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Abstract. In this paper we characterize the order relation on the
set of all completely n-positive linear maps on C∗-algebras in terms of the
representation associated to each completely n-positive linear map given
by Suen’s construction.

1. Introduction and Preliminaries

Completely positive linear maps are an often used tool in operator alge-
bras theory and quantum information theory [1, 3, 5, 7, 10].

In the mathematical framework of quantum information theory, all ad-
missible devices are modelled by the so-called quantum operations (that is,
completely positive linear maps on the algebra of observables (C∗-algebra)
of the physical system under consideration). A good analysis of completely
multi-positive maps between C∗-algebras involves understanding and solving
certain problems in quantum information theory and understanding the in-
finite dimensional non-commutative structure of topological ∗-algebras [2, 5,
7, 10]. The theorems on the structure of completely linear maps and Radon-
Nikodym type theorems for completely positive linear maps are an extremely
powerful and veritable tool for problems involving characterization and com-
parison of quantum operations.
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Given a C∗-algebra A and a positive integer n, we denote by Mn(A) the
C∗-algebra of all n×n matrices over A with the algebraic operations and the
topology obtained by regarding it as a direct sum of n2 copies of A.

Definition 1.1. A linear map ρ : A → B between two C∗-algebras is

completely positive if the linear maps ρ(n) : Mn(A) → Mn(B) defined by

ρ(n)([aij ]
n
i,j=1) = [ρ(aij)]

n
i,j=1

are positive for any positive integer n.

Definition 1.2. Let A and B be two C∗-algebras. An n × n matrix

[ρij ]
n
i,j=1 of linear maps from A to B can be regarded as a linear map ρ from

Mn(A) to Mn(B) defined by

ρ([aij ]
n
i,j=1) = [ρij(aij)]

n
i,j=1.

We say that [ρij ]
n
i,j=1 is a completely n-positive linear map from A to B if ρ

is a completely positive linear map from Mn(A) to Mn(B).

We shall denote by CP∞(A, B) the set of all completely positive linear
maps from A to B and by CPn

∞
(A, B) the set of all completely n-positive

linear maps from A to B.
In [9], Suen showed that any completely n-positive linear map from a

C∗-algebra A to L(H), the C∗-algebra of all bounded linear operators on a
Hilbert space H , is of the form [V ∗TijΦ(·)V ]ni,j=1, where Φ is a representation

of A on a Hilbert space K, V ∈ L(H, K) and [Tij ]
n
i,j=1 is a positive element

in Mn(Φ(A)′) (Φ(A)′ denotes the commutant of Φ(A) in L(K)).

Theorem 1.3 ([9, 4]). Let A be a C∗-algebra, let H be a Hilbert space

and let ρ = [ρij ]
n
i,j=1 be a completely n-positive linear map from A to L(H).

Then there is a representation Φρ of A on a Hilbert space Hρ, Vρ ∈ L(H, Hρ)

and a positive element T ρ = [T ρ
ij ]

n
i,j=1 in Mn(Φρ(A)′) with

n∑

k=1

T
ρ
kk = nidL(Hρ)

such that:

i.
{
Φρ(a)Vρξ; a ∈ A, ξ ∈ H

}
spans a dense subspace in Hρ;

ii. ρij(a) = V ∗

ρ T
ρ
ijΦρ(a)Vρ, for all a ∈ A and for all i, j = 1, . . . , n.

The quadruple (Φρ, Hρ, Vρ, T
ρ) will be called the Suen’s construction as-

sociated with ρ and it is unique up to unitary equivalence [4, Theorem 2.3].

Remark 1.4. The triple (Φρ, Hρ, Vρ) is the Stinespring representation

associated with ρ̃ = 1
n

n∑

k=1

ρkk (see, [4, the proof of Theorem 2.3]).

In this paper we characterize the order relation on the set of all completely
n-positive linear maps on C∗-algebras in terms of the representation associated
to each completely n-positive linear map given by Suen’s construction [9].
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We also give sufficient conditions for that a completely n-positive linear map
from a unital C∗-algebra A to L(H) to be an extreme point in the set of
all completely n-positive linear maps [ρij ]

n
i,j=1 from A to L(H) such that

[ρij (1A)]ni,j=1 = T 0 for some T 0 ∈ Mn(L (H)).

2. The main results

Let ρ = [ρij ]
n
i,j=1 be an element in CPn

∞
(A, L(H)) and let (Φρ, Hρ, Vρ, T

ρ)
be the construction associated to ρ given by Theorem 1.3.

Lemma 2.1. Let S = [Sij ]
n
i,j=1 be a positive element in Mn(Φρ(A)′). The

map ρS = [ρSij
]ni,j=1 from Mn(A) to Mn(L(H)) defined by

ρS([aij ]
n
i,j=1) = [V ∗

ρ SijΦρ(aij)Vρ]ni,j=1

is a completely n-positive linear map from A to L(H).

Proof. It is not difficult to see that ρS is an n×n matrix of linear maps
from A to L(H) whose (i, j)-entry is the linear map ρSij

from A to L(H)
defined by ρSij

(a) = V ∗

ρ SijΦρ(a)Vρ for all a ∈ A and for all i, j = 1, . . . , n.
To show that ρS is a completely n-positive linear map from A to L(H)

it is sufficient to show that Γ(ρS) ∈ CP∞(A, Mn(L(H))), where Γ is the
map from CPn

∞
(A, B) onto CP∞(A, Mn(B)) defined by Γ([ρij ]

n
i,j=1)(a) =

[ρij(a)]ni,j=1 for all a ∈ A [2, Theorem 1.4]. For this, let m be a positive

integer, a1, . . . , am ∈ A, ξ1 = (ξi
1)

n
i=1, . . . , ξm = (ξi

m)n
i=1 ∈ Hn. Then we have

m∑

k,l=1

〈Γ(ρS)(a∗

l ak)ξk, ξl〉 =

m∑

k,l=1

〈
[V ∗

ρ SijΦρ(a
∗

l ak)Vρ]ni,j=1(ξ
i
k)n

i=1, (ξ
i
l )

n
i=1

〉

=

m∑

k,l=1

n∑

i,j=1

〈
V ∗

ρ SijΦρ(a
∗

l ak)Vρξ
j
k, ξi

l

〉

=

n∑

i,j=1

〈
Sij

m∑

k=1

Φρ(ak)Vρξ
j
k,

m∑

k=1

Φρ(ak)Vρξi
k

〉

=

〈
[Sij ]

n
i,j=1(

m∑

k=1

Φρ(ak)Vρξi
k)n

i=1, (

m∑

k=1

Φρ(ak)Vρξ
i
k)n

i=1

〉
≥ 0

since [Sij ]
n
i,j=1 is a positive element in Mn(Φρ(A)′). From this fact we conclude

that Γ(ρS) ∈ CP∞(A, Mn(L(H))) and the lemma is proved.

Remark 2.2. It is not difficult to check that:

1. ρT ρ = ρ;
2. ραS = αρS , for all positive numbers α and for all positive elements S

in Mn(Φρ(A)′);
3. ρS1+S2

= ρS1
+ ρS2

, for all positive elements S1, S2 in Mn(Φρ(A)′);
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4. ρS1
≤ ρS2

if and only if S1 ≤ S2, where S1, S2 are positive elements in
Mn(Φρ(A)′).

Let ρ, θ ∈ CPn
∞

(A, L(H)). We say that ρ dominates θ, and we write
θ ≤ ρ, if ρ − θ ∈ CPn

∞
(A, L(H)).

For ρ ∈ CPn
∞

(A, L(H)), we put:

[0, ρ] =
{
θ = [θij ]

n
i,j=1 ∈ CPn

∞
(A, L(H)); θ ≤ ρ

}

and
[0, T ρ] =

{
S = [Sij ]

n
i,j=1 ∈ Mn(Φρ(A)′); 0 ≤ S ≤ T ρ

}
.

Theorem 2.3. The map S −→ ρS is an affine order isomorphism from

[0, T ρ] to [0, ρ].

Proof. By Lemma 2.1 and Remark 2.2, the map S −→ ρS from [0, T ρ]
to [0, ρ] is well-defined and moreover, it is affine.

To show that the map is injective, let S = [Sij ]
n
i,j=1 be an element in

[0, T ρ] such that ρS = 0. Then [ρSij
]ni,j=1 = 0, that is V ∗

ρ SijΦρ(a)Vρ = 0, for
all a ∈ A and for all i, j = 1, . . . , n.

For each a, b ∈ A, ξ, η ∈ H and i, j = 1, . . . , n, we have

〈SijΦρ(a)Vρξ, Φρ(b)Vρη〉 =
〈
V ∗

ρ Φρ(b)
∗SijΦρ(a)Vρξ, η

〉

=
〈
V ∗

ρ Φρ(b
∗)SijΦρ(a)Vρξ, η

〉

=
〈
V ∗

ρ SijΦρ(b
∗a)Vρξ, η

〉
= 0.

From this fact and taking into account that
{
Φρ(a)Vρξ; a ∈ A, ξ ∈ H

}
spans

a dense subspace of Hρ, we conclude that Sij = 0. Hence S = 0 and the map
S −→ ρS is injective.

It remains to show that the map S −→ ρS from from [0, T ρ] to [0, ρ] is
surjective.

Let σ = [σkl]
n
k,l=1 be an element in [0, ρ]. By [4, the proof of Theorem 2.3]

(see also [6]), 1
n
σkk, 1

2 σ̃ ± 1
n
Reσkl,

1
2 σ̃ ± 1

n
Imσkl ∈ [0, ρ̃], where ρ̃ = 1

n

n∑

j=1

ρjj

and σ̃ = 1
n

n∑

j=1

σjj , for all k, l = 1, . . . , n with k 6= l. Let (Φρ, Hρ, Vρ, T
ρ) be

the Suen’s construction associated with ρ. By Remark 1.4, (Φρ, Hρ, Vρ) is
the Stinespring representation of A associated with ρ̃. Then by [1, Theorem
1.4.6], for each j = 1, . . . , n, there is a positive element Sjj ∈ Φρ(A)′ such
that

σjj(a) = V ∗

ρ SjjΦρ(a)Vρ

for all a ∈ A and for all k, l = 1, . . . , n with k 6= l, there are two positive
elements S1

kl, S
2
kl ∈ Φρ(A)′ such that

n

2
σ̃(a) + (Reσkl)(a) = V ∗

ρ S1
klΦρ(a)Vρ
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and
n

2
σ̃(a) + (Imσkl)(a) = V ∗

ρ S2
klΦρ(a)Vρ

for all a ∈ A.
From these relations, we deduce that σkl(a) = V ∗

ρ SklΦρ(a)Vρ for all a ∈ A,
where

Skl = S1
kl + iS2

kl −
1 + i

2

n∑

j=1

Sjj .

Clearly S = [Sij ]
n
i,j=1 ∈ Mn(Φρ(A)′). Moreover, S is positive (see, for exam-

ple, [4, the proof of Theorem 2.3]) and σ = ρS . Since σ ≤ ρ, by Remark 2.2,
S ∈ [0, T ρ] and the theorem is proved.

Definition 2.4. Let A be a C∗-algebra and let H be a Hilbert space. A

completely n-positive linear map ρ = [ρij ]
n
i,j=1 from A to L(H) is said to be

pure if for every completely n-positive linear map θ = [θij ]
n
i,j=1 ∈ [0, ρ], there

is a positive number α such that θ = αρ.

Proposition 2.5. Let ρ = [ρij ]
n
i,j=1 be an element in CPn

∞
(A, L(H)).

Then ρ is pure if and only if [0, T ρ] =
{
αT ρ; 0 ≤ α ≤ 1

}
.

Proof. First we suppose that ρ is pure. Let S = [Sij ]
n
i,j=1 be an element

in [0, T ρ]. By Theorem 2.3, ρS ∈ [0, ρ] and since ρ is pure, there is a positive
number α such that ρS = αρ. From this fact, Remark 2.2 and Theorem 2.3,
we deduce that S = αT ρ for some 0 ≤ α ≤ 1.

Conversely, suppose that [0, T ρ] =
{
αT ρ; 0 ≤ α ≤ 1

}
. Let θ = [θij ]

n
i,j=1

be an element in [0, ρ]. By Theorem 2.3, there is S ∈ [0, T ρ] such that ρS = θ

and since S = αT ρ for some positive number α, θ = αρ and the proposition
is proved.

Let A be a unital C∗-algebra, let H be a Hilbert space and ρ = [ρij ]
n
i,j=1 ∈

CPn
∞

(A, L(H)). We denote by CPn
∞

(A, L(H), T 0), where

T 0 = diag(V ∗

ρ , . . . , V ∗

ρ )T ρdiag(Vρ, . . . , Vρ),

the set of all completely n-positive linear maps σ = [σij ]
n
i,j=1 from A to L(H)

such that σij(1A) = (T 0)ij , for all i, j = 1, . . . , n. Clearly, CPn
∞

(A, L(H), T 0)
is a convex set.

Proposition 2.6. Let ρ = [ρij ]
n
i,j=1 be an element in CPn

∞
(A, L(H), T 0)

and let PH0
be the projection on the closed subspace H0 of Hρ generated by{

Vρξ; ξ ∈ H
}
. If the map S −→ diag(PH0

, . . . , PH0
)Sdiag(PH0

, . . . , PH0
) from

Mn(Φρ(A)′) to Mn(L(Hρ)) is injective then ρ is an extreme point in

CPn
∞

(A, L(H), T 0).
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Proof. Let θ, σ be elements in CPn
∞

(A, L(H), T 0) and α ∈ (0, 1) such
that αθ + (1 − α)σ = ρ. Since αθ ∈ [0, ρ], by Theorem 2.3 there is a positive
element S in Mn(Φρ(A)′) such that αθ = ρS . Then

〈
PH0

(Sij − αT
ρ
ij)PH0

Vρξ, Vρη
〉

= 〈SijVρξ, Vρη〉 − α
〈
T

ρ
ijVρξ, Vρη

〉

= α 〈θij(1A)ξ, η〉 − α 〈ρij(1A)ξ, η〉 = 0,

for all ξ, η ∈ H and for all i, j = 1, . . . , n.
From this fact we deduce that PH0

(Sij − αT
ρ
ij)PH0

= 0 for all i, j =

1, . . . , n and since the map S −→ diag(PH0
, . . . , PH0

)Sdiag(PH0
, . . . , PH0

)
from Mn(Φρ(A)′) to Mn(L(Hρ)) is injective, S = αT ρ. Thus we showed
that θ = ρ and so ρ is an extreme point in CPn

∞
(A, L(H), T 0).

By Remark 1.4, (Φρ, Hρ, Vρ) is the Sinespring representation of A associ-
ated to ρ̃. If ρ = [ρij ]

n
i,j=1 ∈ CPn

∞
(A, L(H), T 0), then

ρ̃ (1A) =
1

n

n∑

k=1

ρkk (1A) =
1

n

n∑

k=1

V ∗

ρ TkkVρ = V ∗

ρ Vρ,

and by [1, Theorem 1.4.6], ρ̃ is an extreme point in CP∞(A, L(H), V ∗

ρ Vρ) if
and only if the map S −→ PH0

SPH0
from Φρ(A)′ to L(Hρ) is injective.

Corollary 2.7. Let ρ = [ρij ]
n
i,j=1 be an element in CPn

∞
(A, L(H), T 0).

If ρ̃ = 1
n

n∑

k=1

ρkk is an extreme point in CP∞(A, L(H), V ∗

ρ Vρ), then ρ is an

extreme point in CPn
∞

(A, L(H), T 0).

Proof. Since ρ̃ is an extreme point in the set CP∞(A, L(H), V ∗

ρ Vρ), the
map S0 −→ PH0

S0PH0
from Φρ(A)′ to L(Hρ) is injective [1, Theorem 1.4.6],

and so the map S −→ diag(PH0
, . . . , PH0

)Sdiag(PH0
, . . . , PH0

) is injective.
From this fact and Proposition 2.6, we deduce that ρ is an extreme point in
CPn

∞
(A, L(H), T 0).
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[4] M. Joiţa, On representations associated with completely n-positive linear maps on

pro-C∗-algebras, Chin. Ann. Math. Ser. B 29 (2008), 55-64.
[5] P. Jorgensen, Some connection between operator algebras and quantum information

theory, AIMS ”Fifty International Conference on Dynamical Systems and Differential
Equations”, California State Polytechnic University, June 16-19, 2004.



COMPLETELY MULTI-POSITIVE LINEAR MAPS 193

[6] V. I. Paulsen and C.Y. Suen, Commutant representations of completely bounded

maps, J. Operator Theory 13 (1985), 87-101.
[7] M. Raginsky, Radon-Nikodym derivatives of quantum operations, J. Math. Phys. 44

(2003), 5003-5020.
[8] W. Stinespring, Positive functions on C∗-algebras, Proc. Amer. Math. Soc. 6 (1955),

211-216.
[9] C. Y. Suen, An n×n matrix of linear maps of a C∗-algebra, Proc. Amer. Math. Soc.

112 (1991), 709-712.
[10] R. F. Werner, Quantum Information Theory-An Invitation, in: Alber G., Beth T.,

Horodecki M. et al. (eds), Quantum Information: An Introduction to Basic Theoret-
ical Concepts and Experiments, Springer Tracts in Modern Physics 173, Springer-
Verlag, Berlin, 2001, 14-57.

M. Joiţa
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