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Abstract

Industrial systems have been developing into more and more complex systems during
last decades. They have changed from centralized solutions to distributed, more ro-
bust, and more flexible eco-systems comprising a high number of embedded systems.
In recent years, we are witnessing the research trend in the area of embedded systems

which concerns the very close integration of physical and computing systems.

This dissertation thesis deals with the problem of the semantic integration of
components (sensors and actuators) of cyber-physical systems within industrial au-
tomation domain and presents resulting benefits. Cyber-physical systems were cre-
ated based on the aforementioned trend of the close integration of computing systems
and physical systems. This tight integration involves infrastructures responsible for
control, computation, communication, and sensing. These systems are composed
of many subsystems produced by various manufacturers, and the subsystems pro-
duce an enormous volume of data. Furthermore, data generated from all of the
system parts has different dimensions, sampling rates, levels of details, etc. Next,
cyber-physical systems form systems which represent building blocks of the fourth in-
dustrial revolution (Industry 4.0) for example (Industrial) Internet of Things, Smart
Cities, Smart Factories. Thus, the right understanding of data (data meanings,
given context, subsystems purposes, and possible ways of subsystems integration)
belong to essential requirements for enabling Industry 4.0 visions. In this thesis, the
utilization of ontologies was proposed to deal with the semantic heterogeneity for

enabling easier cyber-physical system components integration.

Moreover, the current widespread effort to create flexible highly customized man-
ufacturing requires novel methods for data handling together with subsequent data
utilization. Storing knowledge and data in an ontology offers a needed solution. For
example, an ontology employment brings easy system data model management, in-
crease an efficiency of cyber-physical system components interoperability, advanced
data processing, reusability of sensors and actuators, and utilization of ontology
matching methods for an integration of other data models. This work concerns
the problem, how to describe cyber-physical system components using ontologies
to enable effective integration. Next, the ontology matching system suitable for

integration of heterogeneous data models in industrial automation domain is de-
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scribed. The proposed solution of the semantic interoperability is demonstrated on
the Plug&Play cyber-physical system components.

On the other hand, storing data in an ontology and mainly processing of RDF
statements brings one significant bottleneck — performance issue. Thus, Big Data
technologies are employed for overcoming this issue together with a proposal of
suitable storage data models. The overall approach is demonstrated on the proposed

and developed prototype named Semantic Big Data Historian.

In particular, the main contributions of the dissertation thesis are as follows:

1. The proposal of the solution for CPS low-level semantic integration based
on Semantic web Technologies together with a verification of a feasibility of

proposed approach using Semantic Big Data Historian.

2. The overcoming performance issues of processing shop floor data represented
as RDF-triples with the help of Big Data technologies and suitable storage
data models — vertical partitioning and hybrid SBDH model.

3. The proposal and implementation of a suitable way how to integrate hetero-
geneous data models from industrial automation domain where the highest
precision and recall are required. The approach is based on similarity mea-
sures aggregation using self-organizing maps and user involvement with the

help of active learning and visualization of self-organizing map output layer.

4. Enabling reusability of cyber-physical system components together with ef-
fortless configuration based on utilization of Semantic Web technologies. This

approach was named as Plugé&Play cyber-physical system components.
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Anotace

Béhem poslednich desetileti se prumyslové systémy vyvijely ve vice a vice komplexni
systémy. Zménily se z centralizovanych feSeni na distribuované, vice robustni a
vice flexibilni ekosystémy, které zahrnuji velké mnozstvi vestavénych (embedded)
systému. Zminéné zmény navic zahrnuji vyzkumny trend v oblasti vestavénych
systému, ktery se tyka integrace fyzikdlnich a vypocetnich systému.

Tato diserta¢ni price se zabyva problémem sémantické integrace komponent
(senzort a akénich ¢lent) kyberneticko-fyzikdlnich systému v oblasti prumyslové au-
tomatizace a z toho plynoucich vyhod. Kyberneticko-fyzikédlni systémy byly vytvore-
ny na zakladé zminéného vyzkumného trendu integrace fyzikalnich a vypocetnich
systému. Tato integrace zahrnuje infrastruktury odpovédné za Fizeni, vypocty, ko-
munikaci a snimani. Tyto systémy jsou slozeny z mnoha podsystému vyrobenych
riznymi vyrobci a tyto podsystémy produkuji enormni mnozstvi dat. Navic gene-
rovana data ze vSech ¢asti systému maji rizné dimenze, vzorkovaci frekvence, irovné
detailu, atd. Dale kyberneticko-fyzikdlni systémy formuji systémy, které jsou staveb-
nimi bloky ¢tvrté prumyslové revoluce (Prumysl 4.0), napiiklad (prumyslovy) inter-
net véci, chytrd meésta, chytré tovarny. A tak sprdvné porozumeéni datum (vyznam
dat, dany kontext, tcel podsystému a jejich mozné integrace) pati{ k zdkladnim
pozadavkum pro umoznéni vizi Prumyslu 4.0. V této doktorské préci byl navrzen
zpusob, jak se vyporadat se sémantickou heterogenitou pro usnadnéni integrace kom-
ponent kyberneticko-fyzikdlnich systému.

V soucasné dobé prevladajici snaha o vytvoreni flexibilni a vysoce zakazkové
vyroby dale vyzaduje nové metody pro zpracovani dat spolu s jejich naslednym
vyuzitim. Ukladani znalosti a dat v ontologii by mélo nabidnout pozadované feseni.
Pouziti ontologie piinasi napiiklad snadnou spravu datového modelu systému, zvysu-
je efektivitu interoperability kyberneticko-fyzikalnich komponent, pokrocilé zpra-
covani dat, opakované vyuziti senzoru a akénich élenu a pouziti metod ontologického
mapovani pro integraci dalsich datovych modeli. Tato prace se zabyva problémem,
jak popsat komponenty kyberneticko-fyzikalnich systému v ontologii, aby mohly
byt efektivné integrovany. Daéle je popsan systém pro mapovani ontologii vhodny
pro integraci heterogennich datovych modela v prumyslové automatizaci. Navrzené

feSeni sémantické interoperability je demonstrovédno na Plug&Play komponentach
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kyberneticko-fyzikalnich systému.

Na druhé strané, ukladani dat v ontologii a pfedevsim zpracovani RDF zdznamu
prinasi jednu podstatnou piekdzku — problém s vykonem. Proto v prezentovaném
feSeni je vyuzito technologii velkych dat pro prekondni tohoto problému spolu s
navrzenim vhodného modelu pro ukladani dat. Cely pristup je demonstrovan na

navrzeném a vyvinutém prototypu s ndzvem Semantic Big Data Historian.

Hlavni ptfinosy této doktorské prace jsou nasledujici:

1. Navrzeni feSeni pro nizkouroviiovou sémantickou integraci kyberneticko-fyzi-
kalniho systému na zdkladé technologii Sémantického Webu spolu s ovéfenim

realizovatelnosti navrzeného feseni za pouzit{ Semantic Big Data Historianu.

2. Prekonanim vykonovych problému pii zpracovani vyrobnich dat popsanych
jako RDF trojice s pomoci technologii velkych dat a vhodnych datovych modelu
pro ukladéni — vertikdlni rozdélovéni (vertical partitioning) a hybridni SBDH

model.

3. Navrzeni a implementace vhodného zpusobu, jak integrovat heterogenni da-
tové modely v oblasti prumyslové automatizace, kde je vyzadovana nejvyssi
mozn4 presnost. Tento zpusob je zalozen na agregaci mér podobnosti za pouziti
Kohonenovych map a zapojeni uzivatele pomoci aktivniho uceni a vizualizace

vystupni vrstvy Kohonenovy mapy.

4. Umoznéni znovupouzitelnosti komponent kyberneticko-fyzikdlnich systémiu
spolu se snadnou konfiguraci zalozenou na vyuziti technologii Sémantického
Webu. Tento piistup byl pojmenovan Plug&Play komponenty kyberneticko-

fyzikalniho systému.
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Introduction






Chapter 1

Introduction and Motivation

We are witnessing the research trend in the area of embedded systems which con-
cerns the very close integration of physical and computing systems. This research
trend constitutes the cornerstone of Cyber-Physical Systems (CPSs). CPSs repre-
sent integrated infrastructures responsible for control, computation, communication,
and sensing. CPSs arrange a tight integration among controlled physical processes
and controlling digital computing systems [4]. Application domain for these systems
is quite extensive. For example, CPSs take part in a formation of systems which are
building blocks of Industry 4.0 — Smart Buildings, Smart Cities, Smart Factories,
Smart Homes [5], and Smart Grids [0].

Furthermore, new trends in customer demands force manufacturers to move from
mass production to small batches of customized products. Products are manufac-
tured in a wide variety and small volumes for each product type. Thus, production
lines have to be frequently adjusted and more resistant to possible exceptions oc-
curring during manufacturing execution. Flexible and reconfigurable manufacturing
systems are essential requirements in a movement towards enabling the already men-
tioned Industry 4.0 paradigm.

The flexible and reconfigurable manufacturing requires perfect operation of all
parts of a production line. This requirement also covers CPSs as well as all CPSs
components. The faultless operation of CPSs requires their proper design and de-

velopment. It cannot be achieved without the full understanding of all sub-systems,
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parts, and corresponding data formats and models. The main obstacle to achieving

this goal is the semantic heterogeneity.

1.1 Problem Statement

Heterogeneity is a natural feature of all kinds of systems including sensors, actuators,
and cyber-physical systems as well. It is caused due to the fact cyber-physical
systems and their components are produced by various manufacturers with different
data models, interfaces, and communication standards. In general, it is both a
welcome and an unwelcome feature [7]. The heterogeneity is closely related to the
system efficiency — more efficient system is more tailored to the problem. For
example, if we design an ad-hoc smart sensor tailored to the given problem, then the
sensor should be more efficient than a regular one but a reusability of the sensor for
another application will be poor, and an integration of this sensor into a complex
system will also be difficult. In other words, the heterogeneity causes significant
obstacles for the systems interoperability.

This dissertation thesis deals with the problem how to integrate heterogeneous
components of a cyber-physical system for enabling faultless operation of the system
as well as how to integrate a new component into the system. A cyber-physical
system consists of the two main parts — a physical part and a cyber part. The
physical part involves the physical process and physical objects which provide a
possibility for process control. The cyber part can be divided for clarity into two
layers — the first layer (Platform Layer) represents a system integration of different
devices from various manufacturers and the second layer (Computational Layer)
represents the computational process which controls the physical process according
to an implemented logic. Integral parts of CPSs are sensors and actuators which
ensure a possibility to control a physical process. They are located on the boundary
of the physical part and the platform layer. This dissertation thesis is focused on a
semantic integration of cyber-physical systems components.

As already mentioned, a system designed exactly for a solution to a given problem
is more efficient than solutions composed of reusable components. In many cases,
a design of a system containing information representation, which is easily under-

standable, means storage of explicitly described data model’s entities as well as their
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relations. For example, ontologies may be a suitable model for such a representation.
Unfortunately, performance issues are still a problem. Thus, many approaches have
not been widely accepted in real applications especially because of a poor efficiency
concerning data handling and processing in comparison to proprietary solutions. In
this dissertation thesis, the described problem is overcomed by a utilization of Big

Data technologies.

1.2 Goals of the Dissertation Thesis
To summarize, the goals for this dissertation thesisare as follows:

1. Investigate and propose a possibility of increasing interoperability of hetero-

geneous cyber-physical system components — (smart) sensors and actuators.

2. Investigate and propose a possibility of increasing reusability of cyber-physical

system components with the proposed method of data models representation.

3. Investigate, propose and evaluate a suitable way how to integrate heteroge-

neous data models in industrial automation domain.

4. Investigate, propose and evaluate methods how to efficiently store shop floor

data in respective format.

5. Show and evaluate the feasibility of the integration of cyber-physical system

components with the proposed approach.

1.3 Structure of the Dissertation Thesis

The thesis is organized as follows:

1. Introduction: Describes the motivation together with the goals of the thesis.

There is also a list of contributions of this dissertation thesis.

2. State-of-the-Art: Introduces the reader to the necessary theoretical back-

ground and surveys the current state-of-the-art. First, the description of the
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cyber-physical systems is provided. Next, the ontology definition and a de-
scription of Semantic Web is introduced together with formats for their rep-
resentation. Then, the information integration problem is discussed with the
focus on the semantic heterogeneity and ontology matching methods. It is
followed by introducing possible utilization of neutral formats and ontologies
for the integration. Finally, the Big Data paradigm and Big Data processing

frameworks are presented.

. Overview of Proposed Approach and Main Results: Semantic integration in
the context of cyber-physical systems is introduced in this part. This part
begins with the definition of the cyber-physical systems integration challenge.
Next, the developed shared ontology for the integration of cyber-physical sys-
tem components is introduced. Then, the proposed and developed system for
an integration of data models is presented. The system is intended for semi-
automatic ontology matching which is required for domains where the highest
precision and recall of a matching is needed. The proposed approach is demon-
strated with the help of proposed Semantic Big Data Historian. Finally, the

concept of Plug&Play cyber-physical system components is introduced.

. Conclusions: Summarizes the results of conducted research, suggests possible

topics for further research, and concludes the thesis.
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State of the Art






Chapter 2

Cyber-Physical Systems

Nowadays, we are witnessing the research trend in the area of embedded systems
which concerns a very close integration of computing systems and physical systems,
especially with the focus on a control. This trend results in a new category of devices
named “Cyber-Physical Systems” (CPSs). CPSs may be described as integrated
infrastructures involving communication, computation, control, and sensing. The
aim of CPSs is a tight integration among controlled physical processes and controlling
digital computing systems [g].

Around 2006, the term “Cyber-Physical System” was coined by Hellen Gill at
the National Science Foundation (U.S.) to describe the integration of physical and
computational processes [9]. An excellent introduction of CPS and CPS history
may be found in [I0]. Despite the fact the term CPS was coined in 2006, CPSs
may be traced back to the 1st Industrial Revolution if we interpret CPSs as phys-
ical systems controlled or manipulated in a principled manner through engineering
technologies [10].

There are several paths leading to CPSs [10]:

1. The first path to CPSs was started by the development of the first computer
ENTAC (in 1946) [II]. Subsequently, computers began to be used to close
control loops around physical systems. In the 1990s, greater interest in an
integration of physical and computational processes arose with the architecture

called “hybrid systems” — using differential equations for the description of

11



12 CYBER-PHYSICAL SYSTEMS

physical processes and discrete models of computations. The hybrid systems

and control systems constituted CPSs.

2. The second path may be seen in the integration of communication and compu-
tation. Communication between computers started in 1969 when ARPANET [12]
was introduced. The integration of communication and computation has been
improving with increasing computational and communication capabilities —
DARPA, the Internet, WIFI. Around 1998, Smart Dust project [13] introduced
a new device (a mote) — a tiny device which is able to sense, communicate,
and compute. Motes are connected with nodes which are interconnected by a

network.

3. The next possible path is towards the first generation of control systems which
provided analog control. These systems were based on the operational am-
plifier [I4]. The system which enables utilization of the amplifier exploits
frequency developed for example by Nyquist [15].

All of these paths have converged to the CPS concept. It includes the evolution
of technology and several disciplines.
As mentioned, the architecture of CPS consists of three main parts — a cyber

part, a physical part, and a network:

o The cyber part represents a computing core where physical system information
is transformed into a model of a software system and corresponding rules estab-
lishing dependencies and relationships among software model entities together

with control algorithms.

o The physical part represents a controlled object. This part involves physical

processes and physical objects.

o The network represents a communication medium between a cyber and a phys-

ical part.

The reason for CPS development could be found not only in requirements for a
decentralized computing system, which should ensure more efficient system operation

but also in computing correctness of the system. If a developer designs a control
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system then he should take into his consideration a processing time of controlling
tasks. If a task takes a long time for its processing, then it could be critical to correct
functioning of the system. There may be many parallel processes running at once,
and their dependencies demand the shortest processing time of computing tasks.
Thus, a cyber part is moved from centralized form to a tightly coupled ecosystem
together with a physical part.

CPSs could be utilized in various application domains which include vehicu-
lar systems and transportation [16], medical systems [I7], smart homes and build-
ings [I8], aerospace [19]. Applications will be discussed more detailed in section
CPSs have not only wide range of applications, but also a wide range of forms —
CPSs may represent solutions from the smallest systems such as a pacemaker to
complicated systems such as an aircraft safety system.

Another point of view is from the design perspective. A CPS may be described
as a system which is responsible for providing following services — sensing service,

computing service, actuating service.

2.1 Cyber-Physical Systems and Industry 4.0

The previous three industrial revolutions were started off by technical innovations.
The first revolution was triggered by the invention of a steam engine. The second
revolution was triggered by electric energy and manufacturing lines, and the third
revolution was formed by the rise of electronics and information technology which
enable industrial automation.

Industry 4.0 initiative was introduced at Hannover Fair with the presentation
“Industry 4.0” [20]. The fourth revolution reflects customers requirements for cost-
effective and highly customized production. Industry 4.0 exploits CPSs and Internet
of Things and Services to fulfill mentioned requirements [21I]. In other words, the
new paradigm enables a realization of new business models, production concepts,
smart controls, and individual user needs.

Present-day production systems require adaptations to comply with Industry
4.0 paradigm. Therefore, embedded systems (made of control units, sensors, and
actuators) need an interface to the Internet, and it may be achieved by an extension

of the embedded systems to a CPSs. There are various approaches to such an
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extension [21]:

o Direct system extension — this solution represents an extension where the
embedded system is directly extended by a communication interface to access

the Internet, and software is adapted to enable communication over a network.

o System expansion by a micro-controller board — the embedded system is con-
nected to a micro-controller board with various communication interfaces such
as CAN, Ethernet, WLAN.

o Extension by smart sensors and actuators — this extension of the embedded
system is based on an architecture where communication to the Internet is

managed by smart sensors and actuators.

CPSs are intended to be interconnected into more complex units to secure an
advanced control of a production. The integration of CPSs means a significant
obstacle for effective CPSs utilization within the era of Industry 4.0. Problems

during the integration are caused mainly by semantic heterogeneity (more discussed

in sec. [5.1.2)).

2.2 Cyber-Physical Systems Applications

Cyber-physical systems have been used in many domains regardless it is explicitly
named CPS or is not. Domains include automotive, aerospace, healthcare, industrial
automation, etc. In following paragraphs, various CPS application domains [22] will
be shortly discussed.

Vehicular systems become very complex and capable systems. Their systems
provide functionality such as management of car behavior, entertainment, manage-
ment of energy consumption, and enhanced displays. Here, CPSs may be involved
in public transportation, electrical vehicle charging, or road monitoring.

For example, the important field is a fusion of human-centric data in vehicular
CPSs. The method, which exploits a human factor for safety applications to assist
human drivers, is presented in [23]. This approach helps in avoiding a negative

impact of applications on a driver, for example, information overload or distraction.
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Medical and healthcare systems — CPSs are crucial in the modern medical
systems. The modern medicine has to be based on advanced technologies to be as
effective as possible and minimizing the side effects at the same time. CPSs appli-
cations cover robot-assisted operation, life-support medical devices, or development
of medical applications.

The interesting application is for example discussed in [24]. Tt describes a design
of a CPS for neurally controlled artificial legs.

Smart Buildings — areas for a utilization of CPSs in smart buildings include
HVAC control and energy/power management in Smart Buildings.

Furthermore, an approach described in [25] introduces a solution where a CPS
is formed from a smart community — networked homes. Smart homes are modeled
as multifunctional sensors, and feedback to physical processes is used for improving
home security or health care quality.

Manufacturing applications of CPSs are specific because of the domain nature.
The industrial domain has several barriers to the full exploitation of the CPS concept
because the industry is a rather conservative domain. All of the changes have to be
in strategical road maps of manufacturers, and changes in manufacturing have to
be addressed as a global issue instead of a local one [26]. Most of us may imagine a
utilization of a CPS in a production. A CPS collects information from a production
line (from a particular production process). Next, a CPS evaluates information
about the process (together with other integrated systems). Finally, a CPS perform
a feedback to a physical production process. In flexible manufacturing, it may be
represented by a workstation which is able to adjust its operations according to an
incoming type of product.

Moreover, there are other more complex applications of CPSs in manufacturing.

The most interesting ones are as follows:

o Adaptive manufacturing system was introduced for example by FESTO pre-
industrial system — MiniProd [27]. The system is based on distributed control
with the help of agent-oriented architecture. MiniProd application is able to be
reconfigured on-the-fly, i.e., distributed modules may be self-configured thanks

to their embedded controllers and the autonomous nature.

o Model-driven manufacturing may be represented by a 3D model-driven robot-
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in-the-loop approach [28]. The approach offers a possibility for remote as-
sembly with the help of a cloud environment — off-site operator is able to

manipulate a physical robot instantly via virtual robot control in cyber-space.

2.2.1 Cyber-Physical Systems Variants

Several CPS variants have emerged in the course of time. Mostly, they are dis-
tinguished by comprising a new component into the original CPS concept. In the
following paragraphs, the most specific variants are introduced — Cyber-Physical-
Social Systems and Cloud-based Cyber-Physical Systems.

Very specific type of CPSs is Cyber-Physical-Social Systems (CPSS) [29].
These systems consider a human as a part of CPS instead of keeping them sep-
arate. It means the common parts of CPS (physical, cyber, and communication
part) were supplemented by human knowledge, mental capabilities, and even socio-
cultural elements. A CPSS has its place in applications where a human factor is
indispensable. Despite the advances of cybernetic technologies, there are still many
operations which are unfeasible by automation or automation of an operation may
be very expensive. Another requirement for CPSS may be social aspects. Because
of various reasons, it may be demanded to preserve or create a new job. Assisting
CPSs seem to be a promising way for mentioned problems. From another point of
view, a human may serve for sensing, actuating, or computational resource.

Another variant is Cloud-based Cyber-Physical-System [30]. These systems
provide a possibility to conduct a computation in a cloud. It may be worth when
the powerful computational hardware is needed. Furthermore, Cloud-based Cyber-
Physical-System may be important for integration of various systems, for example

when several CPS share a cloud computational resource.

2.3 Challenges of Cyber-Physical Systems

Expectations from CPS are enormous [31]. It covers for example robustness, self-
organization, efficiency, and interoperability.
There are many challenges slightly different in various domains mostly motivated

by expectations and requirements. A subset of all challenges is presented in the
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following listing:

o Context-aware systems — this challenge reflects requirements for comprehen-
sive context-aware systems. The context-aware feature is important for recog-
nition, analysis, and interpretation of CPS’s intentions and its parts. In other
words, a CPS may be purposefully utilized only with a proper understanding

of a given context.

o Cooperative (production) systems — CPSs may form a complex interconnected
unit. The challenge is not in a way, how to connect CPSs but how to make
them working cooperatively. As you can see, this challenge is tightly connected

to context-aware systems.

o Prediction of dynamical systems — An extension of the available prediction
methods or a development of new ones are to be provided (especially in the

case of interconnected CPSs).

o Effective and well-operating systems — CPSs may be assembled from many
components (sensors, actuators, control units) which have been produced by
many manufacturers. A proper assembly of these components, as well as proper
understanding and exploitation of corresponding data models, is one of the
most important challenges which is necessary for faultless and effective CPSs

operation.

2.4 Summary

The intention of this work is to face the problem which was outlined in previous
paragraphs — a semantic integration. The semantic integration is essential mainly
for enabling context-aware systems, cooperative systems, and effective and well-
operating systems. The semantic integration in the context of CPSs is discussed in

section [7in detail.
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Chapter 3

Ontologies

The vast amount of information that surrounds us is stored variously in books,
audio and video records, informational systems, various web pages and other media.
Furthermore, there is increasing trend of data production caused by a utilization of
more capable and automated devices as well as increasing user demands for advanced
analytics. Without advanced knowledge representation, a huge amount of data from
various sources are inapplicable. Knowledge management is a significant feature for
CPS as well. Thus, one of the widely accepted [32] way for knowledge representation

and utilization will be introduced in this chapter.

3.1 Concepts

The term concept is derived from Latin word conceptum. The origin of the classi-
cal theory of concepts is in philosophy. The Greek philosopher Aristotle defined a
concept within the “theory of definition” by using two characteristics — genus (a
kind or a family) and differentiae (a distinguishing characteristic) [33]. According
to this theory, the concept “notebook” could be defined as a “portable computer”.
The “computer” corresponds to genus and “portable” corresponds to differentiae
as it distinguishes notebooks other computers. Next, many philosophers also tried
to define the term concept in different ways, for example, Schopenhauer [34] and

Kant [35]. In other words, the meaning of the term concept can be expressed as the

19
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very essence of human existence and perception of the world.

A perception of the term concept in other scientific fields is often more pragmatic
than in the philosophy domain. Thus, the definitions correspond to the way concepts
are used in practice. For example, the term concept is understood (in linguistics) as
meaning that is shared in common by the relevant terms in the minds of those who
use these terms [36]. An illustrating example is WordNet databaseﬂ This lexical
database contains interconnected English nouns, verbs, and adverbs. Concepts are
defined through synsets — sets of synonym words. For example, a synset, which is
defined by the following set of synonyms animate being, beast, brute, creature, fauna
(a living organism characterized by voluntary movement) and animal, represents a
concept that can be lexically expressed by any of the words in the synset.

In contrary to linguistics, the mathematician Carl Boyer expressed mathematical
concept as a well-defined abstract mental construct which is beyond the world of
sensory experience [37]. Here, concepts overstep the reality that is identified by our

intuition.

3.1.1 Knowledge Representation through Concepts

In the knowledge representation, concepts are considered as atomic elements. There
are several formalisms for organized knowledge representation, for example, concept
maps where concepts are perceived as regularity in events or object, designated by
a label (a word or a symbol) [38]. Another formalism for representing logic-based
knowledge with the help of concepts, roles and individuals is description logic. Here,
concepts represent sets of individual objects [39].

Another technique inspired by the organization of human memory are Frames.
They are recursive attribute-value structures used as a general format in accounting
for the content of mental concepts. Instead of being taken as atomic units (in
contrast to many other formalisms for representing knowledge), concepts came to
be understood as classes of highly structured entities describable regarding recursive
attribute-value structures [40].

Concepts are basic building blocks of ontologies which are introduced in the

following sections.

Lhttps://wordnet.princeton.edu
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3.2 What Is Ontology?

The word “ontology” has various meanings in different domains. The “Ontology”
with the initial upper-case letter usually refers to philosophy. Aristotle defined
Ontology as the science of “being qua being” i.e., the study of attributes that belong
to things because of their very nature [4I]. Oppositely, the term “ontology” (with
the initial lower-case letter) as a model of a system in a computational sense is
introduced in the following paragraphs and is used in the remaining text of this

thesis.

3.2.1 Ontology Non-exact Definition

The term ontology was adopted in the computational sense through the artificial
intelligence where it refers to a representation of the real world of computational
systems.

The well-known definition of the term ontology is derived from two definitions
introduced by Gruber [42] in 1993 and by Borst [43] in 1997. The definition was
introduced by Studer [44] in 1998 and is expressed as: “An ontology is a formal,
explicit specification of a shared conceptualization.” The detailed meaning of this
definition is discussed in the following paragraph.

What is a conceptualization? A widespread and known notion of conceptualiza-
tion refers to Genesereth and Nilsson [45]: “A body of formally represented knowl-
edge is based on a conceptualization: the objects, concepts, and other entities that
are assumed to exist in some area of interest and the relationships that hold among
them. A conceptualization is an abstract, simplified view of the world that we wish
to represent for some purpose.”

What is a formal and explicit specification? A conceptualization used during hu-
man communication is typically implicit, i.e., in the mind of people. On the contrary,
an ontology (concepts, relations, etc.) has to be defined explicitly. Next, explicit
specifications of the conceptualization can be done extensionally or intensionally.
However, an extensional definition is impossible in many cases or unsuitable because
it would require listing the extensions of every relation for all possible element. On
the other hand, the more suitable way is to specify conceptualization intensionally

using appropriate axioms (meaning postulates [46]). In other words, an ontology is
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some set of necessary axioms. Furthermore, the specification has to be formal (i.e.,
machine-readable) in comparison with natural language which is informal.

Shared conceptualization is necessary because ontologies capture consensual
knowledge established by a community of users. In short, an ontology may become
useless if it is used incompatible with ontological commitments (established by a

given group of interested users).

3.2.2 Ontology Definition

The previously introduced ontology definition is sufficient for many applications.
However, the proper definition of the terms such as ontology, instance, knowledge
base, lexicon, etc., is needed for avoiding subsequent confusions in terms of misinter-
pretation. The overview of the main definitions is provided in following paragraphs.

All following definitions are discussed in detail in [47] [48].

Definition 3.2.1. (Ontology) An ontology O is a structure
0= (Ca SC,Ra URngaAvo_AaT) (31)
where

o disjoint sets C,R, A and T represent concepts, relations, attributes and data

types, respectively,

o a upper semi-lattice <¢ on C with top element root¢, called concept hierarchy,

[¢]

a function o : R — C* called relation signature,

o a upper semi-lattice <z on R called relation hierarchy,

o

a function o4 : A — C x T, called attribute signature, and

o a set 7 of datatypes.

For the sake of simplicity, the o will be used without an index, when it is apparent
from the give context whether it is related to a relation or an attribute. Correct
applications of binary relations may be maintained with the help of their domain

and their range:
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Figure 3.1: Example ontology containing concepts, individuals, and literals.

Definition 3.2.2. (Domain and Range) For a relation » € R with |o(r)| = 2,

domain and range are define by dom(r) := w1 (o (r)) and range(r) := ma(o(r)).

Where m;(t) is the i-th component of a tuple ¢

The above definitions are demonstrated on the basis of an example ontology
which is illustrated on Fig. 3.1l The ontology contains the set C of concepts:
C := {Human, Artist, Painter, Sculptor, Arti fact, Painting, Sculpture, Location},
the set R of relations:
R := {Represent, LocatedIn, Create, Paint}, and the set A of attributes: A :=
{Name, CompletionY ear}. Next, the partial order <¢ is then <¢:= {(Sculptor,
Artist), (Painter, Artist), (Artist, Human), (Sculpture, Artifact), etc.}.

Furthermore, the example ontology has the following signitures:

o or(Represent) = (Sculpture, Human)

(
o or(LocatedIn) = (Artifact, Location)
o or(Create) = (Sculptor, Sculpture)

(

o or(Paint) = (Painter, Painting)
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o og4(Name) = (Human, String)

o oa(CompletationY ear) = (Sculpture, dateTime)

For example, the domain and the range of the relation Paint are: dom(Paint) :=
71 (o (Paint)) = Painter, range(Paint) := w1 (o(Paint)) = Painting.
Now, the core definition of the ontology concept have been introduced. Next, an

important axiom system is presented in following definition.

Definition 3.2.3. (£-Axiom System) Let £ be a logical language. A L-axiom

system for an ontology O is a triple
S:=(AS,a, L) (3.2)
where

o a set AS represents axiom schemata and

o a function « : AS — AS, is a mapping from AS to axiom schemata defined

over L.

An example of a mapping one axiom schema AP, Q.disjoint(P, Q) to a first-order

logic schema is as follows
AP, QNx (P (z) = -Q (z)) . (3.3)
This axiom linked to the example ontology has following form:
a(disjoint)(Painting)(Sculpture), (3.4)
with the mapping to a first-order logic schema:
Va(Painting(x) — —Sculpture(x)). (3.5)

The main advantage of the introduction of such an (L)-axiom system to the
ontology concept is providing an independence on some concrete knowledge repre-

sentation. These axioms may be transformed into various languages. Generally,
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statements representing real-world facts may be in fact intuitively interpreted inde-
pendently of any certain knowledge representation. A specific interpretation may be
then assigned via the @ mapping. The given part of the world, which is going to be
described in an ontology, contains many axioms. However, the status of an axiom
schema should belong to only frequently occurring axioms.

The following definition introduces a Lexicon:

Definition 3.2.4. (Lexicon) A lexicon for an ontology O is a structure
Lex := (Sc, SR7SA,R6fc,R6fR,R6fA) (3.6)
where

o sets S¢, Sg and S 4 represent signs for concepts, relations and attributes,
respectively,
o arelation Refe C Sc is lexical reference for concepts,

o a relation Refr C Sg is lexical reference for relations, and

o a relation Ref 4 C S 4 is lexical reference for attributes.
For s € S¢Refc is represented by
Refe(s) :={c€CC|(s,c) € Refc} (3.7)
and, Ref; "' is defined for ¢ € (C)
Ref:'(c) := {s € Sc|(s,c) € Refc}. (3.8)

Lexical and inverse lexical references for relations and attributes are defined analo-

gously.

This definition may be utilized to specify that both Location and Place refer
to the same concept Location: Ref; 1(Location) = Location, Place or that Rep-
resent and Symbolize refer to the same relation Represent: Re fﬁl(Represent) =

Symbolize, Represent
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Ontologies define a conceptualization of a given domain. Moreover, a comple-
mentary part of ontologies is represented by a knowledge base which is built on

assertions about instances of concepts and relations.

Definition 3.2.5. (Knowledge Base (KB)) A knowledge base for an ontology
O is a structure
KB :=(Z,ic,tr,ta) (3.9)

where

[}

7 is a set of instance identifiers (or instances or individuals)

a function tc : C — 27 is concept instantiation,

[¢]

. + . L o
o a function tg : R — 27" is relation instantiation, and

[¢]

a function ¢4 : A — Z x J,c [[t]], where [[t]] are the values of datatype t € T,

is attribute instantiation.

The example ontology contains the set of instances Z := { Michelangelo, Rachel,
Rachel Daughterof Laban, SanPietroinVincoli}. Next, the ontology has following

instantiation relations:

o tc(Human) := {Rachel Daughterof Laban}

Sculptor) := {Michelangelo}

(
o tc(Sculpture) := {Rachel}
o Lc(

(

o tc(Location) := {SanPietroinVincoli}
o tr(Create) ;== {Michelangelo, Rachel}

o tr(Represent) := { Rachel, Rachel Daughterof Laban}

(

(
o tr(LocatedIn) := {Rachel, SanPietroinVincoli}
o ta(Name) := {Michelangelo, “MichelangeloBuonarroti”}
(

o ta(CompletionY ear) := { Rachel, 1545}

Occasionally, it is needed to assign names also to instances:
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Definition 3.2.6. (Instance Lexicon) An instance lexicon for a knowledge base
KB is a pair
IL .= (SI,RI) (310)

where

o St is set of signs for instances,

o Rz is a relation Ry C S7 x T called lexical reference for instances.

3.3 Formal Representation of Ontologies

We know what the term ontology means. During an ontology design, it is needed
to choose an appropriate ontology language. There are many various ontology lan-
guages. They differ from each other in various expressivity and complexity of their
inference capability. The following categorization from [49] is adopted. The first
category represents traditional ontology languages and may be divided into several

groups:

o Based on first-order predicate logic. Representative languages of this
category are KIF [50] and CycL [51]. The cornerstone (the central modeling

primitives) of these languages are predicates.

o Frame-based languages. Representative languages of this category are On-
tolingua [52] and F-logic [53].

o Description logic based languages. In this category, concepts and their

properties are described with the help of description logics.

The second category represents Web standards which were primarily intended for
facilitating knowledge interchange on the Internet. In this work, the OWL is used
for ontology modeling, and thus this category is described in detail in chapter

3.3.1 Description Logic

In the following paragraphs, description logic will be described because it is an
important part of OWL language (i.e., OWL DL or OWL Full).
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Description Logics (DLs) [54] is a family of knowledge representation languages
that may be used for a representation of knowledge of any application domain.
This representation is in a structured and formally understandable way. The name
Description Logics is derived from two features — the first feature is the capability
to describe a given domain with the help of concept descriptions; the second feature
is to provide logic-based semantics in contrast, for example, semantic networks or

frames.

Commonly, DLs include a terminological and an assertional formalism. A set
of terminological axioms (TBox) is used to describe names (or labels) for complex

descriptions. For example, TBox may contain a description of a concept Mother:

Human M Parent 11 Woman.

On the other hand, a set of assertional axioms (ABox) is used for description of
properties of individuals. For example, we can express that individual named Karel

is son of individual Pavel:

hasChild(Pavel, Karel).

DLs offer capabilities to deduce implicit knowledge from the explicitly defined
knowledge with the help of TBox and ABox.

The DLs provide a well-defined semantics and powerful reasoning tools. For many
years, there was a mismatch between the expressivity of DLs and the efficiency of
reasoning. In other words, if a user wants to use a DLs, then he needs to establish
a trade-off between the expressivity of DLs and the complexity of their inference

capability. It means it is needed to restrict DL appropriately.

The suitability of DLs for ontology definitions has been introduced by web ontol-
ogy languages, (e.g., OWL which is described in detail in section. The cornerstone
for OWL design was the expressive DL SHZQ [55]. In OWL language, the develop-
ers tried to find a balance between expressiveness and the complexity of reasoning.

Furthermore, more detailed description of DLs may be find in [54].
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3.4 Summary

Ontologies represent a promising way for knowledge representation. They have per-
vaded various domains and we can expect a widening of their utilization in an in-
dustrial domain, in forthcoming years as well. In this work, they are considered
as suitable for improving interoperability of CPS(s), and we will try to prove this

assumption.
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Chapter 4

Languages for Semantic Web

The purpose of ontologies was to facilitate a way how shared knowledge may be
interchanged among people as well as various systems. Internet technologies are
suitable to be exploited for knowledge sharing. From the other point of view, the
Internet should be extended to have a structure which allows expressing the mean-
ingful content of web pages. It should be utilized for creating an ecosystem where
software agents scan web pages and carry out sophisticated tasks for users. This
extension is named Semantic Web [50].

The challenge is to provide languages which express data as well as rules for
reasoning about the data. The languages for interchanging ontological data on the
Web are for example RDF, RDFS, DAML+OIL, and OWL.

In the rest of this chapter, main concepts of popular languages (RDF, RDFS,
OWL) will be introduced together with appropriate querying language — SPARQL.

4.1 Resource Description Framework

The Resource Description FrameworkE] (RDF) belongs to World Wide Web Consor-
tium (W3C) specifications and represents a standard model for data publishing or
exchanging on the Web. Data and their corresponding properties are expressed in

the form of RDF statements (RDF triples) (s - subject, p - property, o - object) and

Thttps://www.w3.org/RDF/
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Figure 4.1: RDF(S) graph.

denote that a resource s has a property p with a certain value o. The triples form
the RDF graph (See Fig. where the subject node S has the property edge P
whose value is the object node O.

RDF extends the linking concept of the Web to use Unique Resource Identifiers
(URIs) to denote subject, predicate, and object. Usage of URIs allows RDF data to
be mixed, exposed, and shared across different applications.

RDF also offers a possibility to represent an incomplete information using blank
nodes representing unknown constants or URIs. For example, the author of B is
Michelangelo, and the B is located in St. Peters Basilica, for a given and unknown
resource B.

In previous paragraphs, a short summarization of basic ideas of RDF was pro-

vided. The cornerstones of RDF are as follows:

o Resources — a thing we would like to talk about, e.g., books, apples, people.
Every resource is identified by a Universal Resource Identifier (URI), i.e., a

URL or another unique identifier.
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o Properties — they are also identified by URIs and describe relations between

resources, e.g., “isDefinedBy”, age, etc.

o RDF Triples — they assert the properties of resources. Triples are in the form
of (subject, property, object). A subject is represented by resources. An object

may be represented by resources or literals (atomic values such as strings).

RDF triples may be serialized in various formats including XML document, N3,
Turtle. An RDF triple may be perceived as a pair of linked nodes (subject node and
object node linked by a property) which form an RDF graph.

4.2 RDF Schema

RDF Schemaﬂ (RDFS) provides a data modeling vocabulary for RDF data, and it is
used to describe classes and relationships between classes (e.g., inheritance). Next,
RDFS specifies also properties and corresponding relationships. Relationships may
hold between pairs of properties, or between a class and property. RDFS statements
are represented as triples as well, and thus RDFS forms an RDF graph. RDFS triple
is called schema triple and other triples data triples.

As described, RDF and RDFS represent constructs for defining some ontological
knowledge. It is possible to model knowledge in typed hierarchies, i.e., subclasses,
subproperties, domain and range restrictions, and instances of concepts. On the
other hand, we should be able to express more constructs which are standardized,

and thus easily understandable by other data consumers. The constructs include:

o Disjointness of classes — we can say the male is a subclass of the person in
RDFS. However, we would like to express that male and female are disjoint

classes.

o Cardinality restrictions — constructs which allow saying how many values a

property may take.

o Characteristics of properties — a possibility how to say that a property is

inverse, transitive, etc.

2https://www.w3.org/ TR /rdf-schema/
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The new language (Web Ontology Language) was proposed to cover additional

constructs and is described in the following section.

4.3 Web Ontology Language

Well-known and widely used extension of RDF'S is Web Ontology Languag(ﬂ (OWL).
OWL became a W3C recommendation in February 2004 and was proposed to over-
come the weaknesses in RDF/S.

OWL uses RDF’s XML syntax (labeled as RDF/XML). OWL may give readers
the impression of using RDF/RDFS meaning of classes and properties and those lan-
guage primitives are added to support the better expressiveness. On the other hand,
RDF and RDFS have very voluminous modeling concepts such as rdf:Property and
rdfs:Class. Uncontrollable computational properties may be caused because of these
constructs which are very expressive. Thus, RDF and RDFS may be restricted when
a trade-off between expressive power and efficient reasoning has to be established.

There are three different kinds of OWL because of the appropriate providing
trade-off mentioned above. Different sub-languages are described in the following

list:

o OWL Full — this kind of OWL represents the entire OWL language. This kind
also offers the possibility to combine OWL primitives and RDF and RDFS.
Moreover, the meaning of predefined primitives may be changed. OWL Full
provides full compatibility with RDF, i.e., every valid RDF document is also
valid OWL Full document. On the other hand, ontologies defined in OWL Full

may be undecidable.

o OWL DL — this kind of OWL, where DL stands for Description Logic, restricts
the application of constructors from OWL and RDF. The restrictions include:

— Vocabulary partitioning — Resources are allowed to be only one of specific
type, i.e., a class, a datatype property, an object property, an individual,
etc. In other words, a property cannot be a datatype property and at the

same time object property and vice versa.

Shttps://www.w3.org/OWL/
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— Explicit typing of resources.
— No transitive cardinality restrictions.
— Restricted anonymous classes.
The efficient reasoning is preserved because of these restrictions. Furthermore,

compatibility with RDF is lost. On the other hand, every valid OWL DL

document is a valid RDF document.

o OWL Lite — the last version of OWL represents a restriction of OWL DL.
The restrictions are for example excluding enumerated classes, disjointness of

classes, and cardinality (except the values 0 or 1).

A user has a possibility to choose an appropriate OWL variety according to his

needs.

4.4 SPARQL

There are two different ways how to interact with an RDF storage — a direct data
access from some system using an API and with the help of user queries. In this
section, query languages will be described in detail, particularly SPARQLH

Requirements for query languages may be described as follows [41]:
o FExpressiveness represents a property how powerful queries may be formulated.

o Closure property expresses a requirement that the result of an operation is

again elements of the data model.

o Adequacy represents a requirement for usage of all concepts of the underlying

data model.

o Orthogonality stands for a requirement that all operations should be used

independently in a given context.

o Safety denotes the property that syntactically correct query returns a finite

set of results.

4https://www.w3.org/ TR /rdf-sparql-query/
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There are many languages for querying RDF (e.g., SeRQL [57], RQL [58],
RDQL [59]). However, only SPARQL become the well-known standard for querying
RDF.

The SPARQL constructs are based on matching graph patterns. The simplest
graph pattern is the triple pattern which is created from RDF triple by a substitution
of an RDF subject and/or object and/or predicate by a variable. An example with
a variable instead of the subject is illustrated in Listing

Listing 4.1: Simple SPARQL query.
SELECT 7x
WHERE
{

?x foaf:name "Andreas"

Moreover, the pattern may be composed more complex by a conjunction of more

patterns. Such a conjunction may represent an implicit or explicit join.

Listing 4.2: Explicit and implicit join.

Implicit Join: Explicit Join:
SELECT ?7x 7y SELECT ?7q
WHERE WHERE
{ {
?x foaf:name "Andreas" . ?x rdf:type foaf:Person .
?x foaf:mbox 7y . ?x foaf:name 7q .
} ?c foaf:name "Andreas"

?c foaf:knows 7y .

FILTER (?x = 7y)

Furthermore, SPARQL may represent other interesting constructs, e.g., optional
patterns (previous queries represent mandatory patterns), describe queries, ask

queries, and construct queries.
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4.5 Summary

Ontologies are suitable for knowledge representation. However, they are unusable
without an appropriate language. In this chapter, RDF, RDFS, and OWL were
introduced together with querying language — SPARQL. These all methods/formats
are subsequently exploited for capturing CPSs knowledge as well as the querying

language for user queries in this work.
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Chapter 5

Information Integration

Problem

Heterogeneous data models and their integration is a challenge which we have been
solving from the moment when we started to process data from various data sources
or producers. Even before the invention of the first computer, people had to inte-
grate information stored in a written form. They had to integrate information from
written documents in their minds and transform them into an output. In the era of
digitization, this natural and intuitive ability for the information integration had to
be transferred from a human brain to computer programs.

The goal of an information integration system is to offer uniform access to a
set of autonomous and heterogeneous data sources [60]. Sometimes, an information
model of a data source may be covered with system interface, and thus a proper un-
derstanding of encapsulated information meaning may be harder. Integrators have
to face up to an integration during a runtime, i.e., systems to be integrated are
already developed or even deployed. On the other hand, the information integra-
tion may be taken into account even during a system design, i.e., a utilization of an
appropriate approach and language for information integration which may facilitate
understanding of given concepts. The appropriate way of knowledge representation
should, for example, facilitate a scenario when a complex system is composed of

many interacting components, and these components are independently developed

39
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by various developers. Furthermore, different ways of dealing with information inte-
gration may be required during an integration of previously known data models or

during integration “on-the-fly” when we do not know data models in advance.

In this chapter, details about causes of data heterogeneity are provided followed
by the classification of heterogeneity types and a clarification of the term semantic
heterogeneity. Next, the introduction to several approaches for information repre-
sentation will be provided. These approaches may more or less facilitate information
integration, i.e., XML (followed by an overview of neutral formats for data integra-
tion from the industrial automation domain mainly based on XML) and a utilization
of ontologies for integration (especially upper ontologies). Finally, semantic sensor
network ontology (SSN) is described. SSN ontology provides means for a description
of sensors and related processes and facilitates information integration of their data

models and other external data sources.

5.1 Data Heterogeneity

In general, heterogeneity is a feature of all kinds of systems. This feature is both
a welcome and an unwelcome feature [7]. On one hand, heterogeneity is welcomed
because of close relation to system efficiency — more efficient system is more tailored
to the problem. On the other hand, heterogeneity is considered as unwelcomed
because it causes significant obstacles for system interoperability. This situation
means non-trivial dilemma, and we need to find a balance between efficiency and

interoperability.

As mentioned earlier, CPSs are integrations of computational systems, sensors,
actuators, and physical processes and therefore it is needed to ensure interoperability.
The goal is to reduce heterogeneity. In the following paragraphs, different categories
of data heterogeneity are introduced with the focus on semantic heterogeneity. Next,
ontology matching methods are described. Ontology matching methods may be used

for facilitating information integration.
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5.1.1 Heterogeneity Classification

There are many different classifications of types of heterogeneity, e.g., in [61] [62] [63].

In this work, the most obvious types of heterogeneity are adopted according to [64]:

o Syntactic heterogeneity — occurs when two data sources are not described
in the same knowledge representation formalism (e.g., F-logic and OWL in the

case of integration of ontologies).

o Terminological heterogeneity — stands for variations in names when re-

ferring to the same entity (e.g., different natural language).

o Semantic heterogeneity — occurs when different models are used for the
same domain of interest (e.g., a utilization of different axioms for defining

concepts).

o Semiotic heterogeneity — stands for a different interpretation of entities

by people.

It is advisable to point out that several types of heterogeneity usually occur

together.

5.1.2 What is Semantic Heterogeneity?

In contrast to the other types of heterogeneity, a meaning of semantic heterogene-
ity is not evident for many people. Furthermore, the semantic heterogeneity means
a significant problem for many years and may be found in an integration of var-
ious documents, database schemas, device data models, etc. Obviously, resolving
semantic heterogeneity is essential for proper and faultless information integration.
We would like to make semantic heterogeneity understanding easy, and therefore
possible definitions are introduced in the following paragraphs.

How to define semantic heterogeneity correctly? It is a non-trivial and not obvi-
ous task, and there is no unique generaly valid definition. However, there are already
some useful definitions.

The semantic heterogeneity definition can be derived according to Merriam-

Webster dictionaryﬂ as a quality or a state of being made up of parts that are

Lwww.merriam-webster.com /dictionary



42 INFORMATION INTEGRATION PROBLEM

different related to the meanings of words and phrases.

The more complex definition can be found in [65] as differences in the meaning
and use of data that make it difficult to identify the various relationships that exist
between similar or related objects in different components.

As mentioned, information integration is tightly coupled with resolving semantic
heterogeneity of concepts of various data sources. The resolving semantic hetero-

geneity consists in two following things [66]:
o Determine the relationships between objects that model similar information.

o Detect possible conflicts in their representations that pose problems during the

unification of shared data.

A determination of relationships between objects may be ensured (or facilitate)
by exploitation of ontology matching techniques. A short overview of ontology
matching is provided in section A relationship between objects may be deter-

mined easily when these objects are described in an appropriate format.

5.1.3 How to Find Relations Between Entities?

One of the most challenging tasks during the information integration is to find proper
relations between entities from different data models. The methods from ontology
matching may be utilized for this task. For example, an adaptation of ontology
matching methods for integration of an ontology and a Microsoft Excel document is
described in [67]. The goal of ontology matching is to find relations between entities
expressed in different ontologies [64]. The determination of relations between objects
(e.g., concepts, individuals) from given data sources is an essential prerequisite for
subsequent integration of the data sources. The research area of ontology matching
is quite extensive, and therefore this work provides only a short overview of ontology
matching. A detailed description of ontology matching may be found in [64].
There are many implemented approaches for ontology matching. Most of them
are focused on automatic ontology matching, and these approaches are intended for
processing a big number of elements because a manual processing could be impossi-
ble. Unfortunately, these approaches are unsuitable for utilization in domains such

as medicine or industrial automation. Semi-automatic matching methods have to
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be used for these domains where the highest precision and recall is required. The
proposed solution for semi-automatic ontology matching is introduced in section [0}
Ontology matching systems are based on similarity measures. Similarity mea-

sures may be divided into five categories:

o String-based techniques are methods for comparing strings related to en-
tities for matching — name, label, comments. Examples of these techniques

are prefix (suffix) similarity or n-gram.

o Language-based techniques are methods based on Natural Language Pro-
cessing (NLP). NLP is utilized for an extraction of meaningful terms. These
methods include linguistic normalization or utilization of external resources as

WordNetP]

o Structure-based techniques are methods which compare a structure of en-
tities or complete data models. Example of such techniques is structural topo-

logical dissimilarity on a hierarchy.

o Extensional techniques are methods which exploit individuals for a com-
parison of entities. For example, they are based on the assumption if two

concepts have a similar set of individuals then they are similar as well.

o Semantic-based techniques are deductive methods and are mainly used
for verification of already proposed relations. These techniques include modal

satisfiability techniques or techniques based on description logic.

Introduced similarity measures are suitable for different dissimilarities. Thus, it
is better to consider them as building blocks of more complex solutions. One of the
possibilities is to aggregate them. The various approaches may be used for similarity
measures aggregation. For example, triangular norms (e.g., weighted product), mul-
tidimensional distances (e.g., Minkowski distance), machine learning methods (e.g.,

support vector machines).

2https://wordnet.princeton.edu
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5.2 XML

The creation of a standard way for publishing data on the Web was forced by growing
needs of the advanced Web technologies. Files published on the Web are usually
HTML files with a predefined structure that enables rendering of their contents in
a Web browser. The process of a file publishing can be divided into two steps [6§]
— a creation of a file by a user; a publishing of this file by sharing its URL.

XML is eXtensible Markup Language that is used for transferring data on the
Web and has been accepted as a W3C Recommendation in 1998. XML documents
are used to store data on the Web, and their content is structured in nested tags. An
opening and a closing tag delimit a particular content (called an element), and each
tag can be supplement with a set of additional name-value pairs, called attributes.
These tags are defined by a user, and an XML document can be supplied by a
document that specifies the allowed tags and their structure — XML Schemaﬂ In
other words, XML Schema defines constraints on XML documents. It provides
simple vocabulary and predefined constructs for modeling relations among entities.

Furthermore, XML format is widely accepted and used due to its relatively un-
complicated structure and easy processing. Based on these characteristics, XML
format could be understood as a universal format for data exchange and even for
data storage.

The XML format is important technology which has been used for information
integration in many applications and domains. It was caused by simple and powerful
syntax which is versatile enough for information sharing from multiple sources. On
the other hand, XML does not address issues of the semantic integration. For
example, XML files may be shared with many systems, but they are meaningless
outside the application (i.e., without a right context).

The importance of XML for data exchange and integration is obvious from the
following section — “Neutral Formats for Integration of Industrial Data”, where a
brief overview of the most successful formats for a sharing and integration of indus-
trial data is provided. A prevalent part of formats is based on XML. From another
point of view, the XML-based formats try to add (more or less successfully) some

domain-specific vocabulary as well as constructs for expressing relations between

3https://www.w3.org/standards/xml/schema
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concepts.

5.3 Neutral Formats for Integration of Industrial
Data

As previously mentioned, if we want to obtain a required information then we have
to integrate multiple heterogeneous data sources. It is a problem in many domains
including industrial automation.

Data integration could be defined as a problem of creating a uniform query
interface over data from heterogeneous data sources. It is obvious that the problem
is not only in data querying but also in coping with semantic heterogeneity among
data sources. A process of data integration is a very complex issue, and therefore it
is important to facilitate this process by offering some neutral re-usable data format
as well as a way how to handle and manage data.

There are some neutral formats for particular applications. For example, neutral
formats for 3D visualization include the 3D XML format [69] developed by Dassault
Systemes and the JT format [70] currently owned by Siemens PLM Software.

Next, more important (from our point of view) are formats with the aim to
general and versatile information description or integration without any specific
specialization. The first and widely used is a utilization of XML with a proprietary
schema. In this case, a use of a proprietary schema for data integration makes sense
in the scope of for example a company or an initiative which design a given schema.
On the other hand, formats such as AutomationML, OPC UA information model,
and PLM XML are standardized and contain an additional semantics in contrast
to a general XML. Therefore, these formats are used by various companies and are

discussed in the following paragraphs.

5.3.1 AutomationML

AutomationML is an XML-based format with the objective to enable seamless au-
tomation engineering of production plants [71]. This standard was developed as

neutral data exchange format of manufacturing systems by a consortium of leading
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vendors and users of automation technologies (ABB, Siemens, Rockwell Automa-
tion, Kuka, etc.).

The AutomationML format is based on following standards:

o COLLADA [72] standard is used for geometry and kinematic modeling.
o PLCopen [73] describes plant behavior and control as a sequence of actions.

o CAEX [74] standard is the cornerstone of the hierarchical structure of plant

objects.

The AutomationML architecture is depicted in the Fig.

COLLADA .
CAEX IEC 62424 e e
eometry N Y
Top level format Kinematics =
Object A
Plant topology
inf ti Object A
information ject A PLCopen XML [ ]
*Plants =
*Cells Object A, Behaviour
:i::mbpt:nents : Sequencing [ena |
rioutes Object A,
*Interfaces
«Relations Further XML Standard format
I
ARETERES Further aspects of
engineering information

Figure 5.1: Architecture of AutomationML, adopted from [I].

The characteristic feature of the format is the application of CAEX concepts.
The following elements are defined by AutomationML:

o Interfaces describe relations between objects. There is predefined interface

library in AutomationML.

o Roles or role classes describe the functionality of a CAEX object within a

given context.
o System units contain user defined AutomationML classes.

o Instance hierarchies store data of concrete project. A hierarchy includes

object instances together with properties, interfaces, references, and relations.
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AutomationML provides relatively universal architecture how to capture infor-

mation including for example device concepts such as a sensor or an actuator unit

class.
a) Sensor { Class } b) Drive { Class }

=3 Sensor-Interfaces —Q Drive-Interfaces
—O Pinl{Class Channel } —O Pinl1{Class Channel}
—O Varl {Class Tag } —O Varl {Class Tag }

SRC | AutomationProjectConfigurationRoleClassLib/Device SRC | AutomationProjectConfigurationRoleClassLib/Device

F‘ AutomationMLCSRoleClassLib/ AutomationMLCSRoleClassLib/
ControlEquipment/Sensor ControlEquipment/Actuator

Figure 5.2: Recommendation how to represent a) sensor b) actuator in Automa-
tionML.

A sensor may be represented according to [75] as follows: the corresponding
SystemUnitClass contains one Channel interface to model the physical output and
one Tag interface to model logical value of the sensor state. The class sensor has
the role Device and thus contains inherited attributes, e.g., Name and Type. The
sensor class is illustrated in Fig.

An actuator may be modeled as a Drive class [75]. The Drive SystemUnitClass
contains one Channel interface to model the physical input to the actor and one Tag
interface to represent a logical value of the actor state. The Drive class has the role

Device similarly as the Sensor class. The drive class is illustrated in Fig. [5.2

5.3.2 PLM XML

PLM XML format was developed by Siemens PLM Software and is aimed to improve
the interoperability of product lifecycle data [2]. The PLM XML schema covers

following data characteristics (element types):

o Product structure — the format supports both configured product struc-
ture (represented by instance graph together with occurrence trees — product

views) and unconfigured product structure.

o Metadata — the format allows storing various metadata such as an annota-

tion.
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o Geometric representation data — the format comprises geometric infor-
mation including points, curves, surfaces, and coordinates. A construction

geometry can be represented as well.
o Data ownership — the format takes access control into consideration.

o Visualization properties and features — the format provides a schema
for representation of visualization properties (view directions, ports, and char-

acteristics) and feature description.

Except for data elements, PLM XML provides a delta schema (define a difference
between two product structures) for facilitating change management. The XML
schema of the format allows extensions to derive new elements from existing ones.

Next benefit of employing PLM XML is a possibility to share high content prod-
uct data with a community of adopters and enabled applications via PLM XML

pipeline [2]. An example of a flexible data sharing is shown in Fig. [5.3

Data sources

m-% B-8

Authoring Enterprise
applications  File system Database applications

PLM XML

data query Adapter Adapter Adapter Adapter Data adapter
services
PLM XML A — E . hl
pipeline PLM XML E'_

PLM XML SDK
support toolkit
PLM XML

Authoring Web Enterprise
data Claa applications  Visualization browser applications
services -

ao & ao ao et
Data consumers

Figure 5.3: PLM XML information integration and sharing by means of PLM XML
pipeline, adopted from [2].

Furthermore, PLM XML also describes devices such as sensors. XSD schema for

a sensor model is shown in Fig.[5.4] Even though this standard offers quite extensive
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structures for representation of devices but it may be found not flexible enough in
comparison to the following formats — AutomationML and OPC UA Information
Model.

<> Sensor <> SensorOccurrence

Figure 5.4: XSD schema for a sensor model within PLM XML format.

’
’
’
’

5.3.3 OPC Unified Architecture Information model

The next very interesting way how to model and even integrate data is by means
of OPC Unified Architecture (UA) standard [76]. In general, OPC UA is a secure
and open mechanism for exchanging data between servers and clients in industrial
automation. OPC UA standard tries to overcome the main obstacle of its pre-
decessor (OPC Data Access together with OPC Historical Data Access and OPC
Alarm&Events) — COME' dependency of OPC. Therefore, the OPC UA was de-
signed for replacement of all existing COM-based specification to be platform inde-
pendent with extensible modeling capabilities.

OPC UA is built on two main components [77] — transport mechanisms and
data modeling. The transport component offers the possibility to communicate via

optimized binary TPC protocol for high-performance intranet communication and

“https://www.microsoft.com/com/default.mspx
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next possibility to communicate via Web Services. The data modeling component
represents rules and building blocks for a creation and exposing information model.
It also defines base types to build a type hierarchy.

In original OPC standard, only “raw” data is exchanged, i.e., there was poor
information included understanding the semantics of provided data — tag name and
some information like engineering unit. In contrary, OPC UA offers more flexible
possibility to expose the semantics of the data because of complete object-oriented
capabilities including type hierarchies as well as inheritance.

The OPC Foundation has started with standardization of information models
of various devices (UA Devices) for the unification of models. Every device vendor
may extend these base models with vendor-specific information. This approach is
also assumed in other scenarios, e.g., providing data of MES or ERP systems by
exposing the ISA 95 model [78].

There are many interesting features described in OPC UA specification — trig-
gering of methods, variable subscriptions, security, device discovery (local as well
as global), etc. Because of these features, OPC UA seems to be on of the most

promising frameworks for data representation and exchange in automation domain.

5.4 Ontologies for Integration

Ontologies become in recent decades an essential component of many applications
in various domains, e.g., natural language processing [79], robots [80], industrial
automation [81I], and scheduling [82]. The ontologies represent knowledge of the
domain of the given application. For many years, relational databases were employed
to represent data and partly relevant knowledge in legacy applications. Furthermore,
databases will be exploited in some applications in the future ceaselessly. When
considering databases, a big portion of knowledge is not stored explicitly, but it is
coded in algorithms. Thus, such an approach means a difficult understanding of
the knowledge and data, and it could lead to an inconsistent interpretation and use
of data. On the other hand, ontologies try to overcome these deficiencies and are
supposed to represent more complex and sometimes possibly incomplete models.
We have mentioned that information integration problem may be defined as a

creation of a unified querying interface. In other words, there are various systems
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having different knowledge representation, and we need to acquire relevant informa-
tion from data sources for a given application.

Thus, the important problem which is related to the mentioned definition is
a knowledge representation problem [60]. It means how knowledge is represented
in various data sources and how to enable and facilitate their integration. If an
architect designs a system and a data model of the system is planned to be used
in other systems, then he should take into consideration how to represent data for
facilitating the data model integration.

The knowledge representation should offer an adequate expressivity for modeling
of given context as well as their relations. Furthermore, a knowledge representation
language should facilitate the process of concepts matching and subsequent mapping
for information integration. From this point of view, a utilization of ontologies seems
to be a suitable approach for knowledge representation. When an ontology is well-
designed then modeled concepts of the ontology may be unambiguously understood
even without context. Moreover, a utilization of Upper Ontologies should facilitate

the process of integration.

5.4.1 Integration based on Upper Ontologies

Providing well-designed and substantial ontologies which stand the test of large ap-
plication scenarios is a current bottleneck in SemanticWeb research and application
development. According to primary intention, the Semantic Web should facilitate
a search for suitable ontologies, integrate them with few simple changes and exploit
them within a given application. The number of available ontologies is increasing,
but well-designed ontologies are rarely available. A utilization of upper ontologies
for information integration is not limited only to an integration of ontologies but
may be a mean for integration of data sources represented in various formats.

There are many solutions which adopted the methodological approach which
utilizes an abstract foundational ontology to facilitate domain ontology integration,
e.g., the SmartWeb projectﬂ

Why to use an upper ontology? The problem may arise when we need

to integrate multiple independently developed ontologies. Concepts of ontologies

Shttp://www.smartweb-project.org
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and their properties have to be defined precisely with an explicit ontological com-
mitment to avoid semantic ambiguities during integration. Upper ontologies may be
understood as axiomatic theories about the high-level as well as domain-independent
categories in the real world, e.g., physical object, social object, event, process, etc.

The major advantages of an upper ontology employment are as follows [83]:

o Conceptual clarity — Upper ontologies provide a reference point for proper
comparison among different ontological approaches and a framework for inte-

grating existing ontologies.

o Design patterns — Ideally, an upper ontology defines “ontology design pat-

terns” for re-occurring modeling needs.

o Modeling basis — Upper ontologies may be understood as guidelines for build-

ing a base of new ontologies, instead of modeling from scratch.

On the other hand, understanding of upper ontologies may be difficult because of
their abstract nature. Furthermore, a philosophical background is sometimes needed
for the proper understanding. The first essential step is to choose the best fitting
upper ontology from available ones [84], e.g., BFO, Dolce, OpenCyc, and SUMO.

According to [83], DOLCE and SUMO ontologies are the most promising ones.

One of their advantages is the fact that they both meet the following requirements:

o Descriptive requirement — A descriptive ontology tries to capture common-

sensical notions based on natural language utilization and human cognition.

o Multiplicative requirement — A multiplicative ontology tries to provide a reli-
able description of reality by thanks to co-localization different entities in the

same spatiotemporal coordinate.

o 4D paradigm (also known as perdurantism) — this requirement assumes that
entities extend in space and in time, i.e., entities have both - spatial and

temporal parts.

Suggested Upper Merged Ontology — the SUMO is ontology owned by IEEE
and available under GNU General Public License. The technical editor of the ontol-
ogy is Adam Pease.
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This ontology contains about 25,000 terms and about 80,000 axioms. This on-
tology was based on an integration of different ontologies and theories [85]: a formal
theory of holes, formal mereotopology, the ontology of boundaries, Process Specifi-
cation Language, upper ontologies, etc.

The most general concept in the SUMO ontology is Entity which is subsequently
specialized in Physical and Abstract concepts. The taxonomy is very extensive.
Except concepts concerning industrial automation, there are concepts such as Hotel,
Organization, etc.

SUMO may be difficult to handle because of the enormous number of concepts,
their relations as well as many axioms. From the other hand, SUMQO’s rich taxonomy
may be beneficially utilized for modeling domain ontologies.

DOLCE — DOLCE is a part of the WonderWeb library of foundational ontolo-
gies [86]. This ontology was successfully used in various domains, e.g., law [87] or
agriculture [88].

The term DOLCE abbreviates Descriptive Ontology for Linguistic and Cognitive
Engineering. DOCLE is aimed to differ enduring and perduing entities. The main
relation between Perdurents (i.e., objects) and Endurants (i.e., events or processes) is
that Endurant lives in time by participating in Perdurants. For example, a product
(endurant) participates in his production process (perdurant).

DOLCE is aimed at capturing concepts underlying human common sense. Fur-
thermore, DOLCE comprises following advantages — possibility to model 3D (En-
durants) and 4D (Perdurants) objects. According to [83], DOLCE is conceptually
sound and suitable for reference purposes. On the other hand, a DOLCE exploitation
may be difficult because of smaller taxonomy compared to SUMO and its abstract

nature may be difficult to handle for some users.

5.5 Semantic Sensor Network Ontology

Neutral formats were introduced in preceding paragraphs. Another possibility is to
utilize an existing ontology for a representation of devices such as sensors, etc. In this
section, Semantic Sensor Network (SSN) ontology is introduced and this ontology
may be utilized for a description of sensing devices as well as related processes.

Since 2002, the Open Geospatial Consortium, more precisely its Sensor Web
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Enablement initiative, started with the development of a generic framework for
exchanging sensor data, enabling remote-sensing, and in-situ sensing. The developed
Sensor Observation Service provides a query interface for observation and sensor
data. The output of service is in the form of Ontology&Measurements (O&M) [89]
(formerly known as OMXML) and Sensor Model Language (SensorML) [90].

SensorML and O&M represent a different view on data. SensorML is provider-
centric — it provides information about sensors and raw observation data. SensorML
is designed to support serialization of numeric data arrays and is optimized for
multiple parallel streams that must be processed together. On the other hand,
O&M is more user-centric with the focus on the observation and observed property
objects. It describes data at a higher level of semantics than SensorML. O&M
provides abstract classes for sensors, features of interest, and observable properties.
The complementary details are expected to be added by specific applications and
domains.

The SSN ontology draws on O&M and SensorML. It is based on concepts of
systems, processes, and observations. It offers possibility to describe physical as
well as processing structure of sensors. The SSN ontology is based on the ontology
design pattern named the Stimulus-Sensor-Observation pattern [91]. The SSO was
designed as the corner-stone for heavy-weight ontologies for the Semantic Sensor
Web applications. This pattern is also aligned to the Dolce Ultra-Lite ontologyﬁ

The architecture of SSN ontology together with the dividing to modules is illus-
trated in Fig. [5.5

SSN ontology is composed of several modules. The module Skeleton represents
the essential conceptualization as a lightweight and minimalistic ontology with a
minimal ontological commitment. This part includes the main concepts such as
Sensor, SensorOutput, Observation, SensingDevice, and Sensing. Next, the module
Process represents processes together with their inputs and outputs. Besides of the
main modules, SSN is also composed of following modules — MeasuringCapability,
ConstraintBlock, Device, OperatingRestriction, System, Deployment, PlatformSite,
and Data.

Nowadays, a new version of SSN ontology is being developed. The main differ-

ences are — it also involves Actuators concepts; it is not built on DUL ontology; the

Shttp://www.ontologydesignpatterns.org/ont/dul/DUL.owl
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Figure 5.5: SSN key concepts and their relations, adopted from [3].

proposal of the new version (SOSA) is intended to be more lightweight (inspired by
Linked Open Data). On the other hand, SOSA ontology is still only W3C Candidate

Recommendation.

5.6 Summary

In this chapter, the problem of an information integration was introduced. If we

need to integrate different data sources, then the biggest obstacle is a heterogeneity

between them. The categorization of various types of heterogeneity is provided, and

the semantic heterogeneity was emphasized as the most challenging heterogeneity is

the semantic heterogeneity. Next, ontology matching methods were described with

the focus on their exploitation for a reduction of semantic heterogeneity during the

information integration.

The next part tackles the problem of knowledge representation formats which is

a complementary task to the identification of relations between entities. Two possi-

ble approaches were considered; the first one is the utilization of a (neutral) formats
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prevalently based on XML and a corresponding XML schema. On the other hand, an
employment of ontologies should benefit from a more syntactically and semantically
richer language in comparison with XML-based formats. The information integra-
tion based on upper ontologies were introduced together with a short overview the
most promising upper ontologies — DOLCE and SUMO. Moreover, SSN ontology
which defines important concepts for a description cyber-physical systems (sensors,
observations, processes, etc.) was described.

The utilization of ontologies, a representation of a big volume of data in RDF
statements more precisely, may cause significant performance issue. This problem
may be resolved by a utilization of a suitable technology. In the following chapter,
the Big Data paradigm and frameworks which are intended to facilitate processing

of heterogeneous data are briefly described.



Chapter 6

Big Data

Semantic technologies represent a very capable way how to enrich conventional au-
tomation systems with additional information for competitive data processing. A
feasibility of semantic technologies adoption within automation domain consists in
the availability of suitable means. Even though there are already frameworks for
handling and storing RDF triples, these frameworks have a significant limitation —
insufficient performance. It is worthwhile to mention that a suitability of a given
system for data handling and storing is related to a specific application. However,
the best system is able to handle all possible data types, i.e., big data as well as

common datasets.

Another specific feature of (not only) big data applications is batch and streaming
data processing. The significant difference of these approaches is dataset availability
during computing. Batch data processing assume an availability of the whole dataset
for algorithms. On the other hand, streaming processing treats data as it enters a

system.

In this section, a description of big data and their specific characteristics is

provided. Next, big data processing frameworks are introduced.
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Figure 6.1: Big Data characteristics — 3V(5V/7V) definition.

6.1 Big Data Definition

What represents the term big data? Unfortunately, there is no one widely accepted
definition of big data. In general, the term big data is used for datasets that are
growing so that it becomes difficult to manage them using existing database man-
agement concepts and tools. According to [92], big data is data that exceeds the
processing capacity of conventional database systems. The data is too big, moves
too fast, or does not fit the structures of database architectures. To gain value from

this data, developers must choose an alternative way to process it.

Widespread “definition” (or description) of big data is with the help of their main
characteristics. In origin, it was three characteristics (velocity, variety, volume) and
therefore the definition is known as 3V. Furthermore, additional characteristics have
been added in the course of time. The additional characteristics are veracity, validity,
volatility, and value. 3V definition is illustrated in Fig. together with additional
characteristics.

A vagueness of 3V definition leads to doubt — what is big data framework and
what is not? This problem was solved by NIST. The National Institute of Standards
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Table 6.1: NIST — Big Data characteristics.

Requires

Volume Velocity Variety | Horizontal R.elalmtlor'lal Big Data
o Limitation
Scalability

No No No No No No

No No Yes No Yes Type 1
No Yes No Yes Maybe Type 2
No Yes Yes Yes Yes Type 3
Yes No No Yes Maybe Type 2
Yes No Yes Yes Yes Type 3
Yes Yes No Yes Maybe Type 2
Yes Yes Yes Yes Yes Type 3

and Technology (NIST) introduced big data characteristics and taxonomy [93] which

may solve the previously mentioned issue. There are three main types of big data:

o Type 1 — represents a problem where non-relational representation is required

for effective processing.

o Type 2 — represents a problem where horizontal scalability is required for

effective analysis.

o Type 3 — represents a problem where non-relational representation, as well as

horizontal scalability, is required for effective analysis.

The table (introduced by NIST) is derived from the 3V definition and the
big data types. The table can answer the question — are the given data of CPSs
Big Data?

6.2 Big Data Processing Frameworks

In many cases, big data processing cannot be managed using legacy systems. Sev-
eral big data frameworks have been already developed, and they will be introduced
shortly in this section. Frameworks differentiate from each other by their focus.

There are three different types of frameworks — batch-only, stream-only, and hy-
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brid frameworks. The common feature of all big data processing frameworks is a

distributive nature.

6.2.1 Batch Processing Frameworks

Batch processing frameworks are focused mainly on operating over a large and
(partly) static datasets. From the nature of batch processing approach, these sys-
tems are suitable for processing of datasets which are finite and extremely large.
Thus, batch processing frameworks are frequently used to treat with historical data.

One of the most well-known frameworks is Apache Hadooyﬂ This framework
is a representative of batch-only frameworks. Hadoop was based on Google File
System [04] and data processing algorithm proposed by Google — MapReduce [95].
Advantages of this framework are scalability, reliability, and flexibility. In contrast
to many proprietary systems, Hadoop is open source software and runs on low-
cost commodity hardware. Important for a deployment is also a set of available
expanding tools/libraries. Additional toolsE| for Hadoop are HBase, Hive, Mahout,
Pig, Zookeeper, etc.

6.2.2 Stream Processing Frameworks

Stream processing frameworks treat data as it enters a framework deployment. These
systems require different processing approach then batch processing framework. In
other words, stream processing frameworks use operations that are applied to in-
dividual data samples. These operations are applied only on one or very few data
(micro-batches) samples.

Apache Stomﬂ is a framework which is aimed at extremely low latency process-
ing (near real-time). The processing algorithm utilizes orchestrating DAGs (Directed
Acyclic Graphs) called topologies. Topologies describe transformations and opera-
tions that are designated for incoming data samples.

Apache Samzaﬁ framework benefits from Apache Kafka messaging systenﬂ and

Thttp://hadoop.apache.org
2http:/ /wiki.apache.org/hadoop
Shttp://storm.apache.org
4http://samza.apache.org
Shttps://katka.apache.org
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this architecture results in fault-tolerant processing and well-managed buffering sys-
tem. Moreover, Samza uses Hadoop resource management — YARN (Yet Another

Resource Negotiator).

6.2.3 Hybrid Processing Frameworks

Some frameworks are able to handle both — batch and stream processing. These
systems may be described as their focus is to be general solutions for data processing.

Apache Flinklﬂ framework considers batches to be data streams with finite range.
In other words, batches are considered as subsets of data streams. This approach
(primarily focused on streams) are called Kappa architecture. Flink data processing
model handles data on an item-by-item basis, i.e., true data streams. An interesting
feature is providing snapshots at set points during processing to enable recovery in
case of problems.

Apache Sparkﬂ framework was inspired by Hadoop’s MapReduce engine. It dif-
fers from Hadoop in offering full in-memory processing. Spark may be deployed as
standalone, YARN, or MesosE| cluster. While standalone configuration is suitable
for small clusters, YARN and Mesos should be used for large clusters. Similarly
to Apache Storm, Spark utilizes DAG for representing all operations that must be
performed. Spark is primarily focused on batch data processing, and data streams

are handled as micro-batches.

6.3 Summary

Big data paradigm becomes very popular in the last decade. Many researchers and
developers strictly insist on fulfilling 3V/5V/7V big data definition. However, ap-
plications have various characteristics and may be specified according to NIST spec-
ification. Thus, an application domain is wider for big data processing frameworks
than according to the 3V definition.

Introduced systems represent frameworks covering data batches and data streams

processing including hybrid systems. Unfortunately, there is no system which fits

6https://flink.apache.org
"https://spark.apache.org
8http://mesos.apache.org
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for every problem or application. For example, Hadoop can manage extremely large
datasets but is slow in comparison to Spark. On the other hand, Spark is not able
to handle such extremely large datasets and may be considered as more expensive
because of required memory hardware in Spark cluster in comparison to commod-
ity hard disks. Therefore a suitability of specific framework utilization should be
assessed according to a given application.

In this work, several big data frameworks were tested during conducted experi-
ments, and Apache Spark was found as a best fitting because of the nature of CPSs

and Semantic Big Data Historian.
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in the Context of
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Chapter 7

Integration Challenge of
Cyber-Physical Systems

As mentioned in previous chapters, heterogeneity is a common feature of many sys-
tems including cyber-physical systems. In this chapter, the description of the cyber-
physical system integration problem is provided, i.e., the problem of cyber-physical
system components integration (low-level integration) as well as an integration of
cyber-physical systems (high-level integration) into a more complex whole with the
focus on their semantic heterogeneity. Nowadays, a common integration of system
components relies on ad hoc solutions. These solutions can provide very effective
systems. However, they may bring many drawbacks — difficult system maintenance,
malfunction corrections, adding or adjusting components, re-usability, etc. In the
following chapters, the possible solution, how to overcome these drawbacks as well
as how to exploit ontology matching methods to facilitate an integration of a new
device, is presented. As mentioned in the chapter 2] a cyber-physical system may be
a complex system which consists of many sub-parts produced by various manufactur-
ers. Moreover, cyber-physical systems are typically integrated into a more complex
system for an improvement of their capabilities — Internet-of-Things, Smart Facto-
ries, etc.

Whether we talk about sub-parts of a cyber-physical system or an integration

of whole cyber-physical systems, every part maintains specific data model which is
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Figure 7.1: Cyber-physical system architecture.

derived from the nature of corresponding physical process or processes. These parts
provide data via an interface to other components or other systems. Reversely,
they consume data from surrounding systems for an enhancement of their behavior.
Furthermore, systems can share joint data storage — local/distributed/in a cloud.
As mentioned, the integration problem can be divided into two distinct prob-
lems corresponding to various perspective, and they are introduced in the following

sections.

7.1 Low-level Integration

A cyber-physical system is rather a general term. In the simplest case, it may be
one sensor, related algorithm, and feedback to the physical process by appropriate
modalities (for example employing an actuator). This simple case may be repre-
sented by a smartwatch with a pulse sensor and a possible feedback via vibrating.
On the other hand, a cyber-physical system may be represented by a very complex
system, for example in an aircraft [96] may be used for applications where security

and safety-critical aspects are important, or we need predictability in the face of
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Figure 7.2: Platform integration by means of corresponding adapters.

dynamic environments. All types of cyber-physical systems are based on interoper-
ability of their components. In other words, we face the problem of integration of
these components. In following paragraphs, the problem of cyber-physical system
components integration concerning system architecture is defined.

The low-level integration represents interconnections among components of a
cyber-physical system — sensor(s), data model(s) of the computational process,
and an actuator(s). Sample cyber-physical system architecture which is relevant
for the low-level integration is illustrated in Fig. According to the figure, a
cyber-physical system consists of a physical part and a cyber part (represented by a
platform and a computational layer). The physical part involves the physical process
and physical objects which provide a possibility for process control, e.g., sensors.

The cyber part can be divided for clarity into two layers — a platform layer and
a computational layer. The first layer (Platform Layer) is responsible for enabling
and subsequently ensure proper operation of physical components. As depicted in
Fig. a technology heterogeneity is usually solved with the help of ad-hoc adapters
which serve as interfaces between a cyber-physical system operational platform and
physical components. For example, an adapter may be in the form of an OPC
UA client, etc. Furthermore, many of systems (not only cyber-physical systems) are

limited to a subset of supported devices which are relevant to a given set of adapters.

Next, the second layer (Computational Layer) represents the computational pro-
cess which is able to control the physical process according to an implemented logic.
In many cases, the computational layer may face a syntactic heterogeneity issue when

it processes data from sensors as well as interacts with actuators. The syntactically



70 INTEGRATION CHALLENGE OF CPSS

heterogeneous sensors, internal cyber-physical system data model, and actuators
occur when corresponding data models are represented in different formats — for
example, OPC UA and MTConnectﬂ The solution of this issue is similar to the

platform heterogeneity, i.e., by means of an appropriate adapter. An example is
depicted in Fig.
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Figure 7.3: Syntactic heterogeneity within cyber-physical system.

If the platform and the syntactic heterogeneity have been solved, then the last
obstacle to be able to process data successfully could be semantic heterogeneity.
Unfortunately, this kind of heterogeneity cannot be solved easily by some adapter
which may be used as a generic solution for all similar problems.

For better understanding, how semantic heterogeneity arises within a cyber-
physical system, it is convenient to describe its modeling process. The physical
process is modeled first with a physical layer abstraction. Then, the corresponding
control system is implemented using a computational (software) layer abstraction.
Finally, the control system is deployed on the computation platform modeled with

the platform layer abstraction. The different abstraction layers use typically non-

Lhttp://www.mtconnect.org/
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compatible semantics, which is the cause of semantic heterogeneity.

An example of the cyber-physical system may be considered cabin pressurization
and control system which is responsible for regulating the pressure in the aircraft
cabin during a flight. There is strict plan how to control cabin pressure [97]. A
relation between ambient pressure and cabin pressure is used for regulating outflow
pressure valve. A designer of this control system may have two different data models
where the pressure sensor is modeled (a model of ambient and cabin pressure sensor),
but it may not be a clear detailed specification. Next, the designer has to properly
know which is the ambient pressure sensor and which is cabin sensor. In the worst

case, the designer could find in the data models some meaningless labels.

Unquestionably, the semantic heterogeneity symbolizes significant obstacle for

faultless integration of cyber-physical system components.

7.2 High-level Integration

Although this dissertation thesis is focused on the low-level integration, the high-level
integration problem is introduced in this section for the sake of completeness. Ad-
ditionally, a complex system composed of networked cyber-physical systems shares

many of the main characteristics of the low-level integration problem.

High-level integration denotes interconnections of various cyber-physical systems
to form for example IoT. The integration of CPSs is depicted in the Fig. [7.4] This
problem may be solved by the integration process which is discussed in detail in the

following paragraphs mainly aimed to low-level integration.

The example of the high-level integration is presented by Smart Livingﬂ with
Personal IoT solution. The combination of components consists in the gateway
called ATT TIOT. A user has to write a script to automate connected components
via the Application Programming Interface (API). This approach solves a platform

heterogeneity but does not provide any information about a data meaning.

2http://smartliving.io
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Figure 7.4: High-level integration of cyber-physical systems.

7.3 Integration Process

In following paragraphs, the introduced cyber-physical system integration problem
is summarized. “Simply speaking”, the integration task consists in the unification
of interfaces of devices (high-level integration — cyber-physical systems; low-level
integration — sensors, actuators) as well as the unification of corresponding data
models. In the following enumeration, the main individual problems are stated

together with possible solutions.

1. o Platform heterogeneity — the first problem of cyber-physical system com-
ponent integration lies in the platform heterogeneity. It is caused by dif-
ferent devices used for formation of a more complex system produced by

various manufacturers.

o Possible solution — a unification of different interfaces provided by vari-

ous manufacturers with the help of adapters.

2. o Syntactic heterogeneity — platform non-heterogeneous systems may still
have problems with an integration. If the system components should
communicate within a particular platform, they still may have problem

in various format for data representation, i.e., syntactic heterogeneity.
o Possible solution — a unification of different formats used for communi-

cation with the help of adapters.

3. o Semantic heterogeneity — The last problem may be represented by dif-

ferent data models used by cyber-physical system components, i.e., the
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same real-world entities are represented by different concepts, or the same

concepts denote different real-world entities.

o Possible solution — models integration covers the identification of cor-
responding concepts, relations among concepts and their meaning in a
given context. Ontology matching approach may be utilized for elements
identification. Next, rules, how to transform data of components to the

shared model, have to be modeled.

The low-level, as well as the high-level integration, may be successfully solved
with the help of a global model. The model has to map all particular data models
and provide proper relations among data concepts. This data model together with
implemented transformations acts as a united interface for direct user queries or
interaction with other systems in the first case or acts as transformation component
for subsequent data storing in global cyber-physical system data storage.

The suitable solution for this problem is ontologies. In the following chapters,
a solution for the low-level CPS components integration and the semi-automatic
ontology matching system for identification of corresponding entities will be intro-
duced. On the other hand, this solution has a significant deficiency — performance
problem. Therefore, this work will show how this problem may be solved by an

exploitation of big data technologies.

7.4 Summary

In this chapter, the integration challenge of CPSs was introduced. Next, two dif-
ferent types of the integration were defined — low-level and high-level integration.
Subsequently, the general process, how to resolve the integration, was proposed.
Solutions for individual steps of the integration process were identified. The plat-
form and syntactic heterogeneity may be solved by using an appropriate adapter.
On the other hand, the semantic heterogeneity means the biggest problem and ap-

propriate solution is application-dependent.



74

INTEGRATION CHALLENGE OF CPSS



Chapter 8

Shared Ontology for

Integration

For dealing with semantic heterogeneity, Semantic Web technologies were chosen
for building a suitable solution. Semantic Web Technologies represent one of the
promising ways how to ensure faultless interoperability as discussed in chapter

There are various approaches how to face a problem of a representation of a
cyber-physical system components data model. According to [98], the solution,
where a shared ontology represents given concepts from system components, was
chosen instead of having several different distributed data models. It is apt to remark
the solution using shared ontology may facilitate an integration of components data
models describing concerned area from different perspectives, levels of granularity,
or coverages. It is because of the flexibility and high expressivity of ontologies.

This dissertation thesis is mainly about improving interoperability as well as re-
usability not only within a limited scope of a particular solution but among various
devices for example deployed in a cloud by some external provider. Furthermore, a
significant contribution of this work is a feasibility of the proposed solution. Thus, a
creation of another new ontology is not the intention of this work. Instead, Semantic
Sensor Network ontology is reused.

In this chapter, the approach, how to face the problem of semantic heterogeneity

using a shared ontology, is introduced, i.e., how to create a data model of a CPS using

(0]
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shared ontology which contains an appropriate description for CPS components and
thus enables their integration. It consists of following steps — the adjustment of the
shared ontology (and extend as required), the description of a testing scenario, and

the creation of a relevant knowledge base.

8.1 Cyber-Physical System Ontology for Compo-
nents Integration (COCI)

As mentioned, another new ontology will not be developed, but rather proposed solu-
tion tries to reuse already existing accepted ontology for integration of cyber-physical
system components. Our decision is motivated especially by improving re-usability of
designed cyber-physical systems for other future extensions or applications. Unfor-
tunately, there is no suitable existing ontology for describing cyber-physical systems
from the component point of view. On the other hand, there is SSN ontology which
is able to describe sensor-relevant concepts, i.e., the important part of a CPS. Thus,
SSN ontology was chosen to constitute the cornerstone of our ontology.

Furthermore, SSN ontology provides the suitable representation for the part of
demanded entities. Moreover, it is built on DOLCE ontology, and this property may
facilitate a potential future extension.

In following paragraphs, a design of concepts for a description of remaining de-

vices and other relevant entities of a CPS was introduced.

8.1.1 Required Concepts for Cyber-Physical System Compo-

nents

As already mentioned, SSN Ontology introduced very important concepts for a
cyber-physical system — sensing devices, sensors, observations, physical qualities,
their relationships, etc. However, it is not fully sufficient for our needs. Thus, re-
quired additional concepts has to be designed, i.e., mainly actuators together with
their properties and capabilities.

The important part of cyber-physical systems is a feedback to a corresponding
physical process. The feedback is provided by means of devices named actuators.

An actuator triggers a corresponding action based on a computational process (an
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© Actuator — http:/iwww.rockwellautomation.com/RADIC/COCHActuator

Class Annotations | Class Usage |
Annotations: Actuator Z1 = m]

Annotations
rdfs:comment [language: en]

An actuator is an entity which is able to trigger coresponding action. An actuator may be represented by
physical object (for example device) or agent (for example persaon).

Description: Actuator @h=jo
Equivalent To

@ Agent or PhysicalObject

SubClass Of
@ hasActuatingCapability only ActuatingCapability
@ hasImpact only Impact
@ implements only Actuating
@ operateAccordingTo only Property

Figure 8.1: Actuator concept detail in Protégé editor.

algorithm). Two essential concepts may be derived from this fact — actuator and

action. The most of the important concepts (what were designed) are follows:

o Actuator — This concept modeled in Protégeﬂ ontology editor is depicted in
the Fig. Similarly to sensor concept, the Actuator concept is modeled as
sub-class of Object (the concept from Dolce Ultra Light ontology). In general,
an actuator is an entity which is able to trigger a given action. An actuator
may be represented by actuating device (e.g., an electric motor) but we allow

the situation when an actuator is a person (i.e., Cyber-Physical-Social System).

o Actuating Device — The Actuator concept has a hardware representation
named Actuating Device. This concept is derived from SSN:Device concept
which is derived from DUL:DesignArtifact.

o Actuating Capability — Every actuator has a different capability in specific
conditions, and it is modeled by Actuating Capability concept. This concept
detail is depicted in the Fig. 82}

o Actuating Property — Directly related to the Actuating Capability is Actuat-

ing Property. This concept represents characteristics of an actuators ability

1Protégé ontology editor — https://protege.stanford.edu
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@ ActuatingCapability — http:iwww.rockwellautomation.com/RADIC/COCHActuatingCapability
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Annotations
rdfs:label [language: en]
Actuating Capability

rdfs:comment  [language: en]
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Similar idea to MeasurementCapability in SSM.
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Figure 8.2: Actuating Capability concept detail in Protégé editor.

to perform an action, e.g., stalling (for example pneumatic actuators may be
stalled indefinitely without overheating in contrast to electric actuators), lin-

earity (accuracy of linear motion), thermal stability, etc.

o Impact/Actuator Output — the Impact concept which is equivalent to the Ac-

tuator Output concept describes a way of physical process modification which

is conducted by an actuator.

o Actuating — this concept stands for a process how an actuator influences a
given physical process. It may be represented for example by a specific motion

(e.g., linear) or by some display modalities.
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Socialagent

Figure 8.3: Action concept detail in Protégé editor.

o Action — The last important concept is an Action. An action describes a

situation in which actuating method is used to impact a property of a feature

of interest. The Action concept detail is depicted in the Fig.

Next, the most important proposed and designed object properties are as follows:

o hasActuatingCapability — describes a relation between Actuator and Actuat-

ingCapability concepts.

o hasImpact — describes a relation between Actuator and Impact or Actua-
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torOutput concepts.
o implements — describes a relation between Actuator and Actuating concepts.

o operateAccordingTo — describes a relation between Actuator and Property

concepts.

o hasActuatingProperty — describes a relation between ActuatingCapability and

ActuatingProperty concepts.

o inCondition — describes a relation between ActuatingCapability and Condition

concepts.

o actuatingMethodUsed — describes a relation between Action and Actuating

concepts.
o triggered By — describes a relation between Action and Actuator concepts.

Before the completion of this dissertation thesis, the work about Semantic Ac-
tuator Network (SAN) was published in 2016 [99]. This work was designed as a
complement to SSN ontology similarly as our extension. SAN ontology is not used
in this work because it does not model all of relevant concepts and relationships. Fur-
thermore, it is not considered as World Wide Web Consortium standard in contrast
to SSN.

The important property of sensing and actuating devices is also their location.
It is essential for device determination especially for example within a complex pro-
duction line, etc. Thus, the property DUL:hasLocation was added to the Actuat-
ingDevice concept. Then, a device location may be specified in some specific part
of a production line or specific premises.

If we assume that a cyber-physical system is not separated from surroundings
systems, then we may improve a feedback from computational process back to a
physical process using external data sources involvement. Thus, the computational
process may be more accurate or more capable.

In contrast to sensors and actuators, an external data source is very general term
and therefore it is difficult to standardize a corresponding concept. In other words,

a valuable external data source may represent very diverse information — from a
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weather forecast to relevant information from MES/ERP systems or information
from accomplished maintenance service. A concept type is strongly dependent on a
given application. The best solution is to infer concepts from base DOLCE concepts

as recommendation guidelines.

The most important concepts together with their relations are shown in Fig.
The concepts with the blue edge are from DOLCE Ultralight Ontology and serve
as general predecessors of all COCI concepts. There are also several SSN concepts
(with the yellow edge) — general concepts from SSN ontology are reused such as
SSN:Property, SSN:Process, and SSN:FeatureOfInterest instead of design similar
concepts in COCI. Finally, there are shown the essential COCI concepts (with the

green edge) representing entities related with an actuator.

DUL:Entity SubClassOf- )
DUL:Object

SubClassOf SubClassOf SubClassOf SubClassOf SubClassOf

/ \ DUL:Physical DUL:Social
. . :Physica :Socia
/[ DUL:Event j (DUL,Methodj [ Object J L Object j
A

DUL:Quality

A

SubClassOf SubClassOf SubClassOf

| T
[SSN:Propertyj [SSN:Featurej SubClassOf SSN:Process SubClassOf DUL:Situation
A OflInterest ‘
A

A
SubClassOf SubClassOf

Actuating ( J ( ) J _[ .
Capability Imiact Actuating Actuator Action
4
hasli'npact T

A
hasActuatingCapability [M—triggeredBy

implements

actuatingMethodUsed—]

featureOfinterest

() COCl Ontology ()] DUL Ontology (J SSN Ontology

Figure 8.4: Part of cyber-physical system ontology for components integration.
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8.2 Design of Knowledge Base:

Experimental System

In following paragraphs, the experimental system, which is used for verification and
an evaluation of our approach, is introduced. This experimental system also pervades
subsequent chapters but from a different point of view. In this section, the system
is utilized for testing the COCI conceptualization. In chapter [I0] the experimental
system is used for an integration of additional data sources and an evaluation of
the hybrid SBDH model. Furthermore, Plug&Play concept is demonstrated on the
same system in chapter

Thanks to HydroCon companyﬂ we have access to data (online as well as his-
torical) and a control system of the hydroelectric power plant located in Hluboka
nad Vltavou (Czech Republic). As mentioned, this system is used in this section to
verify COCI conceptualization. The power plant is equipped with 38 sensors in the
power plant including for example measurement of fall of water, frequency, power
factor, and real power. All data from power plant sensors are read with 5-second
sampling rate.

Moreover, an experimental CPS was composed based on these data and with
the help of Semantic Big Data Historian which is introduced in section The
experimental cyber-physical system was designed for resolving a hydroelectric power
plant “stop problem”. The stop-problem is defined as follows: turbine vanes are
fouled up with filth during the turbine usage. This fouling causes a decrease in
turbine performance. If the turbine is restarted, then a shock wave cleans turbine
vanes. The problem is to identify the optimal moment for a restart.

The experimental CPS is composed of sensors (located in the power plant), Se-
mantic Big Data Historian for collecting and processing sensor data, and an actuator
which ensures the turbine restart. All experiments were conducted without a direct
connection to the power plant (“offline mode”) because of the reason of power plant
production safety.

The solution of the “stop problem” is not in the scope of this work. Nevertheless,

its solution is shortly described in this paragraph. It is based on the classification

2http://www.hydrocon.eu
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of an abnormal state with the help of neural networks (multi-layered perceptron).
The classification consists of two levels — the first level sets aside samples where the
power of turbine should be higher; the second level determines a difference between
actual and possible achievable power.

The knowledge base (an instantiation of COCI in other words) consists of two
segments — an actuator part and a sensor part. Before the modeling of individuals,
a specialization of general SSN and COCI concepts corresponding to the specific
application has to be added, e.g., particular types of sensors, actuators, observations,
etc. The essential concepts related to the actuator (servomotor which is responsible
for positioning the control gate) are illustrated in Fig.|8.5| There are shown concepts
such as Actuator, Actuating, ActuatorOutput, Action, and ActuatingCapability in
the upper part of rectangles. Next, corresponding individuals are depicted in the

lower part of rectangles for simplicity.

CtrGate_Position

hasOutput
CtrGate_ServoMotor
implements
hasActuatingCapability
CtrGate_LinearPositioning
triggeredBy $

actuatingMethodUsed

CtrGate_SpeedCtr

CtrGate_SetPosition

Figure 8.5: Simplified COCI representation of the control gate actuator.

The prevalent part of the experimental system’s data model consists of sensor
related concepts. For better readability, the simplified figure of the model is divided
into two parts which are illustrated in Fig. [8:6 and Fig. [8.7] Besides other things,

there are depicted four various features of interests (i.e., fall of water, real power,
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power factor, and frequency), corresponding sensors, and observation values.

- Entity
Object

Quality PhysicalObject

SocialObject

froperty Sensor

Situation
SensingDevice

PowerFactor

PhysicalQuality
Frequency Sensor

Sensor el
TypeOl PowerFactor
LV sen_out_F_0001

FrequencySensor
TypeQ1 20150201-000003

Observation

isProducedBy

frequency
powerFactor

F Sensor 0001

realPower observedProperty .
Sensor PFIOOCEEEIT Y

gradient
observedBy
Sen_Out_PF_0001

§ Frequency observedProperty
Sensor_P_0001 20150201-000003

Observation .
observedProperty Observation_Frequency

PowerFactor <ProducedBy
Observation Observatiol
Observation_PowerFactor Result Sen_Out_P_0001
- 20150201-000003

observedProperty

RealPower
Observation

Observation_RealPower
Sensor_FoW_0001

FallOfWater -
: Observation FallOfWater g
Observation observationResult_isProducedBy
featureOfinterest featureOfinterest

featureOfinterest e Sen_Out_FoW_0001
- 20150201-000003

FallOfWater PowerFactor

RealPower

FeatureOfinterest

Figure 8.6: The first part of simplified COCI ontology.
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InformationEntity Abstract

InformationObject

ObservationValue

SensorOutput
QuantityObservation

PowerFactor Value
SensorOutpu
FallOfWater Frequency FallOfWater
SensorQOutput ObservationValue

RealPower RealPower
SensorOutput, ObservationValu

Frequency
ObservationValue
PowerFactor
ObservationValue,

Sen_Out_F 0001

d 20150201-000003
isProducedBy Obs_Val_F_0001

F_Sensor_0001 - AN 2015-02- 20150201-000003
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01T00:00:03

Sen_Out_P_0001
20150201-000003

Sensor_P_0001

Obs_Val_P_0001
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hasDateTime

hasValue
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01T00:00:03

Sensor_FoW_0001

hasQuantity
Obs_Val_Fow_0001 UnitOfMeasurement

isProducedBy

Sen_Out_FoW_0001
20150201-000003

20150201-000003

2015-02-
01700:00:03

hasDateTime

Figure 8.7: The second part of simplified COCI ontology.

8.3 Summary

In this chapter, the approach for resolving the semantic heterogeneity of CPS com-
ponents by the employment of the shared ontology, which is intended to serve as a
joint data model for a CPS, was introduced. The proposed Cyber-physical system
Ontology for Component Integration (COCI) was described. The ontology employs

SSN ontology for a description of sensors, their properties, and relevant processes.
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Next, the missing part of CPS components description was designed — actuators,
actions, etc. The new concepts serve as a complement of SSN ontology.

Finally, a utilization of COCI ontology on hydroelectric power plant devices was
demonstrated.

To conclude this chapter, it is apt to remark that there is new release candidate
of SSN ontology. The new version (release candidate) of SSN ontology contains
concepts for actuators as described in section [5.5] However, the concept of SSN
(respectively SOSA) ontology is heading towards a lightweight ontology inspired
by Linked Open Data, and we have to evaluate benefits and deficiencies of such

approach to be able to decide for a potential replacement of our COCI.



Chapter 9

Ontology Matching for
Cyber-Physical Systems

A data models of sensors and actuators could be easily designed according to the
specific application of COCI if the ontology is known during CPS concepts design
time. However, the common practice is a usage of existing devices from various
manufacturers due to many reasons, e.g., device price. Thus, a way how to facilitate
the integration of these devices together with COCI ontology is needed.

Many researchers and developers have the effort to design and develop fully auto-
matic matching systems. Naturally, automatic systems have deficiencies in precision
and recall because of impossibility to find corresponding elements automatically.
Furthermore, a user is more capable than a computer in finding correspondences.
Next, many applications require the best precision and recall more than matching
velocity, e.g., in manufacturing or medicine.

Thus, the semi-automatic matching system, which allows involving user as well as
balance a trade-off between the matching velocity and the matching precision /recall,
was proposed and implemented. The implemented framework is called MAPSOM
and is introduced in this chapter. This solution is based on similarity measure
aggregation by means of Self-Organizing Map. The process of ontology matching is
composed of two steps: 1. step — automatic ontology matching approach; 2. step

— optimizing outcomes from the first step by means of active learning.
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Figure 9.1: The SOM with rectangular topology.

9.1 Self-Organizing Map-Based

Similarity Measures Aggregation

The cornerstone of the proposed matching solution is the self-organizing map (SOM).
The self-organizing map (SOM) is the neural network introduced by Teuvo Koho-
nen [I00]. The SOM implements a characteristic nonlinear projection from a high-
dimensional space onto a low-dimensional array of neurons, and the mapping has the
capability to preserve the topological relationships. Furthermore, the SOM has im-
portant applications in the visualization of high-dimensional systems and is possible
to discover categories and abstractions from raw data.

The SOM usually consists of a two-dimensional regular grid of neurons (see
Fig. [9.1). Each neuron in the SOM is a d-dimensional weight vector (codebook
vector) where d is equal to the dimension of the input vectors. The neurons are
connected to adjacent neurons by a neighborhood relation, which determines the
topology of the map, i.e., hexagonal or rectangular topology. The mapping is en-
sured by the SOM algorithm in the following way: assuming a general distance
measure between an input vector x and a codebook m; denoted as d(x,m;), then

the corresponding output neuron c(z) (winner) is defined as

c(x) = arg min d(xz,m;). (9.1)

The learning algorithm in the SOM is called competitive learning. The basic

idea of the classical SOM competitive learning algorithm can be expressed as

m,;(t + 1) = mz(t) + hc(w),i) (t)[l’ — m,;(t)], (92)
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where ¢ is the index of the iteration (time), m;(t) is the weight vector of the
corresponding neuron i in the time ¢, h.); is called the neighborhood function,

and z is the input vector.

In the proposed solution, the SOM is exploited for similarity measure aggrega-
tion. Input vectors for SOM training are composed of different similarity measure
values between pairs of concepts from a source and the target ontology (COCI on-
tology). The main benefit — pairs of concepts with the similar features (which
describes used similarity measures) are located in a nearby area of the SOM output
layer after training. Then, neurons from the output layer are clustered by ward
clustering and classified into two classes — positive or negative. Now, a user can
utilize information about neurons from clustering, visualization (see below), and ini-
tial classification to prove the classification or a user may tune the classification by

means of active learning.

9.1.1 Visualization

A visualization is an important feature of a user interface for enabling easy and mean-
ingful user interaction. Three main different visualization possibilities are imple-
mented in MAPSOM framework — U-Matrix, Ward clustering, and Hit histogram.
These visualization methods together offer effective mean during user decision mak-
ing.

U-Matrix method [I01] (see Fig. — an example of U-Matrix and hit his-
togram) visualizes the distances among neurons in a SOM, and thus the U-Matrix is
possible to show cluster structure of the SOM. High values indicate a cluster border

and areas of low values indicate clusters themselves.

Ward Clustering is implemented for automatic cluster creation. It is possible
to operate with the whole group of neurons instead of a single neuron. The cluster
method of Ward belongs to the hierarchical agglomerative cluster algorithms (i.e.,
every single neuron is a cluster in itself, and the clusters with minimal distance are
merged in every step). The distance characterizing Ward’s method is based on the

variance criterion. This distance measure is called the Ward distance and is defined
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(a) U-Matrix and Hit histogram. (b) Ward clustering.

Figure 9.2: MAPSOM — Visualization.

as follows:

Ny N _ _
drs = n:—l— ;S |z - %”2’ (9.3)

where r and s denote two specific clusters — n, and n,; denote the number of
data points in the two cluster, and Z, and T denote the centers of gravity of the
clusters. ||.|| is the Euclidean norm. The number of clusters is variable, and a user
can vary this number. Ward clustering of SOM with hexagonal topology and four
clusters is depicted in Fig. [0-2H

Hit Histogram can be combined with Ward clustering, U-Matrix, or with both
of them. Hit histogram visualization method allows to find out, how many samples
correspond to a neuron. U-Matrix and hit histogram combination of SOM with

hexagonal topology and 15 neurons in every dimension is depicted in Fig.

9.1.2 Initial Classification

In the MAPSOM framework, an initial classification of clusters is needed. Thus, a
boolean conjunctive classifier B and a linear weighted classifier L are implemented

for this purpose.
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Boolean conjunctive classifier B is defined as

Fp= /\(ai(s7t) >7), (9.4)

where s and t are a certain pair of ontology entities, o; is a similarity function,
and 7; is a threshold of i*" similarity function.

Linear weighted classifier L has the form

FL = Zwiai(s,tL (95)
i=1

where s and t are a certain pair of ontology entities, o; is a similarity function,
and w; is a weight of i*? similarity function.

The cluster classification is not computed for every single neuron, but it is com-
puted from the center of mass of the cluster. This fact causes the situation that the
classification of neurons may vary depending on the number of clusters.

From a different point of view, somebody can wonder about advantages and
suitability of the SOM utilization for ontology matching problem. Samuel Kaski
describes in [I0T] that SOM is appropriate for data feature exploration. A usage
of the SOM involves following advantages - the possibility of visualization of high-
dimensional data, clustering, and non-linear projection capability. These charac-
teristics are essential for data exploration together with user involvement and data

advanced visualization of high dimensional data.

9.2 User Involvement in Ontology Matching

Primarily, the target of an ontology matching is to classify pairs from ontologies
with the highest accuracy. This effort lies in the best setting of classifier parame-
ters. Unfortunately, there are some limitations especially based on the heterogeneity
problem which was described in section User involvement in the process of se-
mantic integration is one of the possible approaches to addressing this limitation
and allows enhancement of this process.

The already described visualization of the SOM was chosen for user involvement

in MAPSOM. Moreover, the active learning is employed for one more way how to
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involve a user in the process of ontology matching.

9.2.1 Active Learning

Active learning is a special part of semi-supervised machine learning and is frequently
used in classification, filtering, information extraction, and speech recognition. Su-
pervised learning algorithms have to be trained on hundred (or thousands) of labeled
instances. An acquisition of labeled samples is very difficult, expensive, and time-

consuming in many cases:

o Classification — A training task to classify documents requires that an anno-

tator label each document with relevant classes, e.g., “positive” or “negative”.

o Information extraction — Information extraction system must be trained us-
ing samples (documents) with detailed labels (annotations). Providing an-
notations for samples is very time-consuming in these systems, e.g., locating

entities and relations can take a half-hour or more for even simple stories [102].

o Speech processing and recognition — A trained linguists are needed for ac-
curate labeling during speech processing. An annotation at the word level
takes approximately ten times longer than the actual audio and annotating

phonemes takes 400 times than the given audio [103].

Therefore, the main goal of active learning is to overcome a labeling of samples
by asking an oracle (a human annotator in many cases).

For many applications, a large number of unlabeled data can be collected at once.
This motivates pool-based sampling [104], where data are selectively drawn from the
pool, which is usually non-changing. Unlabeled samples are drawn according to their
informative contribution. In other words, active learning methods involve evaluating
the informativeness of unlabeled samples, which are sampled from a given collection

or newly generated.

9.2.2 Candidate Selection

There are many proposed and implemented methods of query strategies. Typically,

the most commonly used query method is uncertainty sampling. This method selects
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Figure 9.3: Candidate selection: Figure 9.4: Candidate selection:
The smallest distance from the bound- The nearest samples from different
ary. classes.

samples with the most uncertain label assignment. For example, when using a
probabilistic model for binary classification, uncertainty sampling directly queries

the instances whose posterior probability of being positive is nearest 0.5 [105].

A certain number of candidates for a user approval is selected in the first step
of the active learning process. The selection of these candidates has to fulfill a
selection criterion to ensure an approval of the most uncertain classification. In
the proposed system, if any additional domain knowledge is not considered for the
selection, then it is easy to see that these candidates are the closest samples to the

boundary between positive and non-positive alignment parts.

Two different information sources can be utilized for a distance description be-
tween samples with different classification in the selection criterion. The first source
is classifier settings and the second source is composed of topological information
from output SOM layer. Information from classifier allows finding precise boundary
location. Hence, it is needed to find samples with the smallest distance from this
boundary (Fig.[9.3). The main drawback of this approach could reside in the neces-
sity of updating classifier settings after every step. In the second case, candidates
for user approval can be described as the closest samples which have different clas-
sification (Fig. . The second approach has its drawback in higher computational
complexity. The second approach is preferred in our solution because iterative pa-
rameters update is difficult or impossible for some specific types of classifiers. It is

obvious that outcomes of these two selection algorithms may not be the same.
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9.3 Experiments

In this section, the experimental results are analyzed to show the functionality of
the proposed semi-automatic framework. The experiments were conducted using
benchmark datasets with the reference matching provided by Ontology Alignment
Evaluation Initiative (OAEI). The benchmark dataset[[] offers a set of tests which are
wide in feature coverage, progressive and stable. It serves the purpose of evaluating
the strength and weakness of matchers and measuring the progress of matchers.
The conducted tests with MAPSOM framework are divided into two parts, and
they are presented in the followings paragraphs. The first part shows how different
initial parameters affect matching results and the second part presents MAPSOM
functionality on the dataset with real ontologies (dataset No. 302).

The first part of tests shows variability and dependencies between SOM param-
eters and results. The most important parameters are a number of neurons of the
SOM, types of similarity measures, and a type of the initial classifier. The used
parameters of the SOM and learning algorithm were: 15 neurons in both dimen-
sions, hexagonal topology, sigma - 0.5, neighborhood size - 8, learning rate - 0.4,
and 1500 iterations. Following similarity measures were exploited: n-gram measure,
Levenstein measure, Needleman-Wunsch measure [I06], and Lin and Wu&Palmer
for WordNet [64]. In this part, different initial classifiers were tried, i.e., the boolean
conjunctive classifier (described in Eq. with the threshold equal to 0.2 for every
similarity measure and the linear weighted classifier (described in Eq. with the
weight equal to 0.2 for every similarity measure and threshold equal to 0.4. There are
many suitable datasets in the OAEI Challenge for demonstrating MAPSOM func-
tionality. The dataset No. 222 was chosen from the OAEI benchmark (MAPSOM
outcomes are similar with the other datasets and this dataset is sufficient for our
demonstration). Table shows experimental results for previously mentioned pa-
rameters and different number of clusters. It is possible to achieve the best precision
and recall with the different initial setting, and the main difference is the number of
active learning iterations.

The second part of experiments demonstrates MAPSOM functionality with real

ontology and comparison with the best systems of the matching challenge. Dataset

Thttp://oaei.ontologymatching.org/2013/benchmarks/
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Table 9.1: Dependencies between different SOM configuration and results (dataset
No. 222).

Bool. Conj. Bool. Conj. Linear Weight.

Classifier Classifier Classifier

4 Clusters 20 Clusters 20 Clusters

Iteration | Precision | Recall | Precision | Recall | Precision | Recall

1 0.38 1 0.49 1 1 0.74
2 0.39 1 0.51 1 1 0.81
3 0.4 1 0.54 1 1 1
4 0.41 1 0.63 1
5 0.48 1 0.7 1
6 0.61 1 0.7 1
7 0.68 1 0.73 1
8 0.84 1 1 1
9 0.84 1
10 0.97 1
11 0.99 1
12 0.99 1
13 1 1

No. 302 is composed of finding alignments between reference ontology and real
BibTex/UMBC ontology. The result is verified by reference matching from OAEL
We used SOM with 20 neurons in both dimensions, hexagonal topology, and following
parameters of training algorithm: sigma - 0.5, neighborhood size - 10, learning rate
- 0.5, and 1500 iterations. The similarity measures are n-gram measure, Levenstein
measure, Needleman-Wunsch measure, and Lin and Wu&Palmer for WordNet. The
initial classifier is boolean conjunctive classifier with thresholds equal to 0.2 for
every similarity measure. The number of clusters before the active learning step is
15. The Table[9.2] shows the evolution of the precision and recall depending on the

iterations.

Finally, the results of our experiment were compared with some of the best
systems also tested on the dataset No. 302 (see Table[9.3]).
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Table 9.2: MAPSOM and a real ontology (dataset No. 302).

Iteration 1 2 3 4 5 6 7 8 9
Precision | 0.72 | 0.88 | 0.96 | 0.96 1 1 1] 0.83 | 0.83
Recall 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 0.5 0.5
Iteration 10 11 12 13 14
Precision | 0.83 | 0.83 | 0.84 | 0.81 | 0.85
Recall 0.5 0.5 ] 0.52 | 0.54 | 0.61

Table 9.3: MAPSOM and comparison with some of the best systems tested on
dataset No. 302.

ASMOV Lily n-Harmony
Precision | Recall | Precision | Recall | Precision | Recall
0.71 0.56 0.84 0.65 0.93 0.55
MAPSOM
Precision | Recall
0.85 0.61

9.4 Summary

In this section, MAPSOM was described — a system for semi-automatic ontology
matching. A user involvement is providing by visualization of an output layer of
SOM as well as by an active learning. Thus, a user may achieve the excellent
outcomes in reasonable time.

Furthermore, it is possible to use this system for integration of various formats,
not only ontologies. For example, this system is employed for integration of data
stored in excel sheet [67]. MAPSOM is suitable for an integration of data models in
the industrial automation domain including CPSs because of the capabilities of the

system.



Chapter 10

Semantic Big Data Historian

The Semantic Big Data Historian (SBDH) was proposed and developed to manage
the semantic integration of CPS components. SBDH is an extension of common his-
torian software. In general, a historian software is used in the industrial automation
to gather data and then to provide access to the data and possibly also analytics
of them. The historian software is usually optimized to allow fast and compressed
storage of data, but not much attention is paid to analytics or heterogeneous data
integration. Moreover, a capacity of a historian storage has in common limited size.
Thus, the original architecture of historians becomes insufficient with advances in
industrial informatics, and thus new technologies are applied, e.g., Big Data tech-
nologies or a cloud.

As already mentioned, an ontology is a suitable data model representation for
sharing knowledge among all CPS parts. An ontology provides an unambiguous and
clear understanding of modeled concepts and their properties. Unfortunately, the
performance deficiencies are caused mainly by poor efficiency of triple stores and
non-effective data representation which on the other hand ensures clear knowledge
interpretation.

Big Data approach was employed to preserve unambiguous and clear knowledge
representation and overcome the performance problems of processing large-scale data
represented in ontologies. Data managed by a CPS are usually of big volume and

are produced with high speed. Thus, the data velocity and volume refer to the
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second type of big data (according to big data taxonomy introduced by NIST —
described in chapter @ where horizontal scalability is required for effective analysis,
and there could be a limitation for a relational database according to NIST review.
Furthermore, there is also the last criterion (variety) of data as well. In many cases,
a CPS has to process data produced by sensors from various manufacturers as well
as a CPS has to control various actuators. Moreover, the variety increases when a
CPS has to integrate data from other sources, e.g., MES/ERP systems or external
sources such as weather forecast.

In this chapter, the mentioned SBDH, which benefits from the employment of Big
Data and Semantic Web Technologies, is introduced. This solution was proposed to
overcome common deficiencies of available solutions in case of handling (i.e., storing,
processing and querying) of RDF triples.

In following paragraphs, the architecture of SBDH is described with the focus
on the storage layer whose architecture and implementation is essential for a proper
operation of SBDH. Next, two versions of SBDH storage layer are introduced —
the first one based on Apache Hadoop and Jena Elephas and the second one which
employs Apache Spark together with Apache Cassandra. After the presentation of
the storage layer representations, an integration of the experimental CPS model with
external data sources using COCI ontology is demonstrated. Finally, the proposed
data model for storage RDF triples produced by SBDH is introduced followed by

several experiments.

10.1 Semantic Big Data Historian Architecture

Semantic Big Data Historian was proposed to facilitate data acquisition, processing,
integration, storage, and analyzing. Therefore, it should provide a flexible environ-
ment for enabling implementation of various data connectors to sensors/actuators
or other sources (e.g., OPC DA, OPC UA, PROFINET, JDBS, etc.). Next, SBDH
has to provide high-performance data processing and storage together with means
for subsequent data analysis.

The architecture of Semantic Big Data Historian (SBDH) is introduced in the
following paragraphs, and the architecture is illustrated in the Fig. [10.1]
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Figure 10.1: Architecture overview of Semantic Big Data Historian.

The historian architecture is divided into four main layers — data acquisition

and control layer, transformation layer, data storage layer, and analytic layer.

o Data acquisition and control layer — collects data from sensors (or actuators),
other systems related to a given application (for example from MES/ERP
systems — information about shifts, supply chain, etc.), and relevant external
data sources (e.g., weather forecast, traffic information). Various data sources
are gathered and connected mainly via OPC UA [107]. Furthermore, this
layer provides a possibility to control actuators. The platform heterogeneity

(various developers and manufacturers) has to be resolved by this layer.

o Transformation Layer — transforms data to the unified semantic form accord-
ing to COCI ontology. This layer is responsible for data pre-processing (correc-
tions of damaged data, etc.) if needed. Created triples are subsequently stored
in the corresponding storage system. The semantic heterogeneity is solved by

this layer.
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o Data storage layer — several triple stores were evaluated during SBDH de-

velopment. The most promising solutions were 4St0reE|, CumuluSRDFﬂ and
Hadoo;ﬂ together with Jena Elepha&ﬂ Every mentioned solution has a cer-
tain limitation (performance issues, limitations caused by design) and thus the
Data storage layer was implemented by means of Apache Sparkﬂ and Apache
Cassandraﬂ The data storage layer is described in the section in detail.

Analytic layer — this layer provides access to directly connected storage layer
for custom analytic programs or custom user queries. In the current imple-
mentation, SBDH provides the possibility to perform analysis with the help of
Apache Spark and MLliHﬂ

10.1.1 Data Storage Layer

Several prerequisites were identified for enabling proper utilization of RDF data

form in industrial automation domain especially concerning Industry 4.0. The most

important prerequisites are as follows:

o A suitable and correct ontology for representing required knowledge. Appar-

ently, this is the cornerstone of the overall proposed solution, and this approach
has more drawbacks than benefits without properly captured knowledge in the

ontology.

A modular and scalable way how to interconnect system parts. There are sev-
eral suitable ways for an interconnection of all parts of a distributed system. A
suitable way is strongly dependent on a given application domain. Nowadays,
some promising and versatile standards are coming to the fore — for example,
OPC UA [108]. This standard offers versatile approach how to design infor-
mation model as well as a way how to communicate across various operating

systems and from a shop floor to highest enterprise levels (e.g., ERPED.

Thttp://4store.org
2https://code.google.com/p/cumulusrdf/
3http://hadoop.apache.org
4https://jena.apache.org
Shttp://spark.apache.org
Shttp://cassandra.apache.org
"https://spark.apache.org/mllib/

8ERP — Enterprise resource planning system
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o Realization of the data storage layer — the right selection of the technology
which will be used together with proper data model definition according to
a given application should ensure efficient and faultless system operation. In

this section, the possible solution is discussed and presented in detail.

o Analytical and querying tools. An appropriately operating system is valueless
without any reasonable tool which is able to access information stored in the
system. It means the way how to query data by a user or another system via a

proper APT as well as the basic/advanced tools for conducting analytical tasks.

This section is focused on the realization of the data storage layer of the SBDH.
It is the essential component (together with a corresponding ontology) of the system
which is intended for handling and storing RDF data. The realization of the data
storage layer influences an efficiency of data management and processing itself as
well as a scalability of possible applications.

Many different systems for the storage layer implementation were tested during
years of the SBDH development. Solutions based on available triplestores have sev-
eral drawbacks, but the main insufficiency is their performance. Thus, the proposed

prototype was built upon some Big Data framework.

The First Version of SBDH Storage Layer.

The first version of SBDH prototype has the storage layer based on Apache Hadoop
together with Jena Elephas. This solution has many advantages, for example, it
offers the very robust environment for massive distributed parallel data processing
and very efficient cluster management with the help of YARNEI — providing the
computational resources (e.g., CPUs, memory, etc.) needed for application execu-
tions. Furthermore, there are available many additional tools for extending data
processing and conducting various analytical tasks — Hivﬂ HBasdE Mahoudﬂ
KNIMEH connected by means of Hive connector, etc.

9YARN — Yet Another Resource Negotiator
10https:/ /hive.apache.org
Mhttps://hbase.apache.org
2http:/ /mahout.apache.org
13https://www.knime.org
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The Hadoop Distributed File System (HDFS) is designed to work with sequence
files [109]. The SequenceFile is a flat file consisting of binary key/value pairs and is
used in MapReduce [I1I0] as input/output formats. This input/output format has
many benefits — more compact than text files, offers support for data compression
(particular records or whole blocks of records), are designed for parallel processing,
etc. Unfortunately, SequenceFiles have one main disadvantage — they are append-
only [ITI]. The “append-only” mode helps maintain easy data consistency. On
the other hand, it is not sufficient for our realization of the SBDH storage layer.
The prototype encountered fundamental problems during integrating (storing and
processing) various data compared to simple storing of sensor data. Thus, the archi-
tecture of the SBDH storage layer has been changed and re-implemented with the
help of Apache Spark together with Apache Cassandra.

Data Storage Layer Based on Apache Spark and Apache Cassandra.

The more suitable solution for the data storage layer for SBDH seems to be the
combination of Apache Spark together with Apache Cassandra.

Apache Spark is a fast and general-purpose computing system which provides
high-level APIs in Java, Scala, Python, and R. It also provides a set of additional
tools including SparkSQL for SQL and structured data processing, MLIib for ma-
chine learning, GraphX for graph processing, and Spark Streaming. Spark may be
deployed in three different modes depending on the used cluster manager — Stan-
dalone, Apache Mesos, and Hadoop YARN. The standalone deployment mode uses
a simple cluster manager included in Spark which is sufficient for clusters that are
not big. On the other hand, Mesos and YARN cluster managers should be utilized
for huge clusters for improving the cluster performance.

Apache Cassandra is a NoSQL database project which originated at Facebook
and is maintained by Apache Software Foundation. It is built on Amazon Dy-
namoDHE and Google Big Tablelﬂ Cassandra was designed as a distributed data-
base for managing large amounts of structured data across many commodity servers
and for offering high availability. In comparison to the common NoSQL databases,

the Cassandra uses a hybrid model between key-value and column-oriented data-

Mhttps://aws.amazon.com/dynamodb/
15https://cloud.google.com /bigtable/
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Figure 10.2: Example of Data Storage Layer architecture combining Apache Spark
and Apache Cassandra.

base — based on defining super-columns and column-families. The topology of a
Cassandra cluster is “masterless ring” due to overcoming a legacy master-slave ar-
chitectures. The advantages of the Cassandra database could be summarized as
follows — continuous availability, linear scale performance, operational simplicity
and easy data distribution across multiple data centers.

In the proposed data storage layer, Spark and Cassandra clusters are deployed to
the same set of machines. Cassandra serves as data storage, and Spark worker nodes
are co-located with Cassandra and perform the data processing tasks. When a job
is created, the Spark workers load data into memory and perform the required data
processing. Very important fact of such processing is that there is no overhead with
superfluous network traffic. Finally, the results are written back to the Cassandra
tables or propagated to other systems. The architecture of the SBDH data storage
layer is illustrated in the Fig. [10.2]

Data are stored in Cassandra tables by means of the Hybrid SBDH Model
(see section . In detail, data corresponding to general entities are vertically
partitioned by a predicate, e.g., the table named hasQuantity UnitOfMeasurement
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contains corresponding subjects and objects — :C02ds048 :parts-per-million, etc.
Next, time-related data are stored according to the hybrid SBDH model, e.g., the
table with the composite name (subject#object) CO2ds048#hasQuantity Value con-
tains objects representing measurements together with their timestamp — 2012-04-
29T00:00:10 355.0, etc. The emerging problem is how to automatically recognize the
right model for given entities in this approach. This problem is handled as follows
— if the concept is connected with some object with the type timestamp, then the
data are stored in hybrid SBDH model.

10.2 Validation Study

The semantic integration by the employment of shared ontology COCI (described
in section is discussed together with the Semantic Big Data Historian in this
section. The already mentioned experimental system is utilized (the hydroelectric
power plant) for the demonstration. As mentioned, data for processing include data
measured by 38 sensors in the power plant including for example measurement of
fall of water, frequency, power factor, and real power. All data from power plant
sensors are read with 5-second sampling rate. These data sources are connected via
implemented adapters to comply with the COCI ontology.

The significant problem is the performance issue in the context of sensors data
processing — especially in the case when data are stored as RDF triples. Our sensors
produce 656,640 samples per day. If these data are transformed into triples, then
the volume of data is equal to 5,253,120 triples per day and it corresponds to 1,917
mil. triples per year.

Moreover, it is needed to involve additional data sources for the improvement of
analytic results. The data integration involves available online information covering
meteorological data (temperature and precipitation) and hydrological data (rate of
flow, water level, and water temperature) for relevant locations. These data consist
of measured samples as well as the prediction. The sampling rate is 1 hour for
meteorological data and 10 minutes for hydrological data. These external data
add negligible volume in comparison to data from the power plant, but they bring
important information. Additionally, a plan is to extend the data by the purchase

prices of electricity, by who is present at power plant premises, etc. All of these
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data may be utilized for an improvement of prediction accuracy in the case of the
experimental CPS and the stop-problem.

The Fig. [10.3] represents partially the COCI ontology model of CPS components
integration used by the historian. There is the concept model (including concepts
from DOLCE ontology@ in the upper part and individuals representing one sensor
and its measurement for every data source in the lower part of the figure. During
SBDH operation, all of the incoming samples from all data sources (power plant
sensors and external sources) are transformed into RDF triples, e.g., Sensor_RP_0001
hasLocation Generator. Next, the triples are stored in the corresponding triple store.
When data are transformed and stored, then they may be utilized for subsequent
analysis or direct user queries.

The advantage of this way of the integration represented by the COCI ontology
and the SBDH are as follows — the ontology is able to describe (with the help
of axioms) the reality in its representation. On the contrary, classical schemas (as
a database schema) are representation mechanisms that are designed to meet the
requirements of a particular application and when the requirements change it is
difficult to change the schema and the implementation as well. Next, data can be
easily queried in SPARQL. Relationships within data are explicitly described and
directly accessible, and therefore SPARQL queries are significantly closer to a user
understanding of the problem. For example, the sample query for listing all sensors
located in the generator is described in Query

Listing 10.1: Listing all sensors in generator.

PREFIX : <http://www.loa-cnr.it/ontologies/DUL.owl#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX coci: <http://www.rockwellautomation.com/RADIC/COCI#>
PREFIX ssn: <http://purl.oclc.org/NET/ssnx/ssn#>
SELECT 7sensor

WHERE {7sensor :hasLocation coci:Generator.

?sensor a 7sensorType.

?sensorType rdfs:subClass0f+ coci:Sensor}

6http:/ /www.loa.istc.cnr.it /old/DOLCE.html
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Figure 10.3: CPSs integration by means of COCI ontology.
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As mentioned, the exploitation of ontology offers the possibility to check data
consistency and reasoning. Furthermore, the expressivity can be significantly in-
creased by utilization of the Semantic Web Rule Language{ﬂ The equation m
illustrates a sample SWRL rule for the malfunction detection caused by unaccept-

able rotations of the generator.

Generator(?g) A hasRotation(?g, ?rot) (10.1)

A swrlb : greaterThan(?rot,1500) — hasFailure(?g)

10.3 RDF Storage for Semantic Big Data Historian

As already mentioned, a utilization of triplestores was chosen to store, query and
retrieve the data, such as time series of measured sensor data. For processing of
huge amounts of data, including their analysis, a scalable approach is needed. Let

us discuss the solutions for our Semantic Big Data Historian.

There are many various already existing triplestores which offer mainly “data-
base” for RDF triples (based on different technologies) and subsequently different

support of data querying, inferring, etc.

The important triplestores characteristics include triplestore performance (re-
quired time for query processing) and the capability to store as many triples as pos-
sible. Widespread and well-known RDF triplestores [112] 113, 114} [TT5] are based on
a centralized approach. These solutions have become unsatisfactory in the current
trend of increasing data production due to their limited scalability. In addition to
those centralized approach solutions, there are several distributed solutions (Apache
Accumulo [116] or HadoopRDF [117]).

The available triplestores optimize the triple storage for general data models. On
the other hand, when a deployment within industrial automation domain is consid-
ered then it is obvious that the prevalent amount of data are sensor measurements.
Thus, the possible solutions of how to optimize RDF triple storage model for the

time series data are introduced in the following paragraphs.

Thttps:/ /www.w3.org/Submission/SWRL/
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10.3.1 Data Models for Triple Store

Three different approaches were identified for storing RDF data in a distributed way
according to the method of data model handling:

o Single file/table model preserves the triple construct of standard RDF.

o Vertical partitioning model splits RDF triples according to their proper-

ties.

o Entity class-based model utilizes high-level entity class graph to create
RDF partitions [I18]. First, similar entities (subjects) are grouped (according
to similarity measure) into an entity class. Corresponding entity class graph is
then partitioned. This model is not discussed in detail in the following sections

because it is not used in our Semantic Big Data Historian.

Single Table Model

The single table model preserves the RDF triples in the form (subject, predicate, ob-
ject). In other words, data are stored within a database system in one file/table. The
database system is then responsible for splitting the tables into blocks, replicating
the blocks, etc.

The system based on this approach and HDFS (Hadoop Distributed File System)
is for example PigSPARQL [II8]. Furthermore, SHARD [I19] uses a variation of
the single file model where triples with the same subject are merged into one line of
a file/table.

:C02ds048 rdf:type :C020bsValue :hasQuantityValue 355.0

:hasQuantityUnitOfMeasurement :parts-per-million

Vertical Partitioning Model

The previously described single table model is easy to implement but has some
disadvantages. The main obstacle is the I/O cost during query processing. A more
suitable model is represented by vertical partitioning model. In this model, triples
are partitioned concerning their property and stored in files/tables named according

to the corresponding property name. The vertical partitioning model is employed for



SEMANTIC BIG DATA HISTORIAN 109

example in [120]. In the case of SBDH, the table hasQuantityUnitO0fMeasurement

contains the following data:

:C02ds048 :parts-per-million
:THSds075 :percentage
:THSds075 :degreeCelsius
:PRSds032 :hectopascal

This model overcomes deficiencies of the single table model but data are not
homogenously distributed in tables in some cases (e.g., the type table is usually a
very big table). In the case of SBDH, the biggest table would be hasQuantityValue
as this relation is the most used one.

Further table splitting can be performed for ensuring homogeneous data distribu-
tion among files. HadoopRDF creates partitions according to data property and ob-
ject as well. For example, the triple (: THSds075 :hasQuantityUnitOfMeasurement
:percentage) would be stored in a file named

hasQuantityUnitOfMeasurement#percentage.

Hybrid SBDH Model

Our current realization of the SBDH storage architecture is based on combining
single table model and vertical partitioning-like model. This hybrid model replaced
previously used single table model which had insufficient performance due to the
high I/O costs during query processing. The single table model is unsuitable for
time-series data storage. Especially for queries with range filter expressions and
order constraints the acceptance was not acceptable.

The vertical partitioning is used for all sensors measurements where the partitions
are created with respect to subject and property accompanied by a timestamp. For

example, the table C02ds048#hasQuantityValue contains the following data:

2012-04-29T00:00:10 355.0
2012-04-29T00:00:40 355.1
2012-04-29T00:01:10 355.0
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Other triples are stored according to the vertical partitioning model. The dif-
ferent data handling of sensors measurements reflects the fact that an amount of

measurements is significantly bigger than the rest of data.

10.3.2 Comparison

Several tests were conducted for demonstrating the suitability of the proposed hybrid
SBDH model on data from the hydroelectric power plant. The hardware for these
tests was the computer with two hard disks (SSD + magnetic HDD), 32 gigabytes
of memory and CPU was Intel Core i7-7700T.

The cluster of Spark and Cassandra nodes was deployed using Docker containers.
First, tests with two Spark workers and two Cassandra nodes were conducted. The
importance of two separated hard disk resides in ensuring independent data storage
for each cluster node. Shared data storage affects the speed of reading/writing
operations. The objective of this test was the performance comparison of single
table model, vertical partitioning model, and hybrid SBDH model. The test was

focused on writing and reading sensor measurement sequence.

Single Vertical | Hybrid
Table | Partitioning | SBDH
Write 1000 sensor samples 36.522s 29.612s 13.027s
Write 10000 sensor samples 94.428s 70.298s | 34.412s
Write 100000 sensor samples | 299.647s 296.767s | 149.293s

Table 10.1: Comparison of different data models - writing data.

Single Vertical | Hybrid
Table | Partitioning | SBDH
Read 3000 sensor samples 60.022s 20.012s 9.716s
Read 10000 sensor samples | 113.428s 22.298s | 10.231s

Table 10.2: Comparison of different data models - reading data.

The performance comparison of the different data models during writing sensor
samples is presented in Table Next, the performance comparison during reading
sensor samples is presented in Table [10.2]
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The measured times of experiments are mainly influenced by a different number
of tables which are required to be accessed during the reading/writing operations.
Different tables access according to the particular data model are summarized in the

following list:

o Single table model — it is needed to access only one table, but filtering is

very demanding operation. Whole records have to be parsed during filtering.
o Vertical partitioning model — two tables have to be accessed.

o Hybrid SBDH model — only one table has to be accessed.

Furthermore, it is important to be aware that the single table and vertical par-
titioning models store data from more sensors into one table. Therefore, next ex-
periments were conducted to find out how the number of sensors stored in a table

affects reading performance.

# of sensors | Vertical Partitioning.
1 sensor 22.298s

2 sensors 24.321s

3 sensors 28.982s

4 sensors 30.842s

Table 10.3: Vertical partitioning various number of sensors stored in one table —
reading of 10,000 sensor samples

One of the experiments demonstrating dependency between the number of sen-
sors and the reading time is described in Table It shows that the reading time
is not increasing together with the sensor number in a linear way according to our
experiments. This verification is important for SBDH because this model is utilized

for storage of non-time related data in the proposed historian.

10.4 Summary

In this section, proposed Semantic Big Data Historian, which is able to store and
process a huge amount of RDF data, is introduced. First, the overview of SBDH

architecture is provided together with the description of the storage layer in detail.
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Next, the integration of a CPS sensor and external data sources is demonstrated.
Then, several data models for RDF storage including the hybrid SBDH data model,
which is used for storage of sensors measurements, were described.

Furthermore, experiments (the integration of various data sources and the evalua-
tion of data models characteristics) proved the feasibility of the semantic integration

of CPS components by employment a shared ontology.



Chapter 11

Plug&Play Components of
Cyber-Physical Systems

For many years, manufacturers desire to have an automatic system where an em-
ployee connects a new part/device without any additional configuration. Neverthe-
less, no contemporary system offers such feature. The majority of industrial systems
require configuring new device which has been connected to the system — a configu-
ration of the connections (e.g., IP address of the server where data will be stored), a
configuration of a corresponding database, and configuration of systems responsible

for subsequent data processing.

In this section, an example of the semantic integration of CPS components is
introduced. The example faces the problem of adding/removing a component (a
sensor or an actuator) to/from a complex CPS more or less automatically. This
approach is named as “Plug&Play CPS components” after the similarity with the
well-known Plug&Play concept designed by Microsoft company.

The idea of Plug&Play CPS components was motivated by complex industrial
systems (e.g., a complex production workstation corresponding to a CPS) where
the connection of a new part may cause a non-trivial task from many perspectives
including a configuration or a data model adjustment. There may be distinguished

the following issues related to the connection of a device to a CPS:

113
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Collect data from a sensor or provide feedback to a physical process by exe-

cuting an action by an actuator.
Identify and interpret collected data.
Add a new previously unknown CPS concept into a system.

Process/Analyze collected data.

Obviously, some of the mentioned issues depend on each other or overlap — data

cannot be processed without their acquisition; data cannot be processed without

proper data understanding, etc. In the case of a CPS component removal, all sys-

tem components have to be aware of the missing device to prevent unplanned and

dangerous system behaviors.

Our proposed solution to this problem is built on the following concepts:

Development of a versatile data model which will serve as a knowledge base for

the whole system and will also provide an easy way how to extend the model.

A versatile format for a knowledge representation of device’s data model (inside

the device).
A suitable way for communication between a device and a CPS.

An appropriate description of a device which ensures an unambiguous device

identification.

Providing a flexible schema of CPS to ensure automatic integration of a new

CPS component.

An approach which allows utilizing a new CPS component without any addi-

tional configuration of surrounding systems.

This approach is illustrated and discussed on our developed Semantic Big Data

Historian and experimental CPS which was proposed to resolve the stop-problem of

the hydroelectric power plant.
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11.1 Data Model

As already mentioned, the semantic web technologies are suitable for enabling sug-
gested Plug&Play feature. Properly designed ontology facilitates easy incorporation
of changes (modify/add/remove ontology elements reflecting real-world entities) and
re-usability of the model thus it should be suitable for a description of complex sys-
tems.

Every sensor or actuator is represented as a particular individual of a given con-
cept. Then, only one triple (expressing that the individual belongs to the concept) is
required for full identification of a given device. The example of such triple accom-
panied by triples defining corresponding concepts are listed on the Lst. [[1.2] With
this simple identification, a user or a system has a full overview of available CPS
parameters, its methods as well as their proper meanings. Furthermore, if a suitable
concept is not available for some sensor or actuator then the new device (i.e., the
triples representing the missing concept in the ontology) may be added automati-
cally in certain case — a manufacturer of the device has to use some of the already
existing ontology concepts as a predecessor of the new concept. This approach is

demonstrated on the proposed COCI ontology which is described in section 8.1

11.2 Data Storage

The important part of Plug&Play CPS component is the data storage. This storage
has to be based on a general and flexible schema which makes the dynamic device
management possible. The common problem comes up when a new device is added,
and a corresponding table/object for data storage is missing in a database. The
automatic or at least semi-automatic table management has to be solved for enabling
Plug&Play feature. This task poses problems in many legacy database systems due
to system, data, and user security policies. Schemas of legacy database systems are
usually rigid and even a small change may cause big problems. On the other hand,
RDF has no such limitations.

If ontology model is considered, then data are represented as RDF triples and may
be stored in RDF database, i.e., a triple store. An internal structure of every triple

store may vary according to a provider, but triple stores have the common feature —
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a user does not take care of where to store data. All data (RDF triples) are upload
to the triple store in the same way with the same command. A triple store itself is in
charge of subsequent distribution to corresponding tables or files. It is important to
mention here that the majority of triple stores have the insufficient performance for
industrial applications. This deficiency may be solved for example by the utilization

of Big Data approach [121] or by advanced triple storage model [122].

11.3 Subsequent Data Processing

The whole idea is more beneficial with an appropriate connection to the other CPS
components or the surrounding systems which use data from the CPS for subsequent
processing. When the new table with data from a new device is added to legacy
database systems, the corresponding data are not used for processing because the
surrounding systems are not aware of the new structure. This requirement may be
expressed as a support for an ontology-driven application development for accepting
changes in the number of individuals as well as accepting new concepts. For example,
if one developed his application following common approaches then he needs to re-
generate the code of applications in the case of changing data model (especially when
new classes/concepts are added).

On the other hand, these drawbacks may be overcome using the semantic web
technologies. Ontology query language — SPARQL — together with inferencing
offers means how to keep the current view of the relevant parts of the modeled
world. SPARQL provides options how to acquire current model structure easily
and allows to assemble queries close to the human thinking. The query for finding
out temperature sensors contained in a particular generator together with a simple

reasoning is illustrated in Listing [TT.1}

Listing 11.1: Listing all sensors in generator.

PREFIX : <http://www.loa-cnr.it/ontologies/DUL.owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX COCI: <http://www.rockwellautomation.com/RADIC/COCI#>
PREFIX ssn: <http://purl.oclc.org/NET/ssnx/ssn#>
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SELECT 7sensor
WHERE {7sensor :hasLocation COCI:Generator .
?sensor a 7sensorType .

7?sensorType rdfs:subClass0f+ COCI:temperatureSensor

This way of querying is more straightforward than the usage of legacy database
systems where you need the right tables for the query. Furthermore, the reasoning
offers other helpful possibilities as consistency checking, subsumption of concepts,

retrieval of individuals, etc.

11.4 Work Flow

The workflow during the connection of CPS component to the system for clarity and
a better understanding of the Plug&Play principle is summarized in the following

paragraphs. The workflow may be described as follows:

o Development of CPS component.

o Connection of CPS component.

o Initialization of communication.

o Relevant operation between component and the CPS.

Data retrieval.

Data storage.

Calling methods of a given CPS component.

— Ete.
o Data querying and processing.

The essential prerequisite is the compatible device itself. It lies in ensuring
compatibility with communication API of the corresponding CPS and in defining
semantic metadata in the device. The prototype is built on OPC UA standard

which offers means for interconnection of devices as well as versatile object model
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Extension of COCIOntology

New concept of temperature
sensor

COCl:FreqSensor

Individuals Sensor T 143

of connected CPSs

Figure 11.1: Connection of known and unknown sensor.

for modeling corresponding data. The possible way, how to store semantic metadata,

is described in the next section.

The configured component is then connected to a CPS. There are two options
as they were already described — connection of previously defined and not defined
device in the ontology. If a previously known device is connected then data may
be directly moved forward storage or another processing. On the other hand, if
the unknown device is connected and the new concept included in the semantic
metadata is compatible with the ontology then the ontology could be extended, and
the device may be used as needed. In this case, security aspects have to be taken
into consideration. The connection of not verified data could cause unpredictable
situations. These two options are illustrated in Fig.

Next, the communication has to be initialized. Thus, a user needs to set a
connection string to the CPS. This may be done in the configuration phase of a device
or before connection of the device to the CPS. This step may be skipped in the case of
utilization of OPC UA server/client communication — OPC UA standard provides
a possibility for easy device discovery, i.e., local and global discovery serversﬂ The
following task is an identification of the device according to the ontology. The
metadata of the device is parsed and compared with the ontology.

If a device is connected then data of a device may be correspondingly processed

and stored. Finally, stored device data may be used for processing by the CPS,

surrounding systems or queried by a user.

Thttps://opcfoundation.org/developer-tools/specifications-unifiedarchitecture/part-12-
discovery/
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11.5 Validation Study

In this section, a prototype implementation of the Plug&Play CPS component, and
CPS component deployment with the help of the Semantic Big Data Historian is
described. The prototype implementation resides in an extension of a sensor data
model by a metadata with RDF triples defining the sensor. Adapted sensors are
subsequently used in the experimental CPS which is applied to the hydroelectric

power plant “stop-problem”.

11.5.1 Semantic Extension of Sensor Data Model

Two different approaches to representing OWL triples defining a given device were
proposed. The first approach extends the common way of data representation and
communication. The extension resides in the creation of a string variable where
annotation of the device is stored. The second approach is based on modeling of the
correspondent data model within the particular format. This method assumes that

the used data format has adequate expressional capabilities.

RDF Representation in String Variable

The first way, how to include a semantic annotation in a device data model is to store
a corresponding part of the RDF file directly into a string variable. The variable
is named COCIMetadata in our case. The extended data model corresponding to a
COCISensor is depicted in the Fig. This concept of COCI ontology named CO-
ClSensor is a general concept and acts as a superclass of particular sensor concepts
(e.g., FrequencySensor which is also shown in the Fig. .

BaseObjectType

4
hasSubType

)
i _(_IOCISensor )
State ]l Output ) Start )(x Stop X Range )L )
: 7y

I hasSubType I I
( FrequencySensor )(TemperatureSensor)( HumiditySensor )( HumiditySensor )

Figure 11.2: RDF Representation in the string constant — COCIMetadata.
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Next, the example of the COCIMetadata content for a specific frequency sensor
is shown in the Listing The frequency sensor definition is presented in the
turtle language format for better readability. Besides definition of the sensor class,
the COCIMetadata variable contains information about individual attributes, e.g.,

individual name.

Listing 11.2: Frequency sensor definition in turtle language.

<http://www.rockwellautomat...COCI#FrequencySensor> rdf:type :Class;
"rdfs: subClassOf <http://www.purl...ssn#SensingDevice>,

[rdf: type :Restriction;

:onProperty <http://www.purl...ssn#observes>;

:hasValue <http://www.rockwellautomat...COCI#frequency>].

<http://www.ro...COCI#Sensor_F1> rdf:type <...COCI#FrequencySensor>,
:NamedIndividual.

This approach brings many advantages. The implementation is easy even in
conventional communication standards and this realization is possible everywhere
the string variables are allowed. Next, no special adapters for a semantic information
processing are needed — a content of COCIMetadata is processable by RDF tools
and libraries (e.g. owlapiE[). Moreover, this approach reflects the original intention of
OPC UA (sharing common data models), i.e., specifications of node sets such as OPC
UA Field Device Integration (FDI), OPC UA MTConnect Companion Specification
(MTConnect), OPC Analyzer Devices Integration (ADI), etc. On the other hand,
the expression of semantic information is hard to understand in comparison with
the approach which is introduced in the following paragraphs. A disadvantage of
this way may be seen in a redundant data storing - entities and their relations are
modeled in an ontology as well as in an OPC UA model. It may cause a possible

tendency to lose a data integrity during an incorporation of model changes.

2http:/ /owlapi.sourceforge.net
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OPC UA Model of the Ontology

The second possible approach is to model the related part of an ontology directly in
a suitable standard — for example, OPC UA. A conversion from an ontology model
to OPC UA data model and vice versa are described in [123, [124]. It is important
to remark there are some limitations in the conversion from ontology to OPC UA
caused by different expressivity. However, it is sufficient for proper modeling of all
relevant entities which are used for the definition of CPS components as well as their
identification according to the COCI ontology.

The main advantage of this approach is easier data understanding compared to
the previously mentioned representation. On the other hand, an adapter has to be

implemented for transforming data from OPC UA model to the RDF format.

11.5.2 Plugé&Play CPS Component

As mentioned, the Plug&Play property of a device is not ensured only by a given
device but also by a whole CPS which is responsible for device identification ac-
cording to a shared ontology. It is represented by SBDH in our case. The overall

architecture of SBDH with connected Plug&Play components is illustrated in the

Fig. [[T.3]

/ Semantic Big Data Historian \ O
K
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Figure 11.3: Plug&Play sensors in Semantic Big Data Historian.

The Plug&Play approach has been modeled and verified with the help of previ-
ously described stop-problem of the hydro-electric power plant. The power plant is
equipped with 38 sensors in the power plant including for example measurement of

fall of water, frequency, power factor, and real power. The Plug&Play approach facil-
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itates from mentioned COCI ontology which describes all of the power plant sensors
and actuators together with data from external data sources like online information
covering meteorological data (temperature and precipitation) and hydrological data
(rate of flow, water level, and water temperature) for relevant locations.

All data from power plant sensors are read with 5-second sampling rate. The
amount of data means significant problem — the performance issue of processing
huge amount of RDF data. Our sensors produce 656,640 samples per day. If these
data are transformed into triples, then the volume of data is equal to 5,253,120
triples per day and it corresponds to 1,917 mil. triples per year. Such an amount
of fast-produced sensor data should be considered as a big data according to NIST,
and horizontal scalability is for efficient processing [93]. The processing of such
amount of RDF triples is very time consuming or impossible in the case of common
triple stores. A way how to face the performance issue of processing huge amount
of RDF-triples is presented in [122].

COCIMetadata is represented by means of string variable based on conducted
experiments. This approach has the main advantage in COCIMetada processing by
available libraries (e.g., OWL AP]E[).

Smart sensors are connected using OPC UA standard. Mildﬂ OCP UA library is
used for implementing OPC UA servers (located in the CPSs) and OPC UA client
(located in SBDH). Smart sensor (frequency sensor) information model of OPC UA
servers is illustrated in the Fig.

Next, the transformation engine identifies COCIMetadata (see Lst. of the
connected smart sensor according to COCI ontology. If the smart sensor concept is
not defined in the ontology and the super concept of smart sensor is in the ontology,
then the ontology is correspondingly extended. The connections of a known sensor
(frequency sensor) and unknown sensor (temperature sensor) are illustrated in the

Fig. Subsequently, measurements are stored in the historian triple store.

11.5.3 Localization

Very important and interesting information to be provided by the self-describing

sensors is their localization. This issue is beyond the scope of this work. However, the

3http://owlapi.sourceforge.net
4https:/ /projects.eclipse.org/proposals/milo
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localization of CPSs is supposed to be implemented according to a given application.
Unfortunately, there is no versatile solution suitable for all possible applications.

At first, a location of CPSs is stored in COCI Ontology with the help of concepts
defined in DOLCE ontology. It provides properties for a location, an approximate
location, a descriptive place, a participant place, a situation place, etc.

The appropriate localization method depends on a given application as well as on
a used connection technology. If localization of CPSs is considered within a complex
machine or production line and CPSs are connected via an ethernet connection,
then localization may be easily done by static IP addresses and predefined location
of ethernet plugs stored in the ontology.

The problem becomes more complex when CPSs are connected via wireless tech-
nologies. There are many already implemented and promising solutions. For exam-
ple, NextMe [125] solution is localization based using cellular traces in an internet
of things which may be generalized for a wider set of applications. A large set of so-
lutions use for localization wireless networks [126] [127] including industrial wireless
sensor networks.

The most straightforward and the easiest solution is the storage of a location
of the CPS in COCIMetadata directly in RDF. On the other hand, this approach
makes CPS interchangeability more difficult and goes against the idea of Plugé&Play

devices.

11.6 Summary

In this chapter, the concept of Plug&Play CPS components was introduced. This
concept may be understood as a low-level integration of CPSs, but the solution
concepts may be utilized for high-level integration of CPSs as well. The proposed
solution was verified on a solution of the stop-problem of the hydroelectric power
plant.

The proposed Plug&Play concept facilitates the change management in the
context of industrial CPSs. The configuration of a new CPS component is time-
consuming as well as error-prone. In the perspective of Plug&Play devices, the
whole configuration responsibility is moved to the design phase and is mostly re-

peatable for a given sensor or actuator. Therefore it is less expensive, more robust
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and resistant to configuration errors and very importantly more modular — CPS
components may be easily reused.

Based on the conducted research, it is obvious the Plug&Play concept does not
rely only on the utilization of OWL format for data representation and changes of
devices data model but also changes of an overall CPS data model and a specific way
of analyzing the data from a connected device. In detail, the research achievements

may be summarized as follows:

o OWL was chosen as the suitable format for data representation. This format
has two main advantages — a meaning of a particular device and its related
properties may be properly understood without any context. A reasoning may

be employed for advanced analytics.

o After experiments, the COCImetadata representation as a string variable seems
to be more promising than the other one. The main advantages are a wide
spectrum of data formats which can handle data model extension. Next, a

utilization of existing software of OWL files processing.

o The last significantly important aspect is data analytics. The analytic sys-
tems have to be driven by purposes of relevant devices instead of hard-coded

algorithms.
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Chapter 12

Conclusions

In this chapter, the content of the dissertation thesis is summarized together with
the evaluation of the thesis goals fulfillment, and the summary of the main thesis

contributions. Next, future research directions are introduced.

12.1 Summary and Discussion

The introduction specified the goals of this dissertation thesis and is followed by the
state-of-the-art relevant to the thesis.

The term Cyber-Physical System becomes well-known with the help of Industry
4.0, but this work attempted to show that the origin of these devices is older than the
fourth industrial revolution. CPSs are not only a simply interconnected physical and
computational processes but may be represented by more complex devices composed
of many integrated components, and moreover, CPSs may also include a human or
a cloud part. The complex nature of CPSs demands a complete understanding of
all CPS components. It may be a difficult requirement, especially in the case when
components are produced by various designers. Thus, the main obstacle for perfect
integration of CPS components is resolving of the semantic heterogeneity.

An integration of a CPS components may be facilitated by ontologies and Seman-
tic Web technologies which may serve as a data model of a CPS. This thesis intro-

duced and explained the well-known ontology definition: “An ontology is a formal,

129
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explicit specification of a shared conceptualization.” This definition is supplemented
with the rigorous ontology definition which should offer a better understanding of
the main ontology constituents. Furthermore, various ontology representations with
the focus on languages for Semantic Web were discussed.

The problem of an information integration was discussed together with an in-
troduction of the main already mentioned obstacle in the information integration
process — data heterogeneity. Ontology matching methods were described because
they may be helpful in finding relevant elements from a given data models, i.e., in a
reduction of the semantic heterogeneity. Next, suitable formats for a representation
of CPS related data were described. First, special attention was paid to a usage of
upper ontologies (mainly SUMO and DOLCE) for supporting the task of an infor-
mation integration. Next, XML and derived neutral formats for representation and
interchanging information related to CPS components were described.

An employment of an ontology for a knowledge representation causes in perfor-
mance problems during data handling. It is one of the most significant obstacles
which slow down adoption of semantic technologies within the industrial domain.
Thus, Big Data paradigm and corresponding frameworks, which may offer a solu-

tion to the performance problems, were introduced.

12.1.1 Semantic Integration in the Context of Cyber-Physical

Systems

Two different levels of the integration challenge of CPSs were identified — the low-
level and the high-level integration. These different integrations suffer from similar
problems, and therefore the defined steps for the solution of the integration process
(resolving of the platform, syntactic, and semantic heterogeneity) may be applied
on both of them.

This work is focused on the low-level integration problem, i.e., an integration of
CPS components. The platform and the syntactic heterogeneity may be resolved
by an implementation of corresponding adapters straightforwardly. Unfortunately,
a solution of the semantic heterogeneity is more complex, and the essential require-
ment for its correct solution is based on the precise identification of corresponding

elements. Thus, a solution, which benefits from a utilization of ontologies and on-
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tology matching methods to deal with the semantic heterogeneity of various CPS
components, was proposed.

As the first requirement for resolving the semantic heterogeneity, Component On-
tology for Cyber-physical system Integration (COCI) was developed. This ontology
is able to describe sensors, actuators, and related processes and actions. The main
benefit of the ontology utilization is the capability of unambiguous identification of
devices which may be not misinterpreted even without a given context. Moreover,

the proposed solution also offers additional benefits:

o Ontology matching methods may be exploited more precisely for identification

of corresponding entities.

o A reasoner may be employed for providing consistency checking, a possibility
of inferring not explicitly described information as well as a simplification of

user queries.

o A possibility to easily re-use a particular solution in other applications.

The MAPSOM framework was proposed to enable utilization of ontology match-
ing methods in the industrial automation domain. A self-organizing map and active
learning were successfully employed for providing semi-automatic ontology matching
framework which may achieve better precision and recall then automatic matching
systems and also less strenuous task than manual matching. The system was eval-
uated using OAEI benchmarks, and the system proved to be a suitable tool for
matching various entities, e.g., concepts, individuals, etc.

After the verification of basic concepts, Semantic Big Data Historian was designed
and implemented to ensure the feasibility of the proposed semantic heterogeneity re-
duction of a CPS. The historian is based on Apache Spark and Apache Cassandra,
which provide adequate flexibility and performance for the satisfaction of our de-
mands. Furthermore, the hybrid SBDH model was defined for effective handling of
RDF statements.

The overall approach was tested on the experimental CPS which was proposed
to resolve the hydroelectric power plant “stop-problem”. It was verified that the

proposed solution for semantic integration of CPS components is meeting all re-
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quirements for successful deployment, i.e., sufficient expressivity for the description
of the components and related processes as well as sufficient efficiency.

Moreover, this dissertation thesis defines the Plug&Play concept which benefits
from the exploitation of the Semantic Web technologies for the description of CPS
components and utilization of OPC UA. It represents an example of the integration
of CPS components based on the unambiguous description of devices together with
the shared data model. The Plug&Play concept enables a connection a new device
to the CPS with minimal configuration. Furthermore, a newly connected device may

automatically extend the shared ontology of CPS when the device is unknown.

12.2 Fulfillment of the Thesis Goals

In this dissertation thesis, all of the five demanding goals, which were described in

the introduction, were achieved.

1. The problem of CPSs integration was analyzed, and two different levels of a
CPS integration were determined — the low-level and the high-level integra-
tion. Solutions for the relevant types of heterogeneity were identified. First,
the platform heterogeneity and a correspondent solution by means of adapters
which unifies different interfaces. Next, the syntactic heterogeneity and a so-
lution by a unification of different formats with the help of suitable adapters.
Finally, the semantic heterogeneity with a solution concerning an identification

of corresponding elements by means of ontology matching methods.

2. An ontology was identified as a suitable format for a knowledge representa-
tion of a CPS components. The reusability of components is possible only
because of a proper understanding of components’ data models and accept-
ing data models within a correspondent community. The proposed solution
was built on SSN ontology, and SSN ontology was extended by required con-
cepts for actuators. The easy reusability of the ontology is also ensured by its

interconnection with DOLCE ontology.

3. The solution for an integration of heterogeneous data models was proposed.

The solution is based on semi-automatic ontology matching which may be gen-
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eralized for matching various formats not only ontologies. The proposed sys-
tem employed self-organizing map for similarity measures aggregations. User
involvement is ensured by various visualization methods (hit histogram, U-
Matrix, visualization of clusters) as well as by active learning. The solution
was evaluated with the help of OAEI benchmarks, and the outcomes were very

promising even before user involvement, i.e., after the initial phase.

4. This work identified that the solution concerning a representation of CPS com-
ponents in RDF triples may cause performance problems when a huge number
of RDF statements has to be processed. Thus, the framework named Seman-
tic Big Data Historian, which employes a Big Data framework (Apache Spark
together with Apache Cassandra) for overcoming performance problems, was
proposed and implemented. The proposed solution was deployed as Spark
and Cassandra cluster and subsequently was evaluated on the hydroelectric
power plant. Furthermore, the solution includes also Hybrid SBDH Model for

time-series related data storage.

5. The proposed solution was utilized for an implementation of the concept of
Plug&Play CPS components. It demonstrates how semantic technologies may
be successfully used for integration within a CPS. Plug&Play concept corner-
stone resides in a description of the device (CPS component) with the help of
the ontology and subsequent immediate device utilization without any addi-

tional configuration of a system.

12.3 Contributions of the Dissertation Thesis

In the dissertation thesis, the solution for CPS low-level semantic integration was
proposed, and subsequently, this work proved that the integration based on Semantic
Web technologies is feasible. It is due to the concept of Semantic Big Data Historian
which is based on the Big Data framework (Apache Spark) and the suitable data
storage (Apache Cassandra).

This thesis also verified that the feasibility of such an integration is not only about
computational power (i.e., Big Data employment) but also about data representation
— hybrid SBDH model for storage of RDF statements.
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Furthermore, it was shown that ontology matching methods are applicable for an
integration even within industrial automation domain where the highest precision
and recall are required. The approach is based on similarity measures aggregation
using self-organizing maps and active learning for user involvement.

Finally, it was shown that ontologies together with appropriate technologies (e.g.,
OPC UA) may facilitate not only the process of integration but also processes such

as configuration. This concept is called Plug&Play CPS components.

12.4 Future Work

The presented work is the first step on the way for improving interoperability of
cyber-physical systems using ontologies. Nevertheless, many further obstacles have
to be overcome for an adoption of this approach within the industrial domain. The

author of the dissertation thesis suggests to explore the following:

o A possible extension of the solution to be capable involve humans for an ex-
ploitation of their knowledge, mental capabilities, and operational capabilities.
This research direction is important because a human involvement within a
CPS should reduce costs of a CPS, preserve jobs, and provide operations which

are not achievable by devices.

o An additional improvement could be provided by an implementation of the
remaining SPARQL constructs. Translations between simple SPARQL queries
and CQL (Cassandra Query Language) were already implemented but provid-
ing complete SPARQL interface should ensure easier utilization of SBDH.

o The implementation of the proposed approach could be further improved by a
formalization how to utilize a local or/and a global OPC UA discovery servers.
Primary experiments with OPC UA discovery servers were conducted, but
proper methodology and formalization of these servers together with their

exploitation could exploit all servers capabilities.

o Information about a localization of a CPS may be crucial in many applica-

tions. There are two different research problems — a suitable representation
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of localization in a data model and an automatic determination of a CPS

location.
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