
Some Applications of Graph Theory

A thesis submitted for the degree of Doctor of

Philosophy

by

Nicole Eggemann

Department of Mathematical Sciences

Brunel University

September 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/1440931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

This work was funded by a Marie Curie Early Stage Training Fellowship
(NET-ACE-programme) under grant number MEST-CT-2004-6724.

Foremost, I would like to give many thanks to my supervisor, Dr Steven
Noble, for the opportunity to do my PhD studies under his supervision and as
part of the NET-ACE-programme. I am extremely grateful for his constant
encouragement, competent advice and for always giving very thorough and
complete answers to my questions. In addition I would like to thank him for
his very useful and detailed feedback, which was always much appreciated.

As part of the NET-ACE-programme I was able to go on two place-
ments in France and one industrial placement in Bristol. These were great
experiences and I am very grateful to Dr Steven Noble for arranging these
placements.

Fortunately, I was able to do my first placement at the LaBRI of the
University of Bordeaux in France and would like to thank Dr Nicolas Hanusse
and Dr Philippe Duchon for allowing me to have this opportunity. Moreover,
I would like to thank them for the many useful discussions that took place,
which were particularly helpful for the second chapter of this thesis.

My second placement was at Advanced Transport Systems Ltd. in Bristol.
I would like to thank Professor Martin Lowson for the very interesting and
enjoyable experience I had whilst I was working there, for useful discussions
and for describing the problem, which motivated the work in the fourth
chapter of this thesis. Many thanks also go to the Engineering Mathematics
department of the University of Bristol for allowing me to use their facilities,
and to Dr Eddie Wilson for arranging this opportunity. In addition, I would
like to thank him for the many helpful discussions that we had during that
time.

I was very pleased about being able to do my final placement at the
INRIA in Sophia Antipolis, which is close to Nice, in France and would like
to thank Dr Frédéric Havet for this wonderful opportunity and experience.
Furthermore, I would like to thank him for introducing me to the theory of
the Frequency Assignment Problem and for the many valuable discussions
that we had during my time there.

Moreover, I would like to thank the examiners Professor Colin Cooper,
Professor Colin McDiarmid and Dr Ilia Krasikov for their comments, which
helped improving parts of the thesis, in particular some of the proofs in
Chapter 3.

1

Some Applications of Graph Theory

Nicole Eggemann

Submitted for the degree of Doctor of Philosophy

Department of Mathematical Sciences, Brunel University
Uxbridge

2009

Abstract

We investigate four different applications on graph theory. First we show
for a generalisation of the well-known Barabási-Albert model that the ex-
pectation of the clustering coefficient of this graph process is asymptotically
proportional to log n

n
, by generalising a result of Bollobás and Riordan.

Secondly, we investigate the complexity of searching for a given vertex
in a scale-free graph, using only locally gathered information. We consider
two kinds of models which are generalisations of the Barabási-Albert model,
proving two lower bounds of Ω(n1/2) on the expected time to find the worst-
case target, under a restrictive model of local information.

Thirdly, we consider two orientation problems in a graph, namely the
minimisation of the sum of shortest paths lengths and the minimisation of
the diameter. We show that it is NP-complete to determine whether a graph
has an orientation for which the sum of shortest paths lengths is less than
an integer specified in the input. Furthermore we describe an algorithm that
runs in linear time and decides for a planar graph G whether there is an
orientation such that the diameter of ~G is less than a fixed constant.

Fourthly, we consider the well-known k-L(2, 1)-labelling which is a map-
ping from the vertex set of a graph G = (V, E) into an interval of integers
{0, . . . , k} such that any two adjacent vertices are mapped onto integers that
are at least two apart, and every two vertices with a common neighbour are
mapped onto distinct integers. We show that the k-L(2, 1)-labelling is NP-
complete for planar graphs and any k ≥ 4 by reduction from Planar Cubic
Two-Colourable Perfect Matching. Schaefer stated without proof that Pla-
nar Cubic Two-Colourable Perfect Matching is NP-complete. In this thesis
we give a proof of this.

2

List of Figures

5.1 Planar graph H . 92
5.2 Three almost two-coloured perfect matchings of the subgraph

of H induced by the vertices c, e, f, m, i, j, k, o, q. 93
5.3 Almost two-coloured perfect matchings of H 94
5.4 Planar clause gadget K. 94
5.5 Uncrossing gadget U and its possible almost two-coloured per-

fect matchings where α, β ∈ {black, white} and α′, β ′ are the
opposite colours to α and β, respectively. 97

5.6 Sketch of the modification from the Not-All-Equal 3SAT prob-
lem to a planar cubic graph 98

5.7 The edge gadget G5. 101
5.8 The edge gadget G6. 103
5.9 The edge gadget G7. 103
5.10 The graph H ′ for k = 6. 104
5.11 An auxiliary edge. 107
5.12 Good coloured orientation of an auxiliary edge if u and v re-

ceive the same colour. 108
5.13 Assignment of a good coloured orientation on H 109
5.14 Construction of graph K from G for k = 4. 112

3

Contents

1 Introduction 6

2 The Clustering Coefficient of a Scale-Free Random Graph 12

2.1 Introduction . 12
2.2 The model of Móri . 15
2.3 Subgraphs of Gn

1,β . 17
2.4 Calculation of Expectations 23

2.4.1 Expected Number of Triangles 23
2.4.2 Expectation of

∑

v∈V (G)

(

d(v)
2

)

. 26

2.5 Concentration of
∑

v∈V (G)

(

d(v)
2

)

. 30
2.6 Expected clustering coefficient 38
2.7 Conclusion . 40

3 Non-Searchability of Random Power-Law Graphs 41

3.1 Introduction . 41
3.2 Modelling the searching process 44
3.3 Vertex equivalence . 45
3.4 Lower bound on the searching time for the Móri graph 48

3.4.1 The Móri model for β > −1 48
3.4.2 Conditional equivalence in the Móri tree 48
3.4.3 Lower bound on searching time 50
3.4.4 Average searching time in the weak model 53

3.5 Lower bound on searching time for the Cooper-Frieze model . 53
3.5.1 The Cooper-Frieze model 53
3.5.2 A model for the construction of the Cooper-Frieze graph 55
3.5.3 Vertex equivalence in the Cooper-Frieze model 57
3.5.4 Lower bound on searching time 59

3.6 Optimal search algorithm for the Móri tree 60
3.7 Conclusion and open problems 65

4 The complexity of two graph orientation problems 67

4.1 Introduction . 67
4.2 Complexity . 69

4

4.3 Complexity of the Wiener Index 71
4.4 Tree-decompositions . 73
4.5 Algorithm Diameter . 76
4.6 Minimising the diameter of any planar graph 86
4.7 Conclusion . 88

5 k-L(2, 1)-Labelling for Planar Graphs is NP-Complete for k ≥
4 89

5.1 Preliminary results . 91
5.2 k-L(2, 1)-labelling for k ≥ 4 fixed 99

5.2.1 λ2,1(G) = 4 . 100
5.2.2 λ2,1(G) = 5 . 100
5.2.3 λ2,1(G) ≥ 6 . 102
5.2.4 Summary . 106

5.3 k-L(2, 1)-labelling for planar graphs is NP-complete for k ≥ 4 107

6 Conclusion and open problems 115

Bibliography 117

5

Chapter 1

Introduction

In the next two chapters of this thesis we investigate the clustering coeffi-

cient and the searchability of randomly growing scale-free graphs. The fourth

chapter is dedicated to the determination of the complexity of two orienta-

tion problems on graphs. In the last part of this thesis we investigate the

complexity of L(2, 1)-labelling with span k on a planar graph for k ≥ 4.

The research on the different topics arose during stays at two universities

in France and a company in the United Kingdom as part of the NetACE

programme. The collaboration on the searchability of randomly growing

scale-free graphs was mainly carried out during a stay at the LaBRI of the

Université Bordeaux. Later during an industrial placement at Advanced

Transport System Ltd. the work on the determination of the complexity of

two orientation problems arose. The investigation of the complexity of the

L(2, 1)-labelling on a planar graph was proposed during a stay at INRIA in

Nice. The work on the clustering coefficient was mainly carried out at Brunel

University.

Two chapters of this thesis are dedicated to the investigation of properties

of scale-free graphs. These are graphs which have a degree distribution obey-

ing a power-law, that is given a graph on n vertices the number of vertices

of degree x is proportional to n
(

1
x

)ℓ
for ℓ > 1 [4]. For real-life networks, ℓ

tends to belong to the range [1, 3] [4]. There is a vast literature dealing with

this kind of networks and there is great interest in analysing these networks

as many real-world networks in social and natural science tend to exhibit a

6

power-law [4]. Many examples for these networks can be found in the survey

paper [4].

There are different theoretical models which describe random graphs

obeying power-laws. One of these models is the model introduced by Chung

and Lu [16, 17, 18], where a number of vertices is given and to each vertex

a weight is associated. Then between each pair of vertices an edge appears

with probability equal to the quotient of the product of the weights of these

vertices and the sum of all weights. If the distribution of the weights obeys a

power-law then so does asymptotically the degree distribution [17]. Another

type of model is the randomly growing graph model. Unlike the model intro-

duced by Chung and Lu, the randomly growing graph model gives an idea

of the underlying evolving processes which yield scale-free networks, namely

growth and preferential attachment [3]. In this thesis we focus on the latter

kind of model.

In 1999 Barabási and Albert [3] described an evolving model where in

each time step a new node with m out-going edges is added to the existing

graph and the out-going edges are connected to the already existing vertices

with probability proportional to their degrees. This model was described

in a precise mathematical way by Bollobás and Riordan in [11] where it was

proven that this evolving process yields a power-law degree distribution. One

common generalisation of this model found in literature (for example see [10])

is when the probability for the choice of the out-going edges is proportional to

the degree of the existing vertices plus a constant. In this thesis we work with

such a model as described by Móri [61]. Móri allows any constant β > −1

and showed that a graph obtained by this process exhibits a power-law with

exponent 3+β. Moreover Móri showed in [62] that with high probability for

any ǫ > 0 the maximum degree of the Móri graph is O(n
1

2+β
+ǫ). This result

will be essential in our investigation of the searchability and the clustering

coefficient of the Móri graph. Another model for a randomly growing graph

which we will investigate was introduced by Cooper and Frieze [20] and is

an even more general model than the Móri model. In this model the number

of newly created edges at each time step is given by a random variable.

These edges are out-going of either a newly created vertex or an old vertex

7

depending on random variables. These out-going edges choose their parent

vertices either uniformly at random or preferentially depending on another

random variable. Cooper and Frieze [20] showed that this model yields scale-

free graphs.

Another classification for real-world networks is the notion of ‘small-

world’ networks. In 1998 Watts and Strogatz [79] described small-world

networks as those having both small average paths length and being highly

clustered. As described in [79] many real-world networks are small-world,

e.g. the power grid of the western United States and the collaboration graph

of film actors. Watts and Strogatz defined in [79] the local clustering coef-

ficient of a vertex as the proportion of pairs of neighbours of a vertex that

are neighbours themselves. Then they defined the clustering coefficient of the

graph as the average over all local clustering coefficients. In [10] Bollobás and

Riordan defined the clustering coefficient as a weighted average of the local

clustering coefficients where the weights are the maximal possible number of

links between neighbours. As seen from [10] this definition is equivalent to

defining the clustering coefficient as the quotient of three times the number

of triangles in the graph and the number of pairs of adjacent edges.

In Chapter 2 we determine the clustering coefficient of the Móri graph for

β > 0. For β = 0 the Móri graph process corresponds to the Barabási-Albert

model [3]. Bollobás and Riordan [10] showed that if β = 0 the expected

clustering coefficient is asymptotically proportional to (log n)2/n. We gener-

alise their result and show that for β > 0 the expected clustering coefficient

is asymptotically proportional to log n/n. Interestingly the clustering coeffi-

cient obeys a discontinuity at β = 0 and since it converges to zero when n

goes to infinity the Móri graphs are not small-world.

This chapter is joint work with Steven Noble.

In Chapter 3 we investigate the expected searching time in scale-free ran-

domly evolving graphs. We consider the Móri model and the Cooper-Frieze

model and investigate the expected number of steps needed by searching pro-

cesses for the worst case choice of initial and target vertex. We are interested

in a lower bound on the expected searching time in such a scale-free graph

for two different searching model. In both models the process starts with

8

the knowledge of the identity of the initial vertex and whenever a new ver-

tex is explored the process gets to know the edges adjacent to the explored

vertex and in the strong model the identities of the vertices adjacent to these

edges while in the weak model the process does not know the identities of

the vertices adjacent to these edges. In the Móri model for β > −1 and the

Cooper-Frieze model we are able to prove that in expectation the searching

process needs to explore at least Ω(
√

n) vertices before reaching the target

vertex n in the weak model. We will show that due to Móri’s result on the

maximum degree [62] we are able to give a lower bound of Ω(n
β

2β+4
−ǫ) for the

Móri model with β > 0 and ǫ > 0 for a searching process in the strong model.

Moreover for the Móri tree for β > 0 in which each vertex has exactly one

out-going edge we present a searching strategy which operates in the strong

searching model and needs in expectation Θ(n) steps. We show that for any

other searching strategy in the strong model the number of steps needed to

find the target stochastically dominates the number of steps needed to find

the target by the strategy we present. From these results we can conclude

that the graphs given by the Móri model and Cooper-Frieze model are not

easily searchable.

This chapter is joint work with Philippe Duchon, Nicolas Hanusse and

Steven Noble. A preliminary version of this chapter was briefly announced

in [25] and is published in [26].

Chapter 4 is about the complexity of two orientation problems. The

problems appear in urban light rail networks where one is confronted with a

network consisting of a number of stations and track linking them. This track

between two stations can only be directed in one direction and crossings are

not allowed. The question arising is how this track has to be directed so that

the average or maximal travel time is minimised. Since the distances between

the stations are short this problem can be considered as a planar nonweighted

graph where vertices represent the stations and the track linking them the

edges. Then the problem transforms to finding an orientation of a planar

graph so that the sum of shortest paths length or diameter is minimised. The

sum of shortest paths length is also called Wiener Index, a notion appearing

mainly in chemistry. The problem concerning the minimal Wiener Index of

9

a planar graph remains an open problem but we show that given any graph

it is NP-complete to decide whether the Wiener Index is at most a constant

specified in the input. The proof is a reduction from a result by Chvátal

and Thomassen [19] who showed that it is NP-complete to decide whether a

graph can be oriented such that its diameter is at most two. This reduction

is very short and most of the chapter is devoted to the problem concerning

the question whether there is an orientation of a planar graph so that the

diameter is less than a constant. We show that this problem is solvable in

linear time. The proof involves results on tree-decomposition [72, 73, 74] and

graph minor theory [56]. In order to prove the statement we describe an

algorithm that takes as an input a graph G and a tree-decomposition of G

with small tree-width and decides in linear time whether the graph G has

diameter at most l. If there is no tree-decomposition of small tree-width we

are able to prove, for a planar graph, that the diameter is greater than l by

graph minor theory.

This chapter is joint work with Steven Noble.

In Chapter 5 we investigate the complexity of the planar L(2, 1)-labelling

problem of span k for k ≥ 4. An L(2, 1)-labelling of span k of a graph G is a

mapping from the vertex set of G into an interval of integers {0, . . . , k} such

that any two adjacent vertices are mapped onto integers that are at least 2

apart, and every two vertices with a common neighbour vertex are mapped

onto distinct integers. This problem appears in broadcasting networks when

radio transmitters need to be assigned frequencies with the aim of avoiding in-

terference and minimising bandwidth [67]. Then in the corresponding graph

model of this problem the vertices represent the transmitters and the edges

express which pairs of transmitters are too close to each other so that an un-

desired interference may occur, even if the frequencies assigned to them differ

by 1. This model was introduced by Roberts [67] and since then the concept

has been intensively studied (see the survey of Yeh [82]). In [30] it was shown

that the problem is NP-complete for general graphs. It was shown by Bod-

laender et al. [7] that the problem is still NP-complete for planar graphs and

even k ≥ 8. In this chapter we show that it is NP-complete for any k ≥ 4.

We show this result by a reduction from Not-All-Equal 3SAT which was

10

proven by Schaefer [76] to be NP-complete. In order to obtain this reduction

we first give a proof that Planar Cubic Perfect Two-Colourable Matching is

NP-complete. Schaefer [76] mentioned that Not-All-Equal 3SAT can be re-

duced to Planar Cubic Two-Colourable Perfect Matching and therefore that

Planar Cubic Two-Colourable Perfect Matching is NP-complete but did not

give details of the proof. The first part of Chapter 5 contains a reduction

of Not-All-Equal 3SAT to Planar Cubic Two-Colourable Perfect Matching.

In the second part of the chapter for any k ≥ 4 we reduce Planar Cubic

Two-Colourable Perfect Matching to L(2, 1)-labelling with span k for planar

graphs and show in this manner that L(2, 1)-labelling with span k for planar

graphs is NP-complete.

This chapter is joint work with Frédéric Havet and Steven Noble.

11

Chapter 2

The Clustering Coefficient of a

Scale-Free Random Graph

2.1 Introduction

This chapter is joint work with Steven Noble, Brunel University. Recently

there has been a great deal of interest in the structure of real world net-

works, especially the internet. Many mathematical models have been pro-

posed: most of these describe graph processes in which new edges are added

by some form of preferential attachment. There is a vast literature discussing

empirical properties of these networks but there is also a growing body of

more rigorous work. A wide-ranging account of empirical properties of net-

works can be found in [4]; a good survey of rigorous results can be found

in [10] or in the recent book [27].

In [79] Watts and Strogatz defined ‘small-world’ networks to be those

having small path length and being highly clustered, and discovered that

many real world networks are small-world networks, e.g. the power grid of

the western USA and the collaboration graph of film actors.

There are conflicting definitions of the clustering coefficient appearing in

the literature. See [10] for a discussion of the relationships between them.

12

We define the clustering coefficient, C(G) of a graph G as follows:

C(G) =
3 × number of triangles in G

∑

v∈V (G)

(

d(v)
2

) ,

where d(v) is the degree of vertex v.

The reason for the three in the numerator is to ensure that the clustering

coefficient of a complete graph is one. This is the maximum possible value for

a simple graph. However our graphs will not be restricted to simple graphs

and so the clustering coefficient can exceed one. For instance if we take

three vertices and join each pair by m edges then the clustering coefficient is

m2/(2m− 1). Note that the clustering coefficient of a graph with at most m

edges joining any pair of vertices is at most m.

In this chapter we establish rigorous results describing the asymptotic

behaviour of the clustering coefficient for one class of model. Our graph

theoretic notation is standard. Since our graphs are growing, we let dt(v)

denote the total degree of vertex v at time t. Sometimes we omit t when the

context is clear.

The Barabási–Albert model (BA model) [3] is perhaps the most widely

studied graph process governed by preferential attachment. A new vertex

is added to the graph at each time-step and is joined to m existing vertices

of the graph chosen with probabilities proportional to their degrees. A key

observation [3] is that in many large real-world networks, the proportion of

vertices with degree d obeys a power-law, that is the number of vertices of

degree d is proportional to n
(

1
d

)ℓ
for an n-vertex graph and ℓ a constant.

Graphs having this property are often called scale-free graphs. Moreover, it

has been observed [4] that for real-life networks, ℓ tends to belong to the

range [1, 3].

In [11] Bollobás et al. gave a mathematically precise description of the BA

model and showed rigorously that for d ≤ n
1
15 , the proportion of vertices with

degree d asymptotically almost surely obeys a power-law. Furthermore, in [9]

it was proved for m ≥ 2 that the graph is connected with high probability

and that the diameter is asymptotically log n/ log log n while for m = 1 the

diameter of the largest component is approximately log n (see also [10]). A

13

dominating set of a graph is a set S of vertices such that every member of V

is adjacent to a member of S. Cooper et al. [21] showed that the size of the

smallest dominating set for graphs obtained by the BA model is Ω(n).

The most natural generalisation of the BA model is to take the probabil-

ity of attachment to v at time t+1 to be proportional to dt(v)+a, where a is

a constant representing the inherent attractiveness of a vertex. Buckley and

Osthus [13] generalised the results in [11] to the case where the attractive-

ness is a positive integer. Many more results on these variations of the basic

preferential model can be found in [10]. Other variants of the BA model

have been proposed [81, 23, 24] and in all of them, scale-free random graphs

are obtained. Extensions to more general models combining uniform and

preferential attachment have been studied in [61, 62, 20, 55, 53]. In these pa-

pers, roughly speaking each new vertex chooses with respective probabilities

p and 1 − p whether to use uniform or preferential attachment. Depending

on the value of the parameter p, the power-law distribution can be observed

and is proved by Cooper and Frieze [20] (in a very general model, which we

describe fully in the next chapter, in which extra links between old vertices

can also be added) or by Móri [61, 62]. In these last models, the authors

also give the asymptotic limit of the maximum degree, which tends to be

of order nc for some explicit constant c depending on the model parameters

(but not equal to what one would obtain by extrapolating the power-law up

to Pr(d) = 1/n).

Bollobás and Riordan showed [10] that the expectation of the clustering

coefficient of the model from [11] is asymptotically proportional to (log n)2/n.

They also considered in [10] a slight variant of the model from [11]. Their

results imply that for this model the expectation of the clustering coefficient

is also asymptotically proportional to (log n)2/n. We work with a model

depending on two parameters β, m, which to the best of our knowledge was

first studied rigorously by Móri in [61]. In a sense, that we make precise in

the next section, Bollobás and Riordan’s model is almost the special case of

Móri’s model corresponding to β = 0.

Our main result is to show that for β > 0, asymptotically the expectation

of the clustering coefficient is proportional to log n/n. The main strategy of

14

our proof follows [10] and we use very similar notation. In Section 2.2 we give

a definition of the model that we use and explain its relationship with the

model studied in [10]. Section 2.3 contains results that give the probability of

the appearance of a small subgraph. We obtain the expectation of the number

of triangles appearing and of
∑

v

(

d(v)
2

)

in Section 2.4. These two sections

follow [10] quite closely. The overall aim is to express the expectation of the

clustering coefficient as three times the quotient of the expectation of the

number of triangles and the expectation of
∑

v

(

d(v)
2

)

. We justify doing this

in Section 2.6 and make use of a concentration result proved in Section 2.5

using martingale methods. Bollobás and Riordan [10] used a similar strategy

and mentioned that they also used martingale methods.

2.2 The model of Móri

We now describe in detail Móri’s generalisation of the BA model [62]. Our

definition involves a finer probability space than was described in [62] but

the underlying graph process (Gn
m,β) is identical. The process depends on

two parameters: m the outdegree of each vertex except the first and β ∈ R

such that β > 0. (In [62], Móri imposed the weaker condition that β > −1).

We emphasise that β is fixed and in particular does not depend on n.

We first define the process when m = 1. Let G1
1,β consist of a single

vertex v1 with no edges. The graph Gn+1
1,β is formed from Gn

1,β by adding a

new vertex vn+1 together with a single directed edge e. The tail of e is vn+1

and the head is determined by a random variable fn+1. We diverge slightly

from [62] in our description of fn+1.

Label the edges of Gn
1,β with e2, . . . , en so that ei is the unique edge whose

tail is vi. Now let

Ωn+1 = {(1, v), . . . , (n, v), (2, h), . . . , (n, h), (2, t), . . . , (n, t)},

where the meaning of the elements in Ωn+1 will become clear shortly. We

15

define fn+1 to take values in Ωn+1 so that for 1 ≤ i ≤ n,

Pr(fn+1 = (i, v)) =
β

(2 + β)n − 2
(2.1)

and for 2 ≤ i ≤ n,

Pr(fn+1 = (i, h)) = Pr(fn+1 = (i, t)) =
1

(2 + β)n − 2
. (2.2)

The head of the new edge added to the graph at time n + 1 is called

the parent vertex of vn+1 and is determined as follows. If fn+1 = (i, v) then

the parent vertex is vi and we say that the choice of parent vertex has been

made uniformly. If fn+1 = (i, h) then the parent vertex is the head of ei

and if fn+1 = (i, t) then the parent vertex is the tail of ei, that is vi. When

one of the last two cases occurs, we say that the choice of parent vertex has

been made preferentially by copying the head or tail, as appropriate, of ei.

Suppose we think of an edge as being composed of two half-edges so that

each half-edge retains one endpoint of the original edge. Then the parent

vertex is chosen, either by choosing one of the n vertices of Gn
1,β uniformly

at random or by choosing one of the 2n − 2 half-edges of Gn
1,β uniformly at

random and selecting the vertex to which the half-edge is attached.

The definition implies that for 1 ≤ i ≤ n, the probability that the parent

vertex of vn+1 is vi is equal to

dn(vi) + β

(2 + β)n − 2
. (2.3)

We might have defined fn+1 to be a random variable denoting the index of

the parent vertex of vn+1 and taking probabilities as given in (2.3). Indeed

for much of the sequel we will abuse notation and assume that we did define

fn+1 in this way. However it is useful to have the finer definition when we

prove the concentration results in Section 2.5.

We extend this model to a random graph process (Gn
m,β) for m > 1 as

follows: run the graph process (Gt
1,β) and form Gn

m,β by taking Gnm
1,β and

merging the first m vertices to form v1, the next m vertices to form v2 and

so on.

16

Notice that our definition will not immediately extend to the case −1 <

β ≤ 0 because when n = 1, the denominator of the expression in (2.3) is

at most zero and so the process cannot start. One way to get around this

problem is to define G2
1,0 to be the graph with two vertices joined by a single

edge and then let the process carry on from there (as in [61, 62]). We need

to use this construction in Section 3.4. In the same way the finer definition

in (2.1) and (2.2) can be extended to the case β = 0. We require this in

Section 3.6. A second possibility used in [10], is to attach an artificial half-

edge to v1 at the beginning. This half-edge remains present all through the

process so that the sum of the vertex degrees at time n is 2n − 1 rather

than 2n − 2 as in the model we use. However it turns out that the choice

of which alternative to use makes no difference to the asymptotic form of

the expectation of the clustering coefficient and so the results from [10] are

directly comparable with ours.

In the following we only consider properties of the underlying undirected

graph. However, it is helpful to have the extra notation and terminology of

directed graphs to simplify the reading of some of the proofs.

2.3 Subgraphs of Gn
1,β

Let S be a labelled directed forest, in which each vertex has either one or

no out-going edge and each directed edge (vi, vj) has i > j. The restrictions

on S are precisely those that ensure that S can occur as a subgraph of the

evolving Móri tree with m = 1. We call such an S a possible forest.

In this section we generalise the calculation in [10] to calculate the prob-

ability that such a graph S is a subgraph of Gn
1,β for β > 0. We will follow

the method and notation of [10] closely.

We emphasise that we are not computing the probability that Gn
1,β con-

tains a subgraph isomorphic to S; the labels of the vertices of S must corre-

spond to the vertex labels of Gn
1,β for S to be considered to be a subgraph of

Gn
1,β.

Denote the vertices of S by vs1, . . . , vsk
, where sj < sj+1 for 1 ≤ j ≤ k−1.

17

Furthermore, let

V − = {vi ∈ V (S) : there is a j > i such that (vj, vi) ∈ E(S)}

and

V + = {vi ∈ V (S) : there is a j < i such that (vi, vj) ∈ E(S)}.

Let din
S (v) (dout

S (v)) denote the in-degree (out-degree) of v in S. In particular,

dout
S (v) is either zero or one. For t ≥ i, let Rt(i) = |{j > t : (vj, vi) ∈ E(S)}|.

Observe that Ri(i) = din
S (vi). Moreover, let cS(i) =

∑i−1
k=1 Ri−1(k). Hence

cS(i) is the number of edges in E(S) from {vi, . . . , vn} to {v1, . . . , vi−1}.

Lemma 2.4. Let β > 0 and S be a possible forest. Then for t ≥ sk the

probability that S is subgraph of Gt
1,β is given by

Pr(S ⊂ Gt
1,β) =

β

β + din
S (v1)

∏

1≤i≤t:
vi∈V −(S)

Γ(1 + β + din
S (vi))

Γ(1 + β)

·
∏

1<i≤t:
vi∈V +

1

(2 + β)(i − 1) − 2

∏

1<i≤t:
vi 6∈V +

(

1 +
cS(i)

(2 + β)(i − 1) − 2

)

.

Proof. The proof is a generalisation of the proof for the analogous result in

the case β = 0 in [10] but we include it for completeness.

Let St be the subgraph of S induced by the vertices {v1, . . . , vt} ∩ V (S).

We need to define the following random variables

Xt =
∏

(vl,vj)∈E(St)

I(vl,vj)∈E(Gt
1,β)

∏

i≤t

Γ(dt(vi) + β + Rt(i))

Γ(dt(vi) + β)

and

Yt =
∏

(vl,vj)∈E(St+1)

I(vl,vj)∈E(Gt+1
1,β)

∏

i≤t

Γ(dt+1(vi) + β + Rt+1(i))

Γ(dt+1(vi) + β)
,

where IA is the indicator of the event A.

18

Note that dt(vj) for 1 ≤ j ≤ t and Xt are functions of the random

variables f2, . . . , ft while Yt is a function of the random variables f2, . . . , ft+1.

However, for all j, Rt(j) is deterministic.

Observe that

Xt+1 =
Γ(dt+1(vt+1) + β + Rt+1(t + 1))

Γ(dt+1(vt+1) + β)
Yt =

Γ(1 + β + Rt+1(t + 1))

Γ(1 + β)
Yt.

First, assume that there is no r ≤ t such that (vt+1, vr) ∈ E(S) and so the

new edge added at time t+1 cannot belong to S. This implies that for i ≤ t,

Rt(i) = Rt+1(i) and
∏

(vl,vj)∈E(St)
I(vl,vj)∈E(Gt

1,β) =
∏

(vl,vj)∈E(St+1)
I(vl,vj)∈E(Gt+1

1,β).

Furthermore for all i ≤ t with i 6= ft+1, we have dt+1(vi) = dt(vi). We also

have dt+1(vft+1) = dt(vft+1) + 1.

For the moment fix f2, . . . , ft so that Xt is completely determined. Now,

Yt =

(

1 +
Rt(ft+1)

dt(vft+1) + β

)

Xt.

Thus

E [Yt − Xt|f2, . . . , ft] =
t
∑

r=1

Rt(r)

dt(vr) + β
Pr(ft+1 = r)Xt

=

∑t
r=1 Rt(r)

(2 + β)t − 2
Xt.

By taking expectation with respect to f2, . . . , ft we obtain

E [Yt] =

(

1 +

∑t
r=1 Rt(r)

(2 + β)t − 2

)

E [Xt] =

(

1 +
cS(t + 1)

(2 + β)t − 2

)

E [Xt]

and

E [Xt+1] =
Γ(1 + β + Rt+1(t + 1))

Γ(1 + β)

(

1 +
cS(t + 1)

(2 + β)t − 2

)

E [Xt] . (2.5)

Now suppose (vt+1, vr) is an edge of S for some r < t+1. If ft+1 6= r then

Xt+1 = 0 so we will suppose that ft+1 = r. Then for all i ≤ t with i 6= r,

dt+1(vi) = dt(vi), and dt+1(vr) = dt(vr) + 1. Furthermore for all i ≤ t, i 6= r

Rt+1(i) = Rt(i), but Rt+1(r) = Rt(r) − 1.

19

Hence providing ft+1 = r, we have

Yt =
1

dt(vr) + β
Xt.

So

E [Yt|f2, . . . , ft] =
dt(vr) + β

(2 + β)t − 2

Xt

dt(vr) + β
=

Xt

(2 + β)t − 2
.

Thus

E [Xt+1|f2, . . . , ft] =
1

(2 + β)t− 2

Γ(1 + β + Rt+1(t + 1))

Γ(1 + β)
Xt.

So by taking expectation with respect to f2, . . . , ft,

E [Xt+1] =
1

(2 + β)t − 2

Γ(1 + β + Rt+1(t + 1))

Γ(1 + β)
E[Xt]. (2.6)

Note that X1 = Γ(β+R1(1))
Γ(β)

and that for t ≥ sk, we have Pr(S ⊂ Gt
1,β) =

E [Xt]. Using (2.5) and (2.6) and noting that Ri(i) = 0 for vi 6∈ V −, we have

for t ≥ sk

Pr(S ⊂ Gt
1,β) =

Γ(β + R1(1))

Γ(β)

∏

1<i≤t:
vi∈V −

Γ(1 + β + Ri(i))

Γ(1 + β)

·
∏

1<i≤t:
vi∈V +

1

(2 + β)(i − 1) − 2

∏

1<i≤t:
vi 6∈V +

(

1 +
cS(i)

(2 + β)(i − 1) − 2

)

.

This is easily seen to be equivalent to the expression in the statement of the

lemma.

We now provide a more convenient form for the probability given in

Lemma 2.4. This calculation is very similar to the analogous one in [10].

Before stating this result we recall three elementary estimates.

Lemma 2.7. 1. For all x ≥ 0, log(1 + x) = x + O(x2).

2. For all n1, n2 ∈ Z with 1 ≤ n1 ≤ n2,
∑n2

k=n1
1/k = log(n2/n1) +

O(1/n1).

20

3. Let a > 0 and let a′ > a. Then for all x ≥ a′ we have − log(1− a/x) ≤
aa′

(a′−a)x
.

Lemma 2.8. Let β > 0 and S be a possible forest. Then for t ≥ sk the

probability that S is a subgraph of Gt
1,β is given by

Pr(S ⊂ Gt
1,β)

=
β

din
S (v1) + β

∏

i:vi∈V −

Γ(1 + din
S (vi) + β)

Γ(1 + β)

·
∏

(vi,vj)∈E(S):i>j

1

(2 + β)(i1+βj)1/(2+β)
exp

(

O

(

k
∑

j=2

cS(sj)
2/(j − 1)

))

.

Proof. First note that if c ≥ 0 then by using Lemma 2.7 we have

log

(

t
∏

i=s+1

(

1 +
c

(2 + β)(i − 1) − 2

)

)

=

t
∑

i=s+1

(

c

(2 + β)(i − 1) − 2
+ O

(

c2

((2 + β)(i − 1) − 2)2

))

=
c

2 + β
log(t/s) + O(c2/s).

(2.9)

Furthermore (2.9) remains true if we replace the upper limit of the sum on

the left-hand side with t − 1. Let D be the final term in the expression in

Lemma 2.4, that is,

D =
∏

1<i≤t:
vi 6∈V +

(

1 +
cS(i)

(2 + β)(i− 1) − 2

)

.

If i ≤ s1, then cS(i) = 0, and if sj + 1 ≤ i ≤ sj+1, then cS(i) = cS(sj+1). So

21

by using (2.9), we obtain

log D = log









k
∏

j=2

∏

i6∈V +:
sj−1+1≤i≤sj

(

1 +
cS(sj)

(2 + β)(i − 1) − 2

)









=

k
∑

j=2

cS(sj)

2 + β
log(sj/sj−1) + O

(

k
∑

j=2

cS(sj)
2

sj−1

)

.

We now need the following simple calculation.

1

(2 + β)(i − 1) − 2
=

1

(2 + β)i
· 1

1 − 4+β
(2+β)i

=
1

(2 + β)i
· exp

(

− log

(

1 − 4 + β

(2 + β)i

))

.

Hence, providing i ≥ 2, we may use the final part of Lemma 2.7 to obtain

1

(2 + β)(i − 1) − 2
=

1

(2 + β)i
· exp(O(1/i)).

Note that whenever vi ∈ V + we have i = sj for some j such that cS(sj) ≥ 1.

So we have

Pr(S ⊂ Gt
1,β) =

β

β + din
S (v1)

∏

i:vi∈V −

Γ(1 + β + din
S (vi))

Γ(1 + β)

∏

i:vi∈V +

1

(2 + β)i

k
∏

j=2

(sj/sj−1)
cs(sj)/(2+β) exp

(

O

(

k
∑

j=2

cS(sj)
2/sj−1

))

.

(2.10)

To complete the proof we must rewrite the third and fourth terms of (2.10).

In order to do so we need to know the exponents of si for each i. The exponent

of s1 is −cS(s2)/(2 + β), the exponent of sk is cS(sk)/(2 + β)− dout
S (vsk

) and

for 2 ≤ i ≤ k− 1, the exponent of si is (cS(si)− cS(si+1))/(2+β)− dout
S (vsi

).

Using the definition of cS we see that −cS(s2)/(2+β) = −din
S (vs1)/(2+β),

cS(sk)/(2 + β)− dout
S (vsk

) = −(1 + β)dout
S (vsk

)/(2 + β) and for 2 ≤ i ≤ k − 1,

22

cS(si) − cS(si+1) = dout
S (vsi

) − din
S (vsi

). Therefore

−dout(vsi
) +

cS(si)

2 + β
− cS(si+1)

2 + β
=

−(1 + β)dout
S (vsi

) − din
S (vsi

)

2 + β
.

Thus

∏

1<i≤t:
vi∈V +

1

(2 + β)i

k
∏

j=2

(sj/sj−1)
cs(sj)/(2+β)

=
1

(2 + β)|V +|

k
∏

j=1

s
−((1+β)dout

S (vsj)+din
S (vsj))/(2+β)

j

=
∏

i>j:(vi,vj)∈E(S)

1

(2 + β)(i1+βj)1/(2+β)
.

Substituting this into (2.10) gives the result.

2.4 Calculation of Expectations

Recall that the clustering coefficient C(G) of a graph G is given by

C(G) =
3 × number of triangles in G

∑

v∈V (G)

(

d(v)
2

) .

In this section we calculate the expectations of the numerator and denomi-

nator of this expression.

2.4.1 Expected Number of Triangles

We adapt the methods used in [10] to the case β > 0. For fixed a < b < c, we

first calculate the expected number of triangles in Gn
m,β on vertices va, vb, vc.

Let Gmn
1,β be the underlying tree used to form Gn

m,β. Label the vertices of the

tree v′1, . . . , v
′
mn. A triangle on va, vb, vc arises if there are vertices v′a1

, v′a2

with (a−1)m+1 ≤ a1, a2 ≤ am, v′b1 , v
′
b2

with (b−1)m+1 ≤ b1, b2 ≤ bm and

v′c1, v
′
c2 with (c−1)m+1 ≤ c1, c2 ≤ cm such that v′b1 sends its out-going edge

to v′a1
, v′c1 sends its out-going edge to v′a2

and v′c2 sends its out-going edge

23

to v′b2 . For this to be possible, we need c1 6= c2. Let S be the graph with

vertices v′a1
, v′a2

, v′b1, v
′
b2

, v′c1, v
′
c2

and edges (v′b1 , v
′
a1

), (v′c1 , v
′
a2

) and (v′c2 , v
′
b2

).

Write a1 = am − l1, a2 = am − l2, b1 = bm − l3, b2 = bm − l4, c1 = cm − l5

and c2 = cm− l6. The cases where a1 = a2 and a1 6= a2 are slightly different.

We concentrate on the former to begin with.

We have din
S (va1) = 2, din

S (vb2) = 1 and otherwise din
S (v) = 0. Suppose

that a1 > 1. Then applying Lemma 2.8 we see that

Pr(S ⊆ Gmn
1,β)

=
Γ(3 + β)Γ(2 + β)

(Γ(1 + β))2

1

(2 + β)3

(

1

a1a2b2(b1c1c2)1+β

)1/(2+β)

exp(O(1/a)).

(2.11)

The same expression holds when a1 = 1 because the extra multiplicative

term of β/(2 + β) may be absorbed into the error term. Note that for

−1 ≤ x ≤ 1, we have ex = 1+O(x). Furthermore 1/ai = 1/(am)(1+O(1/a)),

1/bi = 1/(bm)(1 + O(1/a)) and 1/ci = 1/(cm)(1 + O(1/a)). So we may

rewrite (2.11) as follows:

Pr(S ⊆ Gmn
1,β) =

(1 + β)2

(2 + β)2

1

m3

(

1

a2b2+βc2+2β

)1/(2+β)

(1 + O(1/a)).

In this case where a1 = a2, there are m4(m−1) ways to choose a1, a2, b1, b2, c1, c2

so that there is a corresponding triangle on va, vb, vc in Gn
m,β.

Now we suppose that a1 6= a2. We have din
S (va1) = din

S (va2) = din
S (vb2) = 1

and otherwise din
S (v) = 0. Applying Lemma 2.8 and carrying out similar

calculations to those above we obtain

Pr(S ⊆ Gmn
1,β) =

(1 + β)3

(2 + β)3

1

m3

(

1

a2b2+βc2+2β

)1/(2+β)

(1 + O(1/a)).

In this case there are m4(m − 1)2 ways to choose a1, a2, b1, b2, c1, c2.

Let Na,b,c denote the number of triangles on va, vb, vc in Gn
m,β. From the

24

calculations above, we see that

E [Na,b,c] =

(

m(m − 1)
(1 + β)2

(2 + β)2
+ m(m − 1)2 (1 + β)3

(2 + β)3

)(

1

a2b2+βc2+2β

)1/(2+β)

· (1 + O(1/a)).

(2.12)

Now let N be the number of triangles in Gn
m,β. Then

E [N] =

n
∑

c=3

c−1
∑

b=2

b−1
∑

a=1

E [Na,b,c] .

We estimate this sum using the following standard result on integrals. If

s ≤ t, f : R → R
+ is nonincreasing and integrable on [s − 1, t + 1] then

∫ t+1

s

f(x) dx ≤
t
∑

k=s

f(k) ≤
∫ t+1

s−1

f(x) dx

and hence if s ≥ 1,

t
∑

k=s

f(k) =

∫ t+1

s−1

f(x) dx + O(1).

Note that the order term only depends on
∫ s

s−1
f(x) dx, which is bounded, and

not on t. By applying this result, considering the maximum and minimum

values of the error term separately, we obtain

b−1
∑

a=1

a−2/(2+β)(1 + O(1/a)) =

b−1
∑

a=2

a−2/(2+β)(1 + O(1/a)) + O(1)

=

∫ b

1

a−2/(2+β)(1 + O(1/a)) da + O(1)

=
2 + β

β
bβ/(2+β) + O(1).

25

Then similarly we have

c−1
∑

b=2

b−1
b−1
∑

a=1

a−2/(2+β)(1 + O(1/a)) =
(2 + β)2

β2
cβ/(2+β) + O(log c).

Finally

n
∑

c=3

c−(2+2β)/(2+β)
c−1
∑

b=2

b−1
b−1
∑

a=1

a−2/(2+β)(1 + O(1/a)) =
(2 + β)2

β2
log n + O(1).

By substituting this expression into (2.12) we obtain the following result.

Proposition 2.13. For β > 0, the expected number of triangles in Gn
m,β is

(

m(m − 1)
(1 + β)2

β2
+ m(m − 1)2 (1 + β)3

β2(2 + β)

)

log n + O(1).

This result is very different from that obtained in [10] where it is shown

that when β = 0 the expected number of triangles is Θ((log n)3).

2.4.2 Expectation of
∑

v∈V (G)

(

d(v)
2

)

We begin by noting that if we regard each edge in the graph as consisting

of two half-edges, with each half-edge retaining one endpoint of an edge

then
∑

v∈V (Gn
m,β)

(

dn(v)
2

)

is the number of pairs of half-edges with the same

endpoint. We say such a pair of half-edges is adjacent. Suppose that e1 and

e2 are half-edges with endpoint v. If e1 and e2 form respectively half of edges

vu and vw with u, v, w pairwise distinct then we say that e1 and e2 form a

non-degenerate pair of adjacent half-edges. Otherwise we say that they are

degenerate.

Calculating the expected number of pairs of adjacent half-edges is slightly

more complicated than calculating the expected number of triangles because

there is less symmetry. We begin by counting the number of non-degenerate

pairs of adjacent half-edges. Let a < b < c. We first calculate the expected

number of pairs (vb, va), (vc, va) of adjacent half-edges in Gn
m,β for β > 0.

Just as in the previous section, there are two cases to consider, and similar

26

calculations, using Lemma 2.8, to those above show that the number of such

pairs of adjacent half-edges is

(

m
1 + β

2 + β
+ m(m − 1)

(1 + β)2

(2 + β)2

)(

1

a2b1+βc1+β

)1/(2+β)

(1 + O(1/a)).

By integrating, we see that the total number of pairs of adjacent half-edges

in Gn
m,β for which the common vertex has the smallest index is

(

m
2 + β

β
+ m(m − 1)

1 + β

β

)

n + O(n2/(2+β)).

Now the expected number of pairs (vb, va), (vc, vb) of adjacent half-edges is

m2 (1 + β)2

(2 + β)2

(

1

ab2+βc1+β

)1/(2+β)

(1 + O(1/a)).

Again we integrate to derive that the total number of pairs of adjacent

half-edges in Gn
m,β for which the common vertex has the middle index is

m2n + O(n2/(2+β)). This is not surprising because it can be shown that

very few vertices either have loops or do not have m distinct out-neighbours.

Each loopless vertex with m distinct loopless out-neighbours, that each have

m distinct out-neighbours, is the vertex with greatest index in m2 pairs of

adjacent half-edges of this form.

Finally the expected number of pairs (vc, va), (vc, vb) of adjacent half-

edges is

m(m − 1)
(1 + β)2

(2 + β)2

(

1

abc2+2β

)1/(2+β)

(1 + O(1/a)).

So the total number of pairs of adjacent half-edges in Gn
m,β for which the

common vertex has the largest index is m(m−1)
2

n + O(n1/(2+β)). Again this is

not surprising because each loopless vertex with m distinct out-neighbours is

the vertex of greatest index in
(

m
2

)

pairs of adjacent half-edges of this form.

We now determine the number of degenerate pairs of adjacent half-edges,

that is the number of pairs of adjacent half-edges where the half-edges belong

to parallel edges in Gn
m,β or at least one half-edge belongs to a loop. First we

calculate the number of pairs of adjacent half-edges which belong to parallel

27

edges in Gn
m,β.

Consider two vertices va and vb with a < b in Gn
m,β. Again we apply

Lemma 2.8 to obtain the expected number of edges between va and vb and

carry out the same simplifications as above. There are m
(

m
2

)

possibilities

to form two parallel edges between va and vb if the out-going edges in the

underlying tree have the same parent vertex and m(m − 1)
(

m
2

)

if the out-

going edges in the underlying tree have different parent vertices. Then the

expected number of pairs of adjacent half-edges formed by parallel edges

between va and vb is given by the following term

2 ·
(

m2(m − 1)

2
(2 + β)(1 + β) +

m2(m − 1)2

2
(1 + β)2

)

· 1

m2(2 + β)2

1

(b2+2βa2)1/(2+β)
(1 + O(1/a)).

(The factor two is due to the fact that each pair of parallel edges between va

and vb in Gn
m,β contributes a pair of parallel half-edges at both va and vb.)

The expected number of pairs of adjacent half-edges formed by parallel edges

in Gn
m,β is the sum over all 1 ≤ a < b ≤ n of this term. Again the sum can

be estimated by an integral and we obtain in this manner that the expected

number of pairs of adjacent half-edges formed by parallel edges in Gn
m,β is

O(log(n)).

Now we consider how many pairs of adjacent half-edges are formed by

loops. Since there are m(m−1)
2

possible edges in the underlying tree that

correspond to a loop at va in Gn
m,β, by Lemma 2.8 the expected number of

loops at vertex va is

(1 + β)
m(m − 1)

2

1

m(2 + β)a
(1 + O(1/a)).

It follows by summing over all 1 ≤ a ≤ n that the expected number of

pairs of adjacent half-edges where both half-edges belong to the same loop

is O(log(n)). There are at most m − 1 loops at each vertex that has a

loop, therefore the total number of adjacent half-edges where both half-edges

belong to a loop is O(log(n)).

In the last case we calculate the expected number of pairs of half-edges

28

for which one half-edge belongs to a loop and the other one belongs to an

edge between two different vertices va, vb in Gn
m,β.

First we calculate the expected number of pairs of adjacent half-edges

where one half-edge belongs to a loop on va and the other one to edge (vb, va)

where a < b. By Lemma 2.8, the expected number of pairs of such adjacent

half-edges is

(

m2(m − 1)

2
(2 + β)(1 + β) +

m2(m − 1)2

2
(1 + β)2

)

· 1

m2(2 + β)2(a3+βb1+β)1/(2+β)
(1 + O(1/a)).

By summing over all 1 ≤ a < b ≤ n we obtain that the expected number of

pairs of such adjacent half-edges is O(n
1

2+β).

Now we calculate the expected number of pairs of adjacent half-edges

where one half-edge belongs to a loop on vb and the other one to edge

(vb, va) for a < b. We have shown above that the number of loops in Gn
m,β is

O(log(n)). Since any vertex vb in Gn
m,β is connected to at most m vertices va

with a < b there are O(log(n)) expected pairs of adjacent half-edges of this

kind.

It follows that the number of degenerate pairs of adjacent half-edges is

O(n1/(2+β)).

Summing over all degenerate and non-degenerate pairs of adjacent half-

edges we obtain the following result.

Proposition 2.14. For β > 0, the expectation of
∑

v∈V (G)

(

d(v)
2

)

in Gn
m,β is

(

2 + 5β

2β
m2 +

2 − β

2β
m

)

n + O(n2/(2+β)).

Again the result is different from that obtained in [10] where it was shown

that for the case β = 0 the expected number of pairs of adjacent edges is

Θ(n log n).

29

2.5 Concentration of
∑

v∈V (G)

(

d(v)
2

)

In this section we show that the number of pairs of adjacent half-edges in Gn
m,β

is concentrated about its mean. This justifies obtaining the expected cluster-

ing coefficient by taking three times the quotient of the expected number of

triangles and the expected number of pairs of adjacent half-edges. The main

strategy is to apply a variant of the Azuma-Hoeffding inequality from [60],

by making use of Móri’s results [62] on the evolution of the maximum degree

of Gn
m,β. (It is mentioned in [10] that martingale methods were used.) A

key notion in the proof is to consider the mechanism by which edges incident

with a fixed vertex are added.

Before we continue, we explain briefly why we follow this approach rather

than the more elementary second moment method. It is possible to apply

the second moment method to obtain some form of concentration. Certainly

Lemma 2.4 may be applied to show the leading order terms cancel in the

usual way. However the concentration result that may be obtained is not

tight enough to obtain our final result without a considerable sharpening

of the analysis in Section 2.6. It is far from clear whether this is possible.

Furthermore the number of cases that need to be considered makes calculat-

ing the variance a gruesome proposition and therefore unlikely to be much

shorter to describe than our approach.

Fix β and m. Let (Ht) be the graph process defined as follows. Run

(Gt
1,β) and take Hn to be the graph formed from Gn

1,β by merging groups

of m consecutive vertices together until there are at most m left and finally

merging the remaining unmerged vertices together. Note that Hn has ⌈n/m⌉
vertices, which we denote by v1, . . . , v⌈n/m⌉ in the obvious way, and n − 1

edges. Furthermore, if m|n and the graphs Hn and G
n/m
m,β are formed from

the same instance of the process (Gt
1,β), then Hn and G

n/m
m,β are the same

graph.

Let vk be a vertex of Hs such that km ≤ s. For t ≥ s, we define a

partition Πk,s(t) of the half-edges incident with vk. The partition always has

ds(vk) + 1 blocks. When t = s, each block of the partition except for one

contains one of the ds(vk) half-edges incident with vk; with a slight abuse of

30

nomenclature the other block, which we call the base block, is initially empty.

It follows that if vk has a loop at time s then the two half-edges forming the

loop are in separate blocks of Πk,s(s). As t increases and more edges are

added to H , any newly added half-edge incident with vk is added to the

partition. If at time t > s the parent vertex of the newly added edge is not

vk then Πk,s(t) = Πk,s(t − 1). Suppose that at time t > s the parent vertex

of the newly added edge f is vk: if vk is chosen preferentially by copying the

half-edge e ∈ A, where A is a block of Πk,s(t− 1), then we form Πk,s(t) from

Πk,s(t− 1) by adding the half-edge of f incident with vk to A; if vk is chosen

uniformly then the half-edge of f incident with vk is added to the base block.

Suppose that vl is a vertex of Hs distinct from vk such that lm ≤ s.

Suppose further that we choose two distinct blocks from Πk,s(t) and Πl,s(t),

such that neither is a base block. The joint distribution of the sizes of the

two blocks is the same for any choice of blocks, whether they are both chosen

from Πk,s(t), Πl,s(t) or one from each. Furthermore if we choose either base

block from Πk,s(t) or Πl,s(t) and one other block that is not a base block,

then again the joint distribution of the sizes of the blocks does not depend

on our choice.

Lemma 2.15. Let vj and vk be distinct vertices of Hs such that max{jm, km}
≤ s. Let A (B) be respectively a block of Πj,s(t) (Πk,s(t)) such that neither

is a base block. Then

E [|A||B|] ≤ E [|A|]E [|B|] ≤ (t/s)2/(2+β)(1 + O(1/s)).

Proof. Let e1, e2 be half-edges so that at time s, e1 is incident with vk and

e2 is incident with vl. Then let at denote the size, at time t, of the block

of Πk,s(t) containing e1 and let bt be defined similarly with respect to Πl,s(t)

and e2. We first establish the second inequality. We have E [as] = 1 and for

t ≥ s,

E [at+1|at] = at

(

1 +
1

(2 + β)t − 2

)

. (2.16)

31

Hence

E [at+1] =
t − 1/(2 + β)

t − 2/(2 + β)
E [at] .

Solving this recurrence, we obtain

E [at] =
Γ
(

t − 1
2+β

)

Γ
(

s − 2
2+β

)

Γ
(

t − 2
2+β

)

Γ
(

s − 1
2+β

) .

A standard result on the ratio of gamma functions [57] states that if a, b are

fixed members of R then for all x > max{|a|, |b|},

Γ(x + b)

Γ(x + a)
= xb−a(1 + O(1/x)).

Using this result, we obtain

E [at] ≤ (t/s)1/(2+β)(1 + O(1/s)).

Since |A| and |B| are identically distributed, the second inequality in the

lemma follows. We prove the first inequality by using induction on t. Observe

that (at+1, bt+1) can take the values (at + 1, bt), (at, bt + 1) and (at, bt) with

probabilities respectively at/((2 + β)t − 2), bt/((2 + β)t − 2) and 1 − (at +

bt)/((2 + β)t − 2). Therefore

E [at+1bt+1|atbt] = atbt +
2atbt

(2 + β)t− 2

and from (2.16) we get

E [at+1]E [bt+1] = E [at]E [bt]

(

1 +
1

(2 + β)t − 2

)2

.

So

E [at+1bt+1] −E [at+1]E [bt+1] ≤
(

1 +
2

(2 + β)t − 2

)

(E [atbt] − E [at]E [bt])

and hence the result follows by induction.

32

When the maximum degree of Ht becomes unusually large and the parent

vertex is chosen to be a vertex of maximum degree, the number of pairs of

adjacent half-edges increases by an unusually large amount. The next result

enables us to show that the probability of this happening is extremely small.

Let ∆(G) denote the maximum degree of G. The following is a very slight

reformulation of what Móri proves in [62, Theorem 3.1].

Theorem 2.17. For any positive integer k, there exists M̃k ∈ R, such that

for all n,

E

[

(

∆(Gn
1,β) + β

n1/(2+β)

)k
]

≤ M̃k.

The following corollary is straightforward.

Corollary 2.18. For any positive integers k, m, there exists Mk,m ∈ R such

that for all positive integers i1, . . . , ik,

E

[

∆(Hmi1)

(mi1)1/(2+β)
· · · ∆(Hmik)

(mik)1/(2+β)

]

≤ Mk,m.

Proof. Since ∆(Hmi1), . . . , ∆(Hmik) are all positive we have

∆(Hmi1)

(mi1)1/(2+β)
· · · ∆(Hmik)

(mik)1/(2+β)
≤

k
∑

j=1

(

∆(Hmij)

(mij)1/(2+β)

)k

and so

E

[

∆(Hmi1)

(mi1)1/(2+β)
· · · ∆(Hmik)

(mik)1/(2+β)

]

≤
k
∑

j=1

E

[

(

∆(Hmij)

(mij)1/(2+β)

)k
]

.

Recall that Hmi is formed by merging together blocks of m consecutive ver-

tices in an instance of Gmi
1,β. So we have E

[

(∆(Hmi))
k
]

≤ E
[

(m∆(Gmi
1,β))k

]

.

Hence

k
∑

j=1

E

[

(

∆(Hmij)

(mij)1/(2+β)

)k
]

≤ mk

k
∑

j=1

E





(

∆(G
mij
1,β)

(mij)1/(2+β)

)k


 ≤ kmkM̃k.

The result follows by taking Mk,m = kmkM̃k.

33

Before we can state the large deviation result that we use, we need some

more definitions. Recall that fi is a random variable which determines the

index of the parent vertex of vi and that the values taken by f2, f3, . . . , ft

together determine Ht. Furthermore the set of values that fi can take is

denoted by Ωi and f2, . . . , ft are independent. Let Ω =
∏t

i=2 Ωi.

Let X = (f2, . . . , ft). We let Ht(X) be the instance of Ht determined by

the random variables f2, . . . , ft. We will also use this notation both for other

random variables associated with Ht and when some or all of the fi’s are set

to a particular value. The meaning should be clear from the context but we

will generally use ωi for a member of Ωi and fi for a random variable taking

values in Ωi.

Let D(X) =
∑

v∈V (Ht(X))

(

dt(v)
2

)

and let F (X) = D(X)t−2/(2+β). Now let

g :
∏s

i=2 Ωi → R such that

(ω2, . . . , ωs) 7→ E [F (ω2, . . . , ωs, fs+1, . . . , ft)]

and let ran :
∏s−1

i=2 Ωi → R such that

(ω2, . . . , ωs−1) 7→ sup {|g(ω2, . . . , ωs−1, x) − g(ω2, . . . , ωs−1, y)| : x, y ∈ Ωs}.

So ran(ω2, . . . , ωs−1) measures the maximum amount that the expected value

of F (X) changes when the value of fs is changed.

For ω ∈ Ω, let

R2(ω) =

t
∑

k=2

ran(ω2, . . . , ωk−1)
2.

Our aim is to bound R2(ω) as ω runs over all members of Ω with the possible

exception of those belonging to some ‘bad’ subset B which we hope to have

small probability. We specify B below but for the moment let B be any

subset of Ω. Let

r2 = sup{R2(ω) : ω ∈ Ω \ B}.

34

Then Theorem 3.7 in [60] yields the following inequality. For all x > 0,

Pr(|F (X) −E [F (X)] | ≥ x) ≤ 2(e−2x2/r2

+ Pr(X ∈ B)).

Fix δ > 0. We let

Bδ =

{

X ∈ Ω :
n
∑

i=1

(

∆(Hmi(X))

(mi)2/(2+β)

)2

≥ n
β

2+β
+δ

}

.

Then we have the following.

Lemma 2.19. For any δ > 0 and γ > 0, there exists L such that Pr(Bδ) ≤
L 1

nγ , where L is a constant depending on δ, γ, β, m but not on n.

Proof. For any positive integer k, Markov’s inequality gives

Pr(Bδ) ≤
E

[

(

∑n
i=1

(

∆(Hmi(X))

(mi)2/(2+β)

)2
)k
]

n
βk

2+β
+kδ

.

The numerator of this fraction is equal to

E

[

n
∑

i1=1

· · ·
n
∑

ik=1

(

∆(Hmi1(X))

(mi1)1/(2+β)

)2

· · ·
(

∆(Hmik(X))

(mik)1/(2+β)

)2
1

(mki1 · · · ik)2/(2+β)

]

.

Using Corollary 2.18 this is at most

M2k,m

n
∑

i1=1

· · ·
n
∑

ik=1

(

1

(mki1 · · · ik)2/(2+β)

)

= M2k,m

(

n
∑

i=1

1

(mi)
2

2+β

)k

≤ M2k,m

(

2 + β

β

n
β

2+β

m
2

2+β

)k

.

Hence

Pr(Bδ) ≤
M2k,m

(

2+β
β

1

m
2

2+β

)k

nkδ

and so letting k = ⌈γ/δ⌉ gives the result.

35

We can now state the main result of this section concerning the concen-

tration of the number of pairs of adjacent half-edges around its expectation.

Theorem 2.20. Let β > 0. For any ǫ > 0, the number D of pairs of adjacent

half-edges in Gn
m,β is concentrated within O(n(4+β)/(4+2β)+ǫ) about its expected

value. More precisely, for any ǫ > 0 and γ > 0 there exists n∗ such that for

all n ≥ n∗

Pr
(

|D −E [D] | ≥ n
4+β
4+2β

+ǫ
)

≤ 1

nγ
.

Proof. Let t = nm, and fix s ≤ t. Let s′ = m⌈s/m⌉, so we have s′ ≤ t. Now

let

ωx = (ω2, . . . , ωs−1, x, ωs+1, . . . , ωt) and ωy = (ω2, . . . , ωs−1, y, ωs+1, . . . , ωt),

where ωi ∈ Ωi and x, y ∈ Ωs. For z ∈ {x, y}, let dz
t (v) denote the total degree

of v at time t in Ht(ωz) and let e denote the edge added at time s. Suppose

that in Ht(ωx) the parent vertex of e is vk1 and in Ht(ωy) the parent vertex

of e is vk2. Note that at any time, for every vertex v other than vk1 or vk2,

the degree of v is the same in Ht(ωx) and Ht(ωy). Therefore F (ωx)−F (ωy)

depends only on the degrees of vk1 and vk2 and is given by

F (ωx) − F (ωy)

= t−2/(2+β)

((

dx
t (vk1)

2

)

+

(

dx
t (vk2)

2

)

−
(

dy
t (vk1)

2

)

−
(

dy
t (vk2)

2

))

.

(2.21)

From now on we will assume that k1 6= k2, because otherwise F (ωx) −
F (ωy) = 0. Consider the changes that occur to Hs′ if we replace ωy by ωx.

First the head of e is moved from vk2 to vk1 . Second it is possible that each

of the at most m− 1 edges that are added in the time interval [s + 1, s′] also

have an endpoint moved from vk2 to vk1: this will happen if the parent vertex

of an edge added in the interval [s + 1, s′] is chosen by preferentially copying

the head of an edge which has been moved from vk2 to vk1 , in particular if the

parent vertex is chosen by preferentially copying the head of e. Consequently

we have

dy
s′(vk1) + 1 ≤ dx

s′(vk1) ≤ dy
s′(vk1) + m

36

and furthermore

dx
s′(vk1) + dx

s′(vk2) = dy
s′(vk1) + dy

s′(vk2).

Let d = dx
s′(vk1)−dy

s′(vk1), d1 = dy
s′(vk1) and d2 = dx

s′(vk2). Note that both d1

and d2 and consequently also |d1−d2| are at most ∆(Hs−1(ω2, . . . , ωs−1))+m.

Now let A0, A1, . . . , Ad1 , (B0, B1, . . . , Bd2) denote the blocks of the parti-

tion Πk1,s′(t) in Ht(ωy) (Πk2,s′(t) in Ht(ωx)) with A0 (B0) denoting the base

block. The partition Πk1,s′(t) in Ht(ωx) contains the blocks A0, . . . , Ad1 but

also d further blocks which we label C1, . . . , Cd. Then the partition Πk2,s′(t)

in Ht(ωy) contains the blocks B0, . . . , Bd2 , C1, . . . , Cd. So using (2.21), we

have

F (ωx) − F (ωy) = t−2/(2+β)

(

d1
∑

i=0

d
∑

j=1

|Ai||Cj| −
d2
∑

i=0

d
∑

j=1

|Bi||Cj|
)

. (2.22)

Now let

ωx = (ω2, . . . , ωs−1, x, ωs+1, . . . , ωs′, fs′+1, . . . , ft)

and

ωy = (ω2, . . . , ωs−1, y, ωs+1, . . . , ωs′, fs′+1, . . . , ft).

So both Ht(ωx) and Ht(ωy) evolve deterministically until time s′ but ran-

domly thereafter.

Recall that d ≤ m and that |d1−d2| is at most ∆(Hs−1(ω2, . . . , ωs−1))+m.

Hence from (2.22), Lemma 2.15 and the remarks immediately preceding the

lemma, we see that

|E [F (ωx) − F (ωy)] | ≤ (∆(Hs−1(ω2, . . . , ωs−1))+m)m(1/s′)2/(2+β)(1+O(1/s′)).

Notice that this expression does not depend on x or y and holds for all

37

ωs+1, . . . , ωs′. Consequently

ran(ω2, . . . , ωs−1) ≤ (∆(Hs−1(ω2, . . . , ωs−1))+m)m(1/s′)2/(2+β)(1+O(1/s′)).

Now let ω ∈ Ω \ Bδ. Then

R2(ω) =
nm
∑

s=2

(∆(Hs−1(ω2, . . . , ωs−1)) + m)2m2(1/s′)4/(2+β)(1 + O(1/s′))

≤ m2
nm
∑

s=2

(

2∆(Hs′(ω2, . . . , ωs′))

s′2/2+β

)2

(1 + O(1/s′))

≤ 4m3

n
∑

i=1

(

∆(Hmi(ω2, . . . , ωmi))

(mi)2/2+β

)2

(1 + O(1/i′))

≤ cn
β

2+β
+δ,

where c is a constant.

Hence

Pr
(

|D(X) −E [D(X)] | ≥ n
4+β
4+2β

+ǫ
)

= Pr
(

|F (X) −E [F (X)] | ≥ n
β

4+2β
+ǫ
)

≤ 2 exp

(

−2n
β

2+β
+2ǫ

cn
β

2+β
+δ

)

+ 2 Pr(Bδ).

If we choose δ = ǫ then the first term is at most 1
2nγ for any γ > 0 and

sufficiently large n. Applying Lemma 2.19 with any γ∗ > γ we see that for

sufficiently large n we also have 2 Pr(Bδ) ≤ 1
2nγ . Hence the result follows.

2.6 Expected clustering coefficient

In this section we finally state and prove our main result.

Theorem 2.23. For any β > 0, the expected clustering coefficient of Gn
m,β

is given by

E[C(Gn
m,β)] =

3c1 log n

c2n
+ O(1/n),

where

c1 = m(m − 1)
(1 + β)2

β2
+ m(m − 1)2 (1 + β)3

β2(2 + β)

38

and

c2 =
2 + 5β

2β
m2 +

2 − β

2β
m.

Proof. Recall that N = N(Gn
m,β), D = D(Gn

m,β) denote respectively the

number of triangles and pair of adjacent half-edges in Gn
m,β. The expected

clustering coefficient is given by E
[

C(Gn
m,β)

]

= E [3N/D].

Choose ǫ so that 0 < ǫ < β
4+2β

and let η = ǫ+ 4+β
4+2β

< 1. Let I denote the

interval [E [D]−nη,E [D]+nη]. From Proposition 2.14 we have E [D]−nη =

c2n − (1 + o(1))nη and E [D] + nη = c2n + (1 + o(1))nη. Let n ≥ n∗, the

minimum value of n such that Theorem 2.20 may be applied with γ = 4.

Since C(Gn
m,β) ≤ m, an upper bound for E

[

C(Gn
m,β)

]

may be obtained as

follows.

E
[

C(Gn
m,β)

]

≤
∞
∑

j=1

∑

i∈I

3j

i
Pr(N = j, D = i) + m Pr(D 6∈ I)

≤
∞
∑

j=1

3j

c2n − (1 + o(1))nη
Pr(N = j) + m Pr(D 6∈ I).

Applying Theorem 2.20 with γ = 1 and then Proposition 2.13, we obtain

E
[

C(Gn
m,β)

]

≤
∞
∑

j=1

3j

c2n − (1 + o(1))nη
Pr(N = j) +

m

n

=
3c1 log n

c2n
(1 + (1/c2 + o(1))nη−1) +

m

n

=
3c1 log n

c2n
+ O(1/n).

39

A lower bound for E
[

C(Gn
m,β)

]

may be obtained as follows.

E
[

C(Gn
m,β)

]

≥
∞
∑

j=1

∑

i∈I

3j

i
Pr(N = j, D = i)

≥
∞
∑

j=1

∑

i∈I

3j

c2n + (1 + o(1))nη
Pr(N = j, D = i)

=
3E [N]

c2n + (1 + o(1))nη

−
∞
∑

j=1

∑

i6∈I

3j

c2n + (1 + o(1))nη
Pr(N = j, D = i).

Now since there are at most n3m3 triangles in Gn
m,β

∞
∑

j=1

∑

i6∈I

3j

c2n + (1 + o(1))nη
Pr(N = j, D = i) ≤ 3n3m3

c2n + (1 + o(1))nη
Pr(D 6∈ I).

Applying Theorem 2.20 with γ = 4 shows that this is O (1/n). Finally

3E [N]

c2n + (1 + o(1))nη
=

3c1 log n

c2n
(1 − (1/c2 + o(1))nη−1) =

3c1 log n

c2n
+ O(1/n).

2.7 Conclusion

Our main result shows that for β > 0 the expectation of the clustering

coefficient of the Móri graph is asymptotically proportional to log n/n and

consequently that the Móri graphs do not have the small-worlds property.

Bollobás and Riordan showed for an almost identical model that when β = 0,

the expectation of the clustering coefficient is asymptotically proportional to

(log n)2/n. An unexpected consequence, for which we do not yet have a good

explanation, is that the clustering coefficient has a discontinuity at β = 0. It

is an open question whether the method for the calculation of the clustering

coefficient can be extended to the Cooper-Frieze model which we discuss in

the next chapter.

40

Chapter 3

Non-Searchability of Random

Power-Law Graphs

3.1 Introduction

This chapter is joint work with Philippe Duchon, Nicolas Hanusse, both at

the LaBRI of the Université Bordeaux, and Steven Noble, Brunel Univer-

sity. A preliminary version of this chapter appeared as a brief announcement

in [25] and is published in [26]. In this chapter, we investigate the efficiency

of local search algorithms for some of the networks discussed in the previous

chapter. We are interested in seeking a vertex of a given identity starting from

any vertex. The time complexity of searching is expressed as the number of

vertices explored before reaching the target or a neighbour of the target. For

an arbitrary graph and a worst-case choice of vertices, time complexity can

be of the same order as the size of the graph itself. However, there is some

hope that for large classes of graphs, the size of the exploration sequence

would drastically decrease.

A local distributed algorithm is one which falls within the following frame-

work. Each vertex knows the identities of all vertices and/or edges up to a

fixed distance away. A search request contains the identities of the initial

vertex, target vertex and possibly information about vertices previously en-

countered in the search and their neighbourhoods. When a search request

arrives at a vertex v, the choice of the next vertex to explore must be based

41

on the information known to v. Normally the next vertex chosen by v must

be one of its neighbours, although our results do not require this. The pro-

cess stops as soon as the target is reached. This notion is similar to the

decentralised algorithm of [42].

In the seminal paper [43], Kleinberg studies a local distributed search

algorithm on a graph built from a 2D-grid augmented by one random extra

edge per vertex. Kleinberg gives some condition on the design of the random

extra edges to obtain graphs in which the expected number of search requests

of this local distributed search algorithm is O(log2 n) and proves that many

augmentation processes yield graphs for which the expected number of search

requests is Ω(n1/3). In both cases the expectation is over both the choice of

random edges and the initial and target vertices.

We show that for random graphs built in different scale-free models, the

expected number of requests made by any local distributed search algorithm

for the worst case choice of target vertex is Ω(nc) for explicit constants c.

Our results apply to very general searching strategies.

For an arbitrary graph (for instance, a path), the time complexity of

searching is clearly linear. Due to the common properties of scale-free graphs

(low diameter and existence of large degree vertices), one might hope that the

time complexity could be very small, sublinear and possibly polylogarithmic.

Such a claim can be found in different studies dealing with search strate-

gies in scale-free networks (see [1, 41, 75]). In these papers, the authors

start from different random graph models whose degree distributions follow

power-laws and provide heuristics to reach a target vertex. Simulations and

non-rigorous mean-field analysis are used to claim that on average, the target

can be reached in O(nc) steps, for a constant c < 1, using simple greedy al-

gorithms. As an input, Adamic et al. [1] takes random graphs in the random

power-law model whose exponent ℓ is strictly between 2 and 3. They propose

two strategies: a pure random walk and a search process based on high de-

gree vertices. The last distributed algorithm works as follows: at each step,

the next visited vertex is the highest degree neighbour of the set of visited

vertices. Using a mean-field analysis of this greedy algorithm, the authors

prove that the target is reached on average in O(n2(1−2/ℓ)) steps whereas for

42

a pure random walk, the time complexity becomes O(n3(1−2/ℓ)) steps. The

article also provides simulations on random graphs and sampling confirming

the tendency of the theoretical analysis. However, this article lacks a well-

defined random graph model, which means that comparison with our work

is difficult. Furthermore their searching model provides information about

vertex degrees that is not available in our models.

In [41], the authors deal with a search process based on high degree

vertices similar to that in [1], using the BA model for the underlying topology.

The article contains simulations indicating that after visiting a sublinear,

though polynomial, number of vertices, a path of logarithmic length can be

found between the source and target vertices. Note that all of these articles

deal with the average time complexity on all pairs of sources and targets.

To our knowledge, it is still an open problem whether the searching time in

these scale-free graphs can be of polylogarithmic order.

In this chapter, we answer this question negatively for two specific families

of random scale-free graphs based upon preferential attachment processes,

namely the Móri model [61, 62] and the Cooper-Frieze model [20].

In our setup we assume that each vertex knows its own identity and its

degree and we study two models of local knowledge: each vertex either knows

the labels of its neighbours (strong model) or it does not (weak model). The

first model is the more realistic; the second model is mostly a technical tool

to prove lower bounds, which are then extended to the strong model using

known results on the maximum degree.

In both families, we prove polynomial lower bounds on the expected num-

ber of vertices that any local distributed algorithm visits before reaching the

target in the weak model, for a worst-case choice of target vertex. For the

Móri graph and the weak model, when the target is chosen uniformly at ran-

dom, we can also prove a polynomial lower bound for the expected searching

time, where the expectation is now taken over choice of target vertex. Fur-

thermore we also establish a polynomial lower bound for the expected search-

ing time for the worst case choice of target in the Móri graph operating under

the strong model.

Our results are summarised in Table 3.1. In the random Móri tree for

43

Scale-free models Knowledge model Lower Bounds

Cooper-Frieze Weak Ω(n1/2)

m-out Móri Weak Ω(n1/2) if β > −1

m-out Móri Strong Ω(n
β

4+2β
−ǫ

) if β > 0, ǫ > 0
1-out Móri Strong Θ(n) if β ≥ 0

Table 3.1: Lower bounds on expected search time.

m = 1 we have been able to prove a significantly higher Ω(n) lower bound

on the complexity of finding vertex vn when starting from v1 in the strong

model.

3.2 Modelling the searching process

Recall that we consider two models of local knowledge, which differ in the

information gained when a vertex is visited for the first time.

At each time step, the searching process can try to discover a new vertex

by making a request. Finally the process outputs the description of a path

from the starting vertex to the target vertex and then stops; our measure

of its performance is the number of requests it made prior to stopping. We

will always assume that the starting vertex and the vertex to be found are

different and are defined a priori that means before the searching process

starts.

• In the weak model, we start by knowing at time 1 the identity of the

starting vertex and the identities of its incident edges. At all further

time steps a request is in the form of a pair (u, e), where u is an already

discovered vertex, and e is an edge incident with u. The answer to the

request is the identity v of the other endpoint of edge e, together with

the list of all edges incident with v.

• In the strong model, we start by knowing at time 1 the identity of the

starting vertex and its neighbouring vertices. At each further time step

a request is in the form of a vertex u that is adjacent to an already

44

discovered vertex, and the answer consists of the list of vertices adjacent

to u.

Let A denote some searching strategy in the weak model, that is, A defines,

for each size n, starting vertex u and target vertex v, and each finite sequence

of searching requests and possible answers to these requests, the next request

that the searching process should make (or, if the searching process is itself

randomised, a probability distribution for the next request). For each possi-

ble realisation G of the random graph, A thus defines a (finite or infinite)

sequence A(G) of requests and answers. Thus, on the probability space Ω for

the random graph, it defines a stochastic searching process (Rt, At)t≥2 (here

Rt is the request at time t, and At is the answer to it).

Our lower bound proofs rely on the weak model, results on the more

realistic strong model come from known upper bounds on the degrees of the

graphs studied.

Note that we do not impose restrictions on the sequence of requests. If

modelling a search by a mobile agent, one would require at least that each

request is about a vertex adjacent to the previous one, even if it meant

re-issuing a previous request, so as to model the movement from one known

vertex to another. We are also not making any assumptions on the computing

power or memory requirements of the searching process. Since we are working

on lower bounds, our results are valid under more restrictive assumptions.

3.3 Vertex equivalence

Our proofs of lower bounds are based on a probabilistic notion of vertex

equivalence. Intuitively, vertices are equivalent if their identities can be ex-

changed without modifying the probability distribution on graphs. In this

section, we make this notion precise, and show how it can be used to prove

lower bounds on the complexity of searching processes.

Definition 3.1. Let G be some graph on the vertex set V , U ⊂ V , and

σ ∈ SU some permutation of U . We write σ(G) for the graph on the same

vertex set that is obtained by applying permutation σ to the vertices in U .

45

Definition 3.2. Let G be some random graph model on the vertex set V ,

and U ⊂ V , that is, we assume that a probability space Ω is given, where

a graph-valued random variable is defined with the appropriate probability

distribution.

We say that the vertices in U are (probabilistically) equivalent if, for

any σ ∈ SU , the random graphs G and σ(G) have the same probability

distribution.

If E is some event, we say that the vertices in U are equivalent conditioned

on E if, for all σ ∈ SU , G and σ(G) have the same probability distribution,

conditioned on E .

We do not require E to be G-measurable, that is, when looking at a pos-

sible realisation G of the graph, or even at a possible realisation of the graph

process G1, . . . , Gt, it might not be possible to decide whether E occurred.

We only have to find, in a suitable (faithful) model for the construction of our

random graph, an event E (which will be measurable with respect to the con-

struction process) with a large enough probability such that our equivalence

property holds conditioned on E .

The following lemma will be useful for the Cooper-Frieze model.

Lemma 3.3. If (Ei)i∈I is some (finite or countable) collection of pairwise

disjoint events such that the vertices in U are equivalent conditioned on each

event Ei, then they are also equivalent conditioned on E = ∪i∈IEi.

Proof. For any σ ∈ SU and i ∈ I, we have

Pr(G = g, Ei) = Pr(Ei) Pr(G = g|Ei)

= Pr(Ei) Pr(σ(G) = g|Ei) = Pr(σ(G) = g, Ei).

Summing over all i, and dividing by Pr(E), we get

Pr(G = g|E) = Pr(σ(G) = g|E).

The following lemma is the key to our lower bounds.

46

Lemma 3.4. If a set U of vertices is equivalent conditioned on some event E ,

then any search process operating in the weak model, starting from any vertex

u and searching for any vertex v ∈ U (v 6= u), has an expected complexity of

at least |U |Pr(E)/2.

Proof. The whole proof is a formalisation of the intuitively obvious fact that,

conditioned on E , the vertices in U are visited by the searching process in

a uniform random order until the target is found, which implies that, in

expectation, half of the vertices in U are visited before the target.

We are concerned with the length of this process, that is, the first index

t for which the target vertex v is specified in At. If this length is not finite

with probability 1, then its expectation is infinite and the lemma holds. Thus,

in the rest of this proof, we assume that, with probability 1, the searching

process does visit its target at some point.

For any w ∈ U\{v, u} let Ew be the event that vertex w is found before

v during the search and let Iw be the indicator of the event Ew. Conditional

on E , at any stage during the search before either w or v has been found

the probability that the endpoint of a requested edge is v is the same as the

probability that it is w. So Pr(Ew|E) = 1/2. Let S be the number of requests

needed to find the target vertex v. Then we obtain the following for the

expected value of S.

E [S] ≥ 1 +
∑

w∈U\{u,v}
E [Iw]

= 1 +
∑

w∈U\{u,v}
Pr(Ew)

≥



1 +
∑

w∈U\{u,v}
Pr(Ew|E)



Pr(E)

≥
(

1 +
|U | − 2

2

)

Pr(E). (3.5)

47

3.4 Lower bound on the searching time for

the Móri graph

3.4.1 The Móri model for β > −1

In this section, we deviate slightly from the description of the Móri model [62]

as given in Section 2.2. Throughout this section we define the random graph

process (Gn
m,β) exactly as in Section 2.2 except that we impose the weaker

condition that β > −1 (as in [62]) and we define the random variables fi

for 2 ≤ i ≤ n as denoting the index of the out-neighbour of vi and taking

probabilities as given by (2.3).

3.4.2 Conditional equivalence in the Móri tree

Definition 3.6. For integers a, b, M with a < b let Ea,b,M be the event that

the random graph Gn
1,β has maximum degree at most M and fk ≤ a for

a + 1 ≤ k ≤ b. Let Ea,b be the event that fk ≤ a for a + 1 ≤ k ≤ b.

Lemma 3.7. Let β > −1 and a, b, M be integers with a < b. Suppose that

Ea,b,M has positive probability. In Gn
1,β, the vertex set U = {va+1, . . . , vb} is

equivalent conditioned on the event Ea,b,M and also equivalent conditioned on

Ea,b.

Proof. Let gc be a possible realisation of Gc
1,β. For any c, the probability of

{Gc
1,β = gc} can be expressed as a product:

Pr(Gc
1,β = gc) =

∏

3≤k≤c

Pr(fk = Nk|Gk−1
1,β = gk−1),

where Nk is the index of the out-neighbour of vk in gc. So

Pr(Gc
1,β = gc) =

∏

3≤k≤c

dk−1(vNk
) + β

2(k − 2) + (k − 1)β
. (3.8)

We can rewrite the numerator in expression (3.8), grouping together fac-

48

tors for times where each vertex has its indegree increase:

Pr(Gc
1,β = gc) =

∏

1≤k≤c

∏

1≤j<dk
(j + β)

(2 + β)c−2 Γ(c−1+β/(2+β))
Γ(1+β/(2+β))

. (3.9)

The interesting fact about (3.9) is that the expression only depends on

the degree sequence of gc. Thus, if σ is some permutation of the vertices, we

have

Pr(Gn
1,β = gn) = Pr(Gn

1,β = σ(gn)),

provided both probabilities are nonzero, that is provided the graphs gn and

σ(gn) only have edges going from vertices to lower-numbered vertices. This

depends on σ: the condition is that any vertices that are joined by an edge

in gn, do not have their relative order exchanged by σ.

Similarly we have for E = Ea,b or E = Ea,b,M

Pr(Gn
1,β = gn|E) ∝

∏

1≤k≤c

∏

1≤j<dk
(j + β)

(2 + β)c−2 Γ(c−1+β/(2+β))
Γ(1+β/(2+β))

or

Pr(Gn
1,β = gn|E) = 0

and so again

Pr(Gn
1,β =gn|E) = Pr(Gn

1,β = σ(gn)|E)

providing both probabilities are non-zero, that is provided the graphs gn

and σ(gn) only have edges from higher to lower numbered vertices and if

E = Ea,b,M in addition the maximum degree is at most M . Any permutation

σ on {va+1, . . . , vb} fulfils this condition.

We are now ready to prove our main result on this model. All we need to

prove is that, for suitable choices of a and b, |U | and Pr(Ea,b) are both large

enough.

49

Lemma 3.10. Let b = a + ⌊(a − 1)1/2⌋. Then Pr(Ea,b) ≥ e−(1+β).

Proof. Conditioned on fa+j ≤ a for 1 ≤ j ≤ k, the probability that fa+k+1 is

larger than a is exactly k(1+β)
2(a+k−1)+(a+k)β

(there are exactly k vertices that are

“bad” candidates, each with degree 1 and therefore a probability of being

chosen equal to (1 + β)/(2(a + k − 1) + (a + k)β)). Taking the product over

values of k from 0 to b − a − 1, we get

Pr(Ea,b) =
b−a−1
∏

k=0

(

1 − k(1 + β)

2(a + k − 1) + (a + k)β

)

≥ exp

(

−2(1 + β)

a − 1

b−a−1
∑

k=0

k

)

≥ exp

(

−(1 + β)(b − a)2

a − 1

)

,

where the second line uses the fact that 1 − x ≥ exp(−2x) for 0 ≤ x ≤ 1/2.

Plugging (b − a)2 ≤ a − 1 into the last inequality gives us the required

lower bound

Pr(Ea,b) ≥ e−(1+β).

3.4.3 Lower bound on searching time

We are now able to prove our main result on the searching time in the Móri

graph.

Theorem 3.11. Let N ≥ n. For β > −1 and any m ≥ 1, in the Móri graph

GN
m,β, no searching algorithm operating in the weak model can find a path to

vertex vn with an expected number of requests less than Ω(n1/2).

For β > 0, m ≥ 1, λ ≥ 1 in the Móri graph G
⌈λn⌉
m,β , no searching algorithm

operating in the strong model can find a path to vertex vn with an expected

number of requests less than Ω(n
β

2β+4
−ǫ), for any ǫ > 0.

Proof. Combining Lemmas 3.7 and 3.10, we see that providing n is at least

some very small constant, in Gt
1,β for t ≥ n the vertices in {vn−⌊√n/2⌋+1, . . . , vn}

are equivalent conditioned on an event of probability bounded away from 0.

50

Suppose that t is a multiple of m. Going from Gt
1,β to G

t/m
m,β , we also get

the same equivalence result for vertices in {v⌊(n−√n/2)/m⌋+1, . . . , v⌊n/m⌋} con-

ditioned on the same event. (Permuting the vertices in G
t/m
m,β corresponds to

only permuting the vertices in Gt
1,β in such a way as to keep together blocks

of m consecutive vertices.) Lemma 3.4 then concludes the proof for the weak

model.

We now turn to the proof of the strong model. Given any strong searching

strategy A, which starts at vertex v and searches for vertex u, we can define

a weak searching strategy B which visits exactly the same vertices. At time

t = 1 strategy B knows vertex v and its neighbouring edges. In the next

time steps B requests all these neighbouring edges in an arbitrary order. So

at time t = 1 + d(v) it knows all neighbouring vertices of v. Suppose that

with a certain probability at time t = 2 strategy A chooses neighbour x of

v. Then with the same probability strategy B requests the not yet requested

neighbouring edges of vertex x each in one time step from time t = 2 + d(v)

until all these edges are requested. In the following time steps strategy B
requests the not yet requested neighbouring edges of the vertex which is

chosen by strategy A at time 3 and so on.

So if strategy A needs in expectation time t∗ to explore vertex v in a

graph G then strategy B needs in expectation at most ∆(G) · t∗ time steps

to explore the target v, where ∆(G) is the maximum degree of G.

We now turn to the Móri tree G
⌈λn⌉
1,β and show first that E

n−⌊√n/2⌋,n,(λn)
1

2+β
+ǫ

has positive probability if the tree is sufficiently large. We have

Pr

(

E
n−⌊√n/2⌋,n,(λn)

1
2+β

+ǫ

)

= Pr
(

{∆(G
⌈λn⌉
1,β) ≤ (λn)

1
2+β

+ǫ} ∩ En−⌊√n/2⌋,n

)

≥Pr
(

En−⌊√n/2⌋,n
)

− Pr
(

{∆(G
⌈λn⌉
1,β) > (λn)

1
2+β

+ǫ}
)

.

From Móri’s result on the maximum degree ∆(Gt
1,β) of the Móri graph

Gt
1,β [62] as stated in Theorem 2.17, we can deduce that for ǫ > 0,

lim
n→∞

Pr
(

∆(Gn
1,β) ≥ n

1
2+β

+ǫ
)

= 0.

51

So by Lemma 3.10 for any δ > 0 there is an n′ so that for any n > n′

Pr

(

E
n−⌊√n/2⌋,n,(λn)

1
2+β

+ǫ

)

≥ e−(1+β) − δ.

So if we let M = (λn)
1

2+β
+ǫ then

Pr(En−⌊√n/2⌋,n,M) ≥ e−(1+β) + o(1).

Let Ss be the number of requests needed by a strategy A operating in the

strong model to find the target and let Sw denote the number of request

given by the corresponding strategy B (defined above) operating in the weak

model to find the target. We now establish the result for the strong model

in the case when m = 1.

Conditional on En−⌊√n/2⌋,n,M , the maximum degree in the Móri tree G
⌈λn⌉
1,β

is at most M and by Lemma 3.7 the vertices {vn−⌊√n/2⌋+1, . . . , vn} are equiv-

alent. Hence

E [Ss] ≥ E
[

Ss|En−⌊√n/2⌋,n,M

]

Pr(En−⌊√n/2⌋,n,M)

≥ E
[

Sw|En−⌊√n/2⌋,n,M

]

M
Pr(En−⌊√n/2⌋,n,M)

≥ ⌊
√

n/2⌋ − 1

2M
(e−(1+β) + o(1))

= Ω(n
β

4+2β
−ǫ),

where we use the proof of Lemma 3.4 (a slight variation of inequality (3.5))

in the third inequality.

In G
⌈λn⌉m
1,β conditioned on

E
m(n−⌊√n/2⌋),mn,(λnm)

1
2+β

+ǫ,

the vertices vm(n−⌊√n/2⌋)+1, . . . , vmn are equivalent. So we see that conditioned

on the same event, the vertices vn−⌊√n/2⌋+1, . . . , vn are equivalent in G
⌈λn⌉
m,β ,

and the result follows for all m.

52

Remark 1. Note that our result, at least for the basic BA model which

corresponds to β = 0 in the Móri model may appear to be a consequence of

Cooper et al.’s result [21] that the dominating number of the BA graph of size

n is Ω(n), but it is not clear how one could rigorously argue that searching for

the worst-case target requires (with positive probability) visiting a positive

proportion of a dominating set. The search algorithm is provided with some

information in the form of vertex labels indicating their age.

3.4.4 Average searching time in the weak model

Suppose the initial vertex vi and the target vertex vj are chosen uniformly

at random. Then we obtain the expected number of requests needed to find

the target vertex in Gn
m,β in the weak model as follows. We let J denote the

index of the target vertex and let S denote the number of requests needed to

find the target vertex. By Theorem 3.11 we have E [S|J = j] = Ω(
√

j) for

any vertex j ≤ n in Gn
m,β. Hence

E [S] =
∑

1 ≤ j ≤ n

E [S|J = j] Pr(J = j)

=
1

n

n
∑

j=1

Ω(
√

j) = Ω(
√

n).

Thus the expected searching time to find the target vertex if initial and target

vertex are chosen uniformly is Ω(
√

n).

3.5 Lower bound on searching time for the

Cooper-Frieze model

3.5.1 The Cooper-Frieze model

The Cooper-Frieze [20] model is a very general model of random evolving

graphs, which is defined by several real parameters α, β, γ, δ and two dis-

crete probability distributions p, q. We first simply give a short informal

53

description of the evolution rules: at each time step, one randomly chooses

whether to apply procedure New (with probability 1−α) or procedure Old

(with probability α). Procedure New will add a new vertex v and a random

number (governed by distribution p) of edges oriented away from v, while

procedure Old will add a random number (governed by distribution q) of

new edges from one randomly selected existing vertex to other existing ver-

tices. Parameters β, γ and δ control probabilities that additional choices

of vertices and endpoints are made preferentially or uniformly. We use the

same model and notation as in [20].

The graph process Gt starts at time t = 0 with a single vertex 0. There-

after the behaviour is governed by the parameters α, β, γ, δ,p,q whose mean-

ing is given below:

Choice of procedure at step t.

α: Probability that an OLD vertex generates edges.

1 − α: Probability that a NEW vertex is created.

Procedure NEW

p = (pi : i ≥ 1): Probability that the new vertex generates i new edges.

β: Probability that terminal vertices are selected uniformly from Gt−1.

1 − β: Probability that terminal vertices are selected from Gt−1 with proba-

bility proportional to vertex degree.

Procedure OLD

q = (qi : i ≥ 1): Probability that the old vertex generates i new edges.

δ: Probability that the initial vertex is selected uniformly from Gt−1.

1 − δ: Probability that the initial vertex is selected from Gt−1 with proba-

bility proportional to vertex degree.

γ: Probability that terminal vertices are selected uniformly from Gt−1.

1 − γ: Probability that terminal vertices are selected from Gt−1 with proba-

bility proportional to vertex degree.

54

An exception to this is that at time t = 1 the endpoints of edges are

always chosen uniformly. Cooper and Frieze assumed α < 1, and that there

are j0, j1 such that pj = 0 if j > j0 and qj = 0 if j > j1.

In [20] they showed that the proportion of vertices with a given degree in

the evolving graph obeys a power-law.

The proof of the lower bound on the searching time for this model in the

weak searching model relies on a conditional equivalence similar to Lemma 3.7.

Because the total number of edges when vertex n appears is not deterministic

in the Cooper-Frieze model, we do not get a nice product formula like (3.9),

which forces us to use a more complex setup. Another complication is that

the events which we use to prove conditional equivalence are not measurable

with respect to the natural filtration of the graph process; we have to describe

a suitable probability space for the construction of the Cooper-Frieze graph,

and describe the conditioning events in this probability space. Actually, we

will be describing this model for the so-called restricted process, which cor-

responds to conditioning with respect to the evolution of the numbers of

vertices and edges.

Still, the general idea of the proof is the same as in the Móri case: it

amounts to proving that a set of
√

n consecutive vertices are equivalent con-

ditional on an event of non-vanishing probability, because none of them has

been used in preferential or uniform attachment choices by the time the latest

of them appears.

3.5.2 A model for the construction of the Cooper-Frieze

graph

In the unrestricted process, the number ν(t) of vertices in the graph at time

t, and the number η(t)/2 of edges at time t, are both random.

Let A denote the event that, up to time t = t1, these functions coincide

with given functions νA(t) and ηA(t). For A to have positive probabilities, the

non-decreasing functions νA and ηA must satisfy some additional conditions,

namely, which ν(t)−ν(t−1) ∈ {0, 1} and (η(t)−η(t−1))/2 must belong to the

support of the probability distribution p or q, depending on ν(t)− ν(t− 1).

55

With A fixed, we denote by V (t) = VA(t) = νA(t) − νA(t − 1) the number

of new vertices appearing at time t, and E(t) = (ηA(t) − ηA(t − 1))/2 the

number of new edges appearing at time t. We call A a partial history up to

time t1, and note that A can equivalently be defined by the pair of functions

(V (t), E(t))t≤t1 or (ν, η).

Now, conditional on A, we can build a faithful model of the graph process

(Gt)1≤t≤t1 , by using the following collection of independent random variables

for each time t ≤ t1: Bt, Γt, ∆t, Ut, Pt, U ′k,t (1 ≤ k ≤ E(t)), and P ′k,t

(1 ≤ k ≤ E(t)). Bt, Γt, and ∆t are Bernoulli variables with respective

parameters β, δ and γ, Ut and U ′k,t are uniform on the set {1, . . . , ν(t − 1)},
and Pt and P ′k,t are uniform on the set {1, . . . , η(t− 1)}.

We define the endpoints of edges added at time t so that new edge number

k is between endpoints eη(t−1)+2k−1 and eη(t−1)+2k . The edges added at time

t are then defined as follows:

Vertex insertion If V (t) = 1 (procedure New), the E(t) edges are added

between the new vertex ν(t) and vertices chosen uniformly or prefer-

entially, depending on Bt:

• eη(t−1)+2k−1 = ν(t);

• eη(t−1)+2k = U ′k,t if Bt = 1, or eP ′
k,t

if Bt = 0.

Edge insertion If V (t) = 0 (procedure Old), the E(t) edges are added

between one old vertex (chosen uniformly or preferentially, depending

on Γt) and other vertices (chosen uniformly or preferentially, depending

on ∆t):

• eη(t−1)+2k−1 = Ut if Γt = 1, or ePt if Γt = 0;

• eη(t−1)+2k = U ′k,t if ∆t = 1, or eP ′
k,t

if ∆t = 0.

To obtain a model for the unrestricted process (up to time t1), one would

simply take the disjoint union of all restricted models (all choices of (νA, ηA)

for which A has positive probability), and select A with suitable probability,

as described earlier.

56

3.5.3 Vertex equivalence in the Cooper-Frieze model

We are now ready to prove a conditional equivalence for vertices in the

Cooper-Frieze model.

Definition 3.12. Let A = (νA, ηA) be some partial history up to time t1,

and σ some permutation of the integers {2, . . . , νA(t1)}.
We denote by Aσ the partial history (and event) determined by the suit-

ably permuted functions (V ′, E ′) defined by

• if V (t) = 0 (that is, at time t, no new vertex is added in A), then

V ′(t) = 0 and E ′(t) = E(t);

• if V (t) = 1 (the graph gets a new vertex at time t in A), then V ′(t) = 1

and E ′(t) = E(t′), where t′ is defined as the insertion time of vertex

σ−1(ν(t)) in A:

t′ = inf{τ : νA(τ) = σ−1(νA(t))}.

Note that, since Aσ, compared to A, only corresponds to a reordering of

the numbers of inserted edges at times at which vertices are added, we have

Pr(A) = Pr(Aσ).

We are now ready to prove our conditional equivalence result for the

Cooper-Frieze model.

Lemma 3.13. Let t0 < t1 be fixed times, and let A denote some partial

history up to time t1. Define the event

EA,t0,t1 = A ∩
⋂

t0<t≤t1

{Ut ≤ νA(t0), U
′
k,t ≤ νA(t0), Pt ≤ ηA(t0), P

′
k,t ≤ ηA(t0)}.

Then, for any permutation σ ∈ S{νA(t0)+1,...,νA(t1)}, and any graph g

Pr(Gt1 = g|EA,t0,t1) = Pr(Gt1 = σ(g)|EAσ,t0,t1).

Proof. Conditional on EA,t0,t1 , all Ut and U ′k,t variables (for t0 < t ≤ t1) are

uniform on {1, . . . , νA(t0)}, and all Pt and P ′k,t variables (for t0 < t ≤ t1) are

57

uniform on {1, . . . , ηA(t0)}. But since σ only exchanges times later than t0,

we have νAσ(t0) = νA(t0) and ηAσ(t0) = ηA(t0), so that the same holds for the

event EAσ,t0,t1 . Thus, from time t0 to t1, the two conditional graph processes

(which are equal at time t0) evolve by using identically distributed sequences

of random variables, which implies that they have the same distribution at

time t1.

Now consider the events

A′ =
⋃

σ∈S{νA(t0)+1,...,νA(t1)}

Aσ

E ′A,t0,t1
=

⋃

σ∈S{νA(t0)+1,...,νA(t1)}

EAσ ,t0,t1 .

Note that two A (respectively E) events appearing in the union are ei-

ther equal (if the action of permutations σ and σ′ on the sequence (VA(t),

EA(t))t0<t≤t1 coincide), or are disjoint. Thus, applying Lemma 3.13 and (the

proof of) Lemma 3.3 to each possible σ, we obtain the following result.

Lemma 3.14. Conditional on E ′A,t0,t1
, the vertices in {νA(t0)+1, . . . , νA(t1)}

are equivalent in Gt1.

Now we have some conditional equivalence, but the conditioning event

has very small probability. We will use Lemma 3.3 to extend it to an event

of much larger probability by taking a union over a large set of choices of A,

but first we will prove a lower bound on the probability of E ′A,t0,t1
conditional

on A′t0,t1.

Lemma 3.15.

Pr(E ′A,t0,t1
|A′) ≥

(

νA(t0)ηA(t0)

νA(t1)ηA(t1)

)t1−t0−(ν(t1)−ν(t0))+(ηA(t1)−ηA(t0))/2

Proof. We prove the inequality for EA,t0,t1 and A, and extend it by convexity

and disjoint unions.

To see that the inequality is true for Pr(EA,t0,t1 |A), note that we are condi-

tioning on a total of t1− t0− (ν(t1)−ν(t0)) variables of type Ut (respectively,

58

Pt) and (η(t1) − η(t0))/2 variables of type U ′k,t (respectively P ′k,t), each of

which is uniform on a set of size at most ν(t1) (respectively η(t1)), and is

conditioned to take a value in a set of size ν(t0) (respectively η(t0)). The

lower bound immediately follows.

3.5.4 Lower bound on searching time

We are now able to prove our main result on the searching time in the Cooper-

Frieze graph. One small issue with this model is that we do not know how

many vertices are present at each time. We assume that if a vertex that does

not exist is requested then the process returns this information immediately.

Theorem 3.16. In G⌊ 2n
1−α
⌋ with 0 < α < 1, no searching algorithm can find

a path to vertex n, using only local information in the weak model, with an

expected number of requests less than Ω(n1/2).

Proof. Let µp and vp be the mean and variance, respectively of the number

of edges generated by a new vertex and let µq and vq denote the mean and

variance, respectively, of the number of edges generated by an old vertex.

Note that, in the unrestricted process, ν(t) follows the binomial distribu-

tion with parameters 1 − α and t, and η(t)/2 is the sum of t independent

random variables with expectation m = (1 − α)µp + αµq and variance

v = α(1 − α) (µp − µq)
2 + (1 − α)vp + αvq.

Thus, by the standard Central Limit Theorem both (η(t)/2 − mt)/
√

vt and

(ν(t) − (1 − α)t)/
√

α(1 − α)t converge to the standard normal distribution.

We now have to define a set of partial histories with large enough probability,

each of which makes a given set of vertices conditionally equivalent. For a

given (large enough) n, this set of vertices will be vertices {n, . . . , ⌊n+
√

n⌋}.
As a consequence, for any 0 < ǫ < 1, there exists a λ = λ(ǫ) > 0 such that,

for n large enough, the probability is at least ǫ that, setting t0 = ⌊ n
1−α

−λ
√

n⌋

59

and t1 = ⌊ n
1−α

+
(

1
1−α

+ λ
)√

n⌋, we have

ν(t0) ≤ n (3.17)

ν(t0) ≥ n − 2(1 − α)λ
√

n (3.18)

ν(t1) ≥ n +
√

n (3.19)

ν(t1) ≤ n + (1 + 2(1 − α)λ)
√

n (3.20)

η(t0)/2 ≥ mt0 − λ
√

n (3.21)

η(t1)/2 ≤ mt1 + λ
√

n (3.22)

Taking as E the event that (3.17-3.22) are satisfied, we see that E is an

event of probability at least ǫ, which is the disjoint reunion of partial histories

(up to time t1). For each A in this set of partial histories, Lemma 3.13 tells

us that a set of vertices including {n, . . . , ⌊n +
√

n⌋} (because of (3.17) and

(3.19)) is equivalent conditional on E ′A,t0,t1
, and Lemma 3.15, together with

inequalities (3.21) and (3.22), gives us a lower bound for Pr(E ′A,t0,t1
|A′) of the

form

(

n − 2(1 − α)λ
√

n

n + (1 + 2(1 − α)λ)
√

n

mt0 − λ
√

n

mt1 + λ
√

n

)c′n1/2

≥
(

1 − c′′√
n

)c′
√

n

≥ c

for some positive constants c, c′, c′′.

Taking the disjoint reunion of all these E ′A,t0,t1
, we find an event of prob-

ability at least c Pr(E) ≥ ǫc, conditional on which the vertices {n, . . . , n +

⌊√n⌋} are equivalent, proving Theorem 3.16.

3.6 Optimal search algorithm for the Móri

tree

For β > 0 we proved, in Section 3.4, a general lower bound of Ω(n
β

2β+4
−ǫ) for

searching for vertex vn in the merged Móri graphs, valid for any finite m ≥ 1.

However, for β ≥ 0 and m = 1, when the search starts from vertex v1, we

can prove a much higher lower bound of Ω(n) by exhibiting a very simple

algorithm, operating under the strong model, that is optimal in a very strong

60

sense.

Any searching process, be it fully deterministic or randomised, can be

described as a searching strategy, which, for each time k, maps each possible

execution of the searching process up to time k (each alternating sequence of

possible requests and answers to these requests) to one of the legal choices

for the next request, or, in the case of a randomised search, each possible

execution is mapped to a probability distribution on the set of legal choices

for the next request. Note that we discuss searching processes instead of al-

gorithms because we do not need any assumption on the computability of the

mapping corresponding to a strategy: our optimal algorithm is deterministic

and obviously computable with a very low complexity. We let t(S, T) denote

the number of requests made by strategy S on tree T . We assume that the

searching strategy and the tree construction process work independently and

do not “share coin flips”.

One possible strategy S0 is the following: at each time step, always request

the lowest possible index among vertices which have not been requested yet,

and for which a neighbour has been visited, until the target is found. Since

each vertex other than the root v1 has a neighbour (its single out-neighbour)

with a strictly lower label, this strategy, starting from vertex v1, will obviously

result in requesting vertex vk at time k, until the target vn is discovered at

time fn. (Recall from the previous chapter that fn denotes the index of the

out-neighbour of vn.) The expected number of requests made by S0 is thus

E [fn], which is clearly Ω(n), because with probability n−2
(2+β)(n−1)−2

the out-

neighbour of vn is chosen preferentially by copying the tail of the out-going

edge of the vertices v1, . . . , vn−1.

The somewhat surprising result is that S0 is the best possible algorithm,

not just in expectation, but in a much stronger sense.

Theorem 3.23. For any possible (deterministic or randomised) strategy S

and any value of β > 0, the number of requests made by S on the random

tree Gn
1,β stochastically dominates the number of requests made by S0 on the

same random graph model.

Recall that a random variable X stochastically dominates a random vari-

able Y (which we will write Y � X) if, for any value x, the event {X ≥ x}

61

has probability no less than the probability of the event {Y ≥ x}.
What Theorem 3.23 means is not that S0 performs better than any other

possible strategy on any possible tree (obviously, for any possible tree T ,

the deterministic strategy that “magically” requests only the vertices on the

path between v1 and vn does better than S0 on this particular graph); it is

only that no other possible strategy, when applied to a random Móri tree

(and thus restricted to only using whatever information it has “learned” on

the realisation T of the random tree model), will have a better chance than

S0 of terminating within a given time limit. It is still a very strong result,

since it means that there is never a good reason not to follow strategy S0.

Proof. In order to prove the inequality t(S0, G
n
1,β) � t(S, Gn

1,β), we construct,

for any strategy S that has positive probability of not agreeing with S0

at some point, two new strategies S ′ and S ′′ with the following properties.

(Strictly speaking S ′ does not satisfy our definition of a strategy since it may

keep making requests even when the target has appeared in the answer to a

request.)

• t(S ′, Gn
1,β)

(d)
= t(S, Gn

1,β).

• For any possible tree T , the inequality t(S ′′, T) ≤ t(S ′, T) holds with

probability 1.

• On any possible tree T , S and S ′ agree until S has positive probability

of disagreeing with S0, at which time S ′ and S ′′ deterministically agree

with S0.

Before describing the construction of S ′ and S ′′, let us first see why they

imply the stochastic dominance claim. For any possible strategy S, let τn(S)

denote the first possible time where S can (with positive probability) disagree

with S0 when dealing with a tree of size at most n. Since S0 will always find

its target in at most n requests, any strategy S for which τn(S) ≥ n will

deterministically agree with S0 until termination on any tree of size at most

n.

Notice that the first two conditions on S ′ and S ′′ imply t(S ′′, Gn
1,β) �

t(S, Gn
1,β), and that the third implies that τn(S ′′) ≥ 1 + τn(S) unless S

62

agrees deterministically with S0 on all trees up to size n. Thus, apply-

ing the above construction n times to any S, we get a strategy S(n) with

t(S(n), Gn
1,β) � t(S, Gn

1,β) that agrees with S0 on all trees of size up to n, im-

plying t(S0, G
n
1,β) = t(S(n), Gn

1,β). This completes the stochastic dominance

proof.

We now turn to the construction of S ′ and S ′′. The idea is this: on any

tree T , S ′ acts exactly as S until it terminates or it has positive probability

of disagreeing with S0, whichever comes first. At this point, S ′ follows S0 for

one more step, after which it determines a random tree T ′, with the same

probability distribution as Gn
1,β conditional on the common past execution of

S and S ′, and starts simulating the behaviour of S on T ′ instead of T , making

the requests in T that S would make if presented with the tree T ′, until the

simulated version of S finds the target and terminates. The construction

ensures at each time-step, the vertices that are discovered by the simulated

S in T ′ are amongst those that have been discovered by S ′ in T . The strategy

S ′′ is the same as S ′, except that it very sensibly terminates as soon as it has

found vn, instead of waiting until the simulated S does.

All that remains is to describe how this simulation can be done and to

verify that the three properties hold. Recall the description of the Móri tree

in terms of the random variables f2, . . . , fn from Section 2.2. For ease of

description we will use Ni and N ′i to denote the indices of the out-neighbour

of vi in T and T ′ respectively.

Suppose that on T the first time there is positive probability of a dis-

agreement between S0 and S comes after k steps, so that, by this point, both

S and S0 know every vertex whose out-going edge goes to a vertex of index at

most k. In this situation, S0 selects vk+1 for its next request and S requests

some vertex vk′ .

At this point, S ′ requests vertex vk+1, thus satisfying the third condition.

As a result, it learns the indices of all vertices vj in the “real” graph T such

that Nj = k+1. Now S ′ constructs a new tree T ′ which, conditional on what

is known to both S and S ′ at time k, has the same probability of occurring

as T . If the strategy S is probabilistic then it is possible that k′ = k + 1,

in which case T ′ = T , and the strategies S ′ and S are the same from this

63

point. Otherwise k′ > k + 1 and we focus on this case from now on. To

see how the construction works it may be helpful to recall the partition of

half-edges around a vertex used in the proof of the concentration result in the

previous chapter. Assume for the moment that S ′ has access to the values of

the random variables governing the construction of T , in particular whether

choices of neighbour are made uniformly or preferentially. The incoming

edges at vk+1 are partitioned into two sets A and B. An edge is placed in A

if the other endpoint of the edge is vj for k + 1 < j ≤ k′ or if vk+1 is chosen

as the out-neighbour of a new vertex by preferentially copying an edge in A.

All the other incoming edges at vk+1 are placed in B. The tree T ′ is now

formed by moving all the edges in B from vk+1 to vk′ and moving all the

incoming edges at vk′ to vk+1. All other edges remain unchanged from T .

Let Ω′ ⊂ Ω denote the set of construction processes of Gn
1,β that result in a

tree such that the neighbours of v1, . . . , vk are as in T . Then the construction

of T ′ from T can be described in terms of an involution φ on Ω′. If an edge is

moved then the corresponding value of fi may need to be altered accordingly.

For instance any edge that is moved for which fi = (k+1, v), indicating that

vk+1 was chosen uniformly as an out-neighbour, is replaced by (k′, v) (and vice

versa). Similarly any edge that is moved for which fi = (k + 1, t), indicating

that the head of the edge directed away from vk+1 was selected preferentially,

is replaced by (k′, t) (and vice versa). Clearly Pr(ω) = Pr(φ(ω)) and so T

and T ′ have the same probability distribution.

Of course, S ′ does not have access to the construction process, only to the

resulting tree, so T ′ cannot be constructed in exactly this way. The strategy

S ′ has to resimulate the construction process. It is not necessary to simulate

the whole process, merely to determine which edges should be switched from

vk+1 to vk′ . Suppose the vertices sending their out-going edges to vk+1 in T

are vr1 , . . . , vrl
where r1 < · · · < rl. For each i, 1 ≤ i ≤ l, in increasing order,

S ′ decides whether to place the edge vk+1vri
into A or B. If ri ≤ k′ then

the edge vk+1vri
is placed into A. Otherwise let ji denote the size of A just

before vk+1vri
has been placed. Then place vk+1vri

into A with probability

ji/(i+β) and into B with the complementary probability (i−ji +β)/(i+β).

So given a tree T , the probability distribution of the set of edges that are

64

moved from vk+1 to vk′ is the same when S ′ simulates the construction process

as when S ′ had access to the values of the random variables determining the

construction. Consequently the probability distributions of T and T ′ are the

same.

Now S ′ simulates in T ′ how S would behave after having made requests

for the neighbours of v1, . . . , vk at times 1, . . . , k and then vk′ at time k+1. At

each time after k+1, S ′ makes whatever request S would select if confronted

with tree T ′ except that if S requests vk+1 then S ′ requests vk′ in T . When

the simulated S finds the target, S ′ terminates. If S is probabilistic, then S ′

has to use the same probability distribution for its random choices. Notice

that at each time t the set of vertices discovered up to time t by the strategy

S in T ′ is a subset of the set of vertices discovered by S ′ in T so each request

made by S ′ is valid. Furthermore when S ′ terminates, it has found the target.

(At time k+1, the strategy S ′ may discover more vertices, including possibly

the target vn, than the simulated strategy S operating in T ′, depending on

whether or not the set A is empty.) Since T and T ′ have the same distribution

and the time taken by S ′ on T is exactly the same as the time taken by the

simulated copy of S on T ′ we have t(S ′, Gn
1,β)

(d)
= t(S, Gn

1,β), satisfying the first

property required.

For the definition of S ′′, follow the same rules as for S ′, except that S ′′

always terminates once it has found the target vertex. Thus, with probability

1, S ′′ will terminate no later than S ′, which is exactly the second condition

we imposed. This completes the description of S ′ and S ′′, and the proof of

the theorem.

3.7 Conclusion and open problems

We have proved, in our weak model of local information a polynomially high

lower bound on the time required to find a given vertex in the model of

scale-free graphs considered. This is in contrast with all proved upper bound

results on the diameter of such graphs, which are at most logarithmic in

expectation and with high probability. That is, these random graph models

65

cannot be searched in time polynomial in their diameter. Thus, these graph

models do not have the “small world” easy searchability property as exhibited

by several authors in different models of random graphs. The technique

we used seems broad enough to be adapted to different models of growing

random graphs.

For the evolving graph model, our results carry over somehow weakly to

the (arguably more realistic) strong model of local information, whenever the

maximum degree can be proved to be significantly smaller than n1/2.

It is still open to know whether the right lower bound is always linear

for the Móri graph in the strong model. The case m = 1 is special since

between two vertices, there is a single path. The multiplicities of short paths

for m > 1 could drastically change the bounds.

66

Chapter 4

The complexity of two graph

orientation problems

4.1 Introduction

In this chapter, which is joint work with Steven Noble, Brunel University, we

turn to a very different topic. An extended abstract based on this chapter

is published in [28]. We consider two problems concerned with orienting

the edges of an undirected graph in order to minimise two global measures

of distance in the resulting directed graph. Our work is motivated by an

application involving the design of urban light rail networks. In such an

application a number of stations are to be linked with unidirectional track

in order to minimise some function of the travel times between stations and

subject to constraints on cost, engineering and planning. In practice these

constraints mean that the choice of which stations to link may be forced upon

us and the only control we have is over the choice of direction of each piece

of track. Since the stations that are linked tend to be those that are close to

each other, we make the simplifying assumption that the travel time along

each single piece of track or link is the same. Consequently the network can

be viewed as an (unweighted) graph in which the vertices represent stations

and the edges represent track that is to be built. Furthermore planning

constraints tend to rule out the possibility of tracks crossing so the graph is

usually planar. The aim is to orient the resulting graph to minimise travel

67

time. We assume that each journey in the oriented network progresses along

the shortest directed path from the vertex representing the starting station

to the vertex representing the destination.

Unless stated otherwise, all our graphs are simple that is they have no

loops or parallel edges. When the underlying graph is obvious, we use n and

m to denote its numbers of vertices and edges, respectively. We use (G, ω)

to denote the directed graph obtained by applying the orientation ω to the

edges of G. Sometimes we abbreviate this to ~G. We let d(x, y) denote the

distance from vertex x to vertex y in a directed graph. The two measures of

the quality of an orientation are its diameter diam(~G), given by

diam(~G) = max
x 6=y

d(x, y)

and the Wiener Index Z(~G), given by

Z(~G) =
∑

x 6=y

d(x, y).

The name Wiener Index is perhaps not widely used but is more common

in applications in chemistry. The networks arising in the application tend

to be planar and have small degree. Our original aim was to determine the

complexity of minimising diam(~G) and Z(~G) for planar graphs of bounded

degree. We have two partial results in this direction. In the next section we

give a brief overview of computational complexity. Following that, we show

that the problem where we are given a graph G and an integer k and must

determine whether G can be oriented so that its Wiener Index is at most k,

is NP-complete. We believe that it should be possible to sharpen this result

so that the input graph is restricted to having degree at most three but

our idea for a proof became extremely complicated, so we have not pursued

this. We do not know whether the input may be restricted to planar graphs.

Our hardness result depends on a result of Chvátal and Thomassen [19]

who showed that determining whether a graph may be oriented so that its

diameter is at most two is NP-complete. A result of Bollobás and Scott [12]

68

shows that an oriented graph with diameter two and n vertices must have

at least (1 + o(1))n log2 n edges. Since a planar graph with n vertices has at

most 3n − 6 edges, this implies that there is a constant upper bound on the

number of vertices in a planar oriented graph with diameter two. So there is a

constant time algorithm to determine whether a planar graph can be oriented

so that its diameter is at most two. However there are arbitrarily large

planar graphs that can be oriented so that their diameter is three or four, for

example, a set of triangles sharing two common vertices or a common vertex,

respectively. The rest of the chapter is devoted to the contrasting result that

for any fixed constant l, there is a polynomial time algorithm that will take a

planar graph and determine whether it may be oriented so that its diameter

is at most l. The algorithm relies on graph minor theory [56, 72, 74]. In

Section 4.4 we discuss necessary concepts from tree-width. In Section 4.5 we

describe an algorithm that attempts to find a suitable orientation when the

input graph has bounded tree-width. Section 4.6 contains our main result

for planar graphs.

After completing this work we discovered that the techniques that we em-

ploy here have been used before, perhaps most notably to find a k-dominating

set in a planar graph [2, 32]. A general setting for these techniques is intro-

duced in [22].

4.2 Complexity

In this section we give a short introduction to the theory of NP-completeness,

which concerns the complexity of decision problems, that is, problems for

which the answer is always yes or no. We briefly summarise the explanation

of the theory of NP-completeness in [35, Chapter 2] and mainly use the same

notation given there. For more information see also [63].

Let Σ be a finite set of symbols, then Σ∗ is the set of all finite strings

of symbols from Σ. Then L is a language over the alphabet Σ if L ⊆ Σ∗.

Suppose a program M of a Turing machine halts for all x ∈ Σ∗ with possible

halt-states qN and qY . The language LM is defined to be set of elements

in Σ∗ for which the output of M is qY . The time complexity of a program

69

M is a function TM(n) that maps each positive integer n onto the maximal

time it can take to obtain the output for an input of length n. If TM(n)

can be bounded above by a polynomial then M is called a polynomial time

deterministic Turing machine program. Then P is formally defined to be the

class of all languages L for which there is a polynomial time Turing machine

program M . Essentially any computation, which can be performed on a

computer, can also be done on a Turing machine. Therefore an informal

definition of P is the class of decision problems which can be solved in time

bounded by a polynomial in the size of the input.

A nondeterministic algorithm consists of a guessing stage and a checking

stage. Let I be an instance of a decision problem. First a structure S is

guessed. Then I and S are the inputs of the checking stage which is a

deterministic process and halts with answer yes or no or never halts. A

nondeterministic algorithm is said to “solve” a decision problem if for all

instances of the problem the following holds:

• If the correct answer to instance I of the decision problem is yes then

there exists a structure S, a possible guess, which will yield the answer

yes in the checking stage with input S and I.

• If the correct answer to instance I of the decision problem is no then

there exists no structure S which will yield the answer yes in the check-

ing stage with input S and I.

A nondeterministic algorithm is said to solve a decision problem in poly-

nomial time if for every instance I, that has a yes-answer, there is a guessed

structure S so that the checking stage yields a yes-answer to the input I

and S in time bounded by a polynomial in the size of I. The class NP is

informally defined to be the class of decision problems that can be solved in

polynomial time by a nondeterministic algorithm. So the class NP consists

of those decision problems for which any solution can be verified in time

bounded by a polynomial in the size of the input. We omit the formal defini-

tion of the class NP which depends on the so-called nondeterministic Turing

machine and yields essentially the same thing.

70

Let Π1 and Π2 be two decision problems. A polynomial transformation is

a function f that maps the set of instances of Π1 into the set of instances of

Π2, is computable in polynomial time and an instance I is a yes-instance of

Π1 if and only if f(I) is a yes-instance of Π2. In this case we write Π1 ∝ Π2.

Note that if Π2 ∈ P then Π1 ∈ P. It can easily be shown that if Π1 ∝ Π2

and Π2 ∝ Π3, then Π1 ∝ Π3.

The class of NP-complete problems is defined to be the class of decision

problems Π which are in NP and for all other Π′ ∈ NP, Π′ ∝ Π. So the

NP-complete problems are the hardest problems in NP.

Suppose a problem Π is known to be NP-complete and a problem Π′ is

known to be NP. If it can be shown that Π ∝ Π′ then it follows from the

transitivity of ∝ that Π′ is NP-complete.

One can easily verify that P ⊆ NP. However it is still an open problem

to determine whether P = NP. Note that, providing NP 6= P, there are

problems in NP that are neither in P nor NP-complete [54].

The class of NP-hard problems is not just restricted to decision problems.

A problem Π is NP-hard if the existence of a polynomial time algorithm for

Π would imply the existence of a polynomial time algorithm for some NP-

complete problem. Clearly all NP-complete problems are NP-hard.

4.3 Complexity of the Wiener Index

Imagine we are given a graph and an integer k and we would like to know

whether the graph can be oriented in such a way that the Wiener Index is

less than k. In this section we investigate the complexity of this problem.

Chvátal and Thomassen [19] showed that the following problem is NP-

complete.

Problem 4.1.

Instance: A graph G.

Question: Is it possible to orient G to ensure that diam(~G) ≤ 2?

From this result we can easily conclude that the following problem con-

cerning the Wiener Index is NP-complete.

71

Problem 4.2.

Instance: A graph G, integer k.

Question: Is it possible to orient G to ensure that the Wiener Index of ~G is

at most k?

Theorem 4.3. Problem 4.2 is NP-complete.

Proof. The problem is clearly in NP. Suppose that G has m edges. Let

k = 2(n2 − n) − m. We count the number of pairs of vertices joined by

paths of small lengths. There are m pairs of vertices joined by a path of

length 1 in ~G. If diam(~G) ≤ 2 then all the remaining pairs of vertices are

joined by paths of length two. So Z(~G) = 2(n2 − n) − m = k. Conversely

if diam(~G) > 2, there are n2 − n − m pairs of vertices joined by paths of

length at least two including at least one path of length at least three, so

Z(~G) > 2(n2 − n) − m = k. Consequently there is an orientation of G with

diam(~G) ≤ 2 if and only if there is an orientation of G with Z(~G) ≤ k.

We have been unable to determine the complexity of the following prob-

lem.

Problem 4.4.

Instance: Planar graph G and integer k.

Question: Can we orient the edges of G so that Z(~G) ≤ k?

The rest of the paper is dedicated to the investigation of the complexity

of the following problem for any fixed integer l.

Problem 4.5.

Instance: Planar graph G.

Question: Can we orient the edges of G so that diam(~G) ≤ l?

There is a considerable amount of work on this topic, see for instance

the survey of Koh and Tan [48]. Much of the focus has been on very spe-

cific classes of graphs. For instance the optimal orientation of a complete

graph [64, 58, 66, 8], a complete bipartite graph [8, 65, 78, 37], the square lat-

tice [68, 69, 70, 71] and the hypercube [65, 78, 59] are known. Partial results

have been obtained for complete multipartite graphs [65, 37, 38, 39, 44, 45]

72

and the toroidal lattice [46, 47, 51]. It is known that for k ≥ 4, it is NP-

complete to determine whether a chordal graph has an orientation of diameter

at most k [31].

4.4 Tree-decompositions

The notion of a tree-decomposition was developed by Robertson and Sey-

mour in [72]. Good introductions to the theory of tree-decompositions can be

found, for example, in [5], [56] and [77]. The definition of a tree-decomposition

is as follows.

Definition 4.6. A tree-decomposition T of a graph G is a pair (T,W) where

T is a tree and W = (Wt : t ∈ V (T)) is a family of subsets of V (G) such

that:

• ⋃t∈V (T) Wt = V (G) and every edge in G has both endpoints in Wt for

some t;

• if t, t′, t′′ ∈ V (T) and t′ lies on the path from t to t′′ in T then Wt∩Wt′′ ⊆
Wt′ .

The width of (T,W) is defined to be

max{|Wt| − 1 : t ∈ V (T)}.

The tree-width tw(G) of G is the minimum width among all possible tree-

decompositions of G.

One reason for the importance of tree-width is that many NP-hard prob-

lems can be solved in polynomial or even linear time when restricted to

graphs of bounded tree-width [77], [5]. For the algorithm we give in Sec-

tion 4.5, the following features of tree-decompositions will be useful. We

call a tree-decomposition T = (T,W) which fulfils the following properties a

reduced tree-decomposition of width k.

• T is a rooted tree with root r.

73

• For all i ∈ V (T), |Wi| = k + 1.

• For all i ∈ V (T), there is a leaf j of T such that Wj = Wi.

• For all i ∈ V (T), either i is a leaf of T or i has exactly two children.

• |V (T)| ≤ 2n.

Note that this definition deviates from the way in which a reduced tree-

decomposition of width k is usually defined in the literature, namely as a

tree-decomposition in which Wi 6⊆ Wj for all i 6= j.

In 1996 Bodlaender [6] gave a linear-time algorithm for finding tree de-

compositions of small width. Let

f(k) = k5(2k + 1)2k−1((4k + 5)4k+5(
8

3
· 22k+2)4k+5)4k+1.

Theorem 4.7. Let k be a constant. Then there is an algorithm running in

time O(f(k)n) that inputs a graph G and determines whether the tree-width

of G is at most k, and if so finds a tree-decomposition of G with tree-width

at most k.

It follows from the theorem that any tree-decomposition T = (T,W)

obtained by Bodlaender’s algorithm satisfies
∑

i∈T |Wi| = O(f(k)n).

We will assume that if i, j are neighbouring vertices of T , we have Wi 6⊆
Wj, because otherwise we may contract the edge in T and remove Wi from W
as seen in [6]. Ensuring that this condition holds requires time O(

∑

i∈T |Wi|) =

O(f(k)n). (We assume that checking the membership of a set requires unit

time.)

Some parts of the proof of the following lemma can also be found in [6].

Lemma 4.8. Any tree-decomposition T ′ = (T ′,W ′) of a graph G with width

k, obtained by Bodlaender’s algorithm, can be modified in time O(kn) into a

reduced tree-decomposition T = (T,W).

Proof. First let (T,W) = (T ′,W ′). Choose vertex r ∈ V (T) arbitrarily to be

the root of T and regard T as a rooted tree.

74

Now for each i 6= r ∈ V (T) suppose that j is its parent in T . Mark i

with an element of Wi\Wj. Clearly such an element exists because Wi 6⊆ Wj.

Mark r with any element of Wr. Since no two marks are the same it follows

that the tree contains at most n vertices, as also seen by Bodlaender [6].

Note that there is at least one vertex i ∈ V (T) such that |Wi| = k + 1.

Suppose that there is a vertex u ∈ V (T) with |Wu| < k + 1 and such that u

has a neighbour v ∈ V (T) with |Wv| = k + 1. Then we may add vertices of

Wv\Wu to Wu so that |Wu| = k + 1 and (T,W) is still a tree-decomposition

of G of width k + 1. We can repeat this procedure until |Wi| = k + 1 for all

i ∈ V (T). So we will assume that |Wi| = k +1 for all i ∈ V (T). This feature

was also proved earlier by Bodlaender [6].

For each vertex i ∈ V (T) that is not a leaf, add a new vertex i∗ joined

only to i and a set Wi∗ = Wi to W. We now have at most n leaves.

Note that (T,W) now satisfies the first three properties of a reduced tree-

decomposition. Furthermore no v ∈ V (T) has exactly one child. Suppose

that v ∈ T has p ≥ 3 children, v1, . . . , vp. Remove the edges vv2, . . . , vvp from

T , add a new vertex v∗ to V (T) and add edges vv∗, v∗v2, . . . , v
∗vp. Finally

add Wv∗ = Wv to W. After a finite number of repetitions of this procedure,

a reduced tree-decomposition (T,W) of width k is produced. No new leaves

are added in this procedure.

Since, in a binary tree, twice the number of leaf vertices is greater than

the number of vertices in the tree we obtain V (T) ≤ 2n. It follows that the

overall time to obtain T is O(kn), as there are at most 2n vertices in T .

Due to the third property of a reduced tree-decomposition (T,W), we

may arbitrarily associate any edge vw ∈ E(G) with exactly one leaf i of T

such that {v, w} ⊆ Wi. In this way we obtain a partition of the edges of G.

Let Ei be the set of edges associated with a leaf i. For any non-leaf vertex v

of T , let Ev be the set of all edges associated with a leaf i that is a descendant

of v in T .

75

4.5 Algorithm Diameter

In this section we describe an algorithm that for fixed k, takes as input a

graph G and a reduced tree-decomposition with width k and determines

whether there is an orientation of G with diameter at most l running in time

O(cn), where c is a constant depending on k and l which we will determine.

Given a directed graph ~G we let M ′(~G) be its shortest path matrix,

that is the matrix whose rows and columns are both indexed by V (~G) with

zeros on the diagonal and otherwise (x, y)-entry equal to d(x, y). For the

description of the algorithm we will need to introduce the truncated distance

d∗l (x, y) from x to y given by d∗l (x, y) = min{l+1, d(x, y)} if d(x, y) < ∞ and

d∗l (x, y) = l +1 if d(x, y) = ∞. Then the truncated distance matrix Ml(~G) is

defined by replacing each distance d(x, y) in M ′(~G) by d∗l (x, y). Since l will

always be the constant referred to in Problem 4.5, we will drop the subscript.

Now we describe the main idea behind the algorithm. Let G1 = (V1, E1),

G2 = (V2, E2), be graphs such that V1 ∩ V2 = X, E1 ∩ E2 = ∅ and let G =

G1∪G2. So X is a vertex cut of G. Suppose we want to find whether we can

orient G so that the diameter is less than or equal to the fixed constant l. It

is possible to find the answer using certain information about all orientations

of G1 and G2.

Suppose we know the following for i = 1, 2 and each orientation ωi of Gi:

• the truncated distance from every vertex in Vi\X to each vertex in X

and also the truncated distance in the reverse direction;

• the submatrix of the truncated distance matrix corresponding to ver-

tices in X;

• which pairs of vertices in Vi\X are not joined to each other by a path

of length at most l.

Then by considering every pair of orientations ω1 of G1 and ω2 of G2 we

can determine whether G can be oriented as required. However we do not

need this much information about G1 and G2. For instance, suppose that

the truncated distances from (to) v ∈ Vi\X to (from) each member of X is

specified by a vector
→
dv (

←
dv). It turns out that we do not need the identity

76

of v, merely that there exists a vertex of Vi with these vectors of truncated

distances to and from the members of X. As we will see, this means that the

amount of information that must be stored by the algorithm at each stage is

a function of k and l but not of n.

Given a graph G, X ⊂ V (G) and ω an orientation of E(G), we define the

characteristic c(G, X, ω) as follows. Suppose without loss of generality that

X = {v1, . . . , vk+1}. Let v ∈ V (G)\X. First we define the distance vector of v

to X and the distance vector of v from X. Let
→
d(G, X, ω, v) = (

→
d1, . . . ,

→
dk+1)

and
←
d(G, X, ω, v) = (

←
d1, . . . ,

←
dk+1) where for 1 ≤ j ≤ k + 1,

→
dj = d∗(v, vj)

and
←
d j = d∗(vj , v). (In general X 6= {v1, . . . , vk+1} so we need to store

information that make it possible to tell which entry of
→
d(G, X, ω, v) and

←
d(G, X, ω, v) corresponds to which vertex of X, but for simplicity we avoid

discussing this.) Then c(G, X, ω) is a 4-tuple (
→
S,
←
S, M, F) defined as follows:

• →S and
←
S are subsets of [l+1]k+1 with

→
S = {→d(G, X, ω, v)|v ∈ V (G)\X}

and
←
S = {←d(G, X, ω, v)|v ∈ V (G)\X}.

• M is the submatrix of the truncated distance matrix of (G, ω) corre-

sponding to the vertices of X.

• F ⊆ →
S × ←

S such that (s, t) ∈ F if and only if there are vertices v, w ∈
V (G)\X such that the distance vector of v to X is s and the distance

vector of w from X is t and d(v, w) > l.

So F keeps track of pairs of vertices in V (G)\X that are not yet joined by a

short enough path. We will see that it is not necessary to store the identities

of these vertices, since the information in F is enough.

Let Ω(G) be the set of all possible orientations of G. Returning to the

situation where G is the union of two edge-disjoint graphs G1 and G2 with

V (G1) ∩ V (G2) = X, the main idea behind the algorithm, corresponding to

Lemma 4.12, below, is that the set {c(G, X, ω)|ω ∈ Ω(G)} can be computed

quickly from {c(G1, X, ω)|ω ∈ Ω(G1)} and {c(G2, X, ω)|ω ∈ Ω(G2)}.
Suppose we are given a reduced tree-decomposition (T,W). For any v ∈

T , let Yv =
⋃{Wu|u = v or u is a descendant of v}. Let Gv be the subgraph

with vertex set Yv and edge-set Ev (defined at the end of the previous section).

77

Define the characteristic of v ∈ V (T) to be c(v) = {c(Gv, Wv, ω)|ω ∈ Ω(Gv)}.
Because the members of c(v) are distinct characteristics, each one may cor-

respond to many orientations of Gv. We will assume that we have a com-

putational model that enables us to represent sets in an efficient way, in

particular, it enables us to remove redundant repetition of elements.

The algorithm works upwards from the leaves of T computing c(v) for

each v until finally c(r) is computed.

Let h(l, k) = (l + 1)k(k+1)2[2(l+1)k+1+(l+1)2k+2]. We will prove the following

statements in order to show that the algorithm runs in linear time:

• c(v) can be computed for a leaf node v in time O(k3 · 2 k2+k
2);

• for any non-leaf v with children v1 and v2, c(v) can be computed in

time O(k2(l + 1)2k+2h(l, k)2) from c(v1) and c(v2);

• from c(r) we can determine in time O(k(l + 1)k+1h(l, k)) whether the

graph can be oriented as required.

Before we turn to the proofs of these statements we give the following

result on the size of the set {c(G, X, ω)|ω ∈ Ω(G)}, which will be needed for

the proofs below.

Lemma 4.9. If |X| = k + 1 then

|{c(G, X, ω)|ω ∈ Ω(G)}| = O(h(l, k)).

Proof. Recall that c(G, X, ω) is a 4-tuple (
→
S,
←
S, M, F) where

→
S and

←
S are both

subsets of [l +1]k+1, M is a (k +1)× (k +1) matrix with off-diagonal entries

from [l + 1] and F is a set of elements from
→
S × ←

S. So the number of choices

for both
→
S and

←
S is 2(l+1)k+1

, the number of choices for M is (l + 1)k(k+1)

and the number of choices for F is at most 2(l+1)2k+2
, so the total number of

choices for c(G, X, ω) is at most (l + 1)k(k+1)2[2(l+1)k+1+(l+1)2k+2]. Hence the

total number of elements of c(v) is at most (l + 1)k(k+1)2[2(l+1)k+1+(l+1)2k+2].

We are now able to prove that the algorithm runs in linear time by the

following lemmas.

78

Lemma 4.10. If v is a leaf of T , Then c(v) can be computed in time O(k3 ·
2

k2+k
2).

Proof. |Wv| = k + 1. Therefore there can be at most k2+k
2

edges in the sub-

graph (Wv, Ev). It follows that there are at most 2
k2+k

2 different orientations

of the subgraph (Wv, Ev). We now show that for any orientation ω of Ev, we

can compute c((Wv, Ev), Wv, ω) = (
→
S,
←
S, M, F) in time O(k3).

For any orientation ω of Ev we have
→
S =

←
S = ∅. The shortest path matrix

can be determined by the Floyd-Warshall algorithm which has running time

O(k3). Then we obtain the truncated shortest path matrix M by replacing

each entry of the shortest path matrix that is greater than l + 1 by l + 1 in

time O(k2). Since
→
S =

←
S = ∅ we also have F = ∅ by definition of F .

Lemma 4.11. Let v ∈ V (T) and let u be a child of v. Let G∗ be the graph

(Wv ∪Yu, Eu). We can compute {c(G∗, Wv, ω)|ω ∈ Ω(G∗)} from c(u) in time

O(k(l + 1)2k+2h(l, k)).

Proof. Let ω ∈ Ω(G∗). Since G∗ is obtained from Gu by merely adding

the elements of Wv\Yu as isolated vertices we have ω ∈ Ω(Gu). Moreover

distances in Gu are preserved in G∗ and the truncated distance to or from

any element of Wv\Yu is l + 1.

Claim: M(G∗, Wv, ω) can be obtained from M(Gu, Wu, ω) in time O(k2).

Proof. To obtain M(G∗, Wv, ω) from M(Gu, Wu, ω) we replace the off-diagonal

entries in rows and columns indexed by elements of Wu\Wv, with l + 1 and

change the row and columns labels to elements of Wv\Wu. Since |Wu| =

|Wv| = k + 1 the claim follows.

Claim:
→
S(G∗, Wv, ω) (

←
S(G∗, Wv, ω)) can be obtained from

→
S(Gu, Wu, ω)

(
←
S(Gu, Wu, ω)) and M(Gu, Wu, ω) in time O(k(l + 1)k+1).

Proof. Let
→
d ∈ →S(Gu, Wu, ω). Then

→
d is the distance vector of one or more

vertices in Yu\Wu to Wu. If we replace the entries of
→
d indexed by members

of Wu\Wv with l + 1 and index them by members of Wv\Wu then we obtain

79

the distance vector of the same vertices in Yu\Wu to Wv. Doing this for ev-

ery
→
d ∈ →S(Gu, Wu, ω) requires time O(k(l + 1)k+1) and gives all the distance

vectors from vertices in Yu\Wu to Wv. The other elements of
→
S(G∗, Wv, ω)

are the distance vectors of vertices in Wu\Wv to Wv. These are easily ob-

tained from M(Gu, Wu, ω) in time O(k2). So
→
S(G∗, Wv, ω) can be found from

→
S(Gu, Wu, ω) and M(Gu, Wu, ω) in time O(k(l +1)k+1).

←
S(G∗, Wv, ω) can be

found in a similar way.

Claim: F (G∗, Wv, ω) can be obtained from
→
S(Gu, Wu, ω),

←
S(Gu, Wu, ω),

M(Gu, Wu, ω) and F (Gu, Wu, ω) in time O(k(l + 1)2k+2).

Proof. Each element of F (Gu, Wu, ω) corresponds to one or more pairs of

vertices Yu\Wu at distance at least l+1 in Gu. These pairs of vertices are still

at distance l+1 in G∗ so F (G∗, Wv, ω) must contain an element corresponding

to them. If f ∈ F (Gu, Wu, ω) then all the entries of f indexed by vertices

of Wu\Wv must be replaced by l + 1 in the same way that the entries of

elements of
→
S(Gu, Wu, ω) and

←
S(Gu, Wu, ω) were modified above. Amending

the elements of F (Gu, Wu, ω) in this way requires time O(k(l + 1)2k+2) and

gives the set of all pairs (
→
d(G∗, Wv, ω, x),

←
d(G∗, Wv, ω, y)) where x, y ∈ Yu\Wu

and d∗(x, y) = l + 1.

It remains to compute the set of all pairs (
→
d(G∗, Wv, ω, x),

←
d(G∗, Wv, ω, y))

where at least one of x, y is in Wu\Wv and d∗(x, y) = l +1. If x, y ∈ Wu\Wv,

then it is easy to check if d∗(x, y) = l + 1 by inspecting M(Gu, Wu, ω).

Furthermore (
→
d(G∗, Wv, ω, x),

←
d(G∗, Wv, ω, y)) can easily be computed from

M(Gu, Wu, ω). This requires time O(k3).

Now fix x ∈ Wu\Wv. We show how to compute {(→d(G∗, Wv, ω, x),
←
d(G∗,

Wv, ω, y))|y ∈ Yu\Wu and d∗(x, y) = l + 1}. By inspecting the entries in-

dexed by x of all the elements of
←
S(Gu, Wu, ω) and selecting those elements

corresponding to vertices of Yu\Wu at distance at least l + 1 from x, it is

possible to compute {←d(Gu, Wu, ω, y)|y ∈ Yu\Wu and d∗(x, y) = l + 1}. The

vectors
→
d(G∗, Wv, ω, x) and

←
d(G∗, Wv, ω, y) for y ∈ Yu\Wu are computed as

above. Doing this for all x ∈ Wu\Wv requires time O(k2(l + 1)k+1). The

symmetric case where x ∈ Yu\Wu and y ∈ Wu\Wv is very similar.

80

The discussion above show that it is possible to compute c(G∗, Wv, ω)

from c(Gu, Wu, ω) alone, that is without using any additional information

about ω. So to compute {c(G∗, Wv, ω)|ω ∈ Ω(G∗)}, we run through the

distinct elements of c(u) and carry out the computations described above.

This requires time O(k(l + 1)2k+2h(l, k)).

Lemma 4.12. Let v be a non-leaf vertex of T with children v1 and v2. Fur-

thermore let G∗1 be the graph (Wv ∪ Yv1, Ev1) and G∗2 be the graph (Wv ∪
Yv2, Ev2). We can compute c(v) from {c(G∗1, Wv, ω)|ω ∈ Ω(G∗1)} and {c(G∗2,
Wv, ω)|ω ∈ Ω(G∗2)} in time

O(k2(l + 1)2k+2h(l, k)2).

Proof. Let ω ∈ Ω(Gv). The sets Ev1 and Ev2 are disjoint so we can write

ω = ω1 ∪ ω2 where ω1 ∈ Ω(G∗1) and ω2 ∈ Ω(G∗2). In order to compute

c(v), it turns out not to be necessary to consider every ω1 ∈ Ω(G∗1) and

ω2 ∈ Ω(G∗2) separately because we will show that c(Gv, Wv, ω) depends only

on c(G∗, Wv, ω1) and c(G∗2, Wv, ω2) and not on the actual choices of ω1 and

ω2.

Suppose that c(G∗1, Wv, ω1) = (
→
S1,

←
S1, M1, F1) and c(G∗2, Wv, ω2) = (

→
S2,

←
S2,

M2, F2). We now show how to compute c(Gv, Wv, ω) from (
→
S1,

←
S1, M1, F1)

and (
→
S2,

←
S2, M2, F2). For notional convenience we will assume that Wv =

{x1, . . . , xk+1}.
Claim: M(Gv, Wv, ω) can be determined from M1 and M2 in time O(k3).

Proof. Let m1(i, j) and m2(i, j) denote the entries of M1 and M2 respec-

tively in the row indexed by xi and column indexed by xj . Let m̂(i, j) =

min{m1(i, j), m2(i, j)} and let M̂ = (m̂(i, j)). Then each entry of M̂ is the

truncated length of the shortest path between two vertices of Wv such that

either all of the edges in the path are in Ev1 or all the edges in the path are

in Ev2 . Any shortest path in Gv between two vertices in Wv can be broken

up into subpaths beginning and ending in Wv and in which each subpath

consists either of edges just from Ev1 or of edges just from Ev2 . This is be-

cause there is no edge between a vertex in Yv1\Wv and a vertex in Yv2\Wv.

Consequently the truncated lengths of the shortest paths between vertices

81

in Wv can be found by applying the Floyd-Warshall algorithm to M̂ . This

requires time O(k3).

Claim:
→
S(Gv, Wv, ω) (

←
S(Gv, Wv, ω)) can be obtained from M1, M2,

→
S1 (

←
S1)

and
→
S2 (

←
S2) in time O(k2(l + 1)k+1).

Proof. An element of
→
S1 is the distance vector of one or more vertices in

Yv1\Wv to Wv in the graph Gv1 . It is possible that these truncated distances

are smaller in Gv because shorter paths including edges from Ev2 may exist.

Let
→
d ∈ →S1 and suppose that

→
d is the distance vector of y ∈ Yv1\Wv to Wv.

(The identity of y is immaterial in the following argument.)

In (Gv, ω), for each i, the shortest path from y to xi contains an initial

subpath from y to some vertex xj ∈ Wv, consisting of only edges from Ev1

followed by a possibly empty subpath from xj to xi. For all i, let
→
di denote

the truncated distance from y to xi in (G∗1, ω1). The distance
→
di is given by

one of the entries of
→
d. The truncated distance from y to xi in (Gv, ω) is

min{min
j
{→dj + M(j, i)}, l + 1},

where M(j, i) is the entry of M(Gv, Wv, ω) in the row indexed by xj and

column indexed by xi. To carry out this computation on
→
d requires time

O(k2). Every member of
→
S(Gv, Wv, ω) is obtained from a member of either

→
S1 or

→
S2 in this way. The total time to determine

→
S(Gv, Wv, ω) is therefore

O(k2(|→S1| + |→S2|)) = O(k2(l + 1)k+1).
←
S(Gv, Wv, ω) can be obtained in an analogous way.

Claim: F (Gv, Wv, ω) can be obtained from
←
S1,

→
S1,

←
S2,

→
S2, M1, M2, F1 and

F2 in time O(k2(l + 1)2k+2).

Proof. Each element of F (Gv, Wv, ω) corresponds to one or more pairs (x, y)

of vertices of Yv\Wv such that d∗(x, y) = l +1. Each of x, y belongs to either

Yv1\Wv or Yv2\Wv and there are two types of pairs to consider depending

on whether x, y both belong to the same set or not. (Of course a particular

entry of F (Gv, Wv, ω) may correspond to pairs of more than one type. When

82

this happens we will try to add it to F (Gv, Wv, ω) more than once, but this

creates no difficulties.)

We first show how to find the set

F̂1 = {(→d(Gv, Wv, ω, x),
←
d(Gv, Wv, ω, y))|d∗(x, y) = l + 1, x, y ∈ Yv1\Wv}.

For any element (
→
d(Gv, Wv, ω, x),

←
d(Gv, Wv, ω, y)) of F̂1 there is a correspond-

ing element (
→
d(G∗v1

, Wv, ω, x),
←
d(G∗v1

, Wv, ω, y)) ∈ F1. However the converse

is not true because there may be a short path from x to y in Gv including

edges from Ev2 . Suppose (
→
d(G∗v1

, Wv, ω, x),
←
d(G∗v1

, Wv, ω, y)) ∈ F1. Let
→
di be

the truncated length of the shortest path from x to xi in G∗v1
and let

←
d i be

the truncated length of the shortest path from xi to y in G∗v1
. Any path in Gv

from x to y that has length at most l must include at least one vertex from

Wv. This path must contain an initial subpath beginning at x and ending in

Wv with all edges in Ev1 and a terminal subpath beginning in Wv and ending

at y with all edges in Ev1 . The minimum truncated length of such a path is

min{min
i,j

{→di + m(i, j) +
←
d j}, l + 1},

where m(i, j) is the entry of M(Gv, Wv, ω) in the row indexed by xi and

column indexed by xj . For all i,
→
di and

←
d i are given by the entries of

(
→
d(G∗1, Wv, ω1, x),

←
d(G∗1, Wv, ω1, y)). Consequently, by running through all

elements of F1 and excluding those corresponding to pairs for which there is

now a path of length at most l, the set

{(→d(G∗1, Wv, ω, x),
←
d(G∗1, Wv, ω, y))|d∗(x, y) = l + 1, x, y ∈ Yv1\Wv}

can be computed from F1, M1 and M2 in time O(k2(l + 1)2k+2). From this

set it is easy to compute F̂1 by computations similar to those used to form
→
S(Gv, Wv, ω) and

←
S(Gv, Wv, ω). If the correspondence between members of

→
S1 and

←
S1,

→
S2 and

←
S2, and

→
S(Gv, Wv, ω) and

←
S(Gv, Wv, ω) is stored, then

it is not necessary to repeat the computations and so F̂1, can be computed

from F1 in time O(k2(l + 1)2k+2). F̂2 is defined in the obvious way and can

83

be found in a similar fashion. We now find the set

F̂12 = {(→d(Gv, Wv, ω, x),
←
d(Gv, Wv, ω, y))|d∗(x, y) = l + 1,

x ∈ Yv1\Wv, y ∈ Yv2\Wv}.

Let
→
di be the truncated length of the shortest path from x to xi in G∗v1

but

now let
←
d i be the truncated length of the shortest path from xi to y in G∗v2

.

Any path from x to y must pass through a vertex of Wv. So such a path

must contain an initial subpath starting at x, ending in Wv and containing

only edges of Ev1 and a terminal subpath starting in Wv, ending at y and

containing only edges of Ev2 . The minimum length of such a path is

min{min
i,j

{→di + m(i, j) +
←
d j}, l + 1}.

So by running through pairs of elements of
→
S1 and

←
S2 and selecting those at

distance at least l + 1, the set

{(→d(G∗1, Wv, ω, x),
←
d(G∗2, Wv, ω, y))|d∗(x, y) = l + 1, x ∈ Yv1\Wv, y ∈ Yv2\Wv}

can be computed from M1, M2,
→
S1 and

←
S2 in time O(k2(l + 1)2k+2). It is

now easy to compute F̂12 by computations similar to those used to form
→
S(Gv, Wv, ω) and

←
S(Gv, Wv, ω). Finally F̂21, defined in the obvious way, can

also be found in time O(k2(l+1)2k+2). Now F (Gv, Wv, ω) = F̂1∪F̂2∪F̂12∪F̂21.

The computations described above show that it is possible to compute

c(Gv, Wv, ω) from c(G∗1, Wv, ω1) and c(G∗2, Wv, ω2) alone, that is without using

any additional information about ω1 and ω2. So to compute c(v), we run

through every distinct pair of elements from c(G∗1, Wv, ω1) and c(G∗2, Wv, ω2)

and carry out the computations described above. This requires time O(k2(l+

1)2k+2h(l, k)2).

Note that Lemma 4.11 and 4.12 imply that we can compute c(v) from

84

c(v1) and c(v2) in time

O(k2(l + 1)2k+2h(l, k)2).

Lemma 4.13. We can determine whether G can be oriented with diameter

at most l from c(r) in time

O(k(l + 1)k+1h(l, k)).

Proof. Consider one of the 4-tuples (
→
S,
←
S, M, F) ∈ c(r) corresponding to a

set of orientations of G. Let ω be any element of this set of orientations. If

there is a distance vector in
→
S or

←
S having an entry equal to l + 1 then there

is a vertex in V (G)\Wr having distance strictly greater than l to or from a

vertex of Wr in (G, ω). Thus in this case any such orientation ω yields (G, ω)

with diameter strictly greater than l. Checking the entries of all truncated

distance vectors in
→
S and

←
S in this way requires time O(k(l + 1)k+1).

If there is an entry equal to l + 1 in M then there is a pair of vertices in

Wr having distance strictly greater than l in (G, ω). This can be checked in

time O(k2).

If F 6= ∅ there is a pair of vertices in V (G)\Wr such that the distance

between them in one direction or the other is strictly greater than l. It can

be checked in time O(1) whether F 6= ∅.
On the other hand any 4-tuple (

→
S,
←
S, M, F) ∈ c(r) for which no member

of
→
S or

←
S has an entry equal to l + 1, no element of M is equal to l + 1 and

F is empty corresponds to at least one orientation ω such that (G, ω) has

diameter at most l.

It follows that to check if any orientation ω corresponding to (
→
S,
←
S, M, F)

yields (G, ω) with diameter at most l requires time O(k(l + 1)k+1 + k2) =

O(k(l + 1)k+1).

Since there are at most O(h(l, k)) 4-tuples in c(r), the time to determine

from c(r) whether G can be oriented with diameter at most l is O(k(l +

1)k+1h(l, k)).

The following theorem is a consequence of Lemmas 4.10, 4.11, 4.12 and 4.13.

85

Theorem 4.14. The overall running time of algorithm Diameter is

O(nk2(l + 1)2k+2h(l, k)2).

Proof. There are O(n) leaf vertices in the tree-decomposition. For each leaf

vertex v it takes time O(2
k2+k

2 · k3) to determine c(v) by Lemma 4.10.

There are O(n) non-leaf vertices in the tree-decomposition. For each

non-leaf vertex v with children v1 and v2 for which both c(v1) and c(v2) are

already determined c(v) can be calculated in time O(k2(l+1)2k+2h(l, k)2) by

Lemmas 4.11 and 4.12. It follows that, given a reduced tree-decomposition,

c(r) can be calculated in time O(n(2
k2+k

2 ·k3+k2(l+1)2k+2h(l, k)2)). Thus by

Lemma 4.13 the overall running time to determine whether G can be oriented

so that the diameter is at most l is O(n(2
k2+k

2 · k3 + k2(l + 1)2k+2h(l, k)2)) =

O(nk2(l + 1)2k+2h(l, k)2).

4.6 Minimising the diameter of any planar

graph

We now show how to use the result of the previous section to solve Prob-

lem 4.5.

We say that a graph G has an H-minor if it is possible to delete vertices

and edges, and contract edges from G to obtain a graph isomorphic to H .

Since we are only working with simple graphs, we delete any loops or parallel

edges that are formed after a contraction. If H is obtained from G by deleting

a set A of edges and contracting a set B of edges then in whatever order these

deletions and contractions are done, we always obtain H .

Lemma 4.15. Any planar graph with a (2l + 1) × (2l + 1)-grid-minor has

diameter at least l.

Proof. Suppose that G is a planar graph having a (2l+1)×(2l+1)-grid-minor.

We may assume that G is connected because otherwise diam(G) = ∞. So a

(2l + 1) × (2l + 1)-grid may be obtained from G by a series of contractions

and deletions of edges. Without loss of generality we can assume that first

86

all the contractions are done and afterwards all the deletions. For any graph

G′ and for any edge e ∈ E(G′) the following inequality holds:

diam(G′) ≥ diam(G′/e).

Let K be the graph obtained from G after all the contractions of edges. Then

the above inequality yields

diam(G) ≥ diam(K).

For l ≥ 1, the graph obtained by contracting one of the edges adjacent

to each vertex of degree two in the (2l + 1)× (2l + 1)-grid is 3-connected. A

famous result of Whitney [80] implies that it has a unique embedding (apart

from mirror image) in the plane once the outside face has been selected.

Subdividing edges has no effect on an embedding in the plane so the grid

also has a unique embedding up to selection of the outside face. Imagine

that we have embedded the graph in the plane in the standard way so that

every face except the outside face has four edges.

K is a simple graph of which the (2l + 1) × (2l + 1)-grid is a subgraph.

The only edges of K which do not join two vertices of the outside face and

which are not in the grid join opposite corners of an internal face of the grid.

Consequently diam(K) ≥ l and so diam(G) ≥ l.

The following result which we will need for the proof of our main state-

ment, is from [74].

Theorem 4.16. Any planar graph with no g × g-grid-minor has tree-width

at most 6g − 5.

We are now ready to prove the main statement of this chapter which is

the following result on the complexity of deciding whether a graph can be

oriented in such a way that its diameter is at most l.

Theorem 4.17. For every l, Problem 4.5 is solvable in time O(cln), where

cl is a constant depending on l.

87

Proof. By Theorem 4.7, there is an algorithm running in time O(f(12l+13)n)

that determines whether the tree-width of G is at most 12l + 13.

First let us consider the case that the tree-width is at most 12l + 13.

Then the algorithm also finds a tree-decomposition of G with tree-width

at most 12l + 13. By Lemma 4.8 this tree-decomposition can be modified

in time O(f(12l + 13)n) so that it is a reduced tree-decomposition. Then

by Theorem 4.14, the algorithm Diameter described in Section 4.5 can

determine in time O(n(12l + 13)2(l + 1)2(12l+13)+2h(l, 12l + 13)2), whether it

is possible to orient the edges of G so that the diameter is at most l.

Now we consider the case that the tree-width of G is at least 12l + 14.

Then it follows from Theorem 4.16, that G has a (2l+3)×(2l+3)-grid-minor.

By Lemma 4.15, G must have diameter at least l+1. It follows that it is not

possible to orient G so that the diameter is at most l.

4.7 Conclusion

We have shown that Problem 4.1 which is NP-complete for arbitrary graphs

becomes polynomial time for planar graphs even if the constant two is re-

placed by any larger constant. It remains to determine the complexity of

minimising the Wiener index for planar graphs. Furthermore it would be

interesting to try to find a more efficient algorithm for our main problem,

not depending on graph minor theory, and also to determine the complexity

when l is part of the input.

88

Chapter 5

k-L(2, 1)-Labelling for Planar

Graphs is NP-Complete for

k ≥ 4

In this chapter, which is joint work with Frédéric Havet, INRIA in Nice, and

Steven Noble, Brunel University, we turn to a topic which is very different

from the problems that we have already discussed in this thesis. The Fre-

quency Assignment Problem requires the assignment of frequencies to radio

transmitters in a broadcasting network with the aim of avoiding undesired

interference and minimising bandwidth. One of the longstanding graph the-

oretical models of this problem is the notion of distance constrained labelling

of graphs. An L(2, 1)-labelling of a graph G is a mapping from the vertex set

of G into the nonnegative integers such that the labels assigned to adjacent

vertices differ by at least 2, and labels assigned to vertices at distance 2 are

different. The span of such a labelling is the maximum label used. In this

model, the vertices of G represent the transmitters and the edges of G ex-

press which pairs of transmitters are too close to each other so that undesired

interference may occur, even if the frequencies assigned to them differ by 1.

This model was introduced by Roberts [67] and since then the concept has

been intensively studied (see the survey of Yeh [82]).

In their seminal paper, Griggs and Yeh [36] proved that determining

the minimum span of a graph G, denoted λ2,1(G), is an NP-hard problem.

89

Fiala et al. [30] proved that deciding λ2,1(G) ≤ k is NP-complete for every

fixed k ≥ 4 and later Havet and Thomassé [40] proved that for any k ≥
4, it remains NP-complete when restricted to bipartite graphs (and even a

restricted family of bipartite graphs, i.e incidence graphs or first division of

graphs). When the span k is part of the input, the problem is nontrivial

for trees but a polynomial time algorithm based on bipartite matching was

presented in [15]. The problem is still solvable in polynomial time if the input

graph is outerplanar [49, 50].

Moreover, somewhat surprisingly, the problem becomes NP-complete for

series-parallel graphs [29], and thus the L(2, 1)-labelling problem belongs to

a handful of problems known to separate graphs of tree-width 1 and 2 by

P/NP-completeness dichotomy.

In this chapter we consider the following problem.

Problem 5.1 (Planar k-L(2, 1)-Labelling).

Let k ≥ 4 be fixed.

Instance: A planar graph G.

Question: Is there an L(2, 1)-labelling with span k?

Bodlaender et al. [7] showed that this problem is NP-complete if we re-

quire k ≥ 8 and k even. In the survey paper [14], it is suggested that the

problem is NP-complete for all k ≥ 8 due to [33]. However this does not

seem to be the case. In [33] there is a proof showing that the corresponding

problem where k is specified as part of the input is NP-complete. This proof

shows that the problem is NP-complete for certain fixed values of k. However

it is far from clear for which values of k this is true. The same authors also

show in [34] that the problem is NP-complete for k = 8.

In this chapter we first prove that Planar Cubic Two-Colourable Perfect

Matching, which we define in the next section, is NP-Complete. This result

was first stated by Schaefer [76] but without proof. In the second part of this

chapter we use this result in order to show that Problem 5.1 is NP-complete.

90

5.1 Preliminary results

The starting problem for our reductions is Not-All-Equal 3SAT, which is

defined as follows [76].

Definition 5.2 (Not-All-Equal 3SAT).

Instance: A set of clauses each having three literals.

Question: Can the literals be assigned value true or false so that each clause

has at least one true and at least one false literal?

In [76], it is shown that this problem is NP-complete.

Our reduction involves an intermediate problem concerning a special form

of two-colouring. In this section we define the intermediate problem and show

that it is NP-complete. When k = 4 or k = 5, the final stage of our reduction

is similar to the reduction in [30]. However we cannot use induction for higher

values of k in contrast with the situation in [30] and the problem from which

the reduction starts in [30] is not known to be NP-complete for planar graphs.

So considerably more work is required.

The following problem is also discussed in [76].

Problem 5.3 (Two-Colourable Perfect Matching).

Instance: A graph G.

Question: Is there a colouring of the vertices of G with colours black and

white in which every vertex has exactly one neighbour of the same colour?

In [76] it was shown that Two-Colourable Perfect Matching is NP-complete.

We are more interested in the case where the input is restricted to being a

planar cubic graph. We call this variant, Planar Cubic Two-Colourable Per-

fect Matching defined formally as follows [76].

Problem 5.4 (Planar Cubic Two-Colourable Perfect Match-

ing).

Instance: A planar cubic graph G.

Question: Is there a colouring of the vertices of G with colours black and

white in which every vertex has exactly one neighbour of the same colour?

91

Schaefer [76] states that this problem is NP-complete but does not give

the details of the proof. We call a colouring as required in Problem 5.4 a

two-coloured perfect matching. This section is devoted to the proof of this

result, using a reduction from Not-All-Equal 3SAT [76]. As far as we know,

no proof of this has ever been published.

We say that a colouring of the vertices of a graph with colours black and

white is an almost two-coloured perfect matching if every vertex of degree at

least two is adjacent to exactly one vertex of the same colour. We say an edge

is monochromatic if both endpoints have the same colour and dichromatic if

its endpoints have different colours.

a
b

c d

e hf g

i lj k

o p
q r

m n

Figure 5.1: Planar graph H .

Let H be the planar graph (see Fig. 5.1) with

V (H) = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r}

and

E(H) = {ab, bc, bd, ce, cf, dg, dh, ef, gh, ei, fj,

gk, hl, im, jk, ln, io, jo, oq, kp, pl, pr}.

H plays a key role in showing that Problem 5.4 is NP-complete. We need

the following lemma.

Lemma 5.5. Any almost two-coloured perfect matching of H has the follow-

ing properties.

• Exactly one of the edges ab, mi, ln is monochromatic.

92

• Vertices b, i, l receive the same colour.

• Vertices o, p, q, r receive the other colour to b, i, l.

Proof. Consider the triangles on the vertices c, e, f and g, h, d. In order to

obtain an almost two-coloured perfect matching exactly one of the edges

ce, ef and cf must be monochromatic. The same is true for the triangle on

the vertices g, h, d. Now consider the subgraph of H induced by the vertices

c, e, f, i, j, m, k, o, q. In Fig. 5.2 three of the six almost two-coloured perfect

matchings of this subgraph are depicted with monochromatic edges shown by

heavy lines. The other three two-coloured perfect matchings are obtained by

interchanging the colours. It follows that oq and pr must be monochromatic.

Figure 5.2: Three almost two-coloured perfect matchings of the subgraph of
H induced by the vertices c, e, f, m, i, j, k, o, q.

By symmetry the same applies to the subgraph of H induced by the

vertices d, g, h, j, k, l, n, p, r. Considering which pairs of these almost two-

coloured perfect matchings are compatible and extend to an almost two-

coloured perfect matching of H shows that there are only six possibilities. In

Fig. 5.3 three possible almost two-coloured perfect matchings are depicted.

The only other possible almost two-coloured perfect matchings are obtained

by interchanging the two colours. Clearly these all have the properties de-

scribed in the lemma.

We define what we call the clause gadget graph K as follows, see Fig. 5.4.

Take three copies of H , namely H1, H2 and H3. We label the vertices by

adding the subscript i ∈ {1, 2, 3} to the corresponding label of H . Now

identify a1, a2, a3 into a single vertex a, remove vertices m1, m2, m3, n1, n2, n3

93

Figure 5.3: Almost two-coloured perfect matchings of H .

and their incident edges and replace them with edges l1i2, l2i3, l3i1. Notice

that K is planar and every vertex has degree three, except for q1, q2, q3 and

r1, r2, r3.

a
b1

b2 b3

l1 i1

l3

i3

i2

l2

Figure 5.4: Planar clause gadget K.

Lemma 5.6. A two-colouring of
⋃3

t=1{ot, qt, pt, rt}∪{a} may be extended to

an almost two-coloured perfect matching of K if and only if

• For each t = 1, 2, 3, otqt, ptrt are monochromatic and ot, pt, qt, rt all

receive the same colour.

• For exactly two values of t = 1, 2, 3, the vertices ot, pt, qt, rt receive the

same colour as a.

Proof. We first show that any almost two-coloured perfect matching of K

must have the two properties in the lemma.

94

The first property is an immediate consequence of Lemma 5.5.

To show that the second property holds, recall that exactly one neighbour

of a must receive the same colour as a. Let bt1 for 1 ≤ t1 ≤ 3 be this

neighbour. Then from Lemma 5.5 we know that bt1 must have the opposite

colour to ot1 , pt1 , qt1 , rt1 . Since the other neighbours of a, namely bt2 and

bt3 for t2, t3 ∈ {1, 2, 3}\{t1}, receive the opposite colour to a, the vertices

ot2 , pt2 , qt2 , rt2 , ot3, pt3 , qt3 , rt3 must receive the same colour as a.

Now we show that any two-colouring of
⋃3

t=1{ot, qt, pt, rt, bt}∪{a} satisfy-

ing the conditions of the lemma may be extended to an almost two-coloured

perfect matching of K. Suppose without loss of generality, a is coloured black

and o1, p1, q1, r1 are coloured white. Then colour l1, i1 black and l2, i2, l3, i3

white. This colouring may be extended to an almost two-coloured perfect

matching using the colourings of Fig. 5.3 and the colourings obtained from

those in Fig. 5.3 by interchanging the colours.

We now move a step towards the main result of this section with the

following proposition.

Proposition 5.7. Problem 5.3 is NP-complete if the input is restricted to

cubic graphs.

Proof. Given an instance of Not-All-Equal 3SAT with clauses C1, . . . , Cm,

construct a graph as follows. For every clause C take a copy of the clause

gadget graph K and do the following. Suppose without loss of generality C

has literals x1, x2, x3. Label the two vertices of degree one of the subgraph

Hi of K(C) and their neighbours in Hi with xi.

Now for each literal x do the following. Suppose that literal x appears in

clauses Ci1, . . . , Cik . (If x appears twice or three times in a clause Cr then

add Cr twice or three times to this list.) For every j = 1, . . . , k − 1 remove

either one of the vertices of degree one labelled x from K(Cij) and from

K(Cij+1
) leaving two half-edges. Now identify these two half edges to form

an edge joining K(Cij) and K(Cij+1
). Finally do the same thing with the

remaining two edges labelled x in Cik and Ci1 . We call the graph obtained

G.

95

Now suppose that there is a solution S of the instance of Not-All-Equal

3SAT given. For all literals x in Not-All-Equal 3SAT, colour all vertices in

G that are labelled x with colour white if S(x) is true and black if S(x) is

false. We now show that this colouring can be extended to a two-coloured

perfect matching of G. First note that all edges joining copies of K are

monochromatic since their endpoints are labelled with the same literal. In

the next step colour the vertex a in each copy of K so that it has the same

colour as the vertices ot, pt for exactly two values of t = 1, 2, 3. This is

possible because for t = 1, 2, 3, ot, pt are labelled with literals x1, x2, x3 which

cannot have all the same value as they belong to one clause. By Lemma 5.6

we can extend the colouring of each copy of K to an almost two-coloured

perfect matching of K which yields a two-coloured perfect matching of G.

Now suppose there is a two-coloured perfect matching of G. By Lemma 5.6

the edges joining the copies of K must be monochromatic. All vertices in

G labelled with the same literal therefore must have the same colour and in

each copy of K, for exactly two values of t = 1, 2, 3, the vertices ot, pt receive

the same colour. It follows that if we assign to each literal x the value true if

it is the label of white vertices and false it is the label of black vertices then

we obtain a solution to Not-All-Equal 3SAT.

We call the edges joining copies of K identifying edges.

In order to prove that Problem 5.4 is NP-complete we still need to deal

with edges that cross. For this reason we define the uncrossing gadget U as

follows, see Fig. 5.5.

V (U) = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, z1, z2, z3, z4}

and

E(U) = {ab, bc, bg, ce, cd, ef, df, dh, gh, hi, gj, ij, fk, kl, km, ln, mn, mp,

io, op, or, pq, rq, ev, lv, wv, js, rt, st, sz1, tz1, z1z2, nu, qx, ux,

uz3, xz3, z3z4}.

96

z4

z3

u x

n q
l m rp

vw
k o

f i

e
d

j

h

c g

b

a

s

t

z1 z2

α

α

α′ α′

α α
β′ β ββ′

ββ α′ α′
α α

β′
β

β

β′

α′ α′

α

α

β′

β′

β β

Figure 5.5: Uncrossing gadget U and its possible almost two-coloured perfect
matchings where α, β ∈ {black, white} and α′, β ′ are the opposite colours to
α and β, respectively.

Lemma 5.8. There exists an almost two-coloured perfect matching of U if

and only if w, v, z1, z2 have the same colour and a, b, z3, z4 have the same

colour.

Proof. Consider the four-cycle on the vertices c, e, f, d in U . In a two-coloured

perfect matching exactly two of the vertices c, e, f, d must receive the colour

black and the other two must receive the colour white. There are two different

ways of colouring them. The first way is that exactly two of the edges in the

four-cycle are monochromatic, namely ce and df , or cd and ef . Then none of

the edges cb, dh, ev, fk can be monochromatic. The other way is that none of

the edges in the four-cycle is monochromatic and all of the edges cb, dh, ev, fk

are monochromatic. The analogous thing is true for any four-cycle in U .

We now prove that in any almost two-coloured perfect matching the edges

ab, wv, z1z2 and z3z4 are monochromatic. Suppose ab is dichromatic. Then

precisely one of bc and bg must be monochromatic. Without loss of generality

assume bc is monochromatic. Then the four-cycle on c, e, f, d cannot have

a monochromatic edge. It follows dh must be monochromatic. But then bg

must be monochromatic which is a contradiction. Thus ab and by symmetry

wv must be monochromatic. Now suppose z1z2 is dichromatic. It follows

that precisely one of sz1 and tz1 is monochromatic. Without loss of gen-

97

Figure 5.6: Sketch of the modification from the Not-All-Equal 3SAT problem
to a planar cubic graph .

erality assume tz1 is monochromatic. Then js must be monochromatic. It

follows that io must be monochromatic and so must rt. This is not possible.

Thus z1z2 and due to symmetry z3z4 must be monochromatic. Hence each

of the four-cycles (c, d, f, e), (g, h, i, j), (k, l, n, m), (o, p, q, r) contains exactly

two monochromatic edges. So vertices that are opposite of each other in

these four-cycles receive opposite colours. It is now easy to see that the only

possible colourings are as shown in Fig. 5.5 where α, β ∈ {black, white} and

α′ denotes the opposite colour to α and β ′ denotes the opposite colour to β.

The result then follows.

Our next result was originally stated without proof in [76]. To the best

of our knowledge no proof of this result has ever been published. In [76]

a reduction from Not-All-Equal 3SAT is used to show that the version of

Problem 5.4 where the input may be any graph is NP-complete. We use a

reduction from Not-All-Equal 3SAT in a similar way but with much more

complicated gadgets.

Theorem 5.9. Problem 5.4 is NP-complete.

Proof. Given an instance of Not-All-Equal 3SAT, construct the graph G as

98

in the proof of Proposition 5.7. This graph can be drawn in the plane so that

the only edges that cross are the identifying edges, each pair of identifying

edges crosses at most once and at most two edges cross at any point.

Now we replace the crossings one by one by replacing a pair of crossing

edges by the uncrossing gadget, see Fig. 5.6. Suppose γ and δ are two

edges that cross. We delete γ and δ and replace them with a copy of the

uncrossing gadget attaching w and z2 to the endpoints of γ, and a and z4 to

the endpoints of δ. We will also call the four pendant edges wv, ab, z1z2, z3z4

in the uncrossing graph identifying edges. After each replacement we can

draw the graph so that only identifying edges cross and such that there is

one fewer crossing. We continue until there are no more crossing edges.

The final graph can be constructed in polynomial time and is planar and

cubic. Each original identifying edge in G now corresponds to one or more

identifying edges with each consecutive pair being on opposite sides of a copy

of the uncrossing gadget. Lemma 5.8 shows that in a two-coloured perfect

matching all of these edges must be monochromatic and all the endpoints of

these edges have the same colour.

Now the argument in Proposition 5.7 shows that the final graph has a

two-coloured perfect matching if and only if the instance of Not-All-Equal

3SAT is satisfiable.

5.2 k-L(2, 1)-labelling for k ≥ 4 fixed

Let G be a planar cubic graph. In order to establish our main result we will

reduce Planar Cubic Two-Colourable Perfect Matching to Planar k-L(2, 1)-

Labelling for planar graphs for each k ≥ 4. From any planar cubic graph

G forming an instance of Planar Cubic Two-Colourable Perfect Matching,

we construct a graph K. As we see in the next section, the basic form of

K does not depend on k but is formed by constructing an auxiliary graph

H and then replacing each edge of H by a gadget which does depend on k.

In this section we define these gadgets and analyse certain L(2, 1)-labellings

of them. Each gadget has two distinguished vertices, which will always be

labelled u and v, corresponding to the endpoints of the edge that is replaced

99

in the auxiliary graph defined in the next section. These two vertices have

degree k − 1 in K. Any vertex of degree k − 1 must receive either label 0 or

k in a k-L(2, 1)-labelling because these are the only possible labels for which

there are k − 1 labels remaining to label the neighbours of that vertex, so

we will analyse the k-L(2, 1)-labellings of these gadgets in which u, v receive

label 0 or k.

5.2.1 λ2,1(G) = 4

In this subsection the gadget G4 is simply a path of length three. More

precisely the gadget G4 is given by

V (G4) = {u, au, av, v}

and

E(G4) = {uau, auav, avv}.

This gadget is used in [30], from where we get the following lemma.

Lemma 5.10. There is a 4-L(2, 1)-labelling L of G4 with L(u), L(v) ∈ {0, 4}
if and only if the following conditions are satisfied.

1. If (L(u), L(v)) = (0, 0), then (L(au), L(av)) ∈ {(2, 4), (4, 2)}.

2. If (L(u), L(v)) = (4, 4), then (L(au), L(av)) ∈ {(0, 2), (2, 0)}.

3. If (L(u), L(v)) = (4, 0), then (L(au), L(av)) = (1, 3).

4. If (L(u), L(v)) = (0, 4), then (L(au), L(av)) = (3, 1).

5.2.2 λ2,1(G) = 5

Let G5 be the graph depicted in Fig. 5.7.

V (G5) = {u, au, av, v, bu, bv, c, d, e1, e2, e3, f, g1, g2}

100

u vau av

bvbu c

d e3

e1e2

f

g1 g2

Figure 5.7: The edge gadget G5.

and

E(G5) = {uau, auav, avv, aubu, avbv, buc, bvc, cd, de1, de2, de3, e1f, e2f, fg1, fg2}.

Lemma 5.11. There is a 5-L(2, 1)-labelling L of G5 with L(u), L(v) ∈ {0, 5}
if and only if the following conditions are satisfied.

1. If (L(u), L(v)) = (0, 0), then (L(au), L(av)) ∈ {(2, 5), (5, 2), (3, 5), (5, 3)}.

2. If (L(u), L(v)) = (5, 5), then (L(au), L(av)) ∈ {(3, 0), (0, 3), (2, 0), (0, 2)}.

3. If (L(u), L(v)) = (0, 5), then (L(au), L(av)) = (4, 1).

4. If (L(u), L(v)) = (5, 0), then (L(au), L(av)) = (1, 4).

Proof.

1. By the definition of L(2, 1)-labelling, L(au) and L(av) are both in

{2, 3, 4, 5}. As |L(au)−L(av)| ≥ 2, (L(au), L(av)) ∈ {(2, 4), (4, 2), (2, 5),

(5, 2), (3, 5), (5, 3)}.

Suppose for a contradiction that (L(au), L(av)) ∈ {(2, 4), (4, 2)}. By

symmetry, we may assume that (L(au), L(av)) = (2, 4). Then L(bu) = 5

and L(bv) = 1. The vertices d and f have degree four and thus must

receive labels from {0, 5}. Because d(bu, d) = 2 we must have L(d) = 0

and because d(d, f) = 2 we must have L(f) = 5. This implies that

{L(e1), L(e2)} = {2, 3}. But then vertex c cannot be labelled, giving a

contradiction. An L(2, 1)-labelling is obtained if (L(au), L(av)) = (5, 2)

101

and L(bu) = 3, L(bv) = 4, L(c) = 0, L(d) = 5, L(e3) = 1, L(e2) = 2,

L(e1) = 3, L(f) = 0 L(g1) = 5 and L(g2) = 4 or if (L(au), L(av)) =

(5, 3) and L(bu) = 2, L(bv) = 1, L(c) = 4, L(d) = 0, L(e3) = 5,

L(e2) = 2, L(e1) = 3, L(f) = 5 L(g1) = 0 and L(g2) = 1. The other

cases follow by symmetry.

2. Analogous to (i).

3. By the definition of L(2, 1)-labelling, L(au) ∈ {2, 3, 4} and L(av) ∈
{1, 2, 3}. As |L(au)−L(av)| ≥ 2, (L(au), L(av)) ∈ {(4, 1), (4, 2), (3, 1)}.
Suppose for a contradiction that (L(au), L(av)) 6= (4, 1). By the label

symmetry x 7→ 5 − x, we may assume that (L(au), L(av)) = (4, 2).

Hence L(bu) = 1 and L(bv) = 0. Now the vertices d and f have degree

four and thus L(d) = 0, L(f) = 5 or L(d) = 5, L(f) = 0. As d(bv, d) =

2, L(d) = 5 and as d(d, f) = 2, L(f) = 0. Now {L(e1), L(e2)} = {2, 3}.
But then vertex c cannot be labelled, a contradiction. An L(2, 1)-

labelling is obtained if (L(au), L(av)) = (4, 1) and L(bu) = 2, L(bv) = 3,

L(c) = 0, L(d) = 5, L(e3) = 1, L(e2) = 2, L(e1) = 3, L(f) = 0

L(g1) = 5 and L(g2) = 4.

4. Analogous to (iii).

5.2.3 λ2,1(G) ≥ 6

In this subsection we introduce for any k ≥ 6 the gadget Gk and consider

some of its L(2, 1)-labellings. The gadgets G6 and G7 are depicted in Fig. 5.8

and in Fig. 5.9, respectively.

Let H ′ be defined as follows, see Fig. 5.10.

V (H ′) = {c, d, e, f1, . . . , fk−3, g, h, i}

102

u vau av

b1

Figure 5.8: The edge gadget G6.

u vau av

b2

b1

Figure 5.9: The edge gadget G7.

and

E(H ′) = {cd, de, hg, gi, gf1, . . . , gfk−3, df1, . . . , dfk−3}.

Lemma 5.12. For any k ≥ 6 the graph H ′ is planar and there exists an

L(2, 1)-labelling L of H ′ with span k if and only if

(L(c), L(d)) ∈ {(0, k), (1, k), (k − 1, 0), (k, 0)}.

Proof. As seen from Fig. 5.10, H ′ is planar for k = 6. For any higher k we

need to connect k − 6 paths of length two at d and g to the graph H ′ in

103

c

d e

f1f2f3

g

h i

Figure 5.10: The graph H ′ for k = 6.

Fig. 5.10. So H ′ is planar for any k ≥ 6.

If L is a k-L(2, 1)-labelling of H ′ then {L(g), L(d)} = {0, k} because g

and d have degree k − 1 and d(g, d) = 2. It follows that {f1, . . . , fk−3} =

{2, . . . , k − 2}. Suppose that L(d) = 0 and L(g) = k. Then {L(h), L(i)} =

{1, 0}, {L(c), L(e)} = {k − 1, k}. Similarly if L(d) = k and L(g) = 0, then

{L(h), L(i)} = {k − 1, k}, {L(c), L(e)} = {0, 1}.

We now define the graph Gk for k ≥ 6. Take a path of length three with

vertices u, ua, av, v and edges uau, auav, avv. Add vertices b1, . . . , bk−5, with

each joined to au and av. Now for each i = 1, . . . , k−5, add two copies of H ′

with the vertex labelled c in each copy joined to bi. So each of b1, . . . , bk−5

has degree four. To refer to the vertices in the two copies of H ′ attached to

bi, we add a subscript of (l, i) to the name of the vertices in one copy of H ′

and (r, i) to the name of the vertices in the other copy of H ′. Notice that Gk

is planar.

Lemma 5.13. There exists a k-L(2, 1)-labelling L of Gk with L(u) = L(v) =

0 if and only if (L(av), L(au)) ∈ {(2, k), (k, 2), (k − 2, k), (k, k − 2)}.

Proof. First notice that we need k− 5 different colours to colour the vertices

b1, . . . , bk−5 as they are all at distance two from each other. We first show

that there exists a k-L(2, 1)-labelling L of Gk with L(u) = L(v) = 0 and

(L(au), L(av)) ∈ {(2, k), (k, 2), (k − 2, k), (k, k − 2)}. The first case is when

L(au) = 2 and L(av) = k. Take L(bj) = j + 3 for j = 1, . . . , k − 5. A k-

L(2, 1)-labelling is obtained by setting L(dl,j) = L(dr,j) = k and L(cl,j) = 0

104

and L(cr,j) = 1 for 1 ≤ j ≤ k − 5 and then using Lemma 5.12 to give a valid

labelling of the rest of the graph.

A similar argument shows that we may take (L(au), L(av)) = (k, 2).

The second case is L(au) = k − 2 and L(av) = k. Take L(bj) = j + 1

for j = 1, . . . , k − 5. A k-L(2, 1)-labelling is obtained by setting L(dl,j) = 0,

L(dr,j) = k and L(cl,j) = k − 1 and L(cr,j) = 0 for 1 ≤ j ≤ k − 5 and then

using Lemma 5.12 to give a valid labelling of the rest of the graph.

A similar argument shows that we may take (L(au), L(av)) = (k, k − 2).

Next we show that there is no k-L(2, 1)-labelling L of Gk with L(u) =

L(v) = 0 and (L(av), L(au)) 6∈ {(2, k), (k, 2), (k − 2, k), (k, k − 2)}. Assume

without loss of generality that L(au) < L(av). Suppose first that 3 ≤ L(au) ≤
k − 3 and L(av) = k. Note that for any j by considering the proximity

of bj to u and av, we see that bj cannot be labelled with 0, k − 1 or k.

Furthermore we cannot have bj = 1 because then {L(cl,j), L(cr,j)} = {k, k −
1}. But they are both at distance two from av which is labelled k, so this

is not possible. So b1, . . . , bk−5 must receive distinct labels from {2, . . . , k −
2}\{L(au)−1, L(au), L(au)+1}, but this only gives k−6 labels which is not

enough.

Now suppose L(av) 6= k and 2 ≤ L(au) ≤ L(av) − 2 ≤ k − 3. Note

that for any j, bi cannot be labelled with 0. Furthermore bj cannot be

labelled k as then {L(cl,j), L(cr,j)} = {0, 1} and L(dl,j) = L(dr,j) = k but

this is invalid. So b1, . . . , bk−5 must receive distinct labels from {1, . . . , k −
1}\{L(au) − 1, L(au), L(au) + 1, L(av) − 1, L(av), L(av) + 1}. This is only

possible if L(au) = k − 3 and L(av) = k − 1. Then {L(b1), . . . , L(bk−5)} =

{1, . . . , k − 5}. However if L(bj) = 1 then {L(cl,j), L(cr,j)} = {k − 1, k}. But

this is invalid as L(av) = k − 1.

Analogously we obtain the following lemma.

Lemma 5.14. There exists a k-L(2, 1)-labelling L of Gk with L(u) = L(v) =

k if and only if (L(av), L(au)) ∈ {(2, 0), (0, 2), (k − 2, 0), (0, k − 2)}.

Lemma 5.15. There exists a k-L(2, 1)-labelling L of Gk with L(u) = k and

L(v) = 0 if and only if (L(av), L(au)) = (k − 1, 1).

105

Proof. Let l1 = min{L(au), L(av)} and l2 = max{L(au), L(av)}. The vertices

b1, . . . , bk−5 must be labelled with distinct labels from S = {1, . . . , k−1}\{l1−
1, l1, l1 + 1, l2 − 1, l2, l2 + 1}. The only way that this set can contain k − 5

elements is if (l1, l2) = (1, k − 1), (l1, l2) = (1, 3) or (l1, l2) = (k − 3, k − 1).

We first show that there exists a k-L(2, 1)-labelling L of Gk with L(u) =

k, L(v) = 0 and (L(av), L(au)) = (k − 1, 1).

We need {L(b1), . . . , L(bk−5)} = {3, . . . , k − 3}. Then let L(cl,j) = 0,

L(dl,j) = k, L(cr,j) = k and L(dl,j) = 0 for 1 ≤ j ≤ k− 5. So by Lemma 5.12

we obtain a valid labelling.

Next we show that there is no k-L(2, 1)-labelling of Gk with L(u) = k

and L(v) = 0 and (L(av), L(au)) 6= (k − 1, 1).

Assume that l1 = 1 and l2 = 3 so L(av) = 3 and L(au) = 1. Then the

vertices b1, . . . , bk−5 must take distinct labels from {5, . . . , k−1}. However if

bj is labelled k−1 the only label cl,j and cr,j can be labelled with is 0 but cl,j

and cr,j must have distinct labels. Therefore this labelling is not possible.

Now suppose l1 = k−3 and l2 = k−1 then L(av) = k−1 and L(au) = k−3.

Then the vertices b1, . . . , bk−5 must take distinct labels from {1, . . . , k − 5}.
However if bj is labelled 1 the only label cl,j and cr,j can be labelled with is

k but cl,j and cr,j must have distinct labels. Therefore this labelling is not

possible.

5.2.4 Summary

The following theorem summarises the results of this section and follows

immediately from Lemmas 5.10, 5.11, 5.13, 5.14 and 5.15.

Theorem 5.16. Let k ≥ 4 be fixed. There is a k-L(2, 1)-labelling L of Gk

with L(u), L(v) ∈ {0, k} if and only if the following conditions are satisfied.

1. If (L(u), L(v)) = (0, 0), then (L(au), L(av)) ∈ {(2, k), (k, 2), (k − 2, k),

(k, k − 2)}.

2. If (L(u), L(v)) = (k, k), then (L(au), L(av)) ∈ {(2, 0), (0, 2), (k − 2, 0),

(0, k − 2)}.

3. If (L(u), L(v)) = (k, 0), then (L(au), L(av)) = (1, k − 1).

106

4. If (L(u), L(v)) = (0, k), then (L(au), L(av)) = (k − 1, 1).

5.3 k-L(2, 1)-labelling for planar graphs is NP-

complete for k ≥ 4

We reduce Planar Cubic Two-Colourable Perfect Matching to Planar k-

L(2, 1)-Labelling. Suppose we are given a cubic planar graph G correspond-

ing to an instance of Planar Cubic Two-Colourable Perfect Matching. From

G we construct a graph K which has the property that K has a k-L(2, 1)-

labelling if and only if G has a two-coloured perfect matching.

In order to show this we also construct an auxiliary graph H and define

what we call a coloured orientation. Then we show that G has a two-coloured

perfect matching if and only if H has a coloured orientation and finally that

H has a coloured orientation if and only if K has a k-L(2, 1)-labelling.

H is obtained by replacing every edge of G with the gadget as depicted

in Fig. 5.11, where the endpoints of the edge being replaced are u, v.

u a

b

d
c v

in

out

Figure 5.11: An auxiliary edge.

The gadget has two special vertices labelled in and out, which we call the

invertex and the outvertex and we explain in a moment. The edges incident

with them are called the inedge and outedge, respectively. We use the phrase

auxiliary edge to refer to a subgraph of H that has replaced an edge of G, that

is, any of the copies of the gadget from Fig. 5.11. A coloured orientation of an

auxiliary graph H is a colouring of the vertices of H with black and white and

an orientation of some of the edges satisfying certain properties. The indegree

and outdegree of a vertex v are the number of edges oriented towards v and

the number of edges oriented away from v, respectively. Unoriented edges are

107

not counted towards indegree and outdegree. A coloured orientation must

satisfy the following properties.

• Every vertex is adjacent to at most one vertex of the opposite colour.

• An edge is oriented if and only if it is monochromatic.

• Every vertex except those labelled out has outdegree at most two and

indegree at most one.

• Every vertex labelled out has indegree zero.

We say a coloured orientation is good if every vertex of degree three is ad-

jacent to precisely one vertex of the opposite colour and has indegree and

outdegree one.

Lemma 5.17. Let G be a cubic planar graph and let H be the corresponding

auxiliary graph. If G has a two-coloured perfect matching then H has a good

coloured orientation.

Proof. First colour the vertices of H that were present in G with the same

colour that they receive in G.

We next colour the vertices of auxiliary edges where both endpoints of

the corresponding edge in G receive the same colour. The in- and outvertex

receive the same colour as the endpoints of the corresponding edge in G and

the vertices on the four-cycle receive the opposite colour. We orient this cycle

to form a directed cycle, see Fig. 5.12.

u v

in

out

Figure 5.12: Good coloured orientation of an auxiliary edge if u and v receive
the same colour.

Now we colour all the other vertices and orient edges as follows. Vertices

remaining uncoloured all belong to auxiliary edges for which the endpoints

108

v

w3

w1w2

Figure 5.13: Assignment of a good coloured orientation on H .

of the corresponding edge in G are coloured differently in G. We start by

choosing an auxiliary edge e between a black vertex v and a white vertex

w1 of G. In G, v has two white neighbours and one black neighbour. Call

the other white neighbour w2. Colour the outvertex of e black and orient

the edge incident with it away from the outvertex. Now follow the shortest

path from the outvertex, through v and to the invertex of the auxiliary edge

vw2. Colour every uncoloured vertex on this path black and orient every

edge consistently with the path. At each stage of this colouring/orientation

process we will colour and orient a path like this from an outvertex of an

auxiliary edge, through a vertex present in G to an invertex of a neighbouring

auxiliary edge, see Fig. 5.13. It only remains to describe how to choose the

outvertex and invertex pair forming the endpoints of each path. The first

pair is chosen as above. Otherwise, if at some stage, we colour an invertex

of an auxiliary edge f with colour c and the outvertex f is still uncoloured

then at the next stage we form a path from the outvertex of f colouring the

vertices on it with the opposite colour to c. If the outvertex of f has already

been coloured then we choose another auxiliary edge for which the outvertex

is uncoloured. This method ensures that at each stage there is at most one

auxiliary edge with the outvertex coloured and the invertex uncoloured and

at most one auxiliary edge with the outvertex not coloured but the invertex

coloured. Such an uncoloured outvertex is always the next one to be coloured.

109

Due to the construction process, every vertex of H which is also present

in G is adjacent to exactly one vertex of the opposite colour and has indegree

and outdegree one. Clearly the same is true for all vertices of degree three of

auxiliary edges where both endpoints of the corresponding edge in G receive

the same colour. Now consider an auxiliary edge which corresponds to a

dichromatic edge e in G. Due to the colouring/orientation process the inver-

tex and outvertex must receive opposite colours and the shortest path from

each of them to the endpoints of e with the same colour is monochromatic.

It follows that all vertices of degree three on the auxiliary edge must be ad-

jacent to exactly one vertex of the opposite colour and have indegree and

outdegree one, see Fig. 5.13. Therefore the method yields a good coloured

orientation.

Lemma 5.18. Let G be a cubic planar graph and let H be the corresponding

auxiliary graph. If H has a coloured orientation, then it has a good coloured

orientation.

Proof. Consider the possible coloured orientations of an auxiliary edge. Be-

cause each vertex is adjacent to at most one of the opposite colour the only

ways in which the four-cycle of an auxiliary edge may be coloured are with

all four vertices receiving the same colour or with a pair of adjacent vertices

receiving one colour and the other pair receiving the opposite colour. In the

first case we may change the colours of the invertex and outvertex (if neces-

sary) to be the opposite colour to that of the vertices in the four-cycle. (We

also remove the orientation of the inedge and outedge if necessary.) In this

way both the inedge and the outedge are dichromatic. In the second case the

fact that each vertex is adjacent to at most one vertex of the opposite colour

forces both the invertex and the outvertex to have the same colour as their

neighbour.

From now on we will assume we have a coloured orientation with each

auxiliary edge being coloured in this way. We will show that if H has a

coloured orientation then it has a good coloured orientation. Let H ′ be

formed from H by deleting all the dichromatic, or equivalently unoriented

edges and consider a connected component C of H ′. In H ′ every vertex has

110

outdegree at most two and indegree at most one. So C is either an isolated

vertex, a directed circuit with a number of trees rooted on the circuit and

directed away from the circuit or a directed rooted tree in which all edges

are oriented away from the root. Bearing in mind the constraints on the in-

and outdegree of the vertices, we see that every vertex of degree three in the

auxiliary graph has total degree at least two in H ′. Leaves of H ′ correspond

to invertices and roots with degree one correspond to either invertices or

outvertices. Notice that the isolated vertices of H ′ can only be invertices or

outvertices and by the remarks at the beginning of the proof exactly half

of the isolated vertices are invertices. Hence the numbers of invertices and

outvertices appearing in H ′ that are not isolated are equal. So the number of

leaves of H ′ is at most the number of roots of tree components. Consequently

each connected component of H ′, that is not just an isolated vertex, is either

a path beginning at an ouvertex and ending at an invertex or a directed

circuit. So every vertex of degree three in the auxiliary graph has one out-

neighbour, one in-neighbour and one incident unoriented edge. Therefore the

coloured orientation is good.

Lemma 5.19. Let G be a cubic planar graph and let H be the corresponding

auxiliary graph. If H has a good coloured orientation then G has a two-

coloured perfect matching.

Proof. Consider a vertex v of G and let w1, w2 and w3 be its neighbours

in G. Suppose without loss of generality that v is coloured black in the

good coloured orientation of H . We will show that in H , two of the vertices

w1, w2, w3 are coloured white and one is coloured black. Then we only need

to assign to any vertex in G the colour it receives in the good coloured

orientation in H to obtain a two-coloured perfect matching of G.

Vertex v has two black neighbours and one white neighbour in H . In

the proof of Lemma 5.18 we showed that in a good coloured orientation a

terminal vertex of an auxiliary edge receives the opposite colour to the unique

neighbour in the auxiliary edge of the other terminal vertex of the auxiliary

edge. Thus two of the vertices w1, w2, w3 must be coloured white and the

other one black.

111

Now given an instance G of Planar Cubic Two-Colourable Perfect Match-

ing, we define an instance K of k-L(2, 1)-labelling. First form the auxiliary

graph H . For every vertex v of H add sufficient vertices of degree one with

edges joining them to v to ensure that v has degree k − 1. Now replace each

edge that was originally present in H by the gadget Gk identifying the ver-

tices u, v of Gk with the two endpoints of edges of H being replaced. Finally

for each outvertex v choose a neighbour w of v with degree one and add k−2

vertices of degree one joined to w. To illustrate this, suppose that in G, v is

adjacent to w1, w2, w3. In Fig. 5.14 we show how the neighbourhood of v is

modified in K. Note that K can be constructed from G in time O(n).

v

w1w1

w3w3 w2w2

v ∈ K

v

v ∈ G

Figure 5.14: Construction of graph K from G for k = 4.

Lemma 5.20. Let G be a cubic planar graph and let H be the corresponding

auxiliary graph. Let K be the instance of k-L(2, 1)-labelling constructed from

G as described above. Then H has a good coloured orientation if and only if

K has a k-L(2, 1)-labelling.

Proof. Suppose that K has a k-L(2, 1)-labelling L. We now describe how

to obtain a coloured orientation of H from L. Any vertex in H corresponds

to a vertex of degree k − 1 in K and so must be coloured 0 or k. Colour a

vertex of H white if it corresponds to a vertex labelled 0 in K and black if

it corresponds to vertex labelled k in K.

112

We orient some of the edges of H as follows. If uv is an edge of H then

there is a path u, au, av, v between u, v in K where u is adjacent to au and v

is adjacent to av. Orient the edge uv from u to v if and only if av ∈ {0, k}
and orient it from v to u if and only if au ∈ {0, k}. From Theorem 5.16 it

follows that in our colouring of H , each vertex of H is adjacent to at most one

vertex of the opposite colour, and an edge is oriented if and only if it joins two

vertices of the same colour. Consider a vertex v ∈ H . All neighbours of v in

K must receive different colours, so in H , v has at most one incoming edge,

and at most two out-going edges. Finally let u be an outvertex of H . Then u

is part of exactly one copy of the gadget Gk and has a neighbour w of degree

k − 1 that is not part of this copy of Gk. We have {L(u), L(w)} = {0, k}
which means that no other neighbour of u is labelled 0 or k and hence u has

indegree 0. Therefore H has a coloured orientation and by Lemma 5.18, H

has a good coloured orientation.

Now suppose that H has a good coloured orientation. We will show how

to construct a k-L(2, 1)-labelling L of K. First label all vertices v in K that

appear in H , so that L(v) = 0 if v is coloured white in H and otherwise

L(v) = k. Next give labels to all the remaining vertices that appear in a

copy of the gadget Gk. Let uv be an edge of H and suppose without loss of

generality that L(u) = 0. Let u, au, av, v be the path of length three from u

to v in K. If uv is not oriented, let L(au) = k − 1 and L(av) = 1. If uv is

oriented from u to v then let L(au) = 2, L(av) = k and if uv is oriented from

v to u then let L(au) = k, L(av) = 2. Furthermore if w ∈ V (H) then, because

we start from a good coloured orientation of H , its three neighbours in K

receive different labels. Then Theorem 5.16 shows that L may be extended

so that any vertex appearing in a copy of Gk receives a label. For each

outvertex, its neighbour of degree k − 1 must be labelled. This can be done

because each edge in H adjacent to an outvertex x is oriented away from x,

so one of the labels 0, k is always available. Finally the vertices of degree

one form an independent set and are all adjacent to vertices of degree k − 1

that have received label 0 or k. So they may be labelled. Hence K has a

k-L(2, 1)-labelling.

We now return to the main problem of this chapter. The following the-

113

orem which is the main statement of this chapter follows immediately from

Theorem 5.9 and Lemmas 5.17, 5.18, 5.19 and 5.20.

Theorem 5.21. Problem 5.1 is NP-complete.

114

Chapter 6

Conclusion and open problems

In Chapter 2 we calculated the expected clustering coefficient of the Móri

graph for β > 0. Bollobás and Riordan essentially calculated the expected

clustering coefficient of the Móri graph for β = 0. However determining the

expected clustering coefficient of the Móri graph for −1 < β < 0 remains an

open problem.

Furthermore it remains an open question whether the proof in Chapter 3.6

can be generalised to show that the search algorithm S0 is also optimal for the

Móri graph for any m ≥ 1. In this case it would follow that a lower bound for

the expected searching time in the Móri graph is Ω(n) in the strong model.

In Chapter 4 we showed that, given a graph G and an integer k, it is

NP-complete to determine whether G can be oriented so that the Wiener

Index is at most k. Furthermore we gave a linear time algorithm that for a

fixed l decides for a planar graph G whether there is an orientation of G so

that its diameter is at most l. Recall Problem 4.4

Instance: A planar graph G and integer k.

Question: Is there an orientation of G so that the Wiener Index of ~G is at

most k?

and the following problem

Instance: A planar graph G with maximum degree three, integer k.

Question: Is there an orientation of G so that the Wiener Index of ~G is at

most k?

Our first two open questions are to determine their complexity.

115

In Chapter 5 we proved the NP-completeness of Planar k-L(2, 1)-labelling

by reduction of Planar Cubic Two-Colourable Perfect Matching to Planar k-

L(2, 1)-labelling. However the proof could be significantly simplified if it

could be proven that the following problem is NP-complete.

Problem 6.1.

Instance: A planar cubic graph G.

Question: Is there a black and white colouring of G so that every vertex is

adjacent to exactly two vertices of the same colour and one of the opposite

colour?

This problem with cubic graphs as an input was shown to be NP-complete

in [52]. It then was used in [30] to show the NP-completeness of 4-L(2, 1)-

labelling for general graphs. If Problem 6.1 was proven to be NP-complete

the NP-completeness of Planar 4-L(2, 1)-labelling could be proven with the

same methods as the NP-completeness of 4-L(2, 1)-labelling was proven for

general graphs in [30]. For any k ≥ 5 the NP-completeness of Planar k-

L(2, 1)-labelling then could be proven by replacing the gadget G4 in the proof

for the NP-completeness of Planar 4-L(2, 1)-labelling by Gk and applying a

very much simplified version of the orientation argument used in Chapter 5.3.

116

Bibliography

[1] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman.
Search in power law networks. Physical Reviews E, 64:1–8, 2001.

[2] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier.
Fixed parameter algorithms for dominating set and related problems on
planar graphs. Algorithmica, 33:461–493, 2002.

[3] A.-L. Barabási and R. Albert. Emergence of scaling in random networks.
Science, 286:509–512, 1999.

[4] A.-L. Barabási and R. Albert. Statistical mechanics of complex net-
works. Reviews of Modern Physics, 74:47–97, 2002.

[5] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica,
11:1–21, 1993.

[6] H. L. Bodlaender. A linear-time algorithm for finding tree-
decompositions of small treewidth. SIAM Journal on Computing,
25:1305–1317, 1996.

[7] H. L. Bodlaender, T. Kloks, R. B. Tan, and J. van Leeuwen. Approx-
imations for λ-coloring of graphs. The Computer Journal, 47:193–204,
2004.

[8] F. Boesch and R. Tindell. Robbins’ theorem for mixed multigraphs.
American Mathematical Monthly, 87:716–719, 1980.

[9] B. Bollobás and O. Riordan. The diameter of a scale-free random graph.
Combinatorica, 24:5–34, 2004.

[10] B. Bollobás and O. M. Riordan. Mathematical results on scale-free
random graphs. In S. Bornholdt and H. G. Schuster, editors, Handbook
of Graphs and Networks: From the Genome to the Internet, pages 1–34.
Wiley-VCH, Berlin, 2003.

[11] B. Bollobás, O. M. Riordan, J. Spencer, and G. Tusnády. The degree
sequence of a scale-free random graph process. Random Structures and
Algorithms, 18:279–290, 2001.

117

[12] B. Bollobás and A. Scott. Separating systems and oriented graphs of
diameter two. Journal of Combinatorial Theory, Series B, 97:193–203,
2007.

[13] P. G. Buckley and D. Osthus. Popularity based random graph models
leading to a scale-free degree sequence. Discrete Mathematics, 282:53–
63, 2004.

[14] T. Calamoneri. The L(h, k)-labelling problem: A survey and annotated
bibliography. The Computer Journal, 49:585–608, 2006.

[15] G. J. Chang and D. Kuo. The L(2, 1)-labeling problem on graphs. SIAM
Journal on Discrete Mathematics, 9:309–316, 1996.

[16] F. Chung and L. Lu. Connected components in random graphs with
given degree sequences. Annals of Combinatorics, 6:125–145, 2002.

[17] F. Chung and L. Lu. The average distance in a random graph with given
expected degrees. Internet Mathematics, 1:91–114, 2003.

[18] F. Chung and L. Lu. The volume of the giant component of a random
graph with given expected degrees. SIAM Journal on Discrete Mathe-
matics, 20:395–411, 2006.

[19] V. Chvátal and C. Thomassen. Distances in orientations of graphs.
Journal of Combinatorial Theory Series B, 24:61–75, 1978.

[20] C. Cooper and A. Frieze. A general model of web graphs. Random
Structures and Algorithms, 22:311–335, 2003.

[21] C. Cooper, R. Klasing, and M. Zito. Lower bounds and algorithms for
dominating sets in web graphs. Internet Mathematics, 2:275–300, 2005.

[22] E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos. Bidi-
mensional parameters and local treewidth. SIAM Journal on Discrete
Mathematics, 18:501–511, 2004.

[23] S. N. Dorogovtsev, J. F. Mendes, and A. N. Samukhin. Structure of
growing networks with preferential linking. Physical Review Letters,
85:4633–4636, 2000.

[24] E. Drinea, M. Enachescu, and M. Mitzenmacher. Variations on ran-
dom graph models for the web. Technical report, Harvard U., Dept. of
Computer Science, 2001.

118

[25] P. Duchon, N. Eggemann, and N. Hanusse. Brief annoucement: Non-
searchability of random power-law graphs. In Proceedings of the 26th
Annual ACM Symposium on Principles of Distributed Systems, pages
380–381, 2007.

[26] P. Duchon, N. Eggemann, and N. Hanusse. Non-searchability of ran-
dom power-law graphs. In Proceedings of 11th International Conference
on Principles of Distributed Systems, volume 4878 of Lecture Notes in
Computer Science, pages 274–285. Springer-Verlag, 2007.

[27] R. Durrett. Random Graph Dynamics. Cambridge University Press,
2006.

[28] N. Eggemann and S. D. Noble. Minimizing the oriented diameter of a
planar graph. Electronic Notes in Discrete Mathematics, 34:267–271,
2009.

[29] J. Fiala, P. Golovach, and J. Kratochv́ıl. Distance constrained labelings
of graphs of bounded treewidth. In Proceedings of ICALP 2005, volume
3580 of Lecture Notes in Computer Science, pages 360–372. Springer-
Verlag, 2005.

[30] J. Fiala, T. Kloks, and J. Kratochv́ıl. Fixed-parameter complexity of
λ-labelings. Discrete Applied Mathematics, 113:59–72, 2001.

[31] F. V. Fomin, M. Matamala, and I. Rapaport. Complexity of approximat-
ing the oriented diameter of chordal graphs. Journal of Graph Theory,
45:255–269, 2004.

[32] F. V. Fomin and D. M. Thilikos. Dominating sets in planar graphs:
branch-width and exponential speed-up. SIAM Journal on Computing,
36:281–309, 2006.

[33] D. A. Fotakis, S. E. Nikoletseas, V. G. Papadopoulou, and P. G. Spirakis.
NP-completeness results and efficient approximations for radiocoloring
in planar graphs. In Proceedings of the 25th International Symposium on
Mathematical Foundations of Computer Science, volume 1893 of Lecture
Notes In Computer Science, pages 363–372. Springer-Verlag, 2000.

[34] D. A. Fotakis, S. E. Nikoletseas, V. G. Papadopoulou, and P. G. Spi-
rakis. Radiocoloring in planar graphs: Complexity and approximations.
Theoretical Computer Science, 340:514–538, 2005.

[35] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

119

[36] J. R. Griggs and R. K. Yeh. Labelling graphs with a condition at distance
2. SIAM Journal on Discrete Mathematics, 5:586–595, 1992.

[37] G. Gutin. m-sources in complete multipartite graphs. (in Russian)
Seryya Fīzīka-Matèmatychnykh Navuk, 5:101–106, 1989.

[38] G. Gutin. Minimizing and maximizing the diameter in orientation of
graphs. Graphs and Combinatorics, 10:225–230, 1994.

[39] G. Gutin. Cycles and paths in semicomplete multipartite digraphs, the-
orems and algorithms: a survey. Journal of Graph Theory, 19:481–505,
1995.

[40] F. Havet and S. Thomassé. Complexity of (p, 1)-total labelling. Sub-
mitted.

[41] B. J. Kim, C. N. Yoon, S. K. Han, and H. Jeong. Path finding strategies
in scale-free networks. Physical Review E, 65:1–4, 2002.

[42] J. Kleinberg. The small-world phenomenon: An algorithmic perspec-
tive. In Proceedings of the ACM Symposium on Theory of Computing
(STOC), pages 163–170, 2000.

[43] J. Kleinberg. Complex networks and decentralized search algorithms.
In Proceedings of the International Congress of Mathematicians(ICM),
pages 1019–1033, 2006.

[44] K. M. Koh and B. P. Tan. The diameter of an orientation of a complete
multipartite graph. Discrete Mathematics, 149:131–139, 1996.

[45] K. M. Koh and B. P. Tan. The minimum diameter of orientations of
complete multipartite graphs. Graphs and Combinatorics, 12:333–339,
1996.

[46] K. M. Koh and E. G. Tay. On optimal orientations of cartesian products
of even cycles. Networks, 32:299–306, 1998.

[47] K. M. Koh and E. G. Tay. On a conjecture concerning optimal orienta-
tions of the cartesian product of a triangle and an odd cycle. Discrete
Mathematics, 232:153–161, 2001.

[48] K. M. Koh and E. G. Tay. Optimal orientations of graphs and digraphs:
A survey. Graphs and Combinatorics, 18:745–756, 2002.

[49] A. E. Koller. The Frequency Assignment Problem. PhD thesis, Brunel
University, 2005.

120

[50] A. E. Koller, S. D. Noble, and A. Yeo. Computing the minimum span
of an L(2,1)-labelling of an outerplanar graph. In preparation.

[51] J. C. Konig, D. W. Krumme, and E. Lazard. Diameter-preserving ori-
entations of the torus. Networks, 32:1–11, 1998.

[52] J. Kratochv́ıl, A. Proskurowski, and J. A. Telle. Covering directed multi-
graphs I. colored directed multigraphs. In Graph-Theoretical Concepts
in Computer Science, Proceedings of the 23rd WG ’97, volume 1335 of
Lecture Notes in Computer Science, pages 242–257. Springer, 1997.

[53] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins,
and E. Upfal. Stochastic models for the web graph. In Symposium on
Foundations of Computer Science, pages 57–65, 2000.

[54] R. E. Ladner. On the structure of polynomial time reducibility. Journal
of the ACM, 22:155–171, 1975.

[55] Z. Liu, Y.-C. Lai, N. Ye, and P. Dasgupta. Connectivity distribution and
attack tolerance of general networks with both preferential and random
attachments. Physics Letters A, 303:337–344, 2002.

[56] L. Lovász. Graph minor theory. Bulletin (New Series) of the American
Mathematical Society, 43:75–86, 2005.

[57] O. I. Marichev. Handbook of Integral Transforms of Higher Transcenden-
tal Functions, Theory and Algorithmic Tables. Ellis Horwood Limited,
1983.

[58] S. B. Maurer. The king chicken theorems. Mathematics Magazine, 53:67–
80, 1980.

[59] J. E. McCanna. Orientations of the n-cube with minimum diameter.
Discrete Mathematics, 68:309–310, 1988.

[60] C. McDiarmid. Concentration. In Probabilistic Methods for Algorithmic
Discrete Mathematics, pages 195–248. Springer, 1998.

[61] T. F. Móri. On random trees. Studia Scientiarum Mathematicarum
Hungarica, 39:143–155, 2002.

[62] T. F. Móri. The maximum degree of the Barabási-Albert random tree.
Combinatorics, Probability and Computing, 14:339–348, 2005.

[63] C. H. Papadimitrou. Computational Complexity. Addison Wesley, 1994.

[64] J. Plesńık. Diametrically critical tournaments. Časopis Pro Pěstováńı
Matematiky, 100:361–370, 1975.

121

[65] J. Plesńık. Remarks on diameters of orientations of graphs. Acta Math-
ematica Universitatis Comenianae, 46/47:225–236, 1985.

[66] K. B. Reid. Every vertex a king. Discrete Mathematics, 38:93–98, 1982.

[67] F. S. Roberts. Private communication to J. Griggs.

[68] F. S. Roberts and Y. Xu. On the optimal strongly connected orienta-
tions of city street graphs I: Large grids. SIAM Journal on Discrete
Mathematics, 1:199–222, 1988.

[69] F. S. Roberts and Y. Xu. On the optimal strongly connected orientations
of city street graphs II: Two east-west avenues or north-south streets.
Networks, 19:221–233, 1989.

[70] F. S. Roberts and Y. Xu. On the optimal strongly connected orientations
of city street graphs III: Three east-west avenues or north-south streets.
Networks, 22:109–143, 1992.

[71] F. S. Roberts and Y. Xu. On the optimal strongly connected orientations
of city street graphs IV: Four east-west avenues or north-south streets.
Discrete Applied Mathematics, 49:331–356, 1994.

[72] N. Robertson and P. D. Seymour. Graph minors III: Planar tree-width.
Journal of Combinatorial Theory, Series B, 36:49–64, 1984.

[73] N. Robertson and P. D. Seymour. Graph minors V. Excluding a planar
graph. Journal of Combinatorial Theory Series B, 41:92–114, 1986.

[74] N. Robertson, P. D. Seymour, and R. Thomas. Quickly excluding a
planar graph. Journal of Combinatorial Theory, Series B, 62:323–348,
1994.

[75] N. Sarshar, P. O. Boykin, and V. P. Roychowdhury. Percolation search in
power law networks: Making unstructured peer-to-peer networks scal-
able. In Proceedings of the Fourth IEEE International Conference on
Peer-to-Peer Computing (P2P’04), pages 2–9, 2004.

[76] T. J. Schaefer. The complexity of satisfiability problems. In Proceedings
of the ACM Symposium on Theory of Computing (STOC), pages 216–
226, 1978.

[77] R. Thomas. Tree-decomposition of graphs. Lecture notes, 1996.

[78] L. Šoltès. Orientations of graphs minimizing the radius or the diameter.
Mathematica Slovaca, 36:289–296, 1986.

122

[79] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’
networks. Nature, 393:440–442, 1998.

[80] H. Whitney. 2-isomorphic graphs. American Journal of Mathematics,
55:245–254, 1933.

[81] X. Yao, C.-S. Zhang, J.-W. Chen, and Y.-D. Li. On the formation of
degree and cluster-degree correlations in scale-free networks. Physica A,
353:661–673, 2005.

[82] R. K. Yeh. A survey on labeling graphs with a condition at distance
two. Discrete Mathematics, 306:1217–1231, 2006.

123

