
205

UDC 004.021

Original Scientific Paper

JIOS, VOL. 33,  NO. 1 (2009),  PP. 205-217

JIOS, VOL. 33, NO. 1 (2009)  SUBMITTED 12/08; ACCEPTED 03/09 

An Algorithm for Detecting the Principal Allotment among  

Fuzzy Clusters and Its Application as a Technique of  

Reduction of Analyzed Features Space Dimensionality 

Dmitri A. Viattchenin viattchenin@mail.ru

National Academy of Sciences of Belarus

United Institute of Informatics Problems 

Abstract 

This paper describes a modification of a possibilistic clustering method based on the concept 

of allotment among fuzzy clusters. Basic ideas of the method are considered and the concept 

of a principal allotment among fuzzy clusters is introduced. The paper provides the description 

of the plan of the algorithm for detection principal allotment. An analysis of experimental 

results of the proposed algorithm’s application to the Tamura’s portrait data in comparison 

with the basic version of the algorithm and with the NERFCM-algorithm is carried out. A 

methodology of the algorithm’s application to the dimensionality reduction problem is 

outlined and the application of the methodology is illustrated on the example of Anderson’s 

Iris data in comparison with the result of principal component analysis. Preliminary 

conclusions are formulated also. 

Keywords: possibilistic clustering, fuzzy tolerance, allotment among fuzzy clusters, typical 

point, membership degree, dimensionality reduction 

1. Preliminaries

In general, cluster analysis refers to a spectrum of methods, which try to divide a set of 

objects  into subsets, called clusters, which are pairwise disjoint, all non empty 

and reproduce 

},...,{ 1 nxxX  

X  via union. Heuristic methods, hierarchical methods, optimization methods 

and approximation methods are main approaches to the cluster analysis problem solving. 

Clustering algorithms in general can also be divided into two types: hard versus fuzzy. 

Hard clustering assigns each object to exactly one cluster. In fuzzy clustering, a given pattern 

does not necessarily belong to only one cluster, but can have varying degrees of memberships 

to several clusters. Heuristic methods of fuzzy clustering, hierarchical methods of fuzzy 

clustering and optimization methods of fuzzy clustering were proposed by different 

researchers, but the most widely used is the -algorithm. Conceived by Dunn [5] and 

generalized by Bezdek [2], this family of algorithms is based on iterative optimization of a 

fuzzy objective function. Many fuzzy clustering algorithms are proposed by other researchers. 

Moreover, a possibilistic approach to clustering was proposed by Krishnapuram and Keller 

[8]. A concept of possibilistic partition is a basis of possibilistic clustering methods and the 

possibilistic membership values 

FCM

li! , cl ""1 , i n""1  can be interpreted as the values of 

typicality degree. The possibilistic approach to clustering can be considered as a way in the 

optimization approach in fuzzy clustering because all methods of possibilistic clustering are 

objective function-based methods. Different fuzzy clustering algorithms are described by 

Sato, Sato and Jain [9] in detail. 

The most widespread approach in fuzzy clustering is the optimization approach. 

However, heuristic algorithms of fuzzy clustering display high level of essential clarity and 

low level of a complexity. Some heuristic clustering algorithms are based on a definition of a 

cluster concept and the aim of these algorithms is cluster detection in conform to a given 

definition. These algorithms are called direct clustering algorithms [13]. Direct heuristic 



206

JIOS, VOL. 33,  NO. 1 (2009),  PP. 205-217

VIATTCHENIN  AN ALGORITHM FOR DETECTING... 

algorithms of fuzzy clustering are simple and very effective in many cases. The algorithm of 

Couturier and Fioleau [4] is a very good illustration for these characterizations. 

An outline for a new heuristic method of fuzzy clustering was presented by Viattchenin 

[12], where concepts of fuzzy  -cluster and allotment among fuzzy  -clusters were 

introduced and a basic version of direct fuzzy clustering algorithm was described and the 

version was called the -algorithm. The basic version of direct fuzzy clustering algorithm 

requires that the number  of fuzzy 

AFC

c  -clusters be fixed. The allotment of elements of the set 

of classified objects among fuzzy clusters can be considered as a special case of possibilistic 

partition. These facts were demonstrated in [14], [15]. That is why the basic version of the 

algorithm, which is described in [12], can be considered as a direct algorithm of possibilistic 

clustering and the algorithm can be called the )(cAFCD! -algorithm. The -

algorithm is a basis for other clustering algorithms [13], [14].  

)(cAFCD!

The main goal of this paper is a detailed consideration of a modification of the 

-algorithm, which is oriented at detection of the unknown least number of 

compact and well-separated fuzzy clusters. For this purpose, the concept of the principal 

allotment among fuzzy 

)(cAFCD!

 -clusters is introduced in the paper. So, the modification can be 

called as the -algorithm. The contents of this paper are following: in the second 

section basic concepts of the method considered, the concept of a principal allotment is 

introduced and the general plan of the 

PAFCD!

PAFCD! -algorithm is proposed, in the third section a 

numerical example of application of the PAFCD! -algorithm to the Tamura’s portrait data in 

comparison with the -algorithm and with the well-known relational fuzzy 

clustering -algorithm of Hathaway and Bezdek [7] is given, in the fourth section a 

methodology of the -algorithm’s application to the solving of the problem of 

reduction of analyzed features space dimensionality is described and illustrated on the 

Anderson’s Iris data example in comparison with the result of conventional principal 

component analysis, in the fifth section some final remarks are stated. 

)(cAFC

PAFC

D!

!

NERFCM

D

2. General Plan of the D-PAFC-algorithm 

Let us remind the basic concepts of the possibilistic clustering method based on the concept 

of allotment among fuzzy clusters, which was proposed in [12]. The structure of the set of 

objects can be described by some fuzzy tolerance, that is – a fuzzy binary symmetric reflexive 

intransitive relation. The concept of fuzzy tolerance is the basis for the concept of fuzzy  -

cluster. That is why definition of fuzzy tolerance must be considered in the first place. 

Let  be the initial set of elements and },...,{ 1 nxxX " ]1,0[: #$ XXT  some binary fuzzy 

relation on }n  wi 0[ ,...,{ 1xX " x th ]1,),( %jiT xx& , Xjxxi %' ,  being its membership 

function. 

Definition 1. Fuzzy tolerance is the fuzzy binary intransitive relation which possesses the 

symmetricity property  

Xxxxxxx jiijTji %'" ,),,(),( &T& ,      (1) 

and the reflexivity property 

Xxxx iiiT %'" ,1),(& .      (2) 

Let us consider basic concepts of the met od. L t ,...,{ 1 nxxX

 

h e }"  b itial set of 

objects. Let 

e the in

T  be a fuzzy tolerance on X  and   be  -  of level value T , ](% 1,0 . Columns 

or lines of the fuzzy tolerance matrix T  are fuzzy sets .,{ 1A },.. nA  on X . Let { 1A },..., nA  be 

fuzzy sets on X , w ich are generated by a fuzzy tolerance T . h

Definition 2. The  -level fuzzy set )(   })(|))(,{( && (" iAiAi
l xxxA ll , Xxi % , },,1{ nl  %  is

fuzzy  -cluster or, simply, fuzzy cluster. So, , ]1,0(ll AA ))( % , ,{AA  % li}, nA  and1l &
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is the membership degree of the element Xxi   for fuzzy cluster lA )(! , ]1,0(  some ! , 

},,1{ nl   . Value of !  is the tolerance threshold of

 element 

 fuzzy clusters elements. 

embership degree of theThe m Xx  i  for so

 can be defined as a 

me fuzzy cluster 

]n,1[],1 l ,0(,)(Al  !!

where an

"#
,      (3) 

 

"
$
%

&
Al

A
li

l

,0

( !'
'

 

otherwise

xx ii ),

! -level })(|{ ' ( iAi xXx l ! , ](! &
l lAA 1,0  of a fuzzy set  !  is the support of 

ster lA )(! ,the 

(

fuzzy cluster lA )(! . So, condition )( )(
ll ASuppA !! &  is met for each fuzzy cl  

]1,0 

u

! , ],1[ nl . 

In other words, if columns or lines of fuzzy tolerance T  matrix are fuzzy sets },...,{ 1 nAA  

on X  then fuzzy clusters },...,{ )(
1

)(
nAA !!  are fuzzy subsets of fuzzy sets },...,{ 1 nAA  for some 

value ]1,0(,  !! . The value zero for a fuzzy set membership function is equivalent to non-

belonging of an element to a fuzzy set. That is why values of tolerance threshold !  are 

considered in the interval ]1,0( . So, a fuzzy cluster can be understood as some fuzzy subset 

originated by fuzzy tolerance relation stipulating that the similarity degree of the fuzzy subset 

elements is not less than some threshold value. In other words, the value of a membership 

function of each element of the fuzzy cluster i e f similarity of the object to some 

typical object of fuzzy cluster. So, members d n be interpreted as a degree of 

typicality of an element to a fuzzy cluster. Moreover, membership degr ine

s th d

hip e

egr

gre

e

ee o

e ca

e def s a possibility 

distribution function for some fuzzy cluster lA )(! , ]1,0( ! .

n

 The fact was demonstrated by 

5] and the possibility distribution functio  is denoted by Viattchenin [1 )( il x) .  

Definition 3. If T  is a fuzzy tolerance on X , where X  is the set of elements, and 

},...,{ )()( !!
1 nAA  is the family of fuzzy clusters for some ! , then the point l

e*  lA! , for which  

l
ili

x
e Ax

i
!'*  +& ,maxarg       (4) 

is called a typical point of the fuzzy cluster lA )(! , ]1,0(

l

 ! , ],1[ nl . 

ypical pointObviously, a t es not depend on the value of tolerance 

threshold. Moreov l typical points. That is why symbol e  is 

the index of the typical point.

Definition 4. Let

 of a fuzzy cluste

er, zzy cluster can have 

 

r do

severaa fu

}2,,1( nccRz ,,&! |{) )( lAl& !  be a fa

value of tolerance threshold 

X mily of fuzzy clusters for some 

]1,0( ! , which are generated by some fuzzy tolerance T  on the 

initial set of elements . If conditi

 

l rs

},...,1 nxx{&X

u

on  

Xxi  +
c

l
li -.

&
,0

1

'  (5) 

is met for all fuzzy c ste

     

n , then tcclAl ,& ,,1,)(! he family is the allotment of elements of 

the set },...,{ 1 nxxX &  among fuzzy clusters }2,,1{ )( ncc ,,&!  for some value of the 

erance threshold 

|Al l

tol ! .

It s noted that several allotments )(XRz
!

 can exist fo  threshold hould be r some tol eeranc

! . That is why symbol z  is the index of an allotment. ndition (5) requires that every 

object 

 The co

nixi ,1, &  m  assigned to at least one fuzzy cluster ust be ncclAl ,& ,,1,)(!  with the 

membership degree higher than zero. The condition nc ,,2  requires that the number of 

fuzzy clusters in )(XRz
!

 must be more than two. Otherwise, the unique fuzzy cluster will 

contain all objects, possibly with different positive membership degrees. The definition of the 
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ossibilistic partition 

e sense of definition 2 il

rations.  

allotment among fuzzy clusters (5) is similar to the definition of the possibilistic partition [8]. 

That is why the allotment among fuzzy clusters can be considered as the p

and fuzzy clusters in th  are elements of the possib istic partition. 

However, the concept of allotment will be used in further conside

Definition 5. Allotment },1|{)( )( nlAXRI   !  of the set of objects among n fuzzy clusters 

for some tolerance threshold 

l!

!  is the initial allotm },...,{ 1 nxxent of the set X  .

 initial data are represented by a matrix of some fuzzy In other words, if T  then lines or 

columns of the matrix are fuzzy sets nlXAl ,1,  "  and level fuzzy sets 

]1,0(,,1,) # !nl  are fuzzy clusters. These fuzzy clusters constitute an initial allotment 

for some tolerance threshold 

(!Al

!  and an be considered as clustering components.  

Thus, the problem of cluster analysis can be defined in general as the problem of 

discovering the unique allotment )(XR$
, resulting from the classification process, which 

corresponds to either most natural allocation of objects among fuzzy clusters or to the 

researcher's opinion about classification. In the first case

they c

, the number of fuzzy clusters  is 

not fixed. In the second case, the researcher's opinio

c

n determines the kind of the allotment 

sought and the number of fuzzy clusters c  can be fixed. 

If some allotment },,1|{)( )( ncclAXR l
% 

!  corresponds to the formulation of z  ! a 

concrete problem, then this allotment is an adequat

,       (6) 

,     (7)

e allotment. In particular, if condition 

XA
c

l

l
 

 

 
1

!

and condition 

,,,,( )()( &' !!!!! mlAAAcard ml  

are 

]1,0(0) # ( Aml

met for all fuzzy clusters clAl ,1,)(  !  of some allotment },,1|{)( )( ncclAXR l
z %  !  

then the allotment is the allotment among fully separate fuzzy clusters.  

However, fuzzy clusters in the sense of definition 2 can have an intersection area. If the 

intersection area of any pair of different fuzzy cluster is an em  conditions (6) and 

(7) are met and fuzzy clusters are called fully separate fuzzy clusters. Otherwise, fuzzy 

clusters are called particularly separate fuzzy clusters and },,0{ nw !

!

pty set, then

  is the maximum 

number of elements in the intersection area of different fuzzy clusters. Obviously, for 

fuzzy clusters are fully separate fuzzy clusters. So, the conditions (6) and (7) can be

generalized for a case of particularly separate fuzzy clusters. Condition 

  (8) 

are generalizations of conditions (6

0 w  

 

cXRcardXRAXcardAcard zz
l

c

l

l
 ##')*

 

))((],1,0(),(),()( )(
1

!!
!! ! , 

and condition 

]1,0(( (! mlAAwAAcard mlml ,    (9) ,,,,) )()( #&'% !!!!

) and (7). Obviously, if 0 w  in conditions (8) and (9) 

then conditions (6) and (7) are met.  

The adequate allotment )(XRz
!

 for some value of tolerance threshold ! , ]1,0(#!  is a 

family of fuzzy clusters which are elements of the initial allotment )(XRI
!

 for the value of !  

ould satisfy ither the conditions (6) and (7) or the 

conditions (8) and (9). So, the construction of adequate allotments 

and the family of fuzzy h eclusters s

]}1,0(,,,1|{)( )( #%  !!
! ncclAXR l
z  for every !  is a trivial problem of combinatorics. 

Several adequate allotments can exist. Thus, the problem consists in the selection of the 

ate allotment )(XR$
 from the set unique adequ B  of adequate allotments, )}({ XRB z

!
 , 

which is the class of possible solutions of classification problem and 

)}({ XRB z
!

  depends on the parameters the classificatio  problem. The selection of the 

 the concrete 

n
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unique adequate allotment  from the set of 

made on the basis of evaluation of allotm

)(XR 
 )}({ XRB z

!"  

ents. The criterion 

adequate allotments must be 

# #
" "

$%"
c

l

n

i
li

l

z c
n

XRF
l

1 1
1

1
)),(( !&!!

,   (10) 

re c  is the number of fuzzy clusters in the allotment )(XRz
!

 and 

)(),( )( XRAAcardn z
ll

l
!

!! '"  is the number of elements in the support of the fuzzy cluster 

lA )(! , can be used for evaluation of allotments. Maximu

whe

m of criterion (10) corresponds to the 

 fuzzy clusters. So, the classi

ination of the solution  satisfying 

conc sidered s the average total 

mem

best allotment of objects am

characte formally as de

cong 

term

fication problem can be 

rized )(XR 

)),((maxarg)( 1
)()(

!!

!
XRFXR z

cBXRz '

 " ,   (11) 

where )}({ XRB z
!"  is the set of adequate allotments corresponding to the formulation of a 

rete classification problem. The criterion (10) can be con  a

bership of objects in fuzzy clusters of the allotment )(XRz
!

 minus c$! . The quantity 

c$!  regularizes with respect to the number of clusters c  in the )(XRz
!

.  

Detection of an unknown minimal number of compact and well-separated fuzzy

 ssification in some si

 iattch

Definitio

 clusters 

can be considered as the tuations. So, the following concept 

was introduced by V  [13]. 

n 6. Allotment

aim of cla

enin

]}1,0(,,1|{)( )( "" !
! lAXR l
P '!c  of the set of objects among the 

minimal number c , nc ((2  of fully separate fuzzy clusters for some tolerance threshold ! ,

]1,0('!  is the principal allotment of the set },...,{ 1 nxxX " .

So, principal allotment must satisfy conditions (6) and (7). There is a five-step procedure 

of classification: 

 

1. Calculate ! -level values of the fuzzy tolerance T  and construct the sequence 

0 10 ! -levels; let of  1:" ; 1()) )))) !! ! Z!! !
 

2. Construct the initial allotment 
 

!!! """ },,1|{) )( nlAl  for the value ! (XRI  
!  from 

the sequence 0 10 1()))))) Z!! ; !!! !
 

3. The following condition is checked: 

 the condition 

tep 2 

ents, w

4. The following condition is checked: 

if for som  cluster 'RAl
 ! )( I !!! "),(X nAcard l ")( )(!  e fuzzy

is met  

then let 1: *"    and go to s

else construct the allotm hich satisfy conditions (6) and (7); 

if for 
 

!  allotm

1: *"   a

!)},

ents )(XR!  saz

constructed  

o to s p 

tisfying conditions (6) and (7) are not 

then let nd g te 2 

ossible solutions of the classification problem 

fo

 

else construct the class of p

 
!"   !! " ({ XRB z r 

 
! ; 

5. The foll

if condition  is met 

and the  mus

owing condition is checked: 

1) + !B(card

then calculate the value of the criterion )),(( !! XRF z  for every allotment 

!  !B'  XRz )(

 result of the classification (XR 
t be constructed as follows: )

JIOS, VOL. 33,  NO. 1 (2009),  PP. 205-217



210

VIATTCHENIN  AN ALGORITHM FOR DETECTING... 

  

nique allotme  the condition (11) is met 

ion  of the classification pro

else  is met 

e unique allotment 

if for some u nt 
 XRz (   B!)

then the allotment is a solut blem; 

 if condition )(   Bcard

 )(XR"

1#

then th   is a solution )(XR  of the 

classification problem. 

 

The principal allotment

  BXRz !)( "

 ]}1,0(,,1|{)( )( !##  
 

 clAXR l
P  among the unknown least 

lusters and the corresponding value of tolerance threshold   number of fully separate fuzzy c

are results of classification.  

3. A Numerical Example 

Let us consider an application of the proposed PAFCD$ -algorithm to the classification 

problem for the following illustrative example. The problem of classification of family 

portraits coming from three families was considered by Tamura, Higuchi and Tanaka [11].  

The number of portraits was equal to 16 and the real portrait assignment among three 

classes is presented in Figure 1. 

 

 

Figure 1: Real portrait classification. 
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he subjective similarities assigned to the individual pairs of portraits collected in the 

tab ar rm re ese d in Table 1. 

1  11 12 13 14 15 16 

T

ul  fo at a  pr nte

 

i  1 2 3 4 5 6 7 8 9 0

1 1.0                

2 0.0 1.0               

3 0.0 0.0 1.0              

4 0.0 0.0 0.4 1.0             

5 0.0 0.8 0.0 0.0 1.0            

6 0.5 0.0 0.2 0.2 0.0 1.0           

7 0.0 0.8 0.0 0.0 0.4 0.0 1.0          

8 0.4 0.2 0.2 0.5 0.0 0.8 0.0 1.0         

9 0.0 0.4 0.0 0.8 0.4 0.2 0.4 0.0 1.0        

10 0.0 0.0 0.2 0.2 0.0 0.0 0.2 0.0 0.2 1.0       

11 0.0 0.5 0.2 0.2 0.0 0.0 0.8 0.0 0.4 0.2 1.0      

12 0.0 0.0 0.2 0.8 0.0 0.0 0.0 0.0 0.4 0.8 0.0 1.0     

13 0.8 0.0 0.2 0.4 0.0 0.4 0.0 0.4 0.0 0.0 0.0 0.0 1.0    

14 0.0 0.8 0.0 0.2 0.4 0.0 0.8 0.0 0.2 0.2 0.6 0.0 0.0 1.0   

15 0.0 0.0 0.4 0.8 .2 0.2 0.0 1.0   0.0 0.2 0.0 0.0 0.2 0.0 0.0 0

16 0.6 0.0 0.0 0.2 0.2 0.4 0.2 0.0 1.0 0.8 0.0 0.4 0.0 0.0 0.0 0.0

Table 1. The matrix of subjective similarities. 

In fact, the matrix of subjective similarities is the matrix of a fuzzy tolerance. That is why 

PAFCD -algorithm pplied to the matrix directly. The application of the PAFCD -

thm to the classification problem was made in comparison with the basic version of the 

algorithm a ERFCM -algorithm of fuzzy clustering [7] for the number of classes 

3!c . In order to compare the proposed algorithm with the well-known relational fuzzy 

clustering NERFCM -algorithm, we tr

 can be a

nd the 

ansformed the initial matrix into a dissim

e membership values originating from al  

ble 2. 

 

Numbers of  

objects, i  

Membersh

algori

by comp

expe

N

lementing the relationship degrees. Th

sented in Ta

ilarity matrix 

l

riments are pre

ip values 

From the  

C o

From the  

FCNERF M -alg rithm )(cAD -algo

From the 

PAFCrithm

 

D - italgor hm 

iu1  iu2  iu3  i1"  i2"  i3"  i1" i2"  i3"  i4"  

1 0.64 0.17 0.19 1.0 0.0 0.0 0.5 0.0 0.0 0.0 

2 0.10 0.79 0.11 0.0 1.0 0.0 0.0 1.0 0.0 0.0 

3 0.32 0.26 0.42 0.0 0.0 0.2 0.0 0.0 0.4 0.0 

4 0.08 0.06 0.86 0.0 0.0 0.8 0.0 0.0 0.8 0.0 

5 0.25 0.49 0.26 0.0 0.8 0.0 0.0 0.8 0.0 0.0 

6 0.72 0.12 0.16 0.5 0.0 0.0 1.0 0.0 0.0 0.0 

7 0.09 0.81 0.10 0.0 0.8 0.0 0.0 0.8 0.0 0.0 

8 0.56 0.19 0.25 0.4 0.2 0.0 0.8 0.0 0.0 0.0 

9 0.21 0.30 0.49 0.0 0.4 0.4 0.0 0.4 0.0 0.0 

10 0.27 0.29 0.44 0.0 0.0 0.8 0.0 0.0 0.0 1.0 

11 0.20 0.57 0.23 0.0 0.5 0.0 0.0 0.5 0.0 0.0 

12 0.18 0.17 0.65 0.0 0.0 1.0 0.0 0.0 0.0 0.8 

13 0.55 0.19 0.26 0.8 0.0 0.0 0.4 0.0 0.0 0.0 

14 0.13 0.73 0.14 0.0 0.8 0.0 0.0 0.8 0.0 0.0 

15 0 1.0 0.0 0.25 0.21 0.54 0.0 0.0 0.2 0.0 0.

16 0 0.0 0.0 0.65 0.16 0.19 0.6 0.0 0.0 0.8 0.

Table 2. The results of applications of clustering algorithms. 
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The fuzzy -partition  is produced by the -algorithm. So, condition 

 is met for the membership values , 

c )(XP NERFCM

11
1

 !
 

c

l
liu liu 0 "" liu l, c""1

(XP

,  originating 

from the -algorithm. If the maximum memberships rule is applied to the matrix 

, ,  of the fuzzy -partition , then the result of the 

-algorithm application to the Tamura’s data is similar to the real portraits 

classification. 

ni ""1

NERFCM

1 ]li l , [163 uP  #

NERFCM

c, n,,1  i c )

By executing the -algorithm for three classes, we obtain the allotment  

among particularly separate fuzzy clusters, which corresponds to the result, is received for the 

tolerance threshold 

)(cAFCD$

2.0 

)(XR%

& . The ninth element of the set of objects is belonging to the second 

class and to the third class and membership values are equal, 4.09392   '' . Obviously, the 

membership function obtained from the )(cAFCD$ -algorithm is sharper than the 

membership function resulting from the -algorithm. NERFCM

After application of the -algorithm to the matrix of the initial data, the principal 

allotment  among four fuzzy clusters, which corresponds to the result, is received for 

the tolerance threshold 

PAFCD$

4.0 

)(4.0 XRP

& . By executing the PAFCD$ -algorithm we obtain the 

following: the first class is composed of 5 elements, all belonging to Family 1; the second 

class is formed by 6 elements, where five elements correspond to Family 2 and one element 

corresponds to Family 3; the third class consists of 3 elements, all belonging to Family 3, and 

the fourth class contains 2 elements, all from Family 3. So, the union of the third and fourth 

classes is the class, which corresponds to Family 3 and there is one mistake of classification. 

The ninth element of the set of objects is the misclassified object. 

The value of the membership function of the first fuzzy cluster is maximal for the sixth 

object. So, the sixth object is the typical point of the first fuzzy cluster. The membership value 

of the second object is equal one for the fuzzy cluster, which corresponds to the second class 

and the second object is the typical point of the second fuzzy cluster. The membership value 

of the fifteenth object is equal one for the third fuzzy cluster. That is why the fifteenth object 

is the typical point of the fuzzy cluster which corresponds to the third class. The value of the 

membership function of the fourth fuzzy cluster is maximal for the tenth object. So, the tenth 

object is the typical point of the fuzzy cluster which corresponds to the fourth class.  

The matrix of the allotment can be illustrated by a diagram. Membership functions of four 

classes are presented in Figure 2. 

 

Figure 2. Membership functions of four classes obtained from the D-PAFC-algorithm. 
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Membership values of the first class are represented in Figure 2 by  , membership values 

of the second class are represented in Figure 2 by ○, membership values of the third class are 

represented in Figure 2 by ■, and membership values of the fourth class are represented in 

Figure 2 by □. 

4. A Methodology of Dimensionality Reduction Based on the D-PAFC-

algorithm

Problems of data visualization and reduction of the analyzed feature space dimensionality are 

very important in the process of data analysis. Feature selection is meant here to refer to the 

problem of dimensionality reduction of the data which initially contain a high number of 

features. The selection aims to choose the minimal number of the original features which still 

contain the information essential for discovering of substructure in the data, while reducing 

the computational complexity imposed by using many features. Different feature selection 

methods were briefly described by Ghazavi and Liao in [6]. An application of fuzzy 

clustering methods to the problem of feature selection was outlined in [3]. 

The -algorithm can be applied to solve the problem of reduction of feature 

space. The basic idea of the approach is that features can be classified and a typical point of 

each fuzzy cluster can be considered as an informative feature. In other words, the approach 

can be considered as a version of the method of extremal grouping of features. So, a 

methodology of solving the problem of reduction of feature space dimensionality can be 

described as follows: 
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2. The matrix of correlation coefficients for the data can be normalized as follows: 
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So, the matrix of correlation coefficients after normalization can be treated as a 

matrix of fuzzy tolerance relation. The ! -algorithm can be applied directly 

to the matrix of normalized correlation coefficients. 

3. Typical points of fuzzy clusters of the received principal allotment )(XRP
-

 can be 

selected as most informative attributes. 

 

An application of the methodology to data visualization can be illustrated on the 

Anderson’s Iris data example. The Anderson's Iris data set consists of the sepal length, sepal 

width, petal length and petal width for 150 irises [1]. The problem of classification is to 

classify the plants into three subspecies on the basis of this information. Let us consider the 

problem of most informative feature selection. 

The Anderson’s Iris data forms the matrix of attributes , , 

, where the sepal length is denoted by , sepal width is denoted by , petal 

length is denoted by  and petal width is denoted by . A matrix of correlation coefficients 

]ˆ[1504
t
ixX #" 150,,1 #i
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)]ˆ,ˆ([44
kt xxrr  

!
, 4,,1  t

ˆ,ˆ( t xxr

,  can be constructed using formula (12). The matrix of 

correlation coefficients presented in Table 3. 

4,,1  k

)k 1x̂

 

  2x̂  3x̂  4x̂  

1x̂   1.0000 -0.1176  0.8718  0.8169 

2x̂  -0.1176  1.0000 -0.4284 -0.3661

3x̂   0.8718 -0.4284  1.0000 0.9629 

4x̂   0.8179 -0.3661  0.9629  1.0000 

Table 3. The matrix of correlation coefficients for the Anderson’s Iris data. 

After application of the formula (13) to the matrix of correlation coefficients a matrix of 

fuzzy tolerance relation was constructed. The matrix is presented in Table 4. 

 

)ˆ,ˆ(~ kt xxr  1x̂  2x̂  3x̂  4x̂  

1x̂  1.0000 0.2176 0.9102 0.8725 

2x̂  0.2176 1.0000 0.0000 0.0436 

3x̂  0.9102 0.0000 1.0000 0.9740 

4x̂  0.8725 0.0436 0.9740 1.0000 

Table 4. The matrix of correlation coefficients after normalization. 

The -algorithm was applied directly to the matrix of normalized correlation 

coefficients. The principal allotment  among two fuzzy clusters was obtained. 

Results of the application are presented in Table 5. 

PAFCD"

)(9102.0 XRP

 

Class Attributes 
1x̂ 2x̂ 3x̂ 4x̂    

1 0.0000 1.0000 0.0000 0.0000

2 0.9102 0.0000 1.0000 0.9740

Table 5. The results of D-PAFC-algorithm application: the attribute assignment. 

By executing the -algorithm we obtain two fuzzy clusters in the principal 

allotment . The second feature  is the typical point of the first fuzzy cluster and 

the third feature  is the typical point of the second fuzzy cluster. 

PAFCD"

)(X

3x̂

9102.0RP
2x̂

So, features  and  can be selected as most informative indexes and the two-

dimensional projection of the Anderson’s Iris data can be constructed. The projection is 

presented in Figure 3. 

2x̂ 3x̂

Two well-separated classes are visualized. The first class corresponds to Iris Setosa. The 

second class corresponds Iris Versicolor and Iris Virginica. Objects known to be Iris Setosa 

are represented by ■ in Figure 3, while those known to be Iris Versicolor are represented by ○ 

in Figure 3, and Iris Virginica are represented by ! . Obviously, the approach to the data 

visualization can be very useful in the exploratory data analysis. 

Notable that the result is similar to the result, obtained from conventional principal 

component analysis [10]. An interpretation of the obtained principal components can be made 

on a basis of the factor loading. The factor loading is defined as a correlation coefficient 

between v -th principal component  and the -th attribute , vz t tx̂ mt ,,1   as follows [10]:  
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where  is variance of ,  is variance of , and  is covariance 
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Figure 3. Two-dimensional projection of the Anderson’s Iris data. 

In Table 6, each value shows the value of the factor loadings (14) which can show the 

relationship between each principal component and each attribute.  

 

Attributes Principal components 

1z 2z 3z 4z    

1x̂   0.89  0.36  0.28  0.04 

2x̂  -0.46  0.88 -0.09 -0.02

3x̂   0.99  0.02 -0.05 -0.12

4x̂   0.96  0.06 -0.24  0.08 

Table 6. Factor loading in principal component analysis. 

From the results, we can see how each component is explained by the attributes. This is 

related to the interpretation of each component. 
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In Table 6, the first principal component is mainly explained by the attributes, sepal 

length, petal length, and petal width. Moreover, we can see a high correlation between the 

second principal component and the attribute sepal width. 

From the comparison between the results of Tables 5 and 6, we can see like results. In 

particular, values of the membership function of the first fuzzy cluster of the principal 

allotment  can be interpreted as normalized values of the factor loadings 

,  in Table 6 and values of the membership function of the second fuzzy 

cluster of the principal allotment can be considered as normalized values of the 

factor loadings ,  in Table 6. 

)(9102.0 XRP

4,,1  t

ˆ,( 1 xzf

)ˆ,( 2
txzf

)(9102.0 XRP

4,)t
,1  t

5. Final Remarks 

In conclusion it should be said that the concept of fuzzy cluster and allotment have an 

epistemological motivation. That is why the results of application of the possibilistic 

clustering method based on the allotment concept can be very well interpreted. Moreover, the 

possibilistic clustering method based on the allotment concept depends on the set of adequate 

allotments only. That is why the clustering results are stable. 

The -algorithm of possibilistic clustering is proposed in the paper. The 

algorithm is based on the concept of the principal allotment among fuzzy clusters and an 

unknown minimal number of compact and well-separated fuzzy clusters is the result of 

classification. The result can be very useful in the exploratory data analysis. Moreover, the 

-algorithm does not depend on parameters and can be applied directly to the data 

given as the matrix of tolerance coefficients. This means that it can be used with the objects 

by attributes data, by choosing a suitable metric to measure similarity or it can be used in 

situations where objects by objects proximity data is available. The results of application of 

the -algorithm to the Tamura’s portrait data show that the 

PAFCD!

PAFC

PAFCD!

D! PAFCD! -algorithm is a 

precise and effective numerical procedure for solving classification problem. 

A methodology of application of the PAFCD! -algorithm to the problem of reduction of 

feature space dimensionality and feature selection is proposed as well. The methodology can 

be considered as a version of the method of extremal grouping of features. The result of 

application of the methodology to the Anderson’s Iris data shows that the methodology is a 

simple and effective tool for dimensionality reduction and can be applied for data 

visualization. 

The -algorithm can be applied for a selection of subset of most appropriate 

weak fuzzy preference relations from the set of all weak fuzzy preference relations in group 

decision process [16]. However, the proposed 

)(cAFCD!

PAFCD! -algorithm is seems as a more 

appropriate numerical procedure for solving the problem of discriminating fuzzy preference 

relations, because a problem of cluster validity can be solved immediately.  
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