalInputValue formalizes the execution rules of the semantic function EJ_Kin as
follows:

TotalInputValue ::= [Transformer + Input + Output, WasteProcessState
⇒ Material].

TotalInputValue (element, env) ⇒ (material) :-

For the input ports, read the input material from the statevars of the given envi-
ronment as follows:

element: InPort,
statevar← env.statevars, statevar: InputMaterial,
statevar.name = element.name, material = statevar.value

For the Transformers that are associated to a CompositeTransformer, and that are not
targeted by any transition elements; find the composite transformer, which contains
these elements and search the environment to find the material input value associ-
ated to the container. This means that the total material input of this element is the
total material input flowing to their container, which is a CompositeTransformer:

; GetContainer (element, env.component.transformers) ⇒ (container),
container != Nil, transitions = env.component.transitions,
no { t | t← transitions, t.target = element.name},
statevar← env.statevars, statevar: InputMaterial,
statevar.name = container.name, material = statevar.value

For other elements which are associated to a CompositeTransformer and which are
targeted by ingoing transitions, the total material input is the sum of all the materials
transferring to the elements via transitions targeting them:

; GetContainer (element, env.component.transformers) ⇒ (container),
container != Nil, transitions = env.component.transitions,
count ({ t | t← transitions, t.target = element.name}) > 0,
element: not Distributor, element: not InPort,
transitions_material = toList (MaterialList, Nil,
{ mat | t← transitions, t.target = element.name,
ElementValue (t, env) ⇒ (mat)}),
SumMaterial (transitions_material) ⇒ (material)
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For the Distributors which are associated to a CompositeTransformer and are tar-
geted by ingoing transitions, the total material input is the sum of all the materials
transferring to the distributor via these transitions:

; GetContainer (element, env.component.transformers) ⇒ (container),
container != Nil, transitions = env.component.transitions,
count ({ t | t← transitions, t.target = element.name}) > 0,
element: Distributor, element.hb = Nil,
transitions_material = toList (MaterialList, Nil,
{ mat | t← transitions, t.target = element.name,
ElementValue (t, env) ⇒ (mat)}),
SumMaterial (transitions_material) ⇒ (material).

For the Distributors which are not associated to a CompositeTransformer, the total
material input is the sum of all the materials transferring to the distributor via tran-
sitions targeting this element:

; GetContainer (element, env.component.transformers) ⇒ (Nil),
element: Distributor, element.hb = Nil,
transitions = env.component.transitions,
transitions_material = toList (MaterialList, Nil,
{ mat | t← transitions, t.target = element.name,
ElementValue (t, env) ⇒ (mat)}),
SumMaterial (transitions_material) ⇒ (material).

For other elements not associated to a CompositeTransformer, the total material in-
put is the sum of all the materials transferring to the elements via transitions targeting
them:

; GetContainer (element, env.component.transformers) ⇒ (Nil),
element: not Distributor, element: not InPort,
transitions = env.component.transitions,
transitions_material = toList (MaterialList, Nil,
{ mat | t← transitions, t.target = element.name,
ElementValue (t, env) ⇒ (mat)}),
SumMaterial (transitions_material) ⇒ (material)

ElementValue formalizes the execution rules of the semantic function EJeK∗ and
T JtK∗ as follows:

ElementValue ::= [Transformer + Transition , WasteProcessState ⇒ Material].
ElementValue (element, env) ⇒ (result) :-

If a transformer element has an iterator, compute the input of the element, initial-
ize the iterator and execute the iterations:
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element: Transformer, element.iterator != Nil,
TotalInputValue (element, env) ⇒ (input),
IntializeIterator (element.iterator, env, input) ⇒ (iterator),
ExecuteIterator (element, env, input, iterator) ⇒ (result)

If a transformer element does not have an iterator, compute the input of the ele-
ment and execute the transformation for a single iteration:

; element: Transformer, element.iterator = Nil,
TotalInputValue (element, env) ⇒ (input),
TransformerValue (element, env, input) ⇒ (result),

If a material flow element has an iterator, compute the input of the element, ini-
tialize the iterator and execute the iterations:

; element: MaterialFlow, element.iterator != Nil,
GetElement (element.source, env) ⇒ (source),
ElementValue (source, env) ⇒ (input),
IntializeIterator (element.iterator, env, input) ⇒ (iterator),
ExecuteIterator (element, env, input, iterator) ⇒ (result),

If a material flow element does not have an iterator, compute the input of the
element, execute the transition for a single iteration:

; element: MaterialFlow, element.iterator = Nil,
GetElement (element.source, env) ⇒ (source),
ElementValue (source, env) ⇒ (input),
TransitionValue (element, env, input) ⇒ (result)

ExecuteIterator formalizes the execution rules of the semantic function EJeK+ and
T JtK+ as follows:

ExecuteIterator ::= [Transformer + Transition, WasteProcessState,
Material, IteratorState ⇒ Material].

ExecuteIterator (element, env, material, iterator_state) ⇒ (result) :-

For transformers, compute the material according to semantic function EJeK+:

element: Transformer, iterator_state != Nil,
LoadIteratorVar (env, iterator_state) ⇒ (env'),
TransformerValue (element, env', material) ⇒ (material'),
Next (iterator_state) ⇒ (iterator_state'),
ExecuteIterator (element, env, material', iterator_state') ⇒ (result)

; element: Transformer, iterator_state = Nil,
result = material.
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For transitions, compute the material according to semantic function T JtK+:

; element: Transition, iterator_state != Nil,
LoadIteratorVar (env, iterator_state) ⇒ (env'),
TransitionValue (element, env', material) ⇒ (material'),
Next (iterator_state) ⇒ (iterator_state'),
ExecuteIterator (element, env, material', iterator_state') ⇒ (material''),
MergeMaterial (material', material'') ⇒ (result)

; element: Transition,
iterator_state = Nil,
result = Nil.

TransitionValue function formalizes the execution rules of the semantic function
T J_K as follows:

TransitionValue ::= [Transition, WasteProcessState, Material ⇒ Material].
TransitionValue (element, env, input_material) ⇒ (material) :-

If the guard condition associated to a transition is not satisfied, transfer no mate-
rial:

element.condition != Nil,
no EvaluateBexp (element.condition, input_material, env) ⇒ (TRUE),
material = Nil

If the guard condition associated to a MaterialFlow transition evaluates to true,
rescale the material from the source element according to the associated amount and
transfer it to the target element:

; element.condition != Nil, element: MaterialFlow,
EvaluateBexp (element.condition, input_material, env) ⇒ (TRUE),
EvaluateAexp (element.amount, input_material, env) ⇒ (amount),
amount_percent = amount / 100,
RescaleMaterial (input_material, amount_percent) ⇒ (material)

If aMaterialFlow has no guard, rescale the material from the source element ac-
cording to the associated amount and transfer it to the target element:

; element.condition = Nil, element: MaterialFlow,
EvaluateAexp (element.amount, input_material, env) ⇒ (amount),
amount_percent = amount / 100,
RescaleMaterial (input_material, amount_percent) ⇒ (material)

TransformerValue function formalizes the execution rules of the semantic function
EJ_K as follows:
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TransformerValue ::= [Transformer, WasteProcessState, Material ⇒ Material].
TransformerValue (element, env, input_material) ⇒ (material) :-

For MaterialDistributor elements, the value is the same as the total input material
transferring to the element:

; element: MaterialDistributor,
Degrade (element, env, input_material) ⇒ (material)

For SubstanceDistributor elements, filter the total material transferring to the ele-
ment with the associated substance:

; element: SubstanceDistributor,
EvaluateStrexp (element.substance, input_material, env) ⇒ (substance'),
FilterMaterialSubstanceValue (input_material, substance')
⇒ (filtered_material),
Degrade (element, env, filtered_material) ⇒ (material),

For FractionDistributor elements, filter the total material transferring to the ele-
ment with the associated fraction:

; element: FractionDistributor,
EvaluateStrexp (element.fraction, input_material, env) ⇒ (fraction'),
FilterMaterialFraction (input_material, fraction')
⇒ (filtered_material),
Degrade (element, env, filtered_material) ⇒ (material),

For CompositeTransformer, the material value is the sum of all the materials that
are transformed by the transformers of the elements which do not have any outgo-
ing transitions. Therefore, first, we update the environment variables with a statevar
to store the material input value of the composite transformer (this value will be re-
trieved by the elements of transformers, which are not targeted by any transition, as
input value). Second, we find the mentioned transformers by using GetOutputTrans-
formers function. Third, we compute the materials transformed by these elements
and finally, we accumulate the results to compute the material:

; element: CompositeTransformer,
statevar = InputMaterial (element.name, input_material),
AppendStateVar (env, statevar) ⇒ (env'),
GetOutputTransformers (element, env') ⇒ (element_list),
material_list = toList ( MaterialList, Nil,
{e_material | e← element_list,
ElementValue (e, env') ⇒ (e_material)}),
SumMaterial (material_list) ⇒ (material).
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GetOutputTransformers function finds the transformers of a composite transformer,
which do not have any outgoing transitions:

GetOutputTransformers ::= [CompositeTransformer,
WasteProcessState ⇒ TransformerList].

GetOutputTransformers (composite_transformer, env)
⇒ (transformer_list) :-
transformer_list = toList (TransformerList, Nil,
{element | transformer← composite_transformer.transformers,
transformer /∈ env.component.transitions [source],
GetElement (transformer, env) ⇒ (element)}).

Degrade is an auxiliary function that degrades the amount of the given material
to a certain amount:

Degrade ::= [Transformer, WasteProcessState, Material ⇒ Material].
Degrade (element, env, input) ⇒ (result) :-

EvaluateAexp (element.deg, input, env) ⇒ (deg),
deg_percent = (100 - deg) /100,
RescaleMaterial (input, deg_percent) ⇒ (result).

GetCloseActions generates Close action for all the output ports of the component,
if there is any Close action within the given action lists:

GetCloseActions ::= [IOActionList, ComponentState ⇒ IOActionList].
GetCloseActions (in_actions, env) ⇒ (out_actions) :-

count ({act| act← in_actions, act: Close}) > 0,
out_actions = toList (IOActionList, Nil,
{Close (port.name)| port← env.component.elements, port: OutPort})

; no {act| act← in_actions, act: Close}, out_actions = Nil.

6.4 Domain-Specific Language For Specifying Composite Waste
Processes

In this section, we specify the composite language for modeling composite waste pro-
cesses. To this end, we extend the composite language proposed in the last chapter
to support the required data types and components for the domain of waste man-
agement. As we discussed earlier, since we need to specify the life-cycle assessment
of the waste processes as an aspect, we utilize aspect-oriented composite language
instead of the standard FBP networks. Therefore, we define a domain called “Waste-
Management” and we extend it from “DSFBLAspectRuntime”, “AtomicWastePro-
cessRuntime”, “LifeCycleAssessment” as follows:

domain WasteManagement extends AtomicWasteProcessRuntime,
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DSFBLAspectRuntime, LifeCycleAssessment
{

Since the semantic of this language is the same as the semantic of the aspect-
oriented language, we extend the domain directly from the “DSFBLAspectRuntime”.
In addition, we also extend the domain from “AtomicWasteProcessRuntime” and
“LifeCycleAssessment” domains. This allows us to include the definition of atomic
waste processes and provide computation of life-cycle assessments for the atomic
and composite waste processes. To this end, we extend the DataType with the data
types, which we expect to flow through the network:

DataType += Material + LCI + ProcessLCI + ProcessLCIA
+ FractionValueList + ExchangeInterfaceList.

Component += LCIACalculator + LCIACollector.

We compute the LCIA of the waste processes by defining an aspect as presented
in Section 4.7.3. This can be achieved by utilizing two specific components, which
should be weaved with the given waste processes to compute LCIA. The first com-
ponent called LCIACalculator computes the LCIA of the atomic processes, while the
second component called LCIACollector computes the aggregated LCIA for the com-
posite processes. We formalize the first component as follows:

LCIACalculator ::= new (name: String, elements: ModelElementList,
classifier: String + Nil, method: LCIAMethod,

lci_input_port: String, lci_output_port: String, lcia_output_port:
String).

The LCIACalculator is specified as a component with three more fields to specify
the name of LCI input port, the name of LCI output port, the name of LCIA output
port, and the LCIA method to compute LCIA. We formalize the execution of this
component as follows:

ComponentState += LCIACalculatorState.
LCIACalculatorState ::= new (instanceid: String, component: LCIACalculator,

primary_state: PrimaryState, statevars: StateVarList + {Nil}).

We define the execution environment for the component and we formalize its
Instantiate function as follows:

Instantiate (comp, params) ⇒ (env) :-
comp: LCIACalculator,
statevars = params,
instance_no = count ({ X | Instantiate (X, _, _), X: LCIACalculator }),
instanceid = strJoin (comp.name, instance_no),
ports = ModelElementList (InPort (comp.lci_input_port, "ProcessLCI"),
ModelElementList( OutPort (comp.lci_output_port, "ProcessLCI"),
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ModelElementList (OutPort (comp.lcia_output_port, "ProcessLCIA"), Nil)))
elements' = append (ports, comp.elements),
comp' = LCIACalculator (comp.name, elements',
comp.classifier, comp.method, comp.lci_input_port,
comp.lci_output_port, comp.lcia_output_port).
env = LCIACalculatorState (instanceid, comp', NotStarted, statevars).

We dynamically add three ports with the given name to the elements of the com-
ponent. The LCI input port provides the ProcessLCI information of the atomic waste
processes, and it will be connected to the LCI port of the atomic processes by the
weaver. The LCI output port transfers data received from the LCI input port to out-
put, without changes, and finally the LCIA output port transfers the computed Pro-
cessLCIA information to output. We formalize the Initialize function for the compo-
nent as follows:

Initialize (env) ⇒ (env') :-
env: LCIACalculatorState,

env' = LCIACalculatorState (env.instanceid, env.component, Active,
env.statevars).

The execution rules of Execute function are formalized as follows:

Execute ::= [Environment, IOActionList + {Nil}, Integer
⇒ Environment, IOActionList + {Nil}, Integer].

Execute (env, in_actions, actid) ⇒ (env', out_actions, actid) :-

If data is available for the LCI input port, compute the LCIA of the process by
calling ComputeProcessLCIA, and generate action to write the result of LCIA, generate
action to write the same data-packet received for the input LCI to the output LCI port,
generate Drop and Close actions accordingly:

env: LCIACalculatorState,
lci_input_port = env.component.lci_input_port,
lci_out_port = env.component.lci_out_port,
lcia_out_port = env.component.lcia_out_port,
ReadInput (lci_input_port, env, in_actions) ⇒ (input),
lcia_method = env.component.method,
ComputeProcessLCIA (input.data, lcia_method, Nil) ⇒ (proc_lcia),
GetCloseActions (in_actions, env) ⇒ (close_actions),

lcia_action = Write (lcia_output_port, DataPacket (proc_lcia,
"ProcessLCIA")),

lci_action = Write (lci_output_port, input.data),
drop_action = Drop (lci_input_port, input.data),
out_actions = IOActionList (lci_action, IOActionList (lcia_action,
IOActionList ( drop_action, close_actions))),
env' = LCIACalculatorState (env.instanceid, env.component, Inactive,

env.statevars)
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If data is not available for the LCI input port, update the state of the component
to suspended as follows:

; env: LCIACalculatorState,
no ReadInput (lci_input_port, env, in_actions) ⇒ (input),
env' = LCIACalculatorState (env.instanceid,
env.component, Suspended_on_receive, env.statevars).

ReadInput function read a data-packet from the given port:

ReadInput ::= [String, LCIACalculatorState, IOActionList + {Nil} ⇒
DataPacket].
ReadInput (port, env, actions) ⇒ (data) :-

act = actions.hd, act: Read, act.portid = port,
act.data.data: Material, data = act.data

; act = actions.hd, act.portid != port, actions != Nil,
ReadInput (port, env, actions.tail) ⇒ (data).

ComputeProcessLCIA formalizes the execution rules of LCIA computation of a pro-
cess, including process-specific and input -specific, on the basis of the given LCI and
LCIA method:

ComputeProcessLCIA ::= [ProcessLCI, LCIAMethod, ProcessLCIAList ⇒
ProcessLCIA].
ComputeProcessLCIA (proc_lci, method, sub_proc_lcia) ⇒ (proc_lcia) :-

ComputeLCIAMethod (proc_lci.input_specific, method) ⇒ (input_specific),
ComputeLCIAMethod (proc_lci.process_specific, method) ⇒ (proc_specific),
ComputeLCIAMethod (proc_lci.total, method) ⇒ (total),
proc_lcia = ProcessLCIA (proc_lci.process, input_specific, proc_specific,

total, sub_proc_lcia).

ComputeLCIAMethod formalizes the execution rules for computing LCIA on the
basis of the given LCI and LCIA method:

ComputeLCIAMethod ::= [LCI, LCIAMethod ⇒ LCIAMethodAssessment]
ComputeLCIAMethod (lci, method) ⇒ (lcia) :-

lcia = toList (LCIAMethodAssessment, Nil,
{ica | impact_category← method,
ComputeICA (lci, impact_category) ⇒ (ica)}).

ComputeICA formalizes the execution rules for computation of LCIA, including
characterized, normalized, and weighted, on the basis of the given LCI and impact
category:

ComputeICA ::= [LCI, ImpactCategory ⇒ ImpactCategoryAssessment]
ComputeICA (lci, icategory) ⇒ (ica) :-
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CharacterizedLCIA_PerElementary (lci, icategory) ⇒ (characterized),
NormalizedLCIA_PerElementary (lci, icategory) ⇒ (normalized),
WeightedLCIA_PerElementary (lci, icategory) ⇒ (weighted),
WeightedLCIA_Total (lci, icategory) ⇒ (score),
ica = ImpactCategoryAssessment (icategory.id,
characterized, normalized, weighted, score).

We formalize the second component, which computes the LCIA and LCI of the
composite processes, called LCIACollector as follows:

LCIACollector ::= new (name: String, elements: ModelElementList,
classifier: String + Nil, method: LCIAMethod, lci_input_port: String,

lci_output_port: String, lcia_input_port: String, lcia_output_port:
String).

The following formalizes the execution environment of the component as fol-
lows:

ComponentState += LCIACollectorState.
LCIACollectorState ::= new (instanceid: String, component: LCIACollector,

primary_state: PrimaryState, statevars: StateVarList + {Nil}).

The execution rules for the Instantiate function of the component is formalized as
follows:

Instantiate (comp, params) ⇒ (env) :-
comp: LCIACollector,
statevars = params,
instance_no = count ({ X | Instantiate (X, _, _), X: LCIACollector }),
instanceid = strJoin (comp.name, instance_no),
ports = ModelElementList (InPort (comp.lci_input_port, "ProcessLCI"),
ModelElementList( OutPort (comp.lci_output_port, "ProcessLCI"),
ModelElementList( OutPort (comp.lcia_input_port, "ProcessLCIA"),
ModelElementList (OutPort (comp.lcia_output_port, "ProcessLCIA"), Nil))))
elements' = append (ports, comp.elements),
comp' = LCIACollector (comp.name, elements',
comp.classifier, comp.method, comp.lci_input_port,
comp.lci_output_port, comp.lcia_input_port, comp.lcia_output_port).
env = LCIACollectorState (instanceid, comp', NotStarted, statevars).

We dynamically add four ports with the given name to the elements of the com-
ponent. The LCI input port provides the ProcessLCI information of the atomic or
composite waste processes. The LCIA input port provides the ProcessLCIA informa-
tion of the atomic or composite waste processes. The LCI output port transfers the
accumulated LCI of the composite process to output and finally, the LCIA output
port transfers the accumulated ProcessLCIA information to output. We formalize the
Initialize function of the component as follows:
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Initialize (env) ⇒ (env') :-
env: LCIACollectorState,

env' = LCIACollectorState (env.instanceid, env.component, Active,
env.statevars).

We formalize the execution rules of Execute function for the component as fol-
lows:

Execute ::= [Environment, IOActionList + {Nil}, Integer
⇒ Environment, IOActionList + {Nil}, Integer].

Execute (env, in_actions, actid) ⇒ (env', out_actions, actid) :-

If data is available for the input ports; read all the data-packets for the LCI and
LCIA input ports, compute the input specific, process specific, and total LCI of the
composite process by accumulating the associated LCI of the sub processes, then
compute the ProcessLCIA of the process on the basis of the computed LCI and the
given LCIA method, and finally generate the related actions and set the state of the
component to Inactive :

env: LCIACollectorState,
ReadAllProcessLCIs (env.component.lci_input_port, env, in_actions) ⇒

(process_lcis),
ReadAllProcessLCIAs (env.component.lcia_input_port, env, in_actions) ⇒

(process_lcias),
input_specific_lci_list = toList (LCIList, Nil,
{proc_lci.input_specific | proc_lci← process_lcis}),
proc_specific_lci_list = toList (LCIList, Nil,
{proc_lci.process_specific | proc_lci← process_lcis}),
SumLCI (input_specific_lci_list) ⇒ (input_specific),
SumLCI (proc_specific_lci_list) ⇒ (proc_specific),
SumLCI (LCIList(input_specific, LCIList (proc_specific, Nil))) ⇒ (total),
process_lci = ProcessLCI (env.component.name,
input_specific, proc_specific, total, process_lcis),
lcia_method = env.component.method,

ComputeProcessLCIA (process_lci, lcia_method, process_lcias) ⇒
(process_lcia),

GetCloseActions (in_actions, env) ⇒ (close_actions),
lcia_action = Write (env.component.lcia_output_port, DataPacket

(process_lcia, "ProcessLCIA")),
lci_action = Write (env.component.lci_output_port, DataPacket (process_lci,

"ProcessLCI")),
out_actions = IOActionList (lci_action, IOActionList (lcia_action,

close_actions)),
env' = LCIACollectorState (env.instanceid, env.component, Inactive,

env.statevars)

If data is not available for all the input ports, suspend the process:
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; env: LCIACollectorState,
no ReadAllProcessLCIs (env.component.lci_input_port, env, in_actions) ⇒

(_),
env' = LCIACollectorState (env.instanceid,
env.component, Suspended_on_receive, env.statevars).

ReadAllProcessLCIs reads all the data of the LCI input port:

ReadAllProcessLCIs ::= [String, LCIACollectorState, IOActionList ⇒
ProcessLCIList].
ReadAllProcessLCIs (port, env, actions) ⇒ (data) :-

data = toList (ProcessLCIList, Nil,
{data | act← actions, act: Read, act.portid = port, data = act.data}).

ReadAllProcessLCIAs reads all the data of the LCIA input port:

ReadAllProcessLCIAs ::= [String, LCIACollectorState, IOActionList ⇒
ProcessLCIAList].
ReadAllProcessLCIAs (port, env, actions) ⇒ (data) :-

data = toList (ProcessLCIAList, Nil,
{data | act← actions, act: Read, act.portid = port, data = act.data}).

}

Now we are ready to specify the LCIA computation of the waste processes by
defining an aspect. To this end, we need to create an instance model of “WasteM-
anagement” domain and provide the specification for the aspect within this model.
The aspect utilizes two advices to compute the LCIA of the atomic and composite
processes. The first advice is an after observer advice that matches the WasteProcess
within a network and utilizes an input port to receive the ProcessLCI information
from the LCI output port of the join point process. The advice computes the LCIA
information for the process and transfers it to the output ports of the advice process.
The other advice matches the composite processes and aggregates the LCI and LCIA
output ports of its sub-processes to compute the accumulated LCI and LCIA of the
composite process. We define this model as follows:

model LCIAComputation of WasteManagement
{ ...
LCImethod is LCIAMethod ......
LCIACalculator ("LCIACalculator", Nil, Nil, LCImethod,

"LCI","LCIPort", "LCIAPort")>).
LCIACollector ("LCIACollector", Nil, Nil, LCImethod,

"LCIPort","LCIPort", "LCIAPort", "LCIAPort")>).
Aspect ("lcia_aspect", AdviceList <
Observer ("lcia_atomic", After, ComponentDesignator ("*", "WasteProcess"),
Process ("atomic_lcia", "LCIACalculator", Nil)),
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Collector ("lcia_composite", PortFilterList <
PortFilter ("LCIPort", "ProcessLCI"), PortFilter ("LCIAPort",

"ProcessLCIA")>,
ComponentDesignator ("*", "Network"), Process ("composite_lcia",

"LCIACollector", Nil)),
>

).

For modularity reasons, we extended ForSpec to allow the inclusion of another
model that conforms to the same domains or sub-domains. Therefore, LCIACompu-
tation model can be included in any waste processes to compute LCIA:

model scenario of WasteManagement includes LCIAComputation
{...
}

6.5 Constraint Language to Classify and Validate Waste Processes

In order to classify and validate waste processes, we utilize the constraint language
proposed in the last chapter. To this end, we create a model of a DSFBLConstraint

Figure 6.2: An example of process types defined for waste management systems.
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domain and we specify the main process types existing in the domain of waste man-
agement. We classify them using the inheritance relationship and we determine valid
waste management systems by providing the topological and structural constraints
that should be satisfied. Figure 6.2 presents a model of waste process types in waste
management, specified within the constraint language proposed in the framework.
Both the DSL designer and domain experts can define these process types and specify
the constraints between them.

As we mentioned before, each waste process (both unit and composite) are as-
signed to a waste process type. If two waste processes have the same process type,
this means that they are equivalent and exchangeable within a system. In other
words, they perform the same process within a system but with different technol-
ogy and consequently, different quality. For example, a waste collection process can
be identified as a process type which collects waste from the place that the waste
is generated to the place that it should be treated. This process can be performed
with various technologies, e.g. different waste collection trucks, which each can be
defined as a waste process associated to this process type. These classifications and
constraints are especially required for providing automated design exploration and
optimization methods for waste management systems. In these methods, a waste
management system is initially designed by a domain expert and a systematic ap-
proach should be used to find the best alternative to the given system. To this end,
the process type as a classifier can be used to find the possible alternative processes
available in the system and the constraints can be used to check the validity of the
alternative and optimized system.

6.6 Concrete Syntax For the Proposed DSL

In this section, we define a concrete syntax for the DSFBL within our integrated frame-
work in order to provide a graphical editor for domain experts to specify waste pro-
cesses. To this end, we provide a concrete syntax for the domain-specific language
proposed in this chapter, for defining the unit waste processes. And we use the same
concrete syntax, presented in Chapter 5, for network and constraint languages to

Figure 6.3: Concrete syntax of a unit process.
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Table 6.1: Graphical notations for specifying the unit waste processes.

Notation Description

InPort OutPort

FeedbackPort Emission to
Environment

Fraction Hub Fraction
Distributor

Fraction
Transformer

Fraction
Generator

Substance Hub Substance
Distributor

Substance
Transformer

Substance
Generator

Material
Generator

Material
Distributor

Composite
Transformer

Material Flow Residues Flow
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Diagram Elements

WasteProcess
Diagram

Domain Properties

MaterialInputShape
GeometryShape

Domain Properties

Decorators

IconDecorator1

NameDecorator1

MaterialOutputShape
GeometryShape

Domain Properties

Decorators

NameDecorator1

IconDecorator1

FractionHubShape
GeometryShape

Domain Properties

Decorators

TypeDecorator1

SubstanceHubShape
GeometryShape

Domain Properties

Decorators

TypeDecorator2

FractionDistributorPort
Port

Domain Properties

Decorators

Name

IconDecorator1

Degradation

SubstanceDistributorPort
Port

Domain Properties

Decorators

Name

IconDecorator1

Degradation

TransitionConnector
Connector

Domain Properties

Decorators

FractionDistributorShape
GeometryShape

Domain Properties

Decorators

IconDecorator1

Degradation

Fraction

TypeDecorator3

SubstanceDistributorShape
GeometryShape

Domain Properties

Decorators

IconDecorator1

Degradation

SubstanceDecorator1

TypeDecorator4

SubstanceTransformerShape
GeometryShape

Domain Properties

Decorators

FormulaDecorator

TypeDecorator7

TextDecorator1

ElementShape
GeometryShape

Classes and Relationships

FractionDistributor
DomainClass

SubstanceDistributor
DomainClass

Distributor
DomainClass

Hub
DomainClass

FractionHub
DomainClass

SubstanceHub
DomainClass

MaterialDistributor
DomainClass

SubstanceTransformer
DomainClass

FractionTransformer
DomainClass

Transformer
DomainClass

FractionGenerator
DomainClass

SubstanceGenerator
DomainClass

DomainRelationship

Transformers

LinkableElement
DomainClass

DomainRelationship

MaterialFlow

LinkableElement
DomainClass

DomainRelationship

ResiduesFlow

LinkableElement
DomainClass

MaterialFlow
DomainRelationship

ResiduesFlow
DomainRelationship

LinkableElement
DomainClass

Domain Properties

Port
DomainClass

DomainRelationship

Transitions

LinkElement
DomainClass

DomainRelationship

ExchangeInterfaces

WasteProcess
DomainClass

ExchangeInterface
DomainClass

WasteProcess

1..1

ExchangeInte…

0..*

WasteProcess

1..1

LinkElements

0..*

Source

0..*

Target

0..*

Source

0..*

Target

0..*

WasteProcess

1..1

LinkableElem…

0..*

Figure 6.4: DSL definition of the Unit Waste Process in MS DSL Tools.
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specify the composite waste processes and process types within the waste manage-
ment domain.

In order to develop a graphical syntax for the DSL, we import the DSL definition
diagram from DSFBLCore metamodel presented in Section 5.3 into the DSL project
defined for this DSL, and we extend the domain classes according to its metamodel.
Finally, as shown in Figure 6.4, we map the domain classes to the shape classes, in
order to provide the concrete syntax of the language. Table 6.1 presents the graphical
notations for specifying the unit waste processes. An example of using this notation
in a waste process diagram is shown in Figure 6.3.

6.7 A Tool Support for the Proposed DSL

In order to make the use of the DSL easier for domain experts an isolated Visual
Studio Shell, called “MPStudio”, is developed. This makes it possible for the DSL
users to have one stand alone IDE with customized commands without requiring
the installation of Visual Studio.

To allow the users to create a new project in the customized shell, a new Project
Type System with the related Project Template and Item Template has been created.
To enable domain experts to generate material to simulate their models, we also de-
sign a component to generate material based on two parameters: The first one is
the amount of material that should be generated, and the second is a list of the frac-

Figure 6.5: Modeling a unit process in MPStudio.
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Figure 6.6: Modeling waste process types in MPStudio.

tions which should be included in the material composition. On the basis of these
parameters, material will be generated and considered as the process input for the
simulation.

Different views are created to visualize the material composition, material gener-
ation, and life-cycle assessment. These views are located in the DSLPackage project
in the CustomCodeView folder. Another view called ParameterView is created, which
surrounds the other views and swaps the views based on the selected element in the
diagram. If the selected element is a material input element, it shows the material-
generation view, the material-composition or life-cycle assessment view. In order to
show these views for the selected element in Visual Studio, ParameterWindow class is
defined. This class creates a tool window in Visual Studio IDE and shows the Param-
eterView whenever a DSL diagram is loaded in Visual Studio.

6.7.1 Exporting to AOC#FBP

In order to exploit concurrency and benefit from the advantages of the existing FBP
frameworks, which utilize parallel architectures from multi-core machines to full
grid systems, we provide a mechanism to export the unit processes modeled within
the domain-specific language into FBP components targeted for a particular FBP
framework.

In this thesis, we use AOC#FBP, introduced in Chapter 4, as a target framework.
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To this end, we develop an abstract C#FBP component to provide the required in-
frastructures for executing the unit processes specified with the proposed DSL. We
map each unit process model to a C#FBP component which is inherited from this ab-
stract component and has the same input and output ports as the unit process. Since
C#FBP utilizes input ports to initialize parameters of FBP components, therefore, for
each parameter defined for the unit process, we add an input port to the generated
component.

The abstract component utilizes the ForSpec execution engine to execute the be-
havioral semantics of the proposed DSL and it requires three ForSpec files which
should be specified by the derived components. The first and second files are the
ForSpec specifications for the unit process and its corresponding domain which spec-
ifies the behavioral semantics of the DSL by extending the DSFBLCoreRuntime, i.e.
AtomicWasteProcessRuntime. The third file specifies a transformation module that
eases the execution of the operational semantics and producing the process outputs.
We specify this transformation module as follows:

transform ExecuteModel ( CompModel :: WasteManagement , State ::
DSFBLCoreRuntime , IN :: DSFBLIO )
returns ( OUT :: DSFBLIO )
{

OUT.IOActionList (out_actions.hd, out_actions.tail) :-
comp is CompModel.WasteProcess,
params is State.ParameterValueList,
in_actions is IN.IOActionList,
Instantiate (comp, params) ⇒ (env),
Initialize (env) ⇒ (env'),
Execute (env', in_actions, 1) ⇒ (env'', out_actions, 1).

}

The ExecuteModel transformation has three inputs and one output: CopModel is
a model that specifies the unit process conforming to the WasteManagement domain,
State is a model of DSFBLCoreRuntime and it contains a ParameterValueList for initial-
izing the parameters of the unit process, IN is a model of DSFBLIO and it contains
an IOActionList which specifies the data packets arrived for the input ports of the
component, and OUT is a model of DSFBLIO and it contains an IOActionList which
specifies the data packets generated for the output ports of the component during
the execution. The abstract component executes this transformation whenever its ex-
ecute method is triggered by the scheduler. To this end, IN and State models should
be generated before executing the transformation. The first model is produced by
using a function called GenerateIOActions. This function reads the input ports of the
component and generates Read or Close actions depending on the state of the ports.
The second is generated by using another function called GenerateParameters which
reads the input ports related to the parameters of the unit process and generates a
ParameterValueList. Afterwards, the execute function initializes the ForSpec execution
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engine and calls the transformation by providing the required arguments. As an out-
put of this transformation, the OUT model is generated that contains an IOActionList
which specifies the data packets produced for the output ports of the component
during the execution. Finally, a function called SendPackets is used to apply the pro-
duced IOActions to the related ports. The following presents a simplified C# code of
the abstract component:

1 public abstract class ForSpecComponent : Component
2 {
3 protected abstract Dictionary<String, IInputPort> GetInPorts();
4 protected abstract Dictionary<String, OutputPort> GetOutPorts();
5 protected abstract Dictionary<String, IInputPort> GetParameterPorts();
6 protected abstract string GetComponentDomainFile();
7 protected abstract string GetComponentModelFile();
8 protected abstract string GetTransformationFile();
9

10 private Domain component_domain;
11 private Model component_model;
12 private Transform execute_component;
13

14 public void Initialize()
15 {
16 component_domain = (Domain) FormulaBeParser.ParseAll(GetComponentDomainFile ()).

Programs[0].modules [1];
17 component_model = (Model) FormulaBeParser.ParseAll(GetComponentModelFile() ).

Programs[0].modules[1];
18 execute_component = (Transform) FormulaBeParser.ParseAll(GetTransformationFile ()

).Programs[0].modules[1];
19 modules.Add("comp_domain", component_domain);
20 modules.Add("component_model", component_model);
21 modules.Add("execute_component", execute_component);
22 }
23

24 public override void Execute()
25 {
26 // Read the input ports and generates IOAction for each input port.
27 var input_ioactions = GenerateIOActions();
28 // Read the configuration ports, corresponding to the component parameters.
29 var state = GenerateParameters();
30 // Initialize ForSpec execution engine.
31 var ForSpec_runtime = new Execution();
32 // Merge the input modules with the tranformation module before execution.
33 Dictionary<string, Module> transform_arguments = new Dictionary<string, Module>();

34 transform_arguments.Add("IN", input_ioactions);
35 transform_arguments.Add("State", state);
36 transform_arguments.Add("CompModel", component_model);
37 var execute_transform = MergeModules.MergeAncestorsAndInputs (
38 transform_arguments,
39 execute_component,
40 new List<string>() {"IN", "State", "CompModel" });
41 // execute the transformation.
42 var output_actions = ForSpec_runtime.Execute(execute_transform, modules);
43 // Convert the output IOActions to data packets and send them to the related
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ports.
44 SendPackets(output_actions);
45 }
46

47 public Model GenerateIOActions()
48 {
49 string ioaction_str;
50 string ioaction_list = "";
51 foreach (var port in GetInPorts().Values)
52 {
53 var p = port.Receive();
54 if (p.Type == Packet.Types.Close)
55 ioaction_str = string.Format("ClosePort ({0})", port.Name);
56 else
57 {
58 var data = Convert_To_DSFBLIO_DataPacket(p);
59 ioaction_str = string.Format("Read ({0} , {1})", port.Name, data);
60 }
61 ioaction_list += (ioaction_list != "") ? "," + ioaction_str : ioaction_str;
62 }
63 var model_str = string.Format("model input of DSFBLIO \n{\n IOActionList <{0}>. \

n}", ioaction_list);
64 return (Model)FormulaBeParser.ParseAll(model_str).Programs[0].modules[1];
65 }
66

67 public Model GenerateParameters()
68 {
69 string parametervalue = "";
70 string parametervalue_list = "";
71 foreach (var port in GetParameterPorts().Values)
72 {
73 var p = port.Receive();
74 if (p.Type == Packet.Types.Open)
75 {
76 var data = Convert_To_DSFBLIO_DataObj(p);
77 parametervalue = string.Format(
78 "ParameterValue ({0} , {1})", port.Name, data);
79

80 parametervalue_list +=
81 (parametervalue_list != "") ? "," + parametervalue : parametervalue;
82 }
83 }
84 var model_str = string.Format(
85 "model parameters of DSFBLCoreRuntime \n{\n ParameterValueList <{0}>. \n}",
86 parametervalue_list);
87 return (Model)FormulaBeParser.ParseAll(model_str).Programs[0].modules[1];
88 }
89 public void SendPackets(Model DSFBLIO_model)
90 {
91 var io_action_list = DSFBLIO_model.facts[0].Match;
92 var actions = io_action_list;
93 string portname = "";
94 Packet packetdata;
95 while (actions != null)
96 {
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97 var action = (UserFuncTerm)actions.args[0];
98 portname = action.args[0].ToString();
99 switch (action.Function.decl.Name)

100 {
101 case "Write":
102 packetdata = ConvertToDataPacket(action.args[1]);
103 GetOutPorts()[portname].Send(packetdata);
104 break;
105 case "Drop":
106 packetdata = ConvertToDataPacket(action.args[1]);
107 GetInPorts()[portname].Drop(packetdata);
108 break;
109 case "ClosePort":
110 GetInPorts()[portname].Close();
111 break;
112 default:
113 break;
114 }
115 // set actions to the tail of the list.
116 actions = (UserFuncTerm)actions.args[1];
117 }
118 }
119 }

The following C# code presents an auto-generated code for a unit process called Land-
fillGasGeneration. This process has one input, two outputs, and two parameters which
are defined as input ports. The component is inherited from ForSpecComponent and
it specifies the required information by implementing the abstract functions defined
in the base class.

1

2 [InPort("IN")]
3 [InPort("NoYears")]
4 [InPort("C_Bio")]
5 [OutPort("Degraded")]
6 [OutPort("NonDegraded")]
7 [ComponentDescription("Landfill gas generation")]
8 public class LandfillGasGenerationProcess : ForSpecComponent
9 {

10 IInputPort _inp;
11 IInputPort _noyears;
12 IInputPort _c_bio;
13 OutputPort _degraded;
14 OutputPort _nondegraded;
15 public override void OpenPorts()
16 {
17 _inp = OpenInput("IN");
18 _noyears = OpenInput("NoYears");
19 _c_bio = OpenInput("C_Bio");
20 _degraded = OpenOutput("Degraded");
21 _nondegraded = OpenOutput("NonDegraded");
22 base.Intialize();
23 }
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24 protected override Dictionary<string, IInputPort> GetInPorts()
25 {
26 var dic = new Dictionary<string, IInputPort>();
27 dic.Add("IN", _inp);
28 return dic;
29 }
30 protected override Dictionary<string, OutputPort> GetOutPorts()
31 {
32 var dic = new Dictionary<string, OutputPort>();
33 dic.Add("Degraded", _degraded);
34 dic.Add("NonDegraded", _nondegraded);
35 return dic;
36 }
37 protected override Dictionary<string, IInputPort> GetParameterPorts()
38 {
39 var dic = new Dictionary<string, IInputPort>();
40 dic.Add("NoYears", _noyears);
41 dic.Add("C_Bio", _c_bio);
42 return dic;
43 }
44 protected override string GetComponentDomainFile()
45 {
46 return "\\ForSpec\\WasteManagement.4sp";
47 }
48 protected override string GetComponentModelFile()
49 {
50 return "\\ForSpec\\LandfillGasGeneration.4sp";
51 }
52 protected override string GetTransformationFile()
53 {
54 return "\\ForSpec\\ExecuteTransform.4sp";
55 }
56 }

6.7.2 Exporting to EASETECH

Additionally, the tool provides the means for domain experts to export their unit
processes modeled within the domain-specific language into the process library of
an EASETECH application. This allows them to utilize unit processes within EASE-
TECH waste scenarios and benefit from some of the features which are not provided
by this tool, such as uncertainty analysis.

To make this possible, we use Microsoft Text Template Transformation Toolkit (T4
template) to generate codes from the unit process models. The T4 template is a text-
based text-generation framework for Visual Studio which can generate any type of
artifact as output, such as code, text, web pages, etc. We generate two different types
of code for each unit process model. The first type is the generated code to do the
material calculation for each element in the model and the other type is the generated
code used to add a material process template to the EASETECH process library.

In order to generate a material-calculation code, a T4 template is defined for each
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Figure 6.7: Importing a generated material process modeled by the DSL in
EASETECH.

domain class in the DSL definition. The template generates a class for each element
in the model that has the same type as the domain class of the T4 template. The
template also adds the following functions to the classes; GetMaterialInputs, GetMate-
rialValue, GetResiduesMaterial and GetMaterialOutputs. The implementation and avail-
ability of these functions are generated according to the type of element and the se-
mantics of the element, explained in Section 6.3.4. In order to create the generated
code simply and with reusability, some base classes are defined in a new assembly,
called EASETECH.DSL.Lib. These classes are TCMaterialProcessTemplate, Material-
ProcessTemplate and MaterialOutputTemplate, and are derived from related classes
in EASETECH. They implement some basic functionalities required by the generated
classes. This assembly also contains a class called MaterialOperations, which is pro-
posed in order to provide some functions for material calculation such as material
addition, material subtraction, rescaling material, extract a fraction from a material
and extract a substance from a material. To generate a material process which can
be used in EASETECH, two T4 templates are defined on the basis of an instance of
the proposed model. One of them, called TCTableCodeGenrator, is used to generate
a class based on TCMaterialProcessTemplate which is responsible for material calcula-
tion of the material-process outputs. The other template, which is called MaterialPro-
cessCodeGenerator, is used to generate a material-process class based on MaterialPro-
cessTemplate. Whenever an instance of the DSL is compiled, an assembly fill (DLL)
will be generated to be used in EASETECH.

In the end, some changes have been applied to the loading method of the process
library in EASETECH in order to import the generated material process. The loading
method of EASETECH has been changed in such away that it dynamically loads all
the assemblies generated from the instances of the proposed model. After that, it
adds all the types within these assemblies which are based on MaterialProcessTemplate
to the material processes library.

To export the generated material process to EASETECH, the project which con-
tains the model should be compiled and the output DSL file should be copied in the
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Lib folder inside the database folder of EASETECH (this will be done automatically
by the Isolated Shell developed for the DSL). Whenever EASETECH starts, it exam-
ines this folder and loads all the assemblies inside it. It adds all the process templates
available in these assemblies into the material-process library. Figure 6.7 represents
a generated material process used inside a scenario in EASETECH.

6.8 Related Work

In recent years, material-flow networks [LS10b] have been known as one of the appro-
priate methods of doing MFAs [LZ08], which have been used regularly for Life Cycle
Assessment (LCA)[LS10a]. MFNs were developed technologically at the University
of Hamburg to model the flow of materials and energy produced by commercial ac-
tivities [WPK06]. Different tools and approaches have been proposed to model and
simulate MFA within different contexts and the most relevant of these are mentioned
below.

Umberto was developed in 1997 as an initial material-flow analysis tool[SB97].
This tool is one of the most powerful material-flow analysis tools and it provides in-
terfaces to other programs. It also allows the users to extend transitions based on their
needs by using Microsoft Active Scripting. In 2006, the Vienna University of Technol-
ogy developed a freeware software for MFA called STAN (short for subSTance flow
ANalysis), which supports MFA according to the Austrian Standard ONORM S 2096
and allows the consideration of data uncertainties [CR08]. One of the great features
of this tool is the visualization of mass flows of goods and substances as Sankey ar-
rows to identify the largest flows of materials instantly. Unlike the aforementioned
tools, a component-based approach to MFA is presented in [WPK06] which integrates
material-flow analysis and discrete event simulation into a component-based frame-
work to ease both model development and maintenance.

In addition to MFA tools, there exist several tools to compute LCA. SimaPro [Sim15]
and GaBi [GaB15] are two commercial software which are the most commonly used
generic LCA tools for computing the LCA of products and services. Beside these com-
mercial software, there are also other open source LCA tools. The most well-known
one is OpenLCA [Ope15], which is a modular software for life cycle analysis and
sustainability assessments created by GreenDelta in 2006. There are also some LCA
tools which are location specific e.g. greenhouse gases, regulated emissions and en-
ergy in transportation (GREET) [GRE15] developed by Argonne National Laboratory
is a popular LCA tool in the USA. The model is maintained by the U.S. Department of
Energy Efficiency and Renewable Energy (EERE) and it is associated with transporta-
tion modeling, including the life cycle assessment of advanced vehicle technologies
and transportation fuels. The model is an Excel spreadsheet workbook with several
macros that can be downloaded and run from a user’s computer. The newer version
of the software is developed within .net framework and is called GREET.net.

Apart from the traditional and generic LCA software mentioned above, more spe-
cific tools have been developed in certain domains such as EASEWASTE [Chr+07],
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which is mostly developed for analyzing waste management systems. EASEWASTE
is a well researched LCA software, developed at the Technical University of Denmark,
to model streams of waste fractions, characterized by content, collected in various
bins and brought to different treatment technologies that can handle the diverse frac-
tions in different ways. The purpose of EASEWASTE is to provide inventories of
waste management technologies to users to be used in LCA modeling. Recently, its
newer version has been released under the new name EASETECH (Environmental
Assessment System for Environmental Technologies) [Cla+14]. It is software for as-
sessing the impact of ecological technologies. This tool, apropos EASEWASTE, sup-
ports the comparison of different scenarios for waste management, including meth-
ods and technologies for waste treatment, by quantifying the resource consumption
and environmental impact. In most LCA models, the reference flow is specified as
a single material, while in environmental modeling, reference flows may consist of
a heterogeneous mix of materials. The novelty of EASETECH is that the reference
flow is defined as a composition of one or several different fractions and it tracks the
outcome of each individual fraction throughout the system. This is a main differ-
ence when comparing EASETECH to other traditional LCA and MFA tools [Cla+14].
In addition, EASETECH supports a detailed assessment of the subsystems of waste
management domain e.g. land-filling, leachate generation, landfill gas generation, bi-
ological treatments, waste to energy, recycling, use of materials, and the application
of processed waste on agricultural land [Cla+14].

In comparison with the model we presented in this chapter, most of these ap-
proaches offer a generic tool for material-flow analysis and LCA, which has been
developed based on non-model-driven approaches. They are developed based on
general-purpose languages such as C#, Java, and the syntax and semantics of the
models are implemented based on object-oriented paradigm. This makes it difficult
to verify and validate the models and understand their semantics. In contrast, we pro-
pose a specific material-flow analysis and LCA tool in the context of waste manage-
ment modeling and we use a model-driven and language-oriented approach to ad-
dress the problem. We consider our work as the continuation of EASETECH [Cla+14],
and similarly to EASETECH, we define the reference flow as a composite material in
our models. We also provided a domain-specific language for specifying the atomic
processes, which in contrast to EASETECH, allows the domain experts to define the
unit processes themselves without involving a software developer. Furthermore we
provide a mechanism to validate and classify the composite processes according to
the domain rules. This is not possible in EASETECH or any other tools mentioned
in this section.

6.9 Summary

In this chapter, we presented the specification of the domain-specific language for
waste management as a DSFBL on the basis of our framework proposed in the former
chapter. We formalized the domain of waste management including waste material,
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life-cycle inventory, life-cycle assessment, waste processes, in ForSpec according to
the definition given in in Section 3.2. We proposed a DSL for specifying the material
flows and emissions flows of the atomic waste processes. We provided the formal
specification of structural and behavioral semantics of the DSL in ForSpec. We also
proposed the composite language to specify the composite waste processes by ex-
tending the composite language proposed in the former chapter. We defined the
life-cycle specific components in order to compute life-cycle assessment of the wast
processes. We utilize the aspect-oriented feature of the composite language to spec-
ify the LCIA computation of the composite and atomic waste processes. In addition,
we developed a graphical editor for both atomic and composite languages in DSL
tools and we developed an isolated shell to make the execution and distribution of
the language easier.
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CHAPTER 7
Case Studies

In this chapter, we evaluate the proposed language in this thesis by a set of case stud-
ies. These case studies are chosen from the requirement engineering phase of design-
ing EASETECH and EASEWASTE software [Cla13]. During this phase, a conceptual
model was implemented to test and classify the various computations, from simple
material flow transformations to LCA calculations. This conceptual model was devel-
oped as a computational prototype in the programming language Ruby. According
to this conceptual model [Cla+14; Cla13], the processes being studied share the com-
mon requirements described in Table 7.1. In this chapter, we present how the pro-
posed language in this thesis is able to specify these requirements. We specify these
requirements by using the DSL proposed for atomic processes. Therefore, if we can
model all of these requirements by using this DSL, we are also able to combine these
atomic processes to model complicated scenarios. We divide these requirements into
two groups; material flow computations and life-cycle assessments. In the following,
we show how the basic requirements i.e. material fractions, elementary exchanges,
and LCIA methods can be specified as a set of ForSpec models. Afterwards, in sep-
arate sections, we present how the material flow computations and life-cycle assess-
ment requirements can be specified by the language.

7.1 Specifying the Catalogs

In this section, we specify the required information needed to simulate waste pro-
cesses. This information is called Catalogs in most of LCA software. Accordingly, we
utilize the information provided by EASETECH software. For brevity, the presented
data is not complete and the complete database can be founded at [Den15].

Material fractions specify the contributions of each substance within a fraction.
This information is used in order to generate waste materials for simulating waste
processes. For each material fraction, we generate a fact of MaterialFraction and we
associate a substance with its contribution amount (in percentage) within the frac-
tion by means of SubstanceValue. Consequently, we define a model that includes
these facts. Since the domain of “WasteManagement” extends the domain of “Mate-
rial”, we thereby define a model of “WasteManagement”. For example, the following
model specifies two material fractions according to the EASETECH database:

model MaterialFractions of WasteManagement
{ ...
MaterialFraction ("Office paper", SubstanceValueList <
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SubstanceValue ("Water",8.75), SubstanceValue ("TS",91.25),
SubstanceValue ("VS",79.3), SubstanceValue ("Ash",20.7),
SubstanceValue ("Energy",12.53), SubstanceValue ("C bio",37.3),
SubstanceValue ("C bio and",20.6), SubstanceValue ("C fossil",0.188),
SubstanceValue ("Ca",7.77), SubstanceValue ("Cl",0.07),
SubstanceValue ("F",0.01), SubstanceValue ("H",5),
SubstanceValue ("K",0.0118), SubstanceValue ("N",0.1),
SubstanceValue ("Na",0.0774), SubstanceValue ("O",36.7),
SubstanceValue ("P",0.00382), SubstanceValue ("S",0.0643),
SubstanceValue ("Al",0.131), SubstanceValue ("As",0.0000213),
SubstanceValue ("Cd",0.00000534), SubstanceValue ("Cr",0.00151),
SubstanceValue ("Cu",0.000495), SubstanceValue ("Fe",0.0918),
SubstanceValue ("Hg",0.00000356), SubstanceValue ("Mg",0.0801),
SubstanceValue ("Mn",0.0027), SubstanceValue ("Mo",0.000368),
SubstanceValue ("Ni",0.00136), SubstanceValue ("Pb",0.0000805),
SubstanceValue ("Zn",0.00289)>).

MaterialFraction ("Vegetable food waste", SubstanceValueList <
SubstanceValue ("Water",76.99), SubstanceValue ("TS",23),
SubstanceValue ("VS",94.8), SubstanceValue ("Ash",5.2),
SubstanceValue ("Energy",18.3), SubstanceValue ("C bio",47.5),
SubstanceValue ("C bio and",42.3),SubstanceValue ("C fossil",0.239),
SubstanceValue ("Ca",0.555),SubstanceValue ("Cl",0.56),
SubstanceValue ("F",0.01),SubstanceValue ("H",6.6),
SubstanceValue ("K",1.27),SubstanceValue ("N",1.9),
SubstanceValue ("Na",0.312),SubstanceValue ("O",39.5),
SubstanceValue ("P",0.231),SubstanceValue ("S",0.184),
SubstanceValue ("Al",0.103),SubstanceValue ("As",0.0000262),
SubstanceValue ("Cd",0.00000946),SubstanceValue ("Cr",0.000524),
SubstanceValue ("Cu",0.00125),SubstanceValue ("Fe",0.031),
SubstanceValue ("Hg",0.000002), SubstanceValue ("Mg",0.121),
SubstanceValue ("Mn",0.00861), SubstanceValue ("Mo",0.0000875),
SubstanceValue ("Ni",0.000257), SubstanceValue ("Pb",0.000104),
SubstanceValue ("Zn",0.0025)>).
...

}

We define the elementary flows in the same manner as material fractions. The
following specifies some of the elementary flows in the EASETECH data base:

model ElementaryExchanges of WasteManagement
{...

ElementaryFlow ("Methane, from soil or biomass stock", "air", "kg"),
ElementaryFlow ("1,4-Butanediol", "air", "kg"),
ElementaryFlow ("1-Pentanol", "air", "kg"),
ElementaryFlow ("1-Pentene", "air", "kg"),
ElementaryFlow ("2-Aminopropanol", "air", "kg"),
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ElementaryFlow ("2-Methyl pentane", "air", "kg"),
ElementaryFlow ("2-Methyl-1-propanol", "air", "kg"),
ElementaryFlow ("2-Methyl-2-butene", "air", "kg"),
ElementaryFlow ("2-Nitrobenzoic acid", "air", "kg"),
...
ElementaryFlow ("Ammonium carbonate", "air", "kg"),
ElementaryFlow ("Aniline", "air", "kg"),
ElementaryFlow ("Anthranilic acid", "air", "kg"),
ElementaryFlow ("Antimony", "air", "kg"),
ElementaryFlow ("Antimony-124", "air", "kBq"),
ElementaryFlow ("Antimony-125", "air", "kBq"),
ElementaryFlow ("Argon-41", "air", "kBq"),
ElementaryFlow ("Arsenic", "air", "kg"),
ElementaryFlow ("Arsine", "air", "kg"),

...
}

The elementary exchanges related to the external processes can be specified within
a model of “WasteManagement”. The following specifies three external processes.
One of them called “Water from Waterworks, Sweden, 2008” utilizes the other exter-
nal processes as well:

model ExternalProcesses of WasteManagement
{

ExternalProcess ("Water from Waterworks, Sweden, 2008", LCI <
ElementaryExchange ("Methane, fossil", 0.00000001),
ElementaryExchange ("Water", 0.05),
ElementaryExchange ("Water, unspecified natural origin", -0.00105)>,
ExternalProcessExchangeList <
ExternalProcessExchange ("Electricity Production, SE, 2001", 0.00016)
ExternalProcessExchange ("Sodium hydroxide (NaOH), RER", 4.00E-05)>).

...
ExternalProcess ("Electricity Production, SE, 2001", LCI <
ElementaryExchange ("Nitrogen oxides", 0.00005),
ElementaryExchange ("Carbon dioxide, fossil", 0.041),
ElementaryExchange ("Sulfur dioxide", 0.000094),
ElementaryExchange ("Methane, fossil", 0.0000003),
ElementaryExchange ("Dinitrogen monoxide", 0.0000003),
ElementaryExchange ("Ammonia", 0.000001),
ElementaryExchange ("Carbon monoxide, fossil", 0.000009),
ElementaryExchange ("unspecified radioactive waste", 0.0000029),
ElementaryExchange ("Particulates, < 2.5 um", 0.000001)>, Nil).

...
ExternalProcess ("Sodium hydroxide (NaOH), RER", LCI <
ElementaryExchange ("carcass meal", 0.00000000000103),
ElementaryExchange ("energy (recovered)", -0.4546),
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ElementaryExchange ("hydrogen", 0.003403),
ElementaryExchange ("municipal waste (unspecified)", 0.007019),
ElementaryExchange ("air", 0.02197),
ElementaryExchange ("Aluminium, 24% in bauxite, in ground", 0.0000003465),
ElementaryExchange ("Clay, bentonite, in ground", 0.00000006425),
ElementaryExchange ("biomass", 0.006298),
ElementaryExchange ("Coal, brown, in ground", 0.0000135),
ElementaryExchange ("Calcite, in ground", 0.01084),
ElementaryExchange ("chromium", 0.000000000005036),
ElementaryExchange ("Clay, unspecified, in ground", 0.000000008135),
...>, Nil).

}

We specify the LCIA method information that is required to compute the life cycle
assessment of waste processes as a model of “WasteManagement” domain as follows
(the specifications are based on the EASETECH database):

partial model LifeCycleAssessment of WasteManagement
{

LCIAMethod <
ImpactCategory ("IPCC 2007, climate change, GWP 100a", 7730, 1,
ImpactFactorList <
ImpactFactor ("Carbon dioxide, fossil", 1),
ImpactFactor ("Carbon dioxide, from soil or biomass stock", 1),
ImpactFactor ("Carbon monoxide, fossil", 1.571),
ImpactFactor ("Chloroform", 30),
ImpactFactor ("Dinitrogen monoxide", 298),
ImpactFactor ("Ethane, 1,1,1,2-tetrafluoro-, HFC-134a", 1430),
ImpactFactor ("Ethane, 1,1,1,2-tetrafluoro-, HFC-134a", 1430),
ImpactFactor ("Name", Characterisation factor),
ImpactFactor ("Ethane, 1,1,1-trifluoro-, HFC-143a", 4470),

...
ImpactFactor ("Methane, tetrafluoro-, R-14", 7390),
ImpactFactor ("Methane, trichlorofluoro-, CFC-11", 4750),
ImpactFactor ("Methane, trifluoro-, HFC-23", 14800),
ImpactFactor ("Nitrogen fluoride", 17200),
ImpactFactor ("Sulfur hexafluoride", 22800)>),

...
ImpactCategory ("IPCC 2007, climate change, GWP 20a", 7730, 1,
ImpactFactorList <
ImpactFactor ("Name", Characterisation factor),
ImpactFactor ("Carbon dioxide, fossil", 1),
ImpactFactor ("Carbon dioxide, from soil or biomass stock", 1),
...
ImpactFactor ("Carbon monoxide, fossil", 1.571),
ImpactFactor ("Chloroform", 100),
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ImpactFactor ("Dinitrogen monoxide", 289),
ImpactFactor ("Ethane, 1,1,1,2-tetrafluoro-, HFC-134a", 3830),
ImpactFactor ("Ethane, 1,1,1-trifluoro-, HFC-143a", 5890),
ImpactFactor ("Methane, tetrafluoro-, R-14", 5210),
ImpactFactor ("Methane, trichlorofluoro-, CFC-11", 6730),
ImpactFactor ("Methane, trifluoro-, HFC-23", 12000),
ImpactFactor ("Nitrogen fluoride", 12300),
ImpactFactor ("Sulfur hexafluoride", 16300)>)>.

}

7.2 Case Studies for Material Flow Analysis

In this section, we show how the proposed DSL in this thesis is able to model the
different requirements of waste processes related to the material flow computations.

7.2.1 Material generation

Material generation is required in order to model the amount and the composition of
the waste materials that are generated by different sources. This can be modeled as a
WasteProcess component that only has one output. We can model this component as
either a generic material generator, in which the end user can specify the amount and
the composition of the material via process parameters in the composite network, or
specific e.g. the waste material generated by 850.000 inhabitants in 18 municipalities
near Copenhagen. We chose to model this in a generic way in which the users spec-
ify the method to generate the material. Figure 7.1 specifies the material generation
process within the graphical syntax of the language:

We define the process by a MaterialGeneration and an OutPort element that are
connected by a MaterialFlow, which transfers 100 percent of the generated material to
output. We define two parameters for the amount of the waste material and the com-
position of the fractions and we associate these parameters to the material generation
element. The ForSpec specification of this component is presented in Appendix D.

Figure 7.1: Atomic waste component to model material generation
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Table 7.1: Overview of the common patterns required to model waste pro-
cesses [Cla13].

Template name Description Material
transfer

Material
generation

Create a material flow (two possible data input
methods: using a library of material fractions or

direct input)
Start

Energy
generation

Create an energy flow (with associated mass and
substances) Start

Basic process Keep the flow unchanged Equal
Water content Modify the water content of the input flow Modify

Change of
energy content Modify the energy content of the input flow Modify

Addition of
substances Add substances to the input flow Modify

Mass transfer Split the input flow according to total mass Split

Substance
transfer

Split the input flow according to different
properties (two possible data inputs: fraction

specific or default)
Split

Mass transfer
over years Split the input flow according to years Split

Anaerobic
digestion

Produce a gas and a digestate out of an anaerobic
digester Specific

Landfill gas
generation

Degrade organic matter according to exponential
first order decay, creating a landfill gas and

remaining waste
Specific

Leachate
generation Define leachate generation and remaining waste Specific

Use on land Distribute C, N and P from input flow and create
an avoided flow Specific

No output Has no output End
Emissions to the

environment
Translates input flow into release to an

environmental compartment End
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7.2.2 Energy Generation
Energy generation can be modeled similarly to material generation, as Figure 7.2
presents, we first generate the material by using a material generator element as men-
tioned before. Afterwards, we adjust the amount of the energy, ash, VS, and water
substance for each fraction accordingly.

Figure 7.2: Atomic waste component to model energy generation

7.2.3 Basic process
This is required to model the processes which do not alter the flow of the input ma-
terial. This means that the process should be able to transfer the waste material from
input directly to output. An example of these processes are waste transportation and
collection processes. We model this by an input and output element with a material
flow that directly connects the input to output as presented in Figure cs basic.

Figure 7.3: Atomic waste component to model basic processes.

7.2.4 Change of Water content
Some processes require changing the water content of waste materials while keeping
the amount of other substances the same as their input amount. For example, inciner-
ation or anaerobic digestion needs to adjust the water content of their outputs. This
can be done by using SubstanceTransformer element proposed in the language. Fig-
ure 7.4, presents a process which decreases the amount of water to 50 percent of its
value and keeps the other substances the same as the amount in the input. The For-
Spec specification of this component is presented in Appendix D.
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Figure 7.4: Atomic waste component to model change water content.

7.2.5 Change of Energy content

During some processes, the energy content may decrease e.g. by 2 MJ per kg of water
content or any other substance. This can be modeled by means of SubstanceGenerator
or SubstanceTransformer as we used for changing the water content. Figure 7.5 illus-
trates a model, which decrease the energy content of the input material by 2 MJ per
each kg of water content.

The ForSpec specification of this component is presented in Appendix D.

7.2.6 Addition of substances

Some processes add certain substances to the input flow during the process. This
can be modeled by means of SubstanceGenerator or SubstanceTransformer as we used
for changing the water content and energy content in Figure 7.5, 7.4.

Figure 7.5: Atomic waste component to model substance change energy content.
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7.2.7 Substance transfer
Some processes need to transfer specific substances of specific fractions to certain
output ports i.e. the process of composting needs to transfer biogenic carbon and
nitrogen of degradable waste fractions to a specific output. This can be modeled by
using FractionDistributors and SubstanceDitributors. To illustrate this, we model a part
of a composting tunnel and green waste process. During this process, the degrada-
tion of VS and C bio for office paper and magazine fractions were estimated as 10
and 20 percent. We model this as presented in 7.6. Since the degradation percent for
both fractions are the same, we could also use one fraction hub instead of two.

The ForSpec specification of this component is presented in Appendix D.

7.2.8 Mass transfer
Some processes models require transferring waste materials to different outputs i.e.
waste source-sorting and material recovery facilities that have the same requirements,
such as transferring full masses of waste fractions to different bins or outputs. This
is usually referred to as “Mass transfer to outputs”. This can also be modeled by
using the FractionDistributor, the MaterialDistributor, and the SubstanceDistributor as
we presented in the previous section.

7.2.9 Landfill gas generation
This is required in order to model landfill processes. The first-order decay approach [CB10]
can be adopted for landfill gas generation modeling. The model should compute two
outputs; the first is the generated gas during a certain period of time e.g. n years, and
the second is the residue of the material after that period of time. For each fraction,

Figure 7.6: Atomic waste component to model substance transfer per fraction.
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the modeler specifies decay rates (k) for the degradation of biodegradable organic
matter. In addition, the number of years (N), and a factor called C_bio = 1.89 should
be specified by the modeler. To specify material over time periods, we use the same
approach used in EASETECH, which is whenever it is required to model a material
overtime, it would lose its material fractions and be converted to “year fractions”.

In order to model this process, we define three parameters; an Integer parameter
for the number of years, a Real number for C_bio, and a DataTable parameter, which
has two columns “fraction” and “k” to specify the decay rate of each fraction. The
DataTable also has a default value for the other fractions. We follow the following
procedures in order to compute the outputs of the process: We need to degrade C
bio and with a first order decay, thereby C bio is degraded, and in consequence CO2
and CH4 are generated as a function of C bio and according to the CH4_in_biogas. As
the result the gas output has a set of fractions named “year_1”, “year_2”,.., “year_n”,
which each fraction contains C bio, CH4, and CO2. Accordingly, first we generate
the fractions for each year by using FractionGenerator with an numeric iterator as pre-
sented in Figure 7.7. In order to generate the gases for each year, first we need to
compute CH4_biogas for each fraction as follows:

CH4_biogas = 1/2 + 168 ∗ H − 21 ∗ O − 36 ∗ N

112 ∗ C_bio_ and
(7.1)

We compute this by using a SubstanceGenerator which iterates over the fractions
of the given material and adds the related substance with the amount calculated ac-
cording the given formula. At this point, we are ready to compute the amount of each
gas per year. This computation requires iteration through the fractions of the mate-
rial and years, therefore we model this as a composite transformer, which includes
four SubstanceGenerator to compute the amount of gas. The composite transformer
iterates over the years to compute the amount of the gases for each year. The amount
of gases is computed according the following formula:

C bio =
∑

f∈input

C_bio_andf ∗ exp(−k ∗ (n − 1)) ∗ (1 − exp(−k))

CH4 =
∑

f∈input

C_bio_andf ∗ exp(−k ∗ (n − 1)) ∗ (1 − exp(−k)) ∗ CH4_biogasf ∗ 22.4/12

CH4_biogas =
∑

f∈input

C_bio_andf ∗exp(−k∗(n−1))∗(1−exp(−k))∗(1−CH4_biogasf )∗22.4/12

The residue output contains the same material fractions as the input, the only dif-
ference being the amount of carbon which should be degraded according the amount
of gas that has been generated. Therefore, for each fraction of the given material, we
need to recalculate the amount of the related substances according to the following
equations:

C biof = C biof − C_bio_andf ∗ (1 − exp(−N ∗ kf ))

C_bio_andf = C_bio_andf ∗ exp(−N ∗ kf )
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VSf = VSf − vs_Cbio ∗ C_bio_andf ∗ (1 − exp(−N ∗ kf ))
LHVdryf = LHVdryf /VSf ∗ (VSf − vs_Cbio ∗ C_bio_andf ∗ exp(−N ∗ kf ))

We model these by means of a composite transformer, which utilizes four Sub-
stanceGenerators to adjust the amount of these substances. In the end, we need to sort
the fractions and transfer them to the right outputs. We utilize a composite trans-
former containing a fraction distributor to eliminate the year fractions and a residue
transition to store the residues in a material distributor. Finally, we use a material
flow and a residue transitions to transfer the related materials to the corresponding
outputs.

The ForSpec specification of this component is presented in Appendix D.

7.2.10 Mass transfer over years
The modeler should be able to define the processes of material degradation over time
with different rates. This is required usually after the processes that generate time
fractions i.e. landfill gas generation. To model this, we define a parameter data table
which has three data columns; from to specify the beginning of the time period, to to
specify the ending of the time period, and tc to specify the transfer coefficient during
this time period. Figure 7.8 illustrates this model.

The ForSpec specification of this component is presented in Appendix D.

7.2.11 Leachate generation
Modeling leachate generation is required in order to model waste systems. Leachate
is generated over time frame at a landfill at varying amounts due to several reasons
i.e. different stages, changes in top cover and changes in performance. This can be
specified by the annual infiltration (mm/year) of time periods of each stage. The
generated leachate can be collected and emitted in untreated form to surface water,
or treated at a water treatment plant [Kir+06; Han+06]. Because of changes in the
concentration of substances e.g. salts, biological, chemical oxygen demand, separate
definitions for each time period are required . In order to model leachate generation,
we first define the following parameters:

• the number of years (N)

• height of layer (h)

• bulk density (d)

• the infiltration (mm/year) for time periods of each stage. We specify this as a
data table, which has three columns; from, to, netInflitration to specify the infil-
tration rates over the different periods of time.

• the concentrations (mg/l) for each substance in different time periods. We spec-
ify this as a data table, which has four columns; substance, from, to, concentrate to
specify the substance concentration’s rates over the different periods of time.
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Figure 7.7: Atomic waste component to model Landfill gas generation.
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Figure 7.8: Atomic waste component to model mass transfer over years.

The amounts of water and other substances for each period is calculated as follows:

Wateryear(n) = TotalWetWeight (Water)input ∗ inflitrationyear(n)/(d ∗ h ∗ 103)

Substanceyear(n) = Wateryear(n) ∗ concentrate(Substance)year(n) ∗ 10−6

Where, 1 ≤ n ≤ N, pfrom ≤ n ≤ pto. Similar to the approach we used to spec-
ify the landfill gas generations, we first generate the fractions for each year by using
a FractionGenerator with an numeric iterator as presented in Figure 7.9. We utilize
a CompositeTransformer, which iterates over each row of infiltration rates defined for
water in order to compute the water amount of each period. The composite trans-
former includes a substance generator to compute the water amount for each year
of the period according to the formula. After this step, we utilize another composite
transformer to compute the substance amount for each given period. This includes
another composite transformer in each iteration (period); computes the amount of
substances generated as leachate for each year of the period, degrades the amount
of the same substance from each fraction of the input material for each year in the
period to compute the residue. At the end, we compute the outputs by separating
the yearly fractions from the residues.

The ForSpec specification of this component is presented in Appendix D.
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Figure 7.9: Atomic waste component to model leachate generation.
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Figure 7.10: Atomic waste component to model Anaerobic digestion.
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7.2.12 Anaerobic digestion
Anaerobic digestion, as a process of waste management systems, reduces the emis-
sion of landfill gas into the environment and is widely used as a source of renewable
energy. This process generates biogas e.g. methane and carbon dioxide, which can be
used directly as fuel. It also produces the nutrient-rich digestate, which can be used
as fertilizer [Han+06]. The outputs of this process are dependent on the following
factors:

• Yields, for each material fraction, describe how much of the C bio and is actually
degraded in the digester. This can be specified as a data table called gas_yield,
which has two columns called fraction and yield.

• vs_cbio, specifies loss of VS related to loss of C bio. We specify this as a primitive
parameter called vs_bio.

• Partitioning of CO2 between gas and liquid phase, which can be specified on
the basis of two input method; either by providing value for co2_liq to specify
part of CO2 going to the liquid phase, or by using the measured value of CH4
in the biogas. We specify this as two parameters, which are co2_liq_value and
measured_CH4_value. The value of one of this parameter is given (is greater than
zero), and the other should be computed based on another one.

• A list of pollutants and their transfer coefficients from the input to the gas and
digestate outputs. We specify this as a data table parameter called (gas_digestate_tc.
It has three data columns called pollutant, gas, and digestate.

In order to calculate the outputs for this process, first CH4_biogas should be generated
for each fraction as described for landfill gas generation in Equation 7.1. Afterwards,
according to the parameters co2_liq_value, measured_CH4_value. The other parame-
ter should be calculated if the value of co2_liq is given then the value for measured_CH4
should be computed. This value for measured_CH4 is computed as follows:∑

f∈F

CH4_biogasf /100
CH4_biogasf /100 + (1 − CH4_biogasf /100)) ∗ (1 − co2_liq/100))

And, this value for co2_liq is computed as follows:

100 − 100 − MeasuredCH4
MeasuredCH4

∗
∑
f∈F

(CH4_biogas/100)/(1 − CH4_biogas/100)

On the basis of these computations, we can compute the amount of substances of the
gas output as follows:

C_bio =
∑
f∈F

yieldf /100C_bio_andf ∗ (1 − co2_liq/100) ∗ (1 − CH4_biogasf /100))
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CH4 =
∑
f∈F

yieldf /100C_bio_andf ∗ CH4_biogasf /100) ∗ 22.4/12

CO2 =
∑
f∈F

yieldf /100C_bio_andf ∗(1−co2_liq/100)∗(1−CH4_biogasf /100))∗22.4/12

Pollutant =
∑
f∈F

pollutantf ∗ tcpollutant(gas)/100

The digestate output is computed as equal to the input minus what goes to the gas
output. Therefore, we need to recalculate the amounts of the following substances:

C_biof = C_biof −yieldf /100C_bio_andf ∗(1−co2_liq/100)∗(1−CH4_biogasf /100))

C_bio_andf = C_bio_andf ∗ (1 − yield/100)

V Sf = V Sf − vs_cbio ∗ C_bio_andf ∗ yield/100

Pollutantf =
∑
f∈F

pollutantf ∗ tcpollutant(digestate)

We model these computations as illustrated in Figure 7.10. Firstly, we compute
the CH4_biogas for each fraction according to the Equation 7.1 by means of a sub-
stance generator. Afterwards, we add a fraction called “Mix” in order to include the
substances related to the gas output. We use two material flow transitions, condi-
tioned on the values of measured_CH4_value and co2_liq_value, to check the value of
the parameter given. On the basis of the result, we follow one of these procedures;
if measured_CH4_value is given, we add a substance called co2_liq to the fraction and
we compute its amount according to the related equation. Then we add another sub-
stance called measured_CH4 with the same amount as given for measured_CH4_value
parameter. If co2_liq_value is given, we do the same procedure by swapping the pa-
rameters. After we specify the amounts for co2_liq and measured_CH4, we use a com-
posite transformer to compute the amounts of the substance for the gas output. We
transfer the computed material to a fraction distributor in order to sort and transfer
the material fraction called “Mix” to the gas output. We transfer the residues to an-
other composite transformer in order to adjust the amount of the substances for the
digestate output. In the end, we transfer the computed material to the output.

7.2.13 No output
Some processes require terminating the material from the flow. The proposed lan-
guage allows modelers to specify a process without any output. The only constraint
is that all ports defined for a process should have a valid flow, therefore a process
can not have only one element as an input port. To solve this, the modeler needs to
transfer the material from the input ports to a i.e. material distributor, and degrade
100 percent of the material in order to terminate it.
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7.3 Case Studies for Life Cycle Assessment

In this section, we show how the proposed DSL in this thesis is able to model the
different requirements of life cycle assessment, including process specific and input
specific emissions.

7.3.1 Process Specific Emissions
Specifying the process specific emissions for waste processes with the DSL is straight-
forward. This can be specified by providing a value for exchanges parameter of the
WasteProcess constructor. This parameter is type of ExchangeInterfaceList and it can
be parametrized, which means that instead of assigning a specific value for this pa-
rameter, a modeler can define a parameter and use it as the value for the parameter.
This improves the reusability of waste processes and allows other modelers to spec-
ify this parameter at the composition level of waste processes. For all the examples
specified in the former sections, we have set this parameter to “Nil”. This means that
these processes do not have any process specific emissions. Here we show how we
can parametrize this and specify the value of this parameter within the composite
language. To this end, we model a simple process with one input and one output
and a parameter to configure the process specific emissions as follows:

partial model WasteProcessLibrary of WasteManagement
{

WasteProcess ("Basic Process",
Process interface:

ModelElementList <
PrimitiveParameter ("ProcessExchanges","ExchangeInterfaceList"),
InPort ("IN","Material"),
OutPort ("OUT","Material") >,

Process type:

Nil,
Transformers:

Nil,
Transitions:

LinkElementList <
MaterialFlow ("IN", "OUT", TRUE, 100, Nil) >,

Process elementary exchanges:

Param ("ProcessExchanges")).
}

Although this process is simple, it is enough to model different waste processes.
These processes do not change the flow of waste material and we only need to con-
sider the emissions related to these processes being operated. Figure 7.11, presents
a composite waste process that utilizes the material generation specified in last sec-
tions, and two “Basic process”, specified in this section, to model the collection and
transportation of generated residual household waste. We configure the material
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generator process to produce the desired waste materials as specified in the ForSpec
model. We also specify the emissions related to operating the other processes as a
list of ExchangeInterface. The following is the ForSpec model of the composite process
presented in Figure 7.11:

model ExampleProcess of WasteManagement
includes MaterialFractions, ElementaryExchanges, ExternalProcesses,

LifeCycleAssessment,
WasteProcessLibrary, LCIAComputation

{
Network ("",

6: // Network interface:
Nil,

8: // Process type:
Nil,

10: // Network elements
NetworkElementList <
Process ("Residual household waste (MF)","Material Generation",
ParameterList <Parameter ("Amount","100"),
Parameter ("Fractions",
FractionValueList <
FractionValue ("Vegetable food waste", 40)
FractionValue ("Animal food waste", 30)
FractionValue ("Magazines", 20)
FractionValue ("Newsprints", 10) >)>,
Process ("Residual waste, Curbside collection","Basic Process",
ParameterList < Parameter ("ProcessExchanges",
ExchangeInterfaceList <
ExchangeInterface ("TS", "Carbon dioxide, fossil", 10),
ExchangeInterface ("TS", "Methane, fossil", 10),
ExchangeInterface ("TS",
"Collection Vehicle, 10t Euro3, 1 liter diesel", 0.00327)>)>,
Process ("Collection truck, residual waste,","Basic Process",
ParameterList < Parameter ("ProcessExchanges",
ExchangeInterfaceList <

Figure 7.11: Model of a composite waste process.
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ExchangeInterface ("TS",
"Collection Vehicle, 10t Euro3, 1 liter diesel", 0.00327)>)>,
Connection (
OutChannel ("Out","Residual household waste (MF)"),
InChannel ("IN","Residual waste, Curbside collection")),
Connection (
OutChannel ("Out","Residual waste, Curbside collection"),
InChannel ("IN","Collection truck, residual waste,")) >,
).

}

7.3.2 Input Specific Emissions
In this section, we show that how the input specific emissions can be specified with
the proposed language. According to Table 7.1, there are two requirements related
to emissions to the environment; Emissions to the environment and Use on land. In the
following, we show how these requirements can be modeled with the DSL.

7.3.3 Emissions to the environment
There are processes which may exchange some amount of substances of the given
material as emissions during their operation [Han+06]. Therefore, it is required to
specify these exchanges and consider them when assessing the life-cycle of the pro-
cesses. This can be modeled with the DSL by means of EmissionsToEnvironment el-
ement. This element can be used in combination with other elements e.g. fraction
distributors, substance distributors, to specify the substances which need to be ex-
changed and released to environment. As we presented for process specific emis-
sions, the elementary exchange interfaces can be specified by the exchanges parame-
ter of the element. This parameter can be parametrized as we explained for material
generation and process specific emissions. We model this as presented in Figure 7.12.

Figure 7.12: Model of a emissions to the environment.

partial model WasteProcessLibrary of WasteManagement
{

WasteProcess ("EmissionsToEnvironment",
Process interface:

ModelElementList <
PrimitiveParameter ("Exchanges","ExchangeInterfaceList"),
InPort ("IN","Material"),
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EmissionsToEnvironment ("ProcessLCI","LCI", Param ("Exchanges")) >,
Process type:

Nil,
Transformers

Nil,
Transitions:

LinkElementList <
MaterialFlow ("IN", "ProcessLCI", TRUE, 100, Nil) >,

Process elementary exchanges:

Nil).
}

7.3.4 Use on Land (UOL)
Use on land quantifies the release of ammonia, nitrous oxide, and leaching of nitro-
gen as a consequence of using processed organic waste on land as a substitute for
fertilizer [Han+06; Bru+06]. In order to compute the resulting emissions the follow-
ing parameters should be specified;

• Distribution of Carbon to CO2 (air), CH4 (air), C (soil storage).

• Distribution of Nitrogen to N2 (air), N2O (air), NH3 (air), NO3 (leaching to
GW), NO3 (runoff to SW), N (plant uptake), N (soil storage).

• Distribution of Phosphorous to P (soil storage), PO3 (leaching to GW), PO3
(runoff to SW), P (plant uptake).

On the basis of these parameters and values of MC , MO, MP and MH , which are the
molar masses of carbon, oxygen, phosphorous, and hydrogen, the amounts of the
following emissions should be computed and considered as input specific emissions.

• Carbon dioxide, non-fossil, air: Cbio ∗ DCO2/100 ∗ (2 ∗ MO + MC)/MC .

• Methane, non-fossil, air: Cbio ∗ DCH4/100 ∗ (4 ∗ MH + MC)/MC .

• Carbon dioxide, fossil, air: Cbio ∗ DC/100 ∗ (2 ∗ MO + MC)/MC ∗ (−1).

• Dinitrogen monoxide, air: N ∗ DN2/100 ∗ (2 ∗ MN + MO)/(2 ∗ MN ).

• Ammonia, air: N ∗ DN2O/100 ∗ (3 ∗ MH + MN )/MN .

• Nitrates, water, ground: N ∗ DNH3/100 ∗ (3 ∗ MO + MN )/MN .

• Nitrates, water, surface water: N ∗ DNO3/100 ∗ (3 ∗ MO + MN )/MN .

• Phosphate, water, ground: P ∗ DP /100 ∗ (3 ∗ MO + MP )/MP .

• Phosphate, water, surface water: P ∗ DP O3/100 ∗ (3 ∗ MO + MP )/MP .
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We model these similarly to the previous requirements modeled in Figure 7.12. The
only difference is that instead of defining the parameter called “Exchanges”, we de-
fine the above parameters as the parameters of the process. Then we define the emis-
sions listed above with the associated expressions of their amounts as a list of Ex-
changeInterfaces of the emissions to environment element. Since this process can have
process specific emissions, we parametrize the process specific emissions parameter
as well. The ForSpec specification for this process is presented as follows:

partial model WasteProcessLibrary of WasteManagement
{
WasteProcess ("EmissionsToEnvironment",

4: // Process interface:
ModelElementList <
PrimitiveParameter ("ProcessExchanges","ExchangeInterfaceList"),
PrimitiveParameter ("D_CO2","Real"),
PrimitiveParameter ("D_CH4","Real"),
PrimitiveParameter ("D_C","Real"),
PrimitiveParameter ("D_N2","Real"),
PrimitiveParameter ("D_N2O","Real"),
PrimitiveParameter ("D_NH3","Real"),
PrimitiveParameter ("D_P","Real"),
PrimitiveParameter ("D_PO3","Real"),
PrimitiveParameter ("M_C","Real"),
PrimitiveParameter ("M_O","Real"),
PrimitiveParameter ("M_P","Real"),
PrimitiveParameter ("M_H","Real"),
InPort ("IN","Material"),
EmissionsToEnvironment ("ProcessLCI","LCI",
ExchangeInterfaceList <

ExchangeInterface ( "Cbio","Carbon dioxide, non-fossil, air",
Div (Mult(Div(Param ("D_CO2"), 100),
Plus(Mult(2, Param ("M_O")), Param ("M_C"))) ,Param ("M_C")),
ExchangeInterface ( "Cbio","Methane, non-fossil, air",
Div(Mult(Div(Param ("D_CH4"), 100),
Plus(Mult(4, Param ("M_H")), Param ("M_C"))),Param ("M_C")),
ExchangeInterface ( "Cbio", "Carbon dioxide, fossil, air",
Mult(Div(Mult(Div(Param ("D_C"), 100),
Plus((Mult (2, Param ("M_O")),
Param ("M_C"))), Param ("M_C")), UnMinus(1)),
ExchangeInterface ( "N","Dinitrogen monoxide, air",
Div(Mult(Div(Param ("D_N2"), 100),
Plus(Mult(2, Param ("M_N")), Param ("M_O"))),
Mult(2, Param ("M_N"))),
ExchangeInterface ( "N","Ammonia, air",
Div(Mult(Div(Mult (Param ("D_N2O"), 100),
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Plus(Mult(3, Param ("M_H")), Param ("M_N"))), Param ("M_N")),
ExchangeInterface ( "N","Nitrates, water, ground",
Div(Mult(Div(Param ("D_NH3"), 100), Plus(Mult(3, Param ("M_O")),
Param ("M_N")), Param ("M_N")),
ExchangeInterface ( "N","Nitrates, water, surface water",
Div(Mult(Div(Param ("D_NO3"), 100), (Plus(Mult(3, Param ("M_O"))),
Param ("M_N"))), Param ("M_N")),
ExchangeInterface ( "P","Phosphate, water, ground",
Div(Mult(Div(Param ("D_P"), 100), (Plus(Mult(3, Param ("M_O")),
Param ("M_P"))), Param ("M_P")),
ExchangeInterface ( "P","Phosphate, water, surface water",
Div(Mult(Div(Param ("D_PO3") ,100),
Plus(Mult(3, Param ("M_O")), Param ("M_P"))), Param ("M_P"))>)>,

51: // Process type:
Nil,

53: // Transformers
Nil,

55: // Transitions:
LinkElementList <

MaterialFlow ("IN", "ProcessLCI", TRUE, 100, Nil) >,
58: // Process elementary exchanges:
Param ("ProcessExchanges")).
}

7.4 Summary

I this chapter, we demonstrated how the domain-specific language proposed in this
thesis is able to describe most of the requirements for modeling waste management
systems. A set of case studies, including material flow computations and life-cycle as-
sessments, were presented to show the different features of the language. By means
of this language, both scientific and domain experts are able to model the unit pro-
cesses provided by the LCA tools EASETECH and EASEWASTE by themselves with
a language that is understood in the domain.
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CHAPTER 8
Conclusion

In this chapter, we conclude the thesis with a brief summary and evaluation of the
presented research. We first sum up the novelties of the work and our contributions.
Afterwards, we evaluate the limitations of the work and present suggestions for fu-
ture work.

8.1 Contributions and Novelties

In this thesis, we proposed a domain-specific language (DSL) for modeling and eval-
uating the sustainability of waste management systems. We designed this DSL on
the basis of flow-based programming (FBP) which is a very well suited paradigm
for modeling waste management systems. Since sustainability aspects, such as envi-
ronmental assessments, can be understood as crosscutting concerns, we advocated
aspect-oriented concepts to flow-based programming (AOFBP), and we proposed
this extension as a modeling paradigm for modeling and evaluating these systems.

Furthermore, we addressed the problem of extensibility by introducing the con-
cept of domain-specific aspect-oriented flow-based languages (DSFBL) which allow do-
main experts to extend the language by defining new atomic processes and validate
the specifications of the processes within the related domain by employing a declar-
ative language. In order to facilitate the development process of these languages,
as well as the integration and validation of their model instances, we developed a
model-driven framework based on Microsoft DSL tools and ForSpec. DSL Tools and
an extended version of ForSpec are combined and integrated under the umbrella of
Visual Studio to provide a formal approach for specifying the syntax and the seman-
tics of domain-specific languages. This integrated framework is used to specify the
metamodel of domain-specific languages supporting the aspect-oriented flow-based
paradigm and provides the means to interconnect a set of domain-specific languages
which extend this metamodel.

In this work, we presented the development of the proposed DSL as an exam-
ple of domain-specific flow-based languages based on the proposed framework. The
same approach can be followed in order to design a DSL for another domain. More-
over, the DSL proposed in this thesis can be extended to support similar domains,
due to similar requirements regarding sustainability assessments. For example, en-
ergy systems and waste-water treatment often involve heterogeneous material flows,
whose modeling also require a definition of various material fractions (e.g. several
fuels) with specific parameters. We also specified the life-cycle assessment of waste
management systems, which is one of the important indicators for sustainability as-
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sessments, as an aspect utilizing the aspect-oriented constructs provided within the
framework. These specifications can be reused for the same purposes in other do-
mains. Additionally, other assessment indicators can be specified in the same man-
ner.

We also developed a customized Visual Studio IDE for domain experts to model
and execute atomic waste processes. This tool can compile these processes into a
DLL that can be used in DTU Environment’s EASETECH application. To evaluate
our work, we used the proposed language to model a set of unit processes, which are
the building blocks of waste management systems.

8.2 Evaluation

Due to the hierarchical nature of the proposed model-driven framework, most of the
contributions proposed in this thesis can be considered as case studies for the other
contributions. Accordingly, we evaluate each contribution as follows:

• The integrated framework presented in Chapter 2 can be used to specify any
graphical domain-specific language. In this framework, DSL Tools are used to
formally define the concrete syntax and ForSpec is used to specify the seman-
tics of domain-specific languages. We extended ForSpec with list datatypes,
union operators, iterators, map and reduce functions,and typed union datatype
which helps write more complicated specifications within the language. We
combined ForSpec with Microsoft DSL Tools under the umbrella of Microsoft
Visual Studio IDE. This allows DSL designers to utilize a single development en-
vironment to develop their desired domain-specific language. This framework
is used in the thesis to implement several domain-specific languages including
the network and constraint languages presented in Section 5.3 and the DSL pro-
posed for specifying the unit processes. We showed how the new constructs
proposed for the extension can help define more complex specifications by im-
plementing the structural and behavioral semantics of these languages. The
framework at the moment is not suitable for developing none graphical DSLs
since it utilizes DSL Tools to specify the concrete syntax. Because of this limita-
tion, we had to develop a specific parser for the expression language used in the
DSL proposed for defining the unit processes. Furthermore, we had to provide
some customization in order to generate a proper ForSpec specification for the
metamodel and its model instances.

• Separation of concerns in FBP helps to improve the modularity and maintain-
ability of FBP applications. The aspect-oriented extension (AOFBP) introduced
in this thesis addresses the cross-cutting concerns in FBP by advocating aspect-
oriented concepts as a complementary mechanism to FBP. This extension uti-
lizes the AspectJ approach to model joinpoints in AOFBP because processes in
an FBP network are atomic processes which have predefined interfaces (type,
input ports, output ports). Unlike the method signatures in AspectJ, they are
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more stable. While this can reduce join point fragility [GK01], it does not help
with type checking and aspect modularity. Therefore, we also considered newer
approaches, such as join point types and join point interfaces [ITB11]. However,
we found two difficulties: The first is selecting the desired child processes and
their ports within a composite process for the collector advice. This creates a
dependency from aspects to pointcuts. The second is that AOFBP advice can
modify the interface of the process at the joinpoints and can effect the pointcuts,
and make static type checking difficult as well. These challenges in AOFBP will
be addressed in future work.
Although the primary purpose of proposing this extension is to improve the
modularity of the specifications of sustainability aspects, this extension is generic
enough to be employed for developing any FBP applications.

• This thesis introduces the concepts of domain-specific flow-based program-
ming in Chapter 5 and it proposes a metamodeling framework to design these
languages. They utilize domain-specific languages to define the unit processes
in FBP and employ a declarative language to classify the processes and validate
their compositions according to the validation rules of their domains. There-
fore, they allow domain experts to exploit flow-based programming paradigms
and benefit from its advantages. For example, the applications developed on
the basis of this paradigm are inherently parallel, and they can utilize paral-
lel architectures, from multi-core machines to full grid systems. It also serves
as an essential first step toward migrating such applications to run in a more
distributed setting, such as a cloud-based environment. Additionally, this the-
sis proposed a model driven approach to specifying the different constructs of
DSFBLs. These constructs are presented as a set of domain-neutral metamodels
which should be extended by the DSL designer in order to develop a DSFBL. To
this end, the integrated framework presented in this thesis is used to formally
develop the syntax and the semantics of these metamodels. We used DSL Tools
to implement the concrete syntax of the network language and the constraint
language proposed in the framework. This facilitates the development process
of these languages as well as the integration and validation of their model in-
stances. As a case study, we utilized this framework to develop the proposed
domain-specific language for modeling waste management systems.
Furthermore, the ForSpec specifications presented for these metamodels can be
considered as the formal specification of syntax and semantics of flow-based
programming. Since the specification of FBP presented in this framework is
based on the FBP protocol implemented for C#FBP. Therefore, we validated the
ForSpec specifications used in this framework by modeling the test cases devel-
oped for C#FBP within the network language proposed by this framework.

• In this thesis, we proposed a domain-specific flow-based language for mod-
eling and evaluating waste management systems by extending the metamodel
proposed for developing DSFBLs. To this end, we developed a domain-specific
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language as an extension of the core language provided by the framework,
in order to define the unit processes of the waste management domain. We
also utilized the same network language and constraint languages proposed
in the framework to specify the composite waste processes and different types
of waste processes in the domain of waste management. Reusing these lan-
guages facilitated the development process of this DSFBL. We specified the
related computations of life cycle assessment, e.g. life-cycle inventory (LCI),
Life cycle impact assessment (LCIA) as aspects by means of the aspect-oriented
mechanism provided within the framework. This improves the modularity and
reusability of the specifications proposed for the computation of life cycle as-
sessments.
In order to evaluate the proposed DSL, we provided a set of case studies chosen
from the requirements of the engineering phase of designing EASETECH and
EASEWASTE in Chapter 7. We showed how all of the common requirements
for modeling waste management system can be specified by means of the pro-
posed language. Moreover, the proposed DSL is currently used by the domain
experts and environmental scientists at the Department of Environmental Engi-
neering at the Technical University of Denmark (DTU Environment) to model
processes which were not able to be modeled by EASETECH. Example of these
processes are bio-refinery processes where different residual biomass products
are converted through various steps into the final energy product [Dam+15].
We evaluated the ForSpec specifications related to the operational semantics of
the proposed DSL by comparing the results of these case studies with the result
obtained form modeling these case studies in EASETECH.

The success of utilizing the proposed DSL for specifying the case studies pre-
sented in Chapter 7 confirms our hypothesis laid out in Chapter 1 that utilizing a
proper combination of flow-based programming (FBP), domain-specific language
(DSL), and aspect-oriented programming (AOP) addresses the extensibility problem
by providing a framework for domain experts to evaluate waste management sys-
tems.

8.3 Future Work

There are several directions for future work:

• At the moment, the implementations of both ForSpec and FORMULA interpret
the specifications. Providing an approach that translates these specifications to
any low-level programming languages could significantly improve the execu-
tion speed of the specifications.

• ForSpec executes functions through a set of rules, which means that for each
call it adds the facts generated during the execution to the knowledge-base.
These facts will stay there forever, even after the function returns. This makes
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the execution slower and slower after each function call, due to increasing the
number of facts in the knowledge-base. Proposing a mechanism which allows
to remove facts from the knowledge-base could improve ForSpec notably.

• The integrated framework presented in this thesis for developing domain-specific
languages at the moment is not suitable for developing none graphical DSLs.
Combining this framework with other language development tools for devel-
oping textual languages such as Microsoft Irony [Iro16] could be another future
work.

• At the moment, AOFBP does not provide the mechanism to change the data-
flow of an FBP network. Introducing an approach to specify sub-graphs of
the processes in a network as join points, and adding a mechanism for advice
to substitute the sub-graphs with alternatives, enables AOFBP to support opti-
mization concerns.

• The constraint language for the composition of the processes is simple and is
not expressive enough to specify more complicated constraints. Utilizing exist-
ing process constraint languages such as Cascade [RRU09], which allow spec-
ifying patterns of flows in the composite processes, could be another future
work.

• Introducing domain process types and providing a declarative language for
classifying and validating processes within a domain are a step towards pro-
viding an automated design exploration and optimization framework for de-
signing the processes of the given domain. Developing such a framework that
can be used to find the best alternatives to a given system is another future work.
To this end, the process type as a classifier can be used to find the possible al-
ternative processes available in the system and the constraints can be used to
check the validity of the alternative and optimized system.



218



APPENDIX A
Detailed Explanation of
FORMULA and ForSpec

In this chapter, we introduce FORMULA which is a formal language for specifying
the structural semantics of modeling languages. Afterwards, we introduce ForSpec
[Sim14], which is an extended version of FORMULA, proposed by Gabor Simko
[Sim+13a] to support the structural and behavioral semantics specification of model-
ing languages.

A.1 FORMULA

Each program in FORMULA consists of several constructs called Modules. Different
kinds of modules are defined in this language of which the most important ones are
Domain, Model, Transform. The domain module is a blueprint for a set of models
which is composed of type definitions, data constructors, rules, and queries. This
module utilizes a query called conforms to distinguish well-formed models from ill-
formed models. If the programmer does not include this query in the domain, it will
be automatically added. The other module called model is a model of a domain that
consists of a set of facts that are defined through the data constructors of the domain.

Several built-in types are supported by FORMULA such as enumerations, union
types, and composite types. The built-in types include Integer, Real, and String.
Composite types define the well-formed structure of facts in models and are spec-
ified with data constructors. A data constructor takes the form of:

CompType ::= new (a: String, b: Integer).

Where the new keyword is optional and distinguishes between constructors that can
be used to instantiate initial facts in a model and constructors that can be used to
derive facts from rules.

Example 18 shows how different kinds of constructor can be defined. Data type A
defines A-terms by pairing Integers and Strings, and x and y are the accessors, which
are optional, for the respective values. While the previous data type is used for defin-
ing initial facts in models, derived data type B is used for representing facts derived
from the initial knowledge by means of rules. The data type C defines a partial func-
tion of Integers 9 Strings. Data type D defines a total function of Strings → A, E de-
fines a partial surjective function, and F defines a bijective function between A terms
and B-terms. Type G defines a partial injective function.
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Example 18: Different kinds of constructor that can be defined in FORMULA.

A ::= new (x: Integer, y: String).
B ::= (x: Integer, y: String).
C ::= fun (x: Integer → y: String).
D ::= fun (x: Integer ⇒ y: A).
E ::= surj (x: Integer → y: String).
F ::= bij (x: A ⇒ y: B).
G ::= inj (x: Integer → y: String).
U ::= A + String.

In the set theories, union types are unions of types, i.e. the elements of a union
type are the union of the elements of the constituent types. In FORMULA Union
types are defined using the following syntax:

UnionType ::= TypeExp1 + TypeExp2 + ... .

TypeExps are built-in types such as enumerations, union types, and composite types.
The following presents some examples of union types.

Example 19: Example of defining union types in FORMULA.

Node ::= new (name: String).
NullableNode ::= Node + {Nil}.
T ::= Integer + Natural.
A ::= (String).
B ::= (String).
C ::= A + B.

Set comprehensions are defined in the following form which denotes the set of
elements formed by head that satisfies body

{head | body}

They are used by built-in operators such as count or toList. In the following ex-
ample, the rule PairedStateNo counts the number of states paired with state X. Rules
are described using Horn clauses with stratified negation-as-failure. The following
rule means that the facts A(x, y) and B(z, 1) should be derived for all matching of
the clause on the right-hand side of the “:-”.

Example 20: Set comprehensions and rule declaration in FORMULA.

Set comprehensions.

Pair ::= new (State, State).
PairedStateNo ::= (Integer).
PairedStateNo (n) :- n = count ({Y | Pair(X, Y)}).
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Rule declarations.

A(x,y), B(z,1) :- C(x,_,z), x is Real, y is D, no E(y,_).

The types of the variables x, y, and z must resolve to a subtype of those specified
in the constructors of A and B. The constraint y is D defines y as a fact of type D
from the knowledge base. All constants are part of any model’s initial knowledge
base. The constraint no D(y, _) means that a match for D(y, _) cannot be found in the
knowledge base. Variables used inside a no statement must be defined outside of the
statement. Type constraint x : A is true if and only if variable x is of type A, while x
is A is satisfied for all derivations of type A.

FORMULA supports relational constraints such as equality of ground-terms, and
arithmetic constraints over Real and Integer data types. The special symbol “_” de-
notes an anonymous variable that cannot be referenced anywhere else.

Queries are Boolean expressions that use the same constraint logic expressions as
rules. Queries can also be defined as conjunctions, disjunctions, and negations of
other queries. The conforms keyword denotes a special query that is used to distin-
guish between the well-formed models and ill-formed models of the domain.

Domain composition is supported by the extends and includes keywords. Both
denote the inheritance of all types (data constructors and rules). While A extends B
ensures that all the well-formed models of A are well-formed models of B, A includes
B may contain well-formed models in A, which are ill-formed models of B.

Namespaces are used for handling multiple definitions with the same name in
different ancestor domains. For example, domain A extends b:: B uses the name b for
referring to elements of B. In A, we can refer to these elements by inserting a dotted
qualification “B.” in front of the type identifiers defined in domain B.

FORMULA also supports model transforms. A transform block consists of rules
for deriving initial facts in an output model from initial and derived facts in an input
model as well as input parameters. The rules are the same as they are in domains,
except that the left-hand side contains facts in the output model and the right-hand
side contains facts from the input and output models. The transform can also contain
data constructors and type declarations for transform-local derived facts and union
types. The syntax of a transformation has the following form:

transform name (inputs) returns (outputs) { ... }

The list of inputs consists of name-spaced domain references and elementary argu-
ments. Similarly, the outputs are name-spaced domain references. Transformation
rules have the same syntax and semantics as in domains with the only exception
that a special type “_” is introduced for each output domain that defines an identity
constructor for its types.

A.2 ForSpec

In this section, we introduce ForSpec [Sim14], which is an extended version of FOR-
MULA, proposed by Gabor Simko [Sim+13a] to support the structural and behavioral
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semantics specification of modeling languages for Cyber-Physical Systems. ForSpec
extends the FORMULA with goal-driven and functional terms, semantic functions
and semantic equations. In the following, we briefly introduce these extensions. For
more detailed description of the language see [Sim14].

A.2.1 Goal-driven types
The following is the grammar rule for goal-driven type declarations:

1 <gd-def> ::= <id> '::=' [ <field> => <field> ] .

For instance, the following code defines a goal-driven type F as a tuple of three
Integers. In addition, it generates a trigger type as a pair of integers that triggers
the evaluation of the goal-driven type.

F ::= [lhs: Integer, rhs: Integer ⇒ Integer].

This means that in compile time, ForSpec’s compiler transfer the above specifica-
tion to the following specifications:

F ::= (lhs: Integer, rhs: Integer, Integer).
#F ::= (lhs: Integer, rhs: Integer).

Which, F is the goal-driven type, and #F is the trigger type, character # is reserved
in ForSpec for the auto-generated types. As we can see here, the definition of the
trigger type only includes the fields defined in the former part, e.g. lhs, rhs, of the
definition of the goal-driven type. In addition to the normal use of data constructors,
goal-driven terms can be also written according to the following syntax:

1 <gd-term> ::= <id> ( <term> ) => (<term> | ( <term> )).

For example, F(5,2) => 8 and K(3) => (9,2) are valid goal-driven terms. ForSpec
has special rules for these terms as follows. Whenever they appear on the left-hand
side of a rule, the corresponding trigger term is appended to the right-hand side;
whenever they appear on the right-hand side of a rule, the corresponding trigger
term is extracted as the head of a new rule that has all the constraints of the left-hand
side of the original rule up to the point of the goal-driven term under question. This
means that whenever a rule is dependent on a goal-driven term, a rule is generated
for deriving the corresponding trigger term.

A.2.2 Functional terms
A goal-driven trigger term can be used as a function application, in which case its
semantics is the result of its evaluation. For example, if we have the following goal-
driven type;
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add ::= [expr, expr ⇒ Integer].

Which evaluates to the addition of expressions, then the term add(X,add(Y,5)) => T is
equivalent to add(Y,5) => Z, add(X,Z) => T, where Z is a variable not used anywhere
else. This automatic unfolding of the internal trigger type (add(Y,5)) is a useful fea-
ture for writing behavioral specifications [Sim14]. To make this clear that how the
functional terms work in ForSpec, we consider the following example. A functional
term add is defined as a function from a pair of integers to another integer that is the
sum of the given pair. The function rule which calculates the output is defined in the
second line.

add ::= [Integer, Integer ⇒ Integer].
add (x, y) ⇒ (z) :- z = x + y.

As we explained, ForSpec’s compiler generates two data types for goal-derive
terms. The first has the same numbers of the fields as the goal driven-function, and
the second, which is called trigger data type, has the same numbers of fields of the
first part of the goal-driven function definition. Also, it adds the trigger construct as
a constraint to the opposite side of all rules that includes the goal-driven function.

add ::= (Integer, Integer, Integer).
#add ::= (Integer, Integer).
add (x, y, z) :- z = x + y, #add (x, y).

A.2.3 Semantic functions
ForSpec introduces syntactic elements for defining semantic functions. A semantic
function is defined as follows;

1 <sem-func> ::= <id> : <field> -> <field> .

The term first declares a data type of the same name, second it creates rules for extract-
ing information from the semantic functions as discussed below. For example, the
semantic function name : dom_types − > codom_types declares a data type equiva-
lent to name ::=[dom_types => codom_types], and the generated rules extract every
possible instantiations of the codom_types over which the function ranges for a con-
crete model[Sim14]

A.2.4 Semantic equations
ForSpec contains syntactic elements for writing semantic equations. The following
is the form of semantic equations;

1 <sem-eq> ::= <id> [[ <id> ]] <term> = <term> | where <rule-body>
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The following are the semantic equations for the add operator:

add ::= new (expr,expr).
expr ::= add + ...
S : expr → Integer.
S JaddK = summa where summa = S Jadd.lhsK + S Jadd.rhsK.

A.2.5 Union Type Extension
Union types are supported well in ForSpec. In addition to FORMULA, it allows ex-
tending the existing union type declarations with additional data types. This is vital
in the modular development of modeling languages since it facilitates the composi-
tion of languages [JS09]. The following example specifies a simple language to define
arithmetic equations:

Example 21: Union type example

domain Equations
{
Exp ::= Real + Operation.
Operation ::= BinOp + UniOp.
UniOp ::= Neg.
Neg ::= new (any Exp).
BinOp ::= Add + Subtract + Multiply.
Add ::= new (any Exp, any Exp).
Subtract ::= new (any Exp, any Exp).
Multiply ::= new (any Exp, any Exp).

}

If we need to reuse this language and extend it to support relational expression, the
extended domain can be specified the following way in ForSpec:

Example 22: Example domain AdvancedEquations

domain AdvancedEquations extends Equations
{
Exp += Boolean.
BinOp + = LT + LET + GT + GET + EQ + NotEQ.
LT ::= new (any Exp, any Exp).
LET ::= new (any Exp, any Exp).
GT ::= new (any Exp, any Exp).
GET ::= new (any Exp, any Exp).
EQ ::= new (any Exp, any Exp).
NotEQ ::= new (any Exp, any Exp).
UniOp += Not.
Not ::= new (any Exp).
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}

As presented in this example, we can extend Exp, BinOp, and UniOp data types in
the base domain with the new data types introduced in the extended domain. This
is a useful feature in ForSpec which can avoid code duplication by using union type
extension.
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APPENDIX B
ForSpec Specifications of

Metamodeling Framework for
DSFBLs

In this chapter, we first provide the ForSpec specifications for the proposed metamod-
els in Section 5.2. Afterwards, we specify the operational semantics of the Network
language proposed in the framework.

B.1 Abstract Syntax of the Metamodels

In the following sections, we provide the ForSpec specifications of the proposed meta-
models in Section 5.2.

B.1.1 DSFBLCore
We can formalize the “DSFBLCore” using the following algebraic data types in For-
Spec:

domain DSFBLCore includes Validation
{
DataType ::= Integer + Real + String + Boolean.
DataObj ::= new (DataType).
InPort ::= new (name: String, datatype: String).
OutPort ::= new (name: String, datatype: String).
Port ::= InPort + OutPort.
LinkableElement ::= Port.
ParameterDef :;= new (name: String).
ParameterDef += PrimitiveParameter + DataTableParameter.
PrimitiveParameter ::= new (name: String, type: String).
DataTableParameter ::= new (name: String, columns: DataColumns).
DataColumn ::= new (name: String, type: String).
DataColumns ::= list < DataColumn >.
DataTable ::= new (columns: DataColumns, rows: DataRows).
DataRow ::= list <DataType>.
DataRows ::= list < DataRow >.
ModelElement ::= LinkableElement + ParameterDef.
ModelElementList ::= list < ModelElement >.
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ComponentClassifier :;= new (name: String).
Component :;= new (name: String, elements: ModelElementList,

classifier: String).
DesignElement ::= DataType + Component + ComponentClassifier.

}

The DataType is defined as a union type which includes the basic data types such
as string, integer, boolean and real. This can be extended by the domain-specific
data types in others domain by using the union extension operator. Since Data is a
reserved name in ForSpec that refers to all the data types defined in the given domain,
therefore we define a type called DataObj to provide the constructor for defining an
object of the types including in the DataType. We specify Component as a typed union
type to define an interface for the components. This has a list of ModelElements which
includes InPort,OutPort, and ParameterDef. The ComponentClassifier is also presented
as a typed union type to specify an interface for the constraint language. ParameterDef
is also defined as a typed union type of PrimitiveParameter and DataTableParameter.
The first specifies the parameter definition for the primitive data types, while the
second specifies the parameter definition for composite data types. The DataColumn
is defined to specify the name and the data type of each column or field, which are
expected to be within the rows of a DataTable. The DataRow is defined to specifies
the values of each columns for each row of a DataTable. The type and position of the
values in each row should correspond to the type and the location of each DataColumn
defined for a DataTable.

B.1.2 DSFBLNetwork

We formalize the “DSFBLNetwork” using the following algebraic data types in For-
Spec:

domain DSFBLNetwork extends DSFBLCore
{
Parameter ::= new (name: String, value: Data).
ParameterList ::= list < Parameter >.
Process ::= new (name: String, component: String,

parameters: ParameterList + {Nil}).
Channel ::= OutChannel + InChannel.
OutChannel ::= new (port: String, process: String + {Nil}).
InChannel ::= new (port: String, process: String + {Nil}).
Connection ::= new (source: OutChannel, target: InChannel).
NetworkElement ::= Process + Connection.
NetworkElementList ::= list < NetworkElement >.
Network ::= new (name: String, elements: ModelElementList,

classifier: String, networkelements: NetworkElementList + {Nil}).
Component += Network.

}
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We define a domain for the metamodel, and we extend it from DSFBLCore domain.
Network element is defined as a composite type which includes the same fields as
the fields defined for the typed union type of Component in the core domain. The
“+=” operator is used to extend Component type with the Network type. In addition
to the type of Component, network type has a list of NetworkElements which are type
of Process or Connection. A process has a name, a list of parameters, and a naming
reference to a component. A connection has a source and a target Channel. Channels
are either InChannels or OutChannels. They have a port name and a process name.
The process name can be either a name of a process or a constant value of Nil, which
indicates that the channel is associated to the network. The port name of InChannels
/ OutChannels should refer to an InPort/ OutPort if they are assigned to processes,
and it should refer to an OutPort/InPort if they are assigned to networks.

B.1.3 DSFBLConstraint

The ForSpec specification for “DSFBLConstraint” are presented as follows:

domain DSFBLConstraint extends DSFBLCore
{
Include ::= new (processtype: String, IsDirect: Boolean).
Exclude ::= new (processtype: String, IsDirect: Boolean).
IsBefore ::= new (processtype: String, IsDirect: Boolean).
IsAfter ::= new (processtype: String, IsDirect: Boolean).
TopologicalConstraint ::= Include + Exclude + IsBefore + IsAfter.
HasPort ::= new (port: Port).
HasParameter ::= new (parameterdef: ParameterDef).
StructuralConstraint ::= HasPort + HasParameter + {HasMorePort}.
DomainProcessConstraint ::= TopologicalConstraint + StructuralConstraint.
DomainProcessConstraintList ::= list < DomainProcessConstraint >.
DomainProcessType ::= new (name: String,

constraints: DomainProcessConstraintList + {Nil},
basetype: String + {Nil}).

ComponentClassifier += DomainProcessType.
}

We map the proposed metamodel to a domain called “DSFBLConstraint” which
extends the domain specified for the core metamodel. The composite datatype Do-
mainProcessType specifies a constructor to define a component classifier. This type
has a name, a list of DomainProcessConstraint and a naming reference to another Do-
mainProcessType which is inherited from. Using Nil for this naming reference means
that the DomainProcessType does not inherit from any other DomainProcessType. Do-
mainProcessConstraint is defined as a union type which is the combination of other
union types of StructuralConstraint and TopologicalConstraint. The first union type is
combination of HasPort, HasParameter, and a constant called HasMorePort. HasPort,
HasParameter are composite types that specify the definition of Port or ParameterDef
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(these are the data types defined in DSFBLCore domain) which the process should
have. Since HasMorePort class in the metamodel does not have any member, therefore
we present it as a constant in the domain. The TopologicalConstraint is a combination
of the following composite types Include, Exclude, IsBefore, IsAfter. These types have
a naming reference to DomainProcessType.

B.1.4 DSFBLAspect
The ForSpec specification for “DSFBLAspect” are presented as follows:

domain DSFBLAspect extends DSFBLNetwork
{
DomainProcessDesignator ::= new (name: String, type: String).
ComponentDesignator ::= new (name: String, type: String).
PointcutExp ::= DomainProcessDesignator + ComponentDesignator.
AdviceType ::= {Before, After, Around}.
Observer ::= new (name: String, type: AdviceType,

pointcut: PointcutExp, process: Process).
Adapter ::= new (name: String, type: AdviceType,

pointcut: PointcutExp, process: Process).
PortFilter ::= new (name: String, type: String).
PortFilterList ::= list < PortFilter >.
Collector ::= new (name: String, portfilters: PortFilterList,

pointcut: PointcutExp, process: Process).
Advice ::= Observer + Adapter + Collector.
AdviceList ::= list < Advice >.
Aspect ::= new ( name: String, advice: AdviceList).
DesignElement += Aspect.

}

We map the metamodel to a domain called “DSFBLAspect”. This domain ex-
tends “DSFBLNetwork” domain with specifications required to define cross-cutting
concerns. A composite data type Aspect is defined to specify an aspect. The union
extension operator is used to extend DesignElement union data type defined in “DSF-
BLCore” with Aspect data type. An Aspect has a name and a list of Advice which
is defined as a union type of Observer, Adapter, and Collector. Each advice has a
name, PointCutExp, and a Process. Pointcut expression specifies the join-points that
the associated process to the advice should be applied. In this specification two join-
points designator DomainProcessDesignator and ComponentDesignator are supported.
The first matches the components in the network based on the DomainProcessType
associated to the components, and the second selects the components as join-points
based on their type or name. Observer and Adapter advice have an AdviceType which
indicate the position of injection of the adoption process according to the join-points.
The Collector advice has a list of PortFilter to specify the ports of the child processes
that should be connected to the adoption process.
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B.2 Behavioral Semantics of DSFBLNetwork

In this section we provide the behavioral semantics of the Network language. As pre-
sented in Figure 5.7, we extend the execution environment of a Network from the
execution environment of Component. A NetworkState is representation of a Network
in run-time environment. This extends ComponentState with two more state variables
which are ConnectionState and ProcessState. These are necessary to store the run-time
environment of a network. ProcessState is used to store the execution state of the pro-
cesses of a network within a ComponentState. ConnectionState is used to store the state
of the connections of the network. This stores the state of its channels by utilizing
twoChannelStates. Each ChannelState is comprising of the following; a buffer, which is
a FIFO list, to store the data-packets arrives to the associated channel; a referencing
name to the associated port called portid; the instanceid of the process associated to
the channel; and capacity to specify the buffer’s size of the channel. We can formalize
these specification in ForSpec as follows:

domain DSFBLNetworkRuntime extends DSFBLCoreRuntime, DSFBLNetwork
{
ComponentState += NetworkState.
NetworkState ::= new (instanceid: String, component: Network,

primary_state: PrimaryState, statevars: StateVarList + {Nil}).
StateVar += ProcessState + ConnectionState.
ProcessState ::= new (state: ComponentState ).
ConnectionState ::= new (in: ChannelState, out: ChannelState).
ChannelState ::= new (procid: String, portid: String,

buffer: DataPacketList + {Nil}, is_closed: Boolean,
capacity: Integer).

}

DSFBLNetworkRuntime domain formalizes the execution environment for the net-
work language. In the previous section, we provided three abstract functions to spec-
ify the operational semantics of components in our framework. Since we extend Net-
work from Component, therefore in order to specify the operational semantics for net-
works, we need to specify the operational rules for these functions as follows:

Instantiate (component, params) ⇒ (env) :-
component: Network,
statevars = params,
net_instance_no = count ({ X | Instantiate (X, _, _), X: Network }),
instanceid = strJoin (component.name, net_instance_no),
env = NetworkState (instanceid, component, NotStarted, statevars).

In order to instantiate a network, first we generate an instance id by concatenat-
ing the component name and the number of times that Instantiate function has been
triggered for components of type Network. Afterwards, we construct a NetworkState
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as the initial environment with the following arguments; the generated instance-id,
the given component, NotStarted as the primary state, and the list of the given param-
eter’s values as the state variables.

We initialize a network by initializing the processes and connections of the net-
work. To this end, first we initialize the network processes by using a function call
IntializeProcesses. Afterwards, we initialize the network’s connections by utilizing a
function called IntializeConnections. At the end, we generate a new NetworkState as
the updated environment, and we set the primary state of the network to Active. We
specify this function as follows:

Initialize (env) ⇒ (env''') :-
env: NetworkState,
IntializeProcesses (env) ⇒ (env'),
IntializeConnections (env') ⇒ (env''),
env''' = NetworkState (env.instanceid, env.component, Active,

env''.statevars).

IntializeProcesses instantiates the processes of the network by calling InstantiatePro-
cess for each process. It converts the instantiated environment the processes to a list
of StateVar and update the environment accordingly as follows:

IntializeProcesses ::= [NetworkState ⇒ NetworkState].
IntializeProcesses (env) ⇒ (env') :-
process_state_list = toList (StateVarList, Nil,
{process_state | process← env.component.networkelements,
process: Process, InstantiateProcess (process) ⇒ (process_state)}),
statevars = env.statevars union process_state_list,
env' = NetworkState (env.instanceid, env.component, env.primary_state,

statevars).

InstantiateProcess instantiates a process by calling the Instantiate function of the
component associated to the process.

InstantiateProcess ::= [Process ⇒ ProcessState].
InstantiateProcess (process) ⇒ (process_state) :-
component is Component, component.name = process.component,
params = toList(ParameterValueList, Nil,
{ParameterValue (param.name, param.value) | param← process.parameters}),
Instantiate (component, params) ⇒ (env),

process_state = ProcessState (process.name, env).

After initializing the processes and assigning a unique instance id to the processes,
we initialize the connections of the network as follows:

IntializeConnections ::= [NetworkState ⇒ NetworkState].
IntializeConnections (env) ⇒ (env') :-
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connection_state_list = toList(StateVarList, Nil,
{ conn_state | conn← env.component.networkelements, element: Connection,
IntializeConnection (env, conn) ⇒ (conn_state) }),
env' = NetworkState (env.instanceid, env.component, env.primary_state,

statevars').

We initialize a connection as follows:

IntializeConnection ::= [NetworkState, Connection ⇒ ConnectionState].
IntializeConnection (env, conn) ⇒ (conn_state) :-
src_port = conn.source.port, dst_port = conn.target.port,
GetProcInstanceID (env, conn.source.process) ⇒ (src_instid),
GetProcInstanceID (env, conn.target.process) ⇒ (dst_instid),
GetCapacity (env, conn.source.process, src_port) ⇒ (src_capacity),
GetCapacity (env, conn.target.process, dst_port) ⇒ (dst_capacity),
conn_state = ConnectionState (

ChannelState (src_instid, src_port, Nil, FALSE, src_capacity),
ChannelState (dst_instid, dst_port, Nil, FALSE, dst_capacity)).

In order to initialize a connection, we utilize the following auxiliary functions. We
extract the instance_id associated to a process within a given environment as follows:

GetProcInstanceID ::= [NetworkState, String + {Nil} ⇒ String].
GetProcInstanceID (env, name) ⇒ (instanceid):-
name = Nil, instanceid = env.instanceid

; name != Nil, proc_state← env.statevars, proc_state: ProcessState,
proc_state.proc_name = name, instanceid = proc_state.state.instanceid.

We extract the capacity associated to a certain port of a process as follows:

GetCapacity ::= [NetworkState, String + {Nil}, String ⇒ Integer].
GetCapacity (env, process_name, port_name) ⇒ (capacity):-

process_name = Nil, port← env.component.elements, port: Port,
port.name = port_name, capacity = port.capacity

; name != Nil, proc_state← env.statevars, proc_state: ProcessState,
proc_state.proc_name = process_name,
port← proc_state.state.component.elements, port: Port,
port.name = port_name, capacity = port.capacity.

After we map the design-time elements of the network language to the elements
of the execution environment, we are ready to specify the big-steps and the small
steps behavioral semantics for the network language. To this end, first we define the
following auxiliary functions in order to update the execution environment, after-
wards we specify the execution rules for Execute function.

We define UpdatePrimaryState function to update the primary state of a network
as follows:
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UpdatePrimaryState (env, state) ⇒ (env'):-
UpdatePrimaryState ::= [ComponentState, PrimaryState ⇒ ComponentState].

env: NetworkState,
env' = NetworkState (env.instanceid,
env.component, state, env.statevars).

UpdateStateVars is a function which updates the list of the StateVars of a network
environment:

UpdateStateVars ::= [Environment, StateVarList ⇒ Environment].
UpdateStateVars (env, statevars) ⇒ (env') :-

env' = NetworkState (env.instanceid,
env.component, env.primary_state, statevars).

UpdateStateVar is another function which we use in order to update a specific Stat-
eVar of a network environment:

UpdateStateVar ::= [Environment, StateVar, StateVar ⇒ Environment].
UpdateStateVar (env, statevar, statevar') ⇒ (env') :-

statevars = toList(StateVarList, Nil,
{sv' | sv← env.statevars, sv != statevar}),
statevars' = StateVarList (statevar', statevars),
UpdateStateVars (env, statevars') ⇒ (env').

We specify the Execute function for the network language, as three big-steps. First
we apply the input IOActions to the associated input channels of the network. This
maps the given execution environment env to an updated environment env’. After-
wards we call ExecuteProcesses function which maps the updated environment env’
to the final environment env”. This executes the network through several small-step
execution rules and it ends when there is no more active process in the network. Fi-
nally we call a function called WriteActions to generate the output actions according
to the state of the input and output channels of the network. We formalize the Execute
function as follows, and we specify the other functions afterward:

Execute (env, in_actions, actid) ⇒ (env'', out_actions, actid) :-
env: NetworkState,

Read the input actions and load the data on the input ports of the network.

LoadActions (env, in_actions) ⇒ (env'),
Execute the processes in the network, until all input channels are empty.

ExecuteProcesses (env', actid) ⇒ (env''),
Convert the output channels of the network to IOAction list as the output.

WriteActions (env'', in_actions) ⇒ (out_actions).

We utilize LoadActions to load the input data to the input channels of the network.
To this end, we iterate the connections of the network, and we apply the given input
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actions to the network input channels by calling another function called LoadData-
Packets. Finally we update the environment with the updated channels.

LoadActions ::= [Environment, IOActionList + {Nil} ⇒ Environment].
LoadActions (env, in_actions) ⇒ (env') :-

statevars' = toList (StateVarList, Nil,
Find the network’s input channels and update them by applying the given actions.

{ conn' |conn← env.statevars, conn: Connection,
conn.in.procid = env.instanceid,
LoadDataPackets (conn.in) ⇒ (updated_in_channel),
conn' = ConnectionState (updated_in_channel, conn.out)}

Union the updated connections with the other network’s StateVars.

union {sv |sv← env.statevars, no {sv' | sv' <- env.statevars,
sv': Connection, conn.in.procid = env.instanceid, sv' = sv}}),
UpdateStateVars (env, statevars') ⇒ (env').

We apply the IOActions to the channels by the following function. We add the
data-packet associated to each Read action in the given list, to the buffer of the asso-
ciated channel. At the end, we update the channel with the updated buffer.

LoadDataPackets ::= [ChannelState, IOActionList ⇒ ChannelState].
LoadDataPackets (channel, inputs) ⇒ (channel') :-

buffer'= toList (DataPacketList, Nil,
{act.data | act← inputs, act: Read, act.portid = channel.portid}),
channel' = ChannelState (channel.procid, channel.portid, buffer',
channel.isclosed, channel.capacity).

After loading the data into the input channels of the network, the connections of
the network should be executed to transfer the data-packets from the source chan-
nels to the target channels of the connections. This activates the processes connected
to the target channels. The next step is to execute these active processes and update
their output channels accordingly. This can be done by repeating these steps again.
ExecuteProcesses formalize these rules as a big-step, which maps the updated envi-
ronment from the last step to the final environment of executing the network. This
function calls itself until no more processes can be executed. It also use a new activa-
tion id for each execution trace. We specify this function as follows:

ExecuteProcesses ::= [NetworkState, Integer ⇒ NetworkState, Integer].
ExecuteProcesses (env, actid) ⇒ (env''', actid) :-

Execute the connection of the network.

ExecuteConnections (env) ⇒ (env'),
Extracts the active processes in the network.

active_processes = toList(ProcessStateList, Nil,
{proc_state | proc_state← env'.statevars,
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proc_state: ProcessState,
proc_state.primary_state = Active}),

Verifies if there are any active process in the network.

active_processes != Nil,
Execute the active processes.

ExecuteActiveProcesses (active_processes, env', actid)
⇒ (env'', actid),

Repeat these steps with the updated environment.

ExecuteProcesses (env'', new_actid)
⇒ (env''', new_actid),
new_actid = actid+1

If no more active processes exist in the network environment, the function breaks
the recursion loop, and it returns the final environment by updating the primary-
state of the environment to Inactive:

; active_processes = toList(ProcessStateList, Nil,
{proc_state | proc_state← env.statevars,
proc_state: ProcessState,
proc_state.primary_state = Active}),
active_processes = Nil,
UpdatePrimaryState (env, Inactive) ⇒ (env''').

ExecuteActiveProcesses executes a list of active processes, and it returns the up-
dated environment. This function utilizes ExecuteProcess function to execute the ac-
tive processes :

ExecuteActiveProcesses ::= [ProcessStateList + {Nil}, NetworkState,
Integer ⇒ NetworkState, Integer].
ExecuteActiveProcesses (processes, env, actid) ⇒ (env'', actid) :-

processes != Nil,
Execute the first process in the list.

ExecuteProcess (env, processes.hd, actid)
⇒ (env', actid),

Execute the other processes in the list.

ExecuteActiveProcesses (processes.tail, env', actid)
⇒ (env'', actid)

If there is no more process in the list then do nothing.

; processes = Nil, env'' = env.

We can execute a process within four small-steps; generating the input actions
based on the current state of the input channels of the process; calling the Execute
function for the component associated to the process to obtain the output actions;
update the network environment with the updated state of the process; and finally
updating the process channels by applying the output actions and obtaining the up-
dated execution environment. ExecuteProcess formalizes these rules as follows:
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ExecuteProcess ::= [ NetworkState, ProcessState, Integer
⇒ NetworkState, Integer].
ExecuteProcess (env, proc_state, actid) ⇒ (env'', actid) :-

Generate the IO actions based on the state of the process input channels.

GenerateActions (env, proc_state.state.instanceid)
⇒ (in_actions),

Execute the process.

Execute (proc_state.state, in_actions, actid)
⇒ (state', out_actions, actid),

Update the environment

UpdateStateVar (env, proc_state.state, state')
⇒ (env'),

Apply the outputs to the channels.

ApplyActions (env', proc_state.state.instanceid, out_actions)
⇒ (env'').

ExecuteConnections formalize the execution rules for the connections of a network
as two small-steps which are propagating the connections, and updating the process
states in the network.

ExecuteConnections ::= [NetworkState ⇒ NetworkState].
ExecuteConnections (env) ⇒ (env'') :-

PropagateConnections (env) ⇒ (env'),
UpdateProcessStates (env') ⇒ (env'').

PropagateConnections propagates each connection in the given network by calling
PropagateConnection function, and it returns the updated environment.

PropagateConnections ::= [NetworkState ⇒ NetworkState].
PropagateConnections (env) ⇒ (env') :-

statevars' = toList(StateVarList, Nil,
{conn' | conn← env.statevars, conn: ConnectionState,
PropagateConnection (conn) ⇒ (conn')
} union { sv | sv← env.statevars, not sv: Connection}),
UpdateStateVars (env, statevars') ⇒ (env').

PropagateConnection formalize the execution rules for transferring the data-packets
from the source channels to the target channels of a connection as follows:

PropagateConnection ::= [ConnectionState ⇒ ConnectionState].
PropagateConnection
(ConnectionState
(ChannelState (src_proc_id, src_portid, src_buffer, src_isclosed),
ChannelState (dst_proc_id, dst_portid, dst_buffer, dst_isclosed,

dst_capacity)))
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⇒ (ConnectionState
(ChannelState (src_proc_id, src_portid, src_buffer', src_isclosed),
ChannelState (dst_proc_id, dst_portid, dst_buffer', src_isclosed,

dst_capacity))) :-

If the source and the target channels are empty, they will remain in the same
state:

src_buffer = Nil,
dst_buffer'= dst_buffer,
src_buffer' = Nil

If the total capacity of the target channel is larger than the number of data-packets
available in the source channel, transfer all the data-packets to the target channel and
set the source channel to empty.

; src_buffer != Nil, dst_buffer = Nil,
count (src_buffer) =< dst_capacity,
dst_buffer'= src_buffer,
src_buffer' = Nil

If the free capacity of the target channel is larger than the number of the data-
packets available in the source channel, transfer all the data-packets to the end of the
buffer of the target channel and set the source channel to empty.

; src_buffer != Nil, dst_buffer != Nil,
count (src_buffer) =< dst_capacity - count (dst_buffer),
dst_buffer'= append (dst_buffer, src_buffer),
src_buffer' = Nil

If the free capacity of the target channel is less than the number of the data-packets
available in the source channel, transfer the number of the data-packets, which can
fit in the reminded space, to the end of the buffer of the target channel and keep the
rest of the data-packets in the source channel.

; src_buffer != Nil, dst_buffer != Nil,
count (src_buffer) > dst_capacity - count (dst_buffer),
k = dst_capacity - length (dst_buffer),
dst_buffer'= dst_buffer union src_buffer[..k-1],
src_buffer'= src_buffer[k..]

If the total capacity of the target channel is less than the number of the data-
packets available in the source channel, transfer the number of the data-packets,
which can fit in the reminded space, to the target channel and keep the rest of the
data-packets in the source channel.
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; src_buffer != Nil, dst_buffer = Nil,
count (src_buffer) > dst_capacity,
dst_buffer'= src_buffer[..dst_capacity-1],
src_buffer'= src_buffer[dst_capacity..].

After propagating the connections, we need to update the state of the network’s
processes. To this end, we update the state of each process by calling UpdatePro-
cessState, at the end we update the execution environment:

UpdateProcessStates ::= [NetworkState ⇒ NetworkState].
UpdateProcessStates (env) ⇒ (env') :-

statevars' = toList(StateVarList, Nil,
{proc_state' | proc_state← env.statevars,
proc_state: ProcessState,
UpdateProcessState (proc_state) ⇒ (proc_state')
} union { sv | sv← env.statevars, not sv: ProcessState}),
UpdateStateVars (env, statevars') ⇒ (env').

UpdateProcessState formalize the execution rules for updating the state of the net-
work processes as follows: If the state of the process is NotStarted and at least the
buffer of one of its input channels are not empty, initialize the process.

UpdateProcessState ::= [NetworkState, ProcessState ⇒ ProcessState].
UpdateProcessState (env, proc) ⇒
(ProcessState (proc.proc_name, state')) :-

proc.state.primary_state = NotStarted,
ProcessHasInputData (env, proc) ⇒ (TRUE),
Initialize (proc.state) ⇒ (state')

If the state of the process is Inactive and at least the buffer of one of its input chan-
nels is not empty, update the process state to Active.

; proc.state.primary_state = Inactive,
ProcessHasInputData (env, proc) ⇒ (TRUE),
UpdatePrimaryState (proc.state, Active) ⇒ (state')

If the state of the process is Suspended_on_receive and at least the buffer of one of
its input channels is not empty, update the process state to Active.

; proc.state.primary_state = Suspended_on_receive,
ProcessHasInputData (env, proc) ⇒ (TRUE),
UpdatePrimaryState (proc.state, Active) ⇒ (state')

If the process has unconsumed data-packets on at least one of its output channels,
update the process state to Suspended_on_send.
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; proc.state.primary_state != Suspended_on_send,
ProcessHasSuspendedData (env, proc) ⇒ (TRUE),
UpdatePrimaryState (proc.state, Suspended_on_send) ⇒ (state')

If the state of the process is Suspended_on_send and the process has no uncon-
sumed data-packets on all of its output channels, update the process state to Active.

; proc.state.primary_state = Suspended_on_send,
no ProcessHasSuspendedData (env, proc) ⇒ (TRUE),
ProcessHasInputData (env, proc) ⇒ (TRUE),
UpdatePrimaryState (proc.state, Active) ⇒ (state')

If all the input channels of the process are closed, update the process state to
Terminated.

; no ProcessHasOpenChannel (env, proc) ⇒ (TRUE),
UpdatePrimaryState (proc.state, Terminated) ⇒ (state')

Otherwise, keep the state of the process.

; no ProcessHasOpenChannel (env, proc) ⇒ (TRUE),
no ProcessHasSuspendedData (env, proc) ⇒ (TRUE),

no ProcessHasInputData (env, proc) ⇒ (TRUE),
state'= proc.state.

ProcessHasInputData is an auxiliary function that determines whether a process
has at least one input channel which is not closed and is not empty.

ProcessHasInputData ::= [NetworkState, ProcessState ⇒ Boolean].
ProcessHasInputData (env, proc) ⇒ (TRUE) :-

conn← env.statevars, conn: ConnectionState,
conn.out.procid = proc.state.instanceid,
conn.out.buffer != Nil,
conn.out.is_closed = FALSE.

ProcessHasSuspendedData is an auxiliary function that determines whether a pro-
cess has suspended data-packets on at least one of its output channels.

ProcessHasSuspendedData ::= [NetworkState, ProcessState ⇒ Boolean].
ProcessHasSuspendedData (env, proc) ⇒ (TRUE) :-

conn← env.statevars, conn: ConnectionState,
conn.in.procid = proc.state.instanceid,
conn.in.buffer != Nil,
conn.in.is_closed = FALSE.

ProcessHasOpenChannel is an auxiliary function that determines whether a process
has at least one input channels which is not closed.



B.2 Behavioral Semantics of DSFBLNetwork 241

ProcessHasOpenChannel ::= [NetworkState, ProcessState ⇒ Boolean].
ProcessHasOpenChannel (env, proc) ⇒ (TRUE) :-

conn← env.statevars, conn: ConnectionState,
conn.out.procid = proc.state.instanceid,
conn.out.is_closed = FALSE.

ApplyActions function updates the environment by applying the list of the given
actions on the channels associated to a process with the given instance-id. This func-
tion is called after executing an active process within a network.

ApplyActions ::= [NetworkState, String, IOActionList ⇒ NetworkState].
ApplyActions (env, instid, actions) ⇒ (env') :-
statevars' = toList (StateVarList, Nil,
{ conn' |conn← env.statevars, conn: Connection,

UpdateConnection (conn, instid, actions) ⇒ (conn')}
union {sv |sv← env.statevars, not sv: ConnectionState}),
UpdateStateVars (env, statevars') ⇒ (env').

UpdateConnection applies the given action lists to the channels of the process with
the given instance-id as follows:

UpdateConnection ::= [ConnectionState, String, IOActionList
⇒ ConnectionState].
UpdateConnection
(ConnectionState (src_channel, dst_channel), instid, actions)
⇒ (ConnectionState (src_channel', dst_channel' )) :-
UpdateChannel (src_channel, instid, actions) ⇒ (src_channel'),
UpdateChannel (dst_channel, instid, actions) ⇒ (dst_channel').

UpdateChannel formalize the execution rules of applying the IOActions on the buffer
of the given channel as follows:

UpdateChannel ::= [ChannelState, String, IOActionList ⇒ ChannelState].
UpdateChannel
(ChannelState (proc_id, portid, buffer, isclosed), instid, actions)
⇒ ( ChannelState (proc_id, portid, buffer', isclosed)) :-

If the channels are not empty, the updated buffer of the channel will be calculated
by appending the data-packet associated to each Write action in the action list, to the
list of the data-packets available in the channel’s buffer excluding the data-packets
associated to the Drop actions in the action list.

new_datapackets= toList (DataPacketList, Nil,
{act.data | act← actions, act: Write, act.portid = portid}),
current_datapackets= toList (DataPacketList, Nil,
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{data | data← buffer, not isin(Drop (portid, data), actions)}),
buffer'= append (current_datapackets, new_datapackets),
proc_id = instid, buffer != Nil, actions != Nil

If the channels are empty, the updated buffer of the channel will be calculated by
inserting the data-packet associated to each Write action in the action list, into the
channel’s buffer.

; buffer'= toList (DataPacketList, Nil,
{act.data | act← actions, act: Write, act.portid = portid }),
proc_id = instid, buffer = Nil, actions != Nil

If the given process instance-id does not match the instance id associated to the
channel, no update will be required.

; buffer' = buffer, proc_id != instid

GenerateActions function generates a list of IOAction based on the state of the in-
put channels of the process with the given instance-id in the given environment. This
function is called before executing an active process within a network. This generates
a Read action for each data-packet available in the buffer of the input channel associ-
ated to the process. It also generates Close action for any input channels of the process
which is in close state.

GenerateActions ::= [NetworkState, String ⇒ IOActionList + {Nil}].
GenerateActions (env, instid) ⇒ (actions) :-

actions = toList(IOActionList, Nil,
{act | conn← env.statevars, conn: ConnectionState,
conn.out.procid = instid,
packet← conn.out.buffer,
act = Read (conn.out.portid, packet)} union
{act | conn← env.statevars, conn: ConnectionState,
conn.out.procid = instid,
conn.out.is_closed = TRUE,
act = Close (conn.out.portid)}).

WriteActions function generates a list of IOAction which is the output of the execu-
tion of the given network. Therefore, it generates three kinds of IOActions as follows:

WriteActions ::= [NetworkState, IOActionList ⇒ IOActionList + {Nil}].
WriteActions (env, in_actions) ⇒ (actions) :-

For each data-packet available in the buffer of the network’s output channels, gen-
erate a Write action:



B.2 Behavioral Semantics of DSFBLNetwork 243

actions = toList(IOActionList, Nil,
{act | conn← env.statevars, conn: ConnectionState,
conn.out.procid = env.instanceid,
packet← conn.out.buffer,
act = Write (conn.out.portid, packet)} union

For each output channels of the network, which is in closed state, generate a Close
action:

{act | conn← env.statevars, conn: ConnectionState,
conn.out.procid = env.instanceid,
conn.out.is_closed = TRUE,
act = Close (conn.out.portid)} union

For each data-packets, which are associated to the Read actions within the given
input actions, but not available in the buffer of the network’s input channels, generate
a Drop action:

{act | act' <- in_actions, act':Read,
no {conn | conn← env.statevars, conn: ConnectionState,
conn.in.procid = env.instanceid, isin (act'.data, conn.in.buffer)},
act = Drop (act'.portid, act'.data)}).
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APPENDIX C
ForSpec Specifications of the

Proposed DSL for
Waste-Management

In this chapter, we formalize the core concepts of the waste-management domain in
ForSpec. Afterward we provide the ForSpec specifications for the operational seman-
tics of the proposed domain-specific language.

C.1 ForSpec Specifications of Waste-Management Domain

In Section 3.2, we formally defined the main concepts of the waste-management mod-
eling including the formal definition of material, life-cycle inventory, and external
processes.

C.1.1 Material
We formalize the given definition of Material in Section 3.2.1 as the following data
types in ForSpec:

domain Material
{
SubstanceValue ::= new (name: String, value: Real).
SubstanceValueList ::= list < SubstanceValue >.
Fraction ::=new (name: String, value: SubstanceValueList).
FractionList ::= list < Fraction >.
Material ::= new (value: FractionList).
MaterialList ::=list < Material >.

}

We formalize material fractions as a list of SubstanceValue, which specify a sub-
stance name and the associated amount of the substance within a material fraction,
and material as a list of material fractions. We also formalize the operations for these
data types as follows:

MergeSubstanceValue ::= [SubstanceValue, SubstanceValue ⇒ SubstanceValue].
MergeSubstanceValue (s, s') ⇒ (SubstanceValue(s.name, value)) :-
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value = s.value + s'.value,
s.name = s'.name.

The function merges two SubstanceValue which have the same substance name.

MergeSubstanceValueList ::= [SubstanceValueList, SubstanceValueList
⇒ SubstanceValueList].

MergeSubstanceValueList (sl, sl')⇒(sl'') :-
sl'' = toList (SubstanceValueList, Nil,
{s''| s← sl, s' <- sl', s.name = s'.name,
MergeSubstanceValue (s, s') ⇒ (s'')}
union {s| s← sl, isin(s.name, sl'[name]) = FALSE}
union {s'| s' <- sl', isin(s'.name, sl[name]) = FALSE}).

The function merges two list of SubstanceValues.

MergeFraction ::= [Fraction, Fraction ⇒ Fraction].
MergeFraction (f, f') ⇒ (Fraction(f.name, sl)) :-

MergeSubstanceValueList (f.value, f'.value) ⇒ (sl).

The function merges two different material fractions in a new material fraction
as a result. For each substance, if the substance exists in both material fractions, it
appears in the result as the addition of the amounts of the substance in both fractions.
Otherwise it appears in the result without any changes.

MergeFractionList ::= [FractionList, FractionList ⇒ FractionList].
MergeFractionList (fl,fl') ⇒ (fl'') :-

fl''= toList(FractionList,Nil,
{f''| f← fl, f' <- fl', f.name = f'.name,
MergeFraction(f,f') ⇒ (f'')}
union {f | f← fl, isin(f.name, fl'[name]) = FALSE}
union {f'| f' <- fl', isin(f'.name, fl[name]) = FALSE}).

The function merges two list of Fractions.

MergeMaterial ::= [Material, Material ⇒ Material].
MergeMaterial (m, m') ⇒ (Material (fl)) :-

MergeFractionList (m.value, m'.value) ⇒ (fl).

The function merges two different materials in a new material as a result. The
following functions specify the subtraction operation on the data types:

SubtractSubstanceValue ::= [SubstanceValue, SubstanceValue
⇒ SubstanceValue].

SubtractSubstanceValue (s, s') ⇒ (s'') :-
s'' = SubstanceValue (s.name, value), value = s.value - s'.value.
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The function subtracts a SubstanceValue from another SubstanceValue that have the
same substance name.

SubtractSubstanceValueList ::= [SubstanceValueList, SubstanceValueList
⇒ SubstanceValueList].

SubtractSubstanceValueList (sl, sl') ⇒ (sl'') :-
sl'' = toList (SubstanceValueList, Nil,
{s'' | s← sl, s' <- sl', s.name = s'.name, value = s.value - s'.value,
s'' = SubstanceValue (s.name, value)}
union {s | s← sl, isin(s.name, sl'[name]) = FALSE}
union {s''| s' <- sl', isin(s'.name, sl[name]) = FALSE,
s'' = SubstanceValue (s.name, value), value = - s'.value}).

The function subtracts a list of SubstanceValue from another list of SubstanceValue.

SubtractFraction ::= [Fraction, Fraction ⇒ Fraction].
SubtractFraction (f, f') ⇒ (Fraction (f.name, sl)) :-

SubtractSubstanceValueList (f.value, f'.value) ⇒ (sl).

The function subtracts a material fraction from another material fraction.

SubtractFractionList ::= [FractionList, FractionList ⇒ FractionList].
SubtractFractionList (fl, fl')⇒(fl'') :-

fl'' = toList(FractionList, Nil,
{f''| f← fl, f' <- fl', f.name = f'.name,
SubtractFraction (f, f') ⇒ (f'')}
union {f |f← fl, isin(f.name, fl'[name]) = FALSE}
union {f'' | f' <- fl', isin(f'.name, fl[name]) = FALSE,
RescaleFraction (f', -1) ⇒ (f'')}).

The function subtracts a material fraction list from another material fraction list.

SubtractMaterial ::= [Material, Material ⇒ Material].
SubtractMaterial (m, m') ⇒ (Material (fl)) :-

SubtractFractionList (m.value, m'.value) ⇒ (fl).

The function subtracts a material from another material.

RescaleSubstanceValue ::= [SubstanceValue, Integer ⇒ SubstanceValue].
RescaleSubstanceValue (s,n) ⇒ (s') :-

s'= SubstanceValue(s.name, value), value = s.value * n.

The function rescales the value of the given SubstanceValue.

RescaleSubstanceValueList ::= [SubstanceValueList, Integer
⇒ SubstanceValueList].

RescaleSubstanceValueList (sl, n) ⇒ (sl') :-
sl'= toList (SubstanceValueList,Nil,
{SubstanceValue (s.name, value) | s← sl, value = s.value * n}).
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The function rescales the values of the SubstanceValues of the given list.

RescaleFraction ::= [Fraction, Integer ⇒ Fraction].
RescaleFraction (f,n) ⇒ (Fraction (f.name, sl)) :-

RescaleSubstanceValueList (f.value, n) ⇒ (sl).

The function rescales the given Fraction.

RescaleFractionList ::= [FractionList, Integer ⇒ FractionList].
RescaleFractionList (fl, n) ⇒( fl') :-

fl' = toList (FractionList, Nil,
{f' | f← fl, RescaleFraction (f,n) ⇒ (f')}).

The function rescales the values of the SubstanceValues of the given list.

RescaleMaterial ::= [Material, Integer ⇒ Material].
RescaleMaterial (m, n) ⇒ (Material (fl)) :-

RescaleFractionList (m.value, n) ⇒ (fl).

The function rescales the values associated to the given Material.

FilterSubstanceValueList ::= [SubstanceValueList, String
⇒ SubstanceValueList].

FilterSubstanceValueList (sl, sn) ⇒ (sl') :-
sl' = toList (SubstanceValueList, Nil, {s | s← sl, s.name = sn}).

The function extracts a specific substance from the given list.

FilterFraction ::= [Fraction, String ⇒ Fraction].
FilterFraction (f, sn) ⇒ (Fraction (f.name, sl)) :-

FilterSubstanceValueList (f.value, sn) ⇒ (sl).

The function extracts a specific substance from the given fraction.

FilterFractionList ::= [FractionList, String ⇒ FractionList].
FilterFractionList (fl, fn) ⇒ (fl') :-

fl' = toList (FractionList, Nil, {f | f← fl, f.name = fn}).

The function extracts a specific fraction from the given list.

FilterMaterialSubstanceValue ::= [Material, String ⇒ Material].
FilterMaterialSubstanceValue (m, sn) ⇒ (Material (sl')) :-

sl' = toList (FractionList, Nil,
{Fraction (f.name, sl) | f← m.value,
FilterSubstanceValueList (f.value, sn) ⇒ (sl)}).

The function extracts a specific substance from the given material.



C.1 ForSpec Specifications of Waste-Management Domain 249

FilterMaterialFraction ::= [Material, String ⇒ Material].
FilterMaterialFraction (m, fn) ⇒ (Material (value)) :-

FilterFractionList (m.value, fn) ⇒ (value).

The function extracts a specific fraction from the given material.

SumFraction ::= [FractionList >> MergeFraction >> Fraction].

The function reduces the given list of fractions to a fraction by merging the ele-
ments of the list using MergeFraction function.

SumMaterial ::= [MaterialList >> MergeMaterial >> Material].

The function reduces the given list of materials to a material by merging the ele-
ments of the list using MergeMaterial function. We also define the following data type
to specify the material catalogs. This allows the modeler to define the ratio of differ-
ent substances within a fraction. We utilize this to generate material for simulation
of the waste processes:

MaterialFraction ::= new (name: String, value: SubstanceValueList).

Although we use the SubstanceValueList to specify the amount of the substances,
it should be noted that the amount of substances are in percentage and they are not
the actual values. During the material generation process, we convert these values to
the actual values.

C.1.2 Life Cycle Inventory

We formalize the given definition for life-cycle inventory (LCI) in Section 3.2.2.1 as
the following data types in ForSpec:

domain LifeCycleCore
{
Unit ::= new (String).
Environment ::= new (String).
ElementaryFlow ::= new (id: String, env: String, unit: String).
ElementaryExchange ::= new (ef: String, amount: Real).

The domain called “LifeCycleCore” formalizes the data types required to define
elementary flows, elementary exchanges, life-cycle inventory, and external processes.
In addition the models of this domain can be considered as the catalogs which can
be exported or imported from the other LCI tools. We define LCI as a list of Elemen-
taryExchanges as follows:
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LCI ::= list <ElementaryExchange> .
LCIList ::= list <LCI>.
ProcessLCI ::= new (process: String,

input_specific: LCI,
process_specific: LCI,
total: LCI,
sub_processes_lci: ProcessLCIList).

ProcessLCIList ::= list <ProcessLCI>.

We also define ProcessLCI to specify the input-specific, process-specific, and the
accumulated LCI associated to a process. This also includes the LCI information
of the sub-processes or the external processes associated to the process. This data
type helps to trace back the LCI associated to a waste system, which is essential to
analyze the system by domain experts. We formalize external processes, discussed in
Section 3.2.2.1, as a composite data type in ForSpec called ExternalProcess as follows:

ExternalProcess ::= new (id: String, lci: LCI,
ext_proc_list: ExternalProcessExchangeList + {Nil}).

ExternalProcessExchange ::= new (epid: String, amount: Real).
ExternalProcessExchangeList ::= list <ExternalProcessExchange>.

}

We extend this domain by another domain called “LifeCycleInventory” to formal-
izes the computations of life-cycle inventory as follows:

domain LifeCycleInventory extends LifeCycleCore
{
MergeLCI ::= [LCI + {Nil}, LCI + {Nil} ⇒ LCI].
MergeLCI (lci, lci') ⇒ (lci'') :-

lci = Nil, lci'' = lci'
; lci' = Nil, lci'' = lci
; lci' != Nil, lci != Nil,

lci'' = toList (LCI, Nil,
{ex''| ex← lci, ex' <- lci', ex.ef = ex'.ef,
ex''= ElementaryExchange (ex.ef, amount),
amount = ex.amount + ex'.amount}
union {ex | ex← lci, isin(ex.ef, lci'[ex.ef]) = FALSE}
union {ex'| ex' <- lci', isin(ex'.ef, lci[ex'.ef]) = FALSE}).

MergeLCI function merges the given LCI facts and returns a new LCI fact.

SubtractLCI ::= [LCI, LCI ⇒ LCI].
SubtractLCI (lci, lci') ⇒ (lci'') :-

lci'' = toList (LCI, Nil,
{ex''| ex← lci, ex' <- lci', ex.ef = ex'.ef,
ex'' = ElementaryExchange (ex.ef, amount),
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amount = ex.amount - ex'.amount}
union {ex |ex← lci, isin(ex.ef, lci'[ex.ef]) = FALSE}
union {ex'| ex' <- lci', isin(ex'.ef, lci[ex'.ef]) = FALSE}).

SubtractLCI function subtracts a LCI fact from another LCI fact.

RescaleLCI ::= [LCI, Real ⇒ LCI].
RescaleLCI (lci, x) ⇒ (lci') :-

lci' = toList (LCI, Nil,
{ex''| ex← lci, ex''= ElementaryExchange (ex.ef, amount),
amount = ex.amount * x }).

RescaleLCI function rescales the amounts associated to the elementary exchanges
of the given LCI.

SumLCI ::= [LCIList >> MergeLCI >> LCI].

SumLCI reduces the given list of LCIs to a LCI by using MergeLCI function.

Accumulate ::= [ExternalProcess ⇒ LCI].
Accumulate (ep) ⇒ (lci'') :-

AccumulateEPE (ep.ext_proc_list) ⇒ (lci'),
MergeLCI (ep.lci, lci') ⇒ (lci'').

We define Accumulate function to compute the LCI associated to the external pro-
cesses. This utilizes the auxiliary function AccumulateEPE as follows:

AccumulateEPE ::= [ExternalProcessExchangeList + {Nil} ⇒ LCI + {Nil}].
AccumulateEPE (epl) ⇒ (result) :-

epl != Nil,
ep is ExternalProcess, ep.id = epl.hd.epid,
Accumulate (ep) ⇒ (lci'),
RescaleLCI (lci', epl.hd.amount) ⇒ (lci''),
AccumulateEPE (epl.tail) ⇒ (lcirest),
MergeLCI (lci'', lcirest) ⇒ (result)

; epl = Nil, result= Nil.
}

C.1.3 Life Cycle Assessment

In this section, we formalize the specifications for life-cycle assessment as we dis-
cussed in Section 3.2.2.2. We define a domain called “LifeCycleAssessment”, and we
extend it from “LifeCycleInventory” domain. This domain includes the data types
required to specify impact-factor, impact-category, LCIA method, and elementary
impact as follows:
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domain LifeCycleAssessment extends LifeCycleInventory
{
ImpactFactor ::= new (ef: String, factor: Real).
ImpactFactorList ::= list <ImpactFactor>.
ImpactCategory ::= new (id: String, normalization_factor: Real,

weighting_factor: Real, impact_factors: ImpactFactorList).
LCIAMethod ::= list <ImpactCategory>.
ElementaryImpact ::= new (ef: String, impact: Real).
ElementaryImpactList ::= list <ElementaryImpact>.

We formalize the computation of characterized LCIA per elementary flow, accord-
ing to Equation 3.26 as follows:

CharacterizedLCIA_PerElementary ::= [LCI, ImpactCategory
⇒ ElementaryImpactList].

CharacterizedLCIA_PerElementary (lci, ic) ⇒ (result) :-
result = toList (ElementaryImpactList, Nil,
{ElementaryImpact (ef, amount) | ex← lci, if← ic.impact_factors,
ex.ef = if.ef, ef = ex.ef, amount = ex.amount * if.factor
}).

We formalize the computation of characterized LCIA for a process, according to
Equation 3.27 as follows:

CharacterizedLCIA_Total ::= [LCI, ImpactCategory ⇒ REAL].
CharacterizedLCIA_Total (lci, ic) ⇒ (result) :-

amount_list = toList (NumberList, Nil,
{amount | ex← lci, if← ic.impact_factors, ex.ef = if.ef, ef = ex.ef,
amount = ex.amount * if.factor}),
Sum (amount_list) ⇒ (result).

We formalize the computation of normalized LCIA per elementary flow, accord-
ing to Equation 3.29 as follows:

NormalizedLCIA_PerElementary ::= [LCI, ImpactCategory
⇒ ElementaryImpactList].

NormalizedLCIA_PerElementary (lci, ic) ⇒ (result) :-
result= toList (ElementaryImpactList, Nil,
{ElementaryImpact (ef, normalized_amount) | ex← lci,
if← ic.impact_factors,
ex.ef = if.ef, ef = ex.ef, amount = ex.amount * if.factor,
normalized_amount = amount / ic.normalization_factor}).

We formalize the computation of normalized LCIA for a process, according to
Equation 3.30 as follows:
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NormalizedLCIA_Total ::= [LCI, ImpactCategory ⇒ REAL].
NormalizedLCIA_Total (lci, ic) ⇒ (result) :-

amount_list = toList (NumberList, Nil,
{normalized_amount | ex← lci, if← ic.impact_factors,
ex.ef = if.ef, ef = ex.ef,
amount = ex.amount * if.factor,
normalized_amount = amount / ic.normalization_factor}),
Sum (amount_list) ⇒ (result).

We formalize the computation of weighted LCIA per elementary flow, according
to Equation 3.31 as follows:

WeightedLCIA_PerElementary ::= [LCI, ImpactCategory
⇒ ElementaryImpactList].

WeightedLCIA_PerElementary (lci, ic) ⇒ (result) :-
result= toList (ElementaryImpactList, Nil,
{ElementaryImpact (ef, weighted_amount) | ex← lci, if← ic.impact_factors,
ex.ef = if.ef,ef = ex.ef, amount = ex.amount * if.factor,
normalized_amount = amount / ic.normalization_factor,
weighted_amount = normalized_amount * ic.weighting_factor}).

We formalize the computation of weighted LCIA for a process, according to Equa-
tion 3.33 as follows:

WeightedLCIA_Total ::= [LCI, ImpactCategory ⇒ Real].
WeightedLCIA_Total (lci, ic) ⇒ (result) :-

amount_list = toList (NumberList, Nil,
{weighted_amount | ex← lci, if← ic.impact_factors,
ex.ef = if.ef, ef = ex.ef,
amount = ex.amount * if.factor,
normalized_amount = amount / ic.normalization_factor,
weighted_amount = normalized_amount * ic.weighting_factor}),
Sum (amount_list) ⇒ (result).

We also define ImpactCategoryAssessment and LCIAMethodAssessment data types.
The first is to specify the impact assessment result including, characterized, normal-
ized, weighted, and the total score, according to a certain impact category. The sec-
ond is to specify the impact assessment result on the basis of a certain LCIA method.
These are useful in order to specify the life-cycle-impact assessment of a certain pro-
cess according to a certain LCIA method. Accordingly, we define a data type called
ProcessLCIA to specify the input-specific, process-specific, and the accumulated LCIA
of a certain process according to a certain method. This also specifies the individual
LCIA of the sub-processes or external processes used within the process:

ImpactCategoryAssessment ::= new (impact_category: String,
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normalized: ElementaryImpactList,
characterized: ElementaryImpactList,
weighted: ElementaryImpactList,
score: Real).

LCIAMethodAssessment ::= list <ImpactCategoryAssessment>.
ProcessLCIA ::= new (process: String,

input_specific: LCIAMethodAssessment,
process_specific: LCIAMethodAssessment,
total: LCIAMethodAssessment,
sub_processes_lcia: ProcessLCIAList).

ProcessLCIAList ::= list <ProcessLCIA>.
}

C.2 Operational Semantics

In order to implement the operational semantics of the DSL, we define a domain
called “AtomicWasteProcessRuntime” and we extend it from “AtomicWasteProcess”,
“DSFBLCoreRuntime”, “DSFBLIO”,“Material”, and “LifeCycleInventory” as follows:

domain AtomicWasteProcessRuntime extends AtomicWasteProcess, DSFBLIO,
DSFBLCoreRuntime, LifeCycleInventory, Material

{
ComponentState += WasteProcessState.
WasteProcessState ::= new (instanceid: String, component: WasteProcess,
primary_state: PrimaryState, statevars: StateVarList + {Nil}).
InputMaterial ::= new (name: String, value: Material).
StateVar += InputMaterial.

We introduce a data type called “WasteProcessState” as the run-time representa-
tion of waste processes. We also define a state variable called InputMaterial to store
the input material associated with the input ports or other elements. As usual, we
define the following functions to specify the instantiation and initialization of the
atomic-waste processes:

Instantiate (atomic_waste_proc, params) ⇒ (env) :-
atomic_waste_proc: WasteProcess,
statevars = params,
waste_proc_instance_no = count ({ X | Instantiate (X, _, _),
X: WasteProcess}),
instanceid = strJoin (atomic_waste_proc.name, waste_proc_instance_no),
count ({port |port← atomic_waste_proc.elements, port: InPort}) > 0,

env = WasteProcessState (instanceid, atomic_waste_proc, NotStarted,
statevars)

If the process does not have any input ports, we set its execution state to Active.
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; atomic_waste_proc: WasteProcess,
statevars = params,
waste_proc_instance_no = count ({ X | Instantiate (X, _, _),
X: WasteProcess}),
instanceid = strJoin (atomic_waste_proc.name, waste_proc_instance_no),
no {port |port← atomic_waste_proc.elements, port: InPort},
env = WasteProcessState (instanceid, atomic_waste_proc, Active, statevars).

To initialize the component, we only update its state to Active as follows:

Initialize (env) ⇒ (env') :-
env: WasteProcessState,
env' = WasteProcessState (env.instanceid, env.component,
Active, env.statevars).

In order to execute the component, we first check whether or not data is avail-
able for all the input ports of the component by calling an auxiliary function called
AllPortsAreActive. If it returns true, we load the material input for each port to the en-
vironment, then we generate all the output actions by calling another function called
GenerateOutputs and we update the state of the component to Inactive as follows:

Execute (env, in_actions, actid) ⇒ (env'', out_actions, actid) :-
env: WasteProcessState,
AllPortsAreActive (in_actions, env) ⇒ (TRUE),
statevars = toList (StateVarList, Nil,
{ InputMaterial (port.name, data.data) |
port← env.component.elements, port: InPort,
ReadPortInput (port.name, env, in_actions) ⇒ (data)}),
AppendStateVars (env, statevars) ⇒ (env')
GenerateOutputs (in_actions, env') ⇒ (out_actions),
env'' = WasteProcessState (env.instanceid, env.component,
Inactive, env'.statevars)

If data is not available for all the input ports of the process, update the execution
state of the component to Suspended_on_receive and finish the execution:

; env: WasteProcessState,
no AllPortsAreActive (in_actions, env) ⇒ (TRUE),
env'' = WasteProcessState (env.instanceid, env.component,
Suspended_on_receive, env.statevars).

AllPortsAreActive verifies if all the input ports have available data to read as fol-
lows:

AllPortsAreActive ::= [IOActionList, WasteProcessState ⇒ Boolean].
AllPortsAreActive (in_actions, env) ⇒ (TRUE) :-
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no {port | port← env.component.elements, port: InPort,
no ReadPortInput (port.name, env, in_actions) ⇒ (data)}.

We read the arrived data for an input port by calling ReadPortInput. This function
only reads the first data-packet arrived at the input port as follows:

ReadPortInput ::= [InPort, WasteProcessState,
IOActionList + {Nil} ⇒ DataPacket].

ReadPortInput (port, env, actions) ⇒ (data) :-
act = actions.hd, act: Read, act.portid = port.name,
act.data.data: Material, data = act.data

; act = actions.hd, act.portid != port.name, actions != Nil,
ReadPortInput (port, env, actions.tail) ⇒ (data).

GenerateOutputs formalizes the semantics of the output ports of the process, as we
explained in the last section:

GenerateOutputs ::= [IOActionList, WasteProcessState ⇒ IOActionList].
GenerateOutputs (in_actions, env) ⇒ (out_actions) :-

data_actions = toList (IOActionList, Nil,

For each input port, read the first data-packet and drop it by generating a Drop
action as an output action:

{Drop (port.name, data)| port← env.component.elements,
port: InPort, ReadPortInput (port.name, env, in_actions) ⇒ (data)} union

For each output port, compute the total material flowing to the port from the
network and generate Write action for the material as output:

{Write (port.name, data)| port← env.component.elements,
port: OutPort, not port: EmissionsToEnvironment,
TotalInputValue (port, env) ⇒ (material),
data = DataPacket (material, "Material")} union

For each FeedbackPort, if the closing_condition evaluates to true, generate an Close
IOAction:

{Close (port.name)| port← env.component.elements,
port: FeedbackPort,
TotalInputValue (port, env) ⇒ (material),
EvaluateBexp (port.closing_condition, material, env)
⇒ (TRUE)} union
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For each EmissionsToEnvironment output port; compute the input-specific LCI by
calculating the total material flowing to the port from the network and convert it to
elementary exchanges by calling ConvertToEmissions function; compute the process-
specific LCI by calculating the total material input of the process and converting it
to elementary exchanges accordingly, compute the accumulated LCI, generate a Pro-
cessLCI and produce Write action for the result as output:

{Write (port.name, data)| port← env.component.elements,
port: EmissionsToEnvironment,
TotalInputValue (port, env) ⇒ (material),
ConvertToEmissions (material, port.exchanges, env) ⇒ (input_specific_lci),
ProcessMaterialInput (env) ⇒ (total_process_input),
ConvertToEmissions (total_process_input, env.component.exchanges,
env) ⇒ (proc_specific_lci),
SumLCI (LCI (input_specific_lci, LCI (proc_specific_lci, Nil))) ⇒ (total),
process_lci = ProcessLCI (env.component.name, input_specific_lci,
input_specific_lci, total, Nil),
data = DataPacket (process_lci, "ProcessLCI")}),

Finally, if there is any Close action within the received actions, generate Close ac-
tion to close all the output ports of the process:

GenerateActions (in_actions, env) ⇒ (close_actions),
out_actions = append (data_actions, close_actions).

ProcessMaterialInput computes the total material transferring to the input ports of
the process:

ProcessMaterialInput ::= [WasteProcessState ⇒ Material].
ProcessMaterialInput (env) ⇒ (material) :-

material_list = toList (MaterialList, Nil
{statevar.value | port← env.component.elements, port: InPort,
port.datatype = "Material", statevar← env.statevars,
statevar: InputMaterial, statevar.name = port.name}),
SumMaterial (material_list) ⇒ (material).

TotalInputValue formalizes the execution rules of the semantic function EJ_Kin as
follows:

TotalInputValue ::= [Transformer + Input + Output, WasteProcessState
⇒ Material].

TotalInputValue (element, env) ⇒ (material) :-

For the input ports, read the input material from the statevars of the given envi-
ronment as follows:
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element: InPort,
statevar← env.statevars, statevar: InputMaterial,
statevar.name = element.name, material = statevar.value

For material generators, generate the material by calling the auxiliary function
GenerateMaterial:

; element: MaterialGenerator,
GenerateMaterial (element, env) ⇒ (material)

For the Distributors which are associated to a Hub, the total material input is the
total material input flowing to their Hubs:

; element: Distributor, element.hb != Nil,
GetElement (element.hb, env) ⇒ (hub),
TotalInputValue (hub, env) ⇒ (material)

For the Transformers that are associated to a CompositeTransformer, and that are not
targeted by any transition elements; find the composite transformer, which contains
these elements and search the environment to find the material input value associ-
ated to the container. This means that the total material input of this element is the
total material input flowing to their container, which is a CompositeTransformer:

; GetContainer (element, env.component.transformers) ⇒ (container),
container != Nil, transitions = env.component.transitions,
no { t | t← transitions, t.target = element.name},
statevar← env.statevars, statevar: InputMaterial,
statevar.name = container.name, material = statevar.value

For other elements which are associated to a CompositeTransformer and which are
targeted by ingoing transitions, the total material input is the sum of all the materials
transferring to the elements via transitions targeting them:

; GetContainer (element, env.component.transformers) ⇒ (container),
container != Nil, transitions = env.component.transitions,
count ({ t | t← transitions, t.target = element.name}) > 0,
element: not Distributor, element: not InPort,
transitions_material = toList (MaterialList, Nil,
{ mat | t← transitions, t.target = element.name,
ElementValue (t, env) ⇒ (mat)}),
SumMaterial (transitions_material) ⇒ (material)

For the Distributors which are not associated to a Hub, but are associated to a
CompositeTransformerand are targeted by ingoing transitions, the total material input
is the sum of all the materials transferring to the distributor via these transitions:
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; GetContainer (element, env.component.transformers) ⇒ (container),
container != Nil, transitions = env.component.transitions,
count ({ t | t← transitions, t.target = element.name}) > 0,
element: Distributor, element.hb = Nil,
transitions_material = toList (MaterialList, Nil,
{ mat | t← transitions, t.target = element.name,
ElementValue (t, env) ⇒ (mat)}),
SumMaterial (transitions_material) ⇒ (material).

For the Distributors which are not associated to a Hub or to a CompositeTransformer,
the total material input is the sum of all the materials transferring to the distributor
via transitions targeting this element:

; GetContainer (element, env.component.transformers) ⇒ (Nil),
element: Distributor, element.hb = Nil,
transitions = env.component.transitions,
transitions_material = toList (MaterialList, Nil,
{ mat | t← transitions, t.target = element.name,
ElementValue (t, env) ⇒ (mat)}),
SumMaterial (transitions_material) ⇒ (material).

For other elements not associated to a CompositeTransformer, the total material in-
put is the sum of all the materials transferring to the elements via transitions targeting
them:

; GetContainer (element, env.component.transformers) ⇒ (Nil),
element: not Distributor, element: not InPort,
transitions = env.component.transitions,
transitions_material = toList (MaterialList, Nil,
{ mat | t← transitions, t.target = element.name,
ElementValue (t, env) ⇒ (mat)}),
SumMaterial (transitions_material) ⇒ (material)

ElementValue formalizes the execution rules of the semantic function EJeK∗ and
T JtK∗ as follows:

ElementValue ::= [Transformer + Transition , WasteProcessState ⇒ Material].
ElementValue (element, env) ⇒ (result) :-

If a transformer element has an iterator, compute the input of the element, initial-
ize the iterator and execute the iterations:

element: Transformer, element.iterator != Nil,
TotalInputValue (element, env) ⇒ (input),
IntializeIterator (element.iterator, env, input) ⇒ (iterator),
ExecuteIterator (element, env, input, iterator) ⇒ (result)
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If a transformer element does not have an iterator, compute the input of the ele-
ment and execute the transformation for a single iteration:

; element: Transformer, element.iterator = Nil,
TotalInputValue (element, env) ⇒ (input),
TransformerValue (element, env, input) ⇒ (result),

If a material flow element has an iterator, compute the input of the element, ini-
tialize the iterator and execute the iterations:

; element: MaterialFlow, element.iterator != Nil,
GetElement (element.source, env) ⇒ (source),
ElementValue (source, env) ⇒ (input),
IntializeIterator (element.iterator, env, input) ⇒ (iterator),
ExecuteIterator (element, env, input, iterator) ⇒ (result),

If a material flow element does not have an iterator, compute the input of the
element, execute the transition for a single iteration:

; element: MaterialFlow, element.iterator = Nil,
GetElement (element.source, env) ⇒ (source),
ElementValue (source, env) ⇒ (input),
TransitionValue (element, env, input) ⇒ (result)

If a residue flow element has an iterator, compute the input of the element, ini-
tialize the iterator and execute the iterations:

; element: ResiduesFlow, element.iterator != Nil,
GetElement (element.source, env) ⇒ (source),
TotalInputValue (source, env) ⇒ (input),
IntializeIterator (element.iterator, env, input) ⇒ (iterator),
ExecuteIterator (element, env, input, iterator) ⇒ (result),

If a residue flow element does not have an iterator, compute the input of the ele-
ment, execute the transition for a single iteration:

; element: ResiduesFlow, element.iterator = Nil,
GetElement (element.source, env) ⇒ (source),
TotalInputValue (source, env) ⇒ (input),
TransitionValue (element, env, input) ⇒ (result).

The following specifies the data types and execution rules to initialize different
types of iterators:
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StateVar += IteratorState.
IteratorState ::= new (iterator : Iterator, current: Data,

next: Data + {Nil}).
IntializeIterator ::= [Iterator, WasteProcessState, Material
⇒ IteratorState].

IntializeIterator (iterator, env, material) ⇒ (state) :-
iterator : NumericIterator,
EvaluateAexp (iterator.min, material, env) ⇒ (min),
EvaluateAexp (iterator.max, material, env) ⇒ (max),
state = IteratorState (iterator, min, max)

; iterator : FractionIterator,
EvaluateMatexp (iterator.material, material, env) ⇒ (material'),
state = IteratorState (iterator, material'.value.hd, material'.value.tail)

; iterator : SubstanceIterator,
EvaluateMatexp (iterator.material, material, env) ⇒ (material'),
EvaluateStrexp (iterator.fraction, material, env) ⇒ (fraction'),
FilterMaterialFraction (material', fraction') ⇒ (material''),
fraction = material''.value.hd,
state = IteratorState (iterator, fraction.value.hd, fraction.value.tail)

; iterator : ListIterator,
EvaluateStrexp (iterator.param, material, env) ⇒ (param'),
var← env.statevars, var: ParameterValue, var.name = param'.name,
state = IteratorState (iterator, var.value.hd, var.value.tail).

TLoadIteratorVar updates the given environment with the given iterator as we dis-
cusses in the last section (σ [i.k → i.v]):

LoadIteratorVar ::= [WasteProcessState, IteratorState ⇒ WasteProcessState].
LoadIteratorVar (env, iterator_state) ⇒ (env'') :-

statevar = ParameterValue (iterator_state.iterator.name,
iterator_state.current),

AppendStateVar (env, statevar) ⇒ (env'),
AppendStateVar (env', iterator_state) ⇒ (env'').

Next formalizes the execution rules of the next function as we discussed in the last
section:

Next ::= [IteratorState ⇒ IteratorState].
Next (iterator_state) ⇒ (iterator_state') :-

iterator_state.iterator: NumericIterator,
iterator_state.current < iterator_state.next,
nextvalue = iterator_state.current + 1,
iterator_state' = IteratorState (iterator_state.iterator, nextvalue,
iterator_state.next)

; iterator_state.iterator: NumericIterator,
iterator_state.current = iterator_state.next,
iterator_state' = Nil



262 C ForSpec Specifications of the Proposed DSL for Waste-Management

;not iterator_state.iterator: NumericIterator,
iterator_state.next != Nil,
iterator_state' = IteratorState (iterator_state.iterator,
iterator_state.next.hd, iterator_state.next.tail)

;not iterator_state.iterator: NumericIterator,
iterator_state.next = Nil,
iterator_state' = Nil.

ExecuteIterator formalizes the execution rules of the semantic function EJeK+ and
T JtK+ as follows:

ExecuteIterator ::= [Transformer + Transition, WasteProcessState,
Material, IteratorState ⇒ Material].

ExecuteIterator (element, env, material, iterator_state) ⇒ (result) :-

For transformers, compute the material according to semantic function EJeK+:

element: Transformer, iterator_state != Nil,
LoadIteratorVar (env, iterator_state) ⇒ (env'),
TransformerValue (element, env', material) ⇒ (material'),
Next (iterator_state) ⇒ (iterator_state'),
ExecuteIterator (element, env, material', iterator_state') ⇒ (result)

; element: Transformer, iterator_state = Nil,
result = material.

For transitions, compute the material according to semantic function T JtK+:

; element: Transition, iterator_state != Nil,
LoadIteratorVar (env, iterator_state) ⇒ (env'),
TransitionValue (element, env', material) ⇒ (material'),
Next (iterator_state) ⇒ (iterator_state'),
ExecuteIterator (element, env, material', iterator_state') ⇒ (material''),
MergeMaterial (material', material'') ⇒ (result)

; element: Transition,
iterator_state = Nil,
result = Nil.

TransitionValue function formalizes the execution rules of the semantic function
T J_K as follows:

TransitionValue ::= [Transition, WasteProcessState, Material ⇒ Material].
TransitionValue (element, env, input_material) ⇒ (material) :-

If the guard condition associated to a transition is not satisfied, transfer no mate-
rial:



C.2 Operational Semantics 263

element.condition != Nil,
no EvaluateBexp (element.condition, input_material, env) ⇒ (TRUE),
material = Nil

If the guard condition associated to a MaterialFlow transition evaluates to true,
rescale the material from the source element according to the associated amount and
transfer it to the target element:

; element.condition != Nil, element: MaterialFlow,
EvaluateBexp (element.condition, input_material, env) ⇒ (TRUE),
EvaluateAexp (element.amount, input_material, env) ⇒ (amount),
amount_percent = amount / 100,
RescaleMaterial (input_material, amount_percent) ⇒ (material)

If aMaterialFlow has no guard, rescale the material from the source element ac-
cording to the associated amount and transfer it to the target element:

; element.condition = Nil, element: MaterialFlow,
EvaluateAexp (element.amount, input_material, env) ⇒ (amount),
amount_percent = amount / 100,
RescaleMaterial (input_material, amount_percent) ⇒ (material)

If the guard condition associated to a ResiduesFlow transition evaluates to true,
compute the residue material in the source element and transfer it to the target ele-
ment:

; element.condition != Nil, element: ResiduesFlow,
GetElement (element.source, env) ⇒ (source),
TotalOutputValue (source, env) ⇒ (output_material),
EvaluateBexp (element.condition, input_material, env) ⇒ (TRUE),
SubtractMaterial (input_material, output_material) ⇒ (material)

If a ResiduesFlow transition has no guard, compute the residue material in the
source element and transfer it to the target element:

; element.condition = Nil, element: ResiduesFlow,
GetElement (element.source, env) ⇒ (source),
TotalOutputValue (source, env) ⇒ (output_material),
SubtractMaterial (input_material, output_material) ⇒ (material).

TransformerValue function formalizes the execution rules of the semantic function
EJ_K as follows:

TransformerValue ::= [Transformer, WasteProcessState, Material ⇒ Material].
TransformerValue (element, env, input_material) ⇒ (material) :-
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For Hub elements, the value is the same as the total input material transferring to
the element:

element: Hub,
Degrade (element, env, input_material) ⇒ (material)

For MaterialDistributor elements, the value is the same as the total input material
transferring to the element:

; element: MaterialDistributor,
Degrade (element, env, input_material) ⇒ (material)

For SubstanceDistributor elements, filter the total material transferring to the ele-
ment with the associated substance:

; element: SubstanceDistributor,
EvaluateStrexp (element.substance, input_material, env) ⇒ (substance'),
FilterMaterialSubstanceValue (input_material, substance')
⇒ (filtered_material),
Degrade (element, env, filtered_material) ⇒ (material),

For FractionDistributor elements, filter the total material transferring to the ele-
ment with the associated fraction:

; element: FractionDistributor,
EvaluateStrexp (element.fraction, input_material, env) ⇒ (fraction'),
FilterMaterialFraction (input_material, fraction')
⇒ (filtered_material),
Degrade (element, env, filtered_material) ⇒ (material),

For FractionTransformer elements which specify a specific fraction to transform;
compute the total material transferring to the element and transform the fraction
within the material accordingly:

; element: FractionTransformer, element.from != Nil,
EvaluateAexp (element.amount, input_material, env) ⇒ (amount),
EvaluateStrexp (element.from, input_material, env) ⇒ (from'),
EvaluateStrexp (element.to, input_material, env) ⇒ (to'),
amount_percent = amount / 100,
updated_fractions = toList(FractionList, Nil,
{ f | f← input_material.value , f.name != from'} union
{ f' | f← input_material.value , f.name = from',
RescaleSubstanceValueList (f.value ,amount_percent) ⇒
(sl), f' = Fraction (to', sl)}),
material = Material (updated_fractions)



C.2 Operational Semantics 265

For FractionTransformer elements which do not specify a specific fraction to trans-
form; compute the total material transferring to the element and merge all the frac-
tions of the material and transform the material fraction accordingly:

; element: FractionTransformer, element.from = Nil,
EvaluateAexp (element.amount, input_material, env) ⇒ (amount),
amount_percent = amount / 100,
SumFraction (input_material.value) ⇒ (merged_fraction),
EvaluateStrexp (element.to, input_material, env) ⇒ (to'),
updated_fraction = Fraction (to', merged_fraction.value),
material = Material (FractionList (updated_fraction, Nil))

For SubstanceTransformer elements which specify a specific substance to transform;
compute the total material transferring to the element and transform the substance
within the material accordingly:

; element: SubstanceTransformer, element.from != Nil,
EvaluateStrexp (element.from, input_material, env) ⇒ (from'),
EvaluateStrexp (element.to, input_material, env) ⇒ (to'),
EvaluateAexp (element.amount, input_material, env) ⇒ (amount),
amount_percent = amount / 100,
updated_fractions = toList(FractionList, Nil,
{ f' | f← input_material.value ,
TransformSubstanceValueList (f.value, from', to' ,
amount_percent) ⇒ (sl),
f' = Fraction (f.name, sl)}),
material = Material (updated_fractions)

For SubstanceTransformer elements which do not specify a specific substance to
transform; compute the total material transferring to the element, merge all the sub-
stances in each fraction, and transform the substance accordingly:

; element: SubstanceTransformer, element.from = Nil,
EvaluateAexp (element.amount, input_material, env) ⇒ (amount),
EvaluateStrexp (element.to, input_material, env) ⇒ (to'),
amount_percent = amount / 100,
updated_fractions = toList(FractionList, Nil,
{ f' | f← input_material.value ,
SumSubstanceValueList (f.value) ⇒ (svl),
update_amount = svl.value * amount_percent,
f' = Fraction (f.name, SubstanceValueList
(SubstanceValue (to', update_amount), Nil))}),
material = Material (updated_fractions)

For FractionGenerator elements; compute the total material transferring to the ele-
ment and add a new fraction with the given name:
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; element: FractionGenerator,
EvaluateStrexp (element.fraction, input_material, env) ⇒ (fraction'),

material = Material (FractionList (Fraction (fraction', Nil),
input_material.value))

For SubstanceGenerator elements which specify a specific fraction to add the sub-
stance; compute the total material transferring to the element, add a substance with
the provided name and amount to the fraction of the material:

; element: SubstanceGenerator, element.fraction != Nil,
EvaluateStrexp (element.fraction, input_material, env) ⇒ (fraction'),
EvaluateStrexp (element.substance, input_material, env) ⇒ (substance'),
EvaluateAexp (element.amount, input_material, env) ⇒ (amount),
new_substance = SubstanceValue (substance', amount),
updated_fractions = toList(FractionList, Nil,
{ f | f← input_material.value , f.name != fraction'} union
{ f' | f← input_material.value , f.name = fraction',
AddSubstanceToSubstanceList (f.value, new_substance) ⇒ (sl'),
f' = Fraction (f.name, sl')}),
material = Material (updated_fractions)

For SubstanceGenerator elements which do not specify a specific fraction to add the
substance; compute the total material transferring to the element, add a substance
with the provided name and amount to each fraction of the material:

; element: SubstanceGenerator, element.fraction = Nil,
EvaluateAexp (element.amount, input_material, env) ⇒ (amount),
EvaluateStrexp (element.substance, input_material, env) ⇒ (substance'),
new_substance = SubstanceValue (substance', amount),
updated_fractions = toList(FractionList, Nil,
{ f' | f← input_material.value ,
AddSubstanceToSubstanceList (f.value, new_substance) ⇒ (sl'),
f' = Fraction (f.name, sl')}),
material = Material (updated_fractions).

For CompositeTransformer, the material value is the sum of all the materials that
are transformed by the transformers of the elements which do not have any outgo-
ing transitions. Therefore, first, we update the environment variables with a statevar
to store the material input value of the composite transformer (this value will be re-
trieved by the elements of transformers, which are not targeted by any transition, as
input value). Second, we find the mentioned transformers by using GetOutputTrans-
formers function. Third, we compute the materials transformed by these elements
and finally, we accumulate the results to compute the material:

; element: CompositeTransformer,
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statevar = InputMaterial (element.name, input_material),
AppendStateVar (env, statevar) ⇒ (env'),
GetOutputTransformers (element, env') ⇒ (element_list),
material_list = toList ( MaterialList, Nil,
{e_material | e← element_list,
ElementValue (e, env') ⇒ (e_material)}),
SumMaterial (material_list) ⇒ (material).

GetOutputTransformers function finds the transformers of a composite transformer,
which do not have any outgoing transitions:

GetOutputTransformers ::= [CompositeTransformer,
WasteProcessState ⇒ TransformerList].

GetOutputTransformers (composite_transformer, env)
⇒ (transformer_list) :-
transformer_list = toList (TransformerList, Nil,
{element | transformer← composite_transformer.transformers,
transformer /∈ env.component.transitions [source],
GetElement (transformer, env) ⇒ (element)}).

Degrade is an auxiliary function that degrades the amount of the given material
to a certain amount:

Degrade ::= [Transformer, WasteProcessState, Material ⇒ Material].
Degrade (element, env, input) ⇒ (result) :-

EvaluateAexp (element.deg, input, env) ⇒ (deg),
deg_percent = (100 - deg) /100,
RescaleMaterial (input, deg_percent) ⇒ (result).

TotalOutputValue function formalizes the execution rules of the semantic function
EJ_Kout as follows:

TotalOutputValue ::= [Transformer, WasteProcessState ⇒ Material].
TotalOutputValue (element, env) ⇒ (material) :-

For Hub elements, the output material is computed as the sum of all the materi-
als transferring out through its associated Distributors, plus the amount of material
which is lost due to degradation:

element: Hub, transformations = env.component.transformations,
distributors_material = toList (MaterialList, Nil,
{ mat | t← transformations, t: Distributor , t.hb = element.name,
TotalOutputValue (t, env) ⇒ (mat)}),
SumMaterial (distributors_material) ⇒ (material),
GetDegradationValue (element, env) ⇒ (deg_material),
MergeMaterial (distributors_material, deg_material) ⇒ (material)
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For the composite transformers, the output material is computed as the sum of
all the materials transferring out through the MaterialFlow transitions:

; element: CompositeTransformer, transitions = env.component.transitions,
transitions_material = toList (MaterialList, Nil,
{ mat | t← transitions, t.source = element.name, t: MaterialFlow,
ElementValue (t, env) ⇒ (mat)}),
SumMaterial (transitions_material) ⇒ (material)

For other elements, the output material is computed as the sum of all the materials
transferring out through the MaterialFlow transitions, plus the amount of material
which is lost due to degradation:

; not element: Hub, transitions = env.component.transitions,
not element: CompositeTransformer,
transitions_material = toList (MaterialList, Nil,
{ mat | t← transitions, t.source = element.name, t: MaterialFlow,
ElementValue (t, env) ⇒ (mat)}),
SumMaterial (transitions_material) ⇒ (transfered_material),
GetDegradationValue (element, env) ⇒ (deg_material),
MergeMaterial (transfered_material, deg_material) ⇒ (material).

GetDegradationValue formalizes the calculation of material degradation for the
transformer elements as follows:

GetDegradationValue ::= [Transformer, WasteProcessState ⇒ Material].
GetDegradationValue (element, env) ⇒ (material) :-

element.iterator != Nil,
TotalInputValue (element, env) ⇒ (input),
IntializeIterator (element.iterator, env, input) ⇒ (iterator),
ComputeDegration (element, env, input, iterator) ⇒ (material)

; element.iterator = Nil,
TotalInputValue (element, env) ⇒ (input_material),
EvaluateAexp (element.deg, input_material, env) ⇒ (deg),
deg_percent = deg /100, RescaleMaterial (input_material, deg_percent) ⇒

(material).

ComputeDegration formalizes the calculation of material degradation for the trans-
former elements which have an iterator as follows:

ComputeDegration ::= [Hub + Distributor , WasteProcessState, Material,
IteratorState ⇒ Material].
ComputeDegration (element, env, material, iterator_state) ⇒ (result) :-

iterator_state != Nil,
LoadIteratorVar (env, iterator_state) ⇒ (env'),
TransformerValue (element, env', material) ⇒ (material'),
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SubtractMaterial (material, material') ⇒ (degraded_material),
Next (iterator_state) ⇒ (iterator_state'),

ComputeDegration (element, env, material', iterator_state') ⇒
(material''),

SubtractMaterial (material', material'') ⇒ (degraded_material'),
MergeMaterial (degraded_material, degraded_material') ⇒ (result)

; iterator_state = Nil,
result = Nil.

SumSubstanceValueList is a function which reduces a list of SubstanceValue to a Sub-
stanceValueby applying MergeSubstanceValue on the elements of the list:

SumSubstanceValueList ::= [SubstanceValueList >> MergeSubstanceValue >>
SubstanceValue].

TransformSubstanceValueList transforms a substance within a SubstanceValue list as
follows:

TransformSubstanceValueList ::= [SubstanceValueList, String, String, Real
⇒ SubstanceValueList].
TransformSubstanceValueList (sl, sn, sn', amount) ⇒(sl') :-

sl' = toList (SubstanceValueList, Nil,
{s | s← sl, s.name != sn} union
{s' | s ← sl, s.name = sn, s' = SubstanceValue (sn', value ), value =

s.value * amount}).

AddSubstanceToSubstanceList adds a substance value to the given list as follows:

AddSubstanceToSubstanceList ::= [SubstanceValueList, SubstanceValue ⇒
SubstanceValueList].
AddSubstanceToSubstanceList (sl, sv) ⇒(sl') :-

sv.name /∈ sl[name],
sl' = SubstanceValueList (sv, sl)

; sv.name ∈ sl[name],
sl' = toList (SubstanceValueList, Nil,
{s | s← sl, s.name != sv.name} union
{s' | s← sl, s.name = sv.name, s' = SubstanceValue (s.name, value ),
value = s.value + sv.value}).

ConvertToEmissions function formalizes the execution rules to convert the given
materials into emissions to environments on the basis of the given list of ExchangeIn-
terface:

ConvertToEmissions ::= [Material, ExchangeInterfaceList + Param,
WasteProcessState ⇒ LCI].
ConvertToEmissions (material, exchanges, env) ⇒ (lci) :-

exchanges: Param, p← env.statevars, p: ParameterValue,
p.name = exchanges.name, p.Value: ExchangeInterfaceList,
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lci_list = toList (LCIList, Nil,
{lci' | exchange ← p.value, ConvertToEmission (material, exchange, env)

⇒ (lci')}),
SumLCI (lci_list) ⇒ (lci)

; exchanges: ExchangeInterfaceList,
lci_list = toList (LCIList, Nil,
{lci' | exchange← exchanges, ConvertToEmission (material, exchange, env)

⇒ (lci')}),
SumLCI (lci_list) ⇒ (lci).

ConvertToEmission function formalizes the execution rules to convert the given
materials into emissions to environments considering a single ExchangeInterface:

ConvertToEmission ::= [Material, ExchangeInterface, WasteProcessState ⇒
LCI].
ConvertToEmission (material, exchange, env) ⇒ (lci) :-

GetTotalSubstanceWeight (material, exchange.substance)
⇒ (substance_amount),
GetExchangeElement (exchange. exchange) ⇒ (exc_element),
EvaluateAexp (exchange.amount, Nil, env) ⇒ (amount),
total_amount = amount * substance_amount,
exc_element: ElementaryFlow,
lci = LCI (ElementaryExchange (exc_element.id, total_amount))

; GetTotalSubstanceWeight (material, exchange.substance) ⇒
(substance_amount),

GetExchangeElement (exchange. exchange) ⇒ (exc_element),
EvaluateAexp (exchange.amount, Nil, env) ⇒ (amount),
total_amount = amount * substance_amount,
exc_element: ExternalProcess,
Accumulate (exc_element) ⇒ (ext_lci),
RescaleLCI (ext_lci, total_amount) ⇒ (lci).

GetCloseActions generates Close action for all the output ports of the component,
if there is any Close action within the given action lists:

GetCloseActions ::= [IOActionList, ComponentState ⇒ IOActionList].
GetCloseActions (in_actions, env) ⇒ (out_actions) :-

count ({act| act← in_actions, act: Close}) > 0,
out_actions = toList (IOActionList, Nil,
{Close (port.name)| port← env.component.elements, port: OutPort})

; no {act| act← in_actions, act: Close}, out_actions = Nil.

GetExchangeElement retrieves ElementaryFlow or ExternalProcess elements for the
given name:

GetExchangeElement ::= [String ⇒ ElementaryFlow + ExternalProcess].
GetExchangeElement (id) ⇒ (exchange_element) :-
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exchange_element is ElementaryFlow, exchange_element.id = id
; exchange_element is ExternalProcess, exchange_element.id = id.

GetElement retrieves an element from the model elements associated to the given
name:

GetElement ::= [String, WasteProcessState ⇒ LinkElement + LinkableElement].
GetElement (name, env) ⇒ (element) :-

element← env.component.elements, element.name = name, element: Port
; element← env.component.transformers, element.name = name.

The following are the other auxiliary functions, i.e. the semantic specification
functions of the expressions which we have used in this section to specify the opera-
tional semantics of waste processes. We omit the specification of them for reasons of
brevity.

EvaluateAexp ::= [Aexp, transition_input: Material + {Nil},
transforming_input: Material + {Nil}, WasteProcessState ⇒ Real].

EvaluateBexp ::= [Bexp, transition_input: Material + {Nil},
transforming_input: Material + {Nil}, WasteProcessState ⇒ Boolean].

EvaluateStrexp ::= [Strexp, transition_input: Material + {Nil},
transforming_input: Material + {Nil}, WasteProcessState ⇒ String].

EvaluateMatexp ::= [Materialexp, transition_input: Material + {Nil},
transforming_input: Material + {Nil}, WasteProcessState ⇒ Material].

GetTotalSubstanceWeight ::=[Material, String ⇒ Real].

GenerateMaterial formalizes the execution rules to generate a material as follows:

GenerateMaterial ::= [MaterialGenerator, WasteProcessState ⇒ Material]
GenerateMaterial (generator, env) ⇒ (material) :-

generator.input_method : FractionValueList,
EvaluateAexp (generator.amount, Nil, env) ⇒ (amount),
fraction_list = toList (FractionList, Nil,
{fraction | f ← generator.fractions, mf is MaterialFraction, mf.name=

f.name,
GenerateMaterialFraction (mf, amount, f.value) ⇒ (fraction)}),
material = Material (fraction_list)

; generator.input_method : Material,
EvaluateAexp (generator.amount, Nil, env) ⇒ (amount),
RescaleMaterial (generator.input_method, amount) ⇒ (material)

; generator.input_method : Param,
p← env.statevars, p: ParameterValue,
p.name = generator.input_method.name, p.Value: Material,
EvaluateAexp (generator.amount, Nil, env) ⇒ (amount),
RescaleMaterial (p.Value, amount) ⇒ (material)

; generator.input_method : Param,
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p← env.statevars, p: ParameterValue,
p.name = generator.input_method.name, p.Value: FractionValueList,
EvaluateAexp (generator.amount, Nil, env) ⇒ (amount),
fraction_list = toList (FractionList, Nil,
{fraction | f← p.Value, mf is MaterialFraction, mf.name= f.name,
GenerateMaterialFraction (mf, amount, f.value) ⇒ (fraction)}),
material = Material (fraction_list)

GenerateMaterialFraction formalizes the execution rules to generate a fraction as
follows:

GenerateMaterialFraction ::= [MaterialFraction, Real , Real ⇒ Fraction]
GenerateMaterialFraction (m_fraction, total, fraction_amount) ⇒ (fraction)

:-
ts← m_fraction.value, ts.name = "TS",
substance_list = toList (SubstanceValueList, Nil,
{SubstanceValue (s.name, value) |
s← m_fraction.value,
s.name != "Water", s.name != "Energy",
value = s.value/ 100 * ts /100 * fraction_amount/100 * amount
; s← m_fraction.value,
s.name = "Water",
value = s.value/ 100 * fraction_amount/100 * amount
; s← m_fraction.value,
s.name = "Energy",
value = s.value * ts /100 * fraction_amount/100 * amount}),
fraction = Fraction (m_fraction.name, substance_list).



APPENDIX D
ForSpec Specifications of the

Case Studies
In this chapter, we provide the ForSpec specifications of the case studies presented
in Chapter 7.

D.0.1 Material Generation

partial model WasteProcessLibrary of WasteManagement
{

WasteProcess ("Material Generation",
Process interface:

ModelElementList <
PrimitiveParameter ("Fractions","FractionValueList"),
PrimitiveParameter ("Amount","Number"),
OutPort ("Waste","Material") >,

Process type:

Nil,
Transformers

LinkableElementList <
MaterialGenerator ("MGenerator1", Param ("Amount"),
Param ("FractionValueList"), Nil) >,

Transitions:

LinkElementList <
MaterialFlow ("MGenerator1", "Waste", TRUE, 100, Nil) >,

Process elementary exchanges:

Nil).
}

D.0.2 Change Water Content

partial model WasteProcessLibrary of WasteManagement
{

WasteProcess ("Change of Water content",
Process interface:

ModelElementList <
InPort ("MaterialInput1","Material"),
OutPort ("MaterialOutput1","Material") >,
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Process type:

Nil,
Transformers

LinkableElementList <
SubstanceDistributor ("SubstanceDistributor1", Nil , 0, "Water", Nil),
SubstanceTransformer ("STransformer1", "Water", "Water", 50, Nil) >,

Transitions:

LinkElementList <
MaterialFlow ("MaterialInput1", "SubstanceDistributor1", TRUE, 100, Nil),
MaterialFlow ("SubstanceDistributor1", "STransformer1", TRUE, 100, Nil),
MaterialFlow ("STransformer1", "MaterialOutput1", TRUE, 100, Nil),
ResiduesFlow ("SubstanceDistributor1", "MaterialOutput1", TRUE, Nil) >,

Process elementary exchanges:

Nil).
}

D.0.3 Change Energy Content

partial model WasteProcessLibrary of WasteManagement
{

WasteProcess ("Change of energy content",
Process interface:

ModelElementList <
InPort ("MaterialInput1","Material"),
OutPort ("MaterialOutput1","Material") >,

Process type:

Nil,
Transformers

LinkableElementList <
SubstanceDistributor ("SubstanceDistributor1", Nil , 0, "Energy", Nil),
SubstanceGenerator ("SGenerator1", "Energy", Nil,
Mult (-2, TotalSubstanceWeight (Input, "Water")), Nil) >,

Transitions:

LinkElementList <
MaterialFlow ("MaterialInput1", "SubstanceDistributor1", TRUE, 100, Nil),
MaterialFlow ("SubstanceDistributor1", "SGenerator1", TRUE, 100, Nil),
MaterialFlow ("SGenerator1", "MaterialOutput1", TRUE, 100, Nil),
ResiduesFlow ("SubstanceDistributor1", "MaterialOutput1", TRUE, Nil) >,

Process elementary exchanges:

Nil).
}

D.0.4 Substance Transfer Per Fraction

partial model WasteProcessLibrary of WasteManagement



D ForSpec Specifications of the Case Studies 275

{
WasteProcess ("VS, C, N degradation Treviso",

Process interface:

ModelElementList <
InPort ("MaterialInput1","Material"),
OutPort ("Degraded","Material"),
OutPort ("NonDegraded","Material") >,

Process type:

Nil,
Transformers

LinkableElementList <
SubstanceHub ("SubstanceHub2", 0, Nil),
SubstanceDistributor ("SubstanceDistributor1", "SubstanceHub2", 0, "C bio",

Nil),
SubstanceDistributor ("SubstanceDistributor5", "SubstanceHub2", 0, "VS",

Nil),
FractionHub ("FractionHub2", 0, Nil),
FractionDistributor ("FractionDistributor3", "FractionHub2", 0, "Office

paper", Nil),
FractionDistributor ("FractionDistributor4", "FractionHub2", 0,

"Magazines", Nil),
FractionHub ("FractionHub3", 0, Nil),
FractionDistributor ("FractionDistributor5", "FractionHub3", 0, "Office

Paper", Nil),
FractionDistributor ("FractionDistributor6", "FractionHub3", 0, "Magazine",

Nil) >,
Transitions:

LinkElementList <
MaterialFlow ("MaterialInput1", "SubstanceHub2", TRUE, 100, Nil),
MaterialFlow ("FractionDistributor3", "Degraded", TRUE, 10, Nil),
MaterialFlow ("FractionDistributor4", "Degraded", TRUE, 20, Nil),
MaterialFlow ("FractionDistributor5", "Degraded", TRUE, 10, Nil),
MaterialFlow ("FractionDistributor6", "Degraded", TRUE, 20, Nil),
MaterialFlow ("SubstanceDistributor1", "FractionHub3", TRUE, 100, Nil),
MaterialFlow ("SubstanceDistributor5", "FractionHub2", TRUE, 100, Nil),
ResiduesFlow ("FractionHub2", "NonDegraded", TRUE, Nil),
ResiduesFlow ("FractionHub3", "NonDegraded", TRUE, Nil),
ResiduesFlow ("SubstanceHub2", "NonDegraded", TRUE, Nil) >,

Process elementary exchanges:

Nil).
}

D.0.5 Landfill Gas Generation

partial model WasteProcessLibrary of WasteManagement
{
WasteProcess ("Landfill gas generation",
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Process interface:

ModelElementList <
PrimitiveParameter ("N","Integer"),
PrimitiveParameter ("vs_cbio","Real"),
DataTableParameter ("decay_rate",

DataColumns <DataColumn ("fraction","String"), DataColumn ("k","Real")>),
InPort ("MaterialInput1","Material"),
OutPort ("Residues ","Material"),
OutPort ("Gas ","Material") >,

Process type:

Nil,
Transformers:

LinkableElementList <
SubstanceGenerator ("SGenerator112", "C bio", Concat("year_",

ToString(Param(y))),
Mult(Mult(Amount(Input, Param("f"),"C bio and"),

EXP(Mult(UnMinus(Field(Lookup(Param("decay_rate"), "fraction",
Param("f")), "k")),

Minus(y, 1)))), Minus(1, EXP(UnMinus(Field(Lookup(Param("decay_rate"),
"fraction", Param("f")), "k"))))), FractionIterator ("f", Input)),
SubstanceGenerator ("SGenerator1121", "CH4 ", Concat("year_",

ToString(Param(y))),
Div(Mult(Mult(Mult(Mult(Amount(Input, Param("f"),"C bio and"),
EXP(Mult(UnMinus(Field(Lookup(Param("decay_rate"), "fraction",

Param("f")), "k")), Minus(y, 1)))), Minus(1,
EXP(UnMinus(Field(Lookup(Param("decay_rate"),

"fraction", Param("f")), "k"))))), Amount(Input, Param ("f"),
"CH4_biogas")),

22.24), 12), FractionIterator ("f", Input)),
SubstanceGenerator ("SGenerator11211", "CO2", Concat("year_",

ToString(Param(y))),
Div(Mult(Mult(Mult(Mult(Amount(Input, Param("f"),"C bio and"),
EXP(Mult(UnMinus(Field(Lookup(Param("decay_rate"), "fraction",
Param("f")), "k")), Minus(y, 1)))), Minus(1,
EXP(UnMinus(Field(Lookup(Param("decay_rate"), "fraction",
Param("f")), "k"))))), Minus(1, Amount(Input, Param ("f"), "CH4_biogas"))),
22.24), 12), FractionIterator ("f", Input))

CompositeTransformer ("CompositeTransformer1",
StringList <"SGenerator112", "SGenerator1121", "SGenerator11211" >,
NumericIterator ("y", 1, Param("N")) ),

SubstanceGenerator ("SGenerator1122", "C bio ", Param("f"),
UnMinus(Mult(Amount(Input, Param("f"),"C bio and"), Minus(1,

EXP(Mult(UnMinus(N),
Field(Lookup(Param("decay_rate"), "fraction", Param("f")), "k")))))),

Nil),
SubstanceGenerator ("SGenerator11222", "C bio and", Param("f"),
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Plus(UnMinus(Amount(Input, Param("f"),"C bio and")),
Mult(Amount(Input, Param("f"),"C bio and"),
EXP(Mult(UnMinus(N), Field(Lookup(Param("decay_rate"),
"fraction", Param("f")), "k"))))), Nil),

SubstanceGenerator ("SGenerator11221", "VS", Param("f"),
Mult(UnMinus(Param ("vs_cbio")), Mult(Amount(Input, Param("f"),"C bio

and"),
Minus(1, EXP(Mult(UnMinus(N), Field(Lookup(Param("decay_rate"),
"fraction", Param("f")), "k")))))), Nil),

SubstanceGenerator ("SGenerator112211", "LHV dry", Param("f"),
Mult(Div (Amount (Input, Param ("f"),"LHV dry"), Amount (Input,

Param("f"),"VS")),
(Minus( Amount (Input, Param("f"),"VS"), Mult( Amount (Input, Param("f"),

"VS C bio"),
Mult(Amount(Input, Param("f"),"C bio and"), EXP(Mult(UnMinus(N),
Field(Lookup(Param("decay_rate"), "fraction", Param("f")), "k")))))))),

Nil)
CompositeTransformer ("CompositeTransformer2",

StringList < "SGenerator1122", "SGenerator11222", "SGenerator11221",
"SGenerator112211" >, FractionIterator ("f", Input)),

MaterialDistributor ("MDistributor1", 0, Nil),
CompositeTransformer ("CompositeTransformer3",

StringList < "FractionDistributor3", "MDistributor1" >,
NumericIterator ("y", 1, Param("N"))),

FractionDistributor ("FractionDistributor3", Nil, 100,
Concat("year_", ToString(Param(y))), Nil),

FractionGenerator ("FGenerator1", Concat("year_", ToString(Param(y))),
NumericIterator ("y", 1, Param("N")) ),

SubstanceGenerator ("SGenerator1", "CH4_biogas ", Param("f"),
Plus(0.5, Div(Minus(Mult(168, Amount(Input,Param ("f"),"H")),
Minus(Mult(21, Amount(Input,Param ("f"),"O")), Mult(36, Amount(Input,Param

("f"),"N")))),
Mult(12, Amount(Input,Param ("f"),"Cbioand")))), FractionIterator ("f",

Input)) >,
LinkElementList <
MaterialFlow ("MaterialInput1", "FGenerator1", TRUE, 100, Nil),
ResiduesFlow ("FractionDistributor3", "MDistributor1", TRUE, Nil),
MaterialFlow ("FGenerator1", "SGenerator1", TRUE, 100, Nil),
MaterialFlow ("SGenerator1", "CompositeTransformer1", TRUE, 100, Nil),
MaterialFlow ("CompositeTransformer1", "CompositeTransformer2", TRUE, 100,

Nil),
MaterialFlow ("SGenerator112", "SGenerator1121", TRUE, 100, Nil),
MaterialFlow ("SGenerator1121", "SGenerator11211", TRUE, 100, Nil),
MaterialFlow ("CompositeTransformer2", "CompositeTransformer3", TRUE, 100,

Nil),
MaterialFlow ("SGenerator1122", "SGenerator11222", TRUE, 100, Nil),
MaterialFlow ("SGenerator11222", "SGenerator11221", TRUE, 100, Nil),
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MaterialFlow ("SGenerator11221", "SGenerator112211", TRUE, 100, Nil),
MaterialFlow ("CompositeTransformer3", "Residues", TRUE, 100, Nil),
ResiduesFlow ("CompositeTransformer3", "Gas", TRUE, Nil) >,

Process elementary exchanges:

Nil).
}

D.0.6 Mass Transfer Over Years.

partial model WasteProcessLibrary of WasteManagement
{

WasteProcess ("Mass transfer over years",
4: // Process interface:

ModelElementList <
DataTableParameter ("tc_table",

DataColumns <DataColumn ("from","Integer"),
DataColumn ("to","Integer"),
DataColumn ("tc","Real")>),
InPort ("MaterialInput1","Material"),
OutPort ("Collected","Material"),
OutPort ("Residues","Material") >,

Process type:

Nil,
LinkableElementList <

Transformers

FractionTransformer ("FTransformer11", Concat("year_",
ToString(Param(y))),

Concat("year_", ToString(Param(y))), Field(Param("tc_row"),"tc"),
NumericIterator ("y", Field(Param("tc_row"),"from"),

Field(Param("tc_row"),"to")))
CompositeTransformer ("CompositeTransformer1", StringList <

"FTransformer11" >,
ListIterator ("tc_row", Param ("tc_table")))>,

Transitions:

LinkElementList <
MaterialFlow ("MaterialInput1", "CompositeTransformer1", TRUE, 100, Nil),
MaterialFlow ("CompositeTransformer1", "Collected", TRUE, 100, Nil),
ResiduesFlow ("CompositeTransformer1", "Residues", TRUE, Nil) >,

Process elementary exchanges:

Nil).
}

D.0.7 Leachate Generation

partial model WasteProcessLibrary of WasteManagement
{
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WasteProcess ("GeneratedMaterialProcess",
Process interface:

ModelElementList <
PrimitiveParameter ("N","Integer"),
PrimitiveParameter ("h","Real"),
PrimitiveParameter ("d","Real"),
DataTableParameter ("tc_water",
DataColumns <DataColumn ("from","Integer"),
DataColumn ("to","Integer"),
DataColumn ("netInflitration","Real")>),
DataTableParameter ("tc_substance",
DataColumns < DataColumn ("substance","String"),
DataColumn ("from","Integer"),
DataColumn ("to","Integer"),
DataColumn ("concentrate","Real")>),
InPort ("MaterialInput1","Material"),
OutPort ("Residues","Material"),
OutPort ("Leachate ","Material") >,

Process type:

Nil,
Transformers

LinkableElementList <
FractionDistributor ("FractionDistributor3", Nil, 100,
Concat("year_", ToString(Param(y))), Nil),
FractionGenerator ("FGenerator1", Concat("year_",
ToString(Param(y))), NumericIterator ("y", 1, Param("N")) ),
SubstanceGenerator ("SGenerator13", "Water", Concat("year_",

ToString(Param(y))), Mult(Mult(Div(Mult(TotalWetWeight
(TotalProcessInput),

Field(Param("tc_row"), "netInflitration")), Param("d")),
Param("h")), 1000), NumericIterator ("y", 1, Field

(Param("tc_row"),"from"),
Field (Param("tc_row"),"to")))
CompositeTransformer ("CompositeTransformer2", StringList < "SGenerator13"

>,
ListIterator ("tc_row", Param ("tc_water"))),
SubstanceGenerator ("SGenerator121", Field (Param("tc_row"),"substance"),
Param("f"), Mult(UnMinus(Mult(Mult( Amount (Input,
Concat("year_", ToString(Param(y))), "Water"),
Field(Param("tc_row"), "concentrate")), Power (10,-6))), Div(Amount (Input,

Param ("f"),
Field (Param("tc_row"), "substance")),
TotalSubstanceWeight (Input, Field (Param("tc_row"), "substance")))),
FractionIterator("f", TotalProcessInput),
SubstanceGenerator ("SGenerator12", Field (Param("tc_row"),"substance"),
Concat("year_", ToString(Param(y))), Mult(Mult( Amount (Input,
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Concat("year_", ToString(Param(y))), "Water"),
Field(Param("tc_row"), "concentrate")), Power (10,-6)), Nil)
CompositeTransformer ("CompositeTransformer1",
StringList < "SGenerator121", "SGenerator12" >,

NumericIterator ("y", 1, Field (Param("tc_row"),"from"), Field
(Param("tc_row"),"to")))

CompositeTransformer ("CompositeTransformer21",
StringList < "CompositeTransformer1" >,
ListIterator ("tc_row", Param ("tc_substance"))),
MaterialDistributor ("MDistributor1", 0, Nil),
FractionDistributor ("FractionDistributor1", Nil, 0, , Nil),
FractionDistributor ("FractionDistributor2", Nil, 0, , Nil)
CompositeTransformer ("CompositeTransformer3",
StringList < "FractionDistributor3",
"MDistributor1" >, NumericIterator ("y", 1, Param("N"))) >,

Transitions:

LinkElementList <
MaterialFlow ("MaterialInput1", "FGenerator1", " TRUE", 100, Nil),
MaterialFlow ("FGenerator1", "CompositeTransformer2", " TRUE", 100, Nil),
MaterialFlow ("CompositeTransformer2", "CompositeTransformer21", " TRUE",

100, Nil),
MaterialFlow ("CompositeTransformer21", "CompositeTransformer3", " TRUE",

100, Nil),
MaterialFlow ("SGenerator12", "SGenerator121", " TRUE", 100, Nil),
MaterialFlow ("CompositeTransformer3", "Residues", " TRUE", 100, Nil),
ResiduesFlow ("FractionDistributor3", "MDistributor1", " TRUE", Nil),
ResiduesFlow ("CompositeTransformer3", "Leachate ", " TRUE", Nil) >,

Process elementary exchanges:

Nil).
}
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