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AN APPROXIMATE INVERSE SYSTEM APPROACH TO

SHAPE FIBRATIONS
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Abstract. The notion of shape fibration between compact met-
ric spaces was introduced by S. Mardešić and T. B. Rushing. Mardešić
extended the notion to arbitrary topological spaces. A shape fibration
f : X → Y between topological spaces is defined by using the notion of
resolution (p, q, f) of the map f , where p : X → X and q : Y → Y

are polyhedral resolutions of X and Y , respectively, and the approximate
homotopy lifting property for the system map f : X → Y . Although any
map f : X → Y between topological spaces admits a resolution (p, q, f),
if polyhedral resolutions p : X → X and q : Y → Y are chosen in ad-
vance, there may not exist a system map f : X → Y so that (p, q, f) is
a resolution of f . To overcome this deficiency, T. Watanabe introduced
the notion of approximate resolution. An approximate resolution of a map
f : X → Y consists of approximate polyhedral resolutions p : X → X and
q : Y → Y of X and Y , respectively, and an approximate map f : X→ Y.
In this paper we obtain the approximate homotopy lifting property for ap-
proximate maps and investigate its properties. Moreover, it is shown that
the approximate homotopy lifting property is extended to the approximate
pro-category and the approximate shape category in the sense of Watan-
abe. It is also shown that the approximate pro-category together with
fibrations defined as morphisms having the approximate homotopy lifting
property with respect to arbitrary spaces and weak equivalences defined as
morphisms inducing isomorphisms in the pro-homotopy category satisfies
the composition axiom for a fibration category in the sense of H. J. Baues.
As an application it is shown that shape fibrations can be defined in terms
of our approximate homotopy lifting property for approximate maps and
that every homeomorphism is a shape fibration.
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1. Introduction

The notion of shape fibration between compact metric spaces was first
introduced by Mardešić and Rushing ([6]), and it was extended to arbitrary
topological spaces by Mardešić ([4]) (see also Q. Haxhibeqiri ([2])). There
have been many contributions to the theory of shape fibrations. For a survey
of the theory of shape fibrations, see [7, 13].

A shape fibration f : X → Y between spaces is a map which admits a
resolution (p, q, f) of f such that the system map f : X → Y between inverse
systems has the approximate homotopy lifting property with respect to any
space. A resolution (p, q, f) of f consists of APol-resolutions p : X → X and
q : Y → Y of X and Y , respectively, and a system map f : X → Y . Here
APol denotes the class of approximate polyhedra. A resolution p = (pλ) :
X → X of a space X consists of an inverse system X = (Xλ, pλλ′ , Λ) and
maps pλ : X → Xλ, λ ∈ Λ, such that pλλ′pλ′ = pλ for λ < λ′, and the
following two conditions hold:

(i) for any map h : X → P into an ANR P and for any open covering V
of P , there exist λ ∈ Λ and a map g : Xλ → P such that gpλ and h

are V-near, and
(ii) for any ANR P and for any open covering V of P , there exists an open

covering V ′ of P such that whenever λ ∈ Λ and g, g′ : Xλ → P are
maps such that gpλ and g′pλ are V ′-near, then there exists λ′ > λ such
that gpλλ′ and g′pλλ′ are V-near.

For any class C of spaces, a C-resolution p : X → X means a resolution such
that all coordinate spaces of X are in C.

A system map f = (f, fµ) : X → Y between inverse sytems X and
Y = (Yµ, qµµ′ , M) consists of a function f : M → Λ and maps fµ : Xf(µ) → Yµ

for µ ∈ M such that for µ < µ′ there exits λ > f(µ), f(µ′) such that

(M) fµpf(µ)λ = qµµ′fµ′pf(µ′)λ.

The triple (p, q, f ) is a resolution of f if it satisfies the following condition.

(LM) fµpf(µ) = qµf for µ ∈ M .

However, the theory of resolutions has some defects. Although any map f :
X → Y admits a resolution (p, q, f) of f for some APol-resolutions p : X → X

and q : Y → Y of X and Y , respectively, if one chooses resolutions p and q

in advance, then there may not exist a system map f [3, 9, 11, 12] (even if X

and Y are inverse sytems of compact polyhedra). To overcome this defect,
Watanabe [12] introduced the notion of approximate resolution of a space and
also of a map.

An approximate inverse system X = (Xλ,Uλ, pλλ′ , Λ) consists of an in-
verse system (Xλ, pλλ′ , Λ) and an open covering Uλ of Xλ, called a mesh, for
each λ ∈ Λ. An approximate map f = (f, fµ) : X → Y between approximate
inverse sytems X and Y = (Yµ,Vµ, qµµ′ , M) consists of a function f : M → Λ
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and maps fµ : Xf(µ) → Yµ, which satisfy a weaker condition expressing ap-
proximate commutativity: for µ < µ′, there exits λ > f(µ), f(µ′) such that
fµpf(µ)λ and qµµ′fµ′pf(µ′)λ are Vµ-near. An approximate resolution (p, q, f)
of a map f consists of approximate APol-resolutions p : X → X and q : Y → Y

of X and Y , respectively, and of an approximate map f : X → Y, which
satisfies a weaker condition, expressing approximate commutativity instead
of condition (LM). The upshot is that for arbitrary approximate resolutions
p : X → X and q : Y → Y, chosen in advance, every map f : X → Y admits
an approximate map f : X → Y so that (p, q, f) is an approximate resolution
of f .

In this paper we extend the approximate homotopy lifting property to ap-
proximate maps and investigate their properties. Note here that Mardešić and
L. Rubin ([5]) also introduced a more general notion of approximate inverse
system of compact metric spaces, which does not assume the commutativity
pλλ′pλ′λ′′ = pλλ′′ , for λ < λ′ < λ′′, but assumes only approximate com-
mutativity (see also Mardešić and Watanabe ([8]) for more general spaces).
However, in this paper, we concentrate on the commutative case.

More precisely, in this paper we define the approximate homotopy lifting
property (AHLP) for approximate maps, and extend it to the approximate
pro-category which was introduced by Watanabe ([12]) under the name of
approximative pro-cateogry (Section 3). The version of approximate pro-
category for noncommutative approximate inverse systems can be found in
[8]. The construction of approximate pro-category is similar to that of pro-
category, but the morphisms in the category are based on some nearness prop-
erty of maps. The approximate pro-category consists of approximate inverse
systems as objects and morphisms which are obtained by taking equivalence
classes of approximate maps, where the equivalence relation is defined by some
nearness of maps, while morphisms in the pro-category are equivalence classes
of system maps, where the equivalence relation is defined by the equality of
maps. We also show that the property coincides with the AHLP in the sense
of Mardešić ([3]) if the approximate map satisfies the commutative condition
(M).

Next we obtain a simple characterization of the AHLP for approximate
maps using the notion of refinement function in the sense of Watanabe ([12])
(Section 4). Then we consider approximate level maps, which are approximate
maps f = (f, fλ) : X → Y between approximate inverse systems with the
same index set such that the function f is the identity. We simplify the
AHLP for approximate level maps.

We show that the approximate pro-category together with fibrations
defined as morphisms having the AHLP with respect to any space, and
weak equivalences defined as morphisms inducing isomorphisms in the pro-
homotopy category, satisfies the composition axiom for a fibration category
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in the sense of Baues ([1]) (Section 5). In particular, we show that the com-
posite of morphisms with the AHLP in the approximate pro-category has
the AHLP, and that isomorphisms in the approximate pro-category have the
AHLP with respect to any space. Using this result, we extend the AHLP
to the approximate shape category in the sense of Watanabe ([12]). The ap-
proximate shape category is a category consisting of spaces as objects and
of morphisms based on approximate maps, so that the approximate shape
category restricted to topologically complete spaces is equivalent to the cat-
egory of topologically complete spaces and maps. This is a useful category
because, in order to study the properties of a space X , one can express X as
an approximate resolution p : X → X with an approximate inverse system
consisting of polyhedra or ANR’s and investigate the appropriate properties
of the approximate inverse system.

Finally, we show that the notion of shape fibration is characterized in
terms of the AHLP for approximate maps, and as a result we show that every
homeomorphism is a shape fibration (Section 6).

2. Approximate pro-category and approximate shape

Throughout the paper, a space means a topological space, and a map
means a continuous map, unless otherwise stated. Let Top denote the category
of spaces and maps.

For any space X , let Cov(X) denote the set of all normal open coverings of
X . For any subset A of X and U ∈ Cov(X), let st(A,U) = ∪{U ∈ U : U∩A 6=
∅}. For each U ∈ Cov(X), let stU = {st(U,U) : U ∈ U}. Let st1 U = stU
and stn+1 U = st(stn U) for each n = 1, 2, .... For any U ∈ Cov(X), two
points x, x′ ∈ X are U-near, denoted (x, x′) < U , provided x, x′ ∈ U for
some U ∈ U . For any V ∈ Cov(Y ), two maps f, g : X → Y between spaces
are V-near, denoted (f, g) < V , provided (f(x), g(x)) < V for each x ∈ X .
For each U ∈ Cov(X) and V ∈ Cov(Y ), let fU = {f(U) : U ∈ U} and
f−1V = {f−1(V ) : V ∈ V}. For any set X , let 1X : X → X denote the
identity function on X . For any U ,U ′ ∈ Cov(X), U is said to refine U ′,
denoted U < U ′, provided each U ∈ U ′ admits U ′ ∈ U ′ such that U ⊆ U ′.

2.1. Approximate systems. An approximate inverse system (approximate sys-
tem, in short) X = (Xλ,Uλ, pλλ′ , Λ) consists of

(1.) a directed preordered set Λ = (Λ, <) with no maximal element;
(2.) spaces Xλ, for λ ∈ Λ;
(3.) Uλ ∈ Cov(Xλ), for λ ∈ Λ; and
(4.) maps pλλ′ : Xλ′ → Xλ, for λ < λ′, such that pλλ′pλ′λ′′ = pλλ′′ , for

λ < λ′ < λ′′, and pλλ = 1Xλ
the identity map on Xλ, for λ ∈ Λ.

It must satisfy the following two conditions.
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(AI1) For each λ ∈ Λ and U ∈ Cov(Xλ), there exists λ′ > λ such that
Uλ′′ < p−1

λλ′′U for λ′′ > λ′.

(AI2) Uλ′ < p−1
λλ′Uλ for λ < λ′.

Our definition of approximate system follows that of [12], and our ap-
proximate system is a commutative approximate system in the sense of [5, 8].

2.2. Approximate resolutions. An approximate map p = (pλ) : X → X of a
space X into an approximate system X = (Xλ,Uλ, pλλ′ , Λ) consists of maps
pλ : X → Xλ for λ ∈ Λ with the following property.

(AS) For each λ ∈ Λ and U ∈ Cov(Xλ), there exists λ′ > λ such that
(pλλ′′pλ′′ , pλ) < U for λ′′ > λ′.

An approximate resolution of a space X is an approximate map p = (pλ) :
X → X which satisfies the following two conditions.

(R1) For each ANR P , V ∈ Cov(P ) and map f : X → P , there exist
λ ∈ Λ and a map g : Xλ → P such that (gpλ, f) < V ; and

(R2) For each ANR P and V ∈ Cov(P ), there exists V ′ ∈ Cov(P ) such
that whenever λ ∈ Λ and g, g′ : Xλ → P are maps with (gpλ, g′pλ) <

V ′, then (gpλλ′ , g′pλλ′) < V for some λ′ > λ.

If C is a subcategory of spaces, and if all Xλ are objects in C, then an
approximate resolution p : X → X is called an approximate C-resolution. Here
is a useful characterization of an approximate resolution [12, Theorem 3.4].

Theorem 2.1.An approximate map p = (pλ) : X → X = (Xλ,Uλ, pλλ′ , Λ)
is an approximate resolution of a space X if and only if it satisfies the follow-
ing two conditions.

(B1) For each U ∈ Cov(X), there exists λ ∈ Λ such that p−1
λ V < U , for

some V ∈ Cov(Xλ); and
(B2) For each λ ∈ Λ and U ∈ Cov(Xλ), there exists λ′ > λ such that

pλλ′(Xλ′) ⊆ st(pλ(X),U).

Let Pol denote the full subcategory of Top whose objects are polyhedra.
Here is an existence theorem for approximate Pol-resolutions [12, Theorem
3.15].

Theorem 2.2. Every space admits an approximate Pol-resolution with a
cofinite index set.

2.3. Approximate maps. Let X = (Xλ,Uλ, pλλ′ , Λ) and Y = (Yµ,Vµ, qµµ′ , M)
be approximate systems of spaces. An approximate map f = (f, fµ) : X → Y

consists of a function f : M → Λ and maps fµ : Xf(µ) → Yµ, µ ∈ M , with
the following condition.

(AM) For any µ, µ′ ∈ M with µ < µ′, there exists λ ∈ Λ with λ >

f(µ), f(µ′) such that

(qµµ′fµ′pf(µ′)λ′ , fµpf(µ)λ′) < Vµ for λ′ > λ.
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An approximate map f = (f, fµ) : X → Y is said to be uniform provided it
satisfies the following condition.

(U) Uf(µ) < f−1Vµ for µ ∈ M .

It is said to be commutative provided it satisfies the following condition.

(C) For any µ, µ′ ∈ M with µ < µ′, there exists λ ∈ Λ with λ >

f(µ), f(µ′) such that

qµµ′fµ′pf(µ′)λ′ = fµpf(µ)λ′ for λ′ > λ.

A map f : X → Y is a limit of an approximate map f : X → Y, denoted
limf , provided it satisfies the following condition.

(LAM) For each µ ∈ M and V ∈ Cov(Yµ), there exists µ′ > µ such that

(qµµ′′fµ′′pf(µ′′), qµf) < V for all µ′′ > µ′.

Here is the existence theorem for limits of approximate maps [8, Theorem
5.8].

Theorem 2.3. Let f : X → Y be an approximate map between approxi-
mate systems with limits p : X → X and q : Y → Y = (Yµ,Vµ, qµµ′ , M). If
all Yµ, µ ∈ M , are topologically complete spaces, then f admits a limit map
f = limf : X → Y .

For each map f : X → Y , an approximate resolution of f is a triple
(p, q, f) consisting of approximate resolutions p = (pλ) : X → X =
(Xλ,Uλ, pλλ′ , Λ) and q = (qµ) : Y → Y = (Yµ,Vµ, qµµ′ , M) of X and Y ,
respectively, and of an approximate map f = (f, fµ) : X → Y with property
(LAM).

Let APol denote the full subcategory of Top whose objects are approximate
polyhedra (see [4]). Here is the existence theorem for approximate resolutions
of any map [12, §4].

Theorem 2.4. Let X and Y be spaces. For any approximate resolution
p : X → X of X and for any approximate APol-resolution q : Y → Y of Y

with a cofinite index set, every map f : X → Y admits an approximate map
f : X → Y such that (p, q, f) is an approximate resolution of f .

Note here that in Thereom 2.4 the approximate resolutions p and q can
be chosen in advance.

2.4. Approximate pro-category. Let C be any full subcategory of Top. In this
subsection we recall the approximate pro-category APRO- C, which was first
introduced in [12] under the name of approximative pro-category. For more
details, see [12, §2]. A more general version of the category, whose objects are
noncommutative approximate systems as objects, was introduced in [8].
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For two approximate maps f = (f, fµ), f ′ = (f ′, f ′
µ) : X → Y, we define

a relation ∼ by putting f ∼ f
′ if and only if, for each µ ∈ M , there exists

λ > f(µ), f ′(µ) such that

(fµpf(µ)λ, f ′
µpf ′(µ)λ) < Vµ.

We then define a relation ≡ by putting f ≡ f ′ if and only if there exist finitely
many approximate maps f i : X → Y, i = 1, 2, . . . , n, such that f = f1,
f i ∼ f i+1, i = 1, 2, . . . , n− 1, f ′ = fn. Then the relation ≡ is an equivalence
relation, and the equivalence class of f is denoted by [f ].

For n ≥ 0, an increasing function s : Λ → Λ with s > 1Λ is called an
n-refinement function of X provided stn Us(λ) < p−1

λs(λ)Uλ, for λ ∈ Λ. For any

cofinite index set Λ and for each n ≥ 0, there exists an n-refinement function
of X. For any approximate map f = (f, fµ) : X → Y and for any 1-refinement
function of Y, we have an approximate map sf = (fs, qµs(µ)fs(µ)) : Xfs(µ) →
Yµ, which is called the terminal shift of f by s, and property (AM) implies
the relation sf ∼ f .

For any full subcategory C of Top, we define the category APRO- C as
follows. The objects of APRO- C are approximate systems in C with cofinite
index sets. The set APRO- C(X, Y) of morphisms X → Y is the set of the
equivalence classes of approximate maps X → Y by the equivalence relation
≡. For any F ∈ APRO- C(X, Y) and G ∈ APRO- C(Y, Z), there exist repre-
sentatives f and g of F and G, respectively, which are uniform approximate
maps. Then s(gf) = (fgs, gs(ν)fgs(ν)) : X → Z = (Zν ,Wν , rνν′ , N) is a
well-defined approximate map, where s : N → N is any 1-refinement func-
tion. Let the composite GF be the equivalence class [s(gf )]. Let the identity
idX ∈ APRO- C(X, X) be the equivalence class which is represented by the ap-
proximate map (1Λ, 1Xλ

) consisting of the identity function 1Λ : Λ → Λ and
the identity maps 1Xλ

: Xλ → Xλ for λ ∈ Λ. The objects thus defined and the
morphisms together with the composition and the identity form a category,
which is denoted by APRO-C and called the category of approximate systems
in C.

For each map f : X → Y , its approximate resolution (p, q, f) is unique
in the following sense [12, §4].

Theorem 2.5. Let X and Y be spaces. For any approximate resolution
p : X → X of X and for any approximate APol-resolution of Y with cofinite
index sets, if f , f ′ : X → Y are approximate maps such that (p, q, f ) and
(p, q, f ′) are approximate resolutions of f , then f ≡ f ′.

By Theorems 2.4 and 2.5, for arbitrary approximate APol-resolutions p :
X → X and q : Y → Y with cofinite index sets and for any map f : X → Y ,
there exists a unique equivalence class [f ] of an approximate map f : X → Y

such that (p, q, f ) is an approximate resolution of f . This equivalence class
is denoted by [f ]p,q.
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A pair (λ, µ) ∈ Λ × M is said to be admissible provided µ > f(λ). For
arbitrary admissible pairs (λ, µ), (λ′, µ′) ∈ Λ×M , we write (λ, µ) < (λ′, µ′) if
λ < λ′ and µ < µ′.

The following theorem gives a characterization of approximate map in-
ducing an isomorphism in APRO-C [12, 2.6].

Theorem 2.6. An approximate map f : X → Y induces an isomorphism
in APRO-C if and only if every admissible pair (λ, µ) ∈ Λ × M admits an
admissible pair (λ′, µ′) > (λ, µ) and a map k : Yµ′ → Xλ such that

(1.) (pλλ′ , kfµ′pf(µ′)λ′) < Uλ,

(2.) Vµ′ < k−1Uλ,
(3.) (qµµ′ , fµpf(µ)λk) < stVµ.

Xf(µ)

fµ

Xλ

pf(µ)λ
Xf(µ′)

fµ′

Xλ′

pf(µ′)λ′

pλλ′

Yµ Yµ′

k

qµµ′

2.5. The approximate shape category. In this subsection we recall the con-
struction of the approximate shape category ASh. For more details, see [12,
§7].

The objects of ASh are spaces. The set ASh(X, Y ) of morphisms X → Y

in ASh is defined as follows. Let E(X) denote the set of approximate APol-
resolutions p : X → X of X such that X has a cofinite index set. For p ∈
E(X) and q ∈ E(Y ), let E(p, q) = APRO-APol(X, Y), where p : X → X

and q : Y → Y. Let E(X, Y ) be the disjoint sum of all sets E(p, q) for
p ∈ E(X) and q ∈ E(Y ). Then we define a relation ≡a on the set E(X, Y )
by [f ] ≡a [f ′] if and only if [f ′][1X ]p,p′ = [1Y ]q,q′ [f ], where f ∈ E(p, q)
and f ′ ∈ E(p′, q′). It is readily seen that this is an equivalence relation on
E(X, Y ), and the equivalence class of [f ] is denoted by 〈[f ]〉. Let 〈E(X, Y )〉 =
{〈[f ]〉 : [f ] ∈ E(X, Y )}. Then 〈E(X, Y )〉 is a set since there is a bijection
Φ(p, q) : E(p, q) → 〈E(X, Y )〉 for any p ∈ E(X) and q ∈ E(Y ) and E(p, q) is
a set. The set ASh(X, Y ) of morphisms X → Y is defined as the set 〈E(X, Y )〉.
For any 〈[f ]〉 ∈ ASh(X, Y ) and 〈[g]〉 ∈ ASh(Y, Z), we define the composite
〈[g]〉 ◦ 〈[f ]〉 as 〈[g][1Y ]q,q′ [f ]〉, where f ∈ E(p, q) and g ∈ E(q′, r′). Let the
identity idX ∈ ASh(X, X) be the morphism 〈[1X ]p,p〉. Then ASh together
with thus defined composites and identities form a category.

There is a well-defined functor AS : Top → ASh which is defined by
AS(X) = X for each object X of Top and AS(f) = 〈[f ]p,q〉 for each map
f : X → Y and for some fixed p ∈ E(X) and q ∈ E(Y ).

For any approximate maps f , f ′ : X → Y between topologically complete
spaces, f ∼ f ′ implies limf = limf ′. So for each [f ] ∈ E(p, q), lim[f ] =
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limf is well-defined. Let CTop3.5 denote the full subcategory of Top whose
objects are topologically complete spaces, and let ASh(CTop3.5) denote the
restriction of the category ASh to topologically complete spaces. There is a
realization functor R : ASh(CTop3.5) → CTop3.5 which is defined by R(X) =
X for each object X of CTop3.5 and R(F ) = limΦ(p, q)−1(F ) for each F ∈
ASh(CTop3.5)(X, Y ) and for some fixed p ∈ E(X) and q ∈ E(Y ). Then the
following theorem shows that there is an equivalence of categories CTop3.5

and ASh(CTop3.5).

Theorem 2.7. R ◦ AS|CTop3.5 = 1CTop3.5
and AS|CTop3.5 ◦ R =

1ASh(CTop3.5).

3. Approximate homotopy lifting property

In this section we define the approximate homotopy lifting property for
morphisms in the approximate pro-category APRO-C for any full subcategory
C of Top, and later in Section 6 we extend it to morphisms in the approxi-
mate shape category ASh. First, we define the approximate homotopy lifting
property for approximate maps.

An approximate map f = (f, fµ) : X → Y between approximate systems
X = (Xλ,Uλ, pλλ′ , Λ) and Y = (Yµ,Vµ, qµµ′ , M) in C has the approximate ho-
motopy lifting property (AHLP) with respect to a space Z provided it satisfies
the following property.

(AHLP) (∀µ ∈ M) (∀V ∈ Cov(Yµ)) (∃µ0 > µ) (∀µ′ > µ0)
(∃λ0 > f(µ′)) (∀λ′ > λ0) (∀U ∈ Cov(Xλ′)) (∃µ1 > µ′)
(∃W ∈ Cov(Yµ1 )) (∃µ2 > µ1) (∀µ′′ > µ2) (∃λ2 > λ′, f(µ′′))
(∀λ′′ > λ2)(∀h : Z × 0 → Xλ′′) (∀H : Z × I → Yµ′′)

(qµ1µ′′fµ′′pf(µ′′)λ′′h, qµ1µ′′H0) < W =⇒ (∃H̃ : Z×I → Xλ′)

(qµµ′fµ′pf(µ′)λ′H̃, qµµ′′H) < V , (pλ′λ′′h, H̃0) < U .

Xf(µ′)

fµ′

Xλ′

pf(µ′)λ′

Xf(µ′′)

fµ′′

Xλ′′

pf(µ′′)λ′′

pλ′λ′′

Z × 0
h

⊆

Yµ Yµ′

qµµ′

Yµ1

qµ′µ1
Yµ′′

qµ1µ′′

Z × I
H

H̃

Let f = (f, fµ) : X → Y be an approximate map between approximate
systems X = (Xλ,Uλ, pλλ′ , Λ) and Y = (Yµ,Vµ, qµµ′ , M) in C, and suppose
that f has the AHLP with respect to a space Z. For convenience, we in-
troduce the following notation. For any µ ∈ M and V ∈ Cov(Yµ), let
AHLP(µ,V) denote the set of all µ0 ∈ M such that µ0 > µ and µ0 satis-
fies the condition in (AHLP). For any µ ∈ M , V ∈ Cov(Yµ), and µ′ > µ0

where µ0 ∈ AHLP(µ,V), let AHLP(µ,V , µ′) denote the set of all λ0 ∈ Λ
such that λ0 > f(µ′) and λ0 satisfies the condition in (AHLP). For any
µ ∈ M , V ∈ Cov(Yµ), µ′ > µ0 where µ0 ∈ AHLP(µ,V), λ′ > λ0 where
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λ0 ∈ AHLP(µ,V , µ′), and U ∈ Cov(Xλ′), let AHLP(µ,V , µ′, λ′,U) denote the
set of all triples (µ1,W , µ2) ∈ M ×Cov(Yµ1)×M such that µ2 > µ1 > µ′ and
µ1, µ2, and W satisfy the condition in (AHLP). For any µ ∈ M , V ∈ Cov(Yµ),
µ′ > µ0 where µ0 ∈ AHLP(µ,V), λ′ > λ0 where λ0 ∈ AHLP(µ,V , µ′),
U ∈ Cov(Xλ′), and µ′′ > µ2 where (µ1,W , µ2) ∈ AHLP(µ,V , µ′, λ′) for some
µ1 ∈ M and W ∈ Cov(Yµ1), let AHLP(µ,V , µ′, λ′,U , µ′′) denote the set of all
λ2 ∈ Λ such that λ2 > λ′, f(µ′′) and λ2 satisfies the condition in (AHLP).

For commutative approximate maps, our definition of AHLP coincides
with that of Mardešić. Recall the approximate homotopy lifting property in
the sense of Mardešić (see [4]). A system map f = (f, fµ) : X → Y between
systems X = (Xλ, pλλ′ , Λ) and Y = (Yµ, qµµ′ , M) has the approximate homo-
topy lifting property (AHLP) with respect to a space Z provided it satisfies
the following property.

(AHLP)c For any admissible pair (λ, µ) ∈ Λ × M and for any U ∈
Cov(Xλ) and V ∈ Cov(Yµ) there exist an admissible pair
(λ′, µ′) > (λ, µ) and V ′ ∈ Cov(Yµ′) such that whenever
h : Z × 0 → Xλ′ and H : Z × I → Yµ′ are maps with

(fµ′pf(µ′)λ′h, H0) < V ′, there exists a map H̃ : Z × I → Xλ

such that (pλλ′h, H̃0) < U , and (fµpf(µ)λH̃, qµµ′H) < V .

Xf(µ)

fµ

Xλ

pf(µ)λ
Xf(µ′)

fµ′

Xλ′

pf(µ′)λ′

pλλ′

Z × 0
h

⊆

Yµ Yµ′

qµµ′

Z × I
H

H̃

Theorem 3.1. For any commutative approximate map f = (f, fµ) :
X → Y between approximate systems X = (Xλ,Uλ, pλλ′ , Λ) and Y =
(Yµ,Vµ, qµµ′ , M) in C, the approximate map f has property (AHLP) with re-
spect to a space Z if and only if the system map f = (f, fµ) : X → Y between
systems X = (Xλ, pλλ′ , Λ) and Y = (Yµ, qµµ′ , M) has property (AHLP)c with
respect to Z.

Proof. Suppose that the system map (f, fµ) : X → Y has property
(AHLP)c with respect to a space Z. Let µ ∈ M , and let V ∈ Cov(Yµ). Set
µ0 = µ and λ0 = f(µ0). Let (λ′, µ′) > (λ0, µ0) be any admissible pair, and let
U ∈ Cov(Xλ′). Apply property (AHLP)c to the admissible pair (λ′, µ′) and
the open covering q−1

µµ′V ∈ Cov(Yµ′), and obtain an admissible pair (λ1, µ1) ≥
(λ′, µ′) and W ∈ Cov(Yµ1) which satisfy condition (AHLP)c. Let µ2 = µ1,
and let µ′′ > µ2. Then by (C) there is λ2 > f(µ′′), λ1 such that

(3.1) fµ1pf(µ1)λ′′ = qµ1µ′′fµ′′pf(µ′′)λ′′ for λ′′ > λ2.
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Let λ′′ > λ2, and let h : Z × 0 → Xλ′′ and H : Z × I → Yµ′′ be maps such
that

(3.2) (qµ1µ′′fµ′′pf(µ′′)λ′′h, qµ1µ′′H0) < W .

By (3.1) and (3.2),

(fµ1pf(µ1)λ′′h, qµ1µ′′H0) < W .

By (AHLP)c, there exists a map H̃ : Z × I → Xλ′ such that

(pλ′λ′′h, H̃0) < U ,

(fµ′pf(µ′)λ′H̃, qµ′µ′′H) < q−1
µµ′V .

The latter implies

(qµµ′fµ′pf(µ′)λ′H̃, qµµ′′H) < V .

This shows that the approximate map f has property (AHLP).

Xf(µ′)

fµ′

��

Xλ′

pf(µ′)λ′

oo Xf(µ1)

fµ1

��

Xλ1pf(µ1)λ1

oo

pλ′λ1

ss
Xf(µ′′)

fµ′′

��

Xλ′′

pf(µ′′)λ′′

oo

pλ1λ′′

ss
Z × 0

hoo

⊆

��
Yµ Yµ′

qµµ′

oo Yµ1

qµ′µ1oo Yµ′′

qµ1µ′′

oo Z × I
H

oo

H̃

mmZ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z

Conversely, suppose that the approximate map f has property (AHLP)
with respect to a space Z. Let (λ, µ) ∈ Λ × M be an admissible pair, and let
V ∈ Cov(Yµ) and U ∈ Cov(Xλ). Choose µ0 ∈ AHLP(µ,V), and let µ′ > µ0.
Choose λ0 ∈ AHLP(µ,V , µ′). Then by (C) there exists λ′ > λ0 such that

(3.3) fµpf(µ)λ′ = qµµ′fµ′pf(µ′)λ′ .

Choose a triple (µ1,W , µ2) ∈ AHLP(µ,V , µ′, λ′, p−1
λλ′U), and let µ′′ > µ2.

Choose λ2 ∈ AHLP(µ,V , µ′, λ′, p−1
λλ′U , µ′′), and let λ′′ > λ2. Then the admis-

sible pair (λ′′, µ′′) and the open covering q−1
µ1µ′′W ∈ Cov(Yµ′′) satisfy condition

(AHLP)c. Indeed, suppose that h : Z × 0 → Xλ′′ and H : Z × I → Yµ′′ are
maps such that

(fµ′′pf(µ′′)λ′′h, H0) < q−1
µ1µ′′W .

Then by property (AHLP), there exists a map H̃ : Z × I → Xλ′ such that

(pλ′λ′′h, H̃0) < p−1
λλ′U ,(3.4)

(qµµ′fµ′pf(µ′)λ′H̃, qµµ′′H) < V .(3.5)

(3.3), (3.4), and (3.5) imply

(pλλ′′h, pλλ′H̃0) < U ,

(fµpf(µ)λH̃, qµµ′′H) < V ,

as required.
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Xf(µ)

fµ

��

Xλ

pf(µ)λoo Xf(µ′)

fµ′

��

Xλ′

pλλ′

ss
pf(µ′)λ′

oo Xf(µ′′)

fµ′′

��

Xλ′′

pf(µ′′)λ′′

oo

pλ′λ′′

ss
Z × 0

hoo

⊆

��
Yµ Yµ′

qµµ′

oo Yµ1

qµ′µ1oo Yµ′′

qµ1µ′′

oo Z × I
Hoo

H̃

kkW W W W W W W W W W W W W W

Next, we extend the definition of the AHLP to morphisms in APRO-C.

Theorem 3.2. Let f = (f, fµ), g = (g, gµ) : X → Y be approximate
maps. If f ∼ g and f has the AHLP with respect to a space Z, then so does
g.

Proof. Let µ ∈ M and V ∈ Cov(Yµ). Take V ′ ∈ Cov(Yµ) such that

(3.6) stV ′ < V .

Choose µ0 ∈ AHLP(µ,V ′) such that

(3.7) V ′ < q−1
µµ′Vµ for µ′ > µ0.

Let µ′ > µ0. By f ∼ g, we can choose λ1 ∈ AHLP(µ,V ′, µ′) such that
λ1 > f(µ), f(µ′) and

(3.8) (fµ′pf(µ′)λ′ , gµ′pg(µ′)λ′) < Vµ′ for λ′ > λ1.

Let λ′ > λ1 and U ∈ Cov(Xλ′). Choose a triple (µ1,W , µ2) ∈ AHLP(µ,V ′, µ′,

λ′,U) such that

(3.9) Vµ′′ < q−1
µ1µ′′W ′ for µ′′ > µ2,

where W ′ ∈ Cov(Yµ1) satisfies

(3.10) stW ′ < W .

Let µ′′ > µ2. By f ∼ g, we can choose λ2 ∈ AHLP(µ,V ′, µ′, λ′,U , µ′′) such
that λ2 > λ′, f(µ′′), g(µ′′) and

(3.11) (fµ′′pf(µ′′)λ′′ , gµ′′pg(µ′′)λ′′ ) < Vµ′′ for λ′′ > λ2.

Let µ′′ > λ2, and let h : Z × 0 → Xλ′′ and H : Z × I → Yµ′′ be maps such
that

(3.12) (qµ1µ′′gµ′′pg(µ′′)λ′′h, qµ1µ′′H0) < W ′.

Then by (3.9), (3.10), (3.11), (3.12),

(qµ1µ′′fµ′′pf(µ′′)λ′′h, qµ1µ′′H0) < W .

By property (AHLP) for f , there exists a map H̃ : Z × I → Xλ′ such that

(pλ′λ′′h, H̃0) < U ,(3.13)

(qµµ′fµ′pf(µ′)λ′H̃, qµµ′′H) < V ′.(3.14)
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So, by (3.6), (3.7), (3.8), (3.14),

(3.15) (qµµ′gµ′pg(µ′)λ′H̃, qµµ′′H) < V .

By (3.13) and (3.15), we conclude that g has the AHLP.

Xf(µ′)

fµ′

��

Xg(µ′)

gµ′

zzuuuuuuuuu

Xλ′

pg(µ′)λ′

oo

pf(µ′)λ′

rr
Xf(µ′′)

fµ′′

��

Xg(µ′′)

gµ′′

zzuuuuuuuuu

Xλ′′

pg(µ′′)λ′′

oo

pf(µ′′)λ′′

rr

pλ′λ′′

xx
Z × 0

hoo

⊆

��
Yµ Yµ′

qµµ′

oo Yµ1

qµ′µ1oo Yµ′′

qµ1µ′′

oo Z × I
Hoo

H̃

llY Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

A morphism F : X → Y in APRO- C is said to have the approximate lifting
property (AHLP) with respect to a space Z provided some representative f

of F has the AHLP with respect to Z. By Theorem 3.2 this is equivalent to
saying that every representative f of F has the AHLP with respect to Z.

4. Properties (AHLP)∗ and (AHLP)L

For any approximate map f = (f, fµ) : X → Y and for any space Z,
consider the following property.

(AHLP)∗ For any admissible pair (λ, µ) ∈ Λ × M , there exists an
admissible pair (λ′, µ′) > (λ, µ) such that whenever h :
Z × 0 → Xλ′ and H : Z × I → Yµ′ are maps such that

(H0, fµ′pf(µ′)λ′h) < Vµ′ , there exists a map H̃ : Z×I → Xλ

such that (H̃0, pλλ′h) < Uλ and (qµµ′H, fµpf(µ)λH̃) < Vµ.

Xf(µ)

fµ

Xλpf(µ)λ
Xf(µ′)

fµ′

Xλ′

pf(µ′)λ′

pλλ′

Z × 0
h

⊆

Yµ Yµ′

qµµ′

Z × I
H

H̃

We have the following characterization of property (AHLP).

Theorem 4.1. Let f = (f, fµ) : X → Y be an approximate map, and let
s be a 1-refinement function. Then the following implications hold.

(1.) (AHLP) for f =⇒ (AHLP)∗ for sf , and
(2.) (AHLP)∗ for sf =⇒ (AHLP) for f .

Proof. First, to show the first assertion, assume that f has property
(AHLP). Let (λ, µ) ∈ Λ × M be an admissible pair for sf . Choose µ0 ∈
AHLP(s(µ),Vs(µ)) for f . Let µ′ > µ0. Choose λ0 ∈ AHLP(s(µ),Vs(µ), µ

′) for
f . By (AM) there exists λ′ > λ, λ0 such that

(4.1) (fs(µ)pfs(µ)λ′ , qs(µ)µ′fµ′pf(µ′)λ′) < Vs(µ).
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Choose a triple (µ1,W , µ2) ∈ AHLP(s(µ),Vs(µ), µ
′, λ′) for f such that

(4.2) stVµ′′ < q−1
µ1µ′′W for µ′′ > µ2.

Let µ′′ > µ2. Choose λ2 ∈ AHLP(s(µ),Vs(µ), µ
′, λ′, µ′′) for f . Let λ′′ >

λ2, fs(µ′′) such that

(4.3) (fµ′′pf(µ′′)λ′′ , qµ′′s(µ′′)fs(µ′′)pfs(µ′′)λ′′ ) < Vµ′′ .

The admissible pair (λ′′, µ′′) thus defined satisfies condition (AHLP)∗ for sf .
Indeed, suppose that h : Z × 0 → Xλ′′ and H : Z × I → Yµ′′ are maps such
that

(4.4) (H0, qµ′′s(µ′′)fs(µ′′)pfs(µ′′)λ′′h) < Vµ′′ .

By (4.2), (4.3), (4.4),

(qµ1µ′′H0, qµ1µ′′fµ′′pf(µ′′)λ′′h) < W .

This together with property (AHLP) implies that there exists a map H ′ :
Z × I → Xλ′ such that

(4.5) (pλ′λ′′h, H ′
0) < Uλ′ ,

(4.6) (qs(µ)µ′fµ′pf(µ′)λ′H ′, qs(µ)µ′′H) < Vs(µ).

By (4.5) and (AI2),

(4.7) (pλλ′′h, pλλ′H ′) < Uλ.

By (4.1) and (4.6),

(4.8) (fs(µ)pfs(µ)λ′H ′, qs(µ)µ′′H) < stVs(µ).

(4.8) and the fact that s is a 1-refinement function imply

(4.9) (qµs(µ)fs(µ)pfs(µ)λ′H ′, qµµ′′H) < Vµ.

By (4.7) and (4.9), the map H̃ = pλλ′H ′ : Z × I → Xλ is the desired map in
(AHLP)∗ for sf .

Xfs(µ)

fs(µ)

��

Xλ

pfs(µ)λoo Xf(µ′)

fµ′

��

Xλ′

pf(µ′)λ′

oo

pλλ′

ss Xf(µ′′)

fµ′′

��

Xfs(µ′′)

fs(µ′′) ��

Xλ′′

pfs(µ′′)λ′′

oo

pλ′λ′′

ww
pf(µ′′)λ′′

rr
Z × 0

hoo

⊆

��
Ys(µ)

qµs(µ)

��

Yµ′

qs(µ)µ′

oo Yµ1

qµ′µ1oo Yµ′′

qµ1µ′′

oo Ys(µ′′)

qµ′′s(µ′′)oo Z × I

H

ll
H′

llY Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Yµ

To show the second assertion, assume (AHLP)∗ for sf . Let µ ∈ M and
V ∈ Cov(Yµ). Choose µ0 > µ such that

(4.10) Vµ′ < q−1
µµ′V for µ′ > µ0.
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Let µ′ > µ0, let λ′ > λ0 = fs(µ′) and U ∈ Cov(Xλ′). Choose λ′
0 > λ′ such

that

(4.11) Uλ′

0
< p−1

λ′λ′

0
U .

Apply property (AHLP)∗ for sf to the admissible pair (λ′
0, µ

′), and obtain
an admissible pair (λ′

1, µ
′
1) > (λ′

0, µ
′) that satisfies the condition in (AHLP)∗.

Let µ′′ > µ2 = µ1 = s(µ′
1). Choose λ2 > λ′

1, f(µ′′), λ′
0 such that

(4.12) (fs(µ′

1)pfs(µ′

1)λ
′′ , qs(µ′

1)µ′′fµ′′pf(µ′′)λ′′) < Vs(µ′

1) for λ′′ > λ2.

Let λ′′ > λ2. To verify property (AHLP) for f , suppose that h : Z×0 → Xλ′′

and H : Z × I → Yµ′′ are maps such that

(4.13) (qµ′

1µ′′H0, qµ′

1µ′′fµ′′pf(µ′′)λ′′h) < Vµ1 .

By (4.12), (4.13), and the fact that s is a 1-refinement function,

(4.14) (qµ′

1µ′′H0, qµ′

1s(µ′

1)fs(µ′

1)pfs(µ′

1)λ′′h) < Vµ′

1
.

By (4.14) and (AHLP)∗ for sf , there exists a map H ′ : Z × I → Xλ′

0
such

that

(pλ′

0λ′′h, H ′
0) < Uλ′

0
,(4.15)

(qµ′s(µ′)fs(µ′)pfs(µ′)λ′

0
H ′, qµ′µ′′H) < Vµ′ .(4.16)

By (4.11) and (4.15),

(4.17) (pλ′λ′′h, pλ′λ′

0
H ′) < U .

By (4.10) and (4.16),

(4.18) (qµs(µ′)fs(µ′)pfs(µ′)λ′

0
H ′, qµµ′′H) < V .

By (4.17) and (4.18), the map H̃ = pλ′λ′

0
H ′ : Z × I → Xλ′ has the desired

property (AHLP) for f .

Xfs(µ′)

fs(µ′)

$$HH
HH

HH
HH

H
Xλ′

pfs(µ′)λ′

oo Xλ′

0

pλ′λ′

0oo Xfs(µ′

1)

fs(µ′

1)

��

Xλ′

1

pfs(µ′

1
)λ′

1oo Xf(µ′′)

fµ′′

��

Xλ′′

pf(µ′′)λ′′

oo

pλ′

1λ′′

ss

pλ′

0λ′′

vv
Z × 0

hoo

⊆

��
Yµ′

qµµ′

��

Ys(µ′)

qµ′s(µ′)oo Yµ′

1

qµ′µ′

1

kk Ys(µ′

1)

qµ′

1
s(µ1)

oo Yµ′′

qs(µ′

1
)µ′′

oo Z × I
H

oo
H′

mmZ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z

Yµ

An approximate map f = (f, fµ) : X → Y is called an approximate level
map provided Λ = M , f = 1Λ : Λ → Λ, and it satisfies the following condition.

(AML) (fλpλλ′ , qλλ′fλ′) < Vλ for λ < λ′.
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Xλ

fλ

Xλ′

pλλ′

fλ′

Yλ Yλ′

qλλ′

In this case we write (fλ) for (f, fµ). The notion of approximate level map
was first introduced in [12] under the name of special approximative map.

Every approximate map is represented by an approximate level map in
the following sense [12, Theorem 2.15].

Theorem 4.2. Let X = (Xλ,Uλ, pλλ′ , Λ) and Y = (Yµ,Vµ, qµµ′ , M) be ap-
proximate systems of spaces in C, and let f = (f, fµ) : X → Y be an approxi-
mate map. Then there exist an approximate level map f ′ = (f ′

ν) : X′ → Y′ be-
tween approximate systems X′ = (X ′

ν ,U ′
ν , p′νν′ , N) and Y′ = (Y ′

ν ,V ′
ν , q′νν′ , N)

over the same index set N , and approximate maps s : X → X′ and t : Y → Y′

with the following properties.

(1.) The following diagram commutes in APRO-C.

X
[f ]

[s]

Y

[t]

X′
[f ′]

Y′

(2.) [s] and [t] are isomorphisms in APRO- C.
(3.) X ′

ν , U ′
ν , p′νν′ , Y ′

ν , V ′
ν , q′νν′ are some Xλ, Uλ, pλλ′ , Yµ, Vµ, qµµ′ , re-

spectively.
(4.) f ′

ν is the composite of some pλλ′ and fµ.

Finally, in this section we discuss the AHLP for approximate level maps.
In particular, we obtain a simpler condition that is equivalent to (AHLP).

For any approximate level map f = (fλ) : X → Y and for any space Z ,
consider the following condition.

(AHLP)L (∀λ ∈ Λ) (∀V ∈ Cov(Yλ)) (∃λ0 > λ) (∀λ′ > λ0) (∀U ∈
Cov(Xλ′)) (∃λ1 > λ′) (∃W ∈ Cov(Yλ1 )) (∃λ2 > λ1)
(∀λ′′ > λ2) (∀h : Z × 0 → Xλ′′) (∀H : Z × I → Yλ′′)

(qλ1λ′′fλ′′h, qλ1λ′′H) < W =⇒ (∃H̃ : Z × I → Xλ′)

(pλ′λ′′h, H̃0) < U , (qλλ′fλ′H̃, qλλ′′H) < V

Xλ′

fλ′

Xλ′′

fλ′′

pλ′λ′′

Z × 0
h

⊆

Yλ Yλ′

qλλ′

Yλ1

qλ′λ1
Yλ′′

qλ1λ′′

Z × I
H

H̃
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For any λ ∈ Λ and V ∈ Cov(Yλ), let AHLPL(λ,V) denote the set of all
λ0 ∈ Λ such that λ0 > λ and λ0 satisfies the condition in (AHLP)L. For any
λ ∈ Λ, V ∈ Cov(Yλ), λ′ > λ0 where λ0 ∈ AHLP(λ,V), and U ∈ Cov(Xλ′), let
AHLP(λ,V , λ′,U) denote the set of all triples (λ1,W , λ2) ∈ Λ×Cov(Yλ1 )×Λ
such that λ2 > λ1 > λ′ and λ1,W , λ2 satisfy condition (AHLP)L.

Theorem 4.3. An approximate level map f = (fλ) : X → Y has property
(AHLP) with respect to a space Z if and only if it has property (AHLP)L with
respect to Z.

Proof. Suppose that an approximate level map f = (fλ) : X → Y

has property (AHLP) with respect to a space Z. Let µ ∈ Λ and V ∈
Cov(Yµ). Choose µ0 ∈ AHLP(λ,V), and let µ′ > µ0, and U ∈ Cov(Xµ′).
Choose λ0 ∈ AHLP(µ,V , µ′), and let λ′ > λ0. Then choose (µ1,W , µ2) ∈
AHLP(µ,V , µ′, λ′, p−1

µ′λ′U) such that

(4.19) Vµ′′ < q−1
µ1µ′′W ′ for µ′′ > µ2,

where W ′ ∈ Cov(Yµ1) is such that

(4.20) stW ′ < W .

Let µ′′ > µ2. Choose λ2 ∈ AHLP(µ,V , µ′, λ′, p−1
µ′λ′U , µ′′), and let λ′′ > λ2. To

verify condition (AHLP)L, suppose that h : Z×0 → Xλ′′ and H : Z×I → Yλ′′

are maps such that

(4.21) (qµ1λ′′fλ′′h, qµ1λ′′H) < W ′.

By (AML),

(4.22) (fµ′′pµ′′λ′′ , qµ′′λ′′fλ′′) < Vµ′′ .

By (4.19), (4.20), (4.21), (4.22),

(qµ1µ′′fµ′′pµ′′λ′′h, qµ1λ′′H) < W .

This together with (AHLP) implies that there exists a map H ′ : Z × I → Xλ′

such that
(pλ′λ′′h, H ′

0) < p−1
µ′λ′U ,

(qµµ′fµ′pµ′λ′H ′, qµλ′′H) < V .

Thus the map H̃ = pµ′λ′H ′ : Z × I → Xµ′ is the desired map, and hence f

satisfies the condition in (AHLP)L.

Xµ′

fµ′

Xλ′

fλ′

pµ′λ′

Xµ′′

fµ′′

pλ′µ′′

Xλ′′

fλ′′

pµ′′λ′′

Z × 0
h

⊆

Yµ Yµ′

qµµ′

Yλ′

qµ′λ′

Yµ1

qλµ1
Yµ′′

qµ1µ′′

Yλ′′

qµ′′λ′′

Z × I
H

H′
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Conversely, suppose that f has property (AHLP)L with respect to a space
Z. Let µ ∈ Λ and V ∈ Cov(Yµ). Let V ′ ∈ Cov(Yµ) be such that

(4.23) stV ′ < V .

Choose µ0 ∈ AHLPL(µ,V ′) such that

(4.24) Vµ′ < q−1
µµ′V ′ for µ′ > µ0.

Let µ′ > µ0, and let λ′ > λ0 = µ′ and U ∈ Cov(Xλ′). Choose a triple
(µ1,W , µ2) ∈ AHLPL(µ,V , λ′). Let µ′′ > µ2, and let λ′′ > λ2 = µ′′. Suppose
that h : Z × 0 → Xλ′′ and H : Z × I → Yλ′′ are maps such that

(qµ1λ′′fλ′′h, qµ1λ′′H) < W .

Then by (AHLP)L, there exists a map H̃ : Z × I → Xλ′ such that

(pλ′λ′′h, H̃0) < U ,(4.25)

(qµλ′fλ′H̃, qµλ′′H) < V ′.(4.26)

By (AML),

(4.27) (fµ′pµ′λ′ , qµ′λ′fλ′) < Vµ′ .

By (4.23), (4.24), (4.26), and (4.27),

(4.28) (qµµ′fµ′pµ′λ′H̃, qµλ′′H) < V .

(4.25) and (4.28) show that f has property (AHLP) as required.

5. Composition axiom

In this section we discuss the composition axiom for a fibration category
in the sense of Baues [1].

Theorem 5.1. Let X = (Xλ,Uλ, pλλ′ , Λ), Y = (Yµ,Vµ, qµµ′ , M), Z =
(Zν ,Wν , rνν′ , N) be approximate systems in C. Let f = (f, fµ) : X → Y be
an approximate map, and let g = (g, gν) : Y → Z be a uniform approximate
map. If f and g have the AHLP with respect to a space Z, then so does the
composite s(gf ) : X → Y.

Proof. Let ν ∈ N and W ∈ Cov(Zν). Take W ′ ∈ Cov(Zν) such that

(5.1) stW ′ < W .

Since g has property (AHLP), then sg has property (AHLP). Choose ν0 ∈
AHLP(ν,W ′) for sg such that

(5.2) Wν′ < r−1
νν′W ′ for ν′ > ν0,

and let ν′ > ν0. Choose µ0 ∈ M such that µ0 ∈ AHLP(gs(ν′), g−1
s(ν′)r

−1
νs(ν′)W

′)

for f and µ0 ∈ AHLP(ν,W ′, ν′) for sg, and let µ′ > µ0. Choose λ0 ∈
AHLP(gs(ν′), g−1

s(ν′)r
−1
νs(ν′)W

′, µ′) for f such that λ0 > f(µ′), fgs(ν′) and

(5.3) (fgs(ν′)pfgs(ν′)λ′ , qgs(ν′)µ′fµ′pf(µ′)λ′) < Vsg(ν′) for λ′ > λ0,
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and let λ′ > λ0, and U ∈ Cov(Xλ′). Then we can choose a triple (µ1,V , µ2) ∈
AHLP(gs(ν′), g−1

s(ν′)r
−1
νs(ν′)W

′, µ′, λ′,U) for f such that

(5.4) Vµ′′ < q−1
µ1µ′′V ′ for µ′′ > µ2,

where V ′ ∈ Cov(Yµ1) satisfies

(5.5) stV ′ < V .

Let µ′′ > µ2. Choose λ2 ∈ AHLP(gs(ν′), g−1
s(ν′)r

−1
νs(ν′)W

′, µ′, λ′,U , µ′′) for f ,

and choose a triple (ν1,W1, ν2) ∈ AHLP(ν,W ′, ν′, µ′′, q−1
µ1µ′′V ′) for sg such

that

(5.6) Wν′′ < r−1
ν1ν′′W ′

1 for ν′′ > ν2,

where W ′
1 ∈ Cov(Yν1) satisfies

(5.7) stW ′
1 < W1.

Let ν′′ > ν2. Choose µ3 ∈ AHLP(ν,W ′, ν′, µ′′, q−1
µ1µ′′V ′, ν′′) for sg, and let

µ > µ3. Let λ′′ > fgs(ν′′), f(µ′′), f(µ), λ2 such that

(fµ′′pf(µ′′)λ′′ , qµ′′µfµpf(µ)λ′′) < Vµ′′ ,(5.8)

(fgs(ν′′)pfgs(ν′′)λ′′ , qgs(ν′′)µfµpf(µ)λ′′) < Vgs(ν′′).(5.9)

To verify property (AHLP) for s(gf), suppose that h : Z × 0 → Xλ′′ and
H : Z × I → Yν′′ are maps such that

(5.10) (rν1s(ν′′)gs(ν′′)fgs(ν′′)pfgs(ν′′)λ′′h, rν1ν′′H0) < W ′
1.

By (5.3), (5.6), (5.7), and the assumption that g is uniform,

(5.11) (rν1ν′′gs(ν′′)qgs(ν′′)µfµpf(µ)λ′′ , rν1s(ν′′)H0) < W1.

By (5.11) and (AHLP) for sg, there exists a map H̃ : Z × I → Yµ′′ such that

(qµ′′µfµpf(µ)λ′′h, H̃0) < q−1
µ1µ′′V ′,(5.12)

(rνs(ν′)gs(ν′)qgs(ν′)µ′′H̃, rνν′′H) < W ′.(5.13)

By (5.4), (5.5), (5.8), and (5.12),

(5.14) (qµ1µ′′fµ′′pf(µ′′)λ′′h, qµ1µ′′H̃0) < V .

By (AHLP) for f and (5.14), there exists a map K : Z × I → Xλ′ such that

(pλ′λ′′h, K0) < U ,(5.15)

(qgs(ν′)µ′fµ′pf(µ′)λ′K, qgs(ν′)µ′′H̃) < g−1
s(ν′)r

−1
νs(ν′)W

′.(5.16)

By (5.2), (5.3), and the assumption that g is uniform,

(5.17) (rνs(ν′)gs(ν′)fgs(ν′)pfgs(ν′)λ′ , rνs(ν′)gs(ν′)qgs(ν′)µ′fµ′pf(µ′)λ′) < W ′.

By (5.1), (5.13), (5.16) and (5.17),

(5.18) (rνs(ν′)gs(ν′)fgs(ν′)pfgs(ν′)λ′K, rν′′H) < W .
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By (5.15) and (5.18), we conclude that s(gf ) has the AHLP.

Xfgs(ν′)

fgs(ν′)

��

Xf(µ′)

fµ′

��

Xλ′

pf(µ′)λ
′

oo
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rr
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fµ′′
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Xfgs(ν′′)

fgs(ν′′)

��

Xf(µ)

fµ

��

Xλ′′

pf(µ)λ
′′

oorrss

pλ′λ′′

tt

Ygs(ν′)

gs(ν′)

��

Yµ′

qgs(ν′)µ′

oo Yµ1

qµ′µ1oo Yµ′′

qµ1µ′′

oo Ygs(ν′′)

gs(ν′′)
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Yµ

qgs(ν′′)µoo
qµ′′µ

kk

Zs(ν′)

rν′s(ν′)

��

Zν1

rs(ν′)ν1oo Zν′′

rν1ν′′

oo Zs(ν′′)

rν′′s(ν′′)oo Z × I

H

kk

K

hhP
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
H̃

U U U U U U U U U U U

Z × 0

h

OO

⊇oo

Zν′

rνν′

// Zν

Theorem 5.2. Let X = (Xλ,Uλ, pλλ′ , Λ) and Y = (Yµ,Vµ, qµµ′ , M) be
approximate systems in C, and let f = (f, fµ) : X → Y be an approximate
map. If f represents an isomorphism in APRO- C, then f has the AHLP with
respect to any space.

Proof. Let µ ∈ M and V ∈ Cov(Yµ). Take V ′ ∈ Cov(Yµ) such that

(5.19) stV ′ < V .

Choose µ0 > µ such that

(5.20) Vµ′ < q−1
µµ′V ′ for µ′ > µ0.

Let µ′ > µ0, let λ′ > λ0 = f(µ′), and let U ∈ Cov(Xλ′). Take λ′
0 > λ′ such

that

(5.21) stUλ′

0
< p−1

λ′λ′

0
U .

By Theorem 2.6, there exist µ1 > µ′, λ1 > f(µ1), λ
′
0, and a map k : Yµ1 → Xλ′

0

such that

(kfµ1pf(µ1)λ1
, pλ′

0λ1
) < Uλ′

0
,(5.22)

Vµ1 < k−1Uλ′

0
,(5.23)

(fµ′pf(µ′)λ′

0
k, qµ′µ1) < stVµ′ .(5.24)

Set µ2 = µ1, and let µ′′ > µ2. By (AM) there is λ2 > λ1, f(µ′′) such that

(5.25) (fµ1pf(µ1)λ′′ , qµ1µ′′fµ′′pf(µ′′)λ′′) < Vµ1 for λ′′ > λ2.

Let λ′′ > λ2. Suppose that h : Z × 0 → Xλ′′ and H : Z × I → Yµ′′ are maps
such that

(5.26) (qµ1µ′′fµ′′pf(µ′′)λ′′h, qµ1µ′′H) < Vµ1 .
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Let H̃ = pλ′λ′

0
kqµ1µ′′H : Z × I → Xλ′ . By (5.21), (5.22), (5.23), (5.25), and

(5.26), we have

(5.27) (pλ′λ′′h, H̃) < U .

By (5.19), (5.20), and (5.24), we have

(5.28) (qµµ′fµ′pf(µ′)λ′H̃, qµµ′′H) < V .

By (5.27) and (5.28) we see that H̃ has the required property, showing that
f has the AHLP with respect to Z.

Xf(µ′)

fµ′

��

Xλ′

pf(µ′)λ′

oo Xλ′

0

pλ′λ′

0oo Xf(µ1)

fµ1

��

Xλ1pf(µ1)λ1

ooss
Xf(µ′′)

fµ′′

��

Xλ′′

pf(µ′′)λ′′

ooss

pλ′

0λ′′

ss
Z × 0

hoo

⊆

��
Yµ′

qµµ′

��

Yµ1

qµ′µ1oo
k

ccG
G

G
G

Yµ′′

qµ1µ′′

oo Z × I
Hoo

Yµ

For any approximate map f = (f, fµ) : X → Y between approximate
systems X = (Xλ,Uλ, pλλ′ , Λ) and Y = (Yµ,Vµ, qµµ′ , M), where Y has the
following property

(H) any two Vµ-near maps into Yµ are homotopic,

there is an induced system map H(f) : H(X) → H(Y) between the systems
H(X) = (Xλ, H(pλλ′), Λ) and H(Y) = (Yµ, H(qµµ′ ), M) in the pro-homotopy
category pro-H(C). Here, for any map f : X → Y , H(f) denotes the homotopy
class of f .

Note that for any approximate maps f = (f, fµ), g = (g, gµ) : X → Y,
f ∼ g implies that for each µ ∈ M there exists λ > f(µ), g(µ) such that
H(fµ)H(pf(µ)λ) = H(gµ)H(pg(µ)λ). Thus, for each approximate map f : X →
Y, there is a well-defined morphism H([f ]) : H(X) → H(Y) in pro-H(C).

A fibration category in the sense of Baues is a category with two classes
of morphisms singled out, the class fib of morphisms called fibrations and
the class we of morphisms called weak equivalences, subject to four axioms
(F1)–(F4). The first one, called the composition axiom, asserts that

(F1) Isomorphisms are fibrations and weak equivalences. If two of the
morphisms f : X → Y , g : Y → Z, and gf : X → Z are weak equiva-
lences, then so is the third. Moreover, the composition of fibrations is
a fibration.

For more details, the reader is referred to [1].
Theorems 5.1 and 5.2 immediately imply the following corollary.

Corollary 5.3. The full subcategory of APRO- C, whose objects are ap-
proximate systems with property (H), fibrations are morphisms having the
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AHLP with respect to arbitrary space, and weak equivalences are morphisms
which induce isomorphisms in pro-H(C), satisfy the composition axiom (F1).

Corollary 5.4. For any [f ] ∈ E(p, q) and [f ′] ∈ E(p′, q′) where p, p′ ∈
E(X) and q, q′ ∈ E(Y ), if [f ] ≡a [f ′] and if [f ] has the AHLP with respect
to a space Z, so does [f ′].

Proof. If [f ] ≡a [f ′], then [f ′] = [1Y ]q,q′ [f ][1X ]p′,p. Theorem 2.5 im-
plies that [1X ]p′,p and [1Y ]q,q′ are isomorphisms in APRO-APol, and hence
by Theorem 5.2 they have the AHLP with respect to any space. This fact
together with Theorem 5.1 and the assumption that [f ] has the AHLP with
respect to a space Z implies that [f ′] has the AHLP with respect to Z.

Thus the AHLP is well-defined for morphisms in ASh. A morphism F ∈
ASh(X, Y ) is said to have the approximate homotopy lifting property (AHLP)
with respect to a space Z provided there is a representative [f ] ∈ E(p, q) of
F which has the AHLP with respect to Z. This is equivalent to saying that
any representative of F has the AHLP with respect to Z.

Let Sh denote the shape category [7]. There is a functor ASS : ASh → Sh

which is defined as follows. For each object X in ASh, let ASS(X) = X . If
F : X → Y is a morphism in ASh, by Theorem 2.4 and Lemma 5.5 below,
F is represented by an approximate map f : X → Y between approximate
systems X and Y with property (H) for some approximate Pol-resolutions.
Then f : X → Y induces a system map H(f) : H(X) → H(Y). Let ASS(F )
be the morphism in Sh which is represented by H(f).

Lemma 5.5. ([12, 5.2]) Every space X admits an approximate Pol-
resolution p : X → X with property (H).

Corollary 5.6. The category ASh together with fibrations defined as
morphisms having the AHLP with respect to arbitrary space and weak equiv-
alences defined as morphisms, which induce isomorphisms in Sh, satisfies the
composition axiom (F1).

Proof. Let 〈[f ]〉 ∈ ASh(X, Y ) and 〈[g]〉 ∈ ASh(Y, Z) have the AHLP
with respect to a space Z. Let f : X → Y and g : Y′ → Z be approximate
maps for some approximate resolutions p : X → X, q : Y → Y, q : Y → Y′,
and r : Z → Z. Then there is an approximate map j : Y → Y′ which induces
an isomorphism in APRO-APol and hence has the AHLP with respect to
any space by Theorem 5.2. So, the composite 〈[f ]〉 ◦ 〈[g]〉 = 〈[g] ◦ [j] ◦ [f ]〉
is represented by the composite of the morphisms in APRO-APol with the
AHLP, and hence it has the AHLP with respect to any space by Theorem 5.1.

If 〈[f ]〉 ∈ ASh(X, Y ) is an isomorphism, then [f ] is an isomorphism in
APRO-APol and hence has the AHLP with respect to any space by Theorem
5.2. So, 〈[f ]〉 has the AHLP with respect to any space.
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Finally, that for any morphisms F ∈ ASh(X, Y ) and G ∈ ASh(Y, Z), any
two of F , G, and G◦F are isomorphisms, so is the third follows from the fact
that there is a functor ASS : ASh → Sh.

6. Shape fibrations

Recall that a map f : X → Y between spaces is a shape fibration provided
there is a resolution (p, q, f) of f such that the system map f : X → Y has
the AHLP with respect to arbitrary space, where p : X → X and q : Y → Y

are APol-resolutions of X and Y , respectively [4].
In this section, as a consequence of the composition axiom discussed in

the previous section, we characterize the shape fibration in terms of the AHLP
between approximate systems and discuss its consequences.

Theorem 6.1. A map f : X → Y between spaces is a shape fibration if
and only if there is an approximate resolution (p, q, f) of f , where p : X → X

and q : Y → Y are approximate APol-resolutions such that the approximate
system map f : X → Y has the AHLP with respect to any spaces.

Before proving the theorem, we prove the following three facts.

Lemma 6.2. Let f : X → Y be a map between spaces. Suppose that
(p, q, f) and (p′, q′, f ′) are two approximate resolutions of f . If f has the
AHLP with respect to a space Z, so does f ′.

Proof. Let (p, q, f) and (p′, q′, f ′) be two approximate resolutions of
f , where p : X → X, p′ : X → X′, q : Y → Y, q′ : Y → Y′ are approximate
APol-resolutions, and f : X → Y and f ′ : X′ → Y′ are approximate maps.
Theorem 2.4 implies that there exist approximate maps i : X → X′ and
j : Y → Y′ such that (p, p′, i) and (q, q′, j) are approximate resolutions
of the identity maps 1X : X → X and 1Y : Y → Y , respectively. Since
(p, q′, s(f ′i)) and (p, q′, s(jf)) are approximate resolutions of f , Theorem
2.5 implies that s(f ′i) ≡ s(jf), and hence [j] ◦ [f ] = [f ′] ◦ [i]. Then [i] and
[j] are isomorphisms in APRO-APol, and hence, by Theorems 5.1 and 5.2,
the composite [f ′] = [j] ◦ [f ] ◦ [i]−1 and hence f ′ has the AHLP with respect
to any space as required.

Lemma 6.3. (1.) Every resolution p = (pλ) : X → X = (Xλ, pλλ′ , Λ)
in Top admits an approximate resolution p = (pα) : X → X =
(Xα,Uα, pαα′ , Λ) and an increasing function σX : Λ → Λ with the
following properties:

(a) Λ is cofinite, directed, and antisymmetric.
(b) Xα = XσX(α) and pα = pσX(α) for α ∈ Λ, and pαα′ =

pσX(α)σX (α′) for α < α′.

(c) Uα′ < p−1
αα′Uα for α < α′.
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(d) for any λ ∈ Λ and for any U ∈ Cov(Xλ) there exists α ∈ Λ such
that σX(α) = λ and Uα = U .

(e) the system map (σX , 1σX(α)) : X → X = (Xα, pαα′ , Λ) repre-
sents an isomorphism in pro- C.

(2.) Every system map f = (f, fµ) : X → Y = (Yµ, qµµ′ , M) with f

being an increasing function admits a commutative approximate map
f = (f, fβ) : X → Y = (Y β ,Vβ, qββ′ , M) such that

(a) f is an increasing function such that σXf(β) ≥ fσY (β) for
β ∈ M ,

(b) fβ = fσY (β)pfσY (β),σXf(β) : Xf(β) → Y β,

(c) Uf(β) < f
−1

β Vβ for β ∈ M ,

(d) the following diagram commutes for β ∈ M .

XσXf(β)

pfσY (β),σX f(β)

XfσY (β)

fσY
(β)

YσY (β)

Xf(β)

fβ

Y β

(3.) If the system map f has the AHLP with respect to a space Z, so does

the approximate map f .

Proof. This is proven in [12, Proposition 3.7] and [10]. Note here that

(3) easily follows from the definition of f .

Lemma 6.4. Every map f : X → Y admits an approximate resolution
(p, q, f) of f such that f : X → Y is a commutative approximate map between
approximate systems, where p : X → X and q : Y → Y are approximate APol-
resolutions of X and Y , respectively.

Proof. There exists a resolution (p, q, f ) of f where p : X → X and
q : Y → Y are APol-resolutions of X and Y , respectively, and f : X → Y

is a system map whose limit is f [4, Theorem 13]. By Lemma 6.3, the APol-
resolutions p : X → X and q : Y → Y admit approximate APol-resolutions
p : X → X and q : Y → Y, respectively, with the properties in Lemma 6.3
(1). The system map f : X → Y admits a commutative approximate map
f : X → Y with the properties in Lemma 6.3 (2). Thus such obtained triple
(p, q, f) is an approximate resolution of f as required.

Proof of Theorem 6.1. Suppose that there is an approximate resolu-
tion (p, q, f) of f such that the approximate system map (not necessarily com-
mutative) f : X → Y has the AHLP with respect to any spaces. By Lemma
6.4, there is an approximate resolution (p′, q′, f ′) of f such that f ′ : X → Y

is a commutative approximate map. By Corollary 5.4, that f has the AHLP
implies that f ′ has the AHLP. This fact together with Theorem 3.1 implies
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that the system map f ′ which is obtained by forgetting the meshes of the
approximate systems X and Y has the AHLP. This means that f is a shape
fibration.

Conversely, suppose that a map f : X → Y is a shape fibration. Then
this together with Lemma 6.3 implies that there is an approximate resolution
(p, q, f) of f such that f : X → Y is a commutative approximate map and
has the AHLP as required.

Corollary 6.5. A map f : X → Y between spaces is a shape fibration
if and only if AS(f) has the AHLP with respect to any space.

Proof. This immediately follows from Theorem 6.1 and Corollary 5.4.

As an application of the composition axiom for approximate maps, we
have

Theorem 6.6. Every homeomorphism f : X → Y between topologically
complete spaces is a shape fibration.

Proof. Theorem 2.7 implies that there exists an approximate resolution
(p, q, f) of f such that 〈[f ]〉 is an isomorphism in ASh. Then the approximate
map f induces an isomorphism in APRO-APol, and hence, by Theorem 5.2,
f has the AHLP with respect to any spaces. By Theorem 6.1 we conclude
that f is a shape fibration.
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