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Vol. 44(64)(2009), 1 – 6

A REMARK ON THE DIOPHANTINE EQUATION

(x3 − 1)/(x − 1) = (yn − 1)/(y − 1)

Bo He

Sichuan Normal University, China

Abstract. In this remark, we use some properties of simple continued
fractions of quadratic irrational numbers to prove that the equation

x3 − 1

x − 1
=

yn − 1

y − 1
, x, y, n ∈ N, x > 1, y > 1, n > 3, 2 ∤ n

has only the solutions (x, y, n) = (5, 2, 5) and (90, 2, 13).

For any positive integer N with N > 2, let s(N) denote the number of
solutions (x, m) of the equation

(1) N =
xm − 1

x − 1
, x, m ∈ N, x ≥ 2, m > 2.

Ratat [17] in 1916 and Goormaghtigh [10] in 1917 found that s(31) = 2 and
s(8191) = 2, respectively. We consider the equation

(2)
xm − 1

x − 1
=

yn − 1

y − 1
, x > 1, y > 1, m > 2, n > 2, x 6= y, for x, y ∈ N.

It has been conjectured that the equation (2) has only a finite number of solu-
tions, even that has only two solutions (x, y, m, n) = (5, 2, 3, 5), (90, 2, 3, 13).

This is rather a difficult question. Many authors have proved that if two
of the variables x, y, m, n are fixed then the equation (2) has a finite number
of solutions. See for examples [1, 3, 4, 5, 12, 13, 19, 20, 21, 16, 22, 23, 24].
Remark that two known solutions of (2) are both satisfying m = 3. If m = 3,
the equation (2) has the form

(3)
x3 − 1

x − 1
=

yn − 1

y − 1
, x, y, n ∈ N, x > y > 1, n > 3.
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We know that the equation (3) has two solutions (x, y, n) = (5, 2, 5) and
(90, 2, 13), and any other possible solution is called an exceptional solution

[13]. If we prove that (3) has no exceptional solutions, then the conjecture is
true under the condition m = 3. Le [12] proved that (3) has no exceptional
solution with ω(y) > 1, where ω(a) denote the number of distinct prime
divisors of a (the reference [12] contains an error, one can refer to [2] for
a correct version). Nesterenko and Shorey [16] proved that any exceptional
solution of (3) with 2 ∤ n must be n ≥ 25. Le [14] has given the relative upper

bound, namely, x < 2(n2
−4n+6)/2 and y < 2(n−3)/2.

In [13], Le proved that, for any exceptional solution of (3), we must have
gcd(x, y) > 1 and y ∤ x. In 2005, Yuan [26] used this result and properties of
Pellian equations and proved the following result.

Theorem 1. The equation (3) has only the solutions (x, y, n) = (5, 2, 5)
and (90, 2, 13) with n is odd.

In this paper, we prove Theorem 1 using another method. We will use
the simple continued fraction expansion to express the solutions of the Pellian
equation obtained from (3), and we get a contradiction to the result in [13]
by congruence relations.

Now, let us recall some properties of continued fractions. The simple

continued fraction expansion of a quadratic irrational α = a+
√

d
b is periodic.

This expansion can be obtained using the following algorithm [11]. Let s0 =
a, t0 = b and

(4) ak =

⌊

sk +
√

d

tk

⌋

, sk+1 = aktk − sk, tk+1 =
d − s2

k+1

tk
, k ≥ 0.

If (sc, tc) = (sd, td) for c < d, then

α = [a0, . . . , ac−1, ac, . . . , ad−1].

Let pn/qn denote the nth convergent of α. The following result of Worley
[25] and Dujella [6] extends classical results of Legendre and Fatou [9] concern-
ing Diophantine approximations of the form

∣

∣α − a
b

∣

∣ < 1
2b2 and

∣

∣α − a
b

∣

∣ < 1
b2 .

Lemma 2 (Worley [25], Dujella [6]). Let α be a real number and a and b
coprime nonzero integers, satisfying the inequality

∣

∣

∣
α − a

b

∣

∣

∣
<

σ

b2
,

where σ is a positive real number. Then (a, b) = (rpk+1 ± upk, rqk+1 ± uqk) ,
for some k ≥ −1 and nonnegative integers r and u such that ru < 2σ.

In fact, by Fatou [9] we have

(5)
a

b
=

pk

qk
or

pk+1 ± pk

qk+1 ± qk
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for σ = 1. And explicit versions of above result for σ = 2, were given by
Worley [25, Corollary, p. 206]:

∣

∣α − a
b

∣

∣ < 2
b2 , implies

(6)
a

b
=

pk

qk
,
pk+1 ± pk

qk+1 ± qk
,
2pk+1 ± pk

2qk+1 ± qk
,
3pk+1 + pk

3qk+1 + qk
,
pk+1 ± 2pk

qk+1 ± 2qk
or

pk+1 − 3pk

qk+1 − 3qk
.

For the explicit results of the bigger σ, please refer [7].
The next useful result is due to Dujella and Jadrijević [8]. It helps us to

simplify our proof.

Lemma 3. Let ab be a positive integer which is not a perfect square, and

let pk

qk

denotes the kth convergent of continued fraction expansion of
√

a
b . Let

the sequences (sk) and (tk) be defined by (4) for the quadratic irrational
√

ab
b .

Then

a(rqk+1 + uqk)2 − b(rpk+1 + upk)2 = (−1)k(u2tk+1 + 2rusk+2 − r2tk+2).

The following lemma is due to Le [13].

Lemma 4. If (x, y, n) is a exceptional solution of equation (3), then

gcd(x, y) > 1 and y ∤ x.

Proof of Theorem 1. Let (x, y, n) be a solution of (3) with n odd.
Let us rewrite (3) into

(7) (y − 1)(2x + 1)2 − 4y(y(n−1)/2)2 = −3y − 1, n > 3.

Let gcd(2x + 1, y) = d. Then d is a divisor of −3y − 1. This implies d = 1,
since gcd(−3y − 1, y) = 1. Now, assume that y ≥ 2. Let us put X = 2x + 1
and Y = y(n−1)/2 with gcd(X, Y ) = 1. Then we have

∣

∣

∣

∣

√

y − 1

4y
− Y

X

∣

∣

∣

∣

=

∣

∣

∣

∣

y − 1

4y
− Y 2

X2

∣

∣

∣

∣

·
∣

∣

∣

∣

√

y − 1

4y
+

Y

X

∣

∣

∣

∣

−1

<
3y + 1

4yX2
·
∣

∣

∣

∣

2

√

y − 1

4y

∣

∣

∣

∣

−1

=
3y + 1

4
√

y(y − 1)
· X−2.

It follows that

(8)

∣

∣

∣

∣

√

y − 1

4y
− Y

X

∣

∣

∣

∣

<
σ

X2
,

where σ = 1 if y ≥ 4 and σ = 2 if y = 2 or 3.

On the other hand, let α =
√

y−1
4y =

√
4y(y−1)

4y , one can see that

α = [0, 2, y − 1, 4],

(s0, t0) = (0, 4y) , (s1, t1) = (0, y − 1) ,

(s2, t2) = (2y − 2, 4) , (s3, t3) = (2y − 2, y − 1) , (s4, t4) = (2y − 2, 4) .

Since the period of continued fraction expansion of α is equal to 2, according
to Lemma 2, we only need to consider (X, Y ) = (rqk+1 ± uqk, rpk+1 ± upk)
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for k = 0, 1, 2. We use Lemma 3 to check all possibilities (k, r,±u) such that
the equation

(9) (y − 1)X2 − 4yY 2 = γ

satisfies the inequality (8). Thus we have γ ∈ {−4, y − 1,−3y − 1, 5y − 9}
for y ≥ 4 and γ ∈ {−4, y − 1,−3y − 1,−4y, 5y − 9,−7y − 9, 9y − 25,−11y −
25, 12y−16, 13y−49} for 2 ≤ y ≤ 3 . Moreover, the result γ = −3y−1 comes
from

(k, r,±u) =

{

(2t, 1,−1), (2t− 1, 1, 1), if y ≥ 4,

(2t, 1,−1), (2t− 1, 1, 1), (2t, 1,−3), (2t− 1, 3, 1), if 2 ≤ y ≤ 3.

• The cases (r,±u) = (1, 1) or (1,−1) imply

(10) (2x + 1, y(n−1)/2) = (q2t+1 − q2t, p2t+1 − p2t),

or

(11) (2x + 1, y(n−1)/2) = (q2t + q2t−1, p2t + p2t−1).

By simple computations, we get

q0 = 1, q2 = 2y − 1, q2t+4 = (4y − 2)q2t+2 − q2t,

q1 = 2, q3 = 8y − 2, q2t+3 = (4y − 2)q2t+1 − q2t−1.

Then by induction one can easily prove the following property:

(12) q2t ≡ (−1)t (mod 2y) and q2t+1 ≡ 2(−1)t (mod 2y).

From (10), (11) and (12), we get

x ≡ 0 or − 1 (mod y).

But this and Lemma 4 give a contradiction.
• The additional cases (r,±u) = (3, 1) or (1,−3) (for y = 2, 3) gives

(13) (2x + 1, y(n−1)/2) = (q2t+1 − 3q2t, p2t+1 − 3p2t),

or

(14) (2x + 1, y(n−1)/2) = (3q2t + q2t−1, 3p2t + p2t−1).

We use a similar argument to get

x ≡ 0 or − 1 (mod y).

We get the contradiction as in the above case.
This completes the proof.
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