
                                                                                                                                                            Title 

 i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Convolution Based Real-Time Control Strategy for 

Vehicle Active Suspension Systems 

 

A thesis submitted for the degree of 

Doctor of Philosophy 

By 

Moudar Saud 

Department of Mechanical Engineering 

Brunel University 

 



                                                                                                                                                      Abstract 

 ii

Abstract 

A novel real-time control method that minimises linear system vibrations when it is 

subjected to an arbitrary external excitation is proposed in this study. The work deals 

with a discrete differential dynamic programming type of problem, in which an 

external disturbance is controlled over a time horizon by a control force strategy 

constituted by the well-known convolution approach. The proposed method states 

that if a control strategy can be established to restore an impulse external 

disturbance, then the convolution concept can be used to generate an overall control 

strategy to control the system response when it is subjected to an arbitrary external 

disturbance. The arbitrary disturbance is divided into impulses and by simply scaling, 

shifting and summation of the obtained control strategy against the impulse input for 

each impulse of the arbitrary disturbance, the overall control strategy will be 

established. Genetic Algorithm was adopted to obtain an optimal control force plan 

to suppress the system vibrations when it is subjected to a shock disturbance, and 

then the Convolution concept was used to enable the system response to be 

controlled in real-time using the obtained control strategy. Numerical tests were 

carried out on a two-degree of freedom quarter-vehicle active suspension model and 

the results were compared with results generated using the Linear Quadratic 

Regulator (LQR) method. The method was also applied to control the vibration of a 

seven-degree of freedom full-vehicle active suspension model. In addition, the effect 

of a time delay on the performance of the proposed approach was also studied. To 

demonstrate the applicability of the proposed method in real-time control, 

experimental tests were performed on a quarter-vehicle test rig equipped with a 

pneumatic active suspension. Numerical and experimental results showed the 

effectiveness of the proposed method in reducing the vehicle vibrations. One of the 

main contributions of this work besides using the Convolution concept to provide a 

real time control strategy is the reduction in the number of sensors needed to 

construct the proposed method as the disturbance amplitude is the only parameter 

needed to be measured (known). Finally, having achieved what has been proposed 

above, a generic robust control method is accomplished, which not only can be 

applied for active suspension systems but also in many other fields. 
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Chapter 1 

1. Introduction and Thesis Structure 

1.1. Introduction 

The intention of this chapter is to introduce the research carried out in this thesis to 

the reader starting with a brief background of the vibration isolation and control 

developments and its application for vehicle suspension systems. This is followed by 

a description of the research objectives, the main contributions and the structure of 

the thesis. 

1.1.1. Vibration isolation and control 

Mechanical systems, which comprise mass, stiffness and damping components, show 

vibratory activity in response to time-variant disturbances [1]. In general these 

disturbances can be divided into two types, vibration transmitted to bodies, machines 

and equipment in contact with the ground and disturbances caused by the vibratory 

machines passed to the ground [2]. In both cases the vibration will have a negative 

effect on the structure and machine parts exposed to it.  Failure caused by 

consequential material fatigue and an increase in machine component ware rate could 

also result from unwanted vibration,  which may also cause poor surface finishing in 

metal cutting and subsequent degradation in the final product quality [3]. In addition, 

vibrations will cause human discomfort particularly if associated with acoustics noise 

[4]. Therefore controlling mechanical and structural vibrations is becoming an 

essential part of mechanical systems and equipment design procedures. Different 

methods have been suggested and applied by researchers to suppress vibrations; the 

proposed methods can be categorized into passive, semi-active and active vibration 

control systems.  

 

Passive systems are designed to isolate and protect machines, equipment and 

structures from unwanted vibrations [3]. Because of their simplicity, they are easy to 

be manufactured. In general passive control systems utilise the damping properties of 

various materials such as rubber or the elastic (resilient) properties of other materials 

for instance metal and pneumatic springs. These springs and/or dampers are usually 
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mounted between the vibration source and the machines or the equipments to be 

isolated [3]. One of the widely used vibration isolation systems employs dynamic 

vibration absorbers which reduce disturbance amplitudes, especially when excessive 

amplitudes generated during operation could cause damage to machines and/or 

personnel [5]. Tuned-mass dampers have also been used to passively attenuate 

vibrations by simply attaching the damper to the system to reduce the undesirable 

effects of the vibrations without a big change in the structure of the original system 

[4, 6 and 7]. When dealing with passive isolators one should consider the fact that a 

highly damped isolator is required to control the vibration at resonance, and low 

damping is needed for higher frequency isolation performance [8, 9]. The inability to 

vary fixed parameter values of passive systems imposes a limitation of using these 

control systems for a wide frequency range. 

 

Semi-active control of vibration involves varying the properties of the system, such 

as stiffness and/or damping coefficients which vary as a function of time [9]. A very 

small amount of power is needed by semi-active control strategies to retain the 

reliability of the passive systems; however, a good performance comparable to the 

performance of fully active control can be achieved [9]. Optimal performance of 

semi-active systems can be maintained as the parameters of the system can be 

changed with time; in addition, due to the fast time-variation achievable a higher 

level of optimisation can be reached [9]. Numerous strategies for semi-active control 

exist in literature; some control strategies used the skyhook damper control concept 

[9]. Others used semi-active tuned vibration absorbers [10], and more recently 

Magnetorheological (MR) and Electrorheological (ER) dampers have been 

increasingly used in semi-active control because of their low power consumption, 

great reliability, guaranteed control system stability and higher capacities of control 

forces when compared with other damping devices [11, 12]. In addition to the low 

power consumption, semi-active control provides improved performance of active 

method without remarkably complicating the control system [13].  

 

Great interest in the area of active control of vibration has emerged as a result of new 

developments in the field of digital processing, actuators and sensors technologies 

[4]. This enabled designers to achieve superior control over a wide range of 

frequencies, particularly at low frequencies where active systems could be the only 
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option for many situations [14]. In spite of the high cost and complexity of active 

systems when compared to the passive ones, they provide a superior performance 

and a better static stability for the equipment they support [14]. Minimising the 

vibration of flexible support structures at some critical points, which are far from the 

attachment point of the isolator, is a distinct advantage of active systems for some 

applications [14]. In addition active systems are able to track the changes in machine 

operating conditions (excitation frequencies) and can adapt to compensate. The main 

difference between active systems and other systems is that they can dissipate energy 

as well as provide it to the system [14]. There exist many works in literature that 

address the use, strategies and applications of active control of vibration. Many 

concepts have been used and studied in the area of active vibration control of 

structure such as structure modelling, feedback and feed forward control, robust 

control, optimal control, intelligent structure and controllers, adaptive control, 

actuator-structure interaction and optimal placement of the actuators [4]. 

 

Active control systems utilise a large number of sensors and actuators which may 

cause durability problems, thus extra care should be taken to make sure that all the 

transmission paths of vibration are accounted for when implementing an active 

control of vibration. Limited control to a single path with no accounting for the 

remaining transmission paths may result in vibration level increase at places where it 

should be minimised [14]. Complexity and high cost have prevented the extensive 

use of active control for many applications, but the control system stability and 

superior performance have made it viable for some applications such as suspension 

systems in automotive industry. A vehicle suspension system is one of the interesting 

applications of vibration isolation systems which will be the main subject of the 

current work; particularly active suspension systems which will be discussed in detail 

in the following sections. 

1.1.2. Vehicle Suspension Systems 

Vehicle suspension systems aim to improve vehicle performance which involves the 

following criteria [14]:  

- Ride comfort: achieving improved ride comfort by reducing vibration transmitted 

form road disturbances through the wheels to the vehicle body. 
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- Handling: in terms of the vehicle body pitch and roll movements generated as 

results of braking and cornering motions. 

- Road holding: by keeping a good contact force between the wheels and the ground 

all the times.  

- Suspension travel (suspension deflection): this is associated with the limits of 

suspension working space.  

- Static deflection: the suspension system should be capable of supporting the 

payload changes.  

 

As the mentioned criteria conflict with each other, an effective suspension system 

should achieve a compromise that satisfies different design requirements. To achieve 

this, researchers have used many optimisation methods that accentuate some of the 

above criteria and set constraints on the others, the obtained results providing a 

compromise which presents a good solution of the suspension design problem based 

on the performance criteria determined by the designer. 

1.1.3. Objectives 

The primary objectives of this work are: 

-   To develop a generic control force strategy that minimises the oscillatory system 

response when it is subjected to an external arbitrary excitation while retaining the 

other performance criteria (i.e. achieving the required compromise). The proposed 

method should be applicable irrespective of the nature of the external disturbance, 

does not require access to the system states and can provide real time control. 

-  To compare the performance of the proposed method with the performance of 

conventional optimal control methods. 

-   To investigate the time-delay effects on the proposed method. 

-  To experimentally validate that the proposed method is applicable for real-time 

control. 

 

Having achieved the stated objectives, a generic control strategy that minimises the 

system response to an arbitrary external excitation would be accomplished. The 

proposed method would be of great value particularly in the field of active control of 
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vibration; and this will be revealed throughout its application to the active suspension 

system in this study. 

1.1.4. Contributions to knowledge  

The main contribution of the thesis is the development of a novel Convolution based 

real-time control force strategy (CCFS) that minimises linear systems’ vibrations 

when subjected to an arbitrary external excitation. The novelty of the proposed 

approach comes from the following points: 

- Convolution integral is usually applied to find the response of the system 

subjected to an arbitrary excitation, however in the current work it is applied 

to obtain a general control force strategy, which provides a real-time control 

against arbitrary excitation. 

- Genetic Algorithms are usually used to find the system parameters or to tune 

these parameters in order to find the best combination that would give 

improved performance, while in current study GAs are used to find the 

control strategy itself regardless of the system parameters. 

- Most of the control methods need to access and measure most of the system 

states in order to construct an appropriate control strategy, while the only 

input needed for the proposed method is the amplitude of the disturbance. 

This leads to a reduction in the number of sensors needed for measurements, 

which in turn results in less measurement of signals which might be 

contaminated in a noisy environment; consequently, less construction cost. 

- The simplicity of the proposed method makes the implementation straight 

forward, especially that the results requires the use of four variables related to 

the optimisation procedure, leading to less memory usage. 

- The inclusion of time delay made the approach more realistic as the majority 

of real time applications suffer from time delay caused by many sources. This 

shows the robustness of the proposed method which accounts for different 

values of time delay and still give acceptable results.  

- The applicability of the proposed method was not only shown using 

numerical simulations, but also through experiments using a quarter-vehicle 

test rig equipped with pneumatic active suspension system. 
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- The proposed algorithm was also implemented using a Programmable Logic 

Controller (PLC) to control the test rig and proved to give improved 

performance. 

- Finally, the CCFS method is generic and can be applied in many other fields. 

 

1.2. The structure of thesis 

Chapter 1 introduces the topic of vibration isolation and control to the reader and 

states the suspension systems; especially the active suspension systems as the main 

topic of the thesis. The objectives of the work and the main contributions are also 

presented in chapter 1. 

 

Chapter 2 presents a literature review of the developments accomplished in the field 

of vehicle suspension systems; mainly the ones achieved in the active suspension 

system area. Some of the drawbacks and the difficulties of achieving the required 

performance are also addressed.  

 

Chapter 3 presents the proposed method “Convolution based Control Force Strategy 

(CCFS)” with an example to explain how the method works. 

 

Chapter 4 presents an introduction to the optimal control theory and explains the 

purpose of the optimisation procedure. Also it gives details about Genetic Algorithm 

which is used as the global optimisation tool in the current study. Then a summary of 

the Linear Quadratic Regulator which involves solving the associated Riccati 

equation of the system is briefly given. 

 

Chapter 5 explains how to implement the proposed method for both quarter and full 

vehicle model, and shows the obtained numerical results of applying the proposed 

method to control the vehicle model when it is subjected to random road disturbance. 

The time-delay effects on the proposed method performance are also introduced. 

 

Chapter 6 describes the experimental set up of a quarter-vehicle test rig designed to 

apply the proposed method to control a pneumatic active suspension system in such a 
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way to improve the system performance regarding the displacement and acceleration 

responses, suspension deflection and tyre deflection. 

  

Chapter 7 gives a comprehensive discussion about the improvements achieved by 

applying the proposed method based on the obtained numerical and experimental 

results.  

 

Chapter 8 concludes the work completed in this thesis, and gives an idea of the 

planned future work to be done.  
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Chapter 2 

2. Literature Review  

Suspension system; the vehicle part responsible of vibration isolation and control, 

has gain more interest in the last decade because of its important roll in maintaining 

the ride comfort, the vehicle holding and handling during braking and cornering 

motions. The developments achieved in the field of vehicle suspension systems 

involved both the main suspension system and the control system.  

 

The work carried out in the current study is an attempt to develop a real time control 

strategy for vehicle active suspension system aiming towards minimising the vehicle 

body vibrations caused by road excitation. Through the following chapters the novel 

method “Convolution based Control Strategy (CCFS)” will be explained starting 

with the developments achieved in the area of suspension systems which focus on 

what has been achieved regarding the topic of active suspension systems. The new 

CCFS method is then explained in details, which involves explaining the convolution 

theory and how it was utilised to construct the new method. Optimal control and 

optimization are also introduced; particularly, the use of Genetic Algorithm as a 

global optimisation method and the Linear Quadratic Regulator which involves 

solving the Riccati equation of the system are also presented. Numerical simulation 

and experiments are then carried out to show the improvements that can be achieved 

using the proposed method and the applicability of the new method for real time 

control. Finally, to conclude the research presented in the thesis, a comprehensive 

discussion with concluding remarks are given.    

 

The research conducted in this study deals with vehicle suspension systems; 

particularly, the area of active suspension systems. The current chapter presents the 

related research in literature which gives an overview of the recent works carried out, 

the developments accomplished and some of the problems that need further 

investigations to be done to overcome these problems. 

 

In the search for the optimum design, suspension systems have undergone many 

developments, different control techniques (strategies) were proposed in literature. In 
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general suspension systems can be divided into three main categories; passive, semi-

active and active systems. Some background of the developments of suspension 

systems and their three categories, especially active suspension can be found in [15].  

The main features of each of these systems will be discussed in the following 

sections.   

2.1. Passive Suspension systems 

Passive suspension systems used for a long time in conventional vehicles, contain 

springs and dampers which are the storing and dissipating parts of the passive system 

respectively [16]. As the characteristics of these elements are fixed, the designer 

should carefully choose the values of spring stiffness and damper coefficients in such 

a way that allows the suspension system to achieve an acceptable performance. 

Numerous compromises would arise at the design stage as soft suspension is needed 

to minimise the acceleration levels and hard suspension is required to control the 

altitude changes of the vehicle and to keep the contact between the wheel and the 

ground in a good condition [16]. 

 

ms

mus

xs

ks cs

kus cus

xus

xr

xs sprung mass vertical displacement 

unsprung mass vertical displacement xus

Road input xr

Damping coefficient (suspension)cs

Damping coefficient (tyre)cus

Stiffness coefficient (tyre)

Stiffness coefficient (suspension)ks

kus

mus

ms Sprung mass

Unsprung mass

 

Fig  2.1 Passive suspension system 
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Fig 2.1 shows a quarter-vehicle model with passive suspension that consists of a 

spring and a damper with fixed stiffness and unchanging damping coefficient 

respectively. The equations of motion of this model are given in Eq.(2.1) and 

Eq.(2.2). It can be seen from these equations that the suspension is mainly storing 

and dissipating energy at a preset value determined at the design stage,  

 

( ) ( )susssussss xxkxxcxm −+−= ���� ,                                                                             (2.1) 

 

( ) ( ) ( ) ( )susssussusrususrususus xxkxxcxxkxxcxm −−−−−+−= ������ ,                               (2.2) 

 

where, ms and mus are the sprung and the unsprung masses, ks and kus are the stiffness 

coefficients of the suspension and the tyre, cs and cus are the damping coefficients of 

the suspension and tyre respectively, (xr) is the road disturbance, (xs) is the sprung 

mass vertical displacement and (xus) is the unsprung mass vertical displacement.  

 

In literature, researchers used many optimisation techniques in their search for a 

good design of passive suspension systems. The authors of [17] used a two-degree of 

freedom quarter car model in order to obtain a number of analytical formulas which 

explain the dynamic behaviour of vehicles that use passive suspension systems 

subjected to random road excitation. Two different road irregularities were 

considered and described by different Power Spectral Densities (PSDs). The 

optimisation process was carried out to find the optimal values of suspension 

parameters that guarantee the best compromise among ride-comfort, road holding 

and suspension working space which would result in better performance. In their 

search for a tool that can help to solve problems associated with military vehicle 

suspension system design, the authors of [18, 19] developed a two-dimensional 

multi-body vehicle dynamics model to be used in computer simulation. In the first 

part of their study, a specific gradient based optimisation algorithm was used to 

obtain the vehicle suspension characteristics in respect of an objective function that 

guarantee the ride-comfort of the vehicle. The second part of the work described the 

simulation program developed using the mathematical model of the vehicle which is 

linked to the optimisation algorithm. The capabilities of the proposed program were 

presented in a case study where the optimisation system was used to perform 

optimisation of the developed vehicle model which appeared to give satisfactory 
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results. The authors of [20] obtained the Root Mean Square Acceleration Response 

(RMSAR) of a two-degree of freedom half-car model subjected to random road 

excitation. The effects of the time lag between wheels and the vehicle velocity on the 

RMSAR were considered in the study. In addition, an optimisation procedure was 

proposed to minimise the RMSAR of the vehicle suspension to obtain the values of 

the spring stiffness and damping coefficient of the vehicle suspension which would 

guarantee the passenger ride comfort.  

 

Passive suspension systems are simple, easy to construct, implement and maintain; 

however, they have limitations in achieving a good compromise between the 

previously mentioned conflicting design criteria and this is due to the fixed 

suspension parameters values which once chosen cannot be changed [16]. In 

addition, storing and dissipating energy would happen at an invariable rate and for a 

limited time only [21]. 

 

2.2. Semi-active Suspension systems 

To overcome the limitations caused by the fixed parameters of passive systems, a 

variable damper (and/or spring) was introduced to the suspension system. 

Introducing the semi-active elements made suspension systems capable of adapting 

to different driving conditions; the driving comfort and safety have been significantly 

enhanced by inserting a variable element when compared to passive systems with 

fixed parameters values [22].  
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Fig  2.2 Semi-active suspension system. 

 

Fig 2.2 shows a quarter-vehicle model with a semi-active suspension system which is 

similar to the passive one but with a variable damping coefficient. The equations of 

motion of the model are given in Eqs. (2.3), (2.4) and (2.5), 

 

( ) dsussss Fxxkxm +−=�� ,                                                                                          (2.3) 

 

( ) ( ) ( ) dsussusrususrususus Fxxkxxkxxcxm −−−−+−= ���� ,                                            (2.4) 

 

( )sussd xxcF �� −= ,                                                                                                     (2.5) 

 

where Fd is the variable damping force controlled by adjusting the changeable 

damping coefficient value.  

 

There are two basic types of semi-active systems; the first one is the on-off type. In 

which damping will be invariable at the on-state but with a significantly bigger 

damping value than the one in the off-state. The second one is the continuously 

variable type. In which the damping will be varied between two values [14]. No 

power is provided by the semi-active system and external power is only required to 

operate the controller, the sensors and the valves of the damper so the characteristics 

values can be adjusted. Thus, semi-active systems can only dissipate the power; in 
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addition, they are reliable because they will keep working in passive mode when the 

control system fails [14, 23]. Many attempts have been made to find the best design 

of semi-active suspension systems. The authors of [24] proposed a new design of 

vehicle suspension that connects the vehicle front and rear dampers by capillary 

tubes. The authors analysed the effects of the preview control of the suggested 

system on the rear suspension. To improve the performance of the system with 

connected dampers, “quasi-sky-hook” systems were designed to account for the 

semi-active control of vehicle vertical oscillation and pitch motion. Kim and Lee [25] 

developed an on-off damping control law to suppress the vibration of a multi-degree 

of freedom suspension system which utilised semi-active actuators. The proposed 

technique was developed using the Lagrange’s equation of motion and the concept of 

Lyapunov’s direct method. In addition, it minimised the entire structure vibratory 

energy, together with the work completed by the external disturbance. The optimal 

ride comfort of an off-road vehicle was the main concern of the investigation 

completed in [26], in which the spring and damper settings were determined to 

ensure vehicle optimal ride comfort. The obtained results were needed in the design 

of a four stage semi-active hydro-pneumatic spring damper suspension system. The 

work showed to which degree the optimal suspension settings of vehicle ride comfort 

would vary with regard to roads that have different unevenness and at different 

velocities, as well as the ride comfort levels that can be reached.  

 

New designs of semi-active systems have emerged as a result of exploring the 

benefits of smart materials such as Electrorheological (ER) and Magnetorheological 

(MR) fluids. ER and MR fluids have been used in semi-active dampers instead of 

ordinary oils; they consist of a liquid with low viscosity mixed with fine particles 

[23]. Applying an electric field in the case of ER dampers or a magnetic field for MR 

dampers will cause the particles to be formed into chain-like structures, leading to a 

change in the viscosity of the damper [23]. For a suspension system when the 

strength of the electric or the magnetic field reaches a specific value the suspension 

will solidify due to the high yield stress. On the other hand, removing the applied 

field will cause the suspension to be liquefied again; the changing procedure will 

happen in milliseconds [23]. The properties of the MR and ER dampers, in addition 

to the low energy consumption and fast response have attracted many researchers 

[23, 27-33] who utilised these dampers for semi-active control of vehicle suspension 
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systems. A new sliding mode controller is presented in [27] for the semi-active 

suspension system equipped with an MR damper. The proposed approach showed 

high robustness in accounting for the model uncertainties and the disturbances. 

While in [28] three different control methods were adopted by the authors and 

investigated to control semi-active suspension systems using commercial MR 

dampers.  In [29] the authors presented an analytical study to explore the efficiency 

of using the MR dampers in a suspension system to suppress the vibration of a 

passenger car. A parameter optimisation and simulation study of suspension systems 

with controlled MR dampers was given in [30]. A novel design of ER dampers was 

presented by the authors of [31] to be used in a semi-active suspension system of a 

passenger car to suppress the encountered vibration due to road disturbances. While 

in [32] the performance features of the ER damper used in a semi-active suspension 

system were assessed throughout a field test of a full car equipped with four ER 

shock absorbers.  The use of both ER and MR dampers was investigated in [33] in 

which the MR damper was used to support the car seat and the ER dampers were 

used for the main suspension system of the car.  

 

2.3. Active Suspension systems 

The new developments in the field of actuators, sensors and microprocessors, in 

addition to the improvements in performance and cost reduction have increased the 

number of applications in the automobile industry [34, 35]. This has resulted in a 

vast growth in the area of active control of vehicle suspension. A force actuator is 

added to the suspension system so power not only can be stored and dissipated but 

also can be provided it to the system [14]. The main advantage of active suspension 

systems is their capability of adapting to different operation conditions and satisfying 

the above mentioned conflicting design criteria simultaneously [14]. 
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Fig  2.3 Active suspension system. 

 

Fig 2.3 shows a quarter-vehicle model with an active suspension system, in which an 

actuator is added in parallel to the passive system. The equation of motion of this 

model is given in Eq. (2.6) and (2.7), 

 

( ) ( ) uxxkxxcxm susssussss +−+−= ���� ,                                                                       (2.6) 

 

( ) ( ) ( ) ( ) uxxkxxcxxkxxcxm susssussusrususrususus −−−−−−+−= ������ ,                         (2.7) 

 

where, u is the controllable actuator force.  

 

As the interest in active suspension systems has increased in the last decade, 

researchers have contributed to this field by introducing many different methods and 

techniques to improve the quality and performance of the suspension system taking 

into account the cost, power consumption, and achieving a good compromise of the 

suspension criteria. The models suggested by researchers varied from one degree of 

freedom (ODOF) quarter-vehicle to multi-degree of freedom (MDOF) full-vehicle 

models. Many approaches have been proposed to control these suspension models. 

Numerical simulations supported by experimental tests were used by researchers to 

show the effectiveness and improvements achieved as a result of applying their 

control strategies. However, several of these methods which were argued to achieve 
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good performance have some drawbacks especially when it comes to real life 

applications. 

 

In literature, different approaches have been employed for designing active vehicle 

suspension systems. In his survey [35], Hrovat addressed the main control methods 

used to design an active suspension system such as modal analysis, classical control 

techniques, neural networks, fuzzy logic and many other methods. He focused on the 

developments achieved using the optimal control theory; particularly, the application 

of Linear Quadratic (LQ) and Linear Quadratic Gaussian (LQG) optimal control 

techniques, and summarised the materials needed to design an optimally controlled 

suspension system. Williams in [36, 37] mainly attempted in [36] to review the 

compromises that can be achieved to satisfy the suspension conflicting criteria, 

which are essential to the design of a conventional passive suspension system. The 

author then demonstrated the changes that could occur to these compromises when 

active components were introduced to the system.  In the second part [37] Williams 

presented a brief description of the hardware used in suspension systems including 

the simple switched damper as an example of adaptive suspension, the two state and 

the variable dampers for the semi-active suspension, and high and low bandwidth 

active suspensions. In addition, practical considerations which should be taken into 

account when designing suspension systems have been given, with emphasis on 

operating power consumption.  

 

The objective of the work done by Türkaya and Akçay [38] was to investigate the 

limits of vehicle performance which was actively controlled and subjected to the 

road excitation. The response constraints of the quarter-car active suspension system 

were derived for different suspension parameters using measurements of vertical 

acceleration and/or the suspension travel for feedback control. The authors 

investigated tyre damping effects on the active suspension system design by using 

the feedback stability factorization approach, and argued that by coupling the sprung 

and unsprung masses motions a constraint of the wheel-hop mode was removed. The 

author also used a combination of LQG and interpolation techniques to demonstrate 

the effect of tyre damping on the design of a lightly damped quarter-car model with 

active suspension.  
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The superior performance of active and semi-active suspension systems was shown 

in a comparative study completed by Mantaras and Luque [39], in which seven 

different active and semi-active suspension systems, LQR-LQG, Robust design, 

Kalman filter, Pole-assignment, Neural network, Fuzzy logic and skyhook damper 

were analyzed. The ride comfort and handling stability were the criteria of interest 

for which the performance of the mentioned suspension systems was compared with 

equivalent passive suspension systems. Numerical results of the simulations, which 

used a 2-DOF quarter-car model subjected to the road inputs, showed the 

improvement in ride comfort achieved using active suspension systems employing 

fuzzy logic, neural network and pole assignment methods. The authors argued that 

the weights and control parameters choice affect the performance of the other 

method which can be further improved with different values. The ride comfort 

improvements came at the cost of poor stability performance as these two criteria 

conflict with each other. 

 

Peng et al. [40] proposed a new method to design an active suspension system of a 

quarter-car model. The new approach used Virtual Input Based (VIB) signals by 

which the dynamics of a quarter car suspension was transformed to make it 

independent of the vehicle parameters. The VIB signals were first designed using the 

LQ optimisation method and then used to build the desired trajectory of the sub-loop 

control system which was one of the design drawbacks of the traditional approaches. 

The sub-loop feedback control was based on a simple proportional control algorithm 

which employed the preview control. Simulation results showed that the use of 

preview control led to substantial tyre deflection and ride quality improvements 

while a slight increase in the control force magnitude and advanced in phase was 

achieved. Nevertheless, these improvements were attained at the cost of an obvious 

suspension stroke increase. 

 

A comparative study of active and semi-active suspension properties was completed 

in [41].  The authors used the result of previous work, which involved semi-active 

suspension using controlled hydraulic damper done by [42], to be compared with the 

results of an active suspension system using a controllable air-spring. The RMS 

vertical acceleration of the sprung mass, the RMS value of the dynamic force of the 

tyre and the energy consumption of the suspension system were the comparison 
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criteria. It was concluded that the active system was more effective than semi-active 

systems but at the price of more power consumption.  

 

Ikenaga et al. in [43] proposed an active suspension control approach consisting of 

inner and outer control loops with an input decoupling transformation to combine 

these two loops in a formal mathematical style for a full-vehicle model. The 

disturbances caused by uneven terrain are rejected by the ride control loops (inner 

loops) that isolate the car body while the heave, pitch and roll responses are 

stabilized by the outer control loops. The authors used active filtering of spring and 

damping coefficients through the inner control loops and skyhook damping of heave, 

pitch and roll velocities through the outer loops to minimize the motion of the sprung 

mass above and below the wheel frequency. Simulation results revealed that the 

heave, pitch and roll acceleration was improved by the active damping at both high 

and low frequencies. The inclusion of skyhook damping led to performance 

improvements although there were no considerable improvements at the wheel 

frequency. 

 

Kumar and Vijayarangan in [44] developed a Proportional Integral Derivative (PID) 

controller for an active suspension quarter-car model subjected to bumpy road input. 

A specific tuning method was used to determine the characteristics of the PID 

controller. The performance of the proposed system that used a hydraulic actuator 

was compared to the performance of the passive suspension system. Results were 

verified by experimental tests where it was shown that the active suspension system 

improved the ride comfort, road holding and suspension travel. However, at higher 

frequencies active suspension performance deteriorated due to the difficulty of force 

tracking.   

 

Alleyne et al. in [45] also investigated the use of a PID controller algorithm for 

hydraulic active suspension systems. It was shown to be an inappropriate option for 

some systems, particularly when a specific force profile that contains considerable 

frequency components required tracking. The authors argued that the reason was the 

feedback was unable to change the lightly damped zeros (LDZ) of the open loop of 

the given model reduction, resulting in a limited bandwidth of the PID algorithm. An 

identical observation was made by the authors of [57] when they tried to use the PID 
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controller for force tracking but they claimed that the inadequate robustness of the 

PID controller was responsible for the poor performance of the controller. Similarly, 

the lightly damped zeros (LDZ) for the servo-loop system generated by the lightly 

damped modes due to the interaction between the hydraulic actuator and the 

suspension system, were claimed by the authors [46] to be the cause for the closed 

loop performance of the suspension system to lock up within the low frequency 

range. The authors introduced four different solutions; alternative actuator, 

suspension parameters modification, using vibration absorber as an example of add-

on mode and using advanced control strategies to decrease the effects of the LDZ on 

the performance of the suspension. The effects of applying any of the mentioned 

remedies (treatments) were also analysed.   

 

An intelligent feedback linearization (IFL) for an active suspension system controller 

was proposed by Buckner et al. [47, 48]. The proposed approach utilised artificial 

neural networks and adaptive control techniques to cancel the nonlinearities of the 

vehicle suspension to enable the use of linear control laws. The authors argued that 

the new control approach is capable of improving the active suspension performance 

with regards to both ride comfort and handling. In [48] the authors used the proposed 

method to control a “HMMWV” [48] vehicle in real-time. The field results showed 

that the IFL improved the sprung mass acceleration and reduced the absorbed power 

significantly in comparison to the passive suspension performance. Comparisons of 

the suspension deflection and tyre deflection were not included in the study, which 

would otherwise provide insight into whether the improvements achieved resulted in 

the degradation of these performance criteria.   

 

To overcome the drawback of the realistic skyhook damping method, Parthasarathy 

and Srinivasa [49] proposed a Model Reference Control (MRC) method. This 

method was based on making a specified system operate as a desired system by 

simply applying appropriate control forces. The difference error signal between the 

model output and the actual system response output was used to construct the 

requested input of the controller. The proposed method was applied on a quarter-car 

suspension system; simulation results showed that applying the MRC method 

improved the sprung mass response, degraded the unsprung mass response and 

maintained the suspension travel and wheel position responses almost equivalent to 
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responses in the case of ideal and practical skyhook. The authors argued that this 

happened as a result of the unsprung mass being affected by an inevitable controller 

force input reaction.  

 

A fuzzy logic controller for vehicle active suspension system was designed by Barr 

and Ray [50] to improve ride comfort taking into account the constraints of 

suspension deflection and handling. The proposed method was applied to two 

degrees of freedom quarter car model and compared with LQG optimal method and 

with the passive system using Simulink. Using the RMS values of the evaluation 

criteria (i.e. body acceleration, suspension deflection and tyre deflection), the 

simulation results showed that the proposed fuzzy suspension improved the sprung 

mass acceleration response for both the random linear PSD and Gaussian input, 

while the LQG suspension led to an improvement of the suspension deflection over 

the fuzzy suspension. Both methods failed to improve the handling properties; 

moreover, handling performance deteriorated when compared to passive suspension 

response. Another fuzzy controller based on genetic algorithm was designed by 

Moon and Kwon [51] for an active suspension system. A half-car model was used for 

simulation with three different models of road disturbance. The body acceleration 

and front and rear suspension deflections were the only measurements to be used by 

the controller. The membership functions of the proposed fuzzy rules were tuned 

using a Genetic algorithm based tuning method. Simulation results showed that the 

ride quality and vehicle maneuverability were improved by the proposed controller. 

Moreover the proposed design was able to overcome some uncertainties of the model 

parameters without the need for the complete system state. The authors of [52] also 

proposed an active suspension system for passenger cars using a combination of two 

kinds; linear and fuzzy-logic controls. Linear control was obtained using the car body 

vertical acceleration whilst fuzzy-logic control was used for the nonlinear 

complementary control. The model used in the work was a half-car subjected to the 

uneven road surface. The mean squares of the vehicle body response was to be 

minimised in order to determine fuzzy control rules, taking into account some 

specific constraint such as the suspension working space and tyre deflection. The 

objective was to minimise vertical and rotary acceleration of the vehicle body in 

order to ensure the ride comfort criteria. Simulation results showed that the proposed 

active suspension system was effective in improving the ride comfort and gave 
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satisfactory performance for the mentioned constraints. One issue with the proposed 

method was the assumption that the vehicle body vertical acceleration, velocities, 

and displacements at the front and rear suspensions were measured at each time 

sampling instance, making the implementation of the proposed method in practical 

application difficult.  

 

In [53] Sun and Sun set up an active suspension model based on an adjustable fuzzy 

controller to improve the ride comfort and road holding. The authors argued that the 

proposed method would not only illustrate the benefit of fuzzy logic concept but 

would also overcome the drawback of general fuzzy control methods that rely on 

experience. The Least Mean Square (LMS) adaptive method was applied for fuzzy 

control, simulation results of a tow degree of freedom quarter vehicle suspension 

model subjected to road input (simulated as PSD signal) showed that the proposed 

method improved the sprung mass acceleration, in addition to the vehicle handling 

safety. 

 

An optimal adaptive control law to design an active-passive suspension system was 

presented in the works of Giua et al. [54] and [55]. The proposed method switched 

between different constants of state feedback gains which ascertain a compromise 

between performance and power needs. The optimisation process was carried out to 

minimise a performance index which penalises the suspension and tyre deflections 

whilst ensuring that the magnitude of the forces generated by the actuator and the 

general forces that applied between the car body and the wheels remained within the 

set limits.  It was pointed out in this work that as a strict bound on the magnitude of 

the control forces was imposed, reduced performance in terms of sprung mass 

displacement would be obtained. Also the designed law required the knowledge of 

the system state that was usually not directly measurable. 

 

Chantranuwathana and Peng [56-59] have dedicated their work to Adaptive Robust 

Control (ARC) for designing active suspension controllers that achieved desirable 

performance by compensating for the dynamics of the hydraulic actuator. ARC 

developed from combining the benefits of Deterministic Robust control and 

Adaptive control methods. The main advantage of the ARC is its ability to guarantee 

both the transient and steady-state tracking accuracy. In [56] the authors proposed an 
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active suspension system controller where the desired force was calculated by the 

main-loop while the Adaptive Robust Control technique was used by the sub-loop to 

track the control forces and to keep it close to the desired forces. Due to the cost of 

the force cell, it was replaced by a force observer to estimate the force values which 

required adaptation of the used sup-loop. Simulation results of a quarter-car model 

showed that the suggested ARC controller performed well in comparison to the PID 

controller. Then in [57] the authors tried to show the experimental verifications of 

the proposed method which appeared to achieve a reliable force tracking up to 5 Hz. 

In [58] they modified their work and tried to identify the cause of unreliable force 

tracking performance above 5 Hz, particularly when high frequency disturbance was 

present. They argued that the unmodeled dynamics such as the delay in 

implementing the control signal was the main cause of the problem, and introduced 

three controller modifications to reduce the effect of the unmodeled dynamics. In 

[59] a modified technique called Modular Adaptive Robust Control (MARC) was 

introduced to design the force-loop controller of an electro-hydraulic active 

suspension system. The major advantage of the modular design method was the 

ability of designing the adaptation algorithm for clear estimation convergence, 

guaranteeing a certain control performance since the effect of parameter adaptation 

on force tracking can be compensated. The experimental results showed that MARC 

controller achieved the task of force tracking up to 10 Hz for ride comfort and up to 2 

Hz for tyre deflections, which could be an adequate improvement. 

 

A novel approach was proposed by Fialho and Balas [60] in which linear parameter-

varying control (LPV) was used with the nonlinear backsteping method to design a 

road adaptive active suspension system.  The authors aimed to minimise the car body 

acceleration taking into account the suspension deflection restrictions. As these two 

criteria conflict each other, the proposed suspension controller focused on 

minimising the car body acceleration when the suspension deflection was small, 

while it minimised the suspension deflection when the deflection approached the 

limits. The switching procedure was based on the suspension deflection which was 

used as a measure of the road condition. Nonlinear simulations using a quarter car 

suspension model that made use of a nonlinear dynamic model of the hydraulic 

actuator showed that the proposed technique managed to provide a good ride comfort 

for different road conditions. A similar approach was done by Liu and Luo [61] in 
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which the gain scheduling technique was used to develop an adaptive control 

strategy of a vehicle active suspension system. A combination of LQR control with 

nonlinear backsteping methods was used to design the active suspension controller. 

Similar to the above work the proposed method aimed to provide an optimal 

performance of the suspension system so it can adapt to changes in road conditions. 

Simulation results showed the feasibility and effectiveness of the proposed method. 

 

Setting up an accurate dynamical model to design a model-based controller for an 

active suspension system with a hydraulic actuator is very difficult due to the 

nonlinearity and time-changeable characteristic of the system. Therefore, Chen and 

Huang in [62] and Huang and Chen in [63] proposed a functional approximation 

based adaptive sliding controller which uses a fuzzy compensator to control the 

sprung mass response of quarter-car suspension system subjected to different road 

surface inputs. Numerical results in [62] and experimental results in [63] showed that 

the proposed technique successfully decreased the sprung mass oscillations for better 

ride comfort and improved handling ability.   

 

Aiming toward simpler and achievable implementation of output feedback control of 

automotive active suspension systems, Hayakawa et al. [64] showed that using 

similarity transformation could provide a “block-coupled” [64] of a linearized 7-

degree of freedom full-car model, considerably reducing the controller complexity. 

The robustness of the proposed method was guaranteed by implementing the robust 

H∞ controller of the block-coupled system that took into consideration uncertainties 

that resulted from the unmodeled dynamics, the variations of the parameters and 

nonlinear behaviour of the real system. Three different experimental tests were 

conducted using a commercial car, a shaker test in which the proposed method 

improves the car body acceleration at 2 Hz but slightly increased in the 3-7 Hz range, 

bad road test in which the vertical acceleration of the vehicle improved at the 2 Hz 

range but not below the 1 Hz, and the lane change test in which the lateral body 

levelling was substantially improved but the authors neglected to mention the 

acceleration response in the final test. 

  

A constrained H∞ active suspension system design was proposed by Chen et al. in 

[65]. The authors argued that the formulation of the active suspension control 
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problem as a disturbance reduction problem with hard constraints of the time-domain 

would be more natural. The Linear Matrix Inequality (LMI) approach was used to 

optimise an active suspension system of a half-car model in such a way to achieve 

the best viable ride comfort while maintaining the control inputs and the suspension 

strokes to be in the permissible bounds as well as keeping a good wheel-road contact. 

The simulation results showed the ride comfort improvements achieved using the 

proposed method while keeping the other conflicting criteria within the 

predetermined bounds. In addition, they demonstrated that the proposed design can 

overcome the degradation of the system performance due to the actuator dynamics. 

 

A delay-dependent H∞ controller was designed by Du and Zhang [66]; the proposed 

method involved designing a memoryless state feedback control law that required 

solving certain delay-dependent matrix inequalities using standard numerical 

algorithms. The proposed controller was used to control a quarter-car active 

suspension system subjected to different road disturbances. The main contribution of 

this work was including the time-delay in the control loop at the H∞ controller design 

stage. Previous works assumed that the control input could be directly realised 

without any time delay, method proved to be not viable to implement practically. 

Simulation results showed that to some extent the proposed controller including the 

actuator time delay could effectively improve the vehicle performance. 

 

The concept of sliding mode control was used by Yoshimura et al. in [67] to build a 

quarter car active suspension system. The switching function and equivalent control 

were utilised to construct the proposed active control system. LQ control was used to 

find the sliding surface where a linear system was transformed from its exact 

nonlinear system. A pneumatic actuator was used to provide the control forces 

generated by the non-negligible time delay controller. Sinusoidal and random roads 

were used as inputs in the experimental tests, where a minimum order observer was 

used to estimate the road profile. Results showed the improvements in oscillation 

reduction achieved by applying the proposed design in comparison to the LQ based 

control and passive control design. 

 

A new approach that used Proportional Integral Sliding Mode Control (PISMC) for 

the design of an active suspension system controller was proposed by Sam et al. in 
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[68, 69]. The authors argued that the proposed controller was capable of overcoming 

the mismatched condition problem caused by the road profile in the system as a 

result of the phase difference between the disturbance input and the actuator input. 

The effectiveness and robustness of the proposed design were evaluated by 

comparing its performance to both the LQR and the passive suspension system. 

Simulation results on a quarter-car model showed that the proposed PISMC design 

system was able to improve the ride comfort while maintaining the road holding 

criterion. These results were insufficient to persuade Ji et al. in [70] in which they 

argued that there was incorrect evidence in the mentioned work, and the theory 

proposed is not enough to claim that the PISMC is more robust than the LQ regulator 

method.  

 

To avoid the risk of damage due to car vibration and guarantee safe driving, 

Chamseddine et al. in [71] proposed a Sliding Mode Controller (SMC) for a full 

vehicle active suspension system. The authors highlighted the issue of sensors 

availability from prototypes and at industrial level (availability, cost and procedures 

to obtain necessary data).  They mentioned that in many works the designed control 

strategy required all state of the system to be known. The problem with the proposed 

technique six out of fourteenth states should be known. The simulation results 

showed that the proposed controller of the active suspension system improved the 

ride comfort for the values below the frequency of the wheel, but showed no sign of 

improved performance at the wheel frequency. Moreover, the author argued that if 

the road input is rough there would be slight improvements.   

 

The preview control concept was used by Thompson and Pearce [72] to design a 

linear active preview-type suspension system for a half-car model excited by step 

units. The computation process for optimal control involved solving the Lyapunov 

and Riccati equations. The effect of increasing the preview sensor distances on the 

performance index was studied and the results showed that the half-car performance 

with inclusion of the preview concept was significantly better than the performance 

using only the state feedback.  

 

Roh and Park [73] investigated the preview control with an estimation scheme 

designed for an active suspension system that utilised look-ahead sensors. They 
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presumed imperfect and noisy measurements of the states and the road input before 

deriving the solution for the stochastic optimal, output feedback, preview regulator 

problem which was reduced to a LQG problem. The previewed road input dynamics 

and the original system dynamics were augmented to solve the LQG problem. 

Numerical examples of a quarter car model were given to validate the improvements 

of the performance achieved by the proposed preview control. To a certain extent, 

the further the preview distance, the better the controller performance. Nevertheless, 

it was found that the imprecise velocity information of the vehicle could result in 

deterioration of the preview control performance. While Kim et al. in [74] designed a 

road profile measuring system based on road sensing technique, where an algorithm 

was developed while the measured data was intermixed with the vehicle dynamic 

response. To improve the frequency response of the system, a two sensor system 

constituted a composite sensor which was designed to enable an optimally shaped 

transfer function to be obtained. The Preview control with the proposed sensing 

system was used to improve the performance of a 7-degree of freedom full car active 

suspension system. The results showed that improvement could be achieved while 

maintaining the suspension working space in comparison to the passive and non-

preview active suspension systems.   

 

Preview control was also used by Marzbanrad et al. in [75] to overcome the 

limitation of active suspension systems related to the servo control system which 

should react rapidly to reduce the effects of the disturbances encountered by the 

vehicle. Two non-contact sensors were fastened to the front bumper of the vehicle to 

supply information pertaining to road elevation a short distance from the left and 

right sides of the vehicle. A full-vehicle model subjected to different white noise 

models as road input was used for analysis. Simulation results showed that the 

designed optimal active suspension system with preview control was effective in 

improving the performance index and vehicle response to rough road disturbances. 

However, the preference of the designer would directly affect the vehicle response to 

the generated disturbance. For example, the acceleration response of the optimal 

preview control in case of ride comfort preference was much lower than the 

acceleration response regarding the road holding preference, while tyre deflection 

and suspension working space were higher. Similar work was completed by 

Marzbanrad et al. in [76] using a four-degree of freedom half-car model. The relative 
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velocities between vehicle body and the unsprung mass in the front and rear 

suspension spaces were the only accessible parameters for measurement. The full 

state of the car needed to be estimated using the concept of Kalman filter and LQG 

controller.  

 

A new scheme which uses the spectral decomposition method to calculate the RMS 

values of the control forces, suspension and tyre deflection, was proposed by 

Thompson and Davis [77]. A half-car model supported by an optimally controlled 

active suspension system with preview was used in this study. The authors argued 

that the proposed technique was able to overcome the limitations of the previously 

suggested method to directly compute RMS values at low vehicle speeds. The 

proposed method was however impractical as it was based on the assumption that the 

actuator forces were directly applied without considering the additional dynamics 

that should be compensated.  

 

Recently, Jonasson and Roos [78] proposed an electromechanical wheel suspension 

system, in which electric levelling and damper actuators were attached to the upper 

arm of the wheel suspension. The electric levelling actuator would actively alter the 

car body corner level throughout roll and pitch motions at low bandwidth 1-5Hz, 

while the fully active damper actuator would act at higher frequencies > 5Hz. A 

skyhook control technique was used for the active suspension control law, and the 

controller parameters and spring rates were optimised using Genetic Algorithm. 

Simulation results of a quarter-car model subjected to different road inputs showed 

that the proposed design improved the car body isolation while at the wheel-hop 

frequencies there was less improvement when compared to the passive suspension 

performance. The authors argued that this occurred due to the adopted control law.  

 

Yoshimura and Takagi [79] built a pneumatic active suspension system for a quarter-

car model using fuzzy reasoning and disturbance observer techniques. The pneumatic 

actuator provided the system with the desired control force and to overcome the 

performance degradation of the model caused by the actuator time delay, a phase 

lead-lag device that worked as a compensator was inserted after the sensors to 

measure the displacement, velocity and acceleration time responses of the car body. 

The proposed disturbance observer effectively estimated the road excitation based on 
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the road profile. It was revealed by the experimental results that vibration 

suppression performance was enhanced by the proposed active suspension system 

with the disturbance observer along with the robustness of the active control.  

 

A full car dynamic model with passengers was proposed by Kruczek and Stribrsky 

[80]. The model was build up by connecting four quarter-car suspension models 

using solid rods and taking into account the moment of inertia of the pitch and roll 

motions. The authors attempted to provide directions on simulating the car behaviour 

and to make it easy for simulation software implementation, particularly for the 

design of active suspension system. They also tried to include the steering wheel and 

tires influence on the motion into their model. Many issues had to be neglected to 

overcome the complexity and nonlinearity of some processes such as cornering in 

order to simplify the implementation of the software model.  

 

Backstepping control was used by Yagiz and Hacioglu in [81] to design an active 

suspension system for a 7-degree of freedom non-linear full vehicle model. The 

authors argued that the stability of the system was guaranteed as the backstepping 

control offered a systematic process of the Lyapunov functions construction and 

related feedback control rules. The work aimed to improve the ride comfort of the 

passengers taking into account the pitch, roll, and heave motions of the vehicle body 

and the bounce motion of the wheels. Simulation results showed the robustness of 

the proposed method and ride comfort improvements achieved when the model was 

subjected to different road inputs even with parameter variations.   

 

Trying to solve the multi-objective control problem of a vehicle active suspension 

system that contains uncertain parameters, Gao et al. [82] proposed a new design of a 

load-dependent controller. The main difference between the proposed approach and 

previous methods was the control gain matrix, which was not a constant gain matrix 

that would be used for all values of the vehicle body mass. Instead the proposed 

controller gain matrix depended on the body mass information which was not 

difficult to be obtained online. The proposed method could therefore account for any 

change in the sprung mass of a quarter car model considering other requirements 

such as ride comfort, road holding, suspension working space and maximum control 

forces. Simulation results showed that the load-dependent controller method was able 
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to provide the desired control where the constant controller approach failed to find 

possible solutions for certain changes in the car body. 

 

A stochastic multi-objective optimisation technique to design a vehicle suspension 

system was proposed by Gobbi et al. in [83]. The relative displacement between the 

vehicle body and the wheel, the vehicle body acceleration and the force acting 

between wheel and road were considered as the performance indices for the 

optimisation process, the technique aimed to optimise the stiffness and damping for 

vehicle passive suspension system and the gains of the controller of the vehicle 

active suspension system. The authors tried to develop a mathematical expression to 

describe the relation between the vehicle design parameters and performance indices. 

The compromise solutions were derived in a deterministic and in a stochastic 

framework. The obtained result formed analytical rules which could be used in the 

initial design stage of vehicle suspension systems. 

 

Elbeheiry and Karnopp [84] designed a stochastic LQG controller to be applied in 

five different types of suspension system designs and to solve the problem of the 

limited-state regulator they developed a new generalized algorithm. The suggested 

policy for adapting the suspension system was based on suspension deflection. The 

performance index of a quarter-car model, containing a weighted sum of variances of 

the acceleration of the sprung mass, suspension deflection, tyre deflection and the 

control forces, was used in the optimisation process to find the best possible 

isolation. Simulation results showed the superiority of the fully active suspension 

performance, especially for large road disturbances and the ability to control the 

sprung mass response for majority of the exciting frequencies. This performance 

decreased at low road disturbance levels where the other control method displayed 

better road holding capability. 

 

Choi et al. [85] proposed an algorithm for a new control system design which utilised 

the properties of both LQR and the Eigenstructure assignment method. The new 

algorithm eliminated drawbacks imposed by each method, with the LQR method 

providing the full state feedback stability robustness and the Eigenstructure 

assignment with the flexibility of shaping the closed-loop system response. The 

proposed method was applied to an active suspension control system for a half-car 
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model, where simulation results showed that the proposed method reduced the peak 

values of the vertical and angular acceleration of the car body assuring good ride 

comfort. 

 

Singular value inequalities and optimal control theory were used by ElMadany 

and Abduljabbar [86] to design a linear multivariable controller in the frequency 

domain for a quarter-car active suspension system. To assess how the order being 

followed and the robustness of the proposed controller to the errors of the low-

frequency modelling and noise disturbances the Singular value analysis was used. 

The author addressed the major problems of applying LQR and briefly presented 

techniques used in literature to overcome these problems. The optimisation process 

was carried out to minimise a performance index that comprised the ride comfort, 

suspension working space, tyre deflection, the overall system stiffness and control 

forces. The proposed method offered a systematic procedure that guaranteed the 

compromise between performance and robustness in the design of linear quadratic 

Gaussian based multivariable control. An estimator was designed based on Kalman 

filter to realise the controller full state feedback, as state variables were not 

completely accessible from direct measurements; moreover, it was contaminated 

with noise. The simulation results showed the efficiency of the proposed method in 

providing outstanding attitude control without degradation in the ride comfort 

provided by the controllers with state variable feedback.  

 

The traditional linear quadratic regulator (LQR) method was also used by Sam et al. 

[87] to design a quarter-car active suspension system controller. The method 

involved obtaining the control forces that would improve the ride comfort quality. 

Simulation results were generated using a quarter-car suspension model subjected to 

a step and random input signals. They showed that the LQR controller could be 

regarded as a good quality solution for road holding and outstanding ride comfort.  

 

Taking into account the performance requirements and the model uncertainties, 

Gaspar et al. [88] constructed the linear parameter-varying (LPV) technique to be 

applied to a vehicle active suspension system, using the parameters dependent gains 

they guaranteed the compromise between the performance demands of ride comfort, 

suspension deflection, tyre deflection and control forces. The LPV approach allowed 
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the designer to consider the prevalent non-linear effects in the description of the state 

space to enable the structure of the model to be nonlinear in the parameters but linear 

in the states.  

 

Genetic Algorithms were used by many researchers as an optimisation tool to 

achieve a good compromise of the suspension systems conflicting criteria of ride 

comfort, road holding, suspension deflection and maximum control forces; for 

example, Tsao and Chen [89] used a Genetic Algorithm (GA) in the design of a half-

car active suspension system, where the GA was applied to search for the parameters 

of damping ratios and springs stiffness to achieve an optimum compromise.  

Simulation results showed that the proposed technique was capable of improving the 

ride comfort while maintaining the suspension deflection. They also showed the 

effectiveness of employing a GA, as a few solutions were used in the search space to 

find acceptable results and the objective function swiftly decreased. Sun et al. [90] 

also proposed a useful method for solving the design problem of an active suspension 

system, in which the compensator worked to reject the disturbances and to endure the 

body mass variations. A new stability condition to deal with the system uncertainties 

was derived, and a simple Genetic Algorithm was used to obtain the elements of a 

robust controller in such a way to minimise the H2 norm based on an objective 

function that involved stability conditions. A Genetic Algorithm was also used by Du 

et al. in [91] to solve the problem of the static output feedback H∞ controller design 

and non-fragile controller using a quarter-car active suspension system model. The 

designed non-fragile static output feedback proved to have better a non-fragility 

features in comparison to the static one under the same performance level. He and 

McPhee [92] used Genetic Algorithms to optimise the combined mechanical and 

control model in a multidisciplinary design optimisation for a quarter-car active 

suspension system. In the proposed method a multibody dynamic software package 

was utilised to design the linear mechanical model of the vehicle. The linear 

quadratic Gaussian (LQG) method and Kalman filter were used to construct the 

controller and the estimators. Simulation results when applying the proposed method 

for the system subjected to both deterministic and random road inputs, showed that 

the multidisciplinary optimisation based active suspension system improved the 

vehicle performance in comparison to the conventional LQG method.   
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Genetic Algorithms (GAs) and Neural Networks (NN) were used by Chuanyin and 

Tiaoxia [93] to design an active suspension controller. The GA was used to optimise 

the acceleration of the vehicle body which would be used as the NN control system 

objective output. A four-degree of freedom half-car model subjected to road 

disturbances was used in this study to compare the performance of the proposed 

controller with the performance of LQG (Linear Quadratic Gaussian) controller. 

Simulation results showed the effectiveness of the proposed controller in determining 

the suspension performance, especially rotary acceleration. The authors also stated 

that this controller was not suitable for real-time control due to the excessive time 

duration for the computational procedures. 

 

Kumar in [94] proposed a new approach to design an active suspension system for a 

quarter-car model using proportional derivative controller in a closed loop circuit 

with suspension travel feedback to improve the vehicle performance. The parameters 

of the proportional and derivative controller were optimised by Genetic Algorithm. 

The objective function aimed to minimise the sprung mass acceleration peak 

overshoot and settling time with the constraints of suspension travel limits and tyre 

deflection. Simulation results of applying the proposed technique to control a 

quarter-car model subjected to random road disturbances showed the performance 

improvements achieved in terms of acceleration overshoot peak and suspension and 

tyre deflection.  To demonstrate the effectiveness of using evolutionary methods as 

an optimisation technique to solve the active suspension system design problem, 

Shirahatt et al. [95] used Genetic Algorithms (GAs) to optimise the parameters for a 

full-vehicle active suspension system at the design stage. The Linear Quadratic 

Regulator (LQR) was used for the active suspension control.  The work illustrated 

that similar performance measures were obtained when comparing the GA obtained 

results to the ones obtained using the simulated annealing optimisation method. 

Superior improvements achieved in ride comfort and road holding had a detrimental 

effect on the performance of active suspension travel when compared to the passive 

system performance. Du and Zhang in [96] proposed a H∞ and generalized H2 (GH2) 

static-output feedback controller design method, in which the control gain matrix 

was obtained using the stochastic search capability of a GA and solving the 

associated Linear Matrix Inequalities (LMIs) of the system. The method aimed at 
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improving the ride-comfort performance considering the road- holding, suspension 

deflection and maximum control force limitations. Simulations carried out on a four-

degree of freedom half-car model subjected to both bump and random road inputs 

showed that the proposed method was able to improve the vehicle suspension 

performance when compared to the state or the dynamic-output feedback control.   

 

The main aim of the literature stated above was to give the reader an idea regarding 

different categories of suspension systems (i.e. passive, semi-active and active) and 

different methods used to control these systems, particularly the works that have 

been done in the area of active suspension system. it is clearly seen that the research 

in the area of active suspension systems has vastly increased, aiming at better 

performance, lower power consumption and less complexity. As better performance 

involves attaining a good compromise or at least improving the criteria of interest 

without any degradation of the other suspension criteria, the improvement achieved 

in many of the mentioned works came at the cost of other criteria being degraded 

particularly [36, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 64, 71, 75, 76 and 78] in which 

the other suspension criteria being badly affected or even not mentioned. 

 

Moreover, methods such as the ones presented in [38, 40, 44, 45, 46, 47, 54, 55, 57, 

60, 61, 67, 68, 69, 82, 84, 85, 86, 87 and 88] that used conventional methods such as 

proportional integral derivative (PID), linear quadratic, linear quadratic Gaussian, 

linear parameter-varying control and classical optimal theory needed information 

regarding the full system states or some of them that might be inaccessible or very 

difficult to be measured and require the use of a large number of sensors. Additional 

problems related to the sensors/actuator placement in practical applications may arise 

together with the possibility of contaminated signals in a noisy environment which 

usually need conditioning using filters, increasing the total cost of the system. 

 

In addition, methods that used the modern intelligent control theory (H∞, fuzzy logic 

control and artificial intelligent techniques) such as the works presented in [50, 51, 

52, 53, 62, 63, 65, 66, 79, 90, 91, 93, and 96] achieved good results but they are 

complex raising the difficulty of the implementation issue. Another important 

concern that arises for some of the proposed methods is the application in real-time 
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control. Many of the method that achieved well through simulation will fail to 

achieve a similarly good performance in reality such as the work in [93]. 

 

The methods that used Genetic Algorithm (GA) as an optimisation tool such as in 

[89, 90, 91, 92, 93, 94, 95 and 96] clearly stated that GA was used to obtain the best 

values of the system parameters or to tune the parameters of the control methods 

which could results in good performance of the system subjected to a certain inputs.  

 

Motivated by the desire to find an alternative method that can overcome some of the 

above mentioned problems, the work carried out in this study is an attempt to 

develop a real-time control strategy that minimises the system vibration when it is 

subjected to an external arbitrary excitation, regardless of the disturbance nature and 

without the need to access the system state, utilizing the properties of Genetic 

algorithm as a powerful optimization tool. The new method is called “Convolution 

based Control Force Strategy” (CCFS), which provides a real-time control strategy 

based on the concept of Convolution Integral. The new method will be explained and 

verified through simulations and experiments in the following chapters.  
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Chapter 3 

3. The Novel Method “Convolution based Control Force Strategy” 

3.1. Introduction 

The novel method proposed in the current work “Convolution based Control Force 

Strategy (CCFS)” may provide a useful insight in the area of automotive suspension 

system design. The method is simply based on the well known concept of 

Convolution integral. Convolution Integral has been used in literature to find the 

response of linear systems under an arbitrary external excitation by knowing the 

system response to an impulse input. To explain how Convolution works the 

following concepts should be introduced. 

3.1.1. The Linearity Concept 

Usually if the system output is proportional to its input it is said to be linear [97]; 

however, linearity also involves the following properties: 

- Additivity property 

Additivity implies that if a system is subjected to a number of inputs, then the entire 

effect of these inputs on the system can be established by taking into account a single 

input at a time and assuming that the other inputs are zeros [97]. As a result, the total 

effect can be found by summing the effects of all components. In other words, if y1 is 

the effect of applying the input x1 to a linear system (LS) and y2 is the effect of 

applying another input x2 alone, then, if the systems is subjected to both inputs 

( 21 xx + ) the overall outcome will be ( 21 yy + ) as shown in Fig 3.1 [97]. 

LSx1 y 1

y 2x2 LS

(x1 + x2) LS (y 1 + y 2)

 

Fig  3.1 The Additivity property. 
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- The Homogeneity (scaling) property 

Homogeneity declares that amplifying the input x by k-fold, will lead to increase the 

effect y by k-fold as shown in Fig 3.2 [97], where k is a real or imaginary number. 

 

yx LS

LSk x k y

 

Fig  3.2 The Homogeneity property. 

 

 

The above mentioned properties are combined into the superposition property which 

can be explained as follows: 

For all values of k1 and k2, Fig 3.3 is true for all x1 and x2 [97]. 

 

(k1 y 1 + k2 y 2)LS(k1 x1 + k2 x2)

LSx2 y 2

y 1x1 LS

 

Fig  3.3 Superposition property. 

 

3.1.2. Time invariant systems 

Time-Invariant systems are the systems that have unchangeable parameters with 

time. This means, the output of a time-delayed input x(t) by T seconds ( i.e. x(t - T)) 

would be the same output y(t) of the original input x(t) but delayed by T seconds (i.e. 

y(t - T)). Fig 3.4 shows this property graphically [97].  
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x(t)

t0

0 t

x(t - T)

T

0 t

y(t)

y(t - T)

t0 T

 

Fig  3.4 Time-invariance property [97]. 

 

To further explain this property, the output y(t) of applying the input x(t) to the 

system can be delayed by T seconds to obtain the delayed output y(t - T) as shown in 

Fig 3.5-(a). For time-invariant system, delaying the input x(t) by T seconds ( i.e. x(t - 

T)) would result in the same delayed output y(t - T) as shown in Fig 3.5-(b) [97]. 

 

System Delay T sec
x(t) y(t) y(t - T)

y(t - T)x(t)
SystemDelay T sec

x(t - T)

(a)

(b)
 

Fig  3.5 time invariant property [97]. 

 

Having introduced the important linearity and time invariant concepts, the 

Convolution Integral can be clearly explained as follows. 
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3.2. Convolution Integral  

To explain the convolution concept, first the impulse response of the system should 

be clarified. The impulsive force can be represented by a force with large amplitude 

P acting for a very small time interval ∆t [3].  

In general, the impulse magnitude p~ can be written as follow [3]: 

∫
∆+

=
tt

t

dtpp~                                                                                                                (3.1) 

If a pulse p(t) that has a unit height and ∆τ width is considered as shown in Fig 3.6-

(a), then any arbitrary input such as x(t) can be represented as a set of these 

rectangular pulses as shown in Fig 3.6-(b). For the pulse that starts at τ∆= nt , the 

height would be )( τ∆nx , this pulse can be represented as [ )()( ττ ∆−∆ ntpnx ], 

where )( τ∆− ntp  is the same pulse )(tp , but shifted by the time τ∆n [97]. As the 

arbitrary input )(tx is a set of similar pulses, it can be expressed as follows [97], 
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where, )( τ∆− ntp and 






∆

∆

τ

τ )(nx
is the pulse and the height of this pulse respectively. 

Letting 0→∆τ  will make the height reaches infinity but the area will stay )( τ∆nx  

and the narrow piece can be approximated an impulse [ )()( τδτ ∆−∆ ntnx ] [97]. 

Then the arbitrary input x(t) can be represented as follows [97],  

 

ττδτ
τ

τ
∆∆−∆= ∑

→∆
)()(lim)(

0
ntnxtx ,                                                                       (3.3) 

where δ (t) is the unit impulse function. 

 

To find the system response to the arbitrary input x(t), the pairs of input and 

associated output are considered as illustrated in Fig 3.6-(c to f) which can be further 

explained as follows [97]: 
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Input ⇒  Output 

)(tδ  ⇒  )(th  

)( τδ ∆− nt  ⇒  )( τ∆− nth  
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ττδτ
τ

τ
∆∆−∆∑

→∆
)()(lim

0
ntnx  ⇒  τττ

τ
τ

∆∆−∆∑
→∆

)()(lim
0

nthnx  

 

 

Consequently, 

τττ
τ

τ
∆∆−∆= ∑

→∆
)()(lim)(

0
nthnxty                                                                          (3.4) 

∫
∞

∞−

−= τττ dthxty )()()(                                                                                            (3.5) 

The integral in Eq. (3.5) is called the Convolution Integral and it states that if the 

impulse response of the system is known, the system response to any arbitrary input 

can be determined using Eq. (3.5) (i.e. summation (or integration) of the scaled, 

time-shifted response of each impulse of the arbitrary input as shown in Fig 3.6-(f)) 

[97]. 
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Fig  3.6 Obtaining the system response to an arbitrary excitation [97]. 

Where, 

-  : The response of the hatched strip in (b).  

- ( ): The response to each impulse of the arbitrary input in (b). 

- ( ): Summation of the scaled, time-shifted responses of the arbitrary input 

impulses. 
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3.3. The Novel Method “Convolution based Control Force Strategy (CCFS)”  

The proposed CCFS method is based on the concept of Convolution Integral 

presented in section 3.2. As stated before Convolution Integral has been used in 

literature to find the response of linear systems subjected to an arbitrary external 

excitation by knowing the system response to an impulse input. 

 

The new CCFS method follows a similar approach and it is modified as follows: if 

the response of a system to an impulse excitation was controlled by a control strategy 

(optimal or otherwise) then it would be possible to obtain the control of the system 

when it is subjected to an arbitrary external excitation by simply scaling, shifting and 

summing the control strategy to the impulse input. The scaling would be according to 

the ratio between the unit impulse and the arbitrary excitation amplitude at each 

interval of integration step [98-100]. 

 

The CCFS method is illustrated in Fig 3.7, in which the method is divided into two 

parts: 

1- The optimization method is applied to find the best control force plan that results 

in the best response (i.e. minimised response) of the system when it is subjected to a 

shock input as shown in Fig 3.7-(a). 

2- Having obtained and saved the control force plan against the shock input,  the 

control force strategy against an arbitrary input can be obtained using the 

Convolution Integral concept (i.e. scaling, shifting the optimised control force plan 

for each impulse of the arbitrary input) as shown in Fig 3.7-(b). 
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Fig  3.7 Schematic of the Convolution Based Control Force Strategy    

 

To explain how the method works, a viscously under damped single degree of 

freedom (SDOF) spring-mass system subjected to external arbitrary excitation is 

considered. The equation of motion is given in Eq. (3.6). 

 

)(tFkxxcxm =++ ���                                                                                                  (3.6) 

Where, m: is the mass of the system, c: the damping coefficient, k: the stiffness 

coefficient, F(t): the external disturbance.  

The SDOF system response to the shock input shown in Fig 3.8 is illustrated in Fig 

3.9. Taking into account the control force plan (Fig 3.10) obtained by the 
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optimisation process, which would result in the best response of the system against 

shock input, the controlled response of the SDOF system is shown in Fig 3.11 which 

is much better than the non-controlled response as shown in Fig 3.12. 
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Fig  3.8 The Shock input. 

 

 

Fig  3.9 The system response to the shock input. 
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Fig  3.10 The control force plan against shock input. 
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Fig  3.11 The controlled system response to the shock input. 

 

 

Fig  3.12 the system controlled response ( ) Vs non-controlled response ( ). 

 

To control the SDOF system response using the proposed CCFS method when the 

system is subjected to the arbitrary excitation shown in Fig 3.13, the arbitrary 

excitation is divided into impulses as shown in Fig 3.14. For each impulse, the 

obtained control force plan (Fig 3.10) is scaled by the ratio (λ) given in Eq. (3.7). 

Then it is shifted by the same time (∆t) at which the associated impulse is applied as 

shown in Fig 3.14 and Fig 3.15. By summation of all the scaled, time-shifted control 

force plans, the overall control force strategy is obtained, which results in the best 

response of the SDOF system against the arbitrary excitation as shown in Fig 3.16. 

This response is much better than the non-controlled response as shown in Fig 3.17.  

 

impluseinitialtheofamplitudethe

impulsecurrenttheofamplitudethe
=λ                                                               (3.7) 
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Fig  3.13 An arbitrary excitation. 

 

 

 

 

 

 

 

 

 

Fig  3.14 The arbitrary excitation divided into impulses. 

 

 

 

 

 

 

 

 

 

 

Fig  3.15 Scaled, time-shifted control force plan. 
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Fig  3.16 The SDOF controlled response using the CCFS method. 

 

 

Fig  3.17 the SDOF system controlled response ( ) using CCFS method Vs non-

controlled response ( ). 

 

For the proposed method Eq. (3.5) is modified to accommodate the arbitrary 

excitation and the control forces as follows: 

( ) ( ) ( )[ ]τλττ −⋅+= tUFG                                                                                       (3.8) 

where,  

F( ):  is the arbitrary excitation input function. 

U( ):  is the control force plan  

h( ):  is the impulse response function. 

λ:  is the scaling factor given in Eq. (3.7). 

G( ):    is the new input function. 

 

Consequently, 

( ) ( ) ( ) τττ∫ −=
t

dthGtx
0

                                                                                           (3.9) 
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It is possible to treat U( ) as a part of the external excitation without conflicting with 

the idea of the convolution integral.  Therefore, the definition of the convolution 

integral can be applied to constitute a control strategy in order to provide an overall 

controlled motion. 

 

To achieve the proposed method one should obtain the optimal control strategy to 

suppress the vibration of the system when it is subjected to an impulse input. To 

accomplish this, there are many methods from the classic optimal theory; however, 

Genetic Algorithm (GA) can be adopted as an alternative way to optimise the control 

strategy which will be explained in details in the following chapter. Having obtained 

the control strategy, the results can be used to obtain the general control strategy 

against any arbitrary excitation as described above.  

 

What is interesting and makes the proposed method powerful is that it can be used 

for real-time control situations. With the control strategy for the impulse disturbance 

being determined, this strategy can be applied at each time step when online control 

is needed, so the system can be controlled in real-time irrespective of the nature of 

the external excitation. The method involves only multiplication and saving of four 

numbers (the control force plan) which means a very small memory usage is needed 

for real-time control. This simplicity makes its implementation rather straight 

forward [98, 99]. Moreover, as explained in the literature part, most of the control 

methods need to access and measure the system states or at least some of them in 

order to construct the appropriate control strategy, while in the proposed method the 

only input needed is the amplitude of the disturbance. Consequently, this will results 

in less number of sensors to be used in the system thus less measurements of signals 

which could be contaminated by noisy environment. Finally, the CCFS method is a 

generic method that can be applied in many other fields. 
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Chapter 4 

4. Optimal Control and Optimisation 

4.1. Optimal Control 

Systems in general can be represented by models described by mathematical 

relations, which could be deterministic and/or stochastic differential equations [101]. 

To change the condition of the system from one state to another, external inputs/ 

controls should be applied. Sometimes, assuming that this change is possible, there 

are many ways to carry it out, so one should search for the best manner of doing the 

task taking into account the constraints that limit the systems performance. The input 

to the system which causes the best situation to happen is called optimal control. The 

measure that involves finding the optimal way is called the performance index (PI) or 

objective function [101]. Usually the system is represented by state variables, which 

provide a complete description of the system. Finding the control signals, which will 

make sure a plant satisfies some physical requirements and does not exceed some 

constraints whilst minimising or maximizing a preferred performance index, is the 

main goal of optimal control [101]. To formulate an optimal control problem one 

needs a mathematical model of the system which is usually described using state 

space equations, an appropriate performance index, and knowledge of the constraints 

and the boundary conditions of the system states and the control elements  [101]. 

 

4.1.1. The plant 

The physical plant is expressed by a group of linear or non-linear differential 

equations. Eq. (4.1) and Eq. (4.2) describe the state and output equations of linear 

time-invariant systems [101]. 

 

)()()( tutxtx CB +=�                                                                                                 (4.1) 

)()()( tutxty EA +=                                                                                                 (4.2) 

Where, B is the nn × state matrix, C is the rn ×  input matrix, A is the nm ×  output 

matrix, E is the rm ×  transfer matrix, x(t) is the n state vector, u(t) is the r control 

vector, y(t) is the m output vector.  
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In a similar way, Eq. (4.3) and Eq. (4.4) describe the non-linear systems [101]. 

 

( )ttutxftx ),(),()( =�                                                                                                 (4.3) 

( )ttutxgty ),(),()( =                                                                                                 (4.4) 

 

Usually to construct the controls most of the state variables should be available, so 

designers assume that the system states are measurable or they build an estimator to 

estimate these values.  

4.1.2. Performance Index 

A mathematical expression formed by the designer taking into account the 

limitations applied to the system. This expression can be maximized or minimised 

while searching for the optimum solution that makes the dynamical system attain a 

specific goal or follow a particular trajectory [101]. Therefore the performance index 

can take many forms according to the problem that should be solved.  

4.1.3. Constraints 

The physical situation of the system to be controlled will impose some limitations 

that cause the state and/or the controls to be constrained. The motor speed, the 

suspension working space and the pressure in pneumatic system, are physical 

constraints which have minimum and maximum values which the designer should 

take them into account so they are not exceeded [101]. 

4.1.4. Independent Variables  

The selection of the independent variables which are sufficient enough to 

characterize the feasible candidate designs or the system working circumstances is 

also a key issue in the optimisation problem formulation [102]. 

  

The optimisation process and efficiency of the chosen optimisation technique, which 

affect the results of finding the optimal control that fits properly the designed model, 

will be discussed in the following section. 
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4.2. Optimisation 

Optimisation refers to the mathematical procedure used to obtain the best solution of 

the optimisation problem among many other alternatives without having to identify 

and assess all the possible solutions. Also it takes into account the constraints that 

limit the system from reaching certain performance and tries to improve that 

performance towards some optimal levels. Optimisation theory has been used in 

most engineering fields such as system component designs, analysing and planning 

operations and dynamic system control [102].   

 

To solve an engineering problem by applying the mathematical methods and 

numerical techniques, various considerations need to be taken into account including 

a clear definition of the engineering system boundaries to be optimised, identifying a 

specific criterion based on which candidates will be ranked to find out the “best” 

solution, choosing the system variables through which the candidates will be 

identified and describing the model that will state the way in which the variables are 

related. All of these categories are the key issues in order for the optimisation process 

to be successful [102]. 

 

Many optimisation methods have been used in literature, but in this study one of the 

most effective stochastic optimisation methods “Genetic Algorithm” (GA) will be 

used. What are Genetic Algorithms? What kind of applications are they applicable 

for? In what ways they differ form other methods? The answers for these questions 

will be discussed in the following sections. 

4.2.1. Genetic Algorithm (GA) 

The Genetic Algorithm (GA) is a global stochastic search procedure based on the 

process of natural selection and genetic modifications related to the evolution in 

nature. It was first developed by John Holland and his colleagues at the University of 

Michigan in 1960s and 1970s [104]. “Survival of the fittest”, Darwin’s principle of 

natural selection, ignites the idea of mimicking natural selection and applying it to 

artificial life. The GA is an optimisation method that operates with a population of 

possible solutions of the optimisation problem; these solutions are evaluated based 

on their fitness values that indicate how well the optimised solution will fit or will 
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solve the optimisation problem [103-105]. The Genetic Algorithm terms can be 

described as follows: 

 

- The population (P): The GA population consists of individuals (chromosomes) (si), 

i =1,2,…,ζ [103]. 

 

{ }ζsssP ,....,, 21=                                                                                                      (4.5) 

                                                                                                                          

- Individual si represents a possible solution of the optimisation problem. (si) is a υ- 

dimensional vector consists of υ variables (sj) where j =1,2,…, υ. These variables are 

called genes [103]. 

 

],...,,...,,[ 21 νiijiii sssss =                                                                                           (4.6) 

                                                                                  

- The fitness of the individual which will be used to measure how suitable an 

individual is as a solution to the problem; this fitness will be decided by a user 

defined fitness function. Individuals are usually coded either in binary or real 

numbers. Choosing the coding type is influenced by the nature of the problem that 

the Genetic Algorithm is going to solve. The simple form of Genetic Algorithm uses 

three types of operators: selection, crossover and mutation [103].   

 

4.2.1.1. Selection 

The selection operator chooses individuals (also called chromosomes) from the 

current generation’s population to continue to the next generation. Picking the fitter 

individuals is the main strategy of the selection process, which hopefully will lead to 

the production of offspring with higher fitness to be selected in the next generation, a 

process which is repeated until termination. The higher the fitness of the 

chromosome, the greater the probability of this chromosome to be selected [103-

104].  
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4.2.1.2. Crossover 

The crossover operator chooses two individuals (parents) to create two new offspring 

[104]; consequently, the crossover operator produces new assemblage of material by 

swapping the genetic material between the selected individuals of the population 

[103].  The new offspring will provide a better solution than their parents when they 

take the best features from the parents [106], but the crossover strategy may lead to 

the loss of the good genetic pattern [103]. Although the crossover process recognises 

patterns, it doesn’t introduce new information to the population, except that some 

patterns are more effective than others. After two individuals have been chosen 

randomly, the crossover cut points decide how the genetic material of the offspring 

will be made up from the material of the chosen individuals [103].  

 

4.2.1.3. Mutation 

Mutation is the occasional random change of the gene value in the randomly selected 

individual. If binary coding is used, the mutation operator will flip one or more 

randomly selected bits in the chromosome. This process occurs with mutation 

probability, which is usually very small with a fixed value assigned before the 

optimisation process. This operator gives the GA more power to explore the search 

space and will guarantee provided a good use of selection and crossover operators, 

that there will be no early loss of the important individuals [103, 105].  

 

4.2.1.4. Termination 

The Genetic Algorithm will use the termination condition to decide whether or not to 

continue the searching process. After each generation the termination condition will 

be checked by the GA to confirm if it is a good time to discontinue or not [106]. The 

termination criterion varies based on the purpose of the optimisation process. 

 

As mentioned before the Genetic Algorithm is a global search tool. Indirect 

optimisation methods usually look for a local extremum by solving the equations that 

result from setting the gradient of the objective function equal to zero. Direct 

methods search for the local optima by climbing on the function and moving in the 

permissible direction associated with the local gradient. These two methods lack 
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robustness as they are local in scope and like other calculus optimisation methods 

they rely on the existence of objective function derivatives [105]. Also, the idea 

behind enumerative methods is straightforward, using a search algorithm to look at 

the values of the objective function at each point of the finite search space, one at a 

time. This will cause inefficiency of the method as practical search spaces are too big 

to be explored one at a time whilst consecutively providing useable information for 

practical use. This means some of these procedures may collapse for some moderate 

size and complexity problems [105].  

 

The main differences between Genetic Algorithms and other optimisation techniques 

can be summarized as follows [105]: 

 

-  Genetic algorithms do not work with the parameters themselves; but operate with a 

code of the parameter group. 

-  Genetic algorithms do not search depending on one point; they search from a 

population of points. 

-  Genetic algorithms do not depend on the auxiliary information or the derivatives; 

they need just the objective function information. 

-  Genetic algorithms are not deterministic search techniques, because they use 

operators with probabilistic transition rules [105]. 

 

For the aforementioned reasons Genetic Algorithms were used in this work as the 

optimisation tool to find the control force strategy that minimises the system 

response to an impulse input as it will be explained in the following sections. 

 

4.2.2. Obtaining the control force plane using Genetic Algorithm 

As explained a Genetic Algorithm (GA) will be used to optimise the control force 

plan that minimises the response of the sprung mass (vehicle body) to a shock input. 

The optimised control strategy will be saved, and then the general control force 

strategy which will minimise the response of the system when it is subjected to an 

arbitrary excitation can be obtained using the idea of Convolution Integral. 
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The first step of the GA is to form an initial population.  A random generation of 

forces values in each control force plan vector is required. The initial population is a 

collection of control force plans, with each plan representing a chromosome as 

shown in Fig 4.1. 

 

{U1,U2,U3,U4}

∆t

Ui

t

U

 

 

Fig  4.1 The chromosome (control force plan) 

 

Each member of the chromosome is a control force value (Uij) that corresponds to a 

time step, in other words, the time horizon (t) is divided into a number of steps and at 

each step a control force value is selected, forming a control force vector 

(chromosome). In this work a real coded GA is used where each variable is 

represented by a real number. 

 

To generate the initial population, the following parameters values should be defined 

for the GA to run: 

-  The number of variables (NO OF Variables), which represents the number of 

forces.   This is a user definable value. 

-  The Population Size that refers to how many chromosomes will be generated 

during each generation. For example, if the NO OF Variables is four, the Population 

Size will decide how many sets of four variables will be used to evaluate the 

Objective function. 

-  The search space is defined by inserting the upper and the lower bounds of each 

variable. 
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The chromosomes (individuals) of the initial population will undergo the evaluation 

process as shown in Fig 4.2, in which the GA uses an Objective Function (Obj) (i.e. 

performance index) to evaluate and try to select the best individuals. The Objective 

Function in this study is given in Eq. (4.7) and can be defined as minimisation of the 

sum of absolute values of all of the selected variables over a given time horizon [98-

99]: 

( )∑∑
= =

=
n

i j

s txObj
1 1

ν

                                                                                                (4.7)       

Where, [ ]Tt ,0∈  ,  n: is the total number of time steps,  v: number of variables.          
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Fig  4.2 A population goes through GA operators 

 

One can notice that there are no explicit control force terms in the objective function; 

however, (xs) is the result of the external disturbance and the applied control force.  

To achieve the objective, i.e. minimisation of the overall response of the system, the 

selection of the correct control force values at each time step is required. This 

involves the selection of control forces on a time horizon to form the control force 

strategy. The evaluated individuals are assigned a fitness value dependent on how 

well they solve the problem.  
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The individuals will go through the selection process, in which each population will 

be “stacked” based on the ratio R(j) defined in Eq. (4.8):   

( )

( )∑

∑

=

==
n

i

j

i

iObj

iObj

jR

1

1)(                                                                                                      (4.8)  

Where, j is the index of the current population, n is the population size, ( ) 1=nR . 

 

The ratio R(j) will generate a roulette-wheel which is divided into regions; the area of 

these regions will be in proportion with the fitness of the associated variables. The 

GA will generate a random number between 0 and 1 and try to find in which region 

this number is placed; this selection process is expected to find the large regions that 

represent the fitter individuals. After that the crossover operator starts, which 

involves the exchange of a variable between two selected individuals.  The variable 

to be selected is randomly determined by generating a random integer between one 

and the maximum number of variables in each chromosome. This integer represents 

the variable number to be exchanged.   

 

However, with the basic GA there is a problem, depending on the fitness distribution 

among the population the best individual may not get selected to the next generation.  

To ensure that the best individuals will not be lost in the processes, the elitism 

technique is utilised in the selection process. Elitism ensures that the Genetic 

Algorithm retains some of the best individuals at each generation. In this work it is 

ensured that the best individual of the previous generation will populate 10% of the 

next generation.  The GA will iterate until an acceptable convergence is reached and 

a good solution (control force plan) is obtained.  

 

To further explain how GA works with regards to the optimisation problem of 

finding the control force plan, a pseudo code was written to give details on how GA 

operates to solve the problem and gives the optimal solution as follows: 
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Get the following variables: 

NoOfGeneration: the total number of generations 

PopulationSize: the total number of populations 

NoOfVariables: the total number of variables 

LowerBound: the minimum value can be assigned to a variable 

UpperBound: the maximum value can be assigned to a variable  

 

FOR each generation of NoOfGeneration 

FOR each population of PopulationSize 

FOR each variable of NoOfVariavles  

IF it is the initial generation THEN 

Randomly generate the variables values of the 

first generation  

(Each variable takes a random value between the 

upper and the lower bounds) 

ELSE 

FOR each population of PopulationSize 

FOR each variable of NoOfVariavles 

Use the new variables generated 

and stored from previous generation 

END FOR 

END FOR 

END IF 

END FOR 

 

Compute the Objective Function (ObjFun) for each population(1) 

END FOR 

 

Set the value of the AccumObj to zero 

(AccumObj represents the accumulation of the Objective Function 

values) 

 

FOR each population of PopulationSize 
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Find the value of the AccumObj by adding the objective function 

value (ObjFun) of the current population to the value of 

AccumObj 

END FOR 

 

Set the value of MaxObj to the value of the AccumObj at 

PopulationSize 

Store MaxObj 

FOR each population of PopulationSize 

Find the Ratio between AccumObj of the current population and 

the MaxObj 

END FOR 

 

 

FOR each population of PopulationSize 

Randomly generate a number (RNAD) between 0 and 1 

(greater or equal to 0 and less than 1)  

FOR each population of PopulationSize 

Find where this random number is located 

IF RAND is greater than the AccumObj of the current 

population AND RAND is less than the AccumObj of the 

next population THEN 

Choose the INDEX of the current population 

EXIT FOR 

END IF 

Add 1 to the INDEX 

Store the New INDEX 

Select the population that has the New INDEX 

END FOR 

 

Set the value of the elitism index E-INDEX to 1 

Set the Maximum value of the Objective Function (MaxObj) to 0 

 

FOR each population of PopulationSize 
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‘Find the Maximum value of the Objective Function 

IF the value of the Objective Function of the current population 

(Obj) is bigger than MaxObj THEN 

Set the value of the MaxObj to this value (Obj) 

Store the INDEX at which the Maximum value of the 

Objective Function is found 

Set the value of E-INDEX to the value of the stored 

INDEX 

END IF 

END FOR 

 

Make the population that has the E-INDEX to be selected to form 10% 

of the PopulationSize. 

 

For each population of PopulationSize 

Randomly generate a variable (VAR) which has a value 

between 1 and the NoOfVariables 

For each variable of NoOfVariables 

IF the variable index V-INDEX equal to VAR 

THEN 

Exchange the variables between two 

selected populations starting from that 

variable onwards to generate the new 

populations  

Store the new generated populations to be 

used in the next generation 

ELSE 

Keep the selected populations  

Store those populations to be used in the 

next generation 

END IF 

END FOR 

END FOR 

END FOR (next generation) 



Chapter 4                                                                                            Optimal Control and Optimisation 

 60 

Display Results  

 

(1) The Objective Function 

Set the value Objective Function (Obj) to 0 

Add the absolute value of sprung mass displacement to the Obj 

The value of the Objective Function (ObjFun) equals to 1 over the value of 

Obj 

 

The described optimisation process that employed the GA was used to find the best 

control force plan to control the system when it was subjected to an impulse input. 

Once completed the next step of the proposed method involves using the 

Convolution integral as described in Chapter 3 to find the general control force 

strategy against any arbitrary excitation. To do so one should find the control force 

plan against each impulse of the arbitrary excitation. However this does not require 

repetition of the whole optimisation process to obtain the control force strategy 

against each of the arbitrary excitation impulses. Instead one needs first to calculate 

the ratio (λi) between the impulse amplitude used for GA optimisation and 

amplitudes of the arbitrary excitation impulses; this ratio is given in Eq. (4.9).  The 

control force plan for each of these impulses equals to the optimised control force 

plan multiplied by the ratio (λi),  

r

ri
i

x

x
=λ ,                                                                                                                   (4.9) 

where, xr: is the amplitude of the impulse used for GA optimisation. 

xri: is the amplitude at the i
th

 impulse (treated as impulse in the short time interval) of 

the arbitrary excitation. 

 

The scaled control force plans will be shifted by time, then by summation the general 

control force strategy can be obtained resulting in the minimum response of the 

system against an arbitrary excitation. 
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4.2.3. Linear Quadratic Regulator (LQR) 

The optimal control theory has been widely applied in literature to the design of 

vehicle suspension systems. For comparison reasons the application of Linear 

Quadratic Regulator (LQR) to control a quarter-vehicle model will be introduced in 

this section.  

 

If a linear dynamical system characterized by Eq. (4.1) is considered, with ( ) 00 xtx = , 

the optimal linear regulator problem of the mentioned system is to determine the 

optimal control ( ) ],[, 0 Tttt ∈u  which will minimise the quadratic form of the cost 

function J (performance index) given in Eq. (4.10): 

 

( )∫ ′+′=
T

dtJ
0

QuuRxx                                                                                            (4.10) 

 

Where, J is the quadratic performance index to be minimised. The superscript ( ' ) 

denotes the matrix transposition. R is a real symmetric nn ×  positive semidefinite 

matrix, Q is a real symmetric rr ×  positive definite matrix, the terminal                     

time T > t0, t0 = 0 [107]. The trajectory weighting matrix R and the control 

weighting matrix Q selection is not based on a rigorous scientific method. It is 

somehow based on the control-system designers experience and will usually be 

determined by experimentation. These weighting matrices will play the main rule of 

deciding the relative importance of suppressing the response of a specific system 

state or bounding the control attempt [14, 107]. 

 

One of the most common techniques in literature to find the control gain matrix that 

minimises the cost function J given in Eq. (4.10) is dynamic programming which is 

based on the “principle of optimality” [14]. Based on this method the sequence of the 

optimal control is computed using the relationships of backward recursion, which 

starts with the best possible final point [14]. It was realised by [108] that the control 

u that would minimise the mentioned performance index is: 
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xDxKCQu −=′−= −1                                                                                           (4.11) 

KCQD ′= −1                                                                                                           (4.12) 

 

Where K is a (m × m) symmetric matrix, and can be calculated from the following 

equation: 

 

KBKBRKCKCQK −′−−′= −1�                                                                          (4.13) 

 

Where Eq. (4.13) is the generalized form of Riccati differential equation. The matrix 

D is called the optimal control gain matrix.  
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Chapter 5 

5. Proposed method implementation and Numerical Results 

This chapter will be divided into two parts; the first part will focus on controlling the 

quarter-vehicle model using the CCFS method and compare the results with the ones 

obtained using the LQR regulator and with the results of passive (non-controlled) 

suspension system. The second part will show the application of the CCFS method to 

control the vibration of a full-vehicle model and will demonstrate the effects of time 

delay on the proposed method performance.  

5.1. Part I: Quarter-vehicle  

5.1.1. Mathematical Model 

A two-degree of freedom quarter-vehicle model subjected to road disturbances is 

shown in Fig 5.1, where, ms and mus are the sprung and the unsprung masses, ks and 

kus are the stiffness coefficients of the suspension and the tyre, cs and cus are the 

damping coefficients of the suspension and tyre, and u is the control force. (xr) is the 

road disturbance, (xs) is the sprung mass vertical displacement and (xus) is the 

unsprung mass vertical displacement. 

 

uActuator

Unsprung mass

Sprung massms

mus

kus

ks Stiffness coefficient (suspension)

Stiffness coefficient (tyre)

cus Damping coefficient (tyre)

cs Damping coefficient (suspension)

xr Road input 

xus unsprung mass vertical displacement 

sprung mass vertical displacement xs

xr

xus

cuskus

csks

xs

mus

ms

u Control forces

 

Fig  5.1 Quarter-vehicle active suspension model. 
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The values of the model variables are given in Table 5.1 [109]. 

The equations of motion of the 2-DOF quarter-vehicle model are: 
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Representing the system in state space form: 

 

( )txtutt r
�� FCBxx ++= )()()(                                                                                    (5.2)   

 

Or in matrix form: 
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If we assume that: 

 

rus xxx −=1                                                                                                              (5.4)          

usxx �=2                                                                                                                     (5.5)                 

uss xxx −=3                                                                                                              (5.6)                   

sxx �=4                                                                                                                      (5.7)                    

 

Then the state space representation of Eq. (5.3) will be: 

 



Chapter 5                                                              CCFS method implementation and Numerical Results 

 65 

rus

us

s

us

s

s

s

s

s

s

us

s

us

s

us

uss

us

us

xm

c

u

m

m

x

x

x

x

m

c

m

k

m

c

m

c

m

k

m

cc

m

k

x

x

x

x

�

�

�

�

�





















−

+

























−

+











































−−−

−

+
−−

+

=



















0

0

1

1

0

1

0

0

1010

0010

4

3

2

1

4

3

2

1

           (5.8)  

 

After converting the equation of motion to the state space form, it can be solved in 

time domain using the Runge Kutta numerical integration algorithm. 

 

Table 5.1 The values of the model variables [109]. 

     

5.1.2. Quarter-vehicle response to a shock input 

The optimisation process was carried out to find the optimal control force plan which 

minimised the response of the sprung mass to the shock input shown in Fig 5.6.  In 

this investigation the ranges for several parameters were studied.  In particular, 

actuator forces were carefully determined after experimenting with a number of 

possible actuator ranges, the upper and lower bounds of the control forces were 

decided in such away to make the forces values comparable to the values obtained 

using the analytical LQR method. Another important parameter studied was force 

reversals.  Initially, the actuator was allowed to generate as many values as the 

number of integration steps, this was equivalent to the number of variables in the 

control force plan.  Firstly, it was assumed that allowing the maximum number of 

variables would enable the GA to iterate and find the most effective number of 

variables so that the control strategy becomes optimum.  It was expected that the GA 

Model Variables Values Unit 

ms 2500  kg 

mus 320  kg 

ks 80000  N m
-1 

kus 500000 N m
-1

 

cs 500  N s m
-1

 

cus 20  N s m
-1
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would eliminate “unnecessary” variables (forces) by reducing their magnitudes to 

zero. After a lengthy investigation and many experiments, it was found that the GA 

was unable to reach such a number, to decide on which number is better, different 

numbers were tested to constitute the control force plan. The procedure followed was 

to find the control force plan which would result in the best sprung mass response to 

the shock input. As the Root Mean Square (RMS) of the system response would give 

better judgement on how good the response is, it was considered to be the measure to 

decide the number of reversal to be used in the GA optimisation process. To give 

more accurate results the Mean Value of the RMS (MVRMS) of 10 different tests of 

each force reversal number is given in Fig 5.2 and the accurate values are given in 

Table 5.3. One can clearly see that if the force reversals equal to four, the control 

force plan would result in the best response of the system. Consequently, only four 

forces are needed to be imposed by the GA scheme to constitute a chromosome. 

 

The population size, which enables the GA to search for the range and density of 

sampling points at which fitness was assessed, was initially chosen to be equal to the 

number of the integration steps. Also, during the early stage of experimentation, the 

total number of generations was initially chosen to be equal to the number of the 

integration steps.  Although there is no direct association between the number of 

generations, the population size and the number of genes in population, it was 

accepted that they were related and more genes in chromosome, and bigger 

population size would slow down the convergence. After many tests with different 

numbers of chromosomes and generations, it was found that a good convergence 

could be achieved by using the numbers presented in Table 5.4. The number of 

generations and the population size were chosen in such a way to ensure that the 

convergence will occur within the selected range; Fig 5.3 and Fig 5.4 shows two 

randomly selected tests, in which the GA was able to reach convergence in (52) and 

(32) generations respectively which are within the chosen range. While through out 

the whole tests the slowest convergence happened after (60) generations as shown in 

Fig 5.5, this verify that both the number of generation and population size chosen for 

the GA optimisation have adequate margin which guarantee that convergence will 

happen within these ranges, the chosen numbers also reduced the total time amount 

spent during the GA iterations.  
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Table 5.2 The upper and lower bounds of the control forces. 
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Fig  5.2 The mean value of the RMS of the system response 

 

Table 5.3 The Mean Value of the RMS (MVRMS) of the system response. 

NO of Forces MVRMS  NO of Forces MVRMS 

1 0.018203  15 0.001336 

2 0.010335  16 0.001363 

3 0.002803  20 0.001668 

4 0.000984  24 0.002412 

5 0.001074  28 0.002735 

6 0.001085    

7 0.001024    

8 0.001102    

9 0.001038    

10 0.001028    

11 0.001084    

12 0.001111    

13 0.001233    

14 0.001255    

Ui Value Unit 

The upper bound  +10000  N 

The lower bound  -10000  N 
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Fig  5.3 Genetic Algorithm Convergence test1. 

 

Fig  5.4 Genetic Algorithm Convergence test2. 

 

Fig  5.5 Genetic Algorithm slowest Convergence 
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Table 5.4 The parameters value required to implement the optimisation process. 

Parameter Value 

No Of Variables (Control Forces) 4 

Population Size 300 

No Of Generations 100 

 

To perform numerical tests, a computer program was developed using Visual Basic 

6. The integration, which uses the Runge Kutta numerical integration method, was 

carried out for t = 4 sec with the time interval of sec02.0=∆t . 

 

Based on the Genetic Algorithm set up explained above, a consistent family of 

solutions (i.e. control force plans) was obtained. In other words, the obtained solution 

is not a unique one, but it is part of a set of solutions that could result in a good 

response of the sprung mass to the shock input. Nevertheless, the GA optimised 

control force plan against shock excitation considered in the current work is shown in 

Fig 5.7 and the force values are tabulated in Table 5.5.  

 

The controlled displacement response of the sprung mass (vehicle body) to the shock 

excitation is shown in Fig 5.8 while Fig 5.9 to Fig 5.11 show the controlled 

acceleration, suspension deflection and tyre deflection responses to the shock 

excitation respectively. 

 

 

Fig  5.6 The Shock input 
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Fig  5.7 The GA obtained control force strategy against shock input. 

 

Table 5.5 Control Force values obtained using Genetic algorithm against impulse 

input. 

 

 

Fig  5.8 The controlled displacement response of ms to the shock input 

 

 

Fig  5.9 The controlled acceleration response of ms to the shock input. 

Force  U1 U2 U3 U4 

Value (N) -9977.45 -9950.16 -8581.16 -3959.39 
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Fig  5.10 The controlled suspension deflection response 

 

Fig  5.11 The controlled tyre deflection response 

 

The obtained results of applying the CCFS method to control the quarter-vehicle 

response to a shock excitation were compared to the response of the passive 

suspension system under the same shock excitation. Fig 5.12 compares the passive 

and controlled sprung mass displacement response while the comparison between 

passive and active acceleration, suspension deflection and tyre deflection responses 

are shown if Fig 5.13 to Fig 5.15 respectively. 

 

Fig  5.12 ms displacement response to the shock excitation.  

Passive ( ), CCFS ( ). 
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Fig 5.13 ms acceleration response to the shock excitation.  

Passive ( ), CCFS ( ). 

 

 

 

Fig 5.14 Suspension deflection response to the shock input. 

 Passive ( ), CCFS ( ). 

 

 

 

Fig 5.15 Tyre deflection response to the shock input. 

 Passive ( ), CCFS ( ) 
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5.1.3. Quarter-vehicle response to an arbitrary external excitation 

As presented, the aim was to control the sprung mass response to an arbitrary 

excitation using the control force strategy established through the CCFS method. To 

do this, first the control force plan obtained by the GA was saved. Then the generated 

arbitrary excitation as shown in Fig 5.16 was divided into impulses. Next the ratio 

λ was calculated for each of these impulses using Eq. (4.9) pp. 60. The saved control 

strategy was shifted and scaled by λ for each impulse of the arbitrary excitation, and 

by summation the general control force strategy which would produce controlled 

actuating forces is obtained as shown in Fig 5.17. The controlled displacement 

response of the quarter-vehicle model to the mentioned arbitrary excitation is shown 

in Fig 5.18 and is compared to the response of the passive system in Fig 5.19. The 

controlled acceleration response is shown in Fig 5.20 and it is compared to the 

passive response in Fig 5.21. Similarly, the actively controlled suspension deflection 

and tyre deflection responses are shown in Fig 5.22 and Fig 5.24, and they are 

compared to the passive responses in Fig 5.23 and Fig 5.25 respectively. 

 

 

 

Fig  5.16 Arbitrary Input 
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Fig  5.17 The generated control force strategy against arbitrary input. 

 

 

 

Fig  5.18 The controlled ms displacement response to the arbitrary excitation. 

 

 

 

Fig  5.19 ms displacement response to the arbitrary excitation. 

 Passive ( ), CCFS ( ). 
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Fig  5.20 The controlled ms acceleration response to the arbitrary excitation. 

 

 

 

Fig  5.21 ms acceleration response to the arbitrary excitation.  

Passive ( ), CCFS ( ). 

 

 

 

Fig  5.22 The controlled Suspension deflection response to the arbitrary input. 
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Fig  5.23 Suspension deflection response to the arbitrary input.  

Passive ( ), CCFS ( ). 

 

 

 

Fig  5.24 The controlled tyre deflection response to the arbitrary input. 

 

 

 

Fig  5.25 Tyre deflection response to the arbitrary input.  

Passive ( ), CCFS ( ). 
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5.1.4. The optimal control strategy using Linear Quadratic Regulator (LQR) 

Solving the matrix Riccati equation is required to determine the gain matrix D given 

in Eq. (4.12) pp. 62, which is necessary to find the optimal control as a function of 

the state variables of the system. To achieve the same aim as that of the proposed 

method, minimising the sprung mass response to an arbitrary excitation, the 

quadratic performance index needs to be determined as follows, 

 

( )∫ ′+′=
T

dtJ
0

QuuRxx ,                                                                                            (5.9) 

where, ]000[ ′= sxx , xs is the sprung mass displacement. 

 

As explained before choosing the matrices R and Q to minimise the performance 

index J is not based on a rigorous scientific method so they were chosen 

experimentally. After many numerical tests it was observed that as Q tends to zero, 

the control power demand increases. The control weighting matrix Q was therefore 

chosen to make the control power demand comparable to the one required by the 

CCFS method.    
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R  is the state weighting matrix.                                                     (5.10) 

 

]105.4[ 13−×=Q  is the control weighting matrix.                                                 (5.11) 

 

And the performance index will be: 
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The system matrices are: 
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To find the (4×4) K matrix, the Riccati equation Eq. (4.13) pp. 62 should be solved, 

but for numerical integration of the differential equations it is more suitable to start 

with initial values, so the time is reversed as follow: 

 

tT −=τ                                                                                                                 (5.15) 

 

And Eq. (4.10) will take the form: 

 

KCKCQKBKBR ′−+′+= −1

τd

dK
                                                                       (5.16) 

 

With null initial values [108].  

 

The Runge-Kutta numerical integration algorithm was used to solve Eq. (5.16). The 

convergence of the elements of K matrix was almost completed after T= 1.0 sec, and 

the K matrix is found to be:  
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

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



=

1457980.00011865   4201180.00000230   0081970.00182109   3471920.00000876

4201180.00000230   7224910.00000008   8122070.00002964   9053270.00000014

0081970.00182109   8122070.00002964   2943140.06042025   8203930.00065297

3471920.00000876   9053270.00000014   8203930.00065297   4680700.00008723

K
       (5.17) 

 

To find the optimal control gain matrix D, the matrices Q, C, K are substituted into 

the Eq. (4.12) pp. 62: 

 

[ ]4321 dddd=D                                                                                                   (5.18) 
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where:  

d1 = - 6754.66066500 

d2 = -1412857.00293167 

d3 = -1442.45028500 

d4 = -89466.56556556 

 

As a result the optimal control forces that minimise the sprung mass response to any 

excitation as a function of the system state variables can be found by substituting D 

into Eq. (4.11) pp. 62: 
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Where, 
usxx =1

, 
sxx =2
,

13 xx �= and 24 xx �=  

In the following the results obtained using the LQR optimal control method will be 

illustrated and compared with the results of applying the CCFS method “convolution 

based control force strategy” to control the response of the quarter-vehicle model 

when it is subjected to the shock and the arbitrary excitation shown above. 

 

Fig 5.26 shows the optimal control forces generated by LQR to control the quarter-

vehicle response to a shock excitation, while in Fig 5.27 these forces are compared to 

the control strategy optimised by the Genetic Algorithm against the same shock 

excitation. Likewise the optimal control forces generated by LQR to control the 

quarter-vehicle response to the arbitrary excitation are shown in Fig 5.28 and 

compared to the generated control strategy by the proposed method in Fig 5.29. 
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Fig  5.26 The LQR generated control force strategy against shock input. 

 

 

 

Fig 5.27 The generated control force strategy against shock input. 

 LQR ( ), GA( ). 

 

 

 

Fig  5.28 The LQR generated control force strategy against arbitrary input. 
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Fig 5.29 The generated control force strategy against arbitrary input. 

LQR ( ), CCFS ( ). 

 

The sprung mass controlled displacement response by means of LQR against shock 

excitation is shown in Fig 5.30 and is compared to the controlled displacement 

response using the proposed method in Fig 5.31. Fig 5.32 shows the actively 

controlled displacement response to the arbitrary excitation using LQR method, and 

in Fig 5.33 it is compared to the response using the proposed method. The actively 

controlled sprung mass acceleration response using the LQR method to the shock 

excitation is shown in Fig 5.34 and the response to the arbitrary excitation is shown 

in Fig 5.36. Both are compared to the acceleration response obtained by applying the 

proposed method as shown in Fig 5.35 and Fig 5.37. The suspension deflection and 

tyre deflection responses with LQR are shown in Fig 5.38 and Fig 5.42 for shock 

excitation and in Fig 5.40 and Fig 5.44 for arbitrary excitation. These responses are 

compared to the ones obtained with the proposed method as shown in Fig 5.39 and 

Fig 5.43 for shock excitation and in Fig 5.41 and Fig 5.45 for arbitrary excitation 

respectively. 

 

Fig  5.30 ms displacement response to the shock excitation using LQR. 
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Fig  5.31 ms displacement response to the shock excitation. 

 LQR ( ), CCFS ( ). 

 

 

Fig  5.32 ms displacement response to the arbitrary excitation using LQR. 

 

 

 

Fig 5.33 ms displacement response to the arbitrary excitation. 

 LQR ( ), CCFS ( ). 
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Fig  5.34 ms acceleration response to the shock excitation using LQR. 

 

 

 

Fig  5.35 ms acceleration response to the shock excitation. 

LQR ( ), CCFS ( ). 

 

 

 

Fig  5.36 ms acceleration response to the arbitrary excitation using LQR. 
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Fig  5.37 ms acceleration response to the arbitrary excitation. 

LQR ( ), CCFS ( ). 

 

 

 

Fig  5.38 Suspension deflection response to the shock input using LQR. 

 

 

 

Fig 5.39 Suspension deflection response to the shock input, 

 LQR ( ), CCFS ( ). 
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Fig  5.40 Suspension deflection response to the arbitrary input using LQR. 

 

 

 

Fig 5.41 Suspension deflection response to the arbitrary input. 

LQR ( ), CCFS ( ). 

 

 

 

Fig  5.42 Tyre deflection response to the shock input using LQR. 
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Fig 5.43 Tyre deflection response to the shock input. 

LQR ( ), CCFS ( ). 

 

 

 

Fig  5.44 Tyre deflection response to the arbitrary input using LQR. 

 

 

 

Fig  5.45 Tyre deflection response to the arbitrary input. 

LQR ( ), CCFS ( ). 
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5.2. Part II: Full-vehicle 

5.2.1. Mathematical model 

A 7-degree of freedom full-vehicle model subjected to road disturbances as shown in 

Fig 5.46 is considered in this part. It is assumed that the wheels have one degree of 

freedom in z (vertical) direction, so these are zi which represent the unsprung masses 

vertical displacements where i = 1 to 4. The sprung mass (vehicle body) is described 

by Cartesian axes system centred at the centre of gravity (COG) of the body. The 

sprung mass has three degrees of freedom, one in z direction which is z5 and two 

rotations, α5  along Ox axis and β5 along Oy axis. As the wheels can move just in the 

vertical direction, the mobility of the full vehicle model is given by Eq. (5.20).  

 

[ ] T
zzzzz 5554321 βα                                                                                         (5.20)             

 

The wheels masses are given by mi  where i = 1 to 4, m5 is the vehicle body mass, the 

inertias of the vehicle body are I5xx and I5yy.  

ki (i = 1 to 4) are the unsprung masses stiffness coefficients. 

ki (i = 5 to 8) are the sprung mass stiffness coefficients. 

ci (i = 1 to 4) are the damping coefficients of the unsprung masses. 

ci (i = 5 to 8) are the damping coefficients of the sprung mass.  

ui (i = 1 to 4) are actuators forces. 
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Fig  5.46 Full-Vehicle Model 

 

The values of the model variables are given in Table 5.6.  

The deflection at the points of suspension attachments zpi need to be calculated based 

on xpi and ypi where i = 1 to 4, this is given in Eq. (5.21).   

 

( )
pipipi xyzz βα −+= 5                                                                                         (5.21)             

The equations of motion are: 
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By converting the equations of motion to the state space form, they can be solved in 

time domain using the Runge Kutta numerical integration algorithm. 

 

The application of the proposed CCFS method to find the control force strategy that 

minimises the full-vehicle model response when it is subjected to an external 

arbitrary excitation will follow a similar approach to that used to control the quarter-

vehicle response to an arbitrary excitation explained in Part I. The only differences 

here are: 

- The Objective Function (Obj), which is given in Eq. (5.23), and is defined as 

minimisation of the summation of the square of deflections at the four corners of the 

vehicle for the complete integration period [100]. 

 

( )∑∑
= =

−+=
n

i

v

j

ii xyzObj
1 1

2

5 βα                                                                                (5.23)      

Where, n: is the total number of time steps, v: is the number of variables 

 

- The ratio (λi) between the unit impulse and amplitudes of the arbitrary excitation 

impulses. This ratio equals to: 

 

w

wi
i

z

z
=λ                                                                                                                  (5.24) 

Where,  

zw: is the amplitude of the impulse used for GA optimisation. 

zwi: is the i
th

 amplitude (treated as impulse in the short time interval) of the arbitrary 

excitation. 

 

It is assumed that the vehicle speed is 72 km/h and the wheel will encounter a 

similarly uneven road, so the disturbance will affect the front and the rare wheels 

with a time lag equal to:   

V

L
t =∆                                                                                                                    (5.25) 

 

Where, L is the distance between front and rear wheels and V is the vehicle speed. 

The full- vehicle parameters values are shown in Table 5.6.  
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As each actuator will be responsible of controlling the vibration of a quarter of the 

full vehicle (i.e. at each corner), an extended approach of the one used in Part I, 

which was modified to adopt four different actuators, was used to obtain the control 

force plan for each of these actuators which will results in minimising the vibration 

of the full-vehicle model. The Genetic Algorithm parameters which achieved a good 

convergence are presented in Table 5.7. The same number of force reversal (4) was 

used; both the number of generations and the population size were decreased to 

minimise the time needed for optimisation process (because of the enormous 

calculations needed for full-vehicle model), but these numbers were chosen as 

explained in Part I in such away to enable GA to reach a good convergence within 

the allocated ranges. Once more a family of consistent solutions for each actuator 

was obtained; the control force plans used here represent one set of the possible 

solutions.   

 

The optimised control forces values using the Genetic Algorithm that minimise the 

full-vehicle response to the shock excitation for each of the four actuators are 

presented in Table 5.8. 

 

Table 5.6 The values of the full-vehicle model variables. 

Model Variables Values Unit 

m5 10000 kg 

m1, m2, m3, m4 320  kg 

k1, k2, k3, k4, 500000 N m
-1 

k5, k6, k7, k8   80000 N m
-1

 

c1, c2, c3, c4 20 N s m
-1

 

c5, c6, c7, c8 500 N s m
-1

 

I5xx 37500 kg.m
2 

I5yy 15000 kg.m
2 

xp1 1.5 m 

yp1 3 m 

The upper bound of (Ui) +12500  N 

The lower bound of (Ui) -12500  N 
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Table 5.7 The parameters value required to implement the optimisation process by 

the GA. 

Parameter Value 

v: No Of Variables (control Forces)  4 

n: Population Size 150 

No Of Generations 70 

 

 

Table 5.8 Control Force values obtained using the Genetic algorithm for each 

actuator. 

Forces [N] Actuator No.1 Actuator No.2 Actuator No.3 Actuator No.4 

U1 -6843.448 -10630.09 -11655.49 -11219.51 

U2 -8045.136 -10556.86 -11884.69 -11540.42 

U3 -6511.04 -11130.63 -11193.95 -10490.57 

U4 -8956.903 -12403.83 -9546.905 -10979.13 

 

 

In the following, the results of applying the CCFS method to control the response of 

the full-vehicle model to a shock excitation and arbitrary excitation will be illustrated 

particularly for the front right corner and vehicle body motion. These results will be 

compared to the results obtained with a passive (non-controlled) suspension system. 

Fig 5.47 shows the obtained control force plan for the front-right actuator against 

shock excitation, while Fig 5.48 shows the generated control strategy against the 

arbitrary excitation (Fig 5.16 pp. 73). The controlled displacement response at the 

front right corner of the vehicle to the shock input is shown in Fig 5.49 and is 

compared to the response of the passive system in Fig 5.50. In the case of arbitrary 

excitation the displacement response is shown in Fig 5.51 and is compared to the 

response with passive system in Fig 5.52. The controlled vehicle body displacement 

response to the shock excitation is compared to the displacement response with 

passive suspension in Fig 5.54. The controlled vehicle body displacement response to 

the arbitrary excitation is shown in Fig 5.53, and is compared to the displacement 

response of the passive system in Fig 5.55.  
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Fig 5.47 The GA-optimised control forces against shock excitation for actuator1. 

 

 

Fig 5.48 The generated control forces against arbitrary excitation for actuator1. 

 

 

 

Fig 5.49 The controlled displacement response at front-right corner to the shock 

excitation. 
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Fig 5.50 The displacement response at front-right corner to shock excitation.  

Passive ( ), CCFS ( ). 

 

 

Fig 5.51 The controlled displacement response at front-right corner to the arbitrary 

excitation. 

 

 

 

Fig 5.52 The displacement response at front-right corner to the arbitrary excitation. 

Passive ( ), CCFS ( ). 
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Fig 5.53 The controlled vehicle body displacement response to arbitrary excitation. 

 

 

 

Fig 5.54 The vehicle body displacement response to the shock excitation.  

Passive ( ), CCFS ( ). 

 

 

 

Fig 5.55 The vehicle body displacement response to the arbitrary excitation.  

Passive ( ), CCFS ( ). 
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The controlled vehicle body acceleration response to the shock excitation is 

compared to the response with passive suspension in Fig 5.57. The controlled 

acceleration response of the vehicle body (sprung mass) to the arbitrary excitation is 

shown in Fig 5.56 and is compared to the passive response in Fig 5.58. The 

controlled vehicle body pitch acceleration response to shock excitation is compared 

to the response of the passive system in Fig 5.59, while the controlled pitch 

acceleration response of the vehicle body to arbitrary excitation is shown in Fig 5.60 

and is compared to the response with passive suspension in Fig 5.61. The suspension 

deflection response is also shown in Fig 5.62 for the shock excitation and in Fig 5.64 

for the arbitrary input. They are compared to the suspension deflection response of 

the passive system in Fig 5.63 and Fig 5.65 respectively.   

 

 

Fig 5.56 The controlled vehicle body acceleration response to the arbitrary 

excitation. 

 

 

Fig 5.57 The vehicle body acceleration response to the shock excitation.  

Passive ( ), CCFS ( ). 
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Fig 5.58 The vehicle body acceleration response to the arbitrary excitation.  

Passive ( ), CCFS ( ). 

 

 

Fig 5.59 The pitch acceleration response to the shock excitation.  

Passive ( ), CCFS ( ). 

 

 

 

Fig 5.60 The controlled pitch acceleration response to the arbitrary excitation. 
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Fig 5.61 The pitch acceleration response to the arbitrary excitation.  

Passive ( ), CCFS ( ). 

 

 

 

Fig 5.62 The controlled suspension deflection response at the front right corner to the 

shock excitation. 

 

 

Fig 5.63 The suspension deflection response at the front right corner to the shock 

excitation. Passive ( ), CCFS ( ). 
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Fig 5.64 The controlled suspension deflection response at the front right corner to the 

arbitrary excitation. 

 

 

 

Fig 5.65 The suspension deflection response at the front right corner to the arbitrary 

excitation. Passive ( ), CCFS ( ). 
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5.3. The effects of Time Delay 

Time delay is an important issue for many engineering applications. For active 

suspension systems, time delay could result in poor performance or more likely to 

cause instability in the control system [66]. There are many sources of time delay in 

active suspension systems, such as the time taken by the digital controller to do the 

complex calculation and the time needed by the actuator to build up the control force 

[66]. A more practical model of the actuator can be obtained by the inclusion of time 

delays [66, 110]. Despite the fact that time delay could be small, it is capable of 

restraining the performance of the control system; therefore, the proposed methods 

are required to be robust regarding the time delay issue [66]. A small number of 

works published in the area of active suspension systems referred to the time delay 

and its effects on the system performance. One should note that the time delay does 

not refer to the apparent time lag between the front and rare wheels which was the 

case in the work done by Marzbanrad et al. [75]. Du and Zhang in [66] investigated 

the effects on including the actuator time delay on the performance of their proposed 

H∞ control for active suspension system. It was shown that the method achieved 

good results with time delay value up to 40 ms. Whilst in [110] the proposed control 

method was tested with different actuator time delay values (5 and 25 ms) to 

illustrate the effects of the time delay along with the control parameters on the 

system performance.  

 

In the present work the developed code for simulation was modified to accommodate 

different values of time delays, so it can allow the actuator to apply the control force 

strategy after receiving the control order by ∆t sec [100]. This leads to the 

modification of Fig 3.7 pp. 42. to include the time delay values as shown in Fig 5.66-

(a) and (b). The generated control force strategy, which uses the control force plan 

optimized by Genetic Algorithm against shock input, is applied to control the 

response of the system when it is subjected to a random input, but the control 

strategy is applied with a time delay ∆t as shown in Fig 5.66-(b). 
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Fig  5.66 Schematic of the CCFS method with time delay. 

 

 

For the full vehicle model, the obtained control force plane of each actuator (Table 

5.8 pp. 92) was used to generate the control force strategy for each actuator using the 

CCFS method in order to control the full vehicle response when it was subjected to 

the random excitation shown in Fig 5.16 pp. 73, but the control strategy was applied 

with time delay; two different values: ∆t = 0.02 sec and ∆t = 0.04 sec. 

The controlled displacement responses of the vehicle body at the front right corner 

when it was subjected to an arbitrary external excitation with different time-delay 

values are shown in Fig 5.67 and Fig 5.68. 
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Fig 5.67 The front right corner displacement response with time delay. ∆t = 0  

( ), ∆t = 0.02 sec ( ), ∆t = 0.04 sec ( ). 

 

 

Fig 5.68 The front right corner displacement response with time delay. 

 ∆t = 0 ( ), ∆t = 0.02 sec ( ), ∆t = 0.04 sec ( ), passive ( ). 

 

On can clearly see that the CCFS method managed to achieve a good performance, 

even with the inclusion of up to 40 ms time delay in comparison to the non-

controlled performance.  

This demonstrates that CCFS is robust in dealing with substantial time delays (in this 

case 40ms) in the control system. 
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Chapter 6 

6. Experimentation and Experimental Results 

6.1. Introduction 

In order to investigate the applicability of the proposed method in real time 

applications, a quarter-vehicle test rig was designed and a series of experiments were 

carried out to show that the proposed method can be easily implemented and can 

improve the system response when it is subjected to different kinds of external 

disturbances.  

 

The quarter-vehicle model has been used in many research works for suspension 

systems investigation and design. Although the model is simple, many essential 

characteristics of the actual vehicle performance can be obtained [111]. A two mass 

system representing a quarter-vehicle model was designed to capture the responses of 

the model when it is subjected to different road inputs. The mentioned model can 

give an insight of the main criteria of interest such as ride comfort, suspension 

working space (suspension deflection) and road holding (tyre deflection).  

The key issues of designing the test rig can be addressed as follows: 

- Experimental objective 

The primary objectives of the experimental test are: 

- To show the ability of the proposed method to be implemented in real life 

applications. 

-  To verify that the proposed method is capable of controlling the suspension 

system and improving the system performance.   

 

The proposed method intended to control the active suspension system in such a way 

to minimise the response of the sprung mass (vehicle body) when the system was 

subjected to an external excitation. The characteristics which will be captured from 

the designed quarter-vehicle test rig will also be used for evaluation and analysis of 

the “Convolution based Control Force Strategy” method. 
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- Experimental requirements and the available laboratory resources 

The main requirements to design a quarter-vehicle test rig can be summarized as 

follow:  

- Two masses representing sprung mass (vehicle body) and unsprung mass 

(tyre); these masses can slide along two shafts using Oilite bearings as only 

the vertical motion is of interest. 

- Springs with different stiffness representing passive suspension and tyre 

rigidity. 

- Vibrating source to simulate the road input. 

- Actuation system to generate the control forces needed for the active 

suspension system.  

- A set of linear displacement sensors and accelerometers for measurements 

and control. 

- Data acquisition system (hardware and software). 

 

Brunel University Vibration laboratory has a number of the required facilities such as 

the VB85 shaker which is a medium thrust, high performance, electromagnetic 

vibration generator. This vibrator was designed to transmit sinusoidal or random 

vibrations which cover a wide range of frequencies and displacements; also it can 

generate different kinds of shocks including half sine, square, saw tooth, and 

triangular shock. The shaker can be used in compliance with all international and 

British environmental specifications [112]. In addition, there is a Froude Consine 

Omega amplifier designed to be used with vibration systems. It consists of a cabinet 

containing power modules, a control module, an optional degauss module and a user 

interface fitted in the front door. This amplifier can be used to drive the shaker 

through the user interface or it can receive the signal from external computer 

connected through a BNC cable. Additionally, there are different power supplies 

with both fixed and adjustable outputs, Endevco Model 4416B Battery powered 

Isotron conditioners, a PC-CARD-DAS16/16AO for data acquisition, and pneumatic 

equipment, which can be used in the test rig design.  
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6.2. Quarter-vehicle Test Rig setup 

Taking into account the design issues and considering all the available resources, the 

test rig for quarter-vehicle active suspension system using pneumatic actuator was 

designed. The test rig is shown in Fig 6.1 and comprises the main system, the 

pneumatic system and the data acquisition system. 

6.2.1. The main system 

- Steel masses: m1 and m2 represent the tyre and the vehicle body masses respectively 

whilst m0 is rigidly connected to the top plate of the shaker to simulate the road input. 

These masses will slide along two shafts using Oilite bearings. 

- Steel springs: two springs have 1k and 2k stiffness values and represent the tyre 

rigidity and the passive suspension respectively. The spring with 0k stiffness is used 

to support the weight of the top part of the test rig to protect the shaker as it is 

designed to endure a specific static weight. 

- VB85 shaker with the Omega amplifier, the shaker signal input will be generated 

using SignalCalc 350 Vibration Controller software. 

- Three Linear Displacement Sensors (LDS) shown in Fig 6.3(a). The first sensor is 

connected between the base and m0, which measures the road input vertical 

displacement
0x . The second sensor is connected between the base and m1, which 

measures the vertical displacement 1x . The third sensor is connected between m1 and 

m2, measures the relative displacement 12 xx − . 

- Two accelerometers shown in Fig 6.3(b): A/120/VTN is needed to control the 

shaker whilst the other accelerometer A/120/VT is used to measure the vehicle-body 

acceleration 2x�� . The accelerometers are connected to the signal conditioners as they 

need constant current (4mA) to work. 

The test rig components weight and values are tabulated in Table 6.1.   
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Table 6.1 The Test Rig parts weights and their values. 

Part Weight   kg Value   N/m 

Sprung mass m2 12.147 - 

Unsprung mass m1 3.077 - 

Two Spring  k2 0.165 each 1600 

Two Spring  k1 0.120 each 12500 

Pneumatic actuator 0.802 - 

Fixing brackets 0.378 - 

 

 

 

 

Fig  6.1 instrumentation of the active suspension test rig. 

a) Froude Consine Omega amplifier. b) VB85 Electromagnetic Vibration Generator. 

c) Air cooling system of the shaker.  d) Two mass system main parts. 

e) Pneumatic System.                         f) Data Processing System. 
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6.2.2. Pneumatic system 

A pneumatic system was assembled and fitted to the quarter-vehicle test rig to 

generate the required control forces. The main parts of the pneumatic system are:   

- Lateral load resisting low Friction Cylinder MQML D 25 TF H 100 D from 

SMC, which will be used to generate the control forces. 

- Electro-Pneumatic Regulator: ITV 3050 31 2BS Q X88 from SMC to work as 

a Proportional Control Valve, shown in Fig 6.2(a). 

- SY3340R-SLOZ-01-Q body ported solenoid valve from SMC shown in Fig 

6.2(c). 

- AFD30-F02D Micro-Mist separator from SMC shown in Fig 6.2(b). 

- Air Compressor. 

- Tubes and fittings from SMC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig  6.2 Pneumatic Control System: 

a) Electro-Pneumatic Regulator 

b) Micro-Mist Separator 

c) Solenoid Valve 

 

 

 

 

a 

b 

c 



Chapter 6                                                                               Experimentation and Experimental Results 

 108 

 

 

 

 

 

 

 

 

 

 

 

 

Fig  6.3 side view of the rig: 

a) Linear Displacement Sensors 

b) Accelerometers 

 

6.2.3. Data Acquisition System 

6.2.3.1. Hardware 

- The PC-CARD-DAS16/16AO (200 kS/s) card was used for data acquisition as the 

linear displacement sensors and accelerometers are connected to its analogue input 

channels; also the card analogue output channels will be used to control the solenoid 

valve.  

- USB-1208FS card is a USB-based DAQ module with 8 analogue input channels, up 

to 12-bit resolution, 50 kS/s, two D/A outputs and 16 DIO bits. The analogue output 

of this card will be used to control the Electro-Pneumatic Regulator. 

6.2.3.2. Software 

A Visual Studio.Net 2005 software program was developed using the cards universal 

library; this program enabled the user to collect the data and to receive/send signals 

from/to the test rig using both cards analogue channels. The user friendly interface is 

shown in Fig 6.4.  

 

a 

b 

b 
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Fig 6.4 The developed user friendly interface for data acquisition and control 

software. 

6.3. Test Procedure 

The test was divided into two parts: 

- The first part focused on finding the appropriate control force strategy against 

shock disturbance based on the quarter-vehicle mathematical model.  

- The second part concentrated on actively controlling the suspension system when it 

is subjected to random disturbance using the CCFS method. 

 

Throughout the experiment the following outputs were expected to be measurable or 

easily calculated based on the measurable data: 

- The vertical displacements of the vehicle body, i.e. of the sprung mass (m2). 

- The vertical acceleration of the vehicle body.  

- The relative vertical displacement between the sprung and unsprung mass. 

- The relative vertical displacement between road input and the wheel. 
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These outputs are important to evaluate the criteria of ride-comfort, suspension rattle 

space and road holding, which are essential to assess the improvements achieved by 

applying the CCFS method. 

 

6.3.1. Model based control force plan against shock input 

In general, obtaining the impulse response of mechanical systems is a complex task 

as these systems have different structures which make it difficult to apply an 

impulsive force input and record the system response. Moreover, in the current 

designed test the shaker limits add more difficulty as it is not capable of generating a 

force with high amplitude for a short period of time. To overcome this problem, the 

mathematical model (quarter- vehicle model) which represents the test rig was used 

to find the control forces against a shock input numerically. The developed Genetic 

Algorithm optimisation software shown in Fig 6.5 was used to find the control force 

plan against a shock input using the same procedure described in chapter 5, section 

5.1.  

 

Fig 6.5 User friendly interface of the GA based optimisation software. 
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The GA was used to find the control force plan that minimises the sprung mass 

response when the system is subjected to the shock input shown in Fig 6.6. A 

consistent family of possible solutions was obtained. The GA-optimised control force 

plan considered here is shown in Fig 6.7 and the force values are tabulated in Table 

6.2. 
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Fig  6.6 The shock input. 
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Fig  6.7 The optimised control forces by the GA against the shock input. 

 

Table 6.2 The GA-optimised control force values. 

Force  F1 F2 F3 F4 

Value [N] -9.632515 1.593025 9.085726 2.197852 
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The controlled response of the sprung mass in terms of displacement and 

acceleration is shown in Fig 6.8 and Fig 6.9 respectively. The relative displacement 

is shown in Fig 6.10. These figures show the improvement achieved by comparing 

the actively controlled response to the passive one.     
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Fig  6.8 Displacement response of the sprung mass. 
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Fig  6.9 Acceleration response of the sprung mass. 
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Fig  6.10 Relative Displacement (suspension deflection) response. 

 

The optimised forces were saved to be used as the base for creating the control force 

strategy against the arbitrary excitation. To do so, the obtained control forces should 

now be converted into a voltage signal to be sent to the E-P Regulator as these forces 

will be generated by controlling the E-P Regulator pressure output and consequently 

the pneumatic actuator forces. The task now is to establish the relationship between 

the E-P Regulator input voltage and the force output of the pneumatic actuator, 

which can be found as follows: 

 

1. Find the relationship between the Pneumatic actuator forces and the pressure 

supply. 

2. Find the relationship between the Electro-Pneumatic pressure output and the 

voltage signal input. 

3. As a result of combining step1 and 2 a new Force-Volt relationship emerged. 

 

Fig 6.11 shows the relationship between the Pneumatic actuator forces and the 

pressure supply [113]. Fig 6.12 shows the relationship between the E-P Regulator 

Pressure output and the voltage input signal (in the range of interest). This graph was 

obtained experimentally by applying different voltage input signal and reading the 

output pressure of the E-P Regulator. Fig 6.13 shows the obtained relationship 

between the voltage input signal of the E-P Regulator and the output Forces of the 

Pneumatic actuator. 
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Fig 6.11 Pneumatic Actuator Forces Vs pressure supply. 
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Fig 6.12 Electro-Pneumatic Regulator Pressure Vs Volt Input Signal. 

 



Chapter 6                                                                               Experimentation and Experimental Results 

 115 

Actuator Force Vs E-P Regulator Input Vole
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Fig 6.13 Actuator Force Vs Electro-Pneumatic Regulator Input Voltage. 

 

As the Genetic algorithm optimisation program is connected to the main program of 

data processing and control, the values of the forces obtained by the GA will be 

imported and converted directly based on the relation in Fig. 6.13 to be used in 

controlling the system response against the arbitrary excitation input.  

 

6.3.2. Control Strategy against arbitrary excitation 

The obtained control force plan against shock input will now be used as the main 

base to generate a general control force strategy against arbitrary excitation in a real 

time application. Two kinds of excitation signals; random and sweep sine waves 

were chosen as an input to the system. The selected signal levels were chosen taking 

into account the shaker limits such as the low frequency and the maximum 

displacement that can be generated by the specified shaker. Fig 6.14 and Table 6.3 

show the schematic drawing of the whole active suspension test rig and its parts.  
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Fig 6.14 Schematic of the active suspension system. 

 

Table 6.3 The main parts names of Fig 6.11. 

Part  Specifications 

PC Personal Computer 

PSC Programmable Sine Controller 

E-PR Electro-Pneumatic Regulator 

M-M S Micro-Mist Separator 

SV Solenoid Valve 

DAi Data Acquisition Card 

SCi Signal Conditioner  

Accei Accelerometer 

PA Pneumatic Actuator 

LDSi Linear Displacement Sensor 
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6.3.2.1. Test procedure 

The test was carried out as follows: After checking that all the equipment was 

correctly connected and powered with the accurate input values, the generated signal 

by SignalCalc 350 software was sent to the shaker through the Omega amplifier. As 

the shaker started vibrating the active control system was ready to deliver the right 

control forces by checking the LDS1 output (
0x  amplitude) and instantaneously 

calculating the right value of the force to be applied using an algorithm for 

calculating the scaling factor ( iλ ) as explained in Eq.(6.1).  

 

onoptimizatiGAforusedAmplitudeShockthe

Amplitudexmeasuredthe
i

0=λ                                                (6.1) 

 

The forces obtained by the GA were first scaled by iλ   and then applied according to 

their specified time which resulted in accumulating the forces to be applied by the 

pneumatic actuator at the right time to act in response to the arbitrary input 

excitation.  

 

Force values were sent as a voltage input to the E-Pressure Regulator to control the 

pressure supply of the pneumatic actuator which consecutively provided the right 

forces that corresponded to these voltage input signals using the obtained relationship 

shown in Fig 6.13.  The forces direction was achieved by controlling the solenoid 

valve which determined the direction of the pneumatic actuator pressure supply. The 

acceleration of the sprung mass, the relative displacement, the wheel displacement, 

and the road input displacement were measured, while the sprung mass displacement 

and tyre deflection were calculated based on the measured data. All these parameters 

were recorded and saved to be used for performance evaluation. 

6.4. Experimental Results 

This section presents the experimental results obtained by applying the CCFS 

method to control the response of a quarter-vehicle active suspension to an external 

arbitrary excitation. The experimental results of actively controlling the response of 

system when it is subjected to a random and sweep sine wave input are given below. 
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6.4.1. The results of applying the CCFS method against random input 

The random signal generated by the VB85 Shaker is shown in Fig 6.15.  Using the 

procedure explained in section 6.3.2 to control the response of the system due to 

random input, the controlled sprung mass displacement response is compared to the 

passive response in Fig 6.16, while the acceleration response is compared to the 

passive one in Fig 6.17. The controlled suspension deflection and tyre deflection 

responses are compared to the passive ones in Fig 6.18 and Fig 6.19 respectively.  
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Fig  6.15 Random wave input. 
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Fig  6.16 Displacement response of the sprung mass. 
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Fig  6.17 Acceleration response of the sprung mass. 
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Fig  6.18 Relative Displacement (suspension deflection) response. 
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Fig  6.19 Tyre deflection response. 

 

To verify the improvement achieved by applying the CCFS method to control the 

system response when it was subjected to the random input, the RMS values of the 

above responses were calculated and tabulated in Table 6.4.  
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Table 6.4 RMS values of the system response criteria (Random I). 

 Passive CCFS Improvement % 

2xRMS         [mm]  1.805564 1.328456 26.42 

2xRMS ��         [m/s
2
] 0.396666 0.345072 13.01 

12 xxRMS −  [mm] 3.966833 3.467429 12.59 

01 xxRMS −  [mm] 3.337446 3.084799 7.57 

 

6.4.2. The results of applying the proposed method against a Sweep Sine input 

A similar approach was used to control the system response to a sweep sine input 

with the objective of minimising the sprung mass response. The GA-optimised 

control force plan against the shock input is shown in Fig 6.20 and the forces values 

are tabulated in Table 6.5. The Sweep sine wave between 7-50 Hz generated by the 

VB85 shaker is shown in Fig 6.21. The controlled displacement and acceleration 

responses of the sprung mass against the passive responses are shown in Fig 6.22 and 

Fig 6.23 respectively.  Fig 6.24 shows the controlled suspension deflection response 

compared to the passive one, while the tyre deflection is shown in Fig 6.25. 
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Fig  6.20 The GA-optimised control forces against shock input. 

 

Table 6.5 The GA-optimised control forces values. 

Force  F1 F2 F3 F4 

Value [N] -5.69649 2.075207 9.487933 1.520243 
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Fig  6.21 Sweep sine wave input. 
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Fig  6.22 Displacement response of the sprung mass. 
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Fig  6.23 Acceleration response of the sprung mass. 
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Fig  6.24 Relative displacement (suspension deflection) response. 
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Fig  6.25 Tyre deflection response. 

 

As it could be difficult to draw a conclusion out of the above graphs; therefore, the 

RMS values of the system responses were calculated and they are shown in Table 

6.6. 

 

Table 6.6 RMS values of the system responses (Sweep sine). 

 Passive CCFS Improvement % 

2xRMS         [mm]  1.729477 0.882546 48.97 

2xRMS ��         [m/s
2
] 0.544824 0.294449 45.96 

12 xxRMS −  [mm] 3.221245 2.188105 32.07 

01 xxRMS −  [mm] 3.522901 2.736518 22.32 

 

 



Chapter 6                                                                               Experimentation and Experimental Results 

 123 

To demonstrate that the control forces obtained by GA to minimise the system 

response due to a shock input can be used as the base to generate a control force 

strategy against any arbitrary excitation input, the same forces shown in Fig 6.20 

which was used to generate a control force strategy against Sweep Sine input were 

also used to generate a control force strategy against the random input. Fig 6.26 

shows the controlled sprung mass displacement response against the passive one. 

The RMS values of the other criteria are shown in Table 6.7. 
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Fig  6.26 Displacement response of the sprung mass. 

 

Table 6.7 RMS values of the system response criteria (Random II). 

 Passive CCFS Improvement % 

2xRMS         [mm]  1.751325 1.250706 28.59 

2xRMS ��         [m/s
2
] 0.397865 0.364758 8.32 

12 xxRMS −  [mm] 3.846004 3.606432 6.23 

01 xxRMS −  [mm] 3.236902 2.984413 7.8 
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6.5. Programmable Logic Controller (PLC) 

To further investigate the capability of the proposed CCFS method to be 

implemented using different controller. A Programmable Logic Controller (PLC) 

was used to apply the proposed control algorithm, a Phoenix PLC (INLINE 

controller ILC 150 ETH) as shown in Fig 6.27 was used to control the quarter-

vehicle active suspension system. The programming part was done using the PC 

WorX automation software as shown in Fig 6.28. The proposed “Convolution based 

control force strategy (CCFS)” approach was followed. The aim was to minimise the 

system response to a sweep sine (5-50 Hz) external excitation. Fig 6.29 shows the 

schematic diagram of the test setup including the PLC. The main parts of the system 

are presented in Table 6.8.  

 

The same force values presented in Table 6.5 were used to generate the overall 

control force strategy following the same test procedure explained in section 6.3.2.  

Fig 6.27 shows the PLC used to control the quarter-vehicle test rig using the 

proposed method. The initial results obtained were quite promising, Fig 6.30 shows 

the sprung mass displacement response controlled using the CCFS method and 

compared to the passive (non-controlled) response. The suspension deflection 

response (controlled using CCFS and the passive one) is shown in Fig 6.31 and the 

sprung mass acceleration response is shown in Fig 6.32. 

 

It can be clearly seen form the obtained results that the using the PLC to implement 

the CCFS method resulted in an improved response of the system. However, the 

application requires further investigations especially the timing issues of both the 

PLC and the control equipment 
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Fig  6.27 The Phoenix PLC connected to the relays and power supply. 

 

 

 

Fig  6.28 The user friendly interface of the PC WorX software. 
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Fig  6.29 Schematic of the active suspension system with PLC. 

 

Table 6.8 The main parts names of Fig 6.29. 

Part  Specifications 

PC Personal Computer 

PSC Programmable Sine Controller 

E-PR Electro-Pneumatic Regulator 

M-M S Micro-Mist Separator 

SV Solenoid Valve 

DAi Data Acquisition Card 

SCi Signal Conditioner  

Accei Accelerometer 

PA Pneumatic Actuator 

LDSi Linear Displacement Sensor 

PLC Programmable Logic Controller 

Ri Relay 
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Fig  6.30 The sprung mass displacement response to sweep sine excitation. 
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Fig  6.31 Relative displacement (suspension deflection) response. 
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Fig  6.32 Sprung mass acceleration response. 
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Chapter 7 

7. Discussion 

In this chapter the improvements achieved by applying the proposed method 

“convolution of the control force strategy” to control the vibration of the quarter- and 

full- vehicle model will be discussed. In addition, the level of improvements 

accomplished from the experiments will be emphasised taking into consideration the 

objectives of the work; what was expected and what has been achieved. 

 

Starting with the quarter-vehicle model, and based on the numerical results Fig 5.12 

pp. 71 and Fig 5.19 pp. 74 and the Root Mean Square (RMS) values in Table 7.1 

below, one can easily observe the superiority of the proposed method in reducing the 

quarter-vehicle displacement response for both shock and arbitrary excitations over 

the passive suspension response. The controlled displacement response of the vehicle 

body to the shock excitation using the proposed method was almost the same as the 

displacement response using the LQR method but with reduction of the peak value, 

as shown in Fig 5.31 pp. 82 and Table 7.1. The achievement was the improvement in 

the sprung mass displacement response to the arbitrary excitation using proposed 

method when compared to the response with LQR method as shown in Fig 5.33 pp. 

82. This improvement was found to be a 59.68% reduction in the RMS value of the 

displacement response achieved using the proposed method as presented in Table 

7.1. As expected there was a slight increase in the sprung mass acceleration response 

due to the shock excitation and a marginally higher acceleration response in the case 

of the arbitrary excitation using the CCFS method when compared to the responses 

using the LQR method as shown in Fig 5.35 pp.83 and Fig 5.37 pp. 84.  The increase 

of the RMS value of the sprung mass acceleration response was expected due to the 

fact that the Genetic Algorithm attempted to obtain the control strategy that 

minimised the displacement response of the system, clearly stated in the objective 

function formula. While the sprung mass acceleration response using the proposed 

method is much better than the response with passive system; this is clear from the 

results shown in Fig 5.21 pp. 75 and RMS values in Table 7.1.  
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To see the effect of the proposed method on the other suspension criteria, the 

suspension deflection and tyre deflection responses were also checked. The 

controlled suspension deflection response to the arbitrary excitation using the 

proposed method was almost identical to that achieved using the LQR method as 

shown in Fig 5.41 pp. 85 and provided a significant improvement over that generated 

by the passive suspension as shown in Fig 5.23 pp. 76. The tyre deflection response 

to the arbitrary excitation was very similar to that obtained with the LQR method as 

shown in Fig 5.45 pp. 86, and was much improved in comparison to the tyre 

deflection of the passive system which can be seen in Fig 5.25 pp. 76. Therefore, it 

can be concluded that in comparison to the performance of the LQR method, the 

proposed method could significantly improve the displacement response of the 

vehicle body with a slight expected increase in the acceleration response.  There was 

also no degradation in the suspension deflection or the tyre deflection for both shock 

and arbitrary excitation, and superior performance for all the suspension criteria in 

comparison to the passive suspension performance. 

 

Table 7.1 Root Mean Square (RMS) for the Quarter-vehicle responses 

 Shock input Arbitrary input 

 Passive LQR CCFS Passive LQR CCFS 

sxRMS   [m] 
0.026 0.00093 0.00097 0.531 0.0062 0.0025 

sxRMS ��   [m/s2] 1.6 1.147 1.588 14.535 1.499 2.42 

ForcesRMS  [N] - 1373.49 1199.73 - 10202.96 10493.31 

 

 

For the full-vehicle model, applying the proposed method resulted in the best 

displacement response at each corner of the full-vehicle model when compared to the 

response with passive suspension; this can be clearly seen for the front-right corner 

response (Zp1) to the shock excitation in Fig 5.50 and to the arbitrary excitation in Fig 

5.52 pp. 94. Moreover, one can easily observe the improvements achieved as the 

RMS values were significantly reduced by using the proposed method to control the 

vehicle response for both shock and arbitrary excitation as presented in Table 7.2. 

Similarly, the vehicle body displacement response (Z5) was considerably reduced in 

comparison to the passive response for both shock excitation Fig 5.54 pp. 95 and 
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arbitrary excitation Fig 5.55 pp. 95; this can also be observed from the enormous 

reduction in the RMS values of the vehicle body displacement response presented in 

Table 7.2. From Fig 5.58 pp. 97 the vehicle body acceleration response ( 5Z�� ) to the 

arbitrary excitation was by far better than the one achieved with passive suspension. 

The pitch acceleration (α�� ) was also greatly improved in comparison to the passive 

response which can be seen in Fig 5.61 pp. 98; accordingly, the RMS values for ( 5Z�� ) 

and (α�� ) were also drastically improved as presented in Table 7.2.  Exploring the 

effects of applying the proposed method on suspension deflection revealed that the 

suspension deflection response to both shock and arbitrary excitation was improved 

as shown in Fig 5.63 pp. 98 and Fig 5.65 pp. 99, together with the RMS values of 

Zp1-Z1 presented in Table 7.2.  

 

Table 7.2 Root Mean Square (RMS) for the Full-vehicle responses: 

 Shock input Arbitrary input 

 Passive  CCFS Passive  CCFS 

1pZRMS      [m] 0.0425  0.00165 0.3781    0.0131  

5ZRMS        [m] 0.0226  0.00093   0.3859   0.0075   

5ZRMS ��        [m/s
2
] 1.304   1.348  9.677  2.724  

α��RMS         [rad/s
2
] 0.958  0.396 3.32 1.713   

11 ZZRMS p −      [m] 0.0544   0.0503    0.315  0.159  

 

From previous discussion, it is possible to realize that the application of the proposed 

method “convolution of the control force strategy” to control the full-vehicle model 

response when it is subjected to a shock or to a random road excitation has shown the 

superiority of the proposed method in improving the vehicle body displacement and 

acceleration responses. Moreover, it was not only able to maintain the suspension 

deflection but also improve it over the response of a system with passive suspension.  

 

The time-delay effects on the performance of the proposed method have also been 

studied to show the robustness of the method with regards of the time delay issue. 

The chosen time-delay value accounts for all the delay that could occur in the system 

due to the inability of the actuator to be able to deliver the required control forces at 
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the right time. The results shown in Fig 5.67 and Fig 5.68 pp. 102 demonstrate that 

even when increasing the time-delay value up to 40 ms the proposed method was 

able to control the vehicle body response to the arbitrary excitation and the response 

provided a significant improvement over the passive system response.  

 

Throughout the experimental tests, great care was taken to minimise the 

experimental inaccuracies, especially eliminating the signal noise caused by the high 

voltage and high magnetic field generated by the shaker and its air cooling system. 

An A/120/VTN accelerometer was used for the shaker, which was specially designed 

to minimise the effects of the magnetic field on the signal, in addition, signal 

conditioners with low noise operation were used to guarantee supply power to the 

accelerometers from a constant current source. Two separate power supply sources 

were used to provide a constant 24v and 5v Dc for the E-P Regulator and the 

solenoid valve respectively, reducing the fluctuation in power supply. Most of the 

wires and the BNC cables were isolated and kept as far away form the magnetic field 

as possible. All the instruments, input and output channels were calibrated before 

running the tests. The aforementioned issues were done to reduce the effects of the 

inaccuracies in the system and to ensure that reliable, feasible and conclusive results 

would be obtained. 

 

The observations obtained from applying the CCFS method to control the response 

of the quarter-vehicle test rig (in real time), can be expressed as follows: 

For the random road input, the CCFS method managed to significantly improve the 

sprung mass displacement response in comparison to the passive response which can 

be seen in Fig 6.16 pp. 118. It was found that a 26.42% improvement was achieved 

in the RMS value of the sprung mass displacement response over the passive system 

as presented in Table 6.4. There was also a 13.01% improvement in the RMS value 

of the sprung mass acceleration response, a 12.59% improvement in the RMS value 

of the suspension deflection response, and a 7.57% improvement in the RMS value 

of the tyre deflection over the responses with the passive suspension system as 

shown in Table 6.4.  
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Table 6.4  RMS values of the system response criteria. (Random I) 

 Passive CCFS Improvement % 

2xRMS         [mm]  1.805564 1.328456 26.42 

2xRMS ��         [m/s
2
] 0.396666 0.345072 13.01 

12 xxRMS −  [mm] 3.966833 3.467429 12.59 

01 xxRMS −  [mm] 3.337446 3.084799 7.57 

 

For the sweep sine wave input, the superiority of the proposed method in controlling 

the quarter-vehicle test rig responses could be clearly seen in Fig 6.22 pp. 121 for the 

sprung mass displacement response and from the 48.97% improvement of the 

associated RMS value presented in Table 6.6. The sprung mass acceleration response 

was also improved as shown in Fig 6.23 pp. 121; the improvement in the RMS value 

of the sprung mass acceleration was found to equal 45.96% displayed in Table 6.6. 

The other suspension criteria were also recorded to demonstrate how they were 

affected by the application of the proposed method. The suspension and tyre 

deflection responses to the sweep sine excitation were improved in comparison to the 

responses of passive system as shown in Fig 6.24 and Fig 6.25 pp. 122. A 32.07% 

improvement in the RMS value of suspension deflection and a 22.32% improvement 

in the RMS value of the tyre deflection as tabulated in Table 6.6 were observed. 

 

Table 6.6 RMS values of the system responses (Sweep sine). 

 Passive CCFS Improvement % 

2xRMS         [mm]  1.729477 0.882546 48.97 

2xRMS ��         [m/s
2
] 0.544824 0.294449 45.96 

12 xxRMS −  [mm] 3.221245 2.188105 32.07 

01 xxRMS −  [mm] 3.522901 2.736518 22.32 

 

As explained in Chapter 6 the control force strategy obtained by GA to minimise the 

system response to a shock input, which was used to generate the control force 

strategy against the sweep sine excitation, was also used as the base to generate a 

control force strategy against different arbitrary excitation. This was carried out to 

demonstrate that regardless of the excitation nature (random or otherwise) the 
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proposed method is capable of controlling the system response and this could be 

clearly seen in Fig 6.26 pp. 123 in which the sprung mass controlled response was 

compared to the passive one. A 28.59% improvement in the RMS value of the 

displacement response over the passive one was achieved. Moreover, all other 

suspension criteria were improved as can be observed from the RMS values in Table 

6.7. 

 

Table 6.7 RMS values of the system response criteria. (Random II). 

 Passive CCFS Improvement % 

2xRMS         [mm]  1.751325 1.250706 28.59 

2xRMS ��         [m/s
2
] 0.397865 0.364758 8.32 

12 xxRMS −  [mm] 3.846004 3.606432 6.23 

01 xxRMS −  [mm] 3.236902 2.984413 7.8 

 

Consequently, the experimental results justify the obtained numerical results from 

the point that the proposed method could significantly improve some of the 

suspension criteria such as the displacement response and reasonably maintain or 

even improve the acceleration response, suspension deflection and tyre deflection.  

 

The aforementioned results and discussion demonstrate that the proposed method can 

be used for real-time control applications. Once the control strategy for the shock 

disturbance is established, the results can then be used at each time step when online 

control is performed. Therefore, the system can be controlled in real time irrespective 

of the nature of the external excitation. The inclusion of the time delay made the 

approach more realistic as the majority of real time applications suffer from time-

delay caused by many sources. The inclusion of different time delay values 

demonstrated that the proposed method was capable of achieving acceptable results.  

 

One should also state that even though the control strategy was obtained by means of 

Genetic Algorithm, the method is applicable irrespective of the optimisation method.  

The simplicity of the proposed method would make implementation rather straight 

forward. One of the most significant advantages of the proposed method is the 

reduction in the number of sensors needed to construct the control strategy in 
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comparison to what currently exists in literature, resulting in less contaminated 

signals and reduced construction cost of the control system.  
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Chapter 8 

8. Conclusion and Future works 

8.1. Conclusion 

A new method for obtaining a real-time control strategy to suppress the vibrations of 

oscillatory systems subjected to an arbitrary external excitation has been presented in 

this study. The proposed method “Convolution based Control Force Strategy 

(CCFS)” made use of the convolution concept to constitute a control force strategy 

which was able to achieve a real-time control of the system response caused by an 

external arbitrary disturbance. The only requirement to achieve this is to obtain a 

control strategy that minimises the system response to an impulse disturbance. In this 

study a Genetic Algorithm (GA) was used as the global optimisation tool to obtain 

the control strategy in preference to the methods from the classic optimal theory and 

it was shown to give promising results. Then by dividing the arbitrary excitation into 

impulses and simply following the convolution concept for each impulse, the GA-

obtained control strategy would be scaled, shifted and by summation the overall 

control strategy against the arbitrary excitation was established. The proposed 

method was applied to control the response of a quarter-vehicle active suspension 

system subjected to an arbitrary external disturbance. The results showed significant 

improvements achieved especially for the vehicle body displacement response in 

comparison to results obtained using both the LQR method and a passive suspension 

system. The method was also applied to control the response of a simulated full-

vehicle active suspension system, where the time lag between front and rare wheels 

was considered. The effect of a time-delay on the proposed approach performance 

was also studied and the numerical results showed that the proposed method was 

capable of achieving a good performance even when it was subjected to 40 ms time 

delay. To show the ability of the proposed method to be implemented and its 

applicability for real-time control, sets of experimental test were completed on a 

quarter-vehicle test rig with a pneumatic active suspension system. The experimental 

results demonstrated the performance enhancement achieved in terms of 

displacement, acceleration, suspension deflection and tyre deflection responses to 

different road inputs. 
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Finally, the CCFS method, which utilised the Convolution concept to construct a 

real-time control, is a generic robust control method which can be applied in many 

other fields. The simplicity of the method makes implementation straight forward, 

especially that less number of sensors are needed for measurements, as the 

disturbance amplitude is the only input to be measured. This indeed will give a good 

insight to the suspension system designers in the automotive field. 

8.2. Future works 

-  The proposed method has been applied to a quarter-vehicle test-rig, but it would be 

more interesting to extend the method to facilitate field testing on a real vehicle. For 

real vehicle testing many modifications are required, including implementation of the 

proposed control algorithm using an embedded system, microprocessor or 

Programmable Logic Controller (PLC). More investigations are needed for the 

pneumatic system especially the response time of each equipment to ensure that the 

correct components can be chosen to fit the real vehicle test.  
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Appendix 

9. The signals generated using the SignalCalc 350 software 

Two kinds of excitation signals; random and sweep sine waves were chosen as an 

input to the system. Fig 9.1 shows the random signal generated using the SignalCalc 

350 software, with reference levels defined in terms of acceleration Power Spectra 

Density. Fig 9.2 shows the sweep sine wave to be generated by the shaker. The 

selected signal levels were chosen taking into account the shaker limits such as low 

frequency and the maximum displacement that can be generated by the VB85 shaker. 

 

 

Fig  9.1 The generated random signal using SignalCalc 350 software. 

 

 

Fig  9.2 The Sweep Sine wave generated using SignalCalc 350 software. 


