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Summary:

In this report an enumerative method for the solution of
the Linear Complementarity Problem (LCP) is presented.
This algorithm completely processes the LCP, and does not
require any particular property of the LCP to apply. That
is the algorithm terminates after either finding all the
solutions of an LCP or establishing that no solution
exists. The method is extended to also process the Second
Linear Complementarity Problem (SLCP), a problem which has
been introduced to represent the general quadratic program

involving unrestricted variables.






1. INTRODUCTION

The Linear Complementarity Problem (LCP) has become one of the
important research areas in mathematical programming. This problem is

stated as [2,7]

w=q+Mz, z>0, w>0, wlz=0 (1)

Three genres of algorithms for the solution of the LCP have been
reported in the literature; direct, iterative and enumerative. The
first two only apply to special classes of matrices and they terminate
with a particular solution when it exists. Enumerative methods find

all the solutions of any LCP without any assumption concerning the class
of the matrix M. These latter methods are more involved and process
the LCP by exploring the nodes of a tree (they are usually called tree

search methods).

To date two enumerative methods have been designed for the LCP.
These methods are due to Garcia and Lemke [4] and Mitra and Jahanshalou
[8] and were originally designed to solve some related problems and
then extended to deal with the LCP. They both consider basic feasible
and infeasible solutions when the tree is explored. It is however
possible to design another tree search method in which only basic
feasible solutions are employed. This algorithm is described in sections

2, 3 and 4 of this paper.

One of the most important applications of the LCP is to find
Kuhn-Tucker points of a quadratic program, that is, vectors which satisfy
the Kuhn-Tucker conditions of this program [2]. If in a quadratic program
there exist some unrestricted variables and (or) some equality con-

straints the Kuhn-Tucker conditions lead to a problem of the form

[6, pages 7-8]



-
w =q + Mz + Nu,
()
0=p+ Rz + Su,

T

z>0 w>0, zw=0, —o<u<+wo,

which is called the Second Linear Complementarity Problem (SLCP), (see

[6, chapter 5] for a study of this problem). The extension of the

enumerative method to this problem is presented in section 5.

In section 6 an LCP of small dimension taken from [8] is solved
by the enumerative method to clarify the exposition of the algorithm.
Finally, the computational experience with some test LCP's and SLCP's

is presented in section 7.

2. THE NEW ENUMERATIVE METHOD FOR THE SOLUTION OF THE LCP.

The method is based on the principle that all the solutions of an
LCP can be found by generating at most gzi nodes of a tree which are
i=0
defined by taking one out of the n pairs of complementary variables
and then setting each of these variables to zero in turn. Therefore, by

exploring the tree shown in (DI]) it is possible to either establish no

solution to the LCP exists or find all the solutions of the LCP.

(D1)
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If any one of the nodes N1,N2,..., at the depth n of this tree can
be developed then it represents at least one solution of the LCP. This
is because only feasible solutions are admitted and the n variables

set to zero are taken out of n pairs of complementary variables.

If a variable is set to zero it should remain in all the subsequent
nodes of the tree shown in (DI). To indicate this fact the variable is

said to be starred. So in the diagram (D1) z,= 0 (w, = 0) can be

replaced by z; starred (wj starred).

Suppose that a variable is required to be starred. This obviously
can be done if the variable is nonbasic. Note that if a nonbasic
variable is starred its corresponding column can never be pivot column
of any pivot transformation and the term "starred" is used to indicate
this fact. If the variable is basic, however, it is not always possible
to star it. Let 1 be the row of this variable; by applying a simplex
type algorithm with the rth row as the objective row either this variable
is made nonbasic or it is shown that it is not possible to do so. When
the latter occurs let the corresponding tableau be set out in the

Tableau form TI.

Tl

Then one of the two following properties must hold:

(P1) b_1 = 0 and 2jj = 0 for all the nonstarred j,

(P2) b_1 > 0 and Eij < 0 for all the nonstarred j,

In the second case the minimum value of the variable is positive
and the variable cannot be starred. In the first case the variable has
zero value and this value does not change in any subsequent tableau

obtained from any pivot transformation, whence the variable can be
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starred. This simplex type procedure is called "minvar" and is fully

described later. So a variable "can be starred" if
(1) it is a nonbasic variable,

(i1) it is a basic variable, the minvar procedure is applied
and at the end of this procedure either the variable is

nonbasic or satisfies (P1).

A variable "cannot be starred"” if it is a basic variable which

satisfies (P2) at the end of the minvar procedure.

Therefore some of the nodes of the tree shown in (DI) cannot be
generated, which implies that the complete enumeration given by the

tree is usually avoided.

The method uses two types of tableaus as stated in the following

definition.
Definition 1. A tableau is Complementary if and only if either
(a) or (b) holds:

(a) - there is no i such that z; and w; are both basic
(b) - if z; and w; are both basic then one of the variables

is starred and satisfies (P1).
A tableau is Noncomplementary if it is not complementary.

It follows from this definition that if there are n starred
variables then the tableau must be complementary. In this case the
tableau usually provides one complementary solution. However, if one
or more starred variables satisfy (P1) then it might lead to an
infinite number of solutions. In fact in this latter case there is at
least one nonbasic nonstarred variable and this variable can take any
non negative value which does not force any basic variable to become

negative.
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If a tableau is complementary then any pair of complementary
variables such that neither of them are starred has at least one
nonbasic variable. Therefore the branches for a complementary tableau

are of the form set out in D2.

star nonbasic wvariable

‘ basi .
star nonbasic variable e (D2)

Branching in Complementary Tableau.

Note that in the right hand branch minvar is usually applied.

When one or more starred variables satisfy (P1) both the variables of a

complementary pair may be nonbasic. In this case minvar is not applied.

If the tableau is noncomplementary there is at least one pair of

complementary nonstarred basic variables (z; , w; ) and in order to achieve

complementarity each variable is starred in one of the two branches.
Hence minvar is applied to generate both the nodes and the branches are

of the form set out in D3.

apply minvar for z apply minvar for w,

(D3)

Branching in Noncomplementary Tableau.
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At any node of the tree if a basic variable, sayz;, satisfies

(P2), that is, its minimum value is positive, its complementary, w;j,
must be starred in order that zjw; =0. If W, cannot be starred, that

is, the minimum value of W; is also positive, there are no solutions of
the LCP beyond this node and the search does not proceed further down
the tree.

A number of preliminary concepts related to the enumerative method
have been discussed and a complete description of the algorithm now

follows. To make the description concise the symbol y; is introduced
to represent any basic z; or w, variable as is convenient and Xx;

represents any non basic variables, see Tableau T1.

STEP O - Initialization - Set NODE = 1 (the node under current investigation),
NNODE =1 (total number of nodes to be investigated),
NSOL = 0 (Number of solutions of the LCP). Apply the Phase 1
of the simplex method. If no feasible solution exists go to
EXIT.

STEP 1 - Check tableau state - See if the tableau is complementary. If
it is set COMPL = TRUE. Otherwise set COMPL = FALSE.

STEP 2 - Analyse the current tableau to check for variables with positive
minimum value - Let
R = {y;:y; satisfies (P2) and its complementary variable is
not starred} (4)
(a) If R #d@, go to (b). If COMPL = TRUE go to Step 3. If
COMPL = FALSE go to Step 4.
(b) If for any y, € R its complementary variable cannot be starred
go to Step 6. Otherwise star all the variables complementary
to the variables in the set R. Now:
(i) if the number of starred variables is equal to n

go to Step 5 (at least one solution is generated);
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(ii) if no pivot transformation is performed go to
Step 2(a);

(i11) if at least one pivot transformation is carried out
go to Stepl (a new tableau is obtained and it is
necessary to analyse its state in Step 1).

STEP 3 - Branching for complementary tableaus - Branch by starring a
nonbasic variable in any column of the tableau in node
(NNODE + 2) and designating its complementary to be starred
in node (NNODE + 1). Store the tableau, set NNODE = NNODE + 2
and NODE = NNODE. If the number of starred variables is
equal to n go to Step 5. Otherwise go to Step 2.

STEP 4 - Branching for noncomplementary tableaus — Let y{ and y; be two
basic variables which constitute a pair of complementary

variables. Designate y; and y; to be starred in nodes
(NNODE + 1) and (NNODE + 2), store the tableau, set NNODE=
NNODE + 2 and NODE = NNODE and go to Step 7.

STEP 5 - Generation of a solution - Set NSOL = NSOL + 1. If all the

nonbasic variables of the tableau are starred this tableau
yields exactly one solution of the LCP given by (yizgi,xi =0).

Otherwise a family of solutions to the LCP can be obtained from

this tableau. Add the solution to the list and go to Step 6.

STEP 6 - Backtrack - If NODE = 1 go to EXIT. Otherwise set NODE = NODE —1.
If node NODE has already been processed go to Step 6. Otherwise
extract the last tableau stored and go to Step 7.

STEP 7 - Generation of the node - If the chosen variable to be starred

cannot be starred go to Step 6. Otherwise star this variable.
If the number of starred variables is equal to n go to

Step 5. Otherwise go to Step 1.
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EXIT - If NSOL = 0 the LCP has no solution. Otherwise all the solutions
of the LCP have been enumerated and there are NSOL or an

infinite number of solutions.

Note that if the basis matrices are used to implement the algorithm

only the basic and nonbasic variables are stored in the branching steps.

If in Step 5 there is exactly one starred basic variable it is
possible to write explicitly the family of solutions. Let y, be this

variable and let s by the column of its complementary nonbasic and

nonstarred variable. Then Hrs = 0 and the family of solutions is given

by
x, €[0,a,] , ¥y, = 0, y,e[b,, b, +B,] , 1 # 71 (%)
where
_ [0 ifa. =0
1S
+oifag <0 —ooifao :+ooand3is> 0
Po = tooifo, =+ c0anda <0 ©6)
b. - ) .
min{Tl:E- >0} ais ao if ao 1S a real number
a. 1S L
L is
Obviously if ay :0(y:B,x:O)is the unique solution given by the
tableau.

Minvar Procedure
STEP 0 — Set k =1, Ak = A, bk = b, where A and b are the entries of the

given tableau. Let t be the row of the basic variable chosen

for the minvar procedure.

STEP 1 - If blf = 0, go to Step 3. If b%( > 0 and a%(jgo for all the

nonstarred columns j, set TERM = 3 and go to EXIT.
Otherwise let

s =min {nonstarred j : alt(j >0} (7)

and go to Step 2



STEP 2 - determine the row r by

k k
. b; b
r = min i._lzmin _J;ak >0 ®
Tk
1S Js

Perform a single pivot transformation with alfs as the pivot.

Ifr=1t, set TERM =1 and go to exit. Otherwise set k = k + 1
and go to Step 1.

STEP 3 - If a{‘j = 0 for all the nonstarred columns j , set TERM = 2
and go to EXIT. If there is an a{(j #0 perform a single

pivot transformation with afj as the pivot, set TERM =1 and
go to EXIT.

EXIT- If TERM =1 the variable is nonbasic. If TERM = 2 the
variable is basic and satisfies (P1). If TERM = 3 the
variable is basic and satisfies (P2), that is, the minimum

value of the variable is positive.

Note that Bland's double least index rule (7) and (8) [1] has

been implemented in the algorithm to avoid the possibility of

cycling.

3. AN EXTENSION OF THE BRANCHING STRATEGY FOR COMPLEMENTARY TABLEAUS

Consider a complementary tableau and suppose that there are
n; (n; < n) starred variables. Then there are at least /=n—n,
nonstarred nonbasic variables. As outlined in the algorithm no
pivot transformation is performed until the number of starred variables
is equal to n. These variables are starred either in the branch
procedure of Step 3 or in Step 2 when R #¢. The algorithm looks at
the same tableau at most 7/ times and generates at most ¢ branches

to achieve the node which yields the solution. It is however possible
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to reduce the number of branches and the number of times the tableau
is inspected for variables belonging to the set R by an improved

strategy for the choice of the variables for branching.

Two cases (A) and (B) are considered below.
(A) There are exactly ¢/ nonbasic nonstarred variables.
In this case all the variables already starred are nonbasic.

Suppose that the tableau is of the form

1 -X1 -X2 -X3 ...-—xj v aTXg “Xg41 .. “Xp
e T e Rl e w
N\
where x /+y,...,x, are the starred variables, xj and yj constitute a

pair of complementary variables and + and — represent respectively

)

a positive and a nonpositive entry. If the usual branching step is used

the pair (x;,yi) can be chosen and y; € R in the subsequent nodes with

the same tableau, since x; is a starred variable. However, if the first

two branches are of the form

X, starred

X2, Starred
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then in node Njy; € R and x; is starred. Note that the entry

Eij of the tableau must be nonpositive. Otherwise x; has to be

starred for y; to satisfy (P2), whereby y; ¢ R.

Consider now the sets of variables

S = {yij :yj has positive value and its complementary variable

is not starred}

T = {y; eS:Eijg 0 where j is the column of the complementary

variable of y;}

and suppose that T =|= @. For any y; € T consider the set of variables

indices
U; = {j : j is anonstarred column of the tableau and aij> 0y (11)
If U= {s,...,s;} is the set with the least elements among the

sets Uj then it follows from the definitions of the sets U; that

(i) r branches of the form

Xg_  starred @
1 ‘

.
Ld
X starre

provides a variable y; € R in node N.+; (N; is the present

node),

(11) there are no variables y;j € R in the nodes Ny,...,Nr,

whence Step 2 does not have to be used before

reaching node N,41.
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On the other hand if T = @ then no matter what the variables
X{,...,X are chosen for starring the set R is empty in all the
nodes generated by starring these variables. Therefore in this case
it is not necessary to use Step 2 until all these variables are
starred, which means that Step 2 is used ¢ less times than in the
original algorithm.

(B) The number of nonstarred nonbasic variables is

greater than /7 .

In this case there is at least one starred basic variable at
zero level and there exists at least a nonbasic pair of complementary

variables. Let r and t be the columns of such a pair,

yie T, ajr > 0 and suppose that x, is not starred. Hence r e U;.

But if x¢ is already starred or ait >0 then either Xy and x¢ are

both starred or the definition of the set T should be modified.
But two variables of the same pair cannot be starred in the same node
since the method is based on the tree shown in (DI). So the
definition of the set T is modified to rule out this case as

follows:
T = {y; e S : property (P3) holds} (12)
where
(P3) (i) a;<0, where j is the column of the complementary
variable of yj,
(i) if xg is a nonbasic nonstarred variable such that
ajs > 0 then its complementary is not starred and
either it is basic or nonbasic with a nonnegative

entry in the ith row.

Therefore Step 2 and Step 3 are modified in order to improve the
efficiency of the enumerative method. The modifications in Step 2

are presented in the next section.
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Before presenting the modified Step 3 a further extention is

discussed. Suppose that the following property holds:

(P4) Number of starred variables is equal to (n-1) and there is

exactly one nonbasic nonstarred variable.

In this case the tableau is of the form

1 star -Xg star
Y, . _
= b . (13)

where yt and xg are complementary variables.

There are two cases as stated below.

(i) by =0— the node (NNODE + 1) is generated by starring
the variable y¢. Then either y¢ satisfies (PI) or must become

nonbasic. In the first case aw =0 and the tableau (13)
represents a family of solutions of the form (5),(6). Further
any possible solution obtained in node (NNODE + 2) is included
in the family of solutions of node (NNODE + 1). Hence it is

not necessary to branch but y; must be starred. On the other

hand if a =0, yt can be made nonbasic after a single pivot

transformation with ags as the pivot. So the nodes (NNODE + 1)
and (NNODE + 2) give the same solution, whereby it is not

necessary to branch but instead x4 is starred.

(i1) Bt >0 - in this case ats >0, since otherwise y¢
satisfies (P2) and x is starred. Let 7/ be defined by

b bj
¢/ = min {i:=—1 = min Tza—js > 0 (14)
ais ajs
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If (=tor/ =|= t andy=6t—afb4 =0 then two different
arss

solutions can be obtained in nodes (NNODE + 1) and (NNODE + 2) if the
usual branching procedure is followed. However there are no more
solutions in these nodes, and it is not necessary to branch but one

simply adds these two solutions to the list of solutions already

enumerated. Therefore in this case set NSOL = NSOL + 2 and add the
solutions (y = b,x = 0) and the one obtained from this solution by a

pivot transformation with ar, as the pivot. On the other hand if
l =|= t and y > O then y; satisfies (P2) and x; must be starred.

The modified Step 3 is now described where NU denotes the number
of elements of the set U
STEP 3 (a) If NU > O go to (c¢). If (P4) holds go to (b). Otherwise
branch by starring a nonbasic variable in any column of the
tableau in node (NNODE + 2) and designating its complementary
to be starred in node (NNODE + 1). Store the tableau and set
NNODE = NNODE + 2 and NODE = NNODE. If the number of starred
variables is equal to n go to Step 5. Otherwise go to

Step 3.

(b) Let s be the index of the nonstarred column and t be
the index of the row of the basic variable complementary to

Xs.
(i) If b, > O go to (ii). If a, = O star y,.

If aq =|= O star xs. Go to Step 5.

(i1) Determine the row ¢ by (14). If ¢ =|= t and

T asb
bi——L > O, star x5 and go to Step 5.
ars

Otherwise set NSOL = NSOL + 2 and add the solutions

(y = b, x = 0) and the basic solution obtained from
the previous solution by a pivot transformation with

a,, as the pivot to the list of solutions. Go to step 6.
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(c) NU > O - Branch by starring the nonbasic variable in
any column of the set U in node (NNODE + 2) and design-
nating its complementary to be starred in node (NNODE + 1).
Store the tableau and set NNODE = NNODE + 2, NNODE =
NNODE and NU = NU - 1. If NU = 0 go to Step 2. Otherwise go to
Step 3 (c).

4. AN EXTENSION OF THE BRANCHING STRATEGY FOR NONCOMPLEMENTARY TABLEAUS
If a tableau is concomplemtary there is at least a basic pair

of complementary variables y, and y; taking positive values. The

branching procedure specified in the algorithm designates y, and y;

as the variables to star in the nodes (NNODE + 1) and (NNODE + 2) and

then apply minvar to generate these nodes. Obviously the minvar

procedure could be performed prior to the branching. This is not

done since the value of y; might increase when minvar is applied to

star y, increasing the number of pivot transformations necessary to

generate (NNODE +1). In certain cases, however, it is possible to

make nonbasic one of the variables and decrease or at least do not

increase the value of the other. This occurs if

Q) one of the variables has zero value and the pivot
row is the row of this variable,

(i) both the variables y, and y; have positive values
and the pivot column is a column s such that either

as >0and as >0 or a, >0 a, > 0 and one of

these entries is positive.
A modification of the minvar procedure, which can be called

"joint minvar", can be designed following the rules (i) and (ii). At
the end of this procedure one of the variables either satisfies (P1)

or is nonbasic. However, in the two cases below the joint minvar
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procedure terminates unsuccessfully:

(i11) at least one of the variables, say y, , satisfies

(P2),
(iv) if as > 0 (a_ts > 0) then ais <0 (;rs < 0)
For any column s .
In case (iii) the complementary variable of y, has to be starred

for which minvar is applied. In case (iv) the Step 4 of the algorithm
should be applied.

Suppose now that at the end of the joint minvar procedure one .
of the variables, say z;, either satisfies (P1) or is nonbasic.
Since the value of its complementary variable has been reduced it
might satisfy (P2) in which case z; is starred. If w; does not
satisfy (P2) it is advisable to see whether the current tableau is
complementary before branching. If this tableau is complementary then
the branching is different and Step 2 is applied without starring
zi. If the tableau is noncomplementary two branches are developed
such that z; is starred in node (NNODE + 2) and w; is designated to
star in node (NNODE + 1). After the branching Step 2 is applied

since it is known that the current tableau is noncomplementary.

Before presenting the modified Step 4 it must be noted that

Step 2 is applied as part of Step 4 for a pair of complementary
variables. Furthermore Step 2 is quite time consuming since it is
necessary to look at almost all the rows of the tableau in order to

find variables which belong to the set R . Finally if n is
large and the number of starred variables is small then usually

R = @. Hence it is not advisable to apply Step 2 for noncomplementary

tableaus. This implies that if the branching is performed then

Step 4 follows instead of going back to Step 2. On the other hand
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Step 2 should be used for complementary tableaus not only to look
for variables with positive minimum value but also for the
branching procedure of Step 3. The modified Steps 2 and 4 are set

out below.

STEP 2 (only used with complementary tableaus).
(a) Let R be defined by (4). If R = 0 go to (b).
Otherwise star all the (nonbasic) variables complementary
to the variables in the set R . If the number of starred
variables is equal to n go to Step 5. Otherwise go to
Step 2.

(b) Let NU = 0 (the number of elements of the set U ) and
S and T be given by (10) and (12) respectively. If T =0
go to Step 3. Otherwise consider for any y; € T the set Uj
given by (11) and let U be the set with least elements among

the sets U;. and NU be the number of its elements. Go to

Step 3.

STEP 4 Branch for noncomplementary tableaus - Consider a basic pair
of complementary variables y, =z, and y¢ = w;_.

(a) If both the variables y, and y; have positive value go
to (b). Otherwise one of these variables either satisfies
(PI) or a pivot transformation with any nonzero entry of its
row as the pivot makes it nonbasic. Go to (d).

(b) Let

RCOL = the first nonstarred column whose entry in the r'"

row is positive,

TOOL = the first nonstarred column whose entry in the ¢h

row is positive,

NNCOL = the first nonstarred column such that both entries
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in the r'" and the t'" rows are nonnegative and at
least one of them is positive,

PSCOL = the first nonstarred column such that both the

th

. . th ..
entries in the r° and t " columns are positive.

If PSCOL exists go to (i). Otherwise go to (ii).
(i) Let s = PSCOL and calculate the row ¢ which satisfies

(14). If b, >0 go to (c). Otherwise (degenerate case)

if PSCOL = min  {RCOL, TCOL } go to (c)
if PSCOL > NCCOL go to (iii)
if PSCOL = NNCOL go to (iv)

(i1) If both RCOL and TCOL exist go to (iii). If RCOL and

TCOL do not exist go to Step 6. If RCOL (TCOL) does
not exist go to Step 7 with y; (y:;) as the variable
to be starred.

(ii1)) If NNCOL exists, set PSCOL = NNCOL and go to (i).
Otherwise go to (iv).

(iv) Branch by designating the variables y, and y; to be

starred in nodes (NNODE + 2) and (NNODE + 1) and store

the current tableau. Set NNODE = NNODE + 2 and
NODE + 2 and NODE = NNODE. Go to Step 7.

(c) Perform a single pivot transformation with aris as the

pivot. If €=|= r and €=|= t go to (a). Otherwise one of

the variables is nonbasic after the pivot transformation

and go to (d).

(d) One of the variables of the pair (zi,w;.), say zj., is

(15)

nonbasic or satisfies (PI) — if its complementary variable

wi does not satisfy (P2) go to (e). Otherwise star z;

the number of starred variables is equal to n go to

Step 5. Otherwise go to Step 1.

If
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(e) See if the tableau is complementary. If it is set
COMPL = TRUE and go to Step 2. Otherwise set COMPL = FALSE
and go to (f).

(f) Branch by starring z; in node (NNODE + 2) and desig-
nating w; to star in node (NNODE + 1). Store the tableau
and set NNODE = NNODE +2, NODE = NNODE. Go to Step 4.

Note that the joint minvar procedure and its unsuccessful
terminations are incorporated in the parts (a), (b) and (c¢). On the
other hand (15) is used to follow Bland's double least index rule
[1]. In fact if PSCOL = min {RCOL, TCOL} then PSCOL is the first
positive column of the function sum of the two variables which
decreases in the nondegenerate case in any iteration of joint minvar.
Otherwise cycling might occur and either NNCOL < PSCOL and NNCOL
might be the pivot column or it is better to terminate the joint

minvar procedure.

5. EXTENSION OF THE ENUMERATIVE METHOD TO THE SLCP
The enumerative method for the LCP can be extended to the SLCP

with minor modifications. For the SLCP the initial step looks for
a feasible solution to the system y = b + A(-x), where initially

the y-variables are artificial or nonnegative and the x-variables
are unrestricted or nonnegative. This can be done by the general
Phase 1 of the simplex method (see [6, pages 109-112] for instance).
In this procedure whenever an unrestricted (artificial) variable

becomes basic (nonbasic) it is not allowed to become nonbasic (basic)
again. The artificial variable and the respective column are then

starred. Further the unrestricted variable and the respective row

are usually called Flagged. The feasible solution sought is a

basic solution which satisfies the following properties:



-20 -
(1) any variable required to be nonnegative assumes

nonnegative value.

(i1) any unrestricted (artificial) variable is either
basic (nonbasic) or nonbasic in a column (basic in
a row) with zero entries in all the nonflagged

rows (nonstarred columns).

If no feasible solution can be found SLCP has no solutions.
Otherwise let NNBV be the number of nonstarred nonnegative nonbasic
variables at the end of Phase I. Then the three possible relations
NNBV=n,, NNBV < n, NNBV > n are satisfied if and only if at the end
of Phase I the number of basic artificial variables is respectively
equal to, less than or greater than the number of nonbasic un-
restricted variables. Since NNBV < n can occur there might exist
a tableau in which all the nonbasic variables are starred but this
number is smaller than n . In this case there exists at least a
basic pair of complementary variables (z;,w;). If for any pair of
basic complementary variables at least one of the variables of this

pair has zero value then the tableau represents a solution of the
SLCP. So the enumerative method has to be modified in order to incur-

porate this possibility. This modification can be done by generalizing
the definition of complementary tableau and then modifying Step 1 of

the enumerative method.

Definition 2. A tableau is complementary if (i) or (ii) holds:
(i) it is complementary in the sense of definition 1,
(i1) if all the nonbasic variables are starred and the
number of starred variables is less than n , then any
pair of basic complementary variables has at least one

variable with zero value.
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STEP 1 See if the tableau is complementary. Set COMPL = TRUE

if the tableau is complementary and COMPL = FALSE if the
tableau is noncomplementary. If all the nonbasic variables
are starred go to Step 5 if COMPL = TRUE or to Step 6 if
COMPL - FALSE. Otherwise go to Step 2 if COMPL - TRUE or
to Step 4 if COMPL = FALSE.

Furthermore if an unrestricted variable is nonbasic at the and
of Phase 1, then all the nonflagged entries in the column of this
variable are zero for any subsequent tableau. Hence this unrestricted
variable can assume any real value in any solution of the SLCP which

is enumerated in Step 5.

6. A WORKED EXAMPLE ILLUSTRATING THE ENUMERATIVE METHOD
In this section an example taken from [8] is solved by the
enumerative method with the modified steps. Consider the LCP given

by the following tableau

1 -Z1 -Z> -Z3 -Z4
Wi = 2 -2 1 3 -4
Wy = -4 -10 -1 1 -1
W3 = 3 -1 2 -1 2
Wy = -6 -20 -3 1 3

The Phase I of the simplex method requires one pivot transform-

ation to get an initial feasible solution represented by the tableau:
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1 -7Z1 %) =73 =74
Wi = 2.8 | -0.2 1.2 2.8 3?8
Wo = 04 | -0.1 0.1 -0.1 0.1
W3 = 2.6 0.1 1.9 -09 19
Wy = 20 | -20 1.0 -1.0 5.0

This tableau is noncomplementary (r = 1, t = 2). So step 4 is
applied and RCOL = TCOL = PSCOL =2 and s = 2. Therefore a joint
minvar step is used and the values of W, and z; decrease, since ¢/ = 3
and bs =|= 0. The pivot transformation with a32 as the pivot leads to

the following tableau

1 -Wp -W3 -Z3 -Z4
Wi = 1.15 |1 -0.26 -0.63 336 -5
-7) = 0.26 | -0.1 -0.05 -0.05 O
Z - 1.37 1 0.05 052 -047 1
ws- | 336 -1.0 052 147 6

Now RCOL =3 and TCOL = 0. So w; should be starred (Step 4(i1))

using the minvar procedure. This procedure chooses a;z as the pivot

and makes w; nonbasic in one iteration yielding the tableau

1 -Wp -W3 -Wq -Z4
-73 = 0.39 | -0.07 -0.18 -0.29 -1.48
7] = 0.28 | -0.1 -0.06 -0.01 -0.07 (16)
7 - 1.53 1 001 043 0.14 0.29
was- | 387 |-206 025 043 381
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This is a complementary tableau. On the other hand z; satisfies
(P2) whereby the nonbasic variable ws is starred. Step 2 is applied
again and S ={z;,w4} , R=0 and T = @. Hence NU = 0 and Step 3

creates the two following branches

w4 starred
Z, starred

Further more tableau (16) is stored for generating node 2. After
this NODE takes the value 3. But in node 3 the number of starred

variables is equal to 3 = n - 1 and there is one nonbasic nonstarred
variable. So property (P4) holds and s =1, t = 3, bi=1.53 > 0.

Furthermore by (14) / =t = 3. Hence node 3 provides two solutions

which are

Solution 1 — z; = 0.28, z, = 1.53, z3 = 0.39, wy4 = 3.87,
Wi =Wwy=w3 =24 =0.
Solution 2 — (obtained from solution 1 by a pivot transformation
with a3, as the pivot) —z; = 10.99, w, = 97.99,
Z3 =7.99, wgq = 205.99, w; =2z, = w3 =24 = 0.
Step 6 (Backtrack) follows and node 2 is generated by starring the
variable ws4. To do this, tableau (16) is considered and minvar is

applied. One iteration of minvar is sufficient to make w4 nonbasic

and the following complementary tableau is obtained



1 -W» -W3 Wi -Z4
-Z3 = 1.85 | -0.88 | | 0.38
-7) = 0.36 | -0.15 | | 0.02
7y - 1.22 | 0.17 | | -0.07
z4 = 1.01 | -0.54 | | 0.26

Note that it is not necessary to update the second and the third
columns since the variables w; and w; are starred. At this stage the
number of starred variables is equal to 3 and there is exactly one

nonstarred nonbasic variable. Hence (P4) holds and s =1, t = 3,

l_)t, =1.22>0, ¢ =t=3. So node 2 provides two more solutions which

arc

Solution 3 —z; =0.36, 2z, =1.22,z3 =1.85,2z4 =1.01,
Wi = Wy = w3 = wy =0.
Solution 4 — z; = 1.41, wo, = 6.97, z3 = 7.99, z4 = 4.79,
Wi =2y =Wz = wy =0.
After this NODE = 1 and the algorithm stops. Therefore the LCP
has four solutions. Note that only 3 nodes (the complete enumeration
consists of 31 nodes) and 6 pivot transformations (2 of them only

update the right-hand side coefficients) have been performed.

7 COMPUTATIONAL EXPERIENCE AND DISCUSSION OF RESULTS

In this section a set of test LCPs and SLCPs either constructed
or taken from a known source are presented in Table 1 together with the

results of the application of the enumerative method to these problems.

In Table 1 the problem number is presented in the first column.
The source of the respective problem is given in the second column by

a parameter which is explained at the end of the table. The first
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fourteen SLCPs and LCPs are the Kuhn-Tucker conditions of different
nonconvex quadratic programming problems. The dimensions of these
different quadratic programs are set out in the third column under the

headings which are explained below.

V - number of nonnegative variables,
U - number of unrestricted variables,
I - number of inequality constraints,

E - number of equality constraints.

The order of the matrix of the SLCP or LCP is presented in the
fourth column. Finally the results (number of solutions, iterations
and nodes) of the application of the enumerative method to the test

problems are presented in the last three columns.



26 -

Problem | Source Dimensions | Matrix ] Itera- Nodes
V U 1 E |Order Solutions tions

Pl S1 4 0 3 0 7 3 23 11
P2 S2 4 0 3 0 7 3 17 15
P3 S3 4 0 3 0 7 11 43 25
P4 S4 9 2 6 0 17 15 663 239
P5 S4 6 0 12 2| 20 1 204 79
P6 S4 102 9 0 21 4 610 163
P7 S4 9 0 15 0| 24 3 2090 479
P8 S4 10 0 15 0| 25 3 3534 785
P9 S4 16 0 10 1 27 3 4548 971
P10 S5 8 2 7 1 18 7 49 15
P11 S5 8 1 12 2| 23 3 314 117
P12 S5 9 0 12 3 24 37 720 335
P13 S5 1r 2 9 3 25 376 6509 2603
P14 S5 12 0 8 0| 20 589 6761 2835
P15 S6 20 7 293 69
P16 S6 25 62 482 169
P17 S6 30 29 513 117
P18 S6 33 44 429 101
P19 S6 35 66 1568 503
P20 S6 37 40 1407 407
P21 S6 40 117 2282 711
P22 S6 42 29 1904 465
P23 S6 45 50 2479 735
P24 S6 48 33 1686 605
P25 S6 50 27 1640 521

TABLE 1 - Problems and results
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List of Sources for the test problems:
SI, S2. S3 - Hansen and Mathiesen problems 1.1, 1.4 and 1.5 [5]

S4 - Hansen and Matheiesen random problems [5]

S5 - Let the quadratic program be of the form

Minimize pTS + % 2T Dz,

subject to Az(ij b, z € Rf, be RM

where the variables may be nonnegative or unrestricted. Then these
test problems are obtained by using coefficient values
-2 if i=1
pi=-1 , d, = Lif |i—j|=1,1,j= 1., [(
O otherwise
bi = -1 , a; = 70, ,i=1,....,m, jzl,....f
where o, is a random number drawn from a uniform distribution in the
interval [0,1]
S6 - These are LCPs whose matrix M € R"™" and vector qe R" are
given by
i+j-2 , if i+ j-2<n,;, ,
qi = 5 , Mij =y :
14+j—2-n , otherwise
where «, is a random number drawn from a uniform distribution in the
interval [0,1].

Brief discussion of the results

As it was referred in section 1 two other enumerative methods to
the LCP have been reported in the literature. However, no computational
experience with these methods is available. On the other hand the
results indicate that this enumerative method is clearly superior to
Hansen and Mathiesen approach [5] to find Kuhn-Tucker points. It
seems that the enumerative method performs well for the quadratic

programs with small number of Kuhn-Tucker points.
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If the matrix of an LCP is nonnegative then for any i such

That q; > 0 the variable z;. can be starred before starting the algorithm.

Because of this property only nonpositive vectors q are considered

in the LCPs of source 6. Note that the matrices of these LCPs are not

L-matrices [3], whence Lemke's. method [7] cannot be applied to these

problems. The results presented in Table 1 for these LCPs are quite

encouraging and also show that the enumerative method does not perform
poorly with an increase of the dimension of the LCP.
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